Sample records for compressed air

  1. 30 CFR 75.1730 - Compressed air; general; compressed air systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Compressed air; general; compressed air systems... Compressed air; general; compressed air systems. (a) All pressure vessels shall be constructed, installed... Safety and Health district office. (b) Compressors and compressed-air receivers shall be equipped with...

  2. 30 CFR 75.1730 - Compressed air; general; compressed air systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Compressed air; general; compressed air systems... Compressed air; general; compressed air systems. (a) All pressure vessels shall be constructed, installed... Safety and Health district office. (b) Compressors and compressed-air receivers shall be equipped with...

  3. 30 CFR 75.1730 - Compressed air; general; compressed air systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Compressed air; general; compressed air systems... Compressed air; general; compressed air systems. (a) All pressure vessels shall be constructed, installed... Safety and Health district office. (b) Compressors and compressed-air receivers shall be equipped with...

  4. 30 CFR 75.1730 - Compressed air; general; compressed air systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Compressed air; general; compressed air systems... Compressed air; general; compressed air systems. (a) All pressure vessels shall be constructed, installed... Safety and Health district office. (b) Compressors and compressed-air receivers shall be equipped with...

  5. Operations and maintenance in the glass container industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbieri, D.; Jacobson, D.

    1999-07-01

    Compressed air is a significant electrical end-use at most manufacturing facilities, and few industries utilize compressed air to the extent of the glass container industry. Unfortunately, compressed air is often a significant source of wasted energy because many customers view it as a low-maintenance system. In the case of the glass container industry, compressed air is a mission-critical system used for driving production machinery, blowing glass, cooling plungers and product, and packaging. Leakage totaling 10% of total compressed air capacity is not uncommon, and leakage rates upwards of 40% have been observed. Even though energy savings from repairing compressed airmore » leaks can be substantial, regular maintenance procedures are often not in place for compressed air systems. In order to achieve future savings in the compressed air end-use, O and M programs must make a special effort to educate customers on the significant energy impacts of regular compressed air system maintenance. This paper will focus on the glass industry, its reliability on compressed air, and the unique savings potential in the glass container industry. Through a technical review of the glass production process, this paper will identify compressed air as a highly significant electrical consumer in these facilities and present ideas on how to produce and deliver compressed air in a more efficient manner. It will also examine a glass container manufacturer with extremely high savings potential in compressed air systems, but little initiative to establish and perform compressed air maintenance due to an if it works, don't mess with it maintenance philosophy. Finally, this paper will address the economic benefit of compressed air maintenance in this and other manufacturing industries.« less

  6. Chapter 22: Compressed Air Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurnik, Charles W; Benton, Nathanael; Burns, Patrick

    Compressed-air systems are used widely throughout industry for many operations, including pneumatic tools, packaging and automation equipment, conveyors, and other industrial process operations. Compressed-air systems are defined as a group of subsystems composed of air compressors, air treatment equipment, controls, piping, pneumatic tools, pneumatically powered machinery, and process applications using compressed air. A compressed-air system has three primary functional subsystems: supply, distribution, and demand. Air compressors are the primary energy consumers in a compressed-air system and are the primary focus of this protocol. The two compressed-air energy efficiency measures specifically addressed in this protocol are: High-efficiency/variable speed drive (VSD) compressormore » replacing modulating, load/unload, or constant-speed compressor; and Compressed-air leak survey and repairs. This protocol provides direction on how to reliably verify savings from these two measures using a consistent approach for each.« less

  7. 30 CFR 77.412 - Compressed air systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Compressed air systems. 77.412 Section 77.412... for Mechanical Equipment § 77.412 Compressed air systems. (a) Compressors and compressed-air receivers... involving the pressure system of compressors, receivers, or compressed-air-powered equipment shall not be...

  8. 29 CFR 1917.154 - Compressed air.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Compressed air. 1917.154 Section 1917.154 Labor Regulations...) MARINE TERMINALS Related Terminal Operations and Equipment § 1917.154 Compressed air. Employees shall be... this part during cleaning with compressed air. Compressed air used for cleaning shall not exceed a...

  9. 30 CFR 77.412 - Compressed air systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Compressed air systems. 77.412 Section 77.412... for Mechanical Equipment § 77.412 Compressed air systems. (a) Compressors and compressed-air receivers... involving the pressure system of compressors, receivers, or compressed-air-powered equipment shall not be...

  10. 29 CFR 1917.154 - Compressed air.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Compressed air. 1917.154 Section 1917.154 Labor Regulations...) MARINE TERMINALS Related Terminal Operations and Equipment § 1917.154 Compressed air. Employees shall be... this part during cleaning with compressed air. Compressed air used for cleaning shall not exceed a...

  11. 29 CFR 1917.154 - Compressed air.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Compressed air. 1917.154 Section 1917.154 Labor Regulations...) MARINE TERMINALS Related Terminal Operations and Equipment § 1917.154 Compressed air. Employees shall be... this part during cleaning with compressed air. Compressed air used for cleaning shall not exceed a...

  12. Microbiological contamination of compressed air used in dentistry: an investigation.

    PubMed

    Conte, M; Lynch, R M; Robson, M G

    2001-11-01

    The purpose of this preliminary investigation was twofold: 1) to examine the possibility of cross-contamination between a dental-evacuation system and the compressed air used in dental operatories and 2) to capture and identify the most common microflora in the compressed-air supply. The investigation used swab, water, and air sampling that was designed to track microorganisms from the evacuation system, through the air of the mechanical room, into the compressed-air system, and back to the patient. Samples taken in the vacuum system, the air space in the mechanical room, and the compressed-air storage tank had significantly higher total concentrations of bacteria than the outside air sampled. Samples of the compressed air returning to the operatory were found to match the outside air sample in total bacteria. It was concluded that the air dryer may have played a significant role in the elimination of microorganisms from the dental compressed-air supply.

  13. 30 CFR 57.13020 - Use of compressed air.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Use of compressed air. 57.13020 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Compressed Air and Boilers § 57.13020 Use of compressed air. At no time shall compressed air be directed toward a...

  14. 30 CFR 56.13020 - Use of compressed air.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Use of compressed air. 56.13020 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13020 Use of compressed air. At no time shall compressed air be directed toward a person...

  15. 30 CFR 57.13020 - Use of compressed air.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Use of compressed air. 57.13020 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Compressed Air and Boilers § 57.13020 Use of compressed air. At no time shall compressed air be directed toward a...

  16. 30 CFR 56.13020 - Use of compressed air.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Use of compressed air. 56.13020 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13020 Use of compressed air. At no time shall compressed air be directed toward a person...

  17. 30 CFR 56.13020 - Use of compressed air.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Use of compressed air. 56.13020 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13020 Use of compressed air. At no time shall compressed air be directed toward a person...

  18. 30 CFR 57.13020 - Use of compressed air.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Use of compressed air. 57.13020 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Compressed Air and Boilers § 57.13020 Use of compressed air. At no time shall compressed air be directed toward a...

  19. 30 CFR 57.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Inspection of compressed-air receivers and...-UNDERGROUND METAL AND NONMETAL MINES Compressed Air and Boilers § 57.13015 Inspection of compressed-air receivers and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure...

  20. 30 CFR 56.13020 - Use of compressed air.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Use of compressed air. 56.13020 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13020 Use of compressed air. At no time shall compressed air be directed toward a person...

  1. 30 CFR 56.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Inspection of compressed-air receivers and... METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13015 Inspection of compressed-air receivers and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure vessels...

  2. 46 CFR 112.50-7 - Compressed air starting.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Compressed air starting. 112.50-7 Section 112.50-7... air starting. A compressed air starting system must meet the following: (a) The starting, charging... air compressors addressed in paragraph (c)(3)(i) of this section. (b) The compressed air starting...

  3. 46 CFR 112.50-7 - Compressed air starting.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Compressed air starting. 112.50-7 Section 112.50-7... air starting. A compressed air starting system must meet the following: (a) The starting, charging... air compressors addressed in paragraph (c)(3)(i) of this section. (b) The compressed air starting...

  4. Compressor ported shroud for foil bearing cooling

    DOEpatents

    Elpern, David G [Los Angeles, CA; McCabe, Niall [Torrance, CA; Gee, Mark [South Pasadena, CA

    2011-08-02

    A compressor ported shroud takes compressed air from the shroud of the compressor before it is completely compressed and delivers it to foil bearings. The compressed air has a lower pressure and temperature than compressed outlet air. The lower temperature of the air means that less air needs to be bled off from the compressor to cool the foil bearings. This increases the overall system efficiency due to the reduced mass flow requirements of the lower temperature air. By taking the air at a lower pressure, less work is lost compressing the bearing cooling air.

  5. Accidental fatal lung injury by compressed air: a case report.

    PubMed

    Rayamane, Anand Parashuram; Pradeepkumar, M V

    2015-03-01

    Compressed air is being used extensively as a source of energy at industries and in daily life. A variety of fatal injuries are caused by improper and ignorant use of compressed air equipments. Many types of injuries due to compressed air are reported in the literature such as colorectal injury, orbital injury, surgical emphysema, and so on. Most of these injuries are accidental in nature. It is documented that 40 pounds per square inch pressure causes fatal injuries to the ear, eyes, lungs, stomach, and intestine. Openings of body are vulnerable to injuries by compressed air. Death due to compressed air injuries is rarely reported. Many cases are treated successfully by conservative or surgical management. Extensive survey of literature revealed no reports of fatal injury to the upper respiratory tract and lungs caused by compressed air. Here, we are reporting a fatal event of accidental death after insertion of compressed air pipe into the mouth. The postmortem findings are corroborated with the history and discussed in detail.

  6. METHOD OF FIXING NITROGEN FOR PRODUCING OXIDES OF NITROGEN

    DOEpatents

    Harteck, P.; Dondes, S.

    1959-08-01

    A method is described for fixing nitrogen from air by compressing the air, irradiating the compressed air in a nuclear reactor, cooling to remove NO/ sub 2/, compressing the cooled gas, further cooling to remove N/sub 2/O and recirculating the cooled compressed air to the reactor.

  7. 41 CFR 50-204.8 - Use of compressed air.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 1 2013-07-01 2013-07-01 false Use of compressed air. 50-204.8 Section 50-204.8 Public Contracts and Property Management Other Provisions Relating to... CONTRACTS General Safety and Health Standards § 50-204.8 Use of compressed air. Compressed air shall not be...

  8. 41 CFR 50-204.8 - Use of compressed air.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 41 Public Contracts and Property Management 1 2014-07-01 2014-07-01 false Use of compressed air. 50-204.8 Section 50-204.8 Public Contracts and Property Management Other Provisions Relating to... CONTRACTS General Safety and Health Standards § 50-204.8 Use of compressed air. Compressed air shall not be...

  9. Compressed Air Quality, A Case Study In Paiton Coal Fired Power Plant Unit 1 And 2

    NASA Astrophysics Data System (ADS)

    Indah, Nur; Kusuma, Yuriadi; Mardani

    2018-03-01

    The compressed air system becomes part of a very important utility system in a Plant, including the Steam Power Plant. In PLN’S coal fired power plant, Paiton units 1 and 2, there are four Centrifugal air compressor types, which produce compressed air as much as 5.652 cfm and with electric power capacity of 1200 kW. Electricity consumption to operate centrifugal compressor is 7.104.117 kWh per year. Compressed air generation is not only sufficient in quantity (flow rate) but also meets the required air quality standards. compressed air at Steam Power Plant is used for; service air, Instrument air, and for fly Ash. This study aims to measure some important parameters related to air quality, followed by potential disturbance analysis, equipment breakdown or reduction of energy consumption from existing compressed air conditions. These measurements include counting the number of dust particles, moisture content, relative humidity, and also compressed air pressure. From the measurements, the compressed air pressure generated by the compressor is about 8.4 barg and decreased to 7.7 barg at the furthest point, so the pressure drop is 0.63 barg, this number satisfies the needs in the end user. The measurement of the number of particles contained in compressed air, for particle of 0.3 micron reaches 170,752 particles, while for the particle size 0.5 micron reaches 45,245 particles. Measurements of particles conducted at several points of measurement. For some point measurements the number of dust particle exceeds the standard set by ISO 8573.1-2010 and also NACE Code, so it needs to be improved on the air treatment process. To see the amount of moisture content in compressed air, it is done by measuring pressure dew point temperature (PDP). Measurements were made at several points with results ranging from -28.4 to 30.9 °C. The recommendation of improving compressed air quality in steam power plant, Paiton unit 1 and 2 has the potential to extend the life of instrumentation equipment, improve the reliability of equipment, and reduce the amount of energy consumption up to 502,579 kWh per year.

  10. Integrated turbomachine oxygen plant

    DOEpatents

    Anand, Ashok Kumar; DePuy, Richard Anthony; Muthaiah, Veerappan

    2014-06-17

    An integrated turbomachine oxygen plant includes a turbomachine and an air separation unit. One or more compressor pathways flow compressed air from a compressor through one or more of a combustor and a turbine expander to cool the combustor and/or the turbine expander. An air separation unit is operably connected to the one or more compressor pathways and is configured to separate the compressed air into oxygen and oxygen-depleted air. A method of air separation in an integrated turbomachine oxygen plant includes compressing a flow of air in a compressor of a turbomachine. The compressed flow of air is flowed through one or more of a combustor and a turbine expander of the turbomachine to cool the combustor and/or the turbine expander. The compressed flow of air is directed to an air separation unit and is separated into oxygen and oxygen-depleted air.

  11. 41 CFR 50-204.8 - Use of compressed air.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Use of compressed air. 50-204.8 Section 50-204.8 Public Contracts and Property Management Other Provisions Relating to Public... General Safety and Health Standards § 50-204.8 Use of compressed air. Compressed air shall not be used for...

  12. 29 CFR 1910.169 - Air receivers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 5 2013-07-01 2013-07-01 false Air receivers. 1910.169 Section 1910.169 Labor Regulations... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Compressed Gas and Compressed Air Equipment § 1910.169 Air receivers. (a) General requirements—(1) Application. This section applies to compressed air receivers, and other...

  13. 29 CFR 1910.169 - Air receivers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 5 2012-07-01 2012-07-01 false Air receivers. 1910.169 Section 1910.169 Labor Regulations... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Compressed Gas and Compressed Air Equipment § 1910.169 Air receivers. (a) General requirements—(1) Application. This section applies to compressed air receivers, and other...

  14. 29 CFR 1910.169 - Air receivers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 5 2014-07-01 2014-07-01 false Air receivers. 1910.169 Section 1910.169 Labor Regulations... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Compressed Gas and Compressed Air Equipment § 1910.169 Air receivers. (a) General requirements—(1) Application. This section applies to compressed air receivers, and other...

  15. 29 CFR 1910.169 - Air receivers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 5 2011-07-01 2011-07-01 false Air receivers. 1910.169 Section 1910.169 Labor Regulations... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Compressed Gas and Compressed Air Equipment § 1910.169 Air receivers. (a) General requirements—(1) Application. This section applies to compressed air receivers, and other...

  16. 29 CFR 1910.169 - Air receivers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Air receivers. 1910.169 Section 1910.169 Labor Regulations... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Compressed Gas and Compressed Air Equipment § 1910.169 Air receivers. (a) General requirements—(1) Application. This section applies to compressed air receivers, and other...

  17. Serial cooling of a combustor for a gas turbine engine

    DOEpatents

    Abreu, Mario E.; Kielczyk, Janusz J.

    2001-01-01

    A combustor for a gas turbine engine uses compressed air to cool a combustor liner and uses at least a portion of the same compressed air for combustion air. A flow diverting mechanism regulates compressed air flow entering a combustion air plenum feeding combustion air to a plurality of fuel nozzles. The flow diverting mechanism adjusts combustion air according to engine loading.

  18. Working Characteristics of Variable Intake Valve in Compressed Air Engine

    PubMed Central

    Yu, Qihui; Shi, Yan; Cai, Maolin

    2014-01-01

    A new camless compressed air engine is proposed, which can make the compressed air energy reasonably distributed. Through analysis of the camless compressed air engine, a mathematical model of the working processes was set up. Using the software MATLAB/Simulink for simulation, the pressure, temperature, and air mass of the cylinder were obtained. In order to verify the accuracy of the mathematical model, the experiments were conducted. Moreover, performance analysis was introduced to design compressed air engine. Results show that, firstly, the simulation results have good consistency with the experimental results. Secondly, under different intake pressures, the highest output power is obtained when the crank speed reaches 500 rpm, which also provides the maximum output torque. Finally, higher energy utilization efficiency can be obtained at the lower speed, intake pressure, and valve duration angle. This research can refer to the design of the camless valve of compressed air engine. PMID:25379536

  19. Working characteristics of variable intake valve in compressed air engine.

    PubMed

    Yu, Qihui; Shi, Yan; Cai, Maolin

    2014-01-01

    A new camless compressed air engine is proposed, which can make the compressed air energy reasonably distributed. Through analysis of the camless compressed air engine, a mathematical model of the working processes was set up. Using the software MATLAB/Simulink for simulation, the pressure, temperature, and air mass of the cylinder were obtained. In order to verify the accuracy of the mathematical model, the experiments were conducted. Moreover, performance analysis was introduced to design compressed air engine. Results show that, firstly, the simulation results have good consistency with the experimental results. Secondly, under different intake pressures, the highest output power is obtained when the crank speed reaches 500 rpm, which also provides the maximum output torque. Finally, higher energy utilization efficiency can be obtained at the lower speed, intake pressure, and valve duration angle. This research can refer to the design of the camless valve of compressed air engine.

  20. Unintended inhalation of nitric oxide by contamination of compressed air: physiologic effects and interference with intended nitric oxide inhalation in acute lung injury.

    PubMed

    Benzing, A; Loop, T; Mols, G; Geiger, K

    1999-10-01

    Compressed air from a hospital's central gas supply may contain nitric oxide as a result of air pollution. Inhaled nitric oxide may increase arterial oxygen tension and decrease pulmonary vascular resistance in patients with acute lung injury and acute respiratory distress syndrome. Therefore, the authors wanted to determine whether unintentional nitric oxide inhalation by contamination of compressed air influences arterial oxygen tension and pulmonary vascular resistance and interferes with the therapeutic use of nitric oxide. Nitric oxide concentrations in the compressed air of a university hospital were measured continuously by chemiluminescence during two periods (4 and 2 weeks). The effects of unintended nitric oxide inhalation on arterial oxygen tension (n = 15) and on pulmonary vascular resistance (n = 9) were measured in patients with acute lung injury and acute respiratory distress syndrome by changing the source of compressed air of the ventilator from the hospital's central gas supply to a nitric oxide-free gas tank containing compressed air. In five of these patients, the effects of an additional inhalation of 5 ppm nitric oxide were evaluated. During working days, compressed air of the hospital's central gas supply contained clinically effective nitric oxide concentrations (> 80 parts per billion) during 40% of the time. Change to gas tank-supplied nitric oxide-free compressed air decreased the arterial oxygen tension by 10% and increased pulmonary vascular resistance by 13%. The addition of 5 ppm nitric oxide had a minimal effect on arterial oxygen tension and pulmonary vascular resistance when added to hospital-supplied compressed air but improved both when added to tank-supplied compressed air. Unintended inhalation of nitric oxide increases arterial oxygen tension and decreases pulmonary vascular resistance in patients with acute lung injury and acute respiratory distress syndrome. The unintended nitric oxide inhalation interferes with the therapeutic use of nitric oxide.

  1. Compressed air massage hastens healing of the diabetic foot.

    PubMed

    Mars, M; Desai, Y; Gregory, M A

    2008-02-01

    The management of diabetic foot ulcers remains a problem. A treatment modality that uses compressed air massage has been developed as a supplement to standard surgical and medical treatment. Compressed air massage is thought to improve local tissue oxygenation around ulcers. The aim of this study was to determine whether the addition of compressed air massage influences the rate of healing of diabetic ulcers. Sixty consecutive patients with diabetes, admitted to one hospital for urgent surgical management of diabetic foot ulcers, were randomized into two groups. Both groups received standard medical and surgical management of their diabetes and ulcer. In addition, one group received 15-20 min of compressed air massage, at 1 bar pressure, daily, for 5 days a week, to the foot and the tissue around the ulcer. Healing time was calculated as the time from admission to the time of re-epithelialization. Fifty-seven patients completed the trial; 28 received compressed air massage. There was no difference in the mean age, Wagner score, ulcer size, pulse status, or peripheral sensation in the two groups. The time to healing in the compressed air massage group was significantly reduced: 58.1 +/- 22.3 days (95% confidence interval: 49.5-66.6) versus 82.7 +/- 30.7 days (95% confidence interval: 70.0-94.3) (P = 0.001). No adverse effects in response to compressed air massage were noted. The addition of compressed air massage to standard medical and surgical management of diabetic ulcers appears to enhance ulcer healing. Further studies with this new treatment modality are warranted.

  2. 29 CFR 1926.913 - Blasting in excavation work under compressed air.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Blasting in excavation work under compressed air. 1926.913... Use of Explosives § 1926.913 Blasting in excavation work under compressed air. (a) Detonators and... connecting wires are connected up. (b) When detonators or explosives are brought into an air lock, no...

  3. Radiator debris removing apparatus and work machine using same

    DOEpatents

    Martin, Kevin L [Washburn, IL; Elliott, Dwight E [Chillicothe, IL

    2008-09-02

    A radiator assembly includes a finned radiator core and a debris removing apparatus having a compressed air inlet and at least one compressed air outlet configured to direct compressed air through the radiator core. A work machine such as a wheel loader includes a radiator and a debris removing apparatus coupled with on-board compressed air and having at least one pressurized gas outlet configured to direct a gas toward the face of the radiator.

  4. Unmanned. Evaluation of Bauer High Pressure Breathing Air P-5 Purification System

    DTIC Science & Technology

    1991-08-01

    suspended in the compressed air . The molecular sieve is made to adsorb oil and water vapors. The second cylinder uses cartridge No. 058825 and is a...during compressor start up. This provides for optimum filtering, moisture separation and prevents compressed air return from the charged air storage...reciprocating, air -cooled unit. The compressor is rated to deliver 20 cfm of free air compressed to 5000 psig. - .. .. . .. ’,= .• .. . .. . -. . I

  5. Nuclear propulsion apparatus with alternate reactor segments

    DOEpatents

    Szekely, Thomas

    1979-04-03

    1. Nuclear propulsion apparatus comprising: A. means for compressing incoming air; B. nuclear fission reactor means for heating said air; C. means for expanding a portion of the heated air to drive said compressing means; D. said nuclear fission reactor means being divided into a plurality of radially extending segments; E. means for directing a portion of the compressed air for heating through alternate segments of said reactor means and another portion of the compressed air for heating through the remaining segments of said reactor means; and F. means for further expanding the heated air from said drive means and the remaining heated air from said reactor means through nozzle means to effect reactive thrust on said apparatus.

  6. Gas turbine engine adapted for use in combination with an apparatus for separating a portion of oxygen from compressed air

    DOEpatents

    Bland, Robert J [Oviedo, FL; Horazak, Dennis A [Orlando, FL

    2012-03-06

    A gas turbine engine is provided comprising an outer shell, a compressor assembly, at least one combustor assembly, a turbine assembly and duct structure. The outer shell includes a compressor section, a combustor section, an intermediate section and a turbine section. The intermediate section includes at least one first opening and at least one second opening. The compressor assembly is located in the compressor section to define with the compressor section a compressor apparatus to compress air. The at least one combustor assembly is coupled to the combustor section to define with the combustor section a combustor apparatus. The turbine assembly is located in the turbine section to define with the turbine section a turbine apparatus. The duct structure is coupled to the intermediate section to receive at least a portion of the compressed air from the compressor apparatus through the at least one first opening in the intermediate section, pass the compressed air to an apparatus for separating a portion of oxygen from the compressed air to produced vitiated compressed air and return the vitiated compressed air to the intermediate section via the at least one second opening in the intermediate section.

  7. Evaluation of chest compression effect on airway management with air-Q, aura-i, i-gel, and Fastrack intubating supraglottic devices by novice physicians: a randomized crossover simulation study.

    PubMed

    Komasawa, Nobuyasu; Ueki, Ryusuke; Kaminoh, Yoshiroh; Nishi, Shin-Ichi

    2014-10-01

    In the 2010 American Heart Association guidelines, supraglottic devices (SGDs) such as the laryngeal mask are proposed as alternatives to tracheal intubation for cardiopulmonary resuscitation. Some SGDs can also serve as a means for tracheal intubation after successful ventilation. The purpose of this study was to evaluate the effect of chest compression on airway management with four intubating SGDs, aura-i (aura-i), air-Q (air-Q), i-gel (i-gel), and Fastrack (Fastrack), during cardiopulmonary resuscitation using a manikin. Twenty novice physicians inserted the four intubating SGDs into a manikin with or without chest compression. Insertion time and successful ventilation rate were measured. For cases of successful ventilation, blind tracheal intubation via the intubating SGD was performed with chest compression and success or failure within 30 s was recorded. Chest compression did not decrease the ventilation success rate of the four intubating SGDs (without chest compression (success/total): air-Q, 19/20; aura-i, 19/20; i-gel, 18/20; Fastrack, 19/20; with chest compression: air-Q, 19/20; aura-i, 19/20; i-gel, 16/20; Fastrack, 18/20). Insertion time was significantly lengthened by chest compression in the i-gel trial (P < 0.05), but not with the other three devices. The blind intubation success rate with chest compression was the highest in the air-Q trial (air-Q, 15/19; aura-i, 14/19; i-gel, 12/16; Fastrack, 10/18). This simulation study revealed the utility of intubating SGDs for airway management during chest compression.

  8. Method and apparatus for extracting water from air

    DOEpatents

    Spletzer, Barry L.; Callow, Diane Schafer; Marron, Lisa C.; Salton, Jonathan R.

    2002-01-01

    The present invention provides a method and apparatus for extracting liquid water from moist air using minimal energy input. The method comprises compressing moist air under conditions that foster the condensation of liquid water. The air can be decompressed under conditions that do not foster the vaporization of the condensate. The decompressed, dried air can be exchanged for a fresh charge of moist air and the process repeated. The liquid condensate can be removed for use. The apparatus can comprise a compression chamber having a variable internal volume. An intake port allows moist air into the compression chamber. An exhaust port allows dried air out of the compression chamber. A condensation device fosters condensation at the desired conditions. A condensate removal port allows liquid water to be removed.

  9. Compressed Air/Vacuum Transportation Techniques

    NASA Astrophysics Data System (ADS)

    Guha, Shyamal

    2011-03-01

    General theory of compressed air/vacuum transportation will be presented. In this transportation, a vehicle (such as an automobile or a rail car) is powered either by compressed air or by air at near vacuum pressure. Four version of such transportation is feasible. In all versions, a ``c-shaped'' plastic or ceramic pipe lies buried a few inches under the ground surface. This pipe carries compressed air or air at near vacuum pressure. In type I transportation, a vehicle draws compressed air (or vacuum) from this buried pipe. Using turbine or reciprocating air cylinder, mechanical power is generated from compressed air (or from vacuum). This mechanical power transferred to the wheels of an automobile (or a rail car) drives the vehicle. In type II-IV transportation techniques, a horizontal force is generated inside the plastic (or ceramic) pipe. A set of vertical and horizontal steel bars is used to transmit this force to the automobile on the road (or to a rail car on rail track). The proposed transportation system has following merits: virtually accident free; highly energy efficient; pollution free and it will not contribute to carbon dioxide emission. Some developmental work on this transportation will be needed before it can be used by the traveling public. The entire transportation system could be computer controlled.

  10. Liquid-Air Breathing Apparatus

    NASA Technical Reports Server (NTRS)

    Mills, Robert D.

    1990-01-01

    Compact unit supplies air longer than compressed-air unit. Emergency breathing apparatus stores air as cryogenic liquid instead of usual compressed gas. Intended for firefighting or rescue operations becoming necessary during planned potentially hazardous procedures.

  11. Rupture of esophagus by compressed air.

    PubMed

    Wu, Jie; Tan, Yuyong; Huo, Jirong

    2016-11-01

    Currently, beverages containing compressed air such as cola and champagne are widely used in our daily life. Improper ways to unscrew the bottle, usually by teeth, could lead to an injury, even a rupture of the esophagus. This letter to editor describes a case of esophageal rupture caused by compressed air.

  12. Economic and environmental evaluation of compressed-air cars

    NASA Astrophysics Data System (ADS)

    Creutzig, Felix; Papson, Andrew; Schipper, Lee; Kammen, Daniel M.

    2009-10-01

    Climate change and energy security require a reduction in travel demand, a modal shift, and technological innovation in the transport sector. Through a series of press releases and demonstrations, a car using energy stored in compressed air produced by a compressor has been suggested as an environmentally friendly vehicle of the future. We analyze the thermodynamic efficiency of a compressed-air car powered by a pneumatic engine and consider the merits of compressed air versus chemical storage of potential energy. Even under highly optimistic assumptions the compressed-air car is significantly less efficient than a battery electric vehicle and produces more greenhouse gas emissions than a conventional gas-powered car with a coal intensive power mix. However, a pneumatic-combustion hybrid is technologically feasible, inexpensive and could eventually compete with hybrid electric vehicles.

  13. Contamination of hospital compressed air with nitric oxide: unwitting replacement therapy.

    PubMed

    Pinsky, M R; Genc, F; Lee, K H; Delgado, E

    1997-06-01

    Inhaled nitric oxide (NO) at levels between 5 and 80 ppm has been used experimentally to treat a variety of conditions. NO also is a common environmental air pollutant in industrial regions. As compressed hospital air is drawn from the local environment, we speculated that it may contain NO contamination, which, if present, would provide unwitting inhaled NO therapy to all subjects respiring this compressed gas. NO levels were measured twice daily from ambient hospital air and compressed gas sources driving positive pressure ventilation from two adjacent hospitals and compared with NO levels reported daily by local Environmental Protection Agency sources. An NO chemiluminescence analyzer (Sievers 270B; Boulder, Colo) sensitive to > or =2 parts per billion was used to measure NO levels in ambient air and compressed gas. NO levels in ambient air and hospital compressed air covaried from day to day, and absolute levels of NO differed between hospitals with the difference never exceeding 1.4 ppm (range, 0 to 1.4 ppm; median, 0.07 ppm). The hospital with the highest usage level of compressed air had the highest levels of NO, which approximated ambient levels of NO. NO levels were lowest on weekends in both hospitals. We also documented inadvertent NO contamination in one hospital occurring over 5 days, which corresponded to welding activity near the intake port for fresh gas. This contamination resulted in system-wide NO levels of 5 to 8 ppm. Hospital compressed air contains highly variable levels of NO that tend to covary with ambient NO levels and to be highest when the rate of usage is high enough to preclude natural degradation of NO in 21% oxygen. Assuming that inhaled NO may alter gas exchange, pulmonary hemodynamics, and outcome from acute lung injury, the role of unwitting variable NO of hospital compressed air needs to be evaluated.

  14. Energy storage by compressed air. [using windpowered pumps

    NASA Technical Reports Server (NTRS)

    Szego, G. C.

    1973-01-01

    The feasibility of windpower energy storage by compressed air is considered. The system is comprised of a compressor, a motor, and a pump turbine to store air in caverns or aquifiers. It is proposed that storage of several days worth of compressed air up to 650 pounds per square inch can be used to push the aquifier up closer to the container dome and thus initiate piston action by simply compressing air more and more. More energy can be put into it by pressure increase or pushing back the water in the aquifier. This storage system concept has reheat flexibility and lowest cost effectiveness.

  15. Method and apparatus for extracting water from air

    DOEpatents

    Spletzer, Barry L.

    2001-01-01

    The present invention provides a method and apparatus for extracting liquid water from moist air using minimal energy input. The method comprises compressing moist air under conditions that foster the condensation of liquid water (ideally isothermal to a humidity of 1.0, then adiabatic thereafter). The air can be decompressed under conditions that do not foster the vaporization of the condensate. The decompressed, dried air can be exchanged for a fresh charge of moist air and the process repeated. The liquid condensate can be removed for use. The apparatus can comprise a compression chamber having a variable internal volume. An intake port allows moist air into the compression chamber. An exhaust port allows dried air out of the compression chamber. A condensation device fosters condensation at the desired conditions. A condensate removal port allows liquid water to be removed.

  16. Partial oxidation power plant with reheating and method thereof

    DOEpatents

    Newby, Richard A.; Yang, Wen-Ching; Bannister, Ronald L.

    1999-01-01

    A system and method for generating power having an air compression/partial oxidation system, a turbine, and a primary combustion system. The air compression/partial oxidation system receives a first air stream and a fuel stream and produces a first partially oxidized fuel stream and a first compressed air stream therefrom. The turbine expands the first partially oxidized fuel stream while being cooled by the first compressed air stream to produce a heated air stream. The heated air stream is injected into the expanding first partially oxidized fuel stream, thereby reheating it in the turbine. A second partially oxidized fuel stream is emitted from the turbine. The primary combustion system receives said second partially oxidized fuel stream and a second air stream, combusts said second partially oxidized fuel stream, and produces rotating shaft power and an emission stream therefrom.

  17. Compressed air as a source of inhaled oxidants in intensive care units.

    PubMed

    Thibeault, D W; Rezaiekhaligh, M H; Ekekezie, I; Truog, W E

    1999-01-01

    Exhaled gas from mechanically ventilated preterm infants was found to have similar oxidant concentrations, regardless of lung disease, leading to the hypothesis that wall outlet gases were an oxidant source. Oxidants in compressed room air and oxygen from wall outlets were assessed in three hospitals. Samples were collected by flowing wall outlet gas through a heated humidifier and an ice-packed condenser. Nitric oxide (NO) was measured in intensive care room air and in compressed air with and without a charcoal filter using a Sievers NOA280 nitric oxide analyzer (Boulder, CO). Oxidants were measured by spectrophotometry and expressed as nMol equivalents of H2O2/mL. The quantity of oxidant was also expressed as amount of Vitamin C (nMol/mL) added until the oxidant was nondetectable. This quantity of Vitamin C was also expressed in Trolox Equivalent Antioxidant Capacity (TEAC) units (mMol/L). Free and total chlorine were measured with a Chlorine Photometer. Oxidants were not found in compressed oxygen and were only found in compressed air when the compression method used tap water. At a compressed room air gas flow of 1.5 L/min, the total volume of condensate was 20.2 +/- 1 mL/hr. The oxidant concentration was 1.52 +/- 0.09 nMol/mL equivalents of H2O2/mL of sample and 30.8 +/- 1.2 nMol/hr; 17.9% of that found in tap water. Oxidant reduction required 2.05 +/-0.12 nMol/mL vitamin C, (1.78 +/- 0.1 x 10(-3) TEAC units). Free and total chlorine in tap water were 0.3 +/- 0.02 mg/mL and 2.9 +/- 0.002 mg/mL, respectively. Outlet gas contained 0.4 +/- 0.06 mg/mL and 0.07 + 0.01 mg/mL total and free chlorine, respectively; both 14% of tap water. When a charcoal filter was installed in the hospital with oxidants in compressed air, oxidants were completely removed. Nursery room air contained 12.4 +/- 0.5 ppb NO; compressed wall air without a charcoal filter, 8.1 +/- 0.1 ppb and compressed air with a charcoal filter 12.5 +/- 0.5 ppb. A charcoal filter does not remove NO. (Table 3) We recommend that all compressed air methods using tap water have charcoal filters at the compression site and the gases be assessed periodically for oxidants.

  18. Natural Gas Propulsion Options for Short Sea Shipping Routes

    DTIC Science & Technology

    2010-08-01

    that are involved with gas and the relevant systems, along with personal protection issues that come into effect when handling both compressed and...a compressed air system for engine starting, which is stored in compressed air storage cylinders . The system leads compressed air through a valve...directly into the cylinder heads at 30bar to begin the rotation of the engine. After this rotation occurs, the engine is supplied with diesel fuel

  19. Recoil Experiments Using a Compressed Air Cannon

    ERIC Educational Resources Information Center

    Taylor, Brett

    2006-01-01

    Ping-Pong vacuum cannons, potato guns, and compressed air cannons are popular and dramatic demonstrations for lecture and lab. Students enjoy them for the spectacle, but they can also be used effectively to teach physics. Recently we have used a student-built compressed air cannon as a laboratory activity to investigate impulse, conservation of…

  20. 30 CFR 56.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure vessels... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Inspection of compressed-air receivers and other unfired pressure vessels. 56.13015 Section 56.13015 Mineral Resources MINE SAFETY AND HEALTH...

  1. 30 CFR 56.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure vessels... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Inspection of compressed-air receivers and other unfired pressure vessels. 56.13015 Section 56.13015 Mineral Resources MINE SAFETY AND HEALTH...

  2. 30 CFR 57.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... receivers and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Inspection of compressed-air receivers and other unfired pressure vessels. 57.13015 Section 57.13015 Mineral Resources MINE SAFETY AND HEALTH...

  3. 30 CFR 56.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure vessels... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Inspection of compressed-air receivers and other unfired pressure vessels. 56.13015 Section 56.13015 Mineral Resources MINE SAFETY AND HEALTH...

  4. 30 CFR 56.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure vessels... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Inspection of compressed-air receivers and other unfired pressure vessels. 56.13015 Section 56.13015 Mineral Resources MINE SAFETY AND HEALTH...

  5. 30 CFR 57.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... receivers and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Inspection of compressed-air receivers and other unfired pressure vessels. 57.13015 Section 57.13015 Mineral Resources MINE SAFETY AND HEALTH...

  6. 30 CFR 57.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... receivers and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Inspection of compressed-air receivers and other unfired pressure vessels. 57.13015 Section 57.13015 Mineral Resources MINE SAFETY AND HEALTH...

  7. 30 CFR 57.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... receivers and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Inspection of compressed-air receivers and other unfired pressure vessels. 57.13015 Section 57.13015 Mineral Resources MINE SAFETY AND HEALTH...

  8. Air Purity in Diving from Submarines. 1. Review and Preliminary Analyses

    DTIC Science & Technology

    1987-12-01

    Nathaniel Howard for technical assistance, and Susan Cecire for editorial assistance. iv INTRODUCTION The need for divers to use compressed air from...pneumatic control systems) and emergency submarine functions, and submarine interior air is frequently compressed back into the bank which will cycle...breathe the interior air for long periods, so why the concern for divers? First, the processes of compression (by multi-stage oil lubricated

  9. Technical Feasibility of Compressed Air Energy Storage (CAES) Utilizing a Porous Rock Reservoir (Appendix)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medeiros, Michael

    Pacific Gas & Electric Company (PG&E) conducted a project to explore the viability of underground compressed air energy storage (CAES) technology. CAES uses low-cost, off-peak electricity to compress air into a storage system in an underground space such as a rock formation or salt cavern. When electricity is needed, the air is withdrawn and used to drive a generator for electricity production.

  10. Technical Feasibility of Compressed Air Energy Storage (CAES) Utilizing a Porous Rock Reservoir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medeiros, Michael; Booth, Robert; Fairchild, James

    Pacific Gas & Electric Company (PG&E) conducted a project to explore the viability of underground compressed air energy storage (CAES) technology. CAES uses low-cost, off-peak electricity to compress air into a storage system in an underground space such as a rock formation or salt cavern. When electricity is needed, the air is withdrawn and used to drive a generator for electricity production.

  11. Investigation on wind energy-compressed air power system.

    PubMed

    Jia, Guang-Zheng; Wang, Xuan-Yin; Wu, Gen-Mao

    2004-03-01

    Wind energy is a pollution free and renewable resource widely distributed over China. Aimed at protecting the environment and enlarging application of wind energy, a new approach to application of wind energy by using compressed air power to some extent instead of electricity put forward. This includes: explaining the working principles and characteristics of the wind energy-compressed air power system; discussing the compatibility of wind energy and compressor capacity; presenting the theoretical model and computational simulation of the system. The obtained compressor capacity vs wind power relationship in certain wind velocity range can be helpful in the designing of the wind power-compressed air system. Results of investigations on the application of high-pressure compressed air for pressure reduction led to conclusion that pressure reduction with expander is better than the throttle regulator in energy saving.

  12. Evaluation of Bauer K-20 Diesel Drive High Pressure Breathing Air Compressor

    DTIC Science & Technology

    1993-12-01

    was to: A. Determine if the compressor and Purification System provides compressed air at the required pressures, flow rates, quality and cleanliness... compressed air return from the air storage flasks to the compressor during unit shut down. All four stages of the compressor are protected by safety...1993. 6. Naval Ships Technical Manual, S9086-SY-STM-0O0, Chapeter 551 1st Rev. I November 1987. Compressed Air Plants and Systems, para 551-4.2.21. 7

  13. Partial oxidation power plant with reheating and method thereof

    DOEpatents

    Newby, R.A.; Yang, W.C.; Bannister, R.L.

    1999-08-10

    A system and method are disclosed for generating power having an air compression/partial oxidation system, a turbine, and a primary combustion system. The air compression/partial oxidation system receives a first air stream and a fuel stream and produces a first partially oxidized fuel stream and a first compressed air stream therefrom. The turbine expands the first partially oxidized fuel stream while being cooled by the first compressed air stream to produce a heated air stream. The heated air stream is injected into the expanding first partially oxidized fuel stream, thereby reheating it in the turbine. A second partially oxidized fuel stream is emitted from the turbine. The primary combustion system receives said second partially oxidized fuel stream and a second air stream, combusts said second partially oxidized fuel stream, and produces rotating shaft power and an emission stream therefrom. 2 figs.

  14. Survived ileocecal blowout from compressed air.

    PubMed

    Weber, Marco; Kolbus, Frank; Dressler, Jan; Lessig, Rüdiger

    2011-03-01

    Industrial accidents with compressed air entering the gastro-intestinal tract often run fatally. The pressures usually over-exceed those used by medical applications such as colonoscopy and lead to vast injuries of the intestines with high mortality. The case described in this report is of a 26-year-old man who was harmed by compressed air that entered through the anus. He survived because of fast emergency operation. This case underlines necessity of explicit instruction considering hazards handling compressed air devices to maintain safety at work. Further, our observations support the hypothesis that the mucosa is the most elastic layer of the intestine wall.

  15. Rectal perforation by compressed air

    PubMed Central

    2017-01-01

    As the use of compressed air in industrial work has increased, so has the risk of associated pneumatic injury from its improper use. However, damage of large intestine caused by compressed air is uncommon. Herein a case of pneumatic rupture of the rectum is described. The patient was admitted to the Emergency Room complaining of abdominal pain and distension. His colleague triggered a compressed air nozzle over his buttock. On arrival, vital signs were stable but physical examination revealed peritoneal irritation and marked distension of the abdomen. Computed tomography showed a large volume of air in the peritoneal cavity and subcutaneous emphysema at the perineum. A rectal perforation was found at laparotomy and the Hartmann procedure was performed. PMID:28706893

  16. Rectal perforation by compressed air.

    PubMed

    Park, Young Jin

    2017-07-01

    As the use of compressed air in industrial work has increased, so has the risk of associated pneumatic injury from its improper use. However, damage of large intestine caused by compressed air is uncommon. Herein a case of pneumatic rupture of the rectum is described. The patient was admitted to the Emergency Room complaining of abdominal pain and distension. His colleague triggered a compressed air nozzle over his buttock. On arrival, vital signs were stable but physical examination revealed peritoneal irritation and marked distension of the abdomen. Computed tomography showed a large volume of air in the peritoneal cavity and subcutaneous emphysema at the perineum. A rectal perforation was found at laparotomy and the Hartmann procedure was performed.

  17. Technical Feasibility of Compressed Air Energy Storage (CAES) Utilizing a Porous Rock Reservoir, Appendix — Chapter 7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medeiros, Michael

    Pacific Gas & Electric Company (PG&E) conducted a project to explore the viability of underground compressed air energy storage (CAES) technology. CAES uses low-cost, off-peak electricity to compress air into a storage system in an underground space such as a rock formation or salt cavern. When electricity is needed, the air is withdrawn and used to drive a generator for electricity production.

  18. Technical Feasibility of Compressed Air Energy Storage (CAES) Utilizing a Porous Rock Reservoir, Appendix — Chapter 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medeiros, Michael

    Pacific Gas & Electric Company (PG&E) conducted a project to explore the viability of underground compressed air energy storage (CAES) technology. CAES uses low-cost, off-peak electricity to compress air into a storage system in an underground space such as a rock formation or salt cavern. When electricity is needed, the air is withdrawn and used to drive a generator for electricity production.

  19. Technical Feasibility of Compressed Air Energy Storage (CAES) Utilizing a Porous Rock Reservoir, Appendix — Chapter 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medeiros, Michael

    Pacific Gas & Electric Company (PG&E) conducted a project to explore the viability of underground compressed air energy storage (CAES) technology. CAES uses low-cost, off-peak electricity to compress air into a storage system in an underground space such as a rock formation or salt cavern. When electricity is needed, the air is withdrawn and used to drive a generator for electricity production.

  20. Technical Feasibility of Compressed Air Energy Storage (CAES) Utilizing a Porous Rock Reservoir, Appendix — Chapter 9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medeiros, Michael

    Pacific Gas & Electric Company (PG&E) conducted a project to explore the viability of underground compressed air energy storage (CAES) technology. CAES uses low-cost, off-peak electricity to compress air into a storage system in an underground space such as a rock formation or salt cavern. When electricity is needed, the air is withdrawn and used to drive a generator for electricity production.

  1. Technical Feasibility of Compressed Air Energy Storage (CAES) Utilizing a Porous Rock Reservoir, Appendix — Chapter 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medeiros, Michael

    Pacific Gas & Electric Company (PG&E) conducted a project to explore the viability of underground compressed air energy storage (CAES) technology. CAES uses low-cost, off-peak electricity to compress air into a storage system in an underground space such as a rock formation or salt cavern. When electricity is needed, the air is withdrawn and used to drive a generator for electricity production.

  2. Technical Feasibility of Compressed Air Energy Storage (CAES) Utilizing a Porous Rock Reservoir, Appendix — Chapter 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medeiros, Michael

    Pacific Gas & Electric Company (PG&E) conducted a project to explore the viability of underground compressed air energy storage (CAES) technology. CAES uses low-cost, off-peak electricity to compress air into a storage system in an underground space such as a rock formation or salt cavern. When electricity is needed, the air is withdrawn and used to drive a generator for electricity production.

  3. Technical Feasibility of Compressed Air Energy Storage (CAES) Utilizing a Porous Rock Reservoir, Appendix — Chapter 8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medeiros, Michael

    Pacific Gas & Electric Company (PG&E) conducted a project to explore the viability of underground compressed air energy storage (CAES) technology. CAES uses low-cost, off-peak electricity to compress air into a storage system in an underground space such as a rock formation or salt cavern. When electricity is needed, the air is withdrawn and used to drive a generator for electricity production.

  4. Health and efficiency in trimix versus air breathing in compressed air workers.

    PubMed

    Van Rees Vellinga, T P; Verhoeven, A C; Van Dijk, F J H; Sterk, W

    2006-01-01

    The Western Scheldt Tunneling Project in the Netherlands provided a unique opportunity to evaluate the effects of trimix usage on the health of compressed air workers and the efficiency of the project. Data analysis addressed 318 exposures to compressed air at 3.9-4.4 bar gauge and 52 exposures to trimix (25% oxygen, 25% helium, and 50% nitrogen) at 4.6-4.8 bar gauge. Results revealed three incidents of decompression sickness all of which involved the use of compressed air. During exposure to compressed air, the effects of nitrogen narcosis were manifested in operational errors and increased fatigue among the workers. When using trimix, less effort was required for breathing, and mandatory decompression times for stays of a specific duration and maximum depth were considerably shorter. We conclude that it might be rational--for both medical and operational reasons--to use breathing gases with lower nitrogen fractions (e.g., trimix) for deep-caisson work at pressures exceeding 3 bar gauge, although definitive studies are needed.

  5. 30 CFR 7.506 - Breathable air components.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Breathable air components. 7.506 Section 7.506... APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Refuge Alternatives § 7.506 Breathable air components. (a) Breathable air shall be supplied by compressed air cylinders, compressed breathable-oxygen...

  6. 30 CFR 7.506 - Breathable air components.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Breathable air components. 7.506 Section 7.506... APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Refuge Alternatives § 7.506 Breathable air components. (a) Breathable air shall be supplied by compressed air cylinders, compressed breathable-oxygen...

  7. 30 CFR 7.506 - Breathable air components.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Breathable air components. 7.506 Section 7.506... APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Refuge Alternatives § 7.506 Breathable air components. (a) Breathable air shall be supplied by compressed air cylinders, compressed breathable-oxygen...

  8. Cerebral magnetic resonance imaging of compressed air divers in diving accidents.

    PubMed

    Gao, G K; Wu, D; Yang, Y; Yu, T; Xue, J; Wang, X; Jiang, Y P

    2009-01-01

    To investigate the characteristics of the cerebral magnetic resonance imaging (MRI) of compressed air divers in diving accidents, we conducted an observational case series study. MRI of brain were examined and analysed on seven cases compressed air divers complicated with cerebral arterial gas embolism CAGE. There were some characteristics of cerebral injury: (1) Multiple lesions; (2) larger size; (3) Susceptible to parietal and frontal lobe; (4) Both cortical grey matter and subcortical white matter can be affected; (5) Cerebellum is also the target of air embolism. The MRI of brain is an sensitive method for detecting cerebral lesions in compressed air divers in diving accidents. The MRI should be finished on divers in diving accidents within 5 days.

  9. Material Capability for Transport of Unsymmetrical Dimethylhydrazine

    DTIC Science & Technology

    1990-07-13

    is shown in Figure 1. The air supply was house compressed air conditioned by passing it through a series of demisters, a hot Hopcalite catalyst bed...required to reach that value was recorded. At the end of a test, the tubing was rinsed with methanol and dried with compressed breathing air or filtered... compressed house air . Solvents such as acetone were not used as they react with hydrazines (8]. Table 2 lists the combinations of tubing length, UDMH or

  10. [Experimental study on spectra of compressed air microwave plasma].

    PubMed

    Liu, Yong-Xi; Zhang, Gui-Xin; Wang, Qiang; Hou, Ling-Yun

    2013-03-01

    Using a microwave plasma generator, compressed air microwave plasma was excited under 1 - 5 atm pressures. Under different pressures and different incident microwave power, the emission spectra of compressed air microwave plasma were studied with a spectra measuring system. The results show that continuum is significant at atmospheric pressure and the characteristic will be weakened as the pressure increases. The band spectra intensity will be reduced with the falling of the incident microwave power and the band spectra were still significant. The experimental results are valuable to studying the characteristics of compressed air microwave plasma and the generating conditions of NO active groups.

  11. Compressed-air power tools in orthopaedic surgery: exhaust air is a potential source of contamination.

    PubMed

    Sagi, H C; DiPasquale, Thomas; Sanders, Roy; Herscovici, Dolfi

    2002-01-01

    To determine if the exhaust from surgical compressed-air power tools contains bacteria and if the exhaust leads to contamination of sterile surfaces. Bacteriologic study of orthopaedic power tools. Level I trauma center operative theater. None. Part I. Exhaust from two sterile compact air drills was sampled directly at the exhaust port. Part II. Exhaust from the drills was directed at sterile agar plates from varying distances. The agar plates represented sterile surfaces within the operative field. Part III. Control cultures. A battery-powered drill was operated over open agar plates in similar fashion as the compressed-air drills. Agar plates left open in the operative theater served as controls to rule out atmospheric contamination. Random cultures were taken from agar plates, gloves, drills, and hoses. Incidence of positive cultures. In Part I, all filters from both compressed-air drill exhausts were culture negative ( = 0.008). In Part II, the incidence of positive cultures for air drills number one and number two was 73% and 82%, respectively. The most commonly encountered organisms were, coagulase-negative Staphylococcus, and Micrococcus species. All control cultures from agar plates, battery-powered drill, gloves, and hoses were negative ( < 0.01). Exhaust from compressed-air power tools in orthopaedic surgery may contribute to the dissemination of bacteria onto the surgical field. We do not recommend the use of compressed-air power tools that do not have a contained exhaust.

  12. 75 FR 62874 - Keystone Steel and Wire Company; Grant of a Permanent Variance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-13

    ... the crane-motor cleaning operation by inserting the nozzle of the compressed-air gun into an opening... inserting the nozzle of the compressed-air gun into an opening in the housing, then triggers the compressed...

  13. Compressed Air System Overhaul Improves Production at a Powdered Metal Manufacturing Plant (GKN Sinter Metals in Salem, IN)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    In 1998, GKN Sinter Metals completed a successful compressed air system improvement project at its Salem, Indiana manufacturing facility. The project was performed after GKN undertook a survey of its system in order to solve air quality problems and to evaluate whether the capacity of their compressed air system would meet their anticipated plant expansion. Once the project was implemented, the plant was able to increase production by 31% without having to add any additional compressor capacity.

  14. Seat cushion to provide realistic acceleration cues to aircraft simulator pilot

    NASA Technical Reports Server (NTRS)

    Ashworth, B. R. (Inventor)

    1979-01-01

    Seat cushions, each including an air cell with a non-compressible surface, are disclosed. The apparatus are provided for initially controlling the air pressure in the air cells to allow the two main support areas of the simulator pilot to touch the non-compressible surface and thus begin to compress the flesh near these areas. During a simulated flight the apparatus control the air pressure in the cells to simulate the events that occur in a seat cushion during actual flight.

  15. Seneca Compressed Air Energy Storage (CAES) Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2012-11-30

    This document provides specifications for the process air compressor for a compressed air storage project, requests a budgetary quote, and provides supporting information, including compressor data, site specific data, water analysis, and Seneca CAES value drivers.

  16. 78. PIPING CHANNEL FOR FUEL LOADING, FUEL TOPPING, COMPRESSED AIR, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    78. PIPING CHANNEL FOR FUEL LOADING, FUEL TOPPING, COMPRESSED AIR, GASEOUS NITROGEN, AND HELIUM - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  17. Oxygen-enriched air for MHD power plants

    NASA Technical Reports Server (NTRS)

    Ebeling, R. W., Jr.; Cutting, J. C.; Burkhart, J. A.

    1979-01-01

    Cryogenic air-separation process cycle variations and compression schemes are examined. They are designed to minimize net system power required to supply pressurized, oxygen-enriched air to the combustor of an MHD power plant with a coal input of 2000 MWt. Power requirements and capital costs for oxygen production and enriched air compression for enrichment levels from 13 to 50% are determined. The results are presented as curves from which total compression power requirements can be estimated for any desired enrichment level at any delivery pressure. It is found that oxygen enrichment and recuperative heating of MHD combustor air to 1400 F yields near-term power plant efficiencies in excess of 45%. A minimum power compression system requires 167 MW to supply 330 lb of oxygen per second and costs roughly 100 million dollars. Preliminary studies show MHD/steam power plants to be competitive with plants using high-temperature air preheaters burning gas.

  18. Study on the influence of supplying compressed air channels and evicting channels on pneumatical oscillation systems for vibromooshing

    NASA Astrophysics Data System (ADS)

    Glăvan, D. O.; Radu, I.; Babanatsas, T.; Babanatis Merce, R. M.; Kiss, I.; Gaspar, M. C.

    2018-01-01

    The paper presents a pneumatic system with two oscillating masses. The system is composed of a cylinder (framework) with mass m1, which has a piston with mass m2 inside. The cylinder (framework system) has one supplying channel for compressed air and one evicting channel for each work chamber (left and right of the piston). Functionality of the piston position comparatively with the cylinder (framework) is possible through the supplying or evicting of compressed air. The variable force that keeps the movement depends on variation of the pressure that is changing depending on the piston position according to the cylinder (framework) and to the section form that is supplying and evicting channels with compressed air. The paper presents the physical model/pattern, the mathematical model/pattern (differential equations) and numerical solution of the differential equations in hypothesis with the section form of supplying and evicting channels with compressed air is rectangular (variation linear) or circular (variation nonlinear).

  19. 42 CFR 84.141 - Breathing gas; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air...) Compressed, gaseous breathing air shall meet the applicable minimum grade requirements for Type I gaseous air set forth in the Compressed Gas Association Commodity Specification for Air, G-7.1, 1966 (Grade D or...

  20. 42 CFR 84.141 - Breathing gas; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air...) Compressed, gaseous breathing air shall meet the applicable minimum grade requirements for Type I gaseous air set forth in the Compressed Gas Association Commodity Specification for Air, G-7.1, 1966 (Grade D or...

  1. 42 CFR 84.141 - Breathing gas; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air...) Compressed, gaseous breathing air shall meet the applicable minimum grade requirements for Type I gaseous air set forth in the Compressed Gas Association Commodity Specification for Air, G-7.1, 1966 (Grade D or...

  2. 42 CFR 84.141 - Breathing gas; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air...) Compressed, gaseous breathing air shall meet the applicable minimum grade requirements for Type I gaseous air set forth in the Compressed Gas Association Commodity Specification for Air, G-7.1, 1966 (Grade D or...

  3. 29 CFR 1915.131 - General precautions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., shall be adequately guarded. (g) Headers, manifolds and widely spaced hose connections on compressed air.... Grouped air connections may be marked in one location. (h) Before use, compressed air hose shall be... electric cords for this purpose is prohibited. (b) When air tools of the reciprocating type are not in use...

  4. Knock-Limited Performance of Triptane and 28-R Fuel Blends as Affected by Changes in Compression Ratio and in Engine Operating Variables

    NASA Technical Reports Server (NTRS)

    Brun, Rinaldo J.; Feder, Melvin S.; Fisher, William F.

    1947-01-01

    A knock-limited performance investigation was conducted on blends of triptane and 28-P fuel with a 12-cylinder, V-type, liquid-cooled aircraft engine of 1710-cubic-inch displacement at three compression ratios: 6.65, 7.93, and 9.68. At each compression ratio, the effect of changes in temperature of the inlet air to the auxiliary-stage supercharger and in fuel-air ratio were investigated at engine speeds of 2280 and. 3000 rpm. The results show that knock-limited engine performance, as improved by the use of triptane, allowed operation at both take-off and cruising power at a compression ratio of 9.68. At an inlet-air temperature of 60 deg F, an engine speed of 3000 rpm ; and a fuel-air ratio of 0,095 (approximately take-off conditions), a knock-limited engine output of 1500 brake horsepower was possible with 100-percent 28-R fuel at a compression ratio of 6.65; 20-percent triptane was required for the same power output at a compression ratio of 7.93, and 75 percent at a compression ratio of 9.68 allowed an output of 1480 brake horsepower. Knock-limited power output was more sensitive to changes in fuel-air ratio as the engine speed was increased from 2280 to 3000 rpm, as the compression ratio is raised from 6.65 to 9.68, or as the inlet-air temperature is raised from 0 deg to 120 deg F.

  5. Video bandwidth compression system

    NASA Astrophysics Data System (ADS)

    Ludington, D.

    1980-08-01

    The objective of this program was the development of a Video Bandwidth Compression brassboard model for use by the Air Force Avionics Laboratory, Wright-Patterson Air Force Base, in evaluation of bandwidth compression techniques for use in tactical weapons and to aid in the selection of particular operational modes to be implemented in an advanced flyable model. The bandwidth compression system is partitioned into two major divisions: the encoder, which processes the input video with a compression algorithm and transmits the most significant information; and the decoder where the compressed data is reconstructed into a video image for display.

  6. Compressed Air System Optimization: Case Study Food Industry in Indonesia

    NASA Astrophysics Data System (ADS)

    Widayati, Endang; Nuzahar, Hasril

    2016-01-01

    Compressors and compressed air systems was one of the most important utilities in industries or factories. Approximately 10% of the cost of electricity in the industry was used to produce compressed air. Therefore the potential for energy savings in the compressors and compressed air systems had a big challenge. This field was conducted especially in Indonesia food industry or factory. Compressed air system optimization was a technique approach to determine the optimal conditions for the operation of compressors and compressed air systems that included evaluation of the energy needs, supply adjustment, eliminating or reconfiguring the use and operation of inefficient, changing and complementing some equipment and improving operating efficiencies. This technique gave the significant impact for energy saving and costs. The potential savings based on this study through measurement and optimization e.g. system that lowers the pressure of 7.5 barg to 6.8 barg would reduce energy consumption and running costs approximately 4.2%, switch off the compressor GA110 and GA75 was obtained annual savings of USD 52,947 ≈ 455 714 kWh, running GA75 light load or unloaded then obtained annual savings of USD 31,841≈ 270,685 kWh, install new compressor 2x132 kW and 1x 132 kW VSD obtained annual savings of USD 108,325≈ 928,500 kWh. Furthermore it was needed to conduct study of technical aspect of energy saving potential (Investment Grade Audit) and performed Cost Benefit Analysis. This study was one of best practice solutions how to save energy and improve energy performance in compressors and compressed air system.

  7. 6. DETAIL OF HIGHPRESSURE COMPRESSED AIR HOSE IN SOUTHWEST CORNER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. DETAIL OF HIGH-PRESSURE COMPRESSED AIR HOSE IN SOUTHWEST CORNER OF SHIPPING AND RECEIVING ROOM (109) - Vandenberg Air Force Base, Space Launch Complex 3, Vehicle Support Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  8. Compression-ignition Engine Performance at Altitudes and at Various Air Pressures and Temperatures

    NASA Technical Reports Server (NTRS)

    Moore, Charles S; Collins, John H

    1937-01-01

    Engine test results are presented for simulated altitude conditions. A displaced-piston combustion chamber on a 5- by 7-inch single cylinder compression-ignition engine operating at 2,000 r.p.m. was used. Inlet air temperature equivalent to standard altitudes up to 14,000 feet were obtained. Comparison between performance at altitude of the unsupercharged compression-ignition engine compared favorably with the carburetor engine. Analysis of the results for which the inlet air temperature, inlet air pressure, and inlet and exhaust pressure were varied indicates that engine performance cannot be reliably corrected on the basis of inlet air density or weight of air charge. Engine power increases with inlet air pressure and decreases with inlet air temperatures very nearly as straight line relations over a wide range of air-fuel ratios. Correction factors are given.

  9. Detail of interior of compressed air chamber showing top of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of interior of compressed air chamber showing top of working chamber and tie rods that strengthen the outer shell plates of the compression chamber. - Sub Marine Explorer, Located along the beach of Isla San Telmo, Pearl Islands, Isla San Telmo, Former Panama Canal Zone, CZ

  10. Performance Study of Salt Cavern Air Storage Based Non-Supplementary Fired Compressed Air Energy Storage System

    NASA Astrophysics Data System (ADS)

    Chen, Xiaotao; Song, Jie; Liang, Lixiao; Si, Yang; Wang, Le; Xue, Xiaodai

    2017-10-01

    Large-scale energy storage system (ESS) plays an important role in the planning and operation of smart grid and energy internet. Compressed air energy storage (CAES) is one of promising large-scale energy storage techniques. However, the high cost of the storage of compressed air and the low capacity remain to be solved. This paper proposes a novel non-supplementary fired compressed air energy storage system (NSF-CAES) based on salt cavern air storage to address the issues of air storage and the efficiency of CAES. Operating mechanisms of the proposed NSF-CAES are analysed based on thermodynamics principle. Key factors which has impact on the system storage efficiency are thoroughly explored. The energy storage efficiency of the proposed NSF-CAES system can be improved by reducing the maximum working pressure of the salt cavern and improving inlet air pressure of the turbine. Simulation results show that the electric-to-electric conversion efficiency of the proposed NSF-CAES can reach 63.29% with a maximum salt cavern working pressure of 9.5 MPa and 9 MPa inlet air pressure of the turbine, which is higher than the current commercial CAES plants.

  11. 49 CFR 238.315 - Class IA brake test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    .... (f) A Class IA brake test shall be performed at the air pressure at which the train's air brakes will... test; and (iii) The train has not been disconnected from a source of compressed air for more than four... has been off a source of compressed air for more than four hours. (b) A commuter or short-distance...

  12. Compressed air energy storage system

    DOEpatents

    Ahrens, F.W.; Kartsounes, G.T.

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  13. Air blast type coal slurry fuel injector

    DOEpatents

    Phatak, Ramkrishna G.

    1986-01-01

    A device to atomize and inject a coal slurry in the combustion chamber of an internal combustion engine, and which eliminates the use of a conventional fuel injection pump/nozzle. The injector involves the use of compressed air to atomize and inject the coal slurry and like fuels. In one embodiment, the breaking and atomization of the fuel is achieved with the help of perforated discs and compressed air. In another embodiment, a cone shaped aspirator is used to achieve the breaking and atomization of the fuel. The compressed air protects critical bearing areas of the injector.

  14. Air blast type coal slurry fuel injector

    DOEpatents

    Phatak, R.G.

    1984-08-31

    A device to atomize and inject a coal slurry in the combustion chamber of an internal combustion engine is disclosed which eliminates the use of a conventional fuel injection pump/nozzle. The injector involves the use of compressed air to atomize and inject the coal slurry and like fuels. In one embodiment, the breaking and atomization of the fuel is achieved with the help of perforated discs and compressed air. In another embodiment, a cone shaped aspirator is used to achieve the breaking and atomization of the fuel. The compressed air protects critical bearing areas of the injector.

  15. Free-beam soliton self-compression in air

    NASA Astrophysics Data System (ADS)

    Voronin, A. A.; Mitrofanov, A. V.; Sidorov-Biryukov, D. A.; Fedotov, A. B.; Pugžlys, A.; Panchenko, V. Ya; Shumakova, V.; Ališauskas, S.; Baltuška, A.; Zheltikov, A. M.

    2018-02-01

    We identify a physical scenario whereby soliton transients generated in freely propagating laser beams within the regions of anomalous dispersion in air can be compressed as a part of their free-beam spatiotemporal evolution to yield few-cycle mid- and long-wavelength-infrared field waveforms, whose peak power is substantially higher than the peak power of the input pulses. We show that this free-beam soliton self-compression scenario does not require ionization or laser-induced filamentation, enabling high-throughput self-compression of mid- and long-wavelength-infrared laser pulses within a broad range of peak powers from tens of gigawatts up to the terawatt level. We also demonstrate that this method of pulse compression can be extended to long-range propagation, providing self-compression of high-peak-power laser pulses in atmospheric air within propagation ranges as long as hundreds of meters, suggesting new ways towards longer-range standoff detection and remote sensing.

  16. Air Compressibility Effect on Bouwer and Rice Seepage Meter.

    PubMed

    Peng, Xin; Zhan, Hongbin

    2017-11-01

    Measuring a disconnected streambed seepage flux using a seepage meter can give important streambed information and help understanding groundwater-surface water interaction. In this study, we provide a correction for calculating the seepage flux rate with the consideration of air compressibility inside the manometer of the Bouwer and Rice seepage meter. We notice that the effect of air compressibility in the manometer is considerably larger when more air is included in the manometer. We find that the relative error from neglecting air compressibility can be constrained within 5% if the manometer of the Bouwer and Rice seepage meter is shorter than 0.8 m and the experiment is done in a suction mode in which air is pumped out from the manometer before the start of measurement. For manometers longer than 0.8 m, the relative error will be larger than 5%. It may be over 10% if the manometer height is longer than 1.5 m and the experiment is done in a no-suction mode, in which air is not pumped out from the manometer before the start of measurement. © 2017, National Ground Water Association.

  17. 29 CFR 1917.154 - Compressed air.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) MARINE TERMINALS Related Terminal Operations and Equipment § 1917.154 Compressed air. Employees shall be protected by chip guarding and personal protective equipment complying with the provisions of subpart E of...

  18. 29 CFR 1917.154 - Compressed air.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) MARINE TERMINALS Related Terminal Operations and Equipment § 1917.154 Compressed air. Employees shall be protected by chip guarding and personal protective equipment complying with the provisions of subpart E of...

  19. Closed-loop air cooling system for a turbine engine

    DOEpatents

    North, William Edward

    2000-01-01

    Method and apparatus are disclosed for providing a closed-loop air cooling system for a turbine engine. The method and apparatus provide for bleeding pressurized air from a gas turbine engine compressor for use in cooling the turbine components. The compressed air is cascaded through the various stages of the turbine. At each stage a portion of the compressed air is returned to the compressor where useful work is recovered.

  20. Evaluation of BAUER UTILUS 10 and TRIPLEX Purification Systems

    DTIC Science & Technology

    1993-08-01

    of the test was to: A. Determine if the compressor and Purification System provides compressed air at the required pressures, flow rates, quality and...optimum filtering, moisture separation, third stage piston ring expansion/cylinder sealing and prevents compressed air return from the storage flasks to the...551 COMPRESSED AIR PLANTS AND SYSTEMS S9086-SY-STM-O0O PARA 551-4.2.2.1. 6. Navy Experimental Diving Unit Test Plan Number 93-01, Jan 93. 7. NAVSEAINST

  1. Computing interface motion in compressible gas dynamics

    NASA Technical Reports Server (NTRS)

    Mulder, W.; Osher, S.; Sethan, James A.

    1992-01-01

    An analysis is conducted of the coupling of Osher and Sethian's (1988) 'Hamilton-Jacobi' level set formulation of the equations of motion for propagating interfaces to a system of conservation laws for compressible gas dynamics, giving attention to both the conservative and nonconservative differencing of the level set function. The capabilities of the method are illustrated in view of the results of numerical convergence studies of the compressible Rayleigh-Taylor and Kelvin-Helmholtz instabilities for air-air and air-helium boundaries.

  2. Interim Air Purity Guidelines for Dry Deck Shelter (DDS) Operations

    DTIC Science & Technology

    1990-10-01

    The acceptable limits for gaseous contaminants in submarine compressed air for use as diver’s breathing air are derived from the 8-hour Time Weighted...accompanying documentation. Cylinders must be declared as hazardous cargo (" Air , Compressed Non-Flammable Gas") prior to air transport. Analysis of cylinder...capi NAVAL MEDICAL RESEARCH INSTITUTE Bethesda, MD 20889-5055 NMRI 90-109 October 1990 AD-A231 432 INTERIM AIR PURITY GUIDELINES FOR DRY DECK

  3. 46 CFR 112.50-7 - Compressed air starting.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... AND POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-7 Compressed... emergency generator room and a handcranked, diesel-powered air compressor for recharging the air receiver..., and energy storing devices must be in the emergency generator room, except for the main or auxiliary...

  4. 46 CFR 112.50-7 - Compressed air starting.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... AND POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-7 Compressed... emergency generator room and a handcranked, diesel-powered air compressor for recharging the air receiver..., and energy storing devices must be in the emergency generator room, except for the main or auxiliary...

  5. 30 CFR 57.13019 - Pressure system repairs.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Compressed Air..., receivers, or compressed-air-powered equipment shall not be attempted until the pressure has been bled off. ...

  6. 30 CFR 56.13019 - Pressure system repairs.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and..., receivers, or compressed-air-powered equipment shall not be attempted until the pressure has been bled off. ...

  7. Development of turbomachinery trains for the CASHING, NGCASH, and IGCASH cycle applications: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaul, G.; Nakhamkin, M.; Swensen, E.

    1994-12-01

    Turbomachinery trains were conceptually developed for three power plant concepts: Compressed Air Storage with Humidification and Integrated Gasification and Natural Gas Firing (CASHING), Natural Gas fired Compressed Air Storage with Humidification (NGCASH), and Integrated Gasification fired Compressed Air Storage with Humidification (IGCASH). Performance data, arrangement drawings, cost estimates, and other technical information for the three turboexpander trains were developed based on the Westinghouse BB51 steam turbine for the high pressure expander and the expander section of the W501F or W501D5 combustion turbine for the low pressure expander. The study supports previous EPRI projects investigating the performance and cost of CASHING,more » NGCASH, and IGCASH concepts and provides a basis for quotations that can be used in evaluating compressed air energy storage concepts in future projects.« less

  8. A comparison of sputum induction methods: ultrasonic vs compressed-air nebulizer and hypertonic vs isotonic saline inhalation.

    PubMed

    Loh, L C; Eg, K P; Puspanathan, P; Tang, S P; Yip, K S; Vijayasingham, P; Thayaparan, T; Kumar, S

    2004-03-01

    Airway inflammation can be demonstrated by the modem method of sputum induction using ultrasonic nebulizer and hypertonic saline. We studied whether compressed-air nebulizer and isotonic saline which are commonly available and cost less, are as effective in inducing sputum in normal adult subjects as the above mentioned tools. Sixteen subjects underwent weekly sputum induction in the following manner: ultrasonic nebulizer (Medix Sonix 2000, Clement Clarke, UK) using hypertonic saline, ultrasonic nebulizer using isotonic saline, compressed-air nebulizer (BestNeb, Taiwan) using hypertonic saline, and compressed-air nebulizer using isotonic saline. Overall, the use of an ultrasonic nebulizer and hypertonic saline yielded significantly higher total sputum cell counts and a higher percentage of cell viability than compressed-air nebulizers and isotonic saline. With the latter, there was a trend towards squamous cell contaminations. The proportion of various sputum cell types was not significantly different between the groups, and the reproducibility in sputum macrophages and neutrophils was high (Intraclass correlation coefficient, r [95%CI]: 0.65 [0.30-0.91] and 0.58 [0.22-0.89], p < 0.001). Overall changes in median FEV, were small and comparable between all groups. Induction using ultrasonic nebulizers together with hypertonic saline was generally less well tolerated than compressed-air nebulizers and isotonic saline. We conclude that in normal subjects, although both nebulizers and saline types can induce sputum with reproducible cellular profile, ultrasonic nebulizers and hypertonic saline are more effective but less well tolerated.

  9. Compressed air energy storage system

    DOEpatents

    Ahrens, Frederick W.; Kartsounes, George T.

    1981-01-01

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  10. Transconjunctival orbital emphysema caused by compressed air injury: a case report.

    PubMed

    Mathew, Sunu; Vasu, Usha; Francis, Febson; Nazareth, Colin

    2008-01-01

    Orbital emphysema following conjunctival tear in the absence of orbital wall fracture, caused by air under pressure is rare. Usually orbital emphysema is seen in facial trauma associated with damage to the adjacent paranasal sinuses or facial bones. To the best of our knowledge, there have been only eight reports of orbital emphysema following use of compressed air during industrial work. The air under pressure is pushed through the subconjunctival space into the subcutaneous and retrobulbar spaces. We present here a rare cause of orbital emphysema in a young man working with compressed air gun. Although the emphysema was severe, there were no orbital bone fracture and the visual recovery of the patient was complete without attendant complications.

  11. Transconjunctival orbital emphysema caused by compressed air injury: A case report

    PubMed Central

    Vasu, Usha; Francis, Febson; Nazareth, Colin

    2008-01-01

    Orbital emphysema following conjunctival tear in the absence of orbital wall fracture, caused by air under pressure is rare. Usually orbital emphysema is seen in facial trauma associated with damage to the adjacent paranasal sinuses or facial bones. To the best of our knowledge, there have been only eight reports of orbital emphysema following use of compressed air during industrial work. The air under pressure is pushed through the subconjunctival space into the subcutaneous and retrobulbar spaces. We present here a rare cause of orbital emphysema in a young man working with compressed air gun. Although the emphysema was severe, there were no orbital bone fracture and the visual recovery of the patient was complete without attendant complications. PMID:18417833

  12. Efficiency at Sorting Cards in Compressed Air

    PubMed Central

    Poulton, E. C.; Catton, M. J.; Carpenter, A.

    1964-01-01

    At a site where compressed air was being used in the construction of a tunnel, 34 men sorted cards twice, once at normal atmospheric pressure and once at 3½, 2½, or 2 atmospheres absolute pressure. An additional six men sorted cards twice at normal atmospheric pressure. When the task was carried out for the first time, all the groups of men performing at raised pressure were found to yield a reliably greater proportion of very slow responses than the group of men performing at normal pressure. There was reliably more variability in timing at 3½ and 2½ atmospheres absolute than at normal pressure. At 3½ atmospheres absolute the average performance was also reliably slower. When the task was carried out for the second time, exposure to 3½ atmospheres absolute pressure had no reliable effect. Thus compressed air affected performance only while the task was being learnt; it had little effect after practice. No reliable differences were found related to age, to length of experience in compressed air, or to the duration of the exposure to compressed air, which was never less than 10 minutes at 3½ atmospheres absolute pressure. PMID:14180485

  13. Safety in the use of compressed air versus oxygen for the ophthalmic patient.

    PubMed

    Rodgers, Laura A; Kulwicki, Anahid

    2002-02-01

    Oxygen, routinely administered during surgery to avoid hypoxia, poses risks including increased likelihood of surgical room fires and predisposition to retinal phototoxicity in patients. Compressed air to supplement ventilation may be safer than oxygen. The purpose of this study was to determine whether hypoxia occurs more frequently when compressed air replaces supplemental oxygen during ophthalmic surgery. A convenience sample of 111 patients was randomly assigned to receive supplemental oxygen (group 1) or compressed air (group 2). Patients with serious cardiac or pulmonary disease were excluded. Blood oxygen levels were monitored during surgery by pulse oximetry. Oxygen was administered to all group 2 patients whose oxygen saturation fell to less than 90% or by more than 5% below baseline. No differences were observed between groups in age, ASA classification, type of surgery, or anesthetic drugs or doses. Minor, but statistically higher oxygen values were observed in group 1. The frequency with which oxygen saturation decreased below 90% or below 5% of baseline was similar in both groups. Supplemental oxygen is not required routinely in selected patients undergoing ophthalmic surgery. By using compressed air, the risk of operating room fires and retinal phototoxicity may be reduced.

  14. Use of phase change materials during compressed air expansion for isothermal CAES plants

    NASA Astrophysics Data System (ADS)

    Castellani, B.; Presciutti, A.; Morini, E.; Filipponi, M.; Nicolini, A.; Rossi, F.

    2017-11-01

    Compressed air energy storage (CAES) plants are designed to store compressed air into a vessel or in an underground cavern and to expand it in an expansion turbine when energy demand is high. An innovative CAES configuration recently proposed is the isothermal process. Several methods to implement isothermal CAES configuration are under investigation. In this framework, the present paper deals with the experimental testing of phase change materials (PCM) during compressed air expansion phase. The experimental investigation was carried out by means of an apparatus constituted by a compression section, a steel pressure vessel, to which an expansion valve is connected. The initial internal absolute pressure was equal to 5 bar to avoid moisture condensation and the experimental tests were carried out with two paraffin-based PCM amounts (0.05 kg and 0.1 kg). Results show that the temperature change during air expansion decreases with increasing the PCM amount inside the vessel. With the use of PCM during expansions an increase of the expansion work occurs. The increase is included in the range from 9.3% to 18.2%. In every test there is an approach to the isothermal values, which represent the maximum theoretical value of the obtainable expansion work.

  15. Safety for Compressed Gas and Air Equipment. Module SH-26. Safety and Health.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on safety for compressed gas and air equipment is one of 50 modules concerned with job safety and health. This module presents technical data about commonly used gases and stresses the procedures necessary for safe handling of compressed gases. Following the introduction, 14 objectives (each keyed to a page in the text) the…

  16. 46 CFR 151.50-20 - Inorganic acids.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Pressure vessel type cargo tanks shall be independent of the vessel's structure and shall be designed for the maximum pressure to which they may be subjected when compressed air is used to discharge the cargo... ventilation. (g) A separator shall be fitted in compressed air lines to the tank when air pressure is used to...

  17. 46 CFR 151.50-20 - Inorganic acids.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Pressure vessel type cargo tanks shall be independent of the vessel's structure and shall be designed for the maximum pressure to which they may be subjected when compressed air is used to discharge the cargo... ventilation. (g) A separator shall be fitted in compressed air lines to the tank when air pressure is used to...

  18. 46 CFR 151.50-20 - Inorganic acids.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Pressure vessel type cargo tanks shall be independent of the vessel's structure and shall be designed for the maximum pressure to which they may be subjected when compressed air is used to discharge the cargo... ventilation. (g) A separator shall be fitted in compressed air lines to the tank when air pressure is used to...

  19. Compressed Air Working in Chennai During Metro Tunnel Construction: Occupational Health Problems.

    PubMed

    Kulkarni, Ajit C

    2017-01-01

    Chennai metropolis has been growing rapidly. Need was felt of a metro rail system. Two corridors were planned. Corridor 1, of 23 km starting from Washermanpet to Airport. 14.3 km of this would be underground. Corridor 2, of 22 km starting from Chennai Central Railway station to St. Thomas Mount. 9.7 km of this would be underground. Occupational health centre's role involved selection of miners and assessing their fitness to work under compressed air. Planning and execution of compression and decompression, health monitoring and treatment of compression related illnesses. More than thirty five thousand man hours of work was carried out under compressed air pressure ranged from 1.2 to 1.9 bar absolute. There were only three cases of pain only ( Type I) decompression sickness which were treated with recompression. Vigilant medical supervision, experienced lock operators and reduced working hours under pressure because of inclement environmental conditions viz. high temperature and humidity, has helped achieve this low incident. Tunnelling activity will increase in India as more cities will soon opt for underground metro railway. Indian standard IS 4138 - 1977 " Safety code for working in compressed air" needs to be updated urgently keeping pace with modern working methods.

  20. Air Entrapment for Liquid Drops Impacting a Solid Substrate

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Tan, Peng; Xu, Lei

    2012-11-01

    Using high-speed photography coupled with optical interference, we experimentally study the air entrapment during a liquid drop impacting a solid substrate. We observe the formation of a compressed air film before the liquid touches the substrate, with internal pressure considerably higher than the atmospheric value. The degree of compression highly depends on the impact velocity, as explained by balancing the liquid deceleration with the large pressure of compressed air. After contact, the air film expands vertically at the edge, reducing its pressure within a few tens of microseconds and producing a thick rim on the perimeter. This thick-rimmed air film subsequently contracts into an air bubble, governed by the complex interaction between surface tension, inertia and viscous drag. Such a process is universally observed for impacts above a few centimeters high. Hong Kong GRF grant CUHK404211 and direct grant 2060418.

  1. Roofbolters with compressed-air rotators

    NASA Astrophysics Data System (ADS)

    Lantsevich, MA; Repin Klishin, AA, VI; Kokoulin, DI

    2018-03-01

    The specifications of the most popular roofbolters of domestic and foreign manufacture currently in operation in coal mines are discussed. Compressed-air roofbolters SAP and SAP2 designed at the Institute of Mining are capable of drilling in hard rocks. The authors describe the compressed-air rotator of SAP2 roofbolter with alternate motion rotors. From the comparative analysis of characteristics of SAP and SAP 2 roofbolters, the combination of high-frequency axial and rotary impacts on a drilling tool in SAP2 ensure efficient drilling in rocks with the strength up to 160 MPa.

  2. Modeling of Single and Dual Reservoir Porous Media Compressed Gas (Air and CO2) Storage Systems

    NASA Astrophysics Data System (ADS)

    Oldenburg, C. M.; Liu, H.; Borgia, A.; Pan, L.

    2017-12-01

    Intermittent renewable energy sources are causing increasing demand for energy storage. The deep subsurface offers promising opportunities for energy storage because it can safely contain high-pressure gases. Porous media compressed air energy storage (PM-CAES) is one approach, although the only facilities in operation are in caverns (C-CAES) rather than porous media. Just like in C-CAES, PM-CAES operates generally by injecting working gas (air) through well(s) into the reservoir compressing the cushion gas (existing air in the reservoir). During energy recovery, high-pressure air from the reservoir is mixed with fuel in a combustion turbine to produce electricity, thereby reducing compression costs. Unlike in C-CAES, the storage of energy in PM-CAES occurs variably across pressure gradients in the formation, while the solid grains of the matrix can release/store heat. Because air is the working gas, PM-CAES has fairly low thermal efficiency and low energy storage density. To improve the energy storage density, we have conceived and modeled a closed-loop two-reservoir compressed CO2 energy storage system. One reservoir is the low-pressure reservoir, and the other is the high-pressure reservoir. CO2 is cycled back and forth between reservoirs depending on whether energy needs to be stored or recovered. We have carried out thermodynamic and parametric analyses of the performance of an idealized two-reservoir CO2 energy storage system under supercritical and transcritical conditions for CO2 using a steady-state model. Results show that the transcritical compressed CO2 energy storage system has higher round-trip efficiency and exergy efficiency, and larger energy storage density than the supercritical compressed CO2 energy storage. However, the configuration of supercritical compressed CO2 energy storage is simpler, and the energy storage densities of the two systems are both higher than that of PM-CAES, which is advantageous in terms of storage volume for a given power rating.

  3. Knock-Limited Performance of Triptane and Xylidines Blended with 28-R Aviation Fuel at High Compression Ratios and Maximum-Economy Spark Setting

    NASA Technical Reports Server (NTRS)

    Held, Louis F.; Pritchard, Ernest I.

    1946-01-01

    An investigation was conducted to evaluate the possibilities of utilizing the high-performance characteristics of triptane and xylidines blended with 28-R fuel in order to increase fuel economy by the use of high compression ratios and maximum-economy spark setting. Full-scale single-cylinder knock tests were run with 20 deg B.T.C. and maximum-economy spark settings at compression ratios of 6.9, 8.0, and 10.0, and with two inlet-air temperatures. The fuels tested consisted of triptane, four triptane and one xylidines blend with 28-R, and 28-R fuel alone. Indicated specific fuel consumption at lean mixtures was decreased approximately 17 percent at a compression ratio of 10.0 and maximum-economy spark setting, as compared to that obtained with a compression ratio of 6.9 and normal spark setting. When compression ratio was increased from 6.9 to 10.0 at an inlet-air temperature of 150 F, normal spark setting, and a fuel-air ratio of 0.065, 55-percent triptane was required with 28-R fuel to maintain the knock-limited brake power level obtained with 28-R fuel at a compression ratio of 6.9. Brake specific fuel consumption was decreased 17.5 percent at a compression ratio of 10.0 relative to that obtained at a compression ratio of 6.9. Approximately similar results were noted at an inlet-air temperature of 250 F. For concentrations up through at least 20 percent, triptane can be more efficiently used at normal than at maximum-economy spark setting to maintain a constant knock-limited power output over the range of compression ratios tested.

  4. Active bypass flow control for a seal in a gas turbine engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebert, Todd A.; Kimmel, Keith D.

    An active bypass flow control system for controlling bypass compressed air based upon leakage flow of compressed air flowing past an outer balance seal between a stator and rotor of a first stage of a gas turbine in a gas turbine engine is disclosed. The active bypass flow control system is an adjustable system in which one or more metering devices may be used to control the flow of bypass compressed air as the flow of compressed air past the outer balance seal changes over time as the outer balance seal between the rim cavity and the cooling cavity wears.more » In at least one embodiment, the metering device may include a valve formed from one or more pins movable between open and closed positions in which the one pin at least partially bisects the bypass channel to regulate flow.« less

  5. Hydrofluoric acid burn resulting from ignition of gas from a compressed air duster.

    PubMed

    Foster, Kevin N; Jones, LouAnn; Caruso, Daniel M

    2003-01-01

    A young female suffered burns to her hand after the ignition of gas from a compressed air duster. After debridement and dressing, the patient continued to have pain out of proportion to injury that was refractory to intravenous morphine. The material safety data sheet revealed that the chemical used was 1,1-difluoroethane. High temperatures can cause decompensation to form hydrofluoric acid. Calcium gluconate gel was applied topically to the patient's burns, which caused prompt and complete relief of her pain. A review of different compressed air duster products revealed that the main ingredient in each was a halogenated hydrocarbon. Although not considered flammable, all products have warnings regarding the possibility of ignition under various circumstances. Ignition of the gas in compressed air cleaners not only can cause flame burns, it can also cause chemical damage from exposure to hydrogen and fluoride ions. Prompt recognition and treatment is necessary to prevent severe injury.

  6. Some new conceptions in the approach to harnessing tidal energy

    NASA Astrophysics Data System (ADS)

    Gorlov, A. M.

    A method of converting ocean tide energy into compressed air energy for subsequent conversion to electrical and other forms of industrial energy is presented. The tidal energy is converted to compressed air energy by means of specialized chambers which are put on the ocean bed. Ocean water from the dammed region passes through the chamber where it works as a natural piston compressing air in the upper part of the closure. The compressed air can be expanded through high speed compact gas turbines or any type of reciprocating engine. The flexible reinforced plastic barrier should be substantially cheaper than a conventional rigid dam and can be designed so that by means of special floats it becomes a self-supported and self-regulated weightless structural system which can dam a large shallow space of ocean without having to be connected to special bays.

  7. The function profile of compressed-air and ultrasonic nebulizers.

    PubMed

    Wu, Hsin-Lin; Lin, Yung-Zen; Wu, Wei-Fong; Huang, Fu-Yuan

    2003-01-01

    In order to study the detailed function of two kinds of nebulizers commonly used in clinical asthma treatment, compressed-air and ultrasonic, this study was conducted. At the beginning, various flow rates were adjusted, paired with different volumes of solutions in the container. The changes of temperature, pH, and osmolality during the course of nebulization were examined. Normal saline, terbutaline, and fenoterol solutions were used as the nebulized solutions. The study was performed in an environment in ambient temperature around 20 degrees C and relative humidity around 70%. The results showed a minimal 6 L/min flow rate was required to nebulize the solution when using the compressed-air nebulizer. The dead volume was about 0.8 ml for compressed-air and 8.5 ml for the ultrasonic nebulizer. When using the compressed-air nebulizer, the temperature, both in the solution and at the mouthpiece site, dropped gradually. On the contrary, the temperatures at both sites increased a little bit when using the ultrasonic nebulizer. The pH values of pure terbutaline and fenoterol nebulized solutions were acidic (3.58 and 3.00 respectively). The osmolality of terbutaline and fenoterol nebulized solutions were isotonic. The osmolality increased gradually during the course of nebulization, to a greater extent in the compressed-air nebulizer. In conclusion, both types of nebulizers have their special features. The ultrasonic nebulizer displays less extent in change of temperature and osmolality during nebulization and is expected to be a better device in treating asthmatic patients in terms of lesser effect on cooling and changing the osmolality of airway mucosa.

  8. Evaluation of BAUER High Pressure Breathing Air P-2 Purification System

    DTIC Science & Technology

    1991-08-01

    and is a coalescing type separator that removes oil and water vapors suspended in the compressed air . The molecular sieve is made to adsorb oil and...filtering, moisture separation, and prevents compressed air return from the charged air storage flasks to the compressor during unit shutdown. A manual...1111111111111 1111 IE IH fil91i C NAVY EXPERIMENTAL DIVING UNIT REPORT NO. 10-91 EVALUATION OF BAUER HIGH PRESSURE BREATHING AIR P-2 PURIFICATION SYSTEM GEORGE D

  9. Friction of Compression-ignition Engines

    NASA Technical Reports Server (NTRS)

    Moore, Charles S; Collins, John H , Jr

    1936-01-01

    The cost in mean effective pressure of generating air flow in the combustion chambers of single-cylinder compression-ignition engines was determined for the prechamber and the displaced-piston types of combustion chamber. For each type a wide range of air-flow quantities, speeds, and boost pressures was investigated. Supplementary tests were made to determine the effect of lubricating-oil temperature, cooling-water temperature, and compression ratio on the friction mean effective pressure of the single-cylinder test engine. Friction curves are included for two 9-cylinder, radial, compression-ignition aircraft engines. The results indicate that generating the optimum forced air flow increased the motoring losses approximately 5 pounds per square inch mean effective pressure regardless of chamber type or engine speed. With a given type of chamber, the rate of increase in friction mean effective pressure with engine speed is independent of the air-flow speed. The effect of boost pressure on the friction cannot be predicted because the friction was decreased, unchanged, or increased depending on the combustion-chamber type and design details. High compression ratio accounts for approximately 5 pounds per square inch mean effective pressure of the friction of these single-cylinder compression-ignition engines. The single-cylinder test engines used in this investigation had a much higher friction mean effective pressure than conventional aircraft engines or than the 9-cylinder, radial, compression-ignition engines tested so that performance should be compared on an indicated basis.

  10. Upgrade of Compressed Air Control System Reduces Energy Costs at Michelin Tire Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2002-01-01

    This case study highlights the upgraded compressed air system at a Michelin tire manufacturing plant in Spartanburg, South Carolina. The controls upgrade project enabled multiple compressor operation without blow-off, and significantly reduced energy costs.

  11. Compressed-air energy-storage preliminary design and site-development program in an aquifer. Volume 9: Cost estimate and schedule

    NASA Astrophysics Data System (ADS)

    1982-12-01

    The behavior and suitability of aquifers as compressed-air energy-storage sites is discussed. The engineering and construction schedule, facilities capital-cost estimate, and corresponding cash-flow requirements are given.

  12. Compressed air production with waste heat utilization in industry

    NASA Astrophysics Data System (ADS)

    Nolting, E.

    1984-06-01

    The centralized power-heat coupling (PHC) technique using block heating power stations, is presented. Compressed air production in PHC technique with internal combustion engine drive achieves a high degree of primary energy utilization. Cost savings of 50% are reached compared to conventional production. The simultaneous utilization of compressed air and heat is especially interesting. A speed regulated drive via an internal combustion motor gives a further saving of 10% to 20% compared to intermittent operation. The high fuel utilization efficiency ( 80%) leads to a pay off after two years for operation times of 3000 hr.

  13. Carbon Dioxide and Nitrogen Infused Compressed Air Foam for Depopulation of Caged Laying Hens

    PubMed Central

    Gurung, Shailesh; White, Dima; Archer, Gregory; Styles, Darrel; Zhao, Dan; Farnell, Yuhua; Byrd, James; Farnell, Morgan

    2018-01-01

    Simple Summary Compressed air, detergent, and water make up compressed air foam. Our laboratory has previously reported that compressed air foam may be an effective method for mass depopulation of caged layer hens. Gases, such as carbon dioxide and nitrogen, have also been used for poultry euthanasia and depopulation. The objective of this study was to produce compressed air foam infused with carbon dioxide or nitrogen to compare its efficacy against foam with air and gas inhalation methods (carbon dioxide or nitrogen) for depopulation of caged laying hens. The study showed that a carbon dioxide-air mixture or 100% nitrogen can replace air to make compressed air foam. However, the foam with carbon dioxide had poor foam quality compared to the foam with air or nitrogen. The physiological stress response of hens subjected to foam treatments with and without gas infusion did not differ significantly. Hens exposed to foam with nitrogen died earlier as compared to methods such as foam with air and carbon dioxide. The authors conclude that infusion of nitrogen into compressed air foam results in better foam quality and shortened time to death as compared to the addition of carbon dioxide. Abstract Depopulation of infected poultry flocks is a key strategy to control and contain reportable diseases. Water-based foam, carbon dioxide inhalation, and ventilation shutdown are depopulation methods available to the poultry industry. Unfortunately, these methods have limited usage in caged layer hen operations. Personnel safety and welfare of birds are equally important factors to consider during emergency depopulation procedures. We have previously reported that compressed air foam (CAF) is an alternative method for depopulation of caged layer hens. We hypothesized that infusion of gases, such as carbon dioxide (CO2) and nitrogen (N2), into the CAF would reduce physiological stress and shorten time to cessation of movement. The study had six treatments, namely a negative control, CO2 inhalation, N2 inhalation, CAF with air (CAF Air), CAF with 50% CO2 (CAF CO2), and CAF with 100% N2 (CAF N2). Four spent hens were randomly assigned to one of these treatments on each of the eight replication days. A total of 192 spent hens were used in this study. Serum corticosterone and serotonin levels were measured and compared between treatments. Time to cessation of movement of spent hens was determined using accelerometers. The addition of CO2 in CAF significantly reduced the foam quality while the addition of N2 did not. The corticosterone and serotonin levels of spent hens subjected to foam (CAF, CAF CO2, CAF N2) and gas inhalation (CO2, N2) treatments did not differ significantly. The time to cessation of movement of spent hens in the CAF N2 treatment was significantly shorter than CAF and CAF CO2 treatments but longer than the gas inhalation treatments. These data suggest that the addition of N2 is advantageous in terms of shortening time to death and improved foam quality as compared to the CAF CO2 treatment. PMID:29301340

  14. Demonstration of Isothermal Compressed Air Energy Storage to Support Renewable Energy Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bollinger, Benjamin

    This project develops and demonstrates a megawatt (MW)-scale Energy Storage System that employs compressed air as the storage medium. An isothermal compressed air energy storage (ICAES TM) system rated for 1 MW or more will be demonstrated in a full-scale prototype unit. Breakthrough cost-effectiveness will be achieved through the use of proprietary methods for isothermal gas cycling and staged gas expansion implemented using industrially mature, readily-available components.The ICAES approach uses an electrically driven mechanical system to raise air to high pressure for storage in low-cost pressure vessels, pipeline, or lined-rock cavern (LRC). This air is later expanded through the samemore » mechanical system to drive the electric motor as a generator. The approach incorporates two key efficiency-enhancing innovations: (1) isothermal (constant temperature) gas cycling, which is achieved by mixing liquid with air (via spray or foam) to exchange heat with air undergoing compression or expansion; and (2) a novel, staged gas-expansion scheme that allows the drivetrain to operate at constant power while still allowing the stored gas to work over its entire pressure range. The ICAES system will be scalable, non-toxic, and cost-effective, making it suitable for firming renewables and for other grid applications.« less

  15. Experimental study on the inlet fogging system using two-fluid nozzles

    NASA Astrophysics Data System (ADS)

    Suryan, Abhilash; Kim, Dong Sun; Kim, Heuy Dong

    2010-04-01

    Large-capacity compressors in industrial plants and the compressors in gas turbine engines consume a considerable amount of power. The compression work is a strong function of the ambient air temperature. This increase in compression work presents a significant problem to utilities, generators and power producers when electric demands are high during the hot months. In many petrochemical process industries and gas turbine engines, the increase in compression work curtails plant output, demanding more electric power to drive the system. One way to counter this problem is to directly cool the inlet air. Inlet fogging is a popular means of cooling the inlet air to air compressors. In the present study, experiments have been performed to investigate the suitability of two-fluid nozzle for inlet fogging. Compressed air is used as the driving working gas for two-fluid nozzle and water at ambient conditions is dragged into the high-speed air jet, thus enabling the entrained water to be atomized in a very short distance from the exit of the two-fluid nozzle. The air supply pressure is varied between 2.0 and 5.0 bar and the water flow rate entrained is measured. The flow visualization and temperature and relative humidity measurements are carried out to specify the fogging characteristics of the two-fluid nozzle.

  16. Rupture of sigmoid colon caused by compressed air.

    PubMed

    Yin, Wan-Bin; Hu, Ji-Lin; Gao, Yuan; Zhang, Xian-Xiang; Zhang, Mao-Shen; Liu, Guang-Wei; Zheng, Xue-Feng; Lu, Yun

    2016-03-14

    Compressed air has been generally used since the beginning of the 20(th) century for various applications. However, rupture of the colon caused by compressed air is uncommon. We report a case of pneumatic rupture of the sigmoid colon. The patient was admitted to the emergency room complaining of abdominal pain and distention. His colleague triggered a compressed air nozzle against his anus as a practical joke 2 h previously. On arrival, his pulse rate was 126 beats/min, respiratory rate was 42 breaths/min and blood pressure was 86/54 mmHg. Physical examination revealed peritoneal irritation and the abdomen was markedly distended. Computed tomography of the abdomen showed a large volume of air in the abdominal cavity. Peritoneocentesis was performed to relieve the tension pneumoperitoneum. Emergency laparotomy was done after controlling shock. Laparotomy revealed a 2-cm perforation in the sigmoid colon. The perforation was sutured and temporary ileostomy was performed as well as thorough drainage and irrigation of the abdominopelvic cavity. Reversal of ileostomy was performed successfully after 3 mo. Follow-up was uneventful. We also present a brief literature review.

  17. Rupture of sigmoid colon caused by compressed air

    PubMed Central

    Yin, Wan-Bin; Hu, Ji-Lin; Gao, Yuan; Zhang, Xian-Xiang; Zhang, Mao-Shen; Liu, Guang-Wei; Zheng, Xue-Feng; Lu, Yun

    2016-01-01

    Compressed air has been generally used since the beginning of the 20th century for various applications. However, rupture of the colon caused by compressed air is uncommon. We report a case of pneumatic rupture of the sigmoid colon. The patient was admitted to the emergency room complaining of abdominal pain and distention. His colleague triggered a compressed air nozzle against his anus as a practical joke 2 h previously. On arrival, his pulse rate was 126 beats/min, respiratory rate was 42 breaths/min and blood pressure was 86/54 mmHg. Physical examination revealed peritoneal irritation and the abdomen was markedly distended. Computed tomography of the abdomen showed a large volume of air in the abdominal cavity. Peritoneocentesis was performed to relieve the tension pneumoperitoneum. Emergency laparotomy was done after controlling shock. Laparotomy revealed a 2-cm perforation in the sigmoid colon. The perforation was sutured and temporary ileostomy was performed as well as thorough drainage and irrigation of the abdominopelvic cavity. Reversal of ileostomy was performed successfully after 3 mo. Follow-up was uneventful. We also present a brief literature review. PMID:26973403

  18. Removal of ice and marine growth from ship surfaces: A concept

    NASA Technical Reports Server (NTRS)

    Bauman, A. J.

    1975-01-01

    Proposed surface is structured from sections of low-melting-point alloy. Sections are separated by network of passages for compressed air. Ice or barnacles are removed by passing electrical current through alloy and bursts of compressed air through passages.

  19. Brainstem removal using compressed air for subsequent bovine spongiform encephalopathy testing

    PubMed Central

    2005-01-01

    Abstract The use of compressed air to expel the obex through a hole in the skull generated using a captured bolt stunner. The obex is the part of the brain that is tested for bovine spongiform encephalopathy. PMID:16018564

  20. Method of and apparatus for preheating pressurized fluidized bed combustor and clean-up subsystem of a gas turbine power plant

    DOEpatents

    Cole, Rossa W.; Zoll, August H.

    1982-01-01

    In a gas turbine power plant having a pressurized fluidized bed combustor, gas turbine-air compressor subsystem and a gas clean-up subsystem interconnected for fluid flow therethrough, a pipe communicating the outlet of the compressor of the gas turbine-air compressor subsystem with the interior of the pressurized fluidized bed combustor and the gas clean-up subsystem to provide for flow of compressed air, heated by the heat of compression, therethrough. The pressurized fluidized bed combustor and gas clean-up subsystem are vented to atmosphere so that the heated compressed air flows therethrough and loses heat to the interior of those components before passing to the atmosphere.

  1. Design of Aircraft (Selected Chapters),

    DTIC Science & Technology

    1986-09-22

    9 - compressed air motor of the drive of the reverser of the thrust of fan; 10 - flexible drive shaft; 11 - gearbox and jack; 12 - moving ring; 13...24 - cutoff and control valve; 25 - main line of pneumatic system; 26 - pneumo-starter; 27 - given by compressed air motor hydraulic pump; 28...kilometer; p - mass air density; p, - on the surface of sea; .A=p/p°- relative density of air ; R - radius of the Earth, a radius turn/bank and so forth; S

  2. The film tells the story: Physical-chemical characteristics of IgG at the liquid-air interface.

    PubMed

    Koepf, Ellen; Schroeder, Rudolf; Brezesinski, Gerald; Friess, Wolfgang

    2017-10-01

    The presence of liquid-air interfaces in protein pharmaceuticals is known to negatively impact product stability. Nevertheless, the mechanisms behind interface-related protein aggregation are not yet fully understood. Little is known about the physical-chemical behavior of proteins adsorbed to the interface. Therefore, the combinatorial use of appropriate surface-sensitive analytical methods such as Langmuir trough experiments, Infrared Reflection-Absorption Spectroscopy (IRRAS), Brewster Angle Microscopy (BAM), and Atomic Force Microscopy (AFM) is highly expedient to uncover structures and events at the liquid-air interface directly. Concentration-dependent adsorption of a human immunoglobulin G (IgG) and characteristic surface-pressure/area isotherms substantiated the amphiphilic nature of the protein molecules as well as the formation of a compressible protein film at the liquid-air interface. Upon compression, the IgG molecules do not readily desorb but form a highly compressible interfacial film. IRRA spectra proved not only the presence of the protein at the interface, but also showed that the secondary structure does not change considerably during adsorption or compression. IRRAS experiments at different angles of incidence indicated that the film thickness and/or packing density increases upon compression. Furthermore, BAM images exposed the presence of a coherent but heterogeneous distribution of the protein at the interface. Topographical differences within the protein film after adsorption, compression and decompression were revealed using underwater AFM. The combinatorial use of physical-chemical, spectroscopic and microscopic methods provided useful insights into the liquid-air interfacial protein behavior and revealed the formation of a continuous but inhomogeneous film of native-like protein molecules whose topographical appearance is affected by compressive forces. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Wave energy devices with compressible volumes.

    PubMed

    Kurniawan, Adi; Greaves, Deborah; Chaplin, John

    2014-12-08

    We present an analysis of wave energy devices with air-filled compressible submerged volumes, where variability of volume is achieved by means of a horizontal surface free to move up and down relative to the body. An analysis of bodies without power take-off (PTO) systems is first presented to demonstrate the positive effects a compressible volume could have on the body response. Subsequently, two compressible device variations are analysed. In the first variation, the compressible volume is connected to a fixed volume via an air turbine for PTO. In the second variation, a water column separates the compressible volume from another volume, which is fitted with an air turbine open to the atmosphere. Both floating and bottom-fixed, axisymmetric, configurations are considered, and linear analysis is employed throughout. Advantages and disadvantages of each device are examined in detail. Some configurations with displaced volumes less than 2000 m 3 and with constant turbine coefficients are shown to be capable of achieving 80% of the theoretical maximum absorbed power over a wave period range of about 4 s.

  4. Wave energy devices with compressible volumes

    PubMed Central

    Kurniawan, Adi; Greaves, Deborah; Chaplin, John

    2014-01-01

    We present an analysis of wave energy devices with air-filled compressible submerged volumes, where variability of volume is achieved by means of a horizontal surface free to move up and down relative to the body. An analysis of bodies without power take-off (PTO) systems is first presented to demonstrate the positive effects a compressible volume could have on the body response. Subsequently, two compressible device variations are analysed. In the first variation, the compressible volume is connected to a fixed volume via an air turbine for PTO. In the second variation, a water column separates the compressible volume from another volume, which is fitted with an air turbine open to the atmosphere. Both floating and bottom-fixed, axisymmetric, configurations are considered, and linear analysis is employed throughout. Advantages and disadvantages of each device are examined in detail. Some configurations with displaced volumes less than 2000 m3 and with constant turbine coefficients are shown to be capable of achieving 80% of the theoretical maximum absorbed power over a wave period range of about 4 s. PMID:25484609

  5. Controlling And Operating Homogeneous Charge Compression Ignition (Hcci) Engines

    DOEpatents

    Flowers, Daniel L.

    2005-08-02

    A Homogeneous Charge Compression Ignition (HCCI) engine system includes an engine that produces exhaust gas. A vaporization means vaporizes fuel for the engine an air induction means provides air for the engine. An exhaust gas recirculation means recirculates the exhaust gas. A blending means blends the vaporized fuel, the exhaust gas, and the air. An induction means inducts the blended vaporized fuel, exhaust gas, and air into the engine. A control means controls the blending of the vaporized fuel, the exhaust gas, and the air and for controls the inducting the blended vaporized fuel, exhaust gas, and air into the engine.

  6. The Compressibility Burble

    NASA Technical Reports Server (NTRS)

    Stack, John

    1935-01-01

    Simultaneous air-flow photographs and pressure-distribution measurements have been made of the NACA 4412 airfoil at high speeds in order to determine the physical nature of the compressibility burble. The flow photographs were obtained by the Schlieren method and the pressures were simultaneously measured for 54 stations on the 5-inch-chord wing by means of a multiple-tube photographic manometer. Pressure-measurement results and typical Schlieren photographs are presented. The general nature of the phenomenon called the "compressibility burble" is shown by these experiments. The source of the increased drag is the compression shock that occurs, the excess drag being due to the conversion of a considerable amount of the air-stream kinetic energy into heat at the compression shock.

  7. Rapid and selective brain cooling method using vortex tube: A feasibility study.

    PubMed

    Bakhsheshi, Mohammad Fazel; Keenliside, Lynn; Lee, Ting-Yim

    2016-05-01

    Vortex tubes are simple mechanical devices to produce cold air from a stream of compressed air without any moving parts. The primary focus of the current study is to investigate the feasibility and efficiency of nasopharyngeal brain cooling method using a vortex tube. Experiments were conducted on 5 juvenile pigs. Nasopharygeal brain cooling was achieved by directing cooled air via a catheter in each nostril into the nasal cavities. A vortex tube was used to generate cold air using various sources of compressed air: (I) hospital medical air outlet (n = 1); (II) medical air cylinders (n = 3); and (III) scuba (diving) cylinders (n = 1). By using compressed air from a hospital medical air outlet at fixed inlet pressure of 50 PSI, maximum brain-rectal temperature gradient of -2°C was reached about 45-60 minutes by setting the flow rate of 25 L/min and temperature of -7°C at the cold air outlet. Similarly, by using medical air cylinders at fill-pressure of 2265 PSI and down regulate the inlet pressure to the vortex tube to 50 PSI, brain temperature could be reduced more rapidly by blowing -22°C ± 2°C air at a flow rate of 50 L/min; brain-body temperature gradient of -8°C was obtained about 30 minutes. Furthermore, we examined scuba cylinders as a portable source of compressed gas supply to the vortex tube. Likewise, by setting up the vortex tube to have an inlet pressure of 25 PSI and 50 L/min and -3°C at the cold air outlet, brain temperature decreased 4.5°C within 10-20 min. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Adiabatic Compression Sensitivity of AF-M315E (Briefing Charts)

    DTIC Science & Technology

    2015-07-27

    Charts 3. DATES COVERED (From - To) July 2015-July 2015 4. TITLE AND SUBTITLE Adiabatic Compression Sensitivity of AF - M315E (Briefing Charts) 5a...PA#15402. 14. ABSTRACT The Air Force Research Laboratory developed monopropellant, AF - M315E , has been selected for demonstration under the NASA...Pollux Drive, Edwards AFB, CA 93524-7048. Adiabatic Compression Sensitivity of AF - M315E Phu Quach ERC, Incorporated Air Force Research Laboratory

  9. Engine Performance and Knock Rating of Fuels for High-output Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Rothbrock, A M; Biermann, Arnold E

    1938-01-01

    Data are presented to show the effects of inlet-air pressure, inlet-air temperature, and compression ratio on the maximum permissible performance obtained on a single-cylinder test engine with aircraft-engine fuels varying from a fuel of 87 octane number to one 100 octane number plus 1 ml of tetraethyl lead per gallon. The data were obtained on a 5-inch by 5.75-inch liquid-cooled engine operating at 2,500 r.p.m. The compression ratio was varied from 6.50 to 8.75. The inlet-air temperature was varied from 120 to 280 F. and the inlet-air pressure from 30 inches of mercury absolute to the highest permissible. The limiting factors for the increase in compression ratio and in inlet-air pressure was the occurrence of either audible or incipient knock. The data are correlated to show that, for any one fuel,there is a definite relationship between the limiting conditions of inlet-air temperature and density at any compression ratio. This relationship is dependent on the combustion-gas temperature and density relationship that causes knock. The report presents a suggested method of rating aircraft-engine fuels based on this relationship. It is concluded that aircraft-engine fuels cannot be satisfactorily rated by any single factor, such as octane number, highest useful compression ratio, or allowable boost pressure. The fuels should be rated by a curve that expresses the limitations of the fuel over a variety of engine conditions.

  10. Active bypass flow control for a seal in a gas turbine engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebert, Todd A.; Kimmel, Keith D.

    An active bypass flow control system for controlling bypass compressed air based upon leakage flow of compressed air flowing past an outer balance seal between a stator and rotor of a first stage of a gas turbine in a gas turbine engine is disclosed. The active bypass flow control system is an adjustable system in which one or more metering devices may be used to control the flow of bypass compressed air as the flow of compressed air past the outer balance seal changes over time as the outer balance seal between the rim cavity and the cooling cavity wearsmore » In at least one embodiment, the metering device may include an annular ring having at least one metering orifice extending therethrough, whereby alignment of the metering orifice with the outlet may be adjustable to change a cross-sectional area of an opening of aligned portions of the outlet and the metering orifice.« less

  11. Orbital compressed air and petroleum injury mimicking necrotizing fasciitis.

    PubMed

    Mellington, Faye E; Bacon, Annette S; Abu-Bakra, Mohammed A J; Martinez-Devesa, Pablo; Norris, Jonathan H

    2014-09-01

    Orbital injury secondary to petroleum-based products is rare. We report the first case, to our knowledge, of a combined compressed air and chemical orbital injury, which mimicked necrotizing fasciitis. A 58-year-old man was repairing his motorcycle engine when a piston inadvertently fired, discharging compressed air and petroleum-based carburetor cleaner into his left eye. He developed surgical emphysema, skin necrosis, and a chemical cellulitis, causing an orbital compartment syndrome. He was treated initially with antibiotics and subsequently with intravenous steroid and orbital decompression surgery. There was almost complete recovery by 4 weeks postsurgery. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Petroleum-based products can cause severe skin irritation and necrosis. Compressed air injury can cause surgical emphysema. When these two mechanisms of injury are combined, the resulting orbitopathy and skin necrosis can mimic necrotizing fasciitis and cause diagnostic confusion. A favorable outcome is achievable with aggressive timely management. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Research on water discharge characteristics of PEM fuel cells by using neutron imaging technology at the NRF, HANARO.

    PubMed

    Kim, TaeJoo; Sim, CheulMuu; Kim, MooHwan

    2008-05-01

    An investigation into the water discharge characteristics of proton exchange membrane (PEM) fuel cells is carried out by using a feasibility test apparatus and the Neutron Radiography Facility (NRF) at HANARO. The feasibility test apparatus was composed of a distilled water supply line, a compressed air supply line, heating systems, and single PEM fuel cells, which were a 1-parallel serpentine type with a 100 cm(2) active area. Three kinds of methods were used: compressed air supply-only; heating-only; and a combination of the methods of a compressed air supply and heating, respectively. The resultant water discharge characteristics are different according to the applied methods. The compressed air supply only is suitable for removing the water at a flow field and a heating only is suitable for water at the MEA. Therefore, in order to remove all the water at PEM fuel cells, the combination method is needed at the moment.

  13. Rotary vane type IC engine with built-in scavenging air blower

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, V.

    This patent describes a rotary internal combustion engine. This engine consists of: a housing assembly including three sections and having a single common power shaft, the three sections being integrally connected together and operatively connected together into a unitary self-contained engine, air and fuel mixture intake conduit means communicatively connected to a first of the three sections, means in the first section to perform admission and compression of the air and fuel mixture admitted from the conduit means, means to convey the compressed air and fuel mixture to a second of the three sections. A single internal partition wall meansmore » between the first and second sections, and the air and fuel mixture conveys means consisting of a port formed in the partition wall means. In the second section the compressed air is ignited with a fuel mixture and to permit expansion of the ignited air and fuel mixture to thereby furnish power strokes to the power shaft. In the second section for exhausting the gaseous products of combustion, air blower in the third of the three sections driven by the power shaft.« less

  14. Increasing Lift by Releasing Compressed Air on Suction Side of Airfoil

    NASA Technical Reports Server (NTRS)

    Seewald, F

    1927-01-01

    The investigation was limited chiefly to the region of high angles of attack since it is only in this region that any considerable change in the character of the flow can be expected from such artificial aids. The slot, through which compressed air was blown, was formed by two pieces of sheet steel connected by screws at intervals of about 5 cm. It was intended to regulate the width of the slot by means of these screws. Much more compressed air was required than was originally supposed, hence all the delivery pipes were much too small. This experiment, therefore, is to be regarded as only a preliminary one.

  15. Compressed air-assisted solvent extraction (CASX) for metal removal.

    PubMed

    Li, Chi-Wang; Chen, Yi-Ming; Hsiao, Shin-Tien

    2008-03-01

    A novel process, compressed air-assisted solvent extraction (CASX), was developed to generate micro-sized solvent-coated air bubbles (MSAB) for metal extraction. Through pressurization of solvent with compressed air followed by releasing air-oversaturated solvent into metal-containing wastewater, MSAB were generated instantaneously. The enormous surface area of MSAB makes extraction process extremely fast and achieves very high aqueous/solvent weight ratio (A/S ratio). CASX process completely removed Cr(VI) from acidic electroplating wastewater under A/S ratio of 115 and extraction time of less than 10s. When synthetic wastewater containing Cd(II) of 50mgl(-1) was treated, A/S ratios of higher than 714 and 1190 could be achieved using solvent with extractant/diluent weight ratio of 1:1 and 5:1, respectively. Also, MSAB have very different physical properties, such as size and density, compared to the emulsified solvent droplets, making separation and recovery of solvent from treated effluent very easy.

  16. Compressed air injection technique to standardize block injection pressures.

    PubMed

    Tsui, Ban C H; Li, Lisa X Y; Pillay, Jennifer J

    2006-11-01

    Presently, no standardized technique exists to monitor injection pressures during peripheral nerve blocks. Our objective was to determine if a compressed air injection technique, using an in vitro model based on Boyle's law and typical regional anesthesia equipment, could consistently maintain injection pressures below a 1293 mmHg level associated with clinically significant nerve injury. Injection pressures for 20 and 30 mL syringes with various needle sizes (18G, 20G, 21G, 22G, and 24G) were measured in a closed system. A set volume of air was aspirated into a saline-filled syringe and then compressed and maintained at various percentages while pressure was measured. The needle was inserted into the injection port of a pressure sensor, which had attached extension tubing with an injection plug clamped "off". Using linear regression with all data points, the pressure value and 99% confidence interval (CI) at 50% air compression was estimated. The linearity of Boyle's law was demonstrated with a high correlation, r = 0.99, and a slope of 0.984 (99% CI: 0.967-1.001). The net pressure generated at 50% compression was estimated as 744.8 mmHg, with the 99% CI between 729.6 and 760.0 mmHg. The various syringe/needle combinations had similar results. By creating and maintaining syringe air compression at 50% or less, injection pressures will be substantially below the 1293 mmHg threshold considered to be an associated risk factor for clinically significant nerve injury. This technique may allow simple, real-time and objective monitoring during local anesthetic injections while inherently reducing injection speed.

  17. Investigation of Innovative Lightcraft Designs for Hypersonic Air Breathing and Rocket Flight by Beamed Energy Propulsion

    DTIC Science & Technology

    2012-06-01

    driven down the barrel , compressing the test gas in an approximately isentropic manner. A representative pressure history measured within in the barrel ...have shown that the isentropic compression is a good approximation for the test flow which is first discharged from the barrel . A survey of nozzle exit...of the craft, and air is delivered by an axi-symmetric, internal compression inlet. The external laser induced df’tnnation configuration

  18. Effect of fast freeze-thaw cycles on mechanical properties of ordinary-air-entrained concrete.

    PubMed

    Shang, Huai-shuai; Cao, Wei-qun; Wang, Bin

    2014-01-01

    Freezing-thawing resistance is a very significant characteristic for concrete in severe environment (such as cold region with the lowest temperature below 0°C). In this study, ordinary-air-entrained (O-A-E) concrete was produced in a laboratory environment; the compressive strength, cubic compressive strength of C50, C40, C30, C25, and C20 ordinary-air-entrained concrete, tensile strength, and cleavage strength of C30 ordinary-air-entrained concrete were measured after fast freeze-thaw cycles. The effects of fast freeze-thaw cycles on the mechanical properties (compressive strength and cleavage strength) of ordinary-air-entrained concrete materials are investigated on the basis of the experimental results. And the concise mathematical formula between mechanical behavior and number of fast freeze-thaw cycles was established. The experiment results can be used as a reference in design, maintenance, and life prediction of ordinary-air-entrained concrete structure (such as dam, offshore platform, etc.) in cold regions.

  19. Effect of Fast Freeze-Thaw Cycles on Mechanical Properties of Ordinary-Air-Entrained Concrete

    PubMed Central

    Shang, Huai-shuai; Cao, Wei-qun; Wang, Bin

    2014-01-01

    Freezing-thawing resistance is a very significant characteristic for concrete in severe environment (such as cold region with the lowest temperature below 0°C). In this study, ordinary-air-entrained (O-A-E) concrete was produced in a laboratory environment; the compressive strength, cubic compressive strength of C50, C40, C30, C25, and C20 ordinary-air-entrained concrete, tensile strength, and cleavage strength of C30 ordinary-air-entrained concrete were measured after fast freeze-thaw cycles. The effects of fast freeze-thaw cycles on the mechanical properties (compressive strength and cleavage strength) of ordinary-air-entrained concrete materials are investigated on the basis of the experimental results. And the concise mathematical formula between mechanical behavior and number of fast freeze-thaw cycles was established. The experiment results can be used as a reference in design, maintenance, and life prediction of ordinary-air-entrained concrete structure (such as dam, offshore platform, etc.) in cold regions. PMID:24895671

  20. Numerical simulation for the coupled thermo-mechanical performance of a lined rock cavern for underground compressed air energy storage

    NASA Astrophysics Data System (ADS)

    Zhou, Shu-Wei; Xia, Cai-Chu; Zhao, Hai-Bin; Mei, Song-Hua; Zhou, Yu

    2017-12-01

    Compressed air energy storage (CAES) is a technology that uses compressed air to store surplus electricity generated from low power consumption time for use at peak times. This paper presents a thermo-mechanical modeling for the thermodynamic and mechanical responses of a lined rock cavern used for CAES. The simulation was accomplished in COMSOL Multiphysics and comparisons of the numerical simulation and some analytical solutions validated the thermo-mechanical modeling. Air pressure and temperatures in the sealing layer and concrete lining exhibited a similar trend of ‘up-down-down-up’ in one cycle. Significant temperature fluctuation occurred only in the concrete lining and sealing layer, and no strong fluctuation was observed in the host rock. In the case of steel sealing, principal stresses in the sealing layer were larger than those in the concrete and host rock. The maximum compressive stresses of the three layers and the displacement on the cavern surface increased with the increase of cycle number. However, the maximum tensile stresses exhibited the opposite trend. Polymer sealing achieved a relatively larger air temperature and pressure compared with steel and air-tight concrete sealing. For concrete layer thicknesses of 0 and 0.1 m and an initial air pressure of 4.5 MPa, the maximum rock temperature could reach 135 °C and 123 °C respectively in a 30 day simulation.

  1. Enriched Air Nitrox Breathing Reduces Venous Gas Bubbles after Simulated SCUBA Diving: A Double-Blind Cross-Over Randomized Trial.

    PubMed

    Souday, Vincent; Koning, Nick J; Perez, Bruno; Grelon, Fabien; Mercat, Alain; Boer, Christa; Seegers, Valérie; Radermacher, Peter; Asfar, Pierre

    2016-01-01

    To test the hypothesis whether enriched air nitrox (EAN) breathing during simulated diving reduces decompression stress when compared to compressed air breathing as assessed by intravascular bubble formation after decompression. Human volunteers underwent a first simulated dive breathing compressed air to include subjects prone to post-decompression venous gas bubbling. Twelve subjects prone to bubbling underwent a double-blind, randomized, cross-over trial including one simulated dive breathing compressed air, and one dive breathing EAN (36% O2) in a hyperbaric chamber, with identical diving profiles (28 msw for 55 minutes). Intravascular bubble formation was assessed after decompression using pulmonary artery pulsed Doppler. Twelve subjects showing high bubble production were included for the cross-over trial, and all completed the experimental protocol. In the randomized protocol, EAN significantly reduced the bubble score at all time points (cumulative bubble scores: 1 [0-3.5] vs. 8 [4.5-10]; P < 0.001). Three decompression incidents, all presenting as cutaneous itching, occurred in the air versus zero in the EAN group (P = 0.217). Weak correlations were observed between bubble scores and age or body mass index, respectively. EAN breathing markedly reduces venous gas bubble emboli after decompression in volunteers selected for susceptibility for intravascular bubble formation. When using similar diving profiles and avoiding oxygen toxicity limits, EAN increases safety of diving as compared to compressed air breathing. ISRCTN 31681480.

  2. 40 CFR Appendix I to Part 94 - Emission-Related Engine Parameters and Specifications

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Pt. 94, App. I Appendix...—Reciprocating Engines. 1. Compression ratio. 2. Type of air aspiration (natural, Roots blown, supercharged.... Temperature control system calibration. 4. Maximum allowable inlet air restriction. III. Fuel System. 1...

  3. Upgrade of Compressed Air Control System Reduces Energy Costs at Michelin Tire Plant. Office of Industrial Technologies (OIT) BestPractices Project Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2002-01-01

    This case study highlights the upgraded compressed air system at a Michelin tire manufacturing plant in Spartanburg, South Carolina. The controls upgrade project enabled multiple compressor operation without blow-off, and significantly reduced energy costs.

  4. Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage in lined rock caverns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutqvist, Jonny; Kim, Hyung-Mok; Ryu, Dong-Woo

    We applied coupled nonisothermal, multiphase fluid flow and geomechanical numerical modeling to study the coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in concrete-lined rock caverns. The paper focuses on CAES in lined caverns at relatively shallow depth (e.g., 100 m depth) in which a typical CAES operational pressure of 5 to 8 MPa is significantly higher than both ambient fluid pressure and in situ stress. We simulated a storage operation that included cyclic compression and decompression of air in the cavern, and investigated how pressure, temperature and stress evolve over several months of operation. Wemore » analyzed two different lining options, both with a 50 cm thick low permeability concrete lining, but in one case with an internal synthetic seal such as steel or rubber. For our simulated CAES system, the thermodynamic analysis showed that 96.7% of the energy injected during compression could be recovered during subsequent decompression, while 3.3% of the energy was lost by heat conduction to the surrounding media. Our geomechanical analysis showed that tensile effective stresses as high as 8 MPa could develop in the lining as a result of the air pressure exerted on the inner surface of the lining, whereas thermal stresses were relatively smaller and compressive. With the option of an internal synthetic seal, the maximum effective tensile stress was reduced from 8 to 5 MPa, but was still in substantial tension. We performed one simulation in which the tensile tangential stresses resulted in radial cracks and air leakage though the lining. This air leakage, however, was minor (about 0.16% of the air mass loss from one daily compression) in terms of CAES operational efficiency, and did not significantly impact the overall energy balance of the system. However, despite being minor in terms of energy balance, the air leakage resulted in a distinct pressure increase in the surrounding rock that could be quickly detected using pressure monitoring outside the concrete lining.« less

  5. The Effect of Compressibility on the Pressure Reading of a Prandtl Pitot Tube at Subsonic Flow Velocity

    NASA Technical Reports Server (NTRS)

    Walchner, O

    1939-01-01

    Errors arising from yawed flow were also determined up to 20 degrees angle of attack. In axial flow, the Prandtl pitot tube begins at w/a approx. = 0.8 to give an incorrect static pressure reading, while it records the tank pressure correctly, as anticipated, up to sonic velocity. Owing to the compressibility of the air, the Prandtl pitot tube manifests compression shocks when the air speed approaches velocity of sound. This affects the pressure reading of the instrument. Because of the increasing importance of high speed in aviation, this compressibility effect is investigated in detail.

  6. Material Compatability with Threshold Limit Value Levels of Monomethyl Hydrazine

    DTIC Science & Technology

    1988-10-26

    supply was house- compressed air conditioned by passing through a series of demisters, a hot Hopcalite catalyst bed, a reciprocating dual-tower...recorded. At the end of a test, the tubing was rinsed with methanol and dried with compressed breathing air . Cleaning the tubing material between tests had...niecessary and identify by block wbr -’Materials were evaluated for potential use as ambient air sample lines for hydrazines. Fluorinated poly- mers

  7. Study on high reliability safety valve for railway vehicle

    NASA Astrophysics Data System (ADS)

    Zhang, Xuan; Chen, Ruikun; Zhang, Shixi; Xu, BuDu

    2017-09-01

    Now, the realization of most of the functions of the railway vehicles rely on compressed air, so the demand for compressed air is growing higher and higher. This safety valve is a protection device for pressure limitation and pressure relief in an air supply system of railway vehicles. I am going to introduce the structure, operating principle, research and development process of the safety valve designed by our company in this document.

  8. Feasibility and testing of lighweight, energy efficient, additive manufactured pneumatic control valve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Love, Lonnie J.; Mell, Ellen

    2015-02-01

    AeroValve s innovative pneumatic valve technology recycles compressed air through the valve body with each cycle of the valve, and was reported to reduce compressed air requirements by an average of 25% 30%.This technology collaboration project between ORNL and Aerovalve confirms the energy efficiency of valve performance. Measuring air consumption per work completed, the AeroValve was as much as 85% better than the commercial Festo valve.

  9. [Pediatric orbital emphysema caused by a compressed-air pistol shot: a case report].

    PubMed

    Navarro-Mingorance, A; Reyes-Dominguez, S B; León-León, M C

    2014-09-01

    We report the case of a 2 year-old child with orbital emphysema secondary to a compressed-air gun shot in the malar region, with no evidence of orbital wall fracture. Conservative treatment was applied, and no complications were observed. Orbital emphysema in the absence of an orbital wall fracture is a rare situation. Orbital emphysema is usually seen in facial trauma associated with damage to the adjacent paranasal sinuses or facial bones. To our knowledge there have been very few reports of orbital emphysema caused by a compressed-air injury. Copyright © 2012 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  10. 76 FR 13661 - In the Matter of Certain Connecting Devices (“Quick Clamps”) for Use With Modular Compressed Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-587] In the Matter of Certain Connecting Devices (``Quick Clamps'') for Use With Modular Compressed Air Conditioning Units, Including Filters, Regulators, and Lubricators (``FRL's'') That Are Part of Larger Pneumatic Systems and the FRL Units They...

  11. 75 FR 63198 - In the Matter of Certain Connecting Devices (“Quick Clamps”) for Use With Modular Compressed Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-14

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-587] In the Matter of Certain Connecting Devices (``Quick Clamps'') for Use With Modular Compressed Air Conditioning Units, Including Filters, Regulators, and Lubricators (``Frl's'') That Are Part of Larger Pneumatic Systems and the FRL Units They...

  12. 30 CFR 77.411 - Compressed air and boilers; general.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Compressed air and boilers; general. 77.411 Section 77.411 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Safeguards for Mechanical Equipment ...

  13. 30 CFR 77.411 - Compressed air and boilers; general.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Compressed air and boilers; general. 77.411 Section 77.411 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Safeguards for Mechanical Equipment ...

  14. 30 CFR 77.411 - Compressed air and boilers; general.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Compressed air and boilers; general. 77.411 Section 77.411 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Safeguards for Mechanical Equipment ...

  15. 30 CFR 77.411 - Compressed air and boilers; general.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Compressed air and boilers; general. 77.411 Section 77.411 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Safeguards for Mechanical Equipment ...

  16. 30 CFR 77.411 - Compressed air and boilers; general.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Compressed air and boilers; general. 77.411 Section 77.411 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Safeguards for Mechanical Equipment ...

  17. Compressed Air System Upgrade Improves Production at an Automotive Glass Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2003-02-01

    In 2000, The Visteon automotive glass plant improved its compressed air system at its automotive glass plant in Nashville, Tennessee. This improvement allowed Visteon to save $711,000 annually, reduce annual energy consumption by 7.9 million kilowatt-hours, reduce maintenance, improve system performance, and avoid $800,000 in asbestos abatement costs.

  18. 30 CFR 75.1730 - Compressed air; general; compressed air systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... shall be used at connections to machines of high-pressure hose lines of three-fourths of an inch inside diameter or larger, and between high-pressure hose lines of three-fourths of an inch inside diameter or larger, where a connection failure would create a hazard. For purposes of this paragraph, high-pressure...

  19. Lessons Learned in the High-Speed Aerodynamic Research Programs of the NACA/NASA

    NASA Technical Reports Server (NTRS)

    Spearman, M. Leroy

    2004-01-01

    The achievement of flight with manned, powered, heavier-than-air aircraft in 1903 marked the beginning of a new era in the means of transportation. A special advantage for aircraft was in speed. However, when an aircraft penetrates the air at very high speeds, the disturbed air is compressed and there are changes in the density, pressure and temperature of the air. These compressibility effects change the aerodynamic characteristics of an aircraft and introduce problems in drag, stability and control. Many aircraft designed in the post-World War II era were plagued with the effects of compressibility. Accordingly, the study of the aerodynamic behavior of aircraft, spacecraft and missiles at high-speed became a major part of the research activity of the NACA/NASA. The intent of the research was to determine the causes and provide some solutions for the aerodynamic problems resulting from the effects of compressibility. The purpose of this paper is to review some of the high-speed aerodynamic research work conducted at the Langley Research Center from the viewpoint of the author who has been active in much of the effort.

  20. Pressure charged airlift pump

    DOEpatents

    Campbell, Gene K.

    1983-01-01

    A pumping system is described for pumping fluids, such as water with entrained mud and small rocks, out of underground cavities such as drilled wells, which can effectively remove fluids down to a level very close to the bottom of the cavity and which can operate solely by compressed air pumped down through the cavity. The system utilizes a subassembly having a pair of parallel conduit sections (44, 46) adapted to be connected onto the bottom of a drill string utilized for drilling the cavity, the drill string also having a pair of coaxially extending conduits. The subassembly includes an upper portion which has means for connection onto the drill string and terminates the first conduit of the drill string in a plenum (55). A compressed air-driven pump (62) is suspended from the upper portion. The pump sucks fluids from the bottom of the cavity and discharges them into the second conduit. Compressed air pumped down through the first conduit (46) to the plenum powers the compressed air-driven pump and aerates the fluid in the second conduit to lift it to the earth's surface.

  1. Pulse compression using a tapered microstructure optical fiber.

    PubMed

    Hu, Jonathan; Marks, Brian S; Menyuk, Curtis R; Kim, Jinchae; Carruthers, Thomas F; Wright, Barbara M; Taunay, Thierry F; Friebele, E J

    2006-05-01

    We calculate the pulse compression in a tapered microstructure optical fiber with four layers of holes. We show that the primary limitation on pulse compression is the loss due to mode leakage. As a fiber's diameter decreases due to the tapering, so does the air-hole diameter, and at a sufficiently small diameter the guided mode loss becomes unacceptably high. For the four-layer geometry we considered, a compression factor of 10 can be achieved by a pulse with an initial FWHM duration of 3 ps in a tapered fiber that is 28 m long. We find that there is little difference in the pulse compression between a linear taper profile and a Gaussian taper profile. More layers of air-holes allows the pitch to decrease considerably before losses become unacceptable, but only a moderate increase in the degree of pulse compression is obtained.

  2. 75 FR 9647 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-03

    ...EPA is promulgating national emission standards for hazardous air pollutants for existing stationary compression ignition reciprocating internal combustion engines that either are located at area sources of hazardous air pollutant emissions or that have a site rating of less than or equal to 500 brake horsepower and are located at major sources of hazardous air pollutant emissions. In addition, EPA is promulgating national emission standards for hazardous air pollutants for existing non-emergency stationary compression ignition engines greater than 500 brake horsepower that are located at major sources of hazardous air pollutant emissions. Finally, EPA is revising the provisions related to startup, shutdown, and malfunction for the engines that were regulated previously by these national emission standards for hazardous air pollutants.

  3. Small Business Voucher CRADA Report: Natural Gas Powered HVAC System for Commercial and Residential Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Betts, Daniel; Ally, Moonis Raza; Mudiraj, Shyam

    Be Power Tech is commercializing BeCool, the first integrated electricity-producing heating, ventilation, and air conditioning (HVAC) system using a non-vapor compression cycle (VCC), packaged rooftop HVAC unit that also produces base-load electricity, heating, ventilation, and air conditioning. BeCool is a distributed energy resource with energy storage that eliminates the tremendous peak electricity demand associated with commonly used electricity-powered vapor compression air conditioning systems.

  4. Bilateral orbital emphysema and pneumocephalus as a result of accidental compressed air exposure.

    PubMed

    Yuksel, Murvet; Yuksel, K Zafer; Ozdemir, Gokhan; Ugur, Tuncay

    2007-01-01

    Orbital emphysema is a rare condition in the absence of trauma or sinus disease. A 22-year-old man suffering from left orbital trauma due to sudden exposure to compressed air tube was admitted with severe pain in the left eye, swelling, and mild periorbital ecchymosis. Physical examination revealed a large conjunctival laceration in the left orbit. Multislice computed tomographic scanning of the head and orbits showed extensive radiolucencies consistent with the air in both orbits, more prominent in the left. There was also subcutaneous air in the left periorbital soft tissue extending through fronto-temporal and zygomatic areas. Air was also demonstrated adjacent to the left optic canal and within the subarachnoid space intracranially. There was no evidence of any orbital, paranasal sinus, or cranial fracture. Visual acuity was minimally decreased bilaterally. The conjunctiva was sutured under local anesthesia. After 3 weeks of follow-up, the patient completely recovered without visual loss. Bilateral orbital emphysema with pneumocephalus can occur from a high-pressure compressed air injury after unilateral conjunctival trauma without any evidence of fracture.

  5. Compressed-air work is entering the field of high pressures.

    PubMed

    Le Péchon, J Cl; Gourdon, G

    2010-01-01

    Since 1850, compressed-air work has been used to prevent shafts or tunnels under construction from flooding. Until the 1980s, workers were digging in compressed-air environments. Since the introduction of tunnel boring machines (TBMs), very little digging under pressure is needed. However, the wearing out of cutter-head tools requires inspection and repair. Compressed-air workers enter the pressurized working chamber only occasionally to perform such repairs. Pressures between 3.5 and 4.5 bar, that stand outside a reasonable range for air breathing, were reached by 2002. Offshore deep diving technology had to be adapted to TBM work. Several sites have used mixed gases: in Japan for deep shaft sinking (4.8 bar), in The Netherlands at Western Scheldt Tunnels (6.9 bar), in Russia for St. Petersburg Metro (5.8 bar) and in the United States at Seattle (5.8 bar). Several tunnel projects are in progress that may involve higher pressures: Hallandsås (Sweden) interventions in heliox saturation up to 13 bar, and Lake Mead (U.S.) interventions to about 12 bar (2010). Research on TBMs and grouting technologies tries to reduce the requirements for hyperbaric works. Adapted international rules, expertise and services for saturation work, shuttles and trained personnel matching industrial requirements are the challenges.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodson, J.O.

    This is the first of three volumes which document the historical development of the first US compressed-air energy storage (CAES) Power-generation facility. Volume 1 is a background report and presents a chronicle of the development of the CAES facility from the early interest in CAES until inception of engineering/construction on August 11, 1988. The 110 MW - 26 hr CAES plant is owned and operated by Alabama Electric Cooperative, Inc. (AEC) of Andalusia, Alabama. The plant is the first CAES plant in the United States and the world's first CAES facility incorporating a recuperator to improve efficiency. The plant suppliesmore » competitively priced peaking power to the AEC owner members. The economics of CAES-produced power is attractive because the energy-intensive air-compression mode is powered by relatively inexpensive base-load power external to the CAES plant. The compressed-air energy is stored underground until needed, and during the power-production mode, the only fuel required is that to heat the compressed air to expander-inlet temperature. The project development for AEC's CAES plant involved much planning and preliminary design work. Specifically, this included load and generation-planning studies, power-supply selections, conceptual designs, project administration, air-storage cavern and turbomachinery specifications and design, contract requirements, environmental and licensing issues, and construction planning.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodson, J.O.

    This is the first of three volumes which document the historical development of the first US compressed-air energy storage (CAES) Power-generation facility. Volume 1 is a background report and presents a chronicle of the development of the CAES facility from the early interest in CAES until inception of engineering/construction on August 11, 1988. The 110 MW - 26 hr CAES plant is owned and operated by Alabama Electric Cooperative, Inc. (AEC) of Andalusia, Alabama. The plant is the first CAES plant in the United States and the world`s first CAES facility incorporating a recuperator to improve efficiency. The plant suppliesmore » competitively priced peaking power to the AEC owner members. The economics of CAES-produced power is attractive because the energy-intensive air-compression mode is powered by relatively inexpensive base-load power external to the CAES plant. The compressed-air energy is stored underground until needed, and during the power-production mode, the only fuel required is that to heat the compressed air to expander-inlet temperature. The project development for AEC`s CAES plant involved much planning and preliminary design work. Specifically, this included load and generation-planning studies, power-supply selections, conceptual designs, project administration, air-storage cavern and turbomachinery specifications and design, contract requirements, environmental and licensing issues, and construction planning.« less

  8. Light-weight extension tubes for compressed-air garden sprayers

    Treesearch

    Thomas W. McConkey; Charles E. Swett

    1967-01-01

    To hand-spray taller trees safely and efficiently, 8-, 12-, and 16-foot extension tubes for compressed-air garden sprayers were designed and built. These light-weight tubes have been used successfully for spraying white pine leaders for weevil control on the Massabesic Experimental Forest in Maine. Bill of materials and assembly instructions are included.

  9. Ignition and combustion: Low compression ratio, high output diesel

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The feasibility of converting a spark ignition aircraft engine GTSI0-520 to compression ignition without increasing the peak combustion pressure of 1100 lbs/sq.in. was determined. The final contemplated utilized intake air heating at idle and light load and a compression ratio of about 10:1 with a small amount of fumigation (the addition of about 15% fuel into the combustion air before the cylinder). The engine used was a modification of a Continental-Teledyne gasoline engine cylinder from the GTSI0-520 supercharged aircraft engine.

  10. Swirling midframe flow for gas turbine engine having advanced transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery, Matthew D.; Charron, Richard C.; Rodriguez, Jose L.

    A gas turbine engine can-annular combustion arrangement (10), including: an axial compressor (82) operable to rotate in a rotation direction (60); a diffuser (100, 110) configured to receive compressed air (16) from the axial compressor; a plenum (22) configured to receive the compressed air from the diffuser; a plurality of combustor cans (12) each having a combustor inlet (38) in fluid communication with the plenum, wherein each combustor can is tangentially oriented so that a respective combustor inlet is circumferentially offset from a respective combustor outlet in a direction opposite the rotation direction; and an airflow guiding arrangement (80) configuredmore » to impart circumferential motion to the compressed air in the plenum in the direction opposite the rotation direction.« less

  11. Compressed Air Working in Chennai During Metro Tunnel Construction: Occupational Health Problems

    PubMed Central

    Kulkarni, Ajit C.

    2017-01-01

    Chennai metropolis has been growing rapidly. Need was felt of a metro rail system. Two corridors were planned. Corridor 1, of 23 km starting from Washermanpet to Airport. 14.3 km of this would be underground. Corridor 2, of 22 km starting from Chennai Central Railway station to St. Thomas Mount. 9.7 km of this would be underground. Occupational health centre's role involved selection of miners and assessing their fitness to work under compressed air. Planning and execution of compression and decompression, health monitoring and treatment of compression related illnesses. More than thirty five thousand man hours of work was carried out under compressed air pressure ranged from 1.2 to 1.9 bar absolute. There were only three cases of pain only ( Type I) decompression sickness which were treated with recompression. Vigilant medical supervision, experienced lock operators and reduced working hours under pressure because of inclement environmental conditions viz. high temperature and humidity, has helped achieve this low incident. Tunnelling activity will increase in India as more cities will soon opt for underground metro railway. Indian standard IS 4138 – 1977 ” Safety code for working in compressed air” needs to be updated urgently keeping pace with modern working methods. PMID:29618908

  12. Two stroke homogenous charge compression ignition engine with pulsed air supplier

    DOEpatents

    Clarke, John M.

    2003-08-05

    A two stroke homogenous charge compression ignition engine includes a volume pulsed air supplier, such as a piston driven pump, for efficient scavenging. The usage of a homogenous charge tends to decrease emissions. The use of a volume pulsed air supplier in conjunction with conventional poppet type intake and exhaust valves results in a relatively efficient scavenging mode for the engine. The engine preferably includes features that permit valving event timing, air pulse event timing and injection event timing to be varied relative to engine crankshaft angle. The principle use of the invention lies in improving diesel engines.

  13. Compressed Speech: Potential Application for Air Force Technical Training. Final Report, August 73-November 73.

    ERIC Educational Resources Information Center

    Dailey, K. Anne

    Time-compressed speech (also called compressed speech, speeded speech, or accelerated speech) is an extension of the normal recording procedure for reproducing the spoken word. Compressed speech can be used to achieve dramatic reductions in listening time without significant loss in comprehension. The implications of such temporal reductions in…

  14. Single-Site Active Iron-Based Bifunctional Oxygen Catalyst for a Compressible and Rechargeable Zinc-Air Battery.

    PubMed

    Ma, Longtao; Chen, Shengmei; Pei, Zengxia; Huang, Yan; Liang, Guojin; Mo, Funian; Yang, Qi; Su, Jun; Gao, Yihua; Zapien, Juan Antonio; Zhi, Chunyi

    2018-02-27

    The exploitation of a high-efficient, low-cost, and stable non-noble-metal-based catalyst with oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) simultaneously, as air electrode material for a rechargeable zinc-air battery is significantly crucial. Meanwhile, the compressible flexibility of a battery is the prerequisite of wearable or/and portable electronics. Herein, we present a strategy via single-site dispersion of an Fe-N x species on a two-dimensional (2D) highly graphitic porous nitrogen-doped carbon layer to implement superior catalytic activity toward ORR/OER (with a half-wave potential of 0.86 V for ORR and an overpotential of 390 mV at 10 mA·cm -2 for OER) in an alkaline medium. Furthermore, an elastic polyacrylamide hydrogel based electrolyte with the capability to retain great elasticity even under a highly corrosive alkaline environment is utilized to develop a solid-state compressible and rechargeable zinc-air battery. The creatively developed battery has a low charge-discharge voltage gap (0.78 V at 5 mA·cm -2 ) and large power density (118 mW·cm -2 ). It could be compressed up to 54% strain and bent up to 90° without charge/discharge performance and output power degradation. Our results reveal that single-site dispersion of catalytic active sites on a porous support for a bifunctional oxygen catalyst as cathode integrating a specially designed elastic electrolyte is a feasible strategy for fabricating efficient compressible and rechargeable zinc-air batteries, which could enlighten the design and development of other functional electronic devices.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagen, E.W.

    This report reviews and evaluates the performance of the compressed-air and pressurized-nitrogen gas systems in commercial nuclear power units. The information was collected from readily available operating experiences, licensee event reports, system designs in safety analysis reports, and regulatory documents. The results are collated and analyzed for significance and impact on power plant safety performance. Under certain circumstances, the fail-safe philosophy for a piece of equipment or subsystem of the compressed-air systems initiated a series of actions culminating in reactor transient or unit scram. However, based on this study of prevailing operating experiences, reclassifying the compressed-gas systems to a highermore » safety level will neither prevent (nor mitigate) the reoccurrences of such happenings nor alleviate nuclear power plant problems caused by inadequate maintenance, operating procedures, and/or practices. Conversely, because most of the problems were derived from the sources listed previously, upgrading of both maintenance and operating procedures will not only result in substantial improvement in the performance and availability of the compressed-air (and backup nitrogen) systems but in improved overall plant performance.« less

  16. Combined rankine and vapor compression cycles

    DOEpatents

    Radcliff, Thomas D.; Biederman, Bruce P.; Brasz, Joost J.

    2005-04-19

    An organic rankine cycle system is combined with a vapor compression cycle system with the turbine generator of the organic rankine cycle generating the power necessary to operate the motor of the refrigerant compressor. The vapor compression cycle is applied with its evaporator cooling the inlet air into a gas turbine, and the organic rankine cycle is applied to receive heat from a gas turbine exhaust to heat its boiler within one embodiment, a common condenser is used for the organic rankine cycle and the vapor compression cycle, with a common refrigerant, R-245a being circulated within both systems. In another embodiment, the turbine driven generator has a common shaft connected to the compressor to thereby eliminate the need for a separate motor to drive the compressor. In another embodiment, an organic rankine cycle system is applied to an internal combustion engine to cool the fluids thereof, and the turbo charged air is cooled first by the organic rankine cycle system and then by an air conditioner prior to passing into the intake of the engine.

  17. 29 CFR 1926.803 - Compressed air.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (3) In the event an employee is absent from work for 10 days, or is absent due to sickness or injury... subpart. (2) In the event it is necessary for an employee to be in compressed air more than once in a 24... in the event of an emergency, as provided in paragraph (g)(1)(viii) of this section. (iv) A manual...

  18. Power-to-heat in adiabatic compressed air energy storage power plants for cost reduction and increased flexibility

    NASA Astrophysics Data System (ADS)

    Dreißigacker, Volker

    2018-04-01

    The development of new technologies for large-scale electricity storage is a key element in future flexible electricity transmission systems. Electricity storage in adiabatic compressed air energy storage (A-CAES) power plants offers the prospect of making a substantial contribution to reach this goal. This concept allows efficient, local zero-emission electricity storage on the basis of compressed air in underground caverns. The compression and expansion of air in turbomachinery help to balance power generation peaks that are not demand-driven on the one hand and consumption-induced load peaks on the other. For further improvements in cost efficiencies and flexibility, system modifications are necessary. Therefore, a novel concept regarding the integration of an electrical heating component is investigated. This modification allows increased power plant flexibilities and decreasing component sizes due to the generated high temperature heat with simultaneously decreasing total round trip efficiencies. For an exemplarily A-CAES case simulation studies regarding the electrical heating power and thermal energy storage sizes were conducted to identify the potentials in cost reduction of the central power plant components and the loss in round trip efficiency.

  19. Tension-Compression Fatigue of a Nextel™720/alumina Composite at 1200 °C in Air and in Steam

    NASA Astrophysics Data System (ADS)

    Lanser, R. L.; Ruggles-Wrenn, M. B.

    2016-08-01

    Tension-compression fatigue behavior of an oxide-oxide ceramic-matrix composite was investigated at 1200 °C in air and in steam. The composite is comprised of an alumina matrix reinforced with Nextel™720 alumina-mullite fibers woven in an eight harness satin weave (8HSW). The composite has no interface between the fiber and matrix, and relies on the porous matrix for flaw tolerance. Tension-compression fatigue behavior was studied for cyclical stresses ranging from 60 to 120 MPa at a frequency of 1.0 Hz. The R ratio (minimum stress to maximum stress) was -1.0. Fatigue run-out was defined as 105 cycles and was achieved at 80 MPa in air and at 70 MPa in steam. Steam reduced cyclic lives by an order of magnitude. Specimens that achieved fatigue run-out were subjected to tensile tests to failure to characterize the retained tensile properties. Specimens subjected to prior cyclic loading in air retained 100 % of their tensile strength. The steam environment severely degraded tensile properties. Tension-compression cyclic loading was considerably more damaging than tension-tension cyclic loading. Composite microstructure, as well as damage and failure mechanisms were investigated.

  20. Colorectal injury by compressed air--a report of 2 cases.

    PubMed Central

    Suh, H. H.; Kim, Y. J.; Kim, S. K.

    1996-01-01

    We report two colorectal trauma patients whose rectosigmoid region was ruptured due to a jet of compressed air directed to their anus while they were playing practical jokes with their colleagues in their place of work. It was difficult to diagnose in one patient due to vague symptoms and signs and due to being stunned by a stroke of the compressed air. Both patients suffered from abdominal pain and distension, tension pneumoperitoneum and mild respiratory alkalosis. One patient was treated with primary two layer closure, and the other with primary two layer closure and sigmoid loop colostomy. Anorectal manometry and transanal ultrasonography checked 4 weeks after surgery, revealed normal anorectal function and anatomy. The postoperative courses were favorable without any wound infection or intraabdominal sepsis. PMID:8835767

  1. Compressed gas fuel storage system

    DOEpatents

    Wozniak, John J.; Tiller, Dale B.; Wienhold, Paul D.; Hildebrand, Richard J.

    2001-01-01

    A compressed gas vehicle fuel storage system comprised of a plurality of compressed gas pressure cells supported by shock-absorbing foam positioned within a shape-conforming container. The container is dimensioned relative to the compressed gas pressure cells whereby a radial air gap surrounds each compressed gas pressure cell. The radial air gap allows pressure-induced expansion of the pressure cells without resulting in the application of pressure to adjacent pressure cells or physical pressure to the container. The pressure cells are interconnected by a gas control assembly including a thermally activated pressure relief device, a manual safety shut-off valve, and means for connecting the fuel storage system to a vehicle power source and a refueling adapter. The gas control assembly is enclosed by a protective cover attached to the container. The system is attached to the vehicle with straps to enable the chassis to deform as intended in a high-speed collision.

  2. Rotary internal combustion engine with integrated supercharged fuel-air induction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Southard, A.A.

    This patent describes an improved method of operating a rotary internal combustion engine of the type wherein a multicusped rotor rotatable upon a rotatable eccentric rotates within a cavity bounded by a wall of lobed trochoidal configuration. The rotor cusps have sealing engagement separating and defining operating chambers in the cavity about the rotor between adjacent pairs of cusps. Such chambers are angularly spaced about and orbit the center of the cavity as the rotor rotates while each chamber alternately expands and contracts in volume. The method comprises cylindrically operating each chamber through a sequence of six phases that aremore » synchronized with three successive increases and decreases in the volume of such chamber, with the first four phases being an internal combustion engine power cycle comprising an air intake phase, a compression phase, a combustion phase and an exhaust phase. The fifth phase comprises inducting air into the chamber, and the sixth phase comprises compressing the inducted air in such chamber and passing such inducted and compressed air through an elongated transfer zone.« less

  3. A Study of Gas Economizing Pneumatic Cylinder

    NASA Astrophysics Data System (ADS)

    Li, T. C.; Wu, H. W.; Kuo, M. J.

    2006-10-01

    The pneumatic cylinder is the most typical actuator in the pneumatic equipment, and its mechanism is so simple that it is often used to operate point to point driving without the feedback loop in various automatic machines. But, the energy efficiency of pneumatic system is very poor compared with electrical systems and hydraulic systems. So, it is very important to discuss the energy saving for the pneumatic cylinder systems. In this thesis, we proposed three methods to apply the reduction in the air consumed for pneumatic cylinder systems. An air charge accumulator is used to absorb the exhausted compress air and a boost valve boosted the air to the higher pressure for used again. From the experiments, the direct used cylinder exhaust air may save about 40% of compress air.

  4. Air Conditioning with Magnetic Refrigeration : An Efficient, Green Compact Cooling System Using Magnetic Refrigeration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-09-01

    BEETIT Project: Astronautics is developing an air conditioning system that relies on magnetic fields. Typical air conditioners use vapor compression to cool air. Vapor compression uses a liquid refrigerant to circulate within the air conditioner, absorb the heat, and pump the heat out into the external environment. Astronautics’ design uses a novel property of certain materials, called “magnetocaloric materials”, to achieve the same result as liquid refrigerants. These magnetocaloric materials essentially heat up when placed within a magnetic field and cool down when removed, effectively pumping heat out from a cooler to warmer environment. In addition, magnetic refrigeration uses nomore » ozone-depleting gases and is safer to use than conventional air conditioners which are prone to leaks.« less

  5. ALTERNATIVE TECHNOLOGIES FOR REFRIGERATION AND AIR-CONDITIONING APPLICATIONS

    EPA Science Inventory

    The report gives results of an assessment of refrigeration technologies that are alternatives to vapor compression refrigeration for use in five application categories: domestic air conditioning, commercial air conditioning, mobile air conditioning, domestic refrigeration, and co...

  6. Novel approach to the exploitation of the tidal energy. Volume 1: Summary and discussion

    NASA Astrophysics Data System (ADS)

    Gorlov, A. M.

    1981-12-01

    The hydropneumatic concept in the approach to harnessing low tidal hydropower is discussed. The energy of water flow is converted into the energy of an air jet by a specialized air chamber which is placed on the ocean floor across a flowing watercourse. Water passes through the chamber where it works as a natural piston compressing air in the upper part of the closure. Compressed air is used as a new working plenum to drive air turbines. The kinetic energy of an air jet provided by the air chamber is sufficient for stable operation of industrial air turbines. It is possible to use light plastic barriers instead of conventional rigid dams (the water sail concept). It is confirmed that the concept can result in a less expensive and more effective tidal power plant project than the conventional hydroturbine approach.

  7. Electric power generating plant having direct-coupled steam and compressed-air cycles

    DOEpatents

    Drost, M.K.

    1981-01-07

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  8. Electric power generating plant having direct coupled steam and compressed air cycles

    DOEpatents

    Drost, Monte K.

    1982-01-01

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  9. Fuel Spray and Flame Formation in a Compression-Ignition Engine Employing Air Flow

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Waldron, C D

    1937-01-01

    The effects of air flow on fuel spray and flame formation in a high-speed compression-ignition engine have been investigated by means of the NACA combustion apparatus. The process was studied by examining high-speed motion pictures taken at the rate of 2,200 frames a second. The combustion chamber was of the flat-disk type used in previous experiments with this apparatus. The air flow was produced by a rectangular displacer mounted on top of the engine piston. Three fuel-injection nozzles were tested: a 0.020-inch single-orifice nozzle, a 6-orifice nozzle, and a slit nozzle. The air velocity within the combustion chamber was estimated to reach a value of 425 feet a second. The results show that in no case was the form of the fuel spray completely destroyed by the air jet although in some cases the direction of the spray was changed and the spray envelope was carried away by the moving air. The distribution of the fuel in the combustion chamber of a compression-ignition engine can be regulated to some extent by the design of the combustion chamber, by the design of the fuel-injection nozzle, and by the use of air flow.

  10. 21 CFR 868.6250 - Portable air compressor.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) Identification. A portable air compressor is a device intended to provide compressed air for medical purposes, e.g., to drive ventilators and other respiratory devices. (b) Classification. Class II (performance...

  11. 21 CFR 868.6250 - Portable air compressor.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) Identification. A portable air compressor is a device intended to provide compressed air for medical purposes, e.g., to drive ventilators and other respiratory devices. (b) Classification. Class II (performance...

  12. 14 CFR 135.177 - Emergency equipment requirements for aircraft having a passenger seating configuration of more...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS... maintained contents in the specified quantities: Contents Quantity Adhesive bandage compresses, 1-inch 16 Antiseptic swabs 20 Ammonia inhalants 10 Bandage compresses, 4-inch 8 Triangular bandage compresses, 40-inch...

  13. Sandia 25-meter compressed helium/air gun

    NASA Astrophysics Data System (ADS)

    Setchell, R. E.

    1982-04-01

    For nearly twenty years the Sandia 25-meter compressed gas gun has been an important tool for studying condensed materials subjected to transient shock compression. Major system modifications are now in progress to provide new control, instrumentation, and data acquisition capabilities. These features will ensure that the facility can continue as an effective means of investigating a variety of physical and chemical processes in shock-compressed solids.

  14. Free-piston engine

    DOEpatents

    Van Blarigan, Peter

    2001-01-01

    A combustion system which can utilize high compression ratios, short burn durations, and homogeneous fuel/air mixtures in conjunction with low equivalence ratios. In particular, a free-piston, two-stroke autoignition internal combustion engine including an electrical generator having a linear alternator with a double-ended free piston that oscillates inside a closed cylinder is provided. Fuel and air are introduced in a two-stroke cycle fashion on each end, where the cylinder charge is compressed to the point of autoignition without spark plugs. The piston is driven in an oscillating motion as combustion occurs successively on each end. This leads to rapid combustion at almost constant volume for any fuel/air equivalence ratio mixture at very high compression ratios. The engine is characterized by high thermal efficiency and low NO.sub.x emissions. The engine is particularly suited for generating electrical current in a hybrid automobile.

  15. Sara Lee: Improved Compressed Air System Increases Efficiency and Saves Energy at an Industrial Bakery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This case study was prepared for the Industrial Technologies Program of the U.S. Department of Energy (DOE); it describes the energy and costs savings resulting from improving the compressed air system of a large Sara Lee bakery in Sacramento, California. The compressed air system supports many operations of the bread-making machines, and it had been performing poorly. A specialist from Draw Professional Services, a DOE Allied Partner, evaluated the system, and his suggestions included repairing a controller, fixing leaks, and replacing a compressor with a new one fitted with an energy-saving variable-speed drive. As a result, the bakery has reducedmore » its energy use by 471,000 kilowatt-hours annually and is saving $50,000 per year in operating and maintenance costs.« less

  16. Compressed-air flow control system.

    PubMed

    Bong, Ki Wan; Chapin, Stephen C; Pregibon, Daniel C; Baah, David; Floyd-Smith, Tamara M; Doyle, Patrick S

    2011-02-21

    We present the construction and operation of a compressed-air driven flow system that can be used for a variety of microfluidic applications that require rapid dynamic response and precise control of multiple inlet streams. With the use of inexpensive and readily available parts, we describe how to assemble this versatile control system and further explore its utility in continuous- and pulsed-flow microfluidic procedures for the synthesis and analysis of microparticles.

  17. Study of the air-water interfacial properties of biodegradable polyesters and their block copolymers with poly(ethylene glycol).

    PubMed

    Park, Hae-Woong; Choi, Je; Ohn, Kimberly; Lee, Hyunsuk; Kim, Jin Woong; Won, You-Yeon

    2012-08-07

    It has been reported that the surface pressure-area isotherm of poly(D,L-lactic acid-ran-glycolic acid) (PLGA) at the air-water interface exhibits several interesting features: (1) a plateau at intermediate compression levels, (2) a sharp rise in surface pressure upon further compression, and (3) marked surface pressure-area hysteresis during compression-expansion cycles. To investigate the molecular origin of this behavior, we conducted an extensive set of surface pressure and AFM imaging measurements with PLGA materials having several different molecular weights and also a poly(D,L-lactic acid-ran-glycolic acid-ran-caprolactone) (PLGACL) material in which the caprolactone monomers were incorporated as a plasticizing component. The results suggest that (i) the plateau in the surface pressure-area isotherm of PLGA (or PLGACL) occurs because of the formation (and collapse) of a continuous monolayer of the polymer under continuous compression; (ii) the PLGA monolayer becomes significantly resistant to compression at high compression because under that condition the collapsed domains become large enough to become glassy (such behavior was not observed in the nonglassy PLGACL sample); and (iii) the isotherm hysteresis is due to a coarsening of the collapsed domains that occurs under high-compression conditions. We also investigated the monolayer properties of PEG-PLGA and PEG-PLGACL diblock copolymers. The results demonstrate that the tendency of PLGA (or PLGACL) to spread on water allows the polymer to be used as an anchoring block to form a smooth biodegradable monolayer of block copolymers at the air-water interface. These diblock copolymer monolayers exhibit protein resistance.

  18. 30 CFR 56.13010 - Reciprocating-type air compressors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Reciprocating-type air compressors. 56.13010... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13010 Reciprocating-type air compressors. (a) Reciprocating-type air compressors...

  19. 30 CFR 56.13010 - Reciprocating-type air compressors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Reciprocating-type air compressors. 56.13010... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13010 Reciprocating-type air compressors. (a) Reciprocating-type air compressors...

  20. 30 CFR 56.13010 - Reciprocating-type air compressors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Reciprocating-type air compressors. 56.13010... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13010 Reciprocating-type air compressors. (a) Reciprocating-type air compressors...

  1. 30 CFR 56.13010 - Reciprocating-type air compressors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13010 Reciprocating-type air compressors. (a) Reciprocating-type air compressors... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Reciprocating-type air compressors. 56.13010...

  2. 30 CFR 57.13010 - Reciprocating-type air compressors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Reciprocating-type air compressors. 57.13010... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Compressed Air and Boilers § 57.13010 Reciprocating-type air compressors. (a) Reciprocating-type air compressors...

  3. Technical note: Air compared to nitrogen as nebulizing and drying gases for electrospray ionization mass spectrometry.

    PubMed

    Mielczarek, P; Silberring, J; Smoluch, M

    In the present study we tested the application of compressed air instead of pure nitrogen as the nebulizing and drying gas, and its influence on the quality of electrospray ionization (ESI) mass spectra. The intensities of the signals corresponding to protonated molecules were significantly (twice) higher when air was used. Inspection of signal-to-noise (S/N) ratios revealed that, in both cases, sensitivity was comparable. A higher ion abundance after the application of compressed air was followed by a higher background. Another potential risk of using air in the ESI source is the possibility for sample oxidation due to the presence of oxygen. To test this, we selected five easily oxidizing compounds to verify their susceptibility to oxidation. In particular, the presence of methionine was of interest. For all the compounds studied, no oxidation was observed. Amodiaquine oxidizes spontaneously in water solutions and its oxidized form can be detected a few hours after preparation. Direct comparison of the spectra where nitrogen was used with the corresponding spectra obtained when air was applied did not show significant differences. The only distinction was slightly different patterns of adducts when air was used. The difference concerns acetonitrile, which forms higher signals when air is the nebulizing gas. It is also important that the replacement of nitrogen with air does not affect quantitative data. The prepared calibration curves also visualize an intensity twice as high (independent of concentration within tested range) of the signal where air was applied. We have used our system continuously for three months with air as the nebulizing and drying gas and have not noticed any unexpected signal deterioration caused by additional source contamination from the air. Moreover, compressed air is much cheaper and easily available using oil-free compressors or pumps.

  4. Effects of Air-Fuel Spray and Flame Formation in a Compression-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Waldron, C D

    1937-01-01

    High-speed motion pictures were taken at the rate of 2,500 frames per second of the fuel spray and flame formation in the combustion chamber of the NACA combustion apparatus. The compression ratio was 13.2 and the speed 1,500 revolutions per minute. An optical indicator was used to record the time-pressure relationship in the combustion chamber. The air-fuel ratio was varied from 10.4 to 365. The results showed that as the air-fuel ratio was increased definite stratification of the charge occurred in the combustion chamber even though moderate air flow existed. The results also showed the rate of vapor diffusion to be relatively slow.

  5. 16. DETAIL OF TOOL FOR COMPRESSING SPRING IN FAIRING SEPARATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. DETAIL OF TOOL FOR COMPRESSING SPRING IN FAIRING SEPARATION ACTUATOR AND PLASTIC-WRAPPED ACTUATOR FOR FAIRING THAT WILL ENCLOSE A DMSP SATELLITE. (FAIRING SEPARATION ACTUATOR COMPRESSES TO ONE-THIRD OF ITS SIZE.) - Vandenberg Air Force Base, Space Launch Complex 3, Vehicle Support Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  6. 21 CFR 868.6250 - Portable air compressor.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Portable air compressor. 868.6250 Section 868.6250...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Miscellaneous § 868.6250 Portable air compressor. (a) Identification. A portable air compressor is a device intended to provide compressed air for medical purposes, e...

  7. 30 CFR 56.13012 - Compressor air intakes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Compressor air intakes. 56.13012 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13012 Compressor air intakes. Compressor air intakes shall be installed to ensure that only...

  8. 30 CFR 57.13012 - Compressor air intakes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Compressor air intakes. 57.13012 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Compressed Air and Boilers § 57.13012 Compressor air intakes. Compressor air intakes shall be installed to ensure...

  9. 30 CFR 56.13012 - Compressor air intakes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Compressor air intakes. 56.13012 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13012 Compressor air intakes. Compressor air intakes shall be installed to ensure that only...

  10. 30 CFR 57.13011 - Air receiver tanks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Air receiver tanks. 57.13011 Section 57.13011... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Compressed Air and Boilers § 57.13011 Air receiver tanks. Air receiver tanks shall be equipped with one or more automatic...

  11. 30 CFR 57.13012 - Compressor air intakes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Compressor air intakes. 57.13012 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Compressed Air and Boilers § 57.13012 Compressor air intakes. Compressor air intakes shall be installed to ensure...

  12. 30 CFR 57.13011 - Air receiver tanks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Air receiver tanks. 57.13011 Section 57.13011... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Compressed Air and Boilers § 57.13011 Air receiver tanks. Air receiver tanks shall be equipped with one or more automatic...

  13. 30 CFR 56.13012 - Compressor air intakes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Compressor air intakes. 56.13012 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13012 Compressor air intakes. Compressor air intakes shall be installed to ensure that only...

  14. 30 CFR 56.13012 - Compressor air intakes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13012 Compressor air intakes. Compressor air intakes shall be installed to ensure that only... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Compressor air intakes. 56.13012 Section 56...

  15. 30 CFR 57.13012 - Compressor air intakes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Compressed Air and Boilers § 57.13012 Compressor air intakes. Compressor air intakes shall be installed to ensure... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Compressor air intakes. 57.13012 Section 57...

  16. 30 CFR 57.13011 - Air receiver tanks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Compressed Air and Boilers § 57.13011 Air receiver tanks. Air receiver tanks shall be equipped with one or more automatic... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Air receiver tanks. 57.13011 Section 57.13011...

  17. 21 CFR 868.6250 - Portable air compressor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Portable air compressor. 868.6250 Section 868.6250...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Miscellaneous § 868.6250 Portable air compressor. (a) Identification. A portable air compressor is a device intended to provide compressed air for medical purposes, e...

  18. 21 CFR 868.6250 - Portable air compressor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Portable air compressor. 868.6250 Section 868.6250...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Miscellaneous § 868.6250 Portable air compressor. (a) Identification. A portable air compressor is a device intended to provide compressed air for medical purposes, e...

  19. Device for improved air and fuel distribution to a combustor

    DOEpatents

    Laster, Walter R.; Schilp, Reinhard

    2016-05-31

    A flow conditioning device (30, 50, 70, 100, 150) for a can annular gas turbine engine, including a plurality of flow elements (32, 34, 52, 54, 72, 74, 102) disposed in a compressed air flow path (42, 60, 80, 114, 122) leading to a combustor (12), configured such that relative adjustment of at least one flow directing element (32, 52, 72, 110) with respect to an adjacent flow directing element (34, 54, 74, 112, 120) during operation of the gas turbine engine is effective to adjust a level of choking of the compressed air flow path (42, 60, 80, 114, 122).

  20. Reverse Brayton Cycle with Bladeless Turbo Compressor for Automotive Environmental Cooling

    NASA Technical Reports Server (NTRS)

    Ganapathi, Gani B. (Inventor); Cepeda-Rizo, Juan (Inventor)

    2016-01-01

    An automotive cabin cooling system uses a bladeless turbocompressor driven by automobile engine exhaust to compress incoming ambient air. The compressed air is directed to an intercooler where it is cooled and then to another bladeless turbine used as an expander where the air cools as it expands and is directed to the cabin interior. Excess energy may be captured by an alternator couple to the expander turbine. The system employs no chemical refrigerant and may be further modified to include another intercooler on the output of the expander turbine to isolate the cooled cabin environment.

  1. Fluid flow and fuel-air mixing in a motored two-dimensional Wankel rotary engine

    NASA Technical Reports Server (NTRS)

    Shih, T. I.-P.; Nguyen, H. L.; Stegeman, J.

    1986-01-01

    The implicit-factored method of Beam and Warming was employed to obtain numerical solutions to the conservation equations of mass, species, momentum, and energy to study the unsteady, multidimensional flow and mixing of fuel and air inside the combustion chambers of a two-dimensional Wankel rotary engine under motored conditions. The effects of the following engine design and operating parameters on fluid flow and fuel-air mixing during the intake and compression cycles were studied: engine speed, angle of gaseous fuel injection during compression cycle, and speed of the fuel leaving fuel injector.

  2. Fluid flow and fuel-air mixing in a motored two-dimensional Wankel rotary engine

    NASA Astrophysics Data System (ADS)

    Shih, T. I.-P.; Nguyen, H. L.; Stegeman, J.

    1986-06-01

    The implicit-factored method of Beam and Warming was employed to obtain numerical solutions to the conservation equations of mass, species, momentum, and energy to study the unsteady, multidimensional flow and mixing of fuel and air inside the combustion chambers of a two-dimensional Wankel rotary engine under motored conditions. The effects of the following engine design and operating parameters on fluid flow and fuel-air mixing during the intake and compression cycles were studied: engine speed, angle of gaseous fuel injection during compression cycle, and speed of the fuel leaving fuel injector.

  3. Synthetic optimization of air turbine for dental handpieces.

    PubMed

    Shi, Z Y; Dong, T

    2014-01-01

    A synthetic optimization of Pelton air turbine in dental handpieces concerning the power output, compressed air consumption and rotation speed in the mean time is implemented by employing a standard design procedure and variable limitation from practical dentistry. The Pareto optimal solution sets acquired by using the Normalized Normal Constraint method are mainly comprised of two piecewise continuous parts. On the Pareto frontier, the supply air stagnation pressure stalls at the lower boundary of the design space, the rotation speed is a constant value within the recommended range from literature, the blade tip clearance insensitive to while the nozzle radius increases with power output and mass flow rate of compressed air to which the residual geometric dimensions are showing an opposite trend within their respective "pieces" compared to the nozzle radius.

  4. Operational procedure for computer program for design point characteristics of a compressed-air generator with through-flow combustor for V/STOL applications

    NASA Technical Reports Server (NTRS)

    Krebs, R. P.

    1971-01-01

    The computer program described in this report calculates the design-point characteristics of a compressed-air generator for use in V/STOL applications such as systems with a tip-turbine-driven lift fan. The program computes the dimensions and mass, as well as the thermodynamic performance of a model air generator configuration which involves a straight through-flow combustor. Physical and thermodynamic characteristics of the air generator components are also given. The program was written in FORTRAN IV language. Provision has been made so that the program will accept input values in either SI units or U.S. customary units. Each air generator design-point calculation requires about 1.5 seconds of 7094 computer time for execution.

  5. Humidity-dependent compression-induced glass transition of the air-water interfacial Langmuir films of poly(D,L-lactic acid-ran-glycolic acid) (PLGA).

    PubMed

    Kim, Hyun Chang; Lee, Hoyoung; Jung, Hyunjung; Choi, Yun Hwa; Meron, Mati; Lin, Binhua; Bang, Joona; Won, You-Yeon

    2015-07-28

    Constant rate compression isotherms of the air-water interfacial Langmuir films of poly(D,L-lactic acid-ran-glycolic acid) (PLGA) show a distinct feature of an exponential increase in surface pressure in the high surface polymer concentration regime. We have previously demonstrated that this abrupt increase in surface pressure is linked to the glass transition of the polymer film, but the detailed mechanism of this process is not fully understood. In order to obtain a molecular-level understanding of this behavior, we performed extensive characterizations of the surface mechanical, structural and rheological properties of Langmuir PLGA films at the air-water interface, using combined experimental techniques including the Langmuir film balance, X-ray reflectivity and double-wall-ring interfacial rheometry methods. We observed that the mechanical and structural responses of the Langmuir PLGA films are significantly dependent on the rate of film compression; the glass transition was induced in the PLGA film only at fast compression rates. Surprisingly, we found that this deformation rate dependence is also dependent on the humidity of the environment. With water acting as a plasticizer for the PLGA material, the diffusion of water molecules through the PLGA film seems to be the key factor in the determination of the glass transformation properties and thus the mechanical response of the PLGA film against lateral compression. Based on our combined results, we hypothesize the following mechanism for the compression-induced glass transformation of the Langmuir PLGA film; (1) initially, a humidified/non-glassy PLGA film is formed in the full surface-coverage region (where the surface pressure shows a plateau) during compression; (2) further compression leads to the collapse of the PLGA chains and the formation of new surfaces on the air side of the film, and this newly formed top layer of the PLGA film is transiently glassy in character because the water evaporation rate in the top surface region is momentarily faster than the humidification rate (due to the initial roughness of the newly formed surface); (3) after some time, the top layer itself becomes humidified through diffusion of water from the subphase, and thus it becomes non-glassy, leading to the relaxation of the applied compressive stress.

  6. RUNNER BOX MAINTENANCE. FRANK FEHER USES A COMPRESSED AIRPOWERED CHISEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    RUNNER BOX MAINTENANCE. FRANK FEHER USES A COMPRESSED AIR-POWERED CHISEL TO CHIP OUT CONGEALED METAL IN PREPARATION FOR ANOTHER HEAT. - American Brass Foundry, 70 Sayre Street, Buffalo, Erie County, NY

  7. Study Improving Performance of Centrifugal Compressor In Paiton Coal Fired Power Plant Unit 1 And 2

    NASA Astrophysics Data System (ADS)

    Kusuma, Yuriadi; Permana, Dadang S.

    2018-03-01

    The compressed air system becomes part of a very important utility system in a Plant, including the Steam Power Plant. In PLN’S coal fired power plant, Paiton units 1 and 2, there are four Centrifugal air compressor types, which produce compressed air as much as 5.652 cfm and with electric power capacity of 1200 kW. Electricity consumption to operate centrifugal compressor is 7.104.117 kWh per year. This study aims to measure the performance of Centrifugal Compressors operating in Paiton’s coal fired power plant units 1 and 2. Performance Compressor is expressed by Specific Power Consumption (SPC) in kW/100 cfm. For this purpose, we measure the compressed air flow rate generated by each compressor and the power consumed by each compressor. The result is as follows Air Compressor SAC 2B : 15.1 kW/100 cfm, Air Compressor SAC 1B : 15.31 kW/100 cfm,Air Compressor SAC 1A : 16.3 kW/100 cfm and air Compressor SAC 2C : 18.19 kW/100 cfm. From the measurement result, air compressor SAC 2B has the best performance that is 15.1 kW / 100 cfm. In this study we analyze efforts to improve the performance of other compressors to at least match the performance of the SAC 2B air compressor. By increasing the Specific Power Consumption from others Compressor, it will get energy saving up to 284,165 kWh per year.

  8. The optimum intermediate pressure of two-stages vapor compression refrigeration cycle for Air-Conditioning unit

    NASA Astrophysics Data System (ADS)

    Ambarita, H.; Sihombing, H. V.

    2018-03-01

    Vapor compression cycle is mainly employed as a refrigeration cycle in the Air-Conditioning (AC) unit. In order to save energy, the Coefficient of Performance (COP) of the need to be improved. One of the potential solutions is to modify the system into multi-stages vapor compression cycle. The suitable intermediate pressure between the high and low pressures is one of the design issues. The present work deals with the investigation of an optimum intermediate pressure of two-stages vapor compression refrigeration cycle. Typical vapor compression cycle that is used in AC unit is taken into consideration. The used refrigerants are R134a. The governing equations have been developed for the systems. An inhouse program has been developed to solve the problem. COP, mass flow rate of the refrigerant and compressor power as a function of intermediate pressure are plotted. It was shown that there exists an optimum intermediate pressure for maximum COP. For refrigerant R134a, the proposed correlations need to be revised.

  9. A Comparison of Ignition Characteristics of Diesel Fuels as Determined in Engines and in a Constant-volume Bomb

    NASA Technical Reports Server (NTRS)

    Selden, Robert F

    1939-01-01

    Ignition-lag data have been obtained for seven fuels injected into heated, compressed air under conditions simulating those in a compression-ignition engine. The results of the bomb tests have been compared with similar engine data, and the differences between the two sets of results are explained in terms of the response of each fuel to variations in air density and temperature.

  10. Development of a Next-Generation Membrane-Integrated Adsorption Processor for CO2 Removal and Compression for Closed-Loop Air Revitalization Systems

    NASA Technical Reports Server (NTRS)

    Mulloth, Lila; LeVan, Douglas

    2002-01-01

    The current CO2 removal technology of NASA is very energy intensive and contains many non-optimized subsystems. This paper discusses the concept of a next-generation, membrane integrated, adsorption processor for CO2 removal nd compression in closed-loop air revitalization systems. This processor will use many times less power than NASA's current CO2 removal technology and will be capable of maintaining a lower CO2 concentration in the cabin than that can be achieved by the existing CO2 removal systems. The compact, consolidated, configuration of gas dryer, CO2 separator, and CO2 compressor will allow continuous recycling of humid air in the cabin and supply of compressed CO2 to the reduction unit for oxygen recovery. The device has potential application to the International Space Station and future, long duration, transit, and planetary missions.

  11. Cascade Reverse Osmosis Air Conditioning System: Cascade Reverse Osmosis and the Absorption Osmosis Cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    BEETIT Project: Battelle is developing a new air conditioning system that uses a cascade reverse osmosis (RO)-based absorption cycle. Analyses show that this new cycle can be as much as 60% more efficient than vapor compression, which is used in 90% of air conditioners. Traditional vapor-compression systems use polluting liquids for a cooling effect. Absorption cycles use benign refrigerants such as water, which is absorbed in a salt solution and pumped as liquid—replacing compression of vapor. The refrigerant is subsequently separated from absorbing salt using heat for re-use in the cooling cycle. Battelle is replacing thermal separation of refrigerant withmore » a more efficient reverse osmosis process. Research has shown that the cycle is possible, but further investment will be needed to reduce the number of cascade reverse osmosis stages and therefore cost.« less

  12. Casing for a gas turbine engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiebe, David J.; Little, David A.; Charron, Richard C.

    2016-07-12

    A casing for a can annular gas turbine engine, including: a compressed air section (40) spanning between a last row of compressor blades (26) and a first row of turbine blades (28), the compressed air section (40) having a plurality of openings (50) there through, wherein a single combustor/advanced duct assembly (64) extends through each opening (50); and one top hat (68) associated with each opening (50) configured to enclose the associated combustor/advanced duct assembly (64) and seal the opening (50). A volume enclosed by the compressed air section (40) is not greater than a volume of a frustum (54)more » defined at an upstream end (56) by an inner diameter of the casing at the last row of compressor blades (26) and at a downstream end (60) by an inner diameter of the casing at the first row of turbine blades (28).« less

  13. Experimental study on foam coverage on simulated longwall roof.

    PubMed

    Reed, W R; Zheng, Y; Klima, S; Shahan, M R; Beck, T W

    2017-01-01

    Testing was conducted to determine the ability of foam to maintain roof coverage in a simulated longwall mining environment. Approximately 27 percent of respirable coal mine dust can be attributed to longwall shield movement, and developing controls for this dust source has been difficult. The application of foam is a possible dust control method for this source. Laboratory testing of two foam agents was conducted to determine the ability of the foam to adhere to a simulated longwall face roof surface. Two different foam generation methods were used: compressed air and blower air. Using a new imaging technology, image processing and analysis utilizing ImageJ software produced quantifiable results of foam roof coverage. For compressed air foam in 3.3 m/s (650 fpm) ventilation, 98 percent of agent A was intact while 95 percent of agent B was intact on the roof at three minutes after application. At 30 minutes after application, 94 percent of agent A was intact while only 20 percent of agent B remained. For blower air in 3.3 m/s (650 fpm) ventilation, the results were dependent upon nozzle type. Three different nozzles were tested. At 30 min after application, 74 to 92 percent of foam agent A remained, while 3 to 50 percent of foam agent B remained. Compressed air foam seems to remain intact for longer durations and is easier to apply than blower air foam. However, more water drained from the foam when using compressed air foam, which demonstrates that blower air foam retains more water at the roof surface. Agent A seemed to be the better performer as far as roof application is concerned. This testing demonstrates that roof application of foam is feasible and is able to withstand a typical face ventilation velocity, establishing this technique's potential for longwall shield dust control.

  14. Experimental study on foam coverage on simulated longwall roof

    PubMed Central

    Reed, W.R.; Zheng, Y.; Klima, S.; Shahan, M.R.; Beck, T.W.

    2018-01-01

    Testing was conducted to determine the ability of foam to maintain roof coverage in a simulated longwall mining environment. Approximately 27 percent of respirable coal mine dust can be attributed to longwall shield movement, and developing controls for this dust source has been difficult. The application of foam is a possible dust control method for this source. Laboratory testing of two foam agents was conducted to determine the ability of the foam to adhere to a simulated longwall face roof surface. Two different foam generation methods were used: compressed air and blower air. Using a new imaging technology, image processing and analysis utilizing ImageJ software produced quantifiable results of foam roof coverage. For compressed air foam in 3.3 m/s (650 fpm) ventilation, 98 percent of agent A was intact while 95 percent of agent B was intact on the roof at three minutes after application. At 30 minutes after application, 94 percent of agent A was intact while only 20 percent of agent B remained. For blower air in 3.3 m/s (650 fpm) ventilation, the results were dependent upon nozzle type. Three different nozzles were tested. At 30 min after application, 74 to 92 percent of foam agent A remained, while 3 to 50 percent of foam agent B remained. Compressed air foam seems to remain intact for longer durations and is easier to apply than blower air foam. However, more water drained from the foam when using compressed air foam, which demonstrates that blower air foam retains more water at the roof surface. Agent A seemed to be the better performer as far as roof application is concerned. This testing demonstrates that roof application of foam is feasible and is able to withstand a typical face ventilation velocity, establishing this technique’s potential for longwall shield dust control. PMID:29563765

  15. 29 CFR 1926.913 - Blasting in excavation work under compressed air.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... connecting wires are connected up. (b) When detonators or explosives are brought into an air lock, no... of explosives and detonators. (e) All metal pipes, rails, air locks, and steel tunnel lining shall be...

  16. Evaluation of Two Compressed Air Foam Systems for Culling Caged Layer Hens

    PubMed Central

    Weiher, Jaclyn A.; Alphin, Robert L.; Hougentogler, Daniel P.

    2018-01-01

    Simple Summary Control of avian influenza and similar diseases in commercial poultry operations is challenging; the six major steps are surveillance, biosecurity, quarantine, depopulation, disposal, and cleaning and disinfection. Depopulation is used to cull animals that are terminally ill and to reduce the number of animals that can spread an untreatable disease. Water-based foam depopulation was used effectively during the 2014–2015 highly pathogenic avian influenza outbreak in the United States. Water-based foam, however, cannot be used effectively in caged poultry operations. Compressed air foam systems were initially developed for structural fire-fighting and, with modifications, can provide the conditions required to effectively penetrate a poultry cage and provide sufficient residence time for depopulation. In this experiment, compressed air foam was used to depopulate caged layer hens. Compressed air foam resulted in faster unconsciousness than carbon dioxide gassing. The experiment demonstrated that compressed air foam systems have promise for depopulating birds raised in cages. Abstract Outbreaks of avian influenza (AI) and other highly contagious poultry diseases continue to be a concern for those involved in the poultry industry. In the situation of an outbreak, emergency depopulation of the birds involved is necessary. In this project, two compressed air foam systems (CAFS) were evaluated for mass emergency depopulation of layer hens in a manure belt equipped cage system. In both experiments, a randomized block design was used with multiple commercial layer hens treated with one of three randomly selected depopulation methods: CAFS, CAFS with CO2 gas, and CO2 gas. In Experiment 1, a Rowe manufactured CAFS was used, a selection of birds were instrumented, and the time to unconsciousness, brain death, altered terminal cardiac activity and motion cessation were recorded. CAFS with and without CO2 was faster to unconsciousness, however, the other parameters were not statistically significant. In Experiment 2, a custom Hale based CAFS was used to evaluate the impact of bird age, a selection of birds were instrumented, and the time to motion cessation was recorded. The difference in time to cessation of movement between pullets and spent hens using CAFS was not statistically significant. Both CAFS depopulate caged layers, however, there was no benefit to including CO2. PMID:29695072

  17. 30 CFR 56.13011 - Air receiver tanks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Air receiver tanks. 56.13011 Section 56.13011... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13011 Air receiver tanks. Air receiver tanks shall be equipped with one or more automatic pressure...

  18. 30 CFR 56.13011 - Air receiver tanks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Air receiver tanks. 56.13011 Section 56.13011... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13011 Air receiver tanks. Air receiver tanks shall be equipped with one or more automatic pressure...

  19. 30 CFR 56.13011 - Air receiver tanks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Air receiver tanks. 56.13011 Section 56.13011... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13011 Air receiver tanks. Air receiver tanks shall be equipped with one or more automatic pressure...

  20. 30 CFR 56.13011 - Air receiver tanks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13011 Air receiver tanks. Air receiver tanks shall be equipped with one or more automatic pressure... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Air receiver tanks. 56.13011 Section 56.13011...

  1. 29 CFR 1917.155 - Air receivers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Air receivers. 1917.155 Section 1917.155 Labor Regulations...) MARINE TERMINALS Related Terminal Operations and Equipment § 1917.155 Air receivers. (a) Application. This section applies to compressed air receivers and equipment used for operations such as cleaning...

  2. 46 CFR 154.1852 - Air breathing equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Air breathing equipment. 154.1852 Section 154.1852... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1852 Air breathing equipment. (a) The master shall ensure that a licensed officer inspects the compressed air breathing...

  3. 29 CFR 1917.155 - Air receivers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Air receivers. 1917.155 Section 1917.155 Labor Regulations...) MARINE TERMINALS Related Terminal Operations and Equipment § 1917.155 Air receivers. (a) Application. This section applies to compressed air receivers and equipment used for operations such as cleaning...

  4. 29 CFR 1917.155 - Air receivers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Air receivers. 1917.155 Section 1917.155 Labor Regulations...) MARINE TERMINALS Related Terminal Operations and Equipment § 1917.155 Air receivers. (a) Application. This section applies to compressed air receivers and equipment used for operations such as cleaning...

  5. 46 CFR 154.1852 - Air breathing equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Air breathing equipment. 154.1852 Section 154.1852... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1852 Air breathing equipment. (a) The master shall ensure that a licensed officer inspects the compressed air breathing...

  6. 46 CFR 154.1852 - Air breathing equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Air breathing equipment. 154.1852 Section 154.1852... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1852 Air breathing equipment. (a) The master shall ensure that a licensed officer inspects the compressed air breathing...

  7. 46 CFR 154.1852 - Air breathing equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Air breathing equipment. 154.1852 Section 154.1852... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1852 Air breathing equipment. (a) The master shall ensure that a licensed officer inspects the compressed air breathing...

  8. 29 CFR 1917.155 - Air receivers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Air receivers. 1917.155 Section 1917.155 Labor Regulations...) MARINE TERMINALS Related Terminal Operations and Equipment § 1917.155 Air receivers. (a) Application. This section applies to compressed air receivers and equipment used for operations such as cleaning...

  9. 29 CFR 1917.155 - Air receivers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Air receivers. 1917.155 Section 1917.155 Labor Regulations...) MARINE TERMINALS Related Terminal Operations and Equipment § 1917.155 Air receivers. (a) Application. This section applies to compressed air receivers and equipment used for operations such as cleaning...

  10. Minimum Specific Fuel Consumption of a Liquid-Cooled Multicylinder Aircraft Engine as Affected by Compression Ratio and Engine Operating Conditions

    NASA Technical Reports Server (NTRS)

    Brun, Rinaldo J.; Feder, Melvin S.; Harries, Myron L.

    1947-01-01

    An investigation was conducted on a 12-cylinder V-type liquid-cooled aircraft engine of 1710-cubic-inch displacement to determine the minimum specific fuel consumption at constant cruising engine speed and compression ratios of 6.65, 7.93, and 9.68. At each compression ratio, the effect.of the following variables was investigated at manifold pressures of 28, 34, 40, and 50 inches of mercury absolute: temperature of the inlet-air to the auxiliary-stage supercharger, fuel-air ratio, and spark advance. Standard sea-level atmospheric pressure was maintained at the auxiliary-stage supercharger inlet and the exhaust pressure was atmospheric. Advancing the spark timing from 34 deg and 28 deg B.T.C. (exhaust and intake, respectively) to 42 deg and 36 deg B.T.C. at a compression ratio of 6.65 resulted in a decrease of approximately 3 percent in brake specific fuel consumption. Further decreases in brake specific fuel consumption of 10.5 to 14.1 percent (depending on power level) were observed as the compression ratio was increased from 6.65 to 9.68, maintaining at each compression ratio the spark advance required for maximum torque at a fuel-air ratio of 0.06. This increase in compression ratio with a power output of 0.585 horsepower per cubic inch required a change from . a fuel- lend of 6-percent triptane with 94-percent 68--R fuel at a compression ratio of 6.65 to a fuel blend of 58-percent, triptane with 42-percent 28-R fuel at a compression ratio of 9.68 to provide for knock-free engine operation. As an aid in the evaluation of engine mechanical endurance, peak cylinder pressures were measured on a single-cylinder engine at several operating conditions. Peak cylinder pressures of 1900 pounds per square inch can be expected at a compression ratio of 9.68 and an indicated mean effective pressure of 320 pounds per square inch. The engine durability was considerably reduced at these conditions.

  11. The start-up of a gas turbine engine using compressed air tangentially fed onto the blades of the basic turbine

    NASA Technical Reports Server (NTRS)

    Slobodyanyuk, L. K.; Dayneko, V. I.

    1983-01-01

    The use of compressed air was suggested to increase the reliability and motor lifetime of a gas turbine engine. Experiments were carried out and the results are shown in the form of the variation in circumferential force as a function of the entry angle of the working jet onto the turbine blade. The described start-up method is recommended for use with massive rotors.

  12. Increasing the Air Charge and Scavenging the Clearance Volume of a Compression-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Spanogle, J A; Hicks, C W; Foster, H H

    1934-01-01

    The object of the investigation presented in this report was to determine the effects of increasing the air charge and scavenging the clearance volume of a 4-stroke-cycle compression-ignition engine having a vertical-disk form combustion chamber. Boosting the inlet-air pressure with normal valve timing increased the indicated engine power in proportion to the additional air inducted and resulted in smoother engine operation with less combustion shock. Scavenging the clearance volume by using a valve overlap of 145 degrees and an inlet-air boost pressure of approximately 2 1/2 inches of mercury produced a net increase in performance for clear exhaust operation of 33 percent over that obtained with normal valve timing and the same boost pressure. The improved combustion characteristics result in lower specific fuel consumption, and a clearer exhaust.

  13. 22. Power plant engine pipingcompressed air piping diagram and sections, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Power plant engine piping-compressed air piping diagram and sections, sheet 81 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  14. Pressure Regulators as Valves for Saving Compressed Air and their Influence on System Dynamics

    NASA Astrophysics Data System (ADS)

    Dvořák, Lukáš; Fojtášek, Kamil

    2015-05-01

    Pressure regulators in the field of pneumatic mechanisms can be used as valves for saving compressed air. For example it can be used to reduce the pressure when the piston rod is retracting unloaded and thus it is possible to save some energy. However the problem is that saving valve can significantly affect the dynamics of the pneumatic system. The lower pressure in the piston rod chamber causes extension of time for retraction of the piston rod. This article compare the air consumption experimentally determined and calculated, measured curves of pressure in cylinder chambers and piston speed when saving valve is set up differently.

  15. Helical Explosive Flux Compression Generator Research at the Air Force Research Laboratory

    DTIC Science & Technology

    1999-06-01

    Air Force Research Laboratory Kirtland AFB...ORGANIZATION NAME(S) AND ADDRESS(ES) Directed Energy Directorate, Air Force Research Laboratory Kirtland AFB, NM 8. PERFORMING ORGANIZATION REPORT...in support of the Air Force Research Laboratory ( AFRL ) explosive pulsed power program. These include circuit codes such as Microcap and

  16. 29 CFR 1926.306 - Air receivers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Air receivers. 1926.306 Section 1926.306 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Tools-Hand and Power § 1926.306 Air receivers. (a) General requirements—(1) Application. This section applies to compressed air receivers, and other equipment used in...

  17. 29 CFR 1926.306 - Air receivers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Air receivers. 1926.306 Section 1926.306 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Tools-Hand and Power § 1926.306 Air receivers. (a) General requirements—(1) Application. This section applies to compressed air receivers, and other equipment used in...

  18. 29 CFR 1926.306 - Air receivers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Air receivers. 1926.306 Section 1926.306 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Tools-Hand and Power § 1926.306 Air receivers. (a) General requirements—(1) Application. This section applies to compressed air receivers, and other equipment used in...

  19. 29 CFR 1926.306 - Air receivers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Air receivers. 1926.306 Section 1926.306 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Tools-Hand and Power § 1926.306 Air receivers. (a) General requirements—(1) Application. This section applies to compressed air receivers, and other equipment used in...

  20. 29 CFR 1926.306 - Air receivers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Air receivers. 1926.306 Section 1926.306 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Tools-Hand and Power § 1926.306 Air receivers. (a) General requirements—(1) Application. This section applies to compressed air receivers, and other equipment used in...

  1. 30 CFR 7.506 - Breathable air components.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... cylinders, or boreholes with fans installed on the surface or compressors installed on the surface. Only....5 percent. (c) Breathable air supplied by compressed air from cylinders, fans, or compressors shall provide a minimum flow rate of 12.5 cubic feet per minute of breathable air for each person. (1) Fans or...

  2. Influence of rate of force application during compression on tablet capping.

    PubMed

    Sarkar, Srimanta; Ooi, Shing Ming; Liew, Celine Valeria; Heng, Paul Wan Sia

    2015-04-01

    Root cause and possible processing remediation of tablet capping were investigated using a specially designed tablet press with an air compensator installed above the precompression roll to limit compression force and allow extended dwell time in the precompression event. Using acetaminophen-starch (77.9:22.1) as a model formulation, tablets were prepared by various combinations of precompression and main compression forces, set precompression thickness, and turret speed. The rate of force application (RFA) was the main factor contributing to the tablet mechanical strength and capping. When target force above the force required for strong interparticulate bond formation, the resultant high RFA contributed to more pronounced air entrapment, uneven force distribution, and consequently, stratified densification in compact together with high viscoelastic recovery. These factors collectively had contributed to the tablet capping. As extended dwell time assisted particle rearrangement and air escape, a denser and more homogenous packing in the die could be achieved. This occurred during the extended dwell time when a low precompression force was applied, followed by application of main compression force for strong interparticulate bond formation that was the most beneficial option to solve capping problem. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  3. Impact of Charge Degradation on the Life Cycle Climate Performance of a Residential Air-Conditioning System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beshr, Mohamed; Aute, Vikrant; Abdelaziz, Omar

    2014-01-01

    Vapor compression systems continuously leak a small fraction of their refrigerant charge to the environment, whether during operation or servicing. As a result of the slow leak rate occurring during operation, the refrigerant charge decreases until the system is serviced and recharged. This charge degradation, after a certain limit, begins to have a detrimental effect on system capacity, energy consumption, and coefficient of performance (COP). This paper presents a literature review and a summary of previous experimental work on the effect of undercharging or charge degradation of different vapor compression systems, especially those without a receiver. These systems include residentialmore » air conditioning and heat pump systems utilizing different components and refrigerants, and water chiller systems. Most of these studies show similar trends for the effect of charge degradation on system performance. However, it is found that although much experimental work exists on the effect of charge degradation on system performance, no correlation or comparison between charge degradation and system performance yet exists. Thus, based on the literature review, three different correlations that characterize the effect of charge on system capacity and energy consumption are developed for different systems as follows: one for air-conditioning systems, one for vapor compression water-to-water chiller systems, and one for heat pumps. These correlations can be implemented in vapor compression cycle simulation tools to obtain a better prediction of the system performance throughout its lifetime. In this paper, these correlations are implemented in an open source tool for life cycle climate performance (LCCP) based design of vapor compression systems. The LCCP of a residential air-source heat pump is evaluated using the tool and the effect of charge degradation on the results is studied. The heat pump is simulated using a validated component-based vapor compression system model and the LCCP results obtained using the three charge degradation correlations are compared.« less

  4. A Multi-Mode Shock Tube for Investigation of Blast-Induced Traumatic Brain Injury

    PubMed Central

    Reneer, Dexter V.; Hisel, Richard D.; Hoffman, Joshua M.; Kryscio, Richard J.; Lusk, Braden T.

    2011-01-01

    Abstract Blast-induced mild traumatic brain injury (bTBI) has become increasingly common in recent military conflicts. The mechanisms by which non-impact blast exposure results in bTBI are incompletely understood. Current small animal bTBI models predominantly utilize compressed air-driven membrane rupture as their blast wave source, while large animal models use chemical explosives. The pressure-time signature of each blast mode is unique, making it difficult to evaluate the contributions of the different components of the blast wave to bTBI when using a single blast source. We utilized a multi-mode shock tube, the McMillan blast device, capable of utilizing compressed air- and compressed helium-driven membrane rupture, and the explosives oxyhydrogen and cyclotrimethylenetrinitramine (RDX, the primary component of C-4 plastic explosives) as the driving source. At similar maximal blast overpressures, the positive pressure phase of compressed air-driven blasts was longer, and the positive impulse was greater, than those observed for shockwaves produced by other driving sources. Helium-driven shockwaves more closely resembled RDX blasts, but by displacing air created a hypoxic environment within the shock tube. Pressure-time traces from oxyhydrogen-driven shockwaves were very similar those produced by RDX, although they resulted in elevated carbon monoxide levels due to combustion of the polyethylene bag used to contain the gases within the shock tube prior to detonation. Rats exposed to compressed air-driven blasts had more pronounced vascular damage than those exposed to oxyhydrogen-driven blasts of the same peak overpressure, indicating that differences in blast wave characteristics other than peak overpressure may influence the extent of bTBI. Use of this multi-mode shock tube in small animal models will enable comparison of the extent of brain injury with the pressure-time signature produced using each blast mode, facilitating evaluation of the blast wave components contributing to bTBI. PMID:21083431

  5. A multi-mode shock tube for investigation of blast-induced traumatic brain injury.

    PubMed

    Reneer, Dexter V; Hisel, Richard D; Hoffman, Joshua M; Kryscio, Richard J; Lusk, Braden T; Geddes, James W

    2011-01-01

    Blast-induced mild traumatic brain injury (bTBI) has become increasingly common in recent military conflicts. The mechanisms by which non-impact blast exposure results in bTBI are incompletely understood. Current small animal bTBI models predominantly utilize compressed air-driven membrane rupture as their blast wave source, while large animal models use chemical explosives. The pressure-time signature of each blast mode is unique, making it difficult to evaluate the contributions of the different components of the blast wave to bTBI when using a single blast source. We utilized a multi-mode shock tube, the McMillan blast device, capable of utilizing compressed air- and compressed helium-driven membrane rupture, and the explosives oxyhydrogen and cyclotrimethylenetrinitramine (RDX, the primary component of C-4 plastic explosives) as the driving source. At similar maximal blast overpressures, the positive pressure phase of compressed air-driven blasts was longer, and the positive impulse was greater, than those observed for shockwaves produced by other driving sources. Helium-driven shockwaves more closely resembled RDX blasts, but by displacing air created a hypoxic environment within the shock tube. Pressure-time traces from oxyhydrogen-driven shockwaves were very similar those produced by RDX, although they resulted in elevated carbon monoxide levels due to combustion of the polyethylene bag used to contain the gases within the shock tube prior to detonation. Rats exposed to compressed air-driven blasts had more pronounced vascular damage than those exposed to oxyhydrogen-driven blasts of the same peak overpressure, indicating that differences in blast wave characteristics other than peak overpressure may influence the extent of bTBI. Use of this multi-mode shock tube in small animal models will enable comparison of the extent of brain injury with the pressure-time signature produced using each blast mode, facilitating evaluation of the blast wave components contributing to bTBI.

  6. Compressed air noise reductions from using advanced air gun nozzles in research and development environments.

    PubMed

    Prieve, Kurt; Rice, Amanda; Raynor, Peter C

    2017-08-01

    The aims of this study were to evaluate sound levels produced by compressed air guns in research and development (R&D) environments, replace conventional air gun models with advanced noise-reducing air nozzles, and measure changes in sound levels to assess the effectiveness of the advanced nozzles as engineering controls for noise. Ten different R&D manufacturing areas that used compressed air guns were identified and included in the study. A-weighted sound level and Z-weighted octave band measurements were taken simultaneously using a single instrument. In each area, three sets of measurements, each lasting for 20 sec, were taken 1 m away and perpendicular to the air stream of the conventional air gun while a worker simulated typical air gun work use. Two different advanced noise-reducing air nozzles were then installed. Sound level and octave band data were collected for each of these nozzles using the same methods as for the original air guns. Both of the advanced nozzles provided sound level reductions of about 7 dBA, on average. The highest noise reductions measured were 17.2 dBA for one model and 17.7 dBA for the other. In two areas, the advanced nozzles yielded no sound level reduction, or they produced small increases in sound level. The octave band data showed strong similarities in sound level among all air gun nozzles within the 10-1,000 Hz frequency range. However, the advanced air nozzles generally had lower noise contributions in the 1,000-20,000 Hz range. The observed decreases at these higher frequencies caused the overall sound level reductions that were measured. Installing new advanced noise-reducing air nozzles can provide large sound level reductions in comparison to existing conventional nozzles, which has direct benefit for hearing conservation efforts.

  7. 40 CFR 94.1 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.1 Applicability. (a) Except as noted in paragraphs (b) and (c) of...

  8. Neurologic outcome of controlled compressed-air diving.

    PubMed

    Cordes, P; Keil, R; Bartsch, T; Tetzlaff, K; Reuter, M; Hutzelmann, A; Friege, L; Meyer, T; Bettinghausen, E; Deuschl, G

    2000-12-12

    The authors compared the neurologic, neuropsychological, and neuroradiologic status of military compressed-air divers without a history of neurologic decompression illness and controls. No gross differences in the neuropsychometric test results or abnormal neurologic findings were found. There was no correlation between test results, diving experience, and number and size of cerebral MRI lesions. Prevalence of cerebral lesions was not increased in divers. These results suggest that there are no long-term CNS sequelae in military divers if diving is performed under controlled conditions.

  9. Influence of gas compressibility on a burning accident in a mining passage

    NASA Astrophysics Data System (ADS)

    Demir, Sinan; Calavay, Anish Raman; Akkerman, V'yacheslav

    2018-03-01

    A recent predictive scenario of a methane/air/coal dust fire in a mining passage is extended by incorporating the effect of gas compressibility into the analysis. The compressible and incompressible formulations are compared, qualitatively and quantitatively, in both the two-dimensional planar and cylindrical-axisymmetric geometries, and a detailed parametric study accounting for coal-dust combustion is performed. It is shown that gas compression moderates flame acceleration, and its impact depends on the type of the fuel, its various thermal-chemical parameters as well as on the geometry of the problem. While the effect of gas compression is relatively minor for the lean and rich flames, providing 5-25% reduction in the burning velocity and thereby justifying the incompressible formulation in that case, such a reduction appears significant, up to 70% for near-stoichiometric methane-air combustion, and therefore it should be incorporated into a rigorous formulation. It is demonstrated that the flame tip velocity remains noticeably subsonic in all the cases considered, which is opposite to the prediction of the incompressible formulation, but qualitatively agrees with the experimental predictions from the literature.

  10. Two-stroke S.I. engine competitive to four-stroke engine in terms of the exhaust emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavletic, R.; Trenc, F.

    1994-09-01

    A model engine with disintegrated working cycle was built. Its operation is not autonomous; compression of the working air is performed separately outside the engine by the compressed-air line supply. Pre-compressed charge together with the injected fuel is introduced in the combustion chamber. The model engine makes possible to determine indicated performance characteristics and its emission capability. Effective measured engine characteristics are of course not comparable with those obtained by a practical engine. The model presented is a two-stroke cycle engine. Exhaust emission picture of the presented engine is comparable with the emission of a modern four-stroke engine. 2 refs.,more » 13 figs., 2 tabs.« less

  11. Air-guided photonic-crystal-fiber pulse-compression delivery of multimegawatt femtosecond laser output for nonlinear-optical imaging and neurosurgery

    NASA Astrophysics Data System (ADS)

    Lanin, Aleksandr A.; Fedotov, Il'ya V.; Sidorov-Biryukov, Dmitrii A.; Doronina-Amitonova, Lyubov V.; Ivashkina, Olga I.; Zots, Marina A.; Sun, Chi-Kuang; Ömer Ilday, F.; Fedotov, Andrei B.; Anokhin, Konstantin V.; Zheltikov, Aleksei M.

    2012-03-01

    Large-core hollow photonic-crystal fibers (PCFs) are shown to enable a fiber-format air-guided delivery of ultrashort infrared laser pulses for neurosurgery and nonlinear-optical imaging. With an appropriate dispersion precompensation, an anomalously dispersive 15-μm-core hollow PCF compresses 510-fs, 1070-nm light pulses to a pulse width of about 110 fs, providing a peak power in excess of 5 MW. The compressed PCF output is employed to induce a local photodisruption of corpus callosum tissues in mouse brain and is used to generate the third harmonic in brain tissues, which is captured by the PCF and delivered to a detector through the PCF cladding.

  12. Subcutaneous emphysema, pneumomediastinum, pneumothorax, pneumoperitoneum, and pneumoretroperitoneum by insufflation of compressed air at the external genitalia in a child.

    PubMed

    Muramori, Katsumi; Takahashi, Yukiko; Handa, Noritoshi; Aikawa, Hisayuki

    2009-04-01

    A 7-year-old girl with concurrent subcutaneous emphysema, pneumomediastinum, pneumothorax, pneumoperitoneum, and pneumoretroperitoneum arrived at our facility. Compressed air at 5 atm of pressure was insufflated through the nozzle of a spray gun over her external genitalia. She was admitted for a small amount of genital bleeding and significant subcutaneous emphysema extending from the cheek to the upper body. Radiographic examination of the abdomen was suggestive of a visceral perforation, but she was managed conservatively and discharged in satisfactory condition without surgical intervention. The female genitalia possibly served as the entry point for air into the retroperitoneum and peritoneal cavity, with subsequent migration of air through the esophageal hiatus that resulted in pneumomediastinum, pneumothorax, and extensive subcutaneous emphysema.

  13. Energy recovery system

    DOEpatents

    Moore, Albert S.; Verhoff, Francis H.

    1980-01-01

    The present invention is directed to an improved wet air oxidation system and method for reducing the chemical oxygen demand (COD) of waste water used from scrubbers of coal gasification plants, with this COD reduction being sufficient to effectively eliminate waste water as an environmental pollutant. The improvement of the present invention is provided by heating the air used in the oxidation process to a temperature substantially equal to the temperature in the oxidation reactor before compressing or pressurizing the air. The compression of the already hot air further heats the air which is then passed in heat exchange with gaseous products of the oxidation reaction for "superheating" the gaseous products prior to the use thereof in turbines as the driving fluid. The superheating of the gaseous products significantly minimizes condensation of gaseous products in the turbine so as to provide a substantially greater recovery of mechanical energy from the process than heretofore achieved.

  14. 40 CFR 94.10 - Warranty period.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.10 Warranty period. (a)(1) Warranties imposed by § 94.1107 for...

  15. A Mass Tracking Formulation for Bubbles in Incompressible Flow

    DTIC Science & Technology

    2012-10-14

    incompressible flow to fully nonlinear compressible flow including the effects of shocks and rarefactions , and then subsequently making a number of...using the ideas from [19] to couple together incompressible flow with fully nonlinear compressible flow including shocks and rarefactions . The results...compressible flow including the effects of shocks and rarefactions , and then subsequently making a number of simplifying assumptions on the air flow

  16. On-Site Field-Feeding Waste to Energy Converter

    DTIC Science & Technology

    2008-12-01

    fundamentals The feedstock and part of the air needed for gasifica- tion enter through the open top of the downdraft gasifier. The motive force for the air...combustion air before entering the TQG, where the gas/air mixture is compressed by the turbocharger and distributed to the cylinders. The amount of JP-8

  17. Internal combustion engine with compressed air collection system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, P.W.

    1988-08-23

    This patent describes an internal combustion engine comprising cylinders respectively including a pressure port, pistons respectively movable in the cylinders through respective compression strokes, fuel injectors respectively connected to the cylinders and operative to supply, from a fuel source to the respective cylinders, a metered quantity of fuel conveyed by compressed gas in response to fuel injector operation during the compression strokes of the respective cylinders, a storage tank for accumulating and storing compressed gas, means for selectively connecting the pressure ports to the storage tank only during the compression strokes of the respective cylinders, and duct means connecting themore » storage tank to the fuel injectors for supplying the fuel injectors with compressed gas in response to fuel injector operation.« less

  18. Effect of real-time boundary wind conditions on the air flow and pollutant dispersion in an urban street canyon—Large eddy simulations

    NASA Astrophysics Data System (ADS)

    Zhang, Yun-Wei; Gu, Zhao-Lin; Cheng, Yan; Lee, Shun-Cheng

    2011-07-01

    Air flow and pollutant dispersion characteristics in an urban street canyon are studied under the real-time boundary conditions. A new scheme for realizing real-time boundary conditions in simulations is proposed, to keep the upper boundary wind conditions consistent with the measured time series of wind data. The air flow structure and its evolution under real-time boundary wind conditions are simulated by using this new scheme. The induced effect of time series of ambient wind conditions on the flow structures inside and above the street canyon is investigated. The flow shows an obvious intermittent feature in the street canyon and the flapping of the shear layer forms near the roof layer under real-time wind conditions, resulting in the expansion or compression of the air mass in the canyon. The simulations of pollutant dispersion show that the pollutants inside and above the street canyon are transported by different dispersion mechanisms, relying on the time series of air flow structures. Large scale air movements in the processes of the air mass expansion or compression in the canyon exhibit obvious effects on pollutant dispersion. The simulations of pollutant dispersion also show that the transport of pollutants from the canyon to the upper air flow is dominated by the shear layer turbulence near the roof level and the expansion or compression of the air mass in street canyon under real-time boundary wind conditions. Especially, the expansion of the air mass, which features the large scale air movement of the air mass, makes more contribution to the pollutant dispersion in this study. Comparisons of simulated results under different boundary wind conditions indicate that real-time boundary wind conditions produces better condition for pollutant dispersion than the artificially-designed steady boundary wind conditions.

  19. Mountain Plains Learning Experience Guide: Heating, Refrigeration, & Air Conditioning.

    ERIC Educational Resources Information Center

    Carey, John

    This Heating, Refrigeration, and Air Conditioning course is comprised of eleven individualized units: (1) Refrigeration Tools, Materials, and Refrigerant; (2) Basic Heating and Air Conditioning; (3) Sealed System Repairs; (4) Basic Refrigeration Systems; (5) Compression Systems and Compressors; (6) Refrigeration Controls; (7) Electric Circuit…

  20. Cooling system with compressor bleed and ambient air for gas turbine engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsh, Jan H.; Marra, John J.

    A cooling system for a turbine engine for directing cooling fluids from a compressor to a turbine blade cooling fluid supply and from an ambient air source to the turbine blade cooling fluid supply to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The cooling system may include a compressor bleed conduit extending from a compressor to the turbine blade cooling fluid supply that provides cooling fluid to at least one turbine blade. The compressor bleed conduit may include an upstream section and a downstream section whereby the upstream section exhausts compressed bleed airmore » through an outlet into the downstream section through which ambient air passes. The outlet of the upstream section may be generally aligned with a flow of ambient air flowing in the downstream section. As such, the compressed air increases the flow of ambient air to the turbine blade cooling fluid supply.« less

  1. Catalytic combustor for integrated gasification combined cycle power plant

    DOEpatents

    Bachovchin, Dennis M [Mauldin, SC; Lippert, Thomas E [Murrysville, PA

    2008-12-16

    A gasification power plant 10 includes a compressor 32 producing a compressed air flow 36, an air separation unit 22 producing a nitrogen flow 44, a gasifier 14 producing a primary fuel flow 28 and a secondary fuel source 60 providing a secondary fuel flow 62 The plant also includes a catalytic combustor 12 combining the nitrogen flow and a combustor portion 38 of the compressed air flow to form a diluted air flow 39 and combining at least one of the primary fuel flow and secondary fuel flow and a mixer portion 78 of the diluted air flow to produce a combustible mixture 80. A catalytic element 64 of the combustor 12 separately receives the combustible mixture and a backside cooling portion 84 of the diluted air flow and allows the mixture and the heated flow to produce a hot combustion gas 46 provided to a turbine 48. When fueled with the secondary fuel flow, nitrogen is not combined with the combustor portion.

  2. Exhaust gas recirculation in a homogeneous charge compression ignition engine

    DOEpatents

    Duffy, Kevin P [Metamora, IL; Kieser, Andrew J [Morton, IL; Rodman, Anthony [Chillicothe, IL; Liechty, Michael P [Chillicothe, IL; Hergart, Carl-Anders [Peoria, IL; Hardy, William L [Peoria, IL

    2008-05-27

    A homogeneous charge compression ignition engine operates by injecting liquid fuel directly in a combustion chamber, and mixing the fuel with recirculated exhaust and fresh air through an auto ignition condition of the fuel. The engine includes at least one turbocharger for extracting energy from the engine exhaust and using that energy to boost intake pressure of recirculated exhaust gas and fresh air. Elevated proportions of exhaust gas recirculated to the engine are attained by throttling the fresh air inlet supply. These elevated exhaust gas recirculation rates allow the HCCI engine to be operated at higher speeds and loads rendering the HCCI engine a more viable alternative to a conventional diesel engine.

  3. Forced-Air Warming During Pediatric Surgery: A Randomized Comparison of a Compressible with a Noncompressible Warming System.

    PubMed

    Triffterer, Lydia; Marhofer, Peter; Sulyok, Irene; Keplinger, Maya; Mair, Stefan; Steinberger, Markus; Klug, Wolfgang; Kimberger, Oliver

    2016-01-01

    Perioperative hypothermia is a common problem, challenging the anesthesiologist and influencing patient outcome. Efficient and safe perioperative active warming is therefore paramount; yet, it can be particularly challenging in pediatric patients. Forced-air warming technology is the most widespread patient-warming option, with most forced-air warming systems consisting of a forced-air blower connected to a compressible, double layer plastic and/or a paper blanket with air holes on the patient side. We compared an alternative, forced-air, noncompressible, under-body patient-warming mattress (Baby/Kleinkinddecke of MoeckWarmingSystems, Moeck und Moeck GmbH; group MM) with a standard, compressible warming mattress system (Pediatric Underbody, Bair Hugger, 3M; group BH). The study included 80 patients aged <2 years, scheduled for elective surgery. After a preoperative core temperature measurement, the patients were placed on the randomized mattress in the operation theater and 4 temperature probes were applied rectally and to the patients' skin. The warming devices were turned on as soon as possible to the level for pediatric patients as recommended by the manufacturer (MM = 40°C, BH = 43°C). There was a distinct difference of temperature slope between the 2 groups: core temperatures of patients in the group MM remained stable and mean of the core temperature of patients in the group BH increased significantly (difference: +1.48°C/h; 95% confidence interval, 0.82-2.15°C/h; P = 0.0001). The need for temperature downregulation occurred more often in the BH group, with 22 vs 7 incidences (RR, 3.14; 95% confidence interval, 1.52-6.52; P = 0.0006). Skin temperatures were all lower in the MM group. Perioperatively, no side effects related to a warming device were observed in any group. Both devices are feasible choices for active pediatric patient warming, with the compressible mattress system being better suited to increase core temperature. The use of lower pediatric forced-air temperature settings, as recommended by the manufacturer, in the noncompressible mattress group resulted in more stable core temperature conditions, with fewer forced-air temperature adjustments necessary to avoid hyperthermia.

  4. 40 CFR 94.4 - Treatment of confidential information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... 94.4 Section 94.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.4 Treatment of confidential information. (a) Any...

  5. Thermodynamic Performance and Cost Optimization of a Novel Hybrid Thermal-Compressed Air Energy Storage System Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houssainy, Sammy; Janbozorgi, Mohammad; Kavehpour, Pirouz

    Compressed Air Energy Storage (CAES) can potentially allow renewable energy sources to meet electricity demands as reliably as coal-fired power plants. However, conventional CAES systems rely on the combustion of natural gas, require large storage volumes, and operate at high pressures, which possess inherent problems such as high costs, strict geological locations, and the production of greenhouse gas emissions. A novel and patented hybrid thermal-compressed air energy storage (HT-CAES) design is presented which allows a portion of the available energy, from the grid or renewable sources, to operate a compressor and the remainder to be converted and stored in themore » form of heat, through joule heating in a sensible thermal storage medium. The HT-CAES design incudes a turbocharger unit that provides supplementary mass flow rate alongside the air storage. The hybrid design and the addition of a turbocharger have the beneficial effect of mitigating the shortcomings of conventional CAES systems and its derivatives by eliminating combustion emissions and reducing storage volumes, operating pressures, and costs. Storage efficiency and cost are the two key factors, which upon integration with renewable energies would allow the sources to operate as independent forms of sustainable energy. The potential of the HT-CAES design is illustrated through a thermodynamic optimization study, which outlines key variables that have a major impact on the performance and economics of the storage system. The optimization analysis quantifies the required distribution of energy between thermal and compressed air energy storage, for maximum efficiency, and for minimum cost. This study provides a roundtrip energy and exergy efficiency map of the storage system and illustrates a trade off that exists between its capital cost and performance.« less

  6. Quasi-remote Pulse Compression and Generation of Radiation and Particle Beams

    NASA Astrophysics Data System (ADS)

    Hubbard, Richard F.; Ting, Antonio; Penano, Joseph R.; Hafizi, Bahman; Gordon, Daniel F.; Sprangle, Phillip; Zigler, Arie

    2013-10-01

    Using chirped pulse amplification (CPA), laser pulses are routinely compressed to pulse lengths below 50 femtoseconds and focused to spot sizes of a few microns. These intense pulses may be focused onto a solid, gas, or plasma converter to produce penetrating electromagnetic radiation (e.g., x-rays, terahertz) or energetic particles. However, nonlinear effects and plasma generation place severe restrictions on the intensity of the pulse that can be propagated through the air to a distant target or object. This paper describes a quasi-remote laser pulse compression architecture in which the pulse compression apparatus, focusing system, and radiation or particle beam converter are placed at a substantial distance from the rest of the CPA system. By propagating a radially-expanded, chirped/stretched pulse through the air at a sufficiently low intensity, the stretched pulse can be compressed and focused onto the converter while keeping the largest and most expensive components of the CPA system far from the object to be irradiated. Analytical and simulation models are used to determine how axial compression and focused spot size degrade as the standoff distance to the compressor/focusing/converter assembly is increased. The implications of these results for proof-of-concept experiments and various potential applications will be discussed. Supported by the NRL Base Program

  7. The New Interpretation of the Laws of Air Resistance

    NASA Technical Reports Server (NTRS)

    Prandtl, L

    1923-01-01

    A closer examination of Newton's formula for air resistance shows that it is well to consider the air as an ordinary fluid, and, indeed for most of the velocities considered, as a non-compressible fluid, so long as the dimensions of the moving body are large in comparison with the mean free path of the particles of air.

  8. Improved fireman's compressed air breathing system pressure vessel development program

    NASA Technical Reports Server (NTRS)

    King, H. A.; Morris, E. E.

    1973-01-01

    Prototype high pressure glass filament-wound, aluminum-lined pressurant vessels suitable for use in a fireman's compressed air breathing system were designed, fabricated, and acceptance tested in order to demonstrate the feasibility of producing such high performance, lightweight units. The 4000 psi tanks have a 60 standard cubic foot (SCF) air capacity, and have a 6.5 inch diamter, 19 inch length, 415 inch volume, weigh 13 pounds when empty, and contain 33 percent more air than the current 45 SCF (2250 psi) steel units. The current steel 60 SCF (3000 psi) tanks weigh approximately twice as much as the prototype when empty, and are 2 inches, or 10 percent shorter. The prototype units also have non-rusting aluminum interiors, which removes the hazard of corrosion, the need for internal coatings, and the possibility of rust particles clogging the breathing system.

  9. Trans-anal barotrauma by compressed air leading to sigmoid perforation due to a dangerous practical joke

    PubMed Central

    Pahwa, Harvinder Singh; Kumar, Awanish; Srivastava, Rohit; Rai, Anurag

    2012-01-01

    To present a case report of trans-anal barotrauma by high-pressure compressed air jet as a dangerous practical joke, that is, playful insufflation of high-pressure air jet through the anal orifice resulting in sigmoid perforation. The patient presented to emergency a day later with complaints of severe pain in the abdomen and abdominal distension following insufflation of high-pressure air jet through the anus. On examination, he had signs suggestive of perforation peritonitis and x-ray of the abdomen showed gas under the diaphragm. An emergency exploratory laparotomy was performed which revealed a 4-cm perforation in the sigmoid colon. Resection of the segment containing perforation along with the surrounding devitalised part was done with double-barrel colostomy. Reversal of colostomy was done after 8 weeks. Follow-up was uneventful. PMID:22854240

  10. Trans-anal barotrauma by compressed air leading to sigmoid perforation due to a dangerous practical joke.

    PubMed

    Pahwa, Harvinder Singh; Kumar, Awanish; Srivastava, Rohit; Rai, Anurag

    2012-08-01

    To present a case report of trans-anal barotrauma by high-pressure compressed air jet as a dangerous practical joke, that is, playful insufflation of high-pressure air jet through the anal orifice resulting in sigmoid perforation. The patient presented to emergency a day later with complaints of severe pain in the abdomen and abdominal distension following insufflation of high-pressure air jet through the anus. On examination, he had signs suggestive of perforation peritonitis and x-ray of the abdomen showed gas under the diaphragm. An emergency exploratory laparotomy was performed which revealed a 4-cm perforation in the sigmoid colon. Resection of the segment containing perforation along with the surrounding devitalised part was done with double-barrel colostomy. Reversal of colostomy was done after 8 weeks. Follow-up was uneventful.

  11. Diesel engine catalytic combustor system. [aircraft engines

    NASA Technical Reports Server (NTRS)

    Ream, L. W. (Inventor)

    1984-01-01

    A low compression turbocharged diesel engine is provided in which the turbocharger can be operated independently of the engine to power auxiliary equipment. Fuel and air are burned in a catalytic combustor to drive the turbine wheel of turbine section which is initially caused to rotate by starter motor. By opening a flapper value, compressed air from the blower section is directed to catalytic combustor when it is heated and expanded, serving to drive the turbine wheel and also to heat the catalytic element. To start, engine valve is closed, combustion is terminated in catalytic combustor, and the valve is then opened to utilize air from the blower for the air driven motor. When the engine starts, the constituents in its exhaust gas react in the catalytic element and the heat generated provides additional energy for the turbine section.

  12. 10. DIAMOND MINE YARD FROM THE NORTH SHOWING A COMPRESSED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. DIAMOND MINE YARD FROM THE NORTH SHOWING A COMPRESSED AIR PIPE AND TRESTLE IN THE LOWER LEFT, AND THE LORRY HOUSE. A PART OF A RETAINING WALL IS VISIBLE ABOVE THE RAILROAD CUT - Butte Mineyards, Diamond Mine, Butte, Silver Bow County, MT

  13. 29 CFR 1910.166-1910.168 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false [Reserved] 1910.166-1910.168 Section 1910.166-1910.168 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Compressed Gas and Compressed Air Equipment...

  14. Measuring Scaling Effects in Small Two-Stroke Internal Combustion Engines

    DTIC Science & Technology

    2014-06-20

    Figure 17. The engines ingest air /fuel mixture through a dual mixing screw carburetor to the crankcase. Crankcase compression drives the scavenging...Alex K. Rowton, Captain, USAF AFIT-ENY-T-14-J-36 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright...Patterson Air Force Base, Ohio DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. The views expressed

  15. Gas turbine engine with radial diffuser and shortened mid section

    DOEpatents

    Charron, Richard C.; Montgomery, Matthew D.

    2015-09-08

    An industrial gas turbine engine (10), including: a can annular combustion assembly (80), having a plurality of discrete flow ducts configured to receive combustion gas from respective combustors (82) and deliver the combustion gas along a straight flow path at a speed and orientation appropriate for delivery directly onto the first row (56) of turbine blades (62); and a compressor diffuser (32) having a redirecting surface (130, 140) configured to receive an axial flow of compressed air and redirect the axial flow of compressed air radially outward.

  16. Electric and hybrid vehicle environmental control subsystem study

    NASA Technical Reports Server (NTRS)

    Heitner, K. L.

    1980-01-01

    An environmental control subsystem (ECS) in electric and hybrid vehicles is studied. A combination of a combustion heater and gasoline engine (Otto cycle) driven vapor compression air conditioner is selected. The combustion heater, the small gasoline engine, and the vapor compression air conditioner are commercially available. These technologies have good cost and performance characteristics. The cost for this ECS is relatively close to the cost of current ECS's. Its effect on the vehicle's propulsion battery is minimal and the ECS size and weight do not have significant impact on the vehicle's range.

  17. Hemodynamic Deterioration in Lateral Compression Pelvic Fracture After Prehospital Pelvic Circumferential Compression Device Application.

    PubMed

    Garner, Alan A; Hsu, Jeremy; McShane, Anne; Sroor, Adam

    Increased fracture displacement has previously been described with the application of pelvic circumferential compression devices (PCCDs) in patients with lateral compression-type pelvic fracture. We describe the first reported case of hemodynamic deterioration temporally associated with the prehospital application of a PCCD in a patient with a complex acetabular fracture with medial displacement of the femoral head. Active hemorrhage from a site adjacent to the acetabular fracture was subsequently demonstrated on angiography. Caution in the application of PCCDs to patients with lateral compression-type fractures is warranted. Copyright © 2017 Air Medical Journal Associates. All rights reserved.

  18. Air-Lubricated Lead Screw

    NASA Technical Reports Server (NTRS)

    Perkins, G. S.

    1983-01-01

    Air lubricated lead screw and nut carefully machined to have closely matched closely fitting threads. Compressed air injected into two plenums encircle nut and flow through orifices to lubricate mating threads. Originally developed to position precisely interferometer retroreflector for airborne measurement of solar infrared radiation, device now has positioning accuracy of 0.25 micron.

  19. Drop transfer between superhydrophobic wells using air logic control.

    PubMed

    Vuong, Thach; Cheong, Brandon Huey-Ping; Huynh, So Hung; Muradoglu, Murat; Liew, Oi Wah; Ng, Tuck Wah

    2015-02-21

    Superhydrophobic surfaces aid biochemical analysis by limiting sample loss. A system based on wells here tolerated tilting up to 20° and allowed air logic transfer with evidence of mixing. Conditions for intact transfer on 15 to 60 μL drops using compressed air pressure operation were also mapped.

  20. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements... interval. You may use the difference between a diluted exhaust flow meter and a dilution air meter to... compression-ignition engines, 2-stroke spark-ignition engines, and 4-stroke spark-ignition engines below 19 kW...

  1. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements... interval. You may use the difference between a diluted exhaust flow meter and a dilution air meter to... compression-ignition engines, two-stroke spark-ignition engines, or four-stroke spark-ignition engines at or...

  2. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements... interval. You may use the difference between a diluted exhaust flow meter and a dilution air meter to... compression-ignition engines, 2-stroke spark-ignition engines, and 4-stroke spark-ignition engines below 19 kW...

  3. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements... interval. You may use the difference between a diluted exhaust flow meter and a dilution air meter to... compression-ignition engines, 2-stroke spark-ignition engines, and 4-stroke spark-ignition engines below 19 kW...

  4. Compressed air injection technique to standardize block injection pressures : [La technique d'injection d'air comprimé pour normaliser les pressions d'injection d'un blocage nerveux].

    PubMed

    Tsui, Ban C H; Li, Lisa X Y; Pillay, Jennifer J

    2006-11-01

    Presently, no standardized technique exists to monitor injection pressures during peripheral nerve blocks. Our objective was to determine if a compressed air injection technique, using an in vitro model based on Boyle's law and typical regional anesthesia equipment, could consistently maintain injection pressures below a 1293 mmHg level associated with clinically significant nerve injury. Injection pressures for 20 and 30 mL syringes with various needle sizes ( 18G, 20G, 21 G, 22G, and 24G) were measured in a closed system. A set volume of air was aspirated into a saline-filled syringe and then compressed and maintained at various percentages while pressure was measured. The needle was inserted into the injection port of a pressure sensor, which had attached extension tubing with an injection plug clamped "off". Using linear regression with all data points, the pressure value and 99% confidence interval (CI) at 50% air compression was estimated. The linearity of Boyle's law was demonstrated with a high correlation, r = 0.99, and a slope of 0.984 (99% CI: 0.967-1.001). The net pressure generated at 50% compression was estimated as 744.8 mmHg, with the 99% CI between 729.6 and 760.0 mmHg. The various syringe/needle combinations had similar results. By creating and maintaining syringe air compression at 50% or less, injection pressures will be substantially below the 1293 mmHg threshold considered to be an associated risk factor for clinically significant nerve injury. This technique may allow simple, real-time and objective monitoring during local anesthetic injections while inherently reducing injection speed. Présentement, aucune technique normalisée ne permet de vérifier les pressions d'injection pendant les blocages nerveux périphériques. Nous voulions vérifier si une technique d'injection d'air comprimé, utilisant un modèle in vitro fondé sur la loi de Boyle et du matériel propre à l'anesthésie régionale, pouvait maintenir avec régularité les pressions d'injection sous les 1293 mmHg, pression associée à une lésion nerveuse cliniquement significative. MéTHODE: Les pressions d'injection pour des seringues de 20 et 30 mL et diverses tailles d'aiguilles (18G, 20G, 21G, 22G et 24G) ont été mesurées dans un système fermé. Un volume défini d'air a été aspiré dans une seringue rempli de solution saline, puis comprimé et maintenu à des pourcentages variés pendant la mesure de la pression. L'aiguille a été insérée dans l'ouverture à injection d'un détecteur de pression muni d'une extension avec un bouchon d'injection en position fermée. La valeur de la pression et l'intervalle de confiance de 99 % (IC) pour une compression d'air à 50 % ont été évalués en utilisant une régression linéaire avec tous les points de données. RéSULTATS: La linéarité de la loi de Boyle a été démontrée avec une forte corrélation, r = 0,99 et une pente de 0,984 (IC de 99 % : 0,967-1,001) La pression nette générée sous une compression de 50% a été de 744,8 mmHg avec un IC de 99 % entre 729,6 et 760,0 mmHg. Les diverses combinaisons de seringues et d'aiguilles ont présenté des résultats similaires. En créant et en maintenant dans la seringue une compression d'air à 50% ou moins, les pressions d'injection seront dans l'ensemble sous le seuil des 1293 mmHg associé à un facteur de risque de lésion nerveuse cliniquement significative. Cette technique peut permettre une surveillance simple, objective et en temps réel pendant les injections d'anesthésiques locaux tout en réduisant fondamentalement la vitesse d'injection.

  5. 46 CFR 112.50-7 - Compressed air starting.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-7 Compressed... emergency power source. If this compressor supplies other auxiliaries, there must be a non-return valve at...

  6. Clean air program : design guidelines for bus transit systems using compressed natural gas as an alternative fuel

    DOT National Transportation Integrated Search

    1996-06-01

    This report documents design guidelines for the safe use of Compressed Natural Gas (CNG). The report is designed to provide guidance, information on safe industry practices, applicable national codes and standards, and reference data that transit age...

  7. Adiabatic Compression in a Fire Syringe.

    ERIC Educational Resources Information Center

    Hayn, Carl H.; Baird, Scott C.

    1985-01-01

    Suggests using better materials in fire syringes to obtain more effective results during demonstrations which show the elevation in temperature upon a very rapid (adiabatic) compression of air. Also describes an experiment (using ignition temperatures) which introduces students to the use of thermocouples for high temperature measurements. (DH)

  8. 46 CFR 151.50-22 - Hydrochloric acid.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...), compressed air may be used to discharge hydrochloric acid from gravity type cargo tanks only if the tanks are of cylindrical shape with dished heads, provided the air pressure does not exceed the design pressure...

  9. Influence of Spectral Transfer Processes in Compressible Low Frequency Plasma Turbulence on Scattering and Refraction of Electromagnetic Signals

    DTIC Science & Technology

    2015-01-01

    AFRL-RY-WP-TR-2014-0230 INFLUENCE OF SPECTRAL TRANSFER PROCESSES IN COMPRESSIBLE LOW FREQUENCY PLASMA TURBULENCE ON SCATTERING AND...INFLUENCE OF SPECTRAL TRANSFER PROCESSES IN COMPRESSIBLE LOW FREQUENCY PLASMA TURBULENCE ON SCATTERING AND REFRACTION OF ELECTROMAGNETIC SIGNALS 5a...research is to analyze influence of plasma turbulence on hypersonic sensor systems and NGOTHR applications and to meet the Air Force’s ever-increasing

  10. The Quiescent-Chamber Type Compression-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Foster, H H

    1937-01-01

    Report presents the results of performance tests of a single-cylinder 4-stroke-cycle compression-ignition engine having a vertical disk form of combustion chamber without air flow. The number, size, and direction of the orifices of the fuel-injection nozzles used were independently varied. A table and graphs are presented showing the performance of the engine with different nozzles; results of tests at different compression ratios, boost pressures, and coolant temperatures are also included.

  11. Gas turbine premixing systems

    DOEpatents

    Kraemer, Gilbert Otto; Varatharajan, Balachandar; Evulet, Andrei Tristan; Yilmaz, Ertan; Lacy, Benjamin Paul

    2013-12-31

    Methods and systems are provided for premixing combustion fuel and air within gas turbines. In one embodiment, a combustor includes an upstream mixing panel configured to direct compressed air and combustion fuel through premixing zone to form a fuel-air mixture. The combustor includes a downstream mixing panel configured to mix additional combustion fuel with the fule-air mixture to form a combustion mixture.

  12. Development of a Dosimeter System for Unsymmetrical Dimethylhydrazine, Monomethylhydrazine and Hydrazine

    DTIC Science & Technology

    1994-06-27

    the amount of dilution air . Conditioned house- compressed air was used as the diluent. The conditioning procedure consisted of passing the house air ...unsymmetrical dlmethylhydrazine (UDMI-) in air has been developed. The dosimeter consists of a replaceable dosimeter card and a reusable...Department of Defense and NASA require air monitoring for hydrazines in areas where they are handled and/or stored. A real-time dosimeter using vanillin

  13. Modeling and Analysis of the Static Characteristics and Dynamic Responses of Herringbone-grooved Thrust Bearings

    NASA Astrophysics Data System (ADS)

    Yu, Yunluo; Pu, Guang; Jiang, Kyle

    2017-12-01

    This paper describes a theoretical investigation of static and dynamic characteristics of herringbone-grooved air thrust bearings. Firstly, Finite Difference Method (FDM) and Finite Volume Method (FVM) are used in combination to solve the non-linear Reynolds equation and to find the pressure distribution of the film and the total loading capacity of the bearing. The influence of design parameters on air film gap characteristics, including the air film thickness, depth of the groove and rotating speed, are analyzed based on the FDM model. The simulation results show that hydrostatic thrust bearings can achieve a better load capacity with less air consumption than herringbone grooved thrust bearings at low compressibility number; herringbone grooved thrust bearings can achieve a higher load capacity but with more air consumption than hydrostatic thrust bearing at high compressibility number; herringbone grooved thrust bearings would lose stability at high rotating speeds, and the stability increases with the depth of the grooves.

  14. Development of the transtibial prosthesis controlled pneumatically and electrically by microcomputer system.

    PubMed

    Shimada, Youichi; Terayama, Yukio

    2006-01-01

    This report represents the development of the prototype transtibial prosthesis to assist a smooth and comfortable walking for an unilateral amputee. This prosthesis is composed of two air cylinders, solenoid valves, portable and small air tank for compressed air storage, a multiple sensor system and a microprocessor. Two air cylinders are located around the rods to act as antagonistic and agonistic muscles. The system causes flexion and extension of the foot plate jointed at the ankle with compressed air, injected -or discharged via a solenoid or electromagnetic valves. The valves or solenoids are controlled with a microprocessor (Microchip Technology Inc., PIC16F876), the microprocessor generates control signals to the interface circuits for valve opening and closing consistent with the foot position during the walking phase. The control patterns generated in the microprocessor are modified with feedback from the touch sensor, ankle joint angle sensor and the two dimensional acceleration sensor. The primary walking pattern for an individual amputee should be developed through the gait analysis with video.

  15. Numerical studies of the formation and destruction of vortices in a motored four-stroke piston-cylinder configuration

    NASA Technical Reports Server (NTRS)

    Schock, H. J.; Sosoka, D. J.; Ramos, J. I.

    1983-01-01

    A finite-difference procedure which solves the conservation equations of mass, momentum, and energy is used to investigate the effects of the compression ratio, engine speed, bore-to-stroke ratio, and air intake flow angle on the turbulent flow field within an axisymmetric piston-cylinder configuration. It is shown that in a four-stroke piston-cylinder configuration, the intake stroke is characterized by the formation of a piston vortex. The piston vortex is stretched during the intake stroke, and the head vortex has an almost constant diameter. For a 0-deg air intake flow angle, both vortices disappear by the end of the compression stroke; for an air intake flow angle of 45 deg, the flow field within the cylinder shows three elongated vortices which persist into the compression stroke and then break up and merge. It is also shown that larger bore-to-stroke ratios give rise to lower turbulent levels than smaller bore-to-stroke ratios and that the turbulent intensity is almost independent of the rpm.

  16. Mechanical Properties Experimental Study of Engineering Vehicle Refurbished Tire

    NASA Astrophysics Data System (ADS)

    Qiang, Wang; Xiaojie, Qi; Zhao, Yang; Yunlong, Wang; Guotian, Wang; Degang, Lv

    2018-05-01

    The vehicle refurbished tire test system was constructed, got load-deformation, load-stiffness, and load-compression ratio property laws of engineering vehicle refurbished tire under the working condition of static state and ground contact, and built radial direction loading deformation mathematics model of 26.5R25 engineering vehicle refurbished tire. The test results show that radial-direction and side-direction deformation value is a little less than that of the new tire. The radial-direction stiffness and compression ratio of engineering vehicle refurbished tire were greatly influenced by radial-direction load and air inflation pressure. When load was certain, radial-direction stiffness would increase with air inflation pressure increasing. When air inflation pressure was certain, compression ratio of engineering vehicle refurbished tire would enlarge with radial-direction load increasing, which was a little less than that of the new and the same type tire. Aging degree of old car-case would exert a great influence on deformation property of engineering vehicle refurbished tire, thus engineering vehicle refurbished tires are suitable to the working condition of low tire pressure and less load.

  17. Photo-acoustic sensor for detection of oil contamination in compressed air systems.

    PubMed

    Lassen, Mikael; Harder, David Baslev; Brusch, Anders; Nielsen, Ole Stender; Heikens, Dita; Persijn, Stefan; Petersen, Jan C

    2017-02-06

    We demonstrate an online (in-situ) sensor for continuous detection of oil contamination in compressed air systems complying with the ISO-8573 standard. The sensor is based on the photo-acoustic (PA) effect. The online and real-time PA sensor system has the potential to benefit a wide range of users that require high purity compressed air. Among these are hospitals, pharmaceutical industries, electronics manufacturers, and clean room facilities. The sensor was tested for sensitivity, repeatability, robustness to molecular cross-interference, and stability of calibration. Explicit measurements of hexane (C6H14) and decane (C10H22) vapors via excitation of molecular C-H vibrations at approx. 2950 cm-1 (3.38 μm) were conducted with a custom made interband cascade laser (ICL). For the decane measurements a (1 σ) standard deviation (STD) of 0.3 ppb was demonstrated, which corresponds to a normalized noise equivalent absorption (NNEA) coefficient for the prototype PA sensor of 2.8×10-9 W cm-1 Hz1/2.

  18. Factors that influence the tribocharging of pulverulent materials in compressed-air devices

    NASA Astrophysics Data System (ADS)

    Das, S.; Medles, K.; Mihalcioiu, A.; Beleca, R.; Dragan, C.; Dascalescu, L.

    2008-12-01

    Tribocharging of pulverulent materials in compressed-air devices is a typical multi-factorial process. This paper aims at demonstrating the interest of using the design of experiments methodology in association with virtual instrumentation for quantifying the effects of various process varaibles and of their interactions, as a prerequisite for the development of new tribocharging devices for industrial applications. The study is focused on the tribocharging of PVC powders in compressed-air devices similar to those employed in electrostatic painting. A classical 2 full-factorial design (3 factors at two levels) was employed for conducting the experiments. The response function was the charge/mass ratio of the material collected in a modified Faraday cage, at the exit of the tribocharging device. The charge/mass ratio was found to increase with the injection pressure and the vortex pressure in the tribocharging device, and to decrease with the increasing of the feed rate. In the present study an in-house design of experiments software was employed for statistical analysis of experimental data and validation of the experimental model.

  19. 2. SOUTHEAST SIDE. HIGH PRESSURE HELIUM STORAGE TANKS AT LEFT. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. SOUTHEAST SIDE. HIGH PRESSURE HELIUM STORAGE TANKS AT LEFT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Helium Compression Plant, Test Area 1-115, intersection of Altair & Saturn Boulevards, Boron, Kern County, CA

  20. Mach 6.5 air induction system design for the Beta 2 two-stage-to-orbit booster vehicle

    NASA Technical Reports Server (NTRS)

    Midea, Anthony C.

    1991-01-01

    A preliminary, two-dimensional, mixed compression air induction system is designed for the Beta II Two Stage to Orbit booster vehicle to minimize installation losses and efficiently deliver the required airflow. Design concepts, such as an external isentropic compression ramp and a bypass system were developed and evaluated for performance benefits. The design was optimized by maximizing installed propulsion/vehicle system performance. The resulting system design operating characteristics and performance are presented. The air induction system design has significantly lower transonic drag than similar designs and only requires about 1/3 of the bleed extraction. In addition, the design efficiently provides the integrated system required airflow, while maintaining adequate levels of total pressure recovery. The excellent performance of this highly integrated air induction system is essential for the successful completion of the Beta II booster vehicle mission.

  1. Morphological variation of stimuli-responsive polypeptide at air-water interface

    NASA Astrophysics Data System (ADS)

    Shin, Sungchul; Ahn, Sungmin; Cheng, Jie; Chang, Hyejin; Jung, Dae-Hong; Hyun, Jinho

    2016-12-01

    The morphological variation of stimuli-responsive polypeptide molecules at the air-water interface as a function of temperature and compression was described. The surface pressure-area (π-A) isotherms of an elastin-like polypeptide (ELP) monolayer were obtained under variable external conditions, and Langmuir-Blodgett (LB) monolayers were deposited onto a mica substrate for characterization. As the compression of the ELP monolayer increased, the surface pressure increased gradually, indicating that the ELP monolayer could be prepared with high stability at the air-water interface. The temperature in the subphase of the ELP monolayer was critical in the preparation of LB monolayers. The change in temperature induced a shift in the π-A isotherms as well as a change in ELP secondary structures. Surprisingly, the compression of the ELP monolayer influenced the ELP secondary structure due to the reduction in the phase transition temperature with decreasing temperature. The change in the ELP secondary structure formed at the air-water interface was investigated by surface-enhanced Raman scattering. Moreover, the morphology of the ELP monolayer was subsequently imaged using atomic force microscopy. The temperature responsive behavior resulted in changes in surface morphology from relatively flat structures to rugged labyrinth structures, which suggested conformational changes in the ELP monolayers.

  2. Compressed air blast injury with palpebral, orbital, facial, cervical, and mediastinal emphysema through an eyelid laceration: a case report and review of literature.

    PubMed

    Hiraoka, Takahiro; Ogami, Tomohiro; Okamoto, Fumiki; Oshika, Tetsuro

    2013-11-07

    To the best of our knowledge, only 14 cases of orbital or periorbital compressed air injuries from air guns or hoses have been reported in the literature. A 30-year-old man was accidentally injured when a compressed air hose nozzle hit his right eye. The right half of his face was markedly swollen and a skin laceration near the right medial canthus was identified. A computed tomography scan showed subcutaneous and intraorbital emphysema around the right eye as well as cervical and mediastinal emphysema. He was prophylactically treated with systemic and topical antibiotics to prevent infection. All emphysemas had completely resolved 2 weeks after the injury. A review of all 15 cases (including ours) showed that all patients were male and that 6 of the 15 (40.0%) cases were related to industrial accidents. Although emphysema was restricted to the subconjunctival space in 2 (13.3%) cases, it spread to the orbit in the remaining 13 (86.7%) cases. Cervical and mediastinal emphysemas were found in 3 (20.0%) cases, and intracranial emphysema was confirmed in 6 (40.0%) cases. Prophylactic antibiotics were used in most cases and the prognosis was generally good in all but one patient, who developed optic atrophy and blindness.

  3. FRC Compression Heating Experiment (FRCHX) at AFRL

    DTIC Science & Technology

    2007-06-01

    Air Force Research Laboratory ( AFRL ) and Los Alamos National Laboratory (LANL) have been... Air Force Research Laboratory , Directed Energy Directorate, 3550 Aberdeen Avenue SE Kirtland AFB, NM 87117-5776 USA 8. PERFORMING ORGANIZATION REPORT...Matt Domonkos, Don Gale, Bernard Martinez, Jerry Parker, Dale Ralph, Ed Ruden, and Wayne Sommars Air Force Research Laboratory , Directed

  4. How to Use a Candle to Study Sound Waves

    ERIC Educational Resources Information Center

    Carvalho, P. Simeão; Briosa, E.; Rodrigues, M.; Pereira, C.; Ataíde, M.

    2013-01-01

    It is well known that sound waves in air are longitudinal waves. Although teachers use analogies such as compressing horizontal springs to demonstrate what longitudinal waves look like, students still present some difficulty in understanding that (1) sound waves correspond to oscillations of air particles, and (2) there is no "air flow"…

  5. Air-void embedded GaN-based light-emitting diodes grown on laser drilling patterned sapphire substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Hao; Li, Yufeng; Wang, Shuai

    Air-void structure was introduced in GaN-based blue light-emitting diodes (LED) with one-step growth on periodic laser drilling patterned sapphire substrate, which free of any photolithography or wet/dry etching process. The influence of filling factors (FF) of air-void on crystal quality and optical performance were investigate. Transmission electron microscopy images and micro-Raman spectroscopy indicated that the dislocation was bended and the partially compressed strain was released. When FF was 55.43%, compared with the LED structure grown on flat sapphire substrate, the incorporation of air-void was observed to reduce the compressed stress of ∼20% and the luminance intensity has improved by 128%.more » Together with the simulated reflection intensity enhancement by finite difference time-domain (FDTD) method, we attribute the enhanced optical performance to the combined contribution of strong back-side light reflection of air-void and better GaN epitaxial quality. This approach provides a simple replacement to the conventional air-void embedded LED process.« less

  6. Performance of a Compression-ignition Engine with a Precombustion Chamber Having High-Velocity Air Flow

    NASA Technical Reports Server (NTRS)

    Spanogle, J A; Moore, C S

    1931-01-01

    Presented here are the results of performance tests made with a single-cylinder, four stroke cycle, compression-ignition engine. These tests were made on a precombustion chamber type of cylinder head designed to have air velocity and tangential air flow in both the chamber and cylinder. The performance was investigated for variable load and engine speed, type of fuel spray, valve opening pressure, injection period and, for the spherical chamber, position of the injection spray relative to the air flow. The pressure variations between the pear-shaped precombustion chamber and the cylinder for motoring and full load conditions were determined with a Farnboro electric indicator. The combustion chamber designs tested gave good mixing of a single compact fuel spray with the air, but did not control the ensuing combustion sufficiently. Relative to each other, the velocity of air flow was too high, the spray dispersion by injection too great, and the metering effect of the cylinder head passage insufficient. The correct relation of these factors is of the utmost importance for engine performance.

  7. Fully-coupled aeroelastic simulation with fluid compressibility — For application to vocal fold vibration

    PubMed Central

    Yang, Jubiao; Wang, Xingshi; Krane, Michael; Zhang, Lucy T.

    2017-01-01

    In this study, a fully-coupled fluid–structure interaction model is developed for studying dynamic interactions between compressible fluid and aeroelastic structures. The technique is built based on the modified Immersed Finite Element Method (mIFEM), a robust numerical technique to simulate fluid–structure interactions that has capabilities to simulate high Reynolds number flows and handles large density disparities between the fluid and the solid. For accurate assessment of this intricate dynamic process between compressible fluid, such as air and aeroelastic structures, we included in the model the fluid compressibility in an isentropic process and a solid contact model. The accuracy of the compressible fluid solver is verified by examining acoustic wave propagations in a closed and an open duct, respectively. The fully-coupled fluid–structure interaction model is then used to simulate and analyze vocal folds vibrations using compressible air interacting with vocal folds that are represented as layered viscoelastic structures. Using physiological geometric and parametric setup, we are able to obtain a self-sustained vocal fold vibration with a constant inflow pressure. Parametric studies are also performed to study the effects of lung pressure and vocal fold tissue stiffness in vocal folds vibrations. All the case studies produce expected airflow behavior and a sustained vibration, which provide verification and confidence in our future studies of realistic acoustical studies of the phonation process. PMID:29527067

  8. Integrated Testing of a Carbon Dioxide Removal Assembly and a Temperature-Swing Adsorption Compressor for Closed-Loop Air Revitalization

    NASA Technical Reports Server (NTRS)

    Knox, J. C.; Mulloth, Lila; Frederick, Kenneth; Affleck, Dave

    2003-01-01

    Accumulation and subsequent compression of carbon dioxide that is removed from space cabin are two important processes involved in a closed-loop air revitalization scheme of the International Space Station (ISS). The carbon dioxide removal assembly (CDRA) of ISS currently operates in an open loop mode without a compressor. This paper describes the integrated test results of a flight-like CDRA and a temperature-swing adsorption compressor (TSAC) for carbon dioxide removal and compression. The paper provides details of the TSAC operation at various CO2 loadings and corresponding performance of CDRA.

  9. Compressing a spinodal surface at fixed area: bijels in a centrifuge.

    PubMed

    Rumble, Katherine A; Thijssen, Job H J; Schofield, Andrew B; Clegg, Paul S

    2016-05-11

    Bicontinuous interfacially jammed emulsion gels (bijels) are solid-stabilised emulsions with two inter-penetrating continuous phases. Employing the method of centrifugal compression we find that macroscopically the bijel yields at relatively low angular acceleration. Both continuous phases escape from the top of the structure, making any compression immediately irreversible. Microscopically, the bijel becomes anisotropic with the domains aligned perpendicular to the compression direction which inhibits further liquid expulsion; this contrasts strongly with the sedimentation behaviour of colloidal gels. The original structure can, however, be preserved close to the top of the sample and thus the change to an anisotropic structure suggests internal yielding. Any air bubbles trapped in the bijel are found to aid compression by forming channels aligned parallel to the compression direction which provide a route for liquid to escape.

  10. Energy Savings Potential and RD&D Opportunities for Non-Vapor-Compression HVAC Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    While vapor-compression technologies have served heating, ventilation, and air-conditioning (HVAC) needs very effectively, and have been the dominant HVAC technology for close to 100 years, the conventional refrigerants used in vapor-compression equipment contribute to global climate change when released to the atmosphere. This Building Technologies Office report: --Identifies alternatives to vapor-compression technology in residential and commercial HVAC applications --Characterizes these technologies based on their technical energy savings potential, development status, non-energy benefits, and other factors affecting end-user acceptance and their ability to compete with conventional vapor-compression systems --Makes specific research, development, and deployment (RD&D) recommendations to support further development ofmore » these technologies, should DOE choose to support non-vapor-compression technology further.« less

  11. Economic analysis of using above ground gas storage devices for compressed air energy storage system

    NASA Astrophysics Data System (ADS)

    Liu, Jinchao; Zhang, Xinjing; Xu, Yujie; Chen, Zongyan; Chen, Haisheng; Tan, Chunqing

    2014-12-01

    Above ground gas storage devices for compressed air energy storage (CAES) have three types: air storage tanks, gas cylinders, and gas storage pipelines. A cost model of these gas storage devices is established on the basis of whole life cycle cost (LCC) analysis. The optimum parameters of the three types are determined by calculating the theoretical metallic raw material consumption of these three devices and considering the difficulties in manufacture and the influence of gas storage device number. The LCCs of the three types are comprehensively analyzed and compared. The result reveal that the cost of the gas storage pipeline type is lower than that of the other two types. This study may serve as a reference for designing large-scale CAES systems.

  12. Adaptive individual-cylinder thermal state control using intake air heating for a GDCI engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, Gregory T.; Sellnau, Mark C.

    A system for a multi-cylinder compression ignition engine includes a plurality of heaters, at least one heater per cylinder, with each heater configured to heat air introduced into a cylinder. Independent control of the heaters is provided on a cylinder-by-cylinder basis. A combustion parameter is determined for combustion in each cylinder of the engine, and control of the heater for that cylinder is based on the value of the combustion parameter for combustion in that cylinder. A method for influencing combustion in a multi-cylinder compression ignition engine, including determining a combustion parameter for combustion taking place in a cylinder ofmore » the engine and controlling a heater configured to heat air introduced into that cylinder, is also provided.« less

  13. Dynamic Characteristics of Simple Cylindrical Hydraulic Engine Mount Utilizing Air Compressibility

    NASA Astrophysics Data System (ADS)

    Nakahara, Kazunari; Nakagawa, Noritoshi; Ohta, Katsutoshi

    A cylindrical hydraulic engine mount with simple construction has been developed. This engine mount has a sub chamber formed by utilizing air compressibility without a diaphragm. A mathematical model of the mount is presented to predict non-linear dynamic characteristics in consideration of the effect of the excitation amplitude on the storage stiffness and loss factor. The mathematical model predicts experimental results well for the frequency responses of the storage stiffness and loss factor over the frequency range of 5 Hz to 60Hz. The effect of air volume and internal pressure on the dynamic characteristics is clarified by the analysis and dynamic characterization testing. The effectiveness of the cylindrical hydraulic engine mount on the reduction of engine shake is demonstrated for riding comfort through on-vehicle testing with a chassis dynamometer.

  14. Laboratory Development of a Passive Sampling Device for Hydrazines in Ambient Air

    DTIC Science & Technology

    1990-05-30

    of dilution air . Conditioned house- compressed air is used as the diluent. The conditioning procedure consists of passing the house air through a...Device N4 for Hydrazines in Ambient Air P. A. TAFFE,* K. P. CROSSMAN,* S. L. ROSE-PEHRSSON, AND J. R. WYATT 0 Chemistry Dynamics and Diagnostic Branch...Ambient Air 6. AUTHOR(S) Taffe,* P. A., Crossman,* K. P., Wyatt, J. R., and Rose-Pehrsson, S. L. 7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8

  15. 40 CFR Appendix I to Part 92 - Emission Related Locomotive and Engine Parameters and Specifications

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... injection—non-compression ignition engines. a. Control parameters and calibrations. b. Idle mixture. c. Fuel...(s). i. Injector timing calibration. 4. Fuel injection—compression ignition engines. a. Control... restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Carburetion. a. Air-fuel flow calibration...

  16. 40 CFR Appendix I to Part 92 - Emission Related Locomotive and Engine Parameters and Specifications

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... injection—non-compression ignition engines. a. Control parameters and calibrations. b. Idle mixture. c. Fuel...(s). i. Injector timing calibration. 4. Fuel injection—compression ignition engines. a. Control... restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Carburetion. a. Air-fuel flow calibration...

  17. 40 CFR Appendix I to Part 92 - Emission Related Locomotive and Engine Parameters and Specifications

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... injection—non-compression ignition engines. a. Control parameters and calibrations. b. Idle mixture. c. Fuel...(s). i. Injector timing calibration. 4. Fuel injection—compression ignition engines. a. Control... restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Carburetion. a. Air-fuel flow calibration...

  18. 40 CFR Appendix I to Part 92 - Emission Related Locomotive and Engine Parameters and Specifications

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... injection—non-compression ignition engines. a. Control parameters and calibrations. b. Idle mixture. c. Fuel...(s). i. Injector timing calibration. 4. Fuel injection—compression ignition engines. a. Control... restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Carburetion. a. Air-fuel flow calibration...

  19. Corrections on the Thermometer Reading in an Air Stream

    NASA Technical Reports Server (NTRS)

    Van Der Maas, H J; Wynia, S

    1940-01-01

    A method is described for checking a correction formula, based partly on theoretical considerations, for adiabatic compression and friction in flight tests and determining the value of the constant. It is necessary to apply a threefold correction to each thermometer reading. They are a correction for adiabatic compression, friction and for time lag.

  20. 5. INTERIOR, LOOKING PAST HELIUM COMPRESSORS NO. 3 AND NO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. INTERIOR, LOOKING PAST HELIUM COMPRESSORS NO. 3 AND NO. 2, TO NORTHEAST FRONT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Helium Compression Plant, Test Area 1-115, intersection of Altair & Saturn Boulevards, Boron, Kern County, CA

  1. 8. ORIGINAL HELIUM COMPRESSOR, CIRCA 1957, BY HASKELL ENGINEERING, GLENDALE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. ORIGINAL HELIUM COMPRESSOR, CIRCA 1957, BY HASKELL ENGINEERING, GLENDALE, CALIFORNIA. Looking north. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Helium Compression Plant, Test Area 1-115, intersection of Altair & Saturn Boulevards, Boron, Kern County, CA

  2. Air quality effects of alternative fuels : final report

    DOT National Transportation Integrated Search

    1997-11-01

    This report presents the results of Phase 1 of a comparison of the potential air quality effects of alternative transportation fuels. The focus is on reformulated gasoline (RFG), methanol blended with 15% gasoline (M85), and compressed natural gas (C...

  3. Injectant mole-fraction imaging in compressible mixing flows using planar laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J., Jr.; Abbitt, John D., III; Mcdaniel, James C.

    1989-01-01

    A technique is described for imaging the injectant mole-fraction distribution in nonreacting compressible mixing flow fields. Planar fluorescence from iodine, seeded into air, is induced by a broadband argon-ion laser and collected using an intensified charge-injection-device array camera. The technique eliminates the thermodynamic dependence of the iodine fluorescence in the compressible flow field by taking the ratio of two images collected with identical thermodynamic flow conditions but different iodine seeding conditions.

  4. Nitric oxide contamination of hospital compressed air improves gas exchange in patients with acute lung injury.

    PubMed

    Tan, P Seow Koon; Genc, F; Delgado, E; Kellum, J A; Pinsky, M R

    2002-08-01

    We tested the hypothesis that NO contamination of hospital compressed air also improves PaO(2) in patients with acute lung injury (ALI) and following lung transplant (LTx). Prospective clinical study. Cardiothoracic intensive care unit. Subjects following cardiac surgery (CABG, n=7); with ALI (n=7), and following LTx (n=5). Four sequential 15-min steps at a constant FiO(2) were used: hospital compressed air-O(2) (H1), N(2)-O(2) (A1), repeat compressed air-O(2) (H2), and repeat N(2)-O(2) (A2). NO levels were measured from the endotracheal tube. Cardiorespiratory values included PaO(2) were measured at the end of each step. FiO(2) was 0.46+/-0.05, 0.53+/-0.15, and 0.47+/-0.06 (mean+/-SD) for three groups, respectively. Inhaled NO levels during H1 varied among subjects (30-550 ppb, 27-300 ppb, and 5-220 ppb, respectively). Exhaled NO levels were not detected in 4/7 of CABG (0-300 ppb), 3/6 of ALI (0-140 ppb), and 3/5 of LTx (0-59 ppb) patients during H1, whereas during A1 all but one patient in ALI and three CABG patients had measurable exhaled NO levels (P<0.05). Small but significant decreases in PaO(2) occurred for all groups from H1 to A1 and H2 to A2 (132-99 Torr and 128-120 Torr, P <0.01, respectively). There was no correlation between inhaled NO during H1 and exhaled NO during A1 or the change in PaO(2) from H1 to A1. Low-level NO contamination improves PaO(2) in patients with ALI and following LTx.

  5. Three-dimensionally bonded spongy graphene material with super compressive elasticity and near-zero Poisson’s ratio

    NASA Astrophysics Data System (ADS)

    Wu, Yingpeng; Yi, Ningbo; Huang, Lu; Zhang, Tengfei; Fang, Shaoli; Chang, Huicong; Li, Na; Oh, Jiyoung; Lee, Jae Ah; Kozlov, Mikhail; Chipara, Alin C.; Terrones, Humberto; Xiao, Peishuang; Long, Guankui; Huang, Yi; Zhang, Fan; Zhang, Long; Lepró, Xavier; Haines, Carter; Lima, Márcio Dias; Lopez, Nestor Perea; Rajukumar, Lakshmy P.; Elias, Ana L.; Feng, Simin; Kim, Seon Jeong; Narayanan, N. T.; Ajayan, Pulickel M.; Terrones, Mauricio; Aliev, Ali; Chu, Pengfei; Zhang, Zhong; Baughman, Ray H.; Chen, Yongsheng

    2015-01-01

    It is a challenge to fabricate graphene bulk materials with properties arising from the nature of individual graphene sheets, and which assemble into monolithic three-dimensional structures. Here we report the scalable self-assembly of randomly oriented graphene sheets into additive-free, essentially homogenous graphene sponge materials that provide a combination of both cork-like and rubber-like properties. These graphene sponges, with densities similar to air, display Poisson’s ratios in all directions that are near-zero and largely strain-independent during reversible compression to giant strains. And at the same time, they function as enthalpic rubbers, which can recover up to 98% compression in air and 90% in liquids, and operate between -196 and 900 °C. Furthermore, these sponges provide reversible liquid absorption for hundreds of cycles and then discharge it within seconds, while still providing an effective near-zero Poisson’s ratio.

  6. Three-dimensionally bonded spongy graphene material with super compressive elasticity and near-zero Poisson's ratio.

    PubMed

    Wu, Yingpeng; Yi, Ningbo; Huang, Lu; Zhang, Tengfei; Fang, Shaoli; Chang, Huicong; Li, Na; Oh, Jiyoung; Lee, Jae Ah; Kozlov, Mikhail; Chipara, Alin C; Terrones, Humberto; Xiao, Peishuang; Long, Guankui; Huang, Yi; Zhang, Fan; Zhang, Long; Lepró, Xavier; Haines, Carter; Lima, Márcio Dias; Lopez, Nestor Perea; Rajukumar, Lakshmy P; Elias, Ana L; Feng, Simin; Kim, Seon Jeong; Narayanan, N T; Ajayan, Pulickel M; Terrones, Mauricio; Aliev, Ali; Chu, Pengfei; Zhang, Zhong; Baughman, Ray H; Chen, Yongsheng

    2015-01-20

    It is a challenge to fabricate graphene bulk materials with properties arising from the nature of individual graphene sheets, and which assemble into monolithic three-dimensional structures. Here we report the scalable self-assembly of randomly oriented graphene sheets into additive-free, essentially homogenous graphene sponge materials that provide a combination of both cork-like and rubber-like properties. These graphene sponges, with densities similar to air, display Poisson's ratios in all directions that are near-zero and largely strain-independent during reversible compression to giant strains. And at the same time, they function as enthalpic rubbers, which can recover up to 98% compression in air and 90% in liquids, and operate between -196 and 900 °C. Furthermore, these sponges provide reversible liquid absorption for hundreds of cycles and then discharge it within seconds, while still providing an effective near-zero Poisson's ratio.

  7. Conformational changes of a calix[8]arene derivative at the air-water interface.

    PubMed

    de Miguel, Gustavo; Pedrosa, José M; Martín-Romero, María T; Muñoz, Eulogia; Richardson, Tim H; Camacho, Luis

    2005-03-10

    The particular behavior of a p-tert-butyl calix[8]arene derivative (C8A) has been studied at the air-water interface using surface pressure-area isotherms, surface potential-area isotherms, film relaxation measurements, Brewster angle microscopy (BAM), and infrared spectroscopy for Langmuir-Blodgett films. Thus, it is observed that the properties of the film, for example, isotherms, domain formation, and FTIR spectra, recorded during the first compression cycle differ appreciably from those during the second compression and following cycles. The results obtained are interpreted on the basis of the conformational changes of the C8A molecules by surface pressure, allowing us to inquire into the inter- and intramolecular interactions (hydrogen bonds) of those molecules. Thus, the compression induces changes in the kind of hydrogen bonds from intra- and intermolecular with other C8A molecules to hydrogen bonds with water molecules.

  8. 49 CFR 172.101 - Purpose and use of hazardous materials table.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Forbidden Forbidden A 48, 87, 126 I Air bag inflators, or Air bag modules, or Seat-belt pretensioners. 1.4G UN0503 II 1.4G 161 None 62 None Forbidden 75 kg 02 Air bag inflators, or Air bag modules, or Seat-belt pretensioners. 9 UN3268 III 9 160 166 166 166 25 kg 100 kg A Air, compressed 2.2 UN1002 2.2 78 306, 307 302 302...

  9. Turbine inter-disk cavity cooling air compressor

    DOEpatents

    Chupp, Raymond E.; Little, David A.

    1998-01-01

    The inter-disk cavity between turbine rotor disks is used to pressurize cooling air. A plurality of ridges extend radially outwardly over the face of the rotor disks. When the rotor disks are rotated, the ridges cause the inter-disk cavity to compress air coolant flowing through the inter-disk cavity en route to the rotor blades. The ridges eliminate the need for an external compressor to pressurize the air coolant.

  10. Progress in energy generation for Canadian remote sites

    NASA Astrophysics Data System (ADS)

    Saad, Y.; Younes, R.; Abboudi, S.; Ilinca, A.; Nohra, C.

    2016-07-01

    Many remote areas around the world are isolated, for various reasons, from electricity networks. They are usually supplied with electricity through diesel generators. The cost of operation and transportation of diesel fuel in addition to its price have led to the procurement of a more efficient and environmentally greener method of supply. Various studies have shown that a wind-diesel hybrid system with compressed air storage (WDCAS) seems to be one of the best solutions, and presents itself as an optimal configuration for the electrification of isolated sites. This system allows significant fuel savings to be made because the stored compressed air is used to supercharge the engine. In order to optimize system performance and minimize fuel consumption, installation of a system for recovering and storing the heat of compression (TES) seems necessary. In addition, the use of hydro-pneumatic energy storage systems that use the same machine as the hydraulic pump and turbine allow us to store energy in tight spaces and, if possible, contribute to power generation. The scrupulous study of this technical approach will be the focus of our research which will validate (or not) the use of such a system for the regulation of frequency of electrical networks. In this article we will skim through the main research that recently examined the wind-diesel hybrid system which addressed topics such as adiabatic compression and hydro-pneumatic storage. Instead, we will offer (based on existing studies) a new ACP-WDCAS (wind-diesel hybrid system with adiabatic air compression and storage at constant pressure), which combines these three concepts in one system for the optimization of wind-diesel hybrid system.

  11. Adsorption of Egg-PC to an Air/Water and Triolein/Water Bubble Interface: Use of the 2-Dimensional Phase Rule to Estimate the Surface Composition of a Phospholipid/Triolein/Water Surface as a Function of Surface Pressure

    PubMed Central

    Mitsche, Matthew A.; Wang, Libo; Small, Donald M.

    2010-01-01

    Phospholipid monolayers play a critical role in the structure and stabilization of biological interfaces including all membranes, the alveoli of the lung, fat droplets in adipose tissue, and lipoproteins. The behavior of phospholipids in bilayers and at an air-water interface is well understood. However, the study of phospholipids at oil-water interfaces is limited due to technical challenges. In this study, egg-phosphatidylcholine (EPC) was deposited from small unilamellar vesicles onto a bubble of either air or triolein (TO) formed in a low salt buffer. The surface tension (γ) was measured using a drop tensiometer. We observed that EPC binds irreversibly to both interfaces and at equilibrium exerts ~12 and 15 mN/m of pressure (Π) at an air and TO interface, respectively. After EPC was bound to the interface, the unbound EPC was washed out of the cuvette and the surface was compressed to study the Π/area relationship. To determine the surface concentration (Γ), which cannot be measured directly, compression isotherms from a Langmuir trough and drop tensiometer were compared. The air-water interfaces had identical characteristics using both techniques, thus Γ on the bubble can be determined by overlaying the two isotherms. TO and EPC are both surface active so in a mixed TO/EPC monolayer both molecules will be exposed to water. Since TO is less surface active than EPC, as Π increases the TO is progressively ejected. To understand the Π/area isotherm of EPC on a TO bubble, a variety of TO-EPC mixtures were spread at the air-water interface. The isotherms show an abrupt break in the curve caused by the ejection of TO from the monolayer into a new bulk phase. By overlaying the compression isotherm above the ejection point with a TO bubble compression isotherm, Γ can be estimated. This allows determination of Γ of EPC on a TO bubble as a function of Π. PMID:20151713

  12. Adsorption of egg phosphatidylcholine to an air/water and triolein/water bubble interface: use of the 2-dimensional phase rule to estimate the surface composition of a phospholipid/triolein/water surface as a function of surface pressure.

    PubMed

    Mitsche, Matthew A; Wang, Libo; Small, Donald M

    2010-03-11

    Phospholipid monolayers play a critical role in the structure and stabilization of biological interfaces, including all membranes, the alveoli of the lungs, fat droplets in adipose tissue, and lipoproteins. The behavior of phospholipids in bilayers and at an air-water interface is well understood. However, the study of phospholipids at oil-water interfaces is limited due to technical challenges. In this study, egg phosphatidylcholine (EPC) was deposited from small unilamellar vesicles onto a bubble of either air or triolein (TO) formed in a low-salt buffer. The surface tension (gamma) was measured using a drop tensiometer. We observed that EPC binds irreversibly to both interfaces and at equilibrium exerts approximately 12 and 15 mN/m of pressure (Pi) at an air and TO interface, respectively. After EPC was bound to the interface, the unbound EPC was washed out of the cuvette, and the surface was compressed to study the Pi/area relationship. To determine the surface concentration (Gamma), which cannot be measured directly, compression isotherms from a Langmuir trough and drop tensiometer were compared. The air-water interfaces had identical characteristics using both techniques; thus, Gamma on the bubble can be determined by overlaying the two isotherms. Both TO and EPC are surface-active, so in a mixed TO/EPC monolayer, both molecules will be exposed to water. Since TO is less surface-active than EPC, as Pi increases, the TO is progressively ejected. To understand the Pi/area isotherm of EPC on a TO bubble, a variety of TO-EPC mixtures were spread at the air-water interface. The isotherms show an abrupt break in the curve caused by the ejection of TO from the monolayer into a new bulk phase. By overlaying the compression isotherm above the ejection point with a TO bubble compression isotherm, Gamma can be estimated. This allows determination of Gamma of EPC on a TO bubble as a function of Pi.

  13. Compressed Gas Safety for Experimental Fusion Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee C. Cadwallader

    2004-09-01

    Experimental fusion facilities present a variety of hazards to the operators and staff. There are unique or specialized hazards, including magnetic fields, cryogens, radio frequency emissions, and vacuum reservoirs. There are also more general industrial hazards, such as a wide variety of electrical power, pressurized air, and cooling water systems in use, there are crane and hoist loads, working at height, and handling compressed gas cylinders. This paper outlines the projectile hazard assoicated with compressed gas cylinders and mthods of treatment to provide for compressed gas safety. This information should be of interest to personnel at both magnetic and inertialmore » fusion experiments.« less

  14. 3. SOUTHWEST REAR, WITH RAILROAD LINE AT RIGHT. HIGH PRESSURE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. SOUTHWEST REAR, WITH RAILROAD LINE AT RIGHT. HIGH PRESSURE HELIUM STORAGE TANKS AT LEFT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Helium Compression Plant, Test Area 1-115, intersection of Altair & Saturn Boulevards, Boron, Kern County, CA

  15. 7. TOP SURFACES OF FOUR HYDRAULIC UNITS TO DRIVE COMPRESSORS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. TOP SURFACES OF FOUR HYDRAULIC UNITS TO DRIVE COMPRESSORS. Looking southeast along rear of building. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Helium Compression Plant, Test Area 1-115, intersection of Altair & Saturn Boulevards, Boron, Kern County, CA

  16. 40 CFR 94.211 - Emission-related maintenance instructions for purchasers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... filter change, fuel filter change, air filter change, cooling system maintenance, adjustment of idle... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES... at 1,500-hour intervals thereafter. (i) Exhaust gas recirculation system-related filters and coolers...

  17. Preliminary Investigation of an Underwater Ramjet Powered by Compressed Air

    NASA Technical Reports Server (NTRS)

    Mottard, Elmo J.; Shoemaker, Charles J.

    1961-01-01

    Part I contains the results of a preliminary experimental investigation of a particular design of an underwater ramjet or hydroduct powered by compressed air. The hydroduct is a propulsion device in which the energy of an expanding gas imparts additional momentum to a stream of water through mixing. The hydroduct model had a fineness ratio of 5.9, a maximum diameter of 3.2 inches, and a ratio of inlet area to frontal area of 0.32. The model was towed at a depth of 1 inch at forward speeds between 20 and 60 feet per second for airflow rates from 0.1 to 0.3 pound per second. Longitudinal force and pressures at the inlet and in the mixing chamber were determined. The hydroduct produced a positive thrust-minus-drag force at every test speed. The force and pressure coefficients were functions primarily of the ratio of weight airflow to free-stream velocity. The maximum propulsive efficiency based on the net internal thrust and an isothermal expansion of the air was approximately 53 percent at a thrust coefficient of 0.10. The performance of the test model may have been influenced by choking of the exit flow. Part II is a theoretical development of an underwater ramjet using air as "fuel." The basic assumption of the theoretical analysis is that a mixture of water and air can be treated as a compressible gas. More information on the properties of air-water mixtures is required to confirm this assumption or to suggest another approach. A method is suggested from which a more complete theoretical development, with the effects of choking included, may be obtained. An exploratory computation, in which this suggested method was used, indicated that the effect of choked flow on the thrust coefficient was minor.

  18. Preliminary analytical study on the feasibility of using reinforced concrete pile foundations for renewable energy storage by compressed air energy storage technology

    NASA Astrophysics Data System (ADS)

    Tulebekova, S.; Saliyev, D.; Zhang, D.; Kim, J. R.; Karabay, A.; Turlybek, A.; Kazybayeva, L.

    2017-11-01

    Compressed air energy storage technology is one of the promising methods that have high reliability, economic feasibility and low environmental impact. Current applications of the technology are mainly limited to energy storage for power plants using large scale underground caverns. This paper explores the possibility of making use of reinforced concrete pile foundations to store renewable energy generated from solar panels or windmills attached to building structures. The energy will be stored inside the pile foundation with hollow sections via compressed air. Given the relatively small volume of storage provided by the foundation, the required storage pressure is expected to be higher than that in the large-scale underground cavern. The high air pressure typically associated with large temperature increase, combined with structural loads, will make the pile foundation in a complicated loading condition, which might cause issues in the structural and geotechnical safety. This paper presents a preliminary analytical study on the performance of the pile foundation subjected to high pressure, large temperature increase and structural loads. Finite element analyses on pile foundation models, which are built from selected prototype structures, have been conducted. The analytical study identifies maximum stresses in the concrete of the pile foundation under combined pressure, temperature change and structural loads. Recommendations have been made for the use of reinforced concrete pile foundations for renewable energy storage.

  19. Self-assembly of short amyloidogenic peptides at the air-water interface.

    PubMed

    Chaudhary, Nitin; Nagaraj, Ramakrishnan

    2011-08-01

    Short peptide stretches in amyloidogenic proteins can form amyloid fibrils in vitro and have served as good models for studying amyloid fibril formation. Recently, these amyloidogenic peptides have gained considerable attention, as non-amyloid ordered structures can be obtained from these peptides by carefully tuning the conditions of self-assembly, especially pH, temperature and presence of organic solvents. We have examined the effect of surface pressure on the self-assembled structures of two amyloidogenic peptides, Pβ(2)m (Ac-DWSFYLLYYTEFT-am) and AcPHF6 (Ac-VQIVYK-am) at the air-water interface when deposited from different solvents. Both the peptides are surface-active and form Thioflavin T (ThT) positive structures at the air-water interface. There is considerable hysteresis in the compression and expansion isotherms, suggesting the occurrence of structural rearrangements during compression. Preformed Pβ(2)m fibrillar structures at the air-water interface are disrupted as peptide is compressed to lower molecular areas but restored if the film is expanded, suggesting that the process is reversible. AcPHF6, on the other hand, shows largely sheet-like structures at lower molecular areas. The solvents used for dissolution of the peptides appear to influence the nature of the aggregates formed. Our results show that like hydrostatic pressure, surface pressure can also be utilized for modulating the self-assembly of the amyloidogenic and self-assembling peptides. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Compressed air blast injury with palpebral, orbital, facial, cervical, and mediastinal emphysema through an eyelid laceration: a case report and review of literature

    PubMed Central

    2013-01-01

    Background To the best of our knowledge, only 14 cases of orbital or periorbital compressed air injuries from air guns or hoses have been reported in the literature. Case presentation A 30-year-old man was accidentally injured when a compressed air hose nozzle hit his right eye. The right half of his face was markedly swollen and a skin laceration near the right medial canthus was identified. A computed tomography scan showed subcutaneous and intraorbital emphysema around the right eye as well as cervical and mediastinal emphysema. He was prophylactically treated with systemic and topical antibiotics to prevent infection. All emphysemas had completely resolved 2 weeks after the injury. Conclusions A review of all 15 cases (including ours) showed that all patients were male and that 6 of the 15 (40.0%) cases were related to industrial accidents. Although emphysema was restricted to the subconjunctival space in 2 (13.3%) cases, it spread to the orbit in the remaining 13 (86.7%) cases. Cervical and mediastinal emphysemas were found in 3 (20.0%) cases, and intracranial emphysema was confirmed in 6 (40.0%) cases. Prophylactic antibiotics were used in most cases and the prognosis was generally good in all but one patient, who developed optic atrophy and blindness. PMID:24195485

  1. Using Regression Analysis To Determine If Faculty Salaries Are Overly Compressed. AIR 1997 Annual Forum Paper.

    ERIC Educational Resources Information Center

    Toutkoushian, Robert K.

    This paper proposes a five-step process by which to analyze whether the salary ratio between junior and senior college faculty exhibits salary compression, a term used to describe an unusually small differential between faculty with different levels of experience. The procedure utilizes commonly used statistical techniques (multiple regression…

  2. Indirect-fired gas turbine bottomed with fuel cell

    DOEpatents

    Micheli, P.L.; Williams, M.C.; Parsons, E.L.

    1995-09-12

    An indirect-heated gas turbine cycle is bottomed with a fuel cell cycle with the heated air discharged from the gas turbine being directly utilized at the cathode of the fuel cell for the electricity-producing electrochemical reaction occurring within the fuel cell. The hot cathode recycle gases provide a substantial portion of the heat required for the indirect heating of the compressed air used in the gas turbine cycle. A separate combustor provides the balance of the heat needed for the indirect heating of the compressed air used in the gas turbine cycle. Hot gases from the fuel cell are used in the combustor to reduce both the fuel requirements of the combustor and the NOx emissions therefrom. Residual heat remaining in the air-heating gases after completing the heating thereof is used in a steam turbine cycle or in an absorption refrigeration cycle. Some of the hot gases from the cathode can be diverted from the air-heating function and used in the absorption refrigeration cycle or in the steam cycle for steam generating purposes. 1 fig.

  3. Laser-induced plasmas in air studied using two-color interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zefeng; Wu, Jian, E-mail: jxjawj@mail.xjtu.edu.cn; Li, Xingwen

    2016-08-15

    Temporally and spatially resolved density profiles of Cu atoms, electrons, and compressed air, from laser-induced copper plasmas in air, are measured using fast spectral imaging and two-color interferometry. From the intensified CCD images filtered by a narrow-band-pass filter centered at 515.32 nm, the Cu atoms expansion route is estimated and used to determine the position of the fracture surface between the Cu atoms and the air. Results indicate that the Cu atoms density at distances closer to the target (0–0.4 mm) is quite low, with the maximum density appearing at the edge of the plasma's core being ∼4.6 × 10{sup 24 }m{sup −3} at 304 ns.more » The free electrons are mainly located in the internal region of the plume, which is supposed to have a higher temperature. The density of the shock wave is (4–6) × 10{sup 25 }m{sup −3}, corresponding to air compression of a factor of 1.7–2.5.« less

  4. Indirect-fired gas turbine bottomed with fuel cell

    DOEpatents

    Micheli, Paul L.; Williams, Mark C.; Parsons, Edward L.

    1995-01-01

    An indirect-heated gas turbine cycle is bottomed with a fuel cell cycle with the heated air discharged from the gas turbine being directly utilized at the cathode of the fuel cell for the electricity-producing electrochemical reaction occurring within the fuel cell. The hot cathode recycle gases provide a substantial portion of the heat required for the indirect heating of the compressed air used in the gas turbine cycle. A separate combustor provides the balance of the heat needed for the indirect heating of the compressed air used in the gas turbine cycle. Hot gases from the fuel cell are used in the combustor to reduce both the fuel requirements of the combustor and the NOx emissions therefrom. Residual heat remaining in the air-heating gases after completing the heating thereof is used in a steam turbine cycle or in an absorption refrigeration cycle. Some of the hot gases from the cathode can be diverted from the air-heating function and used in the absorption refrigeration cycle or in the steam cycle for steam generating purposes.

  5. Integrated LTCC pressure/flow/temperature multisensor for compressed air diagnostics.

    PubMed

    Fournier, Yannick; Maeder, Thomas; Boutinard-Rouelle, Grégoire; Barras, Aurélie; Craquelin, Nicolas; Ryser, Peter

    2010-01-01

    We present a multisensor designed for industrial compressed air diagnostics and combining the measurement of pressure, flow, and temperature, integrated with the corresponding signal conditioning electronics in a single low-temperature co-fired ceramic (LTCC) package. The developed sensor may be soldered onto an integrated electro-fluidic platform by using standard surface mount device (SMD) technology, e.g., as a standard electronic component would be on a printed circuit board, obviating the need for both wires and tubes and thus paving the road towards low-cost integrated electro-fluidic systems. Several performance aspects of this device are presented and discussed, together with electronics design issues.

  6. Integrated LTCC Pressure/Flow/Temperature Multisensor for Compressed Air Diagnostics†

    PubMed Central

    Fournier, Yannick; Maeder, Thomas; Boutinard-Rouelle, Grégoire; Barras, Aurélie; Craquelin, Nicolas; Ryser, Peter

    2010-01-01

    We present a multisensor designed for industrial compressed air diagnostics and combining the measurement of pressure, flow, and temperature, integrated with the corresponding signal conditioning electronics in a single low-temperature co-fired ceramic (LTCC) package. The developed sensor may be soldered onto an integrated electro-fluidic platform by using standard surface mount device (SMD) technology, e.g., as a standard electronic component would be on a printed circuit board, obviating the need for both wires and tubes and thus paving the road towards low-cost integrated electro-fluidic systems. Several performance aspects of this device are presented and discussed, together with electronics design issues. PMID:22163518

  7. Carbon and energy saving markets in compressed air

    NASA Astrophysics Data System (ADS)

    Cipollone, R.

    2015-08-01

    CO2 reduction and fossil fuel saving represent two of the cornerstones of the environmental commitments of all the countries of the world. The first engagement is of a medium to long term type, and unequivocally calls for a new energetic era. The second delays in time the fossil fuel technologies to favour an energetic transition. In order to sustain the two efforts, new immaterial markets have been established in almost all the countries of the world, whose exchanges (purchases and sales) concern CO2 emissions and equivalent fossil fuels that have not been emitted or burned. This paper goes deep inside two aspects not yet exploited: specific CO2 emissions and equivalent fossil fuel burned, as a function of compressed air produced. Reference is made to the current compressor technology, carefully analysing CAGI's (Compressed Air Gas Institute) data and integrating it with the PNUEROP (European Association of manufacturers of compressors, vacuum pumps, pneumatic tools and allied equipment) contribution on the compressor European market. On the base of energy saving estimates that could be put in place, this article also estimates the financial value of the CO2 emissions and fossil fuels avoided.

  8. Solar-powered compression-enhanced ejector air conditioner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokolov, M.; Hershgal, D.

    1993-09-01

    This article is an extension of an earlier investigation into the possibility of adaptation of the ejector refrigeration cycle to solar air-conditioning. In a previous work the ejector cycle has been proven a viable option only for a limited number of cases. These include systems with combined (heating, cooling, and hot water supply) loads where means for obtaining low condensing temperature are available. The purpose of this work is to extend the applicability of such systems by enhancing their efficiency and thereby improving their economical attractiveness. This is done by introducing the compression enhanced ejector system in which mechanical (rathermore » than thermal) energy is used to boost the pressure of the secondary stream into the ejector, Such a boost improves the performance of the whole system. Similar to the conventional ejector, the compression-enhanced ejector system utilizes practically the same hardware for solar heating during the winter and for solar cooling during the summer. Thus, it is capable of providing a year-round space air-conditioning. Optimization of the best combination in which the solar and refrigeration systems combine through the vapor generator working temperature is also presented.« less

  9. Energy-saving compression valve of the rock drill

    NASA Astrophysics Data System (ADS)

    Glazov, A. N.; Efanov, A. A.; Aikina, T. Yu

    2015-11-01

    The relevance of the research is due to the necessity to create pneumatic rock drills with low air consumption. The article analyzes the reasons for low efficiency of percussive machines. The authors state that applying a single distribution body in the percussive mechanism does not allow carrying out a low-energy operating cycle of the mechanism. Using the studied device as an example, it is substantiated that applying a compression valve with two distribution bodies separately operating the working chambers makes it possible to significantly reduce the airflow. The authors describe the construction of a core drill percussive mechanism and the operation of a compression valve. It is shown that in the new percussive mechanism working chambers are cut off the circuit by the time when exhaust windows are opened by the piston and air is not supplied into the cylinder up to 20% of the cycle time. The air flow rate of the new mechanism was 3.8 m3/min. In comparison with the drill PK-75, the overall noise level of the new machine is lower by 8-10 dB, while the percussive mechanism efficiency is 2.3 times higher.

  10. Mechanical properties and durability of crumb rubber concrete

    NASA Astrophysics Data System (ADS)

    Chylík, Roman; Trtík, Tomáš; Fládr, Josef; Bílý, Petr

    2017-09-01

    This paper is focused on concrete with admixture of rubber powder, generally called crumb rubber concrete (CRC). The inspiration was found in Arizona, where one of the first CRCs has been created. However, Arizona has completely different climates than Central Europe. Could we use the crumb rubber concrete on construction applications in the Central European climate too? The paper evaluates the influence of the rubber powder on material characteristics and durability of CRC. CRCs with various contents of fine and coarse crumb powder were compared. The tested parameters were slump, air content, permeability, resistance of concrete to water with deicing chemicals, compressive and splitting tensile strength. The tests showed that workability, compressive strength and permeability decreased as the amount of rubber increased, but the air content increased as the rubber content increased. Photos of air voids in cement matrix from electron microscope were captured. The results of laboratory tests showed that admixture of rubber powder in concrete could have a positive impact on durability of concrete and concurrently contribute to sustainable development. Considering the lower compressive strength, CRC is recommended for use in applications where the high strength of concrete is not required.

  11. Numerical simulation of the flow and fuel-air mixing in an axisymmetric piston-cylinder arrangement

    NASA Technical Reports Server (NTRS)

    Shih, T. I. P.; Smith, G. E.; Springer, G. S.

    1982-01-01

    The implicit factored method of Beam and Warming was employed to describe the flow and the fuel-air mixing in an axisymmetric piston-cylinder configuration during the intake and compression strokes. The governing equations were established on the basis of laminar flow. The increased mixing due to turbulence was simulated by appropriately chosen effective transport properties. Calculations were performed for single-component gases and for two-component gases and for two-component gas mixtures. The flow field was calculated as functions of time and position for different geometries, piston speeds, intake-charge-to-residual-gas-pressure ratios, and species mass fractions of the intake charge. Results are presented in graphical form which show the formation, growth, and break-up of those vortices which form during the intake stroke and the mixing of fuel and air throughout the intake and compression strokes. It is shown that at bore-to-stroke ratio of less than unity, the vortices may break-up during the intake stroke. It is also shown that vortices which do not break-up during the intake stroke coalesce during the compression stroke. The results generated were compared to existing numerical solutions and to available experimental data.

  12. Solid fuel combustion system for gas turbine engine

    DOEpatents

    Wilkes, Colin; Mongia, Hukam C.

    1993-01-01

    A solid fuel, pressurized fluidized bed combustion system for a gas turbine engine includes a carbonizer outside of the engine for gasifying coal to a low Btu fuel gas in a first fraction of compressor discharge, a pressurized fluidized bed outside of the engine for combusting the char residue from the carbonizer in a second fraction of compressor discharge to produce low temperature vitiated air, and a fuel-rich, fuel-lean staged topping combustor inside the engine in a compressed air plenum thereof. Diversion of less than 100% of compressor discharge outside the engine minimizes the expense of fabricating and maintaining conduits for transferring high pressure and high temperature gas and incorporation of the topping combustor in the compressed air plenum of the engine minimizes the expense of modifying otherwise conventional gas turbine engines for solid fuel, pressurized fluidized bed combustion.

  13. Air ejector augmented compressed air energy storage system

    DOEpatents

    Ahrens, F.W.; Kartsounes, G.T.

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air presure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  14. Air ejector augmented compressed air energy storage system

    DOEpatents

    Ahrens, Frederick W.; Kartsounes, George T.

    1980-01-01

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air pressure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  15. A study of pressure losses in residential air distribution systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abushakra, Bass; Walker, Iain S.; Sherman, Max H.

    2002-07-01

    An experimental study was conducted to evaluate the pressure drop characteristics of residential duct system components that are either not available or not thoroughly (sometimes incorrectly) described in existing duct design literature. The tests were designed to imitate cases normally found in typical residential and light commercial installations. The study included three different sizes of flexible ducts, under different compression configurations, splitter boxes, supply boots, and a fresh air intake hood. The experimental tests conformed to ASHRAE Standard 120P--''Methods of Testing to Determine Flow Resistance of HVAC Air Ducts and Fittings''. The flexible duct study covered compressibility and bending effectsmore » on the total pressure drop, and the results showed that the available published references tend to underestimate the effects of compression in flexible ducts that can increase pressure drops by up to a factor of nine. The supply boots were tested under different configurations including a setup where a flexible duct elbow connection was considered as an integral part of the supply boot. The supply boots results showed that diffusers can increase the pressure drop by up to a factor of two in exit fittings, and the installation configuration can increase the pressure drop by up to a factor of five. The results showed that it is crucial for designers and contractors to be aware of the compressibility effects of the flexible duct, and the installation of supply boots and diffusers.« less

  16. 40 CFR 89.109 - Maintenance instructions and minimum allowable maintenance intervals.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... change, oil filter change, fuel filter change, air filter change, cooling system maintenance, adjustment... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION...) Exhaust gas recirculation system-related filters and coolers. (ii) Positive crankcase ventilation valve...

  17. 40 CFR 89.109 - Maintenance instructions and minimum allowable maintenance intervals.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... change, oil filter change, fuel filter change, air filter change, cooling system maintenance, adjustment... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION...) Exhaust gas recirculation system-related filters and coolers. (ii) Positive crankcase ventilation valve...

  18. Ames Air Revitalization

    NASA Technical Reports Server (NTRS)

    Huang, Roger Z.

    2015-01-01

    This is an informal presentation presented to the University of Colorado, Boulder Bioastronautics group seminar. It highlights the key focal areas of the Air Revitalization Group research over the past year, including progress on the CO2 Removal and Compression System, testing of CDRA drying bed configurations, and adsorption research.

  19. Effects of synthetic air entraining agents on compressive strength of Portland cement concrete : mechanism of interaction and remediation strategy

    DOT National Transportation Integrated Search

    1999-07-01

    This document reports the results of a comprehensive study pertaining to the determination of causes and mechanisms resulting in a reduction strength in concrete mixtures containing synthetic air entraining admixtures. The study involved experimentat...

  20. Turbine inter-disk cavity cooling air compressor

    DOEpatents

    Chupp, R.E.; Little, D.A.

    1998-01-06

    The inter-disk cavity between turbine rotor disks is used to pressurize cooling air. A plurality of ridges extend radially outwardly over the face of the rotor disks. When the rotor disks are rotated, the ridges cause the inter-disk cavity to compress air coolant flowing through the inter-disk cavity en route to the rotor blades. The ridges eliminate the need for an external compressor to pressurize the air coolant. 5 figs.

  1. Investigation on thermal oxidative aging of nitrile rubber (NBR) O-rings under compression stress

    NASA Astrophysics Data System (ADS)

    Liu, X. R.; Zhang, W. F.; Lou, W. T.; Huang, Y. X.; Dai, W.

    2017-11-01

    The degradation behaviors of nitrile rubber O-rings exposure to air under compression were investigated at three elevated temperatures. The physical and mechanical properties of the aging samples before and after exposure at selected time were studied by measuring weight loss, tensile strength and elongation at break. The Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and fracture morphology were used to reveal the microstructural changes of the aging samples. The results indicate that the weight decreased with exposure time and temperature. Based on the results of the crosslinking density, the crosslinking predominates during the most of aging process. The significant changes in tensile strength and elongation at break also indicate the severe degradation in air. The fracture morphology results show that the fracture surface after 64 days of exposure to air turns rough and present defects. The ATR-FTIR results demonstrate that the hydroxyl groups were formed for the samples aged in air.

  2. Geothermally Coupled Well-Based Compressed Air Energy Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, Casie L.; Bearden, Mark D.; Horner, Jacob A.

    2015-12-20

    Previous work by McGrail et al. (2013, 2015) has evaluated the possibility of pairing compressed air energy storage with geothermal resources in lieu of a fossil-fired power generation component, and suggests that such applications may be cost competitive where geology is favorable to siting both the geothermal and CAES components of such a system. Those studies also note that the collocation of subsurface resources that meet both sets of requirements are difficult to find in areas that also offer infrastructure and near- to mid-term market demand for energy storage. This study examines a novel application for the compressed air storagemore » portion of the project by evaluating the potential to store compressed air in disused wells by amending well casings to serve as subsurface pressure vessels. Because the wells themselves would function in lieu of a geologic storage reservoir for the CAES element of the project, siting could focus on locations with suitable geothermal resources, as long as there was also existing wellfield infrastructure that could be repurposed for air storage. Existing wellfields abound in the United States, and with current low energy prices, many recently productive fields are now shut in. Should energy prices remain stagnant, these idle fields will be prime candidates for decommissioning unless they can be transitioned to other uses, such as redevelopment for energy storage. In addition to the nation’s ubiquitous oil and gas fields, geothermal fields, because of their phased production lifetimes, also may offer many abandoned wellbores that could be used for other purposes, often near currently productive geothermal resources. These existing fields offer an opportunity to decrease exploration and development uncertainty by leveraging data developed during prior field characterization, drilling, and production. They may also offer lower-cost deployment options for hybrid geothermal systems via redevelopment of existing well-field infrastructure. This project assessed the technical and economic feasibility of implementing geothermally coupled well-based CAES for grid-scale energy storage. Based on an evaluation of design specifications for a range of casing grades common in U.S. oil and gas fields, a 5-MW CAES project could be supported by twenty to twenty-five 5,000-foot, 7-inch wells using lower-grade casing, and as few as eight such wells for higher-end casing grades. Using this information, along with data on geothermal resources, well density, and potential future markets for energy storage systems, The Geysers geothermal field was selected to parameterize a case study to evaluate the potential match between the proven geothermal resource present at The Geysers and the field’s existing well infrastructure. Based on calculated wellbore compressed air mass, the study shows that a single average geothermal production well could provide enough geothermal energy to support a 15.4-MW (gross) power generation facility using 34 to 35 geothermal wells repurposed for compressed air storage, resulting in a simplified levelized cost of electricity (sLCOE) estimated at 11.2 ¢/kWh (Table S.1). Accounting for the power loss to the geothermal power project associated with diverting geothermal resources for air heating results in a net 2-MW decrease in generation capacity, increasing the CAES project’s sLCOE by 1.8 ¢/kWh.« less

  3. Recuperators for compressed-air energy storage plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakhamkin, M.

    1989-12-01

    An R D study was conducted to provide an engineering solution to the potential problem of corrosion in the cold-end sections of recuperators operating in compressed-air energy storage (CAES) plants. Two options were developed: (1) a conventional, counterflow recuperator with an easily replaceable cold-end section and (2) a recuperator design which eliminates operation at tube temperatures below the exhaust-gas dew point (advanced design). The advanced design consists of an optimized combination of counterflow and parallel-flow sections. The following data resulting from these studies are included: a history of recuperator operating experience, a summary of lab-testing of various materials for corrosionmore » resistance, detailed design and descriptions of the recuperator designs, additional detail descriptions of alternative air-preheating and turboexpander-exhaust systems, and a comparative economic analysis of the various designs developed. The study concluded that for use with No. 2 fuel oil or lower-grade fuels, the advanced recuperator design with carbon-steel tubes and fins would be more cost-effective and trouble-free than one with an easily replaceable tube section. For CAES plants firing very low-sulfur fuel oil or natural gas, the lower capital-cost, counter-flow design can be considered. It was also concluded that a compressed-air bypass of the recuperator be included in the plant design in the event of recuperator outage, and that the recuperator be designed for operation without cavern air going through it. The advanced recuperator concept is currently being implemented at the 110-MW CAES plant for the Alabama Electric Cooperative, Inc. 6 refs., 24 figs., 20 tabs.« less

  4. Homogenous charge compression ignition engine having a cylinder including a high compression space

    DOEpatents

    Agama, Jorge R.; Fiveland, Scott B.; Maloney, Ronald P.; Faletti, James J.; Clarke, John M.

    2003-12-30

    The present invention relates generally to the field of homogeneous charge compression engines. In these engines, fuel is injected upstream or directly into the cylinder when the power piston is relatively close to its bottom dead center position. The fuel mixes with air in the cylinder as the power piston advances to create a relatively lean homogeneous mixture that preferably ignites when the power piston is relatively close to the top dead center position. However, if the ignition event occurs either earlier or later than desired, lowered performance, engine misfire, or even engine damage, can result. Thus, the present invention divides the homogeneous charge between a controlled volume higher compression space and a lower compression space to better control the start of ignition.

  5. Variable valve timing in a homogenous charge compression ignition engine

    DOEpatents

    Lawrence, Keith E.; Faletti, James J.; Funke, Steven J.; Maloney, Ronald P.

    2004-08-03

    The present invention relates generally to the field of homogenous charge compression ignition engines, in which fuel is injected when the cylinder piston is relatively close to the bottom dead center position for its compression stroke. The fuel mixes with air in the cylinder during the compression stroke to create a relatively lean homogeneous mixture that preferably ignites when the piston is relatively close to the top dead center position. However, if the ignition event occurs either earlier or later than desired, lowered performance, engine misfire, or even engine damage, can result. The present invention utilizes internal exhaust gas recirculation and/or compression ratio control to control the timing of ignition events and combustion duration in homogeneous charge compression ignition engines. Thus, at least one electro-hydraulic assist actuator is provided that is capable of mechanically engaging at least one cam actuated intake and/or exhaust valve.

  6. Analysis of the operation of the SCD Response intermittent compression system.

    PubMed

    Morris, Rh J; Griffiths, H; Woodcock, J P

    2002-01-01

    The work assessed the performance of the Kendall SCD Response intermittent pneumatic compression system for deep vein thrombosis prophylaxis, which claimed to set its cycle according to the blood flow characteristics of individual patient limbs. A series of tests measured the system response in various situations, including application to the limbs of healthy volunteers, and to false limbs. Practical experimentation and theoretical analysis were used to investigate influences on the system functioning other than blood flow. The system tested did not seem to perform as claimed, being unable to distinguish between real and fake limbs. The intervals between compressions were set to times unrealistic for venous refill, with temperature changes in the cuff the greatest influence on performance. Combining the functions of compression and the measurement of the effects of compression in the same air bladder makes temperature artefacts unavoidable and can cause significant errors in the inter-compression interval.

  7. Calculations of the Performance of a Compression-Ignition Engine-Compressor Turbine Combination I : Performance of a Highly Supercharged Compression-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Sanders, J. C.; Mendelson, Alexander

    1945-01-01

    Small high-speed single-cylinder compression-ignition engines were tested to determine their performance characteristics under high supercharging. Calculations were made on the energy available in the exhaust gas of the compression-ignition engines. The maximum power at any given maximum cylinder pressure was obtained when the compression pressure was equal to the maximum cylinder pressure. Constant-pressure combustion was found possible at an engine speed of 2200 rpm. Exhaust pressures and temperatures were determined from an analysis of indicator cards. The analysis showed that, at rich mixtures with the exhaust back pressure equal to the inlet-air pressure, there is excess energy available for driving a turbine over that required for supercharging. The presence of this excess energy indicates that a highly supercharged compression-ignition engine might be desirable as a compressor and combustion chamber for a turbine.

  8. The Effect of Fuel Composition, Compression Pressure, and Fuel-Air Ratio on the Compression-Ignition Characteristics of Several Fuels

    DTIC Science & Technology

    1948-03-01

    to this arbitrary value as ntandard. The compression time was maintained unifcum by uElng a ccnstent . driving ~ essure of 500 pounds per squ=e inch...ir ratio,0.066 (chemlo~ correct); initial~ essure , 14.7 lb/sq in. abs.; intt Ml temperature, 609° F abs~ Ignitiondelay Compres- Compres- sion...chemically correct); initial ~ essure , 14.7 lb/sq in. abso; fimal pressures 379 lb/sq in. abs.; initial temperatume~ 6090 F abs.; final temperature, 1340° F abs

  9. Hydrogen as an Auxiliary Fuel in Compression-Ignition Engines

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold C; Foster, H

    1936-01-01

    An investigation was made to determine whether a sufficient amount of hydrogen could be efficiently burned in a compression-ignition engine to compensate for the increase of lift of an airship due to the consumption of the fuel oil. The performance of a single-cylinder four-stroke-cycle compression-ignition engine operating on fuel oil alone was compared with its performance when various quantities of hydrogen were inducted with the inlet air. Engine-performance data, indicator cards, and exhaust-gas samples were obtained for each change in engine-operating conditions.

  10. Planar temperature measurement in compressible flows using laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J., Jr.; Hollo, Steven D.; Mcdaniel, James C.

    1991-01-01

    A laser-induced iodine fluorescence technique that is suitable for the planar measurement of temperature in cold nonreacting compressible air flows is investigated analytically and demonstrated in a known flow field. The technique is based on the temperature dependence of the broadband fluorescence from iodine excited by the 514-nm line of an argon-ion laser. Temperatures ranging from 165 to 245 K were measured in the calibration flow field. This technique makes complete, spatially resolved surveys of temperature practical in highly three-dimensional, low-temperature compressible flows.

  11. The effect of changes in compression ratio upon engine performance

    NASA Technical Reports Server (NTRS)

    Sparrow, Stanwood W

    1925-01-01

    This report is based upon engine tests made at the Bureau of Standards during 1920, 1921, 1922, and 1923. The majority of these tests were of aviation engines and were made in the Altitude Laboratory. For a small portion of the work a single cylinder experimental engine was used. This, however, was operated only at sea-level pressures. The report shows that an increase in break horsepower and a decrease in the pounds of fuel used per brake horsepower hour usually results from an increase in compression ratio. This holds true at least up to the highest ratio investigated, 14 to 1, provided there is no serious preignition or detonation at any ratio. To avoid preignition and detonation when employing high-compression ratios, it is often necessary to use some fuel other than gasoline. It has been found that the consumption of some of these fuels in pounds per brake horsepower hour is so much greater than the consumption of gasoline that it offsets the decrease derived from the use of the high-compression ratio. The changes in indicated thermal efficiency with changes in compression ratio are in close agreement with what would be anticipated from a consideration of the air cycle efficiencies at the various ratios. In so far as these tests are concerned there is no evidence that a change in compression ratio produces an appreciable, consistent change in friction horsepower, volumetric efficiency, or in the range of fuel-air ratios over which the engine can operate. The ratio between the heat loss to the jacket water and the heat converted into brake horsepower or indicated horsepower decreases with increase in compression ratio. (author)

  12. Development of a Low-Power CO2 Removal and Compression System for Closed-Loop Air Revitalization in Future Spacecraft

    NASA Technical Reports Server (NTRS)

    Mulloth, Lila M.; Rosen, Micha; Affleck, David; LeVan, M. Douglas; Moate, Joe R.

    2005-01-01

    The current CO2 removal technology of NASA is very energy intensive and contains many non-optimized subsystems. This paper discusses the design and prototype development of a two-stage CO2 removal and compression system that will utilize much less power than NASA s current CO2 removal technology. This integrated system contains a Nafion membrane followed by a residual water adsorber that performs the function of the desiccant beds in the four-bed molecular sieve (4BMS) system of the International Space Station (ISS). The membrane and the water adsorber are followed by a two-stage CO2 removal and compression subsystem that satisfies the operations of the CO2 adsorbent beds of the 4BMS aid the interface compressor for the Sabatier reactor connection. The two-stage compressor will utilize the principles of temperature-swing adsorption (TSA) compression technology for CO2 removal and compression. The similarities in operation and cycle times of the CO2 removal (first stage) and compression (second stage) operations will allow thermal coupling of the processes to maximize the efficiency of the system. In addition to the low-power advantage, this processor will maintain a lower CO2 concentration in the cabin than that can be achieved by the existing CO2 removal systems. The compact, consolidated, configuration of membrane gas dryer and CO2 separator and compressor will allow continuous recycling of humid air in the cabin and supply of compressed CO2 to the reduction unit for oxygen recovery. The device has potential application to the International Space Station and future, long duration, transit, and planetary missions.

  13. Machine & electrical double control air dryer for vehicle air braking system

    NASA Astrophysics Data System (ADS)

    Zhang, Xuan; Yang, Liu; Wang, Xian Yan; Tan, Xiao Yan; Wang, Wei

    2017-09-01

    As is known to all, a vehicle air brake system, in which usually contains moisture. To solve the problem, it is common to use air dryer to dry compressed air effectively and completely remove the moisture and oil of braking system. However, the existing air dryer is not suitable for all commercial vehicles. According to the operational status of the new energy vehicles in the initial operating period, the structure design principle of the machine & electric control air dryer is expounded from the aspects of the structure and operating principle, research & development process.

  14. 40 CFR 63.9631 - What are my monitoring requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... maintain a bag leak detection system to monitor the relative change in particulate matter loadings... of ensuring the proper functioning of removal mechanisms. (3) Check the compressed air supply of... interior for air leaks. (8) Inspect fans for wear, material buildup, and corrosion through quarterly visual...

  15. Apparatus for Teaching Physics.

    ERIC Educational Resources Information Center

    Gottlieb, Herbert H., Ed.

    1980-01-01

    Summarizes the advantages in using the Daedalon Air Table, which supplies compressed air to the pucks instead of the table surface itself. Describes methods for constructing an electronic null detector using a Weston type galvanometer and an integrated circuit operational amplifier. Also describes a redesigned and improved sound-level meter. (CS)

  16. 173. Photocopy of drawing (1963 piping drawing by General Dynamics/Astronautics) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    173. Photocopy of drawing (1963 piping drawing by General Dynamics/Astronautics) COMPRESSED AIR AND WATER SYSTEM SCHEMATIC FOR THE MST, SHEET P38 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  17. 49 CFR 570.54 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-hydraulic brake subsystem means a subsystem of the air brake that uses compressed air to transmit a force from the driver control to a hydraulic brake system to actuate the service brakes. Electric brake... a system that uses a vacuum and atmospheric pressure for transmitting a force from the driver...

  18. 49 CFR 570.54 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-hydraulic brake subsystem means a subsystem of the air brake that uses compressed air to transmit a force from the driver control to a hydraulic brake system to actuate the service brakes. Electric brake... a system that uses a vacuum and atmospheric pressure for transmitting a force from the driver...

  19. 49 CFR 570.54 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-hydraulic brake subsystem means a subsystem of the air brake that uses compressed air to transmit a force from the driver control to a hydraulic brake system to actuate the service brakes. Electric brake... a system that uses a vacuum and atmospheric pressure for transmitting a force from the driver...

  20. Firefighter's Breathing System

    NASA Technical Reports Server (NTRS)

    Mclaughlan, P. B.; Giorgini, E. A.; Sullivan, J. L.; Simmonds, M. R.; Beck, E. J.

    1976-01-01

    System, based on open-loop demand-type compressed air concept, is lighter and less bulky than former systems, yet still provides thirty minutes of air supply. Comfort, visibility, donning time, and breathing resistance have been improved. Apparatus is simple to recharge and maintain and is comparable in cost to previously available systems.

  1. 40 CFR Appendix I to Part 94 - Emission-Related Engine Parameters and Specifications

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Temperature control system calibration. 4. Maximum allowable inlet air restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Fuel injection—compression ignition engines. a. Control parameters and calibrations. b. Transient enrichment system calibration. c. Air-fuel flow calibration. d. Altitude...

  2. 40 CFR Appendix I to Part 94 - Emission-Related Engine Parameters and Specifications

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Temperature control system calibration. 4. Maximum allowable inlet air restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Fuel injection—compression ignition engines. a. Control parameters and calibrations. b. Transient enrichment system calibration. c. Air-fuel flow calibration. d. Altitude...

  3. 40 CFR Appendix I to Part 94 - Emission-Related Engine Parameters and Specifications

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... Temperature control system calibration. 4. Maximum allowable inlet air restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Fuel injection—compression ignition engines. a. Control parameters and calibrations. b. Transient enrichment system calibration. c. Air-fuel flow calibration. d. Altitude...

  4. 40 CFR Appendix I to Part 94 - Emission-Related Engine Parameters and Specifications

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... Temperature control system calibration. 4. Maximum allowable inlet air restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Fuel injection—compression ignition engines. a. Control parameters and calibrations. b. Transient enrichment system calibration. c. Air-fuel flow calibration. d. Altitude...

  5. Thermodynamic correction of particle concentrations measured by underwing probes on fast flying aircraft

    NASA Astrophysics Data System (ADS)

    Weigel, R.; Spichtinger, P.; Mahnke, C.; Klingebiel, M.; Afchine, A.; Petzold, A.; Krämer, M.; Costa, A.; Molleker, S.; Jurkat, T.; Minikin, A.; Borrmann, S.

    2015-12-01

    Particle concentration measurements with underwing probes on aircraft are impacted by air compression upstream of the instrument body as a function of flight velocity. In particular for fast-flying aircraft the necessity arises to account for compression of the air sample volume. Hence, a correction procedure is needed to invert measured particle number concentrations to ambient conditions that is commonly applicable for different instruments to gain comparable results. In the compression region where the detection of particles occurs (i.e. under factual measurement conditions), pressure and temperature of the air sample are increased compared to ambient (undisturbed) conditions in certain distance away from the aircraft. Conventional procedures for scaling the measured number densities to ambient conditions presume that the particle penetration speed through the instruments' detection area equals the aircraft speed (True Air Speed, TAS). However, particle imaging instruments equipped with pitot-tubes measuring the Probe Air Speed (PAS) of each underwing probe reveal PAS values systematically below those of the TAS. We conclude that the deviation between PAS and TAS is mainly caused by the compression of the probed air sample. From measurements during two missions in 2014 with the German Gulfstream G-550 (HALO - High Altitude LOng range) research aircraft we develop a procedure to correct the measured particle concentration to ambient conditions using a thermodynamic approach. With the provided equation the corresponding concentration correction factor ξ is applicable to the high frequency measurements of each underwing probe which is equipped with its own air speed sensor (e.g. a pitot-tube). ξ-values of 1 to 0.85 are calculated for air speeds (i.e. TAS) between 60 and 260 m s-1. From HALO data it is found that ξ does not significantly vary between the different deployed instruments. Thus, for the current HALO underwing probe configuration a parameterisation of ξ as a function of TAS is provided for instances if PAS measurements are lacking. The ξ-correction yields higher ambient particle concentration by about 15-25 % compared to conventional procedures - an improvement which can be considered as significant for many research applications. The calculated ξ-values are specifically related to the considered HALO underwing probe arrangement and may differ for other aircraft or instrument geometries. Moreover, the ξ-correction may not cover all impacts originating from high flight velocities and from interferences between the instruments and, e.g., the aircraft wings and/or fuselage. Consequently, it is important that PAS (as a function of TAS) is individually measured by each probe deployed underneath the wings of a fast-flying aircraft.

  6. Low energy consumption method for separating gaseous mixtures and in particular for medium purity oxygen production

    DOEpatents

    Jujasz, Albert J.; Burkhart, James A.; Greenberg, Ralph

    1988-01-01

    A method for the separation of gaseous mixtures such as air and for producing medium purity oxygen, comprising compressing the gaseous mixture in a first compressor to about 3.9-4.1 atmospheres pressure, passing said compressed gaseous mixture in heat exchange relationship with sub-ambient temperature gaseous nitrogen, dividing the cooled, pressurized gaseous mixture into first and second streams, introducing the first stream into the high pressure chamber of a double rectification column, separating the gaseous mixture in the rectification column into a liquid oxygen-enriched stream and a gaseous nitrogen stream and supplying the gaseous nitrogen stream for cooling the compressed gaseous mixture, removing the liquid oxygen-enriched stream from the low pressure chamber of the rectification column and pumping the liquid, oxygen-enriched steam to a predetermined pressure, cooling the second stream, condensing the cooled second stream and evaporating the oxygen-enriched stream in an evaporator-condenser, delivering the condensed second stream to the high pressure chamber of the rectification column, and heating the oxygen-enriched stream and blending the oxygen-enriched stream with a compressed blend-air stream to the desired oxygen concentration.

  7. Oxidation Behavior of Matrix Graphite and Its Effect on Compressive Strength

    DOE PAGES

    Zhou, Xiangwen; Contescu, Cristian I.; Zhao, Xi; ...

    2017-01-01

    Mmore » atrix graphite (G) with incompletely graphitized binder used in high-temperature gas-cooled reactors (HTGRs) is commonly suspected to exhibit lower oxidation resistance in air. In order to reveal the oxidation performance, the oxidation behavior of newly developed A3-3 G at the temperature range from 500 to 950°C in air was studied and the effect of oxidation on the compressive strength of oxidized G specimens was characterized. Results show that temperature has a significant influence on the oxidation behavior of G. The transition temperature between Regimes I and II is ~700°C and the activation energy ( E a ) in Regime I is around 185 kJ/mol, a little lower than that of nuclear graphite, which indicates G is more vulnerable to oxidation. Oxidation at 550°C causes more damage to compressive strength of G than oxidation at 900°C. Comparing with the strength of pristine G specimens, the rate of compressive strength loss is 77.3% after oxidation at 550°C and only 12.5% for oxidation at 900°C. icrostructure images of SE and porosity measurement by ercury Porosimetry indicate that the significant compressive strength loss of G oxidized at 550°C may be attributed to both the uniform pore formation throughout the bulk and the preferential oxidation of the binder.« less

  8. Field Evaluation of a Passive Sampling Device for Hydrazines in Ambient Air

    DTIC Science & Technology

    1990-04-06

    MANIDIFUIOFOBELFO Figure 2. Test gas generator schematic. Conditioned house- compressed air is used as the diluent. The conditioning procedure consists...of passing the house air through a series of demisters, a hot Hopcalite catalyst bed, a reciprocating dual-tower molecular sieve scrubber, and finally... Air P. A. TAFFE,* S. W. BROWN,** A. R. THUROW,*** J. C. TRAvIs**** *GEO-Centers Inc., **EG&G, BOC-022, KSC, FL . . F. ***Wiltech Corp., KSC, FL MAY 0

  9. Haemodynamic Performance of Low Strength Below Knee Graduated Elastic Compression Stockings in Health, Venous Disease, and Lymphoedema.

    PubMed

    Lattimer, C R; Kalodiki, E; Azzam, M; Geroulakos, G

    2016-07-01

    To test the in vivo haemodynamic performance of graduated elastic compression (GEC) stockings using air-plethysmography (APG) in healthy volunteers (controls) and patients with varicose veins (VVs), post-thrombotic syndrome (PTS), or lymphoedema. Responsiveness data were used to determine which group benefited the most from GEC. There were 12 patients per group compared using no compression, knee-length Class 1 (18-21 mmHg) compression, and Class 2 (23-32 mmHg) compression. Stocking/leg interface pressures (mmHg) were measured supine in two places using an air-sensor transducer. Stocking performance parameters, investigated before and after GEC, included the standard APG tests (working venous volume [wVV], venous filling index [VFI], venous drainage index [VDI], ejection fraction [EF]) and the occlusion plethysmography tests (incremental pressure causing the maximal increase in calf volume [IPMIV], outflow fraction [OF]). Results were expressed as median and interquartile range. Significant graduated compression was achieved in all four groups with higher interface pressures at the ankle. Only the VVs patients had a significant reduction in their wVV (without: 133 [109-146] vs. class1: 93 [74-113] mL) and the VFI (without: 4.6 [3-7.1] vs. class1: 3.1 [1.9-5] mL/s), both at p <.05. The IPMIV improved significantly in all groups except in the PTS group (p <.05). The OF improved only in the controls (without: 43 [38-51] vs. class1: 50 [48-53] %) and the VVs patients (without: 47 [39-58] vs. class1: 56 [50-64] %), both at p <.05. There were no significant differences in the VDI or the EF with GEC. Compression dose-response relationships were not observed. Patients with varicose veins improved the most, whereas those with PTS improved the least. Performance seemed to depend more on disease pathophysiology than compression strength. However, the lack of responsiveness to compression strength may be related to the low external pressures used. Stocking performance tests may have value in selecting those patients who benefit most from compression. Copyright © 2016 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  10. 46 CFR 151.50-31 - Chlorine.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... force the liquid out of the tank, compressed air, or other nonreactive gas, may be used to secure the desired rate of discharge, provided the air or gas is oil-free and thoroughly dried by passing it over... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK...

  11. 46 CFR 151.50-31 - Chlorine.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... force the liquid out of the tank, compressed air, or other nonreactive gas, may be used to secure the desired rate of discharge, provided the air or gas is oil-free and thoroughly dried by passing it over... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK...

  12. 46 CFR 151.50-31 - Chlorine.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... force the liquid out of the tank, compressed air, or other nonreactive gas, may be used to secure the desired rate of discharge, provided the air or gas is oil-free and thoroughly dried by passing it over... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK...

  13. 49 CFR 173.307 - Exceptions for compressed gases.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... For transportation by air, tires and tire assemblies must meet the conditions in § 175.8(b)(4) of this subchapter. (3) Balls used for sports. (4) Refrigerating machines, including dehumidifiers and air conditioners, and components thereof, such as precharged tubing containing: (i) 12 kg (25 pounds) or less of a...

  14. 40 CFR 63.7740 - What are my monitoring requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... a bag leak detection system according to the requirements in § 63.7741(b). (c) For each baghouse... the proper functioning of removal mechanisms. (3) Check the compressed air supply for pulse-jet... integrity of the baghouse through quarterly visual inspections of the baghouse interior for air leaks. (8...

  15. 29 CFR 1926.804 - Definitions applicable to this subpart.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... pressure, and a second exposure to compressed air does not occur until at least 12 consecutive hours of exposure to normal atmospheric pressure has elapsed since the employee has been under pressure. (k... decompression time exceeds 75 minutes. (q) Working chamber—The space or compartment under air pressure in which...

  16. Turbo test rig with hydroinertia air bearings for a palmtop gas turbine

    NASA Astrophysics Data System (ADS)

    Tanaka, Shuji; Isomura, Kousuke; Togo, Shin-ichi; Esashi, Masayoshi

    2004-11-01

    This paper describes a turbo test rig to test the compressor of a palmtop gas turbine generator at low temperature (<100 °C). Impellers are 10 mm in diameter and have three-dimensional blades machined using a five-axis NC milling machine. Hydroinertia bearings are employed in both radial and axial directions. The performance of the compressor was measured at 50% (435 000 rpm) and 60% (530 000 rpm) of the rated rotational speed (870 000 rpm) by driving a turbine using compressed air at room temperature. The measured pressure ratio is lower than the predicted value. This could be mainly because impeller tip clearance was larger than the designed value. The measured adiabatic efficiency is unrealistically high due to heat dissipation from compressed air. During acceleration toward the rated rotational speed, a shaft crashed to the bearing at 566 000 rpm due to whirl. At that time, the whirl ratio was 8.

  17. Influence of Cooling Condition on the Performance of Grinding Hardened Layer in Grind-hardening

    NASA Astrophysics Data System (ADS)

    Wang, G. C.; Chen, J.; Xu, G. Y.; Li, X.

    2018-02-01

    45# steel was grinded and hardened on a surface grinding machine to study the effect of three different cooling media, including emulsion, dry air and liquid nitrogen, on the microstructure and properties of the hardened layer. The results show that the microstructure of material surface hardened with emulsion is pearlite and no hardened layer. The surface roughness is small and the residual stress is compressive stress. With cooling condition of liquid nitrogen and dry air, the specimen surface are hardened, the organization is martensite, the surface roughness is also not changed, but high hardness of hardened layer and surface compressive stress were obtained when grinding using liquid nitrogen. The deeper hardened layer grinded with dry air was obtained and surface residual stress is tensile stress. This study provides an experimental basis for choosing the appropriate cooling mode to effectively control the performance of grinding hardened layer.

  18. The Effect of Piston-Head Temperature on Knock-Limited Power

    NASA Technical Reports Server (NTRS)

    Imming, Harry S.

    1944-01-01

    To determine the effect of piston-head temperature on knock-limited power. Tests were made in a supercharged CFR engine over a range of fuel-air ratios from 0.055 to 0.120, using S-3 reference fuel, AN-F-28, Amendment-2, aviation gasoline, and AN-F-28 plus 2 percent xylidines by weight. Tests were run at a compression ratio of 7.0 with inlet-air temperatures of 150 F and 250 F and at a compression ratio of 8.0 with an inlet-air temperature of 250 F. All other engine conditions were held constant. The piston-head temperature was varied by circulation of oil through passages in the crown of a liquid-cooled piston. This method of piston cooling decreased the piston-head temperature about 80 F. The data are not intended to constitute a recommendation as to the advisability of piston cooling in practice.

  19. OTEC gas desorption studies

    NASA Astrophysics Data System (ADS)

    Chen, F. C.; Golshani, A.

    1982-02-01

    Experiments on deaeration in packed columns and barometric intake systems, and with hydraulic air compression for open-cycle OTEC systems are reported. A gas desorption test loop consisting of water storage tanks, a vacuum system, a liquid recirculating system, an air supply, a column test section, and two barometric leg test sections was used to perform the tests. The aerated water was directed through columns filled with either ceramic Raschig rings or plastic pall rings, and the system vacuum pressure, which drives the deaeration process, was found to be dependent on water velocity and intake pipe height. The addition of a barometric intake pipe increased the deaeration effect 10%, and further tests were run with lengths of PVC pipe as potential means for noncondensibles disposal through hydraulic air compression. Using the kinetic energy from the effluent flow to condense steam in the noncondensible stream improved the system efficiency.

  20. Evaluating the Role of the Air-Solution Interface on the Mechanism of Subvisible Particle Formation Caused by Mechanical Agitation for an IgG1 mAb.

    PubMed

    Ghazvini, Saba; Kalonia, Cavan; Volkin, David B; Dhar, Prajnaparamita

    2016-05-01

    Mechanical agitation of monoclonal antibody (mAb) solutions often leads to protein particle formation. In this study, various formulations of an immunoglobulin G (IgG) 1 mAb were subjected to different controlled interfacial stresses using a Langmuir trough, and protein particles formed at the interface and measured in bulk solution were characterized using atomic force microscopy and flow digital imaging. Results were compared to mAb solutions agitated in glass vials and unstressed controls. At lower pH, mAb solutions exhibited larger hysteresis in their surface pressure versus area isotherms and increased number of particles in bulk solution, when subjected to interfacial stresses. mAb samples subjected to 750-1000 interfacial compression-expansion cycles in 6 h contained high particle numbers in bulk solution, and displayed similar particulation trends when agitated in vials. At compression rates of 50 cycles in 6 h, however, particle levels in mAb solutions were comparable to unstressed controls, despite protein aggregates being present at the air-solution interface. These results suggest that while the air-solution interface serves as a nucleation site for initiating protein aggregation, the number of protein particles measured in bulk mAb solutions depends on the total number of compression cycles that proteins at the air-solution interface are subjected to within a fixed time. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  1. Optimizing management of the condensing heat and cooling of gases compression in oxy block using of a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Brzęczek, Mateusz; Bartela, Łukasz

    2013-12-01

    This paper presents the parameters of the reference oxy combustion block operating with supercritical steam parameters, equipped with an air separation unit and a carbon dioxide capture and compression installation. The possibility to recover the heat in the analyzed power plant is discussed. The decision variables and the thermodynamic functions for the optimization algorithm were identified. The principles of operation of genetic algorithm and methodology of conducted calculations are presented. The sensitivity analysis was performed for the best solutions to determine the effects of the selected variables on the power and efficiency of the unit. Optimization of the heat recovery from the air separation unit, flue gas condition and CO2 capture and compression installation using genetic algorithm was designed to replace the low-pressure section of the regenerative water heaters of steam cycle in analyzed unit. The result was to increase the power and efficiency of the entire power plant.

  2. 2012 ARPA-E Energy Innovation Summit: Profiling General Compression: A River of Wind

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcus, David; Ingersoll, Eric

    The third annual ARPA-E Energy Innovation Summit was held in Washington D.C. in February, 2012. The event brought together key players from across the energy ecosystem - researchers, entrepreneurs, investors, corporate executives, and government officials - to share ideas for developing and deploying the next generation of energy technologies. A few videos were selected for showing during the Summit to attendees. These 'performer videos' highlight innovative research that is ongoing and related to the main topics of the Summit's sessions. Featured in this video are David Marcus, Founder of General Compression, and Eric Ingersoll, CEO of General Compression. General Compression,more » with the help of ARPA-E funding, has created an advanced air compression process which can store and release more than a weeks worth of the energy generated by wind turbines.« less

  3. 2012 ARPA-E Energy Innovation Summit: Profiling General Compression: A River of Wind

    ScienceCinema

    Marcus, David; Ingersoll, Eric

    2018-05-30

    The third annual ARPA-E Energy Innovation Summit was held in Washington D.C. in February, 2012. The event brought together key players from across the energy ecosystem - researchers, entrepreneurs, investors, corporate executives, and government officials - to share ideas for developing and deploying the next generation of energy technologies. A few videos were selected for showing during the Summit to attendees. These 'performer videos' highlight innovative research that is ongoing and related to the main topics of the Summit's sessions. Featured in this video are David Marcus, Founder of General Compression, and Eric Ingersoll, CEO of General Compression. General Compression, with the help of ARPA-E funding, has created an advanced air compression process which can store and release more than a weeks worth of the energy generated by wind turbines.

  4. Surface pressure affects B-hordein network formation at the air-water interface in relation to gastric digestibility.

    PubMed

    Yang, Jingqi; Huang, Jun; Zeng, Hongbo; Chen, Lingyun

    2015-11-01

    Protein interfacial network formation under mechanical pressure and its influence on degradation was investigated at molecular level using Langmuir-Blodgett B-hordein monolayer as a 2D model. Surface properties, such as surface pressure, dilatational and shear rheology and the surface pressure--area (π-A) isotherm, of B-hordein at air-water interface were analyzed by tensiometer, rheometer and a Langmuir-Blodgett trough respectively. B-Hordein conformation and orientation under different surface pressures were determined by polarization modulation-infrared reflection absorption spectroscopy (PM-IRRAS). The interfacial network morphology was observed by atomic force microscopy (AFM). B-Hordein could reduce the air-water surface tension rapidly to ∼ 45 mN/m and form a solid-like network with high rheological elasticity and compressibility at interface, which could be a result of interactions developed by intermolecular β-sheets. The results also revealed that B-hordein interfacial network switched from an expanded liquid phase to a solid-like film with increasing compression pressure. The orientation of B-hordein was parallel to the surface when in expended liquid phase, whereas upon compression, the hydrophobic repetitive region tilted away from water phase. When compressed to 30 mN/m, a strong elastic network was formed at the interface, and it was resistant to a harsh gastric-like environment of low pH and pepsin. This work generated fundamental knowledge, which suggested the potential to design B-hordein stabilized emulsions and encapsulations with controllable digestibility for small intestine targeted delivery of bioactive compounds. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. An investigation of the use of discharge valves and an intake control for improving the performance of N.A.C.A. Roots type supercharger

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Wilson, Ernest E

    1929-01-01

    This report presents the results of an analytical investigation on the practicability of using mechanically operated discharge valves in conjunction with a manually operated intake control for improving the performance of N. A. C. A. Roots type superchargers. These valves, which may be either of the oscillating or rotating type, are placed in the discharge opening of the supercharger and are so shaped and synchronized with the supercharger impellers that they do not open until the air has been compressed to the delivery pressure. The intake control limits the quantity of air compressed to engine requirements by permitting the excess air to escape from the compression chamber before compression begins. The percentage power saving and the actual horsepower saved were computed for altitudes from 0 to 20,000 feet. These computations are based on the pressure-volume cards for the conventional and the modified roots type superchargers and on the results of laboratory tests of the conventional type. The use of discharge valves shows a power saving of approximately 26 per cent at a critical altitude of 20,000 feet. In addition, these valves reduce the amplitude of the discharge pulsations and increase the volumetric efficiency. With slow-speed roots blowers operating at high-pressure differences even better results would be expected. For aircraft engine superchargers operating at high speeds these discharge valves increase the performance as above, but have the disadvantages of increasing the weight and of adding a high-speed mechanism to a simple machine. (author)

  6. The ejector flowmeter as air/oxygen mixing device. An apparatus providing gas mixtures with adjustable oxygen content for high-flow humidification systems.

    PubMed

    Christensen, K N; Waaben, J; Jørgensen, S

    1980-04-01

    The ejector flowmeter is constructed for continuous removal of excess gas from anaesthetic circuits. This instrument can be used as an air/oxygen mixing device for high-flow humidification systems in wards where compressed air is not available. Pure oxygen is used as driving gas through the ejector. A nomogram has been constructed to show the relationship between oxygen driving pressure, inlet of air to the flowmeter, FIO2 and total outflow.

  7. Evaluation of the Effectiveness of Wet Blast Cleaning Methods of Surface Preparation

    DTIC Science & Technology

    1985-06-01

    for Air Abrasive Wet Blast: Complete System Water Abrasive Mixing Chamber in Slurry Blast Unit Schematic of unit Control Unit Slurry Blast — Air/Water...this discussion we present some general. user guidelines regarding what to look for in con- sidering the use or purchase of wet blasting equipment...These units use compressed air as the medium to propel the eroding material. They differ from air abrasive wet blast units in that the abrasive is mixed

  8. Canadian and US agencies use bubbles to aid salmon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    B.C. Hydro, Canada's federal Department of Fisheries and Oceans, and the Bureau of Reclamation in the US have implemented unique bubbler systems that release compressed air to aid fish migration and improve spawning habitat. In each case, compressed air equipment produced bubbles that lifted cool water from a lake bottom to displace warmer water on top. An experimental project during the summer of 1992, involving BC Hydro and the Department of Fisheries and Oceans, succeeded in reducing the mortality rate of sockeye salmon on their migration up the Somass River from the Alberni Inlet to Great Central Lake on Vancouvermore » Island. The bubbler system cooled the water to aid the migration of hundreds of thousands of fish who were reluctant to continue upstream due to exceptionally warm water temperatures. Participants in the project suspended a large lead-weighted plastic curtain (more than 12 meters tall and extending the length of three football fields) from a series of floats across the outlet of Grand Central Lake. Compressed air equipment was installed behind the curtain to produce bubbles to lift cool water from the lake bottom. Water flowing into the river ranged from 1 to 3 degrees cooler than water on the other side of the curtain.« less

  9. An Investigation of the Coefficient of Discharge of Liquids Through Small Round Orifices

    NASA Technical Reports Server (NTRS)

    Joachim, W F

    1926-01-01

    The work covered by this report was undertaken in connection with a general investigation of fuel injection engine principles as applied to engines for aircraft propulsion, the specific purpose being to obtain information on the coefficient of discharge of small round orifices suitable for use as fuel injection nozzles. Values for the coefficient were determined for the more important conditions of engine service such as discharge under pressures up to 8,000 pounds per square inch, at temperatures between 80 degrees and 180 degrees F. And into air compressed to pressures up to 1,000 pounds per square inch. The results show that the coefficient ranges between 0.62 and 0.88 for the different test conditions between 1,000 and 8,000 pounds per square inch hydraulic pressure. At lower pressures the coefficient increases materially. It is concluded that within the range of these tests and for hydraulic pressures above 1,000 pound per square inch the coefficient does not change materially with pressure or temperature; that it depends considerably upon the liquid, decreases with increase in orifice size, and increases in the case of discharge into compressed air until the compressed-air pressure equals approximately three-tenths of the hydraulic pressure, beyond which pressure ratio it remains practically constant.

  10. Laboratory Measurements of Photolytic Parameters for Formaldehyde.

    DTIC Science & Technology

    1980-11-01

    dynamic dilution methods. Compressed air stored in steel cylinders, carefully selected to contain carbon monoxide and hydrogen at mixing ratios of...in air has been investi- gated in the laboratory at two temperatures: 300 and 220 K. Quantum yields for the formation of CO and H2 were determined at...procedures in the case of pure formaldehyde gave consistent results. (b) Quantum Yields Mixtures of formaldehyde in air were photolyzed in a

  11. Microfluidic pressure sensing using trapped air compression.

    PubMed

    Srivastava, Nimisha; Burns, Mark A

    2007-05-01

    We have developed a microfluidic method for measuring the fluid pressure head experienced at any location inside a microchannel. The principal component is a microfabricated sealed chamber with a single inlet and no exit; the entrance to the single inlet is positioned at the location where pressure is to be measured. The pressure measurement is then based on monitoring the movement of a liquid-air interface as it compresses air trapped inside the microfabricated sealed chamber and calculating the pressure using the ideal gas law. The method has been used to measure the pressure of the air stream and continuous liquid flow inside microfluidic channels (d approximately 50 microm). Further, a pressure drop has also been measured using multiple microfabricated sealed chambers. For air pressure, a resolution of 700 Pa within a full-scale range of 700-100 kPa was obtained. For liquids, pressure drops as low as 70 Pa were obtained in an operating range from 70 Pa to 10 kPa. Since the method primarily uses a microfluidic sealed chamber, it does not require additional fabrication steps and may easily be incorporated in several lab-on-a-chip fluidic applications for laminar as well as turbulent flow conditions.

  12. Performance tests of a single-cylinder compression-ignition engine with a displacer piston

    NASA Technical Reports Server (NTRS)

    Moore, C S; Foster, H H

    1935-01-01

    Engine performance was investigated using a rectangular displacer on the piston crown to cause a forced air flow in a vertical-disk combustion chamber of a single-cylinder, 4-stroke-cycle compression-ignition engine. The optimum air-flow area was determined first with the area concentrated at one end of the displacer and then with the area equally divided between two passages, one at each end of the displacer. Best performance was obtained with the two-passage air flow arranged to give a calculated maximum air-flow speed of 8 times the linear crank-pin speed. With the same fuel-spray formation as used without the air flow, the maximum clear exhaust brake mean effective pressure at 1,500 r.p.m. was increased from 90 to 115 pounds per square inch and the corresponding fuel consumption reduced from 0.46 to 0.43 pound per brake horsepower-hour. At 1,200 r.p.m., a maximum clear exhaust brake mean effective pressure of 120 pounds per square inch was obtained at a fuel consumption of 0.42 pound per brake horsepower-hour. At higher specific fuel consumption the brake mean effective pressure was still increasing rapidly.

  13. Microfluidic pressure sensing using trapped air compression

    PubMed Central

    Srivastava, Nimisha; Burns, Mark A.

    2010-01-01

    We have developed a microfluidic method for measuring the fluid pressure head experienced at any location inside a microchannel. The principal component is a microfabricated sealed chamber with a single inlet and no exit; the entrance to the single inlet is positioned at the location where pressure is to be measured. The pressure measurement is then based on monitoring the movement of a liquid–air interface as it compresses air trapped inside the microfabricated sealed chamber and calculating the pressure using the ideal gas law. The method has been used to measure the pressure of the air stream and continuous liquid flow inside microfluidic channels (d ~ 50 μm). Further, a pressure drop has also been measured using multiple microfabricated sealed chambers. For air pressure, a resolution of 700 Pa within a full-scale range of 700–100 kPa was obtained. For liquids, pressure drops as low as 70 Pa were obtained in an operating range from 70 Pa to 10 kPa. Since the method primarily uses a microfluidic sealed chamber, it does not require additional fabrication steps and may easily be incorporated in several lab-on-a-chip fluidic applications for laminar as well as turbulent flow conditions. PMID:17476384

  14. Industrial energy systems and assessment opportunities

    NASA Astrophysics Data System (ADS)

    Barringer, Frank Leonard, III

    Industrial energy assessments are performed primarily to increase energy system efficiency and reduce energy costs in industrial facilities. The most common energy systems are lighting, compressed air, steam, process heating, HVAC, pumping, and fan systems, and these systems are described in this document. ASME has produced energy assessment standards for four energy systems, and these systems include compressed air, steam, process heating, and pumping systems. ASHRAE has produced an energy assessment standard for HVAC systems. Software tools for energy systems were developed for the DOE, and there are software tools for almost all of the most common energy systems. The software tools are AIRMaster+ and LogTool for compressed air systems, SSAT and 3E Plus for steam systems, PHAST and 3E Plus for process heating systems, eQUEST for HVAC systems, PSAT for pumping systems, and FSAT for fan systems. The recommended assessment procedures described in this thesis are used to set up an energy assessment for an industrial facility, collect energy system data, and analyze the energy system data. The assessment recommendations (ARs) are opportunities to increase efficiency and reduce energy consumption for energy systems. A set of recommended assessment procedures and recommended assessment opportunities are presented for each of the most common energy systems. There are many assessment opportunities for industrial facilities, and this thesis describes forty-three ARs for the seven different energy systems. There are seven ARs for lighting systems, ten ARs for compressed air systems, eight ARs for boiler and steam systems, four ARs for process heating systems, six ARs for HVAC systems, and four ARs for both pumping and fan systems. Based on a history of past assessments, average potential energy savings and typical implementation costs are shared in this thesis for most ARs. Implementing these ARs will increase efficiency and reduce energy consumption for energy systems in industrial facilities. This thesis does not explain all energy saving ARs that are available, but does describe the most common ARs.

  15. Theoretical Assessment of Compressibility Factor of Gases by Using Second Virial Coefficient

    NASA Astrophysics Data System (ADS)

    Mamedov, Bahtiyar A.; Somuncu, Elif; Askerov, Iskender M.

    2018-01-01

    We present a new analytical approximation for determining the compressibility factor of real gases at various temperature values. This algorithm is suitable for the accurate evaluation of the compressibility factor using the second virial coefficient with a Lennard-Jones (12-6) potential. Numerical examples are presented for the gases H2, N2, He, CO2, CH4 and air, and the results are compared with other studies in the literature. Our results showed good agreement with the data in the literature. The consistency of the results demonstrates the effectiveness of our analytical approximation for real gases.

  16. A tabulation of pipe length to diameter ratios as a function of Mach number and pressure ratios for compressible flow

    NASA Technical Reports Server (NTRS)

    Dixon, G. V.; Barringer, S. R.; Gray, C. E.; Leatherman, A. D.

    1975-01-01

    Computer programs and resulting tabulations are presented of pipeline length-to-diameter ratios as a function of Mach number and pressure ratios for compressible flow. The tabulations are applicable to air, nitrogen, oxygen, and hydrogen for compressible isothermal flow with friction and compressible adiabatic flow with friction. Also included are equations for the determination of weight flow. The tabulations presented cover a wider range of Mach numbers for choked, adiabatic flow than available from commonly used engineering literature. Additional information presented, but which is not available from this literature, is unchoked, adiabatic flow over a wide range of Mach numbers, and choked and unchoked, isothermal flow for a wide range of Mach numbers.

  17. General Equation Set Solver for Compressible and Incompressible Turbomachinery Flows

    NASA Technical Reports Server (NTRS)

    Sondak, Douglas L.; Dorney, Daniel J.

    2002-01-01

    Turbomachines for propulsion applications operate with many different working fluids and flow conditions. The flow may be incompressible, such as in the liquid hydrogen pump in a rocket engine, or supersonic, such as in the turbine which may drive the hydrogen pump. Separate codes have traditionally been used for incompressible and compressible flow solvers. The General Equation Set (GES) method can be used to solve both incompressible and compressible flows, and it is not restricted to perfect gases, as are many compressible-flow turbomachinery solvers. An unsteady GES turbomachinery flow solver has been developed and applied to both air and water flows through turbines. It has been shown to be an excellent alternative to maintaining two separate codes.

  18. Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine

    DOEpatents

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David

    2014-05-13

    A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.

  19. Depopulation of Caged Layer Hens with a Compressed Air Foam System

    PubMed Central

    Gurung, Shailesh; Hoffman, John; Stringfellow, Kendre; Abi-Ghanem, Daad; Zhao, Dan; Caldwell, David; Lee, Jason; Styles, Darrel; Berghman, Luc; Byrd, James; Farnell, Yuhua; Archer, Gregory

    2018-01-01

    Simple Summary Reportable diseases, such as avian influenza, spread rapidly among poultry, resulting in the death of a large number of birds. Once such a disease has been diagnosed at a farm, infected and susceptible birds are rapidly killed to prevent the spread of the disease. The methods to eliminate infected caged laying hens are limited. An experiment was conducted to study the effectiveness of foam made from compressed air, water, and soap to kill laying hens in cages. The study found that stress levels of the hens killed using compressed air foam in cages to be similar to the hens killed by carbon dioxide or the negative control. Hens exposed to carbon dioxide died earlier as compared to the foam methods. The authors conclude that application of compressed air foam in cages is an alternative to methods such as gas inhalation and ventilation shutdown to rapidly and humanely kill laying hens during epidemics. Abstract During the 2014–2015 US highly pathogenic avian influenza (HPAI) outbreak, 50.4 million commercial layers and turkeys were affected, resulting in economic losses of $3.3 billion. Rapid depopulation of infected poultry is vital to contain and eradicate reportable diseases like HPAI. The hypothesis of the experiment was that a compressed air foam (CAF) system may be used as an alternative to carbon dioxide (CO2) inhalation for depopulating caged layer hens. The objective of this study was to evaluate corticosterone (CORT) and time to cessation of movement (COM) of hens subjected to CAF, CO2 inhalation, and negative control (NEG) treatments. In Experiment 1, two independent trials were conducted using young and spent hens. Experiment 1 consisted of five treatments: NEG, CO2 added to a chamber, a CO2 pre-charged chamber, CAF in cages, and CAF in a chamber. In Experiment 2, only spent hens were randomly assigned to three treatments: CAF in cages, CO2 added to a chamber, and aspirated foam. Serum CORT levels of young hens were not significantly different among the CAF in cages, CAF in a chamber, NEG control, and CO2 inhalation treatments. However, spent hens subjected to the CAF in a chamber had significantly higher CORT levels than birds in the rest of the treatments. Times to COM of spent hens subjected to CAF in cages and aspirated foam were significantly greater than of birds exposed to the CO2 in a chamber treatment. These data suggest that applying CAF in cages is a viable alternative for layer hen depopulation during a reportable disease outbreak. PMID:29324639

  20. 6. COMPRESSOR CONTROL PANELS: AT LEFT, 6,000 P.S.I. PANEL, CIRCA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. COMPRESSOR CONTROL PANELS: AT LEFT, 6,000 P.S.I. PANEL, CIRCA 1957; AT RIGHT, FACING CAMERA, 10,000 P.S.I. PANEL. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Helium Compression Plant, Test Area 1-115, intersection of Altair & Saturn Boulevards, Boron, Kern County, CA

  1. Biological Aerosol Test Method and Personal Protective Equipment (PPE) Decon

    DTIC Science & Technology

    2011-05-01

    supply to the porous tube diluter. This stops all air into the LSAT. 6. Power off the vacuum pump and the compressed air supply. 22 Distribution...Experiment from Template from the menu. 10. Scroll down the template list until you find APHL Flu Assay 04272009. 11. Highlight the test, then click

  2. Air-propelled abrasive grit for postemergence in-row weed control in field corn

    USDA-ARS?s Scientific Manuscript database

    Organic growers need additional tools for weed control. A new technique involving abrasive grit propelled by compressed air was tested in field plots. Grit derived from corn cobs was directed at seedlings of summer annual weeds growing at the bases of corn plants when the corn was at differing early...

  3. 42 CFR 84.141 - Breathing gas; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... respirators shall be respirable breathing air and contain no less than 19.5 volume-percent of oxygen. (b... Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from American..._locations.html. (c) Compressed, liquefied breathing air shall meet the applicable minimum grade requirements...

  4. 46 CFR 151.50-22 - Hydrochloric acid.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...), compressed air may be used to discharge hydrochloric acid from gravity type cargo tanks only if the tanks are of cylindrical shape with dished heads, provided the air pressure does not exceed the design pressure...) Hydrochloric acid shall be carried in gravity or pressure type cargo tanks which are independent of the vessel...

  5. 46 CFR 151.50-22 - Hydrochloric acid.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...), compressed air may be used to discharge hydrochloric acid from gravity type cargo tanks only if the tanks are of cylindrical shape with dished heads, provided the air pressure does not exceed the design pressure...) Hydrochloric acid shall be carried in gravity or pressure type cargo tanks which are independent of the vessel...

  6. 46 CFR 151.50-22 - Hydrochloric acid.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...), compressed air may be used to discharge hydrochloric acid from gravity type cargo tanks only if the tanks are of cylindrical shape with dished heads, provided the air pressure does not exceed the design pressure...) Hydrochloric acid shall be carried in gravity or pressure type cargo tanks which are independent of the vessel...

  7. Implementation of quality by design approach in manufacturing process optimization of dry granulated, immediate release, coated tablets - a case study.

    PubMed

    Teżyk, Michał; Jakubowska, Emilia; Milanowski, Bartłomiej; Lulek, Janina

    2017-10-01

    The aim of this study was to optimize the process of tablets compression and identification of film-coating critical process parameters (CPPs) affecting critical quality attributes (CQAs) using quality by design (QbD) approach. Design of experiment (DOE) and regression methods were employed to investigate hardness, disintegration time, and thickness of uncoated tablets depending on slugging and tableting compression force (CPPs). Plackett-Burman experimental design was applied to identify critical coating process parameters among selected ones that is: drying and preheating time, atomization air pressure, spray rate, air volume, inlet air temperature, and drum pressure that may influence the hardness and disintegration time of coated tablets. As a result of the research, design space was established to facilitate an in-depth understanding of existing relationship between CPPs and CQAs of intermediate product (uncoated tablets). Screening revealed that spray rate and inlet air temperature are two most important factors that affect the hardness of coated tablets. Simultaneously, none of the tested coating factors have influence on disintegration time. The observation was confirmed by conducting film coating of pilot size batches.

  8. A comparative study of emission motorcycle with gasoline and CNG fuel

    NASA Astrophysics Data System (ADS)

    Sasongko, M. N.; Wijayanti, W.; Rahardja, R. A.

    2016-03-01

    A comparison of the exhaust emissions of the engine running gasoline and Compressed Natural Gas have been performed in this study. A gasoline engine 4 stroke single-cylinder with volume of 124.8 cc and compression ratio of 9.3:1 was converted to a CNG gaseous engine. The fuel injector was replaced with a solenoid valve system for injecting CNG gas to engine. The concentrations of CO, CO2, O2 and HC in the exhaust gas of engine were measured over the range of fuel flow rate from 25.32 mg/s to 70.22 mg/s and wide range of Air Fuel Ratio. The comparative analysis of this study showed that CNG engine has a lower HC, CO2 and CO emission at the stoichiometry mixture of fuel and air combustion. The emissions increased when the Air-Fuel ratio was switched from the stoichiometry condition. Moreover, CNG engine produced a lower HC and CO emission compared to the gasoline for difference air flow rate. The average of HC and CO emissions of the CNG was 92 % and 78 % lower than that of the gasoline

  9. Ocean wave electric generators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenberg, H.R.

    This patent describes an apparatus for generating electricity from ocean waves. It consists of: 1.) a hollow buoyant duck positioned in the path of waves including a core about the center axis of which the duck rotates, a lower chamber portion having liquid therein and an upper chamber portion having air therein. The air is alternately compressed and expanded by the liquid in the chamber during the rotational motion of the duck caused by waves. A turbine mounted in the upper portion of the duck is driven by the compressed and expanded air. A generator is coupled to the turbinemore » and operated to produce electrical energy and an air bulb; 2.) a spine having a transverse axial shaft anchoring the spine to the ocean floor. The upper portion of the spine engages the duck to maintain the duck in position. The spine has a curved configuration to concentrate and direct wave energy. The spine configuration acts as a scoop to increase the height of wave peaks and as a foil to increase the depth of wave troughs.« less

  10. Rotor and stator assembly configured as an aspirating face seal

    NASA Technical Reports Server (NTRS)

    Turnquist, Norman Arnold (Inventor); Bagepalli, Bharat Sampathkumaran (Inventor); Reluzco, George (Inventor); Tseng, Wu-Yang (Inventor)

    1999-01-01

    A rotor and stator assembly having a rotor and a stator with opposing surfaces defining an air bearing and an air dam of an aspirating face seal. In a first embodiment, the air bearing and the air dam are axially offset. In a second embodiment, the rotor has an axially extending protuberance located radially between the air bearing and the air dam. The axial offset and the protuberance each act to divert the air flow (e.g., compressed gas or combustion gases in a gas turbine or steam in a steam turbine) in a direction transverse to the air flow direction through the air bearing and the air dam, thus isolating the air flows from the air bearing and the air dam which improves seal performance.

  11. Mach 5 bow shock control by a nanosecond pulse surface dielectric barrier discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishihara, M.; Takashima, K.; Rich, J. W.

    2011-06-15

    Bow shock perturbations in a Mach 5 air flow, produced by low-temperature, nanosecond pulse, and surface dielectric barrier discharge (DBD), are detected by phase-locked schlieren imaging. A diffuse nanosecond pulse discharge is generated in a DBD plasma actuator on a surface of a cylinder model placed in air flow in a small scale blow-down supersonic wind tunnel. Discharge energy coupled to the actuator is 7.3-7.8 mJ/pulse. Plasma temperature inferred from nitrogen emission spectra is a few tens of degrees higher than flow stagnation temperature, T = 340 {+-} 30 K. Phase-locked Schlieren images are used to detect compression waves generatedmore » by individual nanosecond discharge pulses near the actuator surface. The compression wave propagates upstream toward the baseline bow shock standing in front of the cylinder model. Interaction of the compression wave and the bow shock causes its displacement in the upstream direction, increasing shock stand-off distance by up to 25%. The compression wave speed behind the bow shock and the perturbed bow shock velocity are inferred from the Schlieren images. The effect of compression waves generated by nanosecond discharge pulses on shock stand-off distance is demonstrated in a single-pulse regime (at pulse repetition rates of a few hundred Hz) and in a quasi-continuous mode (using a two-pulse sequence at a pulse repetition rate of 100 kHz). The results demonstrate feasibility of hypersonic flow control by low-temperature, repetitive nanosecond pulse discharges.« less

  12. Membrane filtration device for studying compression of fouling layers in membrane bioreactors

    PubMed Central

    Bugge, Thomas Vistisen; Larsen, Poul; Nielsen, Per Halkjær; Christensen, Morten Lykkegaard

    2017-01-01

    A filtration devise was developed to assess compressibility of fouling layers in membrane bioreactors. The system consists of a flat sheet membrane with air scouring operated at constant transmembrane pressure to assess the influence of pressure on resistance of fouling layers. By fitting a mathematical model, three model parameters were obtained; a back transport parameter describing the kinetics of fouling layer formation, a specific fouling layer resistance, and a compressibility parameter. This stands out from other on-site filterability tests as model parameters to simulate filtration performance are obtained together with a characterization of compressibility. Tests on membrane bioreactor sludge showed high reproducibility. The methodology’s ability to assess compressibility was tested by filtrations of sludges from membrane bioreactors and conventional activated sludge wastewater treatment plants from three different sites. These proved that membrane bioreactor sludge showed higher compressibility than conventional activated sludge. In addition, detailed information on the underlying mechanisms of the difference in fouling propensity were obtained, as conventional activated sludge showed slower fouling formation, lower specific resistance and lower compressibility of fouling layers, which is explained by a higher degree of flocculation. PMID:28749990

  13. Simulating compressible-incompressible two-phase flows

    NASA Astrophysics Data System (ADS)

    Denner, Fabian; van Wachem, Berend

    2017-11-01

    Simulating compressible gas-liquid flows, e.g. air-water flows, presents considerable numerical issues and requires substantial computational resources, particularly because of the stiff equation of state for the liquid and the different Mach number regimes. Treating the liquid phase (low Mach number) as incompressible, yet concurrently considering the gas phase (high Mach number) as compressible, can improve the computational performance of such simulations significantly without sacrificing important physical mechanisms. A pressure-based algorithm for the simulation of two-phase flows is presented, in which a compressible and an incompressible fluid are separated by a sharp interface. The algorithm is based on a coupled finite-volume framework, discretised in conservative form, with a compressive VOF method to represent the interface. The bulk phases are coupled via a novel acoustically-conservative interface discretisation method that retains the acoustic properties of the compressible phase and does not require a Riemann solver. Representative test cases are presented to scrutinize the proposed algorithm, including the reflection of acoustic waves at the compressible-incompressible interface, shock-drop interaction and gas-liquid flows with surface tension. Financial support from the EPSRC (Grant EP/M021556/1) is gratefully acknowledged.

  14. An Improved Extraction and Analysis Technique for Determination of Carbon Monoxide Stable Isotopes and Mixing Ratios from Ice Core and Atmospheric Air Samples.

    NASA Astrophysics Data System (ADS)

    Place, P., Jr.; Petrenko, V. V.; Vimont, I.

    2017-12-01

    Carbon Monoxide (CO) is an important atmospheric trace gas that affects the oxidative capacity of the atmosphere and contributes indirectly to anthropogenic radiative forcing. Carbon monoxide stable isotopes can also serve as a tracer for variations in biomass burning, particularly in the preindustrial atmosphere. A good understanding of the past variations in CO mole fractions and isotopic composition can help improve the skill of chemical transport models and constrain biomass burning changes. Ice cores may preserve a record of past atmospheric CO for analysis and interpretation. To this end, a new extraction system has been developed for analysis of stable isotopes (δ13CO and δC18O) of atmospheric carbon monoxide from ice core and atmospheric air samples. This system has been designed to measure relatively small sample sizes (80 cc STP of air) to accommodate the limited availability of ice core samples. Trapped air is extracted from ice core samples via melting in a glass vacuum chamber. This air is expanded into a glass expansion loop and then compressed into the sample loop of a Reducing Gas Detector (Peak Laboratories, Peak Performer 1 RCP) for the CO mole fraction measurement. The remaining sample gas will be expelled from the melt vessel into a larger expansion loop via headspace compression for isotopic analysis. The headspace compression will be accomplished by introduction of clean degassed water into the bottom of the melt vessel. Isotopic analysis of the sample gas is done utilizing the Schütze Reagent to convert the carbon monoxide to carbon dioxide (CO2) which is then measured using continuous-flow isotope ratio mass spectrometry (Elementar Americas, IsoPrime 100). A series of cryogenic traps are used to purify the sample air, capture the converted sample CO2, and cryofocus the sample CO2 prior to injection.

  15. Design features of fans, blowers, and compressors

    NASA Astrophysics Data System (ADS)

    Cheremisinoff, N. P.; Cheremisinoff, P. N.

    Fan engineering and compression machines are discussed. Basic aspects of fan performance and design are reviewed, and the design and performance characteristics of radial-flow fans, axial-flow fans, and controllable pitch fans are examined in detail. Air-conditioning systems are discussed, and noise, vibration, and mechanical considerations in fans are extensively examined. The thermodynamic principles governing compression machines are reviewed, and piston compressors, rotary compressors, blowers, and centrifugal compressors are discussed.

  16. Temperature measurement in a compressible flow field using laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Fletcher, D. G.; Mcdaniel, J. C.

    1987-01-01

    The thermometric capability of a two-line fluorescence technique using iodine seed molecules in air is investigated analytically and verified experimentally in a known steady compressible flow field. Temperatures ranging from 165 to 295 K were measured in the flowfield using two iodine transitions accessed with a 30-GHz dye-laser scan near 543 nm. The effect of pressure broadening on temperature measurement is evaluated.

  17. Effect of cement/wood ratios and wood storage conditions on hydration temperature, hydration time, and compressive strength of wood-cement mixtures

    Treesearch

    Andy W.C. Lee; Zhongli Hong; Douglas R. Phillips; Chung-Yun Hse

    1987-01-01

    This study investigated the effect of cement/wood ratios and wood storage conditions on hydration temperature, hydration time, and compressive strength of wood-cement mixtures made from six wood species: southern pine, white oak, southern red oak, yellow-poplar, sweetgum, and hickory. Cement/wood ratios varied from 13/1 to 4/1. Wood storage conditions consisted of air-...

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xiangwen; Contescu, Cristian I.; Zhao, Xi

    Mmore » atrix graphite (G) with incompletely graphitized binder used in high-temperature gas-cooled reactors (HTGRs) is commonly suspected to exhibit lower oxidation resistance in air. In order to reveal the oxidation performance, the oxidation behavior of newly developed A3-3 G at the temperature range from 500 to 950°C in air was studied and the effect of oxidation on the compressive strength of oxidized G specimens was characterized. Results show that temperature has a significant influence on the oxidation behavior of G. The transition temperature between Regimes I and II is ~700°C and the activation energy ( E a ) in Regime I is around 185 kJ/mol, a little lower than that of nuclear graphite, which indicates G is more vulnerable to oxidation. Oxidation at 550°C causes more damage to compressive strength of G than oxidation at 900°C. Comparing with the strength of pristine G specimens, the rate of compressive strength loss is 77.3% after oxidation at 550°C and only 12.5% for oxidation at 900°C. icrostructure images of SE and porosity measurement by ercury Porosimetry indicate that the significant compressive strength loss of G oxidized at 550°C may be attributed to both the uniform pore formation throughout the bulk and the preferential oxidation of the binder.« less

  19. Remote possibly hazardous content container sampling device

    DOEpatents

    Volz, David L.

    1998-01-01

    The present invention relates to an apparatus capable of sampling enclosed containers, where the contents of the container is unknown. The invention includes a compressed air device capable of supplying air pressure, device for controlling the amount of air pressure applied, a pneumatic valve, a sampling device having a hollow, sampling insertion needle suspended therein and device to communicate fluid flow between the container and a containment vessel, pump or direct reading instrument.

  20. Foam concrete of increased strength with the thermomodified peat additives

    NASA Astrophysics Data System (ADS)

    Kudyakov, A. I.; Kopanitsa, N. O.; Sarkisov, Ju S.; Kasatkina, A. V.; Prischepa, I. A.

    2015-01-01

    The paper presents the results of research of foam concrete with thermomodified peat additives. The aim of the research was to study the effect of modifying additives on cement stone and foam concrete properties. Peat additives are prepared by heat treatment of peat at 600 °C. Two approaches of obtaining additives are examined: in condition of open air access (TMT-600) and in condition of limited air access (TMT-600-k). Compressive strength of a cement stone with modifiers found to be increased by 28.9 - 65.2%. Introducing peat modifiers into foam concrete mix leads to increase of compressive strength by 44-57% at 28- day age and heat conductivity of foam concrete decreases by 0.089 W/(m·°C).

Top