Science.gov

Sample records for compressed fcc crystals

  1. Vacancy behavior in a compressed fcc Lennard-Jones crystal

    SciTech Connect

    Beeler, J.R. Jr.

    1981-12-01

    This computer experiment study concerns the determination of the stable vacancy configuration in a compressed fcc Lennard-Jones crystal and the migration of this defect in a compressed crystal. Isotropic and uniaxial compression stress conditions were studied. The isotropic and uniaxial compression magnitudes employed were 0.94 less than or equal to eta less than or equal to 1.5, and 1.0 less than or equal to eta less than or equal to 1.5, respectively. The site-centered vacancy (SCV) was the stable vacancy configuration whenever cubic symmetry was present. This includes all of the isotropic compression cases and the particular uniaxial compression case (eta = ..sqrt..2) that give a bcc structure. In addition, the SCV was the stable configuration for uniaxial compression eta < 1.29. The out-of-plane split vacancy (SV-OP) was the stable vacancy configuration for uniaxial compression 1.29 < eta less than or equal to 1.5 and was the saddle-point configuration for SCV migration when the SCV was the stable form. For eta > 1.20, the SV-OP is an extended defect and, therefore, a saddle point for SV-OP migration could not be determined. The mechanism for the transformation from the SCV to the SV-OP as the stable form at eta = 1.29 appears to be an alternating sign (101) and/or (011) shear process.

  2. Nucleation of hcp and fcc phases in bcc iron under uniform compression: classical molecular dynamics simulations.

    PubMed

    Wang, B T; Shao, J L; Zhang, G C; Li, W D; Zhang, P

    2010-11-01

    By classical molecular dynamics simulations employing an embedded atom method potential, we have simulated the bcc to hcp/fcc structural transition in single-crystal iron under uniform compression. Results showed that the transition pressure is different from uniaxial compression and shock loading. The transformation occurs on a picosecond timescale and the transition time decreases along with the increase of pressure. The nucleation and growth of the hcp and fcc phases under constant pressure and temperature are analyzed in detail. The nucleation planes, all belonging to the {110}(bcc) family and parallel to the three compression directions [100], [010], and [001], have been observed. About 20% bcc atoms have transformed to fcc phase under pressure just over the critical point, and under higher pressure the fraction of the fcc phase increases steadily to exceed that of the hcp phase. We have investigated the transition mechanism of iron from initial bcc to hcp/fcc and found that the transition mainly consists of compression, rotation, and shuffle.

  3. Theoretical analysis of the channel die compression test—II. First- and second-order analysis of orientation [110] [00 overline1] [ overline110] in F.C.C. crystals

    NASA Astrophysics Data System (ADS)

    Havner, K. S.; Sue, P. L.

    I NTHIS paper we present a general formulation of the analysis of the channel die compression test for single crystals, to second order in the applied compressive load increment. Specific first- and second-order analyses of f.c.c. crystals in orientation [110] [00 overline1] [ overline110] are carried out for the same four hardening rules considered in S UE and H AVNER (1984). These are Taylor hardening, a 2-parameter empirical rule, the "simple theory" (H AVNER and S HALBY, 1977), and a modification of the simple theory introduced by P EIRCE, A SARO and N EEDLEMAN (1982). In particular, we address the analysis of lattice rotation about the loading axis for each of these theories. Such rotation was a prominent feature of the deformation of a copper crystal in this orientation in experiments by W ONSIEWICZ and C HIN (1970). We establish that all theories permit this rotation consistent with the first- and second-order channel die constraints. Regarding the issue of lattice stability, a fundamental difference between the present orientation and those analyzed in S UE and H AVNER (1984) is uncovered and discussed. We close with a strong recommendation for a new series of channel die experiments.

  4. Phase-field-crystal model for fcc ordering.

    PubMed

    Wu, Kuo-An; Adland, Ari; Karma, Alain

    2010-06-01

    We develop and analyze a two-mode phase-field-crystal model to describe fcc ordering. The model is formulated by coupling two different sets of crystal density waves corresponding to <111> and <200> reciprocal lattice vectors, which are chosen to form triads so as to produce a simple free-energy landscape with coexistence of crystal and liquid phases. The feasibility of the approach is demonstrated with numerical examples of polycrystalline and (111) twin growth. We use a two-mode amplitude expansion to characterize analytically the free-energy landscape of the model, identifying parameter ranges where fcc is stable or metastable with respect to bcc. In addition, we derive analytical expressions for the elastic constants for both fcc and bcc. Those expressions show that a nonvanishing amplitude of [200] density waves is essential to obtain mechanically stable fcc crystals with a nonvanishing tetragonal shear modulus (C11-C12)/2. We determine the model parameters for specific materials by fitting the peak liquid structure factor properties and solid-density wave amplitudes following the approach developed for bcc [K.-A. Wu and A. Karma, Phys. Rev. B 76, 184107 (2007)]. This procedure yields reasonable predictions of elastic constants for both bcc Fe and fcc Ni using input parameters from molecular dynamics simulations. The application of the model to two-dimensional square lattices is also briefly examined.

  5. Molecular dynamics simulations of hcp/fcc nucleation and growth in bcc iron driven by uniaxial compression.

    PubMed

    Wang, B T; Shao, J L; Zhang, G C; Li, W D; Zhang, P

    2009-12-01

    Molecular dynamics simulations have been performed to study the structural transition in bcc iron under uniaxial strain loading. We found that the transition pressures are less dependent on the crystal orientations, ∼14 GPa for [001], [011], and [111] loadings. However, the pressure interval of a mixed phase for [011] loading is much shorter than loading along other orientations. In addition, the temperature increased amplitude for [001] loading is evidently lower than other orientations. The nucleation and growth of the hcp/fcc phases, and their crystal orientation dependence, were analyzed in detail, where the atom structure was presented by the topological medium-range-order analysis. For [001] compression, the hcp structure occurs first and grows into a laminar morphology in the (011)(bcc) plane with some fcc atoms as an intermediate structure. For loading along [011] and [111] directions, both hcp and fcc structure nucleation and growth along the {110}(bcc) planes are observed; their morphology is also discussed.

  6. An atomic-scale model of fcc crystal-growth

    NASA Astrophysics Data System (ADS)

    van de Waal, B. W.

    1991-03-01

    Nearly perfect fcc growth may be simulated by the application of a simple growth-algorithm — only sites that are at least 4-coordinated are occupied — to a selected seed. The seed is a 22-atom cluster, being the smallest close-packed structure with two crossing stacking-faults. The stacking-faults produce active surface-sites, that can not be exhausted by occupation; they are arranged in non-vanishing steps, similar to those produced by screw-dislocations. The algorithm prevents further stacking-faults, and ensures ABC-stacking of close-packed (111)-layers, characteristic of the fcc structure. The same algorithm would not produce further growth of perfect fcc clusters or of Mackay icosahedra. It is proposed that the ability to grow fast under near-equilibrium conditions is a better criterion to select clusters as precursors of the bulk-structure than their cohesive energy. The crystal structure problem of the rare gases — why fcc, not hcp? — is discussed in connection with the apparent impossibility to simulate hcp growth by an analogous procedure.

  7. Solution based synthesis of simple fcc Si nano-crystals under ambient conditions.

    PubMed

    Balcı, Mustafa H; Sæterli, Ragnhild; Maria, Jerome; Lindgren, Mikael; Holmestad, Randi; Grande, Tor; Einarsrud, Mari-Ann

    2013-02-28

    We demonstrate for the first time that simple face-centered cubic (fcc) silicon nano-crystals can be produced by a solution based bottom-up synthesis route under ambient conditions. Simple fcc Si nano-crystals (2-7 nm) were prepared at room temperature by using sodium cyclopentadienide as a reducing agent for silicon tetrachloride. Photoluminescence emission at 550 nm was observed for the fcc silicon nano-crystals upon excitation at 340 nm, indicating that fcc Si nano-crystals were exhibiting direct bandgap like semiconductor properties with very fast radiative recombination rates. The new synthesis route makes possible the production and study of simple fcc polymorphs of Si nano-crystals with an easy alteration of surface termination groups.

  8. Formation of annealing twins in f.c.c. crystals

    SciTech Connect

    Mahajan, S.; Pande, C.S.; Imam, M.A.; Rath, B.B.

    1997-06-01

    A microscopic model for the formation of annealing twins in f.c.c. crystals is proposed. It is argued that Shockley partial loops nucleate on consecutive {l_brace}111{r_brace} planes by growth accidents occurring on migrating {l_brace}111{r_brace} steps associated with a moving grain boundary. The higher the velocity of the boundary, the higher the twin density. The absence of twins in high stacking fault energy materials and the influence of temperature on twin density has been developed by examining the influence of deformation damage on the incidence of twinning in copper and the effect of boron in reducing twin density in annealed nickel.

  9. Germanium FCC structure from a colloidal crystal template

    SciTech Connect

    Miguez, H.; Meseguer, F.; Lopez, C.; Holgado, M.; Andreasen, G.; Mifsud, A.; Fornes, V.

    2000-05-16

    Here, the authors show a method to fabricate a macroporous structure in which the pores, essentially identical, arrange regularly in a face-centered cubic (FCC) lattice. The result is a network of air spheres in a germanium medium. This structure presents the highest dielectric contrast ({epsilon}{sub Ge}/{epsilon}{sub air} = 16) ever achieved in the optical regime in such periodic structures, which could result in important applications in photonics. The authors employ solid silica colloidal crystals (opals) as templates within which a cyclic germanium growth process is carried out. Thus, the three-dimensional periodicity of the host is inherited by the guest. Afterward, the silica is removed and a germanium opal replica is obtained.

  10. Local compressibilities in crystals

    NASA Astrophysics Data System (ADS)

    Martín Pendás, A.; Costales, Aurora; Blanco, M. A.; Recio, J. M.; Luaña, Víctor

    2000-12-01

    An application of the atoms in molecules theory to the partitioning of static thermodynamic properties in condensed systems is presented. Attention is focused on the definition and the behavior of atomic compressibilities. Inverses of bulk moduli are found to be simple weighted averages of atomic compressibilities. Two kinds of systems are investigated as examples: four related oxide spinels and the alkali halide family. Our analyses show that the puzzling constancy of the bulk moduli of these spinels is a consequence of the value of the compressibility of an oxide ion. A functional dependence between ionic bulk moduli and ionic volume is also proposed.

  11. Metastable fcc-Fe film epitaxially grown on Cu(100) single-crystal underlayer

    NASA Astrophysics Data System (ADS)

    Ohtake, Mitsuru; Shimamoto, Kohei; Futamoto, Masaaki

    2013-05-01

    Fe film of 40 nm thickness is prepared on fcc-Cu(100) single-crystal underlayer at room temperature by ultra-high vacuum molecular beam epitaxy. The film growth and the detailed structure are investigated by reflection high-energy electron diffraction, cross-sectional high-resolution transmission electron microscopy (HR-TEM), and x-ray diffraction (XRD). An Fe single-crystal with metastable fcc structure nucleates on the underlayer. The HR-TEM shows that fcc lattice is formed from the Fe/Cu interface up to the film surface. A large number of misfit dislocations are introduced around the Fe/Cu interface due to an accommodation of lattice mismatch. Dislocations exist up to the film near surface. The lattice constant is estimated by XRD to be a = 0.3607 nm. The film shows a ferromagnetic property, which reflects the property of fcc-Fe crystal with high-spin ferromagnetic state.

  12. Preparation and characterization of Co single-crystal thin films with hcp, fcc and bcc structures

    SciTech Connect

    Ohtake, Mitsuru; Yabuhara, Osamu; Higuchi, Jumpei; Futamoto, Masaaki

    2011-04-01

    Co crystals with three different structures are realized in the form of single-crystal thin films hetero-epitaxially grown on single-crystal substrates by ultrahigh vacuum rf magnetron sputtering. hcp-, fcc-, and bcc-Co single-crystal films are formed on Cr(211){sub bcc}, Cu(100){sub fcc}, and GaAs(110){sub B3}, respectively. The film growth process is studied by RHEED, and the lattice constants of these Co films are determined by x-ray diffraction. The magnetization properties of these thin films are reflecting the magnetocrystalline anisotropies of Co crystals with the easy magnetization axes along hcp<0001>, fcc<111>, and bcc<100> directions.

  13. Crystal structure of actinide metals at high compression

    SciTech Connect

    Fast, L.; Soederlind, P.

    1995-08-01

    The crystal structures of some light actinide metals are studied theoretically as a function of applied pressure. The first principles electronic structure theory is formulated in the framework of density functional theory, with the gradient corrected local density approximation of the exchange-correlation functional. The light actinide metals are shown to be well described as itinerant (metallic) f-electron metals and generally, they display a crystal structure which have, in agreement with previous theoretical suggestions, increasing degree of symmetry and closed-packing upon compression. The theoretical calculations agree well with available experimental data. At very high compression, the theory predicts closed-packed structures such as the fcc or the hcp structures or the nearly closed-packed bcc structure for the light actinide metals. A simple canonical band picture is presented to explain in which particular closed-packed form these metals will crystallize at ultra-high pressure.

  14. Kinetics study of crystallization with the disorder-bcc-fcc phase transition of charged colloidal dispersions.

    PubMed

    Zhou, Hongwei; Xu, Shenghua; Sun, Zhiwei; Du, Xuan; Liu, Lixia

    2011-06-21

    Structure transformation (disorder-bcc-fcc) in charged colloidal dispersions, as a manifestation of the Ostwald's step rule, was confirmed by means of reflection spectrum (RS) measurements in our previous study. By taking advantage of a reflection spectrum containing plenty of information about the crystallization behaviors, time-dependent changes of parameters associated with the crystal structure and composition during the disorder-bcc-fcc transition are reported by treating the data from RS in this article. In addition, Avrami's model is adopted to analyze the transition process and investigate the transition rate. On the basis of the above investigations, associated kinetic features of crystallization with the disorder-bcc-fcc transition are described.

  15. Multilayer Relaxation and Surface Energies of FCC and BCC Metals Using Equivalent Crystal Theory

    NASA Technical Reports Server (NTRS)

    Rodriguez, Agustin M.; Bozzolo, Guillermo; Ferrante, John

    1993-01-01

    The multilayer relaxation of fcc and bcc metal surfaces is calculated using equivalent crystal theory. The results for changes in interplanar spacings of planes close to the surface and the ensuing surface energies are discussed in reference to other theoretical results and compared to available experimental data. The calculation includes high-index surfaces for which no other theoretical results are known.

  16. Subsurface Stress Fields in FCC Single Crystal Anisotropic Contacts

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.; Knudsen, Erik; Swanson, Gregory R.; Duke, Gregory; Ham-Battista, Gilda

    2004-01-01

    Single crystal superalloy turbine blades used in high pressure turbomachinery are subject to conditions of high temperature, triaxial steady and alternating stresses, fretting stresses in the blade attachment and damper contact locations, and exposure to high-pressure hydrogen. The blades are also subjected to extreme variations in temperature during start-up and shutdown transients. The most prevalent high cycle fatigue (HCF) failure modes observed in these blades during operation include crystallographic crack initiation/propagation on octahedral planes, and non-crystallographic initiation with crystallographic growth. Numerous cases of crack initiation and crack propagation at the blade leading edge tip, blade attachment regions, and damper contact locations have been documented. Understanding crack initiation/propagation under mixed-mode loading conditions is critical for establishing a systematic procedure for evaluating HCF life of single crystal turbine blades. This paper presents analytical and numerical techniques for evaluating two and three dimensional subsurface stress fields in anisotropic contacts. The subsurface stress results are required for evaluating contact fatigue life at damper contacts and dovetail attachment regions in single crystal nickel-base superalloy turbine blades. An analytical procedure is presented for evaluating the subsurface stresses in the elastic half-space, based on the adaptation of a stress function method outlined by Lekhnitskii. Numerical results are presented for cylindrical and spherical anisotropic contacts, using finite element analysis (FEA). Effects of crystal orientation on stress response and fatigue life are examined. Obtaining accurate subsurface stress results for anisotropic single crystal contact problems require extremely refined three-dimensional (3-D) finite element grids, especially in the edge of contact region. Obtaining resolved shear stresses (RSS) on the principal slip planes also involves

  17. Dynamic stability of fcc crystals under isotropic loading from first principles.

    PubMed

    Rehák, Petr; Cerný, Miroslav; Pokluda, Jaroslav

    2012-05-30

    Lattice dynamics and stability of four fcc crystals (Al, Ir, Pt and Au) under isotropic (hydrostatic) tensile loading are studied from first principles using the linear response method and the harmonic approximation. The results reveal that, contrary to former expectations, strengths of all the studied crystals are limited by instabilities related to soft phonons with finite or vanishing wavevectors. The critical strains associated with such instabilities are remarkably lower than those related to the volumetric instability. On the other hand, the corresponding reduction of the tensile strength is by 20% at the most. An analysis of elastic stability conditions is also performed and the results obtained by means of both approaches are compared.

  18. Epitaxial Growth of Metastable hcp-Ni and hcp-NiFe Thin Films on Au(100)fcc Single-Crystal Underlayers and Their Structure Characterization

    NASA Astrophysics Data System (ADS)

    Ohtake, Mitsuru; Sato, Yoichi; Higuchi, Jumpei; Tanaka, Takahiro; Kirino, Fumiyoshi; Futamoto, Masaaki

    2011-10-01

    Metastable hcp-Ni and hcp-NiFe epitaxial thin films are prepared on Au(100)fcc single-crystal underlayers by molecular beam epitaxy. The epitaxial growth and the transformation from metastable hcp to more stable fcc phase are studied by in-situ reflection high-energy electron diffraction. In an early stage of film growth, hcp(1120) crystal is stabilized through hetero-epitaxial growth. The epitaxial orientation relationship between the film and the underlayer is determined to be hcp(1120)[0001], hcp(1120)[1100] ∥ Au(100)[001]fcc. With increasing the film thickness, the hcp structure starts to transform into fcc structure. High-resolution transmission electron microscopy shows that the film consists of a mixture of hcp and fcc crystals and that a large number of stacking faults exist parallel to the close-packed plane. The results suggest that the hcp structure starts to transform from these stacking faults into fcc structure in the lateral direction by atomic displacement parallel to the hcp(0001) close-packed plane. The crystallographic orientation relationships between the hcp and transformed fcc crystals are determined to be fcc(110)[111], fcc(110)[111] ∥ hcp(1120)[0001] and fcc(110)[112], fcc(110)[112] ∥ hcp(1120)[1100].

  19. Photorefractive Crystal Compresses Dynamic Range Of Image

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang

    1991-01-01

    Experiment shows dynamic range of spatial variations of illumination within image compressed by use of photorefractive crystal. In technique, photorefractive crystal placed in optical path at some stage preceding video camera, photographic camera, or final photodetector stage. Provided brightness of parts of scene vary as slowly as or more slowly than photorefractive crystal responds, effect exploited to provide real-time dynamic-range compression to prevent saturation of bright areas in video or photographic images of scene, helping to preserve spatial-variation information in such images.

  20. Universal relationships for the phonon spectra in BCC, FCC, and HCP crystals with a short-range interatomic interaction

    SciTech Connect

    Vaks, V. G. Zhuravlev, I. A.; Zabolotskii, A. D.

    2012-03-15

    The frequencies of the phonon branches that correspond to the vibrations of the close-packed atomic planes in bcc, fcc, and hcp crystals with short-range interatomic interaction are shown to be described by a universal relationship, which only contains two parameters for each branch, for any polarization {lambda}. These phonon branches correspond to the ({xi}, {xi}, 0) direction in bcc crystals, the ({xi}, {xi}, {xi}) direction in fcc crystals, and the (0, 0, {xi}) direction in hcp crystals. This universal relationship can only be violated by long-range interactions, namely, the interactions outside the sixth coordination shell in a bcc crystal, the fifth coordination shell in an fcc crystal, and the eleventh or tenth coordination shell in an hcp crystal. The effect of these long-range interactions for each phonon branch can be quantitatively characterized by certain parameters {Delta}{sub n{lambda}}, which are simply expressed in terms of the frequencies of three phonons of the branch. The values of these parameters are presented for all bcc, fcc, and hcp metals whose phonon spectra are measured. In most cases, the proposed relationships for the frequencies are found to be fulfilled accurate to several percent. In the cases where the {Delta}{sub n{lambda}} parameters are not small, they can give substantial information on the type and scale of long-range interaction effects in various metals.

  1. Flow-induced alignment of (100) fcc thin film colloidal crystals.

    PubMed

    Joy, Midhun; Muangnapoh, Tanyakorn; Snyder, Mark A; Gilchrist, James F

    2015-09-28

    The realization of structural diversity in colloidal crystals obtained by self-assembly techniques remains constrained by thermodynamic considerations and current limits on our ability to alter structure over large scales using imposed fields and confinement. In this work, a convective-based procedure to fabricate multi-layer colloidal crystal films with extensive square-like symmetry is enabled by periodic substrate motion imposed during the continuous assembly. The formation of film-spanning domains of (100) fcc symmetry as a result of added vibration is robust across a range of micron-scale monosized spherical colloidal suspensions (e.g., polystyrene, silica) as well as substrate surface chemistries (e.g., hydrophobic, hydrophilic). The generation of extensive single crystalline (100) fcc domains as large as 15 mm(2) and covering nearly 40% of the colloidal crystalline film is possible by simply tuning coating conditions and multi-layer film thickness. Preferential orientation of the square-packed domains with respect to the direction of deposition is attributed to domain generation based upon a shear-related mechanism. Visualization during assembly gives clues toward the mechanism of this flow-driven self-assembly method.

  2. Quantum calculation of disordered length in fcc single crystals using channelling techniques

    NASA Astrophysics Data System (ADS)

    Abu-Assy, M. K.

    2006-04-01

    Lattices of face-centred cubic crystals (fcc), due to irradiation processes, may become disordered in stable configurations like the dumb-bell configuration (DBC) or body-centred interstitial (BCI). In this work, a quantum mechanical treatment for the calculation of transmission coefficients of channelled positrons from their bound states in the normal lattice regions into the allowed bound states in the disordered regions is given as a function of the length of the disordered regions. In order to obtain more reliable results, higher anharmonic terms in the planar channelling potential are considered in the calculations by using first-order perturbation theory where new bound states have been found. The calculations were executed in the energy range 10 200 MeV of the incident positron on a copper single crystal in the planar direction (100).

  3. Ideal compressive strength of fcc Co, Ni, and Ni-rich alloys along the <001 > direction: A first-principles study

    NASA Astrophysics Data System (ADS)

    Breidi, A.; Fries, S. G.; Ruban, A. V.

    2016-04-01

    We perform density functional theory based first-principles calculations to identify promising alloying elements (X ) capable of enhancing the compressive uniaxial theoretical (ideal) strength of the fcc Ni-matrix along the <001 > direction. The alloying element belongs to a wide range of 3 d ,4 d , and 5 d series with nominal composition of 6.25 at. %. Additionally, a full elastic study is carried to investigate the ideal strength of fcc Ni and fcc Co. Our results indicate that the most desirable alloying elements are those with half d -band filling, namely, Os, Ir, Re, and Ru.

  4. The theoretical tensile strength of fcc crystals predicted from shear strength calculations

    NASA Astrophysics Data System (ADS)

    Černý, M.; Pokluda, J.

    2009-04-01

    This work presents a simple way of estimating uniaxial tensile strength on the basis of theoretical shear strength calculations, taking into account its dependence on a superimposed normal stress. The presented procedure enables us to avoid complicated and time-consuming analyses of elastic stability of crystals under tensile loading. The atomistic simulations of coupled shear and tensile deformations in cubic crystals are performed using first principles computational code based on pseudo-potentials and the plane wave basis set. Six fcc crystals are subjected to shear deformations in convenient slip systems and a special relaxation procedure controls the stress tensor. The obtained dependence of the ideal shear strength on the normal tensile stress seems to be almost linearly decreasing for all investigated crystals. Taking these results into account, the uniaxial tensile strength values in three crystallographic directions were evaluated by assuming a collapse of the weakest shear system. Calculated strengths for \\langle 001\\rangle and \\langle 111\\rangle loading were found to be mostly lower than previously calculated stresses related to tensile instability but rather close to those obtained by means of the shear instability analysis. On the other hand, the strengths for \\langle 110\\rangle loading almost match the stresses related to tensile instability.

  5. Transition saddle points and associated defects for a triaxially stretched FCC crystal

    NASA Astrophysics Data System (ADS)

    Delph, T. J.; Zimmerman, J. A.

    2016-05-01

    We demonstrate the use of a single-ended method for locating saddle points on the potential energy surface for a triaxially stretched FCC crystal governed by a Lennard-Jones potential. Single-ended methods require no prior knowledge of the defected state and are shown to have powerful advantages in this application, principally because the nature of the associated defects can be quite complicated and hence extremely difficult to predict ab initio. We find that while classical spherical cavitation occurs for high stretch values, for lower values the defect mode transitions to a non-spherical pattern without any apparent symmetries. This non-spherical mode plays the primary role in harmonic transition state theory predictions that are used to examine how instabilities vary with applied loading rate. Such a defect mode would be difficult to determine using double-ended methods for finding saddle points.

  6. Crystal Dynamics of (delta) fcc Pu-Ga by High Resolution Inelastic X-Ray Scattering

    SciTech Connect

    Wong, J; Krisch, M; Farber, D; Occelli, F; Xu, R; Chiang, T C; Clatterbuck, D; Schwartz, A J; Wall, M; Boro, C

    2004-09-28

    We have used a microbeam on large grain sample concept to carry out an inelastic x-ray scattering experiment to map the full phonon dispersion curves of an fcc {delta}-phase Pu-Ga alloy. This approach obviates experimental difficulties with conventional inelastic neutron scattering due to the high absorption cross section of the common {sup 239}Pu isotope and the non-availability of large (mm size) single crystal materials for Pu and its alloys. A classical Born von-Karman force constant model was used to model the experimental results, and no less than 4th nearest neighbor interactions had to be included to account for the observation. Several unusual features including, a large elastic anisotropy, a small shear elastic modulus, (C{sub 11}-C{sub 12})/2, a Kohn-like anomaly in the T{sub 1}[011] branch, and a pronounced softening of the T[111] branch towards the L point in the Brillouin are found. These features can be related to the phase transitions of plutonium and to strong coupling between the crystal structure and the 5f valence instabilities. Our results represent the first full phonon dispersions ever obtained for any Pu-bearing material, thus ending a 40-year quest for this fundamental data. The phonon data also provide a critical test for theoretical treatments of highly correlated 5f electron systems as exemplified by recent dynamical mean field theory (DMFT) calculations for {delta}-plutonium.

  7. Single-crystal adsorption calorimetry and density functional theory of CO chemisorption on fcc Co{110}.

    PubMed

    Liao, Kristine; Fiorin, Vittorio; Gunn, David S D; Jenkins, Stephen J; King, David A

    2013-03-21

    Using single-crystal adsorption calorimetry (SCAC) and density functional theory (DFT), the interaction of carbon monoxide on fcc Co{110} is reported for the first time. The results indicate that adsorption is consistent with molecular chemisorption at all coverages. The initial heat of adsorption of 140 kJ mol(-1) is found in the range of heat values calorimetrically measured on other ferromagnetic metal surfaces, such as nickel and iron. DFT adsorption energies are in good agreement with the experimental results, and comparison between SCAC and DFT for CO on other ferromagnetic surfaces is made. The calculated dissociation barrier of 2.03 eV implies that dissociation at 300 K is unlikely even at the lowest coverage. At high coverages during the adsorption-desorption steady state regime, a pre-exponential factor for CO desorption of 1.2 × 10(17) s(-1) is found, implying a localised molecular adsorbed state prior to desorption in contrast to what we found with Ni surfaces. This result highlights the importance of the choice of the pre-exponential factor in evaluating the activation energy for desorption.

  8. Crystal-momentum dispersion of ultrafast spin change in fcc Co.

    PubMed

    Si, M S; Li, J Y; Yang, D Z; Xue, D S; Zhang, G P

    2014-05-23

    Nearly twenty years ago, Beaurepaire and coworkers showed that when an ultrafast laser impinges on a ferromagnet, its spin moment undergoes a dramatic change, but how it works remains a mystery. While the current experiment is still unable to resolve the minute details of the spin change, crystal momentum-resolved techniques have long been used to analyze the charge dynamics in superconductors and strongly correlated materials. Here we extend it to probe spin moment change in the entire three-dimensional Brillouin zone for fcc Co. Our results indeed show a strong spin activity along the Δ line, supporting a prior experimental finding. The spin active pockets coalesce into a series of spin surfaces that follow the Fermi surfaces. We predict two largest spin change pockets which have been elusive to experiments: one pocket is slightly below the Δ line and the other is along the Λ line and close to the L point. Our theory presents an opportunity for the time-, spin- and momentum-resolve photoemission technique.

  9. Investigation of Three-Dimensional Stress Fields and Slip Systems for FCC Single Crystal Superalloy Notched Specimens

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.; Magnan, Shannon; Ebrahimi, Fereshteh; Ferroro, Luis

    2004-01-01

    Metals and their alloys, except for a few intermetallics, are inherently ductile, i.e. plastic deformation precedes fracture in these materials. Therefore, resistance to fracture is directly related to the development of the plastic zone at the crack tip. Recent studies indicate that the fracture toughness of single crystals depends on the crystallographic orientation of the notch as well as the loading direction. In general, the dependence of crack propagation resistance on crystallographic orientation arises from the anisotropy of (i) elastic constants, (ii) plastic deformation (or slip), and (iii) the weakest fracture planes (e.g. cleavage planes). Because of the triaxial stress state at the notch tips, many slip systems that otherwise would not be activated during uniaxial testing, become operational. The plastic zone formation in single crystals has been tackled theoretically by Rice and his co-workers and only limited experimental work has been conducted in this area. The study of the stresses and strains in the vicinity of a FCC single crystal notch tip is of relatively recent origin. We present experimental and numerical investigation of 3D stress fields and evolution of slip sector boundaries near notches in FCC single crystal tension test specimens, and demonstrate that a 3D linear elastic finite element model that includes the effect of material anisotropy is shown to predict active slip planes and sectors accurately. The slip sector boundaries are shown to have complex curved shapes with several slip systems active simultaneously near the notch. Results are presented for surface and mid-plane of the specimens. The results demonstrate that accounting for 3D elastic anisotropy is very important for accurate prediction of slip activation near FCC single crystal notches loaded in tension. Results from the study will help establish guidelines for fatigue damage near single crystal notches.

  10. Fabrication of FCC-SiO{sub 2} colloidal crystals using the vertical convective self-assemble method

    SciTech Connect

    Castañeda-Uribe, O. A.; Salcedo-Reyes, J. C.; Méndez-Pinzón, H. A.; Pedroza-Rodríguez, A. M.

    2014-05-15

    In order to determine the optimal conditions for the growth of high-quality 250 nm-SiO{sub 2} colloidal crystals by the vertical convective self-assemble method, the Design of Experiments (DoE) methodology is applied. The influence of the evaporation temperature, the volume fraction, and the pH of the colloidal suspension is studied by means of an analysis of variance (ANOVA) in a 3{sup 3} factorial design. Characteristics of the stacking lattice of the resulting colloidal crystals are determined by scanning electron microscopy and angle-resolved transmittance spectroscopy. Quantitative results from the statistical test show that the temperature is the most critical factor influencing the quality of the colloidal crystal, obtaining highly ordered structures with FCC stacking lattice at a growth temperature of 40°C.

  11. Effect of elastic fields of dislocations on the equilibrium configurations of self-interstitial atoms in cubic crystals. Part II. FCC copper crystal

    SciTech Connect

    Ivanov, V.V.; Chernov, V.M.

    1987-06-01

    The aim of this study is to obtain the energy parameters of the interaction of dislocations of various types with different self-interstitial atom (SIA) configurations in an elastically anisotropic fcc copper crystal. The data from calculations of such interaction make it possible to identify the types of equilibrium SIA configurations that exist in the neighborhood of dislocations and to compare the results with the previously studied case of a bcc iron crystal. The calculations were carried out on the basis of available data on SIA characteristics, obtained with the aid of computer calculations of the parameters of point defects in a fcc copper crystal. The interaction of dislocations with an SIA results in the stabilization of the SIA configurations that are metastable in the absence of elastic fields. The size of the region of stabilization of the <110> dumbbell configuration depends weakly on the type of dislocation and is determined by the distance r = 3b. The distinctive features of the interaction of an SIA with a 60/sup 0/ dislocation enable us to speak of the high mobility of the interstitial atom along the dislocation line. An edge dislocation, interacting with an SIA, causes the SIA to hover as a <110> dumbbell configuration at a distance r = 3b from the line of the dislocation.

  12. The evolution of machining-induced surface of single-crystal FCC copper via nanoindentation

    PubMed Central

    2013-01-01

    The physical properties of the machining-induced new surface depend on the performance of the initial defect surface and deformed layer in the subsurface of the bulk material. In this paper, three-dimensional molecular dynamics simulations of nanoindentation are preformed on the single-point diamond turning surface of single-crystal copper comparing with that of pristine single-crystal face-centered cubic copper. The simulation results indicate that the nucleation of dislocations in the nanoindentation test on the machining-induced surface and pristine single-crystal copper is different. The dislocation embryos are gradually developed from the sites of homogeneous random nucleation around the indenter in the pristine single-crystal specimen, while the dislocation embryos derived from the vacancy-related defects are distributed in the damage layer of the subsurface beneath the machining-induced surface. The results show that the hardness of the machining-induced surface is softer than that of pristine single-crystal copper. Then, the nanocutting simulations are performed along different crystal orientations on the same crystal surface. It is shown that the crystal orientation directly influences the dislocation formation and distribution of the machining-induced surface. The crystal orientation of nanocutting is further verified to affect both residual defect generations and their propagation directions which are important in assessing the change of mechanical properties, such as hardness and Young's modulus, after nanocutting process. PMID:23641932

  13. The evolution of machining-induced surface of single-crystal FCC copper via nanoindentation.

    PubMed

    Zhang, Lin; Huang, Hu; Zhao, Hongwei; Ma, Zhichao; Yang, Yihan; Hu, Xiaoli

    2013-05-04

    The physical properties of the machining-induced new surface depend on the performance of the initial defect surface and deformed layer in the subsurface of the bulk material. In this paper, three-dimensional molecular dynamics simulations of nanoindentation are preformed on the single-point diamond turning surface of single-crystal copper comparing with that of pristine single-crystal face-centered cubic copper. The simulation results indicate that the nucleation of dislocations in the nanoindentation test on the machining-induced surface and pristine single-crystal copper is different. The dislocation embryos are gradually developed from the sites of homogeneous random nucleation around the indenter in the pristine single-crystal specimen, while the dislocation embryos derived from the vacancy-related defects are distributed in the damage layer of the subsurface beneath the machining-induced surface. The results show that the hardness of the machining-induced surface is softer than that of pristine single-crystal copper. Then, the nanocutting simulations are performed along different crystal orientations on the same crystal surface. It is shown that the crystal orientation directly influences the dislocation formation and distribution of the machining-induced surface. The crystal orientation of nanocutting is further verified to affect both residual defect generations and their propagation directions which are important in assessing the change of mechanical properties, such as hardness and Young's modulus, after nanocutting process.

  14. Temperature Dependence of the Mechanical Properties of Equiatomic Solid Solution Alloys with FCC Crystal Structures

    DOE PAGES

    Wu, Zhenggang; Bei, Hongbin; Pharr, George M.; George, Easo P.

    2014-10-03

    We found that compared to decades-old theories of strengthening in dilute solid solutions, the mechanical behavior of concentrated solid solutions is relatively poorly understood. A special subset of these materials includes alloys in which the constituent elements are present in equal atomic proportions, including the high-entropy alloys of recent interest. A unique characteristic of equiatomic alloys is the absence of “solvent” and “solute” atoms, resulting in a breakdown of the textbook picture of dislocations moving through a solvent lattice and encountering discrete solute obstacles. Likewise, to clarify the mechanical behavior of this interesting new class of materials, we investigate heremore » a family of equiatomic binary, ternary and quaternary alloys based on the elements Fe, Ni, Co, Cr and Mn that were previously shown to be single-phase face-centered cubic (fcc) solid solutions. The alloys were arc-melted, drop-cast, homogenized, cold-rolled and recrystallized to produce equiaxed microstructures with comparable grain sizes. Tensile tests were performed at an engineering strain rate of 10-3 s-1 at temperatures in the range 77–673 K. Unalloyed fcc Ni was processed similarly and tested for comparison. The flow stresses depend to varying degrees on temperature, with some (e.g. NiCoCr, NiCoCrMn and FeNiCoCr) exhibiting yield and ultimate strengths that increase strongly with decreasing temperature, while others (e.g. NiCo and Ni) exhibit very weak temperature dependencies. Moreover, to better understand this behavior, the temperature dependencies of the yield strength and strain hardening were analyzed separately. Lattice friction appears to be the predominant component of the temperature-dependent yield stress, possibly because the Peierls barrier height decreases with increasing temperature due to a thermally induced increase of dislocation width. In the early stages of plastic flow (5–13% strain, depending on material), the temperature

  15. Temperature Dependence of the Mechanical Properties of Equiatomic Solid Solution Alloys with FCC Crystal Structures

    SciTech Connect

    Wu, Zhenggang; Bei, Hongbin; Pharr, George M.; George, Easo P.

    2014-10-03

    We found that compared to decades-old theories of strengthening in dilute solid solutions, the mechanical behavior of concentrated solid solutions is relatively poorly understood. A special subset of these materials includes alloys in which the constituent elements are present in equal atomic proportions, including the high-entropy alloys of recent interest. A unique characteristic of equiatomic alloys is the absence of “solvent” and “solute” atoms, resulting in a breakdown of the textbook picture of dislocations moving through a solvent lattice and encountering discrete solute obstacles. Likewise, to clarify the mechanical behavior of this interesting new class of materials, we investigate here a family of equiatomic binary, ternary and quaternary alloys based on the elements Fe, Ni, Co, Cr and Mn that were previously shown to be single-phase face-centered cubic (fcc) solid solutions. The alloys were arc-melted, drop-cast, homogenized, cold-rolled and recrystallized to produce equiaxed microstructures with comparable grain sizes. Tensile tests were performed at an engineering strain rate of 10-3 s-1 at temperatures in the range 77–673 K. Unalloyed fcc Ni was processed similarly and tested for comparison. The flow stresses depend to varying degrees on temperature, with some (e.g. NiCoCr, NiCoCrMn and FeNiCoCr) exhibiting yield and ultimate strengths that increase strongly with decreasing temperature, while others (e.g. NiCo and Ni) exhibit very weak temperature dependencies. Moreover, to better understand this behavior, the temperature dependencies of the yield strength and strain hardening were analyzed separately. Lattice friction appears to be the predominant component of the temperature-dependent yield stress, possibly because the Peierls barrier height decreases with increasing temperature due to a thermally induced increase of dislocation width. In the early stages of plastic flow (5–13% strain, depending on material), the

  16. Metal-organic pathways for anisotropic growth of a highly symmetrical crystal structure: example of the fcc Ni.

    PubMed

    Mourdikoudis, Stefanos; Collière, Vincent; Amiens, Catherine; Fau, Pierre; Kahn, Myrtil L

    2013-11-01

    The control of the metallic nanocrystal shape is of prime importance for a wide variety of applications. We report a detailed research work on metal-organic chemical routes for the synthesis of a highly symmetrical crystal structure. In particular, this study shows the key parameters ensuring the anisotropic growth of nickel nanostructures (fcc crystal). Numerous reaction conditions are investigated (precursors, solvents, temperature, reducing agents, reaction time, and types and ratios of surfactants, such as alkyl amines, carboxylic acids, and phosphine oxides), and their effects on the size and shape of the final product are reported. The role of the growth modifiers and the structuring of the reaction media on the anisotropic growth are demonstrated. This metal-organic approach generates several novel anisotropic nanostructures in a wide size range depending on the reaction conditions. In this way, nanomaterials with reproducible size, shape, and composition are obtained with good yield. Transmission electron microscopy techniques (TEM and HRTEM) are the principal methods for monitoring the morphology.

  17. Nucleation of liquid droplets and voids in a stretched Lennard-Jones fcc crystal.

    PubMed

    Baidakov, Vladimir G; Tipeev, Azat O

    2015-09-28

    The method of molecular dynamics simulation has been used to investigate the phase decay of a metastable Lennard-Jones face-centered cubic crystal at positive and negative pressures. It is shown that at high degrees of metastability, crystal decay proceeds through the spontaneous formation and growth of new-phase nuclei. It has been found that there exists a certain boundary temperature. Below this temperature, the crystal phase disintegrates as the result of formation of voids, and above, as a result of formation of liquid droplets. The boundary temperature corresponds to the temperature of cessation of a crystal-liquid phase equilibrium when the melting line comes in contact with the spinodal of the stretched liquid. The results of the simulations are interpreted in the framework of classical nucleation theory. The thermodynamics of phase transitions in solids has been examined with allowance for the elastic energy of stresses arising owing to the difference in the densities of the initial and the forming phases. As a result of the action of elastic forces, at negative pressures, the boundary of the limiting superheating (stretching) of a crystal approaches the spinodal, on which the isothermal bulk modulus of dilatation becomes equal to zero. At the boundary of the limiting superheating (stretching), the shape of liquid droplets and voids is close to the spherical one.

  18. Shear moduli in bcc-fcc structure transition of colloidal crystals.

    PubMed

    Zhou, Hongwei; Xu, Shenghua; Sun, Zhiwei; Zhu, Ruzeng

    2015-10-14

    Shear moduli variation in the metastable-stable structure transition of charged colloidal crystals was investigated by the combination techniques of torsional resonance spectroscopy and reflection spectrometer. Modulus of the system increases with the proceeding of the transition process and it finally reaches the maximum value at the end of the transition. For colloidal crystals in stable state, the experimental moduli show good consistence with theoretical expectations. However, in the transition process, the moduli are much smaller than theoretical ones and this can be chalked up to crystalline imperfection in the transition state.

  19. Nucleation of liquid droplets and voids in a stretched Lennard-Jones fcc crystal

    SciTech Connect

    Baidakov, Vladimir G. Tipeev, Azat O.

    2015-09-28

    The method of molecular dynamics simulation has been used to investigate the phase decay of a metastable Lennard-Jones face-centered cubic crystal at positive and negative pressures. It is shown that at high degrees of metastability, crystal decay proceeds through the spontaneous formation and growth of new-phase nuclei. It has been found that there exists a certain boundary temperature. Below this temperature, the crystal phase disintegrates as the result of formation of voids, and above, as a result of formation of liquid droplets. The boundary temperature corresponds to the temperature of cessation of a crystal–liquid phase equilibrium when the melting line comes in contact with the spinodal of the stretched liquid. The results of the simulations are interpreted in the framework of classical nucleation theory. The thermodynamics of phase transitions in solids has been examined with allowance for the elastic energy of stresses arising owing to the difference in the densities of the initial and the forming phases. As a result of the action of elastic forces, at negative pressures, the boundary of the limiting superheating (stretching) of a crystal approaches the spinodal, on which the isothermal bulk modulus of dilatation becomes equal to zero. At the boundary of the limiting superheating (stretching), the shape of liquid droplets and voids is close to the spherical one.

  20. Shock compression of [001] single crystal silicon

    DOE PAGES

    Zhao, S.; Remington, B.; Hahn, E. N.; Kad, B.; Bringa, E. M.; Meyers, M. A.

    2016-03-14

    Silicon is ubiquitous in our advanced technological society, yet our current understanding of change to its mechanical response at extreme pressures and strain-rates is far from complete. This is due to its brittleness, making recovery experiments difficult. High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon (using impedance-matched momentum traps) unveiled remarkable structural changes observed by transmission electron microscopy. As laser energy increases, corresponding to an increase in peak shock pressure, the following plastic responses are are observed: surface cleavage along {111} planes, dislocations and stacking faults; bands of amorphized material initially forming on crystallographic orientations consistent withmore » dislocation slip; and coarse regions of amorphized material. Molecular dynamics simulations approach equivalent length and time scales to laser experiments and reveal the evolution of shock-induced partial dislocations and their crucial role in the preliminary stages of amorphization. Furthermore, application of coupled hydrostatic and shear stresses produce amorphization below the hydrostatically determined critical melting pressure under dynamic shock compression.« less

  1. Highly compressed ammonia forms an ionic crystal.

    PubMed

    Pickard, Chris J; Needs, R J

    2008-10-01

    Ammonia is an important compound with many uses, such as in the manufacture of fertilizers, explosives and pharmaceuticals. As an archetypal hydrogen-bonded system, the properties of ammonia under pressure are of fundamental interest, and compressed ammonia has a significant role in planetary physics. We predict new high-pressure crystalline phases of ammonia (NH(3)) through a computational search based on first-principles density-functional-theory calculations. Ammonia is known to form hydrogen-bonded solids, but we predict that at higher pressures it will form ammonium amide ionic solids consisting of alternate layers of NH(4)(+) and NH(2)(-) ions. These ionic phases are predicted to be stable over a wide range of pressures readily obtainable in laboratory experiments. The occurrence of ionic phases is rationalized in terms of the relative ease of forming ammonium and amide ions from ammonia molecules, and the volume reduction on doing so. We also predict that the ionic bonding cannot be sustained under extreme compression and that, at pressures beyond the reach of current static-loading experiments, ammonia will return to hydrogen-bonded structures consisting of neutral NH(3) molecules. PMID:18724375

  2. Shock compression of [001] single crystal silicon

    NASA Astrophysics Data System (ADS)

    Zhao, S.; Hahn, E. N.; Kad, B.; Remington, B. A.; Bringa, E. M.; Meyers, M. A.

    2016-05-01

    Silicon is ubiquitous in our advanced technological society, yet our current understanding of change to its mechanical response at extreme pressures and strain-rates is far from complete. This is due to its brittleness, making recovery experiments difficult. High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon (using impedance-matched momentum traps) unveiled remarkable structural changes observed by transmission electron microscopy. As laser energy increases, corresponding to an increase in peak shock pressure, the following plastic responses are are observed: surface cleavage along {111} planes, dislocations and stacking faults; bands of amorphized material initially forming on crystallographic orientations consistent with dislocation slip; and coarse regions of amorphized material. Molecular dynamics simulations approach equivalent length and time scales to laser experiments and reveal the evolution of shock-induced partial dislocations and their crucial role in the preliminary stages of amorphization. Application of coupled hydrostatic and shear stresses produce amorphization below the hydrostatically determined critical melting pressure under dynamic shock compression.

  3. Inferring elastic properties of an fcc crystal from displacement correlations: sub-space projection and statistical artifacts

    NASA Astrophysics Data System (ADS)

    Hasan, Asad; Maloney, Craig

    2013-03-01

    We compute the effective dispersion and density of states (DOS) of two-dimensional sub-regions of three dimensional face centered cubic (FCC) crystals with both a direct projection-inversion technique and a Monte Carlo simulation based on a common Hamiltonian. We study sub-regions of both (111) and (100) planes. For any direction of wavevector, we show an anomalous ω2 ~ q scaling regime at low q where ω2 is the energy associated with a mode of wavenumber q. This scaling should give rise to an anomalous DOS, Dω, at low ω: Dω ~ω3 rather than the conventional Debye result: Dω ~ω2 . The DOS for the (100) sub-region looks to be consistent with Dω ~ω3 , while the (111) shows something closer to the Debye result at the smallest frequencies. Our Monte Carlo simulation shows that finite sampling artifacts act as an effective disorder and bias the Dω in the same way as the finite size artifacts, giving a behavior closer to Dω ~ω2 than Dω ~ω3 . These results should have an important impact on interpretation of recent studies of colloidal solids where two-point displacement correlations can be obtained in real-space via microscopy.

  4. Controlling the lattice parameters of gold nanoparticle FCC crystals with duplex DNA linkers.

    PubMed

    Hill, Haley D; Macfarlane, Robert J; Senesi, Andrew J; Lee, Byeongdu; Park, Sung Yong; Mirkin, Chad A

    2008-08-01

    DNA-functionalized gold nanoparticles can be used to induce the formation and control the unit cell parameters of highly ordered face-centered cubic crystal lattices. Nanoparticle spacing increases linearly with longer DNA interconnect length, yielding maximum unit cell parameters of 77 nm and 0.52% inorganic-filled space for the DNA constructs studied. In general, we show that longer DNA connections result in a decrease in the overall crystallinity and order of the lattice due to greater conformational flexibility.

  5. Influence of crystallographic orientation on the magnetic properties of NiFe, Co, and Ni epitaxial fcc films grown on single-crystal substrates

    NASA Astrophysics Data System (ADS)

    Ohtani, Taiki; Kawai, Tetsuroh; Ohtake, Mitsuru; Futamoto, Masaaki

    2013-08-01

    Ni80Fe20 (at. %), Co, and Ni epitaxial thin films of fcc(100) and fcc(111) orientations are prepared on single-crystal substrates by using an ultra-high-vacuum radio-frequency magnetron sputtering system. The influence of the magnetocrystalline anisotropy on the magnetostriction behavior under in-plane rotating magnetic fields is investigated. Triangular waveforms are observed in the magnetostriction measurements under low rotating fields for films that show four-fold symmetry in the in-plane magnetic anisotropies. The magnetostriction behavior is related to the motion of ninety-degree magnetic domain walls in magnetically unsaturated films. The waveform changes from a triangular to a sinusoidal shape when magnetization saturation is approached under increasing magnetic field. On the other hand, films having almost isotropic in-plane magnetic properties show sinusoidal waveforms even when the films are not magnetically saturated.

  6. Inferring elastic properties of an fcc crystal from displacement correlations: subspace projection and statistical artifacts.

    PubMed

    Hasan, A; Maloney, C E

    2014-12-01

    We compute the effective dispersion and vibrational density of states (DOS) of two-dimensional subregions of three-dimensional face-centered-cubic crystals using both a direct projection-inversion technique and a Monte Carlo simulation based on a common underlying Hamiltonian. We study both a (111) and (100) plane. We show that for any given direction of wave vector, both (111) and (100) show an anomalous ω(2)∼q regime at low q where ω(2) is the energy associated with the given mode and q is its wave number. The ω(2)∼q scaling should be expected to give rise to an anomalous DOS, D(ω), at low ω: D(ω)∼ω(3) rather than the conventional Debye result: D(ω)∼ω(2). The DOS for (100) looks to be consistent with D(ω)∼ω(3), while (111) shows something closer to the conventional Debye result at the smallest frequencies. In addition to the direct projection-inversion calculation, we perform Monte Carlo simulations to study the effects of finite sampling statistics. We show that finite sampling artifacts act as an effective disorder and bias D(ω), giving a behavior closer to D(ω)∼ω(2) than D(ω)∼ω(3). These results should have an important impact on the interpretation of recent studies of colloidal solids where the two-point displacement correlations can be obtained directly in real-space via microscopy.

  7. Inferring elastic properties of an fcc crystal from displacement correlations: Subspace projection and statistical artifacts

    NASA Astrophysics Data System (ADS)

    Hasan, A.; Maloney, C. E.

    2014-12-01

    We compute the effective dispersion and vibrational density of states (DOS) of two-dimensional subregions of three-dimensional face-centered-cubic crystals using both a direct projection-inversion technique and a Monte Carlo simulation based on a common underlying Hamiltonian. We study both a (111) and (100) plane. We show that for any given direction of wave vector, both (111) and (100) show an anomalous ω2˜q regime at low q where ω2 is the energy associated with the given mode and q is its wave number. The ω2˜q scaling should be expected to give rise to an anomalous DOS, Dω, at low ω : Dω˜ω3 rather than the conventional Debye result: Dω˜ω2 . The DOS for (100) looks to be consistent with Dω˜ω3 , while (111) shows something closer to the conventional Debye result at the smallest frequencies. In addition to the direct projection-inversion calculation, we perform Monte Carlo simulations to study the effects of finite sampling statistics. We show that finite sampling artifacts act as an effective disorder and bias Dω, giving a behavior closer to Dω˜ω2 than Dω˜ω3 . These results should have an important impact on the interpretation of recent studies of colloidal solids where the two-point displacement correlations can be obtained directly in real-space via microscopy.

  8. Alignment and Stiffening of Liquid Crystal Elastomers under Dynamic Compression

    NASA Astrophysics Data System (ADS)

    Agrawal, Aditya; Patra, Prabir; Ajayan, Pulickel; Chapman, Walter; Verduzco, Rafael

    2013-03-01

    Biological tissues have the remarkable ability to remodel and repair in response to disease, injury, and mechanical stresses, a phenomenon known ``functional adaptation'' or ``remodeling''. Herein, we report similar behavior in polydomain liquid crystal elastomers. Liquid crystal elastomers dramatically increase in stiffness by up to 90 % under low-amplitude, repetitive (dynamic) compression. By studying a systematic series of materials, we demonstrate that the stiffness increase is directly influenced by the liquid crystal content of the elastomers, the presence of a nematic liquid crystal phase and the use of a dynamic as opposed to static deformation. Through a combination of rheological measurements, polarizing optical microscopy and 2-D X-ray diffraction, we demonstrate that self-stiffening arises due to rotations of the nematic director in response to dynamic compression, and show that the behavior is consistent with the theory for nematic rubber elasticity. Previous work with liquid crystal elastomers has focused primarily on `soft elastic' deformations at large strains, but our findings indicate rich behavior at previously overlooked low-strain, dynamic deformations.

  9. Compressive sensing spectrometry based on liquid crystal devices.

    PubMed

    August, Yitzhak; Stern, Adrian

    2013-12-01

    We present a new type of compressive spectroscopy technique employing a liquid crystal (LC) phase retarder. A tunable LC cell is used in a manner compliant with the compressive sensing (CS) framework to significantly reduce the spectral scanning effort. The presented optical spectrometer consists of a single LC phase retarder combined with a single photo detector, where the LC phase retarder is used to modulate the input spectrum and the photodiode is used to measure the transmitted spectral signal. Sequences of measurements are taken, where each measurement is done with a different state of the retarder. Then, the set of photodiode measurements is used as input data to a CS solver algorithm. We demonstrate numerally compressive spectral sensing with approximately ten times fewer measurements than with an equivalent conventional spectrometer.

  10. Epitaxial growth of fcc-Co{sub x}Ni{sub 100-x} thin films on MgO(110) single-crystal substrates

    SciTech Connect

    Ohtake, Mitsuru; Nukaga, Yuri; Sato, Yoichi; Futamoto, Masaaki; Kirino, Fumiyoshi

    2009-12-15

    Co{sub x}Ni{sub 100-x} (x=100, 80, 20, 0 at. %) epitaxial thin films were prepared on MgO(110) single-crystal substrates heated at 300 deg. C by ultrahigh vacuum molecular beam epitaxy. The growth mechanism is discussed based on lattice strain and crystallographic defects. CoNi(110) single-crystal films with a fcc structure are obtained for all compositions. Co{sub x}Ni{sub 100-x} film growth follows the Volmer-Weber mode. X-ray diffraction analysis indicates that the out-of-plane and the in-plane lattice spacings of the Co{sub x}Ni{sub 100-x} films are in agreement within +-0.5% with the values of the respective bulk Co{sub x}Ni{sub 100-x} crystals, suggesting that the strain in the film is very small. High-resolution cross-sectional transmission microscopy shows that an atomically sharp boundary is formed between a Co(110){sub fcc} film and a MgO(110) substrate, where periodical misfit dislocations are preferentially introduced in the film at the Co/MgO interface. The presence of such periodical misfit dislocations relieves the strain caused by the lattice mismatch between the film and the substrate.

  11. Shock compression experiments on Lithium Deuteride single crystals.

    SciTech Connect

    Knudson, Marcus D.; Desjarlais, Michael Paul; Lemke, Raymond W.

    2014-10-01

    S hock compression exper iments in the few hundred GPa (multi - Mabr) regime were performed on Lithium Deuteride (LiD) single crystals . This study utilized the high velocity flyer plate capability of the Sandia Z Machine to perform impact experiments at flyer plate velocities in the range of 17 - 32 km/s. Measurements included pressure, density, and temperature between %7E200 - 600 GPa along the Principal Hugoniot - the locus of end states achievable through compression by large amplitude shock waves - as well as pressure and density of re - shock states up to %7E900 GPa . The experimental measurements are compared with recent density functional theory calculations as well as a new tabular equation of state developed at Los Alamos National Labs.

  12. Theoretical and computational comparison of models for dislocation dissociation and stacking fault/core formation in fcc crystals

    NASA Astrophysics Data System (ADS)

    Mianroodi, J. R.; Hunter, A.; Beyerlein, I. J.; Svendsen, B.

    2016-10-01

    The purpose of the current work is the theoretical and computational comparison of selected models for the energetics of dislocation dissociation resulting in stacking fault and partial dislocation (core) formation in fcc crystals as based on the (generalized) Peierls-Nabarro (GPN: e.g., Xiang et al., 2008; Shen et al., 2014), and phase-field (PF: e.g., Shen and Wang, 2004; Hunter et al., 2011, 2013; Mianroodi and Svendsen, 2015), methodologies (e.g., Wang and Li, 2010). More specifically, in the current work, the GPN-based model of Xiang et al. (2008) is compared theoretically with the PF-based models of Shen and Wang (2004), Hunter et al. (2011, 2013), and Mianroodi and Svendsen (2015). This is carried out here with the help of a unified formulation for these models via a generalization of the approach of Cahn and Hilliard (1958) to mechanics. Differences among these include the model forms for the free energy density ψela of the lattice and the free energy density ψsli associated with dislocation slip. In the PF-based models, for example, ψela is formulated with respect to the residual distortion HR due to dislocation slip (e.g., Khachaturyan, 1983; Mura, 1987), and with respect to the dislocation tensor curl HR in the GPN model (e.g., Xiang et al., 2008). As shown here, both model forms for ψela are in fact mathematically equal and so physically equivalent. On the other hand, model forms for ψsli differ in the assumed dependence on the phase or disregistry fields ϕ, whose spatial variation represents the transition from unslipped to slipped regions in the crystal. In particular, Xiang et al. (2008) and Hunter et al. (2011, 2013) work with ψsli(ϕ). On the other hand, Shen and Wang (2004) and Mianroodi and Svendsen (2015) employ ψsli(ϕ , ∇ ϕ). To investigate the consequences of these differences for the modeling of the dislocation core, dissociation, and stacking fault formation, predictions from the models of Hunter et al. (2011, 2013) and Mianroodi

  13. Rarefaction shock waves in shock-compressed diamond <110> crystal

    NASA Astrophysics Data System (ADS)

    Perriot, Romain; Lin, You; Zhakhovsky, Vasily; White, Carter; Oleynik, Ivan

    2013-03-01

    Piston-driven shock compression of diamond <110> crystal was simulated by molecular dynamics using the REBO potential. At piston velocities between 2 and 5 km/s and corresponding pressures 117 GPA < P < 278 GPa, diamond sample undergoes a polymorphic phase transition, characterized by the coexistence of two elastically compressed phases, low-pressure phase A and high-pressure phase B. This phase transition results in the splitting of the shock wave into two elastic shock waves, composed of pure phase A and a mixture of phases A and B. Upon removal of the piston, a release wave is observed at the rear of the sample, turning into a rarefaction shock wave where the material undergoes the reverse phase transition from coexisting phases to the original low-pressure phase. For strong plastic waves induced by larger piston velocities the release wave propagates as a rarefaction wave without any phase transition corresponding to the adiabatic expansion along the plastic branch of the Hugoniot.

  14. Observation of soliton compression in silicon photonic crystals

    PubMed Central

    Blanco-Redondo, A.; Husko, C.; Eades, D.; Zhang, Y.; Li, J.; Krauss, T.F.; Eggleton, B.J.

    2014-01-01

    Solitons are nonlinear waves present in diverse physical systems including plasmas, water surfaces and optics. In silicon, the presence of two photon absorption and accompanying free carriers strongly perturb the canonical dynamics of optical solitons. Here we report the first experimental demonstration of soliton-effect pulse compression of picosecond pulses in silicon, despite two photon absorption and free carriers. Here we achieve compression of 3.7 ps pulses to 1.6 ps with <10 pJ energy. We demonstrate a ~1-ps free-carrier-induced pulse acceleration and show that picosecond input pulses are critical to these observations. These experiments are enabled by a dispersion-engineered slow-light photonic crystal waveguide and an ultra-sensitive frequency-resolved electrical gating technique to detect the ultralow energies in the nanostructured device. Strong agreement with a nonlinear Schrödinger model confirms the measurements. These results further our understanding of nonlinear waves in silicon and open the way to soliton-based functionalities in complementary metal-oxide-semiconductor-compatible platforms. PMID:24423977

  15. Coarse-grained density and compressibility of nonideal crystals: General theory and an application to cluster crystals

    NASA Astrophysics Data System (ADS)

    Häring, J. M.; Walz, C.; Szamel, G.; Fuchs, M.

    2015-11-01

    The isothermal compressibility of a general crystal is analyzed within classical density functional theory. Our approach can be used for homogeneous and unstrained crystals containing an arbitrarily high density of local defects. We start by coarse-graining the microscopic particle density and then obtain the long-wavelength limits of the correlation functions of elasticity theory and the thermodynamic derivatives. We explicitly show that the long-wavelength limit of the microscopic density correlation function differs from the isothermal compressibility. We apply our theory to crystals consisting of soft particles which can multiply occupy lattice sites ("cluster crystals"). The multiple occupancy results in a strong local disorder over an extended range of temperatures. We determine the cluster crystals' isothermal compressibility, the fluctuations of the lattice occupation numbers and their correlation functions, and the dispersion relations. We also discuss their low-temperature phase diagram.

  16. Acoustic Wave Correlation of Elementary Deformation Events in a Low-Stability Crystal Lattice of FCC-Metals

    NASA Astrophysics Data System (ADS)

    Makarov, S. V.; Plotnikov, V. A.; Potekaev, A. I.; Grinkevich, L. S.

    2015-04-01

    A discrete pattern of the low-frequency acoustic emission spectrum under conditions of high-temperature plastic deformation of aluminum is analyzed. It is attributed to re-distribution of vibrational energy of the primary acoustic signal over resonant vibrations of standing waves of the resonators. In a low-stability crystal medium, standing-wave oscillations initiate elementary deformation displacements in a certain material volume. The linear dimensions of this volume are related to the length of the standing wave, thus determining the macroscopic scale of correlation. The correlated deformation displacements in turn generate acoustic signals, whose interference results in the formation of a single acoustic signal of abnormally high amplitude. In a low-stability state of the crystal lattice, activation of the elementary plastic shears could result from a combined action of static forces, thermal fluctuations and dynamic forces of standing acoustic waves.

  17. Development of a numerical procedure for mixed mode K-solutions and fatigue crack growth in FCC single crystal superalloys

    NASA Astrophysics Data System (ADS)

    Ranjan, Srikant

    2005-11-01

    Fatigue-induced failures in aircraft gas turbine and rocket engine turbopump blades and vanes are a pervasive problem. Turbine blades and vanes represent perhaps the most demanding structural applications due to the combination of high operating temperature, corrosive environment, high monotonic and cyclic stresses, long expected component lifetimes and the enormous consequence of structural failure. Single crystal nickel-base superalloy turbine blades are being utilized in rocket engine turbopumps and jet engines because of their superior creep, stress rupture, melt resistance, and thermomechanical fatigue capabilities over polycrystalline alloys. These materials have orthotropic properties making the position of the crystal lattice relative to the part geometry a significant factor in the overall analysis. Computation of stress intensity factors (SIFs) and the ability to model fatigue crack growth rate at single crystal cracks subject to mixed-mode loading conditions are important parts of developing a mechanistically based life prediction for these complex alloys. A general numerical procedure has been developed to calculate SIFs for a crack in a general anisotropic linear elastic material subject to mixed-mode loading conditions, using three-dimensional finite element analysis (FEA). The procedure does not require an a priori assumption of plane stress or plane strain conditions. The SIFs KI, KII, and KIII are shown to be a complex function of the coupled 3D crack tip displacement field. A comprehensive study of variation of SIFs as a function of crystallographic orientation, crack length, and mode-mixity ratios is presented, based on the 3D elastic orthotropic finite element modeling of tensile and Brazilian Disc (BD) specimens in specific crystal orientations. Variation of SIF through the thickness of the specimens is also analyzed. The resolved shear stress intensity coefficient or effective SIF, Krss, can be computed as a function of crack tip SIFs and the

  18. The possibility to measure the magnetic moments of short-lived particles (charm and beauty baryons) at LHC and FCC energies using the phenomenon of spin rotation in crystals

    NASA Astrophysics Data System (ADS)

    Baryshevsky, V. G.

    2016-06-01

    The use of spin rotation effect in bent crystals for measuring the magnetic moment of short-lived particles in the range of LHC and FCC energies is considered. It is shown that the estimated number of produced baryons that are captured into a bent crystal grows as ∼γ 3 / 2 with increasing particle energy. Hence it may be concluded that the experimental measurement of magnetic moments of short-lived particles using the spin rotation effect is feasible at LHC and higher energies (for LHC energies, e.g., the running time required for measuring the magnetic moment of Λc+ is 2 ÷ 16 hours).

  19. Segmentation Effect on Inhomogeneity of [110]-Single Crystal Deformation

    NASA Astrophysics Data System (ADS)

    Lychagin, D. V.; Nesterenko, E. A. Alfyorova V. P.

    2016-08-01

    This work presents a detailed analysis of segmentation process in FCC single crystals with compression axis [110] and side faces( ̅110) and (001) considering effect of octahedral shear crystal-geometry and basic stress concentrators. Sequence of meso-band systems formation on side faces is determined. Macro-segmentation patterns are specified, that are common to the FCC single crystals under investigation. It is proved that rectangular shape of highly compressed crystals, elongated in direction of operating planes, is conditioned by orientation symmetry of compression axis, single crystal side faces and shears directions, which are characteristic for the given orientation. The specified patterns are characteristic only for the samples with initial height-to-width ratio equal to 2. When varying sample height relative to the initial one, segmentation patterns will also vary due to crystal geometry variations.

  20. Magnetostriction of fcc(110) single-crystal films of Ni-Fe, Ni, and Co under rotating magnetic fields

    NASA Astrophysics Data System (ADS)

    Ohtani, Taiki; Kawai, Tetsuroh; Ohtake, Mitsuru; Futamotoa, Masaaki

    2014-07-01

    Ni-Fe, Ni, and Co(110) single-crystal films with uniaxial magnetic anisotropies are prepared on MgO(110) substrates by radio-frequency magnetron sputtering. The magnetostriction behavior under rotating magnetic fields is investigated. The Ni-Fe film shows waveforms consisting of a mixture of sinusoidal and triangular shapes under fields lower than 200 Oe. The peak of sinusoidal shape is observed when the field is applied along the easy magnetization axis, whereas that of triangular shape appears when the field is applied along the hard axis. With increasing the field from 200 to 300 Oe, the waveform changes to a usual sinusoidal shape. The waveform variation is related to the difference between the directions of uniaxial magnetic anisotropy and magnetization of magnetically unsaturated film. Waveforms consisting of sinusoidal and triangular shapes are also observed for the Ni and the Co films under low rotating fields. The threshold magnetic field where the shape changes to sinusoidal increases in the order of Ni-Fe < Ni < Co. The waveform is influenced by the symmetry and the strength of magnetic anisotropy.

  1. Improving the intensity and efficiency of compressed echo in rare-earth-ion-doped crystal

    NASA Astrophysics Data System (ADS)

    Xiu-Rong, Ma; Yu-Qing, Liang; Song, Wang; Shuang-Gen, Zhang; Yun-Long, Shan

    2016-07-01

    We investigate the intensity and efficiency of a compressed echo, which is important in arbitrary waveform generation (AWG). A new model of compressed echo is proposed based on the optical Bloch equations, which exposes much more detailed parameters than the conventional model, such as the time delay of the chirp lasers, the nature of the rare-earth-ion-doped crystal, etc. According to the novel model of compressed echo, we find that reducing the time delay of the chirp lasers and scanning the lasers around the center frequency of the inhomogeneously broadened spectrum, while utilizing a crystal with larger coherence time and excitation lifetime can improve the compressed echo’s intensity and efficiency. The theoretical analysis is validated by numerical simulations. Project supported by Special Funds for Scientific and Technological Innovation Projects in Tianjin, China (Grant No. 10FDZDGX00400) and the Tianjin Research Program of Application Foundation and Advanced Technology, China (Grant No. 15JCQNJC01100).

  2. Improving the intensity and efficiency of compressed echo in rare-earth-ion-doped crystal

    NASA Astrophysics Data System (ADS)

    Xiu-Rong, Ma; Yu-Qing, Liang; Song, Wang; Shuang-Gen, Zhang; Yun-Long, Shan

    2016-07-01

    We investigate the intensity and efficiency of a compressed echo, which is important in arbitrary waveform generation (AWG). A new model of compressed echo is proposed based on the optical Bloch equations, which exposes much more detailed parameters than the conventional model, such as the time delay of the chirp lasers, the nature of the rare-earth-ion-doped crystal, etc. According to the novel model of compressed echo, we find that reducing the time delay of the chirp lasers and scanning the lasers around the center frequency of the inhomogeneously broadened spectrum, while utilizing a crystal with larger coherence time and excitation lifetime can improve the compressed echo’s intensity and efficiency. The theoretical analysis is validated by numerical simulations. Project supported by Special Funds for Scientific and Technological Innovation Projects in Tianjin, China (Grant No. 10FDZDGX00400) and the Tianjin Research Program of Application Foundation and Advanced Technology, China (Grant No. 15JCQNJC01100).

  3. Direct femtosecond pulse compression with miniature-sized Bragg cholesteric liquid crystal.

    PubMed

    Song, Liyan; Fu, Shenhe; Liu, Yikun; Zhou, Jianying; Chigrinov, Vladimir G; Khoo, Iam Choon

    2013-12-01

    Direct compression of femtosecond optical pulses from a Ti:sapphire laser oscillator was realized with a cholesteric liquid crystal acting as a nonlinear 1D periodic Bragg grating. With a 6 μm thick sample, the pulse duration could be compressed from 100 to 48 fs. Coupled-mode equations for forward and backward waves were employed to simulate the dynamics therein, and good agreement between theory and experiment was obtained. PMID:24281504

  4. Avalanches, plasticity, and ordering in colloidal crystals under compression

    NASA Astrophysics Data System (ADS)

    McDermott, D.; Reichhardt, C. J. Olson; Reichhardt, C.

    2016-06-01

    Using numerical simulations we examine colloids with a long-range Coulomb interaction confined in a two-dimensional trough potential undergoing dynamical compression. As the depth of the confining well is increased, the colloids move via elastic distortions interspersed with intermittent bursts or avalanches of plastic motion. In these avalanches, the colloids rearrange to minimize their colloid-colloid repulsive interaction energy by adopting an average lattice constant that is isotropic despite the anisotropic nature of the compression. The avalanches take the form of shear banding events that decrease or increase the structural order of the system. At larger compression, the avalanches are associated with a reduction of the number of rows of colloids that fit within the confining potential, and between avalanches the colloids can exhibit partially crystalline or anisotropic ordering. The colloid velocity distributions during the avalanches have a non-Gaussian form with power-law tails and exponents that are consistent with those found for the velocity distributions of gliding dislocations. We observe similar behavior when we subsequently decompress the system, and find a partially hysteretic response reflecting the irreversibility of the plastic events.

  5. Avalanches, plasticity, and ordering in colloidal crystals under compression.

    PubMed

    McDermott, D; Reichhardt, C J Olson; Reichhardt, C

    2016-06-01

    Using numerical simulations we examine colloids with a long-range Coulomb interaction confined in a two-dimensional trough potential undergoing dynamical compression. As the depth of the confining well is increased, the colloids move via elastic distortions interspersed with intermittent bursts or avalanches of plastic motion. In these avalanches, the colloids rearrange to minimize their colloid-colloid repulsive interaction energy by adopting an average lattice constant that is isotropic despite the anisotropic nature of the compression. The avalanches take the form of shear banding events that decrease or increase the structural order of the system. At larger compression, the avalanches are associated with a reduction of the number of rows of colloids that fit within the confining potential, and between avalanches the colloids can exhibit partially crystalline or anisotropic ordering. The colloid velocity distributions during the avalanches have a non-Gaussian form with power-law tails and exponents that are consistent with those found for the velocity distributions of gliding dislocations. We observe similar behavior when we subsequently decompress the system, and find a partially hysteretic response reflecting the irreversibility of the plastic events.

  6. Avalanches, plasticity, and ordering in colloidal crystals under compression.

    PubMed

    McDermott, D; Reichhardt, C J Olson; Reichhardt, C

    2016-06-01

    Using numerical simulations we examine colloids with a long-range Coulomb interaction confined in a two-dimensional trough potential undergoing dynamical compression. As the depth of the confining well is increased, the colloids move via elastic distortions interspersed with intermittent bursts or avalanches of plastic motion. In these avalanches, the colloids rearrange to minimize their colloid-colloid repulsive interaction energy by adopting an average lattice constant that is isotropic despite the anisotropic nature of the compression. The avalanches take the form of shear banding events that decrease or increase the structural order of the system. At larger compression, the avalanches are associated with a reduction of the number of rows of colloids that fit within the confining potential, and between avalanches the colloids can exhibit partially crystalline or anisotropic ordering. The colloid velocity distributions during the avalanches have a non-Gaussian form with power-law tails and exponents that are consistent with those found for the velocity distributions of gliding dislocations. We observe similar behavior when we subsequently decompress the system, and find a partially hysteretic response reflecting the irreversibility of the plastic events. PMID:27415320

  7. A study of the crystallization, melting, and foaming behaviors of polylactic acid in compressed CO₂.

    PubMed

    Zhai, Wentao; Ko, Yoorim; Zhu, Wenli; Wong, Anson; Park, Chul B

    2009-12-16

    The crystallization and melting behaviors of linear polylactic acid (PLA) treated by compressed CO(2) was investigated. The isothermal crystallization test indicated that while PLA exhibited very low crystallization kinetics under atmospheric pressure, CO(2) exposure significantly increased PLA's crystallization rate; a high crystallinity of 16.5% was achieved after CO(2) treatment for only 1 min at 100 degrees C and 6.89 MPa. One melting peak could be found in the DSC curve, and this exhibited a slight dependency on treatment times, temperatures, and pressures. PLA samples tended to foam during the gas release process, and a foaming window as a function of time and temperature was established. Based on the foaming window, crystallinity, and cell morphology, it was found that foaming clearly reduced the needed time for PLA's crystallization equilibrium.

  8. Compressive epitactic layers on single-crystal components for improved mechanical durability and strength

    SciTech Connect

    Marion, J.E.; Gualtieri, D.M.; Morris, R.C.

    1987-09-01

    Compressive epitactic layers grown on single-crystal substrates are shown to substantially improve mechanical durability. In this study, neodymium-substituted gadolinium gallium garnet (GGG) layers are grown on undoped GGG substrates. The layers are found to dramatically improve the abrasion resistance of the substrates, but to have only a slight effect on strength. Abrasion treatments, which cause up to 20 times decrease in the strength of substrates without epitactic layers, do not cause a significant decrease in the strength of substrates with these compressive surface layers. This permits the high strength of specially prepared strong substrates to be retained after abrasion.

  9. Mechanical and optical response of diamond crystals shock compressed along different orientations

    NASA Astrophysics Data System (ADS)

    Lang, John Michael, Jr.

    To determine the mechanical and optical response of diamond crystals at high stresses and to evaluate anisotropy effects, single crystals (Type IIa) were shock compressed along the [100], [110], and [111] orientations to ~120 GPa peak elastic stresses. Particle velocity histories and shock velocities, measured using laser interferometry, were used to examine nonlinear elasticity, refractive indices, and Hugoniot elastic limits of shocked diamond. Time-resolved Raman spectroscopy was used to measure the shock compression induced frequency shifts of the triply degenerate 1332.5 cm-1 Raman line. Longitudinal stress-density states for elastic compression along different orientations were determined from the measured particle velocity histories and elastic shock wave velocities. The complete set of third-order elastic constants was determined from the stress-density states and published acoustic data. Several of these constants differed significantly from those calculated using theoretical models. The refractive index of diamond shocked along [100] and [111] was determined from changes in the optical path length along the direction of uniaxial strain. Linear photoelasticity theory predicted the measured refractive index along [111]. In contrast, the refractive index along [100] was nonlinear. The refractive indices for [110] compression were not determined, but the data showed evidence of birefringence. The splitting and frequency shifts of the diamond Raman line were measured for shock compression along [111] and were in good agreement with predictions from prior shock work. Frequency shifts were also measured along [100] and [110] up to ~60 GPa, extending previous measurements. The anharmonic force constants determined from all shock compression measurements agree with the previous shock compression determinations. Hugoniot elastic limits for diamond shock compressed along different orientations were determined from the measured wave profiles. The elastic limits for

  10. Ultrafast pulse compression, stretching-and-recompression using cholesteric liquid crystals.

    PubMed

    Liu, Yikun; Wu, You; Chen, Chun-Wei; Zhou, Jianying; Lin, Tsung-Hsien; Khoo, Iam Choon

    2016-05-16

    We have experimentally demonstrated the feasibility of direct compression, or stretching and recompression of laser pulses in a very wide temporal time scale spanning 10's fs to ~1 ps time with sub-mm thick cholesteric liquid crystal (CLC) cells. The mechanisms at work here are the strong dispersion at the photonic band-edges and nonlinear phase modulation associated with the non-resonant ultrafast molecular electronic optical nonlinearity. The observed pulse compression limit, spectral characteristics and intensity dependence of the compression are in good agreement with theoretical expectations and simulations based on a coupled-mode propagation model. Owing to the large degree of freedom to engineer the wavelength locations of CLC photonic bandgap and band-edges, these self-action all-optical processes can be realized with ultrafast lasers pulses in a very wide spectral region from the visible to near infrared, with potential applications in compact ultrafast photonic modulation devices/platforms. PMID:27409869

  11. Crystal plasticity finite element modelling of the effect of friction on surface asperity flattening in cold uniaxial planar compression

    NASA Astrophysics Data System (ADS)

    Li, Hejie; Öchsner, Andreas; Wei, Dongbin; Ni, Guowei; Jiang, Zhengyi

    2015-12-01

    During uniaxial planar compression of annealed aluminium alloys, a novel approach to determine the surface asperity flattening (roughness Ra) is employed by analyzing the evolution of the surface's micro-texture. With an increase in compression strain, the surface asperity tends to be flattened, and strain hardening increases. Lubrication can constrain the surface asperity flattening process and hinder the progress of grain surface flattening. The development of surface texture shows an obvious dependency: under the influence of friction, the normal deformation texture component (brass orientation { 0 1 1} <1 1 2>) can be generated easily, while lubrication can hinder this texture component generation. Simulated results show a good agreement with experimental results which predicated brass orientation. However, due to the limitation of the FCC Taylor model, the other orientation components cannot be predicted.

  12. Ginzburg-Landau-type multiphase field model for competing fcc and bcc nucleation.

    PubMed

    Tóth, G I; Morris, J R; Gránásy, L

    2011-01-28

    We address crystal nucleation and fcc-bcc phase selection in alloys using a multiphase field model that relies on Ginzburg-Landau free energies of the liquid-fcc, liquid-bcc, and fcc-bcc subsystems, and determine the properties of the nuclei as a function of composition, temperature, and structure. With a realistic choice for the free energy of the fcc-bcc interface, the model predicts well the fcc-bcc phase-selection boundary in the Fe-Ni system.

  13. Ginzburg-Landau-Type Multiphase Field Model for Competing fcc and bcc Nucleation

    SciTech Connect

    Toth, G. I.; Morris, James R; Granasy, L.

    2011-01-01

    We address crystal nucleation and fcc-bcc phase selection in alloys using a multiphase field model that relies on Ginzburg-Landau free energies of the liquid-fcc, liquid-bcc, and fcc-bcc subsystems, and determine the properties of the nuclei as a function of composition, temperature, and structure. With a realistic choice for the free energy of the fcc-bcc interface, the model predicts well the fcc-bcc phase-selection boundary in the Fe-Ni system.

  14. The FCC in Fiscal 1971.

    ERIC Educational Resources Information Center

    Federal Communications Commission, Washington, DC.

    Fiscal 1971 saw major actions by the Federal Communications Commission (FCC) in all areas of its jurisdiction. In broadcasting, the FCC proposed new renewal rules and policies and issued a number of significant rulings on Fairness Doctrine matters. A policy statement outlining FCC cable television plans was submitted to the Congress. In the common…

  15. Temperature rise of installed FCC

    NASA Technical Reports Server (NTRS)

    Hankins, J. D.

    1976-01-01

    Report discusses temperature profiles of installed FCC for wood and tile surfaces. Three-conductor FCC was tested at twice nominal current-carrying capacity over bare floor and under carpet, with result indicating that temperature rise is not a linear function of current with FCC at this level.

  16. The FCC and Broadcasting.

    ERIC Educational Resources Information Center

    Federal Communications Commission, Washington, DC.

    This report outlines the Federal Communications Commission's (FCC) regulatory authority over the licensing and operation of commercial, educational, and public broadcasting in the United States. Also described are rules and regulations governing the program content and advertising, in relation to the fairness doctrine, free speech, and public…

  17. 1100 to 1500 K Slow Plastic Compressive Behavior of NiAl-xCr Single Crystals

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Darolia, Ram

    2003-01-01

    The compressive properties of near <001> and <111> oriented NiAl-2Cr single crystals and near <011> oriented NiAl-6Cr samples have been measured between 1100 and 1500 K. The 2Cr addition produced significant solid solution strengthening in NiAl, and the <111> and <001> single crystals possessed similar strengths. The 6Cr crystals were not stronger than the 2Cr versions. At 1100 and 1200 K plastic flow in all three Cr-modified materials was highly dependent on stress with exponents > 10. The <011> oriented 6Cr alloy exhibited a stress exponent of about 8 at 1400 and 1500 K; whereas both <001> and <111> NiAl-2Cr crystals possessed stress exponents near 3 which is indicative of a viscous dislocation glide creep mechanism. While the Cottrell-Jaswon solute drag model predicted creep rates within a factor of 3 at 1500 K for <001>-oriented NiAl-2Cr; this mechanism greatly over predicted creep rates for other orientations and at 1400 K for <001> crystals.

  18. Crystal structure of graphite under room-temperature compression and decompression

    SciTech Connect

    Wang, Yuejian; Panzik, Joseph E.; Kiefer, Boris; Lee, Kanani K.M.

    2012-10-23

    Recently, sophisticated theoretical computational studies have proposed several new crystal structures of carbon (e.g., bct-C{sub 4}, H-, M-, R-, S-, W-, and Z-carbon). However, until now, there lacked experimental evidence to verify the predicted high-pressure structures for cold-compressed elemental carbon at least up to 50 GPa. Here we present direct experimental evidence that this enigmatic high-pressure structure is currently only consistent with M-carbon, one of the proposed carbon structures. Furthermore, we show that this phase transition is extremely sluggish, which led to the observed broad x-ray diffraction peaks in previous studies and hindered the proper identification of the post-graphite phase in cold-compressed carbon.

  19. Miniature Compressive Ultra-spectral Imaging System Utilizing a Single Liquid Crystal Phase Retarder

    NASA Astrophysics Data System (ADS)

    August, Isaac; Oiknine, Yaniv; Abuleil, Marwan; Abdulhalim, Ibrahim; Stern, Adrian

    2016-03-01

    Spectroscopic imaging has been proved to be an effective tool for many applications in a variety of fields, such as biology, medicine, agriculture, remote sensing and industrial process inspection. However, due to the demand for high spectral and spatial resolution it became extremely challenging to design and implement such systems in a miniaturized and cost effective manner. Using a Compressive Sensing (CS) setup based on a single variable Liquid Crystal (LC) retarder and a sensor array, we present an innovative Miniature Ultra-Spectral Imaging (MUSI) system. The LC retarder acts as a compact wide band spectral modulator. Within the framework of CS, a sequence of spectrally modulated images is used to recover ultra-spectral image cubes. Using the presented compressive MUSI system, we demonstrate the reconstruction of gigapixel spatio-spectral image cubes from spectral scanning shots numbering an order of magnitude less than would be required using conventional systems.

  20. Nonlinear Eulerian Elasticity with Application to Shock Compression of Ceramic and Metallic Single Crystals

    NASA Astrophysics Data System (ADS)

    Clayton, John

    2013-06-01

    Thermodynamic potentials of conventional Lagrangian nonlinear elasticity incorporate the right Cauchy-Green strain, itself a function of the deformation gradient. In this work, an alternative theory is advanced for anisotropic solids incorporating an Eulerian strain, in material coordinates, that is a function of the inverse deformation gradient. This strain, which has historically shown promise for hydrostatic compression, is applied to problems with both volume change and shear, e.g. shock compression. A general theory accounting for elastic and plastic deformations is formulated, extending a purely elastic theory developed recently. A solution for the anisotropic shock response is derived for solids with an internal energy function quartic in strain and linear in entropy. Predictions of Eulerian and Lagrangian theories for single crystal ceramics-quartz, sapphire, and diamond-and metals-aluminum, copper, and magnesium-are compared, with Eulerian solutions demonstrating key advantages in some cases.

  1. Miniature Compressive Ultra-spectral Imaging System Utilizing a Single Liquid Crystal Phase Retarder

    PubMed Central

    August, Isaac; Oiknine, Yaniv; AbuLeil, Marwan; Abdulhalim, Ibrahim; Stern, Adrian

    2016-01-01

    Spectroscopic imaging has been proved to be an effective tool for many applications in a variety of fields, such as biology, medicine, agriculture, remote sensing and industrial process inspection. However, due to the demand for high spectral and spatial resolution it became extremely challenging to design and implement such systems in a miniaturized and cost effective manner. Using a Compressive Sensing (CS) setup based on a single variable Liquid Crystal (LC) retarder and a sensor array, we present an innovative Miniature Ultra-Spectral Imaging (MUSI) system. The LC retarder acts as a compact wide band spectral modulator. Within the framework of CS, a sequence of spectrally modulated images is used to recover ultra-spectral image cubes. Using the presented compressive MUSI system, we demonstrate the reconstruction of gigapixel spatio-spectral image cubes from spectral scanning shots numbering an order of magnitude less than would be required using conventional systems. PMID:27004447

  2. The elastic properties and stability of fcc-Fe and fcc-FeNi alloys at inner-core conditions

    NASA Astrophysics Data System (ADS)

    Martorell, Benjamí; Brodholt, John; Wood, Ian G.; Vočadlo, Lidunka

    2015-07-01

    The agreement between shear wave velocities for the Earth's inner core observed from seismology with those derived from mineral physics is considerably worse than for any other region of the Earth. Furthermore, there is still debate as to the phase of iron present in the inner core, particularly when alloying with nickel and light elements is taken into account. To investigate the extent to which the mismatch between seismology and mineral physics is a function of either crystal structure and/or the amount of nickel present, we have used ab initio molecular dynamics simulations to calculate the elastic constants and seismic velocities (Vp and Vs) of face centred cubic (fcc) iron at Earth's inner core pressures (360 GPa) and at temperatures up to ˜7000 K. We find that Vp for fcc iron (fcc-Fe) is very similar to that for hexagonal close packed (hcp) iron at all temperatures. In contrast, Vs for fcc-Fe is significantly higher than in hcp-Fe, with the difference increasing with increasing temperature; the difference between Vs for the core (from seismology) and Vs for fcc-Fe exceeds 40 per cent. These results are consistent with previous work at lower temperatures. We have also investigated the effect of 6.5 and 13 atm% Ni in fcc-Fe. We find that Ni only slightly reduces Vp and Vs (e.g. by 2 per cent in Vs for 13 atm% Ni at 5500 K), and cannot account for the difference between the velocities observed in the core and those of pure fcc-Fe. We also tried to examine pre-melting behaviour in fcc-Fe, as reported in hcp-Fe by extending the study to very high temperatures (at which superheating may occur). However, we find that fcc-Fe spontaneously transforms to other hcp-like structures before melting; two hcp-like structures were found, both of hexagonal symmetry, which may most easily be regarded as being derived from an hcp crystal with stacking faults. That the structure did not transform to a true hcp phase is likely as a consequence of the limited size of the

  3. Experiments with phase transitions at very high pressure. [compressed solidifed gases, semiconductors, superconductors, and molecular crystals

    NASA Technical Reports Server (NTRS)

    Spain, I. L.

    1983-01-01

    Diamond cells were constructed for use to 1 Mbar. A refrigerator for cooling diamond cells was adapted for studies between 15 and 300 K. A cryostat for superconductivity studies between 1.5 to 300 K was constructed. Optical equipment was constructed for fluorescence, transmission, and reflectance studies. X-ray equipment was adapted for use with diamond cells. Experimental techniques were developed for X-ray diffraction studies using synchrotron radiation. AC susceptibility techniques were developed for detecting superconducting transitions. The following materials were studied: compressed solidified gases (Xe, Ar), semiconductors (Ge, Si, GaAs), superconductors (Nb3Ge, Nb3Si, Nb3As, CuCl), molecular crystals (I).

  4. Strain localization in <111> single crystals of Hadfield steel under compressive load

    NASA Astrophysics Data System (ADS)

    Astafurova, E. G.; Zakharova, G. G.; Melnikov, E. V.

    2010-07-01

    A study of strain localization under compression of <111> Hadfield steel single crystals at room temperature was done by light and transmission electron microscopy. At epsilon<1%, macro shear bands (MSB) form that have non-crystallographic and complex non-linear habit planes and are the results of the interaction of dislocation slip on conjugate slip planes. Mechanical twinning was experimentally found inside the MSB. After the stage of MSBs formation, deformation develops with high strain hardening coefficient and corresponds to interaction of slip and twinning inside as well as outside the MSBs.

  5. Imperfections of the crystal structure of Y-Ba-Cu-O superconducting ceramic following shock compression

    NASA Astrophysics Data System (ADS)

    Khudiakov, A. V.; Malovitskii, Iu. N.; Safronov, P. P.; Kotov, E. A.; Abramova, E. B.

    1989-10-01

    Cylindrical (20 mm in diameter, 160 mm long) specimens produced by the shock compression of a superconducting Y-Ba-Cu-O powder were characterized by a variety of methods, including differential thermal analysis, X-ray diffraction analysis, gravimetry, and resistance measurements. The experimentally observed scatter of the critical temperature along the length of the specimens in the range 88-91 K and the broadening of the superconducting transition are attributed to the imperfections in the crystal structure of the specimens resulting from the shock loading.

  6. FCC catalyst selection

    SciTech Connect

    Carter, G.D.L. ); McElhiney, G. )

    1989-09-01

    This paper discusses a commonly used technique for comparing FCC catalytic selectivities based on the ASTM microactivity test (MAT) procedure, ASTM D-3907-80. In its original form the ASTM test provides only very limited information on selectivity. However, extension of the ASTM MAT procedure by using additional product analyses gives a microselectivity test capable of providing detailed yield structure information. This modified MAT procedure thus provides a cost-effective and rapid means of comparing many catalysts.

  7. Synthesis of 4H/fcc-Au@Metal Sulfide Core-Shell Nanoribbons.

    PubMed

    Fan, Zhanxi; Zhang, Xiao; Yang, Jian; Wu, Xue-Jun; Liu, Zhengdong; Huang, Wei; Zhang, Hua

    2015-09-01

    Although great advances on the synthesis of Au-semiconductor heteronanostructures have been achieved, the crystal structure of Au components is limited to the common face-centered cubic (fcc) phase. Herein, we report the synthesis of 4H/fcc-Au@Ag2S core-shell nanoribbon (NRB) heterostructures from the 4H/fcc Au@Ag NRBs via the sulfurization of Ag. Remarkably, the obtained 4H/fcc-Au@Ag2S NRBs can be further converted to a novel class of 4H/fcc-Au@metal sulfide core-shell NRB heterostructures, referred to as 4H/fcc-Au@MS (M = Cd, Pb or Zn), through the cation exchange. We believe that these novel 4H/fcc-Au@metal sulfide NRB heteronanostructures may show some promising applications in catalysis, surface enhanced Raman scattering, solar cells, photothermal therapy, etc.

  8. Electromechanical properties of high coupling single crystals under large electric drive and uniaxial compression.

    PubMed

    Amin, Ahmed

    2005-10-01

    This work investigates the 33-mode electromechanical response of relaxor-ferroelectric lead magnesium niobate-lead titanate (PMN-PT) single crystals when driven with large fields approximately 0.4 MV/m under a combined direct current (DC) field and mechanical bias similar to those used in the design of sound projectors. It demonstrates that the remarkable small signal length extensional coupling (k33 > 0.90) and other electromechanical properties of morphotropic PMN-PT single crystals prevail under large drive. The observed k33 roll-off at 42 MPa compressive stress is analyzed in terms of the recent structural data and the high-order Devonshire theory of possible ferroelectric-ferroelectric transition trajectories.

  9. Technique for compressing light intensity ranges utilizing a specifically designed liquid crystal notch filter

    DOEpatents

    Rushford, Michael C.

    1988-01-01

    A pin hole camera assembly for use in viewing an object having a relatively large light intensity range, for example a crucible containing molten metal in an atomic vapor laser isotope separation (AVLIS) system is disclosed herein. The assembly includes means for optically compressing the light intensity range appearing at its input sufficient to make it receivable and decipherable by a standard video camera. To accomplish this, the assembly utilizes the combination of interference filter and a liquid crystal notch filter. The latter which preferably includes a cholesteric liquid crystal arrangement is configured to pass light at all wavelengths, except a relatively narrow wavelength band which defines the filter's notch, and includes means for causing the notch to vary to at least a limited extent with the intensity of light at its light incidence surface.

  10. Negative linear compressibility in a crystal of α-BiB3O6

    NASA Astrophysics Data System (ADS)

    Kang, Lei; Jiang, Xingxing; Luo, Siyang; Gong, Pifu; Li, Wei; Wu, Xiang; Li, Yanchun; Li, Xiaodong; Chen, Chuangtian; Lin, Zheshuai

    2015-08-01

    Negative linear compressibility (NLC), a rare and important mechanical effect with many application potentials, in a crystal of α-BiB3O6 (BIBO) is comprehensively investigated using first-principles calculations and high-pressure synchrotron X-ray diffraction experiments. The results indicate that the BIBO crystal exhibits the second largest NLC among all known inorganic materials over a broad pressure range. This unusual NLC behaviour is due to the rotation and displacement of the rigid [BO3] and [BO4] building units that result in hinge motion in an umbrella-like topology. More importantly, the parallel-polar lone-pair electrons on the Bi3+ cations act as “umbrella stands” to withstand the B-O hinges, thus significantly enhancing the NLC effect. BIBO presents a unique example of a “collapsible umbrella” mechanism for achieving NLC, which could be applied to other framework materials with lone-pair electrons.

  11. Two techniques for temporal pulse compression in gas-filled hollow-core kagomé photonic crystal fiber.

    PubMed

    Mak, K F; Travers, J C; Joly, N Y; Abdolvand, A; Russell, P St J

    2013-09-15

    We demonstrate temporal pulse compression in gas-filled kagomé hollow-core photonic crystal fiber (PCF) using two different approaches: fiber-mirror compression based on self-phase modulation under normal dispersion, and soliton effect self-compression under anomalous dispersion with a decreasing pressure gradient. In the first, efficient compression to near-transform-limited pulses from 103 to 10.6 fs was achieved at output energies of 10.3 μJ. In the second, compression from 24 to 6.8 fs was achieved at output energies of 6.6 μJ, also with near-transform-limited pulse shapes. The results illustrate the potential of kagomé-PCF for postprocessing the output of fiber lasers. We also show that, using a negative pressure gradient, ultrashort pulses can be delivered directly into vacuum.

  12. The FCC: A Research Tool.

    ERIC Educational Resources Information Center

    Wilson, Paul

    The numerous forms filed with the Federal Communications Commission (FCC) provide information about a variety of topics. Basic licensing information that is available concerns engineering, ownership, and equal employment opportunity. The FCC's broadcast bureau collects information about programing, the ascertainment of community needs, public…

  13. Commercial FCC License Study Guide.

    ERIC Educational Resources Information Center

    Swearer, Harvey F.

    Jobs in radio arts, from serviceman to station engineer, are easier to get if one has a recommendation of the U.S. Government in the form of a license from the Federal Communications Commission (FCC). This study guide for FCC radiotelephone licenses is designed to thoroughly prepare the applicant for any radiotelephone exam and to serve as a…

  14. Increasing FCC regenerator catalyst level

    SciTech Connect

    Wong, R.F. )

    1993-11-01

    A Peruvian FCC unit's operations were improved by increasing the regenerator's catalyst level. This increase resulted in lower stack losses, an improved temperature profile, increased catalyst activity and a lower catalyst consumption rate. A more stable operation saved this Peruvian refiner over $131,000 per year in catalyst alone. These concepts and data may be suitable for your FCC unit as well.

  15. Long-time behavior of solution for the compressible nematic liquid crystal flows in R3

    NASA Astrophysics Data System (ADS)

    Gao, Jincheng; Tao, Qiang; Yao, Zheng-an

    2016-08-01

    In this paper, we investigate the global existence and long-time behavior of classical solution for the compressible nematic liquid crystal flows in three-dimensional whole space. First of all, the global existence of classical solution is established under the condition that the initial data are close to the constant equilibrium state in HN (R3) (N ≥ 3)-framework. Then, one establishes algebraic time decay for the classical solution by weighted energy method. Finally, the algebraic decay rate of classical solution in Lp (R3)-norm with 2 ≤ p ≤ ∞ and optimal decay rate of their spatial derivative in L2 (R3)-norm are obtained if the initial perturbation belong to L1 (R3) additionally.

  16. Crystal-structure properties and the molecular nature of hydrostatically compressed realgar

    NASA Astrophysics Data System (ADS)

    Hejny, Clivia; Sagl, Raffaela; Többens, Daniel M.; Miletich, Ronald; Wildner, Manfred; Nasdala, Lutz; Ullrich, Angela; Balic-Zunic, Tonci

    2012-05-01

    The structure of realgar, As4S4, and its evolution with pressure have been investigated employing in situ X-ray diffraction, optical absorption and vibrational spectroscopy on single-crystal samples in diamond-anvil cells. Compression under true hydrostatic conditions up to 5.40 GPa reveals equation-of-state parameters of V 0 = 799.4(2.4) Å3 and K 0 = 10.5(0.4) GPa with K_0^' = 8.7. The remarkably high compressibility can be attributed to a denser packing of the As4S4 molecules with shortening of the intermolecular bonds of up to 12 %, while the As4S4 molecules remain intact showing rigid-unit behaviour. From ambient pressure to 4.5 GPa, Raman spectra exhibit a strong blue shift of the Raman bands of the lattice-phonon regime of 24 cm-1, whereas frequencies from intramolecular As-S stretching modes show negligible or no shifts at all. On pressurisation, realgar shows a continuous and reversible colour change from bright orange over deep red to black. Optical absorption spectroscopy shows a shift of the absorption edge from 2.30 to 1.81 eV up to 4.5 GPa, and DFT calculations show a corresponding reduction in the band gap. Synchrotron-based measurements on polycrystalline samples up to 45.5 GPa are indexed according to the monoclinic structure of realgar.

  17. Virus-mediated FCC iron nanoparticle induced synthesis of uranium dioxide nanocrystals.

    PubMed

    Ling, Tao; Yu, Huimin; Shen, Zhongyao; Wang, Hui; Zhu, Jing

    2008-03-19

    A reducing system involving M13 virus-mediated FCC Fe nanoparticles was employed to achieve uranium reduction and synthesize uranium dioxide nanocrystals. Here we show that metastable face-centered cubic (FCC) Fe nanoparticles were fabricated around the surface of the M13 virus during the specific adsorption of the virus towards Fe ions under a reduced environment. The FCC phase of these Fe nanoparticles was confirmed by careful TEM characterization. Moreover, this virus-mediated FCC Fe nanoparticle system successfully reduced contaminable U(VI) into UO(2) crystals with diameters of 2-5 nm by a green and convenient route.

  18. Compression of ultra-short light pulses using the graded refractive index one-dimensional photonic crystals

    NASA Astrophysics Data System (ADS)

    Shiri, R.; Bananej, A.; Safari, E.

    2016-09-01

    The one-dimensional photonic crystals (1D PCs) containing a graded refractive index layer have been theoretically utilized to compress the positively chirped ultra-short pulses of light. Two types of simple and graded index multi-layer structures consisting alternating layers of TiO2 and SiO2 with the same total thicknesses and periodicity have been investigated and compared. For the graded structure, three different refractive index distributions including linear, exponential and parabolic profiles have been considered. The results revealed that replacing one of the homogeneous layers of the unit cells in simple photonic crystal with a graded material having parabolic refractive index profile efficiently improves compression behavior of the structure. The compress factors of as much as 47% and 78% depending on the pulse's initial chirp rate obtained with parabolic profile of such the structures.

  19. High-pressure single-crystal studies of pyroxene minerals in metastable compression regime with relevance to cold subducting slabs

    NASA Astrophysics Data System (ADS)

    Dera, P. K.

    2012-12-01

    Our understanding of transformation pathways of rock-forming minerals as a function of depth in the Earth interior derives from analysis of their crystal structures at high pressure and temperature conditions and from the relations between different polymorphic forms of the same material. From this perspective, it is often valuable to consider metastable compression behavior of principal rock-forming minerals in the metastable regime, beyond the thermodynamic stability limits and outside of the PT path established by standard geotherm models. Such metastable compression regime can provide useful crystal chemical clues offering insights into intermediate stages of major geophysically-relevant phase transformations and clarifying the most important aspects of the compression mechanisms. Beyond the crystallographic and crystal chemical aspects, the metastable compression experiments may provide information applicable to deep Earth environments that significantly deviate from the standard geotherm, such as subduction zones. Seismic imaging data indicate that in subduction zones the temperatures in the cold subducted oceanic slab, which is dragged beneath the continental plate can be lower than the geotherm by as much as thousands of degrees. Recent seismic travel time tomography evidence indicates that some of the subduction zones, particularly in the Southeast Asia region, extend within the mantle well beyond the 660 km, discontinuity, perhaps as deep as 800 km. The main source of information about the compression behavior of minerals, the crystallographic experiments at high pressure and temperature, have been constrained by the limitations of the experimental in situ techniques and mostly limited to pressure range below 10 GPa. Recent developments in synchrotron-based high-pressure single-crystal diffraction, which will be reviewed in this presentation, opened possibilities to extend these studies well into the pressure range beyond 50 GPa. I will discuss the latest

  20. Structural transformation between bcc and fcc in Fe-Ni nanoparticle during heating process

    NASA Astrophysics Data System (ADS)

    Li, Guojian; Sui, Xudong; Qin, Xuesi; Ma, Yonghui; Wang, Kai; Wang, Qiang

    2016-10-01

    Phase transformation between bcc and fcc in Fe-Ni nanoparticle has been studied by using molecular dynamics simulation with an embedded atom method. The transformation has been explored by designing the nanoparticles with different initial structures, sizes and elemental distributions at various Ni concentrations. The results show that the structural transformation is strongly related to the Ni content and elemental distribution. Initial fcc structure transforms to bcc for a lower Ni content and bcc transforms to fcc for a higher Ni content. The transformation is accompanied with a sharp reduction in energy even for the nanoparticle with a large size. Furthermore, lattice distortion first occurs before the transformation. The transformation from fcc to bcc is occurred by elongating fcc (100) to bcc (110) and that from bcc to fcc by compressing bcc (110) to fcc (100). The reason is that the nanoparticle has a low energy state for bcc structure with a lower Ni content and also for fcc structure with a higher Ni content. The coexistence of bcc and fcc phases appears with the change of elemental distribution.

  1. 47 CFR 2.926 - FCC identifier.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false FCC identifier. 2.926 Section 2.926... Authorizations § 2.926 FCC identifier. (a) A grant of equipment authorization issued by the Commission will list the validated FCC Identifier consisting of the grantee code assigned by the FCC pursuant to...

  2. Status and availability of FCC hardware

    NASA Technical Reports Server (NTRS)

    Romriell, G. K.

    1973-01-01

    The source availability of FCC and/or FCC connectors was surveyed. The results for the following areas are presented: (1) cost of FCC versus standard round cable, (2) qualification status, (3) size of wire available in FCC, (4) availability of hermetic connectors for FCC, (5) conversion from flat cable to round cable and visa versa, (6) availability of shielded flat cable for RF usage, (7) termination techniques, and (8) repair techniques.

  3. Ferromagnetic Fe on Cu(001) throughout the fcc-like phase: arguing from the viewpoint of the electronic structure.

    PubMed

    Donath, M; Pickel, M; Schmidt, A B; Weinelt, M

    2009-04-01

    The scientific enthusiasm for ultrathin Fe films on Cu(001) has now lasted for more than 20 years. Is there ferromagnetic iron with a face-centred cubic (fcc) structure? Does ferromagnetism in Fe hinge on the body-centred cubic (bcc) structure? In this contribution, we try to establish that the electron system gives evidence of ferromagnetic behaviour with fcc-like electronic bands. We examine a crystal-induced surface state, which is characteristic of fcc surface order. Furthermore, we compare electronic signatures of fcc and bcc: the d-band exchange splitting, image-potential-state energies and the work function. We conclude that, from the viewpoint of the electronic structure, Fe on Cu(001) is found to be ferromagnetic throughout the fcc-like phase. This result raises a new question: how much deviation from the relaxed fcc order is acceptable without losing the electronic signature of fcc?

  4. Nucleation of fcc Ta when heating thin films

    SciTech Connect

    Janish, Matthew T.; Mook, William M.; Carter, C. Barry

    2014-10-25

    Thin tantalum films have been studied during in-situ heating in a transmission electron microscope. Diffraction patterns from the as-deposited films were typical of amorphous materials. Crystalline grains were observed to form when the specimen was annealed in-situ at 450°C. Particular attention was addressed to the formation and growth of grains with the face-centered cubic (fcc) crystal structure. As a result, these observations are discussed in relation to prior work on the formation of fcc Ta by deformation and during thin film deposition.

  5. Real time synchrotron x-ray diffraction measurements to determine material strength of shocked single crystals following compression and release

    SciTech Connect

    Turneaure, Stefan J.; Gupta, Y.M.

    2009-09-15

    We present a method to use real time, synchrotron x-ray diffraction measurements to determine the strength of shocked single crystals following compression and release during uniaxial strain loading. Aluminum and copper single crystals shocked along [111] were examined to peak stresses ranging from 2 to 6 GPa. Synchrotron x rays were used to probe the longitudinal lattice strains near the rear free surface (16 and 5 {micro}m depths for Al and Cu, respectively) of the metal crystals following shock compression and release. The 111 diffraction peaks showed broadening indicating a heterogeneous microstructure in the released state. The diffraction peaks also shifted to lower Bragg angles relative to the ambient Bragg angle; the magnitude of the shift increased with increasing impact stress. The Bragg angle shifts and appropriate averaging procedures were used to determine the macroscopic or continuum strength following compression and release. For both crystals, the strengths upon release increased with increasing impact stress and provide a quantitative measure of the strain hardening that occurs in Al(111) and Cu(111) during the shock and release process. Our results for Al(111) are in reasonable agreement with a previous determination based solely on continuum measurements. Two points are noteworthy about the developments presented here: Synchrotron x rays are needed because they provide the resolution required for analyzing the data in the released state; the method presented here can be extended to the shocked state but will require additional measurements.

  6. Dynamic mechanical response of magnesium single crystal under compression loading: Experiments, model, and simulations

    NASA Astrophysics Data System (ADS)

    Li, Qizhen

    2011-05-01

    Magnesium single crystal samples are compressed at room temperature under quasistatic (˜0.001 s-1) loading in a universal testing machine and dynamic (430, 1000, and 1200 s-1) loading in a split Hopkinson pressure bar system. Stress-strain curves show that (a) the fracture strain slightly increases with the strain rate; and (b) the maximum strength and strain hardening rate increase significantly when the testing changes from quasistatic to dynamic, although they do not vary much when the strain rate for dynamic testing varies in the range of 430-1200 s-1. The operation of the secondary pyramidal slip system is the dominating deformation mechanism, which leads to a fracture surface with an angle of ˜42° with respect to the loading axial direction. A theoretical material model based on Johnson-Cook law is also derived. The model includes the strain hardening and strain rate hardening terms, and provides the stress-strain relations matching with the experimental results. Finite element simulations for the strain rates used in the experiments predict the mechanical responses of the material that agree well with the experimental data.

  7. Crystal structure of HgGa{sub 2}Se{sub 4} under compression

    SciTech Connect

    Gomis, Oscar; Vilaplana, Rosario; Manjón, Francisco Javier; Santamaría-Pérez, David [Departamento de Química Física I, Universidad Complutense de Madrid, MALTA Consolider Team, Avenida Complutense s Departamento de Física Aplicada-ICMUV, MALTA Consolider Team, Universidad de Valencia, Edificio de Investigación, C Errandonea, Daniel [Departamento de Física Aplicada-ICMUV, MALTA Consolider Team, Universidad de Valencia, Edificio de Investigación, C and others

    2013-06-01

    Highlights: ► Single crystals of HgGa{sub 2}Se{sub 4} with defect-chalcopyrite structure were synthesized. ► HgGa{sub 2}Se{sub 4} exhibits a phase transition to a disordered rock salt structure at 17 GPa. ► HgGa{sub 2}Se{sub 4} undergoes a phase transition below 2.1 GPa to a disordered zinc blende. - Abstract: We report on high-pressure x-ray diffraction measurements up to 17.2 GPa in mercury digallium selenide (HgGa{sub 2}Se{sub 4}). The equation of state and the axial compressibilities for the low-pressure tetragonal phase have been determined and compared to related compounds. HgGa{sub 2}Se{sub 4} exhibits a phase transition on upstroke toward a disordered rock-salt structure beyond 17 GPa, while on downstroke it undergoes a phase transition below 2.1 GPa to a phase that could be assigned to a metastable zinc-blende structure with a total cation-vacancy disorder. Thermal annealing at low- and high-pressure shows that kinetics plays an important role on pressure-driven transitions.

  8. Global Existence and Large Time Behavior of Strong Solutions to the 2-D Compressible Nematic Liquid Crystal Flows with Vacuum

    NASA Astrophysics Data System (ADS)

    Wang, Teng

    2016-09-01

    This paper is concerned with the strong solutions to the Cauchy problem of a simplified Ericksen-Leslie system of compressible nematic liquid crystals in two or three dimensions with vacuum as far field density. For strong solutions, some a priori decay rate (in large time) for the pressure, the spatial gradient of velocity field and the second spatial gradient of liquid crystal director field are obtained provided that the initial total energy is suitably small. Furthermore, with the help of the key decay rates, we establish the global existence and uniqueness of strong solutions (which may be of possibly large oscillations) in two spatial dimensions.

  9. Elevated temperature tension, compression and creep-rupture behavior of (001)-oriented single crystal superalloy PWA 1480

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G.; Miner, Robert V.

    1987-01-01

    Tensile and compressive flow behavior at various temperatures and strain rates, and tensile creep rupture behavior at 850 and 1050 C and various stresses were studied for (001)-oriented single crystals of the Ni-base superalloy PWA 1480. At temperatures up to 760 C, the flow stress is insensitive to strain rate and of greater magnitude in tension than in compression. At temperatures of 800 C and above, the flow stress decreases continuously with decreasing strain rate and the tension/compression anisotropy diminishes. The second stage creep rate and rupture time exhibited power law relationships with the applied stress for both 850 and 1050 C, however with different stress dependencies. The stress exponent for the steady state creep rate was about 7 at 1050 C, but much higher at 850 C, about 12. Directional coarsening of the gamma' phase occurred during creep at 1050 C, but not at 850 C.

  10. High quality sub-two cycle pulses from compression of supercontinuum generated in all-normal dispersion photonic crystal fiber.

    PubMed

    Heidt, Alexander M; Rothhardt, Jan; Hartung, Alexander; Bartelt, Hartmut; Rohwer, Erich G; Limpert, Jens; Tünnermann, Andreas

    2011-07-18

    We demonstrate nonlinear pulse compression based on recently introduced highly coherent broadband supercontinuum (SC) generation in all-normal dispersion photonic crystal fiber (ANDi PCF). The special temporal properties of the octave-spanning SC spectra generated with 15 fs, 1.7 nJ pulses from a Ti:Sapphire oscillator in a 1.7 mm fiber piece allow the compression to 5.0 fs high quality pulses by linear chirp compensation with a compact chirped mirror compressor. This is the shortest pulse duration achieved to date from the external recompression of SC pulses generated in PCF. Numerical simulations in excellent agreement with the experimental results are used to discuss the scalability of the concept to the single-cycle regime employing active phase shaping. We show that previously reported limits to few-cycle pulse generation from compression of SC spectra generated in conventional PCF possessing one or more zero dispersion wavelengths do not apply for ANDi PCF.

  11. An Elliptical Crystal Spectrometer Suitable for EXAFS Studies of Laser Compressed Materials and for High Resolution X-Ray Spectroscopy.

    PubMed

    Ridgeley, A; Goodman, D; Hall, T A

    1995-01-01

    Using an x-ray spectrometer with an elliptically curved crystal it is possible to study absorption spectra from a target placed at one focus of the ellipse using a backlighting source placed at the other focus. This principle has been used to develop a spectrometer for EXAFS studies of laser compressed materials. The backlighting source is placed at one focus of the ellipse and the laser compressed EXAFS sample at the other. Using this technique a small area of the EXAFS target can be probed, thereby minimizing any spatial variations in the compressed plasma due to nonuniformities in the laser beams. Also, the dispersive nature of the crystal ensures that it acts as a bandpass filter, so that the EXAFS sample is not probed by other x-ray wavelengths which may cause unwanted heating. Another advantage is that compressed and uncompressed EXAFS spectra can be compared on a single shot. The optical properties of the spectrometer are discussed analytically and using a computer ray-tracing program. The development and alignment of the elliptical spectrometer are discussed, and its performance using both x-ray film and a CCD detector is evaluated. The use of the elliptical spectrometer as a high-resolution x-ray instrument is presented. PMID:21307480

  12. Controlled FCC/on-top binding of H/Pt(111) using surface stress

    NASA Astrophysics Data System (ADS)

    Shuttleworth, I. G.

    2016-08-01

    The preferred binding site of H/Pt(111) has been shown to be change from the on-top to FCC as the Pt(111) surface goes approximately from a state of compressive to tensile strain. A chemical analysis of the system has shown that for both FCC and on-top bound cases the H ssbnd Pt s and H ssbnd Pt d interactions have a similar importance in determining the preferred binding position. It has been seen that FCC-bound H forms a distinct state below the Pt d-band, whereas the on-top bound H does not.

  13. Compression-induced crystallization of amorphous indomethacin in tablets: characterization of spatial heterogeneity by two-dimensional X-ray diffractometry.

    PubMed

    Thakral, Naveen K; Mohapatra, Sarat; Stephenson, Gregory A; Suryanarayanan, Raj

    2015-01-01

    Tablets of amorphous indomethacin were compressed at 10, 25, 50, or 100 MPa using either an unlubricated or a lubricated die and stored individually at 35 °C in sealed Mylar pouches. At selected time points, tablets were analyzed by two-dimensional X-ray diffractometry (2D-XRD), which enabled us to profile the extent of drug crystallization in tablets, in both the radial and axial directions. To evaluate the role of lubricant, magnesium stearate was used as "internal" and/or "external" lubricant. Indomethacin crystallization propensity increased as a function of compression pressure, with 100 MPa pressure causing crystallization immediately after compression (detected using synchrotron radiation). However, the drug crystallization was not uniform throughout the tablets. In unlubricated systems, pronounced crystallization at the radial surface could be attributed to die wall friction. The tablet core remained substantially amorphous, irrespective of the compression pressure. Lubrication of the die wall with magnesium stearate, as external lubricant, dramatically decreased drug crystallization at the radial surface. The spatial heterogeneity in drug crystallization, as a function of formulation composition and compression pressure, was systematically investigated. When formulating amorphous systems as tablets, the potential for compression induced crystallization warrants careful consideration. Very low levels of crystallization on the tablet surface, while profoundly affecting product performance (decrease in dissolution rate), may not be readily detected by conventional analytical techniques. Early detection of crystallization could be pivotal in the successful design of a dosage form where, in order to obtain the desired bioavailability, the drug may be in a high energy state. Specialized X-ray diffractometric techniques (2D; use of high intensity synchrotron radiation) enabled detection of very low levels of drug crystallization and revealed the heterogeneity in

  14. A methodology to study crystal plasticity inside a compression test sample based on image correlation and EBSD

    SciTech Connect

    Rehrl, C.; Kleber, S.; Antretter, T.; Pippan, R.

    2011-08-15

    Modified compression tests in a coarse-grained austenitic stainless steel have been carried out in order to examine the crystal plasticity behavior for large plastic deformations. The measurements of local in-plane strains provide deeper insight into the deformation process on the local scale. These measurements are performed by digital image correlation technique (DIC) in combination with local crystal orientation measurements by using the electron backscatter diffraction technique (EBSD). Split test samples are prepared to track the strong microstructural changes during deformation, which is done incrementally in 10% steps up to 60% total macroscopic strain. The clear correlation of local strains with crystal orientation changes - e.g. in the case of mechanical twinning - permits to identify the acting deformation mechanisms. Such, experimentally determined local strain maps can be used for verification of crystal plasticity finite element method simulations (CPFEM). - Research Highlights: {yields} Method to study large strain crystal plasticity inside an austenitic FeCrNi-alloy. {yields} Correlation of local strain analyses with crystal orientation measurements. {yields} Deformation mechanism changes locally from dislocation glide to mechanical twinning. {yields} Suitable to study grain-grain interactions, slip system activation and grain boundary effects. {yields} Provide essential data for crystal plasticity FEM studies.

  15. Single crystal plastic behavior of a single-phase, face-center-cubic-structured, equiatomic FeNiCrCo alloy

    DOE PAGES

    Wu, Zhenggang; Gao, Y. F.; Bei, Hongbin

    2015-07-25

    To understand the fundamental deformation mechanisms of compositionally complex alloys, single crystals of a multi-component equiatomic FeNiCoCr alloy with face-centered cubic (FCC) structure were grown for mechanical studies. Similarly to typical FCC pure metals, slip trace analyses indicate that dislocation slips take place on (1 1 1) planes along [11¯0] directions. The critical resolved shear stress (CRSS) obeys the Schmid law at both 77 and 293 K, and tension–compression asymmetry is not observed. Although this material slips in a normal FCC manner both at 293 and 77 K, compared to typical FCC metals the CRSS’s strong temperature dependence is abnormal.

  16. Consider topped crude for FCC

    SciTech Connect

    Louder, K.E.; Juno, E.J.; Kulapaditharom, L.

    1985-09-01

    A case study is presented that illustrates the mechanics for evaluating use of topped crude to load the FCC for more profit. Declining product demands combined with high crude costs has shut down many refineries and left others operting well below design capacity. The study illustrates the step-by-step requirements to debottleneck an existing Kellogg Orthoflow Model B FCC to process topped crude mixed with gas oils. This study was limited to the catalytic converter defined as the reactor, regenerator, air blower, and wet gas compressor. The scope was to examine the ability to process topped crude and to consider modernizing the FCC to employ riser cracking and complete CO combustion regeneration.

  17. Use desalting for FCC feedstocks

    SciTech Connect

    Harris, J.R.

    1996-08-01

    The heart of profitability in a modern refinery is the fluid catalytic cracking unit (FCCU). As a major process unit, the FCCU generates substantial profits from small improvements. One such improvement, desalting FCC feedstocks, increases refinery profits by over $25,000 per day after a two-month payout period. Desalting improves FCC feedstocks in three distinct ways: (1) reducing feed sodium content, (2) eliminating entrained water or slugs of water, and (3) reducing particulates and contaminants in both the water and hydrocarbon. Each of these improvements reduces or eliminates several problems in the typical FCCU. The paper discusses each of these mechanisms, the cost of desalting, and a typical case.

  18. FCC-ee: Energy Calibration

    SciTech Connect

    Koratzinos, M.; Blondel, A.; Gianfelice-Wendt, E.; Zimmermann, F.

    2015-06-02

    The FCC-ee aims to improve on electroweak precision measurements, with goals of 100 ke V on the Z mass and width, and a fraction of MeV on the W mass. Compared to LEP, this implies a much improved knowledge of the center-of-mass energy when operating at the Z peak and WW threshold. This can be achieved by making systematic use of resonant depolarization. A number of issues have been identified, due in particular to the long polarization times. However the smaller emittance and energy spread of FCC-ee with respect to LEP should help achieve a much improved performance.

  19. Increased gasoline octane in FCC reactor

    SciTech Connect

    Beech, J.H.; Gross, B.; Ramage, M.P.

    1984-07-10

    The operation of FCC apparatus is improved by decreasing oil partial pressure in the FCC reactor riser by about 10 psia, as compared to the normal oil partial pressure in the riser, thereby increasing octane rating of the gasoline produced in the FCC unit. The oil partial pressure may be reduced by injecting a suitable amount of an inert diluent into the riser, or by decreasing throughput of the FCC reactor.

  20. FCC, CATV, ETV, and ITFS.

    ERIC Educational Resources Information Center

    Schwartz, Louis; Woods, Robert A.

    Actions taken in 1970 by the Federal Communications Commission (FCC) are reviewed and discussed in this paper. These actions include amendment of educational broadcast rules for the first time in 17 years, decisions in the area of educational programing, a decision regarding the ultra high frequency (UHF)-land mobile dilemma, and a promise to…

  1. FCC and the Sunshine Act.

    ERIC Educational Resources Information Center

    Weiss, Kenneth

    The Sunshine Act, designed to encourage open meetings to increase public understanding of the governmental decision-making process, went into effect in March 1977. A total of 50 agencies, including the Federal Communications Commission (FCC), are subject to the provisions of the Sunshine Act. The act lists 10 exemptions, any of which can result in…

  2. The spray drying of acetazolamide as method to modify crystal properties and to improve compression behaviour.

    PubMed

    Di Martino, P; Scoppa, M; Joiris, E; Palmieri, G F; Andres, C; Pourcelot, Y; Martelli, S

    2001-02-01

    Acetazolamide shows a very poor compression ability and tablets must usually be produced through a wet granulation process. However, the possibility to obtain pure acetazolamide for direct compression could be interesting for industrial application. With the scope to obtain a material for direct compression, three different crystallisation methods were chosen, with respect to acetazolamide solvent solubility. (a) Acetazolamide was dissolved in an ammonia solution and then spray dried. It was possible to characterise the spherical particles as a mixture of two polymorphic forms, I and II by Powder X-ray diffraction study. (b) Pure form I was obtained by slowly cooling to room temperature a boiling water solution. (c) Pure form II, the marketed form, was obtained by neutralisation of an ammonia solution. Their compression behaviour was investigated firstly by a rotary press. Whilst pure polymorphic forms I and II could not be compressed, the spray dried particles showed very good compression properties. In fact, tablets were obtained only by spray dried particles, which show very good properties under compression and the absence of capping tendency. On the other hand, it was impossible to obtain tablets from polymorphic forms I and II, whatever compression pressures were used. In order to explain their densification mechanism, a single-punch tablet machine, equipped for the measurement of the upper punch displacement in the die, was used. From calculated Heckel's parameters, it was demonstrated that the spray dried material shows a greater particle rearrangement in the initial stage of compression due to its spherical habit and minor wrinkledness of particle surface. The crystalline structure due to the presence of polymorphic forms I and II concur to lowering the intrinsic elasticity of the material. This fact avoids the risk of the rupturing the interpaticulate bonds, which are formed during the compression, concurring to the consolidation of the tablet. PMID

  3. Lattice compression of Si crystals and crystallographic position of As impurities measured with x-ray standing wave spectroscopy

    SciTech Connect

    Herrera-Gomez, A. |; Rousseau, P.M.; Woicik, J.C.; Kendelewicz, T.; Plummer, J.; Spicer, W.E.

    1999-02-01

    In an earlier letter [Appl. Phys. Lett. {bold 68}, 3090 (1996)] we reported results about heavily arsenic doped silicon crystals, where we unambiguously showed, based on x-ray standing wave spectroscopy (XSW) and other techniques, that electrically deactivated As remains essentially substitutional. In this article we present the analysis methodology that led us to said conclusion, and show how from further analysis it is possible to extract the compression or expansion of thin epitaxial layers. We report the evolution of the compression of highly As doped Si epitaxial layers as deactivation takes place. The XSW measurements required a very small thickness of the doped layer and a perfect registry between the substrate and the surface layer. We found larger values for compression than previously reported, which may be explained by the absence of structural defects on our samples that relax the interface stress. Our results show a saturation on the compression as the electron concentration increases. We also report an estimation of the small displacement from perfect substitutional positions suffered by deactivated As. {copyright} {ital 1999 American Institute of Physics.}

  4. Deformation mechanisms of olivine single crystals compressed at 300 MPa and 800-1100°C

    NASA Astrophysics Data System (ADS)

    Cordier, Patrick; Demouchy, Sylvie; Mussi, Alexandre; Tommasi, Andrea

    2013-04-01

    Rheology of mantle rocks at lithospheric temperatures remains poorly constrained, since most experimental studies on creep mechanisms of olivine single crystals ((MgFe)2SiO4, Pbnm) and polycrystalline olivine aggregates were performed at high-temperatures (T >> 1200oC). In this study, we have performed deformation experiments on oriented single crystals of San Carlos olivine and polycrystalline olivine aggregate at temperatures relevant of the uppermost mantle (ranging from 800o to 1090oC) in tri-axial compression. The experiments were carried out at a confining pressure of 300 MPa in a high-resolution gas-medium mechanical testing apparatus at various constant strain rates (from 7 × 10-6 s-1 to 1 × 10-4 s-1). Mechanical tests yield differential stresses ranging from 88 to 1076 MPa. All samples were deformed at constant displacement rate and for finite strains ranging from 4 to 23 %, to provide insight into possible effects of hardening, softening or stick-and-slip. The single crystals were compressed along several crystallographic directions to test the possibility of activating different slip systems (e.g. [100](001), [001](100), [001](010) and [100](010)). We will present the characterization of the dislocation microstructures performed in the TEM.

  5. Refractometry of uniaxially compressed triglycine sulphate crystals doped with L-valine

    NASA Astrophysics Data System (ADS)

    Stadnyk, V. Yo.; Kiryk, Yu. I.

    2012-05-01

    The temperature and spectral dependences of the refractive indices n i of triglycine sulphate (TGS) crystals doped with L-valine have been investigated. Doping is found to weaken the temperature dependence of n i of TGS crystals. The electronic polarizabilities α i , refractions R i , and parameters of UV oscillators (λ0 i , B 1 i ) of mechanically distorted doped TGS crystals have been calculated. The temperature coefficients of the shift of the phase-transition point, ∂ T c /∂σ m , are found to be somewhat smaller than those for pure TGS crystals, which is confirmed by the increase in the hardness of TGS crystals after doping.

  6. Tuning avalanche criticality: Acoustic emission during the martensitic transformation of a compressed Ni-Mn-Ga single crystal

    NASA Astrophysics Data System (ADS)

    Niemann, R.; Baró, J.; Heczko, O.; Schultz, L.; Fähler, S.; Vives, E.; Mañosa, L.; Planes, A.

    2012-12-01

    The propagation of a phase front during a thermally induced martensitic transition is discontinuous due to pinning at various defects, an effect which results in acoustic emission. Here we analyze the consequences of an applied compressive stress exemplarily on a Ni50.4Mn27.9Ga21.7 single crystal. Our experiments show that the distribution of the energies of the acoustic emission events follows a power law for more than three decades. This indicates that the transition exhibits avalanche criticality. The exponent characterizing the distribution of energies depends on the applied stress, and decreases from 1.9±0.1 at zero stress to 1.5±0.2 at stress above 3MPa. This decrease could be attributed to the reduced multiplicity of variants possible under uniaxial compression.

  7. An electron microscopy study of dislocation structures in Mg single crystals compressed along [0 0 0 1] at room temperature

    DOE PAGES

    Kumar, K. S.; Chisholm, Matthew F.; Geng, J.; Mishra, R. K.

    2016-01-09

    We compressed Mg single crystals along [0 0 0 1] at room temperature to various stress levels (40, 80, 120, 160 and 320 MPa) and the evolution of dislocation structure with stress increment was investigated by TEM slip is confirmed to be the dominant deformation mode; the predominance of edge dislocation debris lying along the <1 0more » $$\\bar{1}$$ 0> implies that screw dislocations are more mobile than their edge counterpart. The edge dislocation may dissociate into and dislocations, and the latter can extend further on the basal plane and bound a basal-stacking fault.« less

  8. Molecular dynamics simulation on generalized stacking fault energies of FCC metals under preloading stress

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Cheng, Lü; Kiet, Tieu; Zhao, Xing; Pei, Lin-Qing; Guillaume, Michal

    2015-08-01

    Molecular dynamics (MD) simulations are performed to investigate the effects of stress on generalized stacking fault (GSF) energy of three fcc metals (Cu, Al, and Ni). The simulation model is deformed by uniaxial tension or compression in each of [111], [11-2], and [1-10] directions, respectively, before shifting the lattice to calculate the GSF curve. Simulation results show that the values of unstable stacking fault energy (γusf), stable stacking fault energy (γsf), and unstable twin fault energy (γutf) of the three elements can change with the preloaded tensile or compressive stress in different directions. The ratio of γsf/γusf, which is related to the energy barrier for full dislocation nucleation, and the ratio of γutf/γusf, which is related to the energy barrier for twinning formation are plotted each as a function of the preloading stress. The results of this study reveal that the stress state can change the energy barrier of defect nucleation in the crystal lattice, and thereby can play an important role in the deformation mechanism of nanocrystalline material. Project supported by Australia Research Council Discovery Projects (Grant No. DP130103973). L. Zhang, X. Zhao and L. Q. Pei were financially supported by the China Scholarship Council (CSC).

  9. Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2

    PubMed Central

    Gleason, A. E.; Bolme, C. A.; Lee, H. J.; Nagler, B.; Galtier, E.; Milathianaki, D.; Hawreliak, J.; Kraus, R. G.; Eggert, J. H.; Fratanduono, D. E.; Collins, G. W.; Sandberg, R.; Yang, W.; Mao, W. L.

    2015-01-01

    Pressure- and temperature-induced phase transitions have been studied for more than a century but very little is known about the non-equilibrium processes by which the atoms rearrange. Shock compression generates a nearly instantaneous propagating high-pressure/temperature condition while in situ X-ray diffraction (XRD) probes the time-dependent atomic arrangement. Here we present in situ pump–probe XRD measurements on shock-compressed fused silica, revealing an amorphous to crystalline high-pressure stishovite phase transition. Using the size broadening of the diffraction peaks, the growth of nanocrystalline stishovite grains is resolved on the nanosecond timescale just after shock compression. At applied pressures above 18 GPa the nuclueation of stishovite appears to be kinetically limited to 1.4±0.4 ns. The functional form of this grain growth suggests homogeneous nucleation and attachment as the growth mechanism. These are the first observations of crystalline grain growth in the shock front between low- and high-pressure states via XRD. PMID:26337754

  10. Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2

    DOE PAGES

    Gleason, A. E.; Bolme, C. A.; Lee, H. J.; Nagler, B.; Galtier, E.; Milathianaki, D.; Hawreliak, J.; Kraus, R. G.; Eggert, J. H.; Fratanduono, D. E.; et al

    2015-09-04

    Pressure- and temperature-induced phase transitions have been studied for more than a century but very little is known about the non-equilibrium processes by which the atoms rearrange. Shock compression generates a nearly instantaneous propagating high-pressure/temperature condition while in situ X-ray diffraction (XRD) probes the time-dependent atomic arrangement. Here we present in situ pump–probe XRD measurements on shock-compressed fused silica, revealing an amorphous to crystalline high-pressure stishovite phase transition. Using the size broadening of the diffraction peaks, the growth of nanocrystalline stishovite grains is resolved on the nanosecond timescale just after shock compression. At applied pressures above 18 GPa the nuclueationmore » of stishovite appears to be kinetically limited to 1.4±0.4 ns. The functional form of this grain growth suggests homogeneous nucleation and attachment as the growth mechanism. As a result, these are the first observations of crystalline grain growth in the shock front between low- and high-pressure states via XRD.« less

  11. Recrystallization of plane strain compressed Al-1 wt.% Mn alloy single crystals of typical unstable orientations.

    PubMed

    Bijak, M; Paul, H; Driver, J H

    2010-03-01

    A systematic study of crystal lattice reorientation in early stages of recrystallization has been carried out to correlate the orientations of recrystallization nuclei with the deformation microtexture and with slip systems. Microstructure and texture of Al-1 wt.% Mn single crystals of unstable initial orientations of {112}111, {100}001 and {001}110 have been examined by high-resolution field-emission gun scanning electron microscope local orientation measurements. All single crystals were channel-die deformed at room temperature and then annealed for a short time. It was shown that often observed presence of the 112 directions as rotation axes in the formation of new nuclei orientation directly suggested a close link with the deformation process.

  12. Role of five-fold twin boundary on the enhanced mechanical properties of fcc Fe nanowires.

    PubMed

    Wu, J Y; Nagao, S; He, J Y; Zhang, Z L

    2011-12-14

    The role of 5-fold twin boundary on the structural and mechanical properties of fcc Fe nanowire under tension is explored by classical molecular dynamics. Twin-stabilized fcc nanowire with various diameters (6-24 nm) are examined by tension tests at several temperatures ranging from 0.01 to 1100 K. Significant increase in the Young's modulus of the smaller nanowires is revealed to originate from the central area of quinquefoliolate-like stress-distribution over the 5-fold twin, rather than from the surface tension that is often considered as the main source of such size-effects found in nanostructures. Because of the excess compressive stress caused by crossing twin-boundaries, the atoms in the center behave stiffer than those in bulk and even expand laterally under axial tension, providing locally negative Poisson's ratio. The yield strength of nanowire is also enhanced by the twin boundary that suppresses dislocation nucleation within a fcc twin-domain; therefore, the plasticity of nanowire is initiated by strain-induced fcc→bcc phase transformation that destroys the twin structure. After the yield, the nucleated bcc phase immediately spreads to the entire area, and forms a multigrain structure to realize ductile deformation followed by necking. As temperature elevated close to the critical temperature between bcc and fcc phases, the increased stability of fcc phase competes with the phase transformation under tension, and hence dislocation nucleations in fcc phase are observed exclusively at the highest temperature in our study.

  13. Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression.

    PubMed

    Wang, Y Y; Peng, Xiang; Alharbi, M; Dutin, C Fourcade; Bradley, T D; Gérôme, F; Mielke, Michael; Booth, Timothy; Benabid, F

    2012-08-01

    We report on the recent design and fabrication of kagome-type hollow-core photonic crystal fibers for the purpose of high-power ultrashort pulse transportation. The fabricated seven-cell three-ring hypocycloid-shaped large core fiber exhibits an up-to-date lowest attenuation (among all kagome fibers) of 40 dB/km over a broadband transmission centered at 1500 nm. We show that the large core size, low attenuation, broadband transmission, single-mode guidance, and low dispersion make it an ideal host for high-power laser beam transportation. By filling the fiber with helium gas, a 74 μJ, 850 fs, and 40 kHz repetition rate ultrashort pulse at 1550 nm has been faithfully delivered at the fiber output with little propagation pulse distortion. Compression of a 105 μJ laser pulse from 850 fs down to 300 fs has been achieved by operating the fiber in ambient air.

  14. Design and fabrication of hollow-core photonic crystal fibers for high power fast laser beam transportation and pulse compression

    NASA Astrophysics Data System (ADS)

    Wang, Y. Y.; Peng, Xiang; Alharbi, M.; Dutin, C. F.; Bradley, T. D.; Mielke, Michael; Booth, Timothy; Benabid, F.

    2012-03-01

    We report on recent design and fabrication of Kagome type hollow-core photonic crystal fiber (HC-PCF) for the purpose of high power fast laser beam transportation. The fabricated seven-cell three-ring hypocycloid-shaped large core fiber exhibits an up-to-date lowest attenuation (among all Kagome fibers) of 40dB/km over a broadband transmission centered at 1500nm. We show that the large core size, low attenuation, broadband transmission, single modedness, low dispersion and relatively low banding loss makes it an ideal host for high power laser beam transportation. By filling the fiber with helium gas, a 74μJ, 850fs and 40kHz repetition rate ultra-short pulse at 1550nm has been faithfully delivered with little propagation pulse distortion. Compression of a 105μJ laser pulse from 850fs to 300fs has been achieved by operating the fiber in ambient air.

  15. Successfully cope with FCC catalyst

    SciTech Connect

    Lindstrom, T.H.; Hashemi, R.

    1993-08-01

    The fluid catalytic cracking (FCC) process converts straight-run atmospheric gas oil, vacuum gas oils, certain atmospheric residues, and heavy stocks recovered from other operations into high-octane gasoline, light fuel oils, and olefin-rich light gases. The main features of the FCC processes are long-term reliability and operating adjustability, allowing the refinery to easily adapt their product yields to an ever changing market. The produced gasoline, for example, has an excellent front-end octane number and good overall octane characteristics. The cracking reactions are carried out in a vertical reactor vessel in which vaporized oil rises and carries along with it in intimate contact small fluidized catalyst particles. The reactions are very rapid, and a contact time of only a few seconds is enough for most applications. During the cracking a carbonaceous material of low hydrogen-to-carbon ratio, coke, forms and deposits on the catalyst. The coke blocks the access to the internal structure of the catalyst particle and thus reduces its activity. The spent catalyst is separated from the cracking products in a catalyst stripper/disengager, and the catalyst is transported to a separate vessel, the regenerator, where the coke is burned off reactivating the catalyst. The regenerated catalyst is then transported to the bottom of the reactor riser, where the cycle begins again.

  16. Dual-phase steel sheets under cyclic tension–compression to large strains: Experiments and crystal plasticity modeling

    NASA Astrophysics Data System (ADS)

    Zecevic, Milovan; Korkolis, Yannis P.; Kuwabara, Toshihiko; Knezevic, Marko

    2016-11-01

    In this work, we develop a physically-based crystal plasticity model for the prediction of cyclic tension-compression deformation of multi-phase materials, specifically dual-phase (DP) steels. The model is elasto-plastic in nature and integrates a hardening law based on statistically stored dislocation density, localized hardening due to geometrically necessary dislocations (GNDs), slip-system-level kinematic backstresses, and annihilation of dislocations. The model further features a two level homogenization scheme where the first level is the overall response of a two-phase polycrystalline aggregate and the second level is the homogenized response of the martensite polycrystalline regions. The model is applied to simulate a cyclic tension-compression-tension deformation behavior of DP590 steel sheets. From experiments, we observe that the material exhibits a typical decreasing hardening rate during forward loading, followed by a linear and then a non-linear unloading upon the load reversal, the Bauschinger effect, and changes in hardening rate during strain reversals. To predict these effects, we identify the model parameters using a portion of the measured data and validate and verify them using the remaining data. The developed model is capable of predicting all the particular features of the cyclic deformation of DP590 steel, with great accuracy. From the predictions, we infer and discuss the effects of GNDs, the backstresses, dislocation annihilation, and the two-level homogenization scheme on capturing the cyclic deformation behavior of the material.

  17. Apparatus and method for determining microscale interactions based on compressive sensors such as crystal structures

    DOEpatents

    McAdams, Harley; AlQuraishi, Mohammed

    2015-04-21

    Techniques for determining values for a metric of microscale interactions include determining a mesoscale metric for a plurality of mesoscale interaction types, wherein a value of the mesoscale metric for each mesoscale interaction type is based on a corresponding function of values of the microscale metric for the plurality of the microscale interaction types. A plurality of observations that indicate the values of the mesoscale metric are determined for the plurality of mesoscale interaction types. Values of the microscale metric are determined for the plurality of microscale interaction types based on the plurality of observations and the corresponding functions and compressed sensing.

  18. 47 CFR 2.936 - FCC inspection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false FCC inspection. 2.936 Section 2.936 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL... Authorization § 2.936 FCC inspection. Upon reasonable request, each responsible party shall submit the...

  19. The FCC and the Electric Church.

    ERIC Educational Resources Information Center

    Abrams, Michael F.

    This newsletter focuses on the relationship between the Federal Communications Commission (FCC) and religious broadcasters. It traces the history of that relationship and discusses some of the pressures put on both. It includes a discussion of a recent avalanche of mail at the FCC supporting the church on the airways. It also summarizes some of…

  20. Regeneration of Hydrotreating and FCC Catalysts

    SciTech Connect

    Gerber, Mark A.; Frye, John G.; Bowman, Lawrence E.; Fulton, John L.; Silva, Laura J.; Wai, Chien M.

    1999-09-30

    Hydrotreating, hydrocracking, and fluid catalytic cracking (FCC) catalysts are important components of petroleum refining processes. Hydrotreating and hydrocracking catalysts are used to improve the yield of high-quality light oil fractions from heavier crude oil and petroleum feedstocks containing high levels of impurities. FCC catalysts improve the yield of higher octane gasoline from crude oil.

  1. The Strength of Single Crystal Copper under Uniaxial Shock Compression at Mbar pressures

    SciTech Connect

    Murphy, W; Higginbotham, A; Kimminau, G; Barbrel, B; Bringa, E; Hawreliak, J; Koenig, M; McBarron, W; Meyers, M; Nagler, B; Ozaki, N; Park, N; Remington, B; Rothman, S; Vinko, S M; Whitcher, T; Wark, J

    2009-05-21

    In situ x-ray diffraction has been used to measure the shear strain (and thus strength) of single crystal copper shocked to Mbar pressures along the [001] and [111] axes. These direct shear strain measurements indicate shear strengths at these ultra-high strain rates (of order 10{sup 9} s{sup -1}) of a few GPa, which are both broadly in agreement with the extrapolation of lower strain-rate data and with non-equilibrium molecular dynamics simulations.

  2. On-chip frame memory reduction using a high-compression-ratio codec in the overdrives of liquid-crystal displays

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Min, Kyeong-Yuk; Chong, Jong-Wha

    2010-11-01

    Overdrive is commonly used to reduce the liquid-crystal response time and motion blur in liquid-crystal displays (LCDs). However, overdrive requires a large frame memory in order to store the previous frame for reference. In this paper, a high-compression-ratio codec is presented to compress the image data stored in the on-chip frame memory so that only 1 Mbit of on-chip memory is required in the LCD overdrives of mobile devices. The proposed algorithm further compresses the color bitmaps and representative values (RVs) resulting from the block truncation coding (BTC). The color bitmaps are represented by a luminance bitmap, which is further reduced and reconstructed using median filter interpolation in the decoder, while the RVs are compressed using adaptive quantization coding (AQC). Interpolation and AQC can provide three-level compression, which leads to 16 combinations. Using a rate-distortion analysis, we select the three optimal schemes to compress the image data for video graphics array (VGA), wide-VGA LCD, and standard-definitionTV applications. Our simulation results demonstrate that the proposed schemes outperform interpolation BTC both in PSNR (by 1.479 to 2.205 dB) and in subjective visual quality.

  3. Relative stability of the FCC and HCP polymorphs with interacting polymers.

    PubMed

    Mahynski, Nathan A; Kumar, Sanat K; Panagiotopoulos, Athanassios Z

    2015-01-14

    Recent work [Mahynski et al., Nat. Commun., 2014, 5, 4472] has demonstrated that the addition of long linear homopolymers thermodynamically biases crystallizing hard-sphere colloids to produce the hexagonal close-packed (HCP) polymorph over the closely related face-centered cubic (FCC) structure when the polymers and colloids are purely repulsive. In this report, we investigate the effects of thermal interactions on each crystal polymorph to explore the possibility of stabilizing the FCC crystal structure over the HCP. We find that the HCP polymorph remains at least as stable as its FCC counterpart across the entire range of interactions we explored, where interactions were quantified by the reduced second virial coefficient, -1.50 < B < 1.01. This metric conveniently characterizes the crossover from entropically to energetically dominated systems at B ≈ 0. While the HCP relies on its octahedral void arrangement for enhanced stability when B > 0, its tetrahedral voids produce a similar effect when B < 0 (i.e. when energetics dominate). Starting from this, we derive a mean-field expression for the free energy of an infinitely-dilute polymer adsorbed in the crystal phase for nonzero B. Our results reveal that co-solute biasing of a single polymorph can still be observed in experimentally realizable scenarios when the colloids and polymers have attractive interactions, and provide a possible explanation for the experimental finding that pure FCC crystals are elusive in these binary mixtures.

  4. Synthesis of 4H/fcc Noble Multimetallic Nanoribbons for Electrocatalytic Hydrogen Evolution Reaction.

    PubMed

    Fan, Zhanxi; Luo, Zhimin; Huang, Xiao; Li, Bing; Chen, Ye; Wang, Jie; Hu, Yanling; Zhang, Hua

    2016-02-01

    Noble multimetallic nanomaterials, if only consisting of Au, Ag, Pt, and Pd, typically adopt the high-symmetry face-centered cubic (fcc) structure. Here for the first time, by using the 4H/fcc Au@Ag nanoribbons (NRBs) as seeds, we report the synthesis of 4H/fcc trimetallic Au@PdAg core-shell NRBs via the galvanic reaction method under ambient conditions. Moreover, this strategy can also be used to synthesize 4H/fcc trimetallic Au@PtAg and quatermetallic Au@PtPdAg core-shell NRBs. Impressively, for the first time, these alloy shells, i.e., PdAg, PtAg, and PtPdAg, epitaxially grown on the 4H/fcc Au core with novel 4H hexagonal phase were successfully synthesized. Remarkably, the obtained 4H/fcc Au@PdAg NRBs exhibit excellent electrocatalytic activity toward the hydrogen evolution reaction, which is even quite close to that of the commercial Pt black. We believe that our findings here may provide a novel strategy for the crystal-structure-controlled synthesis of advanced functional noble multimetallic nanomaterials with various promising applications.

  5. Shock compression modeling of metallic single crystals: comparison of finite difference, steady wave, and analytical solutions

    DOE PAGES

    Lloyd, Jeffrey T.; Clayton, John D.; Austin, Ryan A.; McDowell, David L.

    2015-07-10

    Background: The shock response of metallic single crystals can be captured using a micro-mechanical description of the thermoelastic-viscoplastic material response; however, using a such a description within the context of traditional numerical methods may introduce a physical artifacts. Advantages and disadvantages of complex material descriptions, in particular the viscoplastic response, must be framed within approximations introduced by numerical methods. Methods: Three methods of modeling the shock response of metallic single crystals are summarized: finite difference simulations, steady wave simulations, and algebraic solutions of the Rankine-Hugoniot jump conditions. For the former two numerical techniques, a dislocation density based framework describes themore » rate- and temperature-dependent shear strength on each slip system. For the latter analytical technique, a simple (two-parameter) rate- and temperature-independent linear hardening description is necessarily invoked to enable simultaneous solution of the governing equations. For all models, the same nonlinear thermoelastic energy potential incorporating elastic constants of up to order 3 is applied. Results: Solutions are compared for plate impact of highly symmetric orientations (all three methods) and low symmetry orientations (numerical methods only) of aluminum single crystals shocked to 5 GPa (weak shock regime) and 25 GPa (overdriven regime). Conclusions: For weak shocks, results of the two numerical methods are very similar, regardless of crystallographic orientation. For strong shocks, artificial viscosity affects the finite difference solution, and effects of transverse waves for the lower symmetry orientations not captured by the steady wave method become important. The analytical solution, which can only be applied to highly symmetric orientations, provides reasonable accuracy with regards to prediction of most variables in the final shocked state but, by construction, does not provide

  6. Shock compression modeling of metallic single crystals: comparison of finite difference, steady wave, and analytical solutions

    SciTech Connect

    Lloyd, Jeffrey T.; Clayton, John D.; Austin, Ryan A.; McDowell, David L.

    2015-07-10

    Background: The shock response of metallic single crystals can be captured using a micro-mechanical description of the thermoelastic-viscoplastic material response; however, using a such a description within the context of traditional numerical methods may introduce a physical artifacts. Advantages and disadvantages of complex material descriptions, in particular the viscoplastic response, must be framed within approximations introduced by numerical methods. Methods: Three methods of modeling the shock response of metallic single crystals are summarized: finite difference simulations, steady wave simulations, and algebraic solutions of the Rankine-Hugoniot jump conditions. For the former two numerical techniques, a dislocation density based framework describes the rate- and temperature-dependent shear strength on each slip system. For the latter analytical technique, a simple (two-parameter) rate- and temperature-independent linear hardening description is necessarily invoked to enable simultaneous solution of the governing equations. For all models, the same nonlinear thermoelastic energy potential incorporating elastic constants of up to order 3 is applied. Results: Solutions are compared for plate impact of highly symmetric orientations (all three methods) and low symmetry orientations (numerical methods only) of aluminum single crystals shocked to 5 GPa (weak shock regime) and 25 GPa (overdriven regime). Conclusions: For weak shocks, results of the two numerical methods are very similar, regardless of crystallographic orientation. For strong shocks, artificial viscosity affects the finite difference solution, and effects of transverse waves for the lower symmetry orientations not captured by the steady wave method become important. The analytical solution, which can only be applied to highly symmetric orientations, provides reasonable accuracy with regards to prediction of most variables in the final shocked state but, by construction, does not provide insight

  7. Temporal pulse compression in a xenon-filled Kagome-type hollow-core photonic crystal fiber at high average power.

    PubMed

    Heckl, O H; Saraceno, C J; Baer, C R E; Südmeyer, T; Wang, Y Y; Cheng, Y; Benabid, F; Keller, U

    2011-09-26

    In this study we demonstrate the suitability of Hollow-Core Photonic Crystal Fibers (HC-PCF) for multiwatt average power pulse compression. We spectrally broadened picosecond pulses from a SESAM mode-locked thin disk laser in a xenon gas filled Kagome-type HC-PCF and compressed these pulses to below 250 fs with a hypocycloid-core fiber and 470 fs with a single cell core defect fiber. The compressed average output power of 7.2 W and 10.2 W at a pulse repetition rate of approximately 10 MHz corresponds to pulse energies of 0.7 µJ and 1 µJ and to peak powers of 1.6 MW and 1.7 MW, respectively. Further optimization of the fiber parameters should enable pulse compression to below 50 fs duration at substantially higher pulse energies.

  8. Modelling off Hugoniot Loading Using Ramp Compression in Single Crystal Copper

    SciTech Connect

    Hawreliak, J; Remington, B A; Lorenzana, H; Bringa, E; Wark, J

    2010-11-29

    The application of a ramp load to a sample is a method by which the thermodynamic variables of the high pressure state can be controlled. The faster the loading rate, the higher the entropy and higher the temperature. This paper describes moleculer dynamics (MD) simulations with 25 million atoms which investigate ramp loading of single crystal copper. The simulations followed the propagation of a 300ps ramp load to 3Mbar along the [100] direction copper. The simulations were long enough to allow the wave front to steepen into a shock, at which point the simulated copper sample shock melted.

  9. 47 CFR 95.428 - (CB Rule 28) How do I contact the FCC?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (CB Rule 28) How do I contact the FCC? (a) FCC National Call Center at 1-888-225-5322. (b) FCC World Wide Web homepage: http://www.fcc.gov. (c) In writing, to FCC, Attention: CB, 1270 Fairfield...

  10. 47 CFR 95.428 - (CB Rule 28) How do I contact the FCC?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (CB Rule 28) How do I contact the FCC? (a) FCC National Call Center at 1-888-225-5322. (b) FCC World Wide Web homepage: http://www.fcc.gov. (c) In writing, to FCC, Attention: CB, 1270 Fairfield...

  11. 47 CFR 95.428 - (CB Rule 28) How do I contact the FCC?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (CB Rule 28) How do I contact the FCC? (a) FCC National Call Center at 1-888-225-5322. (b) FCC World Wide Web homepage: http://www.fcc.gov. (c) In writing, to FCC, Attention: CB, 1270 Fairfield...

  12. 47 CFR 95.428 - (CB Rule 28) How do I contact the FCC?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (CB Rule 28) How do I contact the FCC? (a) FCC National Call Center at 1-888-225-5322. (b) FCC World Wide Web homepage: http://www.fcc.gov. (c) In writing, to FCC, Attention: CB, 1270 Fairfield...

  13. Superconductivity in compressed sulfur hydride: Dependences on pressure, composition, and crystal structure from first principles

    NASA Astrophysics Data System (ADS)

    Akashi, Ryosuke

    The recent discovery of high-temperature superconductivity in sulfur hydride under extreme pressure has broken the long-standing record of superconducting transition temperature (Tc) in the Hg-cuprate. According to the isotope effect measurement and theoretical calculations, the superconducting transition is mainly ascribed to the conventional phonon-mediated pairing interaction. It is, however, not enough for understanding the high-Tc superconductivity in the sulfur hydride. To elucidate various possible effects on Tc with accuracy, we have analyzed Tc with first-principles methods without any empirical parameters. First, for various pressures and theoretically proposed crystal structures, we calculated Tc with the density functional theory for superconductors (SCDFT) to examine which structure(s) can explain experimentally measured Tc data [Akashi et al., PRB 91, 224513 (2015)]. We next solved the Eliashberg equations without introducing the renormalized Coulomb parameter mu*, which is the Green-function-based counterpart of the SCDFT, and evaluated the effects of rapidly varying electron density of states, atomic zero-point motion, and phonon anharmonic corrections on Tc [Sano et al., in preparation]. In the talk, we review these results and discuss the dominant factors for the Tc and their relation to the experimental results. We also report some crystal structures that we recently found with first-principles calculations, which could have a key role for the pressure-induced transformation to the high-Tc phase.

  14. CuAl{sub 2} revisited: Composition, crystal structure, chemical bonding, compressibility and Raman spectroscopy

    SciTech Connect

    Grin, Yuri . E-mail: grin@cpfs.mpg.de; Wagner, Frank R.; Armbruester, Marc; Kohout, Miroslav; Leithe-Jasper, Andreas; Schwarz, Ulrich; Wedig, Ulrich; Georg von Schnering, Hans

    2006-06-15

    The structure of CuAl{sub 2} is usually described as a framework of base condensed tetragonal antiprisms [CuAl{sub 8/4}]. The appropriate symmetry governed periodic nodal surface (PNS) divides the space of the structure into two labyrinths. All atoms are located in one labyrinth, whereas the second labyrinth seems to be 'empty'. The bonding of the CuAl{sub 2} structure was analyzed by the electron localization function (ELF), crystal orbital Hamiltonian population (COHP) analysis and Raman spectroscopy. From the ELF representation it is seen, that the 'empty' labyrinth is in fact the place of important covalent interactions. ELF, COHP in combination with high-pressure X-ray diffraction and Raman spectroscopy show that the CuAl{sub 2} structure is described best as a network built of interpenetrating graphite-like nets of three-bonded aluminum atoms with the copper atoms inside the tetragonal-antiprismatic cavities. - Graphical abstract: Atomic interactions in the crystal structure of the intermetallic compound CuAl{sub 2}: Three-bonded aluminum atoms form interpenetrating graphite-like nets. The copper atoms are located in the channels of aluminum network by means of three-center bonds. The bonding model is in agreement with the result of polarized Raman spectroscopy and high-pressure X-ray powder diffraction.

  15. Electronic Structure of Crystalline Buckyballs: fcc-C60

    NASA Astrophysics Data System (ADS)

    Jalali-Asadabadi, Saeid; Ghasemikhah, E.; Ouahrani, T.; Nourozi, B.; Bayat-Bayatani, M.; Javanbakht, S.; Aliabad, H. A. Rahnamaye; Ahmad, Iftikhar; Nematollahi, J.; Yazdani-Kachoei, M.

    2016-01-01

    The electronic properties of pristine fcc-C60 are calculated by utilizing a variety of density functional theory (DFT) approaches including the Perdew-Burke-Ernzerhof generalized gradient approximation (PBE-GGA), PBE-GGA+DFT-D3(vdW), Engel and Vosko GGA (EV-GGA), GGA plus Hubbard U parameter (GGA+U), hybrids Becke-Perdew-Wang hybrid functional (B3PW91), Becke-Lee-Yang-Parr hybrid functional (B3LYP), the PBE exchange-correlation functional (PBE0), and Tran and Blaha regular and non-regular modified Becke and Johnson (TB-mBJ) potential within a DFT frame work using augmented plane waves plus local orbital method. The comparison of the calculated results with the experimental values shows that the non-regular TB-mBJ method reproduces a correct experimental direct band gap of 2.12 eV at X symmetry for this compound. The effectiveness of this theoretical approach in the reproduction of the experimental band gap is due to the proper treatment of the electrons in the interstitial region of the crystal. Our results show that the C60 clusters are weakly interacting with each other in the fcc crystal. This study also reveals that the five-fold degeneracies of the isolated C60 molecule due to its icosahedral symmetry are completely lifted at an X symmetry point by the crystal field.

  16. 47 CFR 80.417 - FCC Rules and Regulations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false FCC Rules and Regulations. 80.417 Section 80... STATIONS IN THE MARITIME SERVICES Station Documents § 80.417 FCC Rules and Regulations. The Commission's... available on the Commission's web site at www.fcc.gov or ftp.fcc.gov....

  17. 47 CFR 1.8001 - FCC Registration Number (FRN).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false FCC Registration Number (FRN). 1.8001 Section 1.8001 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE FCC Registration Number § 1.8001 FCC Registration Number (FRN). (a) The FCC Registration Number (FRN) is a...

  18. Atomistic Simulation of Strain-Induced Domain Evolution in a Uniaxially Compressed BaTiO3 Single-Crystal Nanofilm

    NASA Astrophysics Data System (ADS)

    Tian, Xiao Bao; Yang, Xin Hua; Cao, Wei Zhong

    2013-08-01

    A barium titanate single-crystal nanofilm subjected to a monotonically increasing uniaxial compressive strain load is simulated with the molecular dynamics method based on the shell model. A three-stage evolution process of a 180° stripe domain to a flux closure vortex-like domain consisting of four 90° stripe domains, then to a vortex-antivortex-vortex array, and finally to a new 180° stripe domain perpendicular to the initial stripe domain is observed when the strain varies from 0% to 2%. Both the stable condition and configuration of polarization vortexes in the compressed nanofilm are discussed.

  19. Elastic-plastic and phase transition of zinc oxide single crystal under shock compression

    SciTech Connect

    Liu, Xun; Mashimo, Tsutomu Li, Wei; Zhou, Xianming; Sekine, Toshimori

    2015-03-07

    The Hugoniot data for zinc oxide (ZnO) single crystals were measured up to 80 GPa along both the 〈112{sup ¯}0〉 (a-axis) and 〈0001〉 (c-axis) directions using a velocity interferometer system for any reflector and inclined-mirror method combined with a powder gun and two-stage light gas gun. The Hugoniot-elastic limits of ZnO were determined to be 10.5 and 11.5 GPa along the a- and c-axes, respectively. The wurtzite (B4) to rocksalt (B1) phase transition pressures along the a- and c-axes are 12.3 and 14.4 GPa, respectively. Shock velocity (U{sub s}) versus particle velocity (U{sub p}) relation of the final phase is given by the following relationship: U{sub s} (km/s) = 2.76 + 1.51U{sub p} (km/s). Based on the Debye-Grüneisen model and Birch-Murnaghan equation of state (EOS), we discuss the EOS of the B1 phase ZnO. The bulk modulus (K{sub 0}) and its pressure derivative (K{sub 0}′) are estimated to be K{sub 0} = 174 GPa and K{sub 0}′ = 3.9, respectively.

  20. Military and aerospace applications of FCC

    NASA Technical Reports Server (NTRS)

    Swanson, C.

    1972-01-01

    Military and NASA programs are discussed in which FCC were used. Included are Saturn 4, Pegasus satellites solar, array for Skylab orbital workshop, Poseidon missiles, MK 48 torpedo fire control, and Lunar Surveyor.

  1. 47 CFR 2.936 - FCC inspection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false FCC inspection. 2.936 Section 2.936 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL... manufacturing plant and facilities....

  2. Ferromagnetic properties of fcc Gd thin films

    SciTech Connect

    Bertelli, T. P. Passamani, E. C.; Larica, C.; Nascimento, V. P.; Takeuchi, A. Y.

    2015-05-28

    Magnetic properties of sputtered Gd thin films grown on Si (100) substrates kept at two different temperatures were investigated using X-ray diffraction, ac magnetic susceptibility, and dc magnetization measurements. The obtained Gd thin films have a mixture of hcp and fcc structures, but with their fractions depending on the substrate temperature T{sub S} and film thickness x. Gd fcc samples were obtained when T{sub S} = 763 K and x = 10 nm, while the hcp structure was stabilized for lower T{sub S} (300 K) and thicker film (20 nm). The fcc structure is formed on the Ta buffer layer, while the hcp phase grows on the fcc Gd layer as a consequence of the lattice relaxation process. Spin reorientation phenomenon, commonly found in bulk Gd species, was also observed in the hcp Gd thin film. This phenomenon is assumed to cause the magnetization anomalous increase observed below 50 K in stressed Gd films. Magnetic properties of fcc Gd thin films are: Curie temperature above 300 K, saturation magnetization value of about 175 emu/cm{sup 3}, and coercive field of about 100 Oe at 300 K; features that allow us to classify Gd thin films, with fcc structure, as a soft ferromagnetic material.

  3. Shock wave compression of hexagonal-close-packed metal single crystals: Time-dependent, anisotropic elastic-plastic response of beryllium

    SciTech Connect

    Winey, J. M.; Gupta, Y. M.

    2014-07-21

    Understanding and modeling the response of hcp metals to high stress impulsive loading is challenging because the lower crystal symmetry, compared to cubic metals, results in a significantly more complex material response. To gain insight into the inelastic deformation of hcp metals subjected to high dynamic stresses, shock wave compression of single crystals provides a useful approach because different inelastic deformation mechanisms can be examined selectively by shock compression along different crystal orientations. As a representative example, we report, here, on wave propagation simulations for beryllium (Be) single crystals shocked along the c-axis, a-axis, and several low-symmetry directions to peak stresses reaching 7 GPa. The simulations utilized a time-dependent, anisotropic material model that incorporated dislocation dynamics, deformation twinning, and shear cracking based descriptions of inelastic deformation. The simulation results showed good overall agreement with measured wave profiles for all the different crystal orientations examined [Pope and Johnson, J. Appl. Phys. 46, 720 (1975)], including features arising from wave mode coupling due to the highly anisotropic inelastic response of Be. This good agreement demonstrates that the measured profiles can be understood in terms of dislocation slip along basal, prismatic, and pyramidal planes, together with deformation twinning along (101{sup ¯}2) planes. Our results show that the response of shocked Be single crystals involves the simultaneous operation of multiple, distinct inelastic deformation mechanisms for all orientations except the c-axis. For shocked c-axis Be, the measured wave profiles do not provide good discrimination between pyramidal slip and other inelastic deformation mechanisms, such as shear cracking. The findings presented here provide insight into the complex inelastic deformation response of shocked Be single crystals and are expected to be useful for other hcp crystals

  4. Shock wave compression of hexagonal-close-packed metal single crystals: Time-dependent, anisotropic elastic-plastic response of beryllium

    NASA Astrophysics Data System (ADS)

    Winey, J. M.; Gupta, Y. M.

    2014-07-01

    Understanding and modeling the response of hcp metals to high stress impulsive loading is challenging because the lower crystal symmetry, compared to cubic metals, results in a significantly more complex material response. To gain insight into the inelastic deformation of hcp metals subjected to high dynamic stresses, shock wave compression of single crystals provides a useful approach because different inelastic deformation mechanisms can be examined selectively by shock compression along different crystal orientations. As a representative example, we report, here, on wave propagation simulations for beryllium (Be) single crystals shocked along the c-axis, a-axis, and several low-symmetry directions to peak stresses reaching 7 GPa. The simulations utilized a time-dependent, anisotropic material model that incorporated dislocation dynamics, deformation twinning, and shear cracking based descriptions of inelastic deformation. The simulation results showed good overall agreement with measured wave profiles for all the different crystal orientations examined [Pope and Johnson, J. Appl. Phys. 46, 720 (1975)], including features arising from wave mode coupling due to the highly anisotropic inelastic response of Be. This good agreement demonstrates that the measured profiles can be understood in terms of dislocation slip along basal, prismatic, and pyramidal planes, together with deformation twinning along { 10 1 ¯ 2 } planes. Our results show that the response of shocked Be single crystals involves the simultaneous operation of multiple, distinct inelastic deformation mechanisms for all orientations except the c-axis. For shocked c-axis Be, the measured wave profiles do not provide good discrimination between pyramidal slip and other inelastic deformation mechanisms, such as shear cracking. The findings presented here provide insight into the complex inelastic deformation response of shocked Be single crystals and are expected to be useful for other hcp crystals. More

  5. Crystal structure of hydrous wadsleyite with 2.8% H[subscript 2]O and compressibility to 60 GPa

    SciTech Connect

    Ye, Yu; Amyth, Joseph R.; Hushur, Anwar; Manghnani, Murli H.; lonappan, Dayana; Dera, Przemyslaw; Frost, Daniel J.

    2010-11-18

    Hydrous wadsleyite ({beta}-Mg{sub 2}SiO{sub 4}) with 2.8 wt% water content has been synthesized at 15 GPa and 1250 C in a multi-anvil press. The unit-cell parameters are: a = 5.6686(8), b = 11.569(1), c = 8.2449(9) {angstrom}, {beta} = 90.14(1){sup o}, and V = 540.7(1) {angstrom}{sup 3}, and the space group is I2/m. The structure was refined in space groups Imma and I2/m. The room-pressure structure differs from that of anhydrous wadsleyite principally in the increased cation distances around O1, the non-silicate oxygen. The compression of a single crystal of this wadsleyite was measured up to 61.3(7) GPa at room temperature in a diamond anvil cell with neon as pressure medium by X-ray diffraction at Sector 13 at the Advanced Photon Source, Argonne National Laboratory. The experimental pressure range was far beyond the wadsleyite-ringwoodite phase-transition pressure at 525 km depth (17.5 GPa), while a third-order Birch-Murnaghan equation of state (EoS) [V{sub 0} = 542.7(8) {angstrom}{sup 3}, K{sub T0} = 137(5) GPa, K{prime} = 4.6(3)] still fits the data well. In comparison, the second-order fit gives V{sub 0} = 542.7(8) {angstrom}{sup 3}, K{sub T} = 147(2) GPa. The relation between isothermal bulk modulus of hydrous wadsleyite K{sub T0} and water content C{sub H{sub 2}O} is: K{sub T0} = 171(1)-12(1) C{sub H{sub 2}O} (up to 2.8 wt% water). The axial-compressibility {beta}{sub c} is larger than both {beta}{sub a} and {beta}{sub b}, consistent with previous studies and analogous to the largest coefficient of thermal expansion along the c-axis.

  6. Deformation of single crystal Hadfield steel by twinning and slip

    SciTech Connect

    Karaman, I.; Sehitoglu, H.; Gall, K.; Chumlyakov, Y.I.; Maier, H.J.

    2000-04-03

    The stress-strain behavior of Hadfield steel (Fe, 12.34 Mn, 1.03 C, in wt%) single crystals was studied for selected crystallographic orientations ([{bar 1}11 ], [001] and [{bar 1}23]) under tension and compression. The overall stress-strain response was strongly dependent on the crystallographic orientation and applied stress direction. Transmission electron microscopy and in situ optical microscopy demonstrated that twinning is the dominant deformation mechanism in [{bar 1}11] crystals subjected to tension, and [001] crystals subjected to compression at the onset of inelastic deformation. In the orientations that experience twinning, the activation of multiple twinning systems produces a higher strain-hardening coefficient than observed in typical f.c.c. alloys. Based on these experimental observations, a model is presented that predicts the orientation and stress direction effects on the critical stress for initiating twinning. The model incorporates the role of local pile-up stresses, stacking fault energy, the influence of the applied stress on the separation of partial dislocations, and the increase in the friction stress due to a high solute concentration. On the other hand, multiple slip was determined to be the dominant deformation mechanism in [{bar 1}11] crystals subjected to compression, and [001] crystals deformed under tension. Furthermore, the [{bar 1}23] crystals experience single slip in both tension and compression with planar type dislocations. Using electron back-scattered diffraction patterns, macroscopic shear bands (MSBs) were identified with a misorientation of 9 {degree} in the compressed [{bar 1}11] single crystals at strains as low as 1%.

  7. FCC reactor revamp project: Execution and benefits

    SciTech Connect

    Dahlstrom, B.; Ham, K.; Becker, M.; Hum, T.; Lacijan, L.; Lorsbach, T.

    1996-12-01

    Consumers` Co-operative Refineries Limited (CCRL) has successfully implemented a revamp of the 19,500 BPSD UOP fluid catalytic cracking (FCC) unit located in Regina, Saskatchewan, Canada. The low-cost revamp included a new elevated feed injection system using Optimix feed distributors and the first commercial implementation of VSS riser termination, which is a novel application of the high-contaminant vortex separation technology for the rapid separation of catalyst and hydrocarbon products. This revamp has resulted in a marked improvement in the FCC performance and profitability. The project schedule, revamp costs, technology employed, and the benefits seen in the product yields are discussed in this paper.

  8. Ru Nanoframes with an fcc Structure and Enhanced Catalytic Properties.

    PubMed

    Ye, Haihang; Wang, Qingxiao; Catalano, Massimo; Lu, Ning; Vermeylen, Joseph; Kim, Moon J; Liu, Yuzi; Sun, Yugang; Xia, Xiaohu

    2016-04-13

    Noble-metal nanoframes are of great interest to many applications due to their unique open structures. Among various noble metals, Ru has never been made into nanoframes. In this study, we report for the first time an effective method based on seeded growth and chemical etching for the facile synthesis of Ru nanoframes with high purity. The essence of this approach is to induce the preferential growth of Ru on the corners and edges of Pd truncated octahedra as the seeds by kinetic control. The resultant Pd-Ru core-frame octahedra could be easily converted to Ru octahedral nanoframes of ∼2 nm in thickness by selectively removing the Pd cores through chemical etching. Most importantly, in this approach the face-centered cubic (fcc) crystal structure of Pd seeds was faithfully replicated by Ru that usually takes an hcp structure. The fcc Ru nanoframes showed higher catalytic activities toward the reduction of p-nitrophenol by NaBH4 and the dehydrogenation of ammonia borane compared with hcp Ru nanowires with roughly the same thickness.

  9. Magnetic field effects on ultrafast lattice compression dynamics of Si(111) crystal when excited by linearly-polarized femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Hatanaka, Koji; Odaka, Hideho; Ono, Kimitoshi; Fukumura, Hiroshi

    2007-03-01

    Time-resolved X-ray diffraction measurements of Si (111) single crystal are performed when excited by linearly-polarized femtosecond laser pulses (780 nm, 260 fs, negatively-chirped, 1 kHz) under a magnetic field (0.47 T). Laser fluence on the sample surface is 40 mJ/cm^2, which is enough lower than the ablation threshold at 200 mJ/cm^2. Probing X-ray pulses of iron characteristic X-ray lines at 0.193604 and 0.193998 nm are generated by focusing femtosecond laser pulses onto audio-cassette tapes in air. Linearly-polarized femtosecond laser pulse irradiation onto Si(111) crystal surface induces transient lattice compression in the picosecond time range, which is confirmed by transient angle shift of X-ray diffraction to higher angles. Little difference of compression dynamics is observed when the laser polarization is changed from p to s-pol. without a magnetic field. On the other hand, under a magnetic field, the lattice compression dynamics changes when the laser is p-polarized which is vertical to the magnetic field vector. These results may be assigned to photo-carrier formation and energy-band distortion.

  10. In-situ neutron diffraction of LaCoO3 perovskite under uniaxial compression. I. Crystal structure analysis and texture development

    SciTech Connect

    Aman, Amjad; Chen, Yan; Lugovy, Mykola; Orlovskaya, Nina; Reece, Michael John; Ma, Dong; Stoica, Alexandru Dan; An, Ke

    2014-01-01

    The dynamics of texture formation, changes in crystal structure and stress accommodation mechanisms are studied in R3c rhombohedral LaCoO3 perovskite during in-situ uniaxial compression experiment by neutron diffraction. The neutron diffraction revealed the complex crystallographic changes causing the texture formation and significant straining along certain crystallographic directions during in-situ compression, which are responsible for the appearance of hysteresis and non-linear ferroelastic deformation in LaCoO3 perovskite. The irreversible strain after the first loading was connected with the appearance of non-recoverable changes in the intensity ratio of certain crystallographic peaks, causing non-reversible texture formation. However in the second loading/unloading cycle the hysteresis loop was closed and no irreversible strain appears after deformation. The significant texture formation is responsible for increase in the Young s modulus of LaCoO3 at high compressive loads, where the reported values of Young s modulus increase from 76 GPa measured at the very beginning of the loading to 194 GPa at 900 MPa applied compressive stress measured at the beginning of the unloading curve.

  11. Effects of Co doping on the metamagnetic states of the ferromagnetic fcc Fe-Co alloy.

    PubMed

    Ortiz-Chi, Filiberto; Aguayo, Aarón; de Coss, Romeo

    2013-01-16

    The evolution of the metamagnetic states in the ferromagnetic face centered cubic (fcc) Fe(1-x)Co(x) alloy as a function of Co concentration has been studied by means of first-principles calculations. The ground state properties were obtained using the full-potential linear augmented plane wave method and the generalized gradient approximation for the exchange-correlation functional. The alloying was modeled using the virtual crystal approximation and the magnetic states were obtained from the calculations of the total energy as a function of the spin moment, using the fixed spin moment method. For ferromagnetic fcc Fe, the binding-energy curve shows metamagnetic behavior, with two minima corresponding to a small-volume, low-spin (LS) state and a large-volume, high-spin (HS) state, which are separated by a small energy (E(LS) ≲ E(HS)). The evolution of the magnetic moment, the exchange integral (J), and the binding-energy curve is analyzed in the whole range of Co concentrations (x). The magnetic moment corresponding to the HS state decreases monotonically from 2.6 μ(B)/atom in fcc Fe to 1.7 μ(B)/atom in fcc Co. In contrast, the exchange integral for the HS state shows a maximum at around x = 0.45. The thermal dependence of the lattice parameter is evaluated with a method based on statistical mechanics using the binding-energy curve as an effective potential. It is observed that the behavior of the lattice parameter with temperature is tuned by Co doping, from negative thermal expansion in fcc Fe to positive thermal expansion in fcc Co, through the modification of the energetics of the metamagnetic states.

  12. Determination of Unit Cell Parameters of Molecular Organic Crystals Under Hydrostatic Compression at Pressures up to 5.0 GPa

    NASA Astrophysics Data System (ADS)

    Russell, T. P.; Hardie, Michaele J.; Kirschbaum, Kristin; Martin, Anthony; Pinkerton, A. Alan; Tanbug, Rasim; Piermarini, G. J.

    1997-07-01

    An accurate determination of the unit cell parameters of large organic molecules under hydrostatic compression at static high pressure is now possible at pressures up to 5.0 GPa. A new high pressure diamond anvil cell has been developed to enable the determination of accurate unit cell lattice parameters during hydrostatic compression at static high pressure on a Seimens Plattform Diffractometer using a CCD detector. The hydrostatic compression of hexanitrohexaazaisowurtzitane (HNIW) has been determined up to 2.0 GPa. A sample of γ-HNIW was statically compressed and a phase transition to the high pressure ζ-HNIW phase was observed at 0.7 GPa. The compression of the unit cell parameters of γ-HNIW up to 0.7 GPa and the compression of the unit cell parameters of ζ-HNIW from 0.7-2.0 GPa is presented. In addition, changes in molecular structure associated with hydrostatic compression and the molecular structure changes associated with this γ-ζ first order phase transition are under investigation.

  13. Air-guided photonic-crystal-fiber pulse-compression delivery of multimegawatt femtosecond laser output for nonlinear-optical imaging and neurosurgery

    NASA Astrophysics Data System (ADS)

    Lanin, Aleksandr A.; Fedotov, Il'ya V.; Sidorov-Biryukov, Dmitrii A.; Doronina-Amitonova, Lyubov V.; Ivashkina, Olga I.; Zots, Marina A.; Sun, Chi-Kuang; Ömer Ilday, F.; Fedotov, Andrei B.; Anokhin, Konstantin V.; Zheltikov, Aleksei M.

    2012-03-01

    Large-core hollow photonic-crystal fibers (PCFs) are shown to enable a fiber-format air-guided delivery of ultrashort infrared laser pulses for neurosurgery and nonlinear-optical imaging. With an appropriate dispersion precompensation, an anomalously dispersive 15-μm-core hollow PCF compresses 510-fs, 1070-nm light pulses to a pulse width of about 110 fs, providing a peak power in excess of 5 MW. The compressed PCF output is employed to induce a local photodisruption of corpus callosum tissues in mouse brain and is used to generate the third harmonic in brain tissues, which is captured by the PCF and delivered to a detector through the PCF cladding.

  14. Inside the FCC: A Guide for Information Seekers.

    ERIC Educational Resources Information Center

    Le Duc, Don R., Ed.; Krasnow, Erwin G., Ed.

    1975-01-01

    To aid the public in obtaining information and documents from the files of the Federal Communications Commission (FCC) this guide, written with assistance from the FCC staff, explains which office to approach and in what form to make the request. Ways to obtain informaion by visiting the FCC are explained along with methods for obtaining…

  15. 47 CFR 73.1225 - Station inspections by FCC.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Station inspections by FCC. 73.1225 Section 73... BROADCAST SERVICES Rules Applicable to All Broadcast Stations § 73.1225 Station inspections by FCC. (a) The... FCC during the station's business hours, or at any time it is in operation. (b) In the course of...

  16. 47 CFR 95.117 - Where to contact the FCC.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Where to contact the FCC. 95.117 Section 95.117... SERVICES General Mobile Radio Service (GMRS) § 95.117 Where to contact the FCC. Additional GMRS information may be obtained from any of the following sources: (a) FCC National Call Center at 1-888-225-5322....

  17. 47 CFR 74.3 - FCC inspections of stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false FCC inspections of stations. 74.3 Section 74.3... Services in Part 74 § 74.3 FCC inspections of stations. (a) The licensee of a station authorized under this part must make the station available for inspection by representatives of the FCC during the...

  18. 47 CFR 95.428 - (CB Rule 28) How do I contact the FCC?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false (CB Rule 28) How do I contact the FCC? 95.428... (CB Rule 28) How do I contact the FCC? (a) FCC National Call Center at 1-888-225-5322. (b) FCC World Wide Web homepage: http://www.fcc.gov. (c) In writing, to FCC, Attention: CB, 1270 Fairfield...

  19. Formation of fivefold axes in the FCC-metal nanoclusters

    NASA Astrophysics Data System (ADS)

    Myasnichenko, Vladimir S.; Starostenkov, Mikhail D.

    2012-11-01

    Formation of atomistic structures of metallic Cu, Au, Ag clusters and bimetallic Cu-Au clusters was studied with the help of molecular dynamics using the many-body tight-binding interatomic potential. The simulation of the crystallization process of clusters with the number of atoms ranging from 300 to 1092 was carried out. The most stable configurations of atoms in the system, corresponding to the minimum of potential energy, was found during super-fast cooling from 1000 K. Atoms corresponding to fcc, hcp, and Ih phases were identified by the method of common neighbor analysis. Incomplete icosahedral core can be discovered at the intersection of one of the Ih axes with the surface of monometallic cluster. The decahedron-shaped structure of bimetallic Cu-Au cluster with seven completed icosahedral cores was obtained. The principles of the construction of small bimetallic clusters with icosahedral symmetry and increased fractal dimensionality were offered.

  20. 77 FR 74010 - Proposed Changes to FCC Form 499-A, FCC Form 499-Q, and Accompanying Instructions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-12

    ... Worksheet, FCC Form 499-A (Form 499-A) and accompanying instructions (Form 499-A Instructions) to be used in 2013 to report 2012 revenues, and the quarterly Telecommunications Reporting Worksheet, FCC Form 499-Q... Worksheet, FCC Form 499-A (Form 499-A) and accompanying instructions (Form 499-A Instructions) to be used...

  1. First-principles study of the thermodynamics of hydrogen-vacancy interaction in fcc iron

    SciTech Connect

    Nazarov, R.; Hickel, T.; Neugebauer, J.

    2010-12-01

    The interaction of vacancies and hydrogen in an fcc iron bulk crystal was studied combining thermodynamic concepts with ab initio calculations and considering various magnetic structures. We show that up to six H atoms can be trapped by a monovacancy. All of the studied point defects (single vacancy, H in interstitial positions, and H-vacancy complexes) cause an anisotropic elastic field in antiferromagnetic fcc iron and significantly change the local and total magnetization of the system. The proposed thermodynamical model allows the determination of the equilibrium vacancy concentration and the concentration of dissolved hydrogen for a given temperature and H chemical potential in the reservoir. For H-rich conditions a dramatic increase in the vacancy concentration in the crystal is found.

  2. Kagome-type hollow-core photonic crystal fibers for beam delivery and pulse compression of high-power ultrafast lasers

    NASA Astrophysics Data System (ADS)

    Saraceno, C. J.; Emaury, F.; Diebold, A.; Schriber, C.; Debord, B.; Gérôme, F.; Südmeyer, T.; Benabid, F.; Keller, U.

    2015-02-01

    Tremendous progress has been achieved in the last years in the field of ultrafast high-power sources. Among the different laser technologies driving this progress, thin-disk lasers (TDLs) have gained significant ground, both from amplifiers and modelocked oscillators. Modelocked TDLs are particularly attractive, as they allow for unprecedented high energy and average powers directly from an oscillator. The exponential progress in the performance of these sources drives growing needs for efficient means of beam delivery and pulse compression at high average power (< 100 W) and high peak power (> 10 MW). This remains a challenging regime for standard fiber solutions: microstructured large-mode-area silica photonic-crystal fibers (PCFs) are good candidates, but peak powers are limited to ≈4-6 MW by self-focusing. Hollow-core (HC) capillaries are adapted for higher peak powers, but exhibit high losses and are not suitable for compact beam delivery. In parallel to the progress achieved in the performance of ultrafast laser systems, recent progress in novel hollow-core PCF designs are currently emerging as an excellent solution for these challenges. In particular, Inhibited-coupling Kagome-type HC-PCFs are particularly promising: their intrinsic guiding properties allow for extremely high damage thresholds, low losses over wide transmission windows and ultra-low dispersion. In our most recent results, we achieve pulse compression in the hundred-watt average power regime using Kagome-type HC-PCFs. We launch 127-W, 18-μJ, 740-fs pulses from our modelocked TDL into an Ar-filled fiber (13 bar), reaching 93% transmission. The resulting spectral broadening allows us to compress the pulses to 88 fs at 112 W of average power, reaching 105 MW of peak power, at 88% compression efficiency. These results demonstrate the outstanding suitability of Kagome HC-PCFs for compression and beam delivery of state-of-the-art kilowatt-class ultrafast systems.

  3. Solidification and fcc- to metastable hcp- phase transition in krypton under modulating dynamic pressures

    NASA Astrophysics Data System (ADS)

    Chen, Jing-Yin; Yoo, Choong-Shik; Kim, Minseob; Liermann, Hanns-Peter; Cynn, Hyunchae; Jenei, Zsolt; Evans, William

    2014-03-01

    We describe high-pressure kinetic studies of the solidification, melting and fcc-hcp transitions of Krypton under dynamic loading conditions, using a dynamic-diamond anvil cell (d-DAC) coupled with time-resolved x-ray diffraction. The time-resolved diffraction patterns and dynamic pressure responses show compression-rate dependencies associated with both the decay and growth time constants of the liquid-solid and solid-liquid transitions. According to the Avrami equation, both the solidified and melting processes are spontaneous nucleation and a rod-like (1-D) growth. Furthermore, under dynamic loading conditions, Kr-hcp forms from fcc close to the melting line. The nucleation time of fcc and hcp are very fast, with little dependence of compression rates or shorter than the time resolutions. The threshold pressure for the formation of Kr-hcp is ~ 0.8 GPa at the dynamic loadings of 0.004-13 GPa/s. This work was carried out at DESY. This work was performed under the auspices of DOE by LLNL under contracts(W-7405-Eng-48 and DE-AC52-07NA27344) and funded by the LDRD(11-ERD-046). The work at WSU was funded by NSF-DMR(1203834), DTRA(HDTRA1-12-01-0020).

  4. Two-mode Ginzburg-Landau theory of crystalline anisotropy for fcc-liquid interfaces

    NASA Astrophysics Data System (ADS)

    Wu, Kuo-An; Lin, Shang-Chun; Karma, Alain

    2016-02-01

    We develop a Ginzburg-Landau (GL) theory for fcc crystal-melt systems at equilibrium by employing two sets of order parameters that correspond to amplitudes of density waves of principal reciprocal lattice vectors and amplitudes of density waves of a second set of reciprocal lattice vectors. The choice of the second set of reciprocal lattice vectors is constrained by the condition that this set must form closed triangles with the principal reciprocal lattice vectors in reciprocal space to make the fcc-liquid transition first order. The capillary anisotropy of fcc-liquid interfaces is investigated by GL theory with amplitudes of <111 > and <200 > density waves. Furthermore, we explore the dependence of the anisotropy of the excess free energy of the solid-liquid interface on density waves of higher-order reciprocal lattice vectors such as <311 > by extending the two-mode GL theory with an additional mode. The anisotropy calculated using GL theory with input parameters from molecular dynamics (MD) simulations for fcc Ni is compared to that measured in MD simulations.

  5. Regeneration of Hydrotreating and FCC Catalysts

    SciTech Connect

    CM Wai; JG Frye; JL Fulton; LE Bowman; LJ Silva; MA Gerber

    1999-09-30

    Hydrotreating, hydrocracking, and fluid catalytic cracking (FCC) catalysts are important components of petroleum refining processes. Hydrotreating and hydrocracking catalysts are used to improve the yield of high-quality light oil fractions from heavier crude oil and petroleum feedstocks containing high levels of impurities. FCC catalysts improve the yield of higher octane gasoline from crude oil. Residuum hydrotreating and cracking catalysts are susceptible to irreversible deactivation caused by adsorption of sulfur and by metals impurities, such as vanadium and nickel. The gradual buildup of these impurities in a hydrotreating catalyst eventually plugs the pores and deactivates it. Nickel and vanadium adversely affect the behavior of cracking catalysts, reducing product yield and quality. Replacing deactivated catalysts represents a significant cost in petroleum refining. Equally important are the costs and potential liabilities associated with treating and disposing spent catalysts. For example, recent US Environmental Protection Agency rulings have listed spent hydrotreating and hydrorefining catalysts as hazardous wastes. FCC catalysts, though more easily disposed of as road-base or as filler in asphalt and cement, are still an economic concern mainly because of the large volumes of spent catalysts generated. New processes are being considered to increase the useful life of catalysts or for meeting more stringent disposal requirements for spent catalysts containing metals. This report discusses a collaborative effort between Pacific Northwest National Laboratory (PNNL) and Phillips Petroleum, Inc., to identify promising chemical processes for removing metals adhered to spent hydrodesulfurization (HDS, a type of hydrotreating catalyst) and FCC catalysts. This study, conducted by PNNL, was funded by the US Department of Energy's Bartlesville Project Office. Fresh and spent catalysts were provided by Phillips Petroleum. The FCC catalyst was a rare-earth exchanged

  6. Orientation and temperature dependence of some mechanical properties of the single-crystal nickel-base superalloy Rene N4. 3: Tension-compression anisotropy

    NASA Technical Reports Server (NTRS)

    Miner, R. V.; Gaab, T. P.; Gayda, J.; Hemker, K. J.

    1985-01-01

    Single crystal superalloy specimens with various crystallographic directions along their axes were tested in compression at room temperature, 650, 760, 870, and 980 deg C. These results are compared with the tensile behavior studied previously. The alloy, Rene N4, was developed for gas turbine engine blades and has the nominal composition 3.7 Al, 4.2 Ti, 4 Ta, 0.5 Nb, 6 W, 1.5 Mo 9 Cr. 7.5 Co, balance Ni, in weight percent. Slip trace analysis showed that primary cube slip occurred even at room temperature for the 111 specimens. With increasing test temperature more orientations exhibited primary cube slip, until at 870 deg C only the 100 and 011 specimens exhibited normal octahedral slip. The yield strength for octahedral slip was numerically analysed using a model proposed by Lall, Chin, and Pope to explain deviations from Schmid's Law in the yielding behavior of a single phase Gamma prime alloy, Ni3(Al, Nb). The Schmid's Law deviations in Rene N4 were found to be largely due to a tension-compression anisotropy. A second effect, which increases trength for orientations away from 001, was found to be small in Rene N4. Analysis of recently published data on the single crystal superalloy PWA 1480 yielded the same result.

  7. In-situ neutron diffraction of LaCoO₃ perovskite under uniaxial compression. I. Crystal structure analysis and texture development

    SciTech Connect

    Aman, Amjad; Orlovskaya, Nina; Chen, Yan; Lugovy, Mykola; Reece, Michael J.; Ma, Dong; Stoica, Alexandru D.; An, Ke

    2014-07-07

    The dynamics of texture formation, changes in crystal structure, and stress accommodation mechanisms have been studied in perovskite-type R3⁻c rhombohedral LaCoO₃ during uniaxial compression using in-situ neutron diffraction. The in-situ neutron diffraction revealed the complex crystallographic changes causing the texture formation and significant straining along certain crystallographic directions during compression, which are responsible for the appearance of hysteresis and non-linear ferroelastic deformation in the LaCoO₃ perovskite. The irreversible strain after the first loading was connected with the appearance of non-recoverable changes in the intensity ratio of certain crystallographic peaks, causing non-reversible texture formation. However, in the second loading/unloading cycle, the hysteresis loop was closed and no further irrecoverable strain appeared after deformation. The significant texture formation is responsible for an increase in the Young's modulus of LaCoO₃ at high compressive stresses, ranging from 76 GPa at the very beginning of the loading to 194 GPa at 900 MPa at the beginning of the unloading curve.

  8. Computer simulation of FCC riser reactors.

    SciTech Connect

    Chang, S. L.; Golchert, B.; Lottes, S. A.; Petrick, M.; Zhou, C. Q.

    1999-04-20

    A three-dimensional computational fluid dynamics (CFD) code, ICRKFLO, was developed to simulate the multiphase reacting flow system in a fluid catalytic cracking (FCC) riser reactor. The code solve flow properties based on fundamental conservation laws of mass, momentum, and energy for gas, liquid, and solid phases. Useful phenomenological models were developed to represent the controlling FCC processes, including droplet dispersion and evaporation, particle-solid interactions, and interfacial heat transfer between gas, droplets, and particles. Techniques were also developed to facilitate numerical calculations. These techniques include a hybrid flow-kinetic treatment to include detailed kinetic calculations, a time-integral approach to overcome numerical stiffness problems of chemical reactions, and a sectional coupling and blocked-cell technique for handling complex geometry. The copyrighted ICRKFLO software has been validated with experimental data from pilot- and commercial-scale FCC units. The code can be used to evaluate the impacts of design and operating conditions on the production of gasoline and other oil products.

  9. Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2

    SciTech Connect

    Gleason, A. E.; Bolme, C. A.; Lee, H. J.; Nagler, B.; Galtier, E.; Milathianaki, D.; Hawreliak, J.; Kraus, R. G.; Eggert, J. H.; Fratanduono, D. E.; Collins, G. W.; Sandberg, R.; Yang, W.; Mao, W. L.

    2015-09-04

    Pressure- and temperature-induced phase transitions have been studied for more than a century but very little is known about the non-equilibrium processes by which the atoms rearrange. Shock compression generates a nearly instantaneous propagating high-pressure/temperature condition while in situ X-ray diffraction (XRD) probes the time-dependent atomic arrangement. Here we present in situ pump–probe XRD measurements on shock-compressed fused silica, revealing an amorphous to crystalline high-pressure stishovite phase transition. Using the size broadening of the diffraction peaks, the growth of nanocrystalline stishovite grains is resolved on the nanosecond timescale just after shock compression. At applied pressures above 18 GPa the nuclueation of stishovite appears to be kinetically limited to 1.4±0.4 ns. The functional form of this grain growth suggests homogeneous nucleation and attachment as the growth mechanism. As a result, these are the first observations of crystalline grain growth in the shock front between low- and high-pressure states via XRD.

  10. Evolution of Polarization Vortex Pairs in a Uniaxially Compressed Single-Crystal BaTiO3 Thin Film: From Initiation to Annihilation

    NASA Astrophysics Data System (ADS)

    Tian, Xiao Bao; Yang, Xin Hua; Wang, Peng

    2015-10-01

    Using the molecular dynamics method based on the shell model, a uniaxially compressed single-crystal BaTiO3 thin film with initial polarization configuration of double 90° domains has been simulated. Initiation and vertical propagation of domain switching induced by displacement loading lead to the occurrence of vortices and antivortices in pairs. However, further transverse extension results in separation between vortices and their corresponding antivortices of the same pair and the approach between vortices and antivortices of different pairs. As a result, a complete evolution process of the vortices and antivortices from initiation, to motion, then to collision, and finally to annihilation is observed. The internal mechanism of vortex- antivortex pair evolution is revealed.

  11. Experimental investigation of size effects of FCC polycrystal by shear banding

    SciTech Connect

    Watanabe, Osamu; Kurata, Takayuki

    1999-04-01

    Several plasticity phenomena display a size effect where the smaller the size is the stronger its response. This effect relates to the plastic gradients, appearing in plastically inhomogeneous material. The present paper describes results of an experimental meso-scale study using the specimens having rectangular cross section made of FCC polycrystal of pure Aluminum and OFHC Copper under the tensile or compressive loading. Experimental measurements are carried out to investigate thickness effect and grain size effect in connection with size effect, and the internal mechanism of plastic flow in the specimens is also discussed.

  12. Functional Fatigue and Tension-Compression Asymmetry in [001]-Oriented Co49Ni21Ga30 High-Temperature Shape Memory Alloy Single Crystals

    NASA Astrophysics Data System (ADS)

    Krooß, P.; Niendorf, T.; Kadletz, P. M.; Somsen, C.; Gutmann, M. J.; Chumlyakov, Y. I.; Schmahl, W. W.; Eggeler, G.; Maier, H. J.

    2015-03-01

    Conventional shape memory alloys cannot be employed for applications in the elevated temperature regime due to rapid functional degradation. Co-Ni-Ga has shown the potential to be used up to temperatures of about 400 °C due to a fully reversible superelastic stress-strain response. However, available results only highlight the superelastic response for single cycle tests. So far, no data addressing cyclic loading and functional fatigue are available. In order to close this gap, the current study reports on the cyclic degradation behavior and tension-compression asymmetry in [001]-oriented Co49Ni21Ga30 single crystals at elevated temperatures. The cyclic stress-strain response of the material under displacement controlled superelastic loading conditions was found to be dictated by the number of active martensite variants and different resulting stabilization effects. Co-Ni-Ga shows a large superelastic temperature window of about 400 °C under tension and compression, but a linear Clausius-Clapeyron relationship could only be observed up to a temperature of 200 °C. In the present experiments, the samples were subjected to 1000 cycles at different temperatures. Degradation mechanisms were characterized by neutron diffraction and transmission electron microscopy. The results in this study confirm the potential of these alloys for damping applications at elevated temperatures.

  13. Mechanical Properties and Microstructure of the CoCrFeMnNi High Entropy Alloy Under High Strain Rate Compression

    NASA Astrophysics Data System (ADS)

    Wang, Bingfeng; Fu, Ao; Huang, Xiaoxia; Liu, Bin; Liu, Yong; Li, Zezhou; Zan, Xiang

    2016-07-01

    The equiatomic CoCrFeMnNi high entropy alloy, which crystallizes in the face-centered cubic (FCC) crystal structure, was prepared by the spark plasma sintering technique. Dynamic compressive tests of the CoCrFeMnNi high entropy alloy were deformed at varying strain rates ranging from 1 × 103 to 3 × 103 s-1 using a split-Hopkinson pressure bar (SHPB) system. The dynamic yield strength of the CoCrFeMnNi high entropy alloy increases with increasing strain rate. The Zerilli-Armstrong (Z-A) plastic model was applied to model the dynamic flow behavior of the CoCrFeMnNi high entropy alloy, and the constitutive relationship was obtained. Serration behavior during plastic deformation was observed in the stress-strain curves. The mechanism for serration behavior of the alloy deformed at high strain rate is proposed.

  14. Thermodynamic stability and structural properties of cluster crystals formed by amphiphilic dendrimers

    NASA Astrophysics Data System (ADS)

    Lenz, Dominic A.; Mladek, Bianca M.; Likos, Christos N.; Blaak, Ronald

    2016-05-01

    We pursue the goal of finding real-world examples of macromolecular aggregates that form cluster crystals, which have been predicted on the basis of coarse-grained, ultrasoft pair potentials belonging to a particular mathematical class [B. M. Mladek et al., Phys. Rev. Lett. 46, 045701 (2006)]. For this purpose, we examine in detail the phase behavior and structural properties of model amphiphilic dendrimers of the second generation by means of monomer-resolved computer simulations. On augmenting the density of these systems, a fluid comprised of clusters that contain several overlapping and penetrating macromolecules is spontaneously formed. Upon further compression of the system, a transition to multi-occupancy crystals takes place, the thermodynamic stability of which is demonstrated by means of free-energy calculations, and where the FCC is preferred over the BCC-phase. Contrary to predictions for coarse-grained theoretical models in which the particles interact exclusively by effective pair potentials, the internal degrees of freedom of these molecules cause the lattice constant to be density-dependent. Furthermore, the mechanical stability of monodisperse BCC and FCC cluster crystals is restricted to a bounded region in the plane of cluster occupation number versus density. The structural properties of the dendrimers in the dense crystals, including their overall sizes and the distribution of monomers are also thoroughly analyzed.

  15. Deformation twinning in small-sized face-centred cubic single crystals: Experiments and modelling

    NASA Astrophysics Data System (ADS)

    Liang, Z. Y.; Huang, M. X.

    2015-12-01

    Small-sized crystals generally show deformation behaviour distinct from their bulk counterparts. In addition to dislocation slip, deformation twinning in small-sized face-centred cubic (FCC) single crystals has been reported to follow a different mechanism which involves coherent emission of partial dislocations on successive { 111 } planes from free surface. The present work employed a twinning-induced plasticity (TWIP) steel with a low stacking fault energy to systematically investigate the twin evolution in small-sized FCC single crystals. Micrometre-sized single crystal pillars of TWIP steel were fabricated by focus ion beam and then strained to different levels by compression experiments. Detailed transmission electron microscopy characterization was carried out to obtain a quantitative evaluation of the deformation twins, which contribute to most of the plastic strain. Emissions of partial dislocations from free surface (surface sources) and pre-existing perfect dislocations inside the pillar (inner sources) are found as the essential processes for the formation of deformation twins. Accordingly, a physically-based model, which integrates source introduction methods and source activation criterions for partial dislocation emission, is developed to quantitatively predict the twin evolution. The model is able to reproduce the experimental twin evolution, in terms of the total twin formation, the twin morphology and the occurrence of twinning burst.

  16. 76 FR 69738 - Revised 2011 Annual Telecommunications Reporting Worksheet (FCC Form 499-A) and Accompanying...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-09

    ... COMMISSION Revised 2011 Annual Telecommunications Reporting Worksheet (FCC Form 499-A) and Accompanying... Competition Bureau released the revised Telecommunications Reporting Worksheet (FCC Form 499-A) and... Budget approved revisions to the Telecommunications Reporting Worksheet, FCC Form 499-A (the Form)...

  17. 76 FR 20976 - Wireline Competition Bureau Releases 2011 Annual Telecommunications Reporting Worksheet (FCC Form...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-14

    ... From the Federal Register Online via the Government Publishing Office FEDERAL COMMUNICATIONS COMMISSION Wireline Competition Bureau Releases 2011 Annual Telecommunications Reporting Worksheet (FCC Form... Reporting Worksheet (FCC Form 499-A) and accompanying instructions. Filers may now submit their FCC Form...

  18. Ground state searches in fcc intermetallics

    SciTech Connect

    Wolverton, C.; de Fontaine, D. ); Ceder, G. ); Dreysse, H. . Lab. de Physique du Solide)

    1991-12-01

    A cluster expansion is used to predict the fcc ground states, i.e., the stable phases at zero Kelvin as a function of composition, for alloy systems. The intermetallic structures are not assumed, but derived regorously by minimizing the configurational energy subject to linear constraints. This ground state search includes pair and multiplet interactions which spatially extend to fourth nearest neighbor. A large number of these concentration-independent interactions are computed by the method of direct configurational averaging using a linearized-muffin-tin orbital Hamiltonian cast into tight binding form (TB-LMTO). The interactions, derived without the use of any adjustable or experimentally obtained parameters, are compared to those calculated via the generalized perturbation method extention of the coherent potential approximation within the context of a KKR Hamiltonian (KKR-CPA-GPM). Agreement with the KKR-CPA-GPM results is quite excellent, as is the comparison of the ground state results with the fcc-based portions of the experimentally-determined phase diagrams under consideration.

  19. 47 CFR 95.225 - (R/C Rule 25) How do I contact the FCC?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false (R/C Rule 25) How do I contact the FCC? 95.225... (R/C Rule 25) How do I contact the FCC? (a) FCC National Call Center at 1-888-225-5322. (b) FCC World Wide Web homepage: http://www.fcc.gov. (c) In writing, to FCC, Attention: R/C, 1270 Fairfield...

  20. 47 CFR 73.4000 - Listing of FCC policies.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Listing of FCC policies. 73.4000 Section 73... BROADCAST SERVICES Rules Applicable to All Broadcast Stations § 73.4000 Listing of FCC policies. The following sections list, solely for the purpose of reference and convenience, certain Policies of the...

  1. 47 CFR 76.1714 - FCC rules and regulations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false FCC rules and regulations. 76.1714 Section 76.1714 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Documents to be Maintained for Inspection § 76.1714 FCC...

  2. 47 CFR 76.1714 - FCC rules and regulations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false FCC rules and regulations. 76.1714 Section 76.1714 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Documents to be Maintained for Inspection § 76.1714 FCC rules and regulations. (a) The operator of a...

  3. 47 CFR 76.1714 - FCC rules and regulations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false FCC rules and regulations. 76.1714 Section 76.1714 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Documents to be Maintained for Inspection § 76.1714 FCC rules and regulations. (a) The operator of a...

  4. Detection of the Impact of Ice Crystal Accretion in an Aircraft Engine Compression System During Dynamic Operation

    NASA Technical Reports Server (NTRS)

    May, Ryan D.; Simon, Donald L.; Guo, Ten-Huei

    2014-01-01

    The accretion of ice in the compression system of commercial gas turbine engines operating in high ice water content conditions is a safety issue being studied by the aviation community. While most of the research focuses on the underlying physics of ice accretion and the meteorological conditions in which accretion can occur, a systems-level perspective on the topic lends itself to potential near-term operational improvements. Here a detection algorithm is developed which has the capability to detect the impact of ice accretion in the Low Pressure Compressor of an aircraft engine during steady flight as well as during changes in altitude. Unfortunately, the algorithm as implemented was not able to distinguish throttle changes from ice accretion and thus more work remains to be done.

  5. Studies of dynamic properties of shock compressed single crystals by in situ dynamic x-ray diffraction and sample recovery

    SciTech Connect

    Meyers, Marc A.; Schneider, M. S.; Jarmakani, H.; Kad, B.; Remington, B. A.; Kalantar, D. H.; McNaney, J.; Cao, B.; Belak, J.; E Bringa, G. Collins; Paisley, D.; Holian, B.; Lomdahl, P.; Boehly, T. R; Wark, J.

    2007-05-05

    Laser compression provides pressures ranging from a few to hundreds of GPa at pulse durations of the order of nanoseconds or fractions thereof. The short duration ensures a rapid decay of the pulse and quenching of shocked sample in times that are orders of magnitude lower than in conventional explosively driven plate impact experiments. Systematic experiments carried out in specimens well suited for transmission electron microscopy characterization are revealing that laser compression, by virtue of a much more rapid cooling, enables the retention of a deformation structure closer to the one existing during shock. The smaller pulse length decreases the propensity for localization. Copper and copper aluminum (2 and 6 wt% Al) with orientations [001] and [ ] were subjected to high intensity laser pulses with energy levels of 70 to 300 J delivered in a pulse duration of approximately 3 ns. Systematic differences of the defect substructure were observed as a function of pressure and stacking fault energy. The changes in the mechanical properties for each condition were compared using micro- and nano-hardness measurements and correlated well with observations of the defect substructure. Three regimes of plastic deformation were identified and their transitions modeled: dislocation cells, stacking faults, and twins. An existing constitutive description of the slip to twinning transition, based on the critical shear stress, was expanded to incorporate the effect of stacking-fault energy. A new physically-based criterion accounting for stacking fault energy was developed that describes the transition from perfect loop to partial loop homogeneous nucleation, and consequently from cells to stacking faults. These calculations predict transitions that are in qualitative agreement with the effect of SFE.

  6. 47 CFR 73.878 - Station inspections by FCC; availability to FCC of station logs and records.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... of station logs and records. 73.878 Section 73.878 Telecommunication FEDERAL COMMUNICATIONS... (LPFM) § 73.878 Station inspections by FCC; availability to FCC of station logs and records. (a) The...) Station records and logs shall be made available for inspection or duplication at the request of the...

  7. 78 FR 66357 - Proposed Changes to FCC Form 499-A, FCC Form 499-Q, and Accompanying Instructions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-05

    ... Internet at http://frwebgate.access.gpo.gov/cgi-bin/leaving.cgi?from=leavingFR.html&log=linklog&to=http... annual Telecommunications Reporting Worksheet, FCC Form 499-A (Form 499-A) and accompanying instructions... Telecommunications Reporting Worksheet, FCC Form 499-Q (Form 499-Q) and accompanying instructions (Form...

  8. 78 FR 69415 - Proposed Changes to FCC Form 499-A, FCC Form 499-Q, and Accompanying Instructions.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-19

    ..., in FR Doc. 2013-26482, on page 66358 make the following corrections: 1. On page 66358, in the... to (1) the annual Telecommunications Reporting Worksheet, FCC Form 499-A (Form 499-A) and... quarterly Telecommunications Reporting Worksheet, FCC Form 499-Q (Form 499-Q) and accompanying...

  9. Microstructure and mechanical properties of bulk highly faulted fcc/hcp nanostructured cobalt microstructures

    SciTech Connect

    Barry, Aliou Hamady; Dirras, Guy; Schoenstein, Frederic; Tétard, Florent; Jouini, Noureddine

    2014-05-01

    Nanostructured cobalt powders with an average particle size of 50 nm were synthesized using a polyol method and subsequently consolidated by spark plasma sintering (SPS). SPS experiments performed at 650 °C with sintering times ranging from 5 to 45 min under a pressure of 100 MPa, yielded to dense bulk nanostructured cobalt (relative density greater than 97%). X-ray diffraction patterns of the as-prepared powders showed only a face centered cubic (fcc) crystalline phase, whereas the consolidated samples exhibited a mixture of both fcc and hexagonal close packed (hcp) phases. Transmission electron microscopy observations revealed a lamellar substructure with a high density of nanotwins and stacking faults in every grain of the sintered samples. Room temperature compression tests, carried out at a strain rate of 10{sup −3} s{sup −1}, yielded to highest strain to fracture values of up to 5% for sample of holding time of 15 min, which exhibited a yield strength of 1440 MPa, an ultimate strength as high as 1740 MPa and a Young's modulus of 205 GPa. The modulus of elasticity obtained from the nanoindentation tests, ranges from 181 to 218 GPa. The lowest modulus value of 181 GPa was obtained for the sample with the highest sintering time (45 min), which could be related to mass density loss as a consequence of trapped gases releasing. - Highlights: • Co nanopowder (50 nm) was prepared by reduction in polyol medium. • SPS was used to process bulk nanostructured Co specimens. • Microstructures were made of intricate fcc/hcp, along with nanotwins and SFs. • High strengths and moderate compressive ductility were obtained. • Deformation mechanisms related to complex interplay of different length scales.

  10. Microcalorimetry of oxygen adsorption on fcc Co{110}.

    PubMed

    Liao, Kristine; Fiorin, Vittorio; Jenkins, Stephen J; King, David A

    2012-05-28

    The coverage dependent heats of adsorption and sticking probabilities for oxygen on fcc Co{110} have been measured at 300 K using single crystal adsorption calorimetry (SCAC). Initial adsorption is consistent with dissociative chemisorption at low coverage followed by oxide formation above 0.6 ML coverage. The initial heat of adsorption of 633 kJ mol(-1) is similar to heat values calorimetrically measured on other ferromagnetic metal surfaces, such as nickel and iron. As the coverage increases, the heat of adsorption and sticking probability drop very rapidly up to the onset of oxidation. As already observed for other oxygen-metal surface systems, strong lateral adatom repulsions are responsible for the transition from the chemisorption regime to oxide film formation at higher coverage. The heat of oxide formation at the onset is 475 kJ mol(-1), which is consistent with the formation of CoO crystallites. The oxide film formation is discussed in terms of nucleation and island growth, and the Mott-Cabrera mechanisms, the latter being evidenced by the relatively constant heat of adsorption and sticking probability in contrast to the nickel and iron oxidation cases.

  11. Development of local shear bands and orientation gradients in fcc polycrystals

    SciTech Connect

    Beaudoin, A.J. Jr.; Mecking, H.; Kocks, U.F.

    1995-05-01

    A finite element formulation which derives constitutive response from crystal plasticity theory is used to examine localized deformation in fcc polycrystals. The polycrystals are simple, idealized arrangements of grains. Localized deformations within individual grains lead to the development of domains that are separated by boundaries of high misorientation. Shear banding is seen to occur on a microscopic scale of grain dimensions. The important consequences of these simulations are that the predicted local inhomogeneities are meeting various requirements which make them possible nucleation sites for recrystallization.

  12. Graphene oxide-templated synthesis of ultrathin or tadpole-shaped au nanowires with alternating hcp and fcc domains.

    PubMed

    Huang, Xiao; Li, Shaozhou; Wu, Shixin; Huang, Yizhong; Boey, Freddy; Gan, Chee Lip; Zhang, Hua

    2012-02-14

    Ultrathin Au nanowires (AuNWs) and tadpole-shaped nanowires are synthesized on graphene oxide (GO) sheet templates. For the first time, 1.6 nm-diameter AuNWs are shown to contain hexagonal close-packed (hcp) crystal domains, and the tadpole-shaped nanowires exhibit alternating sets of hcp and face-centered cubic (fcc) structures, associated with variation in wire thickness.

  13. Stability of the fcc structure in block copolymer systems.

    PubMed

    Nonomura, Makiko

    2008-11-19

    The stability of the face-centered cubic (fcc) structure in microphase separated copolymers is investigated by a coarse-grained approach. Direct simulations of the equation for the microphase separation in three dimensions indicate that there is a narrow area above a certain degree of segregation in the phase diagram, where the fcc structure is the most stable structure. By employing the mode expansion, we have confirmed that the fcc structure can form as a metastable structure even in the weak segregation regime.

  14. High-pressure behavior of fcc phase FeHx

    NASA Astrophysics Data System (ADS)

    Thompson, E. C.; Chidester, B.; Fischer, R. A.; Prakapenka, V.; Bi, W.; Alp, E. E.; Campbell, A. J.

    2015-12-01

    Earth's core is composed of iron with the inclusion of light elements to compensate for the difference between seismically obtained densities and the density of pure Fe at relevant pressure and temperature conditions. As the most abundant and lightest element in the solar system, hydrogen is a plausible contributor to this core density deficit. Nearly stoichiometric iron hydride (FeHx) has been shown to result from the reaction of Fe and hydrous silicates, and is stable up to at least 80 GPa [1]. Iron hydride formation at Earth's surface is unlikely because the equilibrium hydrogen solubility in iron at atmospheric conditions is prohibitively low, yet as hydrogen solubility increases with pressure, so does the likelihood of FeHx formation within the Earth's interior [2]. Recent experimental and ab initio attempts disagree on the equation of state parameters needed to describe the compressional behavior of FeHx [3-5]. The work presented here combines synchrotron x-ray diffraction of laser-heated diamond anvil cell compressed samples with high-pressure, ambient temperature nuclear resonant inelastic scattering (NRIXS) and synchrotron Mössbauer spectroscopy (SMS) to better constrain the behavior of the fcc phase of FeHx at elevated pressures and temperatures. By pairing P-V-T data for iron hydride with the sound velocity information available through high-pressure NRIXS studies, we can better understand the degree to which hydrogen may contribute to the density deficit of Earth's iron core. [1] Antonov et al. (1998) J. Alloys Compd. 264, 214-222 [2] Fukai and Akimoto (1983) Proc. Japan Acad. 59, 158-162 [3] Pépin et al. (2014) Phys. Rev. Lett. 265504, 1-5 [4] Hirao (2004) Geophys. Res. Lett. 31, L06616 [5] Badding et al. (1991) Science. 253, 421-424

  15. Elemental vacancy diffusion database from high-throughput first-principles calculations for fcc and hcp structures

    NASA Astrophysics Data System (ADS)

    Angsten, Thomas; Mayeshiba, Tam; Wu, Henry; Morgan, Dane

    2014-01-01

    This work demonstrates how databases of diffusion-related properties can be developed from high-throughput ab initio calculations. The formation and migration energies for vacancies of all adequately stable pure elements in both the face-centered cubic (fcc) and hexagonal close packing (hcp) crystal structures were determined using ab initio calculations. For hcp migration, both the basal plane and z-direction nearest-neighbor vacancy hops were considered. Energy barriers were successfully calculated for 49 elements in the fcc structure and 44 elements in the hcp structure. These data were plotted against various elemental properties in order to discover significant correlations. The calculated data show smooth and continuous trends when plotted against Mendeleev numbers. The vacancy formation energies were plotted against cohesive energies to produce linear trends with regressed slopes of 0.317 and 0.323 for the fcc and hcp structures respectively. This result shows the expected increase in vacancy formation energy with stronger bonding. The slope of approximately 0.3, being well below that predicted by a simple fixed bond strength model, is consistent with a reduction in the vacancy formation energy due to many-body effects and relaxation. Vacancy migration barriers are found to increase nearly linearly with increasing stiffness, consistent with the local expansion required to migrate an atom. A simple semi-empirical expression is created to predict the vacancy migration energy from the lattice constant and bulk modulus for fcc systems, yielding estimates with errors of approximately 30%.

  16. Evaluation of the effect of hot-compressed water treatment on enzymatic hydrolysis of lignocellulosic nanofibrils with different lignin content using a quartz crystal microbalance.

    PubMed

    Kumagai, Akio; Lee, Seung-Hwan; Endo, Takashi

    2016-07-01

    Hot-compressed water (HCW) treatment is known to not only improve enzymatic hydrolysis efficiency of lignocellulosic biomass but to also generate insoluble lignin droplets, which retard enzymatic hydrolysis. In this study, the inhibitory effect of the lignin droplets was evaluated by monitoring the initial enzyme adsorption and degradation of lignocellulosic nanofibrils (LCNFs) using a quartz crystal microbalance (QCM). Lignin content was adjusted by the sodium chlorite-acetic acid method and divided into samples with high (24.9 wt%) and low (5.6 wt%) lignin content, which were then subjected to HCW treatment at various temperatures. The changes in lignin content were small with increasing HCW temperature, whereas hemicellulose content decreased, regardless of the initial lignin content. The formation of lignin droplets and pseudo-lignin-like products was confirmed in both LCNFs by atomic force microscopy (AFM) and was predominant in LCNFs with high lignin content treated at 200°C. QCM data showed that the enzyme adsorption amount in both LCNFs after HCW treatment was increased and was greater in LCNFs with low lignin content. Initial enzymatic degradation was substantially slowed in LCNFs with high lignin content, particularly after HCW treatment at temperatures higher than 180°C. These QCM results suggest that the steric hindrance of the deposited lignin is the primary mechanism by which the initial enzymatic hydrolysis is delayed. Biotechnol. Bioeng. 2016;113: 1441-1447. © 2015 Wiley Periodicals, Inc.

  17. 47 CFR 95.422 - (CB Rule 22) How do I answer correspondence from the FCC?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... from the FCC? 95.422 Section 95.422 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED... You Need to Know § 95.422 (CB Rule 22) How do I answer correspondence from the FCC? (a) If it appears to the FCC that you have violated the Communications Act or these rules, the FCC may send you...

  18. Cluster expansion of fcc Pd-V intermetallics

    SciTech Connect

    de Fontaine, D.; Wolverton, C.; Ceder, G. ); Dreysse, H. . Lab. de Physique du Solide)

    1991-06-01

    A cluster expansion is used to compute fcc ground states from first principles for the Pd-V system. Intermetallic structures are not assumed but derived rigorously by minimizing the configurational energy subject to linear constraints. A large number of concentration-independent interactions are calculated by the method of direct configurational averaging. Agreement with the fcc-based portion of the experimentally-determined Pd-V phase diagram is quite satisfactory. 25 refs., 2 figs.

  19. Selection of the Space Station Freedom (SSF) Flat Collector Circuit (FCC) insulation material

    NASA Technical Reports Server (NTRS)

    Emerson, Dawn

    1994-01-01

    The topics are presented in viewgraph form and include the following: function of the Space Station Freedom (SSF) Flat Collector Circuit (FCC); requirements of the FCC which affect the selection of the insulation material; data to support the selection of the FCC insulation material; development history; modified design; coverlay testing; effects on modified design on FCC; arc tracking tests performed on FCC; and arc tracking test results.

  20. Nanotwinned fcc metals: Strengthening versus softening mechanisms

    NASA Astrophysics Data System (ADS)

    Stukowski, A.; Albe, K.; Farkas, D.

    2010-12-01

    The strengthening effect of twins in nanocrystalline metals has been reported both in experiment and simulation. While twins are mostly considered as effective barriers to dislocation slip transfer, they can also provide nucleation sites for dislocations or migrate during the deformation process, thereby contributing to plasticity. By comparing twinned and nontwinned samples, we study the effect of twins on the deformation behavior of nanocrystalline Cu and Pd using atomistic simulations. While Cu shows hardening due to the presence of twins, Pd shows the opposite effect. A quantitative dislocation analysis method is applied, which allows to analyze dislocation interactions with twin planes and grain boundaries and to measure dislocation, stacking fault, and twin-boundary densities as functions of strain. A statistical analysis of the occurring dislocation types provides direct evidence for the role of twin boundaries as effective sources for twinning dislocations, which are the reason for the observed softening in some fcc materials. In addition, we discuss how the orientation of the loading direction with respect to the twin planes affects the response of nanotwinned Cu and Pd.

  1. Isentropic Compression of Argon

    SciTech Connect

    H. Oona; J.C. Solem; L.R. Veeser, C.A. Ekdahl; P.J. Rodriquez; S.M. Younger; W. Lewis; W.D. Turley

    1997-08-01

    We are studying the transition of argon from an insulator to a conductor by compressing the frozen gas isentropically to pressures at which neighboring atomic orbitals overlap sufficiently to allow some electron motion between atoms. Argon and the other rare gases have closed electron shells and therefore remain montomic, even when they solidify. Their simple structure makes it likely that any measured change in conductivity is due to changes in the atomic structure, not in molecular configuration. As the crystal is compressed the band gap closes, allowing increased conductivity. We have begun research to determine the conductivity at high pressures, and it is our intention to determine the compression at which the crystal becomes a metal.

  2. 47 CFR 95.219 - (R/C Rule 19) How do I answer correspondence from the FCC?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... from the FCC? 95.219 Section 95.219 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED... You Need to Know § 95.219 (R/C Rule 19) How do I answer correspondence from the FCC? (a) If it appears to the FCC that you have violated the Communications Act or FCC rules, the FCC may send you...

  3. DNABIT Compress - Genome compression algorithm.

    PubMed

    Rajarajeswari, Pothuraju; Apparao, Allam

    2011-01-01

    Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, "DNABIT Compress" for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our proposed algorithm achieves the best compression ratio for DNA sequences for larger genome. Significantly better compression results show that "DNABIT Compress" algorithm is the best among the remaining compression algorithms. While achieving the best compression ratios for DNA sequences (Genomes),our new DNABIT Compress algorithm significantly improves the running time of all previous DNA compression programs. Assigning binary bits (Unique BIT CODE) for (Exact Repeats, Reverse Repeats) fragments of DNA sequence is also a unique concept introduced in this algorithm for the first time in DNA compression. This proposed new algorithm could achieve the best compression ratio as much as 1.58 bits/bases where the existing best methods could not achieve a ratio less than 1.72 bits/bases.

  4. Atomic structure of [110] tilt grain boundaries in FCC materials

    SciTech Connect

    Merkle, K.L.; Thompson, L.J.

    1997-04-01

    High-resolution electron microscopy (HREM) has been used to study the atomic-scale structure and localized relaxations at grain boundaries (GBs) in Au, Al, and MgO. The [110] tilt GBs play an important role in polycrystalline fcc metals since among all of the possible GB geometries this series of misorientations as a whole contains the lowest energies, including among others the two lowest energy GBs, the (111) and (113) twins. Therefore, studies of the atomic-scale structure of [110] tilt GBs in fcc metals and systematic investigations of their dependence on misorientation and GB plane is of considerable importance to materials science. [110] tilt GBs in ceramic oxides of the fcc structure are also of considerable interest, since in this misorientation range polar GBs exist, i.e. GBs in which crystallographic planes that are made up of complete layers of cations or anions can join to form a GB.

  5. Optical emission, shock-induced opacity, temperatures, and melting of Gd3Ga5O12 single crystals shock-compressed from 41 to 290 GPa

    NASA Astrophysics Data System (ADS)

    Zhou, Xianming; Nellis, William J.; Li, Jiabo; Li, Jun; Zhao, Wanguang; Liu, Xun; Cao, Xiuxia; Liu, Qiancheng; Xue, Tao; Wu, Qiang; Mashimo, T.

    2015-08-01

    Strong oxides at high shock pressures have broad crossovers from elastic solids at ambient to failure by plastic deformation, to heterogeneous deformation to weak solids, to fluid-like solids that equilibrate thermally in a few ns, to melting and, at sufficiently high shock pressures and temperatures, to metallic fluid oxides. This sequence of crossovers in single-crystal cubic Gd3Ga5O12 (Gd-Ga Garnet-GGG) has been diagnosed by fast emission spectroscopy using a 16-channel optical pyrometer in the spectral range 400-800 nm with bandwidths per channel of 10 nm, a writing time of ˜1000 ns and time resolution of 3 ns. Spectra were measured at shock pressures from 40 to 290 GPa (100 GPa = 1 Mbar) with corresponding gray-body temperatures from 3000 to 8000 K. Experimental lifetimes were a few 100 ns. Below 130 GPa, emission is heterogeneous and measured temperatures are indicative of melting temperatures in grain boundary regions rather than bulk temperatures. At 130 GPa and 2200 K, GGG equilibrates thermally and homogeneously in a thin opaque shock front. This crossover has a characteristic spectral signature in going from partially transmitting shock-heated material behind the shock front to an opaque shock front. Opacity is caused by optical scattering and absorption of light generated by fast compression. GGG melts at ˜5000 K in a two-phase region at shock pressures in the range 200 GPa to 217 GPa. Hugoniot equation-of-state data were measured by a Doppler Pin SystemDPS with ps time resolution and are generally consistent with previous data. Extrapolation of previous electrical conductivity measurements indicates that GGG becomes a poor metal at a shock pressure above ˜400 GPa. Because the shock impedance of GGG is higher than that of Al2O3 used previously to make metallic fluid H (MFH), the use of GGG to make MFH will achieve higher pressures and lower temperatures than use of Al2O3. However, maximum dynamic pressures at which emission temperatures of fluid

  6. Impact of magnetic fluctuations on lattice excitations in fcc nickel.

    PubMed

    Körmann, Fritz; Ma, Pui-Wai; Dudarev, Sergei L; Neugebauer, Jörg

    2016-02-24

    The spin-space averaging formalism is applied to compute atomic forces and phonon spectra for magnetically excited states of fcc nickel. Transverse and longitudinal magnetic fluctuations are taken into account by a combination of magnetic special quasi random structures and constrained spin-density-functional theory. It turns out that for fcc Ni interatomic force constants and phonon spectra are almost unaffected by both kinds of spin fluctuations. Given the computational expense to simulate coupled magnetic and atomic fluctuations, this insight facilitates computational modeling of magnetic alloys such as Ni-based superalloys.

  7. Phase stability of ternary fcc and bcc Fe-Cr-Ni alloys

    NASA Astrophysics Data System (ADS)

    Wróbel, Jan S.; Nguyen-Manh, Duc; Lavrentiev, Mikhail Yu.; Muzyk, Marek; Dudarev, Sergei L.

    2015-01-01

    The phase stability of fcc and bcc magnetic binary Fe-Cr, Fe-Ni, and Cr-Ni alloys, and ternary Fe-Cr-Ni alloys is investigated using a combination of density functional theory (DFT), cluster expansion (CE), and magnetic cluster expansion (MCE) approaches. Energies, magnetic moments, and volumes of more than 500 alloy structures have been evaluated using DFT, and the predicted most stable configurations are compared with experimental observations. Deviations from the Vegard law in fcc Fe-Cr-Ni alloys, resulting from the nonlinear variation of atomic magnetic moments as functions of alloy composition, are observed. The accuracy of the CE model is assessed against the DFT data, where for ternary Fe-Cr-Ni alloys the cross-validation error is found to be less than 12 meV/atom. A set of cluster interaction parameters is defined for each alloy, where it is used for predicting new ordered alloy structures. The fcc Fe2CrNi phase with Cu2NiZn -like crystal structure is predicted to be the global ground state of ternary Fe-Cr-Ni alloys, with the lowest chemical ordering temperature of 650 K. DFT-based Monte Carlo (MC) simulations are applied to the investigation of order-disorder transitions in Fe-Cr-Ni alloys. The enthalpies of formation of ternary alloys predicted by MC simulations at 1600 K, combined with magnetic correction derived from MCE, are in excellent agreement with experimental values measured at 1565 K. The relative stability of fcc and bcc phases is assessed by comparing the free energies of alloy formation. The evaluation of the free energies involved the application of a dedicated algorithm for computing the configurational entropies of the alloys. Chemical order is analyzed, as a function of temperature and composition, in terms of the Warren-Cowley short-range order (SRO) parameters and effective chemical pairwise interactions. In addition to compositions close to binary intermetallic phases CrNi2, FeNi, FeNi3, and FeNi8, pronounced chemical order is found

  8. Bulk Nanostructured FCC Steels With Enhanced Radiation Tolerance

    SciTech Connect

    Zhang, Xinghang; Hartwig, K. Ted; Allen, Todd; Yang, Yong

    2012-10-27

    The objective of this project is to increase radiation tolerance in austenitic steels through optimization of grain size and grain boundary (GB) characteristics. The focus will be on nanocrystalline austenitic Fe-Cr-Ni alloys with an fcc crystal structure. The long-term goal is to design and develop bulk nanostructured austenitic steels with enhanced void swelling resistance and substantial ductility, and to enhance their creep resistance at elevated temperatures via GB engineering. The combination of grain refinement and grain boundary engineering approaches allows us to tailor the material strength, ductility, and resistance to swelling by 1) changing the sink strength for point defects, 2) by increasing the nucleation barriers for bubble formation at GBs, and 3) by changing the precipitate distributions at boundaries. Compared to ferritic/martensitic steels, austenitic stainless steels (SS) possess good creep and fatigue resistance at elevated temperatures, and better toughness at low temperature. However, a major disadvantage of austenitic SS is that they are vulnerable to significant void swelling in nuclear reactors, especially at the temperatures and doses anticipated in the Advanced Burner Reactor. The lack of resistance to void swelling in austenitic alloys led to the switch to ferritic/martensitic steels as the preferred material for the fast reactor cladding application. Recently a type of austenitic stainless steel, HT-UPS, was developed at ORNL, and is expected to show enhanced void swelling resistance through the trapping of point defects at nanometersized carbides. Reducing the grain size and increasing the fraction of low energy grain boundaries should reduce the available radiation-produced point defects (due to the increased sink area of the grain boundaries), should make bubble nucleation at the boundaries less likely (by reducing the fraction of high-energy boundaries), and improve the strength and ductility under radiation by producing a higher

  9. Effect of Compression on the Molecular Arrangement of Itraconazole-Soluplus Solid Dispersions: Induction of Liquid Crystals or Exacerbation of Phase Separation?

    PubMed

    Singh, Abhishek; Bharati, Avanish; Frederiks, Pauline; Verkinderen, Olivier; Goderis, Bart; Cardinaels, Ruth; Moldenaers, Paula; Van Humbeeck, Jan; Van den Mooter, Guy

    2016-06-01

    Predensification and compression are unit operations imperative to the manufacture of tablets and capsules. Such stress-inducing steps can cause destabilization of solid dispersions which can alter their molecular arrangement and ultimately affect dissolution rate and bioavailability. In this study, itraconazole-Soluplus solid dispersions with 50% (w/w) drug loading prepared by hot-melt extrusion (HME) were investigated. Compression was performed at both pharmaceutically relevant and extreme compression pressures and dwell times. The starting materials, powder, and compressed solid dispersions were analyzed using modulated differential scanning calorimetry (MDSC), X-ray diffraction (XRD), small- and wide-angle X-ray scattering (SWAXS), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), and broadband dielectric spectroscopy (BDS). MDSC analysis revealed that compression promotes phase separation of solid dispersions as indicated by an increase in glass transition width, occurrence of a peak in the nonreversing heat flow signal, and an increase in the net heat of fusion indicating crystallinity in the systems. SWAXS analysis ruled out the presence of mesophases. BDS measurements elucidated an increase in the Soluplus-rich regions of the solid dispersion upon compression. FTIR indicated changes in the spatiotemporal architecture of the solid dispersions mediated via disruption in hydrogen bonding and ultimately altered dynamics. These changes can have significant consequences on the final stability and performance of the solid dispersions. PMID:27092396

  10. Effect of Compression on the Molecular Arrangement of Itraconazole-Soluplus Solid Dispersions: Induction of Liquid Crystals or Exacerbation of Phase Separation?

    PubMed

    Singh, Abhishek; Bharati, Avanish; Frederiks, Pauline; Verkinderen, Olivier; Goderis, Bart; Cardinaels, Ruth; Moldenaers, Paula; Van Humbeeck, Jan; Van den Mooter, Guy

    2016-06-01

    Predensification and compression are unit operations imperative to the manufacture of tablets and capsules. Such stress-inducing steps can cause destabilization of solid dispersions which can alter their molecular arrangement and ultimately affect dissolution rate and bioavailability. In this study, itraconazole-Soluplus solid dispersions with 50% (w/w) drug loading prepared by hot-melt extrusion (HME) were investigated. Compression was performed at both pharmaceutically relevant and extreme compression pressures and dwell times. The starting materials, powder, and compressed solid dispersions were analyzed using modulated differential scanning calorimetry (MDSC), X-ray diffraction (XRD), small- and wide-angle X-ray scattering (SWAXS), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), and broadband dielectric spectroscopy (BDS). MDSC analysis revealed that compression promotes phase separation of solid dispersions as indicated by an increase in glass transition width, occurrence of a peak in the nonreversing heat flow signal, and an increase in the net heat of fusion indicating crystallinity in the systems. SWAXS analysis ruled out the presence of mesophases. BDS measurements elucidated an increase in the Soluplus-rich regions of the solid dispersion upon compression. FTIR indicated changes in the spatiotemporal architecture of the solid dispersions mediated via disruption in hydrogen bonding and ultimately altered dynamics. These changes can have significant consequences on the final stability and performance of the solid dispersions.

  11. Compression embedding

    DOEpatents

    Sandford, II, Maxwell T.; Handel, Theodore G.; Bradley, Jonathan N.

    1998-01-01

    A method and apparatus for embedding auxiliary information into the digital representation of host data created by a lossy compression technique and a method and apparatus for constructing auxiliary data from the correspondence between values in a digital key-pair table with integer index values existing in a representation of host data created by a lossy compression technique. The methods apply to data compressed with algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as ordered sequences of blocks containing integer indices having redundancy and uncertainty of value by one unit, allowing indices which are adjacent in value to be manipulated to encode auxiliary data. Also included is a method to improve the efficiency of lossy compression algorithms by embedding white noise into the integer indices. Lossy compression methods use loss-less compression to reduce to the final size the intermediate representation as indices. The efficiency of the loss-less compression, known also as entropy coding compression, is increased by manipulating the indices at the intermediate stage. Manipulation of the intermediate representation improves lossy compression performance by 1 to 10%.

  12. Compression embedding

    DOEpatents

    Sandford, M.T. II; Handel, T.G.; Bradley, J.N.

    1998-07-07

    A method and apparatus for embedding auxiliary information into the digital representation of host data created by a lossy compression technique and a method and apparatus for constructing auxiliary data from the correspondence between values in a digital key-pair table with integer index values existing in a representation of host data created by a lossy compression technique are disclosed. The methods apply to data compressed with algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as ordered sequences of blocks containing integer indices having redundancy and uncertainty of value by one unit, allowing indices which are adjacent in value to be manipulated to encode auxiliary data. Also included is a method to improve the efficiency of lossy compression algorithms by embedding white noise into the integer indices. Lossy compression methods use loss-less compression to reduce to the final size the intermediate representation as indices. The efficiency of the loss-less compression, known also as entropy coding compression, is increased by manipulating the indices at the intermediate stage. Manipulation of the intermediate representation improves lossy compression performance by 1 to 10%. 21 figs.

  13. 47 CFR 73.1226 - Availability to FCC of station logs and records.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Availability to FCC of station logs and records... Availability to FCC of station logs and records. The following shall be made available to any authorized representative of the FCC upon request: (a) Station records and logs shall be made available for inspection...

  14. 47 CFR 97.27 - FCC modification of station license grant.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false FCC modification of station license grant. 97... RADIO SERVICES AMATEUR RADIO SERVICE General Provisions § 97.27 FCC modification of station license grant. (a) The FCC may modify a station license grant, either for a limited time or for the duration...

  15. Congress, the FCC and Children's Television Regulation: A Shift in the Balance of Power.

    ERIC Educational Resources Information Center

    Markin, Karen

    The Federal Communications Commission (FCC) of the late 1980s appeared to pursue its own agenda of broadcast deregulation, notwithstanding congressional pressures. The apparent power shift is evident in a case study of the interactions between Congress and the FCC on the subject of children's television. In the early 1970s, the FCC tended to…

  16. Mitigate FCC feedstock contaminants to improve yield slates and quality

    SciTech Connect

    1997-03-01

    The fluid catalytic cracking (FCC) unit`s value as a fuel and olefins producer continues to grow in proportion to demand in developing markets. However, because of free market dynamics, many refiners processing imported crudes are challenged by the variability in crude slates. Depending on the crude processed, contaminants such as nickel, vanadium sulfur and nitrogen will affect the refiner`s pre-determined objective of extending run lengths in order to maximize their margins differential. The refiners` crude traders must endeavor to find the most economical and {open_quotes}processable{close_quotes} crude (hopefully low in sulfur, nitrogen and heavy metals), while refinery operators and process engineers must design enough flexibility into major units such as the FCC, to process a variety of crudes available on the market. Just as importantly, refiners with {open_quotes}captive{close_quotes} crude sources, are challenged by the high level of feedstock contaminants (i.e., catalyst deactivators) contained in their low API gravity crudes. In either case, the common denominator affecting FCC process flexibility (at any refinery) is the extent of FCC catalyst deactivation by contaminants present in the crude oil.

  17. Electronic properties of carbon in the fcc phase.

    NASA Astrophysics Data System (ADS)

    Cab, Cesar; Canto, Gabriel

    2005-03-01

    The observation of a new carbon phase in nanoparticles obtained from Mexican crude oil having the face-centered-cubic structure (fcc) has been reported. However, more recently has been suggested that hydrogen is present in the samples forming CH with the zincblende structure. The structural and electronic properties of C(fcc) and CH(zincblende) are unknown. In the present work we have studied the electronic structure of C(fcc) and CH(zincblende) by means of first-principles total-energy calculations. The results were obtained with the pseudopotentials LCAO method (SIESTA code) and the Generalized Gradient Approximation (GGA) for the exchange-correlation potential. We have analyzed the band structure, the local density of states (LDOS), and orbital population. We find that in contrast to graphite and diamond, both fcc carbon and CH with the zincblende structure exhibit metallic behavior. This research was supported by Consejo Nacional de Ciencia y Tecnolog'ia (Conacyt-M'exico) under Grants No. 43830-F, No. 44831-F, and No. 43828-Y.

  18. 47 CFR 76.1714 - FCC rules and regulations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... EAS. Copies of the Commission's rules may be obtained from the Superintendent of Documents, Government... Documents, Government Printing Office, Washington, DC 20402, at nominal cost. ... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Documents to be Maintained for Inspection § 76.1714 FCC...

  19. The role of surface and applied stresses in the stability of fcc(111) oriented metal surfaces

    NASA Astrophysics Data System (ADS)

    Trimble, Todd Marlin

    disregistry with the underlying lattice. A continuum model yields a stability criterion that depends on the knowledge of a small number of measurable physical quantities: f, gamma, a0 and G. Molecular dynamics simulations have been performed as a general stability analysis of these types of reconstructions. The results are in excellent agreement with a continuum model. The simulations using EAM potentials also accurately reproduce many observed features of the reconstruction on Au. The possibility of altering the stability of the surface through an externally applied stress is investigated. Using the continuum model a plausibility argument is presented that predicts a lifting of the reconstruction on Au for a large enough compressive strain at the surface. This is supported by EAM simulations. To study the effect of an applied stress we have designed and set-up an experiment in which a Au(111) oriented single crystal will be bent elastically in a cantilever beam configuration in ultra-high vacuum (UHV). Low-energy electron diffraction (LEED) will be used to monitor any changes in the surface structure.

  20. Compression embedding

    DOEpatents

    Sandford, M.T. II; Handel, T.G.; Bradley, J.N.

    1998-03-10

    A method of embedding auxiliary information into the digital representation of host data created by a lossy compression technique is disclosed. The method applies to data compressed with lossy algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as integer indices having redundancy and uncertainty in value by one unit. Indices which are adjacent in value are manipulated to encode auxiliary data. By a substantially reverse process, the embedded auxiliary data can be retrieved easily by an authorized user. Lossy compression methods use loss-less compressions known also as entropy coding, to reduce to the final size the intermediate representation as indices. The efficiency of the compression entropy coding, known also as entropy coding is increased by manipulating the indices at the intermediate stage in the manner taught by the method. 11 figs.

  1. Compression embedding

    DOEpatents

    Sandford, II, Maxwell T.; Handel, Theodore G.; Bradley, Jonathan N.

    1998-01-01

    A method of embedding auxiliary information into the digital representation of host data created by a lossy compression technique. The method applies to data compressed with lossy algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as integer indices having redundancy and uncertainty in value by one unit. Indices which are adjacent in value are manipulated to encode auxiliary data. By a substantially reverse process, the embedded auxiliary data can be retrieved easily by an authorized user. Lossy compression methods use loss-less compressions known also as entropy coding, to reduce to the final size the intermediate representation as indices. The efficiency of the compression entropy coding, known also as entropy coding is increased by manipulating the indices at the intermediate stage in the manner taught by the method.

  2. Microstructural Characterization of Dislocation Networks During Harper-Dorn Creep of fcc, bcc, and hcp Metals and Alloys

    SciTech Connect

    Przystupa, Marek A.

    2007-12-13

    temperatures, (2) time invariant and (3) identical to the distributions obtained previously for Harper-Dorn creep. This has never been shown before and confirms our theoretical expectations that evolution of the dislocation networks during annealing and H-D creep is governed by the same growth law. Obtained results were also used to predict H-D steady creep rates from annealing kinetics data using equations of the dislocation network theory. For the three considered stresses the theory predicts systematically smaller creep rates by the average factor of 4.5. Considering that the creep rates have been predicted from the annealing data alone and without any adjustable parameters, this results shout be considered as outstanding. In case of hcp zinc the samples were pre-deformed in compression at constant stress of 4 MPa at temperature of 573 K and subsequently annealed at the same temperature. During annealing samples readily recrystallized, but it was possible to obtain information on the link length distributions from several unrecrystallized grains. The results showed that the scaled link length distributions were time invariant and similar to those of the aluminum. The annealing studies on bcc tin were also curtailed by the concurrent recrystallization. It was only possible to obtain link length distribution for samples deformed in compression at constant load of 2 MPa at 423 K after unloading. The link length distribution was also in this case similar to that of the aluminum and zinc. These results suggest that the scaled link length distribution is universal and the same for the three considered crystal structures. This supports theoretical findings of these studies that appropriately scaled dislocation link length distribution should both universal and time invariant. We have also investigated the possibility of using alternative methods of estimating local dislocation densities from etch pits which could give more precise estimates of the dislocation link-lengths. The two

  3. Grain-scale characterization of FCC/BCC correspondence relations and variant selection

    NASA Astrophysics Data System (ADS)

    He, Youliang

    The misorientations between FCC and BCC crystals are characterized according to the common lattice correspondence relationships in terms of their parallelism conditions. Individual variants of the six models, namely the Bain, Kurdjumov-Sachs, Nishiyama-Wassermann, Pitsch, Greninger-Troiano and inverse Greninger-Troiano relations, are identified and represented in both pole figure form and in Rodrigues-Frank space with respect to various coordinate frames. In this way, the relations between the variants of these models are clarified. The orientations of the kamacite (BCC) lamellae transformed from a single prior-taenite (FCC) grain in the Gibeon meteorite were measured by analyzing the electron backscatter diffraction patterns. The local misorientations between individual FCC and BCC crystals along their common interfaces were computed and are compared with the common lattice correspondence relationships. The orientation relations between the alpha and gamma phases in the plessite regions are also characterized. The Neumann bands (mechanical twins) and their orientation variations within individual kamacite lamellae were studied and analyzed. A Nb-bearing TRIP steel was control rolled and a certain amount of austenite was retained through appropriate heat treatment. EBSD measurements were conducted on specimens deformed to various reductions and the textures (ODF's) of both the gamma and alpha phases were obtained from the measured data points. The orientations of the bainite formed within individual prior-austenite grains are compared to those expected from the common correspondence relationships and the average orientation of the prior-austenite grain. The crystallography of the bainite laths within a single packet is also characterized. The orientations of the bainite formed from individual prior-austenite grains are analyzed with respect to their parent orientations. The occurrence of variant selection at the grain scale was examined using a dislocation

  4. Plastic crystal phases of simple water models.

    PubMed

    Aragones, J L; Vega, C

    2009-06-28

    We report the appearance of two plastic crystal phases of water at high pressure and temperature using computer simulations. In one of them the oxygen atoms form a body centered cubic structure (bcc) and in the other they form a face centered cubic structure (fcc). In both cases the water molecules were able to rotate almost freely. We have found that the bcc plastic crystal transformed into a fcc plastic crystal via a Martensitic phase transition when heated at constant pressure. We have performed the characterization and localization in the phase diagram of these plastic crystal phases for the SPC/E, TIP4P, and TIP4P/2005 water potential models. For TIP4P/2005 model free energy calculations were carried out for the bcc plastic crystal and fcc plastic crystal using a new method (which is a slight variation of the Einstein crystal method) proposed for these types of solid. The initial coexistence points for the SPC/E and TIP4P models were obtained using Hamiltonian Gibbs-Duhem integration. For all of these models these two plastic crystal phases appear in the high pressure and temperature region of the phase diagram. It would be of interest to study if such plastic crystal phases do indeed exist for real water. This would shed some light on the question of whether these models can describe satisfactorily the high pressure part of the phase diagram of water, and if not, where and why they fail. PMID:19566163

  5. Magneto-optic constants of hcp and fcc Co films

    SciTech Connect

    Osgood, R.M. III,; Riggs, K.T.; Johnson, A.E.; Mattson, J.E.; Sowers, C.H.; Bader, S.D.

    1997-08-01

    We tabulate the wavelength dependence of the complex magneto-optic constants for epitaxial fcc (001) and hcp (1{bar 1}00) Co films with the magnetization along two different in-plane crystallographic directions. The magneto-optic constants of epitaxial hcp Co films are strongly dependent on crystallographic direction for the same sample, while those of epitaxial fcc Co films are not, as anticipated from the trends in the magnetic anisotropy due to the spin-orbit interaction. Our results for (i) the anisotropic magneto-optic constants, (ii) the magnetic anisotropy, and (iii) the indices of refraction, are compared to other studies of Co. {copyright} {ital 1997} {ital The American Physical Society}

  6. Attrition Resistant Fischer-Tropsch Catalysts Based on FCC Supports

    SciTech Connect

    Adeyiga, Adeyinka

    2010-02-05

    Commercial spent fluid catalytic cracking (FCC) catalysts provided by Engelhard and Albemarle were used as supports for Fe-based catalysts with the goal of improving the attrition resistance of typical F-T catalysts. Catalysts with the Ruhrchemie composition (100 Fe/5 Cu/4.2 K/25 spent FCC on mass basis) were prepared by wet impregnation. XRD and XANES analysis showed the presence of Fe{sub 2}O{sub 3} in calcined catalysts. FeC{sub x} and Fe{sub 3}O{sub 4} were present in the activated catalysts. The metal composition of the catalysts was analyzed by ICP-MS. F-T activity of the catalysts activated in situ in CO at the same conditions as used prior to the attrition tests was measured using a fixed bed reactor at T = 573 K, P = 1.38 MPa and H{sub 2}:CO ratio of 0.67. Cu and K promoted Fe supported over Engelhard provided spent FCC catalyst shows relatively good attrition resistance (8.2 wt% fines lost), high CO conversion (81%) and C{sub 5}+ hydrocarbons selectivity (18.3%).

  7. Magnetism in bcc and fcc Fe with carbon and manganese.

    PubMed

    Medvedeva, N I; Van Aken, D; Medvedeva, J E

    2010-08-11

    Density functional theory calculations were performed to study the structure and magnetic properties of bcc (α) and fcc (γ) Fe with 3 at.% carbon and manganese impurities. We find that all bcc-based Fe, Fe-C and Fe-Mn-C phases exhibit a ferromagnetic (FM) ground state, while the antiferromagnetic double-layer (AFMD) state is lowest in energy within the collinear spin approach in fcc Fe, Fe-C and Fe-Mn-C phases. However, the carbon and manganese impurities affect the local magnetic interactions significantly. The states with opposite manganese magnetic moments are quasi-degenerate in bcc Fe-Mn alloy, whereas octa-site carbon stabilizes ferromagnetic coupling of the nearest manganese atom with the Fe host. We demonstrate that the antiferromagnetic (AFM) fcc Fe-C and Fe-Mn-C alloys are intrinsically inhomogeneous magnetic systems. Carbon frustrates the local magnetic order by reorientation of magnetic moments of the nearest Mn and Fe atoms, and favors their ferromagnetic coupling. The competition between ferromagnetic and antiferromagnetic Fe-Fe and Fe-Mn interactions and the local magnetovolume instability near carbon may give rise to the spin-glass-like regions observed in austenitic Fe-Mn-C alloys.

  8. Formation of bcc and fcc during the coalescence of free and supported Fe and Ni clusters.

    PubMed

    Li, Guojian; Wang, Qiang; Sui, Xudong; Wang, Kai; Wu, Chun; He, Jicheng

    2015-09-01

    The formation of bcc and fcc during the coalescence of free and supported Fe and Ni clusters has been studied by molecular dynamics simulation using an embedded atom method. Structural evolution of the clusters, coalesced under varying temperature, Ni content and substrate conditions, was explored by interatomic energy, snapshots, pair distribution functions and bond order parameters. The results show that the formation of bcc and fcc is strongly related to Ni content, substrate and coalescence temperature. Free clusters coalesced at 1200 K form bcc at lower Ni contents with fcc forming at higher Ni concentrations and no observable coexistence of bcc and fcc. Differences in coalescence at 1000 K result from the coexistence of bcc and fcc within the Ni range of 50-70%. Free clusters supported on disordered Ni substrates were shown to transform from spherical morphology to islands of supported clusters with preferred epitaxial orientation. The Ni content required to form bcc and fcc coexistence on supported clusters at 1000 K decreased to 30-50% Ni. Free clusters possessing bcc and fcc generally stacked along the bcc (110) and fcc (111) facets, whereas supported clusters stacked along the (111) bcc and (100) fcc planes. Structural transformation was induced by clusters containing greater numbers of atoms. Spread over the substrate enhanced interatomic energy, order substrates affect the epitaxial growth direction and increase the melting points of the supported clusters. This study can be used to predict the nature of fcc and bcc formation in Fe-Ni films.

  9. Molecular dynamics (MD) studies on phase transformation and deformation behaviors in FCC metals and alloys

    NASA Astrophysics Data System (ADS)

    Qi, Yue

    This thesis focused on the phase transformation and deformation behaviors in face center cubic (FCC) metals and alloys. These studies used the new quantum modified Sutton-Chen (QMSC) many-body potentials for Cu, Ni, Ag, and Au and for their alloys through simple combination rules. Various systems and processes are simulated by standard equilibrium molecular dynamics (MD), quasi-static equilibrium MD and non-equilibrium MD (NEMD), cooperated with different periodic boundary conditions. The main topics include: (1) Melting, glass formation, and crystallization processes in bulk alloys. In our simulation CuNi and pure Cu always form an FCC crystal, while Cu4Ag6 always forms glass (with Tg decreasing as the quench rate increases) due to the large atomic size difference. (2) Size effects in melting and crystallization in Ni nano clusters. There is a transition from cluster or molecular regime (where the icosahedral is the stable structure) below ˜500 atoms to a mesoscale regime (with well-defined bulk and surface properties and surface melting processes, which leads to Tm,N = Tm,B - alpha N-1/3) above ˜750 atoms. (3) The deformation behavior of metallic nanowires of pure Ni, NiCu and NiAu alloys, under high rates of uniaxial tensile strain, ranging from 5*108/s to 5*1010/s. We find that deformation proceeds through twinning and coherent slipping at low strain rate and amorphization at high strain rate. This research provides a new method, fast straining, to induce amorphization except fast cooling and disordering. (4) The calculation of the ½ <110> screw dislocation in nickel (Ni). We calculated the core energy of screw dislocation after dissociation is 0.5 eV/b, the annihilation process of opposite signed dislocations depends dramatically on the configurations of dissociation planes and the cross-slip energy barrier is 0.1eV/b. (5) Friction anisotropy on clean Ni(100)/(100) interface. We found that static friction coefficient on flat and incommensurate interface is

  10. Highly uniform polyhedral colloids formed by colloidal crystal templating

    NASA Astrophysics Data System (ADS)

    Wang, Yifan; McGinley, James; Crocker, John; Crocker Research Group Team

    2015-03-01

    We seek to create polyhedral solid particles by trapping oil droplets in a colloidal crystal, and polymerizing them in situ, resulting in polyhedral particles containing spherical dimples in an ordered arrangement. Specifically, highly monodisperse, micron-sized droplets of 3-methacryloxypropyl trimethoxysilane (TPM) were first prepared through a poly condensation reaction, following well established methods. The droplets were mixed with an excess of polystyrene(PS) particles (diameter in 2.58 μm), which formed close packed (FCC or HCP) colloidal crystals by natural sedimentation and compression under partial drying to an extent, with TPM oil droplets trapped into their tetrahedral and octahedral interstitial sites and wet PS particles. Depending on the initial particle volume fraction and extent of drying, a high yield of dimpled particles having different shapes including tetrahedra and cubes were obtained after oil initiated polymerization and dissolution of the host PS particles, as seen under SEM. The effects of TPM to PS particles size ratio, drying time, and other factors in relation to the yield of tetrahedral and cubic dimpled particles will be presented. Finally, fractionation techniques were used to obtain suspensions of uniform polyhedral particles of high purity.

  11. Colloidal Crystal Growth Monitored By Bragg Diffraction Interference Fringes

    PubMed Central

    Bohn, Justin J.; Tikhonov, Alexander; Asher, Sanford A.

    2010-01-01

    We monitor the crystal growth kinetics of crystallization of a shear melted crystalline colloidal array (CCA). The fcc CCA heterogeneously nucleates at the flow cell wall surface. We examined the evolution of the (111) Bragg diffraction peak, and, for the first time, quantitatively monitored growth by measuring the temporal evolution of the Bragg diffraction interference fringes. Modeling of the evolution of the fringe patterns exposes the time dependence of the increasing crystal thickness. The initial diffusion driven linear growth is followed by ripening-driven growth. Between 80 to 90 μM NaCl concentrations the fcc crystals first linearly grow at rates between 1.9 and 4.2 μm/sec until they contact homogeneously nucleated crystals in the bulk. At lower salt concentrations interference fringes are not visible because the strong electrostatic interactions between particles result in high activation barriers, preventing defect annealing and leading to a lower crystal quality. The fcc crystals melt to a liquid phase at >90 μM NaCl concentrations. Increasing NaCl concentrations slows the fcc CCA growth rate consistent with the expectation of the classical Wilson-Frenkel growth theory. The final thickness of wall nucleated CCA is determined by the competition between growth of heterogeneously and homogenously nucleated CCA and increases with higher NaCl concentrations. PMID:20542277

  12. A general kinetic-flow coupling model for FCC riser flow simulation.

    SciTech Connect

    Chang, S. L.

    1998-05-18

    A computational fluid dynamic (CFD) code has been developed for fluid catalytic cracking (FCC) riser flow simulation. Depending on the application of interest, a specific kinetic model is needed for the FCC flow simulation. This paper describes a method to determine a kinetic model based on limited pilot-scale test data. The kinetic model can then be used with the CFD code as a tool to investigate optimum operating condition ranges for a specific FCC unit.

  13. Properties of helium defects in bcc and fcc metals investigated with density functional theory

    NASA Astrophysics Data System (ADS)

    Zu, X. T.; Yang, L.; Gao, F.; Peng, S. M.; Heinisch, H. L.; Long, X. G.; Kurtz, R. J.

    2009-08-01

    The relative stability of single He defects in bcc and fcc metals is investigated using ab initio calculations based on density functional theory. The results indicate that the tetrahedral position is energetically more favorable for a He interstitial than the octahedral site in bcc metals, but the relative stability of He defects in fcc metals varies, depending on local environments. The He formation energies in bcc Fe and fcc Ni at the tetrahedral and octahedral positions with and without spin polarization are investigated. It is of interest to find that the magnetism of host atoms does not directly affect the relative stabilities of He in interstitial sites in bcc Fe and fcc Ni.

  14. Video Compression

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Optivision developed two PC-compatible boards and associated software under a Goddard Space Flight Center Small Business Innovation Research grant for NASA applications in areas such as telerobotics, telesciences and spaceborne experimentation. From this technology, the company used its own funds to develop commercial products, the OPTIVideo MPEG Encoder and Decoder, which are used for realtime video compression and decompression. They are used in commercial applications including interactive video databases and video transmission. The encoder converts video source material to a compressed digital form that can be stored or transmitted, and the decoder decompresses bit streams to provide high quality playback.

  15. Alkali cation specific adsorption onto fcc(111) transition metal electrodes.

    PubMed

    Mills, J N; McCrum, I T; Janik, M J

    2014-07-21

    The presence of alkali cations in electrolyte solutions is known to impact the rate of electrocatalytic reactions, though the mechanism of such impact is not conclusively determined. We use density functional theory (DFT) to examine the specific adsorption of alkali cations to fcc(111) electrode surfaces, as specific adsorption may block catalyst sites or otherwise impact surface catalytic chemistry. Solvation of the cation-metal surface structure was investigated using explicit water models. Computed equilibrium potentials for alkali cation adsorption suggest that alkali and alkaline earth cations will specifically adsorb onto Pt(111) and Pd(111) surfaces in the potential range of hydrogen oxidation and hydrogen evolution catalysis in alkaline solutions.

  16. Polarization Issues in the $e\\pm$ FCC

    SciTech Connect

    Gianfelice-Wendt, E.

    2015-08-10

    After the Higgs boson discovery at LHC, the international physics community is considering the next energy frontier circular collider (FCC). A pp collider of 100 km with a center of mass energy of about 100 TeV is believed to have the necessary discovery potential. The same tunnel could host first a e+e- collider with beam energy ranging between 45 and 175 GeV. In this paper preliminary considerations on the possibility of self-polarization for the e± beams are presented.

  17. Deformation twinning mechanisms in FCC and HCP metals

    SciTech Connect

    Wang, Jian; Tome, Carlos N; Beyerlein, Irene J; Misra, Amit; Mara, N

    2011-01-31

    We report the recent work on twinning and detwinning in fcc and hcp metals based on the in situ and ex situ TEM observations and molecular dynamics simulations. Three aspects are discussed in this paper. (1) Detwinning in single-phase Cu with respect to growth twins, (2) deformation twinning in Ag-Cu composites, and (3) deformation twinning mechanisms in hcp metals. The main conclusion is that atomic structures of interfaces (twin boundaries, two-phases interface, and grain boundaries) play a crucial role in nucleating and propagating of deformation twins.

  18. Continuum Description of Atomistics for Nanomechanics of Grain Boundary Embrittlement in FCC Metals

    NASA Astrophysics Data System (ADS)

    Kim, K.-S.; Wang, C.-K.; Cha, M.-H.; Chew, H. B.

    2012-02-01

    A nonlinear field projection method has been developed to study nanometer scale mechanical properties of grain boundaries in nanocrystalline FCC metals [1]. The nonlinear field projection is based on the principle of virtual work, for virtual variations of atomic positions in equilibrium through nonlocal interatomic interactions such as EAM potential interaction, to get field-projected subatomic-resolution traction distributions on various grain boundaries. The analyses show that the field projected traction produces periodic concentrated compression sites on the grain boundary, which act as crack trapping or dislocation nucleation sites. The field projection was also used to assess the nanometer scale failure processes of Cu σ5 and σ9 grain boundaries doped with Pb. It was revealed that the most significant atomic rearrangement is dislocation emission which requires local GB slip, and some Pb locks the local GB slip and in turn, embrittles the GB. Reference: [1] C.-K. Wang, et al., 2011, MRS Proceedings, Vol. 1297, DOI: 10.1557/opl.2011.678.

  19. Ultrasmall-angle X-ray scattering analysis of photonic crystal structure

    SciTech Connect

    Abramova, V. V.; Sinitskii, A. S.; Grigor'eva, N. A.; Grigor'ev, S. V.; Belov, D. V.; Petukhov, A. V.; Mistonov, A. A.; Vasil'eva, A. V.; Tret'yakov, Yu. D.

    2009-07-15

    The results of an ultrasmall-angle X-ray scattering study of iron(III) oxide inverse opal thin films are presented. The photonic crystals examined are shown to have fcc structure with amount of stacking faults varying among the samples. The method used in this study makes it possible to easily distinguish between samples with predominantly twinned fcc structure and nearly perfect fcc stacking. The difference observed between samples fabricated under identical conditions is attributed to random layer stacking in the self-assembled colloidal crystals used as templates for fabricating the inverse opals. The present method provides a versatile tool for analyzing photonic crystal structure in studies of inverse opals made of various materials, colloidal crystals, and three-dimensional photonic crystals of other types.

  20. 47 CFR Appendix A to Subpart A of... - Locations Where GMRS Is Regulated by the FCC

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Locations Where GMRS Is Regulated by the FCC A Appendix A to Subpart A of Part 95 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY.... A, App. A Appendix A to Subpart A of Part 95—Locations Where GMRS Is Regulated by the FCC In...

  1. 47 CFR Appendix A to Subpart A of... - Locations Where GMRS Is Regulated by the FCC

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Locations Where GMRS Is Regulated by the FCC A Appendix A to Subpart A of Part 95 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY.... A, App. A Appendix A to Subpart A of Part 95—Locations Where GMRS Is Regulated by the FCC In...

  2. 47 CFR Appendix A to Subpart A of... - Locations Where GMRS Is Regulated by the FCC

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Locations Where GMRS Is Regulated by the FCC A Appendix A to Subpart A of Part 95 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY.... A, App. A Appendix A to Subpart A of Part 95—Locations Where GMRS Is Regulated by the FCC In...

  3. 47 CFR Appendix A to Subpart A of... - Locations Where GMRS Is Regulated by the FCC

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Locations Where GMRS Is Regulated by the FCC A Appendix A to Subpart A of Part 95 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY.... A, App. A Appendix A to Subpart A of Part 95—Locations Where GMRS Is Regulated by the FCC In...

  4. 47 CFR Appendix A to Subpart A of... - Locations Where GMRS Is Regulated by the FCC

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Locations Where GMRS Is Regulated by the FCC A Appendix A to Subpart A of Part 95 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY.... A, App. A Appendix A to Subpart A of Part 95—Locations Where GMRS Is Regulated by the FCC In...

  5. 47 CFR 64.1110 - State notification of election to administer FCC rules.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false State notification of election to administer FCC rules. 64.1110 Section 64.1110 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED... Telecommunications Service Providers § 64.1110 State notification of election to administer FCC rules. (a)...

  6. The Impact of Public Affairs Programming Regulation: A Study of the FCC's Effectiveness.

    ERIC Educational Resources Information Center

    Chamberlin, Bill F.

    1979-01-01

    Explores the effectiveness of the Federal Communications Commission (FCC) public affairs program regulation through analysis of annual reports for 75 television stations, examining amount of time for public issues programing, amount of local affairs programing, total prime time programing, and whether FCC standards are met. (CWM)

  7. 78 FR 34099 - FCC Extends Pleading Cycle for Indecency Cases Policy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-06

    ... Electronic Comment Filing System (ECFS). See Electronic Filing of Documents in Rulemaking Proceedings, 63 FR... COMMISSION FCC Extends Pleading Cycle for Indecency Cases Policy AGENCY: Federal Communications Commission.... until 11:30 a.m. on Friday at the FCC Reference Information Center, Portals II, Room CY- A257, 445...

  8. 47 CFR 2.956 - FCC inspection and submission of equipment for testing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false FCC inspection and submission of equipment for testing. 2.956 Section 2.956 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY... Verification § 2.956 FCC inspection and submission of equipment for testing. (a) Each responsible party...

  9. 47 CFR 2.1076 - FCC inspection and submission of equipment for testing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false FCC inspection and submission of equipment for testing. 2.1076 Section 2.1076 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY... Declaration of Conformity § 2.1076 FCC inspection and submission of equipment for testing. (a)...

  10. 78 FR 44121 - FCC Extends Reply Comment Dates for Indecency Cases Policy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-23

    ... Documents in Rulemaking Proceedings, 63 FR 24121 (1998). Electronic Filers: Reply comments may be filed... COMMISSION FCC Extends Reply Comment Dates for Indecency Cases Policy AGENCY: Federal Communications...:30 p.m., Monday through Thursday or from 8 a.m. until 11:30 a.m. on Friday at the FCC...

  11. The FCC, The Coverage Principle of the Fairness Doctrine and the First Amendment.

    ERIC Educational Resources Information Center

    Chamberlin, Bill F.

    This review of the history of the coverage principle developed by the Federal Communications Commission (FCC) concludes that government regulation of mass media program content can be dangerous and that the coverage principle needs to be abolished. The first section of the report discusses the FCC's interpretation of the 1934 Communications Act…

  12. Inequities in Mass Communication Law: The FCC's Application of the Duopoly Rule to Public Broadcasting.

    ERIC Educational Resources Information Center

    Avery, Robert K.

    A three-part petition was filed in December 1974 with the Federal Communications Commission (FCC) which presented the first serious threat to public broadcasters' exemption from the FCC's multiple-ownership rules. The petition requested a revision of the rules that permit multiple ownership of noncommercial educational stations within a single…

  13. On Campus Web-Monitoring Rules, Colleges and the FCC Have a Bad Connection

    ERIC Educational Resources Information Center

    Hartle, Terry W.

    2006-01-01

    A regulation issued by the US Federal Communications Commission (FCC) requires facilities-based Internet services providers who operate their own equipment, including colleges, to make their Internet systems compliant with a statute known as the Communications Assistance for Law Enforcement Act (Calea) by April 2007. However, the FCC does not…

  14. 47 CFR 97.27 - FCC modification of station license grant.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false FCC modification of station license grant. 97.27 Section 97.27 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO SERVICE General Provisions § 97.27 FCC modification of station...

  15. 47 CFR 97.27 - FCC modification of station license grant.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false FCC modification of station license grant. 97.27 Section 97.27 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO SERVICE General Provisions § 97.27 FCC modification of station...

  16. 47 CFR 97.27 - FCC modification of station license grant.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false FCC modification of station license grant. 97.27 Section 97.27 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO SERVICE General Provisions § 97.27 FCC modification of station...

  17. 47 CFR 97.27 - FCC modification of station license grant.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false FCC modification of station license grant. 97.27 Section 97.27 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO SERVICE General Provisions § 97.27 FCC modification of station...

  18. Spectral analysis based on compressive sensing in nanophotonic structures.

    PubMed

    Wang, Zhu; Yu, Zongfu

    2014-10-20

    A method of spectral sensing based on compressive sensing is shown to have the potential to achieve high resolution in a compact device size. The random bases used in compressive sensing are created by the optical response of a set of different nanophotonic structures, such as photonic crystal slabs. The complex interferences in these nanostructures offer diverse spectral features suitable for compressive sensing.

  19. Compressed Genotyping

    PubMed Central

    Erlich, Yaniv; Gordon, Assaf; Brand, Michael; Hannon, Gregory J.; Mitra, Partha P.

    2011-01-01

    Over the past three decades we have steadily increased our knowledge on the genetic basis of many severe disorders. Nevertheless, there are still great challenges in applying this knowledge routinely in the clinic, mainly due to the relatively tedious and expensive process of genotyping. Since the genetic variations that underlie the disorders are relatively rare in the population, they can be thought of as a sparse signal. Using methods and ideas from compressed sensing and group testing, we have developed a cost-effective genotyping protocol to detect carriers for severe genetic disorders. In particular, we have adapted our scheme to a recently developed class of high throughput DNA sequencing technologies. The mathematical framework presented here has some important distinctions from the ’traditional’ compressed sensing and group testing frameworks in order to address biological and technical constraints of our setting. PMID:21451737

  20. Direct preparation of spherically agglomerated salicylic acid crystals during crystallization.

    PubMed

    Kawashima, Y; Okumura, M; Takenaka, H; Kojima, A

    1984-11-01

    Needle-like salicylic acid crystals were transformed into a spherically shaped dense form during crystallization by the spherical crystallization technique. Agitation of a mixture of ethanol-water-chloroform containing salicylic acid yielded spherically agglomerated salicylic acid crystals. The crystallinity of the agglomerated salicylic acid the amount of ethanol in the solvent mixture was decreased. The wettability of the agglomerated crystals increased when the amount of ethanol in the solvent mixture was decreased, and this enhanced the dissolution rate of the crystals. The remarkable improvements in the flow and packing of the agglomerated crystals enabled the direct compression of the crystals.

  1. Combined influences of micro-pillar geometry and substrate constraint on microplastic behavior of compressed single-crystal micro-pillar: Two-dimensional discrete dislocation dynamics modeling

    NASA Astrophysics Data System (ADS)

    Ouyanga, Chaojun; Lia, Zhenhuan; Huanga, Minsheng; Hua, Lili; Houa, Chuantao

    2009-11-01

    2D discrete dislocation dynamic modeling of compressed micro-pillars attached on a huge base is executed to study the size-dependent microplastic behavior of micro-pillars and the corresponding size effect. In addition to the conventional dimensional parameters of the micro-pillar such as the micro-pillar size and the height-to-width ratio, the micro-pillar taper angle and the dislocation slip plane orientation angle in the micro-pillar are also considered to address the size effect and its rich underlying mechanism. Computational results show that there are at least two operating mechanisms responsible for the plastic behavior of micro-pillars. One is associated with the dislocation free slip-out from the micro-pillar sidewall; the other is related to the dislocation pile-up at the base and the top end of the pillar. The overall mechanism governing the size effect of the micro-pillar rests with multi-factors, including the micro-pillar size, the height-to-width ratio, the micro-pillar taper and the slip plane orientation angle; however, whether the "free slip band" exists or not is the most important denotation. The well-known Schmid law still validates in the slender micro-pillars due to existence of the free slip band, whereas it may fail in the podgier micro-pillars due to absence of the free slip band; as a result, a complicated even "reverse" size effect appears.

  2. In Situ X-ray Diffraction of Forsterite Under Shock Compression to 52 GPa: Time Resolved Observation of Changes in Crystal Structure and Phase

    NASA Astrophysics Data System (ADS)

    Akin, M. C.; Maddox, B.; Teruya, A.; Asimow, P. D.

    2015-12-01

    The Earth's mantle is composed primarily of ferromagnesian silicates, of which Forsterite (Fo) is the magnesium-rich end member of the dominant upper mantle phase, olivine. Fo is thought to undergo a chemical decomposition associated with a structural phase transition when dynamically loaded to 40-71 GPa, but previous inferences about such decomposition have been based only on pressure-density data with no direct phase identification. To obtain direct data on the phase evolution of shocked Fo, synthetic single crystal samples of Mg2SiO4 Fo were loaded to pressures of 52 GPa using a two stage light gas gun. X-ray diffraction (XRD) patterns were collected on the static and the loaded samples in situ using a single pulse Mo Kα anode to provide a 17 keV X-ray source. X-ray polycapillary optics were used to couple the source to the sample. Clear Laue spots were observed in the static images, while the dynamic images show the appearance of new spots at early times and powder-like rings at late times. The angles of the dynamically driven spots and rings overlap with each other and indicate the change in phase of forsterite under pressure through a process that begins with the formation of single crystals and ends with polycrystalline material. Efforts are underway to identify the high-pressure phases from among the library of dense magnesium silicates, and further experiments covering a larger pressure range will be completed shortly. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  3. 47 CFR Appendix 1 to Part 97 - Places Where the Amateur Service is Regulated by the FCC

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... by the FCC 1 Appendix 1 to Part 97 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED... the Amateur Service is Regulated by the FCC In ITU Region 2, the amateur service is regulated by the FCC within the territorial limits of the 50 United States, District of Columbia, Caribbean...

  4. Multiple hydrogen location in a vacancy region of a FCC iron-nickel-based alloy

    NASA Astrophysics Data System (ADS)

    Simonetti, S.; Brizuela, G.; Juan, A.

    2010-01-01

    The interaction between four-hydrogen atoms and a FCC FeNi-based alloy ideal structure having a vacancy (V) was studied using a cluster model and a semi-empirical theoretical method. The energy of the system was calculated by the atom superposition and electron delocalisation molecular orbital (ASED-MO) method. The electronic structure was studied using the concept of density of states (DOS) and crystal orbital overlap population (COOP) curves. After a sequential absorption, the hydrogen atoms are finally positioned at their energy minima configurations, near to the vacancy. The energy difference for H agglomeration was also computed. The vacancy-H n complexes become less stable for n > 3. The changes in the electronic structure of Fe and Ni atoms near to the vacancy were also analysed. The interactions mainly involve Fe and Ni, 4s and 4p atomic orbitals. The contribution of 3d orbitals is much less important. The Fe-Fe, Fe-Ni and Ni-Ni bonds are weakened as new Fe-H, Ni-H and H-H pairs are formed. The effect of the H atoms is limited to its first neighbours. The detrimental effect of H atoms on the metallic bonds can be related to the decohesion mechanism for H embrittlement.

  5. Grain Size Dependence of Uniform Elongation in Single-Phase FCC/BCC Metals

    NASA Astrophysics Data System (ADS)

    Liu, Haiting; Shen, Yao; Ma, Jiawei; Zheng, Pengfei; Zhang, Lei

    2016-07-01

    We studied the dependence of uniform elongation on grain size in the range of submicron to millimeter for single-phase FCC/BCC metals by reviewing recent experimental results and applying crystal plasticity finite element method simulation. In the order of increasing grain size, uniform elongation can be divided into three stages, namely low elongation stage, nearly constant elongation stage, and decreased elongation with large scatters stage. Low elongation stage features a dramatic increase near the critical grain size at the end of the stage, which is primarily attributed to the emergence of dislocation cell size transition from ultrafine to mid-size grain. Other factors can be neglected due to their negligible influence on overall variation trend. In nearly constant elongation stage, uniform elongation remains unchanged at a high level in general. As grain size keeps growing, uniform elongation starts decreasing and becomes scattered upon a certain grain size, indicating the initiation of decreased elongation with large scatters stage. It is shown that the increase is not linear or smooth but rather sharp at the end of low elongation stage, leading to a wider range in nearly constant elongation stage. The grain size dependence of uniform elongation can serve as a guiding principle for designing small uniaxial tensile specimens for mechanical testing, where size effect matters in most cases.

  6. Grain Size Dependence of Uniform Elongation in Single-Phase FCC/BCC Metals

    NASA Astrophysics Data System (ADS)

    Liu, Haiting; Shen, Yao; Ma, Jiawei; Zheng, Pengfei; Zhang, Lei

    2016-09-01

    We studied the dependence of uniform elongation on grain size in the range of submicron to millimeter for single-phase FCC/BCC metals by reviewing recent experimental results and applying crystal plasticity finite element method simulation. In the order of increasing grain size, uniform elongation can be divided into three stages, namely low elongation stage, nearly constant elongation stage, and decreased elongation with large scatters stage. Low elongation stage features a dramatic increase near the critical grain size at the end of the stage, which is primarily attributed to the emergence of dislocation cell size transition from ultrafine to mid-size grain. Other factors can be neglected due to their negligible influence on overall variation trend. In nearly constant elongation stage, uniform elongation remains unchanged at a high level in general. As grain size keeps growing, uniform elongation starts decreasing and becomes scattered upon a certain grain size, indicating the initiation of decreased elongation with large scatters stage. It is shown that the increase is not linear or smooth but rather sharp at the end of low elongation stage, leading to a wider range in nearly constant elongation stage. The grain size dependence of uniform elongation can serve as a guiding principle for designing small uniaxial tensile specimens for mechanical testing, where size effect matters in most cases.

  7. Faceting and commensurability in crystal structures of colloidal thin films.

    PubMed

    Ramiro-Manzano, F; Meseguer, F; Bonet, E; Rodriguez, I

    2006-07-14

    This Letter investigates the influence of finite size effects on the particle arrangement of thin film colloidal crystals. A rich variety of crystallographic faceting with large single domain microcrystallites is shown. Optical reflectance experiments together with scanning electron microscopy permit the identification of the crystal symmetry and the facet orientation, as well as the exact number of monolayers. When the cell thickness is not commensurable with a high symmetry layering, particles arrange themselves in a periodic distribution of (111)- and (100)-orientated face centered cubic (fcc) microcrystallites separated by planar defects. These structures can be described as a fcc ordering orientated along a vicinal surface, modified by a periodic distribution of fcc (111) stacking faults.

  8. Faceting and commensurability in crystal structures of colloidal thin films.

    PubMed

    Ramiro-Manzano, F; Meseguer, F; Bonet, E; Rodriguez, I

    2006-07-14

    This Letter investigates the influence of finite size effects on the particle arrangement of thin film colloidal crystals. A rich variety of crystallographic faceting with large single domain microcrystallites is shown. Optical reflectance experiments together with scanning electron microscopy permit the identification of the crystal symmetry and the facet orientation, as well as the exact number of monolayers. When the cell thickness is not commensurable with a high symmetry layering, particles arrange themselves in a periodic distribution of (111)- and (100)-orientated face centered cubic (fcc) microcrystallites separated by planar defects. These structures can be described as a fcc ordering orientated along a vicinal surface, modified by a periodic distribution of fcc (111) stacking faults. PMID:16907485

  9. Defect structures in deformed F.C.C. metals

    SciTech Connect

    Dai, Y.; Victoria, M.

    1997-08-01

    A high density of small defect clusters, similar to those observed in irradiated or quenched metals, has been observed in the deformed f.c.c. metals Cu, Au and Ni. The preliminary results show that the defect clusters are predominantly stacking fault tetrahedral (SFT). The SFT number density, rather than the size distribution, is deformation dependent. The defect cluster density is greater in the vicinities of dislocation tangles and grain boundaries. Their size distribution is wider than that produced by irradiation with an important number of larger clusters being formed. It is argued that these deformation-produced clusters may play a role in determining the flow stress and work hardening at low deformations.

  10. Diffusion and segregation of niobium in fcc-nickel.

    PubMed

    Connétable, Damien; Ter-Ovanessian, Benoît; Andrieu, Éric

    2012-03-01

    Niobium is one of the major alloying elements, among the refractory elements, contributing to the strengthening of superalloys. Consequently, data about its behavior and its migration mechanism in fcc-Ni are essential knowledge to understand and control the strengthening in such alloys. We present in this work Nb interactions, solubility and diffusion in Ni performed by using the GGA approximation of the density functional theory. The substituted site is found to be the most favorable configuration in comparison to the tetrahedral and octahedral sites. The effect of temperature on solubility is discussed taking into account the thermal expansion of the lattice parameter and the vibrational contribution. Its diffusion mechanism is also discussed and compared to the literature. We finally discuss the segregation of Nb atoms on a Σ(5)-(012) symmetric tilt grain boundary.

  11. Dislocation Interactions with Voids and Helium Bubbles in FCC Metals

    SciTech Connect

    Robertson, I; Robach, J; Wirth, B; Young, J

    2003-11-18

    The formation of a high number density of helium bubbles in FCC metals irradiated within the fusion energy environment is well established. Yet, the role of helium bubbles in radiation hardening and mechanical property degradation of these steels remains an outstanding issue. In this paper, we present the results of a combined molecular dynamics simulation and in-situ straining transmission electron microscopy study, which investigates the interaction mechanisms between glissile dislocations and nanometer-sized helium bubbles. The molecular dynamics simulations, which directly account for dislocation core effects through semi-empirical interatomic potentials, provide fundamental insight into the effect of helium bubble size and internal gas pressure on the dislocation/bubble interaction and bypass mechanisms. The combination of simulation and in-situ straining experiments provides a powerful approach to determine the atomic to microscopic mechanisms of dislocation-helium bubble interactions, which govern the mechanical response of metals irradiated within the fusion environment.

  12. Highly anisotropic exchange interactions of jeff=1/2 iridium moments on the fcc lattice in La2B IrO6 (B =Mg ,Zn )

    NASA Astrophysics Data System (ADS)

    Aczel, A. A.; Cook, A. M.; Williams, T. J.; Calder, S.; Christianson, A. D.; Cao, G.-X.; Mandrus, D.; Kim, Yong-Baek; Paramekanti, A.

    2016-06-01

    We have performed inelastic neutron scattering (INS) experiments to investigate the magnetic excitations in the weakly distorted face-centered-cubic (fcc) iridate double perovskites La2ZnIrO6 and La2MgIrO6 , which are characterized by A-type antiferromagnetic ground states. The powder inelastic neutron scattering data on these geometrically frustrated jeff=1/2 Mott insulators provide clear evidence for gapped spin-wave excitations with very weak dispersion. The INS results and thermodynamic data on these materials can be reproduced by conventional Heisenberg-Ising models with significant uniaxial Ising anisotropy and sizeable second-neighbor ferromagnetic interactions. Such a uniaxial Ising exchange interaction is symmetry forbidden on the ideal fcc lattice, so that it can only arise from the weak crystal distortions away from the ideal fcc limit. This may suggest that even weak distortions in jeff=1/2 Mott insulators might lead to strong exchange anisotropies. More tantalizingly, however, we find an alternative viable explanation of the INS results in terms of spin models with a dominant Kitaev interaction. In contrast to the uniaxial Ising exchange, the highly directional Kitaev interaction is a type of exchange anisotropy which is symmetry allowed even on the ideal fcc lattice. The Kitaev model has a magnon gap induced by quantum order by disorder, while weak anisotropies of the Kitaev couplings generated by the symmetry lowering due to lattice distortions can pin the order and enhance the magnon gap. Our findings highlight how even conventional magnetic orders in heavy transition metal oxides may be driven by highly directional exchange interactions rooted in strong spin-orbit coupling.

  13. Highly anisotropic exchange interactions of jeff=12 iridium moments on the fcc lattice in La2BIrO6 (B=Mg,Zn)

    DOE PAGES

    Aczel, A. A.; Cook, A. M.; Williams, T. J.; Calder, S.; Christianson, A. D.; Cao, G. -X.; Mandrus, D.; Kim, Yong-Baek; Paramekanti, A.

    2016-06-20

    Here we have performed inelastic neutron scattering (INS) experiments to investigate the magnetic excitations in the weakly distorted face-centered-cubic (fcc) iridate double perovskites Lamore » $_2$ZnIrO$_6$ and La$_2$MgIrO$_6$, which are characterized by A-type antiferromagnetic ground states. The powder inelastic neutron scattering data on these geometrically frustrated $$j_{\\rm eff}=1/2$$ Mott insulators provide clear evidence for gapped spin wave excitations with very weak dispersion. The INS results and thermodynamic data on these materials can be reproduced by conventional Heisenberg-Ising models with significant uniaxial Ising anisotropy and sizeable second-neighbor ferromagnetic interactions. Such a uniaxial Ising exchange interaction is symmetry-forbidden on the ideal fcc lattice, so that it can only arise from the weak crystal distortions away from the ideal fcc limit. This may suggest that even weak distortions in $$j_{\\rm eff}=1/2$$ Mott insulators might lead to strong exchange anisotropies. More tantalizingly, however, we find an alternative viable explanation of the INS results in terms of spin models with a dominant Kitaev interaction. In contrast to the uniaxial Ising exchange, the highly-directional Kitaev interaction is a type of exchange anisotropy which is symmetry-allowed even on the ideal fcc lattice. The Kitaev model has a magnon gap induced by quantum order-by-disorder, while weak anisotropies of the Kitaev couplings generated by the symmetry-lowering due to lattice distortions can pin the order and enhance the magnon gap. In conclusion, our findings highlight how even conventional magnetic orders in heavy transition metal oxides may be driven by highly-directional exchange interactions rooted in strong spin-orbit coupling.« less

  14. Phase transition from fcc to bcc structure of the Cu-clusters during nanocrystallization of Fe{sub 85.2}Si{sub 1}B{sub 9}P{sub 4}Cu{sub 0.8} soft magnetic alloy

    SciTech Connect

    Nishijima, Masahiko; Matsuura, Makoto; Takenaka, Kana; Takeuchi, Akira; Makino, Akihiro; Ofuchi, Hironori

    2014-05-15

    A role of Cu on the nanocrystallization of an Fe{sub 85.2}Si{sub 1}B{sub 9}P{sub 4}Cu{sub 0.8} alloy was investigated by X-ray absorption fine structure (XAFS) and transmission electron microscopy (TEM). The Cu K-edge XAFS results show that local structure around Cu is disordered for the as-quenched sample whereas it changes to fcc-like structure at 613 K. The fcc Cu-clusters are, however, thermodynamically unstable and begin to transform into bcc structure at 638 K. An explicit bcc structure is observed for the sample annealed at 693 K for 600 s in which TEM observation shows that precipitated bcc-Fe crystallites with ∼12 nm are homogeneously distributed. The bcc structure of the Cu-clusters transforms into the fcc-type again at 973 K, which can be explained by the TEM observations; Cu segregates at grain boundaries between bcc-Fe crystallites and Fe{sub 3}(B,P) compounds. Combining the XAFS results with the TEM observations, the structure transition of the Cu-clusters from fcc to bcc is highly correlated with the preliminary precipitation of the bcc-Fe which takes place prior to the onset of the first crystallization temperature, T{sub x1} = 707 K. Thermodynamic analysis suggests that an interfacial energy density γ between an fcc-Cu cluster and bcc-Fe matrix dominates at a certain case over the structural energy between fcc and bcc Cu, ΔG{sub fcc} {sub −} {sub bcc}, which causes phase transition of the Cu clusters from fcc to bcc structure.

  15. An ab initio study of the fcc and hcp structures of helium

    NASA Astrophysics Data System (ADS)

    Røeggen, I.

    2006-05-01

    The hexagonal close packed (hcp) and face centered cubic (fcc) structures of helium are studied by using a new ab initio computational model for large complexes comprising small subsystems. The new model is formulated within the framework of the energy incremental scheme. In the calculation of intra- and intersystem energies, model systems are introduced. To each subsystem associated is a set of partner subsystems defined by a vicinity criterion. In the independent calculations of intra- and intersystem energies, the calculations are performed on model subsystems defined by the subsystems considered and their partner subsystems. A small and a large basis set are associated with each subsystem. For partner subsystems in a model system, the small basis set is adopted. By introducing a particular decomposition scheme, the intermolecular potential is written as a sum of effective one-body potentials. The binding energy per atom in an infinite crystal of atoms is the negative value of this one-body potential. The one- body potentials for hcp and fcc structures are calculated for the following nearest neighbor distances (d0): 4.6, 5.1, 5.4, 5.435, 5.5, 5.61, and 6.1a.u. The equilibrium distance is 5.44a.u. for both structures. The equilibrium dimer distance is 5.61a.u. For the larger distances, i.e., d0>5.4a.u., the difference of the effective one-body potentials for the two structures is less than 0.2μEh. However, the hcp structure has the lowest effective one-body potential for all the distances considered. For the smallest distance the difference in the effective one-body potential is 3.9μEh. Hence, for solid helium, i.e., helium under high pressure, the hcp structure is the preferred one. The error in the calculated effective one-body potential for the distance d0=5.61a.u. is of the order of 1μEh (≈0.5%).

  16. Ab initio lattice stability of fcc and hcp Fe-Mn random alloys.

    PubMed

    Gebhardt, T; Music, D; Hallstedt, B; Ekholm, M; Abrikosov, I A; Vitos, L; Schneider, J M

    2010-07-28

    We have studied the lattice stability of face centred cubic (fcc) versus hexagonal close packed (hcp) Fe-Mn random alloys using ab initio calculations. In the calculations we considered the antiferromagnetic order of local moments, which for fcc alloys models the magnetic configuration of this phase at room temperature (below its Néel temperature) as well as their complete disorder, corresponding to paramagnetic fcc and hcp alloys. For both cases, the results are consistent with our thermodynamic calculations, obtained within the Calphad approach. For the room temperature magnetic configuration, the cross-over of the total energies of the hcp phase and the fcc phase of Fe-Mn alloys is at the expected Mn content, whereas for the magnetic configuration above the fcc Néel temperature, the hcp lattice is more stable within the whole composition range studied. The increase of the total energy difference between hcp and antiferromagnetic fcc due to additions of Mn as well as the stabilizing effect of antiferromagnetic ordering on the fcc phase are well displayed. These results are of relevance for understanding the deformation mechanisms of these random alloys.

  17. Crystal structures and compressibility of novel iron borides Fe{sub 2}B{sub 7} and Fe{sub x}B{sub 50} synthesized at high pressure and high temperature

    SciTech Connect

    Bykova, E.; Gou, H.; Bykov, M.; Hanfland, M.; Dubrovinsky, L.; Dubrovinskaia, N.

    2015-10-15

    We present here a detailed description of the crystal structures of novel iron borides, Fe{sub 2}B{sub 7} and Fe{sub x}B{sub 50} with various iron content (x=1.01(1), 1.04(1), 1.32(1)), synthesized at high pressures and high temperatures. As revealed by high-pressure single-crystal X-ray diffraction, the structure of Fe{sub 2}B{sub 7} possesses short incompressible B–B bonds, which make it as stiff as diamond in one crystallographic direction. The volume compressibility of Fe{sub 2}B{sub 7} (the bulk modulus K{sub 0}= 259(1.8) GPa, K{sub 0}′= 4 (fixed)) is even lower than that of FeB{sub 4} and comparable with that of MnB{sub 4}, known for high bulk moduli among 3d metal borides. Fe{sub x}B{sub 50} adopts the structure of the tetragonal δ-B, in which Fe atoms occupy an interstitial position. Fe{sub x}B{sub 50} does not show considerable anisotropy in the elastic behavior. - Graphical abstract: Crystal structures of novel iron borides, Fe{sub 2}B{sub 7} and Fe{sub x}B{sub 50} (x=1.01(1), 1.04(1), 1.32(1)). - Highlights: • Novel iron borides, Fe{sub 2}B{sub 7} and Fe{sub x}B{sub 50}, were synthesized under HPHT conditions. • Fe{sub 2}B{sub 7} has a unique orthorhombic structure (space group Pbam). • Fe{sub 2}B{sub 7} possesses short incompressible B–B bonds that results in high bulk modulus. • Fe{sub x}B{sub 50} adopts the structure of the tetragonal δ-B composed of B{sub 12} icosahedra. • In Fe{sub x}B{sub 50} intraicosahedral bonds are stiffer than intericosahedral ones.

  18. A first-principles study of the phase stability of fcc-based Ti-Al alloys

    SciTech Connect

    Asta, M.; de Fontaine, D. |; van Schilfgaarde, M.; Sluiter, M.; Methfessel, M.

    1992-04-01

    In this paper we present results of a first-principles phase stability study of fcc-based Ti-Al alloys. In particular the full-potential linear muffin tin orbital method has been used to determine heats of format on and other zero-temperature properties of 9 fcc ordered superstructures as well as fcc and hcp Ti, and fcc Al. From these results a set of effective cluster interactions are determined which are used in a cluster variation method calculation of the thermodynamic properties and the composition-temperature phase diagram of fcc-based alloys.

  19. First-principles calculations of free energies of unstable phases: the case of fcc W.

    PubMed

    Ozolins, V

    2009-02-13

    Ab initio molecular dynamics simulations are used to solve the long-standing problem of calculating the free energies of unstable phases, such as fcc W. We find that fcc W is mechanically unstable with respect to long-wavelength shear at all temperatures considered (T>2500 K), while the short-wavelength phonon modes are anharmonically stabilized. The calculated fcc-bcc enthalpy and entropy differences at T=3500 K (308 meV and 0.74k_{B} per atom, respectively) agree well with the recent values derived from analysis of experimental data.

  20. Antiferromagnetic resonance in the Mott insulator fcc-Cs3C60.

    PubMed

    Suzuki, Yuta; Shibasaki, Seiji; Kubozono, Yoshihiro; Kambe, Takashi

    2013-09-11

    The magnetic ground state of the fcc phase of the Mott insulator Cs3C60 was studied using a low-temperature electron spin resonance technique, and antiferromagnetic resonance (AFMR) below 1.57 K was directly observed at ambient pressure. The AFMR modes for the fcc phase of Cs3C60 were investigated using a conventional two-sublattice model with uniaxial anisotropy, and the spin-flop field was determined to be 4.7 kOe at 1.57 K. The static magnetic exchange interactions and anisotropy field for fcc-Cs3C60 were also estimated.

  1. Attrition resistant catalysts and sorbents based on heavy metal poisoned FCC catalysts

    DOEpatents

    Gangwal, S.; Jothimurugesan, K.

    1999-07-27

    A heavy metal poisoned, spent FCC catalyst is treated by chemically impregnating the poisoned catalyst with a new catalytic metal or metal salt to provide an attrition resistant catalyst or sorbent for a different catalytic or absorption process, such as catalysts for Fischer-Tropsh Synthesis, and sorbents for removal of sulfur gases from fuel gases and flue-gases. The heavy metal contaminated FCC catalyst is directly used as a support for preparing catalysts having new catalytic properties and sorbents having new sorbent properties, without removing or passivating the heavy metals on the spent FCC catalyst as an intermediate step.

  2. Attrition resistant catalysts and sorbents based on heavy metal poisoned FCC catalysts

    DOEpatents

    Gangwal, Santosh; Jothimurugesan, Kandaswamy

    1999-01-01

    A heavy metal poisoned, spent FCC catalyst is treated by chemically impregnating the poisoned catalyst with a new catalytic metal or metal salt to provide an attrition resistant catalyst or sorbent for a different catalytic or absorption processes, such as catalysts for Fischer-Tropsh Synthesis, and sorbents for removal of sulfur gasses from fuel gases and flue-gases. The heavy metal contaminated FCC catalyst is directly used as a support for preparing catalysts having new catalytic properties and sorbents having new sorbent properties, without removing or "passivating" the heavy metals on the spent FCC catalyst as an intermediate step.

  3. Formation of Superlattices of Gold Nanoparticles Using Ostwald Ripening in Emulsions: Transition from fcc to bcc Structure.

    PubMed

    Schmitt, Julien; Hajiw, Stéphanie; Lecchi, Amélie; Degrouard, Jéril; Salonen, Anniina; Impéror-Clerc, Marianne; Pansu, Brigitte

    2016-06-30

    An efficient method to form 3D superlattices of gold nanoparticles inside oil emulsion droplets is presented. We demonstrate that this method relies on Ostwald ripening, a well-known phenomenon occurring during the aging of emulsions. The key point is that the nanoparticle concentration inside the smaller droplets is increasing very slowly with time, thus inducing the crystallization of the nanoparticles into superlattices. Using oil-in-water emulsions doped with hydrophobic gold nanoparticles, we demonstrate that this method is efficient for different types of oils (toluene, cyclohexane, dodecane, and hexadecane). 3D superlattices of the nanoparticles are obtained, with dimensions reaching a hundred nanometers. The kinetics of the crystallization depends on the solubility of the oil in water but also on the initial concentration of the gold nanoparticles in oil. This method also provides an innovative way to obtain the complete phase diagram of nanoparticle suspensions with concentration. Indeed, during this slow crystallization process, a transition from a disordered suspension to a fcc structure is observed, followed by a transition toward a bcc structure. This evolution with time provides key results to understand the role played by the ligands located at the surface of the nanoparticles in order to control the type of superlattices which are formed.

  4. Formation of Superlattices of Gold Nanoparticles Using Ostwald Ripening in Emulsions: Transition from fcc to bcc Structure.

    PubMed

    Schmitt, Julien; Hajiw, Stéphanie; Lecchi, Amélie; Degrouard, Jéril; Salonen, Anniina; Impéror-Clerc, Marianne; Pansu, Brigitte

    2016-06-30

    An efficient method to form 3D superlattices of gold nanoparticles inside oil emulsion droplets is presented. We demonstrate that this method relies on Ostwald ripening, a well-known phenomenon occurring during the aging of emulsions. The key point is that the nanoparticle concentration inside the smaller droplets is increasing very slowly with time, thus inducing the crystallization of the nanoparticles into superlattices. Using oil-in-water emulsions doped with hydrophobic gold nanoparticles, we demonstrate that this method is efficient for different types of oils (toluene, cyclohexane, dodecane, and hexadecane). 3D superlattices of the nanoparticles are obtained, with dimensions reaching a hundred nanometers. The kinetics of the crystallization depends on the solubility of the oil in water but also on the initial concentration of the gold nanoparticles in oil. This method also provides an innovative way to obtain the complete phase diagram of nanoparticle suspensions with concentration. Indeed, during this slow crystallization process, a transition from a disordered suspension to a fcc structure is observed, followed by a transition toward a bcc structure. This evolution with time provides key results to understand the role played by the ligands located at the surface of the nanoparticles in order to control the type of superlattices which are formed. PMID:27267312

  5. Lattice parameters of fcc binary alloys using a new semiempirical method

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Ferrante, John

    1992-01-01

    A new method is presented for the calculation of heats of formation, lattice parameters and cohesive energies of binary alloys. The method is applied to some fcc alloys and compared with experimental data, as well as other semiempirical results.

  6. Deformation of Single Crystal Molybdenum at High Pressure

    SciTech Connect

    Bonner, B P; Aracne, C; Farber, D L; Boro, C O; Lassila, D H

    2004-02-24

    Single crystal samples of micron dimensions oriented in the [001] direction were shortened 10 to 40% in uniaxial compression with superposed hydrostatic pressure to begin investigation of how the onset of yielding evolves with pressure. A testing machine based on opposed anvil geometry with precision pneumatic control of the applied force and capability to measure sub micron displacements was developed to produce shape changing deformation at pressure. The experiments extend observations of pressure dependent deformation to {approx}5Gpa at shortening rates of {approx}2*10{sup -4}. Samples have been recovered for post run characterization and analysis to determine if deformation mechanisms are altered by pressure. Experiments under hydrostatic pressure provide insight into the nature of materials under extreme conditions, and also provide a means for altering deformation behavior in a controlled fashion. The approach has a long history demonstrating that pressure enhances ductility in general, and produces enhanced hardening relative to that expected from normal cold work in the BCC metals Mo, Ta and Nb{sup 2}. The pressure hardening is in excess of that predicted from the measured increase in shear modulus at pressure, and therefore is likely due to a dislocation mechanism, such as suppression of kink pair formation or the interaction of forest dislocation cores, and not from lattice resistance. The effect has not been observed in FCC metals, suggesting a fundamental difference between deformation mechanisms at pressure for the two classes. The purpose of this letter is to investigate the origin of pressure hardening with new experiments that extend the pressure range beyond 3 GPa, the upper limit of conventional large sample (1cm{sup 3}) testing methods. Most previous high pressure deformation studies have been on poly crystals, relying on model dependent analysis to infer the maximum deviatoric stress that a deformed sample can support. In one experiment, a

  7. Growth and micromagnetism of self-assembled epitaxial fcc(111) cobalt dots.

    PubMed

    Fruchart, O; Masseboeuf, A; Toussaint, J C; Bayle-Guillemaud, P

    2013-12-11

    We develop the self-assembly of epitaxial submicrometer-sized face-centered-cubic (fcc) Co(111) dots using pulsed laser deposition. The dots display atomically flat facets, from which the ratios of surface and interface energies for fcc Co are deduced. Zero-field magnetic structures are investigated with magnetic force and Lorentz microscopies, revealing vortex-based flux-closure patterns. A good agreement is found with micromagnetic simulations.

  8. Cesium under pressure: First-principles calculation of the bcc-to-fcc phase transition

    NASA Astrophysics Data System (ADS)

    Carlesi, S.; Franchini, A.; Bortolani, V.; Martinelli, S.

    1999-05-01

    In this paper we present the ab initio calculation of the structural properties of cesium under pressure. The calculation of the total energy is done in the local-density approximation of density-functional theory, using a nonlocal pseudopotential including the nonlinear core corrections proposed by Louie et al. The calculation of the pressure-volume diagram for both bcc and fcc structures allows us to prove that the transition from bcc to fcc structure is a first-order transition.

  9. Orbitide Composition of the Flax Core Collection (FCC).

    PubMed

    Burnett, Peta-Gaye Gillian; Olivia, Clara Marisa; Okinyo-Owiti, Denis Paskal; Reaney, Martin John Tarsisius

    2016-06-29

    The flax (Linum usitatissimum L.) core collection (FCC) was regenerated in Saskatoon, Saskatchewan and Morden, Manitoba in 2009. Seed orbitide content and composition from successfully propagated plants of 391 accessions were analyzed using high-throughput analyses employing high-performance liquid chromatography (HPLC) with reverse-phase monolithic HPLC columns and diode array detection (HPLC-DAD). Seed from plants regenerated in Morden had comparatively higher orbitide content than those grown in Saskatoon. Concentrations of orbitides encoded by contig AFSQ01016651.1 (1, 3, and 8) were higher than those encoded by AFSQ01025165.1 (6, 13, and 17) for most accessions in both locations. The cultivar 'Primus' from Poland and an unnamed accession (CN 101580 of unknown origin) exhibited the highest ratio of sum of [1,3,8] to a sum of [6,13,17]. Conversely, the lowest orbitide concentrations and ratio of [1,3,8] to [6,13,17] were observed in cultivars 'Hollandia' and 'Z 11637', both from The Netherlands. Orbitide expression did not correlate with flax morphological and other chemical traits.

  10. Scaling Laws and Critical Properties for fcc and hcp Metals.

    PubMed

    Desgranges, Caroline; Widhalm, Leanna; Delhommelle, Jerome

    2016-06-16

    The determination of the critical parameters of metals has remained particularly challenging both experimentally, because of the very large temperatures involved, and theoretically, because of the many-body interactions that take place in metals. Moreover, experiments have shown that these systems exhibit an unusually strong asymmetry of their binodal. Recent theoretical work has led to new similarity laws, based on the calculation of the Zeno line and of the underlying Boyle parameters, which provided results for the critical properties of atomic and molecular systems in excellent agreement with experiments. Using the recently developed expanded Wang-Landau (EWL) simulation method, we evaluate the grand-canonical partition function, over a wide range of conditions, for 11 fcc and hcp metals (Ag, Al, Au, Be, Cu, Ir, Ni, Pb, Pd, Pt, and Rh), modeled with a many-body interaction potential. This allows us to calculate the binodal, Zeno line, and Boyle parameters and, in turn, obtain the critical properties for these systems. We also propose two scaling laws for the enthalpy and entropy of vaporization, and identify critical exponents of 0.4 and 1.22 for these two laws, respectively.

  11. Multiscale modeling of radiation effects in fcc and bcc metals

    SciTech Connect

    Alonso, E; Caturla, M; Diaz de la Rubia, T; Felter, T; Fluss, M; Perlado, J; Wall, M; Wirth, B

    1999-07-15

    The prospect of using computer simulations to calculate radiation-induced defect production and its influence on microstructure evolution and mechanical property changes during prolonged irradiation of nuclear materials has been a beckoning, yet elusive goal for many years. However, the enormous progress achieved in computational physics for calculating reliable, yet tractable interatomic potentials, coupled with vast improvements in computational power have brought this hope to near reality. In order to develop modeling and simulation tools for predicting the irradiation response of nuclear structural materials, models must be implemented and tested across all relevant length and time scales. We discuss the development and implementation of a modeling methodology that consists of the linkage and hierarchical use of ab initio electronic structure calculations, molecular dynamics (MD) simulations, and kinetic Monte Carlo (KMC) simulations. This methodology can describe length and time scales from nanometers to hundreds of microns and from picoseconds to years, respectively. The ideas are demonstrated in two applications. First, we describe simulations that describe the irradiation and subsequent isochronal annealing of Pb, a low melting point fcc metal, and compare the results to experiments. Second, we show how these methods can be used to investigate damage production and freely migrating defect formation in irradiated V, the key component of candidate low activation alloys for fusion energy applications.

  12. Orbitide Composition of the Flax Core Collection (FCC).

    PubMed

    Burnett, Peta-Gaye Gillian; Olivia, Clara Marisa; Okinyo-Owiti, Denis Paskal; Reaney, Martin John Tarsisius

    2016-06-29

    The flax (Linum usitatissimum L.) core collection (FCC) was regenerated in Saskatoon, Saskatchewan and Morden, Manitoba in 2009. Seed orbitide content and composition from successfully propagated plants of 391 accessions were analyzed using high-throughput analyses employing high-performance liquid chromatography (HPLC) with reverse-phase monolithic HPLC columns and diode array detection (HPLC-DAD). Seed from plants regenerated in Morden had comparatively higher orbitide content than those grown in Saskatoon. Concentrations of orbitides encoded by contig AFSQ01016651.1 (1, 3, and 8) were higher than those encoded by AFSQ01025165.1 (6, 13, and 17) for most accessions in both locations. The cultivar 'Primus' from Poland and an unnamed accession (CN 101580 of unknown origin) exhibited the highest ratio of sum of [1,3,8] to a sum of [6,13,17]. Conversely, the lowest orbitide concentrations and ratio of [1,3,8] to [6,13,17] were observed in cultivars 'Hollandia' and 'Z 11637', both from The Netherlands. Orbitide expression did not correlate with flax morphological and other chemical traits. PMID:27256931

  13. Anisotropy of tensile strength and fracture mode of perfect face-centered-cubic crystals

    NASA Astrophysics Data System (ADS)

    Wang, R. F.; Xu, J.; Qu, R. T.; Liu, Z. Q.; Zhang, Z. F.

    2015-06-01

    This study presents an effective method to calculate the ideal tensile strength of six face-centered-cubic (fcc) crystals (Cu, Au, Ni, Pt, Al, and Ir) along an arbitrary tensile direction by considering the coupling effect of normal stress and shear stress on a given crystallographic plane. Meanwhile, the fracture modes of the six crystals can also be derived from the competition between shear and cleavage fracture along different crystallographic planes. The results show that both the intrinsic factors (the ideal shear strength and cleavage strength of low-index planes) and the orientation may affect the tensile strength and fracture modes of ideal fcc crystals, which may give the reliable strength limit of fcc metals and well interpret the observed high strength in nano-scale mechanical experiments.

  14. Cubic to tetragonal crystal lattice reconstruction during ordering or decomposition

    SciTech Connect

    Cheong, Byung-kl

    1992-09-01

    This thesis studied thermodynamic stability and morphology of product phases in diffusional phase transformations involving cubic-to-tetragonal crystal lattice reconstructions. Two different kinds of diffusional transformations were examined: L1{sub 0} ordering (fcc to fct lattice change) and decomposition of off-stoichiometric B2 ordering alloys accompanying bcc to fcc Bain transformation. In the first case, Fe-45 at.% Pd alloys were studied by TEM; in the second, the Bain strain relaxation during decomposition of hyper-eutectoid Cu-9.04 wt% Be alloy was studied. CuAu and InMg were also studied.

  15. Thallium under extreme compression.

    PubMed

    Cazorla, C; MacLeod, S G; Errandonea, D; Munro, K A; McMahon, M I; Popescu, C

    2016-11-01

    We present a combined theoretical and experimental study of the high-pressure behavior of thallium. X-ray diffraction experiments have been carried out at room temperature (RT) up to 125 GPa using diamond-anvil cells (DACs), nearly doubling the pressure range of previous experiments. We have confirmed the hcp-fcc transition at 3.5 GPa and determined that the fcc structure remains stable up to the highest pressure attained in the experiments. In addition, HP-HT experiments have been performed up to 8 GPa and 700 K by using a combination of XRD and a resistively heated DAC. Information on the phase boundaries is obtained, as well as crystallographic information on the HT bcc phase. The equation of state (EOS) for different phases is reported. Ab initio calculations have also been carried out considering several potential high-pressure structures. They are consistent with the experimental results and predict that, among the structures considered in the calculations, the fcc structure of thallium is stable up to 4.3 TPa. Calculations also predict the post-fcc phase to have a close-packed orthorhombic structure above 4.3 TPa. PMID:27605357

  16. Thallium under extreme compression.

    PubMed

    Cazorla, C; MacLeod, S G; Errandonea, D; Munro, K A; McMahon, M I; Popescu, C

    2016-11-01

    We present a combined theoretical and experimental study of the high-pressure behavior of thallium. X-ray diffraction experiments have been carried out at room temperature (RT) up to 125 GPa using diamond-anvil cells (DACs), nearly doubling the pressure range of previous experiments. We have confirmed the hcp-fcc transition at 3.5 GPa and determined that the fcc structure remains stable up to the highest pressure attained in the experiments. In addition, HP-HT experiments have been performed up to 8 GPa and 700 K by using a combination of XRD and a resistively heated DAC. Information on the phase boundaries is obtained, as well as crystallographic information on the HT bcc phase. The equation of state (EOS) for different phases is reported. Ab initio calculations have also been carried out considering several potential high-pressure structures. They are consistent with the experimental results and predict that, among the structures considered in the calculations, the fcc structure of thallium is stable up to 4.3 TPa. Calculations also predict the post-fcc phase to have a close-packed orthorhombic structure above 4.3 TPa.

  17. Thallium under extreme compression

    NASA Astrophysics Data System (ADS)

    Cazorla, C.; MacLeod, S. G.; Errandonea, D.; Munro, K. A.; McMahon, M. I.; Popescu, C.

    2016-11-01

    We present a combined theoretical and experimental study of the high-pressure behavior of thallium. X-ray diffraction experiments have been carried out at room temperature (RT) up to 125 GPa using diamond-anvil cells (DACs), nearly doubling the pressure range of previous experiments. We have confirmed the hcp-fcc transition at 3.5 GPa and determined that the fcc structure remains stable up to the highest pressure attained in the experiments. In addition, HP-HT experiments have been performed up to 8 GPa and 700 K by using a combination of XRD and a resistively heated DAC. Information on the phase boundaries is obtained, as well as crystallographic information on the HT bcc phase. The equation of state (EOS) for different phases is reported. Ab initio calculations have also been carried out considering several potential high-pressure structures. They are consistent with the experimental results and predict that, among the structures considered in the calculations, the fcc structure of thallium is stable up to 4.3 TPa. Calculations also predict the post-fcc phase to have a close-packed orthorhombic structure above 4.3 TPa.

  18. Phase diagram of power law and Lennard-Jones systems: Crystal phases

    SciTech Connect

    Travesset, Alex

    2014-10-28

    An extensive characterization of the low temperature phase diagram of particles interacting with power law or Lennard-Jones potentials is provided from Lattice Dynamical Theory. For power law systems, only two lattice structures are stable for certain values of the exponent (or softness) (A15, body centered cube (bcc)) and two more (face centered cubic (fcc), hexagonal close packed (hcp)) are always stable. Among them, only the fcc and bcc are equilibrium states. For Lennard-Jones systems, the equilibrium states are either hcp or fcc, with a coexistence curve in pressure and temperature that shows reentrant behavior. The hcp solid never coexists with the liquid. In all cases analyzed, for both power law and Lennard-Jones potentials, the fcc crystal has higher entropy than the hcp. The role of anharmonic terms is thoroughly analyzed and a general thermodynamic integration to account for them is proposed.

  19. Phase diagram of power law and Lennard-Jones systems: crystal phases.

    PubMed

    Travesset, Alex

    2014-10-28

    An extensive characterization of the low temperature phase diagram of particles interacting with power law or Lennard-Jones potentials is provided from Lattice Dynamical Theory. For power law systems, only two lattice structures are stable for certain values of the exponent (or softness) (A15, body centered cube (bcc)) and two more (face centered cubic (fcc), hexagonal close packed (hcp)) are always stable. Among them, only the fcc and bcc are equilibrium states. For Lennard-Jones systems, the equilibrium states are either hcp or fcc, with a coexistence curve in pressure and temperature that shows reentrant behavior. The hcp solid never coexists with the liquid. In all cases analyzed, for both power law and Lennard-Jones potentials, the fcc crystal has higher entropy than the hcp. The role of anharmonic terms is thoroughly analyzed and a general thermodynamic integration to account for them is proposed. PMID:25362319

  20. The frustrated fcc antiferromagnet Ba2 YOsO6: Structural characterization, magnetic properties and neutron scattering studies

    DOE PAGES

    Kermarrec, E.; Marjerrison, Casey A.; Thompson, C. M.; Maharaj, Dalini D.; Levin, K.; Kroeker, S.; Granroth, Garrett E.; Flacau, Roxana; Yamani, Zahra; Greedan, John E.; et al

    2015-02-26

    Here we report the crystal structure, magnetization, and neutron scattering measurements on the double perovskite Ba2 YOsO6. The Fmmore » $$\\bar{3}$$m space group is found both at 290 K and 3.5 K with cell constants a0=8.3541(4) Å and 8.3435(4) Å, respectively. Os5+ (5d3) ions occupy a nondistorted, geometrically frustrated face-centered-cubic (fcc) lattice. A Curie-Weiss temperature θ ~₋700 K suggests the presence of a large antiferromagnetic interaction and a high degree of magnetic frustration. A magnetic transition to long-range antiferromagnetic order, consistent with a type-I fcc state below TN~69 K, is revealed by magnetization, Fisher heat capacity, and elastic neutron scattering, with an ordered moment of 1.65(6) μB on Os5+. The ordered moment is much reduced from either the expected spin-only value of ~3 μB or the value appropriate to 4d3 Ru5+ in isostructural Ba2 YRuO6 of 2.2(1) μB, suggesting a role for spin-orbit coupling (SOC). Triple-axis neutron scattering measurements of the order parameter suggest an additional first-order transition at T=67.45 K, and the existence of a second-ordered state. We find time-of-flight inelastic neutron results reveal a large spin gap Δ~17 meV, unexpected for an orbitally quenched, d3 electronic configuration. In conclusion, we discuss this in the context of the ~5 meV spin gap observed in the related Ru5+,4d3 cubic double perovskite Ba2YRuO6, and attribute the ~3 times larger gap to stronger SOC present in this heavier, 5d, osmate system.« less

  1. Frustrated fcc antiferromagnet Ba2YOsO6 : Structural characterization, magnetic properties, and neutron scattering studies

    NASA Astrophysics Data System (ADS)

    Kermarrec, E.; Marjerrison, C. A.; Thompson, C. M.; Maharaj, D. D.; Levin, K.; Kroeker, S.; Granroth, G. E.; Flacau, R.; Yamani, Z.; Greedan, J. E.; Gaulin, B. D.

    2015-02-01

    We report the crystal structure, magnetization, and neutron scattering measurements on the double perovskite Ba2YOsO6 . The F m 3 ¯m space group is found both at 290 K and 3.5 K with cell constants a0=8.3541 (4 ) Å and 8.3435 (4 ) Å, respectively. Os5 + (5 d3 ) ions occupy a nondistorted, geometrically frustrated face-centered-cubic (fcc) lattice. A Curie-Weiss temperature θ ˜-700 K suggests the presence of a large antiferromagnetic interaction and a high degree of magnetic frustration. A magnetic transition to long-range antiferromagnetic order, consistent with a type-I fcc state below TN˜69 K, is revealed by magnetization, Fisher heat capacity, and elastic neutron scattering, with an ordered moment of 1.65(6) μB on Os5 +. The ordered moment is much reduced from either the expected spin-only value of ˜3 μB or the value appropriate to 4 d3 Ru5 + in isostructural Ba2YRuO6 of 2.2(1) μB, suggesting a role for spin-orbit coupling (SOC). Triple-axis neutron scattering measurements of the order parameter suggest an additional first-order transition at T =67.45 K, and the existence of a second-ordered state. Time-of-flight inelastic neutron results reveal a large spin gap Δ ˜17 meV, unexpected for an orbitally quenched, d3 electronic configuration. We discuss this in the context of the ˜5 meV spin gap observed in the related Ru5 +,4 d3 cubic double perovskite Ba2YRuO6 , and attribute the ˜3 times larger gap to stronger SOC present in this heavier, 5 d , osmate system.

  2. Magnetic separation of FCC equilibrium catalyst by HGMS. [Fluid catalytic cracking (FCC); high gradient magnetic separator (HGMS)

    SciTech Connect

    Takase, S.; Ushio, M.; Oishi, Y.; Morita, T.; Shiori, T.

    1982-09-01

    The results of a study on the magnetic separation of a fluid catalytic cracking catalysts by a high gradient magnetic separator are presented. Seven nickel-impregnated catalysts (Ni content ranged from 0.0 to 4.45 wt.%) were mixed in equal amounts as a model sample. The velocity effect of carrier gas is detailed with the magnetic yield and magnetic susceptibility plotted against magnetic field at a constant carrier gas velocity. The distribution of magnetic susceptibility of separated components was also studied. The results of the study suggested that highly metal-contaminated catalysts can be selectively separated by HGMS according to metal content. Actual equilibrium catalysts used with heavy feedstocks are also expected to separate into mags and nonmags, and in such real cases, nonmags have larger surface areas and higher catalytic activity as well as selectivity. As such, it was concluded that a magnetic separation of highly metal-contaminated catalysts by HGMS followed by the make-up of fresh catalyst gives rise to a considerable reduction of catalyst consumption in residual oil FCC processing. (JMT)

  3. Isomorph invariance of the structure and dynamics of classical crystals

    NASA Astrophysics Data System (ADS)

    Albrechtsen, Dan E.; Olsen, Andreas E.; Pedersen, Ulf R.; Schrøder, Thomas B.; Dyre, Jeppe C.

    2014-09-01

    This paper shows by computer simulations that some crystalline systems have curves in their thermodynamic phase diagrams, so-called isomorphs, along which structure and dynamics in reduced units are invariant to a good approximation. The crystals are studied in a classical-mechanical framework, which is generally a good description except significantly below melting. The existence of isomorphs for crystals is validated by simulations of particles interacting via the Lennard-Jones pair potential arranged into a face-centered cubic (fcc) crystalline structure; the slow vacancy-jump dynamics of a defective fcc crystal is also shown to be isomorph invariant. In contrast, a NaCl crystal model does not exhibit isomorph invariances. Other systems simulated, though in less detail, are the Wahnström binary Lennard-Jones crystal with the MgZn2 Laves crystal structure, monatomic fcc crystals of particles interacting via the Buckingham pair potential and via a purely repulsive pair potential diverging at a finite separation, an ortho-terphenyl molecular model crystal, and SPC/E hexagonal ice. Except for NaCl and ice, the crystals simulated all have isomorphs. Based on previous simulations of liquid models, we conjecture that crystalline solids with isomorphs include most or all formed by atoms or molecules interacting via metallic or van der Waals forces, whereas covalently bonded or hydrogen-bonded crystals are not expected to have isomorphs; crystals of ions or dipolar molecules constitute a limiting case for which isomorphs are only expected when the Coulomb interactions are relatively weak. We briefly discuss the consequences of the findings for theories of melting and crystallization.

  4. CFD code development for performance evaluation of a pilot-scale FCC riser reactor

    SciTech Connect

    Chang, S.L.; Lottes, S.A.; Zhou, C.Q.; Golchert, B.; Petrick, M.

    1997-09-01

    Fluid Catalytic Cracking (FCC) is an important conversion process for the refining industry. The improvement of FCC technology could have a great impact on the public in general by lowering the cost of transportation fuel. A recent review of the FCC technology development by Bienstock et al. of Exxon indicated that the use of computational fluid dynamics (CFD) simulation can be very effective in the advancement of the technology. Theologos and Markatos used a commercial CFD code to model an FCC riser reactor. National Laboratories of the U.S. Department of Energy (DOE) have accumulated immense CFD expertise over the years for various engineering applications. A recent DOE survey showed that National Laboratories are using their CFD expertise to help the refinery industry improve the FCC technology under DOE`s Cooperative Research and Development Agreement (CRADA). Among them are Los Alamos National Laboratory with Exxon and Amoco and Argonne National Laboratory (ANL) with Chevron and UOP. This abstract briefly describes the current status of ANL`s work. The objectives of the ANL CRADA work are (1) to use a CFD code to simulate FCC riser reactor flow and (2) to evaluate the impacts of operating conditions and design parameters on the product yields. The CFD code used in this work was originally developed for spray combustion simulation in early 1980 at Argonne. It has been successfully applied to diagnosing a number of multi-phase reacting flow problems in a magneto-hydrodynamic power train. A new version of the CFD code developed for the simulation of the FCC riser flow is called Integral CRacKing FLOw (ICRKFLO). The CFD code solves conservation equations of general flow properties for three phases: gaseous species, liquid droplets, and solid particles. General conservation laws are used in conjunction with rate equations governing the mass, momentum, enthalpy, and species for a multi-phase flow with gas species, liquid droplets, and solid particles.

  5. Stability Criteria and Thermodynamic Properties of Superheated Crystal

    NASA Astrophysics Data System (ADS)

    Norman, Guenri; Stegailov, Vladimir

    2002-08-01

    Molecular dynamics method [1-3] is used for the study of equation of state, heat capacity and elastic moduli of superheated model crystal. Thermodynamic, mechanic and kinetic limits of stability are investigated. Fcc-lattice of N particles interacting via U=ɛ(σ/r)^n potential is simulated with the periodic boundary conditions. In this case system properties depend only on a single parameter X ˜ ρσ^3(ɛ/k_BT)^3/n, where ρ - density, T - temperature. This potential was used for simulation of liquid and solid metals, high pressure range included [3]. Only fragments of MD-runs before beginning of melting are used for averaging in order to obtain pressure, temperature, isothermal compressibility, heat capacity and elastic moduli. Different values of n are treated. Inequality (partialP/partialV)_T<0 should be valid for the thermodynamic stability. Mechanic stability is related to the conditions for elastic moduli. Estimation of the maximum nucleation rate allows us to obtain the corresponding kinetic limit (X-1)_max of crystal stability. Our results point to the close values of (X-1)_max obtained for three different stability limits. Results are used for the calculation of the spinodal of solid copper. The work is supported by RFBR (00-02-16310a, 02-02-06654mas) and Integratsiya (U0022). [1] Z.H. Jin et al. PRL 87 (2001) 055703. [2] M.N. Krivoguz, G.E. Norman Doklady Physics 46 (2001) 463. [3] W.G. Hoover et al. J. Chem Phys. 63 (1975) 5434.

  6. Turbulence in Compressible Flows

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Lecture notes for the AGARD Fluid Dynamics Panel (FDP) Special Course on 'Turbulence in Compressible Flows' have been assembled in this report. The following topics were covered: Compressible Turbulent Boundary Layers, Compressible Turbulent Free Shear Layers, Turbulent Combustion, DNS/LES and RANS Simulations of Compressible Turbulent Flows, and Case Studies of Applications of Turbulence Models in Aerospace.

  7. Growth of coronene on (100)- and (111)-surfaces of fcc-crystals

    NASA Astrophysics Data System (ADS)

    Huempfner, Tobias; Sojka, Falko; Forker, Roman; Fritz, Torsten

    2015-09-01

    The growth of coronene thin films is studied via low-energy electron diffraction (LEED) and scanning tunneling microscopy (STM) comparing metal substrates with different lattice constants, different surface symmetry, and also with surface passivation, namely Cu(111), Ag(111), Ag(100), and (100)-terminated KCl/Ag(100). In particular, we investigate the evolution of the coronene lattice parameters upon coverage- and temperature-variation. On the pristine metal surfaces we observe disordered phases at low coverage. Further deposition leads to hexagonal arrangement of the molecules. With increasing coverage the lattice constant decreases continuously, whereas on Cu(111) the molecular unit cell additionally rotates w.r.t. the substrate lattice. We also discuss the interaction mechanisms that are responsible for this behavior. Due to the continuous change in the lattice dimensions we observe many incommensurate structures that were stable during our measurements, however the close-packed structures we found were always commensurate. The use of a passivation layer leads to the formation of a bulk-like structure consisting of molecules adsorbed in an upright standing manner which is stable at low temperatures only.

  8. Analysis of interfacial dislocations in a single crystal nickel-base superalloy after [001] creep at 1,033 K evolution of internal stresses. [Ni-5. 5Al-2. 2Ti-8. 5Cr-5. 0Co-2. 8Ta-9. 5W-0. 018C

    SciTech Connect

    Feller-Kniepmeier, M.; Hemmersmeier, U.; Kuttner, T.; Link, T. . Inst. fuer Metallforschung)

    1994-05-15

    Single crystal Nickel-base superalloys are composite consisting of high volume fractions of the ordered L1[sub 2] [gamma][prime] phase embedded in the fcc matrix. Due to the misfit between the two phases, coherency stresses arise in the microstructure. FEM calculations of the principal stress distributions have shown that the narrow matrix channels are highly loaded in compression parallel to the [gamma]/[gamma][prime] interfaces, while tensile stresses perpendicular to the interfaces are small. The interior of the [gamma][prime] cube is under low tensile stress. In the present paper the authors are interested in the evolution of interfacial dislocations at the early stages of creep and at medium temperature where diffusion effects can be neglected. The interfacial dislocations are used for an experimental check of the micromechanical and the crystallographic model.

  9. Unique Bonding Properties of the Au36(SR)24 Nanocluster with FCC-Like Core.

    PubMed

    Chevrier, Daniel M; Chatt, Amares; Zhang, Peng; Zeng, Chenjie; Jin, Rongchao

    2013-10-01

    The recent discovery on the total structure of Au36(SR)24, which was converted from biicosahedral Au38(SR)24, represents a surprising finding of a face-centered cubic (FCC)-like core structure in small gold-thiolate nanoclusters. Prior to this finding, the FCC feature was only expected for larger (nano)crystalline gold. Herein, we report results on the unique bonding properties of Au36(SR)24 that are associated with its FCC-like core structure. Temperature-dependent X-ray absorption spectroscopy (XAS) measurements at the Au L3-edge, in association with ab initio calculations, show that the local structure and electronic behavior of Au36(SR)24 are of more molecule-like nature, whereas its icosahedral counterparts such as Au38(SR)24 and Au25(SR)18 are more metal-like. Moreover, site-specific S K-edge XAS studies indicate that the bridging motif for Au36(SR)24 has different bonding behavior from the staple motif from Au38(SR)24. Our findings highlight the important role of "pseudo"-Au4 units within the FCC-like Au28 core in interpreting the bonding properties of Au36(SR)24 and suggest that FCC-like structure in gold thiolate nanoclusters should be treated differently from its bulk counterpart.

  10. The hcp to fcc transformation path of scandium trihydride under high pressure.

    PubMed

    Pakornchote, T; Pinsook, U; Bovornratanaraks, T

    2014-01-15

    We used density functional theory to calculate the phase stability of the hcp (hexagonal close packed) and the fcc (face centered cubic) structures of ScH3. The hcp form is stable up to 22 GPa according to the generalized gradient approximation calculation. Then the fcc form becomes energetically more stable. In order to provide insight into the phase transition mechanism, we modeled the hcp to fcc transition by sliding the hcp basal planes, i.e. (001)h planes, in such a way that the ABABAB sequence of the hcp form is altered into the ABCABC sequence of the fcc form. This sliding was suggested by the experiment. The configurations of these sliding steps are our proposed intermediate configurations, whose symmetry group is the Cm group. By using the Cm crystallography, we can match the d-spacings from the lattice planes of the hcp and fcc forms and the intermediate planes measured from the experiment. We also calculated the enthalpy per step, from which the energy barrier between the two phases at various pressures was derived. The barrier at 35 GPa is 0.370 eV per formula or 0.093 eV/atom. The movements of the hydrogen atoms during the hcp to intermediate phase transition are consistent with the result from the Raman spectra.

  11. Ultra-high strain rate behavior of FCC nanostructures

    NASA Astrophysics Data System (ADS)

    Crum, Ryan Scott

    This work addresses the influence of ultra-high strain rates loading observed in our world today via ballistics, explosions and astrophysical collisions on well-defined metal structures. There is a plentiful amount of research examining metals at a macroscopic level that are subjected to ballistics and explosions but observing the microstructure is difficult as those procedures are fairly destructive testing mechanisms. Therefore, to understand the true mechanisms that occur in these loading situations a more novel technique is necessary. Modifications were made to the Laser Spallation Technique in order to load structures under a single transient wave pulse. This study characterized FCC nanostructures shock loaded at extreme pressures, strain rates and temperatures. By utilizing nanostructures, extremely large values of stain could be produced within the structure. It was first observed that at lower laser fluence levels and subsequently low stress states that there was a chemical activation of the surface of Cu nanopillars. This occurred due to nanofacet formation on the surface of the nanopillars which left pristine Cu surfaces to recombine with the environment. Dislocation motion was also observed and clearly identified in Cu nanopillars, Cu nanobenches and Al nanopillars. Further studies analyzed Cu nanopillars subjected to higher laser fluence generated stress waves, which led to bending and axial shortening deformation. These deformations were observed at laser fluence values of 144 kJ/m2 for bending and 300 kJ/m 2 for bulging similar to that of Taylor Impact experiments. To explore an even more extreme loading environment, a specialized test setup was employed to cryogenically cool the copper nanopillars to a temperature of 83K in an attempt to elucidate brittle behavior. Under these loading conditions the nanopillars continued to deform in a ductile manner but with delayed onset of both bending deformation and bulging deformation compared to the room

  12. Precise characterization of grain structures, stacking disorders, and lattice disorders of a close-packed colloidal crystal

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoshihisa; Mori, Atsushi; Fujiwara, Takahisa; Tamura, Katsuhiro

    2011-05-01

    The perpendicular fracture surface of a dried colloidal crystal with pillar-like grains, obtained by centrifugation of a dispersion of polystyrene particles, was observed using a scanning electron microscope. Many grain boundaries on the fracture surface were observed at the particle level. Most of the particles on the surface showed a face-centered cubic (FCC) array. Although some grains were single FCC ones, other FCC grains contained some stacking disorders. Most of the surface was covered with such grains, and the grain boundaries formed a mosaic-like pattern. From these results, we confirmed that the colloidal crystals obtained by centrifugation formed a bundle structure of pillar-like FCC grains. A fracture surface adjacent to the side wall of the growth cell was also observed. The surface was composed of several layers. In the uppermost layer closest to the wall, numerous point defects and mismatches of triangular lattices between the neighboring two-dimensional islands were observed. These mismatches and point defects probably generated several lattice defects in the crystal. Similar generation of lattice defects probably occurred at the bottom of the container or the growth front of the crystals. Screw dislocations were also found in the layers, although they were not observed frequently. From these results, it was concluded that two-dimensional nucleation growth and spiral growth probably occurred on the crystal-dispersion interfaces of colloidal crystals as well as on the surface of atomic crystals.

  13. Topology of the spin-polarized charge density in bcc and fcc iron.

    PubMed

    Jones, Travis E; Eberhart, Mark E; Clougherty, Dennis P

    2008-01-11

    We report the first investigation of the topology of spin-polarized charge density, specifically in bcc and fcc iron. While the total spin-density is found to possess the topology of the non-magnetic prototypical structures, the spin-polarized charge densities of bcc and high-spin fcc iron are atypical. In these cases, the two spin densities are correlated: the spin-minority electrons have directional bond paths and deep minima, while the spin-majority electrons fill these holes, reducing bond directionality. The presence of distinct spin topologies allows us to show that the two phase changes seen in fcc iron (paramagnetic to low-spin and low-spin to high-spin) are different. The former follows the Landau symmetry-breaking paradigm and proceeds without a topological transformation, while the latter involves a topological catastrophe. PMID:18232817

  14. Topology of the Spin-Polarized Charge Density in bcc and fcc Iron

    NASA Astrophysics Data System (ADS)

    Jones, Travis E.; Eberhart, Mark E.; Clougherty, Dennis P.

    2008-01-01

    We report the first investigation of the topology of spin-polarized charge density, specifically in bcc and fcc iron. While the total spin-density is found to possess the topology of the non-magnetic prototypical structures, the spin-polarized charge densities of bcc and high-spin fcc iron are atypical. In these cases, the two spin densities are correlated: the spin-minority electrons have directional bond paths and deep minima, while the spin-majority electrons fill these holes, reducing bond directionality. The presence of distinct spin topologies allows us to show that the two phase changes seen in fcc iron (paramagnetic to low-spin and low-spin to high-spin) are different. The former follows the Landau symmetry-breaking paradigm and proceeds without a topological transformation, while the latter involves a topological catastrophe.

  15. Topology of the spin-polarized charge density in bcc and fcc iron.

    PubMed

    Jones, Travis E; Eberhart, Mark E; Clougherty, Dennis P

    2008-01-11

    We report the first investigation of the topology of spin-polarized charge density, specifically in bcc and fcc iron. While the total spin-density is found to possess the topology of the non-magnetic prototypical structures, the spin-polarized charge densities of bcc and high-spin fcc iron are atypical. In these cases, the two spin densities are correlated: the spin-minority electrons have directional bond paths and deep minima, while the spin-majority electrons fill these holes, reducing bond directionality. The presence of distinct spin topologies allows us to show that the two phase changes seen in fcc iron (paramagnetic to low-spin and low-spin to high-spin) are different. The former follows the Landau symmetry-breaking paradigm and proceeds without a topological transformation, while the latter involves a topological catastrophe.

  16. Reducing the formation of FIB-induced FCC layers on Cu-Zn-Al austenite.

    PubMed

    Zelaya, Eugenia; Schryvers, Dominique

    2011-01-01

    The irradiation effects of thinning a sample of a Cu-Zn-Al shape memory alloy to electron transparency by a Ga(+) focused ion beam were investigated. This thinning method was compared with conventional electropolishing and Ar(+) ion milling. No implanted Ga was detected but surface FCC precipitation was found as a result of the focused ion beam sample preparation. Decreasing the irradiation dose by lowering the energy and current of the Ga(+) ions did not lead to a complete disappearance of the FCC structure. The latter could only be removed after gentle Ar(+) ion milling of the sample. It was further concluded that the precipitation of the FCC is independent of the crystallographic orientation of the surface.

  17. Crystallographic dependence of CO activation on cobalt catalysts: HCP versus FCC.

    PubMed

    Liu, Jin-Xun; Su, Hai-Yan; Sun, Da-Peng; Zhang, Bing-Yan; Li, Wei-Xue

    2013-11-01

    Identifying the structure sensitivity of catalysts in reactions, such as Fischer-Tropsch synthesis from CO and H2 over cobalt catalysts, is an important yet challenging issue in heterogeneous catalysis. Based on a first-principles kinetic study, we find for the first time that CO activation on hexagonal close-packed (HCP) Co not only has much higher intrinsic activity than that of face centered-cubic (FCC) Co but also prefers a different reaction route, i.e., direct dissociation with HCP Co but H-assisted dissociation on the FCC Co. The origin is identified from the formation of various denser yet favorable active sites on HCP Co not available for FCC Co, due to their distinct crystallographic structure and morphology. The great dependence of the activity on the crystallographic structure and morphology of the catalysts revealed here may open a new avenue for better, stable catalysts with maximum mass-specific reactivity.

  18. Correlation-induced anomalies and extreme sensitivity in fcc-Pu

    SciTech Connect

    Chen, Shao-ping

    2008-01-01

    We have used GGA + U density functional theory to study the effects of correlation on the properties of fcc Pu. We found that the structural and elastic properties of fcc-Pu are highly sensitive to the Hubbard U parameter. Within an interval of 0.05 eV of the U parameter, the equilibrium lattice constants of fcc-Pu can change from 0.42 to 0.47 nm. While the bulk modulus can drop by a factor of 5 to 10. The pressure derivative, dB/dp, of the bulk modulus can rise dramatically from 5 to 15 and then drop to the negative values before recovering to the more normal values. These observations are partially supported by existing experiments and the prediction of a negative dB/dp need to be tested in future experiments.

  19. Dissipation by a crystallization process

    NASA Astrophysics Data System (ADS)

    Dorosz, Sven; Voigtmann, Thomas; Schilling, Tanja

    2016-01-01

    We discuss crystallization as a non-equilibrium process. In a system of hard spheres under compression at a constant rate, we quantify the amount of heat that is dissipated during the crystallization process. We interpret the dissipation as arising from the resistance of the system against phase transformation. An intrinsic compression rate is identified that separates a quasi-static regime from one of rapidly driven crystallization. In the latter regime the system crystallizes more easily, because new relaxation channels are opened, at the cost of forming a higher fraction of non-equilibrium crystal structures. We rationalize the change in the crystallization mechanism by analogy with shear thinning, in terms of a kinetic competition between near-equilibrium relaxation and external driving.

  20. Quantum Hall Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Radzihovsky, Leo

    2003-03-01

    Liquid-crystals, defined as states of matter intermediate in their properties between fully disordered isotropic liquids and fully ordered crystals are ubiquitous in nature. Recent transport measurements on two-dimensional electron systems in moderate magnetic fields suggest the existence of a spontaneously orientationally-ordered, compressible liquid state. I will discuss electronic liquid-crystals interpretation of these experiments, focusing on a recently proposed quantum Hall nematic state that is predicted to exhibit a novel, highly anisotropic q^3 density-director mode and other interesting phenomenology.

  1. Micromagnetic simulations of interacting dipoles on an fcc lattice: application to nanoparticle assemblies.

    PubMed

    Plumer, M L; van Lierop, J; Southern, B W; Whitehead, J P

    2010-07-28

    Micromagnetic simulations are used to examine the effects of cubic and axial anisotropy, magnetostatic interactions and temperature on M-H loops for a collection of magnetic dipoles on fcc and sc lattices. We employ a simple model of interacting dipoles that represent single-domain particles in an attempt to explain recent experimental data on ordered arrays of magnetoferritin nanoparticles that demonstrate the crucial role of interactions between particles in an fcc lattice. Significant agreement between the simulation and experimental results is achieved, and the impact of intra-particle degrees of freedom and surface effects on thermal fluctuations is investigated.

  2. Observation of the fcc-to-hcp transition in ensembles of argon nanoclusters.

    PubMed

    Krainyukova, N V; Boltnev, R E; Bernard, E P; Khmelenko, V V; Lee, D M; Kiryukhin, V

    2012-12-14

    Macroscopic ensembles of weakly interacting argon nanoclusters are studied using x-ray diffraction in low vacuum. As the clusters grow by fusion with increasing temperature, their structure transforms from essentially face-centered cubic (fcc) to hexagonal close packed as the cluster size approaches ~10(5) atoms. The transformation involves intermediate orthorhombic phases. These data confirm extant theoretical predictions. They also indicate that growth kinetics and spatial constraints might play an important role in the formation of the fcc structure of bulk rare-gas solids, which still remains puzzling.

  3. Impacts of Interface Energies and Transformation Strain from BCC to FCC on Massive-like δ-γ Transformation in Steel

    NASA Astrophysics Data System (ADS)

    Yoshiya, M.; Sato, M.; Watanabe, M.; Nakajima, K.; Yokoi, T.; Ueshima, N.; Nagira, T.; Yasuda, H.

    2015-06-01

    Interface energies of δ/γ, γ/γ, δ/δ, L/δ, and L/γ interfaces, at first, as a function of misorientation were evaluated with an aid of atomistic simulations with embedded atom method. Then, under geometric constraints where grains or interfaces compete each other to minimize overall free energy, effective interface energies for those interfaces were quantified. It is found that neither the minimum nor effective δ/γ interface energies, 0.41 or 0.56 J/m2, respectively, is significantly higher than those of other interfaces including liquid/solid interfaces, but the δ/γ interface energy is significantly high for the small entropy change upon δ-γ massive-like transformation, resulting in significantly higher undercooling required for γ nucleation in the δ phase matrix than in solidification. Detachment of δ-phase dendrite tips away from γ-phase dendrite trunks can be explained only from a viewpoint of interface energy if small misorientationis introduced at the δ/γ interface from the perfect lattice matching between BCC and FCC crystal structures. Examining the BCC-to-FCC transformation strain on the γ nucleation in the massive-like transformation, the γ nucleation is prohibited 170 K or more undercooling is achieved unless any relaxation mechanism for the transformation strain is taken into account.

  4. Strain hardening of fcc metal surfaces induced by microploughing

    SciTech Connect

    Day, R.D.; Dickerson, R.M.; Russell, P.E.

    1998-12-01

    Microploughing experiments were used as a method for better understanding the ploughing mechanism in gold and iridium single crystals. The plough depths ranged from 20 nm in iridium to 1,600 nm in gold. Yield stress profiles and TEM analyses indicate that both materials strain harden even when very small volumes of material are involved. Strain hardening theory, as applied to bulk material, is useful in analyzing the results.

  5. Microbunching and RF Compression

    SciTech Connect

    Venturini, M.; Migliorati, M.; Ronsivalle, C.; Ferrario, M.; Vaccarezza, C.

    2010-05-23

    Velocity bunching (or RF compression) represents a promising technique complementary to magnetic compression to achieve the high peak current required in the linac drivers for FELs. Here we report on recent progress aimed at characterizing the RF compression from the point of view of the microbunching instability. We emphasize the development of a linear theory for the gain function of the instability and its validation against macroparticle simulations that represents a useful tool in the evaluation of the compression schemes for FEL sources.

  6. Compressed gas manifold

    SciTech Connect

    Hildebrand, Richard J.; Wozniak, John J.

    2001-01-01

    A compressed gas storage cell interconnecting manifold including a thermally activated pressure relief device, a manual safety shut-off valve, and a port for connecting the compressed gas storage cells to a motor vehicle power source and to a refueling adapter. The manifold is mechanically and pneumatically connected to a compressed gas storage cell by a bolt including a gas passage therein.

  7. Compressible turbulent mixing: Effects of compressibility

    NASA Astrophysics Data System (ADS)

    Ni, Qionglin

    2016-04-01

    We studied by numerical simulations the effects of compressibility on passive scalar transport in stationary compressible turbulence. The turbulent Mach number varied from zero to unity. The difference in driven forcing was the magnitude ratio of compressive to solenoidal modes. In the inertial range, the scalar spectrum followed the k-5 /3 scaling and suffered negligible influence from the compressibility. The growth of the Mach number showed (1) a first reduction and second enhancement in the transfer of scalar flux; (2) an increase in the skewness and flatness of the scalar derivative and a decrease in the mixed skewness and flatness of the velocity-scalar derivatives; (3) a first stronger and second weaker intermittency of scalar relative to that of velocity; and (4) an increase in the intermittency parameter which measures the intermittency of scalar in the dissipative range. Furthermore, the growth of the compressive mode of forcing indicated (1) a decrease in the intermittency parameter and (2) less efficiency in enhancing scalar mixing. The visualization of scalar dissipation showed that, in the solenoidal-forced flow, the field was filled with the small-scale, highly convoluted structures, while in the compressive-forced flow, the field was exhibited as the regions dominated by the large-scale motions of rarefaction and compression.

  8. Two-stage crystallization of charged colloids under low supersaturation conditions.

    PubMed

    Kratzer, Kai; Arnold, Axel

    2015-03-21

    We report simulations on the homogeneous liquid-fcc nucleation of charged colloids for both low and high contact energy values. As a precursor for crystal formation, we observe increased local order at the position where the crystal will form, but no correlations with the local density. Thus, the nucleation is driven by order fluctuations rather than density fluctuations. Our results also show that the transition involves two stages in both cases, first a transition of liquid → bcc, followed by a bcc → hcp/fcc transition. Both transitions have to overcome free energy barriers, so that a spherical bcc-like cluster is formed first, in which the final fcc structure is nucleated mainly at the surface of the crystallite. This means that the second stage bcc-fcc phase transition is a heterogeneous nucleation in the partially grown solid phase, even though we start from a homogeneous bulk liquid. The height of the bcc → hcp/fcc free energy barrier strongly depends on the contact energies of the colloids. For low contact energy this barrier is low, so that the bcc → hcp/fcc transition occurs spontaneously. For the higher contact energy, the second barrier is too high to be crossed spontaneously by the colloidal system. However, it was possible to ratchet the system over the second barrier and to transform the bcc nuclei into the stable hcp/fcc phase. The transitions are dominated by the first liquid-bcc transition and can be described by classical nucleation theory using an effective surface tension.

  9. Negative linear compressibility in common materials

    NASA Astrophysics Data System (ADS)

    Miller, W.; Evans, K. E.; Marmier, A.

    2015-06-01

    Negative linear compressibility (NLC) is still considered an exotic property, only observed in a few obscure crystals. The vast majority of materials compress axially in all directions when loaded in hydrostatic compression. However, a few materials have been observed which expand in one or two directions under hydrostatic compression. At present, the list of materials demonstrating this unusual behaviour is confined to a small number of relatively rare crystal phases, biological materials, and designed structures, and the lack of widespread availability hinders promising technological applications. Using improved representations of elastic properties, this study revisits existing databases of elastic constants and identifies several crystals missed by previous reviews. More importantly, several common materials—drawn polymers, certain types of paper and wood, and carbon fibre laminates—are found to display NLC. We show that NLC in these materials originates from the misalignment of polymers/fibres. Using a beam model, we propose that maximum NLC is obtained for misalignment of 26°. The existence of such widely available materials increases significantly the prospects for applications of NLC.

  10. Negative linear compressibility in common materials

    SciTech Connect

    Miller, W.; Evans, K. E.; Marmier, A.

    2015-06-08

    Negative linear compressibility (NLC) is still considered an exotic property, only observed in a few obscure crystals. The vast majority of materials compress axially in all directions when loaded in hydrostatic compression. However, a few materials have been observed which expand in one or two directions under hydrostatic compression. At present, the list of materials demonstrating this unusual behaviour is confined to a small number of relatively rare crystal phases, biological materials, and designed structures, and the lack of widespread availability hinders promising technological applications. Using improved representations of elastic properties, this study revisits existing databases of elastic constants and identifies several crystals missed by previous reviews. More importantly, several common materials-drawn polymers, certain types of paper and wood, and carbon fibre laminates-are found to display NLC. We show that NLC in these materials originates from the misalignment of polymers/fibres. Using a beam model, we propose that maximum NLC is obtained for misalignment of 26°. The existence of such widely available materials increases significantly the prospects for applications of NLC.

  11. Mesoscale Heterogeneity in the Plastic Deformation of a Copper Single Crystal

    SciTech Connect

    Magid, K R; Florando, J N; Lassila, D H; LeBlanc, M M; Tamura, N; Morris Jr., J W

    2007-02-21

    The work reported here is part of a 'multiscale characterization' study intended to clarify the deformation pattern in a Cu single crystal deformed in compression. A copper single crystal was oriented for single slip in the (111)[{bar 1}01] slip system and tested to {approx}10% strain in uniaxial compression, using a specifically designed '6 degree of freedom' compressive test device to achieve uniaxial strain. The macroscopic strain field was monitored during the test by optical 'image correlation' methods that mapped the strain field with a spatial resolution of about 100 {micro}m. The strain field was measured on orthogonal surfaces, one of which (the x-face) was oriented perpendicular to [1{bar 2}1] and contained the [{bar 1}01] direction of the preferred slip system. The macroscopic strain produced is an inhomogeneous pattern of broad, crossed shear bands in the x-face. One, the primary band, lay parallel to (111). The second, the 'conjugate' band, was oriented perpendicular to (111) and contains no common slip plane of the fcc crystal. The mesoscopic structure of the inhomogeneous macroscopic deformation pattern was explored with selected area diffraction, using a focused synchrotron radiation polychromatic beam with a resolution of 1-3 {micro}m. Areas within the primary, conjugate and primary + conjugate strain regions of the x-face were identified and mapped for their orientation, excess defect density and shear stress. The mesoscopic defect structure consisted of broad, somewhat irregular primary bands that lay nominally parallel to (111) in a almost periodic distribution with a period of about 30 {micro}m. These primary bands were dominant even in the region of conjugate strain. There were also broad conjugate defect bands, almost precisely perpendicular to the primary bands that tended to bridge primary bands and terminate at them. The residual shear stresses were large (ranging to well above 500 MPa) and strongly correlated with the primary shear bands

  12. 47 CFR 3.53 - FCC notification of refusal to provide telecommunications service to U.S. registered vessel(s).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false FCC notification of refusal to provide...-SATELLITE RADIO SERVICES Settlement Operations § 3.53 FCC notification of refusal to provide telecommunications service to U.S. registered vessel(s). An accounting authority must inform the FCC...

  13. 5 CFR 3902.102 - Employees required to submit FCC Form A54A, “Confidential Supplemental Statement of Employment...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Employees required to submit FCC Form... REQUIREMENTS FOR EMPLOYEES OF THE FEDERAL COMMUNICATIONS COMMISSION § 3902.102 Employees required to submit FCC... file FCC Form A54A, “Confidential Supplemental Statement of Employment and Financial Interests.”...

  14. Elastic constants of random solid solutions by SQS and CPA approaches: the case of fcc Ti-Al.

    PubMed

    Tian, Li-Yun; Hu, Qing-Miao; Yang, Rui; Zhao, Jijun; Johansson, Börje; Vitos, Levente

    2015-08-12

    Special quasi-random structure (SQS) and coherent potential approximation (CPA) are techniques widely employed in the first-principles calculations of random alloys. Here we scrutinize these approaches by focusing on the local lattice distortion (LLD) and the crystal symmetry effects. We compare the elastic parameters obtained from SQS and CPA calculations, taking the random face-centered cubic (fcc) Ti(1-x)Al(x) (0 ≤ x ≤ 1) alloy as an example of systems with components showing different electronic structures and bonding characteristics. For the CPA and SQS calculations, we employ the Exact Muffin-Tin Orbitals (EMTO) method and the pseudopotential method as implemented in the Vienna Ab initio Simulation Package (VASP), respectively. We show that the predicted trends of the VASP-SQS and EMTO-CPA parameters against composition are in good agreement with each other. The energy associated with the LLD increases with x up to x = 0.625 ~ 0.750 and drops drastically thereafter. The influence of the LLD on the lattice constants and C12 elastic constant is negligible. C11 and C44 decrease after atomic relaxation for alloys with large LLD, however, the trends of C11 and C44 are not significantly affected. In general, the uncertainties in the elastic parameters associated with the symmetry lowering turn out to be superior to the differences between the two techniques including the effect of LLD.

  15. The Compression Pathway of Quartz

    NASA Astrophysics Data System (ADS)

    Dera, P. K.; Thompson, R. M.; Downs, R. T.

    2011-12-01

    The important Earth material quartz may constitute as much as 20% of the upper continental crust. Quartz is composed solely of corner-sharing SiO4 silica tetrahedra, a primary building block of many of the Earth's crustal and mantle minerals, lunar and Martian minerals, and meteoritic minerals. Quartz is therefore an outstanding model material for investigating the response of this fundamental structural unit to changes in P, T, and x. These facts have spawned a vast literature of experimental and theoretical studies of quartz at ambient and non-ambient conditions. Investigations into the behavior of quartz at high pressure have revealed an anomalous distortion in the silicate tetrahedron with pressure not typically seen in other silicates. The tetrahedron assumes a very distinct geometry, becoming more like the Sommerville tetrahedron of O'Keeffe and Hyde (1996) as pressure increases. Traditionally, this distortion has been considered a compression mechanism for quartz, along with Si-O-Si angle-bending and a very small component of bond compression. However, tetrahedral volume decreases by only 1% between 0.59 GPa and 20.25 GPa, while unit cell volume decreases by 21%. Therefore, most of the compression in quartz is happening in tetrahedral voids, not in the silicate tetrahedron, and the distortion of the silicate tetrahedron may not be the direct consequence of decreasing volume in response to increasing pressure. The structure of quartz at high temperature and high pressure, including new structural refinements from synchrotron singe-crystal data collected to 20.25 GPa, is compared to the following three hypothetical quartz crystals: (1) Ideal quartz with perfectly regular tetrahedra and the same volume and Si-O-Si angle as its observed. (2) Model quartz with the same Si-O-Si angle and cell parameters as its observed equivalent, derived from ideal by altering the axial ratio. (3) BCC quartz with a perfectly body-centered cubic arrangement of oxygen anions and

  16. Nitrogen Chemistry and Coke Transformation of FCC Coked Catalyst during the Regeneration Process

    NASA Astrophysics Data System (ADS)

    Shi, Junjun; Guan, Jianyu; Guo, Dawei; Zhang, Jiushun; France, Liam John; Wang, Lefu; Li, Xuehui

    2016-06-01

    Regeneration of the coked catalyst is an important process of fluid catalytic cracking (FCC) in petroleum refining, however, this process will emit environmentally harmful gases such as nitrogen and carbon oxides. Transformation of N and C containing compounds in industrial FCC coke under thermal decomposition was investigated via TPD and TPO to examine the evolved gaseous species and TGA, NMR and XPS to analyse the residual coke fraction. Two distinct regions of gas evolution are observed during TPD for the first time, and they arise from decomposition of aliphatic carbons and aromatic carbons. Three types of N species, pyrrolic N, pyridinic N and quaternary N are identified in the FCC coke, the former one is unstable and tends to be decomposed into pyridinic and quaternary N. Mechanisms of NO, CO and CO2 evolution during TPD are proposed and lattice oxygen is suggested to be an important oxygen resource. Regeneration process indicates that coke-C tends to preferentially oxidise compared with coke-N. Hence, new technology for promoting nitrogen-containing compounds conversion will benefit the in-situ reduction of NO by CO during FCC regeneration.

  17. Phonons transmission by thin films sandwiched between two similar fcc structures

    NASA Astrophysics Data System (ADS)

    Belkacemi, Ghania; Bourahla, Boualem

    2015-09-01

    An analytical and numerical formalism are developed to study the influence of the sandwiched atomic films on the vibration properties and phonon transmission modes in fcc waveguides. The model system consists of two identical semi-infinite fcc leads joined by ultrathin atomic films in between. The matching technique is applied to calculate the local Green's functions for the irreducible set of sites that constitute the inhomogeneous domain. Numerical results are presented for the reflection/transmission, total phonon transmittance and localized vibration states in considered fcc lattices. The results show that vibrational properties of the sandwich materials are strongly dependent on the scattering frequency, the thickness of the insured films, incidence angles and elastic boundary conditions. We note that some of the fluctuations, observed in the vibration spectra, are related to Fano resonances, they are due to the coherent coupling between travelling phonons and the localized vibration modes in the neighborhood of the nanojunction domains. The number of localized modes which interact with the propagating modes of the continuum is proportional to the number of the sandwiched Slabs in the interfacial zone. The results give also the effect of the sandwiched ultrathin films on elastic waves propagation by atomic interfaces in fcc lattices.

  18. Broadcast Access and Reply Rights for Politicians and PACs: A Continuing Headache for the FCC.

    ERIC Educational Resources Information Center

    Gentry, Richard H.

    The major policy issues raised by Federal Communications Commission (FCC) regulations with regard to the year-round nature of political media campaigns and the emergence of political action committees (PACs) are explored in this paper. The first part of the paper introduces the major policy issues, specifically who should have an affirmative right…

  19. Nitrogen Chemistry and Coke Transformation of FCC Coked Catalyst during the Regeneration Process.

    PubMed

    Shi, Junjun; Guan, Jianyu; Guo, Dawei; Zhang, Jiushun; France, Liam John; Wang, Lefu; Li, Xuehui

    2016-06-08

    Regeneration of the coked catalyst is an important process of fluid catalytic cracking (FCC) in petroleum refining, however, this process will emit environmentally harmful gases such as nitrogen and carbon oxides. Transformation of N and C containing compounds in industrial FCC coke under thermal decomposition was investigated via TPD and TPO to examine the evolved gaseous species and TGA, NMR and XPS to analyse the residual coke fraction. Two distinct regions of gas evolution are observed during TPD for the first time, and they arise from decomposition of aliphatic carbons and aromatic carbons. Three types of N species, pyrrolic N, pyridinic N and quaternary N are identified in the FCC coke, the former one is unstable and tends to be decomposed into pyridinic and quaternary N. Mechanisms of NO, CO and CO2 evolution during TPD are proposed and lattice oxygen is suggested to be an important oxygen resource. Regeneration process indicates that coke-C tends to preferentially oxidise compared with coke-N. Hence, new technology for promoting nitrogen-containing compounds conversion will benefit the in-situ reduction of NO by CO during FCC regeneration.

  20. Special Report: FCC Program Offers Schools and Libraries Steep Telecommunications Discounts.

    ERIC Educational Resources Information Center

    Crowe, Thomas K.

    1998-01-01

    In the Telecommunications Act of 1996, Congress directed the Federal Communications Commission (FCC) to establish the Universal Service program to provide financial support for communications services for all K-12 schools/libraries. A Washington telecommunications attorney discusses eligible services and the application process, and offers tips…

  1. Interface effect of magnetic properties in Ni nanoparticles with a hcp core and fcc shell structure.

    PubMed

    Choo, Seongmin; Lee, Kyujoon; Jo, Younghun; Yoon, Seon-Mi; Choi, Jae-Young; Kim, Jea-Young; Park, Jea-Hoon; Lee, Kyung-Jin; Lee, Jong-Heun; Jung, Myung-Hwa

    2011-07-01

    We have fabricated hexagonal close-packed (hcp) Ni nanoparticles covered by a face-centered cubic (fcc) Ni surface layer by polyol method. The magnetic properties have been investigated as a function of temperature and applied magnetic field. The magnetic behavior reveals that the system should be divided magnetically into three distinct phases with different origins. The fcc Ni phase on the shell contributes to the superparamagnetism through a wide temperature range up to 360 K. The hcp Ni phase at the core is associated with antiferromagnetic nature below 12 K. These observations are in good agreement with the X-ray absorption spectroscopy and magnetic circular dichroism measurements. In our particular case, the unique hcp core and fcc shell structure gives rise to an additional anomaly at 20 K in the zero-field-cooled magnetization curve. Its position is barely affected by the magnetic field but its structure disappears above 30 kOe, showing a metamagnetic transition in the magnetization versus magnetic field curve. This new phase originates from the magnetic exchange at the interface between the hcp and fcc Ni sublattices.

  2. 76 FR 12308 - Modernizing the FCC Form 477 Data Program; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-07

    ... Federal Communications Commission published a document (FR Doc. 2011-4393) in the Federal Register of February 28, 2011 (76 FR 10827) relating to the modernization of the FCC Form 477. The document (FR Doc. 2011-4393), published in the Federal Register of February 28, 2011 (76 FR 10827), mistakenly...

  3. Local Media Concentration: Ad Hoc Challenges to Media Cross-Owners After "FCC v. NCCB."

    ERIC Educational Resources Information Center

    Firestone, Charles M.

    This paper explores some of the implications of cross-ownership of newspapers and other media in a single market and the role of the Federal Communications Commission (FCC), the Department of Justice, and the Federal Trade Commission (FTC) in enforcing national policy favoring a deconcentration of local mass media. It describes the history of FCC…

  4. Nitrogen Chemistry and Coke Transformation of FCC Coked Catalyst during the Regeneration Process.

    PubMed

    Shi, Junjun; Guan, Jianyu; Guo, Dawei; Zhang, Jiushun; France, Liam John; Wang, Lefu; Li, Xuehui

    2016-01-01

    Regeneration of the coked catalyst is an important process of fluid catalytic cracking (FCC) in petroleum refining, however, this process will emit environmentally harmful gases such as nitrogen and carbon oxides. Transformation of N and C containing compounds in industrial FCC coke under thermal decomposition was investigated via TPD and TPO to examine the evolved gaseous species and TGA, NMR and XPS to analyse the residual coke fraction. Two distinct regions of gas evolution are observed during TPD for the first time, and they arise from decomposition of aliphatic carbons and aromatic carbons. Three types of N species, pyrrolic N, pyridinic N and quaternary N are identified in the FCC coke, the former one is unstable and tends to be decomposed into pyridinic and quaternary N. Mechanisms of NO, CO and CO2 evolution during TPD are proposed and lattice oxygen is suggested to be an important oxygen resource. Regeneration process indicates that coke-C tends to preferentially oxidise compared with coke-N. Hence, new technology for promoting nitrogen-containing compounds conversion will benefit the in-situ reduction of NO by CO during FCC regeneration. PMID:27270486

  5. Nitrogen Chemistry and Coke Transformation of FCC Coked Catalyst during the Regeneration Process

    PubMed Central

    Shi, Junjun; Guan, Jianyu; Guo, Dawei; Zhang, Jiushun; France, Liam John; Wang, Lefu; Li, Xuehui

    2016-01-01

    Regeneration of the coked catalyst is an important process of fluid catalytic cracking (FCC) in petroleum refining, however, this process will emit environmentally harmful gases such as nitrogen and carbon oxides. Transformation of N and C containing compounds in industrial FCC coke under thermal decomposition was investigated via TPD and TPO to examine the evolved gaseous species and TGA, NMR and XPS to analyse the residual coke fraction. Two distinct regions of gas evolution are observed during TPD for the first time, and they arise from decomposition of aliphatic carbons and aromatic carbons. Three types of N species, pyrrolic N, pyridinic N and quaternary N are identified in the FCC coke, the former one is unstable and tends to be decomposed into pyridinic and quaternary N. Mechanisms of NO, CO and CO2 evolution during TPD are proposed and lattice oxygen is suggested to be an important oxygen resource. Regeneration process indicates that coke-C tends to preferentially oxidise compared with coke-N. Hence, new technology for promoting nitrogen-containing compounds conversion will benefit the in-situ reduction of NO by CO during FCC regeneration. PMID:27270486

  6. Double Higgs production at FCC-he and prospects for measurements of self-coupling

    NASA Astrophysics Data System (ADS)

    Kumar, Mukesh; Ruan, Xifeng; Cornell, Alan S.; Islam, Rashidul; Mellado, Bruce

    2015-06-01

    The measurement of the triple Higgs boson coupling is one of the most important goals of the Higgs physics program in present and future collider experiments. This would provide the first direct information on the Higgs potential, which is responsible for electroweak symmetry breaking mechanism. We present a double Higgs production scenario at the Large Hadron-Electron Collider (LHeC) and Future Circular Hadron-Electron Collider (FCC- he) through e-p collisions, which will provide information about trilinear coupling and the possibility of probing new physics, if there is any. The LHeC will provide e- beams to collide head-on with proton beams of 7 TeV from the Large Hadron Collider (LHC). The prospect of replacing the LHC with the high energy FCC, with proton beams of 50 TeV, is used for FCC-he studies. Energy of the e- is taken to be 60 GeV for both LHeC and FCC-he. Effects of non-standard CP-even and CP-odd couplings for hhh, hWW and hhWW have been studied and constrained at a 95% C.L.

  7. 75 FR 34450 - FCC to Hold Open Commission Meeting Thursday, June 17, 2010

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-17

    ... COMMISSION FCC to Hold Open Commission Meeting Thursday, June 17, 2010 DATES: June 10, 2010. The Federal Communications Commission will hold an Open Meeting on the subject listed below on Thursday, June 17, 2010, which... consideration at the open meeting on June 17. BUREAU SUBJECT OFFICE OF THE TITLE: Framework GENERAL COUNSEL....

  8. 76 FR 6473 - Sunshine Act; FCC To Hold Open Commission Meeting Tuesday, February 8, 2011

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-04

    ... COMMISSION Sunshine Act; FCC To Hold Open Commission Meeting Tuesday, February 8, 2011 February 1, 2011. The Federal Communications Commission will hold an Open Meeting on the subject listed below on Tuesday..., initiated as part of the Commission's Data Innovation Initiative, to streamline and modernize the...

  9. Techniques for optically compressing light intensity ranges

    DOEpatents

    Rushford, M.C.

    1989-03-28

    A pin hole camera assembly for use in viewing an object having a relatively large light intensity range, for example a crucible containing molten uranium in an atomic vapor laser isotope separator (AVLIS) system is disclosed herein. The assembly includes means for optically compressing the light intensity range appearing at its input sufficient to make it receivable and decipherable by a standard video camera. A number of different means for compressing the intensity range are disclosed. These include the use of photogray glass, the use of a pair of interference filters, and the utilization of a new liquid crystal notch filter in combination with an interference filter. 18 figs.

  10. Techniques for optically compressing light intensity ranges

    DOEpatents

    Rushford, Michael C.

    1989-01-01

    A pin hole camera assembly for use in viewing an object having a relatively large light intensity range, for example a crucible containing molten uranium in an atomic vapor laser isotope separator (AVLIS) system is disclosed herein. The assembly includes means for optically compressing the light intensity range appearing at its input sufficient to make it receivable and decipherable by a standard video camera. A number of different means for compressing the intensity range are disclosed. These include the use of photogray glass, the use of a pair of interference filters, and the utilization of a new liquid crystal notch filter in combination with an interference filter.

  11. Chromium removal by zeolite-rich materials obtained from an exhausted FCC catalyst: Influence of chromium incorporation on the sorbent structure.

    PubMed

    Gonzalez, Maximiliano R; Pereyra, Andrea M; Torres Sánchez, Rosa M; Basaldella, Elena I

    2013-10-15

    A spent FCC catalyst was converted into a zeolitic mixture, and the product obtained was afterward used as trapping material for Cr(III) species frequently found in aqueous solutions. Eventual changes in the sorbent structure produced by Cr incorporation were studied by different characterization techniques such as point of zero charge determinations (PZC), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), and infrared absorption (FTIR). The XRD and FTIR analyses indicated that chromium incorporation produces an amorphization of the material, and PZC measurements show no surface adsorption of charged chromium species. SEM and EDX analyses clearly show that after chromium sorption, the initial microspheroidal catalyst morphology was maintained, and the presence of chromium species was mainly detected in the outer microsphere surface, where the zeolite crystals were hydrothermally grown.

  12. Compressing μJ-level pulses from 250  fs to sub-10  fs at 38-MHz repetition rate using two gas-filled hollow-core photonic crystal fiber stages.

    PubMed

    Mak, K F; Seidel, M; Pronin, O; Frosz, M H; Abdolvand, A; Pervak, V; Apolonski, A; Krausz, F; Travers, J C; Russell, P St J

    2015-04-01

    Compression of 250-fs, 1-μJ pulses from a KLM Yb:YAG thin-disk oscillator down to 9.1 fs is demonstrated. A kagomé-PCF with a 36-μm core-diameter is used with a pressure gradient from 0 to 40 bar of krypton. Compression to 22 fs is achieved by 1200  fs2 group-delay-dispersion provided by chirped mirrors. By coupling the output into a second kagomé-PCF with a pressure gradient from 0 to 25 bar of argon, octave spanning spectral broadening via the soliton-effect is observed at 18-W average output power. Self-compression to 9.1 fs is measured, with compressibility to 5 fs predicted. Also observed is strong emission in the visible via dispersive wave generation, amounting to 4% of the total output power.

  13. Compressing μJ-level pulses from 250  fs to sub-10  fs at 38-MHz repetition rate using two gas-filled hollow-core photonic crystal fiber stages.

    PubMed

    Mak, K F; Seidel, M; Pronin, O; Frosz, M H; Abdolvand, A; Pervak, V; Apolonski, A; Krausz, F; Travers, J C; Russell, P St J

    2015-04-01

    Compression of 250-fs, 1-μJ pulses from a KLM Yb:YAG thin-disk oscillator down to 9.1 fs is demonstrated. A kagomé-PCF with a 36-μm core-diameter is used with a pressure gradient from 0 to 40 bar of krypton. Compression to 22 fs is achieved by 1200  fs2 group-delay-dispersion provided by chirped mirrors. By coupling the output into a second kagomé-PCF with a pressure gradient from 0 to 25 bar of argon, octave spanning spectral broadening via the soliton-effect is observed at 18-W average output power. Self-compression to 9.1 fs is measured, with compressibility to 5 fs predicted. Also observed is strong emission in the visible via dispersive wave generation, amounting to 4% of the total output power. PMID:25831302

  14. Melting and solidification point of fcc-metal nanoparticles with respect to particle size: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Shibuta, Yasushi; Suzuki, Toshio

    2010-10-01

    The phase transition between liquid droplets and solid nanoparticles of face-centered cubic (fcc) metals is investigated by the molecular dynamics simulation. Depression of both the melting and solidification points is negatively correlated with the inverse of particle radius. Polycrystalline nanoparticles are obtained by cooling and the polycrystalline structure causes a fluctuation in the trend of the melting point with respect to particle size. It was found that the Gibbs-Thomson coefficient is proportional to the melting point among various body-centered cubic (bcc) and fcc metals in the same matter, even though different interatomic potentials are employed between bcc and fcc metals.

  15. An analytical model for porous single crystals with ellipsoidal voids

    NASA Astrophysics Data System (ADS)

    Mbiakop, A.; Constantinescu, A.; Danas, K.

    2015-11-01

    A rate-(in)dependent constitutive model for porous single crystals with arbitrary crystal anisotropy (e.g., FCC, BCC, HCP, etc.) containing general ellipsoidal voids is developed. The proposed model, denoted as modified variational model (MVAR), is based on the nonlinear variational homogenization method, which makes use of a linear comparison porous material to estimate the response of the nonlinear porous single crystal. Periodic multi-void finite element simulations are used in order to validate the MVAR for a large number of parameters including cubic (FCC, BCC) and hexagonal (HCP) crystal anisotropy, various creep exponents (i.e., nonlinearity), several stress triaxiality ratios, general void shapes and orientations and various porosity levels. The MVAR model, which involves a priori no calibration parameters, is found to be in good agreement with the finite element results for all cases considered in the rate-dependent context. The model is then used in a predictive manner to investigate the complex response of porous single crystals in several cases with strong coupling between the anisotropy of the crystal and the (morphological) anisotropy induced by the shape and orientation of the voids. Finally, a simple way of calibrating the MVAR with just two adjustable parameters is depicted in the rate-independent context so that an excellent agreement with the FE simulation results is obtained. In this last case, this proposed model can be thought as a generalization of the Gurson model in the context of porous single crystals and general ellipsoidal void shapes and orientations.

  16. Parallel image compression

    NASA Technical Reports Server (NTRS)

    Reif, John H.

    1987-01-01

    A parallel compression algorithm for the 16,384 processor MPP machine was developed. The serial version of the algorithm can be viewed as a combination of on-line dynamic lossless test compression techniques (which employ simple learning strategies) and vector quantization. These concepts are described. How these concepts are combined to form a new strategy for performing dynamic on-line lossy compression is discussed. Finally, the implementation of this algorithm in a massively parallel fashion on the MPP is discussed.

  17. Orientation dependence of the dislocation microstructure in compressed body-centered cubic molybdenum

    SciTech Connect

    Wang, S.; Wang, M.P.; Chen, C.; Xiao, Z.; Jia, Y.L.; Li, Z.; Wang, Z.X.

    2014-05-01

    The orientation dependence of the deformation microstructure has been investigated in commercial pure molybdenum. After deformation, the dislocation boundaries of compressed molybdenum can be classified, similar to that in face-centered cubic metals, into three types: dislocation cells (Type 2), and extended planar boundaries parallel to (Type 1) or not parallel to (Type 3) a (110) trace. However, it shows a reciprocal relationship between face-centered cubic metals and body-centered cubic metals on the orientation dependence of the deformation microstructure. The higher the strain, the finer the microstructure is and the smaller the inclination angle between extended planar boundaries and the compression axis is. - Highlights: • A reciprocal relationship between FCC metals and BCC metals is confirmed. • The dislocation boundaries can be classified into three types in compressed Mo. • The dislocation characteristic of different dislocation boundaries is different.

  18. Sequential neural text compression.

    PubMed

    Schmidhuber, J; Heil, S

    1996-01-01

    The purpose of this paper is to show that neural networks may be promising tools for data compression without loss of information. We combine predictive neural nets and statistical coding techniques to compress text files. We apply our methods to certain short newspaper articles and obtain compression ratios exceeding those of the widely used Lempel-Ziv algorithms (which build the basis of the UNIX functions "compress" and "gzip"). The main disadvantage of our methods is that they are about three orders of magnitude slower than standard methods.

  19. Modelling of Surfaces. Part 1: Monatomic Metallic Surfaces Using Equivalent Crystal Theory

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Ferrante, John; Rodriguez, Agustin M.

    1994-01-01

    We present a detailed description of equivalent crystal theory focusing on its application to the study of surface structure. While the emphasis is in the structure of the algorithm and its computational aspects, we also present a comprehensive discussion on the calculation of surface energies of metallic systems with equivalent crystal theory and other approaches. Our results are compared to experiment and other semiempirical as well as first-principles calculations for a variety of fcc and bcc metals.

  20. Self-diffusion in compressively strained Ge

    SciTech Connect

    Kawamura, Yoko; Uematsu, Masashi; Itoh, Kohei M.; Hoshi, Yusuke; Sawano, Kentarou; Shiraki, Yasuhiro; Myronov, Maksym; Haller, Eugene E.

    2011-08-01

    Under a compressive biaxial strain of {approx} 0.71%, Ge self-diffusion has been measured using an isotopically controlled Ge single-crystal layer grown on a relaxed Si{sub 0.2}Ge{sub 0.8} virtual substrate. The self-diffusivity is enhanced by the compressive strain and its behavior is fully consistent with a theoretical prediction of a generalized activation volume model of a simple vacancy mediated diffusion, reported by Aziz et al.[Phys. Rev. B 73, 054101 (2006)]. The activation volume of (-0.65{+-}0.21) times the Ge atomic volume quantitatively describes the observed enhancement due to the compressive biaxial strain very well.

  1. The interstitialcy diffusion in FCC copper: A molecular dynamics study

    SciTech Connect

    Bukkuru, S. Rao, A. D. P.; Warrier, M.

    2015-06-24

    Damage of materials due to neutron irradiation occurs via energetic cascades caused by energetic primary knock-on atoms (PKA) created by the energetic neutron as it passes through the material. These cascades result in creation of Frenkel Pairs (interstitials and vacancies). The interstitials and vacancies diffuse and recombine to (I) nullify the damage when an interstitial recombines with a vacancy, (II) form interstitial clusters when two or more interstitials recombine, and (III) form vacancy clusters when several vacancies come together. The latter two processes result in change of material properties. Interstitial diffusion has reported time-scales of microseconds and vacancy diffusion has diffusion time-scales of the order of seconds. We have carried out molecular dynamics (MD) simulations of interstitial diffusion in crystal Cu to study the mechanism of diffusion. It is found that interstitialcy diffusion – wherein an interstitial displaces a lattice atom thereby making the lattice atom an interstitial – has time-scales of a few tens of pico-seconds. Therefore we propose that the “interstitialcy diffusion” mechanism could play a major part in the diffusive-recombinations of the Frenkel Pairs created during the cascade.

  2. Atomic Mobilities and Interdiffusivities for fcc Ni-Cr-Nb Alloys

    NASA Astrophysics Data System (ADS)

    Xu, Gaochi; Liu, Yajun; Kang, Zhitao

    2016-10-01

    The atomic mobilities and diffusion characteristics for fcc Ni-Cr-Nb alloys are explored by diffusion couples annealed at 1273 K (1000 °C) for 200 hours. The interdiffusion coefficients are extracted from intersection points of two diffusion paths, after which the atomic mobilities of Ni, Cr, and Nb in fcc Ni-Cr-Nb alloys are inversely obtained within the CALPHAD framework with the aid of related thermodynamic descriptions. In order to verify the quality of obtained kinetic parameters so that an accurate Ni-based atomic mobility database can be established, the composition profiles in diffusion couples and the diffusion paths superimposed upon Gibbs triangle are explored, where the experimentally measured and calculated values show good agreement.

  3. FCC reactor product-catalyst separation: Ten years of commercial experience with closed cyclones

    SciTech Connect

    Miller, R.B.; Johnson, T.E.; Santner, C.R.; Avidan, A.A.; Johnson, D.L.

    1995-09-01

    FCC reactor closed cyclones were first commercialized ten years ago and have now been installed in over 22 FCC units worldwide. Cumulative commercial experience has shown significant yield benefits, in some cases higher than first estimated, and excellent reliability. By nearly eliminating post-riser cracking, they reduce dry gas make and produce higher yields of desirable liquid products. Trouble-free operation with closed cyclones is attributed to proper design, instrumentation, and operating procedures. The Mobil-Kellogg Closed Cyclone technology is the only design offered for license which uses the positive-pressure riser cyclone system which has proven to be least sensitive to upsets. This paper traces the development and commercialization of closed cyclones, discusses differences between competing closed cyclone designs, and documents the benefits which have been observed for Mobil-Kellogg Closed Cyclones.

  4. A novel potential: the interlayer potential for the fcc (111) plane family.

    PubMed

    Tian, Fu-Yang; Chen, Nan-Xian; Shen, Jiang; Vitos, Levente

    2012-02-01

    We propose a novel interlayer potential, which is different from usual interatomic potentials. The interlayer potential represents the interaction between atomic layers in a layered material. Based on the Chen-Möbius inversion method in combination with ab initio calculations, the interlayer interactions are obtained for the face centered cubic (fcc) (111) planes. In order to check the validity of our interlayer potential, we calculate the intrinsic stacking fault energy (γ(sf)) and the surface energy (γ(s)) of five metals: Al, Ni, Cu, Ag and Au. The predicted γ(sf) and γ(s) values are compared with the theoretical results obtained from direct calculations and also with the available experimental data. Using the interlayer potentials, we also investigate the phonon dispersion and phonon density of state in the fcc (111) plane family of the considered metals.

  5. Size dependence and phase transition during melting of fcc-Fe nanoparticles: A molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Shen, Tong; Meng, Wenjian; Wu, Yongquan; Lu, Xionggang

    2013-07-01

    Continuous melting and cooling of isolated fcc-Fe nanoparticles with 59-9577 atoms are studied by Molecular Dynamics (MD) simulation with Sutton-Chen potential. An energy minimization process was employed to obtain the stable solid structure for simulation of melting. The energy-minimized nanoparticles show lower potential energy and radius compared with the counterparts without energy minimizing. The size dependence of melting point shows perfect linear variation with N-1/3 for particles above a limit of 113 atoms. The bulk melting temperature of 1833.3 K, which is close to the experimental data (1811 K for bcc and 1800.8 K for fcc), has been predicted by a linear relationship. Two different inner structures, including five-fold twinning and lamellar structures, have been found to be the initial stable configurations prior to melting, and both surface premelting and internal defects were verified as the origins for melting behavior.

  6. Realizing high magnetic moments in fcc Fe nanoparticles through atomic structure stretch.

    PubMed

    Baker, S H; Roy, M; Thornton, S C; Binns, C

    2012-05-01

    We describe the realization of a high moment state in fcc Fe nanoparticles through a controlled change in their atomic structure. Embedding Fe nanoparticles in a Cu(1-x)Au(x) matrix causes their atomic structure to switch from bcc to fcc. Extended x-ray absorption fine structure (EXAFS) measurements show that the structure in both the matrix and the Fe nanoparticles expands as the amount of Au in the matrix is increased, with the data indicating a tetragonal stretch in the Fe nanoparticles. The samples were prepared directly from the gas phase by co-deposition, using a gas aggregation source and MBE-type sources respectively for the nanoparticle and matrix materials. The structure change in the Fe nanoparticles is accompanied by a sharp increase in atomic magnetic moment, ultimately to values of ~2.5 ± 0.3 μ(B)/atom .

  7. Influence of the nature of FCC feed on the production of light olefins by catalytic cracking

    SciTech Connect

    Chapus, Th.; Cauffriez, H.; Marcilly, Ch.

    1996-10-01

    The 1990 Clean Air Act has act rules for gasoline reformulation, which requires major compositional changes, Including a higher contribution of oxygenated compounds to the gasoline pool. This explains why FCC units are expected to play a major role in the coming years as a producer of light olefins (propylene, butenes and amylenes) to be used as feedstock for oxygenate (MTBE/TAME) production. The impact of the nature of FCC feedstock on light olefins production (C3 to C5 olefins) has been studied using a MAT unit running at various operating conditions (C/O ratio, reactor temperature). Paraffinic feeds are potentially efficient to produce light olefins by catalytic cracking. Heavier paraffinic feeds like mixtures VGO + reside and pure reside have also been evaluated, and compared to naphthenic and aromatic feeds.

  8. Compression Ratio Adjuster

    NASA Technical Reports Server (NTRS)

    Akkerman, J. W.

    1982-01-01

    New mechanism alters compression ratio of internal-combustion engine according to load so that engine operates at top fuel efficiency. Ordinary gasoline, diesel and gas engines with their fixed compression ratios are inefficient at partial load and at low-speed full load. Mechanism ensures engines operate as efficiently under these conditions as they do at highload and high speed.

  9. Ferromagnetism in fcc twinned 2.4 nm size Pd nanoparticles.

    PubMed

    Sampedro, B; Crespo, P; Hernando, A; Litrán, R; Sánchez López, J C; López Cartes, C; Fernandez, A; Ramírez, J; González Calbet, J; Vallet, M

    2003-12-01

    The onset of ferromagnetism has been experimentally observed in small Pd particles of average diameter 2.4 nm. High-resolution studies reveal that a high percentage of the fcc particle exhibits single and multiple twinning boundaries. The spontaneous magnetization close to 0.02 emu/g seems to indicate that only a small fraction of atoms holds a permanent magnetic moment and contributes to ferromagnetism. The possible origin of ferromagnetism is briefly discussed according to different models recently reported.

  10. First-principles calculation of the magnetic properties of paramagnetic fcc iron

    SciTech Connect

    Johnson, D.D.; Gyorffy, B.L.; Pinski, F.J.; Staunton, J.; Stocks, G.M.

    1985-01-01

    Using the disordered local moment picture of itinerant magnetism, we present calculations of the temperature and volume dependence of the magnetic moment and spin-spin correlations for fcc Fe in the paramagnetic state. These calculations are based on the parameter-free, first principles approach of local spin density functional theory and the coherent potential approximation is used to treat the disorder associated with the random orientation of the local moments.

  11. 47 CFR 95.225 - (R/C Rule 25) How do I contact the FCC?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false (R/C Rule 25) How do I contact the FCC? 95.225 Section 95.225 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Radio Control (R/C) Radio Service Other Things You Need to Know § 95.225 (R/C Rule 25) How do I contact the...

  12. 47 CFR 95.225 - (R/C Rule 25) How do I contact the FCC?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false (R/C Rule 25) How do I contact the FCC? 95.225 Section 95.225 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Radio Control (R/C) Radio Service Other Things You Need to Know § 95.225 (R/C Rule 25) How do I contact the...

  13. 47 CFR 95.225 - (R/C Rule 25) How do I contact the FCC?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false (R/C Rule 25) How do I contact the FCC? 95.225 Section 95.225 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Radio Control (R/C) Radio Service Other Things You Need to Know § 95.225 (R/C Rule 25) How do I contact the...

  14. 47 CFR 95.225 - (R/C Rule 25) How do I contact the FCC?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false (R/C Rule 25) How do I contact the FCC? 95.225 Section 95.225 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Radio Control (R/C) Radio Service Other Things You Need to Know § 95.225 (R/C Rule 25) How do I contact the...

  15. Effect of uniaxial tensile stress on the isomer shift of 57Fe in fcc stainless steels

    NASA Astrophysics Data System (ADS)

    Ratner, E.; Ron, M.

    1982-05-01

    The electron wave-function response to uniaxial tensile stress in fcc steels (SS310 and SS316) was investigated through the isomer shift of the Mössbauer effect. Stresses up to 12 kbar (the ultimate tensile stress is approximately 14 kbar) were applied at room temperature. The isomer shift changes linearly in these circumstances. It is concluded that, as in the case of hydrostatic pressure, the paramount factor here is the volume strain of the wave functions of 4S electrons.

  16. Growth and characterization of epitaxial fcc Fe wedges on diamond (100).

    SciTech Connect

    Bader, S. D.; Keavneu, D. J.; Keune, W.; Li, D.; Pearson, J.

    1997-12-05

    Epitaxial Fe wedges with a thickness gradation from 0--20 {angstrom} were grown on diamond(100) at room temperature, subsequently annealed, and investigated with reflection high-energy electron diffraction and the surface magneto-optical Kerr effect. The results indicate that for <5 monolayer thicknesses the Fe grows on C(100) as smooth, epitaxial fcc films, which are not ferromagnetic, but that thicker films undergo a transition to become rough and the ordinary bcc ferromagnetic phase.

  17. Meteorites and thermodynamic equilibrium in f.c.c. iron-nickel alloys /25-50% Ni/

    NASA Astrophysics Data System (ADS)

    Albertsen, J. F.; Knudsen, J. M.; Roy-Poulsen, N. O.; Vistisen, L.

    Mossbauer spectroscopy and X-ray investigations show that taenite (fcc iron-nickel alloy) in meteorites generally has decomposed into an ordered phase FeNi with the L10 structure and a disordered fcc iron-nickel alloy containing less than 25% Ni. The two phases have the same bravais lattice, i.e., they form a pseudo monocrystal. The decomposition is discussed in terms of Fe-Ni phase diagram.

  18. Fractal image compression

    NASA Technical Reports Server (NTRS)

    Barnsley, Michael F.; Sloan, Alan D.

    1989-01-01

    Fractals are geometric or data structures which do not simplify under magnification. Fractal Image Compression is a technique which associates a fractal to an image. On the one hand, the fractal can be described in terms of a few succinct rules, while on the other, the fractal contains much or all of the image information. Since the rules are described with less bits of data than the image, compression results. Data compression with fractals is an approach to reach high compression ratios for large data streams related to images. The high compression ratios are attained at a cost of large amounts of computation. Both lossless and lossy modes are supported by the technique. The technique is stable in that small errors in codes lead to small errors in image data. Applications to the NASA mission are discussed.

  19. Vibration resistant quartz crystal resonators

    NASA Astrophysics Data System (ADS)

    Goldfrank, B.; Warner, A.

    1982-11-01

    The principal objectives of this investigation were to provide doubly rotated quartz crystal resonators that exhibit low "g' sensitivity on the order of 1 superscript 10 per "g', and fast warm-up on the order of 1 superscript 9 in three minutes. Effects of changes in the mounting orientation have been investigated with respect to the magnitude of the acceleration sensitivity vector, for 0 angles of 21.95, 23.75 and 25.00, using 5 MHz/5th overtone plano-convex and bi-convex quartz crystal blanks. The mounting technique was three-point thermo-compression bonding; the mounts were 90 degrees apart. A new thermo-compression bonding ribbon was evaluated and instituted. 5 MHz and 10 MHz, third overtone crystals and 20 MHz fifth overtone crystals were measured for the magnitude of the acceleration sensitivity vector. Improved methods of X-ray orientation were also investigated.

  20. Comparing the structural stability of PbS nanocrystals assembled in fcc and bcc superlattice allotropes.

    PubMed

    Bian, Kaifu; Wang, Zhongwu; Hanrath, Tobias

    2012-07-01

    We investigated the structural stability of colloidal PbS nanocrystals (NCs) self-assembled into superlattice (SL) allotropes of either face-centered cubic (fcc) or body-centered cubic (bcc) symmetry. Small-angle X-ray scattering analysis showed that the NC packing density is higher in the bcc than in the fcc SL; this is a manifestation of the cuboctahedral shape of the NC building block. Using the high-pressure rock-salt/orthorhombic phase transition as a stability indicator, we discovered that the transition pressure for NCs in a bcc SL occurs at 8.5 GPa, which is 1.5 GPa higher than the transition pressure (7.0 GPa) observed for a fcc SL. The higher structural stability in the bcc SL is attributed primarily to the effective absorption of loading force in specific SL symmetry and to a lesser extent to the surface energy of the NCs. The experimental results provide new insights into the fundamental relationship between the symmetry of the self-assembled SL and the structural stability of the constituent NCs.

  1. A numerical investigation of the scale-up effects on flow, heat transfer, and kinetics processes of FCC units.

    SciTech Connect

    Chang, S. L.

    1998-08-25

    Fluid Catalytic Cracking (FCC) technology is the most important process used by the refinery industry to convert crude oil to valuable lighter products such as gasoline. Process development is generally very time consuming especially when a small pilot unit is being scaled-up to a large commercial unit because of the lack of information to aide in the design of scaled-up units. Such information can now be obtained by analysis based on the pilot scale measurements and computer simulation that includes controlling physics of the FCC system. A Computational fluid dynamic (CFD) code, ICRKFLO, has been developed at Argonne National Laboratory (ANL) and has been successfully applied to the simulation of catalytic petroleum cracking risers. It employs hybrid hydrodynamic-chemical kinetic coupling techniques, enabling the analysis of an FCC unit with complex chemical reaction sets containing tens or hundreds of subspecies. The code has been continuously validated based on pilot-scale experimental data. It is now being used to investigate the effects of scaled-up FCC units. Among FCC operating conditions, the feed injection conditions are found to have a strong impact on the product yields of scaled-up FCC units. The feed injection conditions appear to affect flow and heat transfer patterns and the interaction of hydrodynamics and cracking kinetics causes the product yields to change accordingly.

  2. A non-topological mechanism for negative linear compressibility.

    PubMed

    Binns, Jack; Kamenev, Konstantin V; Marriott, Katie E R; McIntyre, Garry J; Moggach, Stephen A; Murrie, Mark; Parsons, Simon

    2016-06-14

    Negative linear compressibility (NLC), the increase in a unit cell length with pressure, is a rare phenomenon in which hydrostatic compression of a structure promotes expansion along one dimension. It is usually a consequence of crystal structure topology. We show that the source of NLC in the Co(ii) citrate metal-organic framework UTSA-16 lies not in framework topology, but in the relative torsional flexibility of Co(ii)-centred tetrahedra compared to more rigid octahedra. PMID:27203683

  3. A non-topological mechanism for negative linear compressibility.

    PubMed

    Binns, Jack; Kamenev, Konstantin V; Marriott, Katie E R; McIntyre, Garry J; Moggach, Stephen A; Murrie, Mark; Parsons, Simon

    2016-06-14

    Negative linear compressibility (NLC), the increase in a unit cell length with pressure, is a rare phenomenon in which hydrostatic compression of a structure promotes expansion along one dimension. It is usually a consequence of crystal structure topology. We show that the source of NLC in the Co(ii) citrate metal-organic framework UTSA-16 lies not in framework topology, but in the relative torsional flexibility of Co(ii)-centred tetrahedra compared to more rigid octahedra.

  4. Three-wave mixing mediated femtosecond pulse compression in β-barium borate.

    PubMed

    Grün, A; Austin, Dane R; Cousin, Seth L; Biegert, J

    2015-10-15

    Nonlinear pulse compression mediated by three-wave mixing is demonstrated for ultrashort Ti:sapphire pulses in a type II phase-matched β-barium borate (BBO) crystal using noncollinear geometry. 170 μJ pulses at 800 nm with a pulse duration of 74 fs are compressed at their sum frequency to 32 fs with 55 μJ of pulse energy. Experiments and computer simulations demonstrate the potential of sum-frequency pulse compression to match the group velocities of the interacting waves to crystals that were initially not considered in the context of nonlinear pulse compression.

  5. Atomistically determined phase-field modeling of dislocation dissociation, stacking fault formation, dislocation slip, and reactions in fcc systems

    NASA Astrophysics Data System (ADS)

    Rezaei Mianroodi, Jaber; Svendsen, Bob

    2015-04-01

    The purpose of the current work is the development of a phase field model for dislocation dissociation, slip and stacking fault formation in single crystals amenable to determination via atomistic or ab initio methods in the spirit of computational material design. The current approach is based in particular on periodic microelasticity (Wang and Jin, 2001; Bulatov and Cai, 2006; Wang and Li, 2010) to model the strongly non-local elastic interaction of dislocation lines via their (residual) strain fields. These strain fields depend in turn on phase fields which are used to parameterize the energy stored in dislocation lines and stacking faults. This energy storage is modeled here with the help of the "interface" energy concept and model of Cahn and Hilliard (1958) (see also Allen and Cahn, 1979; Wang and Li, 2010). In particular, the "homogeneous" part of this energy is related to the "rigid" (i.e., purely translational) part of the displacement of atoms across the slip plane, while the "gradient" part accounts for energy storage in those regions near the slip plane where atomic displacements deviate from being rigid, e.g., in the dislocation core. Via the attendant global energy scaling, the interface energy model facilitates an atomistic determination of the entire phase field energy as an optimal approximation of the (exact) atomistic energy; no adjustable parameters remain. For simplicity, an interatomic potential and molecular statics are employed for this purpose here; alternatively, ab initio (i.e., DFT-based) methods can be used. To illustrate the current approach, it is applied to determine the phase field free energy for fcc aluminum and copper. The identified models are then applied to modeling of dislocation dissociation, stacking fault formation, glide and dislocation reactions in these materials. As well, the tensile loading of a dislocation loop is considered. In the process, the current thermodynamic picture is compared with the classical mechanical

  6. Modeling Compressed Turbulence

    SciTech Connect

    Israel, Daniel M.

    2012-07-13

    From ICE to ICF, the effect of mean compression or expansion is important for predicting the state of the turbulence. When developing combustion models, we would like to know the mix state of the reacting species. This involves density and concentration fluctuations. To date, research has focused on the effect of compression on the turbulent kinetic energy. The current work provides constraints to help development and calibration for models of species mixing effects in compressed turbulence. The Cambon, et al., re-scaling has been extended to buoyancy driven turbulence, including the fluctuating density, concentration, and temperature equations. The new scalings give us helpful constraints for developing and validating RANS turbulence models.

  7. Dendritic crystal growth in pure /sup 4/He

    SciTech Connect

    Franck, J.P.; Jung, J.

    1986-08-01

    Dendritic crystal growth of pure hcp and fcc /sup 4/He was observed at pressures between 210 and 6500 bar. Dendrite morphology depends on fluid supercooling and crystal phase. At large supercooling, dendrites with side arms are observed, whereas at low supercooling dendrites grow without side arms. The morpholpogy of hcp /sup 4/He dendrites is strongly influenced by crystalline anisotropy. Comparison with present theories of dendrite growth show good agreement with the power law dependencies of velocity, tip radius, and Peclet number on supercooling. Numerically, theory predicts much larger velocities than are observed. The stability parameter sigma is found to be much smaller than theoretically predicted.

  8. Crystallization characteristics in supercooled liquid zinc during isothermal relaxation: A molecular dynamics simulation study

    PubMed Central

    Zhou, Li-li; Liu, Rang-su; Tian, Ze-an; Liu, Hai-rong; Hou, Zhao-yang; Peng, Ping

    2016-01-01

    The crystallization characteristics in supercooled liquid Zn during isothermal relaxation were investigated using molecular dynamics simulations by adopting the cluster-type index method (CTIM) and the tracing method. Results showed that the crystallization process undergo three different stages. The size of the critical nucleus was found to be approximately 90–150 atoms in this system; the growth of nuclei proceeded via the successive formation of hcp and fcc structures with a layered distribution; and finally, the system evolved into a much larger crystal with a distinct layered distribution of hcp and fcc structures with an 8R stacking sequence of ABCBACAB by adjusting all of the atoms in the larger clusters according to a certain rule. PMID:27526660

  9. Crystallization characteristics in supercooled liquid zinc during isothermal relaxation: A molecular dynamics simulation study.

    PubMed

    Zhou, Li-Li; Liu, Rang-Su; Tian, Ze-An; Liu, Hai-Rong; Hou, Zhao-Yang; Peng, Ping

    2016-01-01

    The crystallization characteristics in supercooled liquid Zn during isothermal relaxation were investigated using molecular dynamics simulations by adopting the cluster-type index method (CTIM) and the tracing method. Results showed that the crystallization process undergo three different stages. The size of the critical nucleus was found to be approximately 90-150 atoms in this system; the growth of nuclei proceeded via the successive formation of hcp and fcc structures with a layered distribution; and finally, the system evolved into a much larger crystal with a distinct layered distribution of hcp and fcc structures with an 8R stacking sequence of ABCBACAB by adjusting all of the atoms in the larger clusters according to a certain rule. PMID:27526660

  10. Crystallization characteristics in supercooled liquid zinc during isothermal relaxation: A molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Zhou, Li-Li; Liu, Rang-Su; Tian, Ze-An; Liu, Hai-Rong; Hou, Zhao-Yang; Peng, Ping

    2016-08-01

    The crystallization characteristics in supercooled liquid Zn during isothermal relaxation were investigated using molecular dynamics simulations by adopting the cluster-type index method (CTIM) and the tracing method. Results showed that the crystallization process undergo three different stages. The size of the critical nucleus was found to be approximately 90–150 atoms in this system; the growth of nuclei proceeded via the successive formation of hcp and fcc structures with a layered distribution; and finally, the system evolved into a much larger crystal with a distinct layered distribution of hcp and fcc structures with an 8R stacking sequence of ABCBACAB by adjusting all of the atoms in the larger clusters according to a certain rule.

  11. The compression pathway of quartz

    SciTech Connect

    Thompson, Richard M.; Downs, Robert T.; Dera, Przemyslaw

    2011-11-07

    The structure of quartz over the temperature domain (298 K, 1078 K) and pressure domain (0 GPa, 20.25 GPa) is compared to the following three hypothetical quartz crystals: (1) Ideal {alpha}-quartz with perfectly regular tetrahedra and the same volume and Si-O-Si angle as its observed equivalent (ideal {beta}-quartz has Si-O-Si angle fixed at 155.6{sup o}). (2) Model {alpha}-quartz with the same Si-O-Si angle and cell parameters as its observed equivalent, derived from ideal by altering the axial ratio. (3) BCC quartz with a perfectly body-centered cubic arrangement of oxygen anions and the same volume as its observed equivalent. Comparison of experimental data recorded in the literature for quartz with these hypothetical crystal structures shows that quartz becomes more ideal as temperature increases, more BCC as pressure increases, and that model quartz is a very good representation of observed quartz under all conditions. This is consistent with the hypothesis that quartz compresses through Si-O-Si angle-bending, which is resisted by anion-anion repulsion resulting in increasing distortion of the c/a axial ratio from ideal as temperature decreases and/or pressure increases.

  12. Systematic investigation of compression mechanisms of clinoenstatite

    NASA Astrophysics Data System (ADS)

    Lazarz, J. D.; Dera, P.; Bina, C. R.; Jacobsen, S. D.

    2015-12-01

    Pyroxenes are a major component of the Earth's upper mantle and believed to be stable to approximately 16 GPa, along the oceanic geotherm. However, under certain conditions such as subducting slabs, it is possible to carry pyroxenes to much greater depths within the mantle. Pyroxenes penetrating the mantle to such depths could potentially undergo further phase transitions which could impact subducting slab mineralogy and mantle dynamics. The compression behavior of clinopyroxenes has been well characterized up to approximately 25 GPa with much of the work being focused on Ca-rich cpx. Beyond 10 GPa previous studies have published equations of state but there is a general lack of structure determinations. Ca-rich clinopyroxenes crystallize in the C2/c space group while Ca-poor clinopyroxenes crystalize in P21/c. It has been shown that P21/c clinopyroxenes reversibly transform to C2/c upon increased pressure, temperature, and M2 site cation size. The critical pressure for this transition is exceedingly compositionally dependent at 6.5 GPa and 1.7 GPa for clinoenstatite and clinoferrosilite, respectively. The strong compositional dependence of phase transitions in pyroxenes is motivation for a more complete understanding of compression mechanisms within the broad pyroxene category. By using in situ x-ray diffraction and diamond anvil cells to compress single-crystal clinoenstatite up to 50 GPa this study aims to expand the understanding of Ca-poor clinopyroxene compression mechanisms and elasticity. Here we report a fully reversible high-pressure phase in the P21/c space group found at approximately 45 GPa.

  13. Nucleation of crystals that are mixed composites of all three polymorphs in the Gaussian core model.

    PubMed

    Mithen, J P; Callison, A J; Sear, R P

    2015-06-14

    We present results of computer simulations of homogeneous crystal nucleation in the Gaussian core model. In our simulations, we study the competition between the body-centered-cubic (bcc), face-centered-cubic (fcc), and hexagonal-close-packed crystal phases. We find that the crystal nuclei that form from the metastable fluid phase are typically "mixed"; they do not consist of a single crystal polymorph. Furthermore, when the fcc phase is stable or fcc and bcc phases are equally stable, this mixed nature is found to persist far beyond the size at the top of the nucleation barrier, that is, far into what would be considered the growth (rather than nucleation) regime. In this region, the polymorph that forms is therefore selected long after nucleation. This has implications. When nucleation is slow, it will be the rate-limiting step for crystallization. Then, the step that determines the time scale for crystallisation is different from the step that controls which polymorph forms. This means that they can be independently controlled. Also between nucleation and polymorph selection, there is a growing phase that is clearly crystalline not fluid, but this phase cannot be assigned to any one polymorph.

  14. Nucleation and structural growth of cluster crystals

    NASA Astrophysics Data System (ADS)

    Leitold, Christian; Dellago, Christoph

    2016-08-01

    We study the nucleation of crystalline cluster phases in the generalized exponential model with exponent n = 4. Due to the finite value of this pair potential for zero separation, at high densities the system forms cluster crystals with multiply occupied lattice sites. Here, we investigate the microscopic mechanisms that lead to the formation of cluster crystals from a supercooled liquid in the low-temperature region of the phase diagram. Using molecular dynamics and umbrella sampling, we calculate the free energy as a function of the size of the largest crystalline nucleus in the system, and compare our results with predictions from classical nucleation theory. Employing bond-order parameters based on a Voronoi tessellation to distinguish different crystal structures, we analyze the average composition of crystalline nuclei. We find that even for conditions where a multiply occupied fcc crystal is the thermodynamically stable phase, the nucleation into bcc cluster crystals is strongly preferred. Furthermore, we study the particle mobility in the supercooled liquid and in the cluster crystal. In the cluster crystal, the motion of individual particles is captured by a simple reaction-diffusion model introduced previously to model the kinetics of hydrogen bonds.

  15. Nucleation and structural growth of cluster crystals.

    PubMed

    Leitold, Christian; Dellago, Christoph

    2016-08-21

    We study the nucleation of crystalline cluster phases in the generalized exponential model with exponent n = 4. Due to the finite value of this pair potential for zero separation, at high densities the system forms cluster crystals with multiply occupied lattice sites. Here, we investigate the microscopic mechanisms that lead to the formation of cluster crystals from a supercooled liquid in the low-temperature region of the phase diagram. Using molecular dynamics and umbrella sampling, we calculate the free energy as a function of the size of the largest crystalline nucleus in the system, and compare our results with predictions from classical nucleation theory. Employing bond-order parameters based on a Voronoi tessellation to distinguish different crystal structures, we analyze the average composition of crystalline nuclei. We find that even for conditions where a multiply occupied fcc crystal is the thermodynamically stable phase, the nucleation into bcc cluster crystals is strongly preferred. Furthermore, we study the particle mobility in the supercooled liquid and in the cluster crystal. In the cluster crystal, the motion of individual particles is captured by a simple reaction-diffusion model introduced previously to model the kinetics of hydrogen bonds. PMID:27544116

  16. Compressive Optical Image Encryption

    PubMed Central

    Li, Jun; Sheng Li, Jiao; Yang Pan, Yang; Li, Rong

    2015-01-01

    An optical image encryption technique based on compressive sensing using fully optical means has been proposed. An object image is first encrypted to a white-sense stationary noise pattern using a double random phase encoding (DRPE) method in a Mach-Zehnder interferometer. Then, the encrypted image is highly compressed to a signal using single-pixel compressive holographic imaging in the optical domain. At the receiving terminal, the encrypted image is reconstructed well via compressive sensing theory, and the original image can be decrypted with three reconstructed holograms and the correct keys. The numerical simulations show that the method is effective and suitable for optical image security transmission in future all-optical networks because of the ability of completely optical implementation and substantially smaller hologram data volume. PMID:25992946

  17. Focus on Compression Stockings

    MedlinePlus

    ... sion apparel is used to prevent or control edema The post-thrombotic syndrome (PTS) is a complication ( ... complication. abdomen. This swelling is referred to as edema. If you have edema, compression therapy may be ...

  18. Muon cooling: longitudinal compression.

    PubMed

    Bao, Yu; Antognini, Aldo; Bertl, Wilhelm; Hildebrandt, Malte; Khaw, Kim Siang; Kirch, Klaus; Papa, Angela; Petitjean, Claude; Piegsa, Florian M; Ritt, Stefan; Sedlak, Kamil; Stoykov, Alexey; Taqqu, David

    2014-06-01

    A 10  MeV/c positive muon beam was stopped in helium gas of a few mbar in a magnetic field of 5 T. The muon "swarm" has been efficiently compressed from a length of 16 cm down to a few mm along the magnetic field axis (longitudinal compression) using electrostatic fields. The simulation reproduces the low energy interactions of slow muons in helium gas. Phase space compression occurs on the order of microseconds, compatible with the muon lifetime of 2  μs. This paves the way for the preparation of a high-quality low-energy muon beam, with an increase in phase space density relative to a standard surface muon beam of 10^{7}. The achievable phase space compression by using only the longitudinal stage presented here is of the order of 10^{4}.

  19. Compressive Optical Image Encryption

    NASA Astrophysics Data System (ADS)

    Li, Jun; Sheng Li, Jiao; Yang Pan, Yang; Li, Rong

    2015-05-01

    An optical image encryption technique based on compressive sensing using fully optical means has been proposed. An object image is first encrypted to a white-sense stationary noise pattern using a double random phase encoding (DRPE) method in a Mach-Zehnder interferometer. Then, the encrypted image is highly compressed to a signal using single-pixel compressive holographic imaging in the optical domain. At the receiving terminal, the encrypted image is reconstructed well via compressive sensing theory, and the original image can be decrypted with three reconstructed holograms and the correct keys. The numerical simulations show that the method is effective and suitable for optical image security transmission in future all-optical networks because of the ability of completely optical implementation and substantially smaller hologram data volume.

  20. Muon Cooling: Longitudinal Compression

    NASA Astrophysics Data System (ADS)

    Bao, Yu; Antognini, Aldo; Bertl, Wilhelm; Hildebrandt, Malte; Khaw, Kim Siang; Kirch, Klaus; Papa, Angela; Petitjean, Claude; Piegsa, Florian M.; Ritt, Stefan; Sedlak, Kamil; Stoykov, Alexey; Taqqu, David

    2014-06-01

    A 10 MeV/c positive muon beam was stopped in helium gas of a few mbar in a magnetic field of 5 T. The muon "swarm" has been efficiently compressed from a length of 16 cm down to a few mm along the magnetic field axis (longitudinal compression) using electrostatic fields. The simulation reproduces the low energy interactions of slow muons in helium gas. Phase space compression occurs on the order of microseconds, compatible with the muon lifetime of 2 μs. This paves the way for the preparation of a high-quality low-energy muon beam, with an increase in phase space density relative to a standard surface muon beam of 107. The achievable phase space compression by using only the longitudinal stage presented here is of the order of 104.

  1. Compressible Astrophysics Simulation Code

    SciTech Connect

    Howell, L.; Singer, M.

    2007-07-18

    This is an astrophysics simulation code involving a radiation diffusion module developed at LLNL coupled to compressible hydrodynamics and adaptive mesh infrastructure developed at LBNL. One intended application is to neutrino diffusion in core collapse supernovae.

  2. Combined local-density and dynamical mean field theory calculations for the compressed lanthanides Ce, Pr, and Nd

    SciTech Connect

    McMahan, A K

    2005-03-30

    This paper reports calculations for compressed Ce (4f{sup 1}), Pr (4f{sup 2}), and Nd (4f{sup 3}) using a combination of the local-density approximation (LDA) and dynamical mean field theory (DMFT), or LDA+DMFT. The 4f moment, spectra, and the total energy among other properties are examined as functions of volume and atomic number for an assumed face-centered cubic (fcc) structure. These materials are seen to be strongly localized at ambient pressure and for compressions up through the experimentally observed fcc phases ({gamma} phase for Ce), in the sense of having fully formed Hund's rules moments and little 4f spectral weight at the Fermi level. Subsequent compression for all three lanthanides brings about significant deviation of the moments from their Hund's rules values, a growing Kondo resonance at the fermi level, an associated softening in the total energy, and quenching of the spin orbit since the Kondo resonance is of mixed spin-orbit character while the lower Hubbard band is predominantly j = 5/2. while the most dramatic changes for Ce occur within the two-phase region of the {gamma}-{alpha} volume collapse transition, as found in earlier work, those for Pr and Nd occur within the volume range of the experimentally observed distorted fcc (dfcc) phase, which is therefore seen here as transitional and not part of the localized trivalent lanthanide sequence. The experimentally observed collapse to the {alpha}-U structure in Pr occurs only on further compression, and no such collapse is found in Nd. These lanthanides start closer to the localized limit for increasing atomic number, and so the theoretical signatures noted above are also offset to smaller volume as well, which is possibly related to the measured systematics of the size of the volume collapse being 15%, 9%, and none for Ce, Pr, and Nd, respectively.

  3. Atomic structure of interphase boundary enclosing bcc precipitate formed in fcc matrix in a Ni-Cr alloy

    SciTech Connect

    Furuhara, T.; Wada, K.; Maki, T.

    1995-08-01

    The atomic structure of the interphase boundary enclosing body-centered cubic (bcc) lath-shape precipitates formed in the face-centered cubic (fcc) matrix of a Ni-45 mass pct Cr alloy was examined by means of conventional and high-resolution transmission electron microscopy (HRTEM). Growth ledges were observed on the broad faces of the laths. The growth ledge terrace (with the macroscopic habit plane {approximately}(112){sub fcc}//(23{bar 1}){sub bcc}) contains a regular array of structural ledges whose terrace is formed by the (111){sub fcc}//(110){sub bcc} planes. A structural ledge has an effective Burgers vector corresponding to an a/12[1{bar 2}1]{sub fcc} transformation dislocation in the fcc {yields} bcc transformation. The side facet (and presumably the growth ledge riser) of the bcc lath contains two distinct types of lattice dislocation accommodating transformation strains. One type is glissile dislocations, which exist on every six layers of parallel close-packed planes. These perfectly accommodate the shear strain caused by the stacking sequence change from fcc to bcc. The second set is sessile misfit dislocations ({approximately}10 nm apart) whose Burgers vector is a/3[111]{sub fcc} = a/2[110]{sub bcc}. These perfectly accommodate the dilatational strain along the direction normal to the parallel close-packed planes. These results demonstrate that the interphase boundaries enclosing the laths are all semicoherent. Nucleation and migration of growth ledges, which are controlled by diffusion of substitutional solute atoms, result in the virtual displacement of transformation dislocations accompanying the climb of sessile misfit dislocations and the glide of glissile dislocations simultaneously. Such a growth mode assures the retention of atomic site correspondence across the growing interface.

  4. Image compression technique

    DOEpatents

    Fu, C.Y.; Petrich, L.I.

    1997-03-25

    An image is compressed by identifying edge pixels of the image; creating a filled edge array of pixels each of the pixels in the filled edge array which corresponds to an edge pixel having a value equal to the value of a pixel of the image array selected in response to the edge pixel, and each of the pixels in the filled edge array which does not correspond to an edge pixel having a value which is a weighted average of the values of surrounding pixels in the filled edge array which do correspond to edge pixels; and subtracting the filled edge array from the image array to create a difference array. The edge file and the difference array are then separately compressed and transmitted or stored. The original image is later reconstructed by creating a preliminary array in response to the received edge file, and adding the preliminary array to the received difference array. Filling is accomplished by solving Laplace`s equation using a multi-grid technique. Contour and difference file coding techniques also are described. The techniques can be used in a method for processing a plurality of images by selecting a respective compression approach for each image, compressing each of the images according to the compression approach selected, and transmitting each of the images as compressed, in correspondence with an indication of the approach selected for the image. 16 figs.

  5. Image compression technique

    DOEpatents

    Fu, Chi-Yung; Petrich, Loren I.

    1997-01-01

    An image is compressed by identifying edge pixels of the image; creating a filled edge array of pixels each of the pixels in the filled edge array which corresponds to an edge pixel having a value equal to the value of a pixel of the image array selected in response to the edge pixel, and each of the pixels in the filled edge array which does not correspond to an edge pixel having a value which is a weighted average of the values of surrounding pixels in the filled edge array which do correspond to edge pixels; and subtracting the filled edge array from the image array to create a difference array. The edge file and the difference array are then separately compressed and transmitted or stored. The original image is later reconstructed by creating a preliminary array in response to the received edge file, and adding the preliminary array to the received difference array. Filling is accomplished by solving Laplace's equation using a multi-grid technique. Contour and difference file coding techniques also are described. The techniques can be used in a method for processing a plurality of images by selecting a respective compression approach for each image, compressing each of the images according to the compression approach selected, and transmitting each of the images as compressed, in correspondence with an indication of the approach selected for the image.

  6. Alternative Compression Garments

    NASA Technical Reports Server (NTRS)

    Stenger, M. B.; Lee, S. M. C.; Ribeiro, L. C.; Brown, A. K.; Westby, C. M.; Platts, S. H.

    2011-01-01

    Orthostatic intolerance after spaceflight is still an issue for astronauts as no in-flight countermeasure has been 100% effective. Future anti-gravity suits (AGS) may be similar to the Shuttle era inflatable AGS or may be a mechanical compression device like the Russian Kentavr. We have evaluated the above garments as well as elastic, gradient compression garments of varying magnitude and determined that breast-high elastic compression garments may be a suitable replacement to the current AGS. This new garment should be more comfortable than the AGS, easy to don and doff, and as effective a countermeasure to orthostatic intolerance. Furthermore, these new compression garments could be worn for several days after space flight as necessary if symptoms persisted. We conducted two studies to evaluate elastic, gradient compression garments. The purpose of these studies was to evaluate the comfort and efficacy of an alternative compression garment (ACG) immediately after actual space flight and 6 degree head-down tilt bed rest as a model of space flight, and to determine if they would impact recovery if worn for up to three days after bed rest.

  7. 47 CFR 95.423 - (CB Rule 23) What must I do if the FCC tells me that my CB station is causing interference?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false (CB Rule 23) What must I do if the FCC tells me...) Radio Service Other Things You Need to Know § 95.423 (CB Rule 23) What must I do if the FCC tells me that my CB station is causing interference? (a) If the FCC tells you that your CB station is...

  8. 47 CFR 95.220 - (R/C Rules 20) What must I do if the FCC tells me that my R/C station is causing interference?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false (R/C Rules 20) What must I do if the FCC tells.../C) Radio Service Other Things You Need to Know § 95.220 (R/C Rules 20) What must I do if the FCC tells me that my R/C station is causing interference? (a) If the FCC tells you that your R/C station...

  9. Crystal Creations.

    ERIC Educational Resources Information Center

    Whipple, Nona; Whitmore, Sherry

    1989-01-01

    Presents a many-faceted learning approach to the study of crystals. Provides instructions for performing activities including crystal growth and patterns, creating miniature simulations of crystal-containing rock formations, charcoal and sponge gardens, and snowflakes. (RT)

  10. Synthesis of 4H/fcc-Au@M (M = Ir, Os, IrOs) Core-Shell Nanoribbons For Electrocatalytic Oxygen Evolution Reaction.

    PubMed

    Fan, Zhanxi; Luo, Zhimin; Chen, Ye; Wang, Jie; Li, Bing; Zong, Yun; Zhang, Hua

    2016-08-01

    The high-yield synthesis of 4H/face-centered cubic (fcc)-Au@Ir core-shell nanoribbons (NRBs) is achieved via the direct growth of Ir on 4H Au NRBs under ambient conditions. Importantly, this method can be used to synthesize 4H/fcc-Au@Os and 4H/fcc-Au@IrOs core-shell NRBs. Significantly, the obtained 4H/fcc-Au@Ir core-shell NRBs demonstrate an exceptional electrocatalytic activity toward the oxygen evolution reaction under acidic condition, which is much higher than that of the commercial Ir/C catalyst.

  11. Structural phase transitions in single crystal C{sub 60}

    SciTech Connect

    Moret, R.; Cejolin, R.; Agafonov, V.

    1992-12-01

    X-ray diffraction has been employed to study the low temperature structural behavior of a C{sub 60} fcc crystal. The intensity of selected reflections that appear at the fcc to simple cubic transition was measured as a function of temperature down to 25K. This orientational ordering transition is found at T{sub o} = 254K{plus_minus}1K. It displays an hysteresis of about 1K but no discontinuity of the intensity at T{sub o}. Between T{sub o} and 25K, the intensity increases by a factor of 2 or more, and supplementary features are revealed. A clear enhancement of the rate of increase of the intensity is observed below 150-160K. This may reflect a change in the rapid molecular reorientations that persist below T{sub o}. A second change of slope that needs to be confirmed was found around 90K in some of the authors measurements.

  12. Proceedings, High-Precision $\\alpha_s$ Measurements from LHC to FCC-ee

    SciTech Connect

    d'Enterria, David; Skands, Peter Z.

    2015-01-01

    This document provides a writeup of all contributions to the workshop on "High precision measurements of $\\alpha_s$: From LHC to FCC-ee" held at CERN, Oct. 12--13, 2015. The workshop explored in depth the latest developments on the determination of the QCD coupling $\\alpha_s$ from 15 methods where high precision measurements are (or will be) available. Those include low-energy observables: (i) lattice QCD, (ii) pion decay factor, (iii) quarkonia and (iv) $\\tau$ decays, (v) soft parton-to-hadron fragmentation functions, as well as high-energy observables: (vi) global fits of parton distribution functions, (vii) hard parton-to-hadron fragmentation functions, (viii) jets in $e^\\pm$p DIS and $\\gamma$-p photoproduction, (ix) photon structure function in $\\gamma$-$\\gamma$, (x) event shapes and (xi) jet cross sections in $e^+e^-$ collisions, (xii) W boson and (xiii) Z boson decays, and (xiv) jets and (xv) top-quark cross sections in proton-(anti)proton collisions. The current status of the theoretical and experimental uncertainties associated to each extraction method, the improvements expected from LHC data in the coming years, and future perspectives achievable in $e^+e^-$ collisions at the Future Circular Collider (FCC-ee) with $\\cal{O}$(1--100 ab$^{-1}$) integrated luminosities yielding 10$^{12}$ Z bosons and jets, and 10$^{8}$ W bosons and $\\tau$ leptons, are thoroughly reviewed. The current uncertainty of the (preliminary) 2015 strong coupling world-average value, $\\alpha_s(m_Z)$ = 0.1177 $\\pm$ 0.0013, is about 1\\%. Some participants believed this may be reduced by a factor of three in the near future by including novel high-precision observables, although this opinion was not universally shared. At the FCC-ee facility, a factor of ten reduction in the $\\alpha_s$ uncertainty should be possible, mostly thanks to the huge Z and W data samples available.

  13. Measurement of sodium chloride electrical conductivity under quasisentropic compression to 140 GPa

    SciTech Connect

    Postnov, V.I.; Dremin, A.N.; Nabatov, S.S.; Shunin, V.M.; Yakushev, V.V.

    1984-03-01

    In this paper the authors present the results of experiments on the measurement of resistivity of sodium chloride single crystals under quasiisentropic loading as compared with the data of Al'tshuler et al. obtained with shock compression.

  14. Analysis of the strain-rate sensitivity at high strain rates in FCC and BCC metals

    SciTech Connect

    Follansbee, P.S.

    1988-01-01

    The development of a constitutive model based on the use of internal state variables and phenomenological models describing glide kinetics is reviewed. Application of the model to the deformation of fcc metals and alloys is illustrated, with an emphasis on the behavior at high strain rates. Preliminary results in pure iron and 4340 steel are also presented. Deformation twinning is observed in iron samples deformed in the Hopkinson pressure bar. The influence of twinning on the proposed constitutive is discussed. 11 refs., 8 figs.

  15. Simulation of atomic diffusion in the Fcc NiAl system: A kinetic Monte Carlo study

    SciTech Connect

    Alfonso, Dominic R.; Tafen, De Nyago

    2015-04-28

    The atomic diffusion in fcc NiAl binary alloys was studied by kinetic Monte Carlo simulation. The environment dependent hopping barriers were computed using a pair interaction model whose parameters were fitted to relevant data derived from electronic structure calculations. Long time diffusivities were calculated and the effect of composition change on the tracer diffusion coefficients was analyzed. These results indicate that this variation has noticeable impact on the atomic diffusivities. A reduction in the mobility of both Ni and Al is demonstrated with increasing Al content. As a result, examination of the pair interaction between atoms was carried out for the purpose of understanding the predicted trends.

  16. Understanding Anharmonicity in fcc Materials: From its Origin to ab initio Strategies beyond the Quasiharmonic Approximation.

    PubMed

    Glensk, A; Grabowski, B; Hickel, T; Neugebauer, J

    2015-05-15

    We derive the Gibbs energy including the anharmonic contribution due to phonon-phonon interactions for an extensive set of unary fcc metals (Al, Ag, Au, Cu, Ir, Ni, Pb, Pd, Pt, Rh) by combining density-functional-theory (DFT) calculations with efficient statistical sampling approaches. We show that the anharmonicity of the macroscopic system can be traced back to the anharmonicity in local pairwise interactions. Using this insight, we derive and benchmark a highly efficient approach which allows the computation of anharmonic contributions using a few T=0 K DFT calculations only.

  17. From ELF to Compressibility in Solids

    PubMed Central

    Contreras-García, Julia; Marqués, Miriam; Menéndez, José Manuel; Recio, José Manuel

    2015-01-01

    Understanding the electronic nature of materials’ compressibility has always been a major issue behind tabulation and rationalization of bulk moduli. This is especially because this understanding is one of the main approaches to the design and proposal of new materials with a desired (e.g., ultralow) compressibility. It is well recognized that the softest part of the solid will be the one responsible for its compression at the first place. In chemical terms, this means that the valence will suffer the main consequences of pressurization. It is desirable to understand this response to pressure in terms of the valence properties (charge, volume, etc.). One of the possible approaches is to consider models of electronic separability, such as the bond charge model (BCM), which provides insight into the cohesion of covalent crystals in analogy with the classical ionic model. However, this model relies on empirical parametrization of bond and lone pair properties. In this contribution, we have coupled electron localization function (ELF) ab initio data with the bond charge model developed by Parr in order to analyze solid state compressibility from first principles and moreover, to derive general trends and shed light upon superhard behavior. PMID:25872139

  18. Size and symmetry of the superconducting gap in the f.c.c. Cs3C60 polymorph close to the metal-Mott insulator boundary

    PubMed Central

    Potočnik, Anton; Krajnc, Andraž; Jeglič, Peter; Takabayashi, Yasuhiro; Ganin, Alexey Y.; Prassides, Kosmas; Rosseinsky, Matthew J.; Arčon, Denis

    2014-01-01

    The alkali fullerides, A3C60 (A = alkali metal) are molecular superconductors that undergo a transition to a magnetic Mott-insulating state at large lattice parameters. However, although the size and the symmetry of the superconducting gap, Δ, are both crucial for the understanding of the pairing mechanism, they are currently unknown for superconducting fullerides close to the correlation-driven magnetic insulator. Here we report a comprehensive nuclear magnetic resonance (NMR) study of face-centred-cubic (f.c.c.) Cs3C60 polymorph, which can be tuned continuously through the bandwidth-controlled Mott insulator-metal/superconductor transition by pressure. When superconductivity emerges from the insulating state at large interfullerene separations upon compression, we observe an isotropic (s-wave) Δ with a large gap-to-superconducting transition temperature ratio, 2Δ0/kBTc = 5.3(2) [Δ0 = Δ(0 K)]. 2Δ0/kBTc decreases continuously upon pressurization until it approaches a value of ~3.5, characteristic of weak-coupling BCS theory of superconductivity despite the dome-shaped dependence of Tc on interfullerene separation. The results indicate the importance of the electronic correlations for the pairing interaction as the metal/superconductor-insulator boundary is approached. PMID:24584087

  19. Transverse Compression of Tendons.

    PubMed

    Salisbury, S T Samuel; Buckley, C Paul; Zavatsky, Amy B

    2016-04-01

    A study was made of the deformation of tendons when compressed transverse to the fiber-aligned axis. Bovine digital extensor tendons were compression tested between flat rigid plates. The methods included: in situ image-based measurement of tendon cross-sectional shapes, after preconditioning but immediately prior to testing; multiple constant-load creep/recovery tests applied to each tendon at increasing loads; and measurements of the resulting tendon displacements in both transverse directions. In these tests, friction resisted axial stretch of the tendon during compression, giving approximately plane-strain conditions. This, together with the assumption of a form of anisotropic hyperelastic constitutive model proposed previously for tendon, justified modeling the isochronal response of tendon as that of an isotropic, slightly compressible, neo-Hookean solid. Inverse analysis, using finite-element (FE) simulations of the experiments and 10 s isochronal creep displacement data, gave values for Young's modulus and Poisson's ratio of this solid of 0.31 MPa and 0.49, respectively, for an idealized tendon shape and averaged data for all the tendons and E = 0.14 and 0.10 MPa for two specific tendons using their actual measured geometry. The compression load versus displacement curves, as measured and as simulated, showed varying degrees of stiffening with increasing load. This can be attributed mostly to geometrical changes in tendon cross section under load, varying according to the initial 3D shape of the tendon. PMID:26833218

  20. Transverse Compression of Tendons.

    PubMed

    Salisbury, S T Samuel; Buckley, C Paul; Zavatsky, Amy B

    2016-04-01

    A study was made of the deformation of tendons when compressed transverse to the fiber-aligned axis. Bovine digital extensor tendons were compression tested between flat rigid plates. The methods included: in situ image-based measurement of tendon cross-sectional shapes, after preconditioning but immediately prior to testing; multiple constant-load creep/recovery tests applied to each tendon at increasing loads; and measurements of the resulting tendon displacements in both transverse directions. In these tests, friction resisted axial stretch of the tendon during compression, giving approximately plane-strain conditions. This, together with the assumption of a form of anisotropic hyperelastic constitutive model proposed previously for tendon, justified modeling the isochronal response of tendon as that of an isotropic, slightly compressible, neo-Hookean solid. Inverse analysis, using finite-element (FE) simulations of the experiments and 10 s isochronal creep displacement data, gave values for Young's modulus and Poisson's ratio of this solid of 0.31 MPa and 0.49, respectively, for an idealized tendon shape and averaged data for all the tendons and E = 0.14 and 0.10 MPa for two specific tendons using their actual measured geometry. The compression load versus displacement curves, as measured and as simulated, showed varying degrees of stiffening with increasing load. This can be attributed mostly to geometrical changes in tendon cross section under load, varying according to the initial 3D shape of the tendon.

  1. Calcite-forming bacteria for compressive strength improvement in mortar.

    PubMed

    Park, Sung-Jin; Park, Yu-Mi; Chun, Woo-Young; Kim, Wha-Jung; Ghim, Sa-Youl

    2010-04-01

    Microbiological calcium carbonate precipitation (MCP) has been investigated for its ability to improve the compressive strength of concrete mortar. However, very few studies have been conducted on the use of calcite-forming bacteria (CFB) to improve compressive strength. In this study, we discovered new bacterial genera that are capable of improving the compressive strength of concrete mortar. We isolated 4 CFB from 7 environmental concrete structures. Using sequence analysis of the 16S rRNA genes, the CFB could be partially identified as Sporosarcina soli KNUC401, Bacillus massiliensis KNUC402, Arthrobacter crystallopoietes KNUC403, and Lysinibacillus fusiformis KNUC404. Crystal aggregates were apparent in the bacterial colonies grown on an agar medium. Stereomicroscopy, scanning electron microscopy, and x-ray diffraction analyses illustrated both the crystal growth and the crystalline structure of the CaCO3 crystals. We used the isolates to improve the compressive strength of concrete mortar cubes and found that KNUC403 offered the best improvement in compressive strength.

  2. The compressible mixing layer

    NASA Technical Reports Server (NTRS)

    Vandromme, Dany; Haminh, Hieu

    1991-01-01

    The capability of turbulence modeling correctly to handle natural unsteadiness appearing in compressible turbulent flows is investigated. Physical aspects linked to the unsteadiness problem and the role of various flow parameters are analyzed. It is found that unsteady turbulent flows can be simulated by dividing these motions into an 'organized' part for which equations of motion are solved and a remaining 'incoherent' part represented by a turbulence model. Two-equation turbulence models and second-order turbulence models can yield reasonable results. For specific compressible unsteady turbulent flow, graphic presentations of different quantities may reveal complementary physical features. Strong compression zones are observed in rapid flow parts but shocklets do not yet occur.

  3. Modulating fcc and hcp Ruthenium on the Surface of Palladium-Copper Alloy through Tunable Lattice Mismatch.

    PubMed

    Yao, Yancai; He, Dong Sheng; Lin, Yue; Feng, Xiaoqian; Wang, Xin; Yin, Peiqun; Hong, Xun; Zhou, Gang; Wu, Yuen; Li, Yadong

    2016-04-25

    Herein, we report an epitaxial-growth-mediated method to grow face-centered cubic (fcc) Ru, which is thermodynamically unfavorable in the bulk form, on the surface of Pd-Cu alloy. Induced by the galvanic replacement between Ru and Pd-Cu alloy, a shape transformation from a Pd-Cu@Ru core-shell to a yolk-shell structure was observed during the epitaxial growth. The successful coating of the unconventional crystallographic structure is critically dependent on the moderate lattice mismatch between the fcc Ru overlayer and PdCu3 alloy substrate. Further, both fcc and hexagonal close packed (hcp) Ru can be selectively grown through varying the lattice spacing of the Pd-Cu substrate. The presented findings provide a new synthetic pathway to control the crystallographic structure of metal nanomaterials.

  4. Compressive Shift Retrieval

    NASA Astrophysics Data System (ADS)

    Ohlsson, Henrik; Eldar, Yonina C.; Yang, Allen Y.; Sastry, S. Shankar

    2014-08-01

    The classical shift retrieval problem considers two signals in vector form that are related by a shift. The problem is of great importance in many applications and is typically solved by maximizing the cross-correlation between the two signals. Inspired by compressive sensing, in this paper, we seek to estimate the shift directly from compressed signals. We show that under certain conditions, the shift can be recovered using fewer samples and less computation compared to the classical setup. Of particular interest is shift estimation from Fourier coefficients. We show that under rather mild conditions only one Fourier coefficient suffices to recover the true shift.

  5. Isentropic compression of argon

    SciTech Connect

    Veeser, L.R.; Ekdahl, C.A.; Oona, H.

    1997-06-01

    The compression was done in an MC-1 flux compression (explosive) generator, in order to study the transition from an insulator to a conductor. Since conductivity signals were observed in all the experiments (except when the probe is removed), both the Teflon and the argon are becoming conductive. The conductivity could not be determined (Teflon insulation properties unknown), but it could be bounded as being {sigma}=1/{rho}{le}8({Omega}cm){sub -1}, because when the Teflon breaks down, the dielectric constant is reduced. The Teflon insulator problem remains, and other ways to better insulate the probe or to measure the conductivity without a probe is being sought.

  6. Orbiting dynamic compression laboratory

    NASA Technical Reports Server (NTRS)

    Ahrens, T. J.; Vreeland, T., Jr.; Kasiraj, P.; Frisch, B.

    1984-01-01

    In order to examine the feasibility of carrying out dynamic compression experiments on a space station, the possibility of using explosive gun launchers is studied. The question of whether powders of a refractory metal (molybdenum) and a metallic glass could be well considered by dynamic compression is examined. In both cases extremely good bonds are obtained between grains of metal and metallic glass at 180 and 80 kb, respectively. When the oxide surface is reduced and the dynamic consolidation is carried out in vacuum, in the case of molybdenum, tensile tests of the recovered samples demonstrated beneficial ultimate tensile strengths.

  7. Formation of spatially patterned colloidal photonic crystals through the control of capillary forces and template recognition.

    PubMed

    Brozell, Adrian M; Muha, Michelle A; Parikh, Atul N

    2005-12-01

    We report the formation of microscopic patterns of substrate-supported, 3D planar colloidal crystals using physical confinement in conjunction with surfaces displaying predetermined binary patterns of hydropholicity. The formation process involves a primary self-assembly wherein nano- and microscale colloids order into a photonic fcc lattice via capillary interactions followed by a secondary template-induced crystal cleavage step. Following this method, arbitrary arrays of pattern elements, which preserve structural and orientational properties of the parent crystal, can be easily obtained.

  8. Mechanistic principles of colloidal crystal growth by evaporation-induced convective steering.

    PubMed

    Brewer, Damien D; Allen, Joshua; Miller, Michael R; de Santos, Juan M; Kumar, Satish; Norris, David J; Tsapatsis, Michael; Scriven, L E

    2008-12-01

    We simulate evaporation-driven self-assembly of colloidal crystals using an equivalent network model. Relationships between a regular hexagonally close-packed array of hard, monodisperse spheres, the associated pore space, and selectivity mechanisms for face-centered cubic microstructure propagation are described. By accounting for contact line rearrangement and evaporation at a series of exposed menisci, the equivalent network model describes creeping flow of solvent into and through a rigid colloidal crystal. Observations concerning colloidal crystal growth are interpreted in terms of the convective steering hypothesis, which posits that solvent flow into and through the pore space of the crystal may play a major role in colloidal self-assembly. Aspects of the convective steering and deposition of high-Peclet-number rigid spherical particles at a crystal boundary are inferred from spatially resolved solvent flow into the crystal. Gradients in local flow through boundary channels were predicted due to the channels' spatial distribution relative to a pinned free surface contact line. On the basis of a uniform solvent and particle flux as the criterion for stability of a particular growth plane, these network simulations suggest the stability of a declining {311} crystal interface, a symmetry plane which exclusively propagates fcc microstructure. Network simulations of alternate crystal planes suggest preferential growth front evolution to the declining {311} interface, in consistent agreement with the proposed stability mechanism for preferential fcc microstructure propagation in convective assembly.

  9. Effect of Crystal Orientation on Analysis of Single-Crystal, Nickel-Based Turbine Blade Superalloys

    NASA Technical Reports Server (NTRS)

    Swanson, G. R.; Arakere, N. K.

    2000-01-01

    High-cycle fatigue-induced failures in turbine and turbopump blades is a pervasive problem. Single-crystal nickel turbine blades are used because of their superior creep, stress rupture, melt resistance, and thermomechanical fatigue capabilities. Single-crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the part geometry a significant and complicating factor. A fatigue failure criterion based on the maximum shear stress amplitude on the 24 octahedral and 6 cube slip systems is presented for single-crystal nickel superalloys (FCC crystal). This criterion greatly reduces the scatter in uniaxial fatigue data for PWA 1493 at 1,200 F in air. Additionally, single-crystal turbine blades used in the Space Shuttle main engine high pressure fuel turbopump/alternate turbopump are modeled using a three-dimensional finite element (FE) model. This model accounts for material orthotrophy and crystal orientation. Fatigue life of the blade tip is computed using FE stress results and the failure criterion that was developed. Stress analysis results in the blade attachment region are also presented. Results demonstrate that control of crystallographic orientation has the potential to significantly increase a component's resistance to fatigue crack growth without adding additional weight or cost.

  10. Molecular dynamics prediction of phonon-mediated thermal conductivity of f.c.c. Cu

    NASA Astrophysics Data System (ADS)

    Evteev, Alexander V.; Momenzadeh, Leila; Levchenko, Elena V.; Belova, Irina V.; Murch, Graeme E.

    2014-03-01

    The phonon-mediated thermal conductivity of f.c.c. Cu is investigated in detail in the temperature range 40-1300 K. The calculations are performed in the framework of equilibrium molecular dynamics making use of the Green-Kubo formalism and one of the most reliable embedded-atom method potentials for Cu. It is found that the temporal decay of the heat current autocorrelation function (HCACF) of the Cu model at low and intermediate temperatures demonstrate a more complex behaviour than the two-stage decay observed previously for the f.c.c. Ar model. After the first stage of decay, it demonstrates a peak in the temperature range 40-800 K. A decomposition model of the HCACF is introduced. In the framework of that model we demonstrate that a classical description of the phonon thermal transport in the Cu model can be used down to around one quarter of the Debye temperature (about 90 K). Also, we find that above 300 K the thermal conductivity of the Cu model varies with temperature more rapidly than ?, following an exponent close to -1.4 in agreement with previous calculations on the Ar model. Phonon thermal conductivity of Cu is found to be about one order of magnitude higher than Ar. The phonon contribution to the total thermal conductivity of Cu can be estimated to be about 0.5% at 1300 K and about 10% at 90 K.

  11. Ab initio random structure search for 13-atom clusters of fcc elements.

    PubMed

    Chou, J P; Hsing, C R; Wei, C M; Cheng, C; Chang, C M

    2013-03-27

    The 13-atom metal clusters of fcc elements (Al, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au) were studied by density functional theory calculations. The global minima were searched for by the ab initio random structure searching method. In addition to some new lowest-energy structures for Pd13 and Au13, we found that the effective coordination numbers of the lowest-energy clusters would increase with the ratio of the dimer-to-bulk bond length. This correlation, together with the electronic structures of the lowest-energy clusters, divides the 13-atom clusters of these fcc elements into two groups (except for Au13, which prefers a two-dimensional structure due to the relativistic effect). Compact-like clusters that are composed exclusively of triangular motifs are preferred for elements without d-electrons (Al) or with (nearly) filled d-band electrons (Ni, Pd, Cu, Ag). Non-compact clusters composed mainly of square motifs connected by some triangular motifs (Rh, Ir, Pt) are favored for elements with unfilled d-band electrons.

  12. Dislocation creation and void nucleation in FCC ductile metals under tensile loading: a general microscopic picture.

    PubMed

    Pang, Wei-Wei; Zhang, Ping; Zhang, Guang-Cai; Xu, Ai-Guo; Zhao, Xian-Geng

    2014-11-10

    Numerous theoretical and experimental efforts have been paid to describe and understand the dislocation and void nucleation processes that are fundamental for dynamic fracture modeling of strained metals. To date an essential physical picture on the self-organized atomic collective motions during dislocation creation, as well as the essential mechanisms for the void nucleation obscured by the extreme diversity in structural configurations around the void nucleation core, is still severely lacking in literature. Here, we depict the origin of dislocation creation and void nucleation during uniaxial high strain rate tensile processes in face-centered-cubic (FCC) ductile metals. We find that the dislocations are created through three distinguished stages: (i) Flattened octahedral structures (FOSs) are randomly activated by thermal fluctuations; (ii) The double-layer defect clusters are formed by self-organized stacking of FOSs on the close-packed plane; (iii) The stacking faults are formed and the Shockley partial dislocations are created from the double-layer defect clusters. Whereas, the void nucleation is shown to follow a two-stage description. We demonstrate that our findings on the origin of dislocation creation and void nucleation are universal for a variety of FCC ductile metals with low stacking fault energies.

  13. Adsorbate modification of the structural, electronic, and magnetic properties of ferromagnetic fcc {110} surfaces

    NASA Astrophysics Data System (ADS)

    Gunn, D. S. D.; Jenkins, Stephen J.

    2011-03-01

    We identify trends in structural, electronic, and magnetic modifications that occur on ferromagnetic {110} surfaces upon varying either the substrate material or the adsorbate species. First, we have modeled the adsorption of several first-row p-block elements on the surface of fcc Co{110} at two coverages [0.5 and 1.0 monolayer (ML)]. All adsorbates were found to expand the distance between the first and second substrate layers and to contract the distance between the second and third layers. The energetic location of a characteristic trough in the density-of-d-states difference plot correlates with the direction of the adsorbate magnetic coupling to the surface, and a trend of antiferromagnetic to ferromagnetic coupling to the surface was observed across the elements from boron to fluorine. A high fluorine adatom coverage (1.0 ML) was found to enhance the surface spin magnetic moment by 11%. Second, we also calculate and contrast adsorption of 0.5 and 1.0 ML of carbon, nitrogen, and oxygen adatoms on fcc iron, cobalt, and nickel {110} surfaces and compare the structural, electronic, and magnetic properties of these systems. Carbon and nitrogen are found to couple antiferromagnetically, and oxygen ferromagnetically, to all surfaces. It was found that antiferromagnetically coupled adsorbates retained their largest spin moment values on iron, whereas ferromagnetically coupled adsorbates possessed their lowest moments on this surface. The strongly localized influence of these adsorbates is clearly illustrated in partial density-of-states plots for the surface atoms.

  14. Impact of local magnetism on stacking fault energies: A first-principles investigation for fcc iron

    NASA Astrophysics Data System (ADS)

    Bleskov, I.; Hickel, T.; Neugebauer, J.; Ruban, A.

    2016-06-01

    A systematic ab initio study of the influence of local magnetism on the generalized stacking fault energy (GSFE) surface in pure fcc iron at 0 K has been performed. In the calculations we considered ferro- and antiferro- (single- and double-layer) magnetic order of local moments as well as their complete disorder, corresponding to paramagnetic (PM) state. We have shown that local magnetism is one of the most important factors stabilizing austenitic structure in iron (with respect to more stable at 0 K hcp) and that the perturbation of magnetic structure by the formation of stacking fault is a short-range effect. Local magnetism also strongly influences the GSFE surface topology and, therefore, the material's plasticity by reducing the energetic barriers that need to be overcome to form the intrinsic stacking fault (ISF) or return from the ISF structure to fcc. The influence of atomic relaxations on such barriers is moderate and does not exceed 15%. In addition, a methodology to evaluate the PM ISF energy using a superposition of the ISF energies obtained for ordered magnetic structures is proposed to overcome computational impediments arising when dealing with disorder in the PM state. The complications of the proposed methodology together with the ways to overcome them are also discussed.

  15. Possible futures of electroweak precision: ILC, FCC-ee, and CEPC

    NASA Astrophysics Data System (ADS)

    Fan, JiJi; Reece, Matthew; Wang, Lian-Tao

    2015-09-01

    The future of high-precision electroweak physics lies in e + e - collider measurements of properties of the Z boson, the W boson, the Higgs boson, and the top quark. We estimate the expected performance of three possible future colliders: the ILC, FCC-ee (formerly known as TLEP), and CEPC. In particular, we present the first estimates of the possible reach of CEPC, China's proposed Circular Electron-Positron Collider, for the oblique parameters S and T and for seven-parameter fits of Higgs couplings. These results allow the physics potential for CEPC to be compared with that of the ILC and FCC-ee. We also show how the constraints on S and T would evolve as the uncertainties on each of the most important input measurements change separately. This clarifies the basic physics goals for future colliders. To improve on the current precision, the highest priorities are improving the uncertainties on m W and sin2 θ eff . At the same time, improved measurements of the top mass, the Z mass, the running of α, and the Z width will offer further improvement which will determine the ultimate reach. Each of the possible future colliders we consider has strong prospects for probing TeV-scale electroweak physics.

  16. Equilibrium phase boundary between hcp-cobalt and fcc-cobalt

    NASA Astrophysics Data System (ADS)

    Cynn, Hyunchae; Lipp, Magnus J.; Evans, William J.; Baer, Bruce J.

    In 2000 (Yoo et al., PRL), fcc-cobalt was reported as a new high pressure phase transforming from ambient hcp-cobalt starting at around 105 GPa and 300 K. Both cobalts coexist up to 150 GPa and thereafter only fcc-cobalt was found to be the only stable phase to 200 GPa. Our recent synchrotron x-ray diffraction data on cobalt are at odds with the previous interpretation. We will present our new finding and elaborate on our understanding in terms of the equilibrium phase boundary of cobalt. We will also compare our previous work on xenon (Cynn et al., 2001, PRL) with our new results on cobalt. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Portions of this work were performed at HPCAT (Sector 16), APS, Argonne National Laboratory. HPCAT operations are supported by DOE-NNSA under Award No. DENA0001974 and DOE-BES under Award No. DE-FG02-99ER45775. The Advanced Photon Source is a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

  17. The Evaluation of a Public Document: The Case of FCC's Marine Radio Rules for Recreational Boaters. Document Design Project, Technical Report No. 11.

    ERIC Educational Resources Information Center

    Felker, Daniel B.; Rose, Andrew M.

    In a collaborative effort, the Federal Communications Commission (FCC) and the Document Design Project conducted an evaluation of marine radio rules for recreational boaters that had been rewritten in plain English by FCC personnel. The revised rules were evaluated by 53 experienced boaters and 52 inexperienced boaters, who were given either the…

  18. Polymorphism, crystal nucleation and growth in the phase-field crystal model in 2D and 3D.

    PubMed

    Tóth, Gyula I; Tegze, György; Pusztai, Tamás; Tóth, Gergely; Gránásy, László

    2010-09-15

    We apply a simple dynamical density functional theory, the phase-field crystal (PFC) model of overdamped conservative dynamics, to address polymorphism, crystal nucleation, and crystal growth in the diffusion-controlled limit. We refine the phase diagram for 3D, and determine the line free energy in 2D and the height of the nucleation barrier in 2D and 3D for homogeneous and heterogeneous nucleation by solving the respective Euler-Lagrange (EL) equations. We demonstrate that, in the PFC model, the body-centered cubic (bcc), the face-centered cubic (fcc), and the hexagonal close-packed structures (hcp) compete, while the simple cubic structure is unstable, and that phase preference can be tuned by changing the model parameters: close to the critical point the bcc structure is stable, while far from the critical point the fcc prevails, with an hcp stability domain in between. We note that with increasing distance from the critical point the equilibrium shapes vary from the sphere to specific faceted shapes: rhombic dodecahedron (bcc), truncated octahedron (fcc), and hexagonal prism (hcp). Solving the equation of motion of the PFC model supplied with conserved noise, solidification starts with the nucleation of an amorphous precursor phase, into which the stable crystalline phase nucleates. The growth rate is found to be time dependent and anisotropic; this anisotropy depends on the driving force. We show that due to the diffusion-controlled growth mechanism, which is especially relevant for crystal aggregation in colloidal systems, dendritic growth structures evolve in large-scale isothermal single-component PFC simulations. An oscillatory effective pair potential resembling those for model glass formers has been evaluated from structural data of the amorphous phase obtained by instantaneous quenching. Finally, we present results for eutectic solidification in a binary PFC model. PMID:21386517

  19. Nonlinear Frequency Compression

    PubMed Central

    Scollie, Susan; Glista, Danielle; Seelisch, Andreas

    2013-01-01

    Frequency lowering technologies offer an alternative amplification solution for severe to profound high frequency hearing losses. While frequency lowering technologies may improve audibility of high frequency sounds, the very nature of this processing can affect the perceived sound quality. This article reports the results from two studies that investigated the impact of a nonlinear frequency compression (NFC) algorithm on perceived sound quality. In the first study, the cutoff frequency and compression ratio parameters of the NFC algorithm were varied, and their effect on the speech quality was measured subjectively with 12 normal hearing adults, 12 normal hearing children, 13 hearing impaired adults, and 9 hearing impaired children. In the second study, 12 normal hearing and 8 hearing impaired adult listeners rated the quality of speech in quiet, speech in noise, and music after processing with a different set of NFC parameters. Results showed that the cutoff frequency parameter had more impact on sound quality ratings than the compression ratio, and that the hearing impaired adults were more tolerant to increased frequency compression than normal hearing adults. No statistically significant differences were found in the sound quality ratings of speech-in-noise and music stimuli processed through various NFC settings by hearing impaired listeners. These findings suggest that there may be an acceptable range of NFC settings for hearing impaired individuals where sound quality is not adversely affected. These results may assist an Audiologist in clinical NFC hearing aid fittings for achieving a balance between high frequency audibility and sound quality. PMID:23539261

  20. Compress Your Files

    ERIC Educational Resources Information Center

    Branzburg, Jeffrey

    2005-01-01

    File compression enables data to be squeezed together, greatly reducing file size. Why would someone want to do this? Reducing file size enables the sending and receiving of files over the Internet more quickly, the ability to store more files on the hard drive, and the ability pack many related files into one archive (for example, all files…

  1. Compression: Rent or own

    SciTech Connect

    Cahill, C.

    1997-07-01

    Historically, the decision to purchase or rent compression has been set as a corporate philosophy. As companies decentralize, there seems to be a shift away from corporate philosophy toward individual profit centers. This has led the decision to rent versus purchase to be looked at on a regional or project-by-project basis.

  2. The Compressed Video Experience.

    ERIC Educational Resources Information Center

    Weber, John

    In the fall semester 1995, Southern Arkansas University- Magnolia (SAU-M) began a two semester trial delivering college classes via a compressed video link between SAU-M and its sister school Southern Arkansas University Tech (SAU-T) in Camden. As soon as the University began broadcasting and receiving classes, it was discovered that using the…

  3. Compressive failure in sapphire under CO2 laser heating

    NASA Astrophysics Data System (ADS)

    Miles, P. A.; Gallagher, J.; Gentilman, R. L.

    1980-07-01

    Irreversible changes were observed in sapphire crystals subjected to surface heating by CO2 laser irradiation at levels above 300 watts/square centimeter. The changes are interpreted as due to plastic flow under compressive stress at temperatures above 900 C. The recognition of possible compressive failures in refractory oxides is of importance in defining laser tolerance levels in high power optics, in the design of laser heating experiments to assess the thermal shock resistance of materials, and possibly in the field of laser assisted machining of ceramics. A detailed thermomechanical analysis was carried out to predict the temperature and stress conditions throughout disk samples as a function of time, heat flux level and flux distribution. Compressive stresses in excess of 200,000 psi were generated. Compressive failure is likely to precede tensile fracture in most experiments where partially heated disks are used.

  4. Accurate Monte Carlo simulations on FCC and HCP Lennard-Jones solids at very low temperatures and high reduced densities up to 1.30.

    PubMed

    Adidharma, Hertanto; Tan, Sugata P

    2016-07-01

    Canonical Monte Carlo simulations on face-centered cubic (FCC) and hexagonal closed packed (HCP) Lennard-Jones (LJ) solids are conducted at very low temperatures (0.10 ≤ T(∗) ≤ 1.20) and high densities (0.96 ≤ ρ(∗) ≤ 1.30). A simple and robust method is introduced to determine whether or not the cutoff distance used in the simulation is large enough to provide accurate thermodynamic properties, which enables us to distinguish the properties of FCC from that of HCP LJ solids with confidence, despite their close similarities. Free-energy expressions derived from the simulation results are also proposed, not only to describe the properties of those individual structures but also the FCC-liquid, FCC-vapor, and FCC-HCP solid phase equilibria.

  5. Accurate Monte Carlo simulations on FCC and HCP Lennard-Jones solids at very low temperatures and high reduced densities up to 1.30

    NASA Astrophysics Data System (ADS)

    Adidharma, Hertanto; Tan, Sugata P.

    2016-07-01

    Canonical Monte Carlo simulations on face-centered cubic (FCC) and hexagonal closed packed (HCP) Lennard-Jones (LJ) solids are conducted at very low temperatures (0.10 ≤ T∗ ≤ 1.20) and high densities (0.96 ≤ ρ∗ ≤ 1.30). A simple and robust method is introduced to determine whether or not the cutoff distance used in the simulation is large enough to provide accurate thermodynamic properties, which enables us to distinguish the properties of FCC from that of HCP LJ solids with confidence, despite their close similarities. Free-energy expressions derived from the simulation results are also proposed, not only to describe the properties of those individual structures but also the FCC-liquid, FCC-vapor, and FCC-HCP solid phase equilibria.

  6. Correlation functions in liquids and crystals: free-energy functional and liquid-to-crystal transition.

    PubMed

    Bharadwaj, Atul S; Singh, Swarn L; Singh, Yashwant

    2013-08-01

    A free-energy functional for a crystal that contains both the symmetry-conserved and symmetry-broken parts of the direct pair-correlation function has been used to investigate the crystallization of fluids in three dimensions. The symmetry-broken part of the direct pair-correlation function has been calculated using a series in ascending powers of the order parameters and which contains three- and higher-body direct correlation functions of the isotropic phase. It is shown that a very accurate description of freezing transitions for a wide class of potentials is found by considering the first two terms of this series. The results found for freezing parameters including the structure of the frozen phase for fluids interacting via the inverse power potential u(r)=ε(σ/r)(n) for n ranging from 4 to ∞ are in very good agreement with simulation results. It is found that for n>6.5 the fluid freezes into a face-centered cubic (fcc) structure while for n≤6 the body-centered cubic (bcc) structure is preferred. The fluid-bcc-fcc triple point is found to be at 1/n=0.158, which is in good agreement with simulation result. PMID:24032780

  7. TEM Video Compressive Sensing

    SciTech Connect

    Stevens, Andrew J.; Kovarik, Libor; Abellan, Patricia; Yuan, Xin; Carin, Lawrence; Browning, Nigel D.

    2015-08-02

    One of the main limitations of imaging at high spatial and temporal resolution during in-situ TEM experiments is the frame rate of the camera being used to image the dynamic process. While the recent development of direct detectors has provided the hardware to achieve frame rates approaching 0.1ms, the cameras are expensive and must replace existing detectors. In this paper, we examine the use of coded aperture compressive sensing methods [1, 2, 3, 4] to increase the framerate of any camera with simple, low-cost hardware modifications. The coded aperture approach allows multiple sub-frames to be coded and integrated into a single camera frame during the acquisition process, and then extracted upon readout using statistical compressive sensing inversion. Our simulations show that it should be possible to increase the speed of any camera by at least an order of magnitude. Compressive Sensing (CS) combines sensing and compression in one operation, and thus provides an approach that could further improve the temporal resolution while correspondingly reducing the electron dose rate. Because the signal is measured in a compressive manner, fewer total measurements are required. When applied to TEM video capture, compressive imaging couled improve acquisition speed and reduce the electron dose rate. CS is a recent concept, and has come to the forefront due the seminal work of Candès [5]. Since the publication of Candès, there has been enormous growth in the application of CS and development of CS variants. For electron microscopy applications, the concept of CS has also been recently applied to electron tomography [6], and reduction of electron dose in scanning transmission electron microscopy (STEM) imaging [7]. To demonstrate the applicability of coded aperture CS video reconstruction for atomic level imaging, we simulate compressive sensing on observations of Pd nanoparticles and Ag nanoparticles during exposure to high temperatures and other environmental

  8. Coded aperture compressive temporal imaging.

    PubMed

    Llull, Patrick; Liao, Xuejun; Yuan, Xin; Yang, Jianbo; Kittle, David; Carin, Lawrence; Sapiro, Guillermo; Brady, David J

    2013-05-01

    We use mechanical translation of a coded aperture for code division multiple access compression of video. We discuss the compressed video's temporal resolution and present experimental results for reconstructions of > 10 frames of temporal data per coded snapshot.

  9. Close-spaced crystal growth and characterization of BP crystals

    NASA Astrophysics Data System (ADS)

    Schmitt, J. O.; Edgar, L. J. H.; Liu, L.; Nagarajan, R.; Szyszko, T.; Podsiadlo, S.; Wojciech, G.

    2005-02-01

    The present study was undertaken to determine if boron phosphide (BP) crystals could be produced by a simple technique, close-spaced vapor transport (CVST). This technique has proven very successful in achieving very high growth rates for a wide variety of materials including ZnSe, AlN, and SiC. Both silicon (100) and sapphire substrates were used for the CSVT growth. The resulting films were characterized by Raman spectroscopy. Sublimation of BP powder from 1050 to 1450 °C in an argon atmosphere produced a range of deep orange colour, single and polycrystalline BP crystals. The crystal size increased and the crystal density decreased with increasing temperature. Well-faceted crystals were produced at an intermediate temperature of 1200 °C. At temperatures higher then 1450 °C no BP crystals were grown. Only a fibrous mass of fine whiskers, loosely attached to the substrate were produced. The peak position of the Raman LO mode of the BP crystals was shifted to higher wavenumbers than the BP powder source, suggesting that the crystals were compressively strained.

  10. Monte Carlo Simulations of the Adsorption of Anisotropic Noninteracting Molecules on the (111) Surface of a FCC Crystal

    NASA Astrophysics Data System (ADS)

    Filimonov, S. N.; Hervieu, Yu. Yu.

    2016-04-01

    We present results of computer Monte Carlo simulations of the formation of adsorption layers composed of noninteracting molecules of benzene, anthracene, and pentacene on the Ag(111) surface. The dependences of the chemical potential of the molecules on the density of the molecular layer (surface coverage) are obtained. By means of the thermodynamic integration method the configurational entropy of the molecular layer is evaluated as a function of surface coverage. It is shown that the substitution of benzene by pentacene results in a more than twofold decrease of the maximum entropy of the molecular layer. The presence of steps on the substrate surface also leads to a decrease of the molecular layer entropy. If the distance between the steps is comparable to the linear size of the molecule, the molecules in dense adsorption layers orient preferentially parallel to the step edges.

  11. Space-time compressive imaging.

    PubMed

    Treeaporn, Vicha; Ashok, Amit; Neifeld, Mark A

    2012-02-01

    Compressive imaging systems typically exploit the spatial correlation of the scene to facilitate a lower dimensional measurement relative to a conventional imaging system. In natural time-varying scenes there is a high degree of temporal correlation that may also be exploited to further reduce the number of measurements. In this work we analyze space-time compressive imaging using Karhunen-Loève (KL) projections for the read-noise-limited measurement case. Based on a comprehensive simulation study, we show that a KL-based space-time compressive imager offers higher compression relative to space-only compressive imaging. For a relative noise strength of 10% and reconstruction error of 10%, we find that space-time compressive imaging with 8×8×16 spatiotemporal blocks yields about 292× compression compared to a conventional imager, while space-only compressive imaging provides only 32× compression. Additionally, under high read-noise conditions, a space-time compressive imaging system yields lower reconstruction error than a conventional imaging system due to the multiplexing advantage. We also discuss three electro-optic space-time compressive imaging architecture classes, including charge-domain processing by a smart focal plane array (FPA). Space-time compressive imaging using a smart FPA provides an alternative method to capture the nonredundant portions of time-varying scenes.

  12. Federal Communications Commission (FCC) Transponder Loading Data Conversion Software. User's guide and software maintenance manual, version 1.2

    NASA Technical Reports Server (NTRS)

    Mallasch, Paul G.

    1993-01-01

    This volume contains the complete software system documentation for the Federal Communications Commission (FCC) Transponder Loading Data Conversion Software (FIX-FCC). This software was written to facilitate the formatting and conversion of FCC Transponder Occupancy (Loading) Data before it is loaded into the NASA Geosynchronous Satellite Orbital Statistics Database System (GSOSTATS). The information that FCC supplies NASA is in report form and must be converted into a form readable by the database management software used in the GSOSTATS application. Both the User's Guide and Software Maintenance Manual are contained in this document. This volume of documentation passed an independent quality assurance review and certification by the Product Assurance and Security Office of the Planning Research Corporation (PRC). The manuals were reviewed for format, content, and readability. The Software Management and Assurance Program (SMAP) life cycle and documentation standards were used in the development of this document. Accordingly, these standards were used in the review. Refer to the System/Software Test/Product Assurance Report for the Geosynchronous Satellite Orbital Statistics Database System (GSOSTATS) for additional information.

  13. 78 FR 49480 - Proposed Information Collection; Comment Request; NTIA/FCC Web-based Frequency Coordination System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-14

    ...; NTIA/FCC Web- based Frequency Coordination System AGENCY: National Telecommunications and Information... Telecommunications and Information Administration (NTIA) hosts a web-based system that collects specific... basis by federal and non-federal users. The web-based system provides a means for non-federal...

  14. 47 CFR Appendix 1 to Part 97 - Places Where the Amateur Service is Regulated by the FCC

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Places Where the Amateur Service is Regulated...) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO SERVICE Pt. 97, App. 1 Appendix 1 to Part 97—Places Where the Amateur Service is Regulated by the FCC In ITU Region 2, the amateur service is regulated by...

  15. 47 CFR Appendix 1 to Part 97 - Places Where the Amateur Service is Regulated by the FCC

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Places Where the Amateur Service is Regulated...) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO SERVICE Pt. 97, App. 1 Appendix 1 to Part 97—Places Where the Amateur Service is Regulated by the FCC In ITU Region 2, the amateur service is regulated by...

  16. 47 CFR Appendix 1 to Part 97 - Places Where the Amateur Service is Regulated by the FCC

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Places Where the Amateur Service is Regulated...) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO SERVICE Pt. 97, App. 1 Appendix 1 to Part 97—Places Where the Amateur Service is Regulated by the FCC In ITU Region 2, the amateur service is regulated by...

  17. 47 CFR Appendix 1 to Part 97 - Places Where the Amateur Service is Regulated by the FCC

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Places Where the Amateur Service is Regulated...) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO SERVICE Pt. 97, App. 1 Appendix 1 to Part 97—Places Where the Amateur Service is Regulated by the FCC In ITU Region 2, the amateur service is regulated by...

  18. Magnetic and structural properties of fcc/hcp bi-crystalline multilayer Co nanowire arrays prepared by controlled electroplating

    NASA Astrophysics Data System (ADS)

    Pirota, K. R.; Béron, F.; Zanchet, D.; Rocha, T. C. R.; Navas, D.; Torrejón, J.; Vazquez, M.; Knobel, M.

    2011-04-01

    We report on the structural and magnetic properties of crystalline bi-phase Co nanowires, electrodeposited into the pores of anodized alumina membranes, as a function of their length. Co nanowires present two different coexistent crystalline structures (fcc and hcp) that can be controlled by the time of pulsed electrodeposition. The fcc crystalline phase grows at the early stage and is present at the bottom of all the nanowires, strongly influencing their magnetic behavior. Both structural and magnetic characterizations indicate that the length of the fcc phase is constant at around 260-270 nm. X-ray diffraction measurements revealed a strong preferential orientation (texture) in the (1 0-1 0) direction for the hcp phase, which increases the nanowire length as well as crystalline grain size, degree of orientation, and volume fraction of oriented material. The first-order reversal curve (FORC) method was used to infer both qualitatively and quantitatively the complex magnetization reversal of the nanowires. Under the application of a magnetic field parallel to the wires, the magnetization reversal of each region is clearly distinguishable; the fcc phase creates a high coercive contribution without an interaction field, while the hcp phase presents a smaller coercivity and undergoes a strong antiparallel interaction field from neighboring wires.

  19. 75 FR 42376 - Proposed Information Collection; Comment Request; NTIA/FCC Web-based Frequency Coordination System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-21

    ... applications on the Web site provide ] real-time responses: (1) Obtain a validation of the coordination of a...; NTIA/FCC Web- based Frequency Coordination System AGENCY: National Telecommunications and Information... Telecommunications and Information Administration (NTIA) hosts a Web-based system that collects...

  20. Crystal Systems.

    ERIC Educational Resources Information Center

    Schomaker, Verner; Lingafelter, E. C.

    1985-01-01

    Discusses characteristics of crystal systems, comparing (in table format) crystal systems with lattice types, number of restrictions, nature of the restrictions, and other lattices that can accidently show the same metrical symmetry. (JN)

  1. Virtual Crystallizer

    SciTech Connect

    Land, T A; Dylla-Spears, R; Thorsness, C B

    2006-08-29

    Large dihydrogen phosphate (KDP) crystals are grown in large crystallizers to provide raw material for the manufacture of optical components for large laser systems. It is a challenge to grow crystal with sufficient mass and geometric properties to allow large optical plates to be cut from them. In addition, KDP has long been the canonical solution crystal for study of growth processes. To assist in the production of the crystals and the understanding of crystal growth phenomena, analysis of growth habits of large KDP crystals has been studied, small scale kinetic experiments have been performed, mass transfer rates in model systems have been measured, and computational-fluid-mechanics tools have been used to develop an engineering model of the crystal growth process. The model has been tested by looking at its ability to simulate the growth of nine KDP boules that all weighed more than 200 kg.

  2. Progressive compressive imager

    NASA Astrophysics Data System (ADS)

    Evladov, Sergei; Levi, Ofer; Stern, Adrian

    2012-06-01

    We have designed and built a working automatic progressive sampling imaging system based on the vector sensor concept, which utilizes a unique sampling scheme of Radon projections. This sampling scheme makes it possible to progressively add information resulting in tradeoff between compression and the quality of reconstruction. The uniqueness of our sampling is that in any moment of the acquisition process the reconstruction can produce a reasonable version of the image. The advantage of the gradual addition of the samples is seen when the sparsity rate of the object is unknown, and thus the number of needed measurements. We have developed the iterative algorithm OSO (Ordered Sets Optimization) which employs our sampling scheme for creation of nearly uniform distributed sets of samples, which allows the reconstruction of Mega-Pixel images. We present the good quality reconstruction from compressed data ratios of 1:20.

  3. Digital cinema video compression

    NASA Astrophysics Data System (ADS)

    Husak, Walter

    2003-05-01

    The Motion Picture Industry began a transition from film based distribution and projection to digital distribution and projection several years ago. Digital delivery and presentation offers the prospect to increase the quality of the theatrical experience for the audience, reduce distribution costs to the distributors, and create new business opportunities for the theater owners and the studios. Digital Cinema also presents an opportunity to provide increased flexibility and security of the movies for the content owners and the theater operators. Distribution of content via electronic means to theaters is unlike any of the traditional applications for video compression. The transition from film-based media to electronic media represents a paradigm shift in video compression techniques and applications that will be discussed in this paper.

  4. Crystal growing

    NASA Technical Reports Server (NTRS)

    Neville, J. P.

    1990-01-01

    One objective is to demonstrate the way crystals grow and how they affect the behavior of material. Another objective is to compare the growth of crystals in metals and nonmetals. The procedures, which involve a supersaturated solution of a salt that will separate into crystals on cooling and the pouring off of an eutectic solution to expose the crystals formed by a solid solution when an alloy of two metals forms a solid and eutectic solution on cooling, are described.

  5. Compressibility of solids

    NASA Technical Reports Server (NTRS)

    Vinet, P.; Ferrante, J.; Rose, J. H.; Smith, J. R.

    1987-01-01

    A universal form is proposed for the equation of state (EOS) of solids. Good agreement is found for a variety of test data. The form of the EOS is used to suggest a method of data analysis, which is applied to materials of geophysical interest. The isothermal bulk modulus is discussed as a function of the volume and of the pressure. The isothermal compression curves for materials of geophysical interest are examined.

  6. Basic cluster compression algorithm

    NASA Technical Reports Server (NTRS)

    Hilbert, E. E.; Lee, J.

    1980-01-01

    Feature extraction and data compression of LANDSAT data is accomplished by BCCA program which reduces costs associated with transmitting, storing, distributing, and interpreting multispectral image data. Algorithm uses spatially local clustering to extract features from image data to describe spectral characteristics of data set. Approach requires only simple repetitive computations, and parallel processing can be used for very high data rates. Program is written in FORTRAN IV for batch execution and has been implemented on SEL 32/55.

  7. 1D X-ray Beam Compressing Monochromators

    SciTech Connect

    Korytar, D.; Dobrocka, E.; Konopka, P.; Zaprazny, Z.; Ferrari, C.; Mikulik, P.; Vagovic, P.; Ac, V.; Erko, A.; Abrosimov, N.

    2010-04-06

    A total beam compression of 5 and 10 corresponding to the asymmetry angles of 9 deg. and 12 deg. is achieved with V-5 and V-10 monochromators, respectively, in standard single crystal pure germanium (220) X-ray beam compressing (V-shaped) monochromators for CuKalpha{sub 1} radiation. A higher 1D compression of X-ray beam is possible using larger angles of asymmetry, however it is achieved at the expense of the total intensity, which is decreased due to the refraction effect. To increase the monochromator intensity, several ways are considered both theoretically and experimentally. Linearly graded germanium rich Ge{sub x}Si{sub (1-x)} single crystal was used to prepare a V-21 single crystal monochromator with 15 deg. asymmetry angles (compression factor of 21). Its temperature gradient version is discussed for CuKalpha{sub 1} radiation. X-ray diffraction measurements on the graded GeSi monochromator showed more than 3-times higher intensity at the output compared with that of a pure Ge monochromator.

  8. Deformation and erosion of f.c.c. metals and alloys under cavitation attack

    NASA Technical Reports Server (NTRS)

    Rao, B. C. S.; Buckley, D. H.

    1984-01-01

    Experimental investigations have been conducted to determine the early stages of cavitation attack on 6061-T6 aluminum alloy, electrolytic tough pitch copper, brass, and bronze, all having polycrystalline fcc matrices. The surface profiles and scanning electron micrographs show that the pits are initially formed at the grain boundaries, while the grain surfaces are progressively roughened by multiple slip and twinning. The initial erosion is noted to have occurred from the material in the grain boundaries, as well as by fragmentation of part of the grains. Further erosion occurred by shearing and necking of the surface undulations caused by plastic deformation. The mean penetration depth, computed on the basis of mass loss, was lowest on the bronze and greatest on the copper. Attention is given to the relation of cavitation attack to grain size, glide stress and stacking fault energy.

  9. A simple model for large-scale simulations of fcc metals with explicit treatment of electrons

    NASA Astrophysics Data System (ADS)

    Mason, D. R.; Foulkes, W. M. C.; Sutton, A. P.

    2010-01-01

    The continuing advance in computational power is beginning to make accurate electronic structure calculations routine. Yet, where physics emerges through the dynamics of tens of thousands of atoms in metals, simplifications must be made to the electronic Hamiltonian. We present the simplest extension to a single s-band model [A.P. Sutton, T.N. Todorov, M.J. Cawkwell and J. Hoekstra, Phil. Mag. A 81 (2001) p.1833.] of metallic bonding, namely, the addition of a second s-band. We show that this addition yields a reasonable description of the density of states at the Fermi level, the cohesive energy, formation energies of point defects and elastic constants of some face-centred cubic (fcc) metals.

  10. When Magnetic Catalyst Meets Magnetic Reactor: Etherification of FCC Light Gasoline as an Example

    PubMed Central

    Cheng, Meng; Xie, Wenhua; Zong, Baoning; Sun, Bo; Qiao, Minghua

    2013-01-01

    The application of elaborately designed magnetic catalysts has long been limited to ease their separation from the products only. In this paper, we for the first time employed a magnetic sulphonated poly(styrene-divinylbenzene) resin catalyst on a magnetically stabilized-bed (MSB) reactor to enhance the etherification of fluidized catalytic cracking (FCC) light gasoline, one of the most important reactions in petroleum refining industry. We demonstrated that the catalytic performance of the magnetic acid resin catalyst on the magnetic reactor is substantially enhanced as compared to its performance on a conventional fixed-bed reactor under otherwise identical operation conditions. The magnetic catalyst has the potential to be loaded and unloaded continuously on the magnetic reactor, which will greatly simplify the current complex industrial etherification processes. PMID:23756855

  11. Self-diffusion within the cores of a dissociated glide dislocation in an fcc solid

    SciTech Connect

    Hoagland, R.G.; Voter, A.F.; Foiles, S.M.

    1998-08-04

    This paper focuses on a detailed examination of the formation and migration energies of vacancies in dislocation cores. These features were determined by atomistic methods including molecular statics, elastic band, and kinetic Monte Carlo (KMC) methods and an EAM potential for aluminum applied to a model of a discrete fcc atomic array containing a (a/2)<110> glide dislocation that is dissociated into two Shockley partials separated by an intrinsic fault. The crystallographic orientation of the model is such that one partial is pure edge while the other is a 60{degree} mixed, mostly screw, partial. The results indicate that a vacancy in a dislocation core displays some unusual behavior even for this relatively simple case.

  12. Ab initio study of He point defects in fcc Au-Ag alloys

    SciTech Connect

    Zhu, Zi Qiang; Yang, Li; Nie, JL; Peng, SM; Long, XG; Zhou, X. S.; Zu, Xiaotao; Gao, Fei

    2013-04-25

    The relative stabilities of He defects in two fcc Au-Ag alloys (Au3Ag2 and AuAg) are investigated using ab initio method based on density functional theory. The results show that the stabilities of He defects in the two alloys mainly depend on the atomic arrangements of the nearest neighboring host metals. A He interstitial prefers to stay at a site with more Ag neighboring atoms, while the favorable substitutional site has more Au neighboring atoms in Au-Ag alloys. Moreover, the substitutional He defects are the most stable configurations in both the alloys, and the octahedral He interstitials are energetically more favorable than the tetrahedral interstitials. It is of interest to note that the properties of He defects slightly depend on the mass-density of Au-Ag alloys. The results also demonstrate that the relative stabilities of He defects are primarily attributed to the hybridization between metals d states and He p states.

  13. Simulation of atomic diffusion in the Fcc NiAl system: A kinetic Monte Carlo study

    DOE PAGES

    Alfonso, Dominic R.; Tafen, De Nyago

    2015-04-28

    The atomic diffusion in fcc NiAl binary alloys was studied by kinetic Monte Carlo simulation. The environment dependent hopping barriers were computed using a pair interaction model whose parameters were fitted to relevant data derived from electronic structure calculations. Long time diffusivities were calculated and the effect of composition change on the tracer diffusion coefficients was analyzed. These results indicate that this variation has noticeable impact on the atomic diffusivities. A reduction in the mobility of both Ni and Al is demonstrated with increasing Al content. As a result, examination of the pair interaction between atoms was carried out formore » the purpose of understanding the predicted trends.« less

  14. Conversion of pine sawdust bio-oil (raw and thermally processed) over equilibrium FCC catalysts.

    PubMed

    Bertero, Melisa; Sedran, Ulises

    2013-05-01

    A raw bio-oil from pine sawdust, the liquid product from its thermal conditioning and a synthetic bio-oil composed by eight model compounds representing the main chemical groups in bio-oils, were converted thermally and over a commercial equilibrium FCC catalyst. The experiments were performed in a fixed bed reactor at 500 °C. The highest hydrocarbon yield (53.5 wt.%) was obtained with the conditioned liquid. The coke yields were significant in all the cases, from 9 to 14 wt.%. The synthetic bio-oil produced lesser hydrocarbons and more oxygenated compounds and coke than the authentic feedstocks from biomass. The previous thermal treatment of the raw bio-oil had the positive effects of increasing 25% the yield of hydrocarbons, decreasing 55% the yield of oxygenated compounds and decreasing 20% the yield of coke, particularly the more condensed coke. PMID:23375765

  15. Analysis of reversed torsion of FCC metals using polycrystal plasticity models

    SciTech Connect

    Guo, Xiao Qian; Wang, Huamiao; Wu, Pei Dong; Mao, Xian Biao

    2015-06-19

    Large strain behavior of FCC polycrystals during reversed torsion are investigated through the special purpose finite element based on the classical Taylor model and the elastic-viscoplastic self-consistent (EVPSC) model with various Self-Consistent Schemes (SCSs). It is found that the response of both the fixed-end and free-end torsion is very sensitive to the constitutive models. The models are assessed through comparing their predictions to the corresponding experiments in terms of the stress and strain curves, the Swift effect and texture evolution. It is demonstrated that none of the models examined can precisely predict all the experimental results. However, more careful observation reveals that, among the models considered, the tangent model gives the worst overall performance. As a result, it is also demonstrated that the intensity of residual texture during reverse twisting is dependent on the amounts of pre-shear strain during forward twisting and the model used.

  16. Conversion of pine sawdust bio-oil (raw and thermally processed) over equilibrium FCC catalysts.

    PubMed

    Bertero, Melisa; Sedran, Ulises

    2013-05-01

    A raw bio-oil from pine sawdust, the liquid product from its thermal conditioning and a synthetic bio-oil composed by eight model compounds representing the main chemical groups in bio-oils, were converted thermally and over a commercial equilibrium FCC catalyst. The experiments were performed in a fixed bed reactor at 500 °C. The highest hydrocarbon yield (53.5 wt.%) was obtained with the conditioned liquid. The coke yields were significant in all the cases, from 9 to 14 wt.%. The synthetic bio-oil produced lesser hydrocarbons and more oxygenated compounds and coke than the authentic feedstocks from biomass. The previous thermal treatment of the raw bio-oil had the positive effects of increasing 25% the yield of hydrocarbons, decreasing 55% the yield of oxygenated compounds and decreasing 20% the yield of coke, particularly the more condensed coke.

  17. Twinning in fcc lattice creates low-coordinated catalytically active sites in porous gold.

    PubMed

    Krajčí, Marian; Kameoka, Satoshi; Tsai, An-Pang

    2016-08-28

    We describe a new mechanism for creation of catalytically active sites in porous gold. Samples of porous gold prepared by de-alloying Al2Au exhibit a clear correlation between the catalytic reactivity towards CO oxidation and structural defects in the fcc lattice of Au. We have found that on the stepped {211} surfaces quite common twin boundary defects in the bulk structure of porous gold can form long close-packed rows of atoms with the coordination number CN = 6. DFT calculations confirm that on these low-coordinated Au sites dioxygen chemisorbs and CO oxidation can proceed via the Langmuir-Hinshelwood mechanism with the activation energy of 37 kJ/mol or via the CO-OO intermediate with the energy barrier of 19 kJ/mol. The existence of the twins in porous gold is stabilized by the surface energy.

  18. Effect of vacancy defects on generalized stacking fault energy of fcc metals.

    PubMed

    Asadi, Ebrahim; Zaeem, Mohsen Asle; Moitra, Amitava; Tschopp, Mark A

    2014-03-19

    Molecular dynamics (MD) and density functional theory (DFT) studies were performed to investigate the influence of vacancy defects on generalized stacking fault (GSF) energy of fcc metals. MEAM and EAM potentials were used for MD simulations, and DFT calculations were performed to test the accuracy of different common parameter sets for MEAM and EAM potentials in predicting GSF with different fractions of vacancy defects. Vacancy defects were placed at the stacking fault plane or at nearby atomic layers. The effect of vacancy defects at the stacking fault plane and the plane directly underneath of it was dominant compared to the effect of vacancies at other adjacent planes. The effects of vacancy fraction, the distance between vacancies, and lateral relaxation of atoms on the GSF curves with vacancy defects were investigated. A very similar variation of normalized SFEs with respect to vacancy fractions were observed for Ni and Cu. MEAM potentials qualitatively captured the effect of vacancies on GSF.

  19. Spin-driven symmetry breaking in the frustrated fcc pyrite MnS2.

    PubMed

    Kimber, Simon A J; Chatterji, Tapan

    2015-06-10

    We report the characterisation of natural samples of the cubic pyrite mineral MnS2 using very high resolution synchrotron x-ray diffraction techniques. At low temperatures we find a new low temperature polymorph, which results from coupling between magnetic and lattice degrees of freedom. Below the magnetic ordering temperature T(N) = 48 K, we detect a pseudo-tetragonal distortion with a tiny c/a ratio of 1.0006. The structure can be refined in the space group Pbca The symmetry lowering reduces magnetic frustration in the fcc Mn(2+) lattice and is likely responsible for the previously reported lock-in of the magnetic propagation vector. This behaviour is similar to the spin-Peierls phase transitions reported in other three-dimensional Heisenberg magnets like the chromate spinels.

  20. When magnetic catalyst meets magnetic reactor: etherification of FCC light gasoline as an example.

    PubMed

    Cheng, Meng; Xie, Wenhua; Zong, Baoning; Sun, Bo; Qiao, Minghua

    2013-01-01

    The application of elaborately designed magnetic catalysts has long been limited to ease their separation from the products only. In this paper, we for the first time employed a magnetic sulphonated poly(styrene-divinylbenzene) resin catalyst on a magnetically stabilized-bed (MSB) reactor to enhance the etherification of fluidized catalytic cracking (FCC) light gasoline, one of the most important reactions in petroleum refining industry. We demonstrated that the catalytic performance of the magnetic acid resin catalyst on the magnetic reactor is substantially enhanced as compared to its performance on a conventional fixed-bed reactor under otherwise identical operation conditions. The magnetic catalyst has the potential to be loaded and unloaded continuously on the magnetic reactor, which will greatly simplify the current complex industrial etherification processes.