An efficient compression scheme for bitmap indices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Kesheng; Otoo, Ekow J.; Shoshani, Arie
2004-04-13
When using an out-of-core indexing method to answer a query, it is generally assumed that the I/O cost dominates the overall query response time. Because of this, most research on indexing methods concentrate on reducing the sizes of indices. For bitmap indices, compression has been used for this purpose. However, in most cases, operations on these compressed bitmaps, mostly bitwise logical operations such as AND, OR, and NOT, spend more time in CPU than in I/O. To speedup these operations, a number of specialized bitmap compression schemes have been developed; the best known of which is the byte-aligned bitmap codemore » (BBC). They are usually faster in performing logical operations than the general purpose compression schemes, but, the time spent in CPU still dominates the total query response time. To reduce the query response time, we designed a CPU-friendly scheme named the word-aligned hybrid (WAH) code. In this paper, we prove that the sizes of WAH compressed bitmap indices are about two words per row for large range of attributes. This size is smaller than typical sizes of commonly used indices, such as a B-tree. Therefore, WAH compressed indices are not only appropriate for low cardinality attributes but also for high cardinality attributes.In the worst case, the time to operate on compressed bitmaps is proportional to the total size of the bitmaps involved. The total size of the bitmaps required to answer a query on one attribute is proportional to the number of hits. These indicate that WAH compressed bitmap indices are optimal. To verify their effectiveness, we generated bitmap indices for four different datasets and measured the response time of many range queries. Tests confirm that sizes of compressed bitmap indices are indeed smaller than B-tree indices, and query processing with WAH compressed indices is much faster than with BBC compressed indices, projection indices and B-tree indices. In addition, we also verified that the average query response time is proportional to the index size. This indicates that the compressed bitmap indices are efficient for very large datasets.« less
Word aligned bitmap compression method, data structure, and apparatus
Wu, Kesheng; Shoshani, Arie; Otoo, Ekow
2004-12-14
The Word-Aligned Hybrid (WAH) bitmap compression method and data structure is a relatively efficient method for searching and performing logical, counting, and pattern location operations upon large datasets. The technique is comprised of a data structure and methods that are optimized for computational efficiency by using the WAH compression method, which typically takes advantage of the target computing system's native word length. WAH is particularly apropos to infrequently varying databases, including those found in the on-line analytical processing (OLAP) industry, due to the increased computational efficiency of the WAH compressed bitmap index. Some commercial database products already include some version of a bitmap index, which could possibly be replaced by the WAH bitmap compression techniques for potentially increased operation speed, as well as increased efficiencies in constructing compressed bitmaps. Combined together, this technique may be particularly useful for real-time business intelligence. Additional WAH applications may include scientific modeling, such as climate and combustion simulations, to minimize search time for analysis and subsequent data visualization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Kesheng
2007-08-02
An index in a database system is a data structure that utilizes redundant information about the base data to speed up common searching and retrieval operations. Most commonly used indexes are variants of B-trees, such as B+-tree and B*-tree. FastBit implements a set of alternative indexes call compressed bitmap indexes. Compared with B-tree variants, these indexes provide very efficient searching and retrieval operations by sacrificing the efficiency of updating the indexes after the modification of an individual record. In addition to the well-known strengths of bitmap indexes, FastBit has a special strength stemming from the bitmap compression scheme used. Themore » compression method is called the Word-Aligned Hybrid (WAH) code. It reduces the bitmap indexes to reasonable sizes and at the same time allows very efficient bitwise logical operations directly on the compressed bitmaps. Compared with the well-known compression methods such as LZ77 and Byte-aligned Bitmap code (BBC), WAH sacrifices some space efficiency for a significant improvement in operational efficiency. Since the bitwise logical operations are the most important operations needed to answer queries, using WAH compression has been shown to answer queries significantly faster than using other compression schemes. Theoretical analyses showed that WAH compressed bitmap indexes are optimal for one-dimensional range queries. Only the most efficient indexing schemes such as B+-tree and B*-tree have this optimality property. However, bitmap indexes are superior because they can efficiently answer multi-dimensional range queries by combining the answers to one-dimensional queries.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madduri, Kamesh; Wu, Kesheng
The Resource Description Framework (RDF) is a popular data model for representing linked data sets arising from the web, as well as large scienti c data repositories such as UniProt. RDF data intrinsically represents a labeled and directed multi-graph. SPARQL is a query language for RDF that expresses subgraph pattern- nding queries on this implicit multigraph in a SQL- like syntax. SPARQL queries generate complex intermediate join queries; to compute these joins e ciently, we propose a new strategy based on bitmap indexes. We store the RDF data in column-oriented structures as compressed bitmaps along with two dictionaries. This papermore » makes three new contributions. (i) We present an e cient parallel strategy for parsing the raw RDF data, building dictionaries of unique entities, and creating compressed bitmap indexes of the data. (ii) We utilize the constructed bitmap indexes to e ciently answer SPARQL queries, simplifying the join evaluations. (iii) To quantify the performance impact of using bitmap indexes, we compare our approach to the state-of-the-art triple-store RDF-3X. We nd that our bitmap index-based approach to answering queries is up to an order of magnitude faster for a variety of SPARQL queries, on gigascale RDF data sets.« less
NASA Astrophysics Data System (ADS)
Wang, Jun; Min, Kyeong-Yuk; Chong, Jong-Wha
2010-11-01
Overdrive is commonly used to reduce the liquid-crystal response time and motion blur in liquid-crystal displays (LCDs). However, overdrive requires a large frame memory in order to store the previous frame for reference. In this paper, a high-compression-ratio codec is presented to compress the image data stored in the on-chip frame memory so that only 1 Mbit of on-chip memory is required in the LCD overdrives of mobile devices. The proposed algorithm further compresses the color bitmaps and representative values (RVs) resulting from the block truncation coding (BTC). The color bitmaps are represented by a luminance bitmap, which is further reduced and reconstructed using median filter interpolation in the decoder, while the RVs are compressed using adaptive quantization coding (AQC). Interpolation and AQC can provide three-level compression, which leads to 16 combinations. Using a rate-distortion analysis, we select the three optimal schemes to compress the image data for video graphics array (VGA), wide-VGA LCD, and standard-definitionTV applications. Our simulation results demonstrate that the proposed schemes outperform interpolation BTC both in PSNR (by 1.479 to 2.205 dB) and in subjective visual quality.
A generalized Benford's law for JPEG coefficients and its applications in image forensics
NASA Astrophysics Data System (ADS)
Fu, Dongdong; Shi, Yun Q.; Su, Wei
2007-02-01
In this paper, a novel statistical model based on Benford's law for the probability distributions of the first digits of the block-DCT and quantized JPEG coefficients is presented. A parametric logarithmic law, i.e., the generalized Benford's law, is formulated. Furthermore, some potential applications of this model in image forensics are discussed in this paper, which include the detection of JPEG compression for images in bitmap format, the estimation of JPEG compression Qfactor for JPEG compressed bitmap image, and the detection of double compressed JPEG image. The results of our extensive experiments demonstrate the effectiveness of the proposed statistical model.
Using Bitmap Indexing Technology for Combined Numerical and TextQueries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stockinger, Kurt; Cieslewicz, John; Wu, Kesheng
2006-10-16
In this paper, we describe a strategy of using compressedbitmap indices to speed up queries on both numerical data and textdocuments. By using an efficient compression algorithm, these compressedbitmap indices are compact even for indices with millions of distinctterms. Moreover, bitmap indices can be used very efficiently to answerBoolean queries over text documents involving multiple query terms.Existing inverted indices for text searches are usually inefficient forcorpora with a very large number of terms as well as for queriesinvolving a large number of hits. We demonstrate that our compressedbitmap index technology overcomes both of those short-comings. In aperformance comparison against amore » commonly used database system, ourindices answer queries 30 times faster on average. To provide full SQLsupport, we integrated our indexing software, called FastBit, withMonetDB. The integrated system MonetDB/FastBit provides not onlyefficient searches on a single table as FastBit does, but also answersjoin queries efficiently. Furthermore, MonetDB/FastBit also provides avery efficient retrieval mechanism of result records.« less
Data Compression in Full-Text Retrieval Systems.
ERIC Educational Resources Information Center
Bell, Timothy C.; And Others
1993-01-01
Describes compression methods for components of full-text systems such as text databases on CD-ROM. Topics discussed include storage media; structures for full-text retrieval, including indexes, inverted files, and bitmaps; compression tools; memory requirements during retrieval; and ranking and information retrieval. (Contains 53 references.)…
Analyzing Enron Data: Bitmap Indexing Outperforms MySQL Queries bySeveral Orders of Magnitude
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stockinger, Kurt; Rotem, Doron; Shoshani, Arie
2006-01-28
FastBit is an efficient, compressed bitmap indexing technology that was developed in our group. In this report we evaluate the performance of MySQL and FastBit for analyzing the email traffic of the Enron dataset. The first finding shows that materializing the join results of several tables significantly improves the query performance. The second finding shows that FastBit outperforms MySQL by several orders of magnitude.
Surmounting the Effects of Lossy Compression on Steganography
1996-10-01
and can be exploited to export sensitive information. Since images are fre- quently compressed for storage or transmission, effective steganography ... steganography is that which is stored with an accuracy far greater than necessary for the data’s use and display. Image , Postscript, and audio files are...information can be concealed in bitmapped image files with little or no visible degradation of the image [4.]. This process, called steganography , is
SPMBR: a scalable algorithm for mining sequential patterns based on bitmaps
NASA Astrophysics Data System (ADS)
Xu, Xiwei; Zhang, Changhai
2013-12-01
Now some sequential patterns mining algorithms generate too many candidate sequences, and increase the processing cost of support counting. Therefore, we present an effective and scalable algorithm called SPMBR (Sequential Patterns Mining based on Bitmap Representation) to solve the problem of mining the sequential patterns for large databases. Our method differs from previous related works of mining sequential patterns. The main difference is that the database of sequential patterns is represented by bitmaps, and a simplified bitmap structure is presented firstly. In this paper, First the algorithm generate candidate sequences by SE(Sequence Extension) and IE(Item Extension), and then obtain all frequent sequences by comparing the original bitmap and the extended item bitmap .This method could simplify the problem of mining the sequential patterns and avoid the high processing cost of support counting. Both theories and experiments indicate that the performance of SPMBR is predominant for large transaction databases, the required memory size for storing temporal data is much less during mining process, and all sequential patterns can be mined with feasibility.
Method and system for efficiently searching an encoded vector index
Bui, Thuan Quang; Egan, Randy Lynn; Kathmann, Kevin James
2001-09-04
Method and system aspects for efficiently searching an encoded vector index are provided. The aspects include the translation of a search query into a candidate bitmap, and the mapping of data from the candidate bitmap into a search result bitmap according to entry values in the encoded vector index. Further, the translation includes the setting of a bit in the candidate bitmap for each entry in a symbol table that corresponds to candidate of the search query. Also included in the mapping is the identification of a bit value in the candidate bitmap pointed to by an entry in an encoded vector.
Bandwidth characteristics of multimedia data traffic on a local area network
NASA Technical Reports Server (NTRS)
Chuang, Shery L.; Doubek, Sharon; Haines, Richard F.
1993-01-01
Limited spacecraft communication links call for users to investigate the potential use of video compression and multimedia technologies to optimize bandwidth allocations. The objective was to determine the transmission characteristics of multimedia data - motion video, text or bitmap graphics, and files transmitted independently and simultaneously over an ethernet local area network. Commercial desktop video teleconferencing hardware and software and Intel's proprietary Digital Video Interactive (DVI) video compression algorithm were used, and typical task scenarios were selected. The transmission time, packet size, number of packets, and network utilization of the data were recorded. Each data type - compressed motion video, text and/or bitmapped graphics, and a compressed image file - was first transmitted independently and its characteristics recorded. The results showed that an average bandwidth of 7.4 kilobits per second (kbps) was used to transmit graphics; an average bandwidth of 86.8 kbps was used to transmit an 18.9-kilobyte (kB) image file; a bandwidth of 728.9 kbps was used to transmit compressed motion video at 15 frames per second (fps); and a bandwidth of 75.9 kbps was used to transmit compressed motion video at 1.5 fps. Average packet sizes were 933 bytes for graphics, 498.5 bytes for the image file, 345.8 bytes for motion video at 15 fps, and 341.9 bytes for motion video at 1.5 fps. Simultaneous transmission of multimedia data types was also characterized. The multimedia packets used transmission bandwidths of 341.4 kbps and 105.8kbps. Bandwidth utilization varied according to the frame rate (frames per second) setting for the transmission of motion video. Packet size did not vary significantly between the data types. When these characteristics are applied to Space Station Freedom (SSF), the packet sizes fall within the maximum specified by the Consultative Committee for Space Data Systems (CCSDS). The uplink of imagery to SSF may be performed at minimal frame rates and/or within seconds of delay, depending on the user's allocated bandwidth. Further research to identify the acceptable delay interval and its impact on human performance is required. Additional studies in network performance using various video compression algorithms and integrated multimedia techniques are needed to determine the optimal design approach for utilizing SSF's data communications system.
Analytics-Driven Lossless Data Compression for Rapid In-situ Indexing, Storing, and Querying
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenkins, John; Arkatkar, Isha; Lakshminarasimhan, Sriram
2013-01-01
The analysis of scientific simulations is highly data-intensive and is becoming an increasingly important challenge. Peta-scale data sets require the use of light-weight query-driven analysis methods, as opposed to heavy-weight schemes that optimize for speed at the expense of size. This paper is an attempt in the direction of query processing over losslessly compressed scientific data. We propose a co-designed double-precision compression and indexing methodology for range queries by performing unique-value-based binning on the most significant bytes of double precision data (sign, exponent, and most significant mantissa bits), and inverting the resulting metadata to produce an inverted index over amore » reduced data representation. Without the inverted index, our method matches or improves compression ratios over both general-purpose and floating-point compression utilities. The inverted index is light-weight, and the overall storage requirement for both reduced column and index is less than 135%, whereas existing DBMS technologies can require 200-400%. As a proof-of-concept, we evaluate univariate range queries that additionally return column values, a critical component of data analytics, against state-of-the-art bitmap indexing technology, showing multi-fold query performance improvements.« less
CoGI: Towards Compressing Genomes as an Image.
Xie, Xiaojing; Zhou, Shuigeng; Guan, Jihong
2015-01-01
Genomic science is now facing an explosive increase of data thanks to the fast development of sequencing technology. This situation poses serious challenges to genomic data storage and transferring. It is desirable to compress data to reduce storage and transferring cost, and thus to boost data distribution and utilization efficiency. Up to now, a number of algorithms / tools have been developed for compressing genomic sequences. Unlike the existing algorithms, most of which treat genomes as one-dimensional text strings and compress them based on dictionaries or probability models, this paper proposes a novel approach called CoGI (the abbreviation of Compressing Genomes as an Image) for genome compression, which transforms the genomic sequences to a two-dimensional binary image (or bitmap), then applies a rectangular partition coding algorithm to compress the binary image. CoGI can be used as either a reference-based compressor or a reference-free compressor. For the former, we develop two entropy-based algorithms to select a proper reference genome. Performance evaluation is conducted on various genomes. Experimental results show that the reference-based CoGI significantly outperforms two state-of-the-art reference-based genome compressors GReEn and RLZ-opt in both compression ratio and compression efficiency. It also achieves comparable compression ratio but two orders of magnitude higher compression efficiency in comparison with XM--one state-of-the-art reference-free genome compressor. Furthermore, our approach performs much better than Gzip--a general-purpose and widely-used compressor, in both compression speed and compression ratio. So, CoGI can serve as an effective and practical genome compressor. The source code and other related documents of CoGI are available at: http://admis.fudan.edu.cn/projects/cogi.htm.
FastBit: Interactively Searching Massive Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Kesheng; Ahern, Sean; Bethel, E. Wes
2009-06-23
As scientific instruments and computer simulations produce more and more data, the task of locating the essential information to gain insight becomes increasingly difficult. FastBit is an efficient software tool to address this challenge. In this article, we present a summary of the key underlying technologies, namely bitmap compression, encoding, and binning. Together these techniques enable FastBit to answer structured (SQL) queries orders of magnitude faster than popular database systems. To illustrate how FastBit is used in applications, we present three examples involving a high-energy physics experiment, a combustion simulation, and an accelerator simulation. In each case, FastBit significantly reducesmore » the response time and enables interactive exploration on terabytes of data.« less
36 CFR § 1194.21 - Software applications and operating systems.
Code of Federal Regulations, 2013 CFR
2013-07-01
... an image represents a program element, the information conveyed by the image must also be available in text. (e) When bitmap images are used to identify controls, status indicators, or other programmatic elements, the meaning assigned to those images shall be consistent throughout an application's...
36 CFR 1194.21 - Software applications and operating systems.
Code of Federal Regulations, 2012 CFR
2012-07-01
... an image represents a program element, the information conveyed by the image must also be available in text. (e) When bitmap images are used to identify controls, status indicators, or other programmatic elements, the meaning assigned to those images shall be consistent throughout an application's...
36 CFR 1194.21 - Software applications and operating systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
... an image represents a program element, the information conveyed by the image must also be available in text. (e) When bitmap images are used to identify controls, status indicators, or other programmatic elements, the meaning assigned to those images shall be consistent throughout an application's...
36 CFR 1194.21 - Software applications and operating systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... an image represents a program element, the information conveyed by the image must also be available in text. (e) When bitmap images are used to identify controls, status indicators, or other programmatic elements, the meaning assigned to those images shall be consistent throughout an application's...
36 CFR 1194.21 - Software applications and operating systems.
Code of Federal Regulations, 2011 CFR
2011-07-01
... an image represents a program element, the information conveyed by the image must also be available in text. (e) When bitmap images are used to identify controls, status indicators, or other programmatic elements, the meaning assigned to those images shall be consistent throughout an application's...
Breaking the Curse of Cardinality on Bitmap Indexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Kesheng; Wu, Kesheng; Stockinger, Kurt
2008-04-04
Bitmap indexes are known to be efficient for ad-hoc range queries that are common in data warehousing and scientific applications. However, they suffer from the curse of cardinality, that is, their efficiency deteriorates as attribute cardinalities increase. A number of strategies have been proposed, but none of them addresses the problem adequately. In this paper, we propose a novel binned bitmap index that greatly reduces the cost to answer queries, and therefore breaks the curse of cardinality. The key idea is to augment the binned index with an Order-preserving Bin-based Clustering (OrBiC) structure. This data structure significantly reduces the I/Omore » operations needed to resolve records that cannot be resolved with the bitmaps. To further improve the proposed index structure, we also present a strategy to create single-valued bins for frequent values. This strategy reduces index sizes and improves query processing speed. Overall, the binned indexes with OrBiC great improves the query processing speed, and are 3 - 25 times faster than the best available indexes for high-cardinality data.« less
Image Size Variation Influence on Corrupted and Non-viewable BMP Image
NASA Astrophysics Data System (ADS)
Azmi, Tengku Norsuhaila T.; Azma Abdullah, Nurul; Rahman, Nurul Hidayah Ab; Hamid, Isredza Rahmi A.; Chai Wen, Chuah
2017-08-01
Image is one of the evidence component seek in digital forensics. Joint Photographic Experts Group (JPEG) format is most popular used in the Internet because JPEG files are very lossy and easy to compress that can speed up Internet transmitting processes. However, corrupted JPEG images are hard to recover due to the complexities of determining corruption point. Nowadays Bitmap (BMP) images are preferred in image processing compared to another formats because BMP image contain all the image information in a simple format. Therefore, in order to investigate the corruption point in JPEG, the file is required to be converted into BMP format. Nevertheless, there are many things that can influence the corrupting of BMP image such as the changes of image size that make the file non-viewable. In this paper, the experiment indicates that the size of BMP file influences the changes in the image itself through three conditions, deleting, replacing and insertion. From the experiment, we learnt by correcting the file size, it can able to produce a viewable file though partially. Then, it can be investigated further to identify the corruption point.
Quantitative evaluation of pairs and RS steganalysis
NASA Astrophysics Data System (ADS)
Ker, Andrew D.
2004-06-01
We give initial results from a new project which performs statistically accurate evaluation of the reliability of image steganalysis algorithms. The focus here is on the Pairs and RS methods, for detection of simple LSB steganography in grayscale bitmaps, due to Fridrich et al. Using libraries totalling around 30,000 images we have measured the performance of these methods and suggest changes which lead to significant improvements. Particular results from the project presented here include notes on the distribution of the RS statistic, the relative merits of different "masks" used in the RS algorithm, the effect on reliability when previously compressed cover images are used, and the effect of repeating steganalysis on the transposed image. We also discuss improvements to the Pairs algorithm, restricting it to spatially close pairs of pixels, which leads to a substantial performance improvement, even to the extent of surpassing the RS statistic which was previously thought superior for grayscale images. We also describe some of the questions for a general methodology of evaluation of steganalysis, and potential pitfalls caused by the differences between uncompressed, compressed, and resampled cover images.
Fast approach for toner saving
NASA Astrophysics Data System (ADS)
Safonov, Ilia V.; Kurilin, Ilya V.; Rychagov, Michael N.; Lee, Hokeun; Kim, Sangho; Choi, Donchul
2011-01-01
Reducing toner consumption is an important task in modern printing devices and has a significant positive ecological impact. Existing toner saving approaches have two main drawbacks: appearance of hardcopy in toner saving mode is worse in comparison with normal mode; processing of whole rendered page bitmap requires significant computational costs. We propose to add small holes of various shapes and sizes to random places inside a character bitmap stored in font cache. Such random perforation scheme is based on processing pipeline in RIP of standard printer languages Postscript and PCL. Processing of text characters only, and moreover, processing of each character for given font and size alone, is an extremely fast procedure. The approach does not deteriorate halftoned bitmap and business graphics and provide toner saving for typical office documents up to 15-20%. Rate of toner saving is adjustable. Alteration of resulted characters' appearance is almost indistinguishable in comparison with solid black text due to random placement of small holes inside the character regions. The suggested method automatically skips small fonts to preserve its quality. Readability of text processed by proposed method is fine. OCR programs process that scanned hardcopy successfully too.
How many photons are needed to reconstruct random objects in coherent X-ray diffractive imaging?
Jahn, T; Wilke, R N; Chushkin, Y; Salditt, T
2017-01-01
This paper presents an investigation of the reconstructibility of coherent X-ray diffractive imaging diffraction patterns for a class of binary random `bitmap' objects. Combining analytical results and numerical simulations, the critical fluence per bitmap pixel is determined, for arbitrary contrast values (absorption level and phase shift), both for the optical near- and far-field. This work extends previous investigations based on information theory, enabling a comparison of the amount of information carried by single photons in different diffraction regimes. The experimental results show an order-of-magnitude agreement.
Bit-mapped Holograms Using Phase Transition Mastering (PTM) and Blu-ray Disks
NASA Astrophysics Data System (ADS)
Barnhart, Donald
2013-02-01
Due to recent advances made in data storage, cloud computing, and Blu-ray mastering technology, it is now straight forward to calculate, store, transfer, and print bitmapped holograms that use terabytes of data and tera-pixels of information. This presentation reports on the potential of using the phase transition mastering (PTM) process to construct bitmapped, computer generated holograms with spatial resolutions of 5000 line-pairs/mm (70 nm pixel width). In particular, for Blu-ray disk production, Sony has developed a complete process that could be alternately deployed in holographic applications. The PTM process uses a 405 nm laser to write phase patterns onto a layer of imperfect transition metal oxides that is deposited onto an 8 inch silicon wafer. After the master hologram has been constructed, its imprint can then be cheaply mass produced with the same process as Blu-ray disks or embossed holograms. Unlike traditional binary holograms made with expensive e-beam lithography, the PTM process has the potential for multiple phase levels using inexpensive optics similar to consumer-grade desktop Blu-ray writers. This PTM process could revolutionise holography for entertainment, industrial, and scientific applications.
Gray scale enhances display readability of bitmapped documents
NASA Astrophysics Data System (ADS)
Ostberg, Olov; Disfors, Dennis; Feng, Yingduo
1994-05-01
Bitmapped images of high resolution, say 300 dpi rastered documents, stored in the memory of a PC are at best only borderline readable on the PC's display screen (say a 72 dpi VGA monitor). Results from a series of exploratory psycho-physical experiments, using the Adobe PhotoshopR software, show that the readability can be significantly enhanced by making use of the monitor's capability to display shades of gray. It is suggested that such a gray scale adaptation module should be bundled to all software products for electronic document management. In fact, fax modems are already available in which this principle is employed, hereby making it possible to read incoming fax documents directly on the screen.
Fusion of Deep Learning and Compressed Domain features for Content Based Image Retrieval.
Liu, Peizhong; Guo, Jing-Ming; Wu, Chi-Yi; Cai, Danlin
2017-08-29
This paper presents an effective image retrieval method by combining high-level features from Convolutional Neural Network (CNN) model and low-level features from Dot-Diffused Block Truncation Coding (DDBTC). The low-level features, e.g., texture and color, are constructed by VQ-indexed histogram from DDBTC bitmap, maximum, and minimum quantizers. Conversely, high-level features from CNN can effectively capture human perception. With the fusion of the DDBTC and CNN features, the extended deep learning two-layer codebook features (DL-TLCF) is generated using the proposed two-layer codebook, dimension reduction, and similarity reweighting to improve the overall retrieval rate. Two metrics, average precision rate (APR) and average recall rate (ARR), are employed to examine various datasets. As documented in the experimental results, the proposed schemes can achieve superior performance compared to the state-of-the-art methods with either low- or high-level features in terms of the retrieval rate. Thus, it can be a strong candidate for various image retrieval related applications.
Index to Print Version of EPA Stylebook
This EPA Communication Product Standards index provides page numbers for topics such as Ampersands, Bitmapped Graphics, Exhibits and Displays, Podium Signage, Proofing, Sentence Length, Title Page, and Web Forms.
Silent store detection and recording in memory storage
Bose, Pradip; Cher, Chen-Yong; Nair, Ravi
2017-03-07
An aspect includes receiving a write request that includes a memory address and write data. Stored data is read from a memory location at the memory address. Based on determining that the memory location was not previously modified, the stored data is compared to the write data. Based on the stored data matching the write data, the write request is completed without writing the write data to the memory and a corresponding silent store bit, in a silent store bitmap is set. Based on the stored data not matching the write data, the write data is written to the memory location, the silent store bit is reset and a corresponding modified bit is set. At least one of an application and an operating system is provided access to the silent store bitmap.
Silent store detection and recording in memory storage
Bose, Pradip; Cher, Chen-Yong; Nair, Ravi
2016-09-20
An aspect includes receiving a write request that includes a memory address and write data. Stored data is read from a memory location at the memory address. Based on determining that the memory location was not previously modified, the stored data is compared to the write data. Based on the stored data matching the write data, the write request is completed without writing the write data to the memory and a corresponding silent store bit, in a silent store bitmap is set. Based on the stored data not matching the write data, the write data is written to the memory location, the silent store bit is reset and a corresponding modified bit is set. At least one of an application and an operating system is provided access to the silent store bitmap.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bose, Pradip; Cher, Chen-Yong; Nair, Ravi
An aspect includes receiving a write request that includes a memory address and write data. Stored data is read from a memory location at the memory address. Based on determining that the memory location was not previously modified, the stored data is compared to the write data. Based on the stored data matching the write data, the write request is completed without writing the write data to the memory and a corresponding silent store bit, in a silent store bitmap is set. Based on the stored data not matching the write data, the write data is written to the memorymore » location, the silent store bit is reset and a corresponding modified bit is set. At least one of an application and an operating system is provided access to the silent store bitmap.« less
Silent store detection and recording in memory storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bose, Pradip; Cher, Chen-Yong; Nair, Ravi
An aspect includes receiving a write request that includes a memory address and write data. Stored data is read from a memory location at the memory address. Based on determining that the memory location was not previously modified, the stored data is compared to the write data. Based on the stored data matching the write data, the write request is completed without writing the write data to the memory and a corresponding silent store bit, in a silent store bitmap is set. Based on the stored data not matching the write data, the write data is written to the memorymore » location, the silent store bit is reset and a corresponding modified bit is set. At least one of an application and an operating system is provided access to the silent store bitmap.« less
Trans-Interface Optical Communication (TIOC)
2008-01-01
communication interface 4. Bitmap stream creation 5. Display thread 6. DMD activeX control 7. DMD communication 8. System timing/control 9...o DMD activeX control o DMD communication o System timing/control o Graphical user interface (GUI) • All components are available for
Character Sets for PLATO/NovaNET: An Expository Catalog.
ERIC Educational Resources Information Center
Gilpin, John B.
The PLATO and NovaNET computer-based instructional systems use a fixed system character set ("normal font") and an author-definable character set ("alternate font"). The alternate font lets the author construct his own symbols and bitmapped pictures. This expository catalog allows users to determine quickly (1) whether there is…
Handling Japanese without a Japanese Operating System.
ERIC Educational Resources Information Center
Hatasa, Kazumi; And Others
1992-01-01
The Macintosh HyperCard environment has become a popular platform for Japanese language courseware because of its flexibility and ease of programing. This project created Japanese bitmap font files for the JIS Levels 1 and 2, and writing XFCNs for font manipulation, Japanese kana input, and answer correction. (12 references) (Author/LB)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandford, M.T. II; Bradley, J.N.; Handel, T.G.
Data embedding is a new steganographic method for combining digital information sets. This paper describes the data embedding method and gives examples of its application using software written in the C-programming language. Sandford and Handel produced a computer program (BMPEMBED, Ver. 1.51 written for IBM PC/AT or compatible, MS/DOS Ver. 3.3 or later) that implements data embedding in an application for digital imagery. Information is embedded into, and extracted from, Truecolor or color-pallet images in Microsoft{reg_sign} bitmap (.BMP) format. Hiding data in the noise component of a host, by means of an algorithm that modifies or replaces the noise bits,more » is termed {open_quote}steganography.{close_quote} Data embedding differs markedly from conventional steganography, because it uses the noise component of the host to insert information with few or no modifications to the host data values or their statistical properties. Consequently, the entropy of the host data is affected little by using data embedding to add information. The data embedding method applies to host data compressed with transform, or {open_quote}lossy{close_quote} compression algorithms, as for example ones based on discrete cosine transform and wavelet functions. Analysis of the host noise generates a key required for embedding and extracting the auxiliary data from the combined data. The key is stored easily in the combined data. Images without the key cannot be processed to extract the embedded information. To provide security for the embedded data, one can remove the key from the combined data and manage it separately. The image key can be encrypted and stored in the combined data or transmitted separately as a ciphertext much smaller in size than the embedded data. The key size is typically ten to one-hundred bytes, and it is in data an analysis algorithm.« less
NASA Astrophysics Data System (ADS)
Sandford, Maxwell T., II; Bradley, Jonathan N.; Handel, Theodore G.
1996-01-01
Data embedding is a new steganographic method for combining digital information sets. This paper describes the data embedding method and gives examples of its application using software written in the C-programming language. Sandford and Handel produced a computer program (BMPEMBED, Ver. 1.51 written for IBM PC/AT or compatible, MS/DOS Ver. 3.3 or later) that implements data embedding in an application for digital imagery. Information is embedded into, and extracted from, Truecolor or color-pallet images in MicrosoftTM bitmap (BMP) format. Hiding data in the noise component of a host, by means of an algorithm that modifies or replaces the noise bits, is termed `steganography.' Data embedding differs markedly from conventional steganography, because it uses the noise component of the host to insert information with few or no modifications to the host data values or their statistical properties. Consequently, the entropy of the host data is affected little by using data embedding to add information. The data embedding method applies to host data compressed with transform, or `lossy' compression algorithms, as for example ones based on discrete cosine transform and wavelet functions. Analysis of the host noise generates a key required for embedding and extracting the auxiliary data from the combined data. The key is stored easily in the combined data. Images without the key cannot be processed to extract the embedded information. To provide security for the embedded data, one can remove the key from the combined data and manage it separately. The image key can be encrypted and stored in the combined data or transmitted separately as a ciphertext much smaller in size than the embedded data. The key size is typically ten to one-hundred bytes, and it is derived from the original host data by an analysis algorithm.
2011-06-22
high degree of symmetry directly leads to a symmetry-enforced selection rule that can produce quantum entanglement [21, 22]. This report is organized...page.) Then, using a Matlab program, we converted the microscope image to a binary bitmap, from which we extract fiber radius at any given location
Multi-Level Bitmap Indexes for Flash Memory Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Kesheng; Madduri, Kamesh; Canon, Shane
2010-07-23
Due to their low access latency, high read speed, and power-efficient operation, flash memory storage devices are rapidly emerging as an attractive alternative to traditional magnetic storage devices. However, tests show that the most efficient indexing methods are not able to take advantage of the flash memory storage devices. In this paper, we present a set of multi-level bitmap indexes that can effectively take advantage of flash storage devices. These indexing methods use coarsely binned indexes to answer queries approximately, and then use finely binned indexes to refine the answers. Our new methods read significantly lower volumes of data atmore » the expense of an increased disk access count, thus taking full advantage of the improved read speed and low access latency of flash devices. To demonstrate the advantage of these new indexes, we measure their performance on a number of storage systems using a standard data warehousing benchmark called the Set Query Benchmark. We observe that multi-level strategies on flash drives are up to 3 times faster than traditional indexing strategies on magnetic disk drives.« less
Neural Network Design on the SRC-6 Reconfigurable Computer
2006-12-01
fingerprint identification. In this field, automatic identification methods are used to save time, especially for the purpose of fingerprint matching in...grid widths and lengths and therefore was useful in producing an accurate canvas with which to create sample training images. The added benefit of...tools available free of charge and readily accessible on the computer, it was simple to design bitmap data files visually on a canvas and then
A CAMAC display module for fast bit-mapped graphics
NASA Astrophysics Data System (ADS)
Abdel-Aal, R. E.
1992-10-01
In many data acquisition and analysis facilities for nuclear physics research, utilities for the display of two-dimensional (2D) images and spectra on graphics terminals suffer from low speed, poor resolution, and limited accuracy. Development of CAMAC bit-mapped graphics modules for this purpose has been discouraged in the past by the large device count needed and the long times required to load the image data from the host computer into the CAMAC hardware; particularly since many such facilities have been designed to support fast DMA block transfers only for data acquisition into the host. This paper describes the design and implementation of a prototype CAMAC graphics display module with a resolution of 256×256 pixels at eight colours for which all components can be easily accommodated in a single-width package. Employed is a hardware technique which reduces the number of programmed CAMAC data transfer operations needed for writing 2D images into the display memory by approximately an order of magnitude, with attendant improvements in the display speed and CPU time consumption. Hardware and software details are given together with sample results. Information on the performance of the module in a typical VAX/MBD data acquisition environment is presented, including data on the mutual effects of simultaneous data acquisition traffic. Suggestions are made for further improvements in performance.
Range Image Processing for Local Navigation of an Autonomous Land Vehicle.
1986-09-01
such as doing long term exploration missions on the surface of the planets which mankind may wish to investigate . Certainly, mankind will soon return...intelligence programming, walking technology, and vision sensors to name but a few. 10 The purpose of this thesis will be to investigate , by simulation...bitmap graphics, both of which are important to this simulation. Finally, the methodology for displaying the symbolic information generated by the
Graphics-Printing Program For The HP Paintjet Printer
NASA Technical Reports Server (NTRS)
Atkins, Victor R.
1993-01-01
IMPRINT utility computer program developed to print graphics specified in raster files by use of Hewlett-Packard Paintjet(TM) color printer. Reads bit-mapped images from files on UNIX-based graphics workstation and prints out three different types of images: wire-frame images, solid-color images, and gray-scale images. Wire-frame images are in continuous tone or, in case of low resolution, in random gray scale. In case of color images, IMPRINT also prints by use of default palette of solid colors. Written in C language.
Method of the active contour for segmentation of bone systems on bitmap images
NASA Astrophysics Data System (ADS)
Vu, Hai Anh; Safonov, Roman A.; Kolesnikova, Anna S.; Kirillova, Irina V.; Kossovich, Leonid U.
2018-02-01
It is developed within a method of the active contours the approach, which is allowing to realize separation of a contour of a object of the image in case of its segmentation. This approach exceeds a parametric method on speed, but also does not concede to it on decision accuracy. The approach is offered within this operation will allow to realize allotment of a contour with high accuracy of the image and quicker than a parametric method of the active contours.
Sandford, M.T. II; Handel, T.G.; Bradley, J.N.
1998-07-07
A method and apparatus for embedding auxiliary information into the digital representation of host data created by a lossy compression technique and a method and apparatus for constructing auxiliary data from the correspondence between values in a digital key-pair table with integer index values existing in a representation of host data created by a lossy compression technique are disclosed. The methods apply to data compressed with algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as ordered sequences of blocks containing integer indices having redundancy and uncertainty of value by one unit, allowing indices which are adjacent in value to be manipulated to encode auxiliary data. Also included is a method to improve the efficiency of lossy compression algorithms by embedding white noise into the integer indices. Lossy compression methods use loss-less compression to reduce to the final size the intermediate representation as indices. The efficiency of the loss-less compression, known also as entropy coding compression, is increased by manipulating the indices at the intermediate stage. Manipulation of the intermediate representation improves lossy compression performance by 1 to 10%. 21 figs.
Sandford, II, Maxwell T.; Handel, Theodore G.; Bradley, Jonathan N.
1998-01-01
A method and apparatus for embedding auxiliary information into the digital representation of host data created by a lossy compression technique and a method and apparatus for constructing auxiliary data from the correspondence between values in a digital key-pair table with integer index values existing in a representation of host data created by a lossy compression technique. The methods apply to data compressed with algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as ordered sequences of blocks containing integer indices having redundancy and uncertainty of value by one unit, allowing indices which are adjacent in value to be manipulated to encode auxiliary data. Also included is a method to improve the efficiency of lossy compression algorithms by embedding white noise into the integer indices. Lossy compression methods use loss-less compression to reduce to the final size the intermediate representation as indices. The efficiency of the loss-less compression, known also as entropy coding compression, is increased by manipulating the indices at the intermediate stage. Manipulation of the intermediate representation improves lossy compression performance by 1 to 10%.
Kim, Kuk-Hwan; Gaba, Siddharth; Wheeler, Dana; Cruz-Albrecht, Jose M; Hussain, Tahir; Srinivasa, Narayan; Lu, Wei
2012-01-11
Crossbar arrays based on two-terminal resistive switches have been proposed as a leading candidate for future memory and logic applications. Here we demonstrate a high-density, fully operational hybrid crossbar/CMOS system composed of a transistor- and diode-less memristor crossbar array vertically integrated on top of a CMOS chip by taking advantage of the intrinsic nonlinear characteristics of the memristor element. The hybrid crossbar/CMOS system can reliably store complex binary and multilevel 1600 pixel bitmap images using a new programming scheme. © 2011 American Chemical Society
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holm, Elizabeth A.
2002-03-28
This code is a FORTRAN code for three-dimensional Monte Carol Potts Model (MCPM) Recrystallization and grain growth. A continuum grain structure is mapped onto a three-dimensional lattice. The mapping procedure is analogous to color bitmapping the grain structure; grains are clusters of pixels (sites) of the same color (spin). The total system energy is given by the Pott Hamiltonian and the kinetics of grain growth are determined through a Monte Carlo technique with a nonconserved order parameter (Glauber dynamics). The code can be compiled and run on UNIX/Linux platforms.
Hailstone classifier based on Rough Set Theory
NASA Astrophysics Data System (ADS)
Wan, Huisong; Jiang, Shuming; Wei, Zhiqiang; Li, Jian; Li, Fengjiao
2017-09-01
The Rough Set Theory was used for the construction of the hailstone classifier. Firstly, the database of the radar image feature was constructed. It included transforming the base data reflected by the Doppler radar into the bitmap format which can be seen. Then through the image processing, the color, texture, shape and other dimensional features should be extracted and saved as the characteristic database to provide data support for the follow-up work. Secondly, Through the Rough Set Theory, a machine for hailstone classifications can be built to achieve the hailstone samples’ auto-classification.
Sandford, M.T. II; Handel, T.G.; Bradley, J.N.
1998-03-10
A method of embedding auxiliary information into the digital representation of host data created by a lossy compression technique is disclosed. The method applies to data compressed with lossy algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as integer indices having redundancy and uncertainty in value by one unit. Indices which are adjacent in value are manipulated to encode auxiliary data. By a substantially reverse process, the embedded auxiliary data can be retrieved easily by an authorized user. Lossy compression methods use loss-less compressions known also as entropy coding, to reduce to the final size the intermediate representation as indices. The efficiency of the compression entropy coding, known also as entropy coding is increased by manipulating the indices at the intermediate stage in the manner taught by the method. 11 figs.
Sandford, II, Maxwell T.; Handel, Theodore G.; Bradley, Jonathan N.
1998-01-01
A method of embedding auxiliary information into the digital representation of host data created by a lossy compression technique. The method applies to data compressed with lossy algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as integer indices having redundancy and uncertainty in value by one unit. Indices which are adjacent in value are manipulated to encode auxiliary data. By a substantially reverse process, the embedded auxiliary data can be retrieved easily by an authorized user. Lossy compression methods use loss-less compressions known also as entropy coding, to reduce to the final size the intermediate representation as indices. The efficiency of the compression entropy coding, known also as entropy coding is increased by manipulating the indices at the intermediate stage in the manner taught by the method.
A stress-free model for residual stress assessment using thermoelastic stress analysis
NASA Astrophysics Data System (ADS)
Howell, Geoffrey; Dulieu-Barton, Janice M.; Achintha, Mithila; Robinson, Andrew F.
2015-03-01
Thermoelastic Stress Analysis (TSA) has been proposed as a method of obtaining residual stresses. The results of a preliminary study demonstrated that when Al-2024 plate containing holes that were plastically deformed by cold expansion process to 2% and 4% strain the thermoelastic response in the material around the hole was different to that obtained from a plate that had not experienced any plastic cold expansion (i.e. a reference specimen). This observation provides an opportunity for obtaining residual stresses based on TSA data. In many applications a reference specimen (i.e. residual stress free specimen) may not be available for comparison, so a synthetic, digital bitmap has been proposed as an alternative. An elastic finite element model is created using commercially available software Abaqus/Standard and the resultant stress field is extracted. The simulated stress field from the model is mapped onto a grid that matches the TSA pixel data from a physical reference specimen. This stress field is then converted to a ΔT/T field that can be compared to the full-field TSA data. When the reference experimental data is subtracted from the, bitmap dataset the resultant ΔT/T field is approximately zero. Further work proposes replacing the experimental reference data with that from specimens that have undergone cold expansion with the aim of revealing the regions affected by residual stress through a departure from zero in the resultant stress field. The paper demonstrates the first steps necessary for deriving the residual stresses from a general specimen using TSA.
Generation and propagation characteristics of a localized hollow beam
NASA Astrophysics Data System (ADS)
Xia, Meng; Wang, Zhizhang; Yin, Yaling; Zhou, Qi; Xia, Yong; Yin, Jianping
2018-05-01
A succinct experimental scheme is demonstrated to generate a localized hollow beam by using a π-phase binary bitmap and a convergent thin lens. The experimental results show that the aspect ratio of the dark-spot size of the hollow beam can be effectively controlled by the focal length of the lens. The measured beam profiles in free space also agree with the theoretical modeling. The studies hold great promise that such a hollow beam can be used to cool trapped atoms (or molecules) by Sisyphus cooling and to achieve an optically-trapped Bose–Einstein condensate by optical-potential evaporative cooling.
The use of digital images in pathology.
Furness, P N
1997-11-01
Digital images are routinely used by the publishing industry, but most diagnostic pathologists are unfamiliar with the technology and its possibilities. This review aims to explain the basic principles of digital image acquisition, storage, manipulation and use, and the possibilities provided not only in research, but also in teaching and in routine diagnostic pathology. Images of natural objects are usually expressed digitally as 'bitmaps'--rectilinear arrays of small dots. The size of each dot can vary, but so can its information content in terms, for example, of colour, greyscale or opacity. Various file formats and compression algorithms are available. Video cameras connected to microscopes are familiar to most pathologists; video images can be converted directly to a digital form by a suitably equipped computer. Digital cameras and scanners are alternative acquisition tools of relevance to pathologists. Once acquired, a digital image can easily be subjected to the digital equivalent of any conventional darkroom manipulation and modern software allows much more flexibility, to such an extent that a new tool for scientific fraud has been created. For research, image enhancement and analysis is an increasingly powerful and affordable tool. Morphometric measurements are, after many predictions, at last beginning to be part of the toolkit of the diagnostic pathologist. In teaching, the potential to create dramatic yet informative presentations is demonstrated daily by the publishing industry; such methods are readily applicable to the classroom. The combination of digital images and the Internet raises many possibilities; for example, instead of seeking one expert diagnostic opinion, one could simultaneously seek the opinion of many, all around the globe. It is inevitable that in the coming years the use of digital images will spread from the laboratory to the medical curriculum and to the whole of diagnostic pathology.
Landes, Constantin A; Weichert, Frank; Geis, Philipp; Helga, Fritsch; Wagner, Mathias
2006-03-01
Cleft lip and palate reconstructive surgery requires thorough knowledge of normal and pathological labial, palatal, and velopharyngeal anatomy. This study compared two software algorithms and their 3D virtual anatomical reconstruction because exact 3D micromorphological reconstruction may improve learning, reveal spatial relationships, and provide data for mathematical modeling. Transverse and frontal serial sections of the midface of 18 fetal specimens (11th to 32nd gestational week) were used for two manual segmentation approaches. The first manual segmentation approach used bitmap images and either Windows-based or Mac-based SURFdriver commercial software that allowed manual contour matching, surface generation with average slice thickness, 3D triangulation, and real-time interactive virtual 3D reconstruction viewing. The second manual segmentation approach used tagged image format and platform-independent prototypical SeViSe software developed by one of the authors (F.W.). Distended or compressed structures were dynamically transformed. Registration was automatic but allowed manual correction, such as individual section thickness, surface generation, and interactive virtual 3D real-time viewing. SURFdriver permitted intuitive segmentation, easy manual offset correction, and the reconstruction showed complex spatial relationships in real time. However, frequent software crashes and erroneous landmarks appearing "out of the blue," requiring manual correction, were tedious. Individual section thickness, defined smoothing, and unlimited structure number could not be integrated. The reconstruction remained underdimensioned and not sufficiently accurate for this study's reconstruction problem. SeViSe permitted unlimited structure number, late addition of extra sections, and quantified smoothing and individual slice thickness; however, SeViSe required more elaborate work-up compared to SURFdriver, yet detailed and exact 3D reconstructions were created.
Spatially modulated laser pulses for printing electronics.
Auyeung, Raymond C Y; Kim, Heungsoo; Mathews, Scott; Piqué, Alberto
2015-11-01
The use of a digital micromirror device (DMD) in laser-induced forward transfer (LIFT) is reviewed. Combining this technique with high-viscosity donor ink (silver nanopaste) results in laser-printed features that are highly congruent in shape and size to the incident laser beam spatial profile. The DMD empowers LIFT to become a highly parallel, rapidly reconfigurable direct-write technology. By adapting half-toning techniques to the DMD bitmap image, the laser transfer threshold fluence for 10 μm features can be reduced using an edge-enhanced beam profile. The integration of LIFT with this beam-shaping technique allows the printing of complex large-area patterns with a single laser pulse.
Graphics performance in rich Internet applications.
Hoetzlein, Rama C
2012-01-01
Rendering performance for rich Internet applications (RIAs) has recently focused on the debate between using Flash and HTML5 for streaming video and gaming on mobile devices. A key area not widely explored, however, is the scalability of raw bitmap graphics performance for RIAs. Does Flash render animated sprites faster than HTML5? How much faster is WebGL than Flash? Answers to these questions are essential for developing large-scale data visualizations, online games, and truly dynamic websites. A new test methodology analyzes graphics performance across RIA frameworks and browsers, revealing specific performance outliers in existing frameworks. The results point toward a future in which all online experiences might be GPU accelerated.
An Approach for Stitching Satellite Images in a Bigdata Mapreduce Framework
NASA Astrophysics Data System (ADS)
Sarı, H.; Eken, S.; Sayar, A.
2017-11-01
In this study we present a two-step map/reduce framework to stitch satellite mosaic images. The proposed system enable recognition and extraction of objects whose parts falling in separate satellite mosaic images. However this is a time and resource consuming process. The major aim of the study is improving the performance of the image stitching processes by utilizing big data framework. To realize this, we first convert the images into bitmaps (first mapper) and then String formats in the forms of 255s and 0s (second mapper), and finally, find the best possible matching position of the images by a reduce function.
Hugoniot and refractive indices of bromoform under shock compression
NASA Astrophysics Data System (ADS)
Liu, Q. C.; Zeng, X. L.; Zhou, X. M.; Luo, S. N.
2018-01-01
We investigate physical properties of bromoform (liquid CHBr3) including compressibility and refractive index under dynamic extreme conditions of shock compression. Planar shock experiments are conducted along with high-speed laser interferometry. Our experiments and previous results establish a linear shock velocity-particle velocity relation for particle velocities below 1.77 km/s, as well as the Hugoniot and isentropic compression curves up to ˜21 GPa. Shock-state refractive indices of CHBr3 up to 2.3 GPa or ˜26% compression, as a function of density, can be described with a linear relation and follows the Gladstone-Dale relation. The velocity corrections for laser interferometry measurements at 1550 nm are also obtained.
Character Recognition Using Genetically Trained Neural Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diniz, C.; Stantz, K.M.; Trahan, M.W.
1998-10-01
Computationally intelligent recognition of characters and symbols addresses a wide range of applications including foreign language translation and chemical formula identification. The combination of intelligent learning and optimization algorithms with layered neural structures offers powerful techniques for character recognition. These techniques were originally developed by Sandia National Laboratories for pattern and spectral analysis; however, their ability to optimize vast amounts of data make them ideal for character recognition. An adaptation of the Neural Network Designer soflsvare allows the user to create a neural network (NN_) trained by a genetic algorithm (GA) that correctly identifies multiple distinct characters. The initial successfidmore » recognition of standard capital letters can be expanded to include chemical and mathematical symbols and alphabets of foreign languages, especially Arabic and Chinese. The FIN model constructed for this project uses a three layer feed-forward architecture. To facilitate the input of characters and symbols, a graphic user interface (GUI) has been developed to convert the traditional representation of each character or symbol to a bitmap. The 8 x 8 bitmap representations used for these tests are mapped onto the input nodes of the feed-forward neural network (FFNN) in a one-to-one correspondence. The input nodes feed forward into a hidden layer, and the hidden layer feeds into five output nodes correlated to possible character outcomes. During the training period the GA optimizes the weights of the NN until it can successfully recognize distinct characters. Systematic deviations from the base design test the network's range of applicability. Increasing capacity, the number of letters to be recognized, requires a nonlinear increase in the number of hidden layer neurodes. Optimal character recognition performance necessitates a minimum threshold for the number of cases when genetically training the net. And, the amount of noise significantly degrades character recognition efficiency, some of which can be overcome by adding noise during training and optimizing the form of the network's activation fimction.« less
Detection of illegal transfer of videos over the Internet
NASA Astrophysics Data System (ADS)
Chaisorn, Lekha; Sainui, Janya; Manders, Corey
2010-07-01
In this paper, a method for detecting infringements or modifications of a video in real-time is proposed. The method first segments a video stream into shots, after which it extracts some reference frames as keyframes. This process is performed employing a Singular Value Decomposition (SVD) technique developed in this work. Next, for each input video (represented by its keyframes), ordinal-based signature and SIFT (Scale Invariant Feature Transform) descriptors are generated. The ordinal-based method employs a two-level bitmap indexing scheme to construct the index for each video signature. The first level clusters all input keyframes into k clusters while the second level converts the ordinal-based signatures into bitmap vectors. On the other hand, the SIFT-based method directly uses the descriptors as the index. Given a suspect video (being streamed or transferred on the Internet), we generate the signature (ordinal and SIFT descriptors) then we compute similarity between its signature and those signatures in the database based on ordinal signature and SIFT descriptors separately. For similarity measure, besides the Euclidean distance, Boolean operators are also utilized during the matching process. We have tested our system by performing several experiments on 50 videos (each about 1/2 hour in duration) obtained from the TRECVID 2006 data set. For experiments set up, we refer to the conditions provided by TRECVID 2009 on "Content-based copy detection" task. In addition, we also refer to the requirements issued in the call for proposals by MPEG standard on the similar task. Initial result shows that our framework is effective and robust. As compared to our previous work, on top of the achievement we obtained by reducing the storage space and time taken in the ordinal based method, by introducing the SIFT features, we could achieve an overall accuracy in F1 measure of about 96% (improved about 8%).
Buckner, Ira S; Friedman, Ross A; Wurster, Dale Eric
2010-02-01
The process by which pharmaceutical powders are compressed into cohesive compacts or tablets has been studied using a compression calorimeter. Relating the various thermodynamic results to relevant physical processes has been emphasized. Work, heat, and internal energy change values have been determined with the compression calorimeter for common pharmaceutical materials. A framework of equations has been proposed relating the physical processes of friction, reversible deformation, irreversible deformation, and inter-particle bonding to the compression calorimetry values. The results indicate that irreversible deformation dominated many of the thermodynamic values, especially the net internal energy change following the compression-decompression cycle. The relationships between the net work and the net heat from the complete cycle were very clear indicators of predominating deformation mechanisms. Likewise, the ratio of energy stored as internal energy to the initial work input distinguished the materials according to their brittle or plastic deformation tendencies. (c) 2009 Wiley-Liss, Inc. and the American Pharmacists Association.
NASA Technical Reports Server (NTRS)
Sanders, J. C.; Mendelson, Alexander
1945-01-01
Small high-speed single-cylinder compression-ignition engines were tested to determine their performance characteristics under high supercharging. Calculations were made on the energy available in the exhaust gas of the compression-ignition engines. The maximum power at any given maximum cylinder pressure was obtained when the compression pressure was equal to the maximum cylinder pressure. Constant-pressure combustion was found possible at an engine speed of 2200 rpm. Exhaust pressures and temperatures were determined from an analysis of indicator cards. The analysis showed that, at rich mixtures with the exhaust back pressure equal to the inlet-air pressure, there is excess energy available for driving a turbine over that required for supercharging. The presence of this excess energy indicates that a highly supercharged compression-ignition engine might be desirable as a compressor and combustion chamber for a turbine.
Data entry and error embedding system
NASA Technical Reports Server (NTRS)
Woo, Daniel N. (Inventor); Woo, Jr., John (Inventor)
1998-01-01
A data entry and error embedding system in which, first, a document is bitmapped and recorded in a first memory. Then, it is displayed, and portions of it to be replicated by data entry are underlayed by a window, into which window replicated data is entered in location and size such that it is juxtaposed just below that which is replicated, enhancing the accuracy of replication. Second, with this format in place, selected portions of the replicated data are altered by the insertion of character or word substitutions, thus the embedding of errors. Finally, a proofreader would endeavor to correct the error embedded data and a record of his or her changes recorded. In this manner, the skill level of the proofreader and accuracy of the data are computed.
Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy.
Letunic, Ivica; Bork, Peer
2011-07-01
Interactive Tree Of Life (http://itol.embl.de) is a web-based tool for the display, manipulation and annotation of phylogenetic trees. It is freely available and open to everyone. In addition to classical tree viewer functions, iTOL offers many novel ways of annotating trees with various additional data. Current version introduces numerous new features and greatly expands the number of supported data set types. Trees can be interactively manipulated and edited. A free personal account system is available, providing management and sharing of trees in user defined workspaces and projects. Export to various bitmap and vector graphics formats is supported. Batch access interface is available for programmatic access or inclusion of interactive trees into other web services.
Measuring charged particle multiplicity with early ATLAS public data
NASA Astrophysics Data System (ADS)
Üstün, G.; Barut, E.; Bektaş, E.; Özcan, V. E.
2017-07-01
We study 100 images of early LHC collisions that were recorded by the ATLAS experiment and made public for outreach purposes, and extract the charged particle multiplicity as a function of momentum for proton-proton collisions at a centre-of-mass energy of 7 TeV. As these collisions have already been pre-processed by the ATLAS Collaboration, the particle tracks are visible, but are available to the public only in the form of low-resolution bitmaps. We describe two separate image processing methods, one based on the industry-standard OpenCV library and C++, another based on self-developed algorithms in Python. We present our analysis of the transverse momentum and azimuthal angle distributions of the particles, in agreement with the literature.
NASA Astrophysics Data System (ADS)
Taylor, M. B.
2009-09-01
The new plotting functionality in version 2.0 of STILTS is described. STILTS is a mature and powerful package for all kinds of table manipulation, and this version adds facilities for generating plots from one or more tables to its existing wide range of non-graphical capabilities. 2- and 3-dimensional scatter plots and 1-dimensional histograms may be generated using highly configurable style parameters. Features include multiple dataset overplotting, variable transparency, 1-, 2- or 3-dimensional symmetric or asymmetric error bars, higher-dimensional visualization using color, and textual point labeling. Vector and bitmapped output formats are supported. The plotting options provide enough flexibility to perform meaningful visualization on datasets from a few points up to tens of millions. Arbitrarily large datasets can be plotted without heavy memory usage.
Impacts of compression on crystallization behavior of freeze-dried amorphous sucrose.
Imamura, Koreyoshi; Nomura, Mayo; Tanaka, Kazuhiro; Kataoka, Nobuhide; Oshitani, Jun; Imanaka, Hiroyuki; Nakanishi, Kazuhiro
2010-03-01
An amorphous matrix comprised of sugar molecules is used as excipient and stabilizing agent for labile ingredients in the pharmaceutical industry. The amorphous sugar matrix is often compressed into a tablet form to reduce the volume and improve handling. Herein, the effect of compression on the crystallization behavior of an amorphous sucrose matrix was investigated. Amorphous sucrose samples were prepared by freeze-drying and compressed under different conditions, followed by analyses by differential scanning calorimetry, isothermal crystallization tests, X-ray powder diffractometry, Fourier transform infrared spectroscopy (FTIR), and gas pycnometry. The compressed sample had a lower crystallization temperature and a shorter induction period for isothermal crystallization, indicating that compression facilitates the formation of the critical nucleus of a sucrose crystal. Based on FTIR and molecular dynamics simulation results, the conformational distortion of sucrose molecules due to the compression appears to contribute to the increase in the free energy of the system, which leads to the facilitation of critical nucleus formation. An isothermal crystallization test indicated an increase in the growth rate of sucrose crystals by the compression. This can be attributed to the transformation of the microstructure from porous to nonporous, as the result of compression. 2009 Wiley-Liss, Inc. and the American Pharmacists Association
Multiple Compressions in the Middle Energy Plasma Focus Device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yousefi, H. R.; Ejiri, Y.; Ito, H.
This paper reports some of the results that are aimed to investigate the neutron emission from the middle energy Mather-type plasma focus. These results indicated that with increase the pressure, compression time is increase but there is not any direct relation between the compression time and neutron yield. Also it seems that multiple compression regimes is occurred in low pressure and single compression is appeared at higher pressure where is the favorable to neutron production.
Singh, Abhishek; Bharati, Avanish; Frederiks, Pauline; Verkinderen, Olivier; Goderis, Bart; Cardinaels, Ruth; Moldenaers, Paula; Van Humbeeck, Jan; Van den Mooter, Guy
2016-06-06
Predensification and compression are unit operations imperative to the manufacture of tablets and capsules. Such stress-inducing steps can cause destabilization of solid dispersions which can alter their molecular arrangement and ultimately affect dissolution rate and bioavailability. In this study, itraconazole-Soluplus solid dispersions with 50% (w/w) drug loading prepared by hot-melt extrusion (HME) were investigated. Compression was performed at both pharmaceutically relevant and extreme compression pressures and dwell times. The starting materials, powder, and compressed solid dispersions were analyzed using modulated differential scanning calorimetry (MDSC), X-ray diffraction (XRD), small- and wide-angle X-ray scattering (SWAXS), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), and broadband dielectric spectroscopy (BDS). MDSC analysis revealed that compression promotes phase separation of solid dispersions as indicated by an increase in glass transition width, occurrence of a peak in the nonreversing heat flow signal, and an increase in the net heat of fusion indicating crystallinity in the systems. SWAXS analysis ruled out the presence of mesophases. BDS measurements elucidated an increase in the Soluplus-rich regions of the solid dispersion upon compression. FTIR indicated changes in the spatiotemporal architecture of the solid dispersions mediated via disruption in hydrogen bonding and ultimately altered dynamics. These changes can have significant consequences on the final stability and performance of the solid dispersions.
Evaluation of registration, compression and classification algorithms. Volume 1: Results
NASA Technical Reports Server (NTRS)
Jayroe, R.; Atkinson, R.; Callas, L.; Hodges, J.; Gaggini, B.; Peterson, J.
1979-01-01
The registration, compression, and classification algorithms were selected on the basis that such a group would include most of the different and commonly used approaches. The results of the investigation indicate clearcut, cost effective choices for registering, compressing, and classifying multispectral imagery.
Compression of CCD raw images for digital still cameras
NASA Astrophysics Data System (ADS)
Sriram, Parthasarathy; Sudharsanan, Subramania
2005-03-01
Lossless compression of raw CCD images captured using color filter arrays has several benefits. The benefits include improved storage capacity, reduced memory bandwidth, and lower power consumption for digital still camera processors. The paper discusses the benefits in detail and proposes the use of a computationally efficient block adaptive scheme for lossless compression. Experimental results are provided that indicate that the scheme performs well for CCD raw images attaining compression factors of more than two. The block adaptive method also compares favorably with JPEG-LS. A discussion is provided indicating how the proposed lossless coding scheme can be incorporated into digital still camera processors enabling lower memory bandwidth and storage requirements.
Combining multi-layered bitmap files using network specific hardware
DuBois, David H [Los Alamos, NM; DuBois, Andrew J [Santa Fe, NM; Davenport, Carolyn Connor [Los Alamos, NM
2012-02-28
Images and video can be produced by compositing or alpha blending a group of image layers or video layers. Increasing resolution or the number of layers results in increased computational demands. As such, the available computational resources limit the images and videos that can be produced. A computational architecture in which the image layers are packetized and streamed through processors can be easily scaled so to handle many image layers and high resolutions. The image layers are packetized to produce packet streams. The packets in the streams are received, placed in queues, and processed. For alpha blending, ingress queues receive the packetized image layers which are then z sorted and sent to egress queues. The egress queue packets are alpha blended to produce an output image or video.
Micromechanics of composite laminate compression failure
NASA Technical Reports Server (NTRS)
Guynn, E. Gail; Bradley, Walter L.
1986-01-01
The Dugdale analysis for metals loaded in tension was adapted to model the failure of notched composite laminates loaded in compression. Compression testing details, MTS alignment verification, and equipment needs were resolved. Thus far, only 2 ductile material systems, HST7 and F155, were selected for study. A Wild M8 Zoom Stereomicroscope and necessary attachments for video taping and 35 mm pictures were purchased. Currently, this compression test system is fully operational. A specimen is loaded in compression, and load vs shear-crippling zone size is monitored and recorded. Data from initial compression tests indicate that the Dugdale model does not accurately predict the load vs damage zone size relationship of notched composite specimens loaded in compression.
Shekarchi, Sayedali; Hallam, John; Christensen-Dalsgaard, Jakob
2013-11-01
Head-related transfer functions (HRTFs) are generally large datasets, which can be an important constraint for embedded real-time applications. A method is proposed here to reduce redundancy and compress the datasets. In this method, HRTFs are first compressed by conversion into autoregressive-moving-average (ARMA) filters whose coefficients are calculated using Prony's method. Such filters are specified by a few coefficients which can generate the full head-related impulse responses (HRIRs). Next, Legendre polynomials (LPs) are used to compress the ARMA filter coefficients. LPs are derived on the sphere and form an orthonormal basis set for spherical functions. Higher-order LPs capture increasingly fine spatial details. The number of LPs needed to represent an HRTF, therefore, is indicative of its spatial complexity. The results indicate that compression ratios can exceed 98% while maintaining a spectral error of less than 4 dB in the recovered HRTFs.
New Solutions for Energy Absorbing Materials
2012-11-01
One can also readily plot transverse stiffness versus axial compression , shown in Figure 8, by relating the axial compression force, N, to the...displacement of 1 μm was applied at the center-top of the beam at the same time as the beam ends were subjected to varying axial compressive ...Figure 8 for varying amounts of axial compression . The results indicate a very good agreement between the analytical and FEA models. The slight
NASA Technical Reports Server (NTRS)
Rotem, Assa
1990-01-01
Laminated composite materials tend to fail differently under tensile or compressive load. Under tension, the material accumulates cracks and fiber fractures, while under compression, the material delaminates and buckles. Tensile-compressive fatigue may cause either of these failure modes depending on the specific damage occurring in the laminate. This damage depends on the stress ratio of the fatigue loading. Analysis of the fatigue behavior of the composite laminate under tension-tension, compression-compression, and tension-compression had led to the development of a fatigue envelope presentation of the failure behavior. This envelope indicates the specific failure mode for any stress ratio and number of loading cycles. The construction of the fatigue envelope is based on the applied stress-cycles to failure (S-N) curves of both tensile-tensile and compressive-compressive fatigue. Test results are presented to verify the theoretical analysis.
Reconstructing Buildings with Discontinuities and Roof Overhangs from Oblique Aerial Imagery
NASA Astrophysics Data System (ADS)
Frommholz, D.; Linkiewicz, M.; Meissner, H.; Dahlke, D.
2017-05-01
This paper proposes a two-stage method for the reconstruction of city buildings with discontinuities and roof overhangs from oriented nadir and oblique aerial images. To model the structures the input data is transformed into a dense point cloud, segmented and filtered with a modified marching cubes algorithm to reduce the positional noise. Assuming a monolithic building the remaining vertices are initially projected onto a 2D grid and passed to RANSAC-based regression and topology analysis to geometrically determine finite wall, ground and roof planes. If this should fail due to the presence of discontinuities the regression will be repeated on a 3D level by traversing voxels within the regularly subdivided bounding box of the building point set. For each cube a planar piece of the current surface is approximated and expanded. The resulting segments get mutually intersected yielding both topological and geometrical nodes and edges. These entities will be eliminated if their distance-based affiliation to the defining point sets is violated leaving a consistent building hull including its structural breaks. To add the roof overhangs the computed polygonal meshes are projected onto the digital surface model derived from the point cloud. Their shapes are offset equally along the edge normals with subpixel accuracy by detecting the zero-crossings of the second-order directional derivative in the gradient direction of the height bitmap and translated back into world space to become a component of the building. As soon as the reconstructed objects are finished the aerial images are further used to generate a compact texture atlas for visualization purposes. An optimized atlas bitmap is generated that allows perspectivecorrect multi-source texture mapping without prior rectification involving a partially parallel placement algorithm. Moreover, the texture atlases undergo object-based image analysis (OBIA) to detect window areas which get reintegrated into the building models. To evaluate the performance of the proposed method a proof-of-concept test on sample structures obtained from real-world data of Heligoland/Germany has been conducted. It revealed good reconstruction accuracy in comparison to the cadastral map, a speed-up in texture atlas optimization and visually attractive render results.
SEGY to ASCII Conversion and Plotting Program 2.0
Goldman, Mark R.
2005-01-01
INTRODUCTION SEGY has long been a standard format for storing seismic data and header information. Almost every seismic processing package can read and write seismic data in SEGY format. In the data processing world, however, ASCII format is the 'universal' standard format. Very few general-purpose plotting or computation programs will accept data in SEGY format. The software presented in this report, referred to as SEGY to ASCII (SAC), converts seismic data written in SEGY format (Barry et al., 1975) to an ASCII data file, and then creates a postscript file of the seismic data using a general plotting package (GMT, Wessel and Smith, 1995). The resulting postscript file may be plotted by any standard postscript plotting program. There are two versions of SAC: one version for plotting a SEGY file that contains a single gather, such as a stacked CDP or migrated section, and a second version for plotting multiple gathers from a SEGY file containing more than one gather, such as a collection of shot gathers. Note that if a SEGY file has multiple gathers, then each gather must have the same number of traces per gather, and each trace must have the same sample interval and number of samples per trace. SAC will read several common standards of SEGY data, including SEGY files with sample values written in either IBM or IEEE floating-point format. In addition, utility programs are present to convert non-standard Seismic Unix (.sux) SEGY files and PASSCAL (.rsy) SEGY files to standard SEGY files. SAC allows complete user control over all plotting parameters including label size and font, tick mark intervals, trace scaling, and the inclusion of a title and descriptive text. SAC shell scripts create a postscript image of the seismic data in vector rather than bitmap format, using GMT's pswiggle command. Although this can produce a very large postscript file, the image quality is generally superior to that of a bitmap image, and commercial programs such as Adobe Illustrator? can manipulate the image more efficiently.
The Effect of Grain Size on the Strain Hardening Behavior for Extruded ZK61 Magnesium Alloy
NASA Astrophysics Data System (ADS)
Zhang, Lixin; Zhang, Wencong; Chen, Wenzhen; Duan, Junpeng; Wang, Wenke; Wang, Erde
2017-12-01
The effects of grain size on the tensile and compressive strain hardening behaviors for extruded ZK61 alloys have been investigated by uniaxial tensile and compressive tests along the extrusion directions. Cylindrical tension and compression specimens of extruded ZK61 alloys with various sized grain were fabricated by annealing treatments. Tensile and compressive tests at ambient temperature were conducted at a strain rate of 0.5 × 10-3 s-1. The results indicate that both tensile strain hardening and compressive strain hardening of ZK61 alloys with different grain sizes have an athermal regime of dislocation accumulation in early deformation. The threshold stress value caused dynamic recovery is predominantly related to grain size in tensile strain hardening, but the threshold stress values for different grain sizes are almost identical in compressive strain hardening. There are obvious transition points on the tensile strain hardening curves which indicate the occurrence of dynamic recrystallization (DRX). The tensile strain hardening rate of the coarse-grained alloy obviously decreases faster than that of fine-grained alloys before DRX and the tensile strain hardening curves of different grain sizes basically tend to parallel after DRX. The compressive strain hardening rate of the fine-grained alloy obviously increases faster than that of coarse-grained alloy for twin-induced strain hardening, but compressive strain hardening curves also tend to parallel after twinning is exhausted.
Studies of fiber-matrix adhesion on compression strength
NASA Technical Reports Server (NTRS)
Bascom, Willard D.; Nairn, John A.; Boll, D. J.
1991-01-01
A study was initiated on the effect of the matrix polymer and the fiber matrix bond strength of carbon fiber polymer matrix composites. The work includes tests with micro-composites, single ply composites, laminates, and multi-axial loaded cylinders. The results obtained thus far indicate that weak fiber-matrix adhesion dramatically reduces 0 degree compression strength. Evidence is also presented that the flaws in the carbon fiber that govern compression strength differ from those that determine fiber tensile strength. Examination of post-failure damage in the single ply tests indicates kink banding at the crack tip.
Near-wall modeling of compressible turbulent flow
NASA Technical Reports Server (NTRS)
So, Ronald M. C.
1991-01-01
A near-wall two-equation model for compressible flows is proposed. The model is formulated by relaxing the assumption of dynamic field similarity between compressible and incompressible flows. A postulate is made to justify the extension of incompressible models to ammount for compressibility effects. This requires formulation the turbulent kinetic energy equation in a form similar to its incompressible counterpart. As a result, the compressible dissipation function has to be split into a solenoidal part, which is not sensitive to changes of compressibility indicators, and a dilatational part, which is directly affected by these changes. A model with an explicit dependence on the turbulent Mach number is proposed for the dilatational dissipation rate.
Joint image encryption and compression scheme based on IWT and SPIHT
NASA Astrophysics Data System (ADS)
Zhang, Miao; Tong, Xiaojun
2017-03-01
A joint lossless image encryption and compression scheme based on integer wavelet transform (IWT) and set partitioning in hierarchical trees (SPIHT) is proposed to achieve lossless image encryption and compression simultaneously. Making use of the properties of IWT and SPIHT, encryption and compression are combined. Moreover, the proposed secure set partitioning in hierarchical trees (SSPIHT) via the addition of encryption in the SPIHT coding process has no effect on compression performance. A hyper-chaotic system, nonlinear inverse operation, Secure Hash Algorithm-256(SHA-256), and plaintext-based keystream are all used to enhance the security. The test results indicate that the proposed methods have high security and good lossless compression performance.
Compression in Working Memory and Its Relationship with Fluid Intelligence
ERIC Educational Resources Information Center
Chekaf, Mustapha; Gauvrit, Nicolas; Guida, Alessandro; Mathy, Fabien
2018-01-01
Working memory has been shown to be strongly related to fluid intelligence; however, our goal is to shed further light on the process of information compression in working memory as a determining factor of fluid intelligence. Our main hypothesis was that compression in working memory is an excellent indicator for studying the relationship between…
Multichannel Compression: Effects of Reduced Spectral Contrast on Vowel Identification
ERIC Educational Resources Information Center
Bor, Stephanie; Souza, Pamela; Wright, Richard
2008-01-01
Purpose: To clarify if large numbers of wide dynamic range compression channels provide advantages for vowel identification and to measure its acoustic effects. Methods: Eight vowels produced by 12 talkers in the /hVd/ context were compressed using 1, 2, 4, 8, and 16 channels. Formant contrast indices (mean formant peak minus mean formant trough;…
NASA Astrophysics Data System (ADS)
Kim, Christopher Y.
1999-05-01
Endoscopic images p lay an important role in describing many gastrointestinal (GI) disorders. The field of radiology has been on the leading edge of creating, archiving and transmitting digital images. With the advent of digital videoendoscopy, endoscopists now have the ability to generate images for storage and transmission. X-rays can be compressed 30-40X without appreciable decline in quality. We reported results of a pilot study using JPEG compression of 24-bit color endoscopic images. For that study, the result indicated that adequate compression ratios vary according to the lesion and that images could be compressed to between 31- and 99-fold smaller than the original size without an appreciable decline in quality. The purpose of this study was to expand upon the methodology of the previous sty with an eye towards application for the WWW, a medium which would expand both clinical and educational purposes of color medical imags. The results indicate that endoscopists are able to tolerate very significant compression of endoscopic images without loss of clinical image quality. This finding suggests that even 1 MB color images can be compressed to well under 30KB, which is considered a maximal tolerable image size for downloading on the WWW.
The effect of JPEG compression on automated detection of microaneurysms in retinal images
NASA Astrophysics Data System (ADS)
Cree, M. J.; Jelinek, H. F.
2008-02-01
As JPEG compression at source is ubiquitous in retinal imaging, and the block artefacts introduced are known to be of similar size to microaneurysms (an important indicator of diabetic retinopathy) it is prudent to evaluate the effect of JPEG compression on automated detection of retinal pathology. Retinal images were acquired at high quality and then compressed to various lower qualities. An automated microaneurysm detector was run on the retinal images of various qualities of JPEG compression and the ability to predict the presence of diabetic retinopathy based on the detected presence of microaneurysms was evaluated with receiver operating characteristic (ROC) methodology. The negative effect of JPEG compression on automated detection was observed even at levels of compression sometimes used in retinal eye-screening programmes and these may have important clinical implications for deciding on acceptable levels of compression for a fully automated eye-screening programme.
Compression in Working Memory and Its Relationship With Fluid Intelligence.
Chekaf, Mustapha; Gauvrit, Nicolas; Guida, Alessandro; Mathy, Fabien
2018-06-01
Working memory has been shown to be strongly related to fluid intelligence; however, our goal is to shed further light on the process of information compression in working memory as a determining factor of fluid intelligence. Our main hypothesis was that compression in working memory is an excellent indicator for studying the relationship between working-memory capacity and fluid intelligence because both depend on the optimization of storage capacity. Compressibility of memoranda was estimated using an algorithmic complexity metric. The results showed that compressibility can be used to predict working-memory performance and that fluid intelligence is well predicted by the ability to compress information. We conclude that the ability to compress information in working memory is the reason why both manipulation and retention of information are linked to intelligence. This result offers a new concept of intelligence based on the idea that compression and intelligence are equivalent problems. Copyright © 2018 Cognitive Science Society, Inc.
Document image archive transfer from DOS to UNIX
NASA Technical Reports Server (NTRS)
Hauser, Susan E.; Gill, Michael J.; Thoma, George R.
1994-01-01
An R&D division of the National Library of Medicine has developed a prototype system for automated document image delivery as an adjunct to the labor-intensive manual interlibrary loan service of the library. The document image archive is implemented by a PC controlled bank of optical disk drives which use 12 inch WORM platters containing bitmapped images of over 200,000 pages of medical journals. Following three years of routine operation which resulted in serving patrons with articles both by mail and fax, an effort is underway to relocate the storage environment from the DOS-based system to a UNIX-based jukebox whose magneto-optical erasable 5 1/4 inch platters hold the images. This paper describes the deficiencies of the current storage system, the design issues of modifying several modules in the system, the alternatives proposed and the tradeoffs involved.
A software platform for the analysis of dermatology images
NASA Astrophysics Data System (ADS)
Vlassi, Maria; Mavraganis, Vlasios; Asvestas, Panteleimon
2017-11-01
The purpose of this paper is to present a software platform developed in Python programming environment that can be used for the processing and analysis of dermatology images. The platform provides the capability for reading a file that contains a dermatology image. The platform supports image formats such as Windows bitmaps, JPEG, JPEG2000, portable network graphics, TIFF. Furthermore, it provides suitable tools for selecting, either manually or automatically, a region of interest (ROI) on the image. The automated selection of a ROI includes filtering for smoothing the image and thresholding. The proposed software platform has a friendly and clear graphical user interface and could be a useful second-opinion tool to a dermatologist. Furthermore, it could be used to classify images including from other anatomical parts such as breast or lung, after proper re-training of the classification algorithms.
Lateral charge transport from heavy-ion tracks in integrated circuit chips
NASA Technical Reports Server (NTRS)
Zoutendyk, J. A.; Schwartz, H. R.; Nevill, L. R.
1988-01-01
A 256K DRAM has been used to study the lateral transport of charge (electron-hole pairs) induced by direct ionization from heavy-ion tracks in an IC. The qualitative charge transport has been simulated using a two-dimensional numerical code in cylindrical coordinates. The experimental bit-map data clearly show the manifestation of lateral charge transport in the creation of adjacent multiple-bit errors from a single heavy-ion track. The heavy-ion data further demonstrate the occurrence of multiple-bit errors from single ion tracks with sufficient stopping power. The qualitative numerical simulation results suggest that electric-field-funnel-aided (drift) collection accounts for single error generated by an ion passing through a charge-collecting junction, while multiple errors from a single ion track are due to lateral diffusion of ion-generated charge.
An object oriented fully 3D tomography visual toolkit.
Agostinelli, S; Paoli, G
2001-04-01
In this paper we present a modern object oriented component object model (COMM) C + + toolkit dedicated to fully 3D cone-beam tomography. The toolkit allows the display and visual manipulation of analytical phantoms, projection sets and volumetric data through a standard Windows graphical user interface. Data input/output is performed using proprietary file formats but import/export of industry standard file formats, including raw binary, Windows bitmap and AVI, ACR/NEMA DICOMM 3 and NCSA HDF is available. At the time of writing built-in implemented data manipulators include a basic phantom ray-tracer and a Matrox Genesis frame grabbing facility. A COMM plug-in interface is provided for user-defined custom backprojector algorithms: a simple Feldkamp ActiveX control, including source code, is provided as an example; our fast Feldkamp plug-in is also available.
Prechamber Compression-Ignition Engine Performance
NASA Technical Reports Server (NTRS)
Moore, Charles S; Collins, John H , Jr
1938-01-01
Single-cylinder compression-ignition engine tests were made to investigate the performance characteristics of prechamber type of cylinder head. Certain fundamental variables influencing engine performance -- clearance distribution, size, shape, and direction of the passage connecting the cylinder and prechamber, shape of prechamber, cylinder clearance, compression ratio, and boosting -- were independently tested. Results of motoring and of power tests, including several typical indicator cards, are presented.
Contributions on the Study of the Compressive Strength of the Light-Cured Composite Resins
Manolea, H.; Degeratu, Sonia; Deva, V.; Coles, Evantia; Draghici, Emma
2009-01-01
The mechanical properties of the light-cured composite resins are related to the material composition, but also vary according to the light-source characteristics used for polymerization. In this study we followed the compressive strength variation for a light-cured composite resin according to the time of exposure to the curing light. With that end in view,18 test pieces were made from a light-cured hybrid composite material (Filtek Z250). The test pieces where then submitted to a compressive force by a mechanical properties universal testing machine. Our results didn’t show an increase of the compressive strength according to the light-curing time increasing, than only in the light-curing time limit indicated by the manufacturer. A longer light-curing time may induce a shrinkage polymerization growth with the formation of internal tensions inside the material. The composite materials light-curing in short layers as long as there is indicated by the manufacturer seems to be a safer method to make the best from a resin qualities, then an exaggerated increase of the light-curing time. The light-curing is indicated to be done in the direction of the compressive forces. To confirm this supposition other mechanical tests are also necessary PMID:24778814
The tolerance of the femoral shaft in combined axial compression and bending loading.
Ivarsson, B Johan; Genovese, Daniel; Crandall, Jeff R; Bolton, James R; Untaroiu, Costin D; Bose, Dipan
2009-11-01
The likelihood of a front seat occupant sustaining a femoral shaft fracture in a frontal crash has traditionally been assessed by an injury criterion relying solely on the axial force in the femur. However, recently published analyses of real world data indicate that femoral shaft fracture occurs at axial loads levels below those found experimentally. One hypothesis attempting to explain this discrepancy suggests that femoral shaft fracture tends to occur as a result of combined axial compression and applied bending. The current study aims to evaluate this hypothesis by investigating how these two loading components interact. Femoral shafts harvested from human cadavers were loaded to failure in axial compression, sagittal plane bending, and combined axial compression and sagittal plane bending. All specimens subjected to bending and combined loading fractured midshaft, whereas the specimens loaded in axial compression demonstrated a variety of failure locations including midshaft and distal end. The interaction between the recorded levels of applied moment and axial compression force at fracture were evaluated using two different analysis methods: fitting of an analytical model to the experimental data and multiple regression analysis. The two analysis methods yielded very similar relationships between applied moment and axial compression force at midshaft fracture. The results indicate that posteroanterior bending reduces the tolerance of the femoral shaft to axial compression and that that this type of combined loading therefore may contribute to the high prevalence of femoral shaft fracture in frontal crashes.
Mohammed, Monzoorul Haque; Dutta, Anirban; Bose, Tungadri; Chadaram, Sudha; Mande, Sharmila S
2012-10-01
An unprecedented quantity of genome sequence data is currently being generated using next-generation sequencing platforms. This has necessitated the development of novel bioinformatics approaches and algorithms that not only facilitate a meaningful analysis of these data but also aid in efficient compression, storage, retrieval and transmission of huge volumes of the generated data. We present a novel compression algorithm (DELIMINATE) that can rapidly compress genomic sequence data in a loss-less fashion. Validation results indicate relatively higher compression efficiency of DELIMINATE when compared with popular general purpose compression algorithms, namely, gzip, bzip2 and lzma. Linux, Windows and Mac implementations (both 32 and 64-bit) of DELIMINATE are freely available for download at: http://metagenomics.atc.tcs.com/compression/DELIMINATE. sharmila@atc.tcs.com Supplementary data are available at Bioinformatics online.
The effect of hydraulic bed movement on the quality of chest compressions.
Park, Maeng Real; Lee, Dae Sup; In Kim, Yong; Ryu, Ji Ho; Cho, Young Mo; Kim, Hyung Bin; Yeom, Seok Ran; Min, Mun Ki
2017-08-01
The hydraulic height control systems of hospital beds provide convenience and shock absorption. However, movements in a hydraulic bed may reduce the effectiveness of chest compressions. This study investigated the effects of hydraulic bed movement on chest compressions. Twenty-eight participants were recruited for this study. All participants performed chest compressions for 2min on a manikin and three surfaces: the floor (Day 1), a firm plywood bed (Day 2), and a hydraulic bed (Day 3). We considered 28 participants of Day 1 as control and each 28 participants of Day 2 and Day 3 as study subjects. The compression rates, depths, and good compression ratios (>5-cm compressions/all compressions) were compared between the three surfaces. When we compared the three surfaces, we did not detect a significant difference in the speed of chest compressions (p=0.582). However, significantly lower values were observed on the hydraulic bed in terms of compression depth (p=0.001) and the good compression ratio (p=0.003) compared to floor compressions. When we compared the plywood and hydraulic beds, we did not detect significant differences in compression depth (p=0.351) and the good compression ratio (p=0.391). These results indicate that the movements in our hydraulic bed were associated with a non-statistically significant trend towards lower-quality chest compressions. Copyright © 2017 Elsevier Inc. All rights reserved.
Friction of Compression-ignition Engines
NASA Technical Reports Server (NTRS)
Moore, Charles S; Collins, John H , Jr
1936-01-01
The cost in mean effective pressure of generating air flow in the combustion chambers of single-cylinder compression-ignition engines was determined for the prechamber and the displaced-piston types of combustion chamber. For each type a wide range of air-flow quantities, speeds, and boost pressures was investigated. Supplementary tests were made to determine the effect of lubricating-oil temperature, cooling-water temperature, and compression ratio on the friction mean effective pressure of the single-cylinder test engine. Friction curves are included for two 9-cylinder, radial, compression-ignition aircraft engines. The results indicate that generating the optimum forced air flow increased the motoring losses approximately 5 pounds per square inch mean effective pressure regardless of chamber type or engine speed. With a given type of chamber, the rate of increase in friction mean effective pressure with engine speed is independent of the air-flow speed. The effect of boost pressure on the friction cannot be predicted because the friction was decreased, unchanged, or increased depending on the combustion-chamber type and design details. High compression ratio accounts for approximately 5 pounds per square inch mean effective pressure of the friction of these single-cylinder compression-ignition engines. The single-cylinder test engines used in this investigation had a much higher friction mean effective pressure than conventional aircraft engines or than the 9-cylinder, radial, compression-ignition engines tested so that performance should be compared on an indicated basis.
The mathematical theory of signal processing and compression-designs
NASA Astrophysics Data System (ADS)
Feria, Erlan H.
2006-05-01
The mathematical theory of signal processing, named processor coding, will be shown to inherently arise as the computational time dual of Shannon's mathematical theory of communication which is also known as source coding. Source coding is concerned with signal source memory space compression while processor coding deals with signal processor computational time compression. Their combination is named compression-designs and referred as Conde in short. A compelling and pedagogically appealing diagram will be discussed highlighting Conde's remarkable successful application to real-world knowledge-aided (KA) airborne moving target indicator (AMTI) radar.
Proton spectra diagnostics for shock-compression studies
NASA Astrophysics Data System (ADS)
Welch, D. R.; Harris, D. B.; Bennish, A. H.; Miley, G. H.
1984-12-01
The energy spectra of fusion products escaping long-pulse-length laser-imploded deuterium-tritium filled glass microballoons have been measured with a time-of-flight spectrometer. The D(d,p)T reaction proton energy spectra showed two distinct peaks, indicating two burn phases in the target. The first burn phase is attributed to a spherically converging shock, while the second is attributed to subsequent compression heating. The analysis of these spectra provides the first conclusive proof of significant compression yields in these targets, where approximately half of the yield occurs during the compression burn phase.
Zhou, Haibo; Shi, Jianmin; Zhang, Chao; Li, Pei
2018-02-28
Mechanical compression often induces degenerative changes of disc nucleus pulposus (NP) tissue. It has been indicated that N-cadherin (N-CDH)-mediated signaling helps to preserve the NP cell phenotype. However, N-CDH expression and the resulting NP-specific phenotype alteration under the static compression and dynamic compression remain unclear. To study the effects of static compression and dynamic compression on N-CDH expression and NP-specific phenotype in an in vitro disc organ culture. Porcine discs were organ cultured in a self-developed mechanically active bioreactor for 7 days and subjected to static or dynamic compression (0.4 MPa for 2 h once per day). The noncompressed discs were used as controls. Compared with the dynamic compression, static compression significantly down-regulated the expression of N-CDH and NP-specific markers (laminin, brachyury, and keratin 19); decreased the Alcian Blue staining intensity, glycosaminoglycan and hydroxyproline contents; and declined the matrix macromolecule (aggrecan and collagen II) expression. Compared with the dynamic compression, static compression causes N-CDH down-regulation, loss of NP-specific phenotype, and the resulting decrease in NP matrix synthesis. © 2018 The Author(s).
Lv, Peng; Wang, Yaru; Ji, Chenglong; Yuan, Jiajiao
2017-01-01
Ultra-compressible electrodes with high electrochemical performance, reversible compressibility and extreme durability are in high demand in compression-tolerant energy storage devices. Herein, an ultra-compressible ternary composite was synthesized by successively electrodepositing poly(3,4-ethylenedioxythiophene) (PEDOT) and MnO2 into the superelastic graphene aerogel (SEGA). In SEGA/PEDOT/MnO2 ternary composite, SEGA provides the compressible backbone and conductive network; MnO2 is mainly responsible for pseudo reactions; the middle PEDOT not only reduces the interface resistance between MnO2 and graphene, but also further reinforces the strength of graphene cellar walls. The synergistic effect of the three components in the ternary composite electrode leads to high electrochemical performances and good compression-tolerant ability. The gravimetric capacitance of the compressible ternary composite electrodes reaches 343 F g−1 and can retain 97% even at 95% compressive strain. And a volumetric capacitance of 147.4 F cm−3 is achieved, which is much higher than that of other graphene-based compressible electrodes. This value of volumetric capacitance can be preserved by 80% after 3500 charge/discharge cycles under various compression strains, indicating an extreme durability.
Stress relaxation in quasi-two-dimensional self-assembled nanoparticle monolayers
NASA Astrophysics Data System (ADS)
Boucheron, Leandra S.; Stanley, Jacob T.; Dai, Yeling; You, Siheng Sean; Parzyck, Christopher T.; Narayanan, Suresh; Sandy, Alec R.; Jiang, Zhang; Meron, Mati; Lin, Binhua; Shpyrko, Oleg G.
2018-05-01
We experimentally probed the stress relaxation of a monolayer of iron oxide nanoparticles at the water-air interface. Upon drop-casting onto a water surface, the nanoparticles self-assembled into islands of two-dimensional hexagonally close packed crystalline domains surrounded by large voids. When compressed laterally, the voids gradually disappeared as the surface pressure increased. After the compression was stopped, the surface pressure (as measured by a Wilhelmy plate) evolved as a function of the film aging time with three distinct timescales. These aging dynamics were intrinsic to the stressed state built up during the non-equilibrium compression of the film. Utilizing x-ray photon correlation spectroscopy, we measured the characteristic relaxation time (τ ) of in-plane nanoparticle motion as a function of the aging time through both second-order and two-time autocorrelation analysis. Compressed and stretched exponential fitting of the intermediate scattering function yielded exponents (β ) indicating different relaxation mechanisms of the films under different compression stresses. For a monolayer compressed to a lower surface pressure (between 20 mN/m and 30 mN/m), the relaxation time (τ ) decreased continuously as a function of the aging time, as did the fitted exponent, which transitioned from being compressed (>1 ) to stretched (<1 ), indicating that the monolayer underwent a stress release through crystalline domain reorganization. However, for a monolayer compressed to a higher surface pressure (around 40 mN/m), the relaxation time increased continuously and the compressed exponent varied very little from a value of 1.6, suggesting that the system may have been highly stressed and jammed. Despite the interesting stress relaxation signatures seen in these samples, the structural ordering of the monolayer remained the same over the sample lifetime, as revealed by grazing incidence x-ray diffraction.
Talikowska, Milena; Tohira, Hideo; Finn, Judith
2015-11-01
To conduct a systematic review and meta-analysis to determine whether cardiopulmonary resuscitation (CPR) quality, as indicated by parameters such as chest compression depth, compression rate and compression fraction, is associated with patient survival from cardiac arrest. Five databases were searched (MEDLINE, Embase, CINAHL, Scopus and Cochrane) as well as the grey literature (MedNar). To satisfy inclusion criteria, studies had to document human cases of in- or out-of hospital cardiac arrest where CPR quality had been recorded using an automated device and linked to patient survival. Where indicated (I(2)<75%), meta-analysis was undertaken to examine the relationship between individual CPR quality parameters and either survival to hospital discharge (STHD) or return of spontaneous circulation (ROSC). Database searching yielded 8,842 unique citations, resulting in the inclusion of 22 relevant articles. Thirteen were included in the meta-analysis. Chest compression depth was significantly associated with STHD (mean difference (MD) between survivors and non-survivors 2.59 mm, 95% CI: 0.71, 4.47); and with ROSC (MD 0.99 mm, 95% CI: 0.04, 1.93). Within the range of approximately 100-120 compressions per minute (cpm), compression rate was significantly associated with STHD; survivors demonstrated a lower mean compression rate than non-survivors (MD -1.17 cpm, 95% CI: -2.21, -0.14). Compression fraction could not be examined by meta-analysis due to high heterogeneity, however a higher fraction appeared to be associated with survival in cases with a shockable initial rhythm. Chest compression depth and rate were associated with survival outcomes. More studies with consistent reporting of data are required for other quality parameters. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Effect of compressibility on the hypervelocity penetration
NASA Astrophysics Data System (ADS)
Song, W. J.; Chen, X. W.; Chen, P.
2018-02-01
We further consider the effect of rod strength by employing the compressible penetration model to study the effect of compressibility on hypervelocity penetration. Meanwhile, we define different instances of penetration efficiency in various modified models and compare these penetration efficiencies to identify the effects of different factors in the compressible model. To systematically discuss the effect of compressibility in different metallic rod-target combinations, we construct three cases, i.e., the penetrations by the more compressible rod into the less compressible target, rod into the analogously compressible target, and the less compressible rod into the more compressible target. The effects of volumetric strain, internal energy, and strength on the penetration efficiency are analyzed simultaneously. It indicates that the compressibility of the rod and target increases the pressure at the rod/target interface. The more compressible rod/target has larger volumetric strain and higher internal energy. Both the larger volumetric strain and higher strength enhance the penetration or anti-penetration ability. On the other hand, the higher internal energy weakens the penetration or anti-penetration ability. The two trends conflict, but the volumetric strain dominates in the variation of the penetration efficiency, which would not approach the hydrodynamic limit if the rod and target are not analogously compressible. However, if the compressibility of the rod and target is analogous, it has little effect on the penetration efficiency.
Environmental effects on the compressive properties - Thermosetting vs. thermoplastic composites
NASA Technical Reports Server (NTRS)
Haque, A.; Jeelani, S.
1992-01-01
The influence of moisture and temperature on the compressive properties of graphite/epoxy and APC-2 materials systems was investigated to assess the viability of using APC-2 instead of graphite/epoxy. Data obtained indicate that the moisture absorption rate of T-300/epoxy is higher than that of APC-2. Thick plate with smaller surface area absorbs less moisture than thin plate with larger surface area. The compressive strength and modulus of APC-2 are higher than those of T-300/epoxy composite, and APC-2 sustains higher compressive strength in the presence of moisture. The compressive strength and modulus decrease with the increase of temperature in the range of 23-100 C. The compression failure was in the form of delamination, interlaminar shear, and end brooming.
MHD simulation of plasma compression experiments
NASA Astrophysics Data System (ADS)
Reynolds, Meritt; Barsky, Sandra; de Vietien, Peter
2017-10-01
General Fusion (GF) is working to build a magnetized target fusion (MTF) power plant based on compression of magnetically-confined plasma by liquid metal. GF is testing this compression concept by collapsing solid aluminum liners onto plasmas formed by coaxial helicity injection in a series of experiments called PCS (Plasma Compression, Small). We simulate the PCS experiments using the finite-volume MHD code VAC. The single-fluid plasma model includes temperature-dependent resistivity and anisotropic heat transport. The time-dependent curvilinear mesh for MHD simulation is derived from LS-DYNA simulations of actual field tests of liner implosion. We will discuss how 3D simulations reproduced instability observed in the PCS13 experiment and correctly predicted stabilization of PCS14 by ramping the shaft current during compression. We will also present a comparison of simulated Mirnov and x-ray diagnostics with experimental measurements indicating that PCS14 compressed well to a linear compression ratio of 2.5:1.
Pant, Jeevan K; Krishnan, Sridhar
2016-07-01
A new signal reconstruction algorithm for compressive sensing based on the minimization of a pseudonorm which promotes block-sparse structure on the first-order difference of the signal is proposed. Involved optimization is carried out by using a sequential version of Fletcher-Reeves' conjugate-gradient algorithm, and the line search is based on Banach's fixed-point theorem. The algorithm is suitable for the reconstruction of foot gait signals which admit block-sparse structure on the first-order difference. An additional algorithm for the estimation of stride-interval, swing-interval, and stance-interval time series from the reconstructed foot gait signals is also proposed. This algorithm is based on finding zero crossing indices of the foot gait signal and using the resulting indices for the computation of time series. Extensive simulation results demonstrate that the proposed signal reconstruction algorithm yields improved signal-to-noise ratio and requires significantly reduced computational effort relative to several competing algorithms over a wide range of compression ratio. For a compression ratio in the range from 88% to 94%, the proposed algorithm is found to offer improved accuracy for the estimation of clinically relevant time-series parameters, namely, the mean value, variance, and spectral index of stride-interval, stance-interval, and swing-interval time series, relative to its nearest competitor algorithm. The improvement in performance for compression ratio as high as 94% indicates that the proposed algorithms would be useful for designing compressive sensing-based systems for long-term telemonitoring of human gait signals.
Parallel In Situ Indexing for Data-intensive Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jinoh; Abbasi, Hasan; Chacon, Luis
2011-09-09
As computing power increases exponentially, vast amount of data is created by many scientific re- search activities. However, the bandwidth for storing the data to disks and reading the data from disks has been improving at a much slower pace. These two trends produce an ever-widening data access gap. Our work brings together two distinct technologies to address this data access issue: indexing and in situ processing. From decades of database research literature, we know that indexing is an effective way to address the data access issue, particularly for accessing relatively small fraction of data records. As data sets increasemore » in sizes, more and more analysts need to use selective data access, which makes indexing an even more important for improving data access. The challenge is that most implementations of in- dexing technology are embedded in large database management systems (DBMS), but most scientific datasets are not managed by any DBMS. In this work, we choose to include indexes with the scientific data instead of requiring the data to be loaded into a DBMS. We use compressed bitmap indexes from the FastBit software which are known to be highly effective for query-intensive workloads common to scientific data analysis. To use the indexes, we need to build them first. The index building procedure needs to access the whole data set and may also require a significant amount of compute time. In this work, we adapt the in situ processing technology to generate the indexes, thus removing the need of read- ing data from disks and to build indexes in parallel. The in situ data processing system used is ADIOS, a middleware for high-performance I/O. Our experimental results show that the indexes can improve the data access time up to 200 times depending on the fraction of data selected, and using in situ data processing system can effectively reduce the time needed to create the indexes, up to 10 times with our in situ technique when using identical parallel settings.« less
ROOT: A C++ framework for petabyte data storage, statistical analysis and visualization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antcheva, I.; /CERN; Ballintijn, M.
2009-01-01
ROOT is an object-oriented C++ framework conceived in the high-energy physics (HEP) community, designed for storing and analyzing petabytes of data in an efficient way. Any instance of a C++ class can be stored into a ROOT file in a machine-independent compressed binary format. In ROOT the TTree object container is optimized for statistical data analysis over very large data sets by using vertical data storage techniques. These containers can span a large number of files on local disks, the web or a number of different shared file systems. In order to analyze this data, the user can chose outmore » of a wide set of mathematical and statistical functions, including linear algebra classes, numerical algorithms such as integration and minimization, and various methods for performing regression analysis (fitting). In particular, the RooFit package allows the user to perform complex data modeling and fitting while the RooStats library provides abstractions and implementations for advanced statistical tools. Multivariate classification methods based on machine learning techniques are available via the TMVA package. A central piece in these analysis tools are the histogram classes which provide binning of one- and multi-dimensional data. Results can be saved in high-quality graphical formats like Postscript and PDF or in bitmap formats like JPG or GIF. The result can also be stored into ROOT macros that allow a full recreation and rework of the graphics. Users typically create their analysis macros step by step, making use of the interactive C++ interpreter CINT, while running over small data samples. Once the development is finished, they can run these macros at full compiled speed over large data sets, using on-the-fly compilation, or by creating a stand-alone batch program. Finally, if processing farms are available, the user can reduce the execution time of intrinsically parallel tasks - e.g. data mining in HEP - by using PROOF, which will take care of optimally distributing the work over the available resources in a transparent way.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-10-01
Huffman codes, comma-free codes, and block codes with shift indicators are important candidate-message compression codes for improving the efficiency of communications systems. This study was undertaken to determine if these codes could be used to increase the thruput of the fixed very-low-frequency (FVLF) communication system. This applications involves the use of compression codes in a channel with errors.
NASA Technical Reports Server (NTRS)
Barrie, Alexander C.; Yeh, Penshu; Dorelli, John C.; Clark, George B.; Paterson, William R.; Adrian, Mark L.; Holland, Matthew P.; Lobell, James V.; Simpson, David G.; Pollock, Craig J.;
2015-01-01
Plasma measurements in space are becoming increasingly faster, higher resolution, and distributed over multiple instruments. As raw data generation rates can exceed available data transfer bandwidth, data compression is becoming a critical design component. Data compression has been a staple of imaging instruments for years, but only recently have plasma measurement designers become interested in high performance data compression. Missions will often use a simple lossless compression technique yielding compression ratios of approximately 2:1, however future missions may require compression ratios upwards of 10:1. This study aims to explore how a Discrete Wavelet Transform combined with a Bit Plane Encoder (DWT/BPE), implemented via a CCSDS standard, can be used effectively to compress count information common to plasma measurements to high compression ratios while maintaining little or no compression error. The compression ASIC used for the Fast Plasma Investigation (FPI) on board the Magnetospheric Multiscale mission (MMS) is used for this study. Plasma count data from multiple sources is examined: resampled data from previous missions, randomly generated data from distribution functions, and simulations of expected regimes. These are run through the compression routines with various parameters to yield the greatest possible compression ratio while maintaining little or no error, the latter indicates that fully lossless compression is obtained. Finally, recommendations are made for future missions as to what can be achieved when compressing plasma count data and how best to do so.
Effect of Impact Compression on the Age-Hardening of Rapidly Solidified Al-Zn-Mg Base Alloys
NASA Astrophysics Data System (ADS)
Horikawa, Keitaro; Kobayashi, Hidetoshi
Effect of impact compression on the age-hardening behavior and the mechanical properties of Mesoalite aluminum alloy was examined by means of the high-velocity plane collision between a projectile and Mesoalite by using a single powder gun. By imposing the impact compression to the Meso10 and Meso20 alloys in the state of quenching after the solution heat treatment, the following age-hardening at 110 °C was highly increased, comparing with the Mesoalite without the impact compression. XRD results revealed that high plastic strain was introduced on the specimen inside after the impact compression. Compression test results also clarified that both Meso10 and Meso20 alloy specimens imposed the impact compressive stresses more than 5 GPa after the peak-aging at 110°C showed higher yield stresses, comparing with the alloys without the impact compression. It was also shown that the Meso10 and Meso20 specimens after the solution heat treatment, followed by the high-velocity impact compression (12 GPa) and the peak-aging treatment indicated the highest compressive yield stresses such as 994 GPa in Meso10 and 1091 GPa in Meso20.
Koski, Antti; Tossavainen, Timo; Juhola, Martti
2004-01-01
Electrocardiogram (ECG) signals are the most prominent biomedical signal type used in clinical medicine. Their compression is important and widely researched in the medical informatics community. In the previous literature compression efficacy has been investigated only in the context of how much known or developed methods reduced the storage required by compressed forms of original ECG signals. Sometimes statistical signal evaluations based on, for example, root mean square error were studied. In previous research we developed a refined method for signal compression and tested it jointly with several known techniques for other biomedical signals. Our method of so-called successive approximation quantization used with wavelets was one of the most successful in those tests. In this paper, we studied to what extent these lossy compression methods altered values of medical parameters (medical information) computed from signals. Since the methods are lossy, some information is lost due to the compression when a high enough compression ratio is reached. We found that ECG signals sampled at 400 Hz could be compressed to one fourth of their original storage space, but the values of their medical parameters changed less than 5% due to compression, which indicates reliable results.
Quan, Xin; Guo, Kai; Wang, Yuqing; Huang, Liangliang; Chen, Beiyu; Ye, Zhengxu; Luo, Zhuojing
2014-01-01
In a primary spinal cord injury, the amount of mechanical compression insult that the neurons experience is one of the most critical factors in determining the extent of the injury. The ultrastructural changes that neurons undergo when subjected to mechanical compression are largely unknown. In the present study, using a compression-driven instrument that can simulate mechanical compression insult, we applied mechanical compression stimulation at 0.3, 0.5, and 0.7 MPa to dorsal root ganglion (DRG) neurons for 10 min. Combined with atomic force microscopy, we investigated nanoscale changes in the membrane-skeleton, cytoskeleton alterations, and apoptosis induced by mechanical compression injury. The results indicated that mechanical compression injury leads to rearrangement of the membrane-skeleton compared with the control group. In addition, mechanical compression stimulation induced apoptosis and necrosis and also changed the distribution of the cytoskeleton in DRG neurons. Thus, the membrane-skeleton may play an important role in the response to mechanical insults in DRG neurons. Moreover, sudden insults caused by high mechanical compression, which is most likely conducted by the membrane-skeleton, may induce necrosis, apoptosis, and cytoskeletal alterations.
Cantwell, George; Riesenhuber, Maximilian; Roeder, Jessica L; Ashby, F Gregory
2017-05-01
The field of computational cognitive neuroscience (CCN) builds and tests neurobiologically detailed computational models that account for both behavioral and neuroscience data. This article leverages a key advantage of CCN-namely, that it should be possible to interface different CCN models in a plug-and-play fashion-to produce a new and biologically detailed model of perceptual category learning. The new model was created from two existing CCN models: the HMAX model of visual object processing and the COVIS model of category learning. Using bitmap images as inputs and by adjusting only a couple of learning-rate parameters, the new HMAX/COVIS model provides impressively good fits to human category-learning data from two qualitatively different experiments that used different types of category structures and different types of visual stimuli. Overall, the model provides a comprehensive neural and behavioral account of basal ganglia-mediated learning. Copyright © 2017 Elsevier Ltd. All rights reserved.
A Pixel Correlation Technique for Smaller Telescopes to Measure Doubles
NASA Astrophysics Data System (ADS)
Wiley, E. O.
2013-04-01
Pixel correlation uses the same reduction techniques as speckle imaging but relies on autocorrelation among captured pixel hits rather than true speckles. A video camera operating at speeds (8-66 milliseconds) similar to lucky imaging to capture 400-1,000 video frames. The AVI files are converted to bitmap images and analyzed using the interferometric algorithms in REDUC using all frames. This results in a series of corellograms from which theta and rho can be measured. Results using a 20 cm (8") Dall-Kirkham working at f22.5 are presented for doubles with separations between 1" to 5.7" under average seeing conditions. I conclude that this form of visualizing and analyzing visual double stars is a viable alternative to lucky imaging that can be employed by telescopes that are too small in aperture to capture a sufficient number of speckles for true speckle interferometry.
Direct counterfactual communication via quantum Zeno effect
NASA Astrophysics Data System (ADS)
Cao, Yuan; Li, Yu-Huai; Cao, Zhu; Yin, Juan; Chen, Yu-Ao; Yin, Hua-Lei; Chen, Teng-Yun; Ma, Xiongfeng; Peng, Cheng-Zhi; Pan, Jian-Wei
2017-05-01
Intuition from our everyday lives gives rise to the belief that information exchanged between remote parties is carried by physical particles. Surprisingly, in a recent theoretical study [Salih H, Li ZH, Al-Amri M, Zubairy MS (2013) Phys Rev Lett 110:170502], quantum mechanics was found to allow for communication, even without the actual transmission of physical particles. From the viewpoint of communication, this mystery stems from a (nonintuitive) fundamental concept in quantum mechanics—wave-particle duality. All particles can be described fully by wave functions. To determine whether light appears in a channel, one refers to the amplitude of its wave function. However, in counterfactual communication, information is carried by the phase part of the wave function. Using a single-photon source, we experimentally demonstrate the counterfactual communication and successfully transfer a monochrome bitmap from one location to another by using a nested version of the quantum Zeno effect.
Direct counterfactual communication via quantum Zeno effect.
Cao, Yuan; Li, Yu-Huai; Cao, Zhu; Yin, Juan; Chen, Yu-Ao; Yin, Hua-Lei; Chen, Teng-Yun; Ma, Xiongfeng; Peng, Cheng-Zhi; Pan, Jian-Wei
2017-05-09
Intuition from our everyday lives gives rise to the belief that information exchanged between remote parties is carried by physical particles. Surprisingly, in a recent theoretical study [Salih H, Li ZH, Al-Amri M, Zubairy MS (2013) Phys Rev Lett 110:170502], quantum mechanics was found to allow for communication, even without the actual transmission of physical particles. From the viewpoint of communication, this mystery stems from a (nonintuitive) fundamental concept in quantum mechanics-wave-particle duality. All particles can be described fully by wave functions. To determine whether light appears in a channel, one refers to the amplitude of its wave function. However, in counterfactual communication, information is carried by the phase part of the wave function. Using a single-photon source, we experimentally demonstrate the counterfactual communication and successfully transfer a monochrome bitmap from one location to another by using a nested version of the quantum Zeno effect.
[Computerized monitoring system in the operating center with UNIX and X-window].
Tanaka, Y; Hashimoto, S; Chihara, E; Kinoshita, T; Hirose, M; Nakagawa, M; Murakami, T
1992-01-01
We previously reported the fully automated data logging system in the operating center. Presently, we revised the system using a highly integrated operating system, UNIX instead of OS/9. With this multi-task and multi-window (X-window) system, we could monitor all 12 rooms in the operating center at a time. The system in the operating center consists of 2 computers, SONY NEWS1450 (UNIX workstation) and Sord M223 (CP/M, data logger). On the bitmapped display of the workstation, using X-window, the data of all the operating rooms can be visualized. Furthermore, 2 other minicomputers (Fujitsu A50 in the conference room, and A60 in the ICU) and a workstation (Sun3-80 in the ICU) were connected with ethernet. With the remote login function (NFS), we could easily obtain the data during the operation from outside the operating center. This system works automatically and needs no routine maintenance.
Client-side Medical Image Colorization in a Collaborative Environment.
Virag, Ioan; Stoicu-Tivadar, Lăcrămioara; Crişan-Vida, Mihaela
2015-01-01
The paper presents an application related to collaborative medicine using a browser based medical visualization system with focus on the medical image colorization process and the underlying open source web development technologies involved. Browser based systems allow physicians to share medical data with their remotely located counterparts or medical students, assisting them during patient diagnosis, treatment monitoring, surgery planning or for educational purposes. This approach brings forth the advantage of ubiquity. The system can be accessed from a any device, in order to process the images, assuring the independence towards having a specific proprietary operating system. The current work starts with processing of DICOM (Digital Imaging and Communications in Medicine) files and ends with the rendering of the resulting bitmap images on a HTML5 (fifth revision of the HyperText Markup Language) canvas element. The application improves the image visualization emphasizing different tissue densities.
ConfocalGN: A minimalistic confocal image generator
NASA Astrophysics Data System (ADS)
Dmitrieff, Serge; Nédélec, François
Validating image analysis pipelines and training machine-learning segmentation algorithms require images with known features. Synthetic images can be used for this purpose, with the advantage that large reference sets can be produced easily. It is however essential to obtain images that are as realistic as possible in terms of noise and resolution, which is challenging in the field of microscopy. We describe ConfocalGN, a user-friendly software that can generate synthetic microscopy stacks from a ground truth (i.e. the observed object) specified as a 3D bitmap or a list of fluorophore coordinates. This software can analyze a real microscope image stack to set the noise parameters and directly generate new images of the object with noise characteristics similar to that of the sample image. With a minimal input from the user and a modular architecture, ConfocalGN is easily integrated with existing image analysis solutions.
Direct counterfactual communication via quantum Zeno effect
Cao, Yuan; Li, Yu-Huai; Cao, Zhu; Yin, Juan; Chen, Yu-Ao; Yin, Hua-Lei; Chen, Teng-Yun; Ma, Xiongfeng; Peng, Cheng-Zhi; Pan, Jian-Wei
2017-01-01
Intuition from our everyday lives gives rise to the belief that information exchanged between remote parties is carried by physical particles. Surprisingly, in a recent theoretical study [Salih H, Li ZH, Al-Amri M, Zubairy MS (2013) Phys Rev Lett 110:170502], quantum mechanics was found to allow for communication, even without the actual transmission of physical particles. From the viewpoint of communication, this mystery stems from a (nonintuitive) fundamental concept in quantum mechanics—wave-particle duality. All particles can be described fully by wave functions. To determine whether light appears in a channel, one refers to the amplitude of its wave function. However, in counterfactual communication, information is carried by the phase part of the wave function. Using a single-photon source, we experimentally demonstrate the counterfactual communication and successfully transfer a monochrome bitmap from one location to another by using a nested version of the quantum Zeno effect. PMID:28442568
Environmental effects on the compressive properties - Thermosetting vs. thermoplastic composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haque, A.; Jeelani, S.
1992-02-01
The influence of moisture and temperature on the compressive properties of graphite/epoxy and APC-2 materials systems was investigated to assess the viability of using APC-2 instead of graphite/epoxy. Data obtained indicate that the moisture absorption rate of T-300/epoxy is higher than that of APC-2. Thick plate with smaller surface area absorbs less moisture than thin plate with larger surface area. The compressive strength and modulus of APC-2 are higher than those of T-300/epoxy composite, and APC-2 sustains higher compressive strength in the presence of moisture. The compressive strength and modulus decrease with the increase of temperature in the range ofmore » 23-100 C. The compression failure was in the form of delamination, interlaminar shear, and end brooming. 9 refs.« less
Structural efficiencies of various aluminum, titanium, and steel alloys at elevated temperatures
NASA Technical Reports Server (NTRS)
Heimerl, George J; Hughes, Philip J
1953-01-01
Efficient temperature ranges are indicated for two high-strength aluminum alloys, two titanium alloys, and three steels for some short-time compression-loading applications at elevated temperatures. Only the effects of constant temperatures and short exposure to temperature are considered, and creep is assumed not to be a factor. The structural efficiency analysis is based upon preliminary results of short-time elevated-temperature compressive stress-strain tests of the materials. The analysis covers strength under uniaxial compression, elastic stiffness, column buckling, and the buckling of long plates in compression or in shear.
NASA Technical Reports Server (NTRS)
Guynn, E. Gail; Bradley, Walter L.
1989-01-01
An understanding was developed of the factors that determine the semi-circular edge-notched compressive strength and the associated failure mode(s) were identified of thermoplastic composite laminates with multidirectional stacking sequences. The experimental observations and the detailed literature review suggest at least four factors that affected the determination of the strain levels at which fiber microbuckling initiates and thus, partially control the composite's compression strength. The dependent variables studied are the compressive strength of a reduced gage section compression specimen and the compression strength of a compression specimen with two semi-circular edge notches (no opposite free edges) centered along the gage section. In this research, specimens containing two semi-circular edge notches (no opposite free edges) were loaded in compression at a relatively slow rate to provide more stable development of fiber microbuckling damage. The results indicate that the local constraints (free surfaces, supporting ply orientation, and resin-rich regions) significantly affect the strain level for the initiation of in-plane fiber microbuckling. Preliminary results at an elevated temperature, 77 C, showed the shear stress yield strength of the resin was reduced and consequently, the resistance to fiber microbuckling was also reduced. The finite element analysis of the perfectly straight fiber problem indicates that the free surface effect causes a 10 percent reduction in the critical buckling strain. However, the experimentally measured reduction for fibers with an initial fiber curvature, was 35 percent.
Fast or slow? Compressions (or not) in number-to-line mappings.
Candia, Victor; Deprez, Paola; Wernery, Jannis; Núñez, Rafael
2015-01-01
We investigated, in a university student population, spontaneous (non-speeded) fast and slow number-to-line mapping responses using non-symbolic (dots) and symbolic (words) stimuli. Seeking for less conventionalized responses, we used anchors 0-130, rather than the standard 0-100. Slow responses to both types of stimuli only produced linear mappings with no evidence of non-linear compression. In contrast, fast responses revealed distinct patterns of non-linear compression for dots and words. A predicted logarithmic compression was observed in fast responses to dots in the 0-130 range, but not in the reduced 0-100 range, indicating compression in proximity of the upper anchor 130, not the standard 100. Moreover, fast responses to words revealed an unexpected significant negative compression in the reduced 0-100 range, but not in the 0-130 range, indicating compression in proximity to the lower anchor 0. Results show that fast responses help revealing the fundamentally distinct nature of symbolic and non-symbolic quantity representation. Whole number words, being intrinsically mediated by cultural phenomena such as language and education, emphasize the invariance of magnitude between them—essential for linear mappings, and therefore, unlike non-symbolic (psychophysical) stimuli, yield spatial mappings that don't seem to be influenced by the Weber-Fechner law of psychophysics. However, high levels of education (when combined with an absence of standard upper anchors) may lead fast responses to overestimate magnitude invariance on the lower end of word numerals.
The Unsupervised Acquisition of a Lexicon from Continuous Speech.
1995-11-01
Com- munication, 2(1):57{89, 1982. [42] J. Ziv and A. Lempel . Compression of individual sequences by variable rate coding. IEEE Trans- actions on...parameters of the compression algorithm , in a never-ending attempt to identify and eliminate the predictable. They lead us to a class of grammars in...the rst 10 sentences of the test set, previously unseen by the algorithm . Vertical bars indicate word boundaries. 7.1 Text Compression and Language
Estimating JPEG2000 compression for image forensics using Benford's Law
NASA Astrophysics Data System (ADS)
Qadir, Ghulam; Zhao, Xi; Ho, Anthony T. S.
2010-05-01
With the tremendous growth and usage of digital images nowadays, the integrity and authenticity of digital content is becoming increasingly important, and a growing concern to many government and commercial sectors. Image Forensics, based on a passive statistical analysis of the image data only, is an alternative approach to the active embedding of data associated with Digital Watermarking. Benford's Law was first introduced to analyse the probability distribution of the 1st digit (1-9) numbers of natural data, and has since been applied to Accounting Forensics for detecting fraudulent income tax returns [9]. More recently, Benford's Law has been further applied to image processing and image forensics. For example, Fu et al. [5] proposed a Generalised Benford's Law technique for estimating the Quality Factor (QF) of JPEG compressed images. In our previous work, we proposed a framework incorporating the Generalised Benford's Law to accurately detect unknown JPEG compression rates of watermarked images in semi-fragile watermarking schemes. JPEG2000 (a relatively new image compression standard) offers higher compression rates and better image quality as compared to JPEG compression. In this paper, we propose the novel use of Benford's Law for estimating JPEG2000 compression for image forensics applications. By analysing the DWT coefficients and JPEG2000 compression on 1338 test images, the initial results indicate that the 1st digit probability of DWT coefficients follow the Benford's Law. The unknown JPEG2000 compression rates of the image can also be derived, and proved with the help of a divergence factor, which shows the deviation between the probabilities and Benford's Law. Based on 1338 test images, the mean divergence for DWT coefficients is approximately 0.0016, which is lower than DCT coefficients at 0.0034. However, the mean divergence for JPEG2000 images compression rate at 0.1 is 0.0108, which is much higher than uncompressed DWT coefficients. This result clearly indicates a presence of compression in the image. Moreover, we compare the results of 1st digit probability and divergence among JPEG2000 compression rates at 0.1, 0.3, 0.5 and 0.9. The initial results show that the expected difference among them could be used for further analysis to estimate the unknown JPEG2000 compression rates.
Stålman, Anders; Berglund, Lukas; Dungnerc, Elisabeth; Arner, Peter; Felländer-Tsai, Li
2011-11-02
Local external cooling of the surgical field after joint surgery is intended to enhance recovery and to facilitate the use of outpatient surgery by reducing pain and improving mobility. We hypothesized that the effects of postoperative cooling and compression after knee arthroscopy would be reflected in changes in the concentrations of metabolic and inflammatory markers in the synovial membrane. Forty otherwise healthy patients who were to undergo knee arthroscopy were included in the study, and half were randomized to receive postoperative cooling and compression. Microdialysis of the synovial membrane was performed postoperatively, and the concentrations of prostaglandin E₂ (PGE₂), glucose, lactate, glycerol, and glutamate as well as the ethanol exchange ratio (which indicates blood flow) were measured. The temperature of the knee was monitored, and postoperative pain was assessed by the patient with use of a visual analog scale, a numeric rating scale, and the need for rescue medication. Application of the cooling and compression device after knee arthroscopy significantly lowered the temperature in the operatively treated knee (as measured on the skin, within the joint capsule, and intra-articularly). The cooling and compression appeared to decrease inflammation, as indicated by a temperature-sensitive decrease in the PGE₂ concentration. The hypothermia also decreased the metabolic rate of the synovial tissue and thus decreased energy requirements, as shown by the stability of the lactate concentration over time despite the decreased blood flow that was indicated by the increasing ethanol exchange ratio. No effect of the compression and cooling on postoperative pain was detected. Local cryotherapy and compression after knee arthroscopy significantly lowered the temperature in the knee postoperatively, and the synovial PGE₂ concentration was correlated with the temperature. Since PGE₂ is a marker of pain and inflammation, the postoperative local cooling and compression appeared to have a positive anti-inflammatory effect.
Rabe, Eberhard; Partsch, Hugo; Hafner, Juerg; Lattimer, Christopher; Mosti, Giovanni; Neumann, Martino; Urbanek, Tomasz; Huebner, Monika; Gaillard, Sylvain; Carpentier, Patrick
2017-01-01
Objective Medical compression stockings are a standard, non-invasive treatment option for all venous and lymphatic diseases. The aim of this consensus document is to provide up-to-date recommendations and evidence grading on the indications for treatment, based on evidence accumulated during the past decade, under the auspices of the International Compression Club. Methods A systematic literature review was conducted and, using PRISMA guidelines, 51 relevant publications were selected for an evidence-based analysis of an initial 2407 unrefined results. Key search terms included: ‘acute', CEAP', ‘chronic', ‘compression stockings', ‘compression therapy', ‘lymph', ‘lymphatic disease', ‘vein' and ‘venous disease'. Evidence extracted from the publications was graded initially by the panel members individually and then refined at the consensus meeting. Results Based on the current evidence, 25 recommendations for chronic and acute venous disorders were made. Of these, 24 recommendations were graded as: Grade 1A (n = 4), 1B (n = 13), 1C (n = 2), 2B (n = 4) and 2C (n = 1). The panel members found moderately robust evidence for medical compression stockings in patients with venous symptoms and prevention and treatment of venous oedema. Robust evidence was found for prevention and treatment of venous leg ulcers. Recommendations for stocking-use after great saphenous vein interventions were limited to the first post-interventional week. No randomised clinical trials are available that document a prophylactic effect of medical compression stockings on the progression of chronic venous disease (CVD). In acute deep vein thrombosis, immediate compression is recommended to reduce pain and swelling. Despite conflicting results from a recent study to prevent post-thrombotic syndrome, medical compression stockings are still recommended. In thromboprophylaxis, the role of stockings in addition to anticoagulation is limited. For the maintenance phase of lymphoedema management, compression stockings are the most important intervention. Conclusion The beneficial value of applying compression stockings in the treatment of venous and lymphatic disease is supported by this document, with 19/25 recommendations rated as Grade 1 evidence. For recommendations rated with Grade 2 level of evidence, further studies are needed. PMID:28549402
Yao, Bibo; Zhou, Zhaoyao; Duan, Liuyang; Xiao, Zhiyu
2016-01-01
Powder metallurgy (P/M) technique is usually used for manufacturing porous metal materials. However, some P/M materials are limitedly used in engineering for their performance deficiency. A novel 304 stainless steel P/M material was produced by a solid-state sintering of 304 stainless steel powders and 304 short stainless steel fibers, which were alternately laid in layers according to mass ratio. In this paper, the compressive properties of the P/M materials were characterized by a series of uniaxial compression tests. The effects of fiber content, compaction pressure and high temperature nitriding on compressive properties were investigated. The results indicated that, without nitriding, the samples changed from cuboid to cydariform without damage in the process of compression. The compressive stress was enhanced with increasing fiber content ranging from 0 to 8 wt.%. For compaction pressure from 55 to 75 MPa, greater compaction pressure improved compressive stress. Moreover, high temperature nitriding was able to significantly improve the yield stress, but collapse failure eventually occurred. PMID:28773285
Effect of multilayer high-compression bandaging on ankle range of motion and oxygen cost of walking
Roaldsen, K S; Elfving, B; Stanghelle, J K; Mattsson, E
2012-01-01
Objective To evaluate the effects of multilayer high-compression bandaging on ankle range of motion, oxygen consumption and subjective walking ability in healthy subjects. Method A volunteer sample of 22 healthy subjects (10 women and 12 men; aged 67 [63–83] years) were studied. The intervention included treadmill-walking at self-selected speed with and without multilayer high-compression bandaging (Proforeº), randomly selected. The primary outcome variables were ankle range of motion, oxygen consumption and subjective walking ability. Results Total ankle range of motion decreased 4% with compression. No change in oxygen cost of walking was observed. Less than half the subjects reported that walking-shoe comfort or walking distance was negatively affected. Conclusion Ankle range of motion decreased with compression but could probably be counteracted with a regular exercise programme. There were no indications that walking with compression was more exhausting than walking without. Appropriate walking shoes could seem important to secure gait efficiency when using compression garments. PMID:21810941
NASA Astrophysics Data System (ADS)
Yue, Xian-hua; Liu, Chun-fang; Liu, Hui-hua; Xiao, Su-fen; Tang, Zheng-hua; Tang, Tian
2018-02-01
The main goal of this study is to investigate the microstructure and electrical properties of Al-Zr-La alloys under different hot compression deformation temperatures. In particular, a Gleeble 3500 thermal simulator was used to carry out multi-pass hot compression tests. For five-pass hot compression deformation, the last-pass deformation temperatures were 240, 260, 300, 340, 380, and 420°C, respectively, where the first-pass deformation temperature was 460°C. The experimental results indicated that increasing the hot compression deformation temperature with each pass resulted in improved electrical conductivity of the alloy. Consequently, the flow stress was reduced after deformation of the samples subjected to the same number of passes. In addition, the dislocation density gradually decreased and the grain size increased after hot compression deformation. Furthermore, the dynamic recrystallization behavior was effectively suppressed during the hot compression process because spherical Al3Zr precipitates pinned the dislocation movement effectively and prevented grain boundary sliding.
Yao, Bibo; Zhou, Zhaoyao; Duan, Liuyang; Xiao, Zhiyu
2016-03-04
Powder metallurgy (P/M) technique is usually used for manufacturing porous metal materials. However, some P/M materials are limitedly used in engineering for their performance deficiency. A novel 304 stainless steel P/M material was produced by a solid-state sintering of 304 stainless steel powders and 304 short stainless steel fibers, which were alternately laid in layers according to mass ratio. In this paper, the compressive properties of the P/M materials were characterized by a series of uniaxial compression tests. The effects of fiber content, compaction pressure and high temperature nitriding on compressive properties were investigated. The results indicated that, without nitriding, the samples changed from cuboid to cydariform without damage in the process of compression. The compressive stress was enhanced with increasing fiber content ranging from 0 to 8 wt.%. For compaction pressure from 55 to 75 MPa, greater compaction pressure improved compressive stress. Moreover, high temperature nitriding was able to significantly improve the yield stress, but collapse failure eventually occurred.
NASA Technical Reports Server (NTRS)
Starnes, James H.; Rose, Cheryl A.
1998-01-01
The results of an analytical study of the nonlinear response of a thin unstiffened aluminum cylindrical shell with a longitudinal crack are presented. The shell is analyzed with a nonlinear shell analysis code that maintains the shell in a nonlinear equilibrium state while the crack is grown. The analysis accurately accounts for global and local structural response phenomena. Results are presented for internal pressure, axial compression, and combined internal pressure and axial compression loads. The effects of varying crack length on the nonlinear response of the shell subjected to internal pressure are described. The effects of varying crack length on the prebuckling, buckling and postbuckling responses of the shell subjected to axial compression, and subjected to combined internal pressure and axial compression are also described. The results indicate that the nonlinear interaction between the in-plane stress resultants and the out-of-plane displacements near a crack can significantly affect the structural response of the shell. The results also indicate that crack growth instabilities and shell buckling instabilities can both affect the response of the shell as the crack length is increased.
High-quality JPEG compression history detection for fake uncompressed images
NASA Astrophysics Data System (ADS)
Zhang, Rong; Wang, Rang-Ding; Guo, Li-Jun; Jiang, Bao-Chuan
2017-05-01
Authenticity is one of the most important evaluation factors of images for photography competitions or journalism. Unusual compression history of an image often implies the illicit intent of its author. Our work aims at distinguishing real uncompressed images from fake uncompressed images that are saved in uncompressed formats but have been previously compressed. To detect the potential image JPEG compression, we analyze the JPEG compression artifacts based on the tetrolet covering, which corresponds to the local image geometrical structure. Since the compression can alter the structure information, the tetrolet covering indexes may be changed if a compression is performed on the test image. Such changes can provide valuable clues about the image compression history. To be specific, the test image is first compressed with different quality factors to generate a set of temporary images. Then, the test image is compared with each temporary image block-by-block to investigate whether the tetrolet covering index of each 4×4 block is different between them. The percentages of the changed tetrolet covering indexes corresponding to the quality factors (from low to high) are computed and used to form the p-curve, the local minimum of which may indicate the potential compression. Our experimental results demonstrate the advantage of our method to detect JPEG compressions of high quality, even the highest quality factors such as 98, 99, or 100 of the standard JPEG compression, from uncompressed-format images. At the same time, our detection algorithm can accurately identify the corresponding compression quality factor.
NASA Astrophysics Data System (ADS)
Frommholz, D.; Linkiewicz, M.; Poznanska, A. M.
2016-06-01
This paper proposes an in-line method for the simplified reconstruction of city buildings from nadir and oblique aerial images that at the same time are being used for multi-source texture mapping with minimal resampling. Further, the resulting unrectified texture atlases are analyzed for façade elements like windows to be reintegrated into the original 3D models. Tests on real-world data of Heligoland/ Germany comprising more than 800 buildings exposed a median positional deviation of 0.31 m at the façades compared to the cadastral map, a correctness of 67% for the detected windows and good visual quality when being rendered with GPU-based perspective correction. As part of the process building reconstruction takes the oriented input images and transforms them into dense point clouds by semi-global matching (SGM). The point sets undergo local RANSAC-based regression and topology analysis to detect adjacent planar surfaces and determine their semantics. Based on this information the roof, wall and ground surfaces found get intersected and limited in their extension to form a closed 3D building hull. For texture mapping the hull polygons are projected into each possible input bitmap to find suitable color sources regarding the coverage and resolution. Occlusions are detected by ray-casting a full-scale digital surface model (DSM) of the scene and stored in pixel-precise visibility maps. These maps are used to derive overlap statistics and radiometric adjustment coefficients to be applied when the visible image parts for each building polygon are being copied into a compact texture atlas without resampling whenever possible. The atlas bitmap is passed to a commercial object-based image analysis (OBIA) tool running a custom rule set to identify windows on the contained façade patches. Following multi-resolution segmentation and classification based on brightness and contrast differences potential window objects are evaluated against geometric constraints and conditionally grown, fused and filtered morphologically. The output polygons are vectorized and reintegrated into the previously reconstructed buildings by sparsely ray-tracing their vertices. Finally the enhanced 3D models get stored as textured geometry for visualization and semantically annotated "LOD-2.5" CityGML objects for GIS applications.
The effect of compression and attention allocation on speech intelligibility
NASA Astrophysics Data System (ADS)
Choi, Sangsook; Carrell, Thomas
2003-10-01
Research investigating the effects of amplitude compression on speech intelligibility for individuals with sensorineural hearing loss has demonstrated contradictory results [Souza and Turner (1999)]. Because percent-correct measures may not be the best indicator of compression effectiveness, a speech intelligibility and motor coordination task was developed to provide data that may more thoroughly explain the perception of compressed speech signals. In the present study, a pursuit rotor task [Dlhopolsky (2000)] was employed along with word identification task to measure the amount of attention required to perceive compressed and non-compressed words in noise. Monosyllabic words were mixed with speech-shaped noise at a fixed signal-to-noise ratio and compressed using a wide dynamic range compression scheme. Participants with normal hearing identified each word with or without a simultaneous pursuit-rotor task. Also, participants completed the pursuit-rotor task without simultaneous word presentation. It was expected that the performance on the additional motor task would reflect effect of the compression better than simple word-accuracy measures. Results were complex. For example, in some conditions an irrelevant task actually improved performance on a simultaneous listening task. This suggests there might be an optimal level of attention required for recognition of monosyllabic words.
Song, Xiaoying; Huang, Qijun; Chang, Sheng; He, Jin; Wang, Hao
2016-12-01
To address the low compression efficiency of lossless compression and the low image quality of general near-lossless compression, a novel near-lossless compression algorithm based on adaptive spatial prediction is proposed for medical sequence images for possible diagnostic use in this paper. The proposed method employs adaptive block size-based spatial prediction to predict blocks directly in the spatial domain and Lossless Hadamard Transform before quantization to improve the quality of reconstructed images. The block-based prediction breaks the pixel neighborhood constraint and takes full advantage of the local spatial correlations found in medical images. The adaptive block size guarantees a more rational division of images and the improved use of the local structure. The results indicate that the proposed algorithm can efficiently compress medical images and produces a better peak signal-to-noise ratio (PSNR) under the same pre-defined distortion than other near-lossless methods.
Compression Freezing Kinetics of Water to Ice VII
Gleason, A. E.; Bolme, C. A.; Galtier, E.; ...
2017-07-11
Time-resolved x-ray diffraction (XRD) of compressed liquid water shows transformation to ice VII in 6 nsec, revealing crystallization rather than amorphous solidification during compression freezing. Application of classical nucleation theory indicates heterogeneous nucleation and one-dimensional (e.g., needlelike) growth. In conclusion, these first XRD data demonstrate rapid growth kinetics of ice VII with implications for fundamental physics of diffusion-mediated crystallization and thermodynamic modeling of collision or impact events on ice-rich planetary bodies.
Compression Freezing Kinetics of Water to Ice VII
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gleason, A. E.; Bolme, C. A.; Galtier, E.
Time-resolved x-ray diffraction (XRD) of compressed liquid water shows transformation to ice VII in 6 nsec, revealing crystallization rather than amorphous solidification during compression freezing. Application of classical nucleation theory indicates heterogeneous nucleation and one-dimensional (e.g., needlelike) growth. In conclusion, these first XRD data demonstrate rapid growth kinetics of ice VII with implications for fundamental physics of diffusion-mediated crystallization and thermodynamic modeling of collision or impact events on ice-rich planetary bodies.
Elevated temperature creep properties of NiAl cryomilled with and without Y2O3
NASA Technical Reports Server (NTRS)
Whittenberger, J. Daniel; Luton, Michael J.
1995-01-01
The creep properties of lots of NiAl cryomilled with and without Y2O3 have been determined in compression and tension. Although identical cryomilling procedures were used, differences in composition were found between the lot ground with 0.5 vol% yttria and the lot ground without Y2O3. Compression testing between 1000 and 1300 K yielded similar creep strengths for both materials, while tensile creep rupture testing indicated that the yttria-containing alloy was slightly stronger than the Y2O3-free version. Both compression and tensile testing showed two deformation regimes; whereas the stress state did not affect the high stress exponent (n approximately equals 10) mechanism, the low stress exponent regime n was approximately 6 in tension and approximately 2 in compression. The strengths in tension were somewhat less than those measured in compression, but the estimated activation energies (Q) of approximately 600 kJ/mol for tensile testing were closer to the previously measured values (approximately 700 kJ/mol) for NiAl-AlN and very different from the Q's of 400 and 200 kJ/mol for compression tests in the high and low stress exponent regimes, respectively. A Larson-Miller comparison indicated that cryomilling can produce an alloy with long-term, high-temperature strength at least equal to conventional superalloys.
Hamman, Hannlie; Hamman, Josias; Wessels, Anita; Scholtz, Jacques; Steenekamp, Jan Harm
2017-07-03
Multiple-unit pellet systems (MUPS) provide several pharmacokinetic and pharmacodynamic advantages over single-unit dosage forms, however, compression of pellets into MUPS tablets present certain challenges. Although the SeDeM Expert Diagram System (SeDeM EDS) was originally developed to provide information about the most appropriate excipient and the minimum amount thereof that is required for producing direct compressible tablets, this study investigated the possibility to apply the SeDeM EDS in the production of MUPS tablets. In addition, the effect of pellet size (i.e. 0.5, 1.0, 1.5, 2.0, and 2.5 mm) on SeDeM EDS predictions regarding the MUPS tablet formulations was investigated. The compressibility incidence factor values were below the acceptable value (i.e. 5.00) for all the pellet sizes. Kollidon ® VA 64 was identified as the most appropriate excipient to improve compressibility. The compression indices, namely, the parameter index (IP), parametric profile index (IPP), and good compression index (GCI) indicated that acceptable MUPS tablets could be produced from the final pellet-excipient blends based on predictions from the SeDeM EDS. These MUPS tablets complied with specifications for friability, hardness, and mass variation. The SeDeM EDS system is therefore applicable to assist in the formulation of acceptable MUPS tablets.
Bilaterally Abnormal Head Impulse Tests Indicate a Large Cerebellopontine Angle Tumor.
Kim, Hyo Jung; Park, Seong Ho; Kim, Ji Soo; Koo, Ja Won; Kim, Chae Yong; Kim, Young Hoon; Han, Jung Ho
2016-01-01
Tumors involving the cerebellopontine angle (CPA) pose a diagnostic challenge due to their diverse manifestations. Head impulse tests (HITs) have been used to evaluate vestibular function, but few studies have explored the head impulse gain of the vestibulo-ocular reflex (VOR) in patients with a vestibular schwannoma. This study tested whether the head impulse gain of the VOR is an indicator of the size of a unilateral CPA tumor. Twenty-eight patients (21 women; age=64±12 years, mean±SD) with a unilateral CPA tumor underwent a recording of the HITs using a magnetic search coil technique. Patients were classified into non-compressing (T1-T3) and compressing (T4) groups according to the Hannover classification. Most (23/28, 82%) of the patients showed abnormal HITs for the semicircular canals on the lesion side. The bilateral abnormality in HITs was more common in the compressing group than the non-compressing group (80% vs. 8%, Pearson's chi-square test: p<0.001). The tumor size was inversely correlated with the head impulse gain of the VOR in either direction. Bilaterally abnormal HITs indicate that a patient has a large unilateral CPA tumor. The abnormal HITs in the contralesional direction may be explained either by adaptation or by compression and resultant dysfunction of the cerebellar and brainstem structures. The serial evaluation of HITs may provide information on tumor growth, and thereby reduce the number of costly brain scans required when following up patients with CPA tumors.
Knudson, M D; Hanson, D L; Bailey, J E; Hall, C A; Asay, J R
2003-01-24
A novel approach was developed to probe density compression of liquid deuterium (L-D2) along the principal Hugoniot. Relative transit times of shock waves reverberating within the sample are shown to be sensitive to the compression due to the first shock. This technique has proven to be more sensitive than the conventional method of inferring density from the shock and mass velocity, at least in this high-pressure regime. Results in the range of 22-75 GPa indicate an approximately fourfold density compression, and provide data to differentiate between proposed theories for hydrogen and its isotopes.
The compressed work week as organizational change: behavioral and attitudinal outcomes.
Ronen, S; Primps, S B
1981-01-01
The results from recent studies on the compressed work week have been compiled and categorized in order to provide some basis for generalizing the effects of the work schedule on employee attitudes and behavior. It appears that attitudes toward the compressed week are favorable, with some generalization to job attitudes. Performance outcomes are ambiguous, although there are no reported decreases; fatigue seems to be the only negative aspect of the longer day. An examination of mediating variables suggests more complex relationships between the implementation of the compressed work week and potential outcomes. These relationships are described and directions are indicated for future research.
Compression fractures detection on CT
NASA Astrophysics Data System (ADS)
Bar, Amir; Wolf, Lior; Bergman Amitai, Orna; Toledano, Eyal; Elnekave, Eldad
2017-03-01
The presence of a vertebral compression fracture is highly indicative of osteoporosis and represents the single most robust predictor for development of a second osteoporotic fracture in the spine or elsewhere. Less than one third of vertebral compression fractures are diagnosed clinically. We present an automated method for detecting spine compression fractures in Computed Tomography (CT) scans. The algorithm is composed of three processes. First, the spinal column is segmented and sagittal patches are extracted. The patches are then binary classified using a Convolutional Neural Network (CNN). Finally a Recurrent Neural Network (RNN) is utilized to predict whether a vertebral fracture is present in the series of patches.
NASA Technical Reports Server (NTRS)
Rodi, Patrick E.
1993-01-01
Forward swept sidewall compression inlets have been tested in the Mach 4 Blowdown Facility at the NASA Langley Research Center to study the effects of bodyside compression surfaces on inlet performance in the presence of an incoming turbulent boundary layer. The measurements include mass flow capture and mean surface pressure distributions obtained during simulated combustion pressure increases downstream of the inlet. The kerosene-lampblack surface tracer technique has been used to obtain patterns of the local wall shear stress direction. Inlet performance is evaluated using starting and unstarting characteristics, mass capture, mean surface pressure distributions and permissible back pressure limits. The results indicate that inlet performance can be improved with selected bodyside compression surfaces placed between the inlet sidewalls.
Martin, Philip; Theobald, Peter; Kemp, Alison; Maguire, Sabine; Maconochie, Ian; Jones, Michael
2013-08-01
European and Advanced Paediatric Life Support training courses. Sixty-nine certified CPR providers. CPR providers were randomly allocated to a 'no-feedback' or 'feedback' group, performing two-thumb and two-finger chest compressions on a "physiological", instrumented resuscitation manikin. Baseline data was recorded without feedback, before chest compressions were repeated with one group receiving feedback. Indices were calculated that defined chest compression quality, based upon comparison of the chest wall displacement to the targets of four, internationally recommended parameters: chest compression depth, release force, chest compression rate and compression duty cycle. Baseline data were consistent with other studies, with <1% of chest compressions performed by providers simultaneously achieving the target of the four internationally recommended parameters. During the 'experimental' phase, 34 CPR providers benefitted from the provision of 'real-time' feedback which, on analysis, coincided with a statistical improvement in compression rate, depth and duty cycle quality across both compression techniques (all measures: p<0.001). Feedback enabled providers to simultaneously achieve the four targets in 75% (two-finger) and 80% (two-thumb) of chest compressions. Real-time feedback produced a dramatic increase in the quality of chest compression (i.e. from <1% to 75-80%). If these results transfer to a clinical scenario this technology could, for the first time, support providers in consistently performing accurate chest compressions during infant CPR and thus potentially improving clinical outcomes. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Lee, Seong Hwa; Ryu, Ji Ho; Min, Mun Ki; Kim, Yong In; Park, Maeng Real; Yeom, Seok Ran; Han, Sang Kyoon; Park, Seong Wook
2016-08-01
When performing cardiopulmonary resuscitation (CPR), the 2010 American Heart Association guidelines recommend a chest compression rate of at least 100 min, whereas the 2010 European Resuscitation Council guidelines recommend a rate of between 100 and 120 min. The aim of this study was to examine the rate of chest compression that fulfilled various quality indicators, thereby determining the optimal rate of compression. Thirty-two trainee emergency medical technicians and six paramedics were enrolled in this study. All participants had been trained in basic life support. Each participant performed 2 min of continuous compressions on a skill reporter manikin, while listening to a metronome sound at rates of 100, 120, 140, and 160 beats/min, in a random order. Mean compression depth, incomplete chest recoil, and the proportion of correctly performed chest compressions during the 2 min were measured and recorded. The rate of incomplete chest recoil was lower at compression rates of 100 and 120 min compared with that at 160 min (P=0.001). The numbers of compressions that fulfilled the criteria for high-quality CPR at a rate of 120 min were significantly higher than those at 100 min (P=0.016). The number of high-quality CPR compressions was the highest at a compression rate of 120 min, and increased incomplete recoil occurred with increasing compression rate. However, further studies are needed to confirm the results.
Compressibility of one glass and two glass ceramics to 4 GPa
NASA Astrophysics Data System (ADS)
Sigalas, I.; Auret, J. G.; Hart, S.
1986-05-01
By monitoring the piston dispacement, up to 4 GPa, in a static high pressure piston-cylinder apparatus the volume compression of Duran 50 glass, Macor machinable glass ceramic and CER-VIT C101 glass ceramic was determined. It was established that the compressibility of Duran 50 increases with pressure up to 4 GPa. The values obtained for CER-VIT C101 indicate that, at about 0.8 GPa, the structure of this material transforms to low quartz.
Clinical Effects of Thai Herbal Compress: A Systematic Review and Meta-Analysis
Dhippayom, Teerapon; Kongkaew, Chuenjid; Chaiyakunapruk, Nathorn; Dilokthornsakul, Piyameth; Sruamsiri, Rosarin; Saokaew, Surasak; Chuthaputti, Anchalee
2015-01-01
Objective. To determine the clinical effects of Thai herbal compress. Methods. International and Thai databases were searched from inception through September 2014. Comparative clinical studies investigating herbal compress for any indications were included. Outcomes of interest included level of pain, difficulties in performing activities, and time from delivery to milk secretion. Mean changes of the outcomes from baseline were compared between herbal compress and comparators by calculating mean difference. Results. A total of 13 studies which involved 778 patients were selected from 369 articles identified. The overall effects of Thai herbal compress on reducing osteoarthritis (OA) and muscle pain were not different from those of nonsteroidal anti-inflammatory drugs, knee exercise, and hot compress. However, the reduction of OA pain in the herbal compress group tended to be higher than that of any comparators (weighted mean difference 0.419; 95% CI −0.004, 0.842) with moderate heterogeneity (I 2 = 58.3%, P = 0.048). When compared with usual care, herbal compress provided significantly less time from delivery to milk secretion in postpartum mothers (mean difference −394.425 minutes; 95% CI −620.084, −168.766). Conclusion. Thai herbal compress may be considered as an alternative for osteoarthritis and muscle pain and could also be used as a treatment of choice to induce lactation. PMID:25861373
Structure and Properties of Silica Glass Densified in Cold Compression and Hot Compression
NASA Astrophysics Data System (ADS)
Guerette, Michael; Ackerson, Michael R.; Thomas, Jay; Yuan, Fenglin; Bruce Watson, E.; Walker, David; Huang, Liping
2015-10-01
Silica glass has been shown in numerous studies to possess significant capacity for permanent densification under pressure at different temperatures to form high density amorphous (HDA) silica. However, it is unknown to what extent the processes leading to irreversible densification of silica glass in cold-compression at room temperature and in hot-compression (e.g., near glass transition temperature) are common in nature. In this work, a hot-compression technique was used to quench silica glass from high temperature (1100 °C) and high pressure (up to 8 GPa) conditions, which leads to density increase of ~25% and Young’s modulus increase of ~71% relative to that of pristine silica glass at ambient conditions. Our experiments and molecular dynamics (MD) simulations provide solid evidences that the intermediate-range order of the hot-compressed HDA silica is distinct from that of the counterpart cold-compressed at room temperature. This explains the much higher thermal and mechanical stability of the former than the latter upon heating and compression as revealed in our in-situ Brillouin light scattering (BLS) experiments. Our studies demonstrate the limitation of the resulting density as a structural indicator of polyamorphism, and point out the importance of temperature during compression in order to fundamentally understand HDA silica.
Katz, Jeffrey M; Roopwani, Rahul; Buckner, Ira S
2013-10-01
Compressibility profiles, or functions of solid fraction versus applied pressure, are used to provide insight into the fundamental mechanical behavior of powders during compaction. These functions, collected during compression (in-die) or post ejection (out-of-die), indicate the amount of pressure that a given powder formulation requires to be compressed to a given density or thickness. To take advantage of the benefits offered by both methods, the data collected in-die during a single compression-decompression cycle will be used to generate the equivalent of a complete out-of-die compressibility profile that has been corrected for both elastic and viscoelastic recovery of the powder. This method has been found to be both a precise and accurate means of evaluating out-of-die compressibility for four common tableting excipients. Using this method, a comprehensive characterization of powder compaction behavior, specifically in relation to plastic/brittle, elastic and viscoelastic deformation, can be obtained. Not only is the method computationally simple, but it is also material-sparing. The ability to characterize powder compressibility using this approach can improve productivity and streamline tablet development studies. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.
Moore, Brian C J; Sęk, Aleksander
2016-09-07
Multichannel amplitude compression is widely used in hearing aids. The preferred compression speed varies across individuals. Moore (2008) suggested that reduced sensitivity to temporal fine structure (TFS) may be associated with preference for slow compression. This idea was tested using a simulated hearing aid. It was also assessed whether preferences for compression speed depend on the type of stimulus: speech or music. Twenty-two hearing-impaired subjects were tested, and the stimulated hearing aid was fitted individually using the CAM2A method. On each trial, a given segment of speech or music was presented twice. One segment was processed with fast compression and the other with slow compression, and the order was balanced across trials. The subject indicated which segment was preferred and by how much. On average, slow compression was preferred over fast compression, more so for music, but there were distinct individual differences, which were highly correlated for speech and music. Sensitivity to TFS was assessed using the difference limen for frequency at 2000 Hz and by two measures of sensitivity to interaural phase at low frequencies. The results for the difference limens for frequency, but not the measures of sensitivity to interaural phase, supported the suggestion that preference for compression speed is affected by sensitivity to TFS. © The Author(s) 2016.
NASA Astrophysics Data System (ADS)
Zhang, Miao; Tong, Xiaojun
2017-07-01
This paper proposes a joint image encryption and compression scheme based on a new hyperchaotic system and curvelet transform. A new five-dimensional hyperchaotic system based on the Rabinovich system is presented. By means of the proposed hyperchaotic system, a new pseudorandom key stream generator is constructed. The algorithm adopts diffusion and confusion structure to perform encryption, which is based on the key stream generator and the proposed hyperchaotic system. The key sequence used for image encryption is relation to plain text. By means of the second generation curvelet transform, run-length coding, and Huffman coding, the image data are compressed. The joint operation of compression and encryption in a single process is performed. The security test results indicate the proposed methods have high security and good compression effect.
Permeability and compression characteristics of municipal solid waste samples
NASA Astrophysics Data System (ADS)
Durmusoglu, Ertan; Sanchez, Itza M.; Corapcioglu, M. Yavuz
2006-08-01
Four series of laboratory tests were conducted to evaluate the permeability and compression characteristics of municipal solid waste (MSW) samples. While the two series of tests were conducted using a conventional small-scale consolidometer, the two others were conducted in a large-scale consolidometer specially constructed for this study. In each consolidometer, the MSW samples were tested at two different moisture contents, i.e., original moisture content and field capacity. A scale effect between the two consolidometers with different sizes was investigated. The tests were carried out on samples reconsolidated to pressures of 123, 246, and 369 kPa. Time settlement data gathered from each load increment were employed to plot strain versus log-time graphs. The data acquired from the compression tests were used to back calculate primary and secondary compression indices. The consolidometers were later adapted for permeability experiments. The values of indices and the coefficient of compressibility for the MSW samples tested were within a relatively narrow range despite the size of the consolidometer and the different moisture contents of the specimens tested. The values of the coefficient of permeability were within a band of two orders of magnitude (10-6-10-4 m/s). The data presented in this paper agreed very well with the data reported by previous researchers. It was concluded that the scale effect in the compression behavior was significant. However, there was usually no linear relationship between the results obtained in the tests.
NASA Technical Reports Server (NTRS)
Guynn, E. Gail; Bradley, Walter L.
1989-01-01
Measurements of the stress supported by the crush zone in open hole specimens loaded in compression were carried out on two composite laminates, AS4/PEEK and IM6/HST-7, containing circular holes of three different diameters. Compression tests were conducted in a specially designed high-axial-alignment material test system machine. Results indicated that the local stress supported in the crush zone is much less than the stress required to initiate the crush, providing the reason for the finding of Guynn et al. (1987) that the Dugdale model does not accurately predict the load-damage size relationship of open hole composite specimens loaded in compression.
Kelly, Terri-Ann N; Roach, Brendan L; Weidner, Zachary D; Mackenzie-Smith, Charles R; O'Connell, Grace D; Lima, Eric G; Stoker, Aaron M; Cook, James L; Ateshian, Gerard A; Hung, Clark T
2013-07-26
The tensile modulus of articular cartilage is much larger than its compressive modulus. This tension-compression nonlinearity enhances interstitial fluid pressurization and decreases the frictional coefficient. The current set of studies examines the tensile and compressive properties of cylindrical chondrocyte-seeded agarose constructs over different developmental stages through a novel method that combines osmotic loading, video microscopy, and uniaxial unconfined compression testing. This method was previously used to examine tension-compression nonlinearity in native cartilage. Engineered cartilage, cultured under free-swelling (FS) or dynamically loaded (DL) conditions, was tested in unconfined compression in hypertonic and hypotonic salt solutions. The apparent equilibrium modulus decreased with increasing salt concentration, indicating that increasing the bath solution osmolarity shielded the fixed charges within the tissue, shifting the measured moduli along the tension-compression curve and revealing the intrinsic properties of the tissue. With this method, we were able to measure the tensile (401±83kPa for FS and 678±473kPa for DL) and compressive (161±33kPa for FS and 348±203kPa for DL) moduli of the same engineered cartilage specimens. These moduli are comparable to values obtained from traditional methods, validating this technique for measuring the tensile and compressive properties of hydrogel-based constructs. This study shows that engineered cartilage exhibits tension-compression nonlinearity reminiscent of the native tissue, and that dynamic deformational loading can yield significantly higher tensile properties. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zhang, Hehua; Yang, Zhengfei; Huang, Zitong; Chen, Bihua; Zhang, Lei; Li, Heng; Wu, Baoming; Yu, Tao; Li, Yongqin
2012-10-01
The quality of cardiopulmonary resuscitation (CPR), especially adequate compression depth, is associated with return of spontaneous circulation (ROSC) and is therefore recommended to be measured routinely. In the current study, we investigated the relationship between changes of transthoracic impedance (TTI) measured through the defibrillation electrodes, chest compression depth and coronary perfusion pressure (CPP) in a porcine model of cardiac arrest. In 14 male pigs weighing between 28 and 34 kg, ventricular fibrillation (VF) was electrically induced and untreated for 6 min. Animals were randomized to either optimal or suboptimal chest compression group. Optimal depth of manual compression in 7 pigs was defined as a decrease of 25% (50 mm) in anterior posterior diameter of the chest, while suboptimal compression was defined as 70% of the optimal depth (35 mm). After 2 min of chest compression, defibrillation was attempted with a 120-J rectilinear biphasic shock. There were no differences in baseline measurements between groups. All animals had ROSC after optimal compressions; this contrasted with suboptimal compressions, after which only 2 of the animals had ROSC (100% vs. 28.57%, p=0.021). The correlation coefficient was 0.89 between TTI amplitude and compression depth (p<0.001), 0.83 between TTI amplitude and CPP (p<0.001). Amplitude change of TTI was correlated with compression depth and CPP in this porcine model of cardiac arrest. The TTI measured from defibrillator electrodes, therefore has the potential to serve as an indicator to monitor the quality of chest compression and estimate CPP during CPR. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
A database for assessment of effect of lossy compression on digital mammograms
NASA Astrophysics Data System (ADS)
Wang, Jiheng; Sahiner, Berkman; Petrick, Nicholas; Pezeshk, Aria
2018-03-01
With widespread use of screening digital mammography, efficient storage of the vast amounts of data has become a challenge. While lossless image compression causes no risk to the interpretation of the data, it does not allow for high compression rates. Lossy compression and the associated higher compression ratios are therefore more desirable. The U.S. Food and Drug Administration (FDA) currently interprets the Mammography Quality Standards Act as prohibiting lossy compression of digital mammograms for primary image interpretation, image retention, or transfer to the patient or her designated recipient. Previous work has used reader studies to determine proper usage criteria for evaluating lossy image compression in mammography, and utilized different measures and metrics to characterize medical image quality. The drawback of such studies is that they rely on a threshold on compression ratio as the fundamental criterion for preserving the quality of images. However, compression ratio is not a useful indicator of image quality. On the other hand, many objective image quality metrics (IQMs) have shown excellent performance for natural image content for consumer electronic applications. In this paper, we create a new synthetic mammogram database with several unique features. We compare and characterize the impact of image compression on several clinically relevant image attributes such as perceived contrast and mass appearance for different kinds of masses. We plan to use this database to develop a new objective IQM for measuring the quality of compressed mammographic images to help determine the allowed maximum compression for different kinds of breasts and masses in terms of visual and diagnostic quality.
The effect of changes in compression ratio upon engine performance
NASA Technical Reports Server (NTRS)
Sparrow, Stanwood W
1925-01-01
This report is based upon engine tests made at the Bureau of Standards during 1920, 1921, 1922, and 1923. The majority of these tests were of aviation engines and were made in the Altitude Laboratory. For a small portion of the work a single cylinder experimental engine was used. This, however, was operated only at sea-level pressures. The report shows that an increase in break horsepower and a decrease in the pounds of fuel used per brake horsepower hour usually results from an increase in compression ratio. This holds true at least up to the highest ratio investigated, 14 to 1, provided there is no serious preignition or detonation at any ratio. To avoid preignition and detonation when employing high-compression ratios, it is often necessary to use some fuel other than gasoline. It has been found that the consumption of some of these fuels in pounds per brake horsepower hour is so much greater than the consumption of gasoline that it offsets the decrease derived from the use of the high-compression ratio. The changes in indicated thermal efficiency with changes in compression ratio are in close agreement with what would be anticipated from a consideration of the air cycle efficiencies at the various ratios. In so far as these tests are concerned there is no evidence that a change in compression ratio produces an appreciable, consistent change in friction horsepower, volumetric efficiency, or in the range of fuel-air ratios over which the engine can operate. The ratio between the heat loss to the jacket water and the heat converted into brake horsepower or indicated horsepower decreases with increase in compression ratio. (author)
NASA Astrophysics Data System (ADS)
Deng, Jian; Zhou, Guangming; Ji, Le; Wang, Xiaopei
2017-12-01
Mechanical properties and failure mechanisms of a newly designed 3D multi-layer braided composites are evaluated by experimental, numerical and theoretical studies. The microstructure of the composites is introduced. The unit cell technique is employed to address the periodic arrangement of the structure. The volume averaging method is used in theoretical solutions while FEM with reasonable periodic boundary conditions and meshing technique in numerical simulations. Experimental studies are also conducted to verify the feasibility of the proposed models. Predicted elastic properties agree well with the experimental data, indicating the feasibility of the proposed models. Numerical evaluation is more accurate than theoretical assessment. Deformations and stress distributions of the unit cell under tension shows displacement and traction continuity, guaranteeing the rationality of the applied periodic boundary conditions. Although compression and tension modulus are close, the compressive strength only reaches 70% of the tension strength. This indicates that the composites can be weakened in compressive loading. Additionally, by analysing the micrograph of fracture faces and strain-stress curves, a brittle failure mechanism is observed both in composites under tension and compression.
NASA Technical Reports Server (NTRS)
Gates, Thomas S.; Veazie, David R.; Brinson, L. Catherine
1996-01-01
Experimental and analytical methods were used to investigate the similarities and differences of the effects of physical aging on creep compliance of IM7/K3B composite loaded in tension and compression. Two matrix dominated loading modes, shear and transverse, were investigated for two load cases, tension and compression. The tests, run over a range of sub-glass transition temperatures, provided material constants, material master curves and aging related parameters. Comparing results from the short-term data indicated that although trends in the data with respect to aging time and aging temperature are similar, differences exist due to load direction and mode. The analytical model used for predicting long-term behavior using short-term data as input worked equally as well for the tension or compression loaded cases. Comparison of the loading modes indicated that the predictive model provided more accurate long term predictions for the shear mode as compared to the transverse mode. Parametric studies showed the usefulness of the predictive model as a tool for investigating long-term performance and compliance acceleration due to temperature.
NASA Technical Reports Server (NTRS)
Tower, Leonard K
1945-01-01
The knock-limited performance of blends of 0,50; and 100 percent by volume of 2,2,3-trimethylpentane in 28-R fuel determined with a modified F-4 engine at three sets of conditions varying from severe to mild at each of three compression ratios (6.0, 8.0, and 10.0). A comparison of the knock-limited performance of 2,2,3-trimethylpentane with that of triptane (2,2,3-trimethylbutane) is included. The knock-Limited performance of 2,2,3-trimethylpontane was usually more sensitive to either compression ratio or inlet-air temperature than 28-R fuel, but the ratio of the knock-limited indicated mean effective pressure of a given blend containing 2,2,3-trimethypentane and 28-R to the indicated mean effective pressure of 28-R alone was not greatly affected by compression ratio if the engine operating conditions were mild. Although 2,2,3-trimethylpentane in general had a lower knock-limited performance than triptane, the characteristics of the two fuels were somewhat similar.
Cosmological Particle Data Compression in Practice
NASA Astrophysics Data System (ADS)
Zeyen, M.; Ahrens, J.; Hagen, H.; Heitmann, K.; Habib, S.
2017-12-01
In cosmological simulations trillions of particles are handled and several terabytes of unstructured particle data are generated in each time step. Transferring this data directly from memory to disk in an uncompressed way results in a massive load on I/O and storage systems. Hence, one goal of domain scientists is to compress the data before storing it to disk while minimizing the loss of information. To prevent reading back uncompressed data from disk, this can be done in an in-situ process. Since the simulation continuously generates data, the available time for the compression of one time step is limited. Therefore, the evaluation of compression techniques has shifted from only focusing on compression rates to include run-times and scalability.In recent years several compression techniques for cosmological data have become available. These techniques can be either lossy or lossless, depending on the technique. For both cases, this study aims to evaluate and compare the state of the art compression techniques for unstructured particle data. This study focuses on the techniques available in the Blosc framework with its multi-threading support, the XZ Utils toolkit with the LZMA algorithm that achieves high compression rates, and the widespread FPZIP and ZFP methods for lossy compressions.For the investigated compression techniques, quantitative performance indicators such as compression rates, run-time/throughput, and reconstruction errors are measured. Based on these factors, this study offers a comprehensive analysis of the individual techniques and discusses their applicability for in-situ compression. In addition, domain specific measures are evaluated on the reconstructed data sets, and the relative error rates and statistical properties are analyzed and compared. Based on this study future challenges and directions in the compression of unstructured cosmological particle data were identified.
NASA Technical Reports Server (NTRS)
Jegley, Dawn C.
1987-01-01
Buckling loads of thick-walled, orthotropic, simply-supported right circular cylinders are predicted using a new higher-order transverse shear deformation theory. The higher-order theory shows that, by more accurately accounting for transverse shear deformation effects, the predicted buckling load may be reduced by as much as 80 percent compared to predictions based on conventional transverse shear deformation theory. A parametric study of the effect of ply orientation on the buckling load of axially compressed cylinders indicates that laminates containing 0 deg plies are the most sensitive to transverse shear deformation effects. Interaction curves for buckling of cylinders with axial compressive and external pressure loadings indicate that buckling loads due to external pressure loadings are much less sensitive to transverse shear deformation effects than those due to axial compressive loadings.
Distribution analysis for F100(3) engine
NASA Technical Reports Server (NTRS)
Walter, W. A.; Shaw, M.
1980-01-01
The F100(3) compression system response to inlet circumferential distortion was investigated using an analytical compressor flow model. Compression system response to several types of distortion, including pressure, temperature, and combined pressure/temperature distortions, was investigated. The predicted response trends were used in planning future F100(3) distortion tests. Results show that compression system response to combined temperature and pressure distortions depends upon the relative orientation, as well as the individual amplitudes and circumferential extents of the distortions. Also the usefulness of the analytical predictions in planning engine distortion tests is indicated.
NASA Technical Reports Server (NTRS)
Naughton, J. W.; Cattafesta, L. N.; Settles, G. S.
1993-01-01
The effect of streamwise vorticity on compressible axisymmetric mixing layers is examined using vortex strength assessment and seed particle dynamics analysis. Experimental results indicate that the particles faithfully represent the dynamics of the turbulent swirling flow. A comparison of the previously determined mixing layer growth rates with the present vortex strength data reveals that the increase of turbulent mixing up to 60 percent scales with the degree of swirl. The mixing enhancement appears to be independent of the compressibility level of the mixing layer.
Optimization of a two stage light gas gun. M.S. Thesis
NASA Technical Reports Server (NTRS)
Rynearson, R. J.; Rand, J. L.
1972-01-01
Performance characteristics of the Texas A&M University light gas gun are presented along with a review of basic gun theory and popular prediction methods. A computer routine based on the simple isentropic compression method is discussed. Results from over 60 test shots are given which demonstrate an increase in gun muzzle velocity from 9.100 ft/sec. to 19,000 ft/sec. The data gathered indicated the Texas A&M light gas gun more closely resembles an isentropic compression gun rather than a shock compression gun.
Hydrogen as an Auxiliary Fuel in Compression-Ignition Engines
NASA Technical Reports Server (NTRS)
Gerrish, Harold C; Foster, H
1936-01-01
An investigation was made to determine whether a sufficient amount of hydrogen could be efficiently burned in a compression-ignition engine to compensate for the increase of lift of an airship due to the consumption of the fuel oil. The performance of a single-cylinder four-stroke-cycle compression-ignition engine operating on fuel oil alone was compared with its performance when various quantities of hydrogen were inducted with the inlet air. Engine-performance data, indicator cards, and exhaust-gas samples were obtained for each change in engine-operating conditions.
THE EFFECT OF LASER SHOCK PEENING ON THE LIFE AND FAILURE MODE OF A COLD PILGER DIE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lavender, Curt A.; Hong, Sung-tae; Smith, Mark T.
2008-08-11
The laser shock peening process was used to increase fatigue life of pilger dies made of A2 tool steel by imparting compressive residual stresses to fatigue prone areas of the dies. The result of X-Ray diffraction analysis indicated that deep, high- magnitude compressive residual stresses were generated by the laser shock peening process, and the peened dies exhibited a significant increase of in-service life. Fractography of the failed dies indicates that the fracture mechanism was altered by the peening process.
High Compressive Stresses Near the Surface of the Sierra Nevada, California
NASA Astrophysics Data System (ADS)
Martel, S. J.; Logan, J. M.; Stock, G. M.
2012-12-01
Observations and stress measurements in granitic rocks of the Sierra Nevada, California reveal strong compressive stresses parallel to the surface of the range at shallow depths. New overcoring measurements show high compressive stresses at three locations along an east-west transect through Yosemite National Park. At the westernmost site (west end of Tenaya Lake), the mean compressive stress is 1.9. At the middle site (north shore of Tenaya Lake) the mean compressive stress is 6.8 MPa. At the easternmost site (south side of Lembert Dome) the mean compressive stress is 3.0 MPa. The trend of the most compressive stress at these sites is within ~30° of the strike of the local topographic surface. Previously published hydraulic fracturing measurements by others elsewhere in the Sierra Nevada indicate surface-parallel compressive stresses of several MPa within several tens of meters of the surface, with the stress magnitudes generally diminishing to the west. Both the new and the previously published compressive stress magnitudes are consistent with the presence of sheeting joints (i.e., "exfoliation joints") in the Sierra Nevada, which require lateral compressive stresses of several MPa to form. These fractures are widespread: they are distributed in granitic rocks from the north end of the range to its southern tip and across the width of the range. Uplift along the normal faults of the eastern escarpment, recently measured by others at ~1-2 mm/yr, probably contributes to these stresses substantially. Geodetic surveys reveal that normal faulting flexes a range concave upwards in response to fault slip, and this flexure is predicted by elastic dislocation models. The topographic relief of the eastern escarpment of the Sierra Nevada is 2-4 km, and since alluvial fill generally buries the bedrock east of the faults, the offset of granitic rocks is at least that much. Compressive stresses of several MPa are predicted by elastic dislocation models of the range front faults of the eastern Sierra Nevada for as little as 100m of slip. The compression is consistent with a concave up flexure of the surface of the range. Conversely, elastic models also predict that markedly lower compressive stresses or even a tension would exist on exposed bedrock on the down-dropped hanging wall east of the range front faults. To test this prediction, we measured stresses at a fourth site, in the granitic rock of the Aeolian Buttes, which is east of the range front faults. The mean compressive stress there is 0.26 MPa, more than an order of magnitude less than the average at the three Yosemite sites. The measured stress magnitudes near the topographic surface of the Sierra, the distribution of sheeting joints west of the range front faults, and elastic model predictions are broadly consistent and indicate that the high compressive stresses at the surface of the Sierra Nevada are largely associated with uplift of the range, although other contributions cannot be excluded.
SAR correlation technique - An algorithm for processing data with large range walk
NASA Technical Reports Server (NTRS)
Jin, M.; Wu, C.
1983-01-01
This paper presents an algorithm for synthetic aperture radar (SAR) azimuth correlation with extraneously large range migration effect which can not be accommodated by the existing frequency domain interpolation approach used in current SEASAT SAR processing. A mathematical model is first provided for the SAR point-target response in both the space (or time) and the frequency domain. A simple and efficient processing algorithm derived from the hybrid algorithm is then given. This processing algorithm enables azimuth correlation by two steps. The first step is a secondary range compression to handle the dispersion of the spectra of the azimuth response along range. The second step is the well-known frequency domain range migration correction approach for the azimuth compression. This secondary range compression can be processed simultaneously with range pulse compression. Simulation results provided here indicate that this processing algorithm yields a satisfactory compressed impulse response for SAR data with large range migration.
Anisotropy of demineralized bone matrix under compressive load.
Trębacz, Hanna; Zdunek, Artur
2011-01-01
Two groups of cubic specimens from diaphysis of bovine femur, intact and completely demineralized, were axially compressed. One half of the samples from each group were loaded along the axis of the femur (L) and the other - perpendicularly (T). Intact samples were characterized in terms of elastic modulus; for demineralized samples secant modulus of elasticity was calculated. During compression an acoustic emission (AE) signal was recorded and AE events and energy were analyzed. Samples of intact bone did not reveal any anisotropy under compression at the stress of 80 MPa. However, AE signal indicated an initiation of failure in samples loaded in T direction. Demineralized samples were anisotropic under compression. Both secant modulus of elasticity and AE parameters were significantly higher in T direction than in L direction, which is attributed to shifting and separation of lamellae of collagen fibrils and lamellae in bone matrix.
Liu, Yanhui; Zhang, Peihua
2016-09-01
This paper presents a study of the compression behaviors of fully covered biodegradable polydioxanone biliary stents (FCBPBs) developed for human body by finite element method. To investigate the relationship between the compression force and structure parameter (monofilament diameter and braid-pin number), nine numerical models based on actual biliary stent were established, the simulation and experimental results are in good agreement with each other when calculating the compression force derived from both experiment and simulation results, indicating that the simulation results can be provided a useful reference to the investigation of biliary stents. The stress distribution on FCBPBSs was studied to optimize the structure of FCBPBSs. In addition, the plastic dissipation analysis and plastic strain of FCBPBSs were obtained via the compression simulation, revealing the structure parameter effect on the tolerance. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Gardiner, Arthur W
1927-01-01
This report summarizes some results obtained with a single cylinder test engine at the Langley Field Laboratory during a preliminary investigation of the problem of applying fuel injection and compression ignition to aircraft engines. For this work a standard Liberty Engine cylinder was fitted with a high compression, 11.4 : 1 compression ratio, piston, and equipped with an airless injection system, including a primary fuel pump, an injection pump, and an automatic injection valve. The results obtained during this investigation have indicated the possibility of applying airless injection and compression ignition to a cylinder of this size, 8-inch bore by 7-inch stroke, when operating at engine speeds as high as 1,850 R. P. M. A minimum specific fuel consumption with diesel engine fuel oil of 0.30 pound per I. HP. Hour was obtained when developing about 16 B. HP. At 1,730 R. P. M.
NASA Astrophysics Data System (ADS)
Zhou, Ping; Beeh, Elmar; Friedrich, Horst E.
2016-03-01
Magnesium alloys are promising materials for lightweight design in the automotive industry due to their high strength-to-mass ratio. This study aims to study the influence of tension-compression asymmetry on the radius of curvature and energy absorption capacity of AZ31B-O magnesium alloy sheets in bending. The mechanical properties were characterized using tension, compression, and three-point bending tests. The material exhibits significant tension-compression asymmetry in terms of strength and strain hardening rate due to extension twinning in compression. The compressive yield strength is much lower than the tensile yield strength, while the strain hardening rate is much higher in compression. Furthermore, the tension-compression asymmetry in terms of r value (Lankford value) was also observed. The r value in tension is much higher than that in compression. The bending results indicate that the AZ31B-O sheet can outperform steel and aluminum sheets in terms of specific energy absorption in bending mainly due to its low density. In addition, the AZ31B-O sheet was deformed with a larger radius of curvature than the steel and aluminum sheets, which brings a benefit to energy absorption capacity. Finally, finite element simulation for three-point bending was performed using LS-DYNA and the results confirmed that the larger radius of curvature of a magnesium specimen is mainly attributed to the high strain hardening rate in compression.
Breast compression in mammography: how much is enough?
Poulos, Ann; McLean, Donald; Rickard, Mary; Heard, Robert
2003-06-01
The amount of breast compression that is applied during mammography potentially influences image quality and the discomfort experienced. The aim of this study was to determine the relationship between applied compression force, breast thickness, reported discomfort and image quality. Participants were women attending routine breast screening by mammography at BreastScreen New South Wales Central and Eastern Sydney. During the mammographic procedure, an 'extra' craniocaudal (CC) film was taken at a reduced level of compression ranging from 10 to 30 Newtons. Breast thickness measurements were recorded for both the normal and the extra CC film. Details of discomfort experienced, cup size, menstrual status, existing breast pain and breast problems were also recorded. Radiologists were asked to compare the image quality of the normal and manipulated film. The results indicated that 24% of women did not experience a difference in thickness when the compression was reduced. This is an important new finding because the aim of breast compression is to reduce breast thickness. If breast thickness is not reduced when compression force is applied then discomfort is increased with no benefit in image quality. This has implications for mammographic practice when determining how much breast compression is sufficient. Radiologists found a decrease in contrast resolution within the fatty area of the breast between the normal and the extra CC film, confirming a decrease in image quality due to insufficient applied compression force.
Bezci, Semih E; Klineberg, Eric O; O'Connell, Grace D
2018-01-01
The intervertebral disc is a complex joint that acts to support and transfer large multidirectional loads, including combinations of compression, tension, bending, and torsion. Direct comparison of disc torsion mechanics across studies has been difficult, due to differences in loading protocols. In particular, the lack of information on the combined effect of multiple parameters, including axial compressive preload and rotation angle, makes it difficult to discern whether disc torsion mechanics are sensitive to the variables used in the test protocol. Thus, the objective of this study was to evaluate compression-torsion mechanical behavior of healthy discs under a wide range of rotation angles. Bovine caudal discs were tested under a range of compressive preloads (150, 300, 600, and 900N) and rotation angles (± 1, 2, 3, 4, or 5°) applied at a rate of 0.5°/s. Torque-rotation data were used to characterize shape changes in the hysteresis loop and to calculate disc torsion mechanics. Torsional mechanical properties were described using multivariate regression models. The rate of change in torsional mechanical properties with compression depended on the maximum rotation angle applied, indicating a strong interaction between compressive stress and maximum rotation angle. The regression models reported here can be used to predict disc torsion mechanics under axial compression for a given disc geometry, compressive preload, and rotation angle. Copyright © 2017 Elsevier Ltd. All rights reserved.
A compressible near-wall turbulence model for boundary layer calculations
NASA Technical Reports Server (NTRS)
So, R. M. C.; Zhang, H. S.; Lai, Y. G.
1992-01-01
A compressible near-wall two-equation model is derived by relaxing the assumption of dynamical field similarity between compressible and incompressible flows. This requires justifications for extending the incompressible models to compressible flows and the formulation of the turbulent kinetic energy equation in a form similar to its incompressible counterpart. As a result, the compressible dissipation function has to be split into a solenoidal part, which is not sensitive to changes of compressibility indicators, and a dilational part, which is directly affected by these changes. This approach isolates terms with explicit dependence on compressibility so that they can be modeled accordingly. An equation that governs the transport of the solenoidal dissipation rate with additional terms that are explicitly dependent on the compressibility effects is derived similarly. A model with an explicit dependence on the turbulent Mach number is proposed for the dilational dissipation rate. Thus formulated, all near-wall incompressible flow models could be expressed in terms of the solenoidal dissipation rate and straight-forwardly extended to compressible flows. Therefore, the incompressible equations are recovered correctly in the limit of constant density. The two-equation model and the assumption of constant turbulent Prandtl number are used to calculate compressible boundary layers on a flat plate with different wall thermal boundary conditions and free-stream Mach numbers. The calculated results, including the near-wall distributions of turbulence statistics and their limiting behavior, are in good agreement with measurements. In particular, the near-wall asymptotic properties are found to be consistent with incompressible behavior; thus suggesting that turbulent flows in the viscous sublayer are not much affected by compressibility effects.
Fluctuation diagrams for hot-wire anemometry in subsonic compressible flows
NASA Technical Reports Server (NTRS)
Stainback, P. C.; Nagabushana, K. A.
1991-01-01
The concept of using 'fluctuation diagrams' for describing basic fluctuations in compressible flows was reported by Kovasznay in the 1950's. The application of this technique, for the most part, was restricted to supersonic flows. Recently, Zinovev and Lebiga published reports where they considered the fluctuation diagrams in subsonic compressible flows. For the above studies, the velocity and density sensitivities of the heated wires were equal. However, there are considerable data, much taken in the 1950's, which indicate that under some conditions the velocity and density sensitivities are not equal in subsonic compressible flows. Therefore, possible fluctuation diagrams are described for the cases where the velocity and density sensitivities are equal and the more general cases where they are unequal.
Chunk formation in immediate memory and how it relates to data compression.
Chekaf, Mustapha; Cowan, Nelson; Mathy, Fabien
2016-10-01
This paper attempts to evaluate the capacity of immediate memory to cope with new situations in relation to the compressibility of information likely to allow the formation of chunks. We constructed a task in which untrained participants had to immediately recall sequences of stimuli with possible associations between them. Compressibility of information was used to measure the chunkability of each sequence on a single trial. Compressibility refers to the recoding of information in a more compact representation. Although compressibility has almost exclusively been used to study long-term memory, our theory suggests that a compression process relying on redundancies within the structure of the list materials can occur very rapidly in immediate memory. The results indicated a span of about three items when the list had no structure, but increased linearly as structure was added. The amount of information retained in immediate memory was maximal for the most compressible sequences, particularly when information was ordered in a way that facilitated the compression process. We discuss the role of immediate memory in the rapid formation of chunks made up of new associations that did not already exist in long-term memory, and we conclude that immediate memory is the starting place for the reorganization of information. Copyright © 2016 Elsevier B.V. All rights reserved.
Heterogeneous Compression of Large Collections of Evolutionary Trees.
Matthews, Suzanne J
2015-01-01
Compressing heterogeneous collections of trees is an open problem in computational phylogenetics. In a heterogeneous tree collection, each tree can contain a unique set of taxa. An ideal compression method would allow for the efficient archival of large tree collections and enable scientists to identify common evolutionary relationships over disparate analyses. In this paper, we extend TreeZip to compress heterogeneous collections of trees. TreeZip is the most efficient algorithm for compressing homogeneous tree collections. To the best of our knowledge, no other domain-based compression algorithm exists for large heterogeneous tree collections or enable their rapid analysis. Our experimental results indicate that TreeZip averages 89.03 percent (72.69 percent) space savings on unweighted (weighted) collections of trees when the level of heterogeneity in a collection is moderate. The organization of the TRZ file allows for efficient computations over heterogeneous data. For example, consensus trees can be computed in mere seconds. Lastly, combining the TreeZip compressed (TRZ) file with general-purpose compression yields average space savings of 97.34 percent (81.43 percent) on unweighted (weighted) collections of trees. Our results lead us to believe that TreeZip will prove invaluable in the efficient archival of tree collections, and enables scientists to develop novel methods for relating heterogeneous collections of trees.
Han, Xiaorui; Leng, Xiaoming; Zhao, Man; Wu, Mei; Chen, Amei; Hong, Guoju; Sun, Ping
2017-12-22
Disc nucleus pulposus (NP) matrix homeostasis is important for normal disc function. Mechanical overloading seriously decreases matrix synthesis and increases matrix degradation. The present study aims to investigate the effects of resveratrol on disc NP matrix homeostasis under a relatively high-magnitude mechanical compression and the potential mechanism underlying this process. Porcine discs were perfusion-cultured and subjected to a relatively high-magnitude mechanical compression (1.3 MPa at a frequency of 1.0 Hz for 2 h once per day) for 7 days in a mechanically active bioreactor. The non-compressed discs were used as controls. Resveratrol was added along with culture medium to observe the effects of resveratrol on NP matrix synthesis under mechanical load respectively. NP matrix synthesis was evaluated by histology, biochemical content (glycosaminoglycan (GAG) and hydroxyproline (HYP)), and expression of matrix macromolecules (aggrecan and collagen II). Results showed that this high-magnitude mechanical compression significantly decreased NP matrix content, indicated by the decreased staining intensity of Alcian Blue and biochemical content (GAG and HYP), and the down-regulated expression of NP matrix macromolecules (aggrecan and collagen II). Further analysis indicated that resveratrol partly stimulated NP matrix synthesis and increased activity of the PI3K/Akt pathway in a dose-dependent manner under mechanical compression. Together, resveratrol is beneficial for disc NP matrix synthesis under mechanical overloading, and the activation of the PI3K/Akt pathway may participate in this regulatory process. Resveratrol may be promising to regenerate mechanical overloading-induced disc degeneration. © 2017 The Author(s).
The desktop interface in intelligent tutoring systems
NASA Technical Reports Server (NTRS)
Baudendistel, Stephen; Hua, Grace
1987-01-01
The interface between an Intelligent Tutoring System (ITS) and the person being tutored is critical to the success of the learning process. If the interface to the ITS is confusing or non-supportive of the tutored domain, the effectiveness of the instruction will be diminished or lost entirely. Consequently, the interface to an ITS should be highly integrated with the domain to provide a robust and semantically rich learning environment. In building an ITS for ZetaLISP on a LISP Machine, a Desktop Interface was designed to support a programming learning environment. Using the bitmapped display, windows, and mouse, three desktops were designed to support self-study and tutoring of ZetaLISP. Through organization, well-defined boundaries, and domain support facilities, the desktops provide substantial flexibility and power for the student and facilitate learning ZetaLISP programming while screening the student from the complex LISP Machine environment. The student can concentrate on learning ZetaLISP programming and not on how to operate the interface or a LISP Machine.
Liu, Da; Xu, Ming; Niu, Dongxiao; Wang, Shoukai; Liang, Sai
2016-01-01
Traditional forecasting models fit a function approximation from dependent invariables to independent variables. However, they usually get into trouble when date are presented in various formats, such as text, voice and image. This study proposes a novel image-encoded forecasting method that input and output binary digital two-dimensional (2D) images are transformed from decimal data. Omitting any data analysis or cleansing steps for simplicity, all raw variables were selected and converted to binary digital images as the input of a deep learning model, convolutional neural network (CNN). Using shared weights, pooling and multiple-layer back-propagation techniques, the CNN was adopted to locate the nexus among variations in local binary digital images. Due to the computing capability that was originally developed for binary digital bitmap manipulation, this model has significant potential for forecasting with vast volume of data. The model was validated by a power loads predicting dataset from the Global Energy Forecasting Competition 2012.
Xu, Ming; Niu, Dongxiao; Wang, Shoukai; Liang, Sai
2016-01-01
Traditional forecasting models fit a function approximation from dependent invariables to independent variables. However, they usually get into trouble when date are presented in various formats, such as text, voice and image. This study proposes a novel image-encoded forecasting method that input and output binary digital two-dimensional (2D) images are transformed from decimal data. Omitting any data analysis or cleansing steps for simplicity, all raw variables were selected and converted to binary digital images as the input of a deep learning model, convolutional neural network (CNN). Using shared weights, pooling and multiple-layer back-propagation techniques, the CNN was adopted to locate the nexus among variations in local binary digital images. Due to the computing capability that was originally developed for binary digital bitmap manipulation, this model has significant potential for forecasting with vast volume of data. The model was validated by a power loads predicting dataset from the Global Energy Forecasting Competition 2012. PMID:27281032
Dynamic compressive properties obtained from a split Hopkinson pressure bar test of Boryeong shale
NASA Astrophysics Data System (ADS)
Kang, Minju; Cho, Jung-Woo; Kim, Yang Gon; Park, Jaeyeong; Jeong, Myeong-Sik; Lee, Sunghak
2016-09-01
Dynamic compressive properties of a Boryeong shale were evaluated by using a split Hopkinson pressure bar, and were compared with those of a Hwangdeung granite which is a typical hard rock. The results indicated that the dynamic compressive loading reduced the resistance to fracture. The dynamic compressive strength was lower in the shale than in the granite, and was raised with increasing strain rate by microcracking effect as well as strain rate strengthening effect. Since the number of microcracked fragments increased with increasing strain rate in the shale having laminated weakness planes, the shale showed the better fragmentation performance than the granite at high strain rates. The effect of transversely isotropic plane on compressive strength decreased with increasing strain rate, which was desirable for increasing the fragmentation performance. Thus, the shale can be more reliably applied to industrial areas requiring good fragmentation performance as the striking speed of drilling or hydraulic fracturing machines increased. The present dynamic compressive test effectively evaluated the fragmentation performance as well as compressive strength and strain energy density by controlling the air pressure, and provided an important idea on which rock was more readily fragmented under dynamically processing conditions such as high-speed drilling and blasting.
Compressibility characteristics of Sabak Bernam Marine Clay
NASA Astrophysics Data System (ADS)
Lat, D. C.; Ali, N.; Jais, I. B. M.; Baharom, B.; Yunus, N. Z. M.; Salleh, S. M.; Azmi, N. A. C.
2018-04-01
This study is carried out to determine the geotechnical properties and compressibility characteristics of marine clay collected at Sabak Bernam. The compressibility characteristics of this soil are determined from 1-D consolidation test and verified by existing correlations by other researchers. No literature has been found on the compressibility characteristics of Sabak Bernam Marine Clay. It is important to carry out this study since this type of marine clay covers large coastal area of west coast Malaysia. This type of marine clay was found on the main road connecting Klang to Perak and the road keeps experiencing undulation and uneven settlement which jeopardise the safety of the road users. The soil is indicated in the Generalised Soil Map of Peninsular Malaysia as a CLAY with alluvial soil on recent marine and riverine alluvium. Based on the British Standard Soil Classification and Plasticity Chart, the soil is classified as a CLAY with very high plasticity (CV). Results from laboratory test on physical properties and compressibility parameters show that Sabak Bernam Marine Clay (SBMC) is highly compressible, has low permeability and poor drainage characteristics. The compressibility parameters obtained for SBMC is in a good agreement with other researchers in the same field.
Origin of texture development in orthorhombic uranium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zecevic, Miroslav; Knezevic, Marko; Beyerlein, Irene Jane
We study texture evolution of alpha-uranium (α-U) during plane strain compression and uniaxial compression to high strains at different temperatures. We combine a multiscale polycrystal constitutive model and detailed analysis of texture data to uncover the slip and twinning modes responsible for the formation of individual texture components. The analysis indicates that during plane strain compression, floor slip (001)[100] results in the formation of two pronounced {001}{001} texture peaks tilted 10–15° away from the normal toward the rolling direction. During both high-temperature (573 K) through-thickness compression and plane strain compression, the active slip modes are floor slip (001)[100] and chimneymore » slip 1/2{110} <11¯0> with slightly different ratios. {130} <31¯0> deformation twinning is profuse during rolling and in-plane compression and decreases with increasing temperature, but is not as active for through-thickness compression. Lastly, we comment on some similarities between rolling textures of α-U, which has a c/a ratio of 1.734, and those that develop in hexagonal close packed metals with similarly high c/a ratios like Zn (1.856) and Cd (1.885) and are dominated by basal slip.« less
Origin of texture development in orthorhombic uranium
Zecevic, Miroslav; Knezevic, Marko; Beyerlein, Irene Jane; ...
2016-04-09
We study texture evolution of alpha-uranium (α-U) during plane strain compression and uniaxial compression to high strains at different temperatures. We combine a multiscale polycrystal constitutive model and detailed analysis of texture data to uncover the slip and twinning modes responsible for the formation of individual texture components. The analysis indicates that during plane strain compression, floor slip (001)[100] results in the formation of two pronounced {001}{001} texture peaks tilted 10–15° away from the normal toward the rolling direction. During both high-temperature (573 K) through-thickness compression and plane strain compression, the active slip modes are floor slip (001)[100] and chimneymore » slip 1/2{110} <11¯0> with slightly different ratios. {130} <31¯0> deformation twinning is profuse during rolling and in-plane compression and decreases with increasing temperature, but is not as active for through-thickness compression. Lastly, we comment on some similarities between rolling textures of α-U, which has a c/a ratio of 1.734, and those that develop in hexagonal close packed metals with similarly high c/a ratios like Zn (1.856) and Cd (1.885) and are dominated by basal slip.« less
Recent and active tectonics of the external zone of the Northern Apennines (Italy)
NASA Astrophysics Data System (ADS)
Boccaletti, Mario; Corti, Giacomo; Martelli, Luca
2011-08-01
We present a comprehensive study of the recent and active tectonics of the external part of the Northern Apennines (Italy) by using morphotectonic, geological-structural, and stratigraphic analysis, compared with the current seismicity of the region. This analysis suggests that the external part of the Northern Apennines is characterised by presence of three major systems of Quaternary compressive structures corresponding to (1) the Apenninic watershed, (2) the Apennines-Po Plain margin (pede-Apenninic thrust front), and (3) the Emilia, Ferrara, and Adriatic Fold systems buried below the Po Plain. Geological data and interpreted seismic sections indicate a roughly N-S Quaternary deformation direction, with rates <2.5 mm/year. The shortening decreased since the Pliocene, when our data indicate compression in a NNW-SSE direction and rates up to 7 mm/year. The trend and kinematics of the structures affecting the Apennines-Po Plain margin and the Po Plain subsoil fit well the pattern of the current seismicity of the area, as well as recent GPS and geodetic levelling data, pointing to a current activity of these thrust systems controlled by an overall compressive stress field. Close to the Apenninic watershed, earthquake focal mechanisms indicate that shallow extension is associated to deep compression. The extensional events may be related to a secondary extensional stress field developing on the hangingwall of the thrust system affecting the Apenninic watershed; alternatively, this thrust system may have been recently deactivated and overprinted by active normal faulting. Deeper compressive events are related to the activity of both a major basement thrust that connects at surface with the pede-Apenninic thrust front and a major Moho structure.
Ellis, William L.; Kibler, J.D.
1983-01-01
Explosion-induced compressive stress increases near an underground nuclear explosion are believed to contribute significantly to the containment of high-pressure gases within the explosion-produced cavity. These induced compressive stresses are predicted by computer calculations, but have never been adequately confirmed by field measurements, owing primarily to the unique difficulties of obtaining such field data. Vibrating-wire stressmeter measurements made near the Mighty Epic nuclear detonation, however, qualitatively indicate that within 150 meters of the working point, permanent compressive stress increases of several megapascals were present 15 weeks after the event. Additionally, stress-change magnitudes interpreted from the stressmeter data between the 75- and 260-meter range from the working point compare favorably with calculational predictions of the stress changes believed to be present shortly after detonation of the event. The measurements and calculations differ, however, with regard to the pattern of stress change radial and transverse to the explosion source. For the range of the field measurements from the working point, computer models predict the largest compressive-stress increase to be radial to the explosion source, while the field data indicate the transverse component of. stress change to be the most compressive. The significance of time-dependent modification of the initial explosion-induced stress distribution is, however, uncertain with regard to the comparison of the field measurements and theoretical predictions.
Oxidation Behavior of Matrix Graphite and Its Effect on Compressive Strength
Zhou, Xiangwen; Contescu, Cristian I.; Zhao, Xi; ...
2017-01-01
Mmore » atrix graphite (G) with incompletely graphitized binder used in high-temperature gas-cooled reactors (HTGRs) is commonly suspected to exhibit lower oxidation resistance in air. In order to reveal the oxidation performance, the oxidation behavior of newly developed A3-3 G at the temperature range from 500 to 950°C in air was studied and the effect of oxidation on the compressive strength of oxidized G specimens was characterized. Results show that temperature has a significant influence on the oxidation behavior of G. The transition temperature between Regimes I and II is ~700°C and the activation energy ( E a ) in Regime I is around 185 kJ/mol, a little lower than that of nuclear graphite, which indicates G is more vulnerable to oxidation. Oxidation at 550°C causes more damage to compressive strength of G than oxidation at 900°C. Comparing with the strength of pristine G specimens, the rate of compressive strength loss is 77.3% after oxidation at 550°C and only 12.5% for oxidation at 900°C. icrostructure images of SE and porosity measurement by ercury Porosimetry indicate that the significant compressive strength loss of G oxidized at 550°C may be attributed to both the uniform pore formation throughout the bulk and the preferential oxidation of the binder.« less
NASA Technical Reports Server (NTRS)
Lao, Pudong; Tang, Wade C.; Rajkumar, K. C.; Guha, S.; Madhukar, A.; Liu, J. K.; Grunthaner, F. J.
1990-01-01
The quality of GaAs thin films grown via MBE under pulsed excimer laser irradiation on Si substrates is examined in both laser-irradiated and nonirradiated areas using Raman scattering, Rayleigh scattering, and by photoluminescence (PL), as a function of temperature, and by TEM. The temperature dependence of the PL and Raman peak positions indicates the presence of compressive stress in the thin GaAs films in both laser-irradiated and nonirradiated areas. This indicates incomplete homogeneous strain relaxation by dislocations at the growth temperature. The residual compressive strain at the growth temperature is large enough such that even with the introduction of tensile strain arising from the difference in thermal expansion coefficients of GaAs and Si, a compressive strain is still present at room temperature for these thin GaAs/Si films.
Lone-pair interactions and photodissociation of compressed nitrogen trifluoride
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurzydłowski, D., E-mail: dkurzydlowski@uw.edu.pl; Department of Biogeochemistry, Max Planck Institute for Chemistry, 55128 Mainz; Wang, H. B.
2014-08-14
High-pressure behavior of nitrogen trifluoride (NF{sub 3}) was investigated by Raman and IR spectroscopy at pressures up to 55 GPa and room temperature, as well as by periodic calculations up to 100 GPa. Experimentally, we find three solid-solid phase transitions at 9, 18, and 39.5 GPa. Vibrational spectroscopy indicates that in all observed phases NF{sub 3} remains in the molecular form, in contrast to the behavior of compressed ammonia. This finding is confirmed by density functional theory calculations, which also indicate that the phase transitions of compressed NF{sub 3} are governed by the interplay between lone‑pair interactions and efficient moleculemore » packing. Although nitrogen trifluoride is molecular in the whole pressure range studied, we show that it can be photodissociated by mid-IR laser radiation. This finding paves the way for the use of NF{sub 3} as an oxidizing and fluorinating agent in high-pressure reactions.« less
Radiative shocks produced from spherical cryogenic implosions at the National Ignition Facility
Pak, A.; Divol, L.; Gregori, G.; ...
2013-05-20
Spherically expanding radiative shock waves have been observed from inertially confined implosion experiments at the National Ignition Facility. In these experiments, a spherical fusion target, initially 2 mm in diameter, is compressed via the pressure induced from the ablation of the outer target surface. At the peak compression of the capsule, x-ray and nuclear diagnostics indicate the formation of a central core, with a radius and ion temperature of ~20 μm and ~ 2 keV, respectively. This central core is surrounded by a cooler compressed shell of deuterium-tritium fuel that has an outer radius of ~40 μm and a densitymore » of >500 g/cm 3. Using inputs from multiple diagnostics, the peak pressure of the compressed core has been inferred to be of order 100 Gbar for the implosions discussed here. Furthermore, the shock front, initially located at the interface between the high pressure compressed fuel shell and surrounding in-falling low pressure ablator plasma, begins to propagate outwards after peak compression has been reached.« less
NASA Astrophysics Data System (ADS)
Lee, Sung Keun; Park, Sun Young; Kim, Hyo-Im; Tschauner, Oliver; Asimow, Paul; Bai, Ligang; Xiao, Yuming; Chow, Paul
2012-03-01
The detailed atomic structures of shock compressed basaltic glasses are not well understood. Here, we explore the structures of shock compressed silicate glass with a diopside-anorthite eutectic composition (Di64An36), a common Fe-free model basaltic composition, using oxygen K-edge X-ray Raman scattering and high- resolution 27Al solid-state NMR spectroscopy and report previously unknown details of shock-induced changes in the atomic configurations. A topologically driven densification of the Di64An36 glass is indicated by the increase in oxygen K-edge energy for the glass upon shock compression. The first experimental evidence of the increase in the fraction of highly coordinated Al in shock compressed glass is found in the 27Al NMR spectra. This unambiguous evidence of shock-induced changes in Al coordination environments provides atomistic insights into shock compression in basaltic glasses and allows us to microscopically constrain the magnitude of impact events or relevant processes involving natural basalts on Earth and planetary surfaces.
Sreenivasan, D; Watson, M; Callon, K; Dray, M; Das, R; Grey, A; Cornish, J; Fernandez, J
2013-12-01
In this study we evaluate the influence of low-dose fluoride treatment on 23 patient biopsies. Computational finite element (FE) models of each biopsy were subjected to a range of loads including compression, shear and torsion. The modelling framework was validated against three 3D printed models with known material properties subjected to compression till failure using an Instron machine. The primary outcomes from this study were that mechanical strength was not significantly correlated to low-dose (<10 mg/day) of fluoride levels (one-way ANOVA, P-values of 0.78, 0.69 and 0.62 for compression, shear and torsion, respectively). However, when bulk bone material properties were derived from DXA bone mineral density (BMD) from each patient's proximal femur a non-significant linear decline in mechanical strength with increase in fluoride was predicted. When the same material property was used for all bones (to evaluate bone architecture influence) then mechanical strength showed a characteristic concave upwards trend, consistent with the variation of micro CT derived percentage bone volume (BV/TV). The secondary outcomes from this study were that in compression, BV/TV was observed to be a strong surrogate measure for mechanical strength (R(2) = 0.83), while bone surface density (R(2)=0.6), trabecular thickness (R(2) = 0.5) and intersection surface (R(2) = 0.6) also explained the variation of mechanical strength well. However, trabecular separation and trabecular number were mildly correlated with mechanical strength (R(2) of 0.31 and 0.35, respectively). Compression was the loading mode most strongly correlated to micro CT indices. Material properties adapted from the proximal femur reduced the CT index correlations by up to 58% indicating that bulk density from a near proximity is a poor representation of specific localised density. Substituting the 3D micro CT indices with 2D histomorphometric data decreased correlations by at least 33% indicating that structural identification on a plane is not representative of the full 3D architecture necessary for a complete bone strength analysis. The presented computational framework may be used to assess the roles that bone architecture and loading modes play in bone quality, and which micro CT indices are good surrogate measures for mechanical strength. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.
How radiologic/clinicopathologic features relate to compressive symptoms in benign thyroid disease.
Siegel, Bianca; Ow, Thomas J; Abraham, Suzanne S; Loftus, Patricia A; Tassler, Andrew B; Smith, Richard V; Schiff, Bradley A
2017-04-01
To identify compressive symptomatology in a patient cohort with benign thyroid disease who underwent thyroidectomy. To determine radiographic/clinicopathologic features related to and predictive of a compressive outcome. Retrospective cohort study. Medical records of 232 patients with benign thyroid disease on fine needle aspiration who underwent thyroidectomy from 2009 to 2012 at an academic medical center were reviewed. Data collection and analyses involved subjects' demographics, compressive symptoms, preoperative airway encroachment, intubation complications, specimen weight, and final pathologic diagnosis. Subjects were ages 14 to 86 years (mean: 52.4 years). Ninety-six subjects (41.4%) reported compressive symptomatology of dysphagia (n =74; 32%), dyspnea (n = 39; 17%), and hoarseness (n = 24; 10%). Ninety-seven (42.2%) had preoperative airway encroachment. Dyspnea was significantly related to tracheal compression, tracheal deviation, and substernal extension. Dysphagia was related to tracheal compression and tracheal deviation. Compressive symptoms and preoperative airway encroachment were not related to intubation complications. Final pathologic diagnosis was not related to compressive symptoms, whereas specimen weight was significantly related to dyspnea and dysphagia. Final pathology revealed 74 subjects (32%) with malignant lesions. Malignant and benign nodular subject groups differed significantly in substernal extension, gland weight, tracheal deviation, and dyspnea. Logit modeling for dyspnea was significant for tracheal compression as a predictor for the likelihood of dyspnea. Dyspnea was closely related to preoperative airway encroachment and most indicative of a clinically relevant thyroid in our cohort with benign thyroid disease. Tracheal compression was found to have predictive value for the likelihood of a dyspneic outcome. 4. Laryngoscope, 127:993-997, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.
NASA Astrophysics Data System (ADS)
Kurokawa, A. K.; Miwa, T.; Okumura, S.; Uesugi, K.
2017-12-01
After ash-dominated Strombolian eruption, considerable amount of ash falls back to the volcanic conduit forming a dense near-surface region compacted by weights of its own and other fallback clasts (Patrick et al., 2007). Gas accumulation below this dense cap causes a substantial increase in pressure within the conduit, causing the volcanic activity to shift to the preliminary stages of a forthcoming eruption (Del Bello et al., 2015). Under such conditions, rheology of the fallback ash plays an important role because it controls whether the fallback ash can be the cap. However, little attention has been given to the point. We examined the rheology of ash collected at Stromboli volcano via intermittent compression experiments changing temperature and compression time/rate. The ash deformed at a constant rate during compression process, and then it was compressed without any deformation during rest process. The compression and rest processes repeated during each experiment to see rheological variations with progression of compaction. Viscoelastic changes during the experiment were estimated by Maxwell model. The results show that both elasticity and viscosity increases with decreasing porosity. On the other hand, the elasticity shows strong rate-dependence in the both compression and rest processes while the viscosity dominantly depends on the temperature, although the compression rate also affects the viscosity in the case of the compression process. Thus, the ash behaves either elastically or viscously depending on experimental process, temperature, and compression rate/time. The viscoelastic characteristics can be explained by magnitude relationships between the characteristic relaxation times and times for compression and rest processes. This indicates that the balance of the time scales is key to determining the rheological characteristics and whether the ash behaves elastically or viscously may control cyclic Strombolian eruptions.
Flour, Mieke; Clark, Michael; Partsch, Hugo; Mosti, Giovanni; Uhl, Jean-Francois; Chauveau, Michel; Cros, Francois; Gelade, Pierre; Bender, Dean; Andriessen, Anneke; Schuren, Jan; Cornu-Thenard, André; Arkans, Ed; Milic, Dragan; Benigni, Jean-Patrick; Damstra, Robert; Szolnoky, Gyozo; Schingale, Franz
2013-10-01
The International Compression Club (ICC) is a partnership between academics, clinicians and industry focused upon understanding the role of compression in the management of different clinical conditions. The ICC meet regularly and from these meetings have produced a series of eight consensus publications upon topics ranging from evidence-based compression to compression trials for arm lymphoedema. All of the current consensus documents can be accessed on the ICC website (http://www.icc-compressionclub.com/index.php). In May 2011, the ICC met in Brussels during the European Wound Management Association (EWMA) annual conference. With almost 50 members in attendance, the day-long ICC meeting challenged a series of dogmas and myths that exist when considering compression therapies. In preparation for a discussion on beliefs surrounding compression, a forum was established on the ICC website where presenters were able to display a summary of their thoughts upon each dogma to be discussed during the meeting. Members of the ICC could then provide comments on each topic thereby widening the discussion to the entire membership of the ICC rather than simply those who were attending the EWMA conference. This article presents an extended report of the issues that were discussed, with each dogma covered in a separate section. The ICC discussed 12 'dogmas' with areas 1 through 7 dedicated to materials and application techniques used to apply compression with the remaining topics (8 through 12) related to the indications for using compression. © 2012 The Authors. International Wound Journal © 2012 John Wiley & Sons Ltd and Medicalhelplines.com Inc.
Hydrologic and geologic factors affecting land subsidence near Eloy, Arizona
Epstein, V.J.
1987-01-01
At an extensometer site near Eloy, Arizona, 1.09 m of land subsidence caused by groundwater withdrawal were measured by leveling in 1965-83. The extensometer, which partially penetrates the compressible sediments, recorded 0.82 m of compaction during the same period. By use of a one-dimensional model, cumulative daily compaction values were simulated to within an average of 0.0038 m of the actual values. Land subsidence was simulated to within an average of 0.011 m using the same model in conjunction with geohydrologic data of the sediments below the extensometer. A highly compressible clay layer that is 24.38 m thick was partially penetrated by the extensometer. The simulation indicated that the layer was driving compaction and land subsidence linearly with respect to time, despite the presence of other compacting layers. Because of its thickness and compressibility, this layer can be expected to continue to compact after applied vertical stresses have stopped increasing and other layers have stopped compacting. Sensitivity analysis indicated that the compressibility of fine-grained sediments (expressed as specific storage) is one of the factors to which compact is most sensitive. Preconsolidation stress and hydraulic conductivity also affect land subsidence near Eloy, Arizona. (Author 's abstract)
Postpneumonectomy Compression of the Mitral Annulus: Rare Vascular Complication in Sportive Patient.
Debeaumont, David; Bota, Susana; Baste, Jean-Marc; Bellefleur, Marie; Stepowski, Dimitri; Vincent, Florence; Bonnevie, Tristan; Gravier, Francis-Edouard; Netchitailo, Marie; Tardif, Catherine; Boutry, Alain; Muir, Jean-François; Coquart, Jérémy
2016-01-01
Numerous postpneumonectomy complications exist. We present a rare clinical case of postpneumonectomy exertional dyspnea revealing compression of the mitral annulus by the descending aorta. The patient was 42-year-old former smoker with pulmonary emphysema. He has been operated on, in 2012 (i.e., right pneumonectomy). Before the surgery, the patient was a recreational runner. However, after some months, it was difficult for the patient to resume running. Cardiopulmonary exercise testing indicated moderate exercise intolerance with important oxygen desaturation. More interestingly, a decrease of low oxygen pulse was noticed from the first ventilatory threshold with no electrical modification on the electrocardiogram. This decrease was indicative of a decline in stroke volume. The thoracic scan revealed a right pneumonectomy pocket with a liquid abnormal content. Moreover, the mediastinum had shifted toward the pneumonectomy space and the left lung was distended and emphysematous. Echocardiography revealed a major change in the mediastinal anatomy. The mitral annulus was observed to be compressed by the rear wall of the descending aorta. The diagnosis of postpneumonectomy syndrome or platypnea-orthodeoxia syndrome was ruled out in this patient. Mitral annular compression by the descending aorta is rare complication, which must be researched in patients with postpneumonectomy exertional dyspnea.
Postpneumonectomy Compression of the Mitral Annulus: Rare Vascular Complication in Sportive Patient
Debeaumont, David; Bota, Susana; Baste, Jean-Marc; Bellefleur, Marie; Stepowski, Dimitri; Vincent, Florence; Bonnevie, Tristan; Gravier, Francis-Edouard; Netchitailo, Marie; Tardif, Catherine; Boutry, Alain; Muir, Jean-François
2016-01-01
Numerous postpneumonectomy complications exist. We present a rare clinical case of postpneumonectomy exertional dyspnea revealing compression of the mitral annulus by the descending aorta. The patient was 42-year-old former smoker with pulmonary emphysema. He has been operated on, in 2012 (i.e., right pneumonectomy). Before the surgery, the patient was a recreational runner. However, after some months, it was difficult for the patient to resume running. Cardiopulmonary exercise testing indicated moderate exercise intolerance with important oxygen desaturation. More interestingly, a decrease of low oxygen pulse was noticed from the first ventilatory threshold with no electrical modification on the electrocardiogram. This decrease was indicative of a decline in stroke volume. The thoracic scan revealed a right pneumonectomy pocket with a liquid abnormal content. Moreover, the mediastinum had shifted toward the pneumonectomy space and the left lung was distended and emphysematous. Echocardiography revealed a major change in the mediastinal anatomy. The mitral annulus was observed to be compressed by the rear wall of the descending aorta. The diagnosis of postpneumonectomy syndrome or platypnea-orthodeoxia syndrome was ruled out in this patient. Mitral annular compression by the descending aorta is rare complication, which must be researched in patients with postpneumonectomy exertional dyspnea. PMID:28116204
Yesudasan, Sumith; Wang, Xianqiao; Averett, Rodney D
2018-05-01
We developed a new mechanical model for determining the compression and shear mechanical behavior of four different hemoglobin structures. Previous studies on hemoglobin structures have focused primarily on overall mechanical behavior; however, this study investigates the mechanical behavior of hemoglobin, a major constituent of red blood cells, using steered molecular dynamics (SMD) simulations to obtain anisotropic mechanical behavior under compression and shear loading conditions. Four different configurations of hemoglobin molecules were considered: deoxyhemoglobin (deoxyHb), oxyhemoglobin (HbO 2 ), carboxyhemoglobin (HbCO), and glycated hemoglobin (HbA 1C ). The SMD simulations were performed on the hemoglobin variants to estimate their unidirectional stiffness and shear stiffness. Although hemoglobin is structurally denoted as a globular protein due to its spherical shape and secondary structure, our simulation results show a significant variation in the mechanical strength in different directions (anisotropy) and also a strength variation among the four different hemoglobin configurations studied. The glycated hemoglobin molecule possesses an overall higher compressive mechanical stiffness and shear stiffness when compared to deoxyhemoglobin, oxyhemoglobin, and carboxyhemoglobin molecules. Further results from the models indicate that the hemoglobin structures studied possess a soft outer shell and a stiff core based on stiffness.
Tamm, Maria; Jakobson, Ainika; Havik, Merle; Burk, Andres; Timpmann, Saima; Allik, Jüri; Oöpik, Vahur; Kreegipuu, Kairi
2014-01-01
The human perception of time was observed under extremely hot conditions. Young healthy men performed a time production task repeatedly in 4 experimental trials in either a temperate (22 °C, relative humidity 35%) or a hot (42 °C, relative humidity 18%) environment and with or without a moderate-intensity treadmill exercise. Within 1 hour, the produced durations indicated a significant compression of short intervals (0.5 to 10 s) in the combination of exercising and high ambient temperature, while neither variable/condition alone was enough to yield the effect. Temporal judgement was analysed in relation to different indicators of arousal, such as critical flicker frequency (CFF), core temperature, heart rate, and subjective ratings of fatigue and exertion. The arousal-sensitive internal clock model (originally proposed by Treisman) is used to explain the temporal compression while exercising in heat. As a result, we suggest that the psychological response to heat stress, the more precisely perceived fatigue, is important in describing the relationship between core temperature and time perception. Temporal compression is related to higher core temperature, but only if a certain level of perceived fatigue is accounted for, implying the existence of a thermoemotional internal clock.
Experimental investigation of graphite/polyimide sandwich panels in edgewise compression
NASA Technical Reports Server (NTRS)
Camarda, C. J.
1980-01-01
The local and general buckling behavior of graphite/polyimide sandwich panels simply supported along all four edges and loaded in uniaxial edgewise compression was investigated. Material properties of adhesive and facings were determined from flatwise tension and sandwich beam flexure tests. Tensile and compressive material properties of the facings were determined at 116, R.T., and 589 K (-250, R.T., and 600 F) using the sandwich beam flexure test method. Results indicate that Gr/PI is a usable structural material for short term use at temperatures as high as 589 K (600 F). Buckling specimens were 30.5 X 33.0 cm (12 x 13 in.), had quasi-isotropic symmetric facings and a glass/polyimide honeycomb core. Core thicknesses varied and three panels of each thickness were tested in edgewise compression at room temperature to investigate failure modes and corresponding buckling formulas. Specimens 0.635 cm (0.25 in.) thick failed by overall buckling at loads close to the analytically predicted buckling load; all other panels failed by face wrinkling. Results of the winkling tests indicate that several buckling formulas were unconservative and therefore not suitable for design purposes; recommended wrinkling equations are presented.
Experimental studies of graphite-epoxy and boron-epoxy angle ply laminates in compression
NASA Technical Reports Server (NTRS)
Weller, T.
1977-01-01
A test program aimed at studying the nonlinear/inelastic response under axial compression across a wide range of angle ply was graphite-epoxy and boron-epoxy laminates was presented and described. The strength allowables corresponding to the various laminate configurations were defined and the failure mechanisms which dictate their mode of failure were detected. The program involved two types of specimens for each laminate configuration: compression sandwich coupons and compression tubes. The test results indicate that the coupons perform better than the tubes displaying considerably high stress-strain allowables and mechanical properties relative to the tubes. Also, it is observed that depending on their dimensions the coupons are susceptible to very pronounced edge effects. This sensitivity results in assigning to the laminate conservative mechanical properties rather than the actual ones.
Partsch, Hugo; Clark, Michael; Bassez, Sophie; Benigni, Jean-Patrick; Becker, Francis; Blazek, Vladimir; Caprini, Joseph; Cornu-Thénard, André; Hafner, Jürg; Flour, Mieke; Jünger, Michael; Moffatt, Christine; Neumann, Martino
2006-02-01
Interface pressure and stiffness characterizing the elastic properties of the material are the parameters determining the dosage of compression treatment and should therefore be measured in future clinical trials. To provide some recommendations regarding the use of suitable methods for this indication. This article was formulated based on the results of an international consensus meeting between a group of medical experts and representatives from the industry held in January 2005 in Vienna, Austria. Proposals are made concerning methods for measuring the interface pressure and for assessing the stiffness of a compression device in an individual patient. In vivo measurement of interface pressure is encouraged when clinical and experimental outcomes of compression treatment are to be evaluated.
Impact of lossy compression on diagnostic accuracy of radiographs for periapical lesions
NASA Technical Reports Server (NTRS)
Eraso, Francisco E.; Analoui, Mostafa; Watson, Andrew B.; Rebeschini, Regina
2002-01-01
OBJECTIVES: The purpose of this study was to evaluate the lossy Joint Photographic Experts Group compression for endodontic pretreatment digital radiographs. STUDY DESIGN: Fifty clinical charge-coupled device-based, digital radiographs depicting periapical areas were selected. Each image was compressed at 2, 4, 8, 16, 32, 48, and 64 compression ratios. One root per image was marked for examination. Images were randomized and viewed by four clinical observers under standardized viewing conditions. Each observer read the image set three times, with at least two weeks between each reading. Three pre-selected sites per image (mesial, distal, apical) were scored on a five-scale score confidence scale. A panel of three examiners scored the uncompressed images, with a consensus score for each site. The consensus score was used as the baseline for assessing the impact of lossy compression on the diagnostic values of images. The mean absolute error between consensus and observer scores was computed for each observer, site, and reading session. RESULTS: Balanced one-way analysis of variance for all observers indicated that for compression ratios 48 and 64, there was significant difference between mean absolute error of uncompressed and compressed images (P <.05). After converting the five-scale score to two-level diagnostic values, the diagnostic accuracy was strongly correlated (R (2) = 0.91) with the compression ratio. CONCLUSION: The results of this study suggest that high compression ratios can have a severe impact on the diagnostic quality of the digital radiographs for detection of periapical lesions.
Contribution of actin filaments to the global compressive properties of fibroblasts.
Ujihara, Yoshihiro; Nakamura, Masanori; Miyazaki, Hiroshi; Wada, Shigeo
2012-10-01
Actin filaments are often regarded as tension-bearing components. Here, we examined the effects of actin filaments on global compressive properties of cells experimentally and numerically. Fibroblasts were harvested from the patellar tendon of a mature Japanese white rabbit and treated with cytochalasin D to depolymerize the actin filaments. Intact cells and cells with disrupted actin filaments were subjected to the compressive tests. Each floating cell was held between the cantilever and compressive plates and compressed by moving the compressive plate with a linear actuator to obtain a load-deformation curve under quasi-static conditions. The experimental results demonstrated that the initial stiffness of a cell with disrupted actin filaments decreased by 51%. After the experiments, we simulated the compressive test of cells with/without bundles of actin filaments. A bundle of actin filaments was modeled as a tension-bearing component that generates a force based on Hooke's law only when it was elongated. By contrast, if it was shortened, it was assumed to exert no force. The computational results revealed that the alignment of bundles of actin filaments significantly affected the cell stiffness. In addition, the passive reorientation of bundles of actin filaments perpendicular to the compression induced an increase in the resistance to the vertical elongation of a cell and thereby increased the cell stiffness. These results clearly indicated that bundles of actin filaments contribute to the compressive properties of a cell, even if they are tension-bearing components. Copyright © 2012 Elsevier Ltd. All rights reserved.
A new version of Visual tool for estimating the fractal dimension of images
NASA Astrophysics Data System (ADS)
Grossu, I. V.; Felea, D.; Besliu, C.; Jipa, Al.; Bordeianu, C. C.; Stan, E.; Esanu, T.
2010-04-01
This work presents a new version of a Visual Basic 6.0 application for estimating the fractal dimension of images (Grossu et al., 2009 [1]). The earlier version was limited to bi-dimensional sets of points, stored in bitmap files. The application was extended for working also with comma separated values files and three-dimensional images. New version program summaryProgram title: Fractal Analysis v02 Catalogue identifier: AEEG_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEG_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 9999 No. of bytes in distributed program, including test data, etc.: 4 366 783 Distribution format: tar.gz Programming language: MS Visual Basic 6.0 Computer: PC Operating system: MS Windows 98 or later RAM: 30 M Classification: 14 Catalogue identifier of previous version: AEEG_v1_0 Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 1999 Does the new version supersede the previous version?: Yes Nature of problem: Estimating the fractal dimension of 2D and 3D images. Solution method: Optimized implementation of the box-counting algorithm. Reasons for new version:The previous version was limited to bitmap image files. The new application was extended in order to work with objects stored in comma separated values (csv) files. The main advantages are: Easier integration with other applications (csv is a widely used, simple text file format); Less resources consumed and improved performance (only the information of interest, the "black points", are stored); Higher resolution (the points coordinates are loaded into Visual Basic double variables [2]); Possibility of storing three-dimensional objects (e.g. the 3D Sierpinski gasket). In this version the optimized box-counting algorithm [1] was extended to the three-dimensional case. Summary of revisions:The application interface was changed from SDI (single document interface) to MDI (multi-document interface). One form was added in order to provide a graphical user interface for the new functionalities (fractal analysis of 2D and 3D images stored in csv files). Additional comments: User friendly graphical interface; Easy deployment mechanism. Running time: In the first approximation, the algorithm is linear. References:[1] I.V. Grossu, C. Besliu, M.V. Rusu, Al. Jipa, C.C. Bordeianu, D. Felea, Comput. Phys. Comm. 180 (2009) 1999-2001.[2] F. Balena, Programming Microsoft Visual Basic 6.0, Microsoft Press, US, 1999.
Powder compression mechanics of spray-dried lactose nanocomposites.
Hellrup, Joel; Nordström, Josefina; Mahlin, Denny
2017-02-25
The aim of this study was to investigate the structural impact of the nanofiller incorporation on the powder compression mechanics of spray-dried lactose. The lactose was co-spray-dried with three different nanofillers, that is, cellulose nanocrystals, sodium montmorillonite and fumed silica, which led to lower micron-sized nanocomposite particles with varying structure and morphology. The powder compression mechanics of the nanocomposites and physical mixtures of the neat spray-dried components were evaluated by a rational evaluation method with compression analysis as a tool, using the Kawakita equation and the Shapiro-Konopicky-Heckel equation. Particle rearrangement dominated the initial compression profiles due to the small particle size of the materials. The strong contribution of particle rearrangement in the materials with fumed silica continued throughout the whole compression profile, which prohibited an in-depth material characterization. However, the lactose/cellulose nanocrystals and the lactose/sodium montmorillonite nanocomposites demonstrated high yield pressure compared with the physical mixtures indicating increased particle hardness upon composite formation. This increase has likely to do with a reinforcement of the nanocomposite particles by skeleton formation of the nanoparticles. In summary, the rational evaluation of mechanical properties done by applying powder compression analysis proved to be a valuable tool for mechanical evaluation for this type of spray-dried composite materials, unless they demonstrate particle rearrangement throughout the whole compression profile. Copyright © 2016 Elsevier B.V. All rights reserved.
Davies, C E; Woolfrey, G; Hogg, N; Dyer, J; Cooper, A; Waldron, J; Bulbulia, R; Whyman, M R; Poskitt, K R
2015-12-01
Slough in chronic venous leg ulcers may be associated with delayed healing. The purpose of this study was to assess larval debridement in chronic venous leg ulcers and to assess subsequent effect on healing. All patients with chronic leg ulcers presenting to the leg ulcer service were evaluated for the study. Exclusion criteria were: ankle brachial pressure indices <0.85 or >1.25, no venous reflux on duplex and <20% of ulcer surface covered with slough. Participants were randomly allocated to either 4-layer compression bandaging alone or 4-layer compression bandaging + larvae. Surface areas of ulcer and slough were assessed on day 4; 4-layer compression bandaging was then continued and ulcer size was measured every 2 weeks for up to 12 weeks. A total of 601 patients with chronic leg ulcers were screened between November 2008 and July 2012. Of these, 20 were randomised to 4-layer compression bandaging and 20 to 4-layer compression bandaging + larvae. Median (range) ulcer size was 10.8 (3-21.3) cm(2) and 8.1 (4.3-13.5) cm(2) in the 4-layer compression bandaging and 4-layer compression bandaging + larvae groups, respectively (Mann-Whitney U test, P = 0.184). On day 4, median reduction in slough area was 3.7 cm(2) in the 4-layer compression bandaging group (P < 0.05) and 4.2 cm(2) (P < 0.001) in the 4-layer compression bandaging + larvae group. Median percentage area reduction of slough was 50% in the 4-layer compression bandaging group and 84% in the 4-layer compression bandaging + larvae group (Mann-Whitney U test, P < 0.05). The 12-week healing rate was 73% and 68% in the 4-layer compression bandaging and 4-layer compression bandaging + larvae groups, respectively (Kaplan-Meier analysis, P = 0.664). Larval debridement therapy improves wound debridement in chronic venous leg ulcers treated with multilayer compression bandages. However, no subsequent improvement in ulcer healing was demonstrated. © The Author(s) 2014.
Wong, Sing Wan; Cheung, Brian Chun Ho; Pang, Bruce Tak Keung; Kwong, Ateline; Chung, Anna; Lee, Kenneth Ka Ho; Mak, Arthur Fut Tak
2017-04-11
Deep tissue pressure ulcers, a serious clinical challenge originating in the muscle layer, are hardly detectable at the beginning. The challenge apparently occurs in aged subjects more frequently. As the ulcer propagates to the skin surface, it becomes very difficult to manage and can lead to fatal complications. Preventive measures are thus highly desirable. Although the complex pathological mechanisms have not been fully understood, prolonged and excessive physical challenges and oxidative stress are believed to be involved in the ulcer development. Previous reports have demonstrated that oxidative stress could compromise the mechanical properties of muscle cells, making them easier to be damaged when physical challenges are introduced. In this study, we used senescence accelerated (SAMP8) mice and its control breed (SAMR1) to examine the protective effects of intermittent vibration on aged and control muscle tissues during prolonged epidermal compression under 100mmHg for 6h. Results showed that an application of 35Hz, 0.25g intermittent vibration during compression decreased the compression-induced muscle breakdown in SAMP8 mice, as indicated histologically in terms of number of interstitial nuclei. The fact that no significant difference in muscle damage could be established in the corresponding groups in SAMR1 mice suggests that SAMR1 mice could better accommodate the compression insult than SAMP8 mice. Compression-induced oxidative damage was successfully curbed using intermittent vibration in SAMP8 mice, as indicated by 8-OHdG. A possible explanation is that the anti-oxidative defense could be maintained with intermittent vibration during compression. This was supported by the expression level of PGC-1-alpha, catalase, Gpx-1 and SOD1. Our data suggested intermittent vibration could serve as a preventive measure for deep tissue ulcer, particularly in aged subjects. Copyright © 2017 Elsevier Ltd. All rights reserved.
Storey, John Morse; Curran, Scott J.; Lewis, Samuel A.; ...
2016-08-04
Low-temperature compression ignition combustion can result in nearly smokeless combustion, as indicated by a smoke meter or other forms of soot measurement that rely on absorbance due to elemental carbon content. Highly premixed low-temperature combustion modes do not form particulate matter in the traditional pathways seen with conventional diesel combustion. Previous research into reactivity controlled compression ignition particulate matter has shown, despite a near zero smoke number, significant mass can be collected on filter media used for particulate matter certification measurement. In addition, particulate matter size distributions reveal that a fraction of the particles survive heated double-dilution conditions. This papermore » summarizes research completed at Oak Ridge National Laboratory to date on characterizing the nature, chemistry and aftertreatment considerations of reactivity controlled compression ignition particulate matter and presents new research highlighting the importance of injection strategy and fuel composition on reactivity controlled compression ignition particulate matter formation. Particle size measurements and the transmission electron microscopy results do show the presence of soot particles; however, the elemental carbon fraction was, in many cases, within the uncertainty of the thermal–optical measurement. Particulate matter emitted during reactivity controlled compression ignition operation was also collected with a novel sampling technique and analyzed by thermal desorption or pyrolysis gas chromatography mass spectroscopy. Particulate matter speciation results indicated that the high boiling range of diesel hydrocarbons was likely responsible for the particulate matter mass captured on the filter media. Finally, to investigate potential fuel chemistry effects, either ethanol or biodiesel were incorporated to assess whether oxygenated fuels may enhance particle emission reduction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Storey, John Morse; Curran, Scott J.; Lewis, Samuel A.
Low-temperature compression ignition combustion can result in nearly smokeless combustion, as indicated by a smoke meter or other forms of soot measurement that rely on absorbance due to elemental carbon content. Highly premixed low-temperature combustion modes do not form particulate matter in the traditional pathways seen with conventional diesel combustion. Previous research into reactivity controlled compression ignition particulate matter has shown, despite a near zero smoke number, significant mass can be collected on filter media used for particulate matter certification measurement. In addition, particulate matter size distributions reveal that a fraction of the particles survive heated double-dilution conditions. This papermore » summarizes research completed at Oak Ridge National Laboratory to date on characterizing the nature, chemistry and aftertreatment considerations of reactivity controlled compression ignition particulate matter and presents new research highlighting the importance of injection strategy and fuel composition on reactivity controlled compression ignition particulate matter formation. Particle size measurements and the transmission electron microscopy results do show the presence of soot particles; however, the elemental carbon fraction was, in many cases, within the uncertainty of the thermal–optical measurement. Particulate matter emitted during reactivity controlled compression ignition operation was also collected with a novel sampling technique and analyzed by thermal desorption or pyrolysis gas chromatography mass spectroscopy. Particulate matter speciation results indicated that the high boiling range of diesel hydrocarbons was likely responsible for the particulate matter mass captured on the filter media. Finally, to investigate potential fuel chemistry effects, either ethanol or biodiesel were incorporated to assess whether oxygenated fuels may enhance particle emission reduction.« less
Yan, Ni; Li, Xiao-Han; Cheng, Qi; Yan, Jin; Ni, Xin; Sun, Ji-Hu
2007-04-25
The excitability of nociceptive neurons increases in the intact dorsal root ganglion (DRG) after a chronic compression, but the underlying mechanisms are still unclear. The aim of this study was to investigate the ionic mechanisms underlying the hyperexcitability of nociceptive neurons in the compressed ganglion. Chronic compression of DRG (CCD) was produced in adult rats by inserting two rods through the intervertebral foramina to compress the L4 DRG and the ipsilateral L5 DRG. After 5-7 d, DRG somata were dissociated and placed in culture for 12-18 h. In sharp electrode recording model, the lower current threshold and the depolarized membrane potential in the acutely dissociated CCD neurons were detected, indicating that hyperexcitability is intrinsic to the soma. Since voltage-gated K(+) (Kv) channels in the primary sensory neurons are important for the regulation of excitability, we hypothesized that CCD would alter K(+) current properties in the primary sensory neurons. We examined the effects of 4-aminopyridine (4-AP), a specific antagonist of A-type potassium channel, on the excitability of the control DRG neurons. With 4-AP in the external solution, the control DRG neurons depolarized (with discharges in some cells) and their current threshold decreased as the CCD neurons demonstrated, indicating the involvement of decreased A-type potassium current in the hyperexcitability of the injured neurons. Furthermore, the alteration of A-type potassium current in nociceptive neurons in the compressed ganglion was investigated with the whole-cell patch-clamp recording model. CCD significantly decreased A-type potassium current density in nociceptive DRG neurons. These data suggest that a reduction in A-type potassium current contributes, at least in part, to the increase in neuron excitability that may lead to the development of pain and hyperalgesia associated with CCD.
Kim, Hwang-Hee; Kim, Chun-Soo; Jeon, Ji-Hong; Park, Chan-Gi
2016-01-29
To evaluate the effects of industrial by-products materials on the performance of porous concrete for plant growth, this study investigated the physical, strength, and freeze/thaw resistances of porous concrete for plant growth, prepared by replacing cement with blast furnace slag powder at 60% by weight, and replacing natural stone aggregates with coarse blast furnace slag aggregates at rates of 0%, 20%, 40%, 60% and 100% by weight. In addition, the effects of adding natural jute fiber and styrene butadiene ( SB) latex to these concrete mixtures were evaluated. The void ratio, compressive strength, and freeze/thaw resistance of the samples were measured. With increasing replacement rate of blast furnace aggregates, addition of latex, and mixing of natural jute fiber the void ratio of the concrete was increased. Compressive strength decreased as the replacement rate of blast-furnace slag aggregates increased. The compressive strength decreased after 100 freeze/thaw cycles, regardless of the replacement rate of blast furnace slag aggregates or of the addition of natural jute fiber and latex. The addition of natural jute fiber and latex decreased the compressive strength after 100 freeze/thaw cycles. The test results indicate that the control mixture satisfied the target compressive strength of 10 MPa and the target void ratio of 25% at replacement rates of 0% and 20% for blast furnace aggregates, and that the mixtures containing latex satisfied the criteria up to an aggregate replacement rate of 60%. However, the mixtures containing natural jute fiber did not satisfy these criteria. The relationship between void ratio and residual compressive strength after 100 freeze/thaw cycles indicates that the control mixture and the mixtures containing jute fiber at aggregate replacement rates of 20% and 40% satisfied the target void ratio of 25% and the target residual compressive strength of over 80% after 100 freeze/thaw cycles. The mixtures containing latex and aggregate replacement rates up to 60% satisfied the target void ratio and compressive strength.
Kim, Hwang-Hee; Kim, Chun-Soo; Jeon, Ji-Hong; Park, Chan-Gi
2016-01-01
To evaluate the effects of industrial by-products materials on the performance of porous concrete for plant growth, this study investigated the physical, strength, and freeze/thaw resistances of porous concrete for plant growth, prepared by replacing cement with blast furnace slag powder at 60% by weight, and replacing natural stone aggregates with coarse blast furnace slag aggregates at rates of 0%, 20%, 40%, 60% and 100% by weight. In addition, the effects of adding natural jute fiber and styrene butadiene (SB) latex to these concrete mixtures were evaluated. The void ratio, compressive strength, and freeze/thaw resistance of the samples were measured. With increasing replacement rate of blast furnace aggregates, addition of latex, and mixing of natural jute fiber the void ratio of the concrete was increased. Compressive strength decreased as the replacement rate of blast-furnace slag aggregates increased. The compressive strength decreased after 100 freeze/thaw cycles, regardless of the replacement rate of blast furnace slag aggregates or of the addition of natural jute fiber and latex. The addition of natural jute fiber and latex decreased the compressive strength after 100 freeze/thaw cycles. The test results indicate that the control mixture satisfied the target compressive strength of 10 MPa and the target void ratio of 25% at replacement rates of 0% and 20% for blast furnace aggregates, and that the mixtures containing latex satisfied the criteria up to an aggregate replacement rate of 60%. However, the mixtures containing natural jute fiber did not satisfy these criteria. The relationship between void ratio and residual compressive strength after 100 freeze/thaw cycles indicates that the control mixture and the mixtures containing jute fiber at aggregate replacement rates of 20% and 40% satisfied the target void ratio of 25% and the target residual compressive strength of over 80% after 100 freeze/thaw cycles. The mixtures containing latex and aggregate replacement rates up to 60% satisfied the target void ratio and compressive strength. PMID:28787883
Lossless compression of AVIRIS data: Comparison of methods and instrument constraints
NASA Technical Reports Server (NTRS)
Roger, R. E.; Arnold, J. F.; Cavenor, M. C.; Richards, J. A.
1992-01-01
A family of lossless compression methods, allowing exact image reconstruction, are evaluated for compressing Airborne Visible/Infrared Imaging Spectrometers (AVIRIS) image data. The methods are used on Differential Pulse Code Modulation (DPCM). The compressed data have an entropy of order 6 bits/pixel. A theoretical model indicates that significantly better lossless compression is unlikely to be achieved because of limits caused by the noise in the AVIRIS channels. AVIRIS data differ from data produced by other visible/near-infrared sensors, such as LANDSAT-TM or SPOT, in several ways. Firstly, the data are recorded at a greater resolution (12 bits, though packed into 16-bit words). Secondly, the spectral channels are relatively narrow and provide continuous coverage of the spectrum so that the data in adjacent channels are generally highly correlated. Thirdly, the noise characteristics of the AVIRIS are defined by the channels' Noise Equivalent Radiances (NER's), and these NER's show that, at some wavelengths, the least significant 5 or 6 bits of data are essentially noise.
Analysis of tractable distortion metrics for EEG compression applications.
Bazán-Prieto, Carlos; Blanco-Velasco, Manuel; Cárdenas-Barrera, Julián; Cruz-Roldán, Fernando
2012-07-01
Coding distortion in lossy electroencephalographic (EEG) signal compression methods is evaluated through tractable objective criteria. The percentage root-mean-square difference, which is a global and relative indicator of the quality held by reconstructed waveforms, is the most widely used criterion. However, this parameter does not ensure compliance with clinical standard guidelines that specify limits to allowable noise in EEG recordings. As a result, expert clinicians may have difficulties interpreting the resulting distortion of the EEG for a given value of this parameter. Conversely, the root-mean-square error is an alternative criterion that quantifies distortion in understandable units. In this paper, we demonstrate that the root-mean-square error is better suited to control and to assess the distortion introduced by compression methods. The experiments conducted in this paper show that the use of the root-mean-square error as target parameter in EEG compression allows both clinicians and scientists to infer whether coding error is clinically acceptable or not at no cost for the compression ratio.
JPEG vs. JPEG 2000: an objective comparison of image encoding quality
NASA Astrophysics Data System (ADS)
Ebrahimi, Farzad; Chamik, Matthieu; Winkler, Stefan
2004-11-01
This paper describes an objective comparison of the image quality of different encoders. Our approach is based on estimating the visual impact of compression artifacts on perceived quality. We present a tool that measures these artifacts in an image and uses them to compute a prediction of the Mean Opinion Score (MOS) obtained in subjective experiments. We show that the MOS predictions by our proposed tool are a better indicator of perceived image quality than PSNR, especially for highly compressed images. For the encoder comparison, we compress a set of 29 test images with two JPEG encoders (Adobe Photoshop and IrfanView) and three JPEG2000 encoders (JasPer, Kakadu, and IrfanView) at various compression ratios. We compute blockiness, blur, and MOS predictions as well as PSNR of the compressed images. Our results show that the IrfanView JPEG encoder produces consistently better images than the Adobe Photoshop JPEG encoder at the same data rate. The differences between the JPEG2000 encoders in our test are less pronounced; JasPer comes out as the best codec, closely followed by IrfanView and Kakadu. Comparing the JPEG- and JPEG2000-encoding quality of IrfanView, we find that JPEG has a slight edge at low compression ratios, while JPEG2000 is the clear winner at medium and high compression ratios.
NASA Astrophysics Data System (ADS)
Yao, Juncai; Liu, Guizhong
2017-03-01
In order to achieve higher image compression ratio and improve visual perception of the decompressed image, a novel color image compression scheme based on the contrast sensitivity characteristics of the human visual system (HVS) is proposed. In the proposed scheme, firstly the image is converted into the YCrCb color space and divided into sub-blocks. Afterwards, the discrete cosine transform is carried out for each sub-block, and three quantization matrices are built to quantize the frequency spectrum coefficients of the images by combining the contrast sensitivity characteristics of HVS. The Huffman algorithm is used to encode the quantized data. The inverse process involves decompression and matching to reconstruct the decompressed color image. And simulations are carried out for two color images. The results show that the average structural similarity index measurement (SSIM) and peak signal to noise ratio (PSNR) under the approximate compression ratio could be increased by 2.78% and 5.48%, respectively, compared with the joint photographic experts group (JPEG) compression. The results indicate that the proposed compression algorithm in the text is feasible and effective to achieve higher compression ratio under ensuring the encoding and image quality, which can fully meet the needs of storage and transmission of color images in daily life.
Application of a Reynolds stress turbulence model to the compressible shear layer
NASA Technical Reports Server (NTRS)
Sarkar, S.; Balakrishnan, L.
1990-01-01
Theoretically based turbulence models have had success in predicting many features of incompressible, free shear layers. However, attempts to extend these models to the high-speed, compressible shear layer have been less effective. In the present work, the compressible shear layer was studied with a second-order turbulence closure, which initially used only variable density extensions of incompressible models for the Reynolds stress transport equation and the dissipation rate transport equation. The quasi-incompressible closure was unsuccessful; the predicted effect of the convective Mach number on the shear layer growth rate was significantly smaller than that observed in experiments. Having thus confirmed that compressibility effects have to be explicitly considered, a new model for the compressible dissipation was introduced into the closure. This model is based on a low Mach number, asymptotic analysis of the Navier-Stokes equations, and on direct numerical simulation of compressible, isotropic turbulence. The use of the new model for the compressible dissipation led to good agreement of the computed growth rates with the experimental data. Both the computations and the experiments indicate a dramatic reduction in the growth rate when the convective Mach number is increased. Experimental data on the normalized maximum turbulence intensities and shear stress also show a reduction with increasing Mach number.
NASA Astrophysics Data System (ADS)
Bhupathi, Pradeep
An ultra low temperature cryostat is designed and implemented in this work to perform experiments at sub-millikelvin temperatures, specifically aimed at understanding the superfluid phases of 3He in various scenarios. The cryostat is a combination of a dilution refrigerator (Oxford Kelvinox 400) with a base temperature of 5.2 mK and a 48 mole copper block as the adiabatic nuclear demagnetization stage with a lowest temperature of ≈ 200 muK. With the various techniques implemented for limiting the ambient heat leak to the cryostat, we were able to stay below 1 mK for longer than 5 weeks. The details of design, construction and performance of the cryostat are presented. We measured high frequency shear acoustic impedance in superfluid 3He in 98% porosity aerogel at pressures of 29 bar and 32 bar in magnetic fields upto 3 kG with the aerogel cylinder compressed along the symmetry axis to generate global anisotropy. With 5% compression, there is an indication of a supercooled A-like to B-like transition in aerogel in a wider temperature width than the A phase in the bulk, while at 10% axial compression, the A-like to B-like transition is absent on cooling down to ≈ 300 muK in zero magnetic field and in magnetic fields up to 3 kG. This behavior is in contrast to that in 3He in uncompressed aerogels, in which the supercooled A-like to B-like transitions have been identified by various experimental techniques. Our result is consistent with theoretical predictions. To characterize the anisotropy in compressed aerogels, optical birefringence is measured in 98% porosity silica aerogel samples subjected to various degrees of uniaxial compression up to 15% strain, with wavelengths between 200 to 800 nm. Uncompressed aerogels exhibit no or a minimal degree of birefringence, indicating the isotropic nature of the material over the length scale of the wavelength. Uniaxial compression of aerogel introduces global anisotropy, which produces birefringence in the material. We observed a quasi-linear strain dependence in Deltan = ne -- no in compressed aerogels, where n e(o) is the index of refraction for the extraordinary (ordinary) ray of light that has its polarization parallel to the compression axis. Incidentally, this effect has potential applications for aerogels as tunable waveplates operating in a broad spectral range.
Mechanical Force-induced TGFB1 Increases Expression of SOST/POSTN by hPDL Cells.
Manokawinchoke, J; Limjeerajarus, N; Limjeerajarus, C; Sastravaha, P; Everts, V; Pavasant, P
2015-07-01
The aim of this study was to investigate the response of human periodontal ligament (hPDL) fibroblasts to an intermittent compressive force and its effect on the expression of SOST, POSTN, and TGFB1. A computerized cell compressive force loading apparatus was introduced, and hPDL cells were subjected to intermittent compressive force. The changes in messenger RNA (mRNA) and protein expression were monitored by real-time polymerase chain reaction and Western blot analysis, respectively. An increased expression of SOST, POSTN, and TGFB1 was observed in a time-dependent fashion. Addition of cycloheximide, a transforming growth factor (TGF)-β inhibitor (SB431542), or a neutralizing antibody against TGF-β1 attenuated the force-induced expression of SOST and POSTN as well as sclerostin and periostin, indicating a role of TGF-β1 in the pressure-induced expression of these proteins. Enzyme-linked immunosorbent assay analysis revealed an increased level of TGF-β1 in the cell extracts but not in the medium, suggesting that intermittent compressive force promoted the accumulation of TGF-β1 in the cells or their surrounding matrix. In conclusion, an intermittent compressive force regulates SOST/POSTN expression by hPDL cells via the TGF-β1 signaling pathway. Since these proteins play important roles in the homeostasis of the periodontal tissue, our results indicate the importance of masticatory forces in this process. © International & American Associations for Dental Research 2015.
Hossain, M S; Gabr, M A; Asce, F
2009-09-01
In many situations, MSW components are processed and shredded before use in laboratory experiments using conventional soil testing apparatus. However, shredding MSW material may affect the target property to be measured. The objective of this study is to contribute to the understanding of the effect of shredding of MSW on the measured compressibility and strength properties. It is hypothesized that measured properties can be correlated to an R-value, the ratio of waste particle size to apparatus size. Results from oedometer tests, conducted on 63.5 mm, 100 mm, 200 mm diameter apparatus, indicated the dependency of the compressibility parameters on R-value. The compressibility parameters are similar for the same R-value even though the apparatus size varies. The results using same apparatus size with variable R-values indicated that shredding of MSW mainly affects initial compression. Creep and biological strain rate of the tested MSW are not significantly affected by R-value. The shear strength is affected by shredding as the light-weight reinforcing materials are shredded into smaller pieces during specimen preparation. For example, the measured friction angles are 32 degrees and 27 degrees for maximum particle sizes of 50 mm and 25 mm, respectively. The larger MSW components in the specimen provide better reinforcing contribution. This conclusion is however dependent on comparing specimen at the same level of degradation since shear strength is also a function of extent of degradation.
Over compression influence to the performances of the spark ignition engines
NASA Astrophysics Data System (ADS)
Rakosi, E.; Talif, S. G.; Manolache, G.
2016-08-01
This paper presents the theoretical and experimental results of some procedures used in improving the performances of the automobile spark ignition engines. The study uses direct injection and high over-compression applied to a standard engine. To this purpose, the paper contains both the constructive solutions and the results obtained from the test bed concerning the engine power indices, fuel consumption and exhaust emissions.
Heavy flavours production in quark-gluon plasma formed in high energy nuclear reactions
NASA Technical Reports Server (NTRS)
Kloskinski, J.
1985-01-01
Results on compression and temperatures of nuclear fireballs and on relative yield of strange and charmed hadrons are given . The results show that temperatures above 300 MeV and large compressions are unlikely achieved in average heavy ion collision. In consequence, thermal production of charm is low. Strange particle production is, however, substantial and indicates clear temperature - threshold behavior.
Lok, U-Wai; Li, Pai-Chi
2016-03-01
Graphics processing unit (GPU)-based software beamforming has advantages over hardware-based beamforming of easier programmability and a faster design cycle, since complicated imaging algorithms can be efficiently programmed and modified. However, the need for a high data rate when transferring ultrasound radio-frequency (RF) data from the hardware front end to the software back end limits the real-time performance. Data compression methods can be applied to the hardware front end to mitigate the data transfer issue. Nevertheless, most decompression processes cannot be performed efficiently on a GPU, thus becoming another bottleneck of the real-time imaging. Moreover, lossless (or nearly lossless) compression is desirable to avoid image quality degradation. In a previous study, we proposed a real-time lossless compression-decompression algorithm and demonstrated that it can reduce the overall processing time because the reduction in data transfer time is greater than the computation time required for compression/decompression. This paper analyzes the lossless compression method in order to understand the factors limiting the compression efficiency. Based on the analytical results, a nearly lossless compression is proposed to further enhance the compression efficiency. The proposed method comprises a transformation coding method involving modified lossless compression that aims at suppressing amplitude data. The simulation results indicate that the compression ratio (CR) of the proposed approach can be enhanced from nearly 1.8 to 2.5, thus allowing a higher data acquisition rate at the front end. The spatial and contrast resolutions with and without compression were almost identical, and the process of decompressing the data of a single frame on a GPU took only several milliseconds. Moreover, the proposed method has been implemented in a 64-channel system that we built in-house to demonstrate the feasibility of the proposed algorithm in a real system. It was found that channel data from a 64-channel system can be transferred using the standard USB 3.0 interface in most practical imaging applications.
NASA Technical Reports Server (NTRS)
Held, Louis F.; Pritchard, Ernest I.
1946-01-01
An investigation was conducted to evaluate the possibilities of utilizing the high-performance characteristics of triptane and xylidines blended with 28-R fuel in order to increase fuel economy by the use of high compression ratios and maximum-economy spark setting. Full-scale single-cylinder knock tests were run with 20 deg B.T.C. and maximum-economy spark settings at compression ratios of 6.9, 8.0, and 10.0, and with two inlet-air temperatures. The fuels tested consisted of triptane, four triptane and one xylidines blend with 28-R, and 28-R fuel alone. Indicated specific fuel consumption at lean mixtures was decreased approximately 17 percent at a compression ratio of 10.0 and maximum-economy spark setting, as compared to that obtained with a compression ratio of 6.9 and normal spark setting. When compression ratio was increased from 6.9 to 10.0 at an inlet-air temperature of 150 F, normal spark setting, and a fuel-air ratio of 0.065, 55-percent triptane was required with 28-R fuel to maintain the knock-limited brake power level obtained with 28-R fuel at a compression ratio of 6.9. Brake specific fuel consumption was decreased 17.5 percent at a compression ratio of 10.0 relative to that obtained at a compression ratio of 6.9. Approximately similar results were noted at an inlet-air temperature of 250 F. For concentrations up through at least 20 percent, triptane can be more efficiently used at normal than at maximum-economy spark setting to maintain a constant knock-limited power output over the range of compression ratios tested.
Safiuddin, Md.; Raman, Sudharshan N.; Abdus Salam, Md.; Jumaat, Mohd. Zamin
2016-01-01
Modeling is a very useful method for the performance prediction of concrete. Most of the models available in literature are related to the compressive strength because it is a major mechanical property used in concrete design. Many attempts were taken to develop suitable mathematical models for the prediction of compressive strength of different concretes, but not for self-consolidating high-strength concrete (SCHSC) containing palm oil fuel ash (POFA). The present study has used artificial neural networks (ANN) to predict the compressive strength of SCHSC incorporating POFA. The ANN model has been developed and validated in this research using the mix proportioning and experimental strength data of 20 different SCHSC mixes. Seventy percent (70%) of the data were used to carry out the training of the ANN model. The remaining 30% of the data were used for testing the model. The training of the ANN model was stopped when the root mean square error (RMSE) and the percentage of good patterns was 0.001 and ≈100%, respectively. The predicted compressive strength values obtained from the trained ANN model were much closer to the experimental values of compressive strength. The coefficient of determination (R2) for the relationship between the predicted and experimental compressive strengths was 0.9486, which shows the higher degree of accuracy of the network pattern. Furthermore, the predicted compressive strength was found very close to the experimental compressive strength during the testing process of the ANN model. The absolute and percentage relative errors in the testing process were significantly low with a mean value of 1.74 MPa and 3.13%, respectively, which indicated that the compressive strength of SCHSC including POFA can be efficiently predicted by the ANN. PMID:28773520
Safiuddin, Md; Raman, Sudharshan N; Abdus Salam, Md; Jumaat, Mohd Zamin
2016-05-20
Modeling is a very useful method for the performance prediction of concrete. Most of the models available in literature are related to the compressive strength because it is a major mechanical property used in concrete design. Many attempts were taken to develop suitable mathematical models for the prediction of compressive strength of different concretes, but not for self-consolidating high-strength concrete (SCHSC) containing palm oil fuel ash (POFA). The present study has used artificial neural networks (ANN) to predict the compressive strength of SCHSC incorporating POFA. The ANN model has been developed and validated in this research using the mix proportioning and experimental strength data of 20 different SCHSC mixes. Seventy percent (70%) of the data were used to carry out the training of the ANN model. The remaining 30% of the data were used for testing the model. The training of the ANN model was stopped when the root mean square error (RMSE) and the percentage of good patterns was 0.001 and ≈100%, respectively. The predicted compressive strength values obtained from the trained ANN model were much closer to the experimental values of compressive strength. The coefficient of determination ( R ²) for the relationship between the predicted and experimental compressive strengths was 0.9486, which shows the higher degree of accuracy of the network pattern. Furthermore, the predicted compressive strength was found very close to the experimental compressive strength during the testing process of the ANN model. The absolute and percentage relative errors in the testing process were significantly low with a mean value of 1.74 MPa and 3.13%, respectively, which indicated that the compressive strength of SCHSC including POFA can be efficiently predicted by the ANN.
Gregson, Rachael Kathleen; Cole, Tim James; Skellett, Sophie; Bagkeris, Emmanouil; Welsby, Denise; Peters, Mark John
2017-05-01
To determine the effect of visual feedback on rate of chest compressions, secondarily relating the forces used. Randomised crossover trial. Tertiary teaching hospital. Fifty trained hospital staff. A thin sensor-mat placed over the manikin's chest measured rate and force. Rescuers applied compressions to the same paediatric manikin for two sessions. During one session they received visual feedback comparing their real-time rate with published guidelines. Primary: compression rate. Secondary: compression and residual forces. Rate of chest compressions (compressions per minute (compressions per minute; cpm)) varied widely (mean (SD) 111 (13), range 89-168), with a fourfold difference in variation during session 1 between those receiving and not receiving feedback (108 (5) vs 120 (20)). The interaction of session by feedback order was highly significant, indicating that this difference in mean rate between sessions was 14 cpm less (95% CI -22 to -5, p=0.002) in those given feedback first compared with those given it second. Compression force (N) varied widely (mean (SD) 306 (94); range 142-769). Those receiving feedback second (as opposed to first) used significantly lower force (adjusted mean difference -80 (95% CI -128 to -32), p=0.002). Mean residual force (18 N, SD 12, range 0-49) was unaffected by the intervention. While visual feedback restricted excessive compression rates to within the prescribed range, applied force remained widely variable. The forces required may differ with growth, but such variation treating one manikin is alarming. Feedback technologies additionally measuring force (effort) could help to standardise and define effective treatments throughout childhood. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Transparency of the strong shock-compressed diamond for 532 nm laser light
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zhiyu; Department of Engineering Physics, Tsinghua University, Beijing 100084; Zhao, Yang
2016-04-15
An optical reflectivity and transmissivity model for the shock-compressed diamond is established and used to calculate the optical reflectivity and transmissivity of the diamond under different shock compressions. The simulated results indicate that the reflection occurs at the shock front and does not depend on the thickness of the compressed diamond, but the transmissivity decreases with the thickness. The simulated reflectivity is consistent with the experimental results in the literature, which validates the model. It is shown that the diamond keeps transparent when the shock pressure is lower than 2.00 Mbar, and becomes opaque but does not reflect the probemore » laser as the shock pressure increases from 2.00 Mbar to 4.60 Mbar and reflects the probe laser markedly when the shock pressure is higher than 4.60 Mbar.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mower, T.E.; Higgins, J.D.; Yang, I.C.
1989-12-31
To support the study of hydrologic system in the unsaturated zone at Yucca Mountain, Nevada, two extraction methods were examined to obtain representative, uncontaminated pore-water samples from unsaturated tuff. Results indicate that triaxial compression, which uses a standard cell, can remove pore water from nonwelded tuff that has an initial moisture content greater than 11% by weight; uniaxial compression, which uses a specifically fabricated cell, can extract pore water from nonwelded tuff that has an initial moisture content greater than 8% and from welded tuff that has an initial moisture content greater than 6.5%. For the ambient moisture conditions ofmore » Yucca Mountain tuffs, uniaxial compression is the most efficient method of pore-water extraction. 12 refs., 7 figs., 2 tabs.« less
Recrystallization characteristics and interfacial oxides on the compression bonding interface
NASA Astrophysics Data System (ADS)
Xie, Bijun; Sun, Mingyue; Xu, Bin; Li, Dianzhong
2018-05-01
Up to now, the mechanism of interface bonding is still not fully understood. This work presents interfacial characteristics of 316LN stainless steel bonding joint after cold compression bonding with subsequent annealing. EBSD analysis shows that fine recrystallization grains preferentially appear near the bonding interface and grow towards both sides of the interface. Transmission electron microscopy reveals that initial cold compression bonding disintegrates the native oxide scales and brings pristine metal from both sides of the interface come into intimate contact, while the broken oxide particles are remained at the original interface. The results indicate that partial bonding can be achieved by cold compression bonding with post-annealing treatment and recrystallization firstly occurs along the bonding interface. However, the interfacial oxides impede the recrystallization grains step over the interface and hinder the complete healing of the bonding interface.
Monitoring fatigue damage in carbon fiber composites using an acoustic impact technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haque, A.; Raju, P.K.
1998-06-01
The acoustic impact technique (AIT) of nondestructive testing (NDT) has been used to identify the damage that results from the compressive and tension-compression cycle loading around a circular notch of quasiisotropic carbon-fiber composites. This method involves applying a low velocity impact to the test specimen and evaluating the resulting localized acoustic response. Results indicate that AIT can be applied for identification of both compressive and fatigue damage in composite laminates. The gross area of compressive and fatigue damage is detected through an increase in the pulse width, and a decrease in the amplitude, of the force-time signal. The response obtainedmore » in AIT is sensitive to the frequency of the impactor and the amplitude of the impact force and requires careful monitoring of these values to achieve repeatability of results.« less
Radiative shocks produced from spherical cryogenic implosions at the National Ignition Facilitya)
NASA Astrophysics Data System (ADS)
Pak, A.; Divol, L.; Gregori, G.; Weber, S.; Atherton, J.; Bennedetti, R.; Bradley, D. K.; Callahan, D.; Casey, D. T.; Dewald, E.; Döppner, T.; Edwards, M. J.; Frenje, J. A.; Glenn, S.; Grim, G. P.; Hicks, D.; Hsing, W. W.; Izumi, N.; Jones, O. S.; Johnson, M. G.; Khan, S. F.; Kilkenny, J. D.; Kline, J. L.; Kyrala, G. A.; Lindl, J.; Landen, O. L.; Le Pape, S.; Ma, T.; MacPhee, A.; MacGowan, B. J.; MacKinnon, A. J.; Masse, L.; Meezan, N. B.; Moody, J. D.; Olson, R. E.; Ralph, J. E.; Robey, H. F.; Park, H.-S.; Remington, B. A.; Ross, J. S.; Tommasini, R.; Town, R. P. J.; Smalyuk, V.; Glenzer, S. H.; Moses, E. I.
2013-05-01
Spherically expanding radiative shock waves have been observed from inertially confined implosion experiments at the National Ignition Facility. In these experiments, a spherical fusion target, initially 2 mm in diameter, is compressed via the pressure induced from the ablation of the outer target surface. At the peak compression of the capsule, x-ray and nuclear diagnostics indicate the formation of a central core, with a radius and ion temperature of ˜20 μm and ˜ 2 keV, respectively. This central core is surrounded by a cooler compressed shell of deuterium-tritium fuel that has an outer radius of ˜40 μm and a density of >500 g/cm3. Using inputs from multiple diagnostics, the peak pressure of the compressed core has been inferred to be of order 100 Gbar for the implosions discussed here. The shock front, initially located at the interface between the high pressure compressed fuel shell and surrounding in-falling low pressure ablator plasma, begins to propagate outwards after peak compression has been reached. Approximately 200 ps after peak compression, a ring of x-ray emission created by the limb-brightening of a spherical shell of shock-heated matter is observed to appear at a radius of ˜100 μm. Hydrodynamic simulations, which model the experiment and include radiation transport, indicate that the sudden appearance of this emission occurs as the post-shock material temperature increases and upstream density decreases, over a scale length of ˜10 μm, as the shock propagates into the lower density (˜1 g/cc), hot (˜250 eV) plasma that exists at the ablation front. The expansion of the shock-heated matter is temporally and spatially resolved and indicates a shock expansion velocity of ˜300 km/s in the laboratory frame. The magnitude and temporal evolution of the luminosity produced from the shock-heated matter was measured at photon energies between 5.9 and 12.4 keV. The observed radial shock expansion, as well as the magnitude and temporal evolution of the luminosity from the shock-heated matter, is consistent with 1-D radiation hydrodynamic simulations. Analytic estimates indicate that the radiation energy flux from the shock-heated matter is of the same order as the in-flowing material energy flux, and suggests that this radiation energy flux modifies the shock front structure. Simulations support these estimates and show the formation of a radiative shock, with a precursor that raises the temperature ahead of the shock front, a sharp μm-scale thick spike in temperature at the shock front, followed by a post-shock cooling layer.
Chao, Wan-Tien; Lin, Yuan-Yao; Peng, Jin-Long; Huang, Chen-Bin
2014-02-15
Adiabatic soliton spectral compression in a dispersion-increasing fiber (DIF) with a linear dispersion ramp is studied both numerically and experimentally. The anticipated maximum spectral compression ratio (SCR) would be limited by the ratio of the DIF output to the input dispersion values. However, our numerical analyses indicate that SCR greater than the DIF dispersion ratio is feasible, provided the input pulse duration is shorter than a threshold value along with adequate pulse energy control. Experimentally, a SCR of 28.6 is achieved in a 1 km DIF with a dispersion ratio of 22.5.
NASA Astrophysics Data System (ADS)
Tilak B., Vidya; Dutta, Rakesh Kumar; Mohanty, Bijayananda
2015-06-01
This paper presents the effect of coir fibres on the compaction and unconfined compressive strength of a bentonite-lime-gypsum mixture. The coir fiber content varied from 0.5 to 2 %. The results indicated that the dry unit weight and the optimum moisture content of a bentonite - lime mix increased with the addition of gypsum. The unconfined compressive strength of the bentonite increased with the increase in the lime content up to 8 %. Beyond 8 %, the unconfined compressive strength decreased. The dry unit weight of the reference mix decreased, and the optimum moisture content increased with the addition of coir fibre. The unconfined compressive strength of the bentonite + 8 % lime mix increased up to 4 % with the gypsum. Beyond 4 %, the unconfined compressive strength decreased. The unconfined compressive strength of the reference mix increased with the addition of coir fibre up to a fibre content of 1.5 %. The unconfined compressive strength of the reference mix-coir fibre composite was less in comparison to the reference mix. The unconfined compressive strength of the bentonite increased with the addition of lime and gypsum and with the increase in the curing period. The improvement in the post-peak region was better for the reference mix with reinforced coir fibres as compared to the unreinforced reference mix. The improved post-peak behaviour of the bentonite-lime-gypsum-coir fibre mixture could boost the construction of temporary roads on such problematic soils. Further, its use will also provide an environmental motivation for providing a means of consuming large quantities of coir fibres.
NASA Astrophysics Data System (ADS)
Fujiwara, Takahiro; Uchiito, Haruki; Tokairin, Tomoya; Kawai, Hiroyuki
2017-04-01
Regarding Structural Health Monitoring (SHM) for seismic acceleration, Wireless Sensor Networks (WSN) is a promising tool for low-cost monitoring. Compressed sensing and transmission schemes have been drawing attention to achieve effective data collection in WSN. Especially, SHM systems installing massive nodes of WSN require efficient data transmission due to restricted communications capability. The dominant frequency band of seismic acceleration is occupied within 100 Hz or less. In addition, the response motions on upper floors of a structure are activated at a natural frequency, resulting in induced shaking at the specified narrow band. Focusing on the vibration characteristics of structures, we introduce data compression techniques for seismic acceleration monitoring in order to reduce the amount of transmission data. We carry out a compressed sensing and transmission scheme by band pass filtering for seismic acceleration data. The algorithm executes the discrete Fourier transform for the frequency domain and band path filtering for the compressed transmission. Assuming that the compressed data is transmitted through computer networks, restoration of the data is performed by the inverse Fourier transform in the receiving node. This paper discusses the evaluation of the compressed sensing for seismic acceleration by way of an average error. The results present the average error was 0.06 or less for the horizontal acceleration, in conditions where the acceleration was compressed into 1/32. Especially, the average error on the 4th floor achieved a small error of 0.02. Those results indicate that compressed sensing and transmission technique is effective to reduce the amount of data with maintaining the small average error.
Hasan, Hosni; Davids, Keith; Chow, Jia Yi; Kerr, Graham
2017-04-01
This study investigated effects of wearing compression garments and textured insoles on modes of movement organisation emerging during performance of lower limb interceptive actions in association football. Participants were six skilled (age = 15.67 ± 0.74 years) and six less-skilled (age = 15.17 ± 1.1 years) football players. All participants performed 20 instep kicks with maximum velocity in four randomly organised insoles and socks conditions, (a) Smooth Socks with Smooth Insoles (SSSI); (b) Smooth Socks with Textured Insoles (SSTI); (c) Compression Socks with Smooth Insoles (CSSI); and (d), Compression Socks with Textured Insoles (CSTI). Results showed that, when wearing textured and compression materials (CSSI condition), less-skilled participants displayed significantly greater hip extension and flexion towards the ball contact phase, indicating larger ranges of motion in the kicking limb than in other conditions. Less-skilled participants also demonstrated greater variability in knee-ankle intralimb (angle-angle plots) coordination modes in the CSTI condition. Findings suggested that use of textured and compression materials increased attunement to somatosensory information from lower limb movement, to regulate performance of dynamic interceptive actions like kicking, especially in less-skilled individuals.
Castillo, Edward; Castillo, Richard; White, Benjamin; Rojo, Javier; Guerrero, Thomas
2012-01-01
Compressible flow based image registration operates under the assumption that the mass of the imaged material is conserved from one image to the next. Depending on how the mass conservation assumption is modeled, the performance of existing compressible flow methods is limited by factors such as image quality, noise, large magnitude voxel displacements, and computational requirements. The Least Median of Squares Filtered Compressible Flow (LFC) method introduced here is based on a localized, nonlinear least squares, compressible flow model that describes the displacement of a single voxel that lends itself to a simple grid search (block matching) optimization strategy. Spatially inaccurate grid search point matches, corresponding to erroneous local minimizers of the nonlinear compressible flow model, are removed by a novel filtering approach based on least median of squares fitting and the forward search outlier detection method. The spatial accuracy of the method is measured using ten thoracic CT image sets and large samples of expert determined landmarks (available at www.dir-lab.com). The LFC method produces an average error within the intra-observer error on eight of the ten cases, indicating that the method is capable of achieving a high spatial accuracy for thoracic CT registration. PMID:22797602
Blasted copper slag as fine aggregate in Portland cement concrete.
Dos Anjos, M A G; Sales, A T C; Andrade, N
2017-07-01
The present work focuses on assessing the viability of applying blasted copper slag, produced during abrasive blasting, as fine aggregate for Portland cement concrete manufacturing, resulting in an alternative and safe disposal method. Leaching assays showed no toxicity for this material. Concrete mixtures were produced, with high aggregate replacement ratios, varying from 0% to 100%. Axial compressive strength, diametrical compressive strength, elastic modulus, physical indexes and durability were evaluated. Assays showed a significant improvement in workability, with the increase in substitution of fine aggregate. With 80% of replacement, the concrete presented lower levels of water absorption capacity. Axial compressive strength and diametrical compressive strength decreased, with the increase of residue replacement content. The greatest reductions of compressive strength were found when the replacement was over 40%. For tensile strength by diametrical compression, the greatest reduction occurred for the concrete with 80% of replacement. After the accelerated aging, results of mechanic properties showed a small reduction of the concrete with blasted copper slag performance, when compared with the reference mixture. Results indicated that the blasted copper slag is a technically viable material for application as fine aggregate for concrete mixtures. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mower, Timothy E.; Higgins, Jerry D.; Yang, In C.; Peters, Charles A.
1994-01-01
Study of the hydrologic system at Yucca Mountain, Nevada, requires the extraction of pore-water samples from welded and nonwelded, unsaturated tuffs. Two compression methods (triaxial compression and one-dimensional compression) were examined to develop a repeatable extraction technique and to investigate the effects of the extraction method on the original pore-fluid composition. A commercially available triaxial cell was modified to collect pore water expelled from tuff cores. The triaxial cell applied a maximum axial stress of 193 MPa and a maximum confining stress of 68 MPa. Results obtained from triaxial compression testing indicated that pore-water samples could be obtained from nonwelded tuff cores that had initial moisture contents as small as 13 percent (by weight of dry soil). Injection of nitrogen gas while the test core was held at the maximum axial stress caused expulsion of additional pore water and reduced the required initial moisture content from 13 to 11 percent. Experimental calculations, together with experience gained from testing moderately welded tuff cores, indicated that the triaxial cell used in this study could not apply adequate axial or confining stress to expel pore water from cores of densely welded tuffs. This concern led to the design, fabrication, and testing of a one-dimensional compression cell. The one-dimensional compression cell used in this study was constructed from hardened 4340-alloy and nickel-alloy steels and could apply a maximum axial stress of 552 MPa. The major components of the device include a corpus ring and sample sleeve to confine the sample, a piston and base platen to apply axial load, and drainage plates to transmit expelled water from the test core out of the cell. One-dimensional compression extracted pore water from nonwelded tuff cores that had initial moisture contents as small as 7.6 percent; pore water was expelled from densely welded tuff cores that had initial moisture contents as small as 7.7 percent. Injection of nitrogen gas at the maximum axial stress did not produce additional pore water from nonwelded tuff cores, but was critical to recovery of pore water from densely welded tuff cores. Gas injection reduced the required initial moisture content in welded tuff cores from 7.7 to 6.5 percent. Based on the mechanical ability of a pore-water extraction method to remove water from welded and nonwelded tuff cores, one-dimensional compression is a more effective extraction method than triaxial compression. However, because the effects that one-dimensional compression has on pore-water chemistry are not completely understood, additional testing will be needed to verify that this method is suitable for pore-water extraction from Yucca Mountain tuffs.
Data report: Compressibility, permeability, and grain size of shallow sediments, sites 1194 and 1198
Dugan, Brandon; Marone, Chris; Hong, Tiancong; Migyanka, Misty; Anselmett, Flavio S.; Isern, Alexandra R.; Blum, Peter; Betzler, Christian
2006-01-01
Uniaxial strain consolidation experiments were conducted to determine elastic and plastic properties and to estimate the permeability of sediments from 0 to 200 meters below seafloor at Ocean Drilling Program Sites 1194 and 1198. Plastic deformation is described by compression indices, which range from 0.19 to 0.37. Expansion indices, the elastic deformation measured during unload/reload cycles on samples, vary from 0.02 to 0.029. Consolidation experiments provide lower bounds on permeability between 5.4 x 10–16 m2 and 1.9 x 10–18m2, depending on the consolidation state of the sample.
Failure modes for compression loaded angle-ply plates with holes
NASA Technical Reports Server (NTRS)
Burns, S. W.; Herakovich, C. T.; Williams, J. G.
1987-01-01
A combined theoretical-experimental investigation of failure in notched, graphite-epoxy, angle-ply laminates subjected to far-field compression loading indicates that failure generally initiates on the hole boundary and propagates along a line parallel to the fiber orientation of the laminate. The strength of notched laminates with specimen width-to-hole diameter ratios of 5 and 10 are compared to the strength of unnotched laminates. The experimental results are complemented by a three-dimensional finite element stress analysis that includes interlaminar stresses around holes in (+/- theta)s laminates. The finite element predictions indicate that failure is initiated by shear stresses at the hole boundary.
Aerodynamics inside a rapid compression machine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mittal, Gaurav; Sung, Chih-Jen
2006-04-15
The aerodynamics inside a rapid compression machine after the end of compression is investigated using planar laser-induced fluorescence (PLIF) of acetone. To study the effect of reaction chamber configuration on the resulting aerodynamics and temperature field, experiments are conducted and compared using a creviced piston and a flat piston under varying conditions. Results show that the flat piston design leads to significant mixing of the cold vortex with the hot core region, which causes alternate hot and cold regions inside the combustion chamber. At higher pressures, the effect of the vortex is reduced. The creviced piston head configuration is demonstratedmore » to result in drastic reduction of the effect of the vortex. Experimental conditions are also simulated using the Star-CD computational fluid dynamics package. Computed results closely match with experimental observation. Numerical results indicate that with a flat piston design, gas velocity after compression is very high and the core region shrinks quickly due to rapid entrainment of cold gases. Whereas, for a creviced piston head design, gas velocity after compression is significantly lower and the core region remains unaffected for a long duration. As a consequence, for the flat piston, adiabatic core assumption can significantly overpredict the maximum temperature after the end of compression. For the creviced piston, the adiabatic core assumption is found to be valid even up to 100 ms after compression. This work therefore experimentally and numerically substantiates the importance of piston head design for achieving a homogeneous core region inside a rapid compression machine. (author)« less
Bringing light into the dark: effects of compression clothing on performance and recovery.
Born, Dennis-Peter; Sperlich, Billy; Holmberg, Hans-Christer
2013-01-01
To assess original research addressing the effect of the application of compression clothing on sport performance and recovery after exercise, a computer-based literature research was performed in July 2011 using the electronic databases PubMed, MEDLINE, SPORTDiscus, and Web of Science. Studies examining the effect of compression clothing on endurance, strength and power, motor control, and physiological, psychological, and biomechanical parameters during or after exercise were included, and means and measures of variability of the outcome measures were recorded to estimate the effect size (Hedges g) and associated 95% confidence intervals for comparisons of experimental (compression) and control trials (noncompression). The characteristics of the compression clothing, participants, and study design were also extracted. The original research from peer-reviewed journals was examined using the Physiotherapy Evidence Database (PEDro) Scale. Results indicated small effect sizes for the application of compression clothing during exercise for short-duration sprints (10-60 m), vertical-jump height, extending time to exhaustion (such as running at VO2max or during incremental tests), and time-trial performance (3-60 min). When compression clothing was applied for recovery purposes after exercise, small to moderate effect sizes were observed in recovery of maximal strength and power, especially vertical-jump exercise; reductions in muscle swelling and perceived muscle pain; blood lactate removal; and increases in body temperature. These results suggest that the application of compression clothing may assist athletic performance and recovery in given situations with consideration of the effects magnitude and practical relevance.
Analysis and Performance Evaluation of Electrocardiogram Data compression Techniques.
1980-12-01
techniques were investigated for potential real time implementation on an 8 bit Motorola 6800 microprocessor. Research indicated entropy reduction transform...EKG has been an area of active research since the late nineteen sixties. References (1) , (7) , (12) ,(26) ,(28) , (29) .(32) ,(33) , and (35) are...representative of the research efforts performed in the last ten years . The reasons for compressing EKG data are twofold: 1) digita" storage costs are
Symposium on Turbulence (13th) Held at Rolla, Missouri on September 21- 23, 1992
1992-09-01
this article Is part of a project aimed at Increasing the role of computational fluid dynamics ( CFD ) in the process of developing more efficient gas...techniques in and fluid physics of high speed compressible or reacting flows undergoing significant changes of indices of refraction. Possible Topics...in experimental fluid mechanics; homogeneous turbulence, including closures and statistical properties; turbulence in compressible fluids ; fine scale
A novel application of ADC/K-foaming agent-loaded NBR rubber composites as pressure sensor
NASA Astrophysics Data System (ADS)
Mahmoud, W. E.; El-Eraki, M. H. I.; El-Lawindy, A. M. Y.; Hassan, H. H.
2006-02-01
Nitrile butadiene rubber (NBR) structure foam of different apparent densities was obtained by using different concentrations of foaming agent, azodicarbonamide, ADC/K. The true stress-strain characteristics, in case of compression, of foamed samples were measured. It was found that the theoretical values predicted from the simple blending model are in more agreement with the experimental results than those from the square-relationship model. The effect of cyclic loading-unloading and dissipation energy of rubber foams was studied. The results also indicated that foams with low density exhibited a small hysteresis. The electrical properties were found dependent on the foaming agent concentration. This study was assisted by Mott and Gurney equation. The effect of compressive strain on the electrical conductivity of rubber foams was studied. The free current carrier mobility and the equilibrium concentration of charge carrier in the conduction band were produced as functions of compressive strain. The results also indicate that there is a linear variation between pressure and conductivity for all samples, which means that these samples can be used as a pressure sensor. At a certain concentration of foaming agent (5 phr) a change of electrical conductivity by more than three orders is observed at 20% compression strain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Xiangwen; Contescu, Cristian I.; Zhao, Xi
Mmore » atrix graphite (G) with incompletely graphitized binder used in high-temperature gas-cooled reactors (HTGRs) is commonly suspected to exhibit lower oxidation resistance in air. In order to reveal the oxidation performance, the oxidation behavior of newly developed A3-3 G at the temperature range from 500 to 950°C in air was studied and the effect of oxidation on the compressive strength of oxidized G specimens was characterized. Results show that temperature has a significant influence on the oxidation behavior of G. The transition temperature between Regimes I and II is ~700°C and the activation energy ( E a ) in Regime I is around 185 kJ/mol, a little lower than that of nuclear graphite, which indicates G is more vulnerable to oxidation. Oxidation at 550°C causes more damage to compressive strength of G than oxidation at 900°C. Comparing with the strength of pristine G specimens, the rate of compressive strength loss is 77.3% after oxidation at 550°C and only 12.5% for oxidation at 900°C. icrostructure images of SE and porosity measurement by ercury Porosimetry indicate that the significant compressive strength loss of G oxidized at 550°C may be attributed to both the uniform pore formation throughout the bulk and the preferential oxidation of the binder.« less
NASA Astrophysics Data System (ADS)
Nakata, Kotaro; Hasegawa, Takuma; Oyama, Takahiro; Miyakawa, Kazuya
2018-06-01
Stable isotopes (δ2H and δ18O) of water can help our understanding of origin, mixing and migration of groundwater. In the formation with low permeability, it provides information about migration mechanism of ion such as diffusion and/or advection. Thus it has been realized as very important information to understand the migration of water and ions in it. However, in formation with low permeability it is difficult to obtain the ground water sample as liquid and water in pores needs to be extracted to estimate it. Compressing rock is the most common and widely used method of extracting water in pores. However, changes in δ2H and δ18O may take place during compression because changes in ion concentration have been reported in previous studies. In this study, two natural rocks were compressed, and the changes in the δ2H and δ18O with compression pressure were investigated. Mechanisms for the changes in water isotopes observed during the compression were then discussed. In addition, δ2H and δ18O of water in pores were also evaluated by direct vapor equilibration and laser spectrometry (DVE-LS) and δ2H and δ18O were compared with those obtained by compression. δ2H was found to change during the compression and a part of this change was found to be explained by the effect of water from closed pores extracted by compression. In addition, water isotopes in both open and closed pores were estimated by combining the results of 2 kinds of compression experiments. Water isotopes evaluated by compression that not be affected by water from closed pores showed good agreements with those obtained by DVE-LS indicating compression could show the mixed information of water from open and closed pores, while DVE-LS could show the information only for open pores. Thus, the comparison of water isotopes obtained by compression and DVE-LS could provide the information about water isotopes in closed and open pores.
Wanner, Gregory K; Osborne, Arayel; Greene, Charlotte H
2016-11-29
Cardiopulmonary resuscitation (CPR) training has traditionally involved classroom-based courses or, more recently, home-based video self-instruction. These methods typically require preparation and purchase fee; which can dissuade many potential bystanders from receiving training. This study aimed to evaluate the effectiveness of teaching compression-only CPR to previously untrained individuals using our 6-min online CPR training video and skills practice on a homemade mannequin, reproduced by viewers with commonly available items (towel, toilet paper roll, t-shirt). Participants viewed the training video and practiced with the homemade mannequin. This was a parallel-design study with pre and post training evaluations of CPR skills (compression rate, depth, hand position, release), and hands-off time (time without compressions). CPR skills were evaluated using a sensor-equipped mannequin and two blinded CPR experts observed testing of participants. Twenty-four participants were included: 12 never-trained and 12 currently certified in CPR. Comparing pre and post training, the never-trained group had improvements in average compression rate per minute (64.3 to 103.9, p = 0.006), compressions with correct hand position in 1 min (8.3 to 54.3, p = 0.002), and correct compression release in 1 min (21.2 to 76.3, p < 0.001). The CPR-certified group had adequate pre and post-test compression rates (>100/min), but an improved number of compressions with correct release (53.5 to 94.7, p < 0.001). Both groups had significantly reduced hands-off time after training. Achieving adequate compression depths (>50 mm) remained problematic in both groups. Comparisons made between groups indicated significant improvements in compression depth, hand position, and hands-off time in never-trained compared to CPR-certified participants. Inter-rater agreement values were also calculated between the CPR experts and sensor-equipped mannequin. A brief internet-based video coupled with skill practice on a homemade mannequin improved compression-only CPR skills, especially in the previously untrained participants. This training method allows for widespread compression-only CPR training with a tactile learning component, without fees or advance preparation.
Thermofluidic compression effects to achieve combustion in a low-compression scramjet engine
NASA Astrophysics Data System (ADS)
Moura, A. F.; Wheatley, V.; Jahn, I.
2018-07-01
The compression provided by a scramjet inlet is an important parameter in its design. It must be low enough to limit thermal and structural loads and stagnation pressure losses, but high enough to provide the conditions favourable for combustion. Inlets are typically designed to achieve sufficient compression without accounting for the fluidic, and subsequently thermal, compression provided by the fuel injection, which can enable robust combustion in a low-compression engine. This is investigated using Reynolds-averaged Navier-Stokes numerical simulations of a simplified scramjet engine designed to have insufficient compression to auto-ignite fuel in the absence of thermofluidic compression. The engine was designed with a wide rectangular combustor and a single centrally located injector, in order to reduce three-dimensional effects of the walls on the fuel plume. By varying the injected mass flow rate of hydrogen fuel (equivalence ratios of 0.22, 0.17, and 0.13), it is demonstrated that higher equivalence ratios lead to earlier ignition and more rapid combustion, even though mean conditions in the combustor change by no more than 5% for pressure and 3% for temperature with higher equivalence ratio. By supplementing the lower equivalence ratio with helium to achieve a higher mass flow rate, it is confirmed that these benefits are primarily due to the local compression provided by the extra injected mass. Investigation of the conditions around the fuel plume indicated two connected mechanisms. The higher mass flow rate for higher equivalence ratios generated a stronger injector bow shock that compresses the free-stream gas, increasing OH radical production and promoting ignition. This was observed both in the higher equivalence ratio case and in the case with helium. This earlier ignition led to increased temperature and pressure downstream and, consequently, stronger combustion. The heat release from combustion provided thermal compression in the combustor, further increasing combustion efficiency.
Thermofluidic compression effects to achieve combustion in a low-compression scramjet engine
NASA Astrophysics Data System (ADS)
Moura, A. F.; Wheatley, V.; Jahn, I.
2017-12-01
The compression provided by a scramjet inlet is an important parameter in its design. It must be low enough to limit thermal and structural loads and stagnation pressure losses, but high enough to provide the conditions favourable for combustion. Inlets are typically designed to achieve sufficient compression without accounting for the fluidic, and subsequently thermal, compression provided by the fuel injection, which can enable robust combustion in a low-compression engine. This is investigated using Reynolds-averaged Navier-Stokes numerical simulations of a simplified scramjet engine designed to have insufficient compression to auto-ignite fuel in the absence of thermofluidic compression. The engine was designed with a wide rectangular combustor and a single centrally located injector, in order to reduce three-dimensional effects of the walls on the fuel plume. By varying the injected mass flow rate of hydrogen fuel (equivalence ratios of 0.22, 0.17, and 0.13), it is demonstrated that higher equivalence ratios lead to earlier ignition and more rapid combustion, even though mean conditions in the combustor change by no more than 5% for pressure and 3% for temperature with higher equivalence ratio. By supplementing the lower equivalence ratio with helium to achieve a higher mass flow rate, it is confirmed that these benefits are primarily due to the local compression provided by the extra injected mass. Investigation of the conditions around the fuel plume indicated two connected mechanisms. The higher mass flow rate for higher equivalence ratios generated a stronger injector bow shock that compresses the free-stream gas, increasing OH radical production and promoting ignition. This was observed both in the higher equivalence ratio case and in the case with helium. This earlier ignition led to increased temperature and pressure downstream and, consequently, stronger combustion. The heat release from combustion provided thermal compression in the combustor, further increasing combustion efficiency.
Messere, Alessandro; Ceravolo, Gianluca; Franco, Walter; Maffiodo, Daniela; Ferraresi, Carlo; Roatta, Silvestro
2017-12-01
The rapid hyperemia evoked by muscle compression is short lived and was recently shown to undergo a rapid decrease even in spite of continuing mechanical stimulation. The present study aims at investigating the mechanisms underlying this attenuation, which include local metabolic mechanisms, desensitization of mechanosensitive pathways, and reduced efficacy of the muscle pump. In 10 healthy subjects, short sequences of mechanical compressions ( n = 3-6; 150 mmHg) of the lower leg were delivered at different interstimulus intervals (ranging from 20 to 160 s) through a customized pneumatic device. Hemodynamic monitoring included near-infrared spectroscopy, detecting tissue oxygenation and blood volume in calf muscles, and simultaneous echo-Doppler measurement of arterial (superficial femoral artery) and venous (femoral vein) blood flow. The results indicate that 1 ) a long-lasting (>100 s) increase in local tissue oxygenation follows compression-induced hyperemia, 2 ) compression-induced hyperemia exhibits different patterns of attenuation depending on the interstimulus interval, 3 ) the amplitude of the hyperemia is not correlated with the amount of blood volume displaced by the compression, and 4 ) the extent of attenuation negatively correlates with tissue oxygenation ( r = -0,78, P < 0.05). Increased tissue oxygenation appears to be the key factor for the attenuation of hyperemia upon repetitive compressive stimulation. Tissue oxygenation monitoring is suggested as a useful integration in medical treatments aimed at improving local circulation by repetitive tissue compression. NEW & NOTEWORTHY This study shows that 1 ) the hyperemia induced by muscle compression produces a long-lasting increase in tissue oxygenation, 2 ) the hyperemia produced by subsequent muscle compressions exhibits different patterns of attenuation at different interstimulus intervals, and 3 ) the extent of attenuation of the compression-induced hyperemia is proportional to the level of oxygenation achieved in the tissue. The results support the concept that tissue oxygenation is a key variable in blood flow regulation. Copyright © 2017 the American Physiological Society.
Edaravone ameliorates compression-induced damage in rat nucleus pulposus cells.
Lin, Hui; Ma, Xuan; Wang, Bai-Chuan; Zhao, Lei; Liu, Jian-Xiang; Pu, Fei-Fei; Hu, Yi-Qiang; Hu, Hong-Zhi; Shao, Zeng-Wu
2017-11-15
Edaravone is a strong free radical scavenger most used for treating acute ischemic stroke. In this study we investigated the protective effects and underlying mechanisms of edaravone on compression-induced damage in rat nucleus pulposus (NP) cells. Cell viability was determined using MTT assay methods. NP cell apoptosis was measured by Hoechst 33,258 staining and Annexin V/PI double staining. Intracellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and intracellular calcium ([Ca 2+ ] i ) were determined by fluorescent probes DCFH-DA, JC-1 and Fluo-3/AM, respectively. Apoptosis-related proteins (cleaved caspase-3, cytosolic cytochrome c, Bax and Bcl-2) and extracellular matrix proteins (aggrecan and collagen II) were analyzed by western blot. Edaravone attenuated the compression-induced decrease in viability of NP cells in a dose-dependent manner. 33,258 and Annexin V/PI double staining showed that edaravone protected NP cells from compression-induced apoptosis. Further studies confirmed that edaravone protected NP cells against compression-induced mitochondrial pathway of apoptosis by inhibiting overproduction of ROS, collapse of MMP and overload of [Ca 2+ ] i . In addition, edaravone promoted the expression of aggrecan and collagen II in compression-treated NP cells. These results strongly indicate that edaravone ameliorates compression-induced damage in rat nucleus pulposus cells. Edaravone could be a potential new drug for treatment of IDD. Copyright © 2017 Elsevier Inc. All rights reserved.
Fu, Chi-Yung; Petrich, Loren I.
1997-01-01
An image is compressed by identifying edge pixels of the image; creating a filled edge array of pixels each of the pixels in the filled edge array which corresponds to an edge pixel having a value equal to the value of a pixel of the image array selected in response to the edge pixel, and each of the pixels in the filled edge array which does not correspond to an edge pixel having a value which is a weighted average of the values of surrounding pixels in the filled edge array which do correspond to edge pixels; and subtracting the filled edge array from the image array to create a difference array. The edge file and the difference array are then separately compressed and transmitted or stored. The original image is later reconstructed by creating a preliminary array in response to the received edge file, and adding the preliminary array to the received difference array. Filling is accomplished by solving Laplace's equation using a multi-grid technique. Contour and difference file coding techniques also are described. The techniques can be used in a method for processing a plurality of images by selecting a respective compression approach for each image, compressing each of the images according to the compression approach selected, and transmitting each of the images as compressed, in correspondence with an indication of the approach selected for the image.
Enhancement of Satellite Image Compression Using a Hybrid (DWT-DCT) Algorithm
NASA Astrophysics Data System (ADS)
Shihab, Halah Saadoon; Shafie, Suhaidi; Ramli, Abdul Rahman; Ahmad, Fauzan
2017-12-01
Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) image compression techniques have been utilized in most of the earth observation satellites launched during the last few decades. However, these techniques have some issues that should be addressed. The DWT method has proven to be more efficient than DCT for several reasons. Nevertheless, the DCT can be exploited to improve the high-resolution satellite image compression when combined with the DWT technique. Hence, a proposed hybrid (DWT-DCT) method was developed and implemented in the current work, simulating an image compression system on-board on a small remote sensing satellite, with the aim of achieving a higher compression ratio to decrease the onboard data storage and the downlink bandwidth, while avoiding further complex levels of DWT. This method also succeeded in maintaining the reconstructed satellite image quality through replacing the standard forward DWT thresholding and quantization processes with an alternative process that employed the zero-padding technique, which also helped to reduce the processing time of DWT compression. The DCT, DWT and the proposed hybrid methods were implemented individually, for comparison, on three LANDSAT 8 images, using the MATLAB software package. A comparison was also made between the proposed method and three other previously published hybrid methods. The evaluation of all the objective and subjective results indicated the feasibility of using the proposed hybrid (DWT-DCT) method to enhance the image compression process on-board satellites.
Fu, C.Y.; Petrich, L.I.
1997-03-25
An image is compressed by identifying edge pixels of the image; creating a filled edge array of pixels each of the pixels in the filled edge array which corresponds to an edge pixel having a value equal to the value of a pixel of the image array selected in response to the edge pixel, and each of the pixels in the filled edge array which does not correspond to an edge pixel having a value which is a weighted average of the values of surrounding pixels in the filled edge array which do correspond to edge pixels; and subtracting the filled edge array from the image array to create a difference array. The edge file and the difference array are then separately compressed and transmitted or stored. The original image is later reconstructed by creating a preliminary array in response to the received edge file, and adding the preliminary array to the received difference array. Filling is accomplished by solving Laplace`s equation using a multi-grid technique. Contour and difference file coding techniques also are described. The techniques can be used in a method for processing a plurality of images by selecting a respective compression approach for each image, compressing each of the images according to the compression approach selected, and transmitting each of the images as compressed, in correspondence with an indication of the approach selected for the image. 16 figs.
The Effects of Compression-Garment Pressure on Recovery After Strenuous Exercise.
Hill, Jessica; Howatson, Glyn; van Someren, Ken; Gaze, David; Legg, Hayley; Lineham, Jack; Pedlar, Charles
2017-09-01
Compression garments are frequently used to facilitate recovery from strenuous exercise. To identify the effects of 2 different grades of compression garment on recovery indices after strenuous exercise. Forty-five recreationally active participants (n = 26 male and n = 19 female) completed an eccentric-exercise protocol consisting of 100 drop jumps, after which they were matched for body mass and randomly but equally assigned to a high-compression pressure (HI) group, a low-compression pressure (LOW) group, or a sham ultrasound group (SHAM). Participants in the HI and LOW groups wore the garments for 72 h postexercise; participants in the SHAM group received a single treatment of 10-min sham ultrasound. Measures of perceived muscle soreness, maximal voluntary contraction (MVC), countermovement-jump height (CMJ), creatine kinase (CK), C-reactive protein (CRP), and myoglobin (Mb) were assessed before the exercise protocol and again at 1, 24, 48, and 72 h postexercise. Data were analyzed using a repeated-measures ANOVA. Recovery of MVC and CMJ was significantly improved with the HI compression garment (P < .05). A significant time-by-treatment interaction was also observed for jump height at 24 h postexercise (P < .05). No significant differences were observed for parameters of soreness and plasma CK, CRP, and Mb. The pressures exerted by a compression garment affect recovery after exercise-induced muscle damage, with higher pressure improving recovery of muscle function.
Research on Foam Concrete Features by Replacing Cement with Industrial Waste Residues
NASA Astrophysics Data System (ADS)
Saynbaatar; Qiqige; Ma, Gangping; Fu, Jianhua; Wang, Jinghua
The influence on the performance of foam concrete made by replacing cement with some industrial waste residues was researched in this paper. The result shows that the 7d and 28d compressive strength of foam concrete increases firstly and then decreases with the increasing amount of industrial waste residue. The proper added range is 10%-20% for steel slag, blast furnace slag and coal ash, but, 8% for desulfurized fly ash. With the proper adding ratio, the compressive strength of foam concrete always increased comparing with the pure cement foam concrete. When adding 48% of the compound industrial waste residues, the 28d compressive strength of the foam concrete reached the 2.9MPa which could match the pure cement foam concrete. The results indicates that there is a synergistic effect among the compound industrial waste residue, and this effect is benefit to improving the compressive strength of foam concrete.
Tian, Zhenghong; Bu, Jingwu
2014-01-01
The uniaxial compression response of manufactured sand mortars proportioned using different water-cement ratio and sand-cement ratio is examined. Pore structure parameters such as porosity, threshold diameter, mean diameter, and total amounts of macropores, as well as shape and size of micropores are quantified by using mercury intrusion porosimetry (MIP) technique. Test results indicate that strains at peak stress and compressive strength decreased with the increasing sand-cement ratio due to insufficient binders to wrap up entire sand. A compression stress-strain model of normal concrete extending to predict the stress-strain relationships of manufactured sand mortar is verified and agreed well with experimental data. Furthermore, the stress-strain model constant is found to be influenced by threshold diameter, mean diameter, shape, and size of micropores. A mathematical model relating stress-strain model constants to the relevant pore structure parameters of manufactured sand mortar is developed. PMID:25133257
An investigation of the compressive strength of Kevlar 49/epoxy composites
NASA Technical Reports Server (NTRS)
Kulkarni, S. V.; Rosen, B. W.; Rice, J. S.
1975-01-01
Tests were performed to evaluate the effect of a wide range of variables including matrix properties, interface properties, fiber prestressing, secondary reinforcement, and others on the ultimate compressive strength of Kevlar 49/epoxy composites. Scanning electron microscopy is used to assess the resulting failure surfaces. In addition, a theoretical study is conducted to determine the influence of fiber anisotropy and lack of perfect bond between fiber and matrix on the shear mode microbuckling. The experimental evaluation of the effect of various constituent and process characteristics on the behavior of these unidirectional composites in compression did not reveal any substantial increase in strength. However, theoretical evaluations indicate that the high degree of fiber anisotropy results in a significant drop in the predicted stress level for internal instability. Scanning electron microscope data analysis suggests that internal fiber failure and smooth surface debonding could be responsible for the measured low compressive strengths.
Efficient image compression algorithm for computer-animated images
NASA Astrophysics Data System (ADS)
Yfantis, Evangelos A.; Au, Matthew Y.; Miel, G.
1992-10-01
An image compression algorithm is described. The algorithm is an extension of the run-length image compression algorithm and its implementation is relatively easy. This algorithm was implemented and compared with other existing popular compression algorithms and with the Lempel-Ziv (LZ) coding. The Lempel-Ziv algorithm is available as a utility in the UNIX operating system and is also referred to as the UNIX uncompress. Sometimes our algorithm is best in terms of saving memory space, and sometimes one of the competing algorithms is best. The algorithm is lossless, and the intent is for the algorithm to be used in computer graphics animated images. Comparisons made with the LZ algorithm indicate that the decompression time using our algorithm is faster than that using the LZ algorithm. Once the data are in memory, a relatively simple and fast transformation is applied to uncompress the file.
Compression of hyper-spectral images using an accelerated nonnegative tensor decomposition
NASA Astrophysics Data System (ADS)
Li, Jin; Liu, Zilong
2017-12-01
Nonnegative tensor Tucker decomposition (NTD) in a transform domain (e.g., 2D-DWT, etc) has been used in the compression of hyper-spectral images because it can remove redundancies between spectrum bands and also exploit spatial correlations of each band. However, the use of a NTD has a very high computational cost. In this paper, we propose a low complexity NTD-based compression method of hyper-spectral images. This method is based on a pair-wise multilevel grouping approach for the NTD to overcome its high computational cost. The proposed method has a low complexity under a slight decrease of the coding performance compared to conventional NTD. We experimentally confirm this method, which indicates that this method has the less processing time and keeps a better coding performance than the case that the NTD is not used. The proposed approach has a potential application in the loss compression of hyper-spectral or multi-spectral images
NASA Astrophysics Data System (ADS)
Lu, Xiaofeng; Li, Gang; Liu, Luwei; Zhu, Xiaolei; Tu, Shan-Tung
2017-07-01
The improvement of the compressibility and recovery of the gaskets can decrease the leakage occurrence in bolted flange connections. In this study, the effect of aging treatment on the compressibility and recovery of NiTi shape memory alloys is investigated as static seals together with thermal analysis. The experimental results indicate that different phase transformations of NiTi alloys are exhibited in the DSC curves during aging treatment. The recovery coefficient of NiTi alloys aged at 500 °C for 2 h is quite low accompanied with a large residual strain. With increasing aging time at the aging temperature of 400 °C, the residual strain and area of hysteresis loop of NiTi alloys are both increased, whereas the recovery coefficient is decreased. Since the deformation associates the phase transformation behavior, aging treatment could improve the compressibility and recovery of NiTi alloys as static seals.
Application of Porous Polydimethylsiloxane (PDMS) in oil absorption
NASA Astrophysics Data System (ADS)
Norfatriah, Abdullah; Syamaizar, Ahmad Sabli Ahmad; Samah Zuruzi, Abu
2018-04-01
Porous polydimethysiloxane (PDMS) displays both hydrophobic and oleophilic behaviour which makes it a suitable material to absorb oil in an aqueous stream. Furthermore, its elastomeric nature means that porous PDMS can be a reusable sorbent for oil. For such application, porous PDMS has to (i) absorb oil from aqueous stream quickly and (ii) discharge oil rapidly when compressed. In this study, porous polydimethylsiloxane (PDMS) has been fabricated using sugar templating method. The ability of porous PDMS to absorb olive, sunflower and vegetable oils with and without vibration was investigated. Small amplitude vibration was found to accelerate the oil uptake process and accelerates the absorption of olive and vegetable oil by 2.5 and 3 times, respectively. Compressive stress-strain curves over compression rates between 2 and 100 mm per min are similar and indicate mechanical property of porous PDMS does not vary significantly and can be rapidly compressed.
Exploratory Research on Bearing Characteristics of Confined Stabilized Soil
NASA Astrophysics Data System (ADS)
Wu, Shuai Shuai; Gao, Zheng Guo; Li, Shi Yang; Cui, Wen Bo; Huang, Xin
2018-06-01
The performance of a new kind of confined stabilized soil (CSS) was investigated which was constructed by filling the stabilized soil, which was made by mixing soil with a binder containing a high content of expansive component, into an engineering plastic pipe. Cube compressive strength of the stabilized soil formed with constraint and axial compression performance of stabilized soil cylinders confined with the constraint pipe were measured. The results indicated that combining the constraint pipe and the binder containing expansion component could achieve such effects: higher production of expansive hydrates could be adopted so as to fill more voids in the stabilized soil and improve its strength; at the same time compressive prestress built on the core stabilized soil, combined of which hoop constraint provided effective radial compressive force on the core stabilized soil. These effects made the CSS acquire plastic failure mode and more than twice bearing capacity of ordinary stabilized soil with the same binder content.
Gmz: a Gml Compression Model for Webgis
NASA Astrophysics Data System (ADS)
Khandelwal, A.; Rajan, K. S.
2017-09-01
Geography markup language (GML) is an XML specification for expressing geographical features. Defined by Open Geospatial Consortium (OGC), it is widely used for storage and transmission of maps over the Internet. XML schemas provide the convenience to define custom features profiles in GML for specific needs as seen in widely popular cityGML, simple features profile, coverage, etc. Simple features profile (SFP) is a simpler subset of GML profile with support for point, line and polygon geometries. SFP has been constructed to make sure it covers most commonly used GML geometries. Web Feature Service (WFS) serves query results in SFP by default. But it falls short of being an ideal choice due to its high verbosity and size-heavy nature, which provides immense scope for compression. GMZ is a lossless compression model developed to work for SFP compliant GML files. Our experiments indicate GMZ achieves reasonably good compression ratios and can be useful in WebGIS based applications.
Strength of mortar containing rubber tire particle
NASA Astrophysics Data System (ADS)
Jusoh, M. A.; Abdullah, S. R.; Adnan, S. H.
2018-04-01
The main focus in this investigation is to determine the strength consist compressive and tensile strength of mortar containing rubber tire particle. In fact, from the previous study, the strength of mortar containing waste rubber tire in mortar has a slightly decreases compare to normal mortar. In this study, rubber tire particle was replacing on volume of fine aggregate with 6%. 9% and 12%. The sample were indicated M0 (0%), M6 (6%), M9 (9%) and M12 (12%). In this study, two different size of sample used with cube 100mm x 100mm x 100mm for compressive strength and 40mm x 40mm x 160mm for flexural strength. Morphology test was conducted by using Scanning electron microscopic (SEM) were done after testing compressive strength test. The concrete sample were cured for day 3, 7 and 28 before testing. Results compressive strength and flexural strength of rubber mortar shown improved compare to normal mortar.
Tian, Zhenghong; Bu, Jingwu
2014-01-01
The uniaxial compression response of manufactured sand mortars proportioned using different water-cement ratio and sand-cement ratio is examined. Pore structure parameters such as porosity, threshold diameter, mean diameter, and total amounts of macropores, as well as shape and size of micropores are quantified by using mercury intrusion porosimetry (MIP) technique. Test results indicate that strains at peak stress and compressive strength decreased with the increasing sand-cement ratio due to insufficient binders to wrap up entire sand. A compression stress-strain model of normal concrete extending to predict the stress-strain relationships of manufactured sand mortar is verified and agreed well with experimental data. Furthermore, the stress-strain model constant is found to be influenced by threshold diameter, mean diameter, shape, and size of micropores. A mathematical model relating stress-strain model constants to the relevant pore structure parameters of manufactured sand mortar is developed.
Observer detection of image degradation caused by irreversible data compression processes
NASA Astrophysics Data System (ADS)
Chen, Ji; Flynn, Michael J.; Gross, Barry; Spizarny, David
1991-05-01
Irreversible data compression methods have been proposed to reduce the data storage and communication requirements of digital imaging systems. In general, the error produced by compression increases as an algorithm''s compression ratio is increased. We have studied the relationship between compression ratios and the detection of induced error using radiologic observers. The nature of the errors was characterized by calculating the power spectrum of the difference image. In contrast with studies designed to test whether detected errors alter diagnostic decisions, this study was designed to test whether observers could detect the induced error. A paired-film observer study was designed to test whether induced errors were detected. The study was conducted with chest radiographs selected and ranked for subtle evidence of interstitial disease, pulmonary nodules, or pneumothoraces. Images were digitized at 86 microns (4K X 5K) and 2K X 2K regions were extracted. A full-frame discrete cosine transform method was used to compress images at ratios varying between 6:1 and 60:1. The decompressed images were reprinted next to the original images in a randomized order with a laser film printer. The use of a film digitizer and a film printer which can reproduce all of the contrast and detail in the original radiograph makes the results of this study insensitive to instrument performance and primarily dependent on radiographic image quality. The results of this study define conditions for which errors associated with irreversible compression cannot be detected by radiologic observers. The results indicate that an observer can detect the errors introduced by this compression algorithm for compression ratios of 10:1 (1.2 bits/pixel) or higher.
López, Carlos; Jaén Martinez, Joaquín; Lejeune, Marylène; Escrivà, Patricia; Salvadó, Maria T; Pons, Lluis E; Alvaro, Tomás; Baucells, Jordi; García-Rojo, Marcial; Cugat, Xavier; Bosch, Ramón
2009-10-01
The volume of digital image (DI) storage continues to be an important problem in computer-assisted pathology. DI compression enables the size of files to be reduced but with the disadvantage of loss of quality. Previous results indicated that the efficiency of computer-assisted quantification of immunohistochemically stained cell nuclei may be significantly reduced when compressed DIs are used. This study attempts to show, with respect to immunohistochemically stained nuclei, which morphometric parameters may be altered by the different levels of JPEG compression, and the implications of these alterations for automated nuclear counts, and further, develops a method for correcting this discrepancy in the nuclear count. For this purpose, 47 DIs from different tissues were captured in uncompressed TIFF format and converted to 1:3, 1:23 and 1:46 compression JPEG images. Sixty-five positive objects were selected from these images, and six morphological parameters were measured and compared for each object in TIFF images and those of the different compression levels using a set of previously developed and tested macros. Roundness proved to be the only morphological parameter that was significantly affected by image compression. Factors to correct the discrepancy in the roundness estimate were derived from linear regression models for each compression level, thereby eliminating the statistically significant differences between measurements in the equivalent images. These correction factors were incorporated in the automated macros, where they reduced the nuclear quantification differences arising from image compression. Our results demonstrate that it is possible to carry out unbiased automated immunohistochemical nuclear quantification in compressed DIs with a methodology that could be easily incorporated in different systems of digital image analysis.
Properties of Foamed Mortar Prepared with Granulated Blast-Furnace Slag.
Zhao, Xiao; Lim, Siong-Kang; Tan, Cher-Siang; Li, Bo; Ling, Tung-Chai; Huang, Runqiu; Wang, Qingyuan
2015-01-30
Foamed mortar with a density of 1300 kg/m³ was prepared. In the initial laboratory trials, water-to-cement (w/c) ratios ranging from 0.54 to 0.64 were tested to determine the optimal value for foamed mortar corresponding to the highest compressive strength without compromising its fresh state properties. With the obtained optimal w/c ratio of 0.56, two types of foamed mortar were prepared, namely cement-foamed mortar (CFM) and slag-foamed mortar (SFM, 50% cement was replaced by slag weight). Four different curing conditions were adopted for both types of foamed mortar to assess their compressive strength, ultrasonic pulse velocity (UPV) and thermal insulation performance. The test results indicated that utilizing 50% of slag as cement replacement in the production of foamed mortar improved the compressive strength, UPV and thermal insulation properties. Additionally, the initial water curing of seven days gained higher compressive strength and increased UPV values as compared to the air cured and natural weather curing samples. However, this positive effect was more pronounced in the case of compressive strength than in the UPV and thermal conductivity of foamed mortar.
Long term mechanical properties of alkali activated slag
NASA Astrophysics Data System (ADS)
Zhu, J.; Zheng, W. Z.; Xu, Z. Z.; Leng, Y. F.; Qin, C. Z.
2018-01-01
This article reports a study on the microstructural and long-term mechanical properties of the alkali activated slag up to 180 days, and cement paste is studied as the comparison. The mechanical properties including compressive strength, flexural strength, axis tensile strength and splitting tensile strength are analyzed. The results showed that the alkali activated slag had higher compressive and tensile strength, Slag is activated by potassium silicate (K2SiO3) and sodium hydroxide (NaOH) solutions for attaining silicate modulus of 1 using 12 potassium silicate and 5.35% sodium hydroxide. The volume dosage of water is 35% and 42%. The results indicate that alkali activated slag is a kind of rapid hardening and early strength cementitious material with excellent long-term mechanical properties. Single row of holes block compressive strength, single-hole block compressive strength and standard solid brick compressive strength basically meet engineering requirements. The microstructures of alkali activated slag are studied by X-ray diffraction (XRD). The hydration products of alkali-activated slag are assured as hydrated calcium silicate and hydrated calcium aluminate.
He, Guo; Liu, Ping; Tan, Qingbiao; Jiang, Guofeng
2013-12-01
The entangled titanium materials with various porosities have been investigated in terms of the flexural and compressive mechanical properties and the deformation and failure modes. The effect of the sintering parameters on the mechanical properties and the porosity reduction has been comprehensively studied. The results indicate that both the flexural and compressive mechanical properties increase significantly as the porosity decreases. In the porosity range investigated the flexural elastic modulus is in the range of 0.05-6.33GPa, the flexural strength is in the range of 9.8-324.9MPa, the compressive elastic modulus is in the range of 0.03-2.25GPa, and the compressive plateau stress is in the range of 2.3-147.8MPa. The mechanical properties of the entangled titanium materials can be significantly improved by sintering, which increase remarkably as the sintering temperature and/or the sintering time increases. But on other hand, the sintering process can induce the porosity reduction due to the oxidation on the titanium wire surface. © 2013 Elsevier Ltd. All rights reserved.
He, Junfeng; Hogan, T.; Mion, Thomas R.; ...
2015-04-27
Negative compressibility is a sign of thermodynamic instability of open1,2,3 or non-equilibrium4,5 systems. In quantum materials consisting of multiple mutually coupled subsystems, the compressibility of one subsystem can be negative if it is countered by positive compressibility of the others. Manifestations of this effect have so far been limited to low-dimensional dilute electron systems6,7,8,9,10,11. Here, we present evidence from angle-resolved photoemission spectroscopy (ARPES) for negative electronic compressibility (NEC) in the quasi-three-dimensional (3D) spin–orbit correlated metal (Sr1-xLax)3Ir2O7. Increased electron filling accompanies an anomalous decrease of the chemical potential, as indicated by the overall movement of the deep valence bands. Such anomaly,more » suggestive of NEC, is shown to be primarily driven by the lowering in energy of the conduction band as the correlated bandgap reduces. Our finding points to a distinct pathway towards an uncharted territory of NEC featuring bulk correlated metals with unique potential for applications in low-power nanoelectronics and novel metamaterials.« less
Compression of Fe-Si-H alloys to core pressures
NASA Astrophysics Data System (ADS)
Tagawa, Shoh; Ohta, Kenji; Hirose, Kei; Kato, Chie; Ohishi, Yasuo
2016-04-01
We examined the compression behavior of hexagonal-close-packed (hcp) (Fe0.88Si0.12)1H0.61 and (Fe0.88Si0.12)1H0.79 (in atomic ratio) alloys up to 138 GPa in a diamond anvil cell (DAC). While contradicting experimental results were previously reported on the compression curve of double-hcp (dhcp) FeHx (x ≈ 1), our data show that the compressibility of hcp Fe0.88Si0.12Hx alloys is very similar to those of hcp Fe and Fe0.88Si0.12, indicating that the incorporation of hydrogen into iron does not change its compression behavior remarkably. The present experiments suggest that the inner core may contain up to 0.47 wt % hydrogen (FeH0.26) if temperature is 5000 K. The calculated density profile of Fe0.88Si0.12H0.17 alloy containing 0.32 wt % hydrogen in addition to geochemically required 6.5 wt % silicon matches the seismological observations of the outer core, supporting that hydrogen is an important core light element.
Osteochondroma of the Scapula with Accessory Nerve (XI) Compression.
Beauchamp-Chalifour, Philippe; Pelet, Stéphane
2018-01-01
Osteochondroma is the most common benign bone tumor and is characterized as a cartilage-capped bony stalk. This lesion usually develops from the growth plate of long bones. Most osteochondromas are asymptomatic. Neurovascular compressions or cosmetic issues can occur in specific locations. Malignant transformation is extremely rare, and MRI can help evaluate these lesions. Symptomatic mass and malignancy features are the main surgical indications. Uncommonly, an osteochondroma can develop from flat bones. We present the case of a 25-year-old patient with a right scapula osteochondroma causing an accessory nerve compression. The mass was surgically removed, and the diagnosis was confirmed. The patient fully recovered at the latest 3-year follow-up visit.
NASA Technical Reports Server (NTRS)
Orlin, W James; Lindner, Norman J; Bitterly, Jack G
1947-01-01
The theory of hydraulic analogy, that is, the analogy between water flow with a free surface and two-dimensional compressible gas flow and the limitations and conditions of the analogy are discussed. A test run was made using the hydraulic analogy as applied to the flow about circular cylinders at various diameters at subsonic velocities extending to the super critical range. The apparatus and techniques used in this application are described and criticized. Reasonably satisfactory agreement of pressure distributions and flow fields existed between water and airflow about corresponding bodies. This agreement indicated the possibility of extending experimental compressibility research by new methods.
NASA Technical Reports Server (NTRS)
Orlin, W James; Lindner, Norman J; Butterly, Jack G
1947-01-01
The theory of the hydraulic analogy -- that is, the analogy between water flow with a free surface and two-dimensional compressible gas flow -- and the limitations and conditions of the analogy are discussed. A test was run using the hydraulic analogy as applied to the flow about circular cylinders of various diameters at subsonic velocities extending into the supercritical range. The apparatus and techniques used in this application are described and criticized. Reasonably satisfactory agreement of pressure distributions and flow fields existed between water and air flow about corresponding bodies. This agreement indicated the possibility of extending experimental compressibility research by new methods.
Thermal Loss Determination for a Small Internal Combustion Engine
2014-03-27
calibration temperature rc Compression ratio S̄ p Mean piston speed T Temperature Vc Combustion chamber volume Vd Displacement volume Wc,i Indicated work...are typically fueled by gasoline, ignited by a spark, and operate on either a two or four-stroke cycle. Compression-ignition diesel engines as seen in...engine, the fuel is usually withheld from the cylinder until the combustion event is desired as in diesel engines. Similarly, the fuel in a gas
Direct Observations of Fracture and the Damage Mechanics of Ceramics
1988-10-31
microplasticity up to the fracture load. d. It shculd have low enough strength in tension and compression to enable strength measurements at easily accessible...15jm. SEM examination of the grains after large amounts of deformation indicated that the grains are brittle without any evidence of microplasticity . In...and microplasticity in polycrystalline alumina", J.Mater.Sci., 12(1977)791-796. 93. J Lankford, "Compressive microfracture and indentation damage in A1
Shams, Pari N; Ma, Roy; Pickles, Tom; Rootman, Jack; Dolman, Peter J
2014-06-01
To compare the risk of developing compressive optic neuropathy in patients with active thyroid eye disease (TED) treated with corticosteroids with or without orbital radiotherapy. Retrospective single-center case-control study. The clinical charts of 351 patients with active TED who received corticosteroids with or without orbital radiotherapy between 1999 and 2010 were reviewed. Patients with compressive optic neuropathy at the time of presentation were excluded. Group 1 received corticosteroids only and Group 2 received corticosteroids as well as orbital radiotherapy. The primary outcome measure was the development of compressive optic neuropathy. Secondary outcome measures were changes in other parameters indicating the activity of TED, including soft tissue inflammation, diplopia, ocular motility restriction, and appearance. There were 144 cases in Group 1 and 105 in Group 2. Both groups were matched for age, sex, and stability of thyroid function. The 2 groups differed only in the modality of treatment for active TED. The main indication for treatment in both groups was soft tissue inflammation. Corticosteroids were initiated an average of 2.6 months following symptom onset in Group 1 and 2.5 months in Group 2. Group 2 received orbital radiotherapy on average 4.2 months following the initiation of corticosteroid therapy and 8% (9/105) were intolerant to corticosteroids. At an average of 3.2 years follow-up, compressive optic neuropathy had developed in 17% (25/144) of Group 1 and 0% of Group 2 (P < .0001), on average 5.5 months following the initiation of corticosteroid therapy. Although both groups experienced a significant reduction in periocular inflammation, the radiotherapy-treated group demonstrated a significantly greater improvement in ocular motility. The rate of compressive optic neuropathy was significantly lower and improvement in ocular motility greater in patients receiving orbital radiotherapy in addition to corticosteroids. Patients with active TED appear to have an effective and sustained response to orbital radiotherapy combined with corticosteroids that is protective against disease progression and the development of compressive optic neuropathy. Copyright © 2014 Elsevier Inc. All rights reserved.
First-principles study of low compressibility osmium borides
NASA Astrophysics Data System (ADS)
Gou, Huiyang; Hou, Li; Zhang, Jingwu; Li, Hui; Sun, Guifang; Gao, Faming
2006-05-01
Using first-principles total energy calculations we investigate the structural, elastic, and electronic properties of OsB2 and OsB, respectively. The calculated equilibrium structural parameters of OsB2 are in agreement with the available experimental results. The calculations indicate that OsB in tungsten carbide is more energetically stable under the ambient condition than the metastable cesium chloride phase of OsB. Results of bulk modulus show that they are potential low compressible materials. The hardness of OsB2 is estimated by employing a semiempirical theory. The results indicate that OsB2 is an ultraincompressible material, but not a superhard material. The method designing superhard materials is different from one creating ultraincompressible materials.
A randomized control hands-on defibrillation study-Barrier use evaluation.
Wampler, David; Kharod, Chetan; Bolleter, Scotty; Burkett, Alison; Gabehart, Caitlin; Manifold, Craig
2016-06-01
Chest compressions and defibrillation are the only therapies proven to increase survival in cardiac arrest. Historically, rescuers must remove hands to shock, thereby interrupting chest compressions. This hands-off time results in a zero blood flow state. Pauses have been associated with poorer neurological recovery. This was a blinded randomized control cadaver study evaluating the detection of defibrillation during manual chest compressions. An active defibrillator was connected to the cadaver in the sternum-apex configuration. The sham defibrillator was not connected to the cadaver. Subjects performed chest compressions using 6 barrier types: barehand, single and double layer nitrile gloves, firefighter gloves, neoprene pad, and a manual chest compression/decompression device. Randomized defibrillations (10 per barrier type) were delivered at 30 joules (J) for bare hand and 360J for all other barriers. After each shock, the subject indicated degree of sensation on a VAS scale. Ten subjects participated. All subjects detected 30j shocks during barehand compressions, with only 1 undetected real shock. All barriers combined totaled 500 shocks delivered. Five (1%) active shocks were detected, 1(0.2%) single layer of Nitrile, 3(0.6%) with double layer nitrile, and 1(0.2%) with the neoprene barrier. One sham shock was reported with the single layer nitrile glove. No shocks were detected with fire gloves or compression decompression device. All shocks detected barely perceptible (0.25(±0.05)cm on 10cm VAS scale). Nitrile gloves and neoprene pad prevent (99%) responder's detection of defibrillation of a cadaver. Fire gloves and compression decompression device prevented detection. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Nonlinear pulse compression in pulse-inversion fundamental imaging.
Cheng, Yun-Chien; Shen, Che-Chou; Li, Pai-Chi
2007-04-01
Coded excitation can be applied in ultrasound contrast agent imaging to enhance the signal-to-noise ratio with minimal destruction of the microbubbles. Although the axial resolution is usually compromised by the requirement for a long coded transmit waveforms, this can be restored by using a compression filter to compress the received echo. However, nonlinear responses from microbubbles may cause difficulties in pulse compression and result in severe range side-lobe artifacts, particularly in pulse-inversion-based (PI) fundamental imaging. The efficacy of pulse compression in nonlinear contrast imaging was evaluated by investigating several factors relevant to PI fundamental generation using both in-vitro experiments and simulations. The results indicate that the acoustic pressure and the bubble size can alter the nonlinear characteristics of microbubbles and change the performance of the compression filter. When nonlinear responses from contrast agents are enhanced by using a higher acoustic pressure or when more microbubbles are near the resonance size of the transmit frequency, higher range side lobes are produced in both linear imaging and PI fundamental imaging. On the other hand, contrast detection in PI fundamental imaging significantly depends on the magnitude of the nonlinear responses of the bubbles and thus the resultant contrast-to-tissue ratio (CTR) still increases with acoustic pressure and the nonlinear resonance of microbubbles. It should be noted, however, that the CTR in PI fundamental imaging after compression is consistently lower than that before compression due to obvious side-lobe artifacts. Therefore, the use of coded excitation is not beneficial in PI fundamental contrast detection.
Importance of Grid Center Arrangement
NASA Astrophysics Data System (ADS)
Pasaogullari, O.; Usul, N.
2012-12-01
In Digital Elevation Modeling, grid size is accepted to be the most important parameter. Despite the point density and/or scale of the source data, it is freely decided by the user. Most of the time, arrangement of the grid centers are ignored, even most GIS packages omit the choice of grid center coordinate selection. In our study; importance of the arrangement of grid centers is investigated. Using the analogy between "Raster Grid DEM" and "Bitmap Image", importance of placement of grid centers in DEMs are measured. The study has been conducted on four different grid DEMs obtained from a half ellipsoid. These grid DEMs are obtained in such a way that they are half grid size apart from each other. Resulting grid DEMs are investigated through similarity measures. Image processing scientists use different measures to investigate the dis/similarity between the images and the amount of different information they carry. Grid DEMs are projected to a finer grid in order to co-center. Similarity measures are then applied to each grid DEM pairs. These similarity measures are adapted to DEM with band reduction and real number operation. One of the measures gives function graph and the others give measure matrices. Application of similarity measures to six grid DEM pairs shows interesting results. These four different grid DEMs are created with the same method for the same area, surprisingly; thirteen out of 14 measures state that, the half grid size apart grid DEMs are different from each other. The results indicated that although grid DEMs carry mutual information, they have also additional individual information. In other words, half grid size apart constructed grid DEMs have non-redundant information.; Joint Probability Distributions Function Graphs
Strain-dependent dynamic compressive properties of magnetorheological elastomeric foams
NASA Astrophysics Data System (ADS)
Wereley, Norman M.; Perez, Colette; Choi, Young T.
2018-05-01
This paper addresses the strain-dependent dynamic compressive properties (i.e., so-called Payne effect) of magnetorheological elastomeric foams (MREFs). Isotropic MREF samples (i.e., no oriented particle chain structures), fabricated in flat square shapes (nominal size of 26.5 mm x 26.5 mm x 9.5 mm) were synthesized by randomly dispersing micron-sized iron oxide particles (Fe3O4) into a liquid silicone foam in the absence of magnetic field. Five different Fe3O4 particle concentrations of 0, 2.5, 5.0, 7.5, and 10 percent by volume fraction (hereinafter denoted as vol%) were used to investigate the effect of particle concentration on the dynamic compressive properties of the MREFs. The MREFs were sandwiched between two multi-pole flexible plate magnets in order to activate the magnetorheological (MR) strengthening effect. Under two different pre-compression conditions (i.e., 35% and 50%), the dynamic compressive stresses of the MREFs with respect to dynamic strain amplitudes (i.e., 1%-10%) were measured by using a servo-hydraulic testing machine. The complex modulus (i.e., storage modulus and loss modulus) and loss factors of the MREFs with respect to dynamic strain amplitudes were presented as performance indices to evaluate their strain-dependent dynamic compressive behavior.
Palm Oil Fuel Ash (POFA) and Eggshell Powder (ESP) as Partial Replacement for Cement in Concrete
NASA Astrophysics Data System (ADS)
Ezdiani Mohamad, Mazizah; Mahmood, Ali A.; Min, Alicia Yik Yee; Nur Nadhira A., R.
2018-03-01
This study is an attempt to partially replace Ordinary Portland cement (OPC) in concrete with palm oil fuel ash (POFA) and eggshell powder (ESP). The mix proportions of POFA and ESP were varied at 10% of cement replacement and compared with OPC concrete as control specimen. The fineness of POFA is characterized by passing through 300 μm sieve and ESP by passing through 75 μm sieve. Compressive strength testing was conducted on concrete specimens to determine the optimum mix proportion of POFA and ESP. Generally the compressive strength of OPC concrete is higher compared to POFA-ESP concrete. Based on the results of POFA-ESP concrete overall, it shows that the optimum mix proportion of concrete is 6%POFA:4% ESP achieved compressive strength of 38.60 N/mm2 at 28 days. The compressive strength of OPC concrete for the same period was 42.37 N/mm2. Higher water demand in concrete is needed due to low fineness of POFA that contributing to low compressive strength of POFA-ESP concrete. However, the compressive strength and workability of the POFA-ESP concrete were within the ranges typically encountered in regular concrete mixtures indicating the viability of this replacement procedure for structural and non-structural applications.
Efficient image acquisition design for a cancer detection system
NASA Astrophysics Data System (ADS)
Nguyen, Dung; Roehrig, Hans; Borders, Marisa H.; Fitzpatrick, Kimberly A.; Roveda, Janet
2013-09-01
Modern imaging modalities, such as Computed Tomography (CT), Digital Breast Tomosynthesis (DBT) or Magnetic Resonance Tomography (MRT) are able to acquire volumetric images with an isotropic resolution in micrometer (um) or millimeter (mm) range. When used in interactive telemedicine applications, these raw images need a huge storage unit, thereby necessitating the use of high bandwidth data communication link. To reduce the cost of transmission and enable archiving, especially for medical applications, image compression is performed. Recent advances in compression algorithms have resulted in a vast array of data compression techniques, but because of the characteristics of these images, there are challenges to overcome to transmit these images efficiently. In addition, the recent studies raise the low dose mammography risk on high risk patient. Our preliminary studies indicate that by bringing the compression before the analog-to-digital conversion (ADC) stage is more efficient than other compression techniques after the ADC. The linearity characteristic of the compressed sensing and ability to perform the digital signal processing (DSP) during data conversion open up a new area of research regarding the roles of sparsity in medical image registration, medical image analysis (for example, automatic image processing algorithm to efficiently extract the relevant information for the clinician), further Xray dose reduction for mammography, and contrast enhancement.
System and method for the adaptive mapping of matrix data to sets of polygons
NASA Technical Reports Server (NTRS)
Burdon, David (Inventor)
2003-01-01
A system and method for converting bitmapped data, for example, weather data or thermal imaging data, to polygons is disclosed. The conversion of the data into polygons creates smaller data files. The invention is adaptive in that it allows for a variable degree of fidelity of the polygons. Matrix data is obtained. A color value is obtained. The color value is a variable used in the creation of the polygons. A list of cells to check is determined based on the color value. The list of cells to check is examined in order to determine a boundary list. The boundary list is then examined to determine vertices. The determination of the vertices is based on a prescribed maximum distance. When drawn, the ordered list of vertices create polygons which depict the cell data. The data files which include the vertices for the polygons are much smaller than the corresponding cell data files. The fidelity of the polygon representation can be adjusted by repeating the logic with varying fidelity values to achieve a given maximum file size or a maximum number of vertices per polygon.
Kirchhoff and Ohm in action: solving electric currents in continuous extended media
NASA Astrophysics Data System (ADS)
Dolinko, A. E.
2018-03-01
In this paper we show a simple and versatile computational simulation method for determining electric currents and electric potential in 2D and 3D media with arbitrary distribution of resistivity. One of the highlights of the proposed method is that the simulation space containing the distribution of resistivity and the points of external applied voltage are introduced by means of digital images or bitmaps, which easily allows simulating any phenomena involving distributions of resistivity. The simulation is based on the Kirchhoff’s laws of electric currents and it is solved by means of an iterative procedure. The method is also generalised to account for media with distributions of reactive impedance. At the end of this work, we show an example of application of the simulation, consisting in reproducing the response obtained with the geophysical method of electric resistivity tomography in presence of soil cracks. This paper is aimed at undergraduate or graduated students interested in computational physics and electricity and also researchers involved in the area of continuous electric media, which could find a simple and powerful tool for investigation.
Three-pass protocol scheme for bitmap image security by using vernam cipher algorithm
NASA Astrophysics Data System (ADS)
Rachmawati, D.; Budiman, M. A.; Aulya, L.
2018-02-01
Confidentiality, integrity, and efficiency are the crucial aspects of data security. Among the other digital data, image data is too prone to abuse of operation like duplication, modification, etc. There are some data security techniques, one of them is cryptography. The security of Vernam Cipher cryptography algorithm is very dependent on the key exchange process. If the key is leaked, security of this algorithm will collapse. Therefore, a method that minimizes key leakage during the exchange of messages is required. The method which is used, is known as Three-Pass Protocol. This protocol enables message delivery process without the key exchange. Therefore, the sending messages process can reach the receiver safely without fear of key leakage. The system is built by using Java programming language. The materials which are used for system testing are image in size 200×200 pixel, 300×300 pixel, 500×500 pixel, 800×800 pixel and 1000×1000 pixel. The result of experiments showed that Vernam Cipher algorithm in Three-Pass Protocol scheme could restore the original image.
Application of deep learning in the identification of TAO
NASA Astrophysics Data System (ADS)
Wu, Cong; Jin, Jicheng
2018-03-01
Thyroid associated ophthalmopathy (TAO) is one of the most common orbital disease, it can be easily detected by the human eye in the late onset due to obvious changes in extraocular muscles. But in the early stage, it is not easy to be distinguish by doctors with eye because of subtle changes in extraocular muscles, so it is a good way to use the computer's ability to assist doctors to pre-diagnosis of TAO for follow-up treatment. In this paper, according to the routine diagnosis process of doctors, a comprehensive detection system network is proposed. The network consists of three different convolutional neural subnetwork, corresponding to three bitmaps of eye CT images .Finally, the output of three subnetwork are combined to generate final diagnostic result by the majority vote. Through the experiment, the detection system, whose recognition rata is 94.87%, has a good ability to identify the characteristics of TAO, can assist the doctor in the early diagnosis of TAO in a certain extent, so as to help early patients get timely treatment.
Software for Viewing Landsat Mosaic Images
NASA Technical Reports Server (NTRS)
Watts, Zack; Farve, Catharine L.; Harvey, Craig
2003-01-01
A Windows-based computer program has been written to enable novice users (especially educators and students) to view images of large areas of the Earth (e.g., the continental United States) generated from image data acquired in the Landsat observations performed circa the year 1990. The large-area images are constructed as mosaics from the original Landsat images, which were acquired in several wavelength bands and each of which spans an area (in effect, one tile of a mosaic) of .5 in latitude by .6 in longitude. Whereas the original Landsat data are registered on a universal transverse Mercator (UTM) grid, the program converts the UTM coordinates of a mouse pointer in the image to latitude and longitude, which are continuously updated and displayed as the pointer is moved. The mosaic image currently on display can be exported as a Windows bitmap file. Other images (e.g., of state boundaries or interstate highways) can be overlaid on Landsat mosaics. The program interacts with the user via standard toolbar, keyboard, and mouse user interfaces. The program is supplied on a compact disk along with tutorial and educational information.
PCDAQ, A Windows Based DAQ System
NASA Astrophysics Data System (ADS)
Hogan, Gary
1998-10-01
PCDAQ is a Windows NT based general DAQ/Analysis/Monte Carlo shell developed as part of the Proton Radiography project at LANL (Los Alamos National Laboratory). It has been adopted by experiments outside of the Proton Radiography project at Brookhaven National Laboratory (BNL) and at LANL. The program provides DAQ, Monte Carlo, and replay (disk file input) modes. Data can be read from hardware (CAMAC) or other programs (ActiveX servers). Future versions will read VME. User supplied data analysis routines can be written in Fortran, C++, or Visual Basic. Histogramming, testing, and plotting packages are provided. Histogram data can be exported to spreadsheets or analyzed in user supplied programs. Plots can be copied and pasted as bitmap objects into other Windows programs or printed. A text database keyed by the run number is provided. Extensive software control flags are provided so that the user can control the flow of data through the program. Control flags can be set either in script command files or interactively. The program can be remotely controlled and data accessed over the Internet through its ActiveX DCOM interface.
Seismotectonics and rates of active crustal deformation in the Burmese arc and adjacent regions
NASA Astrophysics Data System (ADS)
Radha Krishna, M.; Sanu, T. D.
2000-11-01
The close vicinity of the Burmese subduction zone to the Himalayan collision zone across northeast India produces complex tectonics giving rise to a high level of seismicity. Using the hypocentral data of shallow earthquakes ( h≤70 km) for the period 1897-1995, a large number of focal mechanism solutions and other geophysical data in correlation with major morphotectonic features in the Burmese arc and the adjoining areas, we identified 12 broad seismogenic zones of relatively homogeneous deformation. Crustal deformation rates have been determined for each one of these sources based on summation of moment tensors. The results indicate that along the Kopili-Bomdila fault zone in eastern Himalaya, the deformation is taken up as a compression of 0.12±0.01 mm/yr along N16° and an extension of 0.05±0.004 mm/yr along N104° direction. The deformation velocities show a NS compression of 18.9±2.5 mm/yr and an EW extension of 17.1±2.2 mm/yr in the Shillong Plateau region, while a compression of 5.4±2.8 mm/yr along N33° is observed in the Tripura fold belt and the Bengal basin region. The vertical component in the Shillong Plateau shows crustal thickening of 2.4±0.3 mm/yr. The deformation velocities in Indo-Burman ranges show a compression of 0.19±0.02 mm/yr along N11° and an extension of 0.17±0.01 mm/yr along N101° in the Naga hills region, a compression of 3.3±0.4 mm/yr along N20° and an extension of 3.1±0.36 mm/yr along N110° in the Chin hills region and a compression of 0.21±0.3 mm/yr in N20° and an extension of 0.18±0.03 mm/yr along N110° in the Arakan-Yoma region. The dominance of strike-slip motions with the P axis oriented on an average along N17° indicate that the Burma platelet may be getting dragged along with the Indian plate and the motion of these two together is accommodated along the Sagaing fault. The velocities estimated along Sagaing transform fault in the back-arc region suggest that the deformation is taken up as an extension of 29.5±4.7 mm/yr along N344° and a compression of 12.4±1.9 mm/yr along N74° in the northern part of the fault zone, and a compression of 17.4±2.3 mm/yr along N71° and an extension of 59.8±8.0 mm/yr along N341° in the southern part of the fault zone. The average shear motion of about 13.7 mm/yr is observed along the Sagaing fault. The deformation observed in the southern part of the syntaxis zone along the Mishmi thrust indicate a compression of 0.63±0.08 mm/yr in N58° and an extension of 0.6±0.07 mm/yr in N328° direction. The region of Shan Plateau, west of Red River fault, shows a compression of 17.7±2.6 mm/yr along N36° and an extension of 16.1±2.4 mm/yr along N126°.
Morris, Susan H; Howard, Jason J; El-Hawary, Ron
2017-03-15
Randomized controlled study comparing the efficacy of intraoperative somatosensory-evoked potentials (SSEPs) versus transcranial motor-evoked potentials (TcMEPs) as early indicators of neural compromise and predictors of postoperative function in a rat model of spinal cord compression. To compare the relative efficacy of SSEPs and TcMEPs to detect spinal cord compromise and predict postoperative functional deficit after spinal cord compression. There is controversy regarding the efficacy of SSEPs versus TcMEPs to detect intraoperative spinal cord compromise and predict functional outcomes. Previous trials provide some guidance as to the role of each modality in spinal cord monitoring but randomized controlled trials, which are not feasible in humans, are lacking. Twenty-four adult male Wistar rats were evenly divided into three experimental groups and one control group. The experimental groups were determined according to the length of time that 100% TcMEP signal loss was maintained: 0, 5, or 15 minutes. All animals had standardized preoperative functional testing. Spinal cord compromise was initiated utilizing a validated protocol, which involved compression via a balloon catheter introduced into the thoracic sublaminar space. Both SSEPs and TcMEPs were recorded during cord compression for each experimental group. Functional behavioral testing using two validated methods (tilt and modified Tarlov) was repeated 24 hours after termination of spinal cord compression. Post hoc, animals were redistributed into two functional subgroups, noncompromised and compromised, for statistical analysis. TcMEPs consistently detected spinal cord compromise either in advance of or at the same time as SSEPs; however, the delay in SSEP response was not significant for cases when compromised postoperative function resulted. Both SSEP and TcMEP amplitude recovery correlated well with postoperative functional scores. TcMEPs are more sensitive to spinal cord compromise than SSEPs, but the recovery profiles of both SSEP and TcMEP amplitudes are good predictors of postoperative function. 2.
Pressure-induced transition in the grain boundary of diamond
NASA Astrophysics Data System (ADS)
Chen, J.; Tang, L.; Ma, C.; Fan, D.; Yang, B.; Chu, Q.; Yang, W.
2017-12-01
Equation of state of diamond powder with different average grain sizes was investigated using in situ synchrotron x-ray diffraction and a diamond anvil cell (DAC). Comparison of compression curves was made for two samples with average grain size of 50nm and 100nm. The two specimens were pre-pressed into pellets and loaded in the sample pressure chamber of the DAC separately to minimized differences of possible systematic errors for the two samples. Neon gas was used as pressure medium and ruby spheres as pressure calibrant. Experiments were conducted at room temperature and high pressures up to 50 GPa. Fitting the compression data in the full pressure range into the third order Birch-Murnaghan equation of state yields bulk modulus (K) and its pressure derivative (K') of 392 GPa and 5.3 for 50nm sample and 398GPa and 4.5 for 100nm sample respectively. Using a simplified core-shell grain model, this result indicates that the grain boundary has an effective bulk modulus of 54 GPa. This value is similar to that observed for carbon nanotube[1] validating the recent theoretical diamond surface modeling[2]. Differential analysis of the compression cures demonstrates clear relative compressibility change at the pressure about 20 GPa. When fit the compression data below and above this pressure separately, the effect of grain size on bulk modulus reverses in the pressure range above 20 GPa. This observation indicates a possible transition of grain boundary structure, likely from sp2 hybridization at the surface[2] towards sp3like orbital structure which behaves alike the inner crystal. [1] Jie Tang, Lu-Chang Qin, Taizo Sasaki, Masako Yudasaka, Akiyuki Matsushita, and Sumio Iijima, Compressibility and Polygonization of Single-Walled Carbon Nanotubes under Hydrostatic Pressure, Physical Review Letters, 85(9), 1187-1198, 2000. [2] Shaohua Lu, Yanchao Wang, Hanyu Liu, Mao-sheng Miao, and Yanming Ma, Self-assembled ultrathin nanotubes on diamond (100) surface, Nature Communications, DOI: 10.1038/ncomms4666, 2014
NASA Astrophysics Data System (ADS)
Seeram, Euclid
2006-03-01
The large volumes of digital images produced by digital imaging modalities in Radiology have provided the motivation for the development of picture archiving and communication systems (PACS) in an effort to provide an organized mechanism for digital image management. The development of more sophisticated methods of digital image acquisition (Multislice CT and Digital Mammography, for example), as well as the implementation and performance of PACS and Teleradiology systems in a health care environment, have created challenges in the area of image compression with respect to storing and transmitting digital images. Image compression can be reversible (lossless) or irreversible (lossy). While in the former, there is no loss of information, the latter presents concerns since there is a loss of information. This loss of information from diagnostic medical images is of primary concern not only to radiologists, but also to patients and their physicians. In 1997, Goldberg pointed out that "there is growing evidence that lossy compression can be applied without significantly affecting the diagnostic content of images... there is growing consensus in the radiologic community that some forms of lossy compression are acceptable". The purpose of this study was to explore the opinions of expert radiologists, and related professional organizations on the use of irreversible compression in routine practice The opinions of notable radiologists in the US and Canada are varied indicating no consensus of opinion on the use of irreversible compression in primary diagnosis, however, they are generally positive on the notion of the image storage and transmission advantages. Almost all radiologists are concerned with the litigation potential of an incorrect diagnosis based on irreversible compressed images. The survey of several radiology professional and related organizations reveals that no professional practice standards exist for the use of irreversible compression. Currently, the only standard for image compression is stated in the ACR's Technical Standards for Teleradiology and Digital Image Management.
Lin, Kae-Long; Huang, Long-Sheng; Shie, Je-Lueng; Cheng, Ching-Jung; Lee, Ching-Hwa; Chang, Tien-Chin
2013-01-01
This study deals with the effect of solar panel waste glass on fired clay bricks. Brick samples were heated to temperatures which varied from 700-1000 degrees C for 6 h, with a heating rate of 10 degrees C min(-1). The material properties of the resultant material were then determined, including speciation variation, loss on ignition, shrinkage, bulk density, 24-h absorption rate, compressive strength and salt crystallization. The results indicate that increasing the amount of solar panel waste glass resulted in a decrease in the water absorption rate and an increase in the compressive strength of the solar panel waste glass bricks. The 24-h absorption rate and compressive strength of the solar panel waste glass brick made from samples containing 30% solar panel waste glass sintered at 1000 degrees C all met the Chinese National Standard (CNS) building requirements for first-class brick (compressive strengths and water absorption of the bricks were 300 kg cm(-2) and 10% of the brick, respectively). The addition of solar panel waste glass to the mixture reduced the degree of firing shrinkage. The salt crystallization test and wet-dry tests showed that the addition of solar panel waste glass had highly beneficial effects in that it increased the durability of the bricks. This indicates that solar panel waste glass is indeed suitable for the partial replacement of clay in bricks.
Evaluation of the effectiveness of olive cake residue as an expansive soil stabilizer
NASA Astrophysics Data System (ADS)
Nalbantoglu, Zalihe; Tawfiq, Salma
2006-08-01
The quantity of the by-product olive cake residue generated in most parts of the Mediterranean countries continues to increase and expected to double in amount within 10 15 years. This increase intensifies the problems associated with the disposal of this by-product. Olive cake residue has a potential for use as a soil stabilizer and large volumes can be beneficially used. This study is directed toward determining if olive cake residue can be utilized to increase the strength and stability of expansive soils which constitute a costly natural hazard to lightweight structures on shallow foundations. A series of laboratory tests using engineering properties, such as Atterberg limits, moisture-density relationship (compaction), swell, unconfined compressive strength were undertaken to evaluate the effectiveness and performance of the olive cake residue as a soil stabilizer. Test results indicate that an addition of only 3% burned olive waste into the soil causes a reduction in plasticity, volume change and an increase in the unconfined compressive strength. However, it was observed that the presence of burned olive waste in the soil greater than 3% caused an increase in the compressibility and a decrease in the unconfined compressive strength. Test results indicate that the use of olive waste in soil stabilization gives greater benefits to the environment than simply disposing of the by-product, olive cake residue.
Sarobol, Pylin; Chandross, Michael E.; Carroll, Jay D.; ...
2015-09-22
Aerosol deposition (AD) is a solid-state deposition technology that has been developed to fabricate ceramic coatings nominally at room temperature. Sub-micron ceramic particles accelerated by pressurized gas impact, deform, and consolidate on substrates under vacuum. Ceramic particle consolidation in AD coatings is highly dependent on particle deformation and bonding; these behaviors are not well understood. In this work, atomistic simulations and in situ micro-compressions in the scanning electron microscope, and the transmission electron microscope (TEM) were utilized to investigate fundamental mechanisms responsible for plastic deformation/fracture of particles under applied compression. Results showed that highly defective micron-sized alumina particles, initially containingmore » numerous dislocations or a grain boundary, exhibited no observable shape change before fracture/fragmentation. Simulations and experimental results indicated that particles containing a grain boundary only accommodate low strain energy per unit volume before crack nucleation and propagation. In contrast, nearly defect-free, sub-micron, single crystal alumina particles exhibited plastic deformation and fracture without fragmentation. Dislocation nucleation/motion, significant plastic deformation, and shape change were observed. Simulation and TEM in situ micro-compression results indicated that nearly defect-free particles accommodate high strain energy per unit volume associated with dislocation plasticity before fracture. As a result, the identified deformation mechanisms provide insight into feedstock design for AD.« less
Influence of several factors on ignition lag in a compression-ignition engine
NASA Technical Reports Server (NTRS)
Gerrish, Harold C; Voss, Fred
1932-01-01
This investigation was made to determine the influence of fuel quality, injection advance angle, injection valve-opening pressure, inlet-air pressure, compression ratio, and engine speed on the time lag of auto-ignition of a Diesel fuel oil in a single-cylinder compression-ignition engine as obtained from an analysis of indicator diagrams. Three cam-operated fuel-injection pumps, two pumps cams, and an automatic injection valve with two different nozzles were used. Ignition lag was considered to be the interval between the start of injection of the fuel as determined with a Stroborama and the start of effective combustion as determined from the indicator diagram, the latter being the point where 4.0 x 10(exp-6) pound of fuel had been effectively burned. For this particular engine and fuel it was found that: (1) for a constant start and the same rate of fuel injection up the point of cut-off, a variation in fuel quantity from 1.2 x 10(exp-4) to 4.1 x 10(exp-4) pound per cycle has no appreciable effect on the ignition lag; (2) injection advance angle increases or decreases the lag according to whether density, temperature, or turbulence has the controlling influence; (3) increase in valve-opening pressure slightly increases the lag; and (4) increase of inlet-air pressure, compression ratio, and engine speed reduces the lag.
Charge transfer in TATB and HMX under extreme conditions.
Zhang, Chaoyang; Ma, Yu; Jiang, Daojian
2012-11-01
Charge transfer is usually accompanied by structural changes in materials under different conditions. However, the charge transfer in energetic materials that are subjected to extreme conditions has seldom been explored by researchers. In the work described here, the charge transfer in single molecules and unit cells of the explosives TATB and HMX under high temperatures and high pressures was investigated by performing static and dynamic calculations using three DFT methods, including the PWC functional of LDA, and the BLYP and PBE functionals of GGA. The results showed that negative charge is transferred from the nitro groups of molecular or crystalline TATB and HMX when they are heated. All DFT calculations for the compressed TATB unit cell indicate that, generally, negative charge transfer occurs to its nitro groups as the compression increases. PWC and PBE calculations for crystalline HMX show that negative charge is first transferred to the nitro groups but, as the compression increases, the negative charge is transferred from the nitro groups. However, the BLYP calculations indicated that there was gradual negative charge transfer to the nitro groups of HMX, similar to the case for TATB. The unrelaxed state of the uniformly compressed TATB causes negative charge to be transferred from its nitro groups, in contrast to what is seen in the relaxed state. Charge transfer in TATB is predicted to occur much more easily than in HMX.
NASA Astrophysics Data System (ADS)
Zhang, Mi; Guan, Zhidong; Wang, Xiaodong; Du, Shanyi
2017-10-01
Kink band is a typical phenomenon for composites under longitudinal compression. In this paper, theoretical analysis and finite element simulation were conducted to analyze kink angle as well as compressive strength of composites. Kink angle was considered to be an important character throughout longitudinal compression process. Three factors including plastic matrix, initial fiber misalignment and rotation due to loading were considered for theoretical analysis. Besides, the relationship between kink angle and fiber volume fraction was improved and optimized by theoretical derivation. In addition, finite element models considering fiber stochastic strength and Drucker-Prager constitutive model for matrix were conducted in ABAQUS to analyze kink band formation process, which corresponded with the experimental results. Through simulation, the loading and failure procedure can be evidently divided into three stages: elastic stage, softening stage, and fiber break stage. It also shows that kink band is a result of fiber misalignment and plastic matrix. Different values of initial fiber misalignment angle, wavelength and fiber volume fraction were considered to explore the effects on compressive strength and kink angle. Results show that compressive strength increases with the decreasing of initial fiber misalignment angle, the decreasing of initial fiber misalignment wavelength and the increasing of fiber volume fraction, while kink angle decreases in these situations. Orthogonal array in statistics was also built to distinguish the effect degree of these factors. It indicates that initial fiber misalignment angle has the largest impact on compressive strength and kink angle.
Assessment of compressive failure process of cortical bone materials using damage-based model.
Ng, Theng Pin; R Koloor, S S; Djuansjah, J R P; Abdul Kadir, M R
2017-02-01
The main failure factors of cortical bone are aging or osteoporosis, accident and high energy trauma or physiological activities. However, the mechanism of damage evolution coupled with yield criterion is considered as one of the unclear subjects in failure analysis of cortical bone materials. Therefore, this study attempts to assess the structural response and progressive failure process of cortical bone using a brittle damaged plasticity model. For this reason, several compressive tests are performed on cortical bone specimens made of bovine femur, in order to obtain the structural response and mechanical properties of the material. Complementary finite element (FE) model of the sample and test is prepared to simulate the elastic-to-damage behavior of the cortical bone using the brittle damaged plasticity model. The FE model is validated in a comparative method using the predicted and measured structural response as load-compressive displacement through simulation and experiment. FE results indicated that the compressive damage initiated and propagated at central region where maximum equivalent plastic strain is computed, which coincided with the degradation of structural compressive stiffness followed by a vast amount of strain energy dissipation. The parameter of compressive damage rate, which is a function dependent on damage parameter and the plastic strain is examined for different rates. Results show that considering a similar rate to the initial slope of the damage parameter in the experiment would give a better sense for prediction of compressive failure. Copyright © 2016 Elsevier Ltd. All rights reserved.
Two-stroke S.I. engine competitive to four-stroke engine in terms of the exhaust emission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavletic, R.; Trenc, F.
1994-09-01
A model engine with disintegrated working cycle was built. Its operation is not autonomous; compression of the working air is performed separately outside the engine by the compressed-air line supply. Pre-compressed charge together with the injected fuel is introduced in the combustion chamber. The model engine makes possible to determine indicated performance characteristics and its emission capability. Effective measured engine characteristics are of course not comparable with those obtained by a practical engine. The model presented is a two-stroke cycle engine. Exhaust emission picture of the presented engine is comparable with the emission of a modern four-stroke engine. 2 refs.,more » 13 figs., 2 tabs.« less
Compression of color-mapped images
NASA Technical Reports Server (NTRS)
Hadenfeldt, A. C.; Sayood, Khalid
1992-01-01
In a standard image coding scenario, pixel-to-pixel correlation nearly always exists in the data, especially if the image is a natural scene. This correlation is what allows predictive coding schemes (e.g., DPCM) to perform efficient compression. In a color-mapped image, the values stored in the pixel array are no longer directly related to the pixel intensity. Two color indices which are numerically adjacent (close) may point to two very different colors. The correlation still exists, but only via the colormap. This fact can be exploited by sorting the color map to reintroduce the structure. The sorting of colormaps is studied and it is shown how the resulting structure can be used in both lossless and lossy compression of images.
Zheng, Jieru; Kang, Youn K; Therien, Michael J; Beratan, David N
2005-08-17
Donor-acceptor interactions were investigated in a series of unusually rigid, cofacially compressed pi-stacked porphyrin-bridge-quinone systems. The two-state generalized Mulliken-Hush (GMH) approach was used to compute the coupling matrix elements. The theoretical coupling values evaluated with the GMH method were obtained from configuration interaction calculations using the INDO/S method. The results of this analysis are consistent with the comparatively soft distance dependences observed for both the charge separation and charge recombination reactions. Theoretical studies of model structures indicate that the phenyl units dominate the mediation of the donor-acceptor coupling and that the relatively weak exponential decay of rate with distance arises from the compression of this pi-electron stack.
Confinement of NORMAL- AND HIGH-STRENGTH CONCRETE by Shape Memory Alloy (SMA) Spirals
NASA Astrophysics Data System (ADS)
Gholampour, A.; Ozbakkaloglu, T.
2018-01-01
This paper presents the results of an experimental study on the axial compressive behaviour of normal- and high-strength concrete (NSC and HSC) confined by shape memory alloy (SMA) spirals. A spiral pitch space of 36 and 20 mm was used for SMA confinement of NSC and HSC columns, respectively. The confining pressure was applied on the concrete cylinders by SMA spirals that were prestrained at 0, 5.5, and 9.5%. The compression test results on the SMA-confined specimens indicate that the prestrain level of SMA significantly affects the axial compressive behaviour of both NSC and HSC. An increase in the level of prestrain leads to an increase in the peak axial stress and corresponding strain of SMA-confined concrete.
Dynamic model including piping acoustics of a centrifugal compression system
NASA Astrophysics Data System (ADS)
van Helvoirt, Jan; de Jager, Bram
2007-04-01
This paper deals with low-frequency pulsation phenomena in full-scale centrifugal compression systems associated with compressor surge. The Greitzer lumped parameter model is applied to describe the dynamic behavior of an industrial compressor test rig and experimental evidence is provided for the presence of acoustic pulsations in the compression system under study. It is argued that these acoustic phenomena are common for full-scale compression systems where pipe system dynamics have a significant influence on the overall system behavior. The main objective of this paper is to extend the basic compressor model in order to include the relevant pipe system dynamics. For this purpose a pipeline model is proposed, based on previous developments for fluid transmission lines. The connection of this model to the lumped parameter model is accomplished via the selection of appropriate boundary conditions. Validation results will be presented, showing a good agreement between simulation and measurement data. The results indicate that the damping of piping transients depends on the nominal, time-varying pressure and flow velocity. Therefore, model parameters are made dependent on the momentary pressure and a switching nonlinearity is introduced into the model to vary the acoustic damping as a function of flow velocity. These modifications have limited success and the results indicate that a more sophisticated model is required to fully describe all (nonlinear) acoustic effects. However, the very good qualitative results show that the model adequately combines compressor and pipe system dynamics. Therefore, the proposed model forms a step forward in the analysis and modeling of surge in full-scale centrifugal compression systems and opens the path for further developments in this field.
Tumuluru, J. S.; Tabil, L. G.; Song, Y.; ...
2014-10-01
The present study is to understand the impact of process conditions on the quality attributes of wheat oat, barley, and canola straw briquettes. Analysis of variance indicated that briquette moisture content and initial density immediately after compaction and final density after 2 weeks of storage are strong functions of feedstock moisture content and compression pressure, whereas durability rating is influenced by die temperature and feedstock moisture content. Briquettes produced at a low feedstock moisture content of 9 % (w.b.) yielded maximum densities >700 kg/m3 for wheat, oat, canola, and barley straws. Lower feedstock moisture content of <10 % (w.b.) andmore » higher die temperatures >110 °C and compression pressure >10 MPa minimized the briquette moisture content and maximized densities and durability rating based on surface plots observations. Optimal process conditions indicated that a low feedstock moisture content of about 9 % (w.b.), high die temperature of 120–130 °C, medium-to-large hammer mill screen sizes of about 24 to 31.75 mm, and low to high compression pressures of 7.5 to 12.5 MPa minimized briquette moisture content to <8 % (w.b.) and maximized density to >700 kg/m3. Durability rating >90 % is achievable at higher die temperatures of >123 °C, lower to medium feedstock moisture contents of 9 to 12 % (w.b.), low to high compression pressures of 7.5 to 12.5 MPa, and large hammer mill screen size of 31.75 mm, except for canola where a lower compression pressure of 7.5 to 8.5 MPa and a smaller hammer mill screen size of 19 mm for oat maximized the durability rating values.« less
Physical Quality Indicators and Mechanical Behavior of Agricultural Soils of Argentina.
Imhoff, Silvia; da Silva, Alvaro Pires; Ghiberto, Pablo J; Tormena, Cássio A; Pilatti, Miguel A; Libardi, Paulo L
2016-01-01
Mollisols of Santa Fe have different tilth and load support capacity. Despite the importance of these attributes to achieve a sustainable crop production, few information is available. The objectives of this study are i) to assess soil physical indicators related to plant growth and to soil mechanical behavior; and ii) to establish relationships to estimate the impact of soil loading on the soil quality to plant growth. The study was carried out on Argiudolls and Hapludolls of Santa Fe. Soil samples were collected to determine texture, organic matter content, bulk density, water retention curve, soil resistance to penetration, least limiting water range, critical bulk density for plant growth, compression index, pre-consolidation pressure and soil compressibility. Water retention curve and soil resistance to penetration were linearly and significantly related to clay and organic matter (R2 = 0.91 and R2 = 0.84). The pedotransfer functions of water retention curve and soil resistance to penetration allowed the estimation of the least limiting water range and critical bulk density for plant growth. A significant nonlinear relationship was found between critical bulk density for plant growth and clay content (R2 = 0.98). Compression index was significantly related to bulk density, water content, organic matter and clay plus silt content (R2 = 0.77). Pre-consolidation pressure was significantly related to organic matter, clay and water content (R2 = 0.77). Soil compressibility was significantly related to initial soil bulk density, clay and water content. A nonlinear and significantly pedotransfer function (R2 = 0.88) was developed to predict the maximum acceptable pressure to be applied during tillage operations by introducing critical bulk density for plant growth in the compression model. The developed pedotransfer function provides a useful tool to link the mechanical behavior and tilth of the soils studied.
Physical Quality Indicators and Mechanical Behavior of Agricultural Soils of Argentina
Pires da Silva, Alvaro; Ghiberto, Pablo J.; Tormena, Cássio A.; Pilatti, Miguel A.; Libardi, Paulo L.
2016-01-01
Mollisols of Santa Fe have different tilth and load support capacity. Despite the importance of these attributes to achieve a sustainable crop production, few information is available. The objectives of this study are i) to assess soil physical indicators related to plant growth and to soil mechanical behavior; and ii) to establish relationships to estimate the impact of soil loading on the soil quality to plant growth. The study was carried out on Argiudolls and Hapludolls of Santa Fe. Soil samples were collected to determine texture, organic matter content, bulk density, water retention curve, soil resistance to penetration, least limiting water range, critical bulk density for plant growth, compression index, pre-consolidation pressure and soil compressibility. Water retention curve and soil resistance to penetration were linearly and significantly related to clay and organic matter (R2 = 0.91 and R2 = 0.84). The pedotransfer functions of water retention curve and soil resistance to penetration allowed the estimation of the least limiting water range and critical bulk density for plant growth. A significant nonlinear relationship was found between critical bulk density for plant growth and clay content (R2 = 0.98). Compression index was significantly related to bulk density, water content, organic matter and clay plus silt content (R2 = 0.77). Pre-consolidation pressure was significantly related to organic matter, clay and water content (R2 = 0.77). Soil compressibility was significantly related to initial soil bulk density, clay and water content. A nonlinear and significantly pedotransfer function (R2 = 0.88) was developed to predict the maximum acceptable pressure to be applied during tillage operations by introducing critical bulk density for plant growth in the compression model. The developed pedotransfer function provides a useful tool to link the mechanical behavior and tilth of the soils studied. PMID:27099925
Uhumwangho, M U; Okor, R S
2006-04-01
Matrix granules of acetaminophen have been formed by a melt granulation process whereby the acetaminophen powder was triturated with the melted wax--goat wax, glyceryl monostearate or carnuba wax. The compressibility of the matrix granules and their admixture, with diluent granules (lactose, alpha-cellulose or microcrystalline cellulose) was investigated. The granules were compressed to tablets at a constant load (30 arbitrary units on the load scale) of a manesty single punch machine. Resulting tablets were evaluated for tensile strength (T) and disintegration times (DT). Granule flow was determined by measuring their angle of repose when allowed to fall freely on a level surface. Matrix granules prepared by melt granulation with goat wax or glyceryl monostearate were too sticky and therefore did not flow at all. They were also poorly compressible (T values = 0.20MN/m2). Inclusion of the diluent remarkably improved granule flow property and compressibility. The T values of the tablets (measure of compressibility) increased from about 0.24 to 0.65 MN/m2 during increase in diluent (lactose) content from 20 to 80 %w/w. Microcrystalline cellulose and alpha-cellulose were more effective than lactose in promoting compressibility of the granules. By contrast the matrix granules formed with carnuba wax were free flowing (angle of repose, 18.60). Addition of the diluent further improved flowability slightly. The matrix granules (without a diluent) were readily compressible (T value, 1.79MN/m2). Addition of the diluent (80%w/w) reduced T values (MN/m2) slightly to 1.32 (lactose), 1.48 (alpha-cellulose) and 1.74 (microcrystalline cellulose). Tablets of the matrix granules only, disintegrated rapidly within 3 minutes. DT was further reduced to <30 s by addition of any of the diluents. The indication is that the inclusion of the diluents studied can be used to improve the compressibility of the otherwise poorly compressible matrix granules. Based on the flowability, compressibility, and disintegration data, carnuba wax proved most promising in the melt granulation of the test drug for sustained release applications.
SINGH, G. D.; McNAMARA JR, J. A.; LOZANOFF, S.
1997-01-01
This study determines deformations of the midface that contribute to a class III appearance, employing thin-plate spline analysis. A total of 135 lateral cephalographs of prepubertal children of European-American descent with either class III malocclusions or a class I molar occlusion were compared. The cephalographs were traced and checked, and 7 homologous landmarks of the midface were identified and digitised. The data sets were scaled to an equivalent size and subjected to Procrustes analysis. These statistical tests indicated significant differences (P<0.05) between the averaged class I and class III morphologies. Thin-plate spline analysis indicated that both affine and nonaffine transformations contribute towards the total spline for the averaged midfacial configuration. For nonaffine transformations, partial warp 3 had the highest magnitude, indicating the large scale deformations of the midfacial configuration. These deformations affected the palatal landmarks, and were associated with compression of the midfacial complex in the anteroposterior plane predominantly. Partial warp 4 produced some vertical compression of the posterior aspect of the midfacial complex whereas partial warps 1 and 2 indicated localised shape changes of the maxillary alveolus region. Large spatial-scale deformations therefore affect the midfacial complex in an anteroposterior axis, in combination with vertical compression and localised distortions. These deformations may represent a developmental diminution of the palatal complex anteroposteriorly that, allied with vertical shortening of midfacial height posteriorly, results in class III malocclusions with a retrusive midfacial profile. PMID:9449078
Singh, G D; McNamara, J A; Lozanoff, S
1997-11-01
This study determines deformations of the midface that contribute to a class III appearance, employing thinplate spline analysis. A total of 135 lateral cephalographs of prepubertal children of European-American descent with either class III malocclusions or a class I molar occlusion were compared. The cephalographs were traced and checked, and 7 homologous landmarks of the midface were identified and digitised. The data sets were scaled to an equivalent size and subjected to Procrustes analysis. These statistical tests indicated significant differences (P < 0.05) between the averaged class I and class III morphologies. Thinplate spline analysis indicated that both affine and nonaffine transformations contribute towards the total spline for the averaged midfacial configuration. For nonaffine transformations, partial warp 3 had the highest magnitude, indicating the large scale deformations of the midfacial configuration. These deformations affected the palatal landmarks, and were associated with compression of the midfacial complex in the anteroposterior plane predominantly. Partial warp 4 produced some vertical compression of the posterior aspect of the midfacial complex whereas partial warps 1 and 2 indicated localised shape changes of the maxillary alveolus region. large spatial-scale deformations therefore affect the midfacial complex in an anteroposterior axis, in combination with vertical compression and localised distortions. These deformations may represent a developmental diminution of the palatal complex anteroposteriorly that, allied with vertical shortening of midfacial height posteriorly, results in class III malocclusions with a retrusive midfacial profile.
NASA Astrophysics Data System (ADS)
Khan, Z. M.; Adams, D. O.; Anas, S.
2016-01-01
As advanced composite materials having superior physical and mechanical properties are being developed, the optimization of their processing techniques is eagerly sought. One of the most common defects arising during processing of structural composites is layer waviness. The layer waviness is more pronounced in thick-section flat and cylindrical laminates, which are extensively used in large wind turbine blades, submersibles, and space platforms. The layer waviness undulates the entire layer of a multidirectional laminate in the throughthe-thickness direction, leading to a gross deterioration of its compressive strength. This research investigates the influence of multiple layer waviness in a double nest formation on the compression strength of a composite laminate. Different wave fractions of wavy 0° layers were fabricated in an IM/8551-7 carbon-epoxy composite laminate on a steel mold by using a single-step fabrication procedure. The test laminates were cured on a heated press according to the specific curing cycle of epoxy. Their static compression testing was performed using a NASA short block compression fixture on an MTS servohydraulic machine. The purpose of these tests was to determine the effects of multiple layer wave regions on the compression strength of the composite laminate. The experimental and analytical results obtained revealed that the reduction in the compression strength of composite laminate was constant after the fraction of the wavy 0° layers exceeded 35%. This analysis indicated that the percentage of the 0° wavy layer may be used to estimate the reduction in the compression strength of a double nested wave formation in a composite laminate.
QualComp: a new lossy compressor for quality scores based on rate distortion theory
2013-01-01
Background Next Generation Sequencing technologies have revolutionized many fields in biology by reducing the time and cost required for sequencing. As a result, large amounts of sequencing data are being generated. A typical sequencing data file may occupy tens or even hundreds of gigabytes of disk space, prohibitively large for many users. This data consists of both the nucleotide sequences and per-base quality scores that indicate the level of confidence in the readout of these sequences. Quality scores account for about half of the required disk space in the commonly used FASTQ format (before compression), and therefore the compression of the quality scores can significantly reduce storage requirements and speed up analysis and transmission of sequencing data. Results In this paper, we present a new scheme for the lossy compression of the quality scores, to address the problem of storage. Our framework allows the user to specify the rate (bits per quality score) prior to compression, independent of the data to be compressed. Our algorithm can work at any rate, unlike other lossy compression algorithms. We envisage our algorithm as being part of a more general compression scheme that works with the entire FASTQ file. Numerical experiments show that we can achieve a better mean squared error (MSE) for small rates (bits per quality score) than other lossy compression schemes. For the organism PhiX, whose assembled genome is known and assumed to be correct, we show that it is possible to achieve a significant reduction in size with little compromise in performance on downstream applications (e.g., alignment). Conclusions QualComp is an open source software package, written in C and freely available for download at https://sourceforge.net/projects/qualcomp. PMID:23758828
Pulse compression of harmonic chirp signals using the fractional fourier transform.
Arif, M; Cowell, D M J; Freear, S
2010-06-01
In ultrasound harmonic imaging with chirp-coded excitation, a harmonic matched filter (HMF) is typically used on the received signal to perform pulse compression of the second harmonic component (SHC) to recover signal axial resolution. Designing the HMF for the compression of the SHC is a problematic issue because it requires optimal window selection. In the compressed second harmonic signal, the sidelobe level may increase and the mainlobe width (MLW) widen under a mismatched condition, resulting in loss of axial resolution. We propose the use of the fractional Fourier transform (FrFT) as an alternative tool to perform compression of the chirp-coded SHC generated as a result of the nonlinear propagation of an ultrasound signal. Two methods are used to experimentally assess the performance benefits of the FrFT technique over the HMF techniques. The first method uses chirp excitation with central frequency of 2.25 MHz and bandwidth of 1 MHz. The second method uses chirp excitation with pulse inversion to increase the bandwidth to 2 MHz. In this study, experiments were performed in a water tank with a single-element transducer mounted coaxially with a hydrophone in a pitch-catch configuration. Results are presented that indicate that the FrFT can perform pulse compression of the second harmonic chirp component, with a 14% reduction in the MLW of the compressed signal when compared with the HMF. Also, the FrFT provides at least 23% reduction in the MLW of the compressed signal when compared with the harmonic mismatched filter (HMMF). The FrFT maintains comparable peak and integrated sidelobe levels when compared with the HMF and HMMF techniques. Copyright 2010 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Rujivipat, Soravoot; Bodmeier, Roland
2012-05-01
Enteric polymers such as cellulose esters (cellulose acetate phthalate, hydroxypropylmethylcellulose acetate succinate) and methacrylic acid-acrylate copolymers (Eudragit® L100-55 and S100) are quite brittle in the dry state and thus not suitable as pellet coatings for compression into tablets. The objective of this study was to investigate the role of humidity treatment for moisture plasticization in order to successfully compress the enterically coated pellets. The mechanical properties of Eudragit® L100-55 improved dramatically, while the properties of the other enteric polymers showed only minor changes after storage at higher humidity. The significant increase in flexibility of the Eudragit® L film was caused by hydration/plasticization; its elongation value changed from approx. 3% in the dry state to approx. 140% at the higher storage humidity. Storage at 84% relative humidity resulted in comparable release profiles of compressed and uncompressed pellets. The glass transition temperature of Eudragit® L films decreased below the compression temperature (room temperature) at storage humidities between 75% and 84%. The glass transition relative humidity leading to a change from the glassy to the rubbery state was determined by dynamic vapor sorption (DVS) to be 76.8%. Moisture resulted in superior plasticization for Eudragit® L than the conventional plasticizer triethyl citrate. The improved compressibility of high humidity treated Eudragit® L-coated pellets was also shown with single pellet compression data as indicated by an increased crushing force and deformation. In conclusion, moisture plasticization was a highly effective tool to enable the successful compression of pellets coated with the brittle enteric polymer Eudragit® L. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Hurst, Victor, IV; West, Sarah; Austin, Paul; Branson, Richard; Beck, George
2006-01-01
Astronaut crew medical officers (CMO) aboard the International Space Station (ISS) receive 40 hours of medical training during the 18 months preceding each mission. Part of this training ilncludes twoperson cardiopulmonary resuscitation (CPR) per training guidelines from the American Heart Association (AHA). Recent studies concluded that the use of metronomic tones improves the coordination of CPR by trained clinicians. Similar data for bystander or "trained lay people" (e.g. CMO) performance of CPR (BCPR) have been limited. The purpose of this study was to evailuate whether use of timing devices, such as audible metronomic tones, would improve BCPR perfomance by trained bystanders. Twenty pairs of bystanders trained in two-person BCPR performled BCPR for 4 minutes on a simulated cardiopulmonary arrest patient using three interventions: 1) BCPR with no timing devices, 2) BCPR plus metronomic tones for coordinating compression rate only, 3) BCPR with a timing device and metronome for coordinating ventilation and compression rates, respectively. Bystanders were evaluated on their ability to meet international and AHA CPR guidelines. Bystanders failed to provide the recommended number of breaths and number of compressions in the absence of a timing device and in the presence of audible metronomic tones for only coordinating compression rate. Bystanders using timing devices to coordinate both components of BCPR provided the reco number of breaths and were closer to providing the recommended number of compressions compared with the other interventions. Survey results indicated that bystanders preferred to use a metronome for delivery of compressions during BCPR. BCPR performance is improved by timing devices that coordinate both compressions and breaths.
NASA Astrophysics Data System (ADS)
Suetin, D. V.; Shein, I. R.
2018-02-01
Ab initio calculations were used to study the properties of a series of hexagonal (Fe2N-like) subcarbides M2C, where M = Tc, Ru, Rh, Pd, Re, Os, Ir, and Pt, and to calculate their equilibrium structural parameters, electronic properties, phase stability, elastic constants, compression modulus, shear modulus, Young's modulus, compressibility, Pugh's indicator, Poisson ratio, elastic anisotropy indices, and also hardness, Debye temperature, sound velocity, and low-temperature heat capacity. It is found based on these results that all the subcarbides are mechanically stable; however, their formation energies E form are positive with respect to a mixture of d-metal and graphite. In addition, the calculation of the phonon spectra of these subcarbides shows the existence of negative modes, which indicates their dynamical instability. Thus, a successful synthesis of these subcarbides at normal conditions is highly improbable.
Properties of Foamed Mortar Prepared with Granulated Blast-Furnace Slag
Zhao, Xiao; Lim, Siong-Kang; Tan, Cher-Siang; Li, Bo; Ling, Tung-Chai; Huang, Runqiu; Wang, Qingyuan
2015-01-01
Foamed mortar with a density of 1300 kg/m3 was prepared. In the initial laboratory trials, water-to-cement (w/c) ratios ranging from 0.54 to 0.64 were tested to determine the optimal value for foamed mortar corresponding to the highest compressive strength without compromising its fresh state properties. With the obtained optimal w/c ratio of 0.56, two types of foamed mortar were prepared, namely cement-foamed mortar (CFM) and slag-foamed mortar (SFM, 50% cement was replaced by slag weight). Four different curing conditions were adopted for both types of foamed mortar to assess their compressive strength, ultrasonic pulse velocity (UPV) and thermal insulation performance. The test results indicated that utilizing 50% of slag as cement replacement in the production of foamed mortar improved the compressive strength, UPV and thermal insulation properties. Additionally, the initial water curing of seven days gained higher compressive strength and increased UPV values as compared to the air cured and natural weather curing samples. However, this positive effect was more pronounced in the case of compressive strength than in the UPV and thermal conductivity of foamed mortar. PMID:28787950
Interband coding extension of the new lossless JPEG standard
NASA Astrophysics Data System (ADS)
Memon, Nasir D.; Wu, Xiaolin; Sippy, V.; Miller, G.
1997-01-01
Due to the perceived inadequacy of current standards for lossless image compression, the JPEG committee of the International Standards Organization (ISO) has been developing a new standard. A baseline algorithm, called JPEG-LS, has already been completed and is awaiting approval by national bodies. The JPEG-LS baseline algorithm despite being simple is surprisingly efficient, and provides compression performance that is within a few percent of the best and more sophisticated techniques reported in the literature. Extensive experimentations performed by the authors seem to indicate that an overall improvement by more than 10 percent in compression performance will be difficult to obtain even at the cost of great complexity; at least not with traditional approaches to lossless image compression. However, if we allow inter-band decorrelation and modeling in the baseline algorithm, nearly 30 percent improvement in compression gains for specific images in the test set become possible with a modest computational cost. In this paper we propose and investigate a few techniques for exploiting inter-band correlations in multi-band images. These techniques have been designed within the framework of the baseline algorithm, and require minimal changes to the basic architecture of the baseline, retaining its essential simplicity.
NASA Technical Reports Server (NTRS)
Gabriel, Philip M.; Yeh, Penshu; Tsay, Si-Chee
2013-01-01
This paper presents results and analyses of applying an international space data compression standard to weather radar measurements that can easily span 8 orders of magnitude and typically require a large storage capacity as well as significant bandwidth for transmission. By varying the degree of the data compression, we analyzed the non-linear response of models that relate measured radar reflectivity and/or Doppler spectra to the moments and properties of the particle size distribution characterizing clouds and precipitation. Preliminary results for the meteorologically important phenomena of clouds and light rain indicate that for a 0.5 dB calibration uncertainty, typical for the ground-based pulsed-Doppler 94 GHz (or 3.2 mm, W-band) weather radar used as a proxy for spaceborne radar in this study, a lossless compression ratio of only 1.2 is achievable. However, further analyses of the non-linear response of various models of rainfall rate, liquid water content and median volume diameter show that a lossy data compression ratio exceeding 15 is realizable. The exploratory analyses presented are relevant to future satellite missions, where the transmission bandwidth is premium and storage requirements of vast volumes of data, potentially problematic.
Hu, Ding; Xie, Shuqun; Yu, Donglan; Zheng, Zhensheng; Wang, Kuijian
2010-04-01
The development of external counterpulsation (ECP) local area network system and extensible markup language (XML)-based remote ECP medical information system conformable to digital imaging and communications in medicine (DICOM) standard has been improving the digital interchangeablity and sharability of ECP data. However, the therapy process of ECP is a continuous and longtime supervision which builds a mass of waveform data. In order to reduce the storage space and improve the transmission efficiency, the waveform data with the normative format of ECP data files have to be compressed. In this article, we introduced the compression arithmetic of template matching and improved quick fitting of linear approximation distance thresholding (LADT) in combimation with the characters of enhanced external counterpulsation (EECP) waveform signal. The DICOM standard is used as the storage and transmission standard to make our system compatible with hospital information system. According to the rules of transfer syntaxes, we defined private transfer syntax for one-dimensional compressed waveform data and stored EECP data into a DICOM file. Testing result indicates that the compressed and normative data can be correctly transmitted and displayed between EECP workstations in our EECP laboratory.
Halliwell, Emily R; Jones, Linor L; Fraser, Matthew; Lockley, Morag; Hill-Feltham, Penelope; McKay, Colette M
2015-06-01
A study was conducted to determine whether modifications to input compression and input frequency response characteristics can improve music-listening satisfaction in cochlear implant users. Experiment 1 compared three pre-processed versions of music and speech stimuli in a laboratory setting: original, compressed, and flattened frequency response. Music excerpts comprised three music genres (classical, country, and jazz), and a running speech excerpt was compared. Experiment 2 implemented a flattened input frequency response in the speech processor program. In a take-home trial, participants compared unaltered and flattened frequency responses. Ten and twelve adult Nucleus Freedom cochlear implant users participated in Experiments 1 and 2, respectively. Experiment 1 revealed a significant preference for music stimuli with a flattened frequency response compared to both original and compressed stimuli, whereas there was a significant preference for the original (rising) frequency response for speech stimuli. Experiment 2 revealed no significant mean preference for the flattened frequency response, with 9 of 11 subjects preferring the rising frequency response. Input compression did not alter music enjoyment. Comparison of the two experiments indicated that individual frequency response preferences may depend on the genre or familiarity, and particularly whether the music contained lyrics.
Device for use in loading tension members. [characterized by elongated elastic body
NASA Technical Reports Server (NTRS)
Appleberry, W. T. (Inventor)
1975-01-01
The indicator is characterized by an elongated elastic body having extended from the opposite ends of threaded shanks adapted to selected tension members. A pair of external shoulders, one of which is axially displaceable relative to the other, and a rigid tubular sleeve interposed between said shoulders are included. Tension is applied to the elastic body for imparting strain. The movable shoulder can be advanced into abutting engagement with the sleeve, whereby the sleeve is placed in compression once the tensile forces are removed from the shanks. A reapplication of tensile forces equal to the initially applied tensile forces removes the sleeve from compression, whereby the sleeve is freed for rotation for thus indicating the magnitude of the applied tensile forces.
Combustion in a High-Speed Compression-Ignition Engine
NASA Technical Reports Server (NTRS)
Rothrock, A M
1933-01-01
An investigation conducted to determine the factors which control the combustion in a high-speed compression-ignition engine is presented. Indicator cards were taken with the Farnboro indicator and analyzed according to the tangent method devised by Schweitzer. The analysis show that in a quiescent combustion chamber increasing the time lag of auto-ignition increases the maximum rate of combustion. Increasing the maximum rate of combustion increases the tendency for detonation to occur. The results show that by increasing the air temperature during injection the start of combustion can be forced to take place during injection and so prevent detonation from occurring. It is shown that the rate of fuel injection does not in itself control the rate of combustion.
Ciezak-Jenkins, Jennifer A.
2016-04-22
We have studied the structural and chemical response of tetrahydroxy-p-benzoquinone to isothermal compression to near 20 GPa using powder x-ray diffraction and vibrational spectroscopy. Compression beyond 11.5 GPa resulted in the appearance of several new peaks in the x-ray patterns, changes in the peak distribution and intensities, as well as the disappearance of features observed at lower pressures, which when coupled with concomitant changes in the infrared spectrum are indicative of a phase transition. Further analysis of the infrared spectra suggest this phase transition results in an increase in the anharmonicity of the system. Finally, Raman spectroscopic experiments indicate themore » high-pressure phase to be highly photosensitive and easily polymerized.« less
n-Gram-Based Text Compression.
Nguyen, Vu H; Nguyen, Hien T; Duong, Hieu N; Snasel, Vaclav
2016-01-01
We propose an efficient method for compressing Vietnamese text using n -gram dictionaries. It has a significant compression ratio in comparison with those of state-of-the-art methods on the same dataset. Given a text, first, the proposed method splits it into n -grams and then encodes them based on n -gram dictionaries. In the encoding phase, we use a sliding window with a size that ranges from bigram to five grams to obtain the best encoding stream. Each n -gram is encoded by two to four bytes accordingly based on its corresponding n -gram dictionary. We collected 2.5 GB text corpus from some Vietnamese news agencies to build n -gram dictionaries from unigram to five grams and achieve dictionaries with a size of 12 GB in total. In order to evaluate our method, we collected a testing set of 10 different text files with different sizes. The experimental results indicate that our method achieves compression ratio around 90% and outperforms state-of-the-art methods.
He, Chenglin; Chen, Jinxiang; Wu, Zhishen; Xie, Juan; Zu, Qiao; Lu, Yun
2015-05-01
Honeycomb plates can be applied in many fields, including furniture manufacturing, mechanical engineering, civil engineering, transportation and aerospace. In the present study, we discuss the simulated effect on the mechanical properties of bionic integrated honeycomb plates by investigating the compressive and shear failure modes and the mechanical properties of trabeculae reinforced by long or short fibers. The results indicate that the simulated effect represents approximately 80% and 70% of the compressive and shear strengths, respectively. Compared with existing bionic samples, the mass-specific strength was significantly improved. Therefore, this integrated honeycomb technology remains the most effective method for the trial manufacturing of bionic integrated honeycomb plates. The simulated effect of the compressive rigidity is approximately 85%. The short-fiber trabeculae have an advantage over the long-fiber trabeculae in terms of shear rigidity, which provides new evidence for the application of integrated bionic honeycomb plates. Copyright © 2015 Elsevier B.V. All rights reserved.
Buckling Behavior of Compression-Loaded Quasi-Isotropic Curved Panels with a Circular Cutout
NASA Technical Reports Server (NTRS)
Hilburger, Mark W.; Britt, Vicki O.; Nemeth, Michael P.
1999-01-01
Results from a numerical and experimental study of the response of compression-loaded quasi-isotropic curved panels with a centrally located circular cutout are presented. The numerical results were obtained by using a geometrically nonlinear finite element analysis code. The effects of cutout size, panel curvature and initial geo- metric imperfections on the overall response of compression-loaded panels are described. In addition, results are presented from a numerical parametric study that indicate the effects of elastic circumferential edge restraints on the prebuckling and buckling response of a selected panel and these numerical results are compared to experimentally measured results. These restraints are used to identify the effects of circumferential edge restraints that are introduced by the test fixture that was used in the present study. It is shown that circumferential edge restraints can introduce substantial nonlinear prebuckling deformations into shallow compression-loaded curved panels that can results in a significant increase in buckling load.
Subjective evaluations of integer cosine transform compressed Galileo solid state imagery
NASA Technical Reports Server (NTRS)
Haines, Richard F.; Gold, Yaron; Grant, Terry; Chuang, Sherry
1994-01-01
This paper describes a study conducted for the Jet Propulsion Laboratory, Pasadena, California, using 15 evaluators from 12 institutions involved in the Galileo Solid State Imaging (SSI) experiment. The objective of the study was to determine the impact of integer cosine transform (ICT) compression using specially formulated quantization (q) tables and compression ratios on acceptability of the 800 x 800 x 8 monochromatic astronomical images as evaluated visually by Galileo SSI mission scientists. Fourteen different images in seven image groups were evaluated. Each evaluator viewed two versions of the same image side by side on a high-resolution monitor; each was compressed using a different q level. First the evaluators selected the image with the highest overall quality to support them in their visual evaluations of image content. Next they rated each image using a scale from one to five indicating its judged degree of usefulness. Up to four preselected types of images with and without noise were presented to each evaluator.
NASA Astrophysics Data System (ADS)
Chen, Zhe; Parker, B. J.; Feng, D. D.; Fulton, R.
2004-10-01
In this paper, we compare various temporal analysis schemes applied to dynamic PET for improved quantification, image quality and temporal compression purposes. We compare an optimal sampling schedule (OSS) design, principal component analysis (PCA) applied in the image domain, and principal component analysis applied in the sinogram domain; for region-of-interest quantification, sinogram-domain PCA is combined with the Huesman algorithm to quantify from the sinograms directly without requiring reconstruction of all PCA channels. Using a simulated phantom FDG brain study and three clinical studies, we evaluate the fidelity of the compressed data for estimation of local cerebral metabolic rate of glucose by a four-compartment model. Our results show that using a noise-normalized PCA in the sinogram domain gives similar compression ratio and quantitative accuracy to OSS, but with substantially better precision. These results indicate that sinogram-domain PCA for dynamic PET can be a useful preprocessing stage for PET compression and quantification applications.
Understanding the bursty electron cyclotron emission during a sawtooth crash in the HT-7 tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Erzhong, E-mail: rzhonglee@ipp.ac.cn; Hu, Liqun; Chen, Kaiyun
2014-01-15
Bursts in electron cyclotron emission (ECE) were observed during sawtooth crashes in HT-7 in discharges with ion cyclotron resonance heating injected near the q = 1 rational surface (q is the safety factor). The local ECE measurement indicated that the bursty radiation is only observed on channels near but a little away outward from the q = 1 magnetic surface. In conjunction with the soft x-ray tomography analysis, it was determined that, for the first time, only a compression process survives in the later stage of fast magnetic reconnection but before prompt heat transport. The compression enhanced the electron radiation temperature, the increased amplitudemore » of which agreed well with the estimation according to a kinetic compression theory model [R. J. Hastie and T. C. Hender, Nucl. Fusion 28, 585 (1988)]. This paper presents the experimental evidence that there indeed exists a transient compression phase which results in the bursty ECE radiation during a sawtooth crash.« less
NASA Astrophysics Data System (ADS)
Turneaure, Stefan; Zdanowicz, E.; Sinclair, N.; Graber, T.; Gupta, Y. M.
2015-06-01
Structural changes in shock compressed silicon were observed directly using time-resolved x-ray diffraction (XRD) measurements at the Dynamic Compression Sector at the Advanced Photon Source. The silicon samples were impacted by polycarbonate impactors accelerated to velocities greater than 5 km/s using a two-stage light gas gun resulting in impact stresses of about 25 GPa. The 23.5 keV synchrotron x-ray beam passed through the polycarbonate impactor, the silicon sample, and an x-ray window (polycarbonate or LiF) at an angle of 30 degrees relative to the impact plane. Four XRD frames (~ 100 ps snapshots) were obtained with 153.4 ns between frames near the time of impact. The XRD measurements indicate that in the peak shocked state, the silicon samples completely transformed to a high-pressure phase. XRD results for both shocked polycrystalline silicon and single crystal silicon will be presented and compared. Work supported by DOE/NNSA.
Information theory in econophysics: stock market and retirement funds
NASA Astrophysics Data System (ADS)
Vogel, Eugenio; Saravia, G.; Astete, J.; Díaz, J.; Erribarren, R.; Riadi, F.
2013-03-01
Information theory can help to recognize magnetic phase transitions, what can be seen as a way to recognize different regimes. This is achieved by means of zippers specifically designed to compact data in a meaningful way at is the case for compressor wlzip. In the present contribution we first apply wlzip to the Chilean stock market interpreting the compression rates for the files storing the minute variation of the IPSA indicator. Agitated days yield poor compression rates while calm days yield high compressibility. We then correlate this behavior to the value of the five retirement funds related to the Chilean economy. It is found that the covariance between the profitability of the retirement funds and the compressibility of the IPSA values of previous day is high for those funds investing in risky stocks. Surprisingly, there seems to be no great difference among the three riskier funds contrary to what could be expected from the limitations on the portfolio composition established by the laws that regulate this market.
Si, Guo-Ning; Chen, Lan; Li, Bao-Guo
2014-04-01
Base on the Kawakita powder compression equation, a general theoretical model for predicting the compression characteristics of multi-components pharmaceutical powders with different mass ratios was developed. The uniaxial flat-face compression tests of powder lactose, starch and microcrystalline cellulose were carried out, separately. Therefore, the Kawakita equation parameters of the powder materials were obtained. The uniaxial flat-face compression tests of the powder mixtures of lactose, starch, microcrystalline cellulose and sodium stearyl fumarate with five mass ratios were conducted, through which, the correlation between mixture density and loading pressure and the Kawakita equation curves were obtained. Finally, the theoretical prediction values were compared with experimental results. The analysis showed that the errors in predicting mixture densities were less than 5.0% and the errors of Kawakita vertical coordinate were within 4.6%, which indicated that the theoretical model could be used to predict the direct compaction characteristics of multi-component pharmaceutical powders.
Li, Tao; Weng, Xisheng; Bian, Yanyan; Zhou, Lei; Cui, Fuzhai; Qiu, Zhiye
2015-01-01
Objective This research investigated the mechanical properties and bioactivity of polymethylmethacrylate (PMMA) bone cement after addition of the nano-hydroxyapatite(HA) coated bone collagen (mineralized collagen, MC). Materials & Methods The MC in different proportions were added to the PMMA bone cement to detect the compressive strength, compression modulus, coagulation properties and biosafety. The MC-PMMA was embedded into rabbits and co-cultured with MG 63 cells to exam bone tissue compatibility and gene expression of osteogenesis. Results 15.0%(wt) impregnated MC-PMMA significantly lowered compressive modulus while little affected compressive strength and solidification. MC-PMMA bone cement was biologically safe and indicated excellent bone tissue compatibility. The bone-cement interface crosslinking was significantly higher in MC-PMMA than control after 6 months implantation in the femur of rabbits. The genes of osteogenesis exhibited significantly higher expression level in MC-PMMA. Conclusions MC-PMMA presented perfect mechanical properties, good biosafety and excellent biocompatibility with bone tissues, which has profoundly clinical values. PMID:26039750
Formation of Nanofoam carbon and re-emergence of Superconductivity in compressed CaC6.
Li, Yan-Ling; Luo, Wei; Chen, Xiao-Jia; Zeng, Zhi; Lin, Hai-Qing; Ahuja, Rajeev
2013-11-26
Pressure can tune material's electronic properties and control its quantum state, making some systems present disconnected superconducting region as observed in iron chalcogenides and heavy fermion CeCu2Si2. For CaC6 superconductor (Tc of 11.5 K), applying pressure first Tc increases and then suppresses and the superconductivity of this compound is eventually disappeared at about 18 GPa. Here, we report a theoretical finding of the re-emergence of superconductivity in heavily compressed CaC6. The predicted phase III (space group Pmmn) with formation of carbon nanofoam is found to be stable at wide pressure range with a Tc up to 14.7 K at 78 GPa. Diamond-like carbon structure is adhered to the phase IV (Cmcm) for compressed CaC6 after 126 GPa, which has bad metallic behavior, indicating again departure from superconductivity. Re-emerged superconductivity in compressed CaC6 paves a new way to design new-type superconductor by inserting metal into nanoporous host lattice.
Li, Tao; Weng, Xisheng; Bian, Yanyan; Zhou, Lei; Cui, Fuzhai; Qiu, Zhiye
2015-01-01
This research investigated the mechanical properties and bioactivity of polymethylmethacrylate (PMMA) bone cement after addition of the nano-hydroxyapatite(HA) coated bone collagen (mineralized collagen, MC). The MC in different proportions were added to the PMMA bone cement to detect the compressive strength, compression modulus, coagulation properties and biosafety. The MC-PMMA was embedded into rabbits and co-cultured with MG 63 cells to exam bone tissue compatibility and gene expression of osteogenesis. 15.0%(wt) impregnated MC-PMMA significantly lowered compressive modulus while little affected compressive strength and solidification. MC-PMMA bone cement was biologically safe and indicated excellent bone tissue compatibility. The bone-cement interface crosslinking was significantly higher in MC-PMMA than control after 6 months implantation in the femur of rabbits. The genes of osteogenesis exhibited significantly higher expression level in MC-PMMA. MC-PMMA presented perfect mechanical properties, good biosafety and excellent biocompatibility with bone tissues, which has profoundly clinical values.
Duong, Hieu N.; Snasel, Vaclav
2016-01-01
We propose an efficient method for compressing Vietnamese text using n-gram dictionaries. It has a significant compression ratio in comparison with those of state-of-the-art methods on the same dataset. Given a text, first, the proposed method splits it into n-grams and then encodes them based on n-gram dictionaries. In the encoding phase, we use a sliding window with a size that ranges from bigram to five grams to obtain the best encoding stream. Each n-gram is encoded by two to four bytes accordingly based on its corresponding n-gram dictionary. We collected 2.5 GB text corpus from some Vietnamese news agencies to build n-gram dictionaries from unigram to five grams and achieve dictionaries with a size of 12 GB in total. In order to evaluate our method, we collected a testing set of 10 different text files with different sizes. The experimental results indicate that our method achieves compression ratio around 90% and outperforms state-of-the-art methods. PMID:27965708
Fentem, P H; Goddard, M; Gooden, B A; Yeung, C K
1976-01-01
A study was performed to determine whether the pressures routinely produced by bandaging for compression sclerotherapy of varicose veins are adequate to maintain the superfical veins almost empty of blood. The results suggest that well-applied bandages can provide sufficient support to combat the high distending pressures found in varicose veins. The large variation among different surgeons, however, indicates that any clinical assessment of compression sclerotherapy should include measurement of the pressure at which the bandages are applied. PMID:974569
VINSON/AUTOVON Interface Applique for the Modem, Digital Data, AN/GSC-38
1980-11-01
Measurement Indication Result Before Step 6 None Noise and beeping are heard in handset After Step 7 None Noise and beepi ng disappear Condition Measurement...linear range due to the compression used. Lowering the levels below the compression range may give increased linearity, but may cause signal-to- noise ...are encountered where the bit error rate at 16 KB/S results is objectionable audio noise or causes the KY-58 to squelch. On these channels the bit
Spatial structure of the neck and acceleration processes in a micropinch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolgov, A. N., E-mail: alnikdolgov@mail.ru; Klyachin, N. A., E-mail: NAKlyachin@mephi.ru; Prokhorovich, D. E., E-mail: prokhorovich73@mail.ru
2016-12-15
It is shown that the spatial structure of the micropinch neck during the transition from magnetohydrodynamic to radiative compression and the bremsstrahlung spectrum of the discharge in the photon energy range of up to 30 keV depend on the configuration of the inner electrode of the coaxial electrode system of the micropinch discharge. Analysis of the experimental results indicates that the acceleration processes in the electron component of the micropinch plasma develop earlier than radiative compression.
Reproducible and controllable induction voltage adder for scaled beam experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakai, Yasuo; Nakajima, Mitsuo; Horioka, Kazuhiko
2016-08-15
A reproducible and controllable induction adder was developed using solid-state switching devices and Finemet cores for scaled beam compression experiments. A gate controlled MOSFET circuit was developed for the controllable voltage driver. The MOSFET circuit drove the induction adder at low magnetization levels of the cores which enabled us to form reproducible modulation voltages with jitter less than 0.3 ns. Preliminary beam compression experiments indicated that the induction adder can improve the reproducibility of modulation voltages and advance the beam physics experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babzien, M.; Kusche, K.; Yakimenko, V.
2011-08-09
Two compressed electron beam bunches from a single 60-MeV bunch have been generated in a reproducible manner during compression in the magnetic chicane - 'dog leg' arrangement at ATF. Measurements indicate they have comparable bunch lengths ({approx}100-200 fs) and are separated in energy by {approx}1.8 MeV with the higher-energy bunch preceding the lower-energy bunch by 0.5-1 ps. Some simulation results for analyzing the double-bunch formation process are also presented.
Compressive residual strength of graphite/epoxy laminates after impact
NASA Technical Reports Server (NTRS)
Guy, Teresa A.; Lagace, Paul A.
1992-01-01
The issue of damage tolerance after impact, in terms of the compressive residual strength, was experimentally examined in graphite/epoxy laminates using Hercules AS4/3501-6 in a (+ or - 45/0)(sub 2S) configuration. Three different impactor masses were used at various velocities and the resultant damage measured via a number of nondestructive and destructive techniques. Specimens were then tested to failure under uniaxial compression. The results clearly show that a minimum compressive residual strength exists which is below the open hole strength for a hole of the same diameter as the impactor. Increases in velocity beyond the point of minimum strength cause a difference in the damage produced and cause a resultant increase in the compressive residual strength which asymptotes to the open hole strength value. Furthermore, the results show that this minimum compressive residual strength value is independent of the impactor mass used and is only dependent upon the damage present in the impacted specimen which is the same for the three impactor mass cases. A full 3-D representation of the damage is obtained through the various techniques. Only this 3-D representation can properly characterize the damage state that causes the resultant residual strength. Assessment of the state-of-the-art in predictive analysis capabilities shows a need to further develop techniques based on the 3-D damage state that exists. In addition, the need for damage 'metrics' is clearly indicated.
Bozal, Carola B; Sánchez, Luciana M; Mandalunis, Patricia M; Ubios, Ángela M
2013-01-01
The occurrence of very early morphological changes in the osteocyte lacuno-canalicular network following application of tensile and/or compressive forces remains unknown to date. Thus, the aim of this study was to perform a morphological and morphometric evaluation of the changes in the three-dimensional structure of the lacuno-canalicular network and the osteocyte network of alveolar bone that take place very early after applying tensile and compressive forces in vivo, conducting static histomorphometry on bright-field microscopy and confocal laser scanning microscopy images. Our results showed that both the tensile and compressive forces induced early changes in osteocytes and their lacunae, which manifested as an increase in lacunar volume and changes in lacunar shape and orientation. An increase in canalicular width and a decrease in the width and an increase in the length of cytoplasmic processes were also observed. The morphological changes in the lacuno-canalicular and osteocyte networks that occur in vivo very early after application of tensile and compressive forces would be an indication of an increase in permeability within the system. Thus, both compressive and tensile forces would cause fluid displacement very soon after being applied; the latter would in turn rapidly activate alveolar bone osteocytes, enhancing transmission of the signals to the entire osteocyte network and the effector cells located at the bone surface. Copyright © 2013 S. Karger AG, Basel.
Spatial-Temporal Data Collection with Compressive Sensing in Mobile Sensor Networks
Li, Jiayin; Guo, Wenzhong; Chen, Zhonghui; Xiong, Neal
2017-01-01
Compressive sensing (CS) provides an energy-efficient paradigm for data gathering in wireless sensor networks (WSNs). However, the existing work on spatial-temporal data gathering using compressive sensing only considers either multi-hop relaying based or multiple random walks based approaches. In this paper, we exploit the mobility pattern for spatial-temporal data collection and propose a novel mobile data gathering scheme by employing the Metropolis-Hastings algorithm with delayed acceptance, an improved random walk algorithm for a mobile collector to collect data from a sensing field. The proposed scheme exploits Kronecker compressive sensing (KCS) for spatial-temporal correlation of sensory data by allowing the mobile collector to gather temporal compressive measurements from a small subset of randomly selected nodes along a random routing path. More importantly, from the theoretical perspective we prove that the equivalent sensing matrix constructed from the proposed scheme for spatial-temporal compressible signal can satisfy the property of KCS models. The simulation results demonstrate that the proposed scheme can not only significantly reduce communication cost but also improve recovery accuracy for mobile data gathering compared to the other existing schemes. In particular, we also show that the proposed scheme is robust in unreliable wireless environment under various packet losses. All this indicates that the proposed scheme can be an efficient alternative for data gathering application in WSNs. PMID:29117152
Compression selective solid-state chemistry
NASA Astrophysics Data System (ADS)
Hu, Anguang
Compression selective solid-state chemistry refers to mechanically induced selective reactions of solids under thermomechanical extreme conditions. Advanced quantum solid-state chemistry simulations, based on density functional theory with localized basis functions, were performed to provide a remarkable insight into bonding pathways of high-pressure chemical reactions in all agreement with experiments. These pathways clearly demonstrate reaction mechanisms in unprecedented structural details, showing not only the chemical identity of reactive intermediates but also how atoms move along the reaction coordinate associated with a specific vibrational mode, directed by induced chemical stress occurred during bond breaking and forming. It indicates that chemical bonds in solids can break and form precisely under compression as we wish. This can be realized through strongly coupling of mechanical work to an initiation vibrational mode when all other modes can be suppressed under compression, resulting in ultrafast reactions to take place isothermally in a few femtoseconds. Thermodynamically, such reactions correspond to an entropy minimum process on an isotherm where the compression can force thermal expansion coefficient equal to zero. Combining a significantly brief reaction process with specific mode selectivity, both statistical laws and quantum uncertainty principle can be bypassed to precisely break chemical bonds, establishing fundamental principles of compression selective solid-state chemistry. Naturally this leads to understand the ''alchemy'' to purify, grow, and perfect certain materials such as emerging novel disruptive energetics.
Near-wall modelling of compressible turbulent flows
NASA Technical Reports Server (NTRS)
So, Ronald M. C.
1990-01-01
Work was carried out to extend the near-wall models formulated for the incompressible Reynolds stress equations to compressible flows. The idea of splitting the compressible dissipation function into a solenoidal part that is not sensitive to changes of compressibility indicators and a compressible part that is directly affected by these changes is adopted. This means that all models involving the dissipation rate could be expressed in terms of the solenoidal dissipation rate and an equation governing its transport could be formulated to close the set of compressible Reynolds stress equations. The near-wall modelling of the dissipation rate equation is investigated and its behavior near a wall is studied in detail using k-epsilon closure. It is found that all existing modelled equations give the wrong behavior for the dissipation rate near a wall. Improvements are suggested and the resultant behavior is found to be in good agreement with near-wall data. Furthermore, the present modified k-epsilon closure is used too calculate a flat plate boundary layer and the results are compared with four existing k-epsilon closures. These comparisons show that all closures tested give essentially the same flow properties, except in a region very close to the wall. In this region, the present k-epsilon closure calculations are in better agreement with measurements and direct simulation data; in particular, the behavior of the dissipation rate.
Spatial-Temporal Data Collection with Compressive Sensing in Mobile Sensor Networks.
Zheng, Haifeng; Li, Jiayin; Feng, Xinxin; Guo, Wenzhong; Chen, Zhonghui; Xiong, Neal
2017-11-08
Compressive sensing (CS) provides an energy-efficient paradigm for data gathering in wireless sensor networks (WSNs). However, the existing work on spatial-temporal data gathering using compressive sensing only considers either multi-hop relaying based or multiple random walks based approaches. In this paper, we exploit the mobility pattern for spatial-temporal data collection and propose a novel mobile data gathering scheme by employing the Metropolis-Hastings algorithm with delayed acceptance, an improved random walk algorithm for a mobile collector to collect data from a sensing field. The proposed scheme exploits Kronecker compressive sensing (KCS) for spatial-temporal correlation of sensory data by allowing the mobile collector to gather temporal compressive measurements from a small subset of randomly selected nodes along a random routing path. More importantly, from the theoretical perspective we prove that the equivalent sensing matrix constructed from the proposed scheme for spatial-temporal compressible signal can satisfy the property of KCS models. The simulation results demonstrate that the proposed scheme can not only significantly reduce communication cost but also improve recovery accuracy for mobile data gathering compared to the other existing schemes. In particular, we also show that the proposed scheme is robust in unreliable wireless environment under various packet losses. All this indicates that the proposed scheme can be an efficient alternative for data gathering application in WSNs .
Wavelet data compression for archiving high-resolution icosahedral model data
NASA Astrophysics Data System (ADS)
Wang, N.; Bao, J.; Lee, J.
2011-12-01
With the increase of the resolution of global circulation models, it becomes ever more important to develop highly effective solutions to archive the huge datasets produced by those models. While lossless data compression guarantees the accuracy of the restored data, it can only achieve limited reduction of data size. Wavelet transform based data compression offers significant potentials in data size reduction, and it has been shown very effective in transmitting data for remote visualizations. However, for data archive purposes, a detailed study has to be conducted to evaluate its impact to the datasets that will be used in further numerical computations. In this study, we carried out two sets of experiments for both summer and winter seasons. An icosahedral grid weather model and a highly efficient wavelet data compression software were used for this study. Initial conditions were compressed and input to the model to run to 10 days. The forecast results were then compared to those forecast results from the model run with the original uncompressed initial conditions. Several visual comparisons, as well as the statistics of numerical comparisons are presented. These results indicate that with specified minimum accuracy losses, wavelet data compression achieves significant data size reduction, and at the same time, it maintains minimum numerical impacts to the datasets. In addition, some issues are discussed to increase the archive efficiency while retaining a complete set of meta data for each archived file.
NASA Astrophysics Data System (ADS)
Hashim, M. F. Abu; Abdullah, M. M. A.; Ghazali, C. M. R.; Hussin, K.; Binhussain, M.
2017-04-01
This study investigated the use of a novel white clay geopolymer as a filler to produce high strength glass reinforced epoxy pipe. It was found that using white clay geopolymer as filler gives better compressive strength to the glass reinforced epoxy pipe. The disadvantages of current glass reinforced epoxy pipes such low compressive strength which can be replaced by the composite pipes. Geopolymerization is an innovative technology that can transform several aluminosilicate materials into useful products called geopolymers or inorganic polymers. A series of glass reinforced epoxy pipe and glass reinforced epoxy pipe filled with 10 - 40 weight percentages white clay geopolymer filler with 4 Molarity and 8 Molarity were prepared. Morphology of white clay geopolymer filler surface was indicates using scanning electron microscopy. The additions of white clay geopolymer filler for both 4 Molarity and 8 Molarity show higher compressive strength than glass reinforced epoxy pipe without any geopolymer filler. The compressive test of these epoxy geopolymer pipe samples was determined using Instron Universal Testing under compression mode. Nonetheless, the compressive strength of glass reinforced epoxy pipe with white clay geopolymer filler continues to drop when added to 40 wt% of the geopolymer filler loading for both 4 Molarity and 8 Molarity. These outcomes showed that the mixing of geopolymer materials in epoxy system can be attained in this research.
Nakaba, Satoshi; Hirai, Asami; Kudo, Kayo; Yamagishi, Yusuke; Yamane, Kenichi; Kuroda, Katsushi; Nugroho, Widyanto Dwi; Kitin, Peter; Funada, Ryo
2016-01-01
Background and Aims When the orientation of the stems of conifers departs from the vertical as a result of environmental influences, conifers form compression wood that results in restoration of verticality. It is well known that intercellular spaces are formed between tracheids in compression wood, but the function of these spaces remains to be clarified. In the present study, we evaluated the impact of these spaces in artificially induced compression wood in Chamaecyparis obtusa seedlings. Methods We monitored the presence or absence of liquid in the intercellular spaces of differentiating xylem by cryo-scanning electron microscopy. In addition, we analysed the relationship between intercellular spaces and the hydraulic properties of the compression wood. Key Results Initially, we detected small intercellular spaces with liquid in regions in which the profiles of tracheids were not rounded in transverse surfaces, indicating that the intercellular spaces had originally contained no gases. In the regions where tracheids had formed secondary walls, we found that some intercellular spaces had lost their liquid. Cavitation of intercellular spaces would affect hydraulic conductivity as a consequence of the induction of cavitation in neighbouring tracheids. Conclusions Our observations suggest that cavitation of intercellular spaces is the critical event that affects not only the functions of intercellular spaces but also the hydraulic properties of compression wood. PMID:26818592
Sturgeon, Gregory M; Kiarashi, Nooshin; Lo, Joseph Y; Samei, E; Segars, W P
2016-05-01
The authors are developing a series of computational breast phantoms based on breast CT data for imaging research. In this work, the authors develop a program that will allow a user to alter the phantoms to simulate the effect of gravity and compression of the breast (craniocaudal or mediolateral oblique) making the phantoms applicable to multimodality imaging. This application utilizes a template finite-element (FE) breast model that can be applied to their presegmented voxelized breast phantoms. The FE model is automatically fit to the geometry of a given breast phantom, and the material properties of each element are set based on the segmented voxels contained within the element. The loading and boundary conditions, which include gravity, are then assigned based on a user-defined position and compression. The effect of applying these loads to the breast is computed using a multistage contact analysis in FEBio, a freely available and well-validated FE software package specifically designed for biomedical applications. The resulting deformation of the breast is then applied to a boundary mesh representation of the phantom that can be used for simulating medical images. An efficient script performs the above actions seamlessly. The user only needs to specify which voxelized breast phantom to use, the compressed thickness, and orientation of the breast. The authors utilized their FE application to simulate compressed states of the breast indicative of mammography and tomosynthesis. Gravity and compression were simulated on example phantoms and used to generate mammograms in the craniocaudal or mediolateral oblique views. The simulated mammograms show a high degree of realism illustrating the utility of the FE method in simulating imaging data of repositioned and compressed breasts. The breast phantoms and the compression software can become a useful resource to the breast imaging research community. These phantoms can then be used to evaluate and compare imaging modalities that involve different positioning and compression of the breast.
An ROI multi-resolution compression method for 3D-HEVC
NASA Astrophysics Data System (ADS)
Ti, Chunli; Guan, Yudong; Xu, Guodong; Teng, Yidan; Miao, Xinyuan
2017-09-01
3D High Efficiency Video Coding (3D-HEVC) provides a significant potential on increasing the compression ratio of multi-view RGB-D videos. However, the bit rate still rises dramatically with the improvement of the video resolution, which will bring challenges to the transmission network, especially the mobile network. This paper propose an ROI multi-resolution compression method for 3D-HEVC to better preserve the information in ROI on condition of limited bandwidth. This is realized primarily through ROI extraction and compression multi-resolution preprocessed video as alternative data according to the network conditions. At first, the semantic contours are detected by the modified structured forests to restrain the color textures inside objects. The ROI is then determined utilizing the contour neighborhood along with the face region and foreground area of the scene. Secondly, the RGB-D videos are divided into slices and compressed via 3D-HEVC under different resolutions for selection by the audiences and applications. Afterwards, the reconstructed low-resolution videos from 3D-HEVC encoder are directly up-sampled via Laplace transformation and used to replace the non-ROI areas of the high-resolution videos. Finally, the ROI multi-resolution compressed slices are obtained by compressing the ROI preprocessed videos with 3D-HEVC. The temporal and special details of non-ROI are reduced in the low-resolution videos, so the ROI will be better preserved by the encoder automatically. Experiments indicate that the proposed method can keep the key high-frequency information with subjective significance while the bit rate is reduced.
Importance of Tensile Strength on the Shear Behavior of Discontinuities
NASA Astrophysics Data System (ADS)
Ghazvinian, A. H.; Azinfar, M. J.; Geranmayeh Vaneghi, R.
2012-05-01
In this study, the shear behavior of discontinuities possessing two different rock wall types with distinct separate compressive strengths was investigated. The designed profiles consisted of regular artificial joints molded by five types of plaster mortars, each representing a distinct uniaxial compressive strength. The compressive strengths of plaster specimens ranged from 5.9 to 19.5 MPa. These specimens were molded considering a regular triangular asperity profile and were designed so as to achieve joint walls with different strength material combinations. The results showed that the shear behavior of discontinuities possessing different joint wall compressive strengths (DDJCS) tested under constant normal load (CNL) conditions is the same as those possessing identical joint wall strengths, but the shear strength of DDJCS is governed by minor joint wall compressive strength. In addition, it was measured that the predicted values obtained by Barton's empirical criterion are greater than the experimental results. The finding indicates that there is a correlation between the joint roughness coefficient (JRC), normal stress, and mechanical strength. It was observed that the mode of failure of asperities is either pure tensile, pure shear, or a combination of both. Therefore, Barton's strength criterion, which considers the compressive strength of joint walls, was modified by substituting the compressive strength with the tensile strength. The validity of the modified criterion was examined by the comparison of the predicted shear values with the laboratory shear test results reported by Grasselli (Ph.D. thesis n.2404, Civil Engineering Department, EPFL, Lausanne, Switzerland, 2001). These comparisons infer that the modified criterion can predict the shear strength of joints more precisely.
Altered Functional Properties of Satellite Glial Cells in Compressed Spinal Ganglia
Zhang, Haijun; Mei, Xiaofeng; Zhang, Pu; Ma, Chao; White, Fletcher A; Donnelly, David F; LaMotte, Robert H
2009-01-01
The cell bodies of sensory neurons in the dorsal root ganglion (DRG) are enveloped by satellite glial cells (SGCs). In an animal model of intervertebral foraminal stenosis and low-back pain, a chronic compression of the DRG (CCD) increases the excitability of neuronal cell bodies in the compressed ganglion. The morphological and electrophysiological properties of SGCs were investigated in both CCD and uninjured, control lumbar DRGs. SGCs responded within 12 hours of the onset of CCD as indicated by an increased expression of glial fibrillary acidic protein (GFAP) in the compressed DRG but to lesser extent in neighboring or contralateral DRGs. Within one week, coupling through gap junctions between SGCs was significantly enhanced in the compressed ganglion. Under whole-cell patch clamp recordings, inward and outward potassium currents, but not sodium currents, were detected in individual SGCs. SGCs enveloping differently sized neurons had similar electrophysiological properties. SGCs in the compressed vs. control DRG exhibited significantly reduced inwardly rectifying potassium currents (Kir), increased input resistances and positively shifted resting membrane potentials. The reduction in Kir was greater for nociceptive medium-sized neurons compared to non-nociceptive neurons. Kir currents of SGCs around spontaneously active neurons were significantly reduced one day after compression but recovered by 7 days. These data demonstrate rapid alterations in glial membrane currents and GFAP expression in close temporal association with the development of neuronal hyperexcitability in the CCD model of europathic pain. However, these alterations are not fully sustained and suggest other mechanisms for the maintenance of the hyperexcitable state. PMID:19330845
Enhancing the compressive strength of landfill soil using cement and bagasse ash
NASA Astrophysics Data System (ADS)
Azim, M. A. M.; Azhar, A. T. S.; Tarmizi, A. K. A.; Shahidan, S.; Nabila, A. T. A.
2017-11-01
The stabilisation of contaminated soil with cement and agricultural waste is a widely applied method which contributes to the sustainability of the environment. Soil may be stabilised to increase strength and durability or to prevent erosion and other geotechnical failure. This study was carried out to evaluate the compressive strength of ex-landfill soil when cement and bagasse ash (BA) are added to it. Different proportions of cement (5%, 10%, 15% and 20%) was added to sample weights without BA. On the other hand, the cement in a different batch of sample weights was replaced by 2.5%, 5%, 7.5% and 10% of BA. All samples were allowed to harden and were cured at room temperature for 7, 14 and 28 days respectively. The strength of the contaminated soil was assessed using an unconfined compressive strength test (UCS). The laboratory tests also included the index properties of soil, cement and bagasse ash in raw form. The results indicated that the samples with cement achieved the highest compressive strength measuring 4.39 MPa. However, this study revealed that the use of bagasse ash produced low quality products with a reduction in strength. For example, when 5% of cement was replaced with 5% ash, the compressive strength decreased by about 54% from 0.72 MPa to 0.33 MPa. Similarly, the compressive strength of each sample after a curing period of 28 days was higher compared to samples cured for 7 and 14 days respectively. This is proved that a longer curing period is needed to increase the compressive strength of the samples.
NASA Technical Reports Server (NTRS)
Campbell, Sandi; Papadopoulos, Demetrios; Heimann, Paula; Inghram, Linda; McCorkle, Linda
2005-01-01
Expanded graphite was compressed into graphite sheets and used as a coating for carbon fiber reinforced PMR-15 composites. BET analysis of the graphite indicated an increase in graphite pore size on compression, however the material was proven to be an effective barrier to oxygen when prepegged with PMR-15 resin. Oxygen permeability of the PMR-15/graphite was an order of magnitude lower than the compressed graphite sheet. By providing a barrier to oxygen permeation, the rate of oxidative degradation of PMR-15 was decreased. As a result, the composite thermo-oxidative stability increased by up to 25%. The addition of a graphite sheet as a top ply on the composites yielded little change in the material's flexural strength or interlaminar shear strength.
Auditory spatial representations of the world are compressed in blind humans.
Kolarik, Andrew J; Pardhan, Shahina; Cirstea, Silvia; Moore, Brian C J
2017-02-01
Compared to sighted listeners, blind listeners often display enhanced auditory spatial abilities such as localization in azimuth. However, less is known about whether blind humans can accurately judge distance in extrapersonal space using auditory cues alone. Using virtualization techniques, we show that auditory spatial representations of the world beyond the peripersonal space of blind listeners are compressed compared to those for normally sighted controls. Blind participants overestimated the distance to nearby sources and underestimated the distance to remote sound sources, in both reverberant and anechoic environments, and for speech, music, and noise signals. Functions relating judged and actual virtual distance were well fitted by compressive power functions, indicating that the absence of visual information regarding the distance of sound sources may prevent accurate calibration of the distance information provided by auditory signals.
Enhanced densification under shock compression in porous silicon
NASA Astrophysics Data System (ADS)
Lane, J. Matthew D.; Thompson, Aidan P.; Vogler, Tracy J.
2014-10-01
Under shock compression, most porous materials exhibit lower densities for a given pressure than that of a full-dense sample of the same material. However, some porous materials exhibit an anomalous, or enhanced, densification under shock compression. We demonstrate a molecular mechanism that drives this behavior. We also present evidence from atomistic simulation that silicon belongs to this anomalous class of materials. Atomistic simulations indicate that local shear strain in the neighborhood of collapsing pores nucleates a local solid-solid phase transformation even when bulk pressures are below the thermodynamic phase transformation pressure. This metastable, local, and partial, solid-solid phase transformation, which accounts for the enhanced densification in silicon, is driven by the local stress state near the void, not equilibrium thermodynamics. This mechanism may also explain the phenomenon in other covalently bonded materials.
Is Seasonal Stress a Career Choice of Professional Accountants?
ERIC Educational Resources Information Center
Cluskey, G. R., Jr.; Vaux, Alan C.
1997-01-01
Examines stressors on tax professionals during periods of relatively high stress and periods of low stress. Results indicate that the strongest stressor-strain relationship was for the group surveyed in January (high stress), indicating that workload compression contributes to seasonal occupational stress. Looks at implications for employee…
Effect of Human Auditory Efferent Feedback on Cochlear Gain and Compression
Drga, Vit; Plack, Christopher J.
2014-01-01
The mammalian auditory system includes a brainstem-mediated efferent pathway from the superior olivary complex by way of the medial olivocochlear system, which reduces the cochlear response to sound (Warr and Guinan, 1979; Liberman et al., 1996). The human medial olivocochlear response has an onset delay of between 25 and 40 ms and rise and decay constants in the region of 280 and 160 ms, respectively (Backus and Guinan, 2006). Physiological studies with nonhuman mammals indicate that onset and decay characteristics of efferent activation are dependent on the temporal and level characteristics of the auditory stimulus (Bacon and Smith, 1991; Guinan and Stankovic, 1996). This study uses a novel psychoacoustical masking technique using a precursor sound to obtain a measure of the efferent effect in humans. This technique avoids confounds currently associated with other psychoacoustical measures. Both temporal and level dependency of the efferent effect was measured, providing a comprehensive measure of the effect of human auditory efferents on cochlear gain and compression. Results indicate that a precursor (>20 dB SPL) induced efferent activation, resulting in a decrease in both maximum gain and maximum compression, with linearization of the compressive function for input sound levels between 50 and 70 dB SPL. Estimated gain decreased as precursor level increased, and increased as the silent interval between the precursor and combined masker-signal stimulus increased, consistent with a decay of the efferent effect. Human auditory efferent activation linearizes the cochlear response for mid-level sounds while reducing maximum gain. PMID:25392499
NASA Technical Reports Server (NTRS)
Brun, Rinaldo J.; Feder, Melvin S.; Harries, Myron L.
1947-01-01
An investigation was conducted on a 12-cylinder V-type liquid-cooled aircraft engine of 1710-cubic-inch displacement to determine the minimum specific fuel consumption at constant cruising engine speed and compression ratios of 6.65, 7.93, and 9.68. At each compression ratio, the effect.of the following variables was investigated at manifold pressures of 28, 34, 40, and 50 inches of mercury absolute: temperature of the inlet-air to the auxiliary-stage supercharger, fuel-air ratio, and spark advance. Standard sea-level atmospheric pressure was maintained at the auxiliary-stage supercharger inlet and the exhaust pressure was atmospheric. Advancing the spark timing from 34 deg and 28 deg B.T.C. (exhaust and intake, respectively) to 42 deg and 36 deg B.T.C. at a compression ratio of 6.65 resulted in a decrease of approximately 3 percent in brake specific fuel consumption. Further decreases in brake specific fuel consumption of 10.5 to 14.1 percent (depending on power level) were observed as the compression ratio was increased from 6.65 to 9.68, maintaining at each compression ratio the spark advance required for maximum torque at a fuel-air ratio of 0.06. This increase in compression ratio with a power output of 0.585 horsepower per cubic inch required a change from . a fuel- lend of 6-percent triptane with 94-percent 68--R fuel at a compression ratio of 6.65 to a fuel blend of 58-percent, triptane with 42-percent 28-R fuel at a compression ratio of 9.68 to provide for knock-free engine operation. As an aid in the evaluation of engine mechanical endurance, peak cylinder pressures were measured on a single-cylinder engine at several operating conditions. Peak cylinder pressures of 1900 pounds per square inch can be expected at a compression ratio of 9.68 and an indicated mean effective pressure of 320 pounds per square inch. The engine durability was considerably reduced at these conditions.
Inflammatory cascades mediate synapse elimination in spinal cord compression
2014-01-01
Background Cervical compressive myelopathy (CCM) is caused by chronic spinal cord compression due to spondylosis, a degenerative disc disease, and ossification of the ligaments. Tip-toe walking Yoshimura (twy) mice are reported to be an ideal animal model for CCM-related neuronal dysfunction, because they develop spontaneous spinal cord compression without any artificial manipulation. Previous histological studies showed that neurons are lost due to apoptosis in CCM, but the mechanism underlying this neurodegeneration was not fully elucidated. The purpose of this study was to investigate the pathophysiology of CCM by evaluating the global gene expression of the compressed spinal cord and comparing the transcriptome analysis with the physical and histological findings in twy mice. Methods Twenty-week-old twy mice were divided into two groups according to the magnetic resonance imaging (MRI) findings: a severe compression (S) group and a mild compression (M) group. The transcriptome was analyzed by microarray and RT-PCR. The cellular pathophysiology was examined by immunohistological analysis and immuno-electron microscopy. Motor function was assessed by Rotarod treadmill latency and stride-length tests. Results Severe cervical calcification caused spinal canal stenosis and low functional capacity in twy mice. The microarray analysis revealed 215 genes that showed significantly different expression levels between the S and the M groups. Pathway analysis revealed that genes expressed at higher levels in the S group were enriched for terms related to the regulation of inflammation in the compressed spinal cord. M1 macrophage-dominant inflammation was present in the S group, and cysteine-rich protein 61 (Cyr61), an inducer of M1 macrophages, was markedly upregulated in these spinal cords. Furthermore, C1q, which initiates the classical complement cascade, was more upregulated in the S group than in the M group. The confocal and electron microscopy observations indicated that classically activated microglia/macrophages had migrated to the compressed spinal cord and eliminated synaptic terminals. Conclusions We revealed the detailed pathophysiology of the inflammatory response in an animal model of chronic spinal cord compression. Our findings suggest that complement-mediated synapse elimination is a central mechanism underlying the neurodegeneration in CCM. PMID:24589419
Parallel Geospatial Data Management for Multi-Scale Environmental Data Analysis on GPUs
NASA Astrophysics Data System (ADS)
Wang, D.; Zhang, J.; Wei, Y.
2013-12-01
As the spatial and temporal resolutions of Earth observatory data and Earth system simulation outputs are getting higher, in-situ and/or post- processing such large amount of geospatial data increasingly becomes a bottleneck in scientific inquires of Earth systems and their human impacts. Existing geospatial techniques that are based on outdated computing models (e.g., serial algorithms and disk-resident systems), as have been implemented in many commercial and open source packages, are incapable of processing large-scale geospatial data and achieve desired level of performance. In this study, we have developed a set of parallel data structures and algorithms that are capable of utilizing massively data parallel computing power available on commodity Graphics Processing Units (GPUs) for a popular geospatial technique called Zonal Statistics. Given two input datasets with one representing measurements (e.g., temperature or precipitation) and the other one represent polygonal zones (e.g., ecological or administrative zones), Zonal Statistics computes major statistics (or complete distribution histograms) of the measurements in all regions. Our technique has four steps and each step can be mapped to GPU hardware by identifying its inherent data parallelisms. First, a raster is divided into blocks and per-block histograms are derived. Second, the Minimum Bounding Boxes (MBRs) of polygons are computed and are spatially matched with raster blocks; matched polygon-block pairs are tested and blocks that are either inside or intersect with polygons are identified. Third, per-block histograms are aggregated to polygons for blocks that are completely within polygons. Finally, for blocks that intersect with polygon boundaries, all the raster cells within the blocks are examined using point-in-polygon-test and cells that are within polygons are used to update corresponding histograms. As the task becomes I/O bound after applying spatial indexing and GPU hardware acceleration, we have developed a GPU-based data compression technique by reusing our previous work on Bitplane Quadtree (or BPQ-Tree) based indexing of binary bitmaps. Results have shown that our GPU-based parallel Zonal Statistic technique on 3000+ US counties over 20+ billion NASA SRTM 30 meter resolution Digital Elevation (DEM) raster cells has achieved impressive end-to-end runtimes: 101 seconds and 46 seconds a low-end workstation equipped with a Nvidia GTX Titan GPU using cold and hot cache, respectively; and, 60-70 seconds using a single OLCF TITAN computing node and 10-15 seconds using 8 nodes. Our experiment results clearly show the potentials of using high-end computing facilities for large-scale geospatial processing.
SCALCE: boosting sequence compression algorithms using locally consistent encoding.
Hach, Faraz; Numanagic, Ibrahim; Alkan, Can; Sahinalp, S Cenk
2012-12-01
The high throughput sequencing (HTS) platforms generate unprecedented amounts of data that introduce challenges for the computational infrastructure. Data management, storage and analysis have become major logistical obstacles for those adopting the new platforms. The requirement for large investment for this purpose almost signalled the end of the Sequence Read Archive hosted at the National Center for Biotechnology Information (NCBI), which holds most of the sequence data generated world wide. Currently, most HTS data are compressed through general purpose algorithms such as gzip. These algorithms are not designed for compressing data generated by the HTS platforms; for example, they do not take advantage of the specific nature of genomic sequence data, that is, limited alphabet size and high similarity among reads. Fast and efficient compression algorithms designed specifically for HTS data should be able to address some of the issues in data management, storage and communication. Such algorithms would also help with analysis provided they offer additional capabilities such as random access to any read and indexing for efficient sequence similarity search. Here we present SCALCE, a 'boosting' scheme based on Locally Consistent Parsing technique, which reorganizes the reads in a way that results in a higher compression speed and compression rate, independent of the compression algorithm in use and without using a reference genome. Our tests indicate that SCALCE can improve the compression rate achieved through gzip by a factor of 4.19-when the goal is to compress the reads alone. In fact, on SCALCE reordered reads, gzip running time can improve by a factor of 15.06 on a standard PC with a single core and 6 GB memory. Interestingly even the running time of SCALCE + gzip improves that of gzip alone by a factor of 2.09. When compared with the recently published BEETL, which aims to sort the (inverted) reads in lexicographic order for improving bzip2, SCALCE + gzip provides up to 2.01 times better compression while improving the running time by a factor of 5.17. SCALCE also provides the option to compress the quality scores as well as the read names, in addition to the reads themselves. This is achieved by compressing the quality scores through order-3 Arithmetic Coding (AC) and the read names through gzip through the reordering SCALCE provides on the reads. This way, in comparison with gzip compression of the unordered FASTQ files (including reads, read names and quality scores), SCALCE (together with gzip and arithmetic encoding) can provide up to 3.34 improvement in the compression rate and 1.26 improvement in running time. Our algorithm, SCALCE (Sequence Compression Algorithm using Locally Consistent Encoding), is implemented in C++ with both gzip and bzip2 compression options. It also supports multithreading when gzip option is selected, and the pigz binary is available. It is available at http://scalce.sourceforge.net. fhach@cs.sfu.ca or cenk@cs.sfu.ca Supplementary data are available at Bioinformatics online.
1300 K compressive properties of several dispersion strengthened NiAl materials
NASA Technical Reports Server (NTRS)
Whittenberger, J. Daniel; Gaydosh, D. J.; Kumar, K. S.
1990-01-01
To examine the potential of rapid solidification technology (RST) as a means to fabricate dispersion-strengthened aluminides, cylindrical compression samples were machined from the gauge section of their tensile specimens and tested in air at 1300 K. While microscopy indicates that RST can produce fine dispersions of TiB2, TiC and HfC in a NiAl matrix, the mechanical property data reveal that only HfC successfully strengthens the intermetallic matrix. The high stress exponents (above 10) and/or independence of strain rate on stress for NiAl-HfC materials suggest elevated temperature mechanical behavior similar to that found in oxide dispersion-strengthened alloys. Furthermore, an apparent example of departure side pinning has been observed, and as such, it is indicative of a threshold stress for creep.
Structural and electronic evolution of Cr[subscript 2]O[subscript 3] on compression to 55 GPa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dera, Przemyslaw; Lavina, Barbara; Meng, Yue
2016-08-15
Synchrotron single-crystal x-ray diffraction experiments have been performed on corundum-type Cr{sub 2}O{sub 3} up to a pressure of 55 GPa in Ne and He pressure transmitting media. Diffraction experiments were complemented by measurements of optical absorption spectra with single crystal samples up to 60 GPa. Results of the diffraction data analysis rule out the earlier reported monoclinic distortion at 15-30 GPa, but indicate evidence of two discontinuous transitions of electronic or magnetic nature, most likely associated with a change in magnetic ordering and charge transfer. The compression mechanism established from single crystal refinements indicates much smaller distortion of the Cr{supmore » 3+} coordination environment than was previously assumed.« less
NASA Astrophysics Data System (ADS)
Neubauer, F.; Cao, S.
2012-04-01
Structures of hangingwall units of major detachment systems in extensional settings leading to metamorphic core complexes are equally important to the generally well-studied footwall rocks. Here, we describe hanging-wall structures of the North-Cycladic Detachment System on Naxos Island of the Aegean Sea and found that they well monitor the structural evolution of hanging blocks complementary to the footwall structures, vertical fluid flow as well as late-stage inversion of the whole extensional system. On Naxos, Upper Oligocene-Miocene and Pliocene sedimentary successions are deposited on the hangingwall unit, which is largely an ophiolite. The Upper Oligocene-Miocene and Pliocene sedimentary successions are separated by a hiatus arguing for a two-step evolution. Whereas the first step, Miocene, indicate moderate subsidence and relief, and only denudation of the hangingwall unit, the Pliocene conglomerates indicate a sharply increasing relief and an over-steepened topography. Hydrothermal systems developed in hangingwall rock succession (e.g. Miocene at Steladia) play an important role and resulted in large-scale silica precipitation and associated alteration similar as these found in subvolcanic epithermal systems. This constrains a close link between footwall granodiorite intrusion and near-surface processes. The Pliocene coarse boulder conglomerate with its abundant first appearance of granite/granodiorite, and subsequent marble-rich debris on distant places like Palatia indicate a sudden erosion and high-gradient relief leading to erosion of the mantle of the migmatite dome during Pliocene. On Naxos, we recognize, therefore, a three-stage tectonic evolution in the hangingwall unit: (i) moderate subsidence of an Upper Oligocene-Miocene basin, in part below sea level; (2) a second stage with deposition of Pliocene coarse conglomerates, and (iii) post-Pliocene faulting affecting the conglomerates. During the second stage, surface exposure of the metamorphic core complex was reached resulting in catastrophic alluvial fans. Structural data from the Upper Oligocene-Miocene rocks indicate that NNE-SSW extension still prevailed up to the Miocene/Pliocene boundary. Together with structural data from Pliocene conglomerates, we can distinguish between three major events: The first stage is characterized by mostly NNE-dipping and subordinate SSW-dipping normal faults indicating together ca. NNE-SSW extension. A second palaeostress tensor group (B) mainly comprises ca. NW-trending dextral and WSW-trending sinistral strike-slip faults indicating together ca. E-W strike-slip compression and monitor, therefore, inversion and compression perpendicular to the previous extension direction. The third palaeostress tensor group (C) is characterized by dominating mostly NE-trending subvertical sinistral strike-slip faults and steep NNW-trending dextral strike-slip faults constituting together ca. N-S strike-slip compression. In a few cases, S- to SW-dipping reverse faults also occur. On a general level, our study allows for the following major conclusions: (1) Structures of hangingwall units of major detachments above metamorphic core complexes are equally important compared to the generally well-studied footwall rocks. They allow date several tectonic events not necessarily found in footwall rocks. (2) On Naxos, we can distinguish between three major tectonic events, which are in accordance with large-scale tectonic processes in the Aegean Sea: (a) ca. NNE-SSW extension; (b) ca. E-W strike-slip compression and monitor therefore inversion and compression perpendicular to the previous extension direction, and (c) N-S strike-slip compression.
Rafeek, Reisha N
2008-05-01
This study investigated the effects of application of heat alone and heat & pressure on the compressive strength and modulus, the stress relaxation characteristics and the fluoride release of a conventional and a resin-modified glass ionomer cement. Cylindrical specimens were made from both materials and divided into 3 groups. One group was heat treated in an oven at 120 degrees C for 20 min, another group was subjected to heat & pressure at 120 degrees C for 20 min at 6-bar pressure. The third group acted as a control. The compressive strength and modulus, stress relaxation and fluoride release were tested over 56 days. The results of this investigation indicate that heat treatment had no significant effect on the conventional GIC used but significantly affected the resin modified GIC by increasing both the compressive strength and modulus and reducing the stress relaxation characteristics and the fluoride release. The use of GIC to produce inlay or onlay restorations that adhere to tooth tissue and release fluoride would be highly desirable. The results of this study indicate that it is possible to improve the strength of RMGIC with heat to a limited extent, but fluoride release may decrease.
Carriço, Camila S; Fraga, Thaís; Carvalho, Vagner E; Pasa, Vânya M D
2017-07-02
Rigid polyurethane foams were synthesized using a renewable polyol from the simple physical mixture of castor oil and crude glycerol. The effect of the catalyst (DBTDL) content and blowing agents in the foams' properties were evaluated. The use of physical blowing agents (cyclopentane and n-pentane) allowed foams with smaller cells to be obtained in comparison with the foams produced with a chemical blowing agent (water). The increase of the water content caused a decrease in density, thermal conductivity, compressive strength, and Young's modulus, which indicates that the increment of CO₂ production contributes to the formation of larger cells. Higher amounts of catalyst in the foam formulations caused a slight density decrease and a small increase of thermal conductivity, compressive strength, and Young's modulus values. These green foams presented properties that indicate a great potential to be used as thermal insulation: density (23-41 kg·m -3 ), thermal conductivity (0.0128-0.0207 W·m -1 ·K -1 ), compressive strength (45-188 kPa), and Young's modulus (3-28 kPa). These biofoams are also environmentally friendly polymers and can aggregate revenue to the biodiesel industry, contributing to a reduction in fuel prices.
Methods for pore water extraction from unsaturated zone tuff, Yucca Mountain, Nevada
Scofield, K.M.
2006-01-01
Assessing the performance of the proposed high-level radioactive waste repository at Yucca Mountain, Nevada, requires an understanding of the chemistry of the water that moves through the host rock. The uniaxial compression method used to extract pore water from samples of tuffaceous borehole core was successful only for nonwelded tuff. An ultracentrifugation method was adopted to extract pore water from samples of the densely welded tuff of the proposed repository horizon. Tests were performed using both methods to determine the efficiency of pore water extraction and the potential effects on pore water chemistry. Test results indicate that uniaxial compression is most efficient for extracting pore water from nonwelded tuff, while ultracentrifugation is more successful in extracting pore water from densely welded tuff. Pore water splits collected from a single nonwelded tuff core during uniaxial compression tests have shown changes in pore water chemistry with increasing pressure for calcium, chloride, sulfate, and nitrate. Pore water samples collected from the intermediate pressure ranges should prevent the influence of re-dissolved, evaporative salts and the addition of ion-deficient water from clays and zeolites. Chemistry of pore water splits from welded and nonwelded tuffs using ultracentrifugation indicates that there is no substantial fractionation of solutes.
Physical insights of cavity confinement enhancing effect in laser-induced breakdown spectroscopy.
Fu, Yangting; Hou, Zongyu; Wang, Zhe
2016-02-08
Using cavity confinement to enhance the plasma emission has been proved to be an effective way in LIBS technique while no direct visual evidence has been made to illustrate the physical mechanism of this enhancing effect. In this work, both laser-induced plasma plume images and shockwave images were obtained and synchronized for both flat surface case and rectangular cavity case. Phenomena of shockwave reflection, plasma compression by the reflected shockwave and merge of the reflected shockwave into plasma were observed. Plasma emission intensities recorded by ICCD in both cases were compared and the enhancement effect in the cavity case was identified in the comparison. The enhancement effect could be explained as reflected shockwave "compressing" effect, that is, the reflected shockwave would compress the plasma and result in a more condensed plasma core area with higher plasma temperature. Reflected shockwave also possibly contributed to plasma core position stabilization, which indicated the potential of better plasma signal reproducibility for the cavity case. Both plasma emission enhancement and plasma core position stabilization only exist within a certain temporal window, which indicates that the delay time of spectra acquisition is essential while using cavity confinement as a way to improve LIBS performance.
Wesson, R.L.
1988-01-01
Preliminary measurements of the stress orientation at a depth of 2 km interpreted to indicate that the regional orientation of the maximum compression is normal to the fault, and taken as evidence for a very weak fault. The orientation expected from plate tectonic arguments is about 66?? NE from the strike of the fault. Geodetic data indicate that the orientation of maximum compressive strain rate is about 43?? NE from the strike of the fault, and show nearly pure right-lateral shear acting parallel to the fault. These apparent conflicts in the inferred orientation of the axis of maximum compression may be explained in part by a model in which the fault zone is locked over a depth interval in the range of 2-5 to 15 km, but is very weak above and below that interval. This solution does require, however, a few mm/yr of creep at the surface on the San Andreas or nearby sub-parallel faults (such as the San Jacinto), which has not yet been observed, or a shallow zone near the faults of distributed deformation. -from Author
Shape Memory Silk Protein Sponges for Minimally Invasive Tissue Regeneration.
Brown, Joseph E; Moreau, Jodie E; Berman, Alison M; McSherry, Heather J; Coburn, Jeannine M; Schmidt, Daniel F; Kaplan, David L
2017-01-01
Porous silk protein scaffolds are designed to display shape memory characteristics and volumetric recovery following compression. Two strategies are utilized to realize shape recovery: addition of hygroscopic plasticizers like glycerol, and tyrosine modifications with hydrophilic sulfonic acid chemistries. Silk sponges are evaluated for recovery following 80% compressive strain, total porosity, pore size distribution, secondary structure development, in vivo volume retention, cell infiltration, and inflammatory responses. Glycerol-modified sponges recover up to 98.3% of their original dimensions following compression, while sulfonic acid/glycerol modified sponges swell in water up to 71 times their compressed volume, well in excess of their original size. Longer silk extraction times (lower silk molecular weights) and higher glycerol concentrations yielded greater flexibility and shape fidelity, with no loss in modulus following compression. Sponges are over 95% porous, with secondary structure analysis indicating glycerol-induced β-sheet physical crosslinking. Tyrosine modifications with sulfonic acid interfere with β-sheet formation. Glycerol-modified sponges exhibit improved rates of cellular infiltration at subcutaneous implant sites with minimal immune response in mice. They also degrade more rapidly than unmodified sponges, a result posited to be cell-mediated. Overall, this work suggests that silk sponges may be useful for minimally invasive deployment in soft tissue augmentation procedures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Quality and loudness judgments for music subjected to compression limiting.
Croghan, Naomi B H; Arehart, Kathryn H; Kates, James M
2012-08-01
Dynamic-range compression (DRC) is used in the music industry to maximize loudness. The amount of compression applied to commercial recordings has increased over time due to a motivating perspective that louder music is always preferred. In contrast to this viewpoint, artists and consumers have argued that using large amounts of DRC negatively affects the quality of music. However, little research evidence has supported the claims of either position. The present study investigated how DRC affects the perceived loudness and sound quality of recorded music. Rock and classical music samples were peak-normalized and then processed using different amounts of DRC. Normal-hearing listeners rated the processed and unprocessed samples on overall loudness, dynamic range, pleasantness, and preference, using a scaled paired-comparison procedure in two conditions: un-equalized, in which the loudness of the music samples varied, and loudness-equalized, in which loudness differences were minimized. Results indicated that a small amount of compression was preferred in the un-equalized condition, but the highest levels of compression were generally detrimental to quality, whether loudness was equalized or varied. These findings are contrary to the "louder is better" mentality in the music industry and suggest that more conservative use of DRC may be preferred for commercial music.
Kitshoff, Adriaan Mynhardt; Van Goethem, Bart; Cornelis, Ine; Combes, Anais; Dvm, Ingeborgh Polis; Gielen, Ingrid; Vandekerckhove, Peter; de Rooster, Hilde
2016-01-01
A 14 mo old female neutered Doberman pinscher was evaluated for difficulty in rising, a wide based stance, pelvic limb gait abnormalities, and cervical pain of 2 mo duration. Neurologic examination revealed pelvic limb ataxia and cervical spinal hyperesthesia. Spinal reflexes and cranial nerve examination were normal. The pathology was localized to the C1-C5 or C6-T2 spinal cord segments. Computed tomography (CT) findings indicated bony proliferation of the caudal articular processes of C6 and the cranial articular processes of C7, resulting in bilateral dorsolateral spinal cord compression that was more pronounced on the left side. A limited dorsal laminectomy was performed at C6-C7. Due to progressive neurological deterioration, follow-up CT examination was performed 4 days postoperatively. At the level of the laminectomy defect, a subfacial seroma had developed, entering the spinal canal and causing significant spinal cord compression. Under ultrasonographic guidance a closed-suction wound catheter was placed. Drainage of the seroma successfully relieved its compressive effects on the spinal cord and the patient's neurological status improved. CT was a valuable tool in assessing spinal cord compression as a result of a postoperative subfascial seroma. Minimally invasive application of a wound catheter can be successfully used to manage this condition.
Fabrication and Deformation of 3D Multilayered Kirigami Microstructures.
Humood, Mohammad; Shi, Yan; Han, Mengdi; Lefebvre, Joseph; Yan, Zheng; Pharr, Matt; Zhang, Yihui; Huang, Yonggang; Rogers, John A; Polycarpou, Andreas A
2018-03-01
Mechanically guided 3D microassembly with controlled compressive buckling represents a promising emerging route to 3D mesostructures in a broad range of advanced materials, including single-crystalline silicon (Si), of direct relevance to microelectronic devices. During practical applications, the assembled 3D mesostructures and microdevices usually undergo external mechanical loading such as out-of-plane compression, which can induce damage in or failure of the structures/devices. Here, the mechanical responses of a few mechanically assembled 3D kirigami mesostructures under flat-punch compression are studied through combined experiment and finite element analyses. These 3D kirigami mesostructures consisting of a bilayer of Si and SU-8 epoxy are formed through integration of patterned 2D precursors with a prestretched elastomeric substrate at predefined bonding sites to allow controlled buckling that transforms them into desired 3D configurations. In situ scanning electron microscopy measurement enables detailed studies of the mechanical behavior of these structures. Analysis of the load-displacement curves allows the measurement of the effective stiffness and elastic recovery of various 3D structures. The compression experiments indicate distinct regimes in the compressive force/displacement curves and reveals different geometry-dependent deformation for the structures. Complementary computational modeling supports the experimental findings and further explains the geometry-dependent deformation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Osei-Yeboah, Frederick; Chang, Shao-Yu; Sun, Changquan Calvin
2016-05-01
Although the bonding area (BA) and bonding strength (BS) interplay is used to explain complex tableting behaviors, it has never been experimentally proven. The purpose of this study is to unambiguously establish the distinct contributions of each by decoupling the contributions from BA and BS. To modulate BA, a Soluplus® powder was compressed into tablets at different temperatures and then broken following equilibration at 25°C. To modulate BS, tablets were equilibrated at different temperatures. To simultaneously modulate BA and BS, both powder compression and tablet breaking test were carried out at different temperatures. Lower tablet tensile strength is observed when the powder is compressed at a lower temperature but broken at 25°C. This is consistent with the increased resistance to polymer deformation at lower temperatures. When equilibrated at different temperatures, the tensile strength of tablets prepared under identical conditions increases with decreasing storage temperature, indicating that BS is higher at a lower temperature. When powder compression and tablet breaking are carried out at the same temperature, the profile with a maximum tensile strength at 4°C is observed due to the BA-BS interplay. By systematically varying temperature during tablet compression and breaking, we have experimentally demonstrated the phenomenon of BA-BS interplay in tableting.
Rapid compression transforms interfacial monolayers of pulmonary surfactant.
Crane, J M; Hall, S B
2001-04-01
Films of pulmonary surfactant in the lung are metastable at surface pressures well above the equilibrium spreading pressure of 45 mN/m but commonly collapse at that pressure when compressed in vitro. The studies reported here determined the effect of compression rate on the ability of monolayers containing extracted calf surfactant at 37 degrees C to maintain very high surface pressures on the continuous interface of a captive bubble. Increasing the rate from 2 A(2)/phospholipid/min (i.e., 3% of (initial area at 40 mN/m)/min) to 23%/s produced only transient increases to 48 mN/m. Above a threshold rate of 32%/s, however, surface pressures reached > 68 mN/m. After the rapid compression, static films maintained surface pressures within +/- 1 mN/m both at these maximum values and at lower pressures following expansion at < 5%/min to > or = 45 mN/m. Experiments with dimyristoyl phosphatidylcholine at 37 degrees C produced similar results. These findings indicate that compression at rates comparable to values in the lungs can transform at least some phospholipid monolayers from a form that collapses readily at the equilibrium spreading pressure to one that is metastable for prolonged periods at higher pressures. Our results also suggest that transformation of surfactant films can occur without refinement of their composition.
Impact of monaural frequency compression on binaural fusion at the brainstem level.
Klauke, Isabelle; Kohl, Manuel C; Hannemann, Ronny; Kornagel, Ulrich; Strauss, Daniel J; Corona-Strauss, Farah I
2015-08-01
A classical objective measure for binaural fusion at the brainstem level is the so-called β-wave of the binaural interaction component (BIC) in the auditory brainstem response (ABR). However, in some cases it appeared that a reliable detection of this component still remains a challenge. In this study, we investigate the wavelet phase synchronization stability (WPSS) of ABR data for the analysis of binaural fusion and compare it to the BIC. In particular, we examine the impact of monaural nonlinear frequency compression on binaural fusion. As the auditory system is tonotopically organized, an interaural frequency mismatch caused by monaural frequency compression could negatively effect binaural fusion. In this study, only few subjects showed a detectable β-wave and in most cases only for low ITDs. However, we present a novel objective measure for binaural fusion that outperforms the current state-of-the-art technique (BIC): the WPSS analysis showed a significant difference between the phase stability of the sum of the monaurally evoked responses and the phase stability of the binaurally evoked ABR. This difference could be an indicator for binaural fusion in the brainstem. Furthermore, we observed that monaural frequency compression could indeed effect binaural fusion, as the WPSS results for this condition vary strongly from the results obtained without frequency compression.
Influence of crystal habit on the compression and densification mechanism of ibuprofen
NASA Astrophysics Data System (ADS)
Di Martino, Piera; Beccerica, Moira; Joiris, Etienne; Palmieri, Giovanni F.; Gayot, Anne; Martelli, Sante
2002-08-01
Ibuprofen was recrystallized from several solvents by two different methods: addition of a non-solvent to a drug solution and cooling of a drug solution. Four samples, characterized by different crystal habit, were selected: sample A, sample E and sample T, recrystallized respectively from acetone, ethanol and THF by addition of water as non-solvent and sample M recrystallized from methanol by temperature decrease. By SEM analysis, sample were characterized with the respect of their crystal habit, mean particle diameter and elongation ratio. Sample A appears stick-shaped, sample E acicular with lamellar characteristics, samples T and M polyhedral. DSC and X-ray diffraction studies permit to exclude a polymorphic modification of ibuprofen during crystallization. For all samples micromeritics properties, densification behaviour and compression ability was analysed. Sample M shows a higher densification tendency, evidenciated by its higher apparent and tapped particle density. The ability to densificate is also pointed out by D0' value of Heckel's plot, which indicate the rearrangement of original particles at the initial stage of compression. This fact is related to the crystal habit of sample M, which is characterized by strongly smoothed coins. The increase in powder bed porosity permits a particle-particle interaction of greater extent during the subsequent stage of compression, which allows higher tabletability and compressibility.
Sarkar, Srimanta; Ooi, Shing Ming; Liew, Celine Valeria; Tan, Bing Xun; Heng, Paul Wan Sia
2014-11-20
This study investigated the influence of different disintegrants, present in different substrate physical forms, on dimensional recovery of multi-component tablets prepared at different compression pressures. Formulations containing model drug, metformin, (10%, w/w), different disintegrants (10%, w/w), and lactose (80%, w/w) were compressed directly or after granulation using polyvinyl pyrrolidone (1%, w/w) as binder, into tablets (350 mg, 10mm diameter) at 150, 200, and 250 N/mm(2) compression pressures. Tablets were characterized for immediate dimensional recovery (IR) after ejection from the die, latent dimensional recovery (LR) over 24 h, tensile strength, and disintegration. The IR was predominantly contributed by crystalline components whereas LR was brought about by polymeric materials. With increased compression pressure, higher degree of plastic deformation of the polymeric disintegrants resulted in tablet with lower LR and higher tensile strength. Presence of polyvinyl pyrrolidone in the granules contributed considerably to plastic deformation, and the tablets produced had lower LR, higher tensile strength, and longer disintegration time. This study indicated that use of granules as the feed substrate physical form and a prudent selection of components may enable the coating of resultant tablets immediately after compression without the risk of coat damage due to LR. Copyright © 2014 Elsevier B.V. All rights reserved.
Nakaba, Satoshi; Hirai, Asami; Kudo, Kayo; Yamagishi, Yusuke; Yamane, Kenichi; Kuroda, Katsushi; Nugroho, Widyanto Dwi; Kitin, Peter; Funada, Ryo
2016-03-01
When the orientation of the stems of conifers departs from the vertical as a result of environmental influences, conifers form compression wood that results in restoration of verticality. It is well known that intercellular spaces are formed between tracheids in compression wood, but the function of these spaces remains to be clarified. In the present study, we evaluated the impact of these spaces in artificially induced compression wood in Chamaecyparis obtusa seedlings. We monitored the presence or absence of liquid in the intercellular spaces of differentiating xylem by cryo-scanning electron microscopy. In addition, we analysed the relationship between intercellular spaces and the hydraulic properties of the compression wood. Initially, we detected small intercellular spaces with liquid in regions in which the profiles of tracheids were not rounded in transverse surfaces, indicating that the intercellular spaces had originally contained no gases. In the regions where tracheids had formed secondary walls, we found that some intercellular spaces had lost their liquid. Cavitation of intercellular spaces would affect hydraulic conductivity as a consequence of the induction of cavitation in neighbouring tracheids. Our observations suggest that cavitation of intercellular spaces is the critical event that affects not only the functions of intercellular spaces but also the hydraulic properties of compression wood. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Davis, Mark T; Potter, Catherine B; Walker, Gavin M
2018-06-10
Downstream processing aspects of a stable form of amorphous itraconazole exhibiting enhanced dissolution properties were studied. Preparation of this ternary amorphous solid dispersion by either spray drying or hot melt extrusion led to significantly different powder processing properties. Particle size and morphology was analysed using scanning electron microscopy. Flow, compression, blending and dissolution were studied using rheometry, compaction simulation and a dissolution kit. The spray dried material exhibited poorer flow and reduced sensitivity to aeration relative to the milled extrudate. Good agreement was observed between differing forms of flow measurement, such as Flow Function, Relative flow function, Flow rate index, Aeration rate, the Hausner ratio and the Carr index. The stability index indicated that both powders were stable with respect to agglomeration, de-agglomeration and attrition. Tablet ability and compressibility studies showed that spray dried material could be compressed into stronger compacts than extruded material. Blending of the powders with low moisture, freely-flowing excipients was shown to influence both flow and compression. Porosity studies revealed that blending could influence the mechanism of densification in extrudate and blended extrudate formulations. Following blending, the powders were compressed into four 500 mg tablets, each containing a 100 mg dose of amorphous itraconazole. Dissolution studies revealed that the spray dried material released drug faster and more completely and that blending excipients could further influence the dissolution rate. Copyright © 2018 Elsevier B.V. All rights reserved.
The influence of the compression interface on the failure behavior and size effect of concrete
NASA Astrophysics Data System (ADS)
Kampmann, Raphael
The failure behavior of concrete materials is not completely understood because conventional test methods fail to assess the material response independent of the sample size and shape. To study the influence of strength and strain affecting test conditions, four typical concrete sample types were experimentally evaluated in uniaxial compression and analyzed for strength, deformational behavior, crack initiation/propagation, and fracture patterns under varying boundary conditions. Both low friction and conventional compression interfaces were assessed. High-speed video technology was used to monitor macrocracking. Inferential data analysis proved reliably lower strength results for reduced surface friction at the compression interfaces, regardless of sample shape. Reciprocal comparisons revealed statistically significant strength differences between most sample shapes. Crack initiation and propagation was found to differ for dissimilar compression interfaces. The principal stress and strain distributions were analyzed, and the strain domain was found to resemble the experimental results, whereas the stress analysis failed to explain failure for reduced end confinement. Neither stresses nor strains indicated strength reductions due to reduced friction, and therefore, buckling effects were considered. The high-speed video analysis revealed localize buckling phenomena, regardless of end confinement. Slender elements were the result of low friction, and stocky fragments developed under conventional confinement. The critical buckling load increased accordingly. The research showed that current test methods do not reflect the "true'' compressive strength and that concrete failure is strain driven. Ultimate collapse results from buckling preceded by unstable cracking.
Adiabatic heating in impulsive solar flares
NASA Technical Reports Server (NTRS)
Maetzler, C.; Bai, T.; Crannell, C. J.; Frost, K. J.
1977-01-01
The dynamic X-ray spectra of two simple, impulsive solar flares are examined together with H alpha, microwave and meter wave radio observations. X-ray spectra of both events were characteristic of thermal bremsstrahlung from single temperature plasmas. The symmetry between rise and fall was found to hold for the temperature and emission measure. The relationship between temperature and emission measure was that of an adiabatic compression followed by adiabatic expansion; the adiabatic index of 5/3 indicated that the electron distribution remained isotropic. Observations in H alpha provided further evidence for compressive energy transfer.
Shock wave compression of iron-silicate garnet.
NASA Technical Reports Server (NTRS)
Graham, E. K.; Ahrens, T. J.
1973-01-01
Shock wave compression data to over 650 kb are presented for single-crystal almandine garnet. The data indicate the initiation of a phase transformation near 200 kb. Total transition to the high-pressure polymorph occurs at approximately 300 kb. The elastic properties of the high-pressure phase are calculated from the metastable Hugoniot data by using the linear shock velocity-particle velocity relationships. The overall results obtained strongly suggest that upper mantle minerals are likely to occur in the ilmenite structure over a substantial part of the lower mantle.
Elastic and plastic buckling of simply supported solid-core sandwich plates in compression
NASA Technical Reports Server (NTRS)
Seide, Paul; Stowell, Elbridge Z
1950-01-01
A solution is presented for the problem of the compressive buckling of simply supported, flat, rectangular, solid-core sandwich plates stressed either in the elastic range or in the plastic range. Charts for the analysis of long sandwich plates are presented for plates having face materials of 24s-t3 aluminum alloy, 76s-t6 alclad aluminum alloy, and stainless steel. A comparison of computed and experimental buckling stresses of square solid-core sandwich plates indicates fair agreement between theory and experiment.
Buckling behavior of composite cylinders subjected to compressive loading
NASA Technical Reports Server (NTRS)
Carri, R. L.
1973-01-01
Room temperature compressive buckling strengths of eight cylinders, four boron-epoxy and four boron-epoxy reinforced-titanium, with diameter to thickness ratios ranging between 40 and 67 are determined experimentally and compared with analytical predictions. Numerical buckling strengths are presented for Donnell's, Flugge's and Sanders' shell theories for anisotropic and orthotropic material cases. Comparison of analytical predictions with experimental results indicates good agreement and the recommended correlation factor suggested in the literature is applicable for design. For the cylinders tested, the correlation between experiment and theory ranged from 0.73 to 0.97.
Enhancing overall tensile and compressive response of pure Mg using nano-TiB{sub 2} particulates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meenashisundaram, Ganesh Kumar; Seetharaman, Sankaranarayanan; Gupta, Manoj, E-mail: mpegm@nus.edu.sg
2014-08-15
A novel attempt is made to synthesize and study the isolated effects of less than two volume fraction TiB{sub 2} nanoparticulates (60 nm) on pure magnesium. New light weight Mg–TiB{sub 2} nanocomposites with superior mechanical properties compared to pure magnesium are synthesized using disintegrated melt deposition technique followed by hot extrusion. The microstructural characterization studies revealed that the samples exhibited fairly uniform distribution of TiB{sub 2} nanoparticulates with minimal porosity and good interfacial integrity between Mg matrix and TiB{sub 2} particulates. The coefficient of thermal expansion results indicates that the addition of 0.58, 0.97, and 1.98 vol.% TiB{sub 2} nanoparticulatesmore » marginally improves the dimensional stability of pure magnesium. A significant improvement in the room temperature tensile properties of pure magnesium was observed with the addition of less than two volume fraction TiB{sub 2} nanoparticulates. The synthesized Mg 1.98 vol.% TiB{sub 2} nanocomposite revealed the best room temperature tensile properties with a significant increase in the 0.2% tensile yield strength by ∼ 54%, ultimate tensile strength by ∼ 15% and fracture strain by ∼ 79% when compared to pure Mg. The X-ray diffraction studies indicated changes in the basal plane orientation of pure Mg with the addition of nano-TiB{sub 2} particulates. A maximum tensile fracture strain of ∼ 16% is achieved with the addition of 0.97 vol.% TiB{sub 2}. The room temperature compressive properties of the nanocomposites reveal that the addition of 1.98 TiB{sub 2} increases the 0.2% compressive yield strength of Mg by ∼ 47% and ultimate compressive strength by ∼ 10% with a marginal increase in the fracture strain (∼ 11%). Reduction in tensile–compression yield asymmetry was observed for Mg 0.58 and 0.97 vol.% TiB{sub 2} nanocomposites which can be attributed to the weakening of the strong basal texture of pure Mg. - Highlights: • First attempt is made to synthesize and characterize Mg-TiB{sub 2} nanocomposites. • XRD studies indicate nano TiB{sub 2} addition modifies the basal texture of pure Mg. • Maximum tensile fracture strain of ∼ 16 % in Mg 0.97 vol.% TiB{sub 2} nanocomposite. • Hardness values of Mg-TiB{sub 2} composites indicate superior tribological properties.« less
The film tells the story: Physical-chemical characteristics of IgG at the liquid-air interface.
Koepf, Ellen; Schroeder, Rudolf; Brezesinski, Gerald; Friess, Wolfgang
2017-10-01
The presence of liquid-air interfaces in protein pharmaceuticals is known to negatively impact product stability. Nevertheless, the mechanisms behind interface-related protein aggregation are not yet fully understood. Little is known about the physical-chemical behavior of proteins adsorbed to the interface. Therefore, the combinatorial use of appropriate surface-sensitive analytical methods such as Langmuir trough experiments, Infrared Reflection-Absorption Spectroscopy (IRRAS), Brewster Angle Microscopy (BAM), and Atomic Force Microscopy (AFM) is highly expedient to uncover structures and events at the liquid-air interface directly. Concentration-dependent adsorption of a human immunoglobulin G (IgG) and characteristic surface-pressure/area isotherms substantiated the amphiphilic nature of the protein molecules as well as the formation of a compressible protein film at the liquid-air interface. Upon compression, the IgG molecules do not readily desorb but form a highly compressible interfacial film. IRRA spectra proved not only the presence of the protein at the interface, but also showed that the secondary structure does not change considerably during adsorption or compression. IRRAS experiments at different angles of incidence indicated that the film thickness and/or packing density increases upon compression. Furthermore, BAM images exposed the presence of a coherent but heterogeneous distribution of the protein at the interface. Topographical differences within the protein film after adsorption, compression and decompression were revealed using underwater AFM. The combinatorial use of physical-chemical, spectroscopic and microscopic methods provided useful insights into the liquid-air interfacial protein behavior and revealed the formation of a continuous but inhomogeneous film of native-like protein molecules whose topographical appearance is affected by compressive forces. Copyright © 2017 Elsevier B.V. All rights reserved.
Compression-ignition Engine Performance at Altitudes and at Various Air Pressures and Temperatures
NASA Technical Reports Server (NTRS)
Moore, Charles S; Collins, John H
1937-01-01
Engine test results are presented for simulated altitude conditions. A displaced-piston combustion chamber on a 5- by 7-inch single cylinder compression-ignition engine operating at 2,000 r.p.m. was used. Inlet air temperature equivalent to standard altitudes up to 14,000 feet were obtained. Comparison between performance at altitude of the unsupercharged compression-ignition engine compared favorably with the carburetor engine. Analysis of the results for which the inlet air temperature, inlet air pressure, and inlet and exhaust pressure were varied indicates that engine performance cannot be reliably corrected on the basis of inlet air density or weight of air charge. Engine power increases with inlet air pressure and decreases with inlet air temperatures very nearly as straight line relations over a wide range of air-fuel ratios. Correction factors are given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mochalov, M. A., E-mail: postmaster@ifv.vniief.ru; Il'kaev, R. I.; Fortov, V. E.
2012-10-15
The quasi-isentropic compressibility of helium and deuterium plasmas at pressures of up to 1500-2000 GPa has been measured using devices with spherical geometry and an X-ray diagnostic complex comprising three betatrons and a multichannel imaging system with electro-optic gamma detectors. A deuterium density of 4.5 g/cm{sup 3} and a helium density of 3.8 g/cm{sup 3} have been obtained at pressures of 2210 and 1580 GPa, respectively. The internal energy of a deuterium plasma at the indicated pressure is about 1 MJ/cm{sup 3}, which is about 100 times greater than the specific energy of condensed chemical explosives. Analysis of the obtainedmore » data shows that the degree of helium ionization under the achieved plasma compression parameters is about 0.9.« less
NASA Technical Reports Server (NTRS)
Meade, Charles; Jeanloz, Raymond
1990-01-01
X-ray diffraction measurements are reported for Ca(OH)2 portlandite as it is compressed to 37.6 GPa in the diamond cell at room temperature. Between 10.7 and 15.4 GPa crystalline Ca(OH)2 transforms to a glass, and on decompression the glass recrystallizes between 3.6 and 5.1 GPa. Below pressures of 10.7 GPa the elastic compression of crystalline Ca(OH)2 was measured. A finite strain analysis of these data shows that the isothermal bulk modulus and its pressure derivative are 37.8 + or - 1.8 GPa and 5.2 + or - 0.7 at zero pressure. The change in the unit cell dimensions indicates that the linear incompressibilities of Ca(OH)2 differ by a factor of three.
Effect of simulated sampling disturbance on creep behaviour of rock salt
NASA Astrophysics Data System (ADS)
Guessous, Z.; Gill, D. E.; Ladanyi, B.
1987-10-01
This article presents the results of an experimental study of creep behaviour of a rock salt under uniaxial compression as a function of prestrain, simulating sampling disturbance. The prestrain was produced by radial compressive loading of the specimens prior to creep testing. The tests were conducted on an artifical salt to avoid excessive scattering of the results. The results obtained from several series of single-stage creep tests show that, at short-term, the creep response of salt is strongly affected by the preloading history of samples. The nature of this effect depends upon the intensity of radial compressive preloading, and its magnitude is a function of the creep stress level. The effect, however, decreases with increasing plastic deformation, indicating that large creep strains may eventually lead to a complete loss of preloading memory.
NASA Technical Reports Server (NTRS)
Balakrishnan, L.; Abdol-Hamid, Khaled S.
1992-01-01
Compressible jet plumes were studied using a two-equation turbulence model. A space marching procedure based on an upwind numerical scheme was used to solve the governing equations and turbulence transport equations. The computed results indicate that extending the space marching procedure for solving supersonic/subsonic mixing problems can be stable, efficient and accurate. Moreover, a newly developed correction for compressible dissipation has been verified in fully expanded and underexpanded jet plumes. For a sonic jet plume, no improvement in results over the standard two-equation model was seen. However for a supersonic jet plume, the correction due to compressible dissipation successfully predicted the reduced spreading rate of the jet compared to the sonic case. The computed results were generally in good agreement with the experimental data.
Damage Progression in Buckle-Resistant Notched Composite Plates Loaded in Uniaxial Compression
NASA Technical Reports Server (NTRS)
McGowan, David M.; Davila, Carlos G.; Ambur, Damodar R.
2001-01-01
Results of an experimental and analytical evaluation of damage progression in three stitched composite plates containing an angled central notch and subjected to compression loading are presented. Parametric studies were conducted systematically to identify the relative effects of the material strength parameters on damage initiation and growth. Comparisons with experiments were conducted to determine the appropriate in situ values of strengths for progressive failure analysis. These parametric studies indicated that the in situ value of the fiber buckling strength is the most important parameter in the prediction of damage initiation and growth in these notched composite plates. Analyses of the damage progression in the notched, compression-loaded plates were conducted using in situ material strengths. Comparisons of results obtained from these analyses with experimental results for displacements and axial strains show good agreement.
Estimation of mechanical properties of nanomaterials using artificial intelligence methods
NASA Astrophysics Data System (ADS)
Vijayaraghavan, V.; Garg, A.; Wong, C. H.; Tai, K.
2014-09-01
Computational modeling tools such as molecular dynamics (MD), ab initio, finite element modeling or continuum mechanics models have been extensively applied to study the properties of carbon nanotubes (CNTs) based on given input variables such as temperature, geometry and defects. Artificial intelligence techniques can be used to further complement the application of numerical methods in characterizing the properties of CNTs. In this paper, we have introduced the application of multi-gene genetic programming (MGGP) and support vector regression to formulate the mathematical relationship between the compressive strength of CNTs and input variables such as temperature and diameter. The predictions of compressive strength of CNTs made by these models are compared to those generated using MD simulations. The results indicate that MGGP method can be deployed as a powerful method for predicting the compressive strength of the carbon nanotubes.
Chen, Jinxiang; Tuo, Wanyong; Zhang, Xiaoming; He, Chenglin; Xie, Juan; Liu, Chang
2016-12-01
To develop lightweight biomimetic composite structures, the compressive failure and mechanical properties of fully integrated honeycomb plates were investigated experimentally and through the finite element method. The results indicated that: fracturing of the fully integrated honeycomb plates primarily occurred in the core layer, including the sealing edge structure. The morphological failures can be classified into two types, namely dislocations and compactions, and were caused primarily by the stress concentrations at the interfaces between the core layer and the upper and lower laminations and secondarily by the disordered short-fiber distribution in the material; although the fully integrated honeycomb plates manufactured in this experiment were imperfect, their mass-specific compressive strength was superior to that of similar biomimetic samples. Therefore, the proposed bio-inspired structure possesses good overall mechanical properties, and a range of parameters, such as the diameter of the transition arc, was defined for enhancing the design of fully integrated honeycomb plates and improving their compressive mechanical properties. Copyright © 2016 Elsevier B.V. All rights reserved.
Optimized satellite image compression and reconstruction via evolution strategies
NASA Astrophysics Data System (ADS)
Babb, Brendan; Moore, Frank; Peterson, Michael
2009-05-01
This paper describes the automatic discovery, via an Evolution Strategy with Covariance Matrix Adaptation (CMA-ES), of vectors of real-valued coefficients representing matched forward and inverse transforms that outperform the 9/7 Cohen-Daubechies-Feauveau (CDF) discrete wavelet transform (DWT) for satellite image compression and reconstruction under conditions subject to quantization error. The best transform evolved during this study reduces the mean squared error (MSE) present in reconstructed satellite images by an average of 33.78% (1.79 dB), while maintaining the average information entropy (IE) of compressed images at 99.57% in comparison to the wavelet. In addition, this evolved transform achieves 49.88% (3.00 dB) average MSE reduction when tested on 80 images from the FBI fingerprint test set, and 42.35% (2.39 dB) average MSE reduction when tested on a set of 18 digital photographs, while achieving average IE of 104.36% and 100.08%, respectively. These results indicate that our evolved transform greatly improves the quality of reconstructed images without substantial loss of compression capability over a broad range of image classes.
Compressive strength of damaged and repaired composite plates
NASA Technical Reports Server (NTRS)
Finn, Scott R.; He, Yi-Fei; Springer, George S.; Lee, Hung-Joo
1992-01-01
Tests were performed assessing the effectiveness of repair in restoring the mechanical properties of damaged, solid composite plates made either of Fiberite T300/976 graphite-epoxy, Fiberite IM7/977-2 graphite-toughened epoxy, or ICI APC-2 graphite-PEEK. The plate length, the layup and the amount of damage were also varied. Damage was introduced in the plates either by impacting them with a solid projectile or by applying a transverse static load. Some (75 percent) or all (100 percent) of the damaged zone was then cut out, and the plate was repaired by plugging and patching the hole. The effectiveness of the repair was evaluated by measuring the compressive strengths of undamaged plates, damaged plates with no cutout, damaged plates with a cutout, and repaired plates. The data at an intermediate stage of repair provide information on the effect of each repair step on the compressive strength. The results indicated that for the solid plates used in these tests, the repair methods used herein did not improve the compressive strength of already damaged plates.
Deformation behaviors of peat with influence of organic matter.
Yang, Min; Liu, Kan
2016-01-01
Peat is a kind of special material rich in organic matter. Because of the high content of organic matter, it shows different deformation behaviors from conventional geotechnical materials. Peat grain has a non-negligible compressibility due to the presence of organic matter. Biogas can generate from peat and can be trapped in form of gas bubbles. Considering the natural properties of peat, a special three-phase composition of peat is described which indicates the existence of organic matter and gas bubbles in peat. A stress-strain-time model is proposed for the compression of organic matter, and the surface tension effect is considered in the compression model of gas bubbles. Finally, a mathematical model has been developed to simulate the deformation behavior of peat considering the compressibility of organic matter and entrapped gas bubbles. The deformation process is the coupling of volume variation of organic matter, gas bubbles and water drainage. The proposed model is used to simulate a series of peat laboratory oedometer tests, and the model can well capture the test results with reasonable model parameters. Effects of model parameters on deformation of peat are also analyzed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takamoto, Makoto; Lazarian, Alexandre, E-mail: mtakamoto@eps.s.u-tokyo.ac.jp, E-mail: alazarian@facstaff.wisc.edu
2016-11-10
In this Letter, we report compressible mode effects on relativistic magnetohydrodynamic (RMHD) turbulence in Poynting-dominated plasmas using three-dimensional numerical simulations. We decomposed fluctuations in the turbulence into 3 MHD modes (fast, slow, and Alfvén) following the procedure of mode decomposition in Cho and Lazarian, and analyzed their energy spectra and structure functions separately. We also analyzed the ratio of compressible mode to Alfvén mode energy with respect to its Mach number. We found the ratio of compressible mode increases not only with the Alfvén Mach number, but also with the background magnetization, which indicates a strong coupling between the fastmore » and Alfvén modes. It also signifies the appearance of a new regime of RMHD turbulence in Poynting-dominated plasmas where the fast and Alfvén modes are strongly coupled and, unlike the non-relativistic MHD regime, cannot be treated separately. This finding will affect particle acceleration efficiency obtained by assuming Alfvénic critical-balance turbulence and can change the resulting photon spectra emitted by non-thermal electrons.« less
Pan-sharpening via compressed superresolution reconstruction and multidictionary learning
NASA Astrophysics Data System (ADS)
Shi, Cheng; Liu, Fang; Li, Lingling; Jiao, Licheng; Hao, Hongxia; Shang, Ronghua; Li, Yangyang
2018-01-01
In recent compressed sensing (CS)-based pan-sharpening algorithms, pan-sharpening performance is affected by two key problems. One is that there are always errors between the high-resolution panchromatic (HRP) image and the linear weighted high-resolution multispectral (HRM) image, resulting in spatial and spectral information lost. The other is that the dictionary construction process depends on the nontruth training samples. These problems have limited applications to CS-based pan-sharpening algorithm. To solve these two problems, we propose a pan-sharpening algorithm via compressed superresolution reconstruction and multidictionary learning. Through a two-stage implementation, compressed superresolution reconstruction model reduces the error effectively between the HRP and the linear weighted HRM images. Meanwhile, the multidictionary with ridgelet and curvelet is learned for both the two stages in the superresolution reconstruction process. Since ridgelet and curvelet can better capture the structure and directional characteristics, a better reconstruction result can be obtained. Experiments are done on the QuickBird and IKONOS satellites images. The results indicate that the proposed algorithm is competitive compared with the recent CS-based pan-sharpening methods and other well-known methods.
Microstructure Evolution and Flow Stress Model of a 20Mn5 Hollow Steel Ingot during Hot Compression.
Liu, Min; Ma, Qing-Xian; Luo, Jian-Bin
2018-03-21
20Mn5 steel is widely used in the manufacture of heavy hydro-generator shaft due to its good performance of strength, toughness and wear resistance. However, the hot deformation and recrystallization behaviors of 20Mn5 steel compressed under high temperature were not studied. In this study, the hot compression experiments under temperatures of 850-1200 °C and strain rates of 0.01/s-1/s are conducted using Gleeble thermal and mechanical simulation machine. And the flow stress curves and microstructure after hot compression are obtained. Effects of temperature and strain rate on microstructure are analyzed. Based on the classical stress-dislocation relation and the kinetics of dynamic recrystallization, a two-stage constitutive model is developed to predict the flow stress of 20Mn5 steel. Comparisons between experimental flow stress and predicted flow stress show that the predicted flow stress values are in good agreement with the experimental flow stress values, which indicates that the proposed constitutive model is reliable and can be used for numerical simulation of hot forging of 20Mn5 hollow steel ingot.
NASA Technical Reports Server (NTRS)
Stenger, M. B.; Lee, S. M. C.; Westby, C. M.; Platts, S. H.
2010-01-01
Orthostatic intolerance after space flight is still an issue for astronaut health. No in-flight countermeasure has been 100% effective to date. NASA currently uses an inflatable anti-gravity suit (AGS) during reentry, but this device is uncomfortable and loses effectiveness upon egress from the Shuttle. The Russian Space Agency currently uses a mechanical counter-pressure garment (Kentavr) that is difficult to adjust alone, and prolonged use may result in painful swelling at points where the garment is not continuous (feet, knees, and groin). To improve comfort, reduce upmass and stowage requirements, and control fabrication and maintenance costs, we have been evaluating a variety of gradient compression, mechanical counter-pressure garments, constructed from spandex and nylon, as a possible replacement for the current AGS. We have examined comfort and cardiovascular responses to knee-high garments in normovolemic subjects; thigh-high garments in hypovolemic subjects and in astronauts after space flight; and 1-piece, breast-high garments in hypovolemic subjects. These gradient compression garments provide 55 mmHg of compression over the ankle, decreasing linearly to 35 mmHg at the knee. In thigh-high versions the compression continues to decrease to 20 mmHg at the top of the leg, and for breast-high versions, to 15 mmHg over the abdomen. Measures of efficacy include increased tilt survival time, elevated blood pressure and stroke volume, and lower heart-rate response to orthostatic stress. Results from these studies indicate that the greater the magnitude of compression and the greater the area of coverage, the more effective the compression garment becomes. Therefore, we are currently testing a 3-piece breast-high compression garment on astronauts after short-duration flight. We chose a 3-piece garment consisting of thigh-high stockings and shorts, because it is easy to don and comfortable to wear, and should provide the same level of protection as the 1-piece breast-high garments evaluated in hypovolemic test subjects.
An equivalent-time-lines model for municipal solid waste based on its compression characteristics.
Gao, Wu; Bian, Xuecheng; Xu, Wenjie; Chen, Yunmin
2017-10-01
Municipal solid waste (MSW) demonstrates a noticeable time-dependent stress-strain behavior, which contributes greatly to the settlement of landfills and therefore influences both the storage capacity of landfills and the integrity of internal structures. The long-term compression tests for MSW under different biodegradation conditions were analyzed. It showed that the primary compression can affect the secondary compression due to the biodegradation and mechanical creep. Based on the time-lines model for clays and the compression characteristics of MSW, relationships between MSW's viscous strain rate and equivalent time were established, and then the viscous strain functions of MSW under different biodegradation conditions were deduced, and an equivalent-time-lines model for MSW settlement for two biodegradation conditions was developed, including the Type I model for the enhanced biodegradation condition and the Type II model for the normal biodegradation condition. The simulated compression results of laboratory and field compression tests under different biodegradation conditions were consistent with the measured data, which showed the reliability of both types of the equivalent-time-lines model for MSW. In addition, investigations of the long-term settlement of landfills from the literature indicated that the Type I model is suitable for predicting settlement in MSW landfills with a distinct biodegradation progress of MSW, a high content of organics in MSW, a short fill age or under an enhanced biodegradation environment; while the Type II model is good at predicting settlement in MSW landfills with a distinct progress of mechanical creep compression, a low content of organics in MSW, a long fill age or under a normal biodegradation condition. Furthermore, relationships between model parameters and the fill age of landfills were summarized. Finally, the similarities and differences between the equivalent-time-lines model for MSW and the stress-biodegradation model for MSW were discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
de Gracia Lux, Caroline; Gallani, Jean-Louis; Waton, Gilles; Krafft, Marie Pierre
2010-06-25
Understanding and controlling the molecular organization of amphiphilic molecules at interfaces is essential for materials and biological sciences. When spread on water, the model amphiphiles constituted by C(n)F(2n+1)C(m)H(2m+1) (FnHm) diblocks spontaneously self-assemble into surface hemimicelles. Therefore, compression of monolayers of FnHm diblocks is actually a compression of nanometric objects. Langmuir films of F8H16, F8H18, F8H20, and F10H16 can actually be compressed far beyond the "collapse" of their monolayers at approximately 30 A(2). For molecular areas A between 30 and 10 A(2), a partially reversible, 2D/3D transition occurs between a monolayer of surface micelles and a multilayer that coexist on a large plateau. For A<10 A(2), surface pressure increases again, reaching up to approximately 48 mN m(-1) before the film eventually collapses. Brewster angle microscopy and AFM indicate a several-fold increase in film thickness when scanning through the 2D/3D coexistence plateau. Compression beyond the plateau leads to a further increase in film thickness and, eventually, to film disruption. Reversibility was assessed by using compression-expansion cycles. AFM of F8H20 films shows that the initial monolayer of micelles is progressively covered by one (and eventually two) bilayers, which leads to a hitherto unknown organized composite arrangement. Compression of films of the more rigid F10H16 results in crystalline-like inflorescences. For both diblocks, a hexagonal array of surface micelles is consistently seen, even when the 3D structures eventually disrupt, which means that this monolayer persists throughout the compression experiments. Two examples of pressure-driven transformations of films of self-assembled objects are thus provided. These observations further illustrate the powerful self-assembling capacity of perfluoroalkyl chains.
[Vascular and neurological complications of supracondylar humeral fractures in children].
Masár, J
2007-10-01
The author reports two cases of pediatric patients with supracondylar humeral fractures complicated by concomitant vascular injury. One of the patients also presented with neurological symptoms from compression of the ulnar and median nerves. In the case of vascular injury only, it was necessary to resect a 1-cm segment of the brachial artery which was thrombosed due to intimal disruption. In the other case, surgery was not indicated immediately; however, liberation of the nervus ulnaris and nervus medianus was later required because of nerve compression by the scar and bone. The author considers the exact diagnosis, precise reduction and stable fixation of a fracture to be most important for a good outcome of treatment. Any associated vascular injury is indicated for surgery only after a thorough diagnostic consideration, and may not be needed in every case. The most decisive factor is the clinical presentation. Injury to the nerve system is indicated for surgical treatment at a later period, at 3 months post-injury at the earliest.
A Comparison of Several Methods of Measuring Ignition Lag in a Compression-ignition Engine
NASA Technical Reports Server (NTRS)
Spanogle, J A
1934-01-01
The ignition lag of a fuel oil in the combustion chamber of a high speed compression-ignition engine was measured by three different methods. The start of injection of the fuel as observed with a Stoborama was taken as the start of the period of ignition lag in all cases. The end of the period of ignition lag was determined by observation of the appearance of incandescence in the combustion chamber, by inspection of a pressure-time card for evidence of pressure rise, and by analysis of the indicator card for evidence of the combustion of a small but definite quantity of fuel. A comparison of the values for ignition lags obtained by these three methods indicates that the appearance of incandescence is later than other evidences of the start of combustion, that visual inspection of a pressure-time diagram gives consistent and usable values with a minimum requirement of time and/or apparatus, and that analysis of the indicator card is not worth while for ignition lag alone.
Diagnosis of NMOS DRAM functional performance as affected by a picosecond dye laser
NASA Technical Reports Server (NTRS)
Kim, Q.; Schwartz, H. R.; Edmonds, L. D.; Zoutendyk, J. A.
1992-01-01
A picosec pulsed dye laser beam was at selected wavelengths successfully used to simulate heavy-ion single-event effects (SEEs) in negative channel NMOS DRAMs. A DRAM was used to develop the test technique because bit-mapping capability and previous heavy-ion upset data were available. The present analysis is the first to establish such a correlation between laser and heavy-ion data for devices, such as the NMOS DRAM, where charge collection is dominated by long-range diffusion, which is controlled by carrier density at remote distances from a depletion region. In the latter case, penetration depth is an important parameter and is included in the present analysis. A single-pulse picosecond dye laser beam (1.5 microns diameter) focused onto a single cell component can upset a single memory cell; clusters of memory cell upsets (multiple errors) were observed when the laser energy was increased above the threshold energy. The multiple errors were analyzed as a function of the bias voltage and total energy of a single pulse. A diffusion model to distinguish the multiple upsets from the laser-induced charge agreed well with previously reported heavy ion data.
A Visual Editor in Java for View
NASA Technical Reports Server (NTRS)
Stansifer, Ryan
2000-01-01
In this project we continued the development of a visual editor in the Java programming language to create screens on which to display real-time data. The data comes from the numerous systems monitoring the operation of the space shuttle while on the ground and in space, and from the many tests of subsystems. The data can be displayed on any computer platform running a Java-enabled World Wide Web (WWW) browser and connected to the Internet. Previously a special-purpose program bad been written to display data on emulations of character-based display screens used for many years at NASA. The goal now is to display bit-mapped screens created by a visual editor. We report here on the visual editor that creates the display screens. This project continues the work we bad done previously. Previously we had followed the design of the 'beanbox,' a prototype visual editor created by Sun Microsystems. We abandoned this approach and implemented a prototype using a more direct approach. In addition, our prototype is based on newly released Java 2 graphical user interface (GUI) libraries. The result has been a visually more appealing appearance and a more robust application.
Firefly: an optical lithographic system for the fabrication of holographic security labels
NASA Astrophysics Data System (ADS)
Calderón, Jorge; Rincón, Oscar; Amézquita, Ricardo; Pulido, Iván.; Amézquita, Sebastián.; Bernal, Andrés.; Romero, Luis; Agudelo, Viviana
2016-03-01
This paper introduces Firefly, an optical lithography origination system that has been developed to produce holographic masters of high quality. This mask-less lithography system has a resolution of 418 nm half-pitch, and generates holographic masters with the optical characteristics required for security applications of level 1 (visual verification), level 2 (pocket reader verification) and level 3 (forensic verification). The holographic master constitutes the main core of the manufacturing process of security holographic labels used for the authentication of products and documents worldwide. Additionally, the Firefly is equipped with a software tool that allows for the hologram design from graphic formats stored in bitmaps. The software is capable of generating and configuring basic optical effects such as animation and color, as well as effects of high complexity such as Fresnel lenses, engraves and encrypted images, among others. The Firefly technology gathers together optical lithography, digital image processing and the most advanced control systems, making possible a competitive equipment that challenges the best technologies in the industry of holographic generation around the world. In this paper, a general description of the origination system is provided as well as some examples of its capabilities.
Balss, Karin M; Long, Frederick H; Veselov, Vladimir; Orana, Argjenta; Akerman-Revis, Eugena; Papandreou, George; Maryanoff, Cynthia A
2008-07-01
Multivariate data analysis was applied to confocal Raman measurements on stents coated with the polymers and drug used in the CYPHER Sirolimus-eluting Coronary Stents. Partial least-squares (PLS) regression was used to establish three independent calibration curves for the coating constituents: sirolimus, poly(n-butyl methacrylate) [PBMA], and poly(ethylene-co-vinyl acetate) [PEVA]. The PLS calibrations were based on average spectra generated from each spatial location profiled. The PLS models were tested on six unknown stent samples to assess accuracy and precision. The wt % difference between PLS predictions and laboratory assay values for sirolimus was less than 1 wt % for the composite of the six unknowns, while the polymer models were estimated to be less than 0.5 wt % difference for the combined samples. The linearity and specificity of the three PLS models were also demonstrated with the three PLS models. In contrast to earlier univariate models, the PLS models achieved mass balance with better accuracy. This analysis was extended to evaluate the spatial distribution of the three constituents. Quantitative bitmap images of drug-eluting stent coatings are presented for the first time to assess the local distribution of components.
NASA Astrophysics Data System (ADS)
Bayirli, Mehmet; Ozbey, Tuba
2013-07-01
Black deposits usually found at the surface of magnesite ore or limestone as well as red deposits in quartz veins are named as natural manganese dendrites. According to their geometrical structures, they may take variable fractal shapes. The characteristic origins of these morphologies have rarely been studied by means of numerical analyses. Hence, digital images of magnesite ore are taken from its surface with a scanner. These images are then converted to binary images in the form of 8 bits, bitmap format. As a next step, the morphological description parameters of manganese dendrites are computed by the way of scaling methods such as occupied fractions, fractal dimensions, divergent ratios, and critical exponents of scaling. The fractal dimension and the scaling range are made dependent on the fraction of the particles. Morphological description parameters can be determined according to the geometrical evaluation of the natural manganese dendrites which are formed independently from the process. The formation of manganese dendrites may also explain the stochastic selected process in the nature. These results therefore may be useful to understand the deposits in quartz vein parameters in geophysics.
Nanoscale diffusive memristor crossbars as physical unclonable functions.
Zhang, R; Jiang, H; Wang, Z R; Lin, P; Zhuo, Y; Holcomb, D; Zhang, D H; Yang, J J; Xia, Q
2018-02-08
Physical unclonable functions have emerged as promising hardware security primitives for device authentication and key generation in the era of the Internet of Things. Herein, we report novel physical unclonable functions built upon the crossbars of nanoscale diffusive memristors that translate the stochastic distribution of Ag clusters in a SiO 2 matrix into a random binary bitmap that serves as a device fingerprint. The random dispersion of Ag led to an uneven number of clusters at each cross-point, which in turn resulted in a stochastic ability to switch in the Ag:SiO 2 diffusive memristors in an array. The randomness of the dispersion was a barrier to fingerprint cloning and the unique fingerprints of each device were persistent after fabrication. Using an optimized fabrication procedure, we maximized the randomness and achieved an inter-class Hamming distance of 50.68%. We also discovered that the bits were not flipping after over 10 4 s at 400 K, suggesting superior reliability of our physical unclonable functions. In addition, our diffusive memristor-based physical unclonable functions were easy to fabricate and did not require complicated post-processing for digitization and thus, provide new opportunities in hardware security applications.
Writing a Scientific Paper II. Communication by Graphics
NASA Astrophysics Data System (ADS)
Sterken, C.
2011-07-01
This paper discusses facets of visual communication by way of images, graphs, diagrams and tabular material. Design types and elements of graphical images are presented, along with advice on how to create graphs, and on how to read graphical illustrations. This is done in astronomical context, using case studies and historical examples of good and bad graphics. Design types of graphs (scatter and vector plots, histograms, pie charts, ternary diagrams and three-dimensional surface graphs) are explicated, as well as the major components of graphical images (axes, legends, textual parts, etc.). The basic features of computer graphics (image resolution, vector images, bitmaps, graphical file formats and file conversions) are explained, as well as concepts of color models and of color spaces (with emphasis on aspects of readability of color graphics by viewers suffering from color-vision deficiencies). Special attention is given to the verity of graphical content, and to misrepresentations and errors in graphics and associated basic statistics. Dangers of dot joining and curve fitting are discussed, with emphasis on the perception of linearity, the issue of nonsense correlations, and the handling of outliers. Finally, the distinction between data, fits and models is illustrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuryaeva, R.G., E-mail: rufina@igm.nsc.ru; Dmitrieva, N.V.; Surkov, N.V.
2016-02-15
Highlights: • Refractive index and the compressibility of LiAlSi{sub 3}O{sub 8} glass are obtained. • Among Li(Na,K)AlSi{sub 3}O{sub 8} glasses LiAlSi{sub 3}O{sub 8} glass has the lowest compressibility. • Degree of depolymerization (NBO/T = 0.31) for LiAlSi{sub 3}O{sub 8} glass was calculated. • NBO/T = 0.31 indicates a high content of NBOs atoms and Al in LiAlSi{sub 3}O{sub 8} glass. • Proposed reaction corresponds to the condition of the existence of ∼9% Al. - Abstract: The refractive index and the relative changes in the density for LiAlSi{sub 3}O{sub 8} glass in the pressure range up to 6.0 GPa were obtainedmore » using a polarization-interference microscope and an apparatus with diamond anvils. The results were compared with the previous data for the NaAlSi{sub 3}O{sub 8} and KAlSi{sub 3}O{sub 8} glasses. The compressibility of glasses increases in a series of alkali metal cations Li{sup +}, Na{sup +}, K{sup +}. From the previously found dependence of the compressibility (at P = 4.0 GPa) on the degree of depolymerization the value of NBO/T = 0.31 for LiAlSi{sub 3}O{sub 8} glass was calculated. A high degree of depolymerization of the LiAlSi{sub 3}O{sub 8} glass indicates not only a high content of NBOs atoms in the structural network, but also the presence of highly coordinated aluminum (according to the literature data ∼9%). The proposed schematic reaction for the formation of different structural groups corresponds to the condition of the existence of 9% highly coordinated aluminum.« less
SCALCE: boosting sequence compression algorithms using locally consistent encoding
Hach, Faraz; Numanagić, Ibrahim; Sahinalp, S Cenk
2012-01-01
Motivation: The high throughput sequencing (HTS) platforms generate unprecedented amounts of data that introduce challenges for the computational infrastructure. Data management, storage and analysis have become major logistical obstacles for those adopting the new platforms. The requirement for large investment for this purpose almost signalled the end of the Sequence Read Archive hosted at the National Center for Biotechnology Information (NCBI), which holds most of the sequence data generated world wide. Currently, most HTS data are compressed through general purpose algorithms such as gzip. These algorithms are not designed for compressing data generated by the HTS platforms; for example, they do not take advantage of the specific nature of genomic sequence data, that is, limited alphabet size and high similarity among reads. Fast and efficient compression algorithms designed specifically for HTS data should be able to address some of the issues in data management, storage and communication. Such algorithms would also help with analysis provided they offer additional capabilities such as random access to any read and indexing for efficient sequence similarity search. Here we present SCALCE, a ‘boosting’ scheme based on Locally Consistent Parsing technique, which reorganizes the reads in a way that results in a higher compression speed and compression rate, independent of the compression algorithm in use and without using a reference genome. Results: Our tests indicate that SCALCE can improve the compression rate achieved through gzip by a factor of 4.19—when the goal is to compress the reads alone. In fact, on SCALCE reordered reads, gzip running time can improve by a factor of 15.06 on a standard PC with a single core and 6 GB memory. Interestingly even the running time of SCALCE + gzip improves that of gzip alone by a factor of 2.09. When compared with the recently published BEETL, which aims to sort the (inverted) reads in lexicographic order for improving bzip2, SCALCE + gzip provides up to 2.01 times better compression while improving the running time by a factor of 5.17. SCALCE also provides the option to compress the quality scores as well as the read names, in addition to the reads themselves. This is achieved by compressing the quality scores through order-3 Arithmetic Coding (AC) and the read names through gzip through the reordering SCALCE provides on the reads. This way, in comparison with gzip compression of the unordered FASTQ files (including reads, read names and quality scores), SCALCE (together with gzip and arithmetic encoding) can provide up to 3.34 improvement in the compression rate and 1.26 improvement in running time. Availability: Our algorithm, SCALCE (Sequence Compression Algorithm using Locally Consistent Encoding), is implemented in C++ with both gzip and bzip2 compression options. It also supports multithreading when gzip option is selected, and the pigz binary is available. It is available at http://scalce.sourceforge.net. Contact: fhach@cs.sfu.ca or cenk@cs.sfu.ca Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23047557
Trial of Continuous or Interrupted Chest Compressions during CPR.
Nichol, Graham; Leroux, Brian; Wang, Henry; Callaway, Clifton W; Sopko, George; Weisfeldt, Myron; Stiell, Ian; Morrison, Laurie J; Aufderheide, Tom P; Cheskes, Sheldon; Christenson, Jim; Kudenchuk, Peter; Vaillancourt, Christian; Rea, Thomas D; Idris, Ahamed H; Colella, Riccardo; Isaacs, Marshal; Straight, Ron; Stephens, Shannon; Richardson, Joe; Condle, Joe; Schmicker, Robert H; Egan, Debra; May, Susanne; Ornato, Joseph P
2015-12-03
During cardiopulmonary resuscitation (CPR) in patients with out-of-hospital cardiac arrest, the interruption of manual chest compressions for rescue breathing reduces blood flow and possibly survival. We assessed whether outcomes after continuous compressions with positive-pressure ventilation differed from those after compressions that were interrupted for ventilations at a ratio of 30 compressions to two ventilations. This cluster-randomized trial with crossover included 114 emergency medical service (EMS) agencies. Adults with non-trauma-related cardiac arrest who were treated by EMS providers received continuous chest compressions (intervention group) or interrupted chest compressions (control group). The primary outcome was the rate of survival to hospital discharge. Secondary outcomes included the modified Rankin scale score (on a scale from 0 to 6, with a score of ≤3 indicating favorable neurologic function). CPR process was measured to assess compliance. Of 23,711 patients included in the primary analysis, 12,653 were assigned to the intervention group and 11,058 to the control group. A total of 1129 of 12,613 patients with available data (9.0%) in the intervention group and 1072 of 11,035 with available data (9.7%) in the control group survived until discharge (difference, -0.7 percentage points; 95% confidence interval [CI], -1.5 to 0.1; P=0.07); 7.0% of the patients in the intervention group and 7.7% of those in the control group survived with favorable neurologic function at discharge (difference, -0.6 percentage points; 95% CI, -1.4 to 0.1, P=0.09). Hospital-free survival was significantly shorter in the intervention group than in the control group (mean difference, -0.2 days; 95% CI, -0.3 to -0.1; P=0.004). In patients with out-of-hospital cardiac arrest, continuous chest compressions during CPR performed by EMS providers did not result in significantly higher rates of survival or favorable neurologic function than did interrupted chest compressions. (Funded by the National Heart, Lung, and Blood Institute and others; ROC CCC ClinicalTrials.gov number, NCT01372748.).
Is There Evidence that Runners can Benefit from Wearing Compression Clothing?
Engel, Florian Azad; Holmberg, Hans-Christer; Sperlich, Billy
2016-12-01
Runners at various levels of performance and specializing in different events (from 800 m to marathons) wear compression socks, sleeves, shorts, and/or tights in attempt to improve their performance and facilitate recovery. Recently, a number of publications reporting contradictory results with regard to the influence of compression garments in this context have appeared. To assess original research on the effects of compression clothing (socks, calf sleeves, shorts, and tights) on running performance and recovery. A computerized research of the electronic databases PubMed, MEDLINE, SPORTDiscus, and Web of Science was performed in September of 2015, and the relevant articles published in peer-reviewed journals were thus identified rated using the Physiotherapy Evidence Database (PEDro) Scale. Studies examining effects on physiological, psychological, and/or biomechanical parameters during or after running were included, and means and measures of variability for the outcome employed to calculate Hedges'g effect size and associated 95 % confidence intervals for comparison of experimental (compression) and control (non-compression) trials. Compression garments exerted no statistically significant mean effects on running performance (times for a (half) marathon, 15-km trail running, 5- and 10-km runs, and 400-m sprint), maximal and submaximal oxygen uptake, blood lactate concentrations, blood gas kinetics, cardiac parameters (including heart rate, cardiac output, cardiac index, and stroke volume), body and perceived temperature, or the performance of strength-related tasks after running. Small positive effect sizes were calculated for the time to exhaustion (in incremental or step tests), running economy (including biomechanical variables), clearance of blood lactate, perceived exertion, maximal voluntary isometric contraction and peak leg muscle power immediately after running, and markers of muscle damage and inflammation. The body core temperature was moderately affected by compression, while the effect size values for post-exercise leg soreness and the delay in onset of muscle fatigue indicated large positive effects. Our present findings suggest that by wearing compression clothing, runners may improve variables related to endurance performance (i.e., time to exhaustion) slightly, due to improvements in running economy, biomechanical variables, perception, and muscle temperature. They should also benefit from reduced muscle pain, damage, and inflammation.
Ruiz de Gauna, Sofía; González-Otero, Digna M.; Ruiz, Jesus; Russell, James K.
2016-01-01
Background Quality of cardiopulmonary resuscitation (CPR) is key to increase survival from cardiac arrest. Providing chest compressions with adequate rate and depth is difficult even for well-trained rescuers. The use of real-time feedback devices is intended to contribute to enhance chest compression quality. These devices are typically based on the double integration of the acceleration to obtain the chest displacement during compressions. The integration process is inherently unstable and leads to important errors unless boundary conditions are applied for each compression cycle. Commercial solutions use additional reference signals to establish these conditions, requiring additional sensors. Our aim was to study the accuracy of three methods based solely on the acceleration signal to provide feedback on the compression rate and depth. Materials and Methods We simulated a CPR scenario with several volunteers grouped in couples providing chest compressions on a resuscitation manikin. Different target rates (80, 100, 120, and 140 compressions per minute) and a target depth of at least 50 mm were indicated. The manikin was equipped with a displacement sensor. The accelerometer was placed between the rescuer’s hands and the manikin’s chest. We designed three alternatives to direct integration based on different principles (linear filtering, analysis of velocity, and spectral analysis of acceleration). We evaluated their accuracy by comparing the estimated depth and rate with the values obtained from the reference displacement sensor. Results The median (IQR) percent error was 5.9% (2.8–10.3), 6.3% (2.9–11.3), and 2.5% (1.2–4.4) for depth and 1.7% (0.0–2.3), 0.0% (0.0–2.0), and 0.9% (0.4–1.6) for rate, respectively. Depth accuracy depended on the target rate (p < 0.001) and on the rescuer couple (p < 0.001) within each method. Conclusions Accurate feedback on chest compression depth and rate during CPR is possible using exclusively the chest acceleration signal. The algorithm based on spectral analysis showed the best performance. Despite these encouraging results, further research should be conducted to asses the performance of these algorithms with clinical data. PMID:26930061
Effects of compression garments on recovery following intermittent exercise.
Pruscino, Cathryn L; Halson, Shona; Hargreaves, Mark
2013-06-01
The objective of the study was to examine the effects of wearing compression garments for 24 h post-exercise on the biochemical, physical and perceived recovery of highly trained athletes. Eight field hockey players completed a match simulation exercise protocol on two occasions separated by 4 weeks after which lower-limb compression garments (CG) or loose pants (CON) were worn for 24 h. Blood was collected pre-exercise and 1, 24 and 48 h post-exercise for IL-6, IL-1β, TNF-α, CRP and CK. Blood lactate was monitored throughout exercise and for 30 min after. A 5 counter-movement jump (5CMJ) and squat jump were performed and perceived soreness rated at pre-exercise and 1, 24 and 48 h post-exercise. Perceived recovery was assessed post-exercise using a questionnaire related to exercise readiness. Repeated measures ANOVA was used to assess changes in blood, perceptual and physical responses to recovery. CK and CRP were significantly elevated 24 h post-exercise in both conditions (p < 0.05). No significant differences were observed for TNF-α, IL1-β, IL-6 between treatments (p > 0.05). Power and force production in the 5CMJ was reduced and perceived soreness was highest at 1 h post-exercise (p < 0.05). Perceived recovery was lowest at 1 h post-exercise in both conditions (p < 0.01), whilst overall, perceived recovery was greater when CG were worn (p < 0.005). None of the blood or physical markers of recovery indicates any benefit of wearing compression garments post-exercise. However, muscle soreness and perceived recovery indicators suggest a psychological benefit may exist.
NASA Astrophysics Data System (ADS)
Weaver, John B.; Miller, Timothy B.; Perrinez, Philip R.; Doyley, Marvin M.; Wang, Huifang; Cheung, Yvonne Y.; Wrobel, James S.; Comi, Richard J.; Kennedy, Francis E.; Paulsen, Keith D.
2006-03-01
MR elastography (MRE) images the intrinsic mechanical properties of soft tissues; e.g., the shear modulus, μ. The μ of the plantar soft tissues is important in understanding the mechanisms whereby the forces induced during normal motion produce ulcers that lead to amputation in diabetic feet. We compared the compliance of the heel fat pad to compressive forces and to shearing forces. The design of prosthetics to protect the foot depends on the proper understanding of the mechanisms inducing damage. In the heel fat pads of six normal subjects, between 25 and 65 years of age, the μ for deformation perpendicular to the direction of weight bearing is similar but not identical to that determined for deformation along the weight bearing axis. The average difference between μ along the weight bearing axis and μ perpendicular to the weight bearing axis, is well correlated with age (Correlation Coefficient = 0.789). The p-value for the data being random was 0.0347 indicating that the observed difference is not likely to be random. The p-value for control points is 0.8989, indicating a random process. The results are suggestive that the high compressive forces imposed during walking damage the heel fat pads over time resulting in softening to compression preferentially over shearing. It is important to validate the observed effect with larger numbers of subjects, and better controls including measures of activity, and to understand if diseases like diabetes increase the observed damage.
Hameed, Saqib; González Rojas, Hernán A; Perat Benavides, José I; Nápoles Alberro, Amelia; Sánchez Egea, Antonio J
2018-05-25
In this article, the influence of electropulsing on the machinability of steel S235 and aluminium 6060 has been studied during conventional and electropulsing-assisted turning processes. The machinability indices such as chip compression ratio ξ , shear plane angle ϕ and specific cutting energy (SCE) are investigated by using different cutting parameters such as cutting speed, cutting feed and depth of cut during electrically-assisted turning process. The results and analysis of this work indicated that the electrically-assisted turning process improves the machinability of steel S235, whereas the machinability of aluminium 6060 gets worse. Finally, due to electropluses (EPs), the chip compression ratio ξ increases with the increase in cutting speed during turning of aluminium 6060 and the SCE decreases during turning of steel S235.
Effect of a core-softened O-O interatomic interaction on the shock compression of fused silica
NASA Astrophysics Data System (ADS)
Izvekov, Sergei; Weingarten, N. Scott; Byrd, Edward F. C.
2018-03-01
Isotropic soft-core potentials have attracted considerable attention due to their ability to reproduce thermodynamic, dynamic, and structural anomalies observed in tetrahedral network-forming compounds such as water and silica. The aim of the present work is to assess the relevance of effective core-softening pertinent to the oxygen-oxygen interaction in silica to the thermodynamics and phase change mechanisms that occur in shock compressed fused silica. We utilize the MD simulation method with a recently published numerical interatomic potential derived from an ab initio MD simulation of liquid silica via force-matching. The resulting potential indicates an effective shoulder-like core-softening of the oxygen-oxygen repulsion. To better understand the role of the core-softening we analyze two derivative force-matching potentials in which the soft-core is replaced with a repulsive core either in the three-body potential term or in all the potential terms. Our analysis is further augmented by a comparison with several popular empirical models for silica that lack an explicit core-softening. The first outstanding feature of shock compressed glass reproduced with the soft-core models but not with the other models is that the shock compression values at pressures above 20 GPa are larger than those observed under hydrostatic compression (an anomalous shock Hugoniot densification). Our calculations indicate the occurrence of a phase transformation along the shock Hugoniot that we link to the O-O repulsion core-softening. The phase transformation is associated with a Hugoniot temperature reversal similar to that observed experimentally. With the soft-core models, the phase change is an isostructural transformation between amorphous polymorphs with no associated melting event. We further examine the nature of the structural transformation by comparing it to the Hugoniot calculations for stishovite. For stishovite, the Hugoniot exhibits temperature reversal and associated phase transformation, which is a transition to a disordered phase (liquid or dense amorphous), regardless of whether or not the model accounts for core-softening. The onset pressures of the transformation predicted by different models show a wide scatter within 60-110 GPa; for potentials without core-softening, the onset pressure is much higher than 110 GPa. Our results show that the core-softening of the interaction in the oxygen subsystem of silica is the key mechanism for the structural transformation and thermodynamics in shock compressed silica. These results may provide an important contribution to a unified picture of anomalous response to shock compression observed in other network-forming oxides and single-component systems with core-softening of effective interactions.
Fazaeli, S; Ghazanfari, S; Everts, V; Smit, T H; Koolstra, J H
2016-07-01
The Temporomandibular Joint (TMJ) disc is a fibrocartilaginous structure located between the mandibular condyle and the temporal bone, facilitating smooth movements of the jaw. The load-bearing properties of its anisotropic collagenous network have been well characterized under tensile loading conditions. However, recently it has also been speculated that the collagen fibers may contribute dominantly in reinforcing the disc under compression. Therefore, in this study, the structural-functional role of collagen fibers in mechanical compressive properties of TMJ disc was investigated. Intact porcine TMJ discs were enzymatically digested with collagenase to disrupt the collagenous network of the cartilage. The digested and non-digested articular discs were analyzed mechanically, biochemically and histologically in five various regions. These tests included: (1) cyclic compression tests, (2) biochemical quantification of collagen and glycosaminoglycan (GAG) content and (3) visualization of collagen fibers' alignment by polarized light microscopy (PLM). The instantaneous compressive moduli of the articular discs were reduced by as much as 50-90% depending on the region after the collagenase treatment. The energy dissipation properties of the digested discs showed a similar tendency. Biochemical analysis of the digested samples demonstrated an average of 14% and 35% loss in collagen and GAG, respectively. Despite the low reduction of collagen content the PLM images showed considerable perturbation of the collagenous network of the TMJ disc. The results indicated that even mild disruption of collagen fibers can lead to substantial mechanical softening of TMJ disc undermining its reinforcement and mechanical stability under compression. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
A simple and efficient algorithm operating with linear time for MCEEG data compression.
Titus, Geevarghese; Sudhakar, M S
2017-09-01
Popularisation of electroencephalograph (EEG) signals in diversified fields have increased the need for devices capable of operating at lower power and storage requirements. This has led to a great deal of research in data compression, that can address (a) low latency in the coding of the signal, (b) reduced hardware and software dependencies, (c) quantify the system anomalies, and (d) effectively reconstruct the compressed signal. This paper proposes a computationally simple and novel coding scheme named spatial pseudo codec (SPC), to achieve lossy to near lossless compression of multichannel EEG (MCEEG). In the proposed system, MCEEG signals are initially normalized, followed by two parallel processes: one operating on integer part and the other, on fractional part of the normalized data. The redundancies in integer part are exploited using spatial domain encoder, and the fractional part is coded as pseudo integers. The proposed method has been tested on a wide range of databases having variable sampling rates and resolutions. Results indicate that the algorithm has a good recovery performance with an average percentage root mean square deviation (PRD) of 2.72 for an average compression ratio (CR) of 3.16. Furthermore, the algorithm has a complexity of only O(n) with an average encoding and decoding time per sample of 0.3 ms and 0.04 ms respectively. The performance of the algorithm is comparable with recent methods like fast discrete cosine transform (fDCT) and tensor decomposition methods. The results validated the feasibility of the proposed compression scheme for practical MCEEG recording, archiving and brain computer interfacing systems.
Ma, Zhonglei; Wei, Ajing; Ma, Jianzhong; Shao, Liang; Jiang, Huie; Dong, Diandian; Ji, Zhanyou; Wang, Qian; Kang, Songlei
2018-04-19
Lightweight, compressible and highly sensitive pressure/strain sensing materials are highly desirable for the development of health monitoring, wearable devices and artificial intelligence. Herein, a very simple, low-cost and solution-based approach is presented to fabricate versatile piezoresistive sensors based on conductive polyurethane (PU) sponges coated with synergistic multiwalled carbon nanotubes (MWCNTs) and graphene. These sensor materials are fabricated by convenient dip-coating layer-by-layer (LBL) electrostatic assembly followed by in situ reduction without using any complicated microfabrication processes. The resultant conductive MWCNT/RGO@PU sponges exhibit very low densities (0.027-0.064 g cm-3), outstanding compressibility (up to 75%) and high electrical conductivity benefiting from the porous PU sponges and synergistic conductive MWCNT/RGO structures. In addition, the MWCNT/RGO@PU sponges present larger relative resistance changes and superior sensing performances under external applied pressures (0-5.6 kPa) and a wide range of strains (0-75%) compared with the RGO@PU and MWCNT@PU sponges, due to the synergistic effect of multiple mechanisms: "disconnect-connect" transition of nanogaps, microcracks and fractured skeletons at low compression strain and compressive contact of the conductive skeletons at high compression strain. The electrical and piezoresistive properties of MWCNT/RGO@PU sponges are strongly associated with the dip-coating cycle, suspension concentration, and the applied pressure and strain. Fully functional applications of MWCNT/RGO@PU sponge-based piezoresistive sensors in lighting LED lamps and detecting human body movements are demonstrated, indicating their excellent potential for emerging applications such as health monitoring, wearable devices and artificial intelligence.
Havel, Christof; Schreiber, Wolfgang; Trimmel, Helmut; Malzer, Reinhard; Haugk, Moritz; Richling, Nina; Riedmüller, Eva; Sterz, Fritz; Herkner, Harald
2010-01-01
Automated verbal and visual feedback improves quality of resuscitation in out-of-hospital cardiac arrest and was proven to increase short-term survival. Quality of resuscitation may be hampered in more difficult situations like emergency transportation. Currently there is no evidence if feedback devices can improve resuscitation quality during different modes of transportation. To assess the effect of real time automated feedback on the quality of resuscitation in an emergency transportation setting. Randomised cross-over trial. Medical University of Vienna, Vienna Municipal Ambulance Service and Helicopter Emergency Medical Service Unit (Christophorus Flugrettungsverein) in September 2007. European Resuscitation Council (ERC) certified health care professionals performing CPR in a flying helicopter and in a moving ambulance vehicle on a manikin with human-like chest properties. CPR sessions, with real time automated feedback as the intervention and standard CPR without feedback as control. Quality of chest compression during resuscitation. Feedback resulted in less deviation from ideal compression rate 100 min(-1) (9+/-9 min(-1), p<0.0001) with this effect becoming steadily larger over time. Applied work was less in the feedback group compared to controls (373+/-448 cm x compression; p<0.001). Feedback did not influence ideal compression depth significantly. There was some indication of a learning effect of the feedback device. Real time automated feedback improves certain aspects of CPR quality in flying helicopters and moving ambulance vehicles. The effect of feedback guidance was most pronounced for chest compression rate. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.
Liao, Ke; Zhu, Min; Ding, Lei
2013-08-01
The present study investigated the use of transform sparseness of cortical current density on human brain surface to improve electroencephalography/magnetoencephalography (EEG/MEG) inverse solutions. Transform sparseness was assessed by evaluating compressibility of cortical current densities in transform domains. To do that, a structure compression method from computer graphics was first adopted to compress cortical surface structure, either regular or irregular, into hierarchical multi-resolution meshes. Then, a new face-based wavelet method based on generated multi-resolution meshes was proposed to compress current density functions defined on cortical surfaces. Twelve cortical surface models were built by three EEG/MEG softwares and their structural compressibility was evaluated and compared by the proposed method. Monte Carlo simulations were implemented to evaluate the performance of the proposed wavelet method in compressing various cortical current density distributions as compared to other two available vertex-based wavelet methods. The present results indicate that the face-based wavelet method can achieve higher transform sparseness than vertex-based wavelet methods. Furthermore, basis functions from the face-based wavelet method have lower coherence against typical EEG and MEG measurement systems than vertex-based wavelet methods. Both high transform sparseness and low coherent measurements suggest that the proposed face-based wavelet method can improve the performance of L1-norm regularized EEG/MEG inverse solutions, which was further demonstrated in simulations and experimental setups using MEG data. Thus, this new transform on complicated cortical structure is promising to significantly advance EEG/MEG inverse source imaging technologies. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Nonlinear Algorithms for Channel Equalization and Map Symbol Detection.
NASA Astrophysics Data System (ADS)
Giridhar, K.
The transfer of information through a communication medium invariably results in various kinds of distortion to the transmitted signal. In this dissertation, a feed -forward neural network-based equalizer, and a family of maximum a posteriori (MAP) symbol detectors are proposed for signal recovery in the presence of intersymbol interference (ISI) and additive white Gaussian noise. The proposed neural network-based equalizer employs a novel bit-mapping strategy to handle multilevel data signals in an equivalent bipolar representation. It uses a training procedure to learn the channel characteristics, and at the end of training, the multilevel symbols are recovered from the corresponding inverse bit-mapping. When the channel characteristics are unknown and no training sequences are available, blind estimation of the channel (or its inverse) and simultaneous data recovery is required. Convergence properties of several existing Bussgang-type blind equalization algorithms are studied through computer simulations, and a unique gain independent approach is used to obtain a fair comparison of their rates of convergence. Although simple to implement, the slow convergence of these Bussgang-type blind equalizers make them unsuitable for many high data-rate applications. Rapidly converging blind algorithms based on the principle of MAP symbol-by -symbol detection are proposed, which adaptively estimate the channel impulse response (CIR) and simultaneously decode the received data sequence. Assuming a linear and Gaussian measurement model, the near-optimal blind MAP symbol detector (MAPSD) consists of a parallel bank of conditional Kalman channel estimators, where the conditioning is done on each possible data subsequence that can convolve with the CIR. This algorithm is also extended to the recovery of convolutionally encoded waveforms in the presence of ISI. Since the complexity of the MAPSD algorithm increases exponentially with the length of the assumed CIR, a suboptimal decision-feedback mechanism is introduced to truncate the channel memory "seen" by the MAPSD section. Also, simpler gradient-based updates for the channel estimates, and a metric pruning technique are used to further reduce the MAPSD complexity. Spatial diversity MAP combiners are developed to enhance the error rate performance and combat channel fading. As a first application of the MAPSD algorithm, dual-mode recovery techniques for TDMA (time-division multiple access) mobile radio signals are presented. Combined estimation of the symbol timing and the multipath parameters is proposed, using an auxiliary extended Kalman filter during the training cycle, and then tracking of the fading parameters is performed during the data cycle using the blind MAPSD algorithm. For the second application, a single-input receiver is employed to jointly recover cochannel narrowband signals. Assuming known channels, this two-stage joint MAPSD (JMAPSD) algorithm is compared to the optimal joint maximum likelihood sequence estimator, and to the joint decision-feedback detector. A blind MAPSD algorithm for the joint recovery of cochannel signals is also presented. Computer simulation results are provided to quantify the performance of the various algorithms proposed in this dissertation.
A nonlinear relaxation/quasi-Newton algorithm for the compressible Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Edwards, Jack R.; Mcrae, D. S.
1992-01-01
A highly efficient implicit method for the computation of steady, two-dimensional compressible Navier-Stokes flowfields is presented. The discretization of the governing equations is hybrid in nature, with flux-vector splitting utilized in the streamwise direction and central differences with flux-limited artificial dissipation used for the transverse fluxes. Line Jacobi relaxation is used to provide a suitable initial guess for a new nonlinear iteration strategy based on line Gauss-Seidel sweeps. The applicability of quasi-Newton methods as convergence accelerators for this and other line relaxation algorithms is discussed, and efficient implementations of such techniques are presented. Convergence histories and comparisons with experimental data are presented for supersonic flow over a flat plate and for several high-speed compression corner interactions. Results indicate a marked improvement in computational efficiency over more conventional upwind relaxation strategies, particularly for flowfields containing large pockets of streamwise subsonic flow.
System design of an optical interferometer based on compressive sensing
NASA Astrophysics Data System (ADS)
Liu, Gang; Wen, De-Sheng; Song, Zong-Xi
2018-07-01
In this paper, we develop a new optical interferometric telescope architecture based on compressive sensing (CS) theory. Traditional optical telescopes with large apertures must be large in size, heavy and have high-power consumption, which limits the development of space-based telescopes. A turning point has occurred in the advent of imaging technology that utilizes Fourier-domain interferometry. This technology can reduce the system size, weight and power consumption by an order of magnitude compared to traditional optical telescopes at the same resolution. CS theory demonstrates that incomplete and noisy Fourier measurements may suffice for the exact reconstruction of sparse or compressible signals. Our proposed architecture combines advantages from the two frameworks, and the performance is evaluated through simulations. The results indicate the ability to efficiently sample spatial frequencies, while being lightweight and compact in size. Another attractive property of our architecture is the strong denoising ability for Gaussian noise.
Compressed learning and its applications to subcellular localization.
Zheng, Zhong-Long; Guo, Li; Jia, Jiong; Xie, Chen-Mao; Zeng, Wen-Cai; Yang, Jie
2011-09-01
One of the main challenges faced by biological applications is to predict protein subcellular localization in automatic fashion accurately. To achieve this in these applications, a wide variety of machine learning methods have been proposed in recent years. Most of them focus on finding the optimal classification scheme and less of them take the simplifying the complexity of biological systems into account. Traditionally, such bio-data are analyzed by first performing a feature selection before classification. Motivated by CS (Compressed Sensing) theory, we propose the methodology which performs compressed learning with a sparseness criterion such that feature selection and dimension reduction are merged into one analysis. The proposed methodology decreases the complexity of biological system, while increases protein subcellular localization accuracy. Experimental results are quite encouraging, indicating that the aforementioned sparse methods are quite promising in dealing with complicated biological problems, such as predicting the subcellular localization of Gram-negative bacterial proteins.
Simulated pressure denaturation thermodynamics of ubiquitin.
Ploetz, Elizabeth A; Smith, Paul E
2017-12-01
Simulations of protein thermodynamics are generally difficult to perform and provide limited information. It is desirable to increase the degree of detail provided by simulation and thereby the potential insight into the thermodynamic properties of proteins. In this study, we outline how to analyze simulation trajectories to decompose conformation-specific, parameter free, thermodynamically defined protein volumes into residue-based contributions. The total volumes are obtained using established methods from Fluctuation Solution Theory, while the volume decomposition is new and is performed using a simple proximity method. Native and fully extended ubiquitin are used as the test conformations. Changes in the protein volumes are then followed as a function of pressure, allowing for conformation-specific protein compressibility values to also be obtained. Residue volume and compressibility values indicate significant contributions to protein denaturation thermodynamics from nonpolar and coil residues, together with a general negative compressibility exhibited by acidic residues. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sutarno, Soepriyanto, Syoni; Korda, Akhmad A.; Dirgantara, Tatacipta
2015-09-01
The physical mechanical properties of Al-7000 aluminium foam product and processing has been evaluated in this study. The characterization through the compressive testing refers to flatwise direction provided more confident result than edgewise direction. This experiment may correlate with formation of side products of calcia alumina and alumina silica that involved in metal mixture of aluminium foam. These compounds are formed from additional calcium carbonate and silica in the mixture. Calcium carbonate (CaCO3) roles as a blowing agent source of carbon dioxide (CO2). The formation of calcia alumina (CaO.Al2O3) may role to strengthen of cell wall of aluminium foam and to improve the viscosity of melting metal. The Al-7000 aluminium foam indicated a decrease of compressive strength probably due to existence of alumina silica (3Al2O3.SiO2) in the metal mixture.
Behavior of reinforcement SCC beams under elevated temperatures
NASA Astrophysics Data System (ADS)
Fathi, Hamoon; Farhang, Kianoosh
2015-09-01
This experimental study focuses on the behavior of heated reinforced concrete beams. Four types of concrete mixtures were used for the tested self-compacting concrete beams. A total of 72 reinforced concrete beams and 72 standard cylindrical specimens were tested. The compressive strength under uniaxial loading at 23 °C ranged from 30 to 45 MPa. The specimens were exposed to different temperatures. The test parameters of interest were the compressive strength and the temperature of the specimens. The effect of changes in the parameters was examined so as to control the behavior of the tested concrete and that of the reinforced concrete beam. The results indicated that flexibility and compressive strength of the reinforced concrete beams decreased at higher temperatures. Furthermore, heating beyond 400 °C produced greater variations in the structural behavior of the materials in both the cylindrical samples and the reinforced concrete beams.
High-Gain High-Field Fusion Plasma
Li, Ge
2015-01-01
A Faraday wheel (FW)—an electric generator of constant electrical polarity that produces huge currents—could be implemented in an existing tokamak to study high-gain high-field (HGHF) fusion plasma, such as the Experimental Advanced Superconducting Tokamak (EAST). HGHF plasma can be realized in EAST by updating its pulsed-power system to compress plasma in two steps by induction fields; high gains of the Lawson trinity parameter and fusion power are both predicted by formulating the HGHF plasma. Both gain rates are faster than the decrease rate of the plasma volume. The formulation is checked by earlier ATC tests. Good agreement between theory and tests indicates that scaling to over 10 T at EAST may be possible by two-step compressions with a compression ratio of the minor radius of up to 3. These results point to a quick new path of fusion plasma study, i.e., simulating the Sun by EAST. PMID:26507314
NASA Technical Reports Server (NTRS)
Harris, J. E.
1975-01-01
An implicit finite-difference procedure is presented for solving the compressible three-dimensional boundary-layer equations. The method is second-order accurate, unconditionally stable (conditional stability for reverse cross flow), and efficient from the viewpoint of computer storage and processing time. The Reynolds stress terms are modeled by (1) a single-layer mixing length model and (2) a two-layer eddy viscosity model. These models, although simple in concept, accurately predicted the equilibrium turbulent flow for the conditions considered. Numerical results are compared with experimental wall and profile data for a cone at an angle of attack larger than the cone semiapex angle. These comparisons clearly indicate that the numerical procedure and turbulence models accurately predict the experimental data with as few as 21 nodal points in the plane normal to the wall boundary.
NASA Technical Reports Server (NTRS)
Estep, L.; Davis, B.
2001-01-01
A remote sensing campaign was conducted over a U.S. Department of Agriculture test farm at Shelton, Nebraska. An experimental field was set off in plots that were differentially treated with anhydrous ammonia. Four replicates of 0-kg/ha to 200-kg/ha plots, in 50-kg/ha increments, were set out in a random block design. Low-altitude (GSD of 3 m) Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) hyperspectral data were collected over the site in 224 bands. Simultaneously, ground data were collected to support the airborne imagery. In an effort to reduce data load while maintaining or enhancing algorithm performance for vegetation stress detection, band-moment compression and analysis was applied to the AVIRIS image cube. The results indicated that band-moment techniques compress the AVIRIS dataset significantly while retaining the capability of detecting environmentally induced vegetation stress.
Enhanced densification under shock compression in porous silicon
Lane, J. Matthew; Thompson, Aidan Patrick; Vogler, Tracy
2014-10-27
Under shock compression, most porous materials exhibit lower densities for a given pressure than that of a full-dense sample of the same material. However, some porous materials exhibit an anomalous, or enhanced, densification under shock compression. The mechanism driving this behavior was not completely determined. We present evidence from atomistic simulation that pure silicon belongs to this anomalous class of materials and demonstrate the associated mechanisms responsible for the effect in porous silicon. Atomistic response indicates that local shear strain in the neighborhood of collapsing pores catalyzes a local solid-solid phase transformation even when bulk pressures are below the thermodynamicmore » phase transformation pressure. This metastable, local, and partial, solid-solid phase transformation, which accounts for the enhanced densification in silicon, is driven by the local stress state near the void, not equilibrium thermodynamics. This mechanism may also explain the phenomenon in other covalently bonded materials.« less
NASA Astrophysics Data System (ADS)
Chang, Ching-Chun; Liu, Yanjun; Nguyen, Son T.
2015-03-01
Data hiding is a technique that embeds information into digital cover data. This technique has been concentrated on the spatial uncompressed domain, and it is considered more challenging to perform in the compressed domain, i.e., vector quantization, JPEG, and block truncation coding (BTC). In this paper, we propose a new data hiding scheme for BTC-compressed images. In the proposed scheme, a dynamic programming strategy was used to search for the optimal solution of the bijective mapping function for LSB substitution. Then, according to the optimal solution, each mean value embeds three secret bits to obtain high hiding capacity with low distortion. The experimental results indicated that the proposed scheme obtained both higher hiding capacity and hiding efficiency than the other four existing schemes, while ensuring good visual quality of the stego-image. In addition, the proposed scheme achieved a low bit rate as original BTC algorithm.
Highly deformation-tolerant carbon nanotube sponges as supercapacitor electrodes.
Li, Peixu; Kong, Chuiyan; Shang, Yuanyuan; Shi, Enzheng; Yu, Yuntao; Qian, Weizhong; Wei, Fei; Wei, Jinquan; Wang, Kunlin; Zhu, Hongwei; Cao, Anyuan; Wu, Dehai
2013-09-21
Developing flexible and deformable supercapacitor electrodes based on porous materials is of high interest in energy related fields. Here, we show that carbon nanotube sponges, consisting of highly porous conductive networks, can serve as compressible and deformation-tolerant supercapacitor electrodes in aqueous or organic electrolytes. In aqueous electrolytes, the sponges maintain a similar specific capacitance (>90% of the original value) under a predefined compressive strain of 50% (corresponding to a volume reduction of 50%), and retain more than 70% of the original capacitance under 80% strain while the volume normalized capacitance increases by 3-fold. The sponge electrode maintains a stable performance after 1000 large strain compression cycles. A coin-shaped cell assembled with these sponges shows excellent stability over 15,000 charging cycles with negligible degradation after 500 cycles. Our results indicate that carbon nanotube sponges have the potential to fabricate deformable supercapacitor electrodes with stable performance.
NASA Astrophysics Data System (ADS)
Chistyy, Y.; Kuzakhmetova, E.; Fazilova, Z.; Tsukanova, O.
2018-03-01
Design issues of junction of bridges and overhead road with approach embankment are studied. The reasons for the formation of deformations in the road structure are indicated. Activities to ensure sustainability and acceleration of the shrinkage of a weak subgrade approach embankment are listed. The necessity of taking into account the man-made impact of the approach embankment on the subgrade behavior is proved. Modern stabilizing agents to improve the properties of used soils in the embankment and the subgrade are suggested. Clarified methodology for determining an active zone of compression in the subgrade under load from the weight of the embankment is described. As an additional condition to the existing methodology for establishing the lower bound of the active zone of compression it is offered to accept the accuracy of evaluation of soil compressibility and determine shrinkage.
Oxidation-Assisted Crack Growth in Single-Crystal Superalloys during Fatigue with Compressive Holds
NASA Astrophysics Data System (ADS)
Lafata, M. A.; Rettberg, L. H.; He, M. Y.; Pollock, T. M.
2018-01-01
The mechanism of oxidation-assisted growth of surface cracks during fatigue with compressive holds has been studied experimentally and via a model that describes the role of oxide and substrate properties. The creep-based finite element model has been employed to examine the role of material parameters in the damage evolution in a Ni-base single-crystal superalloy René N5. Low-cycle fatigue experiments with compressive holds were conducted at 1255 K and 1366 K (982 °C and 1093 °C). Interrupted and failed specimens were characterized for crack depth and spacing, oxide thickness, and microstructural evolution. Comparison of experimental to modeled hysteresis loops indicates that transient creep drives the macroscopic stress-strain response. Crack penetration rates are strongly influenced by growth stresses in the oxide, structural evolution in the substrate, and the development of γ ^' } denuded zones. Implications for design of alloys resistant to this mode of degradation are discussed.
Accelerating oxygen reduction on Pt monolayer via substrate compression
NASA Astrophysics Data System (ADS)
Zhang, Xilin; Chen, Yue; Yang, Zongxian; Lu, Zhansheng
2017-11-01
Many methods have been proposed to accelerate the oxygen reduction and save the dosage of Pt. Here, we report a promising way in fulfilling these purposes by applying substrate strain on the supported Pt monolayer. The compressive strain would modify the geometric and electronic structures of tungsten carbide (WC) substrate, changing the interaction nature between substrate and Pt monolayer and resulting in a downward shift of the d-band center of surface Pt atoms. The activity of Pt monolayer on the compressed WC is further evaluated from the kinetics of the dissociation and protonation of O2. The dissociation barrier of O2 is increased and the hydrogenation barrier of O atom is decreased, indicating that the recovery of the catalytically active sites is accelerated and the deactivation by oxygen poison is alleviated. The present study provides an effective way in tuning the activity of Pt-based catalysts by applying the substrate strain.
Development of a Hybrid RANS/LES Method for Compressible Mixing Layer Simulations
NASA Technical Reports Server (NTRS)
Georgiadis, Nicholas J.; Alexander, J. Iwan D.; Reshotko, Eli
2001-01-01
A hybrid method has been developed for simulations of compressible turbulent mixing layers. Such mixing layers dominate the flows in exhaust systems of modem day aircraft and also those of hypersonic vehicles currently under development. The hybrid method uses a Reynolds-averaged Navier-Stokes (RANS) procedure to calculate wall bounded regions entering a mixing section, and a Large Eddy Simulation (LES) procedure to calculate the mixing dominated regions. A numerical technique was developed to enable the use of the hybrid RANS/LES method on stretched, non-Cartesian grids. The hybrid RANS/LES method is applied to a benchmark compressible mixing layer experiment. Preliminary two-dimensional calculations are used to investigate the effects of axial grid density and boundary conditions. Actual LES calculations, performed in three spatial directions, indicated an initial vortex shedding followed by rapid transition to turbulence, which is in agreement with experimental observations.
Moore, Brian C J; Füllgrabe, Christian; Stone, Michael A
2011-01-01
To determine preferred parameters of multichannel compression using individually fitted simulated hearing aids and a method of paired comparisons. Fourteen participants with mild to moderate hearing loss listened via a simulated five-channel compression hearing aid fitted using the CAMEQ2-HF method to pairs of speech sounds (a male talker and a female talker) and musical sounds (a percussion instrument, orchestral classical music, and a jazz trio) presented sequentially and indicated which sound of the pair was preferred and by how much. The sounds in each pair were derived from the same token and differed along a single dimension in the type of processing applied. For the speech sounds, participants judged either pleasantness or clarity; in the latter case, the speech was presented in noise at a 2-dB signal-to-noise ratio. For musical sounds, they judged pleasantness. The parameters explored were time delay of the audio signal relative to the gain control signal (the alignment delay), compression speed (attack and release times), bandwidth (5, 7.5, or 10 kHz), and gain at high frequencies relative to that prescribed by CAMEQ2-HF. Pleasantness increased with increasing alignment delay only for the percussive musical sound. Clarity was not affected by alignment delay. There was a trend for pleasantness to decrease slightly with increasing bandwidth, but this was significant only for female speech with fast compression. Judged clarity was significantly higher for the 7.5- and 10-kHz bandwidths than for the 5-kHz bandwidth for both slow and fast compression and for both talker genders. Compression speed had little effect on pleasantness for 50- or 65-dB SPL input levels, but slow compression was generally judged as slightly more pleasant than fast compression for an 80-dB SPL input level. Clarity was higher for slow than for fast compression for input levels of 80 and 65 dB SPL but not for a level of 50 dB SPL. Preferences for pleasantness were approximately equal with CAMEQ2-HF gains and with gains slightly reduced at high frequencies and were lower when gains were slightly increased at high frequencies. Speech clarity was not affected by changing the gain at high frequencies. Effects of alignment delay were small except for the percussive sound. A wider bandwidth was slightly preferred for speech clarity. Speech clarity was slightly greater with slow compression, especially at high levels. Preferred high-frequency gains were close to or a little below those prescribed by CAMEQ2-HF.
Towards efficient backward-in-time adjoint computations using data compression techniques
Cyr, E. C.; Shadid, J. N.; Wildey, T.
2014-12-16
In the context of a posteriori error estimation for nonlinear time-dependent partial differential equations, the state-of-the-practice is to use adjoint approaches which require the solution of a backward-in-time problem defined by a linearization of the forward problem. One of the major obstacles in the practical application of these approaches, we found, is the need to store, or recompute, the forward solution to define the adjoint problem and to evaluate the error representation. Our study considers the use of data compression techniques to approximate forward solutions employed in the backward-in-time integration. The development derives an error representation that accounts for themore » difference between the standard-approach and the compressed approximation of the forward solution. This representation is algorithmically similar to the standard representation and only requires the computation of the quantity of interest for the forward solution and the data-compressed reconstructed solution (i.e. scalar quantities that can be evaluated as the forward problem is integrated). This approach is then compared with existing techniques, such as checkpointing and time-averaged adjoints. Lastly, we provide numerical results indicating the potential efficiency of our approach on a transient diffusion–reaction equation and on the Navier–Stokes equations. These results demonstrate memory compression ratios up to 450×450× while maintaining reasonable accuracy in the error-estimates.« less
NASA Astrophysics Data System (ADS)
Atubga, David; Wu, Huijuan; Lu, Lidong; Sun, Xiaoyan
2017-02-01
Typical fully distributed optical fiber sensors (DOFS) with dozens of kilometers are equivalent to tens of thousands of point sensors along the whole monitoring line, which means tens of thousands of data will be generated for one pulse launching period. Therefore, in an all-day nonstop monitoring, large volumes of data are created thereby triggering the demand for large storage space and high speed for data transmission. In addition, when the monitoring length and channel numbers increase, the data also increase extensively. The task of mitigating large volumes of data accumulation, large storage capacity, and high-speed data transmission is, therefore, the aim of this paper. To demonstrate our idea, we carried out a comparative study of two lossless methods, Huffman and Lempel Ziv Welch (LZW), with a lossy data compression algorithm, fast wavelet transform (FWT) based on three distinctive DOFS sensing data, such as Φ-OTDR, P-OTDR, and B-OTDA. Our results demonstrated that FWT yielded the best compression ratio with good consumption time, irrespective of errors in signal construction of the three DOFS data. Our outcomes indicate the promising potentials of FWT which makes it more suitable, reliable, and convenient for real-time compression of the DOFS data. Finally, it was observed that differences in the DOFS data structure have some influence on both the compression ratio and computational cost.
The effects of physical and chemical preprocessing on the flowability of corn stover
Crawford, Nathan C.; Nagle, Nick; Sievers, David A.; ...
2015-12-20
Continuous and reliable feeding of biomass is essential for successful biofuel production. However, the challenges associated with biomass solids handling are commonly overlooked. In this study, we examine the effects of preprocessing (particle size reduction, moisture content, chemical additives, etc.) on the flow properties of corn stover. Compressibility, flow properties (interparticle friction, cohesion, unconfined yield stress, etc.), and wall friction were examined for five corn stover samples: ground, milled (dry and wet), acid impregnated, and deacetylated. The ground corn stover was found to be the least compressible and most flowable material. The water and acid impregnated stovers had similar compressibilities.more » Yet, the wet corn stover was less flowable than the acid impregnated sample, which displayed a flow index equivalent to the dry, milled corn stover. The deacetylated stover, on the other hand, was the most compressible and least flowable examined material. However, all of the tested stover samples had internal friction angles >30°, which could present additional feeding and handling challenges. All of the ''wetted'' materials (water, acid, and deacetylated) displayed reduced flowabilities (excluding the acid impregnated sample), and enhanced compressibilities and wall friction angles, indicating the potential for added handling issues; which was corroborated via theoretical hopper design calculations. All of the ''wetted'' corn stovers require larger theoretical hopper outlet diameters and steeper hopper walls than the examined ''dry'' stovers.« less
Buckling failure of square ice-nanotube arrays constrained in graphene nanocapillaries.
Zhu, YinBo; Wang, FengChao; Wu, HengAn
2016-08-07
Graphene confinement provides a new physical and mechanical environment with ultrahigh van der Waals pressure, resulting in new quasi-two-dimensional phases of few-layer ice. Polymorphic transition can occur in bilayer constrained water/ice system. Here, we perform a comprehensive study of the phase transition of AA-stacked bilayer water constrained within a graphene nanocapillary. The compression-limit and superheating-limit (phase) diagrams are obtained, based on the extensive molecular-dynamics simulations at numerous thermodynamic states. Liquid-to-solid, solid-to-solid, and solid-to-liquid-to-solid phase transitions are observed in the compression and superheating of bilayer water. Interestingly, there is a temperature threshold (∼275 K) in the compression-limit diagram, which indicates that the first-order and continuous-like phase transitions of bilayer water depend on the temperature. Two obviously different physical processes, compression and superheating, display similar structural evolution; that is, square ice-nanotube arrays (BL-VHDI) will bend first and then transform into bilayer triangular AA stacking ice (BL-AAI). The superheating limit of BL-VHDI exhibits local maxima, while that of BL-AAI increases monotonically. More importantly, from a mechanics point of view, we propose a novel mechanism of the transformation from BL-VHDI to BL-AAI, both for the compression and superheating limits. This structural transformation can be regarded as the "buckling failure" of the square-ice-nanotube columns, which is dominated by the lateral pressure.
Modern BLS, dispatch and AED concepts.
Koster, Rudolph W
2013-09-01
Basic Life Support has changed significantly over the last 15 years. Evidence-based changes in recommendations involved compression rate, compression depth and the ratio between compressions and ventilations. There is much evidence that early basic life support increases the probability of survival two- to three-fold. Recognition of a cardiac arrest remains challenging for witness and dispatcher. Educating the public in basic life support and recognition of cardiac arrest are key factors in improving survival of cardiac arrest. The large differences in survival between countries and regions clearly indicate that education and implementation must be high on the agenda in each community. Dispatchers play an increasingly important role in the process, both in rapid recognition of the cardiac arrest as well as giving telephone guidance to those bystanders that had not followed a training in basic life support. Those instructions should only instruct to deliver chest compressions. For those who have been trained in BLS and who are willing to give full CPR, should administer ventilations and chest compressions according to the guidelines. The AED plays a key role in early management of cardiac arrest and can substantially contribute to better survival. Logistics of placement of AEDs and the optimal way to bring AEDs to a victim require much more efforts, especially for victims in residential area's, where the great majority of cases of cardiac arrest occur. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Krishnan, Sundar Rajan; Srinivasan, Kalyan Kumar; Stegmeir, Matthew
2015-11-01
Direct-injection compression ignition combustion of diesel and gasoline were studied in a rapid compression-expansion machine (RCEM) using high-speed OH* chemiluminescence imaging. The RCEM (bore = 84 mm, stroke = 110-250 mm) was used to simulate engine-like operating conditions at the start of fuel injection. The fuels were supplied by a high-pressure fuel cart with an air-over-fuel pressure amplification system capable of providing fuel injection pressures up to 2000 bar. A production diesel fuel injector was modified to provide a single fuel spray for both diesel and gasoline operation. Time-resolved combustion pressure in the RCEM was measured using a Kistler piezoelectric pressure transducer mounted on the cylinder head and the instantaneous piston displacement was measured using an inductive linear displacement sensor (0.05 mm resolution). Time-resolved, line-of-sight OH* chemiluminescence images were obtained using a Phantom V611 CMOS camera (20.9 kHz @ 512 x 512 pixel resolution, ~ 48 μs time resolution) coupled with a short wave pass filter (cut-off ~ 348 nm). The instantaneous OH* distributions, which indicate high temperature flame regions within the combustion chamber, were used to discern the characteristic differences between diesel and gasoline compression ignition combustion. The authors gratefully acknowledge facilities support for the present work from the Energy Institute at Mississippi State University.
NASA Technical Reports Server (NTRS)
Katti, Atul; Shimpi, Nilesh; Roy, Samit; Lu, Hongbing; Fabrizio, Eve F.; Dass, Amala; Capadona, Lynn A.; Leventis, Nicholas
2006-01-01
We describe a new mechanically strong lightweight porous composite material obtained by encapsulating the skeletal framework of amine-modified silica aerogels with polyurea. The conformal polymer coating preserves the mesoporous structure of the underlying silica framework and the thermal conductivity remains low at 0.041 plus or minus 0.001 W m(sup -1 K(sup -1). The potential of the new cross-linked silica aerogels for load-carrying applications was determined through characterization of their mechanical behavior under compression, three-point bending, and dynamic mechanical analysis (DMA). A primary glass transition temperature of 130 C was identified through DMA. At room temperature, results indicate a hyperfoam behavior where in compression cross-linked aerogels are linearly elastic under small strains (less than 4%) and then exhibit yield behavior (until 40% strain), followed by densification and inelastic hardening. At room temperature the compressive Young's modulus and the Poisson's ratio were determined to be 129 plus or minus 8 MPa and 0.18, respectively, while the strain at ultimate failure is 77% and the average specific compressive stress at ultimate failure is 3.89 x 10(exp 5) N m kg(sup -1). The specific flexural strength is 2.16 x 10(exp 4) N m kg(sup -1). Effects on the compressive behavior of strain rate and low temperature were also evaluated.
The effects of physical and chemical preprocessing on the flowability of corn stover
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, Nathan C.; Nagle, Nick; Sievers, David A.
Continuous and reliable feeding of biomass is essential for successful biofuel production. However, the challenges associated with biomass solids handling are commonly overlooked. In this study, we examine the effects of preprocessing (particle size reduction, moisture content, chemical additives, etc.) on the flow properties of corn stover. Compressibility, flow properties (interparticle friction, cohesion, unconfined yield stress, etc.), and wall friction were examined for five corn stover samples: ground, milled (dry and wet), acid impregnated, and deacetylated. The ground corn stover was found to be the least compressible and most flowable material. The water and acid impregnated stovers had similar compressibilities.more » Yet, the wet corn stover was less flowable than the acid impregnated sample, which displayed a flow index equivalent to the dry, milled corn stover. The deacetylated stover, on the other hand, was the most compressible and least flowable examined material. However, all of the tested stover samples had internal friction angles >30°, which could present additional feeding and handling challenges. All of the ''wetted'' materials (water, acid, and deacetylated) displayed reduced flowabilities (excluding the acid impregnated sample), and enhanced compressibilities and wall friction angles, indicating the potential for added handling issues; which was corroborated via theoretical hopper design calculations. All of the ''wetted'' corn stovers require larger theoretical hopper outlet diameters and steeper hopper walls than the examined ''dry'' stovers.« less
NASA Astrophysics Data System (ADS)
Zhang, Yanqiu; Jiang, Shuyong; Hu, Li; Zhao, Yanan; Sun, Dong
2017-10-01
The behavior of primary static recrystallization (SRX) in a NiTiFe shape memory alloy (SMA) subjected to cold canning compression was investigated using the coupling crystal plasticity finite element method (CPFEM) with the cellular automaton (CA) method, where the distribution of the dislocation density and the deformed grain topology quantified by CPFEM were used as the input for the subsequent SRX simulation performed using the CA method. The simulation results were confirmed by the experimental ones in terms of microstructures, average grain size and recrystallization fraction, which indicates that the proposed coupling method is well able to describe the SRX behavior of the NiTiFe SMA. The results show that the dislocation density exhibits an inhomogeneous distribution in the deformed sample and the recrystallization nuclei mainly concentrate on zones where the dislocation density is relatively higher. An increase in the compressive deformation degree leads to an increase in nucleation rate and a decrease in grain boundary spaces in the compression direction, which reduces the growth spaces for the SRX nuclei and impedes their further growth. In addition, both the mechanisms of local grain refinement in the incomplete SRX and the influence of compressive deformation degree on the grain size of SRX were vividly illustrated by the corresponding physical models.
Andersson, Seppo; Wang, Yurong; Pönni, Raili; Hänninen, Tuomas; Mononen, Marko; Ren, Haiqing; Serimaa, Ritva; Saranpää, Pekka
2015-04-01
We studied in detail the mean microfibril angle and the width of cellulose crystals from the pith to the bark of a 15-year-old Maidenhair tree (Ginkgo biloba L.). The orientation of cellulose microfibrils with respect to the cell axis and the width and length of cellulose crystallites were determined using X-ray diffraction. Raman microscopy was used to compare the lignin distribution in the cell wall of normal/opposite and compression wood, which was found near the pith. Ginkgo biloba showed a relatively large mean microfibril angle, varying between 19° and 39° in the S2 layer, and the average width of cellulose crystallites was 3.1-3.2 nm. Mild compression wood without any intercellular spaces or helical cavities was observed near the pith. Slit-like bordered pit openings and a heavily lignified S2L layer confirmed the presence of compression wood. Ginkgo biloba showed typical features present in the juvenile wood of conifers. The microfibril angle remained large over the 14 annual rings. The entire stem disc, with a diameter of 18 cm, was considered to consist of juvenile wood. The properties of juvenile and compression wood as well as the cellulose orientation and crystalline width indicate that the wood formation of G. biloba is similar to that of modern conifers. © 2015 Institute of Botany, Chinese Academy of Sciences.
Time-resolved Sensing of Meso-scale Shock Compression with Multilayer Photonic Crystal Structures
NASA Astrophysics Data System (ADS)
Scripka, David; Lee, Gyuhyon; Summers, Christopher J.; Thadhani, Naresh
2017-06-01
Multilayer Photonic Crystal structures can provide spatially and temporally resolved data needed to validate theoretical and computational models relevant for understanding shock compression in heterogeneous materials. Two classes of 1-D photonic crystal multilayer structures were studied: optical microcavities (OMC) and distributed Bragg reflectors (DBR). These 0.5 to 5 micron thick structures were composed of SiO2, Al2O3, Ag, and PMMA layers fabricated primarily via e-beam evaporation. The multilayers have unique spectral signatures inherently linked to their time-resolved physical states. By observing shock-induced changes in these signatures, an optically-based pressure sensor was developed. Results to date indicate that both OMCs and DBRs exhibit nanosecond-resolved spectral shifts of several to 10s of nanometers under laser-driven shock compression loads of 0-10 GPa, with the magnitude of the shift strongly correlating to the shock load magnitude. Additionally, spatially and temporally resolved spectral shifts under heterogeneous laser-driven shock compression created by partial beam blocking have been successfully demonstrated. These results illustrate the potential for multilayer structures to serve as meso-scale sensors, capturing temporal and spatial pressure profile evolutions in shock-compressed heterogeneous materials, and revealing meso-scale pressure distributions across a shocked surface. Supported by DTRA Grant HDTRA1-12-1-005 and DoD, AFOSR, National Defense Science and Eng. Graduate Fellowship, 32 CFR 168a.
Marqués-Jiménez, Diego; Calleja-González, Julio; Arratibel, Iñaki; Delextrat, Anne; Terrados, Nicolás
2016-01-01
The aim was to identify benefits of compression garments used for recovery of exercised-induced muscle damage. Computer-based literature research was performed in September 2015 using four online databases: Medline (PubMed), Cochrane, WOS (Web Of Science) and Scopus. The analysis of risk of bias was completed in accordance with the Cochrane Collaboration Guidelines. Mean differences and 95% confidence intervals were calculated with Hedges' g for continuous outcomes. A random effect meta-analysis model was used. Systematic differences (heterogeneity) were assessed with I(2) statistic. Most results obtained had high heterogeneity, thus their interpretation should be careful. Our findings showed that creatine kinase (standard mean difference=-0.02, 9 studies) was unaffected when using compression garments for recovery purposes. In contrast, blood lactate concentration was increased (standard mean difference=0.98, 5 studies). Applying compression reduced lactate dehydrogenase (standard mean difference=-0.52, 2 studies), muscle swelling (standard mean difference=-0.73, 5 studies) and perceptual measurements (standard mean difference=-0.43, 15 studies). Analyses of power (standard mean difference=1.63, 5 studies) and strength (standard mean difference=1.18, 8 studies) indicate faster recovery of muscle function after exercise. These results suggest that the application of compression clothing may aid in the recovery of exercise induced muscle damage, although the findings need corroboration. Copyright © 2015 Elsevier Inc. All rights reserved.
Sorption and vapor transmission properties of uncompressed and compressed microcellular starch foam.
Glenn, Gregory M; Klamczynski, Artur P; Takeoka, Gary; Orts, William J; Wood, Delilah; Widmaier, Robert
2002-11-20
Microcellular starch foams (MCFs) are made by a solvent-exchange process and consist of a porous matrix with pores generally ranging from approximately 2 microm to submicrometer size. MCF may potentially be useful as a slow-release agent for volatile compounds because of its ability to sorb chemicals from the atmosphere and to absorb liquids into its porous structure, and because it can be compressed to form a starch plastic. MCF made of high-amylose corn and wheat starches was prepared with or without 2% (w/w) silicone oil (SO) or palmitic acid (PA). The MCF was loaded with 1% of various volatile compounds with vapor pressures ranging from 0.02 to 28 mm. The MCF depressed the vapor pressure from 0.37 to 37% compared to a control containing no MCF. Incorporating SO or PA in the matrix of the MCF had little effect on sorption of volatiles. Compressing MCF at 1.4, 6.9, and 69 MPa made a starch plastic with varying porosity. The vapor transmission rate of various volatile compounds through MCF was positively correlated to the vapor pressure of the test compound but was inversely proportional to the compression force used to form the starch plastic. The results indicate that uncompressed and compressed MCFs could be effective slow-release agents for a variety of volatile compounds, especially if used together.
Nonlinear consolidation in randomly heterogeneous highly compressible aquitards
NASA Astrophysics Data System (ADS)
Zapata-Norberto, Berenice; Morales-Casique, Eric; Herrera, Graciela S.
2018-05-01
Severe land subsidence due to groundwater extraction may occur in multiaquifer systems where highly compressible aquitards are present. The highly compressible nature of the aquitards leads to nonlinear consolidation where the groundwater flow parameters are stress-dependent. The case is further complicated by the heterogeneity of the hydrogeologic and geotechnical properties of the aquitards. The effect of realistic vertical heterogeneity of hydrogeologic and geotechnical parameters on the consolidation of highly compressible aquitards is investigated by means of one-dimensional Monte Carlo numerical simulations where the lower boundary represents the effect of an instant drop in hydraulic head due to groundwater pumping. Two thousand realizations are generated for each of the following parameters: hydraulic conductivity ( K), compression index ( C c), void ratio ( e) and m (an empirical parameter relating hydraulic conductivity and void ratio). The correlation structure, the mean and the variance for each parameter were obtained from a literature review about field studies in the lacustrine sediments of Mexico City. The results indicate that among the parameters considered, random K has the largest effect on the ensemble average behavior of the system when compared to a nonlinear consolidation model with deterministic initial parameters. The deterministic solution underestimates the ensemble average of total settlement when initial K is random. In addition, random K leads to the largest variance (and therefore largest uncertainty) of total settlement, groundwater flux and time to reach steady-state conditions.
NASA Technical Reports Server (NTRS)
Rudy, D. H.; Morris, D. J.; Blanchard, D. K.; Cooke, C. H.; Rubin, S. G.
1975-01-01
The status of an investigation of four numerical techniques for the time-dependent compressible Navier-Stokes equations is presented. Results for free shear layer calculations in the Reynolds number range from 1000 to 81000 indicate that a sequential alternating-direction implicit (ADI) finite-difference procedure requires longer computing times to reach steady state than a low-storage hopscotch finite-difference procedure. A finite-element method with cubic approximating functions was found to require excessive computer storage and computation times. A fourth method, an alternating-direction cubic spline technique which is still being tested, is also described.
NASA Technical Reports Server (NTRS)
Stein, Manuel
1959-01-01
The nonlinear large-deflection equations of von Karman for plates are converted into a set of linear equations by expanding the displacements Into a power series in terms of an arbitrary parameter. The postbuckling behavior of simply supported rectangular plates subjected to longitudinal compression and subject to a uniform temperature rise is investigated in detail by solving the first few of the equations. Experimental data are presented for the compression problem. Comparisons are made for total shortening and local strains and deflections which indicate good agreement between experimental and theoretical results.
Mechanical performance of porous concrete pavement containing nano black rice husk ash
NASA Astrophysics Data System (ADS)
Ibrahim, M. Y. Mohd; Ramadhansyah, P. J.; Rosli, H. Mohd; Ibrahim, M. H. Wan
2018-01-01
This paper presents an experimental research on the performance of nano black rice husk ash on the porous concrete pavement properties. The performance of the porous concrete pavement mixtures was investigated based on their compressive strength, flexural strength, and splitting tensile strength. The results indicated that using nano material from black rice husk ash improved the mechanical properties of porous concrete pavement. In addition, the result of compressive, flexural, and splitting tensile strength was increased with increasing in curing age. Finally, porous concrete pavement with 10% replacement levels exhibited an excellent performance with good strength compared to others.
Response of a small-turboshaft-engine compression system to inlet temperature distortion
NASA Technical Reports Server (NTRS)
Biesiadny, T. J.; Klann, G. A.; Little, J. K.
1984-01-01
An experimental investigation was conducted into the response of a small-turboshaft-engine compression system to steady-state and transient inlet temperature distortions. Transient temperature ramps range from less than 100 K/sec to above 610 K/sec and generated instantaneous temperatures to 420 K above ambient. Steady-state temperature distortion levels were limited by the engine hardware temperature list. Simple analysis of the steady-state distortion data indicated that a particle separator at the engine inlet permitted higher levels of temperature distortion before onset of compressor surge than would be expected without the separator.
NASA Technical Reports Server (NTRS)
Hess, Robert V; Gardner, Clifford S
1947-01-01
By using the Prandtl-Glauert method that is valid for three-dimensional flow problems, the value of the maximum incremental velocity for compressible flow about thin ellipsoids at zero angle of attack is calculated as a function of the Mach number for various aspect ratios and thickness ratios. The critical Mach numbers of the various ellipsoids are also determined. The results indicate an increase in critical Mach number with decrease in aspect ratio which is large enough to explain experimental results on low-aspect-ratio wings at zero lift.
NASA Technical Reports Server (NTRS)
Wornom, S. F.
1971-01-01
This technique has been applied to study such effects on incompressible flow around cylinders at moderate to low Reynolds numbers and for compression ramps at hypersonic Mach numbers by employing a finite difference method to obtain numerical solutions. The results indicate that the technique can be applied successfully in both regimes and does predict the correct trend in regions of large curvature and displacement body effects. It was concluded that curvature corrections should only be attempted in cases where all displacement effects can be fully accounted for.
NASA Technical Reports Server (NTRS)
Mayers, J; Budiansky, Bernard
1955-01-01
An analysis is presented of the postbuckling behavior of a simply supported square flat plate with straight edges compressed beyond the buckling load into the plastic range. The method of analysis involves the application of a variational principle of the deformation theory of plasticity in conjunction with computations carried out on a high-speed calculating machine. Numerical results are obtained for several plate proportions and for one material. The results indicate plate strengths greater than those that have been found experimentally on plates that do not satisfy straight-edge conditions. (author)
Chitinosans as tableting excipients for modified release delivery systems.
Rege, P R; Shukla, D J; Block, L H
1999-04-20
The term 'chitinosans' embraces the spectrum of acetylated poly(N-glucosamines) ranging from chitin to chitosan. Chitinosans (I), at acidic pH, have protonated amines which can interact with oppositely charged drug ions and, thereby, modify drug release from drug delivery systems. Tablets were compressed from a physical mixture containing salicylic acid (II) as the model drug, I, and magnesium stearate. Five commercial I compounds, varying in degree of deacetylation and molecular weight, were selected. Tablets were compressed at 5000, 10 000, and 15 000 psig using a Carver and a single punch tablet press. The differential scanning calorimetry thermograms provided evidence of I-II interaction in the powder blend. Analysis of variance (ANOVA) indicated that the compression pressure did not significantly affect the crushing strength (CS) or the release profile of II from the I-matrix tablets (P?0.05). Furthermore, the ANOVA also indicated that the tablet press used during manufacture did not affect the above properties (P?0.05); however, the chitinosans significantly affected the CS as well as the release profile of II from I-matrix tablets (P<0.05). This study provides further evidence for the use of commercial I compounds as excipients for use in modified release drug delivery systems. Copyright.
Souza, W.R.; Voss, C.I.
1987-01-01
The groundwater system in southern Oahu, Hawaii consists of a thick, areally extensive freshwater lens overlying a zone of transition to a thick saltwater body. This system is analyzed in cross section with a variable-density groundwater flow and solute transport model on a regional scale. The simulation is difficult, because the coastal aquifer system has a saltwater transition zone that is broadly dispersed near the discharge area, but is very sharply defined inland. Steady-state simulation analysis of the transition zone in the layered basalt aquifer of southern Oahu indicates that a small transverse dispersivity is characteristic of horizontal regional flow. Further, in this system flow is generally parallel to isochlors and steady-state behavior is insensitive to the longitudinal dispersivity. Parameter analysis identifies that only six parameters control the complex hydraulics of the system: horizontal and vertical hydraulic conductivity of the basalt aquifer; hydraulic conductivity of the confining "caprock" layer; leakance below the caprock; specific yield; and aquifer matrix compressibility. The best-fitting models indicate the horizontal hydraulic conductivity is significantly greater than the vertical hydraulic conductivity. These models give values for specific yield and aquifer compressibility which imply a considerable degree of compressive storage in the water table aquifer. ?? 1987.
NASA Technical Reports Server (NTRS)
Jegley, Dawn C.
1987-01-01
Buckling loads of thick-walled orthotropic and anisotropic simply supported circular cylinders are predicted using a higher-order transverse-shear deformation theory. A comparison of buckling loads predicted by the conventional first-order transverse-shear deformation theory and the higher-order theory show that the additional allowance for transverse shear deformation has a negligible effect on the predicted buckling loads of medium-thick metallic isotropic cylinders. However, the higher-order theory predicts buckling loads which are significantly lower than those predicted by the first-order transverse-shear deformation theory for certain short, thick-walled cylinders which have low through-the-thickness shear moduli. A parametric study of the effects of ply orientation on the buckling load of axially compressed cylinders indicates that laminates containing 45 degree plies are most sensitive to transverse-shear deformation effects. Interaction curves for buckling loads of cylinders subjected to axial compressive and external pressure loadings indicate that buckling loads due to external pressure loadings are as sensitive to transverse-shear deformation effects as buckling loads due to axial compressive loadings. The effects of anisotropy are important over a much wider range of cylinder geometries than the effects of transverse shear deformation.
Compression Debarked Chips from a Whole-Tree Chipper
Rodger A. Arola
1973-01-01
Discusses case study results of debarking whole-tree aspen and red oak chips produced with a whole-tree chipper. The results indicate promise for successful bark removal after chipping and strengthen the argument for continued research.
Volume-change indicator for molding plastic
NASA Technical Reports Server (NTRS)
Heler, W. C.
1979-01-01
Monitor consisting of two concentric disks measures change in volume of charge during compression/displacement molding. Device enables operator to decide whether process pressure and temperature are set properly or whether sufficient material has been placed in mold.
40 CFR 94.801 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Importation of Nonconforming Engines § 94.801 Applicability. (a) Except where otherwise indicated, this subpart is applicable to importers of engines (and...
Degenerative disease of the lumbar spine.
Kovacs, F M; Arana, E
2016-04-01
In the last 25 years, scientific research has brought about drastic changes in the concept of low back pain and its management. Most imaging findings, including degenerative changes, reflect anatomic peculiarities or the normal aging process and turn out to be clinically irrelevant; imaging tests have proven useful only when systemic disease is suspected or when surgery is indicated for persistent spinal cord or nerve root compression. The radiologic report should indicate the key points of nerve compression, bypassing inconsequential findings. Many treatments have proven inefficacious, and some have proven counterproductive, but they continue to be prescribed because patients want them and there are financial incentives for doing them. Following the guidelines that have proven effective for clinical management improves clinical outcomes, reduces iatrogenic complications, and decreases unjustified and wasteful healthcare expenditures. Copyright © 2016 SERAM. Published by Elsevier España, S.L.U. All rights reserved.
The effect of resin on the impact damage tolerance of graphite-epoxy laminates
NASA Technical Reports Server (NTRS)
Williams, J. G.; Rhodes, M. D.
1981-01-01
The effect of the matrix resin on the impact damage tolerance of graphite-epoxy composite laminates was investigated. The materials were evaluated on the basis of the damage incurred due to local impact and on their ability to retain compression strength in the presence of impact damage. Twenty-four different resin systems were evaluated. Five of the systems demonstrated substantial improvements compared to the baseline system including retention of compression strength in the presence of impact damage. Examination of the neat resin mechanical properties indicates the resin tensile properties influence significantly the laminate damage tolerance and that improvements in laminate damage tolerance are not necessarily made at the expense of room temperature mechanical properties. Preliminary results indicate a resin volume fraction on the order of 40 percent or greater may be required to permit the plastic flow between fibers necessary for improved damage tolerance.
Nguyen, An M; Levenston, Marc E
2012-01-01
Although the contribution of the circumferential collagen bundles to the anisotropic tensile stiffness of meniscal tissue has been well described, the implications of interactions between tissue components for other mechanical properties have not been as widely examined. This study compared the effects of the proteoglycan-associated osmotic swelling stress on meniscal fibrocartilage and articular cartilage (AC) mechanics by manipulating the osmotic environment and tissue compressive offset. Cylindrical samples were obtained from the menisci and AC of bovine stifles, equilibrated in phosphate-buffered saline solutions ranging from 0.1× to 10×, and tested in oscillatory torsional shear and unconfined compression. Biochemical analysis indicated that treatments and testing did not substantially alter tissue composition. Mechanical testing revealed tissue-specific responses to both increasing compressive offset and decreasing bath salinity. Most notably, reduced salinity dramatically increased the shear modulus of both axially and circumferentially oriented meniscal tissue explants to a much greater extent than for cartilage samples. Combined with previous studies, these findings suggest that meniscal proteoglycans have a distinct structural role, stabilizing, and stiffening the matrix surrounding the primary circumferential collagen bundles. Copyright © 2011 Orthopaedic Research Society.
Effects of compression force on elasticity index and elasticity ratio in ultrasound elastography
Sasaki, Y; Sakamoto, J; Kamio, T; Nishikawa, K; Otonari-Yamamoto, M; Wako, M
2014-01-01
Objectives: The purpose of this study was to investigate the relationship between compression force and hardness values in ultrasound elastography. Methods: Ultrasound elastography was performed using an elastography phantom, comprising inclusions with different elasticities and echogenicities. The compression force was set to approximately 100 gw (light force) and approximately 500 gw (heavy force). The elasticity index (EI) of the inclusion was measured. The EI was a relative hardness value of a structure within an elastographic image. Similarly, the EI of the background was measured as a reference. The elasticity ratio (ER) was calculated as the EI of the inclusion divided by the EI of the reference. Results: The hardness of the phantom could be discerned with both the EI and ER, regardless of the compression force. The EI and ER with heavy force tended to be higher than those with light force, but the difference was not significant. A strong correlation was observed between the EI and ER of soft structures, whereas the correlation between the EI and ER of hard structures was weak, and the ER values varied widely. Conclusions: The EI offers potential as a good indicator for assessing the hardness. PMID:24592929
Compression member response of double steel angles on truss structure with member length variation
NASA Astrophysics Data System (ADS)
Hasibuan, Purwandy; Panjaitan, Arief; Haiqal, Muhammad
2018-05-01
One type of structures that implements steel angles as its members is truss system of telecommunication tower. For this structure, reinforcements on tower legs are also needed when antennas and microwaves installation placed on the peak of tower increases in quantity. One type of reinforcement methods commonly used is by increasing areas section capacity, where tower leg consisted of single angle section will be reinforced to be double angle sections. Regarding this case, this research discussed behavior two types of double angle steel section 2L 30.30.3 that were designed identically in area section but vary in length: 103 cm and 83 cm. At the first step, compression member together with tension member was formed to be a truss system, where compression and tension member were met at the joint plate. Schematic loading was implemented by giving tension loading on the joint plate, and this loading was terminated when each specimen reached its failure. Research findings showed that implementing shorter double angle (83 cm) sections, increased compression strength of steel angle section up to 13 %. Significant deformation occurring only on the flange for both of specimens indicated that implementing double angle is effective to prevent lateral-torsional buckling.