Science.gov

Sample records for compressed spinal ganglia

  1. [Information analysis of spinal ganglia].

    PubMed

    Lobko, P I; Kovaleva, D V; Kovalchuk, I E; Pivchenko, P G; Rudenok, V V; Davydova, L A

    2000-01-01

    Information parameters (entropia and redundancy) of cervical and thoracic spinal ganglia of albino rat foetuses, mature animals (cat and dog) and human subjects were analysed. Information characteristics of spinal ganglia were shown to be level-specified and to depend on their functional peculiarities. Information parameters of thoracic spinal ganglia of man and different animals are specie specified and may be used in assessment of morphological structures as information systems.

  2. Chronic sciatic nerve compression induces fibrosis in dorsal root ganglia.

    PubMed

    Li, Qinwen; Chen, Jianghai; Chen, Yanhua; Cong, Xiaobin; Chen, Zhenbing

    2016-03-01

    In the present study, pathological alterations in neurons of the dorsal root ganglia (DRG) were investigated in a rat model of chronic sciatic nerve compression. The rat model of chronic sciatic nerve compression was established by placing a 1 cm Silastic tube around the right sciatic nerve. Histological examination was performed via Masson's trichrome staining. DRG injury was assessed using Fluoro Ruby (FR) or Fluoro Gold (FG). The expression levels of target genes were examined using reverse transcription‑quantitative polymerase chain reaction, western blot and immunohistochemical analyses. At 3 weeks post‑compression, collagen fiber accumulation was observed in the ipsilateral area and, at 8 weeks, excessive collagen formation with muscle atrophy was observed. The collagen volume fraction gradually and significantly increased following sciatic nerve compression. In the model rats, the numbers of FR‑labeled DRG neurons were significantly higher, relative to the sham‑operated group, however, the numbers of FG‑labeled neurons were similar. In the ipsilateral DRG neurons of the model group, the levels of transforming growth factor‑β1 (TGF‑β1) and connective tissue growth factor (CTGF) were elevated and, surrounding the neurons, the levels of collagen type I were increased, compared with those in the contralateral DRG. In the ipsilateral DRG, chronic nerve compression was associated with significantly higher levels of phosphorylated (p)‑extracellular signal‑regulated kinase 1/2, and significantly lower levels of p‑c‑Jun N‑terminal kinase and p‑p38, compared with those in the contralateral DRGs. Chronic sciatic nerve compression likely induced DRG pathology by upregulating the expression levels of TGF‑β1, CTGF and collagen type I, with involvement of the mitogen‑activated protein kinase signaling pathway.

  3. The dura causes spinal cord compression after spinal cord injury.

    PubMed

    Saadoun, Samira; Werndle, Melissa C; Lopez de Heredia, Luis; Papadopoulos, Marios C

    2016-10-01

    MR scans from 65 patients with traumatic spinal cord injury were analysed; on admission 95% had evidence of cord compression - in 26% due to the dura, and in the remaining 74% due to extradural factors. Compression due to dural factors resolved with a half-life of 5.5 days. These findings suggest that bony decompression alone may not relieve spinal cord compression in the quarter of patients in whom dural factors are significant.

  4. [Therapy progress of spinal cord compression by metastatic spinal tumor].

    PubMed

    Liu, Yao-sheng; He, Qi-zhen; Liu, Shu-bin; Jiang, Wei-gang; Lei, Ming-xing

    2016-01-01

    Metastatic epidural compression of the spinal cord is a significant source of morbidity in patients with systemic cancer. With improvment of oncotheray, survival period in the patients is improving and metastatic cord compression is en- countered increasingly often. Surgical management performed for early circumferential decompression for the spinal cord com- pression with spine instability, and spine reconstruction performed. Patients with radiosensitive tumours without spine instabili- ty, radiotherapy is an effective therapy. Spinal stereotactic radiosurgery and minimally invasive techniques, such as vertebro- plasty and kyphoplasty, percutaneous pedicle screw fixation, radiofrequency ablation are promising options for treatment of cer- tain selected patients with spinal metastases.

  5. Spinal cord compression due to vertebral hemangioma.

    PubMed

    Aksu, Gorkem; Fayda, Merdan; Saynak, Mert; Karadeniz, Ahmet

    2008-02-01

    This article presents a case of multiple vertebral hemangiomas in a 58-year-old man with pain in the dorsal region and bilateral progressive foot numbness. Magnetic resonance imaging revealed multiple vertebral hemangiomas. One hemangioma at the T7 level demonstrated epidural extension, causing spinal cord compression. After treatment with radiotherapy, the patient's symptoms improved significantly.

  6. Metastatic carcinoid tumour with spinal cord compression.

    PubMed

    Scott, Si; Antwi-Yeboah, Y; Bucur, Sd

    2012-07-01

    Carcinoid tumours are rare with an incidence of 5.25/100,000. They predominantly originate in the gastrointestinal tract (50-60%) or bronchopulmonary system (25-30%). Common sites of metastasis are lymph nodes, liver, lungs and bone. Spinal metastasis are rare, but has been reported in patients with symptoms of spinal cord compression including neurological deficits. We report a rare case of carcinoid metastasis with spinal cord compression, in a 63-year-old man, presenting with a one-year history of back pain without any neurological symptoms. The patient underwent a two-level decompressive laminectomy of T10 and T11 as well as piecemeal tumour resection. Post-operatively the patient made a good recovery without complications.

  7. Metastatic carcinoid tumour with spinal cord compression

    PubMed Central

    Scott, SI; Antwi-Yeboah, Y; Bucur, SD

    2012-01-01

    Carcinoid tumours are rare with an incidence of 5.25/100,000. They predominantly originate in the gastrointestinal tract (50-60%) or bronchopulmonary system (25-30%). Common sites of metastasis are lymph nodes, liver, lungs and bone. Spinal metastasis are rare, but has been reported in patients with symptoms of spinal cord compression including neurological deficits. We report a rare case of carcinoid metastasis with spinal cord compression, in a 63-year-old man, presenting with a one-year history of back pain without any neurological symptoms. The patient underwent a two-level decompressive laminectomy of T10 and T11 as well as piecemeal tumour resection. Post-operatively the patient made a good recovery without complications. PMID:24960730

  8. Spinal cord compression in two related Ursus arctos horribilis.

    PubMed

    Thomovsky, Stephanie A; Chen, Annie V; Roberts, Greg R; Schmidt, Carrie E; Layton, Arthur W

    2012-09-01

    Two 15-yr-old grizzly bear littermates were evaluated within 9 mo of each other with the symptom of acute onset of progressive paraparesis and proprioceptive ataxia. The most significant clinical examination finding was pelvic limb paresis in both bears. Magnetic resonance examinations of both bears showed cranial thoracic spinal cord compression. The first bear had left-sided extradural, dorsolateral spinal cord compression at T3-T4. Vertebral canal stenosis was also observed at T2-T3. Images of the second bear showed lateral spinal cord compression from T2-T3 to T4-T5. Intervertebral disk disease and associated spinal cord compression was also observed at T2-T3 and T3-T4. One grizzly bear continued to deteriorate despite reduced exercise, steroid, and antibiotic therapy. The bear was euthanized, and a necropsy was performed. The postmortem showed a spinal ganglion cyst that caused spinal cord compression at the level of T3-T4. Wallerian-like degeneration was observed from C3-T6. The second bear was prescribed treatment that consisted of a combination of reduced exercise and steroid therapy. He continued to deteriorate with these medical therapies and was euthanized 4 mo after diagnosis. A necropsy showed hypertrophy and protrusion of the dorsal longitudinal ligament at T2-T3 and T3-T4, with resulting spinal cord compression in this region. Wallerian-like degeneration was observed from C2-L1. This is one of few case reports that describes paresis in bears. It is the only case report, to the authors' knowledge, that describes spinal magnetic resonance imaging findings in a grizzly bear and also the only report that describes a cranial thoracic myelopathy in two related grizzly bears with neurologic signs.

  9. Critical evaluation of the expression of gastrin-releasing peptide in dorsal root ganglia and spinal cord

    PubMed Central

    Barry, Devin M; Li, Hui; Liu, Xian-Yu; Shen, Kai-Feng; Liu, Xue-Ting; Wu, Zhen-Yu; Munanairi, Admire; Chen, Xiao-Jun; Yin, Jun; Sun, Yan-Gang; Li, Yun-Qing

    2016-01-01

    There are substantial disagreements about the expression of gastrin-releasing peptide (GRP) in sensory neurons and whether GRP antibody cross-reacts with substance P (SP). These concerns necessitate a critical revaluation of GRP expression using additional approaches. Here, we show that a widely used GRP antibody specifically recognizes GRP but not SP. In the spinal cord of mice lacking SP (Tac1 KO), the expression of not only GRP but also other peptides, notably neuropeptide Y (NPY), is significantly diminished. We detected Grp mRNA in dorsal root ganglias using reverse transcription polymerase chain reaction, in situ hybridization and RNA-seq. We demonstrated that Grp mRNA and protein are upregulated in dorsal root ganglias, but not in the spinal cord, of mice with chronic itch. Few GRP+ immunostaining signals were detected in spinal sections following dorsal rhizotomy and GRP+ cell bodies were not detected in dissociated dorsal horn neurons. Ultrastructural analysis further shows that substantially more GRPergic fibers form synaptic contacts with gastrin releasing peptide receptor-positive (GRPR+) neurons than SPergic fibers. Our comprehensive study demonstrates that a majority of GRPergic fibers are of primary afferent origin. A number of factors such as low copy number of Grp transcripts, small percentage of cells expressing Grp, and the use of an eGFP GENSAT transgenic as a surrogate for GRP protein have contributed to the controversy. Optimization of experimental procedures facilitates the specific detection of GRP expression in dorsal root ganglia neurons. PMID:27068287

  10. Spinal compression fractures due to pregnancy-associated osteoporosis

    PubMed Central

    Krishnakumar, R; Kumar, Arun T; Kuzhimattam, Mathew John

    2016-01-01

    Objectives: To report on unique cases of spinal compression fractures due to pregnancy-associated osteoporosis (PAO) and to suggest a satisfactory treatment modality. Materials and Methods: A single-center retrospective study. We reviewed the data of 535 patients with osteoporotic spinal compression fractures over a period of 5-year. Two patients who developed spinal compression fractures due to PAO were identified and treated. Results: The clinical presentation and blood investigations ruled out other causes of osteoporosis. Dual-energy X-ray absorptiometry was used to confirm the diagnosis. All patients improved with medical management. Conclusion: Vertebral fractures due to PAO should be considered as a differential diagnosis in patients with back pain who are in the third trimester of pregnancy or in postpartum. Early recognition and appropriate conservative management would be necessary to prevent complications such as new vertebral fractures and chronic back pain. PMID:27891031

  11. Cervical Spinal Cord Compression: A Rare Presentation of Hepatocellular Carcinoma

    PubMed Central

    Chime, Chukwunonso; Arjun, Shiva; Reddy, Pavithra; Niazi, Masooma

    2017-01-01

    Hepatocellular carcinoma (HCC) is the most common primary malignancy of liver. Distant metastasis to various organs is well known. Skeletal metastasis is also reported to various locations. Vertebral metastasis has been reported mostly to thoracic spine. However, cervical spinal cord involvement leading to cord compression has been reported very rarely in literature. We present a case of 58-year-old male with liver cirrhosis presenting as neck pain. Further work-up revealed metastatic HCC to cervical spinal cord resulting in acute cord compression. Patient has been treated with neurosurgical intervention. PMID:28299213

  12. Spinal cord compression due to extramedullary haemopoiesis in myelofibrosis.

    PubMed Central

    Cook, G; Sharp, R A

    1994-01-01

    Extramedullary haemopoiesis resulting in spinal cord compression is rare. This report of extramedullary myeloid metaplasia in a patient with myelofibrosis serves to illustrate the value of magnetic resonance imaging (MRI) in the diagnosis and management of good neurological recovery. Images PMID:8027402

  13. Mechanical and thermal hyperalgesia and ectopic neuronal discharge after chronic compression of dorsal root ganglia.

    PubMed

    Song, X J; Hu, S J; Greenquist, K W; Zhang, J M; LaMotte, R H

    1999-12-01

    Chronic compression of the dorsal root ganglion (CCD) was produced in adult rats by implanting a stainless steel rod unilaterally into the intervertebral foramen, one rod at L(4) and another at L(5). Two additional groups of rats received either a sham surgery or an acute injury consisting of a transient compression of the ganglion. Withdrawal of the hindpaw was used as evidence of a nocifensive response to mechanical and thermal stimulation of the plantar surface. In addition, extracellular electrophysiological recordings of spontaneous discharges were obtained from dorsal root fibers of formerly compressed ganglia using an in vitro nerve-DRG-dorsal root preparation. The mean threshold force of punctate indentation and the mean threshold temperature of heating required to elicit a 50% incidence of foot withdrawal ipsilateral to the CCD were significantly lower than preoperative values throughout the 35 days of postoperative testing. The number of foot withdrawals ipsilateral to the CCD during a 20-min contact with a temperature-controlled floor was significantly increased over preoperative values throughout postoperative testing when the floor was 4 degrees C (hyperalgesia) and, to a lesser extent, when it was 30 degrees C (spontaneous pain). Stroking the foot with a cotton wisp never elicited a reflex withdrawal before surgery but did so in most rats tested ipsilateral to the CCD during the first 2 postoperative weeks. In contrast, the CCD produced no changes in responses to mechanical or thermal stimuli on the contralateral foot. The sham operation and acute injury produced no change in behavior other than slight, mechanical hyperalgesia for approximately 1 day, ipsilateral to the acute injury. Ectopic spontaneous discharges generated within the chronically compressed ganglion and, occurring in the absence of blood-borne chemicals and without an intact sympathetic nervous system, were recorded from neurons with intact, conducting, myelinated or unmyelinated

  14. Upper cervical spinal cord compression due to bony stenosis of the spinal canal.

    PubMed

    Benitah, S; Raftopoulos, C; Balériaux, D; Levivier, M; Dedeire, S

    1994-04-01

    Compression of the upper cervical spinal cord due to stenosis of the bony spinal canal is infrequent. In the first case reported here, stenosis was due to acquired extensive, unilateral osteophytes centered on the left apophyseal joints of C1-C2 in an elderly professional violinist. In the second case, stenosis was secondary to isolated congenital hypertrophy of the laminae of C1 and C2.

  15. Chronic recurrent multifocal osteomyelitis causing spinal cord compression.

    PubMed

    Baulot, E; Bouillien, D; Giroux, E A; Grammont, P M

    1998-01-01

    Chronic recurrent multifocal osteomyelitis (CRMO) is a very rare condition of unknown etiology and most commonly occurs during childhood or adolescence. The purpose of this paper is to present a case of CRMO in a vertebral location with severe kyphosis, spinal cord compression, and neurological dysfunction requiring anterior decompression and fusion. After 12 weeks, the patient was physically able to return to school. At 2-year follow-up, neurological and functional outcomes are fair. Magnetic resonance imaging shows good restoration of the sagittal spine alignment despite residual mild kyphosis, and restoration of a normal sagittal diameter of the spinal canal.

  16. Intervertebral disc responses during spinal loading with MRI-compatible spinal compression apparatus

    NASA Astrophysics Data System (ADS)

    Mitsui, Iwane; Yamada, Yoshiya

    2004-07-01

    This study addresses the development of an MRI-compatible spinal compression harness for use as a research and diagnostic tool. This apparatus adds valuable information to MRI imaging regarding the physiology/biomechanics of intervertebral discs and pathophysiology of back pain in patients and astronauts in space. All materials of the spinal compression apparatus are non-metallic for MRI compatibility. The compact design fits into standard MRI or CT scanners and loading is adjusted to specific percentages of BW with elastic cords. Previously this capability has not been available. Three healthy male subjects were fitted with a spinal compression harness and placed supine in a MRI scanner. Longitudinal distance between T7/8 and L5/S1 discs decreased 5.6 mm with 50% BW compression. Lumbosacral angle increased 17.2 degrees. T2 values of nucleus pulposus from L1/2 to L5/S1 discs increased 18.2+/-6.1% (+/-SD) during 50% BW compression and 25.3+/-7.4% (+/-SD) during 75% BW compression.

  17. Continuous Cervical Epidural Analgesia in Metastatic Spinal Cord Compression

    PubMed Central

    Menon, Mahesh; Taha, Nafisa; Purohit, Navita; Kothari, Vatsal; Singh, Shweta

    2016-01-01

    Metastatic spinal cord compression is a devastating complication of cancer. Patients may often require high doses of opioids that may cause side effects, myoclonus being one such. A 63-year-old male suffering from malignant spinal cord compression was admitted to our institution. The primary team managed him conservatively with pharmacotherapy with no relief of pain, and he experienced myoclonus and sedation as adverse effects. A continuous cervical epidural catheter with local anesthetic infusion was inserted for 5 days to control his pain. This relieved his pain, which was sustained even after we removed the epidural catheter on day 5, for up to 64 days until the time of his death. Continuous cervical epidural local anesthetic infusions may help with refractory pain by deafferentation of noxious stimuli. Central neuraxial blocks may be a valuable rescue in selected patients. PMID:27803576

  18. A Neonatal Mouse Spinal Cord Compression Injury Model

    PubMed Central

    Züchner, Mark; Glover, Joel C.; Boulland, Jean-Luc

    2016-01-01

    Spinal cord injury (SCI) typically causes devastating neurological deficits, particularly through damage to fibers descending from the brain to the spinal cord. A major current area of research is focused on the mechanisms of adaptive plasticity that underlie spontaneous or induced functional recovery following SCI. Spontaneous functional recovery is reported to be greater early in life, raising interesting questions about how adaptive plasticity changes as the spinal cord develops. To facilitate investigation of this dynamic, we have developed a SCI model in the neonatal mouse. The model has relevance for pediatric SCI, which is too little studied. Because neural plasticity in the adult involves some of the same mechanisms as neural plasticity in early life1, this model may potentially have some relevance also for adult SCI. Here we describe the entire procedure for generating a reproducible spinal cord compression (SCC) injury in the neonatal mouse as early as postnatal (P) day 1. SCC is achieved by performing a laminectomy at a given spinal level (here described at thoracic levels 9-11) and then using a modified Yasargil aneurysm mini-clip to rapidly compress and decompress the spinal cord. As previously described, the injured neonatal mice can be tested for behavioral deficits or sacrificed for ex vivo physiological analysis of synaptic connectivity using electrophysiological and high-throughput optical recording techniques1. Earlier and ongoing studies using behavioral and physiological assessment have demonstrated a dramatic, acute impairment of hindlimb motility followed by a complete functional recovery within 2 weeks, and the first evidence of changes in functional circuitry at the level of identified descending synaptic connections1. PMID:27078037

  19. MRI Evaluation of Spinal Length and Vertebral Body Angle During Loading with a Spinal Compression Harness

    NASA Technical Reports Server (NTRS)

    Campbell, James A.; Hargens, Alan R.; Murthy, G.; Ballard, R. E.; Watenpaugh, D. E.; Hargens, Alan, R.; Sanchez, E.; Yang, C.; Mitsui, I.; Schwandt, D.; Fechner, K. P.; Holton, Emily M. (Technical Monitor)

    1998-01-01

    Weight bearing by the spinal column during upright posture often plays a role in the common problem of low back pain. Therefore, we developed a non-ferromagnetic spinal compression harness to enable MRI investigations of the spinal column during axial loading. Human subjects were fitted with a Nest and a footplate which were connected by adjustable straps to an analog load cell. MRI scans of human subjects (5 males and 1 female with age range of 27-53 yrs) during loaded and unloaded conditions were accomplished with a 1.5 Tesla GE Signa scanner. Studies of two subjects undergoing sequentially increasing spinal loads revealed significant decreases (r(sup 2) = 0.852) in spinal length between T4 and L5 culminating in a 1.5 to 2% length decrease during loading with 75% body weight. Sagittal vertebral body angles of four subjects placed under a constant 50% body weight load for one hour demonstrated increased lordotic and kyphotic curvatures. In the lumbar spine, the L2 vertebral body experienced the greatest angular change (-3 deg. to -5 deg.) in most subjects while in the thoracic spine, T4 angles increased from the unloaded state by +2 deg. to +9 deg. Overall, our studies demonstrate: 1) a progressive, although surprisingly small, decrease in spinal length with increasing load and 2) relatively large changes in spinal column angulation with 50% body weight.

  20. ACR Appropriateness Criteria® Metastatic Epidural Spinal Cord Compression and Recurrent Spinal Metastasis.

    PubMed

    Lo, Simon Shek-Man; Ryu, Samuel; Chang, Eric L; Galanopoulos, Nicholas; Jones, Joshua; Kim, Edward Y; Kubicky, Charlotte D; Lee, Charles P; Rose, Peter S; Sahgal, Arjun; Sloan, Andrew E; Teh, Bin S; Traughber, Bryan J; Van Poznak, Catherine; Vassil, Andrew D

    2015-07-01

    Metastatic epidural spinal cord compression (MESCC) is an oncologic emergency and if left untreated, permanent paralysis will ensue. The treatment of MESCC is governed by disease, patient, and treatment factors. Patient's preferences and goals of care are to be weighed into the treatment plan. Ideally, a patient with MESCC is evaluated by an interdisciplinary team promptly to determine the urgency of the clinical scenario. Treatment recommendations must take into consideration the risk-benefit profiles of surgical intervention and radiotherapy for the particular individual's circumstance, including neurologic status, performance status, extent of epidural disease, stability of the spine, extra-spinal disease status, and life expectancy. In patients with high spinal instability neoplastic score (SINS) or retropulsion of bone fragments in the spinal canal, surgical intervention should be strongly considered. The rate of development of motor deficits from spinal cord compression may be a prognostic factor for ultimate functional outcome, and should be taken into account when a treatment recommendation is made. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed every three years by a multidisciplinary expert panel. The guideline development and review include an extensive analysis of current medical literature from peer-reviewed journals and the application of a well-established consensus methodology (modified Delphi) to rate the appropriateness of imaging and treatment procedures by the panel. In those instances where evidence is lacking or not definitive, expert opinion may be used to recommend imaging or treatment.

  1. Up-Regulation of Pain Behavior and Glial Activity in the Spinal Cord after Compression and Application of Nucleus Pulposus onto the Sciatic Nerve in Rats

    PubMed Central

    Norimoto, Masaki; Sakuma, Yoshihiro; Suzuki, Miyako; Orita, Sumihisa; Yamauchi, Kazuyo; Inoue, Gen; Aoki, Yasuchika; Ishikawa, Tetsuhiro; Miyagi, Masayuki; Kamoda, Hiroto; Kubota, Gou; Oikawa, Yasuhiro; Inage, Kazuhide; Sainoh, Takeshi; Sato, Jun; Nakamura, Junichi; Toyone, Tomoaki; Takahashi, Kazuhisa

    2014-01-01

    Study Design Experimental animal study. Purpose To evaluate pain-related behavior and changes in glial activity in the spinal dorsal horn after combined sciatic nerve compression and nucleus pulposus (NP) application in rats. Overview of Literature Mechanical compression and inflammation caused by prostaglandins and cytokines at disc herniation sites induce pain. Structural changes and pain-associated cytokines in the dorsal root ganglia and spinal dorsal horn contribute to prolonged pain. Glial cells in the spinal dorsal horn may also function in pain transmission. Methods The sciatic nerve was compressed with NP for 2 seconds using forceps in the NP+nerve compression group; the sham-operated group received neither compression nor NP; and the control group received no operation. Mechanical hyperalgesia was measured for 3 weeks using von Frey filaments. Glial activity in the spinal dorsal horn was examined 7 days and 14 days postsurgery using anti-glial fibrillary acidic protein and anti-Ionized calcium binding adaptor molecule-1 antibodies to detect astrocytes and microglia, respectively. Results Mechanical hyperalgesia was detected throughout the 14-day observation in the NP+nerve compression group, but not in control or sham-operated groups (p<0.05). Both astrocytes and microglia were significantly increased in the spinal dorsal horn of the NP+nerve compression group compared to control and sham groups on days 7 and 14 (p<0.05). Conclusions Nerve compression with NP application produces pain-related behavior, and up-regulates astrocytes and microglia in the spinal dorsal horn, suggesting that these glia may be related to pain transmission. PMID:25346806

  2. Effective gene expression in the rat dorsal root ganglia with a non-viral vector delivered via spinal nerve injection

    PubMed Central

    Chang, Ming-Fong; Hsieh, Jung-Hsien; Chiang, Hao; Kan, Hung-Wei; Huang, Cho-Min; Chellis, Luke; Lin, Bo-Shiou; Miaw, Shi-Chuen; Pan, Chun-Liang; Chao, Chi-Chao; Hsieh, Sung-Tsang

    2016-01-01

    Delivering gene constructs into the dorsal root ganglia (DRG) is a powerful but challenging therapeutic strategy for sensory disorders affecting the DRG and their peripheral processes. The current delivery methods of direct intra-DRG injection and intrathecal injection have several disadvantages, including potential injury to DRG neurons and low transfection efficiency, respectively. This study aimed to develop a spinal nerve injection strategy to deliver polyethylenimine mixed with plasmid (PEI/DNA polyplexes) containing green fluorescent protein (GFP). Using this spinal nerve injection approach, PEI/DNA polyplexes were delivered to DRG neurons without nerve injury. Within one week of the delivery, GFP expression was detected in 82.8% ± 1.70% of DRG neurons, comparable to the levels obtained by intra-DRG injection (81.3% ± 5.1%, p = 0.82) but much higher than those obtained by intrathecal injection. The degree of GFP expression by neurofilament(+) and peripherin(+) DRG neurons was similar. The safety of this approach was documented by the absence of injury marker expression, including activation transcription factor 3 and ionized calcium binding adaptor molecule 1 for neurons and glia, respectively, as well as the absence of behavioral changes. These results demonstrated the efficacy and safety of delivering PEI/DNA polyplexes to DRG neurons via spinal nerve injection. PMID:27748450

  3. Hydraulic Extrusion of the Spinal Cord and Isolation of Dorsal Root Ganglia in Rodents

    PubMed Central

    Richner, Mette; Jager, Sara B.; Siupka, Piotr; Vaegter, Christian B.

    2017-01-01

    Traditionally, the spinal cord is isolated by laminectomy, i.e. by breaking open the spinal vertebrae one at a time. This is both time consuming and may result in damage to the spinal cord caused by the dissection process. Here, we show how the spinal cord can be extruded using hydraulic pressure. Handling time is significantly reduced to only a few minutes, likely decreasing protein damage. The low risk of damage to the spinal cord tissue improves subsequent immunohistochemical analysis. By performing hydraulic spinal cord extrusion instead of traditional laminectomy, the rodents can further be used for DRG isolation, thereby lowering the number of animals and allowing analysis across tissues from the same rodent. We demonstrate a consistent method to identify and isolate the DRGs according to their localization relative to the costae. It is, however, important to adjust this method to the particular animal used, as the number of spinal cord segments, both thoracic and lumbar, may vary according to animal type and strain. In addition, we illustrate further processing examples of the isolated tissues. PMID:28190031

  4. Spinal cord compression from Wegener’s granulomatosis: an unusual presentation

    PubMed Central

    Roy, Deb; Phan, Kevin; Mobbs, Ralph J.; Selby, Michael

    2016-01-01

    Wegener’s granulomatosis (WG) causing spinal cord compression is very rare with only few cases reported in literature. We present a case report with review of literature. A 55-year-old lady with known WG presented with acute on chronic spinal cord compression. MRI scan revealed spinal cord compression anteriorly and posteriorly at T2–T5 level. Patient underwent urgent surgical decompression with excision of the posterior dural lesion with synthetic duraplasty. Patient made good neurological recovery. Histopathology revealed features consistent with WG. A rare case of spinal cord compression from WG is presented. Urgent surgical decompression with duraplasty resulted in good neurological outcome. PMID:28097250

  5. Percutaneous Technique for Sclerotherapy of Vertebral Hemangioma Compressing Spinal Cord

    SciTech Connect

    Gabal, Abdelwahab M.

    2002-12-15

    Purpose: In this study we report a percutaneous technique to achieve sclerosis of vertebral hemangioma and decompression of the spinal cord and nerve roots. Methods: Under CT guidance the affected vertebral body is punctured by a biopsy needle and sclerosant is injected directly into the tumor. In the case of large paravertebral extension, additional injection is given in the paravertebral soft tissue component to induce shrinkage of the whole tumor mass and release of the compressed spinal cord. Results: Using this technique we treated five patients in whom vertebral hemangioma gave rise to neurologic symptoms.In three patients, sclerotherapy was the only treatment given. In the other two patients, sclerotherapy was preceded by transcatheter embolization. Neither decompressive surgery, radiation therapy nor stabilization was required with this technique. Conclusion: Our experience with CT-guided intraosseous sclerotherapy has proved highly satisfactory.

  6. Distribution of purinergic P2X receptors in the equine digit, cervical spinal cord and dorsal root ganglia.

    PubMed

    Zamboulis, D E; Senior, J M; Clegg, P D; Gallagher, J A; Carter, S D; Milner, P I

    2013-09-01

    Purinergic pathways are considered important in pain transmission, and P2X receptors are a key part of this system which has received little attention in the horse. The aim of this study was to identify and characterise the distribution of P2X receptor subtypes in the equine digit and associated vasculature and nervous tissue, including peripheral nerves, dorsal root ganglia and cervical spinal cord, using PCR, Western blot analysis and immunohistochemistry. mRNA signal for most of the tested P2X receptor subunits (P2X1-5, 7) was detected in all sampled equine tissues, whereas P2X6 receptor subunit was predominantly expressed in the dorsal root ganglia and spinal cord. Western blot analysis validated the specificity of P2X1-3, 7 antibodies, and these were used in immunohistochemistry studies. P2X1-3, 7 receptor subunits were found in smooth muscle cells in the palmar digital artery and vein with the exception of the P2X3 subunit that was present only in the vein. However, endothelial cells in the palmar digital artery and vein were positive only for P2X2 and P2X3 receptor subunits. Neurons and nerve fibres in the peripheral and central nervous system were positive for P2X1-3 receptor subunits, whereas glial cells were positive for P2X7 and P2X1 and 2 receptor subunits. This previously unreported distribution of P2X subtypes may suggest important tissue specific roles in physiological and pathological processes.

  7. The treatment of symptomatic osteoporotic spinal compression fractures.

    PubMed

    Esses, Stephen I; McGuire, Robert; Jenkins, John; Finkelstein, Joel; Woodard, Eric; Watters, William C; Goldberg, Michael J; Keith, Michael; Turkelson, Charles M; Wies, Janet L; Sluka, Patrick; Boyer, Kevin M; Hitchcock, Kristin

    2011-03-01

    This clinical practice guideline is based on a series of systematic reviews of published studies on the treatment of symptomatic osteoporotic spinal compression fractures. Of 11 recommendations, one is strong; one, moderate; three, weak; and six, inconclusive. The strong recommendation is against the use of vertebroplasty to treat the fractures; the moderate recommendation is for the use of calcitonin for 4 weeks following the onset of fracture. The weak recommendations address the use of ibandronate and strontium ranelate to prevent additional symptomatic fractures, the use of L2 nerve root blocks to treat the pain associated with L3 or L4 fractures, and the use of kyphoplasty to treat symptomatic fractures in patients who are neurologically intact.

  8. Thoracic Endoscopic-Assisted Mini-Open Surgery for Thoracic and Thoracolumbar Spinal Cord Compression.

    PubMed

    Xu, Bao-Shan; Xu, Hai-Wei; Yuan, Qiu-Ming; Liu, Yue; Yang, Qiang; Jiang, Hong-Feng; Wang, Dong-Bin; Ji, Ning; Ma, Xin-Long; Zhang, Yang

    2016-11-01

    Intervertebral disc herniation is a common cause of spinal cord compression, especially for the thoracic and thoracolumbar spinal cord, which has limited buffer space in the spinal canal. Spinal cord compression usually causes decreased sensation and paralysis of limbs below the level of compression, urinary and fecal incontinence, and/or urinary retention, which brings great suffering to the patients and usually requires surgical intervention. Thoracotomy or abdominothoracic surgery is usually performed for the thoracolumbar cord compression caused by hard intervertebral disc herniation. However, there is high risk of trauma and complications with this surgery. To reduce the surgical trauma and obtain good visibility, we designed athoracic endoscopic-assisted mini-open surgery for thoracic and thoracolumbar disc herniation, and performed this procedure on 10 patients who suffered from hard thoracic or thoracolumbar spinal cord compression. During the procedure, the thoracic endoscopy provided clear vision of the surgical field with a good light source. The compression could be fully exposed and completely removed, and no nerve root injury or spinal cord damage occurred. All patients achieved obvious recovery of neurological function after this procedure. This technique possesses the merits of minimal trauma, increased safety, and good clinical results. The aim of this study is to introduce this thoracic endoscopic-assisted mini-open surgery technique, and we believe that this technique will be a good choice for the thoracic and thoracolumbar cord compression caused by hard intervertebral disc herniation.

  9. Teratogenic effects of pyridoxine on the spinal cord and dorsal root ganglia of embryonic chickens.

    PubMed

    Sharp, A A; Fedorovich, Y

    2015-03-19

    Our understanding of the role of somatosensory feedback in regulating motility during chicken embryogenesis and fetal development in general has been hampered by the lack of an approach to selectively alter specific sensory modalities. In adult mammals, pyridoxine overdose has been shown to cause a peripheral sensory neuropathy characterized by a loss of both muscle and cutaneous afferents, but predominated by a loss of proprioception. We have begun to explore the sensitivity of the nervous system in chicken embryos to the application of pyridoxine on embryonic days 7 and 8, after sensory neurons in the lumbosacral region become post-mitotic. Upon examination of the spinal cord, dorsal root ganglion and peripheral nerves, we find that pyridoxine causes a loss of neurotrophic tyrosine kinase receptor type 3-positive neurons, a decrease in the diameter of the muscle innervating nerve tibialis, and a reduction in the number of large diameter axons in this nerve. However, we found no change in the number of Substance P or calcitonin gene-related peptide-positive neurons, the number of motor neurons or the diameter or axonal composition of the femoral cutaneous nerve. Therefore, pyridoxine causes a peripheral sensory neuropathy in embryonic chickens largely consistent with its effects in adult mammals. However, the lesion may be more restricted to proprioception in the chicken embryo. Therefore, pyridoxine lesion induced during embryogenesis in the chicken embryo can be used to assess how the loss of sensation, largely proprioception, alters spontaneous embryonic motility and subsequent motor development.

  10. Dysregulation of Kv3.4 channels in dorsal root ganglia following spinal cord injury.

    PubMed

    Ritter, David M; Zemel, Benjamin M; Hala, Tamara J; O'Leary, Michael E; Lepore, Angelo C; Covarrubias, Manuel

    2015-01-21

    Spinal cord injury (SCI) patients develop chronic pain involving poorly understood central and peripheral mechanisms. Because dysregulation of the voltage-gated Kv3.4 channel has been implicated in the hyperexcitable state of dorsal root ganglion (DRG) neurons following direct injury of sensory nerves, we asked whether such a dysregulation also plays a role in SCI. Kv3.4 channels are expressed in DRG neurons, where they help regulate action potential (AP) repolarization in a manner that depends on the modulation of inactivation by protein kinase C (PKC)-dependent phosphorylation of the channel's inactivation domain. Here, we report that, 2 weeks after cervical hemicontusion SCI, injured rats exhibit contralateral hypersensitivity to stimuli accompanied by accentuated repetitive spiking in putative DRG nociceptors. Also in these neurons at 1 week after laminectomy and SCI, Kv3.4 channel inactivation is impaired compared with naive nonsurgical controls. At 2-6 weeks after laminectomy, however, Kv3.4 channel inactivation returns to naive levels. Conversely, Kv3.4 currents at 2-6 weeks post-SCI are downregulated and remain slow-inactivating. Immunohistochemistry indicated that downregulation mainly resulted from decreased surface expression of the Kv3.4 channel, as whole-DRG-protein and single-cell mRNA transcript levels did not change. Furthermore, consistent with Kv3.4 channel dysregulation, PKC activation failed to shorten the AP duration of small-diameter DRG neurons. Finally, re-expressing synthetic Kv3.4 currents under dynamic clamp conditions dampened repetitive spiking in the neurons from SCI rats. These results suggest a novel peripheral mechanism of post-SCI pain sensitization implicating Kv3.4 channel dysregulation and potential Kv3.4-based therapeutic interventions.

  11. Dysregulation of Kv3.4 Channels in Dorsal Root Ganglia Following Spinal Cord Injury

    PubMed Central

    Ritter, David M.; Zemel, Benjamin M.; Hala, Tamara J.; O'Leary, Michael E.; Lepore, Angelo C.

    2015-01-01

    Spinal cord injury (SCI) patients develop chronic pain involving poorly understood central and peripheral mechanisms. Because dysregulation of the voltage-gated Kv3.4 channel has been implicated in the hyperexcitable state of dorsal root ganglion (DRG) neurons following direct injury of sensory nerves, we asked whether such a dysregulation also plays a role in SCI. Kv3.4 channels are expressed in DRG neurons, where they help regulate action potential (AP) repolarization in a manner that depends on the modulation of inactivation by protein kinase C (PKC)-dependent phosphorylation of the channel's inactivation domain. Here, we report that, 2 weeks after cervical hemicontusion SCI, injured rats exhibit contralateral hypersensitivity to stimuli accompanied by accentuated repetitive spiking in putative DRG nociceptors. Also in these neurons at 1 week after laminectomy and SCI, Kv3.4 channel inactivation is impaired compared with naive nonsurgical controls. At 2–6 weeks after laminectomy, however, Kv3.4 channel inactivation returns to naive levels. Conversely, Kv3.4 currents at 2–6 weeks post-SCI are downregulated and remain slow-inactivating. Immunohistochemistry indicated that downregulation mainly resulted from decreased surface expression of the Kv3.4 channel, as whole-DRG-protein and single-cell mRNA transcript levels did not change. Furthermore, consistent with Kv3.4 channel dysregulation, PKC activation failed to shorten the AP duration of small-diameter DRG neurons. Finally, re-expressing synthetic Kv3.4 currents under dynamic clamp conditions dampened repetitive spiking in the neurons from SCI rats. These results suggest a novel peripheral mechanism of post-SCI pain sensitization implicating Kv3.4 channel dysregulation and potential Kv3.4-based therapeutic interventions. PMID:25609640

  12. Treatment of metastatic spinal cord compression: cepo review and clinical recommendations

    PubMed Central

    L’Espérance, S.; Vincent, F.; Gaudreault, M.; Ouellet, J.A.; Li, M.; Tosikyan, A.; Goulet, S.

    2012-01-01

    Background Metastatic spinal cord compression (mscc) is an oncologic emergency that, unless diagnosed early and treated appropriately, can lead to permanent neurologic impairment. After an analysis of relevant studies evaluating the effectiveness of various treatment modalities, the Comité de l’évolution des pratiques en oncologie (cepo) made recommendations on mscc management. Method A review of the scientific literature published up to February 2011 considered only phase ii and iii trials that included assessment of neurologic function. A total of 26 studies were identified. Recommendations Considering the evidence available to date, cepo recommends that cancer patients with mscc be treated by a specialized multidisciplinary team.dexamethasone 16 mg daily be administered to symptomatic patients as soon as mscc is diagnosed or suspected.high-loading-dose corticosteroids be avoided.histopathologic diagnosis and scores from scales evaluating prognosis and spinal instability be considered before treatment.corticosteroids and chemotherapy with radiotherapy be offered to patients with spinal cord compression caused by myeloma, lymphoma, or germ cell tumour without sign of spinal instability or compression by bone fragment.short-course radiotherapy be administered to patients with spinal cord compression and short life expectancy.long-course radiotherapy be administered to patients with inoperable spinal cord compression and good life expectancy.decompressive surgery followed by long-course radiotherapy be offered to appropriate symptomatic mscc patients (including spinal instability, displacement of vertebral fragment); andpatients considered for surgery have a life expectancy of at least 3–6 months. PMID:23300371

  13. Periosteal chondroma with spinal cord compression in the thoracic spinal canal: a case report.

    PubMed

    Kang, Dong Hyeok; Kang, Byeong Seong; Sim, Hong Bo; Kim, Misung; Kwon, Woon Jung

    2016-08-01

    Periosteal chondroma is a very unusual cartilaginous neoplasm of the spinal canal. We herein report a case of periosteal chondroma in a 41-year-old male who presented with gait disturbance and paresthesia of both lower extremities. Magnetic resonance (MR) images showed an extradural mass which caused compression of the spinal cord at the T5/6 level. The mass showed iso-signal intensity on T1-weighted images, high signal intensity on T2-weighted images, and nodular and peripheral rim enhancement on post-contrast T1-weighted images. Computed tomography (CT) images showed a mass with punctate calcifications and extension into the left T5/6 neural foramen. MR and CT images showed extrinsic cortical bone erosion of the posterior inferior body of T5 and superior pedicle of T6, bone remodeling with overhanging margins, and sclerosis adjacent to the tumor. The patient underwent a complete excision of the mass by left T5/6 hemi-laminectomy and exhibited complete resolution of his symptoms. Histopathologic examination revealed periosteal chondroma. Tumor recurrence was not recorded during the 18-month follow-up period.

  14. Extradural Giant Multiloculated Arachnoid Cyst Causing Spinal Cord Compression in a Child

    PubMed Central

    Kahraman, Serdar; Anik, Ihsan; Gocmen, Selcuk; Sirin, Sait

    2008-01-01

    Background: Spinal extradural arachnoid cysts are rare expanding lesions in the spinal canal. Enlargement may cause progressive signs and symptoms caused by spinal cord compression. They are associated with trauma, surgery, arachnoiditis, and neural tube defects. Most nontraumatic spinal extradural arachnoid cysts are thought to be congenital. Design: Case report and literature review. Findings: A 9-year-old boy with mild paraparesis was found to have an extradural multiloculated arachnoid cyst with fibrous septa at T4-L3 levels and anterior compression and displacement of the spinal cord. Conclusions: Definitive treatment of arachnoid cyst entails radical cyst removal and dura cleft repair. Formation of a postoperative cerebrospinal fluid fistula may require external lumbar drainage. PMID:18795482

  15. [Cytology of the cerebrospinal fluid in dogs with brain tumors and spinal cord compression. Part 4].

    PubMed

    Grevel, V; Machus, B; Steeb, C

    1992-08-01

    The results of cerebrospinal fluid (CSF) cytology of 9 dogs with brain tumors and 50 dogs with spinal cord compression are discussed. Of the 50 dogs with spinal cord compression, disc protrusion was diagnosed in 31, myelomalacia in 7, discospondylitis in 3 and spinal cord tumors in 9 dogs. In 4 of 9 dogs with brain tumors, tumor cells could be found by the sedimentation apparatus of Kölmel. Pleocytosis existed in 6 patients. In about 70% (29 of 41) of cases with disc protrusion, more than 200 cells could be evaluated in the CSF sediment, consisting mostly of transformed lymphocytes and activated monocytes. As the neurologic deficits increased, the amount of cells and especially cell complexes increased. This was especially evident in cases with myelomalacia of the spinal cord. Only in cases with discospondylitis or spinal cord neoplasia was the CSF cytology unchanged.

  16. Radiotherapy of metastatic spinal cord compression in very elderly patients

    SciTech Connect

    Rades, Dirk . E-mail: Rades.Dirk@gmx.net; Hoskin, Peter J.; Karstens, Johann H.; Rudat, Volker; Veninga, Theo; Stalpers, Lukas J.A.; Schild, Steven E.; Dunst, Juergen

    2007-01-01

    Purpose: Owing to the aging of the population, the proportion of elderly patients receiving cancer treatment has increased. This study investigated the results of radiotherapy (RT) for metastatic spinal cord compression (MSCC) in the very elderly, because few data are available for these patients. Methods and Materials: The data from 308 patients aged {>=}75 years who received short-course (treatment time 1-5 days) or long-course RT (2-4 weeks) for MSCC were retrospectively analyzed for functional outcome, local control, and survival. Furthermore, nine potential prognostic factors were investigated: gender, performance status, interval from tumor diagnosis to MSCC, tumor type, number of involved vertebrae, other bone or visceral metastases, ambulatory status, and speed at which motor deficits developed. Results: Improvement of motor deficits occurred in 25% of patients, with no further progression of MSCC in an additional 59%. The 1-year local control and survival rate was 92% and 43%, respectively. Improved functional outcomes were associated with ambulatory status and slower developing motor deficits. Improved local control resulted from long-course RT. Improved survival was associated with a longer interval from tumor diagnosis to MSCC, tumor type (breast/prostate cancer, myeloma/lymphoma), lack of visceral or other bone metastases, ambulatory status, and a slower development of motor deficits. Conclusion: Short- and long-course RT are similarly effective in patients aged {>=}75 years regarding functional outcome and survival. Long-course RT provided better local control. Patients with better expected survival should receive long-course RT and others short-course RT. The criteria for selection of an appropriate regimen for MSCC in very elderly patients should be the same as for younger individuals.

  17. cAMP and cGMP contribute to sensory neuron hyperexcitability and hyperalgesia in rats with dorsal root ganglia compression.

    PubMed

    Song, Xue-Jun; Wang, Zheng-Bei; Gan, Qiang; Walters, Edgar T

    2006-01-01

    Numerous studies have implicated the cAMP-protein kinase A (PKA) pathway in producing hyperexcitability of dorsal root ganglia (DRG) sensory neurons under conditions associated with pain. Evidence is presented for roles of both the cAMP-PKA and cGMP-protein kinase G (PKG) pathways in maintaining neuronal hyperexcitability and behavioral hyperalgesia in a neuropathic pain model: chronic compression of the DRG (CCD treatment). Lumbar DRGs were compressed by a steel rod inserted into the intervertebral foramen. Thermal hyperalgesia was revealed by shortened latencies of foot withdrawal to radiant heat. Intracellular recordings were obtained in vitro from lumbar ganglia after in vivo DRG compression. Activators of the cAMP-PKA pathway, 8-Br-cAMP and Sp-cAMPS, and of the cGMP-PKG pathway, 8-Br-cGMP and Sp-cGMPS, increased the hyperexcitability of DRG neurons already produced by CCD treatment, as shown by further decreases in action potential threshold and increased repetitive discharge during depolarization. The adenylate cyclase inhibitor, SQ22536, the PKA antagonist, Rp-cAMPS, the guanylate cyclase inhibitor, ODQ, and the PKG inhibitor, Rp-8-pCPT-cGMPS, reduced the hyperexcitability of CCD DRG neurons. In vivo application of PKA and PKG antagonists transiently depressed behavioral hyperalgesia induced by CCD treatment. Unexpectedly, application of these agonists and antagonists to ganglia of naïve, uninjured animals had little effect on electrophysiological properties of DRG neurons and no effect on foot withdrawal, suggesting that sensitizing actions of these pathways in the DRG are enabled by prior injury or stress. The only effect observed in uncompressed ganglia was modest depolarization of DRG neurons by PKA and PKG agonists. CCD treatment also depolarized DRG neurons, but CCD-induced depolarization was not affected by agonists or antagonists of these pathways.

  18. Effect of melatonin on the functional recovery from experimental traumatic compression of the spinal cord

    PubMed Central

    Schiaveto-de-Souza, A.; da-Silva, C.A.; Defino, H.L.A.; Bel, E.A.Del

    2013-01-01

    Spinal cord injury is an extremely severe condition with no available effective therapies. We examined the effect of melatonin on traumatic compression of the spinal cord. Sixty male adult Wistar rats were divided into three groups: sham-operated animals and animals with 35 and 50% spinal cord compression with a polycarbonate rod spacer. Each group was divided into two subgroups, each receiving an injection of vehicle or melatonin (2.5 mg/kg, intraperitoneal) 5 min prior to and 1, 2, 3, and 4 h after injury. Functional recovery was monitored weekly by the open-field test, the Basso, Beattie and Bresnahan locomotor scale and the inclined plane test. Histological changes of the spinal cord were examined 35 days after injury. Motor scores were progressively lower as spacer size increased according to the motor scale and inclined plane test evaluation at all times of assessment. The results of the two tests were correlated. The open-field test presented similar results with a less pronounced difference between the 35 and 50% compression groups. The injured groups presented functional recovery that was more evident in the first and second weeks. Animals receiving melatonin treatment presented more pronounced functional recovery than vehicle-treated animals as measured by the motor scale or inclined plane. NADPH-d histochemistry revealed integrity of the spinal cord thoracic segment in sham-operated animals and confirmed the severity of the lesion after spinal cord narrowing. The results obtained after experimental compression of the spinal cord support the hypothesis that melatonin may be considered for use in clinical practice because of its protective effect on the secondary wave of neuronal death following the primary wave after spinal cord injury. PMID:23579633

  19. Effect of melatonin on the functional recovery from experimental traumatic compression of the spinal cord.

    PubMed

    Schiaveto-de-Souza, A; da-Silva, C A; Defino, H L A; Del Bel, E A

    2013-04-01

    Spinal cord injury is an extremely severe condition with no available effective therapies. We examined the effect of melatonin on traumatic compression of the spinal cord. Sixty male adult Wistar rats were divided into three groups: sham-operated animals and animals with 35 and 50% spinal cord compression with a polycarbonate rod spacer. Each group was divided into two subgroups, each receiving an injection of vehicle or melatonin (2.5 mg/kg, intraperitoneal) 5 min prior to and 1, 2, 3, and 4 h after injury. Functional recovery was monitored weekly by the open-field test, the Basso, Beattie and Bresnahan locomotor scale and the inclined plane test. Histological changes of the spinal cord were examined 35 days after injury. Motor scores were progressively lower as spacer size increased according to the motor scale and inclined plane test evaluation at all times of assessment. The results of the two tests were correlated. The open-field test presented similar results with a less pronounced difference between the 35 and 50% compression groups. The injured groups presented functional recovery that was more evident in the first and second weeks. Animals receiving melatonin treatment presented more pronounced functional recovery than vehicle-treated animals as measured by the motor scale or inclined plane. NADPH-d histochemistry revealed integrity of the spinal cord thoracic segment in sham-operated animals and confirmed the severity of the lesion after spinal cord narrowing. The results obtained after experimental compression of the spinal cord support the hypothesis that melatonin may be considered for use in clinical practice because of its protective effect on the secondary wave of neuronal death following the primary wave after spinal cord injury.

  20. Neuroprotective effect of cytoflavin during compression injury of the spinal cord.

    PubMed

    Bul'on, V V; Kuznetsova, N N; Selina, E N; Kovalenko, A L; Alekseeva, L E; Sapronov, N S

    2005-04-01

    Cytoflavin normalized energy metabolism, decreased the intensity of lipid peroxidation, and reactivated the antioxidant system in the spinal cord of rats with compression injury at the level of Th10-Th11. The neuroprotective effect of the test preparation manifested in normalization of hindlimb motor function and decrease in mortality rate of animals with spinal cord injury. Neuroprotective activity of cytoflavin was higher than that of Cerebrolysin.

  1. Residual Spinal Cord Compression Following Hemilaminectomy and Mini-Hemilaminectomy in Dogs: A Prospective Randomized Study

    PubMed Central

    Svensson, Gustaf; Simonsson, Ulrika S. H.; Danielsson, Fredrik; Schwarz, Tobias

    2017-01-01

    The aim of this study was to compare the reduction of spinal cord compression after surgical treatment of dogs with acute thoracolumbar intervertebral disc (IVD) extrusion achieved using hemilaminectomy versus mini-hemilaminectomy techniques. This was a prospective randomized study with client-owned dogs presented with acute IVD extrusion that were allocated to surgical treatment using hemilaminectomy (n = 15) or mini-hemilaminectomy (n = 15) techniques. Plain and intravenous-contrast computed tomography was performed pre- and postoperatively. The preoperative minimal cross-sectional dimension of the spinal cord (MDSCpre) and the postoperative minimal cross-sectional dimension of the spinal cord (MDSCpost) were measured at the level of greatest compression. The minimal diameter of the uncompressed spinal cord was measured in a similar way both pre- (MDUSCpre) and postoperatively (MDUSCpost). Dogs in the mini-hemilaminectomy group had significantly greater reduction of compression (RC) (p < 0.01) after surgery compared to dogs in the hemilaminectomy group. The mean RC in the hemilaminectomy group was 34.6% and in the mini-hemilaminectomy group 62.6%. Our results showed a significantly greater reduction of spinal cord compression for mini-hemilaminectomy compared to hemilaminectomy. Additionally, mini-hemilaminectomy could be a preferred method due to its minimal invasiveness and easier access to lateral fenestration. PMID:28386545

  2. Impact of Instrumented Spinal Fusion on the Development of Vertebral Compression Fracture

    PubMed Central

    Chiu, Yen-Chun; Tsai, Tsung-Ting; Yang, Shih-Chieh; Chen, Hung-Shu; Kao, Yu-Hsien; Tu, Yuan-Kun

    2016-01-01

    Abstract Instrumented spinal fusion has become one of the most common surgeries for patients with various spinal disorders. Only few studies have reported subsequent vertebral compression fractures (VCFs) after instrumented spinal fusion. The purpose of this study was to evaluate the risk of new VCFs in patients undergoing instrumented spinal fusion. We obtained claims data from the National Health Insurance Research Database of Taiwan and retrospectively reviewed 6949 patients with instrumented spinal fusion as the spinal fusion cohort. Control subjects were individually matched at a ratio of 10:1 with those of the spinal fusion cohort according to age, sex, and the index day. Comorbidities were classified as those existing before the index day, and these included diabetes mellitus, hypertension, osteoporosis, and cerebrovascular accident. The end of the follow-up period for the analyses was marked on the day new VCFs developed, enrolment in the National Health Insurance was terminated, on the day of death, or until the end of 2012. We used the Cox proportion hazards model to analyze the hazard ratio (HR) for developing new VCFs. Patients with instrumented spinal fusion were significantly more likely to develop new VCFs (1.87% vs .25%, HR: 8.56; P < 0.001). Female, elderly, and osteoporotic patients had a high incidence of new VCFs after spinal fusion. The HR for developing new VCFs after instrumented spinal fusion was higher in patients younger than 65 years than in those 65 years or older (HR: 10.61 vs 8.09). Male patients with instrumented spinal fusion also had a higher HR of developing new VCFs than female patients (men, HR: 26.42; women, HR: 7.53). In our retrospective cohort study, patients who had undergone instrumented spinal fusion surgery exhibited an increased risk of developing new VCFs. Particularly, the HR increased in young (age <65 years) and male patients. PMID:27124040

  3. Synaptic blockade plays a major role in the neural disturbance of experimental spinal cord compression.

    PubMed

    Yoshida, Hideaki; Okada, Yasumasa; Maruiwa, Hirofumi; Fukuda, Kentaro; Nakamura, Masaya; Chiba, Kazuhiro; Toyama, Yoshiaki

    2003-12-01

    We analyzed dynamic processes of neural excitation propagation in the experimentally compressed spinal cord using a high-speed optical recording system. Transverse slices of the juvenile rat cervical spinal cord were stained with a voltage-sensitive dye (di-4-ANEPPS). Two components were identified in the depolarizing optical responses to dorsal root electrical stimulation: a fast component of short duration corresponding to pre-synaptic excitation and a slow component of long duration corresponding to post-synaptic excitation. In the directly compressed dorsal horn, the slow component was attenuated more (attenuated to 37.4 +/- 9.1% of the control) than the fast component (to 70.5 +/- 14.9%) (p < 0.01) at 400 msec after stimulation. Depolarizing optical responses to compression and to chemical synaptic blockade were similar. There was a regional difference between white matter (attenuated to 86.2 +/- 10.5%) and gray matter (to 72.6 +/- 10.4%) (p < 0.03) in compression-induced changes of the fast components; neural activity in the white matter was resistant to compression, especially in the dorsal root entry zone. Depolarizing optical signals in the region adjacent to the directly compressed site were also attenuated; the fast component was attenuated to 77.6 +/- 10.4% and the slow component to 31.8 +/- 11.3% of the control signals (p < 0.01). Spinal cord dysfunction induced by purely mechanical compression without tissue destruction was virtually restored with early decompression. We suggest that a disturbance of synaptic transmission plays an important role in the pathophysiological mechanisms of spinal cord compression, at least under in vitro experimental conditions of juvenile rats.

  4. [Thoracic spinal cord compression at two levels due to ligamentum flavum calcification. Case report].

    PubMed

    Gondim, J; Ramos Júnior, F

    1998-06-01

    Calcification and/or ossification of the ligamenta flava is a well reported clinicopathologic entity causing narrowing of the spinal canal cord compression. It has been described almost exclusively in Japanese people. The authors present the case of a non Japanese patient with thoracic myelopathy caused by ossification of the ligamentum flavum.

  5. Squamous cell carcinoma causing dorsal atlantoaxial spinal cord compression in a dog.

    PubMed

    Miyazaki, Yuta; Aikawa, Takeshi; Nishimura, Masaaki; Iwata, Munetaka; Kagawa, Yumiko

    2016-10-01

    A 12-year-old Chihuahua dog was presented for cervical pain and progressive tetraparesis. Magnetic resonance imaging revealed spinal cord compression due to a mass in the dorsal atlantoaxial region. Surgical treatment was performed. The mass was histopathologically diagnosed as a squamous cell carcinoma. The dog recovered to normal neurologic status after surgery.

  6. Spinal Cord Compression Secondary to Extramedullary Hematopoiesis: Case Report and Review of the Literature

    PubMed Central

    Wang, Arthur; Carberry, Nathan; Solli, Elena; Gillick, John; Islam, Humayun; Hillard, Virany

    2016-01-01

    Extramedullary hematopoiesis (EMH) is a rare cause of spinal cord compression (SCC). EMH represents the growth of blood cells outside of the bone marrow and occurs in a variety of hematologic illnesses, including various types of anemia and myeloproliferative disorders. Although EMH usually occurs in the liver, spleen, and lymph nodes, it may also occur within the spinal canal. When this occurs, the mass effect can compress the spinal cord, potentially leading to the development of neurological deficits. We present a case of SCC secondary to EMH. This report illustrates the importance of considering EMH in the differential diagnosis of SCC, even in the absence of signs of its most common etiologies. PMID:27462228

  7. Partial lateral corpectomy for ventral extradural thoracic spinal cord compression in a cat.

    PubMed

    Böttcher, Peter; Flegel, Thomas; Böttcher, Irene C; Grevel, Vera; Oechtering, Gerhard

    2008-07-01

    A 7-year-old, female spayed, domestic shorthair cat was presented for ambulatory paraparesis. No trauma history was reported. Myelography and subsequent computed tomography revealed multiple ventrally located extradural spinal cord compressive lesions possibly due to intervertebral disc disease. Compression at the level of Th3-Th4 intervertebral disc space was considered responsible for the paraparesis. The lesion was approached via a right-sided lateral partial corpectomy as described for dogs. Complete spinal decompression was achieved, as documented intraoperatively by visual inspection and palpation of the spinal canal. No surgery related complications were encountered and the cat improved gradually within 8 weeks after the procedure. At 1 year follow-up only a slight proprioceptive deficit in the right hind limb could be noted. This is the first report of partial lateral corpectomy in a cat and should encourage the use of this technique even in small patients.

  8. Effector CD4+ T-cell involvement in clearance of infectious herpes simplex virus type 1 from sensory ganglia and spinal cords.

    PubMed

    Johnson, Alison J; Chu, Chin-Fun; Milligan, Gregg N

    2008-10-01

    In primary infection, CD8(+) T cells are important for clearance of infectious herpes simplex virus (HSV) from sensory ganglia. In this study, evidence of CD4(+) T-cell-mediated clearance of infectious HSV type 1 (HSV-1) from neural tissues was also detected. In immunocompetent mice, HSV-specific CD4(+) T cells were present in sensory ganglia and spinal cords coincident with HSV-1 clearance from these sites and remained detectable at least 8 months postinfection. Neural CD4(+) T cells isolated at the peak of neural infection secreted gamma interferon, tumor necrosis factor alpha, interleukin-2 (IL-2), or IL-4 after stimulation with HSV antigen. HSV-1 titers in neural tissues were greatly reduced over time in CD8(+) T-cell-deficient and CD8(+) T-cell-depleted mice, suggesting that CD4(+) T cells could mediate clearance of HSV-1 from neural tissue. To examine possible mechanisms by which CD4(+) T cells resolved neural infection, CD8(+) T cells were depleted from perforin-deficient or FasL-defective mice. Clearance of infectious virus from neural tissues was not significantly different in perforin-deficient or FasL-defective mice compared to wild-type mice. Further, in spinal cords and brains after vaginal HSV-1 challenge of chimeric mice expressing both perforin and Fas or neither perforin nor Fas, virus titers were significantly lower than in control mice. Thus, perforin and Fas were not required for clearance of infectious virus from neural tissues. These results suggest that HSV-specific CD4(+) T cells are one component of a long-term immune cell presence in neural tissues following genital HSV-1 infection and play a role in clearance of infectious HSV-1 at neural sites, possibly via a nonlytic mechanism.

  9. Age-dependent decline in density of human nerve and spinal ganglia neurons expressing the α3 isoform of Na/K-ATPase

    PubMed Central

    Romanovsky, Dmitry; Mrak, Robert E.; Dobretsov, Maxim

    2015-01-01

    Ambulatory instability and falls are a major source of morbidity in the elderly. Age-related loss of tendon reflexes is a major contributing factor to this morbidity, and deterioration of the afferent limb of the stretch reflex is a potential contributing factor to such age-dependent loss of tendon reflexes. To evaluate this, we assessed the number and distribution of muscle spindle afferent fibers in human sacral spinal ganglia (S1) and tibial nerve samples obtained at autopsy, using immunohistochemical staining for the α3 isoform of Na+,K+-ATPase (α3NKA), a marker of muscle spindle afferents. Across all age groups, an average of 26±4% of myelinated fibers of tibial nerve and 17±2% of ganglion neuronal profiles were α3NKA-positive (n=8 per group). Subject age explained 85% of the variability in these counts. The relative frequency of α3NKA-labeled fibers/neurons starts to decline during the 5th decade of life, approaching half that of young adult values in 65-year-old subjects. At all ages, α3NKA-positive neurons were among the largest of spinal ganglia neurons. However, as compared to younger subjects, the population of α3NKA-positive neurons from advanced-age subjects showed diminished numbers of large (both moderately and strongly labeled), and medium-sized (strongly labeled) profiles. Considering the critical significance of ion transport by NKA for neuronal activity, our data suggest that functional impairment and, also, most likely atrophy and/or degeneration of muscle spindle afferents, are mechanisms underlying loss of tendon reflexes with age. The larger and more strongly α3NKA-expressing spindle afferents appear to be proportionally more vulnerable. PMID:26386295

  10. Spinal cord compression by spontaneous spinal subdural haematoma in polycythemia vera.

    PubMed

    Kalina, P; Drehobl, K E; Black, K; Woldenberg, R; Sapan, M

    1995-06-01

    A woman with an eight-year history of polycythemia vera presented with numbness and weakness of both legs. A large spinal haematoma was revealed on magnetic resonance imaging which was treated clinically and which subsequently resolved.

  11. Chronic Spinal Compression Model in Minipigs: A Systematic Behavioral, Qualitative, and Quantitative Neuropathological Study

    PubMed Central

    Navarro, Roman; Juhas, Stefan; Keshavarzi, Sassan; Juhasova, Jana; Motlik, Jan; Johe, Karl; Marsala, Silvia; Scadeng, Miriam; Lazar, Peter; Tomori, Zoltan; Schulteis, Gery; Beattie, Michael; Ciacci, Joseph D.

    2012-01-01

    Abstract The goal of the present study was to develop a porcine spinal cord injury (SCI) model, and to describe the neurological outcome and characterize the corresponding quantitative and qualitative histological changes at 4–9 months after injury. Adult Gottingen-Minnesota minipigs were anesthetized and placed in a spine immobilization frame. The exposed T12 spinal segment was compressed in a dorso-ventral direction using a 5-mm-diameter circular bar with a progressively increasing peak force (1.5, 2.0, or 2.5 kg) at a velocity of 3 cm/sec. During recovery, motor and sensory function were periodically monitored. After survival, the animals were perfusion fixed and the extent of local SCI was analyzed by (1) post-mortem MRI analysis of dissected spinal cords, (2) qualitative and quantitative analysis of axonal survival at the epicenter of injury, and (3) defining the presence of local inflammatory changes, astrocytosis, and schwannosis. Following 2.5-kg spinal cord compression the animals demonstrated a near complete loss of motor and sensory function with no recovery over the next 4–9 months. Those that underwent spinal cord compression with 2 kg force developed an incomplete injury with progressive partial neurological recovery characterized by a restricted ability to stand and walk. Animals injured with a spinal compression force of 1.5 kg showed near normal ambulation 10 days after injury. In fully paralyzed animals (2.5 kg), MRI analysis demonstrated a loss of spinal white matter integrity and extensive septal cavitations. A significant correlation between the magnitude of loss of small and medium-sized myelinated axons in the ventral funiculus and neurological deficits was identified. These data, demonstrating stable neurological deficits in severely injured animals, similarities of spinal pathology to humans, and relatively good post-injury tolerance of this strain of minipigs to spinal trauma, suggest that this model can successfully be used

  12. Enhanced p62 expression triggers concomitant autophagy and apoptosis in a rat chronic spinal cord compression model.

    PubMed

    Chen, Zhi; Fu, Qingge; Shen, Baoliang; Huang, Xuan; Wang, Kun; He, Ping; Li, Fengning; Zhang, Fan; Shen, Hongxing

    2014-06-01

    Chronic spinal cord compression is the result of mechanical pressure on the spinal cord, which in contrast to traumatic spinal cord injury, leads to slowly progressing nerve degeneration. These two types of spinal cord injuries may trigger similar mechanisms, including motoric nerve cell apoptosis and autophagy, however, depending on differences in the underlying injury severity, nerve reactions may predominantly involve the conservation of function or the initiation of functions for the removal of irreversibly damaged cells. p62 is a multidomain adapter protein, which is involved in apoptosis and cell survival as well as autophagy, and is a common component of protein aggregations in neurodegenerative diseases. In the present study, a rat chronic spinal cord compression model was used, in which the spinal cord was progressively compressed for six weeks and then constantly compressed for another 10 weeks. As a result Basso, Beattie and Bresnahan locomotor scaling revealed a gradual score decrease until the 6th week followed by constant recovery until the 16th week after spinal cord compression was initiated. During the first eight weeks of the experiment, p62 and nuclear factor-κB (NF-κB) were increasingly expressed up to a constant plateau at 12-16 weeks, whereas caspase 3 exhibited a marginally enhanced expression at 8 weeks, however, reached a constant maximum peak 12-16 weeks after the beginning of spinal cord compression. It was hypothesized that, in the initial phase of spinal cord compression, enhanced p62 expression triggered NF-κB activity, directing the cell responses mainly to cell survival and autophagy, whereas following eight weeks of spinal cord compression, caspase 3 was additionally activated indicating cumulative elimination of irreversibly damaged nerve cells with highly activated autophagy.

  13. [A rare cause of spinal cord compression: osteochondroma of the thoracic spine. A case report].

    PubMed

    Nassar, I; Semlali, S; El Quessar, A; Kacemi, L; Mahi, M; Chakir, N; El Hassani, My R; Jiddane, M

    2003-09-01

    Osteochondroma or exostosis is the most common benign tumor of bone, but vertebral involvement is rare. The authors report the case of a 16 years old male with a family history of hereditary multiple exostoses who presented with spinal cord compression. MR examination showed an intraspinal extradural bone lesion at the T1-T2 level, hyperintense on T1 weighted and hypointense on T2 weighted images, causing marked cord deformity. The CT scan showed a tumor of the body and left pedicle of T2 with severe narrowing of the spinal canal.

  14. Tumor necrosis factor-alpha and its receptors contribute to apoptosis of oligodendrocytes in the spinal cord of spinal hyperostotic mouse (twy/twy) sustaining chronic mechanical compression.

    PubMed

    Inukai, Tomoo; Uchida, Kenzo; Nakajima, Hideaki; Yayama, Takafumi; Kobayashi, Shigeru; Mwaka, Erisa S; Guerrero, Alexander Rodriguez; Baba, Hisatoshi

    2009-12-15

    STUDY DESIGN.: To examine the distribution of apoptotic cells and expression of tumor necrosis factor (TNF)-alpha and its receptors in the spinal hyperostotic mouse (twy/twy) with chronic cord compression using immunohistochemical methods. OBJECTIVE.: To study the mechanisms of apoptosis, particularly in oligodendrocytes, which could contribute to degenerative change and demyelination in chronic mechanical cord compression. SUMMARY OF BACKGROUND DATA.: TNF-alpha acts as an external signal initiating apoptosis in neurons and oligodendrocytes after spinal cord injury. Chronic spinal cord compression caused neuronal loss, myelin destruction, and axonal degeneration. However, the biologic mechanisms of apoptosis in chronically compressed spinal cord remain unclear. METHODS.: The cervical spinal cord of 34 twy mice aged 20 to 24 weeks and 11 control animals were examined. The apoptotic cells were detected by the terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick end labeling (TUNEL) staining. The expression and the localization of TNF-alpha, TNF receptor 1 (TNFR1), and TNF receptor 2 (TNFR2) were examined using immunoblot and immnohistochemical analysis. RESULTS.: The number of TUNEL-positive cells in the white matter increased with the severity of compression, which was further increased bilaterally in the white matter of twy/twy mice. Double immunofluorescence staining showed that the number of cells positive for TUNEL and RIP, a marker of oligodendrocytes, increased in the white matter with increased severity of cord compression. Immunoblot analysis demonstrated overexpression of TNF-alpha, TNFR1, and TNFR2 in severe compression. The expression of TNF-alpha appeared in local cells including microglia while that of TNFR1 and TNFR2 was noted in apoptotic oligodendrocytes. CONCLUSION.: Our results suggested that the proportion of apoptotic oligodendrocytes, causing spongy axonal degeneration and demyelination, correlated with the magnitude of cord

  15. Spinal cord compression by spontaneous spinal subdural haematoma in polycythemia vera.

    PubMed Central

    Kalina, P.; Drehobl, K. E.; Black, K.; Woldenberg, R.; Sapan, M.

    1995-01-01

    A woman with an eight-year history of polycythemia vera presented with numbness and weakness of both legs. A large spinal haematoma was revealed on magnetic resonance imaging which was treated clinically and which subsequently resolved. Images Figure PMID:7644407

  16. Osteological features in pure-bred dogs predisposing to cervical spinal cord compression

    PubMed Central

    BREIT, S.; KÜNZEL, W.

    2001-01-01

    Relative to body size, midsagittal and interpedicular diameters of the cranial and caudal aspects of cervical vertebral foramina (C3–C7) were found to be significantly (P < 0·05) larger in small breeds than in large breeds and Dachshunds, and also larger in Dachshunds (P < 0·05) than in large breeds. This condition increases the risk for spinal cord compression resulting from relative stenosis of the cervical vertebral foramina, especially in large dogs, and this is also exacerbated by the typical shape of the vertebral foramina (i.e. dorsoventrally flattened cranially and bilaterally narrowed caudally). Within large dogs those breeds highly predisposed to cervical spinal cord compression were Great Danes (the breed with the smallest midsagittal vertebral foramen diameters from cranial C6 to cranial T1) and Doberman Pinschers, because of the most strikingly cranially dorsoventrally narrowed cone-shaped vertebral foramina at C6 and C7. The existence of a small midsagittal diameter in the cranial cervical spine was a high risk factor predisposing to spinal cord compression in small breeds and Dachshunds. Remarkable consistency was noted between the spinal level of the maximum enlargement of the spinal cord which previously was reported to be at C6, and the site of maximum enlargement of the vertebral canal currently stated in Dachshunds and small breeds. In large breeds the maximum enlargement of the vertebral canal tended to be located more caudally at the caudal limit of C7. The average age at which large dogs were most susceptible to noxious factors causing abnormal growth of the pedicles was determined to be 16 wk. PMID:11760884

  17. Contemporary treatment with radiosurgery for spine metastasis and spinal cord compression in 2015

    PubMed Central

    Yoon, Hannah; Stessin, Alexander; Gutman, Fred; Rosiello, Arthur; Davis, Raphael

    2015-01-01

    With the progress of image-guided localization, body immobilization system, and computerized delivery of intensity-modulated radiation delivery, it became possible to perform spine radiosurgery. The next question is how to translate the high technology treatment to the clinical application. Clinical trials have been performed to demonstrate the feasibility of spine radiosurgery and efficacy of the treatment in the setting of spine metastasis, leading to the randomized trials by a cooperative group. Radiosurgery has also demonstrated its efficacy to decompress the spinal cord compression in selected group of patients. The experience indicates that spine radiosurgery has a potential to change the clinical practice in the management of spine metastasis and spinal cord compression. PMID:25874172

  18. Spastic quadriparesis caused by anomalous vertebral artery compression of spinal cord at the cervico-medullary junction.

    PubMed

    Betgeri, Somsharan Shankerappa; Rajesh, S; Adkatalwar, Vijayendra; Shiva, Meyyappan; Agrawal, Nitesh; Ramakrishnan, K G

    2015-02-01

    Vascular compression of medulla or spinal cord at the cervico-medullary junction has been commonly described in the literature and is often attributed to dolichoectasia of the vertebrobasilar arteries. We describe a case of anomalous course of the cervical segments of the bilateral vertebral arteries which were seen entering the spinal canal directly after exiting the transverse foramen of axis and causing significant cord compression at the cervico-medullary region leading to spastic quadriparesis.

  19. Anomalous vertebral artery compression of the spinal cord at the cervicomedullary junction

    PubMed Central

    Ball, Bret Gene; Krueger, Bruce R; Piepgras, David G

    2011-01-01

    Background: Myelopathy from ectatic vertebral artery compression of the spinal cord at the cervicomedullary junction is a rare condition. Case Description: A 63-year-old female was originally diagnosed with occult hydrocephalus syndrome after presenting with symptoms of ataxia and urinary incontinence. Ventriculoperitoneal shunting induced an acute worsening of the patient′s symptoms as she immediately developed a sensory myelopathy. An MR scan demonstrated multiple congenital abnormalities including cervicomedullary stenosis with anomalous vertebral artery compression of the dorsal spinal cord at the cervicomedullary junction. The patient was taken to surgery for a suboccipital craniectomy, C1-2 laminectomy, vertebral artery decompression, duraplasty, and shunt ligation. Intraoperative findings confirmed preoperative radiography with ectactic vertebral arteries deforming the dorsal aspect of the spinal cord. There were no procedural complications and at a 6-month follow-up appointment, the patient had experienced a marked improvement in her preoperative signs and symptoms. Conclusion: Myelopathy from ectatic vertebral artery compression at the cervicomedullary junction is a rare disorder amenable to operative neurovascular decompression. PMID:21886876

  20. Spinal cord blood flow measured by /sup 14/C-iodoantipyrine autoradiography during and after graded spinal cord compression in rats

    SciTech Connect

    Holtz, A.; Nystroem, B.G.; Gerdin, B.

    1989-05-01

    The relations between degree of thoracic spinal cord compression causing myelographic block, reversible paraparesis, and extinction of the sensory evoked potential on one hand, and spinal cord blood flow on the other, were investigated. This was done in rats using the blocking weight-technique and /sup 14/C-iodoantipyrine autoradiography. A load of 9 g caused myelographic block. Five minutes of compression with that load caused a reduction of spinal cord blood flow to about 25%, but 5 and 60 minutes after the compression spinal cord blood flow was restored to 60% of the pretrauma value. A load of 35 g for 5 minutes caused transient paraparesis. Recovery to about 30% was observed 5 and 60 minutes thereafter. During compression at a load of 55 g, which caused almost total extinction of sensory evoked potential and irreversible paraplegia, spinal cord blood flow under the load ceased. The results indicate that myelographic block occurs at a load which does not cause irreversible paraparesis and that a load which permits sensory evoked potential to be elicited results in potentially salvageable damage.

  1. Multilevel vertebral hemangiomas: two episodes of spinal cord compression at separate levels 10 years apart.

    PubMed

    Karaeminogullari, Oguz; Tuncay, Cengiz; Demirors, Huseyin; Akin, Kayihan; Sahin, Orcun; Ozyurek, Ayhan; Tandogan, Nevzat Reha

    2005-09-01

    This case report presents a 66-year-old woman with multiple vertebral hemangiomas causing spinal cord compression at different levels with a long symptom-free interval between episodes of compression. She presented with back pain and progressive weakness and numbness in her lower limbs for 3 months. Ten years earlier, she had had a symptomatic T4 vertebral hemangioma operated successfully, and had made a full recovery. Magnetic resonance imaging (MRI) of the thoracic and lumbar spine revealed multiple thoracic and lumbar vertebral hemangiomas. Extraosseous extension of a hemangioma at T9 was causing spinal cord compression. Selective embolization was performed preoperatively, and cord decompression was achieved via anterior T9 corpectomy. The patient's neurological status improved rapidly after surgery. After a course of radiotherapy, she was neurologically intact and could walk independently. One year later, MRI showed complete resolution of the cord edema at T9, and showed regression of the high signal intensity that had been observed at unoperated levels. These findings indicated diminished vascularity and reduced aggression of the tumor.

  2. The effects of cisplatin on rat spinal ganglia: a study by light and electron microscopy and by morphometry.

    PubMed

    Tomiwa, K; Nolan, C; Cavanagh, J B

    1986-01-01

    Cisplatin given in doses of 0.5-2 mg to Wistar and to Sprague-Dawley rats produced nucleolar segregation of the dense fibrillar from the granular component in spinal root ganglion cells. The nucleolar segregation, found to the same extent in large and small neurons, was confirmed by specific silver staining and by electron microscopy. After repeated doses of 1 mg or 0.5 mg, up to 40% of affected nucleoli were observed by light microscopy. Focal clearing of the nucleoplasm of nuclei also occurred. Disorganisation of ribosomes was found in more severely intoxicated animals, especially in large light cells with shrinkage of the Nissl substance and apparent increase in neurofilaments, the latter occasionally distending the initial segment of the axon, but never extending further. Hypertrophy of the satellite cells with increase in the perineuronal intercellular spaces, often associated with irregular, scalloped nuclear and cell outlines, suggested that neuron shrinkage had occurred. This was confirmed by morphometry and marked alterations were found in nucleolar-to-nuclear and nucleolar-to-cell diameter ratios, nuclear and cell diameters were also somewhat reduced without change in the nucleus-to-cell ratios. Peripheral sensory nerve degeneration was not seen, and the animals died from non-neural causes. The probable role of these events in the production of sensory neuropathy is discussed.

  3. Compression and contact area of anterior strut grafts in spinal instrumentation: a biomechanical study

    PubMed Central

    2013-01-01

    Background Anterior bone grafts are used as struts to reconstruct the anterior column of the spine in kyphosis or following injury. An incomplete fusion can lead to later correction losses and compromise further healing. Despite the different stabilizing techniques that have evolved, from posterior or anterior fixating implants to combined anterior/posterior instrumentation, graft pseudarthrosis rates remain an important concern. Furthermore, the need for additional anterior implant fixation is still controversial. In this bench-top study, we focused on the graft-bone interface under various conditions, using two simulated spinal injury models and common surgical fixation techniques to investigate the effect of implant-mediated compression and contact on the anterior graft. Methods Calf spines were stabilised with posterior internal fixators. The wooden blocks as substitutes for strut grafts were impacted using a “pressfit” technique and pressure-sensitive films placed at the interface between the vertebral bone and the graft to record the compression force and the contact area with various stabilization techniques. Compression was achieved either with posterior internal fixator alone or with an additional anterior implant. The importance of concomitant ligament damage was also considered using two simulated injury models: pure compression Magerl/AO fracture type A or rotation/translation fracture type C models. Results In type A injury models, 1 mm-oversized grafts for impaction grafting provided good compression and fair contact areas that were both markedly increased by the use of additional compressing anterior rods or by shortening the posterior fixator construct. Anterior instrumentation by itself had similar effects. For type C injuries, dramatic differences were observed between the techniques, as there was a net decrease in compression and an inadequate contact on the graft occurred in this model. Under these circumstances, both compression and the

  4. Progressive foot drop caused by below-knee compression stocking after spinal surgery

    PubMed Central

    Malhotra, Karan; Butler, Joseph S.; Benton, Adam; Molloy, Sean

    2016-01-01

    Foot drop is a debilitating condition, which may take many months to recover. The most common cause of foot drop is a neuropathy of the common peroneal nerve (CPN). However, similar symptoms can be caused by proximal lesions of the sciatic nerve, lumbar plexus or L5 nerve root. We present a rare and unusual case of a patient undergoing spinal surgery at the level of L5/S1 and presenting 4 weeks postoperatively with progressive foot drop. Although the initial concern was a postoperative lesion at L5, the cause for this delayed presentation was extrinsic compression of the CPN at the level of the fibular head by a tight-fitting below-knee thromboembolic deterrent stocking. Compression stockings are widely used in all branches of medicine and in the community. It is important to recognize this potential cause of progressive foot drop early as it is preventable by simple measures, which can significantly reduce morbidity. PMID:27617106

  5. Cervical spinal cord compression caused by cryptococcosis in a dog: successful treatment with surgery and fluconazole.

    PubMed

    Kerwin, S C; McCarthy, R J; VanSteenhouse, J L; Partington, B P; Taboada, J

    1998-01-01

    A six-year-old, male Doberman pinscher was presented for acute onset of upper motor neuron tetraparesis. An extradural compressive lesion compatible with intervertebral disk rupture at the sixth to seventh cervical (C6-C7) disk space was evident on myelography. A large, gelatinous mass of pure cryptococcal organisms causing spinal cord compression was identified upon exploratory surgery. Removal of the mass caused relief of clinical signs. No evidence of involvement of other organ systems was found; however, serum and cerebrospinal fluid titers were positive for cryptococcal infection. The dog was treated with fluconazole (5.5 mg/kg body weight, per os sid) until serum titers for cryptococcal infection were negative at seven months postsurgery. To the authors' knowledge, this is the only report of a dog with cryptococcosis treated successfully using fluconazole as a sole agent.

  6. The effect of botulinum neurotoxin A on sciatic nerve injury-induced neuroimmunological changes in rat dorsal root ganglia and spinal cord.

    PubMed

    Mika, J; Rojewska, E; Makuch, W; Korostynski, M; Luvisetto, S; Marinelli, S; Pavone, F; Przewlocka, B

    2011-02-23

    Botulinum neurotoxin serotype A (BoNT/A) acts by cleaving synaptosome-associated-protein-25 (SNAP-25) in nerve terminals to inhibit neuronal release and shows long-lasting antinociceptive action in neuropathic pain. However, its precise mechanism of action remains unclear. Our study aimed to characterize BoNT/A-induced neuroimmunological changes after chronic constriction injury (CCI) of the sciatic nerve. In the ipsilateral lumbar spinal cords of CCI-exposed rats, the mRNA of microglial marker (complement component 1q, C1q), astroglial marker (glial fibrillary acidic protein, GFAP), and prodynorphin were upregulated, as measured by reverse transcription-polymerase chain reaction (RT-PCR). No changes appeared in mRNA for proenkephalin, pronociceptin, or neuronal and inducible nitric oxide synthase (NOS1 and NOS2, respectively). In the dorsal root ganglia (DRG), an ipsilateral upregulation of prodynorphin, pronociceptin, C1q, GFAP, NOS1 and NOS2 mRNA and a downregulation of proenkephalin mRNA were observed. A single intraplantar BoNT/A (75 pg/paw) injection induced long-lasting antinociception in this model. BoNT/A diminished the injury-induced ipsilateral spinal upregulation of C1q mRNA. In the ipsilateral DRG a significant decrease of C1q-positive cell activation and of the upregulation of prodynorphin, pronociceptin and NOS1 mRNA was also observed following BoNT/A admistration. BoNT/A also diminished the injury-induced upregulation of SNAP-25 expression in both structures. We provide evidence that BoNT/A impedes injury-activated neuronal function in structures distant from the injection site, which is demonstrated by its influence on NOS1, prodynorphin and pronociceptin mRNA levels in the DRG. Moreover, the silence of microglia/macrophages after BoNT/A administration could be secondary to the inhibition of neuronal activity, but this decrease in neuroimmune interactions could be the key to the long-lasting BoNT/A effect on neuropathic pain.

  7. Local peripheral opioid effects and expression of opioid genes in the spinal cord and dorsal root ganglia in neuropathic and inflammatory pain.

    PubMed

    Obara, Ilona; Parkitna, Jan Rodriguez; Korostynski, Michal; Makuch, Wioletta; Kaminska, Dorota; Przewlocka, Barbara; Przewlocki, Ryszard

    2009-02-01

    We investigated the efficacy of local intraplantar (i.pl.) injection of peptide and non-peptide mu-, delta- and kappa-opioid receptor agonists in rat models of inflammatory and neuropathic pain. Locally applied agonists dose-dependently reduced formalin-induced flinching of the inflamed paw and induced antiallodynic and antihyperalgesic effects in sciatic nerve ligation-induced neuropathic pain. These effects were mediated by peripheral opioid receptors localized at the side of tissue/nerve injury, as was demonstrated by selective and non-selective opioid receptors antagonists. The ED(50) dose range of mu- and kappa-agonists required to induce analgesia in neuropathy was much higher than the ED(50) for inflammation; moreover, only delta-agonists were effective in the same dose range in both pain models. Additionally, effective antinociception was achieved at a lower dose of peptide, compared to non-peptide, opioids. Such findings support the use of the peripheral administration of opioid peptides, especially delta-agonists, in treating chronic pain. Furthermore, in order to assess whether adaptations in the expression of opioid genes could underlie the clinical observation of reduced opioid effectiveness in neuropathic pain, we analyzed the abundance of opioid transcripts in the spinal cord and dorsal root ganglia (DRG) during the neuropathy and inflammation. Nerve injury down-regulated mRNA for all types of opioid receptors in the DRG, which is predicted to decrease in the synthesis of opioid receptors to possibly account for the reduced effectiveness of locally administered opioids in neuropathy. The obtained results differentiate inflammatory and neuropathic pain and provide a novel insight into the peripheral effectiveness of opioids in both types of pain.

  8. Reduction in nerve root compression by the nucleus pulposus after Feng's Spinal Manipulation.

    PubMed

    Feng, Yu; Gao, Yan; Yang, Wendong; Feng, Tianyou

    2013-04-25

    Ninety-four patients with lumbar intervertebral disc herniation were enrolled in this study. Of these, 48 were treated with Feng's Spinal Manipulation, hot fomentation, and bed rest (treatment group). The remaining 46 patients were treated with hot fomentation and bed rest only (control group). After 3 weeks of treatment, clinical parameters including the angle of straight-leg raising, visual analogue scale pain score, and Japanese Orthopaedic Association score for low back pain were improved. The treatment group had significantly better improvement in scores than the control group. Magnetic resonance myelography three-dimensional reconstruction imaging of the vertebral canal demonstrated that filling of the compressed nerve root sleeve with cerebrospinal fluid increased significantly in the treatment group. The diameter of the nerve root sleeve was significantly larger in the treatment group than in the control group. However, the sagittal diameter index of the herniated nucleus pulposus and the angle between the nerve root sleeve and the thecal sac did not change significantly in either the treatment or control groups. The effectiveness of Feng's Spinal Manipulation for the treatment of symptoms associated with lumbar intervertebral disc herniation may be attributable to the relief of nerve root compression, without affecting the herniated nucleus pulposus or changing the morphology or position of the nerve root.

  9. Bilateral Vertebral Venous Sinus Thrombosis Causing Cervical Spinal Cord Compression in a Dog

    PubMed Central

    Rhue, Kathryn E.; Taylor, Amanda R.; Cole, Robert C.; Winter, Randolph L.

    2017-01-01

    A 10-year-old male neutered mixed breed dog was evaluated for cervical hyperesthesia and tetraparesis. Magnetic resonance imaging of the brain and cervical spinal cord identified an extradural compressive lesion over the body of C2 caused by marked dilation of the vertebral venous sinuses. Following intravenous contrast administration both vertebral sinuses had heterogeneous contrast enhancement consistent with incomplete thrombi formation. An abdominal ultrasound also showed a distal aortic thrombus. A definitive cause for the thrombi formation was not identified, but the patient had several predisposing factors which may have contributed. The patient was treated with a combination of warfarin, clopidogrel, and enoxaparin as well as analgesics. Within 48 h of initiation of warfarin therapy, the tetraparesis and hyperesthesia were markedly improved. Repeat abdominal ultrasound 3 weeks after discharge showed reduction in size of aortic thrombus. Neurologic function remained normal for 6 weeks following initiation of treatment. Seventy-four days following initial diagnosis the patient rapidly declined and passed away at home. Necropsy was declined. This is the first report of vertebral venous sinus enlargement leading to spinal cord compression and tetraparesis in a dog. Additionally, warfarin in combination with clopidogrel and enoxaparin appeared to be a safe and effective treatment for the suspected thrombi reported in this case. Vertebral sinus enlargement secondary to thrombi should be considered as a differential diagnosis in patients presenting with tetraparesis and cervical hyperesthesia. PMID:28229071

  10. Multimodal Approach to the Management of Metastatic Epidural Spinal Cord Compression (MESCC) Due to Solid Tumors

    SciTech Connect

    Tancioni, Flavio; Navarria, Pierina; Lorenzetti, Martin A.; Pedrazzoli, Paolo; Masci, Giovanna; Mancosu, Pietro; Alloisio, Marco; Morenghi, Emanuela; Santoro, Armando; Rodriguez y Baena, Riccardo; Scorsetti, Marta

    2010-12-01

    Purpose: To assess the impact of a multidisciplinary approach for treatment of patients with metastatic epidural spinal cord compression in terms of feasibility, local control, and survival. Methods and Materials: Eighty-nine consecutive patients treated between January 2004 and December 2007 were included. The most common primary cancers were lung, breast, and kidney cancers. Ninety-eight surgical procedures were performed. Radiotherapy was performed within the first month postoperatively. Clinical outcome was evaluated by modified visual analog scale for pain, Frankel scale for neurologic deficit, and magnetic resonance imaging or computed tomography scan. Nearly all patients (93%) had back pain before treatment, whereas major or minor preoperative neurologic deficit was present in 62 cases (63%). Results: Clinical remission of pain was obtained in the vast majority of patients (91%). Improvement of neurologic deficit was observed in 45 cases (72.5%). Local relapse occurred in 10%. Median survival was 11 months (range, 0-46 months). Overall survival at 1 year was 43.6%. Type of primary tumor significantly affected survival. Conclusions: In patients with metastatic epidural spinal cord compression, the combination of surgery plus radiotherapy is feasible and provides clinical benefit in most patients. The discussion of each single case within a multidisciplinary team has been of pivotal importance in implementing the most appropriate therapeutic approach.

  11. A New Acute Impact-Compression Lumbar Spinal Cord Injury Model in the Rodent

    PubMed Central

    Moonen, Gray; Satkunendrarajah, Kajana; Wilcox, Jared T.; Badner, Anna; Mothe, Andrea; Foltz, Warren; Fehlings, Michael G.

    2016-01-01

    Abstract Traumatic injury to the lumbar spinal cord results in complex central and peripheral nervous tissue damage causing significant neurobehavioral deficits and personal/social adversity. Although lumbar cord injuries are common in humans, there are few clinically relevant models of lumbar spinal cord injury (SCI). This article describes a novel lumbar SCI model in the rat. The effects of moderate (20 g), moderate-to-severe (26 g) and severe (35 g, and 56 g) clip impact-compression injuries at the lumbar spinal cord level L1-L2 (vertebral level T11-T12) were assessed using several neurobehavioral, neuroanatomical, and electrophysiological outcome measures. Lesions were generated after meticulous anatomical landmarking using microCT, followed by laminectomy and extradural inclusion of central and radicular elements to generate a traumatic SCI. Clinically relevant outcomes, such as MR and ultrasound imaging, were paired with robust morphometry. Analysis of the lesional tissue demonstrated that pronounced tissue loss and cavitation occur throughout the acute to chronic phases of injury. Behavioral testing revealed significant deficits in locomotion, with no evidence of hindlimb weight-bearing or hindlimb-forelimb coordination in any injured group. Evaluation of sensory outcomes revealed highly pathological alterations including mechanical allodynia and thermal hyperalgesia indicated by increasing avoidance responses and decreasing latency in the tail-flick test. Deficits in spinal tracts were confirmed by electrophysiology showing increased latency and decreased amplitude of both sensory and motor evoked potentials (SEP/MEP), and increased plantar H-reflex indicating an increase in motor neuron excitability. This is a comprehensive lumbar SCI model and should be useful for evaluation of translationally oriented pre-clinical therapies. PMID:26414192

  12. Impacts of anti-nerve growth factor antibody on pain-related behaviors and expressions of opioid receptor in spinal dorsal horn and dorsal root ganglia of rats with cancer-induced bone pain

    PubMed Central

    Ding, Yuanyuan; Wang, Zhibin; Ma, Jiaming; Hong, Tao; Zhu, Yongqiang; Li, Hongxi; Pan, Shinong

    2016-01-01

    Objective To investigate the impacts of anti-nerve growth factor antibody on pain-related behaviors and expressions of μ-opioid receptor in spinal dorsal horn and dorsal root ganglia of rats with cancer-induced bone pain. Methods The rats were randomly grouped and then injected with 10 μl of phosphate buffer saline or Walker256 tumor cells into the upper segment of left tibia. Thirteen days after the injection, the intrathecal catheterization was performed, followed by the injection of saline, anti-nerve growth factor, nerve growth factor, and naloxone twice a day. The pain ethological changes were measured at the set time points; the expression changes of μ-opioid receptor protein and mRNA in spinal dorsal horn and dorsal root ganglia were detected on the 18th day. Results After the tumor cells were injected into the tibia, hyperalgesia appeared and the expression of μ-opioid receptor protein and mRNA in spinal dorsal horn and dorsal root ganglia was increased, compared with the sham group; after intrathecally injected anti-nerve growth factor, the significant antinociceptive effects appeared, and the μ-opioid receptor expression was increased, compared with the cancer pain group; the μ-opioid receptor expressions in the other groups showed no statistical significance. The naloxone pretreatment could mostly inverse the antinociception effects of anti-nerve growth factor. Conclusions Anti-nerve growth factor could reduce hyperalgesia in the cancer-induced bone pain rats, and the antinociceptive effects were related with the upregulation of μ-opioid receptor. PMID:27118770

  13. Trunk Muscle Activation and Estimating Spinal Compressive Force in Rope and Harness Vertical Dance.

    PubMed

    Wilson, Margaret; Dai, Boyi; Zhu, Qin; Humphrey, Neil

    2015-12-01

    Rope and harness vertical dance takes place off the floor with the dancer suspended from his or her center of mass in a harness attached to a rope from a point overhead. Vertical dance represents a novel environment for training and performing in which expected stresses on the dancer's body are different from those that take place during dance on the floor. Two male and eleven female dancers with training in vertical dance performed six typical vertical dance movements with electromyography (EMG) electrodes placed bilaterally on rectus abdominus, external oblique, erector spinae, and latissimus dorsi. EMG data were expressed as a percentage of maximum voluntary isometric contraction (MVIC). A simplified musculoskeletal model based on muscle activation for these four muscle groups was used to estimate the compressive force on the spine. The greatest muscle activation for erector spinae and latissimus dorsi and the greatest trunk compressive forces were seen in vertical axis positions where the dancer was moving the trunk into a hyper-extended position. The greatest muscle activation for rectus abdominus and external oblique and the second highest compressive force were seen in a supine position with the arms and legs extended away from the center of mass (COM). The least muscle activation occurred in positions where the limbs were hanging below the torso. These movements also showed relatively low muscle activation compression forces. Post-test survey results revealed that dancers felt comfortable in these positions; however, observation of some positions indicated insufficient muscular control. Computing the relative contribution of muscles, expressed as muscle activation and estimated spinal compression, provided a measure of how much the muscle groups were working to support the spine and the rest of the dancer's body in the different movements tested. Additionally, identifying typical muscle recruitment patterns in each movement will help identify key exercises

  14. Hyaluronan tetrasaccharide in the cerebrospinal fluid is associated with self-repair of rats after chronic spinal cord compression.

    PubMed

    Wang, J; Rong, W; Hu, X; Liu, X; Jiang, L; Ma, Y; Dang, G; Liu, Z; Wei, F

    2012-05-17

    The objective of this study was to explore changes in hyaluronan levels in the cerebrospinal fluid (CSF) in a spinal cord compression model, to investigate whether hyaluronan tetrasaccharide was involved in this process, and to test the effects of hyaluronan tetrasaccharide on neuron and oligodendrocyte repair. We developed a chronic spinal cord compression model with various sizes of polymer sheets (1.5×0.7×0.3 mm(3); 5×1.5×0.7 mm(3)) that were implanted microsurgically underneath the C(5-6) laminae. The rats were divided into three groups: a sham group, a mildly compressed (MC) group, and a widely compressed (WC) group. Locomotor functional evaluations revealed that the behavioral function of the MC and WC groups dropped to their lowest level from the fourth to fifth week and gradually recovered thereafter. The hyaluronan levels in the CSF gradually increased after spinal cord compression. Furthermore, hyaluronan tetrasaccharide was involved in the hyaluronan change. In addition, we found that nuclear factor kappa B (NF-κB) and cellular inhibitor-of-apoptosis protein 2 (c-IAP(2)) were co-expressed in neurons and oligodendrocytes, and caspase-3 expression gradually decreased in the compression model. The brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) expression was upregulated in astrocytes at the fourth week post-compression. Hyaluronan tetrasaccharide (HA(4)) induced NF-κB and c-IAP(2) to suppress the H(2)O(2)-induced apoptosis in primary neuronal cultures and increased BDNF and VEGF expression in astrocytic cultures in vitro. These findings suggest that HA(4) in the CSF may associate with behavioral recovery by increasing the levels of NF-κB, c-IAP(2), and neurotrophic factors after chronic spinal cord compression.

  15. Can the spinal instability neoplastic score prior to spinal radiosurgery predict compression fractures following stereotactic spinal radiosurgery for metastatic spinal tumor?: a post hoc analysis of prospective phase II single-institution trials.

    PubMed

    Lee, Sun-Ho; Tatsui, Claudio E; Ghia, Amol J; Amini, Behrang; Li, Jing; Zavarella, Salvatore M; Tannir, Nizar M; Brown, Paul D; Rhines, Laurence D

    2016-02-01

    The aim of this study was to determine the predictability of vertebral compression fracture (VCF) development applying the spinal instability neoplastic score (SINS) prior to delivery of stereotactic spinal radiosurgery (SSRS) for spinal metastases. From two prospective cohorts of SSRS for spinal metastases, we selected patients with a low degree of cord compression or cauda equine from C3 to S1 and analyzed 79 patients enrolled according to binary SINS criteria. The primary endpoint was the development of a de novo VCF or progression of an existing fracture after SSRS. We identified 32 fractures (40.5%): 19 de novo and 13 progressive. The mean time to fracture after SSRT was 3.3 months (range, 0.4-34.1 months). In 41 patients with low SINS (0-6), 7 patients (17.1%) developed a fracture after SSRS. In 38 patients with high SINS (7-12), 25 (65.8%) developed a fracture. Among the 32 fractures, 15 were symptomatic. Patients with high SINS were more likely to experience symptomatic fractures (31.6%) than were patients with lower SINS (7.4%). On univariate and multivariate analysis, 24-month fracture-free rates were 78.7 and 33.7% in low and high SINS group, respectively and high SINS was found to be a significant risk factor for VCFs and symptomatic fractures (respectively, HR 5.6, p = 0.04; HR 5.3, p = 0.01). SINS is a useful tool for predicting the development of VCF after SSRS for spinal metastases. Prophylactic cement augmentation should not be considered for patients with lower SINS, since the risk of fracture is low.

  16. Modulation of Spinal GABAergic Inhibition and Mechanical Hypersensitivity following Chronic Compression of Dorsal Root Ganglion in the Rat

    PubMed Central

    Lee, Moon Chul; Nam, Taick Sang; Jung, Se Jung; Gwak, Young S.; Leem, Joong Woo

    2015-01-01

    Chronic compression of dorsal root ganglion (CCD) results in neuropathic pain. We investigated the role of spinal GABA in CCD-induced pain using rats with unilateral CCD. A stereological analysis revealed that the proportion of GABA-immunoreactive neurons to total neurons at L4/5 laminae I–III on the injured side decreased in the early phase of CCD (post-CCD week 1) and then returned to the sham-control level in the late phase (post-CCD week 18). In the early phase, the rats showed an increase in both mechanical sensitivity of the hind paw and spinal WDR neuronal excitability on the injured side, and such increase was suppressed by spinally applied muscimol (GABA-A agonist, 5 nmol) and baclofen (GABA-B agonist, 25 nmol), indicating the reduced spinal GABAergic inhibition involved. In the late phase, the CCD-induced increase in mechanical sensitivity and neuronal excitability returned to pre-CCD levels, and such recovered responses were enhanced by spinally applied bicuculline (GABA-A antagonist, 15 nmol) and CGP52432 (GABA-B antagonist, 15 nmol), indicating the regained spinal GABAergic inhibition involved. In conclusion, the alteration of spinal GABAergic inhibition following CCD and leading to a gradual reduction over time of CCD-induced mechanical hypersensitivity is most likely due to changes in GABA content in spinal GABA neurons. PMID:26451259

  17. In vivo diffusion tensor imaging of chronic spinal cord compression : a rat model with special attention to the conus medullaris.

    PubMed

    Zhao, Peng; Kong, Chao; Chen, Xueming; Guan, Hua; Yu, Zhenshan; Cui, Libin; Wang, Yanhui; Yuan, Xin

    2016-12-01

    Background Few studies have focused on diffusion tensor imaging (DTI) parameters of the conus medullaris after chronic compression in the cervical spinal cord. Purpose To discuss the correlation of DTI parameters between the chronically compressed cervical spinal cord and the conus medullaris in a rat model at different time points. Material and Methods Fifty female Sprague-Dawley rats were randomized into five groups: control group (group A), sham group (group B), and test groups C, D, and E (1, 2, and 3 weeks after compression, respectively). Apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values of the cervical spinal cord and conus medullaris were compared among different groups. Correlations of ADC and FA values of the cervical spinal cord with those of the conus medullaris were performed in all groups. Results The ADC values at the cervical spinal cord and conus medullaris in all test groups were higher than those of group A and B, while the FA values were lower. The ADC value of the cervical spinal cord was linearly correlated with that of the conus medullaris only in group D. There were no linear correlations of FA values between the cervical spinal cord and the conus medullaris in all test groups. Conclusion After compression of the cervical spinal cord, ADC values of the cervical spinal cord and conus medullaris in test group were significantly increased, while FA values were significantly decreased. The ADC value of the cervical spinal cord was linearly correlated with that of the conus medullaris at 2 weeks after compression.

  18. Excellent outcomes after radiotherapy alone for malignant spinal cord compression from myeloma

    PubMed Central

    Conde-Moreno, Antonio J.; Cacicedo, Jon; Segedin, Barbara; Rudat, Volker; Schild, Steven E.

    2016-01-01

    Abstract Background Uncertainty exists whether patients with spinal cord compression (SCC) from a highly radiosensitive tumor require decompressive spinal surgery in addition to radiotherapy (RT). This study addressed the question by evaluating patients receiving RT alone for SCC from myeloma. Patients and methods Data of 238 patients were retrospectively analyzed for response to RT and local control of SCC. In addition, the effect of RT on motor function (improvement, no further progression, deterioration) was evaluated. Overall response was defined as improvement or no further progression of motor dysfunction. Prior to RT, patients were presented to a neurosurgeon for evaluation whether upfront decompressive surgery was indicated (e.g. vertebral fracture or unstable spine). Results In the entire cohort, the overall response rate was 97% (53% improvement plus 44% no further progression). Following RT, 88% of the patients were able to walk. Of the 69 non-ambulatory patients 44 patients (64%) regained the ability to walk. Local control rates at 1, 2 and 3 years were 93%, 82% and 82%, respectively. A trend towards better local control was observed for patients who were ambulatory before starting RT (p = 0.08) and those with a more favorable performance status (p = 0.07). Conclusions RT alone provided excellent response rates, functional outcomes and local control in patients with SCC from myeloma. These results should be confirmed in a prospective randomized trial. PMID:27679551

  19. Suspected spinal cord compression in cancer patients: a multidisciplinary risk assessment.

    PubMed

    Lu, Charles; Gonzalez, Ramon G; Jolesz, Ferenc A; Wen, Patrick Y; Talcott, James A

    2005-01-01

    Investigators involved in this study sought to identify independent clinical predictors of spinal cord compression (SCC) in cancer patients by analyzing a comprehensive set of potential risk factors based on the results of spine magnetic resonance imaging (MRI). In all, the investigators analyzed 136 episodes of suspected SCC among 134 cancer patients evaluated with spine MRI. Each subject was interviewed within 7 days of the spine MRI to collect accurate self-reported symptom data. Neurologic examination data were detailed by the physician examining the subject prior to the spine MRI; uniform demographic and clinical information regarding the subject's cancer history was abstracted from the medical record. Multivariable logistic regression analysis was used to identify independent predictors of SCC. Clinically significant SCC was defined as thecal sac compression (TSC), which occurred in 50 episodes (37%). Four independent predictors of TSC were identified and included information from the neurologic examination (abnormal neurologic examination), subject-reported symptoms (middle or upper back pain), and the oncologic history (known vertebral metastases and metastatic disease at initial diagnosis). These four predictors stratified patients experiencing episodes into subgroups with varying risks of TSC, ranging from 8% (no risk factors) to 81% (three or four risk factors). These results confirmed earlier retrospective studies indicating that the evaluation of cancer patients with suspected SCC should be based upon clinical information that includes cancer-related history, symptom data,and the presence of pertinent neurologic signs. These predictors may help clinicians to assess risk in this patient population.

  20. Alleviation of chronic pain following rat spinal cord compression injury with multimodal actions of huperzine A

    PubMed Central

    Yu, Dou; Thakor, Devang K.; Han, Inbo; Ropper, Alexander E.; Haragopal, Hariprakash; Sidman, Richard L.; Zafonte, Ross; Schachter, Steven C.; Teng, Yang D.

    2013-01-01

    Diverse mechanisms including activation of NMDA receptors, microglial activation, reactive astrogliosis, loss of descending inhibition, and spasticity are responsible for ∼40% of cases of intractable neuropathic pain after spinal cord injury (SCI). Because conventional treatments blocking individual mechanisms elicit only short-term effectiveness, a multimodal approach with simultaneous actions against major pain-related pathways may have value for clinical management of chronic pain. We hypothesize that [-]-huperzine A (HUP-A), an alkaloid isolated from the club moss Huperzia serrata, that is a potent reversible inhibitor of acetylcholinesterase and NMDA receptors, could mitigate pain without invoking drug tolerance or dependence by stimulating cholinergic interneurons to impede pain signaling, inhibiting inflammation via microglial cholinergic activation, and blocking NMDA-mediated central hypersensitization. We tested our hypothesis by administering HUP-A i.p. or intrathecally to female Sprague–Dawley rats (200–235 g body weight) after moderate static compression (35 g for 5 min) of T10 spinal cord. Compared with controls, HUP-A treatment demonstrates significant analgesic effects in both regimens. SCI rats manifested no drug tolerance following repeated bolus i.p. or chronic intrathecal HUP-A dosing. The pain-ameliorating effect of HUP-A is cholinergic dependent. Relative to vehicle treatment, HUP-A administration also reduced neural inflammation, retained higher numbers of calcium-impermeable GluR2-containing AMPA receptors, and prevented Homer1a up-regulation in dorsal horn sensory neurons. Therefore, HUP-A may provide safe and effective management for chronic postneurotrauma pain by reestablishing homeostasis of sensory circuits. PMID:23386718

  1. The effect of an NK1 receptor antagonist on blood spinal cord barrier permeability following balloon compression-induced spinal cord injury.

    PubMed

    Leonard, Anna V; Vink, Robert

    2013-01-01

    The blood spinal cord barrier (BSCB) is disrupted following spinal cord injury (SCI) resulting in vasogenic edema and increased intrathecal pressure (ITP). The neuropeptide substance P (SP) has been implicated in the development of blood-brain barrier (BBB) disruption, edema, and increased intracranial pressure following brain injury, although it has not been investigated in SCI. The balloon compression model of experimental SCI has many advantages in that it replicates the "closed" environment observed clinically. Accordingly, this study characterized whether this model produces an increase in BSCB permeability and edema, and whether a SP, NK1 tachykinin receptor antagonist, N-acetyl-L-tryptophan (NAT) reduces such BSCB disruption and edema formation. At 30 min post-injury, animals were administered 2.5 mg/kg NAT or saline. Subgroups of animals were assessed for BSCB permeability (Evan's Blue) and spinal cord edema (wet weight/dry weight). BSCB permeability and edema were significantly increased in injured groups compared with sham (p < 0.001). There was no significant difference between vehicle and NAT treatment. We conclude that the balloon compression model of SCI produces significant BSCB disruption although NAT treatment did not attenuate BSCB permeability or edema. Further studies are required to fully elucidate the role of SP following SCI.

  2. Re-irradiation of brain metastases and metastatic spinal cord compression: clinical practice suggestions.

    PubMed

    Maranzano, Ernesto; Trippa, Fabio; Pacchiarini, Diamante; Chirico, Luigia; Basagni, Maria Luisa; Rossi, Romina; Bellavita, Rita; Schiavone, Concetta; Italiani, Marco; Muti, Marco

    2005-01-01

    The recent improvements of therapeutic approaches in oncology have allowed a certain number of patients with advanced disease to survive much longer than in the past. So, the number of cases with brain metastases and metastatic spinal cord compression has increased, as has the possibility of developing a recurrence in areas of the central nervous system already treated with radiotherapy. Clinicians are reluctant to perform re-irradiation of the brain, because of the risk of severe side effects. The tolerance dose for the brain to a single course of radiotherapy is 50-60 Gy in 2 Gy daily fractions. New metastases appear in 22-73% of the cases after whole brain radiotherapy, but the percentage of reirradiated patients is 3-10%. An accurate selection must be made before giving an indication to re-irradiation. Patients with Karnofsky performance status > 70, age < 65 years, controlled primary and no extracranial metastases are those with the best prognosis. The absence of extracranial disease was the most significant factor in conditioning survival, and maximum tumor diameter was the only variable associated with an increased risk of unacceptable acute and/or chronic neurotoxicity. Re-treatment of brain metastases can be done with whole brain radiotherapy, stereotactic radiosurgery or fractionated stereotactic radiotherapy. Most patients had no relevant radiation-induced toxicity after a second course of whole brain radiotherapy or stereotactic radiosurgery. There are few data on fractionated stereotactic radiotherapy in the re-irradiation of brain metastases. In general, the incidence of an "in-field" recurrence of spinal metastasis varies from 2.5-11% of cases and can occur 2-40 months after the first radiotherapy cycle. Radiation-induced myelopathy can occur months or years (6 months-7 years) after radiotherapy, and the pathogenesis remains obscure. Higher radiotherapy doses, larger doses per fraction, and previous exposure to radiation could be associated with a

  3. Odontoid infiltration and spinal compression in Farber Disease: reversal by haematopoietic stem cell transplantation.

    PubMed

    Jarisch, Andrea; Steward, Colin G; Sörensen, Jan; Porto, Luciana; Kieslich, Matthias; Klingebiel, Thomas; Bader, Peter

    2014-10-01

    Farber disease (FD) is a lysosomal storage disorder caused by accumulation of ceramide in various organs and tissues, most notably the central nervous system, subcutaneous tissues and respiratory tract. We report a girl who developed major destructive bone involvement, which affected the odontoid process and produced spinal compression at 9 years of age. Bone involvement was proven histologically but resolved, as assessed by serial MRI scanning, following matched unrelated donor haematopoietic stem cell transplantation. This transplant resulted in only partial donor chimerism (less than 10 % donor cells in peripheral blood), yet this was sufficient to almost normalize acid ceramidase levels in leukocytes and to produce dramatic improvements in subcutaneous nodules and joint mobility as well as the beneficial effect on the involved bone. Unfortunately, the transplant was rejected after 2 years but the patient was rescued from an aplastic state by successful haploidentical peripheral blood stem cell transplantation and remained a full donor chimera without recurrence of the bone involvement and with steadily improving mobility at the age of 17 years. We describe an FD patient who presented with severe destruction of the odontoid by inflammatory tissue which was reversed after long-term control achieved by allogeneic hematopoietic stem cell transplantation. After extensive literature search, we believe that this is the first report of bony involvement in Farber disease.

  4. Effect of spinal cord compression on local vascular blood flow and perfusion capacity by Alshareef M, Krishna V, Ferdous J, Aishareef A, Kindy M, Kolachalama VB, et al.

    PubMed Central

    Epstein, Nancy E.

    2016-01-01

    Background: Different degrees of blood flow/vascular compromise occur with anterior, posterior, or circumferential spinal cord compression/spinal cord injury (SCI). SCI is also divided into primary and secondary injury. Primary SCI refers to the original neurological damage to tissues, whereas secondary injury reflects interruption of normal blood flow leading to further inflammatory response/other local changes which contribute to additional neurological injury. Methods: The authors developed a quantitative “3-D finite element fluid structure interaction model” of spinal cord blood flow to better document the mechanisms of secondary ischemic damage occurring in the spinal cord anteriorly, posteriorly, or circumferentially. This included assessment of the anterior spinal artery (ASA) and five arterial branches (L1, L2, L3, R1, R2), but excluded the microvasculature. Results: Different locations of cord compression resulted in alternative patterns of spinal cord ischemia. Anterior spinal artery (ASA) flow was substantially reduced by direct anterior compression, but resulted in the least vascular compromise. Alternatively, posterior compression resulted in a significant and critical reduction of distal ASA blood flow and, therefore, correlated with the greatest susceptibility to acute ischemia. Counterintuitively, they concluded “at equivalent degrees of dural occlusion, the loss of branch blood flow under anterior posterior compression was intermediate to predictions for purely posterior or anterior loading.” Conclusion: Utilizing a computational three-dimensional model, Alshareef et al. observed that anterior cervical cord compression resulted in the least severe compromise of ASA blood flow to the spinal cord, whereas posterior cord compression/SCI maximally reduced distal ASA blood flow potentiating acute ischemia. Therefore, the latter warranted the earliest surgical intervention. PMID:27843686

  5. A Score Predicting Posttreatment Ambulatory Status in Patients Irradiated for Metastatic Spinal Cord Compression

    SciTech Connect

    Rades, Dirk Rudat, Volker; Veninga, Theo; Stalpers, Lukas J.A.; Basic, Hiba; Karstens, Johann H.; Hoskin, Peter J.; Schild, Steven E.

    2008-11-01

    Purpose: To create a scoring system to predict ambulatory status after radiotherapy (RT) for metastatic spinal cord compression (MSCC). Methods and Materials: On the basis of a multivariate analysis of 2096 MSCC patients, a scoring system was developed. This included the five prognostic factors significantly associated with post-RT ambulatory status: primary tumor type, interval between tumor diagnosis and MSCC, visceral metastases, motor function before RT, and time developing motor deficits before RT. The score for each factor was determined by dividing the post-RT ambulatory rate (as a percentage) by 10. Total scores represented the sum of the scores for each factor and ranged between 21 and 44 points. Patients were divided into five groups according to this score. Results: The post-RT ambulatory rates were 6% (24 of 389) for patients with scores of {<=}28 points, 44% (121 of 278) for those with 29-31 points, 70% (212 of 303) for those with 32-34 points, 86% (315 of 266) for those with 35-37 points, and 99% (750 of 760) for those with {>=}38 points. The 3-month survival rates were 29%, 62%, 77%, 84%, and 98%, respectively. The 6-months survival rates were 6%, 31%, 42%, 61%, and 93%, respectively. Conclusions: Because patients with scores of {<=}28 points had poor functional outcome after RT and extraordinarily poor survival rates, short-course RT to decrease pain or best supportive care may be considered. Patients with scores of 29-37 points should be considered surgical candidates, because RT-alone results were not optimal. Patients with scores of {>=}38 points seem to have excellent results with RT alone.

  6. Dose Escalation for Metastatic Spinal Cord Compression in Patients With Relatively Radioresistant Tumors

    SciTech Connect

    Rades, Dirk; Freundt, Katja; Meyners, Thekla; Bajrovic, Amira; Basic, Hiba; Karstens, Johann H.; Adamietz, Irenaeus A.; Wildfang, Ingeborg; Rudat, Volker; Schild, Steven E.; Dunst, Juergen

    2011-08-01

    Purpose: Radiotherapy alone is the most common treatment for metastatic spinal cord compression (MSCC) from relatively radioresistant tumors such as renal cell carcinoma, colorectal cancer, and malignant melanoma. However, the results of the 'standard' regimen 30 Gy/10 fractions need to be improved with respect to functional outcome. This study investigated whether a dose escalation beyond 30 Gy can improve treatment outcomes. Methods and Materials: A total of 91 patients receiving 30 Gy/10 fractions were retrospectively compared to 115 patients receiving higher doses (37.5 Gy/15 fractions, 40 Gy/20 fractions) for motor function and local control of MSCC. Ten further potential prognostic factors were evaluated: age, gender, tumor type, performance status, number of involved vertebrae, visceral or other bone metastases, interval from tumor diagnosis to radiotherapy, pretreatment ambulatory status, and time developing motor deficits before radiotherapy. Results: Motor function improved in 18% of patients after 30 Gy and in 22% after higher doses (p = 0.81). On multivariate analysis, functional outcome was associated with visceral metastases (p = 0.030), interval from tumor diagnosis to radiotherapy (p = 0.010), and time developing motor deficits (p < 0.001). The 1-year local control rates were 76% after 30 Gy and 80% after higher doses, respectively (p = 0.64). On multivariate analysis, local control was significantly associated with visceral metastases (p = 0.029) and number of involved vertebrae (p = 0.043). Conclusions: Given the limitations of a retrospective study, escalation of the radiation dose beyond 30 Gy/10 fractions did not significantly improve motor function and local control of MSCC in patients with relatively radioresistant tumors.

  7. Surgery Followed by Radiotherapy Versus Radiotherapy Alone for Metastatic Spinal Cord Compression From Unfavorable Tumors

    SciTech Connect

    Rades, Dirk; Huttenlocher, Stefan; Bajrovic, Amira; Karstens, Johann H.; Adamietz, Irenaeus A.; Kazic, Nadja; Rudat, Volker; Schild, Steven E.

    2011-12-01

    Purpose: Despite a previously published randomized trial, controversy exists regarding the benefit of adding surgery to radiotherapy for metastatic spinal cord compression (MSCC). It is thought that patients with MSCC from relatively radioresistant tumors or tumors associated with poor functional outcome after radiotherapy alone may benefit from surgery. This study focuses on these tumors. Methods and Materials: Data from 67 patients receiving surgery plus radiotherapy (S+RT) were matched to 134 patients (1:2) receiving radiotherapy alone (RT). Groups were matched for 10 factors and compared for motor function, ambulatory status, local control, and survival. Additional separate matched-pair analyses were performed for patients receiving direct decompressive surgery plus stabilization of involved vertebrae (DDSS) and patients receiving laminectomy (LE). Results: Improvement of motor function occurred in 22% of patients after S+RT and 16% after RT (p = 0.25). Posttreatment ambulatory rates were 67% and 61%, respectively (p = 0.68). Of nonambulatory patients, 29% and 19% (p = 0.53) regained ambulatory status. One-year local control rates were 85% and 89% (p = 0.87). One-year survival rates were 38% and 24% (p = 0.20). The matched-pair analysis of patients receiving LE showed no significant differences between both therapies. In the matched-pair analysis of patients receiving DDSS, improvement of motor function occurred more often after DDSS+RT than RT (28% vs. 19%, p = 0.024). Posttreatment ambulatory rates were 86% and 67% (p = 0.30); 45% and 18% of patients regained ambulatory status (p = 0.29). Conclusions: Patients with MSCC from an unfavorable primary tumor appeared to benefit from DDSS but not LE when added to radiotherapy in terms of improved functional outcome.

  8. Escalation of radiation dose beyond 30 Gy in 10 fractions for metastatic spinal cord compression

    SciTech Connect

    Rades, Dirk . E-mail: Rades.Dirk@gmx.net; Karstens, Johann H.; Hoskin, Peter J.; Rudat, Volker; Veninga, Theo; Schild, Steven E.; Dunst, Juergen

    2007-02-01

    Purpose: In many centers worldwide, radiotherapy for metastatic spinal cord compression (MSCC) is performed with 30 Gy in 10 fractions. This study investigated the potential benefit of dose escalation. Methods and Materials: Data from 922 patients with carcinomas causing MSCC were retrospectively evaluated. The outcome of 345 patients treated with 10 fractions of 3 Gy in 2 weeks was compared with the outcomes of 577 patients treated with 37.5 Gy in 15 fractions within 3 weeks or 40 Gy in 20 fractions within 4 weeks. Additionally, 10 potential prognostic factors were investigated: age, gender, performance status, tumor type, interval between cancer diagnosis and MSCC, number of involved vertebrae, other bone and visceral metastases, ambulatory status, and the interval to the development of motor deficits before radiotherapy. Results: Motor function improved in 19% of patients after 30 Gy in 10 fractions and in 22% after greater doses (p = 0.31). The local control (p = 0.28) and survival (p = 0.85) rates were not significantly different with doses >30 Gy. Better functional outcome was associated with the absence of visceral metastases, an interval between tumor diagnosis and MSCC of >12 months, ambulatory status, and an interval to the development of motor deficits of >7 days. Improved local control was significantly associated with no visceral metastases, improved survival with favorable histologic features (breast or prostate cancer), no visceral metastases, ambulatory status, an interval between cancer diagnosis and MSCC of >12 months, and an interval to the development of motor deficits of >7days. Conclusion: Escalation of the radiation dose to >30 Gy in 10 fractions did not improve the outcomes in terms of motor function, local control, or survival but did increase the treatment time for these frequently debilitated patients. Therefore, doses >30 Gy in 10 fractions are not recommended.

  9. The effect of treadmill training on motor recovery after a partial spinal cord compression-injury in the adult rat.

    PubMed

    Multon, Sylvie; Franzen, Rachelle; Poirrier, Anne-Lise; Scholtes, Felix; Schoenen, Jean

    2003-08-01

    Locomotor training on a treadmill is a therapeutic strategy used for several years in human paraplegics in whom it was shown to improve functional recovery mainly after incomplete spinal cord lesions. The precise mechanisms underlying its effects are not known. Experimental studies in adult animals were chiefly performed after complete spinal transections. The objective of this experiment was to assess the effects of early treadmill training on recovery of spontaneous walking capacity after a partial spinal cord lesion in adult rats. Following a compression-injury by a subdurally inflated microballoon, seven rats were trained daily on a treadmill with a body weight support system, whereas six other animals were used as controls and only handled. Spontaneous walking ability in an open field was compared weekly between both groups by two blinded observers, using the Basso, Beattie and Bresnahan (BBB) locomotor rating scale. Mean BBB score during 12 weeks was globally significantly greater in the treadmill-trained animals than in the control group, the benefit of training appearing as early as the 2nd week. At week 7, locomotor recovery reached a plateau in both animal groups, but remained superior in trained rats. Daily treadmill training started early after a partial spinal cord lesion in adult rats, which accelerates recovery of locomotion and produces a long-term benefit. These findings in an animal model mimicking the closed spinal cord injury occurring in most human paraplegics are useful for future studies of optimal locomotor training programs, their neurobiologic mechanisms, and their combination with other treatment strategies.

  10. Motor function and survival following radiotherapy alone for metastatic epidural spinal cord compression in melanoma patients.

    PubMed

    Huttenlocher, Stefan; Sehmisch, Lena; Rudat, Volker; Rades, Dirk

    2014-12-01

    The major goal of this study was the identification of predictors for motor function and survival after irradiation alone for metastatic epidural spinal cord compression (MESCC) from melanoma. Ten variables (age, gender, performance status, number of involved vertebrae, pre-radiotherapy ambulatory status, further bone metastases, visceral metastases, interval from melanoma diagnosis to MESCC, time developing motor deficits before radiotherapy, fractionation regimen) were investigated for post-radiotherapy motor function, ambulatory status and survival in 27 patients. On multivariate analysis, motor function was significantly associated with time developing motor deficits (P = 0.006). On univariate analysis, post-radiotherapy ambulatory rates were associated with pre-radiotherapy ambulatory status (P < 0.001) and performance status (P = 0.046). Variables having a significant impact on survival in the univariate analysis were performance status (P < 0.001), number of involved vertebrae (P = 0.007), pre-radiotherapy ambulatory status (P = 0.020), further bone metastases (P = 0.023), visceral metastases (P < 0.001), and time developing motor deficits (P = 0.038). On multivariate analysis of survival, the Eastern Cooperative Oncology Group (ECOG) performance status (risk ratio [RR] = 4.35; 95% confidence interval [CI] = 1.04-16.67; P = 0.044) and visceral metastases (RR = 3.70; 95% CI = 1.10-12.50; P = 0.034) remained significant and were included in a survival score. Scoring points were obtained from 6-month survival rates divided by 10. Total scores represented the sum scores of both variables and were 3, 9 or 15 points. Six-month survival rates were 7%, 29% and 100% (P = 0.004). Thus, three predictors for functional outcomes were identified. The newly developed survival score included three prognostic groups. Patients with 3 points may receive 1 × 8 Gy, patients with 9 points 5 × 4 Gy and patients achieving 15 points longer

  11. Effect of FGF-2 and sciatic nerve grafting on ChAT expression in dorsal root ganglia neurons of spinal cord transected rats.

    PubMed

    Guzen, Fausto Pierdoná; de Araújo, Dayane Pessoa; Lucena, Eudes Euler de Souza; de Morais, Hécio Henrique Araújo; Cavalcanti, José Rodolfo Lopes de Paiva; do Nascimento, Expedito Silva; Costa, Miriam Stela Maris de Oliveira; Cavalcante, Jeferson Sousa

    2016-03-11

    Neurotrophic factors and peripheral nerves are known to be good substrates for bridging CNS trauma. The involvement of fibroblast growth factor-2 (FGF-2) activation in the dorsal root ganglion (DRG) was examined following spinal cord injury in the rat. We evaluated whether FGF-2 increases the ability of a sciatic nerve graft to enhance neuronal plasticity, in a gap promoted by complete transection of the spinal cord. The rats were subjected to a 4mm-long gap at low thoracic level and were repaired with saline (Saline or control group, n=10), or fragment of the sciatic nerve (Nerve group, n=10), or fragment of the sciatic nerve to which FGF-2 (Nerve+FGF-2 group, n=10) had been added immediately after lesion. The effects of the FGF-2 and fragment of the sciatic nerve grafts on neuronal plasticity were investigated using choline acetyl transferase (ChAT)-immunoreactivity of neurons in the dorsal root ganglion after 8 weeks. Preservation of the area and diameter of neuronal cell bodies in dorsal root ganglion (DRG) was seen in animals treated with the sciatic nerve, an effect enhanced by the addition of FGF-2. Thus, the addition of exogenous FGF-2 to a sciatic nerve fragment grafted in a gap of the rat spinal cord submitted to complete transection was able to improve neuroprotection in the DRG. The results emphasized that the manipulation of the microenvironment in the wound might amplify the regenerative capacity of peripheral neurons.

  12. Spinal-cord syndrome due to non-compressive Paget's disease of bone: a spinal-artery steal phenomenon reversible with calcitonin.

    PubMed

    Herzberg, L; Bayliss, E

    1980-07-05

    A 76-year-old man had progressive low back pain, leg weakness, and sensory loss. Radiology showed changes consistent with wide-spread Paget's disease, but no cord compression or involvement of nerve roots was detected by myelography or computerised axial tomography. His symptoms were relieved within 12 days of starting 100 MRC units of subcutaneous salmon calcitonin and recurred when calcitonin was discontinued for 5 days. The improvement continued on calcitonin treatment for 1 year, with falls in serum alkaline phosphatase and urinary hydroxyproline excretion. It is suggested that calcitonin treatment, in reducing the abnormally high metabolic activity of the diseased bone, and hence its vascular perfusion, allows more blood to reach the spinal cord.

  13. How Effective Is a Virtual Consultation Process in Facilitating Multidisciplinary Decision-Making for Malignant Epidural Spinal Cord Compression?

    SciTech Connect

    Fitzpatrick, David; Grabarz, Daniel; Wang, Lisa; Bezjak, Andrea; Fehlings, Michael G.; Fosker, Christopher; Rampersaud, Raja; Wong, Rebecca K.S.

    2012-10-01

    Purpose: The purpose of this study was to assess the accuracy of a virtual consultation (VC) process in determining treatment strategy for patients with malignant epidural spinal cord compression (MESCC). Methods and Materials: A prospective clinical database was maintained for patients with MESCC. A virtual consultation process (involving exchange of key predetermined clinical information and diagnostic imaging) facilitated rapid decision-making between oncologists and spinal surgeons. Diagnostic imaging was reviewed retrospectively (by R.R.) for surgical opinions in all patients. The primary outcome was the accuracy of virtual consultation opinion in predicting the final treatment recommendation. Results: After excluding 20 patients who were referred directly to the spinal surgeon, 125 patients were eligible for virtual consultation. Of the 46 patients who had a VC, surgery was recommended in 28 patients and actually given to 23. A retrospective review revealed that 5/79 patients who did not have a VC would have been considered surgical candidates. The overall accuracy of the virtual consultation process was estimated at 92%. Conclusion: The VC process for MESCC patients provides a reliable means of arriving at a multidisciplinary opinion while minimizing patient transfer. This can potentially shorten treatment decision time and enhance clinical outcomes.

  14. Immunoglobulin G4-related epidural inflammatory pseudotumor presenting with pulmonary complications and spinal cord compression: case report.

    PubMed

    Rumalla, Kavelin; Smith, Kyle A; Arnold, Paul M

    2017-03-17

    Immunoglobulin G4-related disease (IgG4-RD) is a recently defined condition characterized by inflammatory tumefactive lesions in various organ systems. IgG4-RD is a clinical and radiological diagnosis of exclusion and requires the presence of specific histopathological criteria for diagnosis. A 50-year-old man presented to an outside hospital with a 3-month history of progressively worsening back pain and symptoms of pleurisy, nasal crusting, and hematochezia. Radiological workup revealed an epidural-paraspinal mass with displacement of the spinal cord, destruction of the T5-6 vertebrae, and extension into the right lung. Biopsy sampling and subsequent histopathological analysis revealed dense lymphoplasmacytic infiltrate with an increased number of IgG4-positive plasma cells and a storiform pattern of fibrosis. With strong histopathological evidence of IgG4-RD, the patient was started on a regimen of prednisone. Further testing ruled out malignant neoplasm, infectious etiologies, and other autoimmune diseases. Two weeks later, the patient presented with acute-onset paraplegia due to spinal cord compression. The patient underwent decompression laminectomy of T5-6, posterior instrumented fusion of T2-8, and debulking of the epidural-paraspinal mass. After the continued administration of glucocorticosteroids, the patient improved remarkably to near-normal strength in the lower extremities and sensory function 6 months after surgery. To the authors' knowledge, this is the first case of IgG4-related epidural inflammatory pseudotumor and spinal cord compression in the United States. This case highlights the importance of early administration of glucocorticosteroids, which were essential to preventing further progression and preventing relapse. IgG4-RD evaluation is important after other diseases in the differential diagnosis are ruled out.

  15. Chronic administration of [Pyr(1)] apelin-13 attenuates neuropathic pain after compression spinal cord injury in rats.

    PubMed

    Hajimashhadi, Zahra; Aboutaleb, Nahid; Nasirinezhad, Farinaz

    2017-02-01

    Apelin is an endogenous ligand for apelin receptor (APJ) with analgesic effect on visceral, analgesic and proanalgesic influences on acute pains in animal models. The purpose of this study was to determine the possible analgesic effects of [Pyr(1)] apelin-13 on chronic pain after spinal cord injury (SCI) in rats. Animals were randomly divided into three major groups as intact, sham and SCI. The SCI group randomly allocated to four subgroups as no treatment, vehicle-treatment (normal saline: 10μl, intrathecally) and two subgroups with intrathecal injection (i.t) of 1μg and 5μg of [Pyr(1)] apelin-13. After laminectomy at T6-T8 level, spinal cord compression injury was induced using an aneurysm clip. Vehicle or [Pyr(1)] apelin-13 injected from day1 post SCI and continued for a week on a daily basis. Pain behaviors and locomotor activity were monitored up to 8weeks. At the end of the experiments, intracardial paraformaldehyde perfusion was made under deep anesthesia in some animals for histological and immunohistochemistry evaluations. Western blot technique was also done to detect caspase-3 in fresh spinal cord tissues. SCI decreased nociceptive thresholds and locomotor scores. Administration of [Pyr(1)] apelin-13 (1μg and 5μg) improved locomotor activity and reduced pain symptoms, cavity size and caspase-3 levels. Results showed long-term beneficial effects of [Pyr(1)] apelin-13 on neuropathic pain and locomotion. Therefore, we may suggest [Pyr(1)] apelin-13 as a new option for further neuropathic pain research and a suitable candidate for ensuing clinical trials in spinal cord injury arena.

  16. MK801 attenuates secondary injury in a mouse experimental compression model of spinal cord trauma

    PubMed Central

    2011-01-01

    Background Glutamergic excitotoxicity has been shown to play a deleterious role in the pathophysiology of spinal cord injury (SCI). The aim of this study was to investigate the neuroprotective effect of dizocilpine maleate, MK801 (2 mg/Kg, 30 min and 6 hours after injury) in a mice model of SCI. The spinal cord trauma was induced by the application of vascular clips to the dura via a four-level T5-T8 laminectomy. Results Spinal cord injury in mice resulted in severe trauma characterized by edema, neutrophil infiltration and apoptosis. In this study we clearly demonstrated that administration of MK801 attenuated all inflammatory parameters. In fact 24 hours after injury, the degree of spinal cord inflammation and tissue injury (evaluated as histological score), infiltration of neutrophils, NF-κB activation, iNOS, cytokines levels (TNF-α and IL-1β), neurotrophin expression were markedly reduced by MK801 treatment. Moreover, in a separate set of experiments, we have demonstrated that MK801 treatment significantly improved the recovery of locomotory function. Conclusions Blockade of NMDA by MK801 lends support to the potential importance of NMDA antagonists as therapeutic agents in the treatment of acute spinal cord injury. PMID:21492450

  17. Imaging basal ganglia function

    PubMed Central

    BROOKS, DAVID J.

    2000-01-01

    In this review, the value of functional imaging for providing insight into the role of the basal ganglia in motor control is reviewed. Brain activation findings in normal subjects and Parkinson's disease patients are examined and evidence supporting the existence for functionally independent distributed basal ganglia-frontal loops is presented. It is argued that the basal ganglia probably act to focus and filter cortical output, optimising the running of motor programs. PMID:10923986

  18. [Double spinal cord compression by dorsal meningioma and Paget's disease of a vertebra. A propos of 2 cases treated surgically].

    PubMed

    Rousseaux, P; Lerais, J M; Scherpereel, B; Bernard, M H; Pluot, M

    1982-01-01

    A spinal cord compression due to intradural meningioma appeared in two patients with vertebral X-Rays lesions of foreknown Paget's disease. These lesions were located at the same level that the meningioma in the second case and three vertebra below the meningioma in the first case. In both cases, it took one year between the first clinical symptoms and the surgical decision. We truly think the Paget's disease and its X-Rays vertebral lesions to be responsible for the waist of time in myelography and surgical schedule. No other case of meningioma associated with Paget's disease has been found through literature. Because the treatment of Paget's disease paraplegia is now mostly medical, we thought important to report our experience in order to avoid other delays in this unusual diagnosis.

  19. Genome-wide gene expression profiling of stress response in a spinal cord clip compression injury model

    PubMed Central

    2013-01-01

    Background The aneurysm clip impact-compression model of spinal cord injury (SCI) is a standard injury model in animals that closely mimics the primary mechanism of most human injuries: acute impact and persisting compression. Its histo-pathological and behavioural outcomes are extensively similar to human SCI. To understand the distinct molecular events underlying this injury model we analyzed global mRNA abundance changes during the acute, subacute and chronic stages of a moderate to severe injury to the rat spinal cord. Results Time-series expression analyses resulted in clustering of the majority of deregulated transcripts into eight statistically significant expression profiles. Systematic application of Gene Ontology (GO) enrichment pathway analysis allowed inference of biological processes participating in SCI pathology. Temporal analysis identified events specific to and common between acute, subacute and chronic time-points. Processes common to all phases of injury include blood coagulation, cellular extravasation, leukocyte cell-cell adhesion, the integrin-mediated signaling pathway, cytokine production and secretion, neutrophil chemotaxis, phagocytosis, response to hypoxia and reactive oxygen species, angiogenesis, apoptosis, inflammatory processes and ossification. Importantly, various elements of adaptive and induced innate immune responses span, not only the acute and subacute phases, but also persist throughout the chronic phase of SCI. Induced innate responses, such as Toll-like receptor signaling, are more active during the acute phase but persist throughout the chronic phase. However, adaptive immune response processes such as B and T cell activation, proliferation, and migration, T cell differentiation, B and T cell receptor-mediated signaling, and B cell- and immunoglobulin-mediated immune response become more significant during the chronic phase. Conclusions This analysis showed that, surprisingly, the diverse series of molecular events that

  20. Design and evaluation of an MRI compatible axial compression device for 3D assessment of spinal deformity and flexibility in AIS.

    PubMed

    Adam, Clayton; Izatt, Maree; Askin, Geoffrey

    2010-01-01

    Magnetic Resonance Imaging (MRI) offers a valuable research tool for the assessment of 3D spinal deformity in AIS, however the horizontal patient position imposed by conventional scanners removes the axial compressive loading on the spine. The objective of this study was to design, construct and test an MRI compatible compression device for research into the effect of axial loading on spinal deformity using supine MRI scans. The device was evaluated by performing unloaded and loaded supine MRI scans on a series of 10 AIS patients. The patient group had a mean initial (unloaded) major Cobb angle of 43+/-7 degrees, which increased to 50+/-9 degrees on application of the compressive load. The 7 degrees increase in mean Cobb angle is consistent with that reported by a previous study comparing standing versus supine posture in scoliosis patients (Torell et al, 1985. Spine 10:425-7).

  1. Pregabalin alters nociceptive behavior and expression level of P2X3 receptor in the spinal dorsal horn in a rat model induced by chronic compression of the dorsal root ganglion.

    PubMed

    Yu, Jianfeng; Fu, Peng; Zhang, Yan; Liu, Shuzhen; Cui, Donghong

    2013-12-01

    P2X3 receptors are present in the spinal dorsal horn (SDH) and play an essential role in the regulation of nociception and pain. Pregabalin (PGB) has been used as a new antiepileptic drug in the treatment of neuropathic pain. However, it is unclear whether PGB-induced analgesia was associated with the P2X3 receptor in SDH. Here, rats were randomly divided into four groups (n = 12 per group), including 2 sham operation groups, which was treated by normal saline (Sham + NS group) or PGB (Sham + PGB group), other 2 groups with chronic compression of the dorsal root ganglion, a normal saline-treated CCD group (CCD+NS group), and a PGB-treated CCD group (CCD + PGB group). A rat model of neuropathic pain was used by compressing the right L4 and L5 dorsal root ganglia. Each group was evaluated using the mechanical withdrawal threshold (MWT). The mRNA and protein levels of the P2X3 receptor in the ipsilateral SDH were measured by RT-PCR, western blot, and immunofluorescence on 14 day after CCD operation. CCD rats showed the highest mechanical hyperalgesia and the lowest pain threshold in the four groups. Simultaneously, CCD rats showed higher P2X3 mRNA and protein expression in ipsilateral side of the SDH than the sham operation rats. However, the MWT was increased and expression of P2X3 mRNA and protein in the ipsilateral SDH in CCD rats was decreased 3 days after PGB treatment. Thus, PGB may partially reverse mechanical hyperalgesia in CCD rats by inhibiting P2X3 receptor expression in the ipsilateral SDH.

  2. Chiropractic spinal manipulative therapy for a geriatric patient with low back pain and comorbidities of cancer, compression fractures, and osteoporosis

    PubMed Central

    Roberts, Jan A.; Wolfe, Tristy M.

    2012-01-01

    Objective The purpose of this report is to describe the response of a geriatric patient with low back pain and a history of leukemia, multiple compression fractures, osteoporosis, and degenerative joint disease using Activator chiropractic technique. Case Report An 83-year-old man who is the primary caretaker for his disabled wife had low back pain after lifting her into a truck. The patient had a history of leukemia, multiple compression fractures, osteoporosis, and degenerative joint disease. His Revised Oswestry Low Back Pain Disability Questionnaire was 26%, with a 10/10 pain rating at its worst on the Numeric Pain Scale. The patient presented with a left head tilt, right high shoulder, and right high ilium with anterior translation and flexion of the torso and spasm and tenderness from the lower thoracic spine to lumbar spine. Intervention and Outcome The patient was cared for using Activator Methods protocol. After 8 treatments, the patient was stable and remained stable for 4 months without spasm or tenderness in his spine. His Revised Oswestry score dropped to 6%, with a 4/10 Numeric Pain Scale pain rating when at its worst; and the patient reported being able to take care of his wife. Conclusion The findings of this case suggest that Activator-assisted spinal manipulative therapy had a positive effect on low back pain and function in an elderly patient with a complex clinical history. PMID:22942837

  3. Effects of naloxone and nalmefene in rat spinal cord injury induced by the ventral compression technique.

    PubMed

    Benzel, E C; Khare, V; Fowler, M R

    1992-03-01

    The neural injury prevention capabilities of narcotic antagonists have previously been reported. Of the available narcotic antagonists, naloxone has been the most widely studied. Other agents with higher potency, longer half-lives, and greater specificity, however, may be more desirable for the prevention of the "secondary injury" following a primary neural insult. The relative neural injury prevention efficacies of the various narcotic antagonists is not known. The establishment of the relative effectiveness of these drugs is warranted and is of potential clinical importance. Therefore, a study was undertaken to compare the effects of the two narcotic antagonists, naloxone and nalmefene, with respect to their neuro-protective efficacy following experimental spinal cord injury (SCI) in rats. Ninety adult Sprague-Dawley rats were divided into three groups--control; naloxone (2 mg/kg i.p., 45 min following injury); and nalmefene (0.1 mg/kg i.p., 45 min following injury)--following lesioning with the ventral SCI technique. Results were evaluated by the inclined-plane technique and neurologic examination at 1 day and 1 week following injury. Histomorphological evaluation of the injured segment of spinal cord was performed following euthanasia at 1 week following injury. A significant improvement (compared with the control group) was noted in both treatment groups. This was observed with respect to neurological examination and inclined-plane scores in both treatment groups at 24 h and 1 week following lesioning (with a significance level of at least p less than 0.001; analysis of variance). The nalmefene group demonstrated a greater level of function than the naloxone group at both 24 h and 1 week following injury (not significant; p greater than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Prevention of urinary tract infections in palliative radiation for vertebral metastasis and spinal compression: A pilot study in 71 patients

    SciTech Connect

    Manas, Ana . E-mail: amanas.hdoc@salud.madrid.org; Glaria, Luis; Pena, Carmen; Sotoca, Amalia; Lanzos, Eduardo; Fernandez, Castalia; Riviere, Marc

    2006-03-01

    Purpose: To assess the impact of bladder instillations of hyaluronic acid (HA) on the prevalence of urinary tract infection (UTI) in patients receiving emergency radiotherapy for metastatic spinal cord compression. Methods and Materials: Patients were recruited consecutively at one center and assigned to usual care (UC) (n = 34, mean age 62.2 years) or UC with once-weekly HA instillation (UC + HA) (Cystistat: 40 mg in 50 mL phosphate-buffered saline) (n = 37; mean age, 63.1 years). All patients had an indwelling catheter and received radiotherapy. UTI status was assessed at baseline and during hospitalization. Results: At baseline, patient groups were comparable, except for the prevalence of UTI at baseline, which was 11.8% and 0% in the UC and UC + HA patients, respectively (p = 0.0477). During hospitalization, 76.5% (vs. 11.8% at baseline, p < 0.0001) of the UC patients had a UTI compared with 13.5% (vs. 0% at baseline, p = 0.0541) of the UC + HA patients (p < 0.0001). Both groups were hospitalized for similar periods (19.8 days [UC] vs. 18.5 days, p = 0.4769) and received equivalent radiotherapy sessions (4.6 [UC] vs. 5.8 sessions, p = 0.2368). Conclusions: Patients receiving UC + HA had a 5.7-fold decrease in UTI prevalence over the hospitalization period compared to UC patients, suggesting that bladder instillations of HA effectively prevent UTI in patients with indwelling catheters receiving radiotherapy for nerve compression.

  5. Assessment of the diagnostic value of diffusion tensor imaging in patients with spinal cord compression: a meta-analysis.

    PubMed

    Li, X F; Yang, Y; Lin, C B; Xie, F R; Liang, W G

    2016-01-01

    We investigated the diagnostic value of the apparent diffusion coefficient (ADC) and fractional anisotropy (FA) of magnetic resonance diffusion tensor imaging (DTI) in patients with spinal cord compression (SCC) using a meta-analysis framework. Multiple scientific literature databases were exhaustively searched to identify articles relevant to this study. Mean values and standardized mean differences (SMDs) were calculated for the ADC and FA in normal and diseased tissues. The STATA version 12.0 software was used for statistical analysis. Of the 41 articles initially retrieved through database searches, 11 case-control studies were eligible for the meta-analysis and contained a combined total of 645 human subjects (394 patients with SCC and 251 healthy controls). All 11 studies reported data on FA, and 9 contained data related to the ADC. The combined SMDs of the ADC and FA showed that the ADC was significantly higher and the FA was lower in patients with SCC than in healthy controls. Subgroup analysis based on the b value showed higher ADCs in patients with SCC than in healthy controls at b values of both ≤500 and >500 s/mm2. In summary, the main findings of this meta-analysis revealed an increased ADC and decreased FA in patients with SCC, indicating that DTI is an important diagnostic imaging tool to assess patients suspected to have SCC.

  6. Reactions of the rat musculoskeletal system to compressive spinal cord injury (SCI) and whole body vibration (WBV) therapy.

    PubMed

    Schwarz, A; Pick, C; Harrach, R; Stein, G; Bendella, H; Ozsoy, O; Ozsoy, U; Schoenau, E; Jaminet, P; Sarikcioglu, L; Dunlop, S; Angelov, D N

    2015-06-01

    Traumatic spinal cord injury (SCI) causes a loss of locomotor function with associated compromise of the musculo-skeletal system. Whole body vibration (WBV) is a potential therapy following SCI, but little is known about its effects on the musculo-skeletal system. Here, we examined locomotor recovery and the musculo-skeletal system after thoracic (T7-9) compression SCI in adult rats. Daily WBV was started at 1, 7, 14 and 28 days after injury (WBV1-WBV28 respectively) and continued over a 12-week post-injury period. Intact rats, rats with SCI but no WBV (sham-treated) and a group that received passive flexion and extension (PFE) of their hind limbs served as controls. Compared to sham-treated rats, neither WBV nor PFE improved motor function. Only WBV14 and PFE improved body support. In line with earlier studies we failed to detect signs of soleus muscle atrophy (weight, cross sectional diameter, total amount of fibers, mean fiber diameter) or bone loss in the femur (length, weight, bone mineral density). One possible explanation is that, despite of injury extent, the preservation of some axons in the white matter, in combination with quadripedal locomotion, may provide sufficient trophic and neuronal support for the musculoskeletal system.

  7. Reactions of the rat musculoskeletal system to compressive spinal cord injury (SCI) and whole body vibration (WBV) therapy

    PubMed Central

    Schwarz, A.; Pick, C.; Harrach, R.; Stein, G.; Bendella, H.; Ozsoy, O.; Ozsoy, U.; Schoenau, E.; Jaminet, P.; Sarikcioglu, L.; Dunlop, S.; Angelov, D.N.

    2015-01-01

    Traumatic spinal cord injury (SCI) causes a loss of locomotor function with associated compromise of the musculo-skeletal system. Whole body vibration (WBV) is a potential therapy following SCI, but little is known about its effects on the musculo-skeletal system. Here, we examined locomotor recovery and the musculo-skeletal system after thoracic (T7-9) compression SCI in adult rats. Daily WBV was started at 1, 7, 14 and 28 days after injury (WBV1-WBV28 respectively) and continued over a 12-week post-injury period. Intact rats, rats with SCI but no WBV (sham-treated) and a group that received passive flexion and extension (PFE) of their hind limbs served as controls. Compared to sham-treated rats, neither WBV nor PFE improved motor function. Only WBV14 and PFE improved body support. In line with earlier studies we failed to detect signs of soleus muscle atrophy (weight, cross sectional diameter, total amount of fibers, mean fiber diameter) or bone loss in the femur (length, weight, bone mineral density). One possible explanation is that, despite of injury extent, the preservation of some axons in the white matter, in combination with quadripedal locomotion, may provide sufficient trophic and neuronal support for the musculoskeletal system. PMID:26032204

  8. An Intensive Locomotor Training Paradigm Improves Neuropathic Pain following Spinal Cord Compression Injury in Rats.

    PubMed

    Dugan, Elizabeth A; Sagen, Jacqueline

    2015-05-01

    Spinal cord injury (SCI) is often associated with both locomotor deficits and sensory dysfunction, including debilitating neuropathic pain. Unfortunately, current conventional pharmacological, physiological, or psychological treatments provide only marginal relief for more than two-thirds of patients, highlighting the need for improved treatment options. Locomotor training is often prescribed as an adjunct therapy for peripheral neuropathic pain but is rarely used to treat central neuropathic pain. The goal of this study was to evaluate the potential anti-nociceptive benefits of intensive locomotor training (ILT) on neuropathic pain consequent to traumatic SCI. Using a rodent SCI model for central neuropathic pain, ILT was initiated either 5 d after injury prior to development of neuropathic pain symptoms (the "prevention" group) or delayed until pain symptoms fully developed (∼3 weeks post-injury, the "reversal" group). The training protocol consisted of 5 d/week of a ramping protocol that started with 11 m/min for 5 min and increased in speed (+1 m/min/week) and time (1-4 minutes/week) to a maximum of two 20-min sessions/d at 15 m/min by the fourth week of training. ILT prevented and reversed the development of heat hyperalgesia and cold allodynia, as well as reversed developed tactile allodynia, suggesting analgesic benefits not seen with moderate levels of locomotor training. Further, the analgesic benefits of ILT persisted for several weeks once training had been stopped. The unique ability of an ILT protocol to produce robust and sustained anti-nociceptive effects, as assessed by three distinct outcome measures for below-level SCI neuropathic pain, suggests that this adjunct therapeutic approach has great promise in a comprehensive treatment strategy for SCI pain.

  9. Hyperexcitable neurons and altered non-neuronal cells in the compressed spinal ganglion

    PubMed Central

    LaMotte, Robert H.; Chao, MA

    2009-01-01

    The cell body or soma in the dosal root ganglion (DRG) is normally excitable and this excitability can increase and persist after an injury of peripheral sensory neurons. In a rat model of radicular pain, an intraforaminal implantation of a rod that chronically compressed the lumbar DRG (“CCD” model) resulted in neuronal somal hyperexcitability and spontaneous activity that was accompanied by hyperalgesia in the ipsilateral hind paw. By the 5th day after onset of CCD, there was a novel upregulation in neuronal expression of the chemokine, monocyte chemoattractant protein-1 (MCP-1 or CCL2) and also its receptor, CCR2. The neurons developed, in response to topically applied MCP-1, an excitatory response that they normally do not have. CCD also activated non-neuronal cells including, for example, the endothelial cells as evidenced by angiogenesis in the form of an increased number of capillaries in the DRG after 7 days. A working hypothesis is that the CCD induced changes in neurons and non-neuronal cells that may act together to promote the survival of the injured tissue. The release of ligands such as CCL2, in addition to possibly activating nociceptive neurons (maintaining the pain), may also act to preserve injured cells in the face of ischemia and hypoxia, for example, by promoting angiogenesis. Thus, somal hyperexcitability, as often said of inflammation, may represent a double edged sword. PMID:18958366

  10. Hyperexcitable neurons and altered non-neuronal cells in the compressed spinal ganglion.

    PubMed

    LaMotte, Robert H; Ma, Chao

    2008-10-25

    The cell body or soma in the dosal root ganglion (DRG) is normally excitable and this excitability can increase and persist after an injury of peripheral sensory neurons. In a rat model of radicular pain, an intraforaminal implantation of a rod that chronically compressed the lumbar DRG ("CCD" model) resulted in neuronal somal hyperexcitability and spontaneous activity that was accompanied by hyperalgesia in the ipsilateral hind paw. By the 5th day after onset of CCD, there was a novel upregulation in neuronal expression of the chemokine, monocyte chemoattractant protein-1 (MCP-1 or CCL2) and also its receptor, CCR2. The neurons developed, in response to topically applied MCP-1, an excitatory response that they normally do not have. CCD also activated non-neuronal cells including, for example, the endothelial cells as evidenced by angiogenesis in the form of an increased number of capillaries in the DRG after 7 days. A working hypothesis is that the CCD induced changes in neurons and non-neuronal cells that may act together to promote the survival of the injured tissue. The release of ligands such as CCL2, in addition to possibly activating nociceptive neurons (maintaining the pain), may also act to preserve injured cells in the face of ischemia and hypoxia, for example, by promoting angiogenesis. Thus, somal hyperexcitability, as often said of inflammation, may represent a double edged sword.

  11. A 2011 Updated Systematic Review and Clinical Practice Guideline for the Management of Malignant Extradural Spinal Cord Compression

    SciTech Connect

    Loblaw, D. Andrew; Mitera, Gunita; Ford, Michael; Laperriere, Normand J.

    2012-10-01

    Purpose: To update the 2005 Cancer Care Ontario practice guidelines for the diagnosis and treatment of adult patients with a suspected or confirmed diagnosis of extradural malignant spinal cord compression (MESCC). Methods: A review and analysis of data published from January 2004 to May 2011. The systematic literature review included published randomized control trials (RCTs), systematic reviews, meta-analyses, and prospective/retrospective studies. Results: An RCT of radiation therapy (RT) with or without decompressive surgery showed improvements in pain, ambulatory ability, urinary continence, duration of continence, functional status, and overall survival. Two RCTs of RT (30 Gy in eight fractions vs. 16 Gy in two fractions; 16 Gy in two fractions vs. 8 Gy in one fraction) in patients with a poor prognosis showed no difference in ambulation, duration of ambulation, bladder function, pain response, in-field failure, and overall survival. Retrospective multicenter studies reported that protracted RT schedules in nonsurgical patients with a good prognosis improved local control but had no effect on functional or survival outcomes. Conclusions: If not medically contraindicated, steroids are recommended for any patient with neurologic deficits suspected or confirmed to have MESCC. Surgery should be considered for patients with a good prognosis who are medically and surgically operable. RT should be given to nonsurgical patients. For those with a poor prognosis, a single fraction of 8 Gy should be given; for those with a good prognosis, 30 Gy in 10 fractions could be considered. Patients should be followed up clinically and/or radiographically to determine whether a local relapse develops. Salvage therapies should be introduced before significant neurologic deficits occur.

  12. Functional outcome and survival after radiotherapy of metastatic spinal cord compression in patients with cancer of unknown primary

    SciTech Connect

    Rades, Dirk . E-mail: Rades.Dirk@gmx.net; Fehlauer, Fabian; Veninga, Theo; Stalpers, Lukas J.A.; Basic, Hiba; Hoskin, Peter J.; Rudat, Volker; Karstens, Johann H.; Schild, Steven E.; Dunst, Juergen

    2007-02-01

    Purpose: Patients with cancer of unknown primary (CUP) account for about 10% of patients with metastatic spinal cord compression (MSCC). This study aims to define the appropriate radiation regimen for these patients. Methods and Materials: Data of 143 CUP patients irradiated for MSCC were retrospectively evaluated. Short-course radiotherapy (RT) (1x8 Gy, 5x4 Gy, n = 68) and long-course RT (10x3 Gy, 15x2.5 Gy, 20x2 Gy, n = 75) plus 8 further potential prognostic factors (age, gender, performance status, visceral metastases, other bone metastases, number of involved vertebrae, ambulatory status, time of developing motor deficits before RT) were compared for functional outcome and survival. Results: Improvement of motor function occurred in 10% of patients, no further progression of motor deficits in 57%, and deterioration in 33%. On multivariate analysis, functional outcome was positively associated with slower development of motor deficits (p < 0.001), absence of visceral metastases (p = 0.008) and other bone metastases (p = 0.027), and ambulatory status (p = 0.054), not with the radiation regimen (p = 0.74). Recurrence of MSCC in the irradiated region occurred in 7 patients after median 6 months. Median survival was 4 months. On multivariate analysis, better survival was significantly associated with absence of visceral metastases (p < 0.001), absence of other bone metastases (p = 0.005), ambulatory status (p = 0.001), and slower development of motor deficits (p = 0.030). Conclusions: For MSCC treatment in patients with CUP, no significant difference was observed between short-course and long-course RT regarding functional outcome and survival. Short-course RT appears preferable, at least for patients with a poor predicted survival, as it is more patient convenient and more cost-effective.

  13. Effectiveness of radiation therapy without surgery in metastatic spinal cord compression: Final results from a prospective trial

    SciTech Connect

    Maranzano, E.; Latini, P.

    1995-07-15

    In assessing effectiveness of radiation therapy (RT) in metastatic spinal cord compression (MSCC), we performed a prospective trial in which patients with this complication were generally treated with RT plus steroids, and surgery was reserved for selected cases. Of the 209 evaluable cases, 110 were females and 99 males, and median age was 62 years. Median follow-up was 49 months (range, 13 to 88) and treatment consisted of 30 Gy RT (using two different schedules) together with steroids (standard or high doses, depending on motor deficit severity). Back pain total response rate was 82% (complete or partial response or stable pain, 54, 17, or 11%, respectively). About three-fourths of the patients (76%) achieved full recovery or preservation of walking ability and 44% with sphincter dysfunction improved. Early diagnosis was the most important response predictor so that a large majority of patients able to walk and with good bladder function maintained these capacities. Duration of response was also influenced by histology. Median survival time was 6 months, with a 28% probability of survival for 1 year. Survival time was longer for patients able to walk before and/or after RT, those with favourable histologies, and females. There was agreement between patient survival and duration of response, systemic relapse of disease being generally the cause of death. Early diagnosis of MSCC was a powerful predictor of outcome. Primary tumor histology had weight only when patients were nonwalking, paraplegic, or had bladder dysfunction. The effectiveness of RT plus steroids in MSCC emerged in our trial. The most important factors positively conditioning our results were: the high rate of early diagnoses (52%) and the number of tumors with favorable histologies (124 out of 209, 63%) recruited, and the choice of best treatment based on appropriate patient selection for surgery and RT or RT alone. 30 refs., 5 figs., 7 tabs.

  14. Effects of retrograde gene transfer of brain-derived neurotrophic factor in the rostral spinal cord of a compression model in rat.

    PubMed

    Zhao, Tengfei; Li, Yan; Dai, Xuesong; Wang, Junbo; Qi, Yiying; Wang, Jianwei; Xu, Kan

    2012-08-01

    Recovery after spinal cord injury (SCI) is rare in humans and experimental animals. Following SCI in adults, changes in gene expression and the regulation of these genes are associated with the pathological development of the injury. High levels of brain-derived neurotrophic factor (BDNF) in the injury area during the post-injury period contribute to enhanced neuroprotection and axonal regeneration. Intervention at the level of gene regulation has the potential to promote SCI repair. In this study, the injection of adenovirus-mediated BDNF in the lesion area (rostral spinal cord) up-regulated the expression of BDNF in the injury zone of a compression model in rat, thereby protecting neurons and enhancing behavioral function.

  15. Repetitive transcranial magnetic stimulation improves open field locomotor recovery after low but not high thoracic spinal cord compression-injury in adult rats.

    PubMed

    Poirrier, Anne-Lise; Nyssen, Yves; Scholtes, Felix; Multon, Sylvie; Rinkin, Charline; Weber, Géraldine; Bouhy, Delphine; Brook, Gary; Franzen, Rachelle; Schoenen, Jean

    2004-01-15

    Electromagnetic fields are able to promote axonal regeneration in vitro and in vivo. Repetitive transcranial magnetic stimulation (rTMS) is used routinely in neuropsychiatric conditions and as an atraumatic method to activate descending motor pathways. After spinal cord injury, these pathways are disconnected from the spinal locomotor generator, resulting in most of the functional deficit. We have applied daily 10 Hz rTMS for 8 weeks immediately after an incomplete high (T4-5; n = 5) or low (T10-11; n = 6) thoracic closed spinal cord compression-injury in adult rats, using 6 high- and 6 low-lesioned non-stimulated animals as controls. Functional recovery of hindlimbs was assessed using the BBB locomotor rating scale. In the control group, the BBB score was significantly better from the 7th week post-injury in animals lesioned at T4-5 compared to those lesioned at T10-11. rTMS significantly improved locomotor recovery in T10-11-injured rats, but not in rats with a high thoracic injury. In rTMS-treated rats, there was significant positive correlation between final BBB score and grey matter density of serotonergic fibres in the spinal segment just caudal to the lesion. We propose that low thoracic lesions produce a greater functional deficit because they interfere with the locomotor centre and that rTMS is beneficial in such lesions because it activates this central pattern generator, presumably via descending serotonin pathways. The benefits of rTMS shown here suggest strongly that this non-invasive intervention strategy merits consideration for clinical trials in human paraplegics with low spinal cord lesions.

  16. Incidence and Treatment Patterns in Hospitalizations for Malignant Spinal Cord Compression in the United States, 1998-2006

    SciTech Connect

    Mak, Kimberley S.; Lee, Leslie K.; Mak, Raymond H.; Wang, Shuang; Pile-Spellman, John; Abrahm, Janet L.; Prigerson, Holly G.; Balboni, Tracy A.

    2011-07-01

    Purpose: To characterize patterns in incidence, management, and costs of malignant spinal cord compression (MSCC) hospitalizations in the United States, using population-based data. Methods and Materials: Using the Nationwide Inpatient Sample, an all-payer healthcare database representative of all U.S. hospitalizations, MSCC-related hospitalizations were identified for the period 1998-2006. Cases were combined with age-adjusted Surveillance, Epidemiology and End Results cancer death data to estimate annual incidence. Linear regression characterized trends in patient, treatment, and hospital characteristics, costs, and outcomes. Logistic regression was used to examine inpatient treatment (radiotherapy [RT], surgery, or neither) by hospital characteristics and year, adjusting for confounding. Results: We identified 15,367 MSCC-related cases, representing 75,876 hospitalizations. Lung cancer (24.9%), prostate cancer (16.2%), and multiple myeloma (11.1%) were the most prevalent underlying cancer diagnoses. The annual incidence of MSCC hospitalization among patients dying of cancer was 3.4%; multiple myeloma (15.0%), Hodgkin and non-Hodgkin lymphomas (13.9%), and prostate cancer (5.5%) exhibited the highest cancer-specific incidence. Over the study period, inpatient RT for MSCC decreased (odds ratio [OR] 0.68, 95% confidence interval [CI] 0.61-0.81), whereas surgery increased (OR 1.48, 95% CI 1.17-1.84). Hospitalization costs for MSCC increased (5.3% per year, p < 0.001). Odds of inpatient RT were greater at teaching hospitals (OR 1.41, 95% CI 1.19-1.67), whereas odds of surgery were greater at urban institutions (OR 1.82, 95% CI 1.29-2.58). Conclusions: In the United States, patients dying of cancer have an estimated 3.4% annual incidence of MSCC requiring hospitalization. Inpatient management of MSCC varied over time and by hospital characteristics, with hospitalization costs increasing. Future studies are required to determine the impact of treatment patterns on MSCC

  17. Validation of a Score Predicting Post-Treatment Ambulatory Status After Radiotherapy for Metastatic Spinal Cord Compression

    SciTech Connect

    Rades, Dirk; Douglas, Sarah; Huttenlocher, Stefan; Rudat, Volker; Veninga, Theo; Stalpers, Lukas J.A.; Basic, Hiba; Karstens, Johann H.; Hoskin, Peter J.; Adamietz, Irenaeus A.; Schild, Steven E.

    2011-04-01

    Purpose: A score predicting post-radiotherapy (RT) ambulatory status was developed based on 2,096 retrospectively evaluated metastatic spinal cord compression (MSCC) patients. This study aimed to validate the score in a prospective series. Methods and Materials: The score included five factors associated with post-RT ambulatory status: tumor type, interval tumor diagnosis to MSCC, visceral metastases, pre-RT motor function, time developing motor deficits. Patients were divided into five groups: 21-28, 29-31, 32-34, 35-37, 38-44 points. In this study, 653 prospectively followed patients were divided into the same groups. Furthermore, the number of prognostic groups was reduced from five to three (21-28, 29-37, 38-44 points). Post-RT ambulatory rates from this series were compared with the retrospective series. Additionally, this series was compared with 104 patients receiving decompressive surgery plus RT (41 laminectomy, 63 laminectomy plus stabilization of vertebrae). Results: In this study, post-RT ambulatory rates were 10.6% (21-28 points), 43.5% (29-31 points), 71.0% (32-34 points), 89.5% (35-37 points), and 98.5% (38-44 points). Ambulatory rates from the retrospective study were 6.2%, 43.5%, 70.0%, 86.1%, and 98.7%. After regrouping, ambulatory rates were 10.6% (21-28 points), 70.9% (29-37 points), and 98.5% (38-44 points) in this series, and 6.2%, 68.4%, and 98.7% in the retrospective series. Ambulatory rates were 0%, 62.5%, and 90.9% in the laminectomy plus RT group, and 14.3%, 83.9%, and 100% in the laminectomy + stabilization plus RT group. Conclusions: Ambulatory rates in the different groups in this study were similar to those in the retrospective study demonstrating the validity of the score. Using only three groups is simplier for clinical routine.

  18. [Intrinsic cardiac ganglia].

    PubMed

    Birand, Ahmet

    2008-12-01

    Heart has been considered as the source and the seat of emotions, passion and love. But from the dawn of XIXth century, scientists have emphasized that the heart, though life depends on its ceaseless activity, is merely a electromechanical pump, pumping oxygenated blood. Nowadays, we all know that heart pumps blood commensurate with the needs of the body and this unending toil, and its regulation depends on the intrinsic properties of the myocardium, Frank-Starling Law and neurohumoral contribution. It has been understood, though not clearly enough, that these time-tensions may cause structural or functional cardiac impairments and arrhythmias are related to the autonomic nervous system. Less well known and less taken in account in daily cardiology practice is the fact that heart has an intrinsic cardiac nervous system, or "heart brain" consisting of complex ganglia, intrinsic cardiac ganglia containing afferent (receiving), local circuit (interneurons) and efferent (transmitting) sympathetic and parasympathetic neurons. This review enlightens structural and functional aspects of intrinsic cardiac ganglia as the very first step in the regulation of cardiac function. This issue is important for targets of pharmacological treatment and techniques of cardiac surgery interventions as repair of septal defects, valvular interventions and congenital corrections.

  19. Percutaneous vertebroplasty and interventional tumor removal for malignant vertebral compression fractures and/or spinal metastatic tumor with epidural involvement: a prospective pilot study

    PubMed Central

    Gu, Yi-Feng; Tian, Qing-Hua; Li, Yong-Dong; Wu, Chun-Gen; Su, Yan; Song, Hong-Mei; He, Cheng-Jian; Chen, Dong

    2017-01-01

    Objective The aim of this study was to compare the efficacy of percutaneous vertebroplasty (PVP) and interventional tumor removal (ITR), with PVP alone for malignant vertebral compression fractures and/or spinal metastatic tumor with epidural involvement. Patients and methods A total of 124 patients were selected for PVP and ITR (n = 71, group A) and PVP alone (n = 53, group B). A 14 G needle and guide wire were inserted into the vertebral body, followed by sequential dilatation of the tract until the last cannula reached the anterior portion of the pedicle. Tumors were then ablated with a radiofrequency probe. ITR was performed with marrow nucleus rongeurs, and then cement was injected into the extirpated vertebra. Outcomes were collected preoperatively and at 1, 3 and 6 months and every subsequent 6 months. Results The rates of pain relief and increased mobility at the last follow-up were higher in group A than those in group B (P < 0.05). There were significant differences in visual analog scale (VAS) score and Oswestry disability index (ODI) score at 1, 3 and 6 months, 1 year and >1 year in group A than in group B (P < 0.05). The rates of paraplegia recovery and vertebral stability in group A were higher than those in group B (P < 0.05). Conclusion PVP and ITR proved to be an effective approach for patients with malignant vertebral compression fractures and/or spinal metastatic tumor and provided distinct advantages in pain relief, function recovery and vertebral stability that are comparable to that obtained with PVP alone. PMID:28176970

  20. Intracerebroventricular administration of nerve growth factor induces gliogenesis in sensory ganglia, dorsal root, and within the dorsal root entry zone.

    PubMed

    Schlachetzki, Johannes C M; Pizzo, Donald P; Morrissette, Debbi A; Winkler, Jürgen

    2014-01-01

    Previous studies indicated that intracerebroventricular administration of nerve growth factor (NGF) leads to massive Schwann cell hyperplasia surrounding the medulla oblongata and spinal cord. This study was designed to characterize the proliferation of peripheral glial cells, that is, Schwann and satellite cells, in the trigeminal ganglia and dorsal root ganglia (DRG) of adult rats during two weeks of NGF infusion using bromodeoxyuridine (BrdU) to label dividing cells. The trigeminal ganglia as well as the cervical and lumbar DRG were analyzed. Along the entire neuraxis a small number of dividing cells were observed within these regions under physiological condition. NGF infusion has dramatically increased the generation of new cells in the neuronal soma and axonal compartments of sensory ganglia and along the dorsal root and the dorsal root entry zone. Quantification of BrdU positive cells within sensory ganglia revealed a 2.3- to 3-fold increase in glial cells compared to controls with a similar response to NGF for the different peripheral ganglia examined. Immunofluorescent labeling with S100β revealed that Schwann and satellite cells underwent mitosis after NGF administration. These data indicate that intracerebroventricular NGF infusion significantly induces gliogenesis in trigeminal ganglia and the spinal sensory ganglia and along the dorsal root entry zone as well as the dorsal root.

  1. [Surgical anatomy of spinal cord tumors].

    PubMed

    Peltier, J; Chenin, L; Hannequin, P; Page, C; Havet, É; Foulon, P; Le Gars, D

    2015-08-03

    In this article, we respectively describe the morphology of the spinal cord, spinal meningeal layers, main fiber tracts, and both arterial and venous distribution in order to explain signs of spinal cord compression. We will then describe a surgical technique for spinal cord tumor removal.

  2. Spinal Headaches

    MedlinePlus

    ... undergo a spinal tap (lumbar puncture) or spinal anesthesia. Both procedures require a puncture of the tough ... is withdrawn from your spinal canal. During spinal anesthesia, medication is injected into your spinal canal to ...

  3. Lack of galectin-3 improves the functional outcome and tissue sparing by modulating inflammatory response after a compressive spinal cord injury.

    PubMed

    Mostacada, Klauss; Oliveira, Felipe L; Villa-Verde, Déa M S; Martinez, Ana Maria Blanco

    2015-09-01

    Spinal cord injury (SCI) is a traumatic event that results in motor, sensitive or autonomic function disturbances, which have direct impact on the life quality of the affected individual. Recent studies have shown that attenuation of the inflammatory response after SCI plays a key role in the reestablishment of motor function. Galectin-3 is a pleiotropic molecule belonging to the carbohydrate-ligand lectin family, which is expressed by different cells in different tissues. Studies have shown that galectin-3 induces the recruitment and activation of neutrophils, monocytes/macrophages, lymphocytes and microglia. Thus, the aim of this study was to evaluate the effects of the lack of galectin-3 on the functional outcome, cellular recruitment and morphological changes in tissue, after SCI. C57BL/6 wild-type and galectin-3 knockout mice were used in this study. A vascular clip was used for 1 min to generate a compressive SCI. By BMS we detected that the Gal-3(-/-) presented a better functional outcome during the studied period. This finding is related to a decrease in the injury length and a higher volume of spared white matter at 7 and 42 days post injury (dpi). Moreover, Gal-3(-/-) mice showed a higher number of spared fibers at 28 dpi. Because of the importance of the inflammatory response after SCI and the role that galectin-3 plays in it, we investigated possible differences in the inflammatory response between the analyzed groups. No differences in neutrophils were observed 24h after injury. However, at 3 dpi, the Gal-3(-/-) mice showed more neutrophils infiltrated into the spinal tissue when compared with the WT mice. At this same time point, no differences in the percentage of the CD11b/Arginase1 positive cells were observed. Remarkably, Gal-3(-/-) mice displayed a decrease in CD11b staining at 7 dpi, compared with the WT mice. At the same time, Gal-3(-/-) mice presented a more prominent Arginase1 stained area, suggesting an anti-inflammatory cell phenotype

  4. Prognostic factors predicting functional outcomes, recurrence-free survival, and overall survival after radiotherapy for metastatic spinal cord compression in breast cancer patients

    SciTech Connect

    Rades, Dirk . E-mail: Rades.Dirk@gmx.net; Veninga, Theo; Stalpers, Lukas J.A.; Schulte, Rainer; Hoskin, Peter J.; Poortmans, Philip; Schild, Steven E.; Rudat, Volker

    2006-01-01

    Purpose: To identify significant prognostic factors after irradiation of metastatic spinal cord compression (MSCC) in 335 breast cancer patients. Methods and Materials: The potential prognostic factors investigated included involved vertebra, other bone metastases, visceral metastases, performance status, pretreatment ambulatory status, time until motor deficits developed before RT, radiation schedule (shorter-course RT [one fraction of 8 Gy/five fractions of 4 Gy] vs. longer-course RT [10 fractions of 3 Gy/15 fractions of 2.5 Gy/20 fractions of 2 Gy), and the response to RT. Results: On multivariate analysis, better functional outcome was associated with slower development of motor deficits (p <0.001) and being ambulatory before RT (p <0.001). The overall recurrence rate of MSCC was greater if other bone metastases were present (p <0.001) and if shorter-course RT was used (p <0.001). In-field recurrences alone were more frequent after shorter-course RT (p = 0.008). Survival was negatively affected by the presence of visceral metastases (p <0.001), deterioration of motor function after RT (p <0.001), reduced performance status (p <0.001), and the rapid development of motor deficits (p = 0.044). Conclusion: Outcomes and survival after RT for MSCC in breast cancer patients are associated with several prognostic factors. Patients with poor expected survival may be treated with shorter-course RT to keep the overall treatment time short. If survival is expected to be relatively favorable, longer-course RT appears preferable, because it is associated with fewer MSCC recurrences.

  5. Communication between neuronal somata and satellite glial cells in sensory ganglia.

    PubMed

    Huang, Li-Yen M; Gu, Yanping; Chen, Yong

    2013-10-01

    Studies of the structural organization and functions of the cell body of a neuron (soma) and its surrounding satellite glial cells (SGCs) in sensory ganglia have led to the realization that SGCs actively participate in the information processing of sensory signals from afferent terminals to the spinal cord. SGCs use a variety ways to communicate with each other and with their enwrapped soma. Changes in this communication under injurious conditions often lead to abnormal pain conditions. "What are the mechanisms underlying the neuronal soma and SGC communication in sensory ganglia?" and "how do tissue or nerve injuries affect the communication?" are the main questions addressed in this review.

  6. Spinal epidural abscess.

    PubMed

    Johnson, Katherine G

    2013-09-01

    Spinal epidural abscess is a rare bacterial infection located within the spinal canal. Early diagnosis and rapid treatment are important because of its potential to cause rapidly progressive spinal cord compression and irreversible paralysis. A staphylococcus bacterial infection is the cause in most cases. Treatment includes antibiotics and possible surgical drainage of the abscess. A favorable neurologic outcome correlates with the severity and duration of neurologic deficits before surgery and the timeliness of the chosen intervention. It is important for the critical care nurse to monitor the patient's neurologic status and provide appropriate interventions.

  7. Single-Fraction Versus 5-Fraction Radiation Therapy for Metastatic Epidural Spinal Cord Compression in Patients With Limited Survival Prognoses: Results of a Matched-Pair Analysis

    SciTech Connect

    Rades, Dirk; Huttenlocher, Stefan; Šegedin, Barbara; Perpar, Ana; Conde, Antonio J.; Garcia, Raquel; Veninga, Theo; Stalpers, Lukas J.A.; Cacicedo, Jon; Rudat, Volker; Schild, Steven E.

    2015-10-01

    Purpose: This study compared single-fraction to multi-fraction short-course radiation therapy (RT) for symptomatic metastatic epidural spinal cord compression (MESCC) in patients with limited survival prognosis. Methods and Materials: A total of 121 patients who received 8 Gy × 1 fraction were matched (1:1) to 121 patients treated with 4 Gy × 5 fractions for 10 factors including age, sex, performance status, primary tumor type, number of involved vertebrae, other bone metastases, visceral metastases, interval between tumor diagnosis and MESCC, pre-RT ambulatory status, and time developing motor deficits prior to RT. Endpoints included in-field repeated RT (reRT) for MESCC, overall survival (OS), and impact of RT on motor function. Univariate analyses were performed with the Kaplan-Meier method and log-rank test for in-field reRT for MESCC and OS and with the ordered-logit model for effect of RT on motor function. Results: Doses of 8 Gy × 1 fraction and 4 Gy × 5 fractions were not significantly different with respect to the need for in-field reRT for MESCC (P=.11) at 6 months (18% vs 9%, respectively) and 12 months (30% vs 22%, respectively). The RT regimen also had no significant impact on OS (P=.65) and post-RT motor function (P=.21). OS rates at 6 and 12 months were 24% and 9%, respectively, after 8 Gy × 1 fraction versus 25% and 13%, respectively, after 4 Gy × 5 fractions. Improvement of motor function was observed in 17% of patients after 8 Gy × 1 fraction and 23% after 4 Gy × 5 fractions, respectively. Conclusions: There were no significant differences with respect to need for in-field reRT for MESCC, OS, and motor function by dose fractionation regimen. Thus, 8 Gy × 1 fraction may be a reasonable option for patients with survival prognosis of a few months.

  8. The basal ganglia and apraxia.

    PubMed

    Pramstaller, P P; Marsden, C D

    1996-02-01

    Ever since Liepmann's original descriptions at the beginning of the century apraxia has usually been attributed to damage confined to the cerebral cortex and/or cortico-cortical connecting pathways. However, there have been suggestions that apraxia can be due to deep subcortical lesions, which raises the question as to whether damage to the basal ganglia or thalamus can cause apraxia. We therefore analysed 82 cases of such 'deep' apraxias reported in the literature. These reports consisted of a small number (n=9) of cases studied neuropathologically, and a much larger group (n=73) in which CT or MRI was used to identify the size and extent of the lesion. The reports were subdivided into (i) those with small isolated lesions which involved nuclei of the basal ganglia or thalamus only, and not extending to involve periventricular or peristriatal white matter; (ii) those with large lesions which involved two or more of the nuclei, or one or more of these deep structures plus damage to closely adjacent areas including the internal capsule, periventricular or peristriatal white matter; and (iii) lesions sparing basal ganglia and thalamus but involving adjacent white matter. The main conclusions to be drawn from this meta-analysis are that lesions confined to the basal ganglia (putamen, caudate nucleus and globus pallidus) rarely, if ever, cause apraxia. Lesions affecting the lenticular nucleus or putamen nearly always intruded into the adjacent lateral white matter to involve association fibres, in particular those of the superior longitudinal fasciculus and frontostriatal connections. Apraxia occurred with deep lesions of the basal ganglia apparently sparing white matter in only eight out of the 82 cases. Apraxia was most commonly seen when there were lesions in the lenticular nucleus or putamen (58 out of 72 cases) with additional involvement of capsular, and particularly of periventricular or peristriatal, white matter. Lesions of the globus pallidus (no cases) or

  9. Spinal tuberculosis: diagnosis and management.

    PubMed

    Rasouli, Mohammad R; Mirkoohi, Maryam; Vaccaro, Alexander R; Yarandi, Kourosh Karimi; Rahimi-Movaghar, Vafa

    2012-12-01

    The spinal column is involved in less than 1% of all cases of tuberculosis (TB). Spinal TB is a very dangerous type of skeletal TB as it can be associated with neurologic deficit due to compression of adjacent neural structures and significant spinal deformity. Therefore, early diagnosis and management of spinal TB has special importance in preventing these serious complications. In order to extract current trends in diagnosis and medical or surgical treatment of spinal TB we performed a narrative review with analysis of all the articles available for us which were published between 1990 and 2011. Althoug h the development of more accurate imaging modalities such as magnetic resonance imaging and advanced surgical techniques have made the early diagnosis and management of spinal TB much easier, these are still very challenging topics. In this review we aim to discuss the diagnosis and management of spinal TB based on studies with acceptable design, clearly explained results and justifiable conclusions.

  10. Migraine attacks the Basal Ganglia

    PubMed Central

    2011-01-01

    Background With time, episodes of migraine headache afflict patients with increased frequency, longer duration and more intense pain. While episodic migraine may be defined as 1-14 attacks per month, there are no clear-cut phases defined, and those patients with low frequency may progress to high frequency episodic migraine and the latter may progress into chronic daily headache (> 15 attacks per month). The pathophysiology of this progression is completely unknown. Attempting to unravel this phenomenon, we used high field (human) brain imaging to compare functional responses, functional connectivity and brain morphology in patients whose migraine episodes did not progress (LF) to a matched (gender, age, age of onset and type of medication) group of patients whose migraine episodes progressed (HF). Results In comparison to LF patients, responses to pain in HF patients were significantly lower in the caudate, putamen and pallidum. Paradoxically, associated with these lower responses in HF patients, gray matter volume of the right and left caudate nuclei were significantly larger than in the LF patients. Functional connectivity analysis revealed additional differences between the two groups in regard to response to pain. Conclusions Supported by current understanding of basal ganglia role in pain processing, the findings suggest a significant role of the basal ganglia in the pathophysiology of the episodic migraine. PMID:21936901

  11. Investigation of brachial plexus traction lesions by peripheral and spinal somatosensory evoked potentials.

    PubMed Central

    Jones, S J

    1979-01-01

    Peripheral, spinal and cortical somatosensory evoked potentials were recorded in 26 patients with unilateral traction injuries of the brachial plexus ganglia. Of 10 cases explored surgically the recordings correctly anticipated the major site of the lesion in eight. PMID:422958

  12. Segmentation of nerve bundles and ganglia in spine MRI using particle filters.

    PubMed

    Dalca, Adrian; Danagoulian, Giovanna; Kikinis, Ron; Schmidt, Ehud; Golland, Polina

    2011-01-01

    Automatic segmentation of spinal nerve bundles that originate within the dural sac and exit the spinal canal is important for diagnosis and surgical planning. The variability in intensity, contrast, shape and direction of nerves seen in high resolution myelographic MR images makes segmentation a challenging task. In this paper, we present an automatic tracking method for nerve segmentation based on particle filters. We develop a novel approach to particle representation and dynamics, based on Bézier splines. Moreover, we introduce a robust image likelihood model that enables delineation of nerve bundles and ganglia from the surrounding anatomical structures. We demonstrate accurate and fast nerve tracking and compare it to expert manual segmentation.

  13. Functional Neuroanatomy of the Basal Ganglia

    PubMed Central

    Lanciego, José L.; Luquin, Natasha; Obeso, José A.

    2012-01-01

    The “basal ganglia” refers to a group of subcortical nuclei responsible primarily for motor control, as well as other roles such as motor learning, executive functions and behaviors, and emotions. Proposed more than two decades ago, the classical basal ganglia model shows how information flows through the basal ganglia back to the cortex through two pathways with opposing effects for the proper execution of movement. Although much of the model has remained, the model has been modified and amplified with the emergence of new data. Furthermore, parallel circuits subserve the other functions of the basal ganglia engaging associative and limbic territories. Disruption of the basal ganglia network forms the basis for several movement disorders. This article provides a comprehensive account of basal ganglia functional anatomy and chemistry and the major pathophysiological changes underlying disorders of movement. We try to answer three key questions related to the basal ganglia, as follows: What are the basal ganglia? What are they made of? How do they work? Some insight on the canonical basal ganglia model is provided, together with a selection of paradoxes and some views over the horizon in the field. PMID:23071379

  14. Expression of Cystic Fibrosis Transmembrane Conductance Regulator in Ganglia of Human Gastrointestinal Tract

    PubMed Central

    Xue, Ruiqi; Gu, Huan; Qiu, Yamei; Guo, Yong; Korteweg, Christine; Huang, Jin; Gu, Jiang

    2016-01-01

    CF is caused by mutations of the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) which is an anion selective transmembrane ion channel that mainly regulates chloride transport, expressed in the epithelia of various organs. Recently, we have demonstrated CFTR expression in the brain, the spinal cord and the sympathetic ganglia. This study aims to investigate the expression and distribution of CFTR in the ganglia of the human gastrointestinal tract. Fresh tissue and formalin-fixed paraffin-embedded normal gastrointestinal tract samples were collected from eleven surgical patients and five autopsy cases. Immunohistochemistry, in situ hybridization, laser-assisted microdissection and nested reverse transcriptase polymerase chain reaction were performed. Expression of CFTR protein and mRNA was detected in neurons of the ganglia of all segments of the human gastrointestinal tract examined, including the stomach, duodenum, jejunum, ileum, cecum, appendix, colon and rectum. The extensive expression of CFTR in the enteric ganglia suggests that CFTR may play a role in the physiology of the innervation of the gastro-intestinal tract. The presence of dysfunctional CFTRs in enteric ganglia could, to a certain extent, explain the gastrointestinal symptoms frequently experienced by CF patients. PMID:27491544

  15. Spinal Stenosis

    MedlinePlus

    ... center of the column of bones (vertebral or spinal column) through which the spinal cord and nerve roots ... be acquired at birth. Poor alignment of the spinal column when a vertebra slips forward onto the one ...

  16. Prenatal development of the human epicardiac Ganglia.

    PubMed

    Saburkina, I; Pauziene, N; Pauza, D H

    2009-06-01

    The aim of this study was to determine the developmental anatomy of intrinsic cardiac ganglia with respect to epicardiac ganglionated nerve plexus in the human fetuses at different gestation stages. Twenty fetal hearts were investigated applying a technique of histochemistry for acetylcholinesterase to visualize the epicardiac neural ganglionated plexus with its subsequent examinations on total (non-sectioned) hearts. Most epicardiac ganglia embodied multilayered neurons and were oval in shape, but some ganglia involved neurons lying in one layer or had the irregular appearance because of their extensions along inter-ganglionic nerves. The mean ganglion area of fetuses at gestation stages of 15-40 weeks was 0.03 +/- 0.008 mm(2). The largest epicardiac ganglia, reaching in area 0.4 mm(2), were concentrated on the dorsal surface of both atria. The particular fused or "dual" ganglia were identified at the gestation stages of 23-40 weeks, but they composed only 2.3 +/- 0.7% of all found epicardiac ganglia. A direct positive correlation was determined between the fetal age and the ganglion area (mm(2)) as well as between the fetal age and the number of inter-ganglionic nerves. The revealed appearance of epicardiac ganglia in the human fetuses at 15-40 weeks of gestation confirms their prenatal development and presumable intrinsic remodelling.

  17. The Basal Ganglia-Circa 1982

    NASA Technical Reports Server (NTRS)

    Mehler, William R.

    1981-01-01

    Our review has shown that recent studies with the new anterograde and retrograde axon transport methods have confirmed and extended our knowledge of the projection of the basal ganglia and clarified their sites of origin. They have thrown new light on certain topographic connectional relationships and revealed several new reciprocal connections between constituent nuclei of the basal ganglia. Similarly, attention has been drawn to the fact that there have also been many new histochemical techniques introduced in recent years that are now providing regional biochemical overlays for connectional maps of the central nervous system, especially regions in, or interconnecting with, the basal ganglia. However, although these new morphological biochemical maps are very complex and technically highly advanced, our understanding of the function controlled by the basal ganglia still remains primitive. The reader who is interested in some new ideas of the functional aspects of the basal ganglia is directed to Nauta's proposed conceptual reorganization of the basal ganglia telencephalon and to Marsden's more clinically orientated appraisal of the unsolved mysteries of the basal ganglia participation in the control of movement.

  18. Exploring interactions between force, repetition and posture on intervertebral disc height loss and bulging in isolated porcine cervical functional spinal units from sub-acute-failure magnitudes of cyclic compressive loading.

    PubMed

    Gooyers, Chad E; Callaghan, Jack P

    2015-10-15

    Most in vitro studies are limited in the ability to partition intervertebral disc (IVD) height loss from total specimen height loss since the net changes in the actuator position of the materials testing system simply reflect net changes to functional spinal units (FSUs) used for testing. Three levels of peak compressive force, three cycle rates and two dynamic postural conditions were examined using a full-factorial design. Cyclic compressive force was applied using a time-varying waveform with synchronous flexion/extension for 5000 cycles. Surface scans from the anterior aspect of the IVD were recorded in a neutral and flexed posture before and after the cyclic loading protocol using a 3D laser scanner to characterise changes in IVD height loss and bulging. A significant three-way interaction (p=0.0092) between the magnitude of peak compressive force, cycle rate and degree of postural deviation was observed in cycle-varying specimen height loss data. A significant main effect of peak compressive force (p=0.0003) was also observed in IVD height loss calculated from the surface profiles of the IVD. The relative contribution of IVD height loss (measured on the anterior surface) to total specimen height loss across experimental conditions varied considerably, ranging from 19% to 58%. Postural deviation was the only factor that significantly affected the magnitude of peak AF bulge (p=0.0016). This investigation provides evidence that total specimen height loss is not an accurate depiction of cycle-varying changes in the IVD across a range of in vivo scenarios that were replicated with in vitro testing.

  19. Pseudohypoparathyroidism with basal ganglia calcification

    PubMed Central

    Song, Cheng-Yuan; Zhao, Zhen-Xiang; Li, Wei; Sun, Cong-Cong; Liu, Yi-Ming

    2017-01-01

    Abstract Rationale: Parkinsonism can be secondary to many internal diseases, in some certain conditions, it seems that the clinical manifestations of parkinsonism presenting reversible. We report a case of patient with parkinsonism secondary to pseudohypoparathyroidism, who improved markedly after the supplement of serum calcium. Patient concerns and diagnoses: A 52-year-old woman with acute parkinsonism was diagnosed as pseudohypoparathyroidism after the conducting of brain computed tomography, laboratory examinations, and gene detection. The son of the patient was also examined and was diagnosed as pseudohypoparathyroidism, who had ever complained of the history of epilepsy. The clinical manifestations of parkinsonism of the patient was reevaluated after the supplement of serum calcium according to the diagnosis. Interventions and outcomes: The brain computed tomography revealed the basal ganglia calcification of the patient, accompanying by serum hypocalcemia and hyperphosphatemia. Loss of function mutation also confirmed the diagnosis. Five days after the therapy targeting at correction of serum hypocalcemia, the patient improved greatly in dyskinesia. Lessons: This study reported a patient presenting as acute reversible parkinsonism, who was finally diagnosed as pseudohypoparathyroidism. It indicated us that secondary parkinsonism should be carefully differentiated for its dramatic treatment effect. And the family history of seizures might be an indicator for the consideration of pseudohypoparathyroidism. PMID:28296742

  20. Synaptic organisation of the basal ganglia

    PubMed Central

    BOLAM, J. P.; HANLEY, J. J.; BOOTH, P. A. C.; BEVAN, M. D.

    2000-01-01

    The basal ganglia are a group of subcortical nuclei involved in a variety of processes including motor, cognitive and mnemonic functions. One of their major roles is to integrate sensorimotor, associative and limbic information in the production of context-dependent behaviours. These roles are exemplified by the clinical manifestations of neurological disorders of the basal ganglia. Recent advances in many fields, including pharmacology, anatomy, physiology and pathophysiology have provided converging data that have led to unifying hypotheses concerning the functional organisation of the basal ganglia in health and disease. The major input to the basal ganglia is derived from the cerebral cortex. Virtually the whole of the cortical mantle projects in a topographic manner onto the striatum, this cortical information is ‘processed’ within the striatum and passed via the so-called direct and indirect pathways to the output nuclei of the basal ganglia, the internal segment of the globus pallidus and the substantia nigra pars reticulata. The basal ganglia influence behaviour by the projections of these output nuclei to the thalamus and thence back to the cortex, or to subcortical ‘premotor’ regions. Recent studies have demonstrated that the organisation of these pathways is more complex than previously suggested. Thus the cortical input to the basal ganglia, in addition to innervating the spiny projection neurons, also innervates GABA interneurons, which in turn provide a feed-forward inhibition of the spiny output neurons. Individual neurons of the globus pallidus innervate basal ganglia output nuclei as well as the subthalamic nucleus and substantia nigra pars compacta. About one quarter of them also innervate the striatum and are in a position to control the output of the striatum powerfully as they preferentially contact GABA interneurons. Neurons of the pallidal complex also provide an anatomical substrate, within the basal ganglia, for the synaptic

  1. The role of dorsal root ganglia activation and brain-derived neurotrophic factor in multiple sclerosis.

    PubMed

    Zhu, Wenjun; Frost, Emma E; Begum, Farhana; Vora, Parvez; Au, Kelvin; Gong, Yuewen; MacNeil, Brian; Pillai, Prakash; Namaka, Mike

    2012-08-01

    Multiple sclerosis (MS) is characterized by focal destruction of the white matter of the brain and spinal cord. The exact mechanisms underlying the pathophysiology of the disease are unknown. Many studies have shown that MS is predominantly an autoimmune disease with an inflammatory phase followed by a demyelinating phase. Recent studies alongside current treatment strategies, including glatiramer acetate, have revealed a potential role for brain-derived neurotrophic factor (BDNF) in MS. However, the exact role of BDNF is not fully understood. We used the experimental autoimmune encephalomyelitis (EAE) model of MS in adolescent female Lewis rats to identify the role of BDNF in disease progression. Dorsal root ganglia (DRG) and spinal cords were harvested for protein and gene expression analysis every 3 days post-disease induction (pdi) up to 15 days. We show significant increases in BDNF protein and gene expression in the DRG of EAE animals at 12 dpi, which correlates with peak neurological disability. BDNF protein expression in the spinal cord was significantly increased at 12 dpi, and maintained at 15 dpi. However, there was no significant change in mRNA levels. We show evidence for the anterograde transport of BDNF protein from the DRG to the dorsal horn of the spinal cord via the dorsal roots. Increased levels of BDNF within the DRG and spinal cord in EAE may facilitate myelin repair and neuroprotection in the CNS. The anterograde transport of DRG-derived BDNF to the spinal cord may have potential implications in facilitating central myelin repair and neuroprotection.

  2. Lumbar spinal stenosis.

    PubMed Central

    Ciricillo, S F; Weinstein, P R

    1993-01-01

    Lumbar spinal stenosis, the results of congenital and degenerative constriction of the neural canal and foramina leading to lumbosacral nerve root or cauda equina compression, is a common cause of disability in middle-aged and elderly patients. Advanced neuroradiologic imaging techniques have improved our ability to localize the site of nerve root entrapment in patients presenting with neurogenic claudication or painful radiculopathy. Although conservative medical management may be successful initially, surgical decompression by wide laminectomy or an intralaminar approach should be done in patients with serious or progressive pain or neurologic dysfunction. Because the early diagnosis and treatment of lumbar spinal stenosis may prevent intractable pain and the permanent neurologic sequelae of chronic nerve root entrapment, all physicians should be aware of the different neurologic presentations and the treatment options for patients with spinal stenosis. Images PMID:8434469

  3. Totally Ossified Metaplastic Spinal Meningioma

    PubMed Central

    Hida, Kazutoshi; Yamauchi, Tomohiro; Houkin, Kiyohiro

    2013-01-01

    A 61-year-old woman with a very rare case of totally ossified large thoracic spinal metaplastic meningioma, showing progressing myelopathy is presented. Computed tomographic images showed a large totally ossfied intradural round mass occupying the spinal canal on T9-10 level. Magnetic resonance imaging revealed a large T9-10 intradural extramedullary mass that was hypointense to spinal cord on T1- and T2-weighted sequences, partial enhancement was apparent after Gadolinium administration. The spinal cord was severely compressed and displaced toward the right at the level of T9-10. Surgical removal of the tumor was successfully accomplished via the posterior midline approach and the histological diagnosis verified an ossified metaplastic meningioma. The clinical neurological symptoms of patient were improved postoperatively. In this article we discuss the surgical and pathological aspects of rare case of spinal totally ossified metaplastic meningioma. PMID:24278660

  4. Extrastriatal Dopaminergic Circuits of the Basal Ganglia

    PubMed Central

    Rommelfanger, Karen S.; Wichmann, Thomas

    2010-01-01

    The basal ganglia are comprised of the striatum, the external and internal segment of the globus pallidus (GPe and GPi, respectively), the subthalamic nucleus (STN), and the substantia nigra pars compacta and reticulata (SNc and SNr, respectively). Dopamine has long been identified as an important modulator of basal ganglia function in the striatum, and disturbances of striatal dopaminergic transmission have been implicated in diseases such as Parkinson's disease (PD), addiction and attention deficit hyperactivity disorder. However, recent evidence suggests that dopamine may also modulate basal ganglia function at sites outside of the striatum, and that changes in dopaminergic transmission at these sites may contribute to the symptoms of PD and other neuropsychiatric disorders. This review summarizes the current knowledge of the anatomy, functional effects and behavioral consequences of the dopaminergic innervation to the GPe, GPi, STN, and SNr. Further insights into the dopaminergic modulation of basal ganglia function at extrastriatal sites may provide us with opportunities to develop new and more specific strategies for treating disorders of basal ganglia dysfunction. PMID:21103009

  5. Spinal Stenosis

    MedlinePlus

    ... Spinal stenosis is a narrowing of the open spaces within your spine, which can put pressure on ... stenosis, doctors may recommend surgery to create additional space for the spinal cord or nerves. Many people ...

  6. Spinal stenosis

    MedlinePlus

    ... stenosis; Foraminal spinal stenosis; Degenerative spine disease; Back pain - spinal stenosis; Low back pain - stenosis; LBP - stenosis ... involve both legs. Symptoms include: Numbness , cramping, or pain in the back, buttocks, thighs, or calves, or ...

  7. Spinal injury

    MedlinePlus

    ... and drive. Do not dive into pools, lakes, rivers, and other bodies of water, particularly if you cannot determine the depth of the ... Central nervous system Spinal cord injury Spinal anatomy Two person roll - ...

  8. Lipoxin A4 attenuates radicular pain possibly by inhibiting spinal ERK, JNK and NF-κB/p65 and cytokine signals, but not p38, in a rat model of non-compressive lumbar disc herniation.

    PubMed

    Miao, G-S; Liu, Z-H; Wei, S-X; Luo, J-G; Fu, Z-J; Sun, T

    2015-08-06

    Inflammatory response induced by protrused nucleus pulposus (NP) has been shown to play a crucial role in the process of radicular pain. Lipoxins represent a unique class of lipid mediators that have anti-inflammatory and pro-resolving action. The present study was undertaken to investigate if intrathecal lipoxin A4 (LXA4) could alleviate mechanical allodynia in the rat models of application of NP to the L5 dorsal root ganglion (DRG). Non-compressive models of application of NP to L5 DRG were established and intrathecal catheterization for drug administration was performed in rats. Daily intrathecal injection of vehicle or LXA4 (10ng or 100ng) was performed for three successive days post-operation. Mechanical thresholds were tested and the ipsilateral lumbar (L4-L6) segment of spinal dorsal horns were removed for the determination of tumor necrosis factor-α (TNF-α), IL-1β, transforming growth factor-β1 (TGF-β1) and IL-10 expression and NF-κB/p65, extracellular signal-regulated kinase (ERK), C-Jun N-terminal kinase (JNK) and P38 expression. Application of NP to DRG in rats induced mechanical allodynia, increased the expression of pro-inflammatory factors (TNF-α and IL-1β), NF-κB/p65, the phosphorylated-ERK (p-ERK), -JNK (p-JNK) and -P38 (p-p38) and decreased the expression of anti-inflammatory cytokines (TGF-β1 and IL-10) in the ipsilateral lumbar (L4-L6) segment of spinal dorsal horns. Intrathecal injection of LXA4 alleviated the development of neuropathic pain, inhibited the upregulation of pro-inflammatory cytokines (TNF-α and IL-1β), upregulated the expression of anti-inflammatory cytokines (TGF-β1 and IL-10) and attenuated the activation of NF-κB/p65, p-ERK, p-JNK, but not p-p38, in a dose-dependent manner. In this study, we have demonstrated that LXA4 potently alleviate radicular pain in a rat model of non-compressive lumbar disc herniation. The anti-inflammatory and pro-resolution properties of LXA4 have shown a great promise for the management

  9. Subdural Thoracolumbar Spine Hematoma after Spinal Anesthesia: A Rare Occurrence and Literature Review of Spinal Hematomas after Spinal Anesthesia

    PubMed Central

    Maddali, Prasanthi; Walker, Blake; Fisahn, Christian; Page, Jeni; Diaz, Vicki; Zwillman, Michael E; Oskouian, Rod J; Tubbs, R. Shane

    2017-01-01

    Spinal hematomas are a rare but serious complication of spinal epidural anesthesia and are typically seen in the epidural space; however, they have been documented in the subdural space. Spinal subdural hematomas likely exist within a traumatically induced space within the dural border cell layer, rather than an anatomical subdural space. Spinal subdural hematomas present a dangerous clinical situation as they have the potential to cause significant compression of neural elements and can be easily mistaken for spinal epidural hematomas. Ultrasound can be an effective modality to diagnose subdural hematoma when no epidural blood is visualized. We have reviewed the literature and present a full literature review and a case presentation of an 82-year-old male who developed a thoracolumbar spinal subdural hematoma after spinal epidural anesthesia. Anticoagulant therapy is an important predisposing risk factor for spinal epidural hematomas and likely also predispose to spinal subdural hematomas. It is important to consider spinal subdural hematomas in addition to spinal epidural hematomas in patients who develop weakness after spinal epidural anesthesia, especially in patients who have received anticoagulation. PMID:28357164

  10. Subdural Thoracolumbar Spine Hematoma after Spinal Anesthesia: A Rare Occurrence and Literature Review of Spinal Hematomas after Spinal Anesthesia.

    PubMed

    Maddali, Prasanthi; Walker, Blake; Fisahn, Christian; Page, Jeni; Diaz, Vicki; Zwillman, Michael E; Oskouian, Rod J; Tubbs, R Shane; Moisi, Marc

    2017-02-16

    Spinal hematomas are a rare but serious complication of spinal epidural anesthesia and are typically seen in the epidural space; however, they have been documented in the subdural space. Spinal subdural hematomas likely exist within a traumatically induced space within the dural border cell layer, rather than an anatomical subdural space. Spinal subdural hematomas present a dangerous clinical situation as they have the potential to cause significant compression of neural elements and can be easily mistaken for spinal epidural hematomas. Ultrasound can be an effective modality to diagnose subdural hematoma when no epidural blood is visualized. We have reviewed the literature and present a full literature review and a case presentation of an 82-year-old male who developed a thoracolumbar spinal subdural hematoma after spinal epidural anesthesia. Anticoagulant therapy is an important predisposing risk factor for spinal epidural hematomas and likely also predispose to spinal subdural hematomas. It is important to consider spinal subdural hematomas in addition to spinal epidural hematomas in patients who develop weakness after spinal epidural anesthesia, especially in patients who have received anticoagulation.

  11. Spontaneous Spinal Epidural Hematoma on the Ventral Portion of Whole Spinal Canal: A Case Report

    PubMed Central

    Lee, Hyun-Ho; Kim, Young; Ha, Young-Soo

    2015-01-01

    Spontaneous spinal epidural hematoma is an uncommon but disabling disease. This paper reports a case of spontaneous spinal epidural hematoma and treatment by surgical management. A 32-year-old male presented with a 30-minute history of sudden headache, back pain, chest pain, and progressive quadriplegia. Whole-spinal sagittal magnetic resonance imaging (MRI) revealed spinal epidural hematoma on the ventral portion of the spinal canal. Total laminectomy from T5 to T7 was performed, and hematoma located at the ventral portion of the spinal cord was evacuated. Epidural drainages were inserted in the upper and lower epidural spaces. The patient improved sufficiently to ambulate, and paresthesia was fully recovered. Spontaneous spinal epidural hematoma should be considered when patients present symptoms of spinal cord compression after sudden back pain or chest pain. To prevent permanent neurologic deficits, early and correct diagnosis with timely surgical management is necessary. PMID:26512277

  12. Basal ganglia hemorrhage related to lightning strike.

    PubMed

    Ozgun, B; Castillo, M

    1995-01-01

    We describe a case of bilateral basal ganglia hemorrhage after a lightning strike to the head documented by a CT scan. Review of the literature shows this to be the most common brain imaging finding that can be attributed to a lightning strike. Several mechanistic theories are discussed, with the most plausible one being related to preferential conduction pathways through the brain.

  13. Parallel basal ganglia circuits for decision making.

    PubMed

    Hikosaka, Okihide; Ghazizadeh, Ali; Griggs, Whitney; Amita, Hidetoshi

    2017-02-02

    The basal ganglia control body movements, mainly, based on their values. Critical for this mechanism is dopamine neurons, which sends unpredicted value signals, mainly, to the striatum. This mechanism enables animals to change their behaviors flexibly, eventually choosing a valuable behavior. However, this may not be the best behavior, because the flexible choice is focused on recent, and, therefore, limited, experiences (i.e., short-term memories). Our old and recent studies suggest that the basal ganglia contain separate circuits that process value signals in a completely different manner. They are insensitive to recent changes in value, yet gradually accumulate the value of each behavior (i.e., movement or object choice). These stable circuits eventually encode values of many behaviors and then retain the value signals for a long time (i.e., long-term memories). They are innervated by a separate group of dopamine neurons that retain value signals, even when no reward is predicted. Importantly, the stable circuits can control motor behaviors (e.g., hand or eye) quickly and precisely, which allows animals to automatically acquire valuable outcomes based on historical life experiences. These behaviors would be called 'skills', which are crucial for survival. The stable circuits are localized in the posterior part of the basal ganglia, separately from the flexible circuits located in the anterior part. To summarize, the flexible and stable circuits in the basal ganglia, working together but independently, enable animals (and humans) to reach valuable goals in various contexts.

  14. Basal Ganglia Germinoma in an Adult.

    PubMed

    Vialatte de Pémille, Clément; Bielle, Franck; Mokhtari, Karima; Kerboua, Esma; Alapetite, Claire; Idbaih, Ahmed

    2016-08-01

    Intracranial germinoma is a rare primary brain cancer, usually located within the midline and mainly affecting Asian pediatric patients. Interestingly, we report here the peculiar case of a young North-African adult patient suffering from a basal ganglia germinoma without the classical ipsilateral cerebral hemiatrophy associated with this location.

  15. Spinal trauma. Pathophysiology and management of traumatic spinal injuries.

    PubMed

    Shores, A

    1992-07-01

    Spinal trauma can originate from internal or external sources. Injuries to the spinal cord can be classified as either concussive or compressive and concussive. The pathophysiologic events surrounding spinal cord injury include the primary injury (compression, concussion) and numerous secondary injury mechanisms (vascular, biochemical, electrolyte), which are mediated by excessive oxygen free radicles, neurotransmitter and electrolyte alterations in cell membrane permeability, excitotoxic amino acids, and various other biochemical factors that collectively result in reduced SCBF, ischemia, and eventual necrosis of the gray and white matter. Management of acute spinal cord injuries includes the use of a high-dose corticosteroid regimen within the initial 8 hours after trauma. Sodium prednisolone and methylprednisolone, at recommended doses, act as oxygen radical scavengers and are anti-inflammatory. Additional considerations are the stability of the vertebral column, other conditions associated with trauma (i.e., pneumothorax), and the presence or absence of spinal cord compression, which may warrant surgical therapy. Vertebral fractures or luxations can occur in any area of the spine but most commonly occur at the junction of mobile and immobile segments. Dorsal and dorsolateral surgical approaches are applicable to the lumbosacral and thoracolumbar spine and dorsal and ventral approaches to the cervical spine. Indications for surgical intervention include spinal cord compression and vertebral instability. Instability can be determined from the type of fracture, how many of the three compartments of the vertebrae are disrupted, and on occasion, by carefully positioned stress studies of fluoroscopy. Decompression (dorsal laminectomy, hemilaminectomy, or ventral cervical slot) is employed when compression of the spinal cord exists. The hemilaminectomy (unilateral or bilateral) causes less instability than dorsal laminectomy and therefore should be used when practical

  16. Orofacial neuropathic pain mouse model induced by Trigeminal Inflammatory Compression (TIC) of the infraorbital nerve

    PubMed Central

    2012-01-01

    Background Trigeminal neuropathic pain attacks can be excruciating for patients, even after being lightly touched. Although there are rodent trigeminal nerve research models to study orofacial pain, few models have been applied to studies in mice. A mouse trigeminal inflammatory compression (TIC) model is introduced here which successfully and reliably promotes vibrissal whisker pad hypersensitivity. Results The chronic orofacial neuropathic pain model is induced after surgical placement of chromic gut suture in the infraorbital nerve fissure in the maxillary bone. Slight compression and chemical effects of the chromic gut suture on the portion of the infraorbital nerve contacted cause mild nerve trauma. Nerve edema is observed in the contacting infraorbital nerve bundle as well as macrophage infiltration in the trigeminal ganglia. Centrally in the spinal trigeminal nucleus, increased immunoreactivity for an activated microglial marker is evident (OX42, postoperative day 70). Mechanical thresholds of the affected whisker pad are significantly decreased on day 3 after chromic gut suture placement, persisting at least 10 weeks. The mechanical allodynia is reversed by suppression of microglial activation. Cold allodynia was detected at 4 weeks. Conclusions A simple, effective, and reproducible chronic mouse model mimicking clinical orofacial neuropathic pain (Type 2) is induced by placing chromic gut suture between the infraorbital nerve and the maxillary bone. The method produces mild inflammatory compression with significant continuous mechanical allodynia persisting at least 10 weeks and cold allodynia measureable at 4 weeks. PMID:23270529

  17. Traumatic bilateral basal ganglia hematoma: A report of two cases

    PubMed Central

    Bhargava, Pranshu; Grewal, Sarvpreet Singh; Gupta, Bharat; Jain, Vikas; Sobti, Harman

    2012-01-01

    Traumatic Basal ganglia hemorrhage is relatively uncommon. Bilateral basal ganglia hematoma after trauma is extremely rare and is limited to case reports. We report two cases of traumatic bilateral basal ganglia hemorrhage, and review the literature in brief. Both cases were managed conservatively. PMID:23293672

  18. Expression of the short chain fatty acid receptor GPR41/FFAR3 in autonomic and somatic sensory ganglia.

    PubMed

    Nøhr, M K; Egerod, K L; Christiansen, S H; Gille, A; Offermanns, S; Schwartz, T W; Møller, M

    2015-04-02

    G-protein-coupled receptor 41 (GPR41) also called free fatty acid receptor 3 (FFAR3) is a Gαi-coupled receptor activated by short-chain fatty acids (SCFAs) mainly produced from dietary complex carbohydrate fibers in the large intestine as products of fermentation by microbiota. FFAR3 is expressed in enteroendocrine cells, but has recently also been shown to be present in sympathetic neurons of the superior cervical ganglion. The aim of this study was to investigate whether the FFAR3 is present in other autonomic and sensory ganglia possibly influencing gut physiology. Cryostat sections were cut of autonomic and sensory ganglia of a transgenic reporter mouse expressing the monomeric red fluorescent protein (mRFP) gene under the control of the FFAR3 promoter. Control for specific expression was also done by immunohistochemistry with an antibody against the reporter protein. mRFP expression was as expected found not only in neurons of the superior cervical ganglion, but also in sympathetic ganglia of the thoracic and lumbar sympathetic trunk. Further, neurons in prevertebral ganglia expressed the mRFP reporter. FFAR3-mRFP-expressing neurons were also present in both autonomic and sensory ganglia such as the vagal ganglion, the spinal dorsal root ganglion and the trigeminal ganglion. No expression was observed in the brain or spinal cord. By use of radioactive-labeled antisense DNA probes, mRNA encoding the FFAR3 was found to be present in cells of the same ganglia. Further, the expression of the FFAR3 in the ganglia of the transgenic mice was confirmed by immunohistochemistry using an antibody directed against the receptor protein, and double labeling colocalized mRFP and the FFAR3-protein in the same neurons. Finally, quantitative real-time polymerase chain reaction (qRT-PCR) on extracts from the ganglia supported the presence mRNA encoding the FFAR3 in most of the investigated tissues. These data indicate that FFAR3 is expressed on postganglionic sympathetic and

  19. Antinociceptive effect of ambroxol in rats with neuropathic spinal cord injury pain

    PubMed Central

    Hama, Aldric T.; Plum, Ann Woodhouse; Sagen, Jacqueline

    2010-01-01

    Symptoms of neuropathic spinal cord injury (SCI) pain include evoked cutaneous hypersensitivity and spontaneous pain, which can be present below the level of the injury. Adverse side-effects obtained with currently available analgesics complicate effective pain management in SCI patients. Voltage-gated Na+ channels expressed in primary afferent nociceptors have been identified to mediate persistent hyperexcitability in dorsal root ganglia (DRG) neurons, which in part underlies the symptoms of nerve injury-induced pain. Ambroxol has previously demonstrated antinociceptive effects in rat chronic pain models and has also shown to potently block Na+ channel current in DRG neurons. Ambroxol was tested in rats that underwent a mid-thoracic spinal cord compression injury. Injured rats demonstrated robust hind paw (below-level) heat and mechanical hypersensitivity. Orally administered ambroxol significantly attenuated below-level hypersensitivity at doses that did not affect performance on the rotarod test. Intrathecal injection of ambroxol did not ameliorate below-level hypersensitivity. The current data suggest that ambroxol could be effective for clinical neuropathic SCI pain. Furthermore, the data suggests that peripherally expressed Na+ channels could lend themselves as targets for the development of pharmacotherapies for SCI pain. PMID:20732348

  20. Spinal infections.

    PubMed

    Tay, Bobby K-B; Deckey, Jeffrey; Hu, Serena S

    2002-01-01

    Spinal infections can occur in a variety of clinical situations. Their presentation ranges from the infant with diskitis who is unwilling to crawl or walk to the adult who develops an infection after a spinal procedure. The most common types of spinal infections are hematogenous bacterial or fungal infections, pediatric diskitis, epidural abscess, and postoperative infections. Prompt and accurate diagnosis of spinal infections, the cornerstone of treatment, requires a high index of suspicion in at-risk patients and the appropriate evaluation to identify the organism and determine the extent of infection. Neurologic function and spinal stability also should be carefully evaluated. The goals of therapy should include eradicating the infection, relieving pain, preserving or restoring neurologic function, improving nutrition, and maintaining spinal stability.

  1. Segmentation of Nerve Bundles and Ganglia in Spine MRI Using Particle Filters

    PubMed Central

    Dalca, Adrian; Danagoulian, Giovanna; Kikinis, Ron; Schmidt, Ehud; Golland, Polina

    2011-01-01

    Automatic segmentation of spinal nerve bundles that originate within the dural sac and exit the spinal canal is important for diagnosis and surgical planning. The variability in intensity, contrast, shape and direction of nerves seen in high resolution myelographic MR images makes segmentation a challenging task. In this paper, we present an automatic tracking method for nerve segmentation based on particle filters. We develop a novel approach to particle representation and dynamics, based on Bézier splines. Moreover, we introduce a robust image likelihood model that enables delineation of nerve bundles and ganglia from the surrounding anatomical structures. We demonstrate accurate and fast nerve tracking and compare it to expert manual segmentation. PMID:22003741

  2. Spinal cord ischemia secondary to hypovolemic shock.

    PubMed

    Oh, Jacob Yl; Kapoor, Siddhant; Koh, Roy Km; Yang, Eugene Wr; Hee, Hwan-Tak

    2014-12-01

    A 44-year-old male presented with symptoms of spinal cord compression secondary to metastatic prostate cancer. An urgent decompression at the cervical-thoracic region was performed, and there were no complications intraoperatively. Three hours postoperatively, the patient developed acute bilateral lower-limb paralysis (motor grade 0). Clinically, he was in class 3 hypovolemic shock. An urgent magnetic resonance imaging (MRI) was performed, showing no epidural hematoma. He was managed aggressively with medical therapy to improve his spinal cord perfusion. The patient improved significantly, and after one week, he was able to regain most of his motor functions. Although not commonly reported, spinal cord ischemia post-surgery should be recognized early, especially in the presence of hypovolemic shock. MRI should be performed to exclude other potential causes of compression. Spinal cord ischemia needs to be managed aggressively with medical treatment to improve spinal cord perfusion. The prognosis depends on the severity of deficits, and is usually favorable.

  3. Spinal brucellosis.

    PubMed

    Tali, E Turgut; Koc, A Murat; Oner, A Yusuf

    2015-05-01

    Spinal involvement in human brucellosis is a common condition and a significant cause of morbidity and mortality, particularly in endemic areas, because it is often associated with therapeutic failure. Most chronic brucellosis cases are the result of inadequate treatment of the initial episode. Recognition of spinal brucellosis is challenging. Early diagnosis is important to ensure proper treatment and decrease morbidity and mortality. Radiologic evaluation has gained importance in diagnosis and treatment planning, including interventional procedures and monitoring of all spinal infections.

  4. Herpes Simplex Virus 1 Reactivates from Autonomic Ciliary Ganglia Independently from Sensory Trigeminal Ganglia To Cause Recurrent Ocular Disease

    PubMed Central

    Lee, Sungseok; Ives, Angela M.

    2015-01-01

    ABSTRACT Herpes simplex virus 1 (HSV-1) and HSV-2 establish latency in sensory and autonomic neurons after ocular or genital infection, but their recurrence patterns differ. HSV-1 reactivates from latency to cause recurrent orofacial disease, and while HSV-1 also causes genital lesions, HSV-2 recurs more efficiently in the genital region and rarely causes ocular disease. The mechanisms regulating these anatomical preferences are unclear. To determine whether differences in latent infection and reactivation in autonomic ganglia contribute to differences in HSV-1 and HSV-2 anatomical preferences for recurrent disease, we compared HSV-1 and HSV-2 clinical disease, acute and latent viral loads, and viral gene expression in sensory trigeminal and autonomic superior cervical and ciliary ganglia in a guinea pig ocular infection model. HSV-2 produced more severe acute disease, correlating with higher viral DNA loads in sensory and autonomic ganglia, as well as higher levels of thymidine kinase expression, a marker of productive infection, in autonomic ganglia. HSV-1 reactivated in ciliary ganglia, independently from trigeminal ganglia, to cause more frequent recurrent symptoms, while HSV-2 replicated simultaneously in autonomic and sensory ganglia to cause more persistent disease. While both HSV-1 and HSV-2 expressed the latency-associated transcript (LAT) in the trigeminal and superior cervical ganglia, only HSV-1 expressed LAT in ciliary ganglia, suggesting that HSV-2 is not reactivation competent or does not fully establish latency in ciliary ganglia. Thus, differences in replication and viral gene expression in autonomic ganglia may contribute to differences in HSV-1 and HSV-2 acute and recurrent clinical disease. IMPORTANCE Herpes simplex virus 1 (HSV-1) and HSV-2 establish latent infections, from which the viruses reactivate to cause recurrent disease throughout the life of the host. However, the viruses exhibit different manifestations and frequencies of recurrent

  5. Learning Reward Uncertainty in the Basal Ganglia

    PubMed Central

    Bogacz, Rafal

    2016-01-01

    Learning the reliability of different sources of rewards is critical for making optimal choices. However, despite the existence of detailed theory describing how the expected reward is learned in the basal ganglia, it is not known how reward uncertainty is estimated in these circuits. This paper presents a class of models that encode both the mean reward and the spread of the rewards, the former in the difference between the synaptic weights of D1 and D2 neurons, and the latter in their sum. In the models, the tendency to seek (or avoid) options with variable reward can be controlled by increasing (or decreasing) the tonic level of dopamine. The models are consistent with the physiology of and synaptic plasticity in the basal ganglia, they explain the effects of dopaminergic manipulations on choices involving risks, and they make multiple experimental predictions. PMID:27589489

  6. Periosteal ganglia: CT and MR imaging features.

    PubMed

    Abdelwahab, I F; Kenan, S; Hermann, G; Klein, M J; Lewis, M M

    1993-07-01

    The imaging features of four cases of periosteal ganglia were studied. Three lesions were located over the proximal shaft of the tibia, in proximity to the pes anserinus. The fourth lesion involved the distal shaft of the ulna. Three lesions had different degrees of external cortical erosion, scalloping, and thick spicules of periosteal bone on plain radiographs. The bone adjacent to the fourth lesion was not involved. Computed tomography (CT) showed these lesions to be sharply defined soft-tissue masses abutting the periosteum. All of the lesions had the same attenuation as fluid. Magnetic resonance (MR) imaging revealed the ganglia to be sharply defined masses that were isointense compared with neighboring muscles on T1-weighted images. There was markedly increased signal intensity compared with that of fat on T2-weighted images. The signal intensity on both types of images was homogeneous. The MR imaging features were consistent with the fluid nature of the lesions. Under the appropriate clinical circumstances, the MR imaging and CT features of periosteal ganglia are diagnostic.

  7. Oscillators and Oscillations in the Basal Ganglia

    PubMed Central

    Wilson, Charles J.

    2015-01-01

    What is the meaning of an action potential? There must be different answers for neurons that oscillate spontaneously, firing action potentials even in the absence of any synaptic input, and those driven to fire from a resting membrane potential. In spontaneously firing neurons, the occurrence of the next action potential is guaranteed. Only variations in its timing can carry the message. Among cells of this type are all those making up the deeper nuclei of the basal ganglia, including both segments of the globus pallidus, the substantia nigra, and the subthalamic nucleus. These cells receive thousands of excitatory and inhibitory synaptic inputs, but no input is required to maintain the firing of the cells; they fire at approximately the same rate when the synapses are silenced. Instead, synaptic inputs produce brief changes in spike timing and firing rate. The interactions among oscillating cells within and among the basal ganglia nuclei produce a complex resting pattern of activity. Normally, this pattern is highly irregular and decorrelates the network, so that the firing of each cell is statistically independent of the others. This maximizes the potential information that may be transmitted by the basal ganglia to its target structures. In Parkinson’s disease, the resting pattern of activity is dominated by a slow oscillation shared by all the neurons. Treatment with deep brain stimulation may gain its therapeutic value by disrupting this shared pathological oscillation, and restoring independent action by each neuron in the network. PMID:25449134

  8. Data Compression.

    ERIC Educational Resources Information Center

    Bookstein, Abraham; Storer, James A.

    1992-01-01

    Introduces this issue, which contains papers from the 1991 Data Compression Conference, and defines data compression. The two primary functions of data compression are described, i.e., storage and communications; types of data using compression technology are discussed; compression methods are explained; and current areas of research are…

  9. Dimethylarginine dimethylaminohydrolase 1 is involved in spinal nociceptive plasticity

    PubMed Central

    D'Mello, Richard; Sand, Claire A.; Pezet, Sophie; Leiper, James M.; Gaurilcikaite, Egle; McMahon, Stephen B.; Dickenson, Anthony H.; Nandi, Manasi

    2015-01-01

    Abstract Activation of neuronal nitric oxide synthase, and consequent production of nitric oxide (NO), contributes to spinal hyperexcitability and enhanced pain sensation. All NOS isoforms are inhibited endogenously by asymmetric dimethylarginine, which itself is metabolised by dimethylarginine dimethylaminohydrolase (DDAH). Inhibition of DDAH can indirectly attenuate NO production by elevating asymmetric dimethylarginine concentrations. Here, we show that the DDAH-1 isoform is constitutively active in the nervous system, specifically in the spinal dorsal horn. DDAH-1 was found to be expressed in sensory neurons within both the dorsal root ganglia and spinal dorsal horn; L-291 (NG–[2-Methoxyethyl]-l-arginine methyl ester), a DDAH-1 inhibitor, reduced NO synthesis in cultured dorsal root ganglia neurons. Spinal application of L-291 decreased N-methyl-d-aspartate–dependent postdischarge and windup of dorsal horn sensory neurons—2 measures of spinal hyperexcitability. Finally, spinal application of L-291 reduced both neuronal and behavioral measures of formalin-induced central sensitization. Thus, DDAH-1 may be a potential therapeutic target in neuronal disorders, such as chronic pain, where elevated NO is a contributing factor. PMID:26098438

  10. Spinal Fusion

    MedlinePlus

    ... concept of fusion is similar to that of welding in industry. Spinal fusion surgery, however, does not ... bone taken from the patient has a long history of use and results in predictable healing. Autograft ...

  11. Spinal tumor

    MedlinePlus

    ... Livingstone; 2014:chap 49. Read More Brain tumor - children Hodgkin lymphoma Metastasis Spinal cord trauma Review Date 8/15/2016 Updated by: Todd Gersten, MD, Hematology/Oncology, Florida Cancer Specialists & Research Institute, Wellington, FL. Review ...

  12. Spinal Infections

    MedlinePlus

    ... spinal infection include fever, chills, headache, neck stiffness, pain, wound redness and tenderness, and wound drainage. In some cases, patients may notice new weakness, numbness or tingling sensations in the arms and/or legs. The symptoms ...

  13. Dopamine release in the basal ganglia

    PubMed Central

    Rice, Margaret E.; Patel, Jyoti C.; Cragg, Stephanie J.

    2011-01-01

    Dopamine (DA) is a key transmitter in the basal ganglia, yet DA transmission does not conform to several aspects of the classic synaptic doctrine. Axonal DA release occurs through vesicular exocytosis and is action-potential and Ca2+ dependent. However, in addition to axonal release, DA neurons in midbrain exhibit somatodendritic release, by an incompletely understood, but apparently exocytotic mechanism. Even in striatum, axonal release sites are controversial, with evidence for DA varicosities that lack postsynaptic specialization, and largely extrasynaptic DA receptors and transporters. Moreover, DA release is often assumed to reflect a global response to a population of activities in midbrain DA neurons, whether tonic or phasic, with precise timing and specificity of action governed by other basal ganglia circuits. This view has been reinforced by anatomical evidence showing dense axonal DA arbors throughout striatum, and a lattice network formed by DA axons and glutamatergic input from cortex and thalamus. Nonetheless, localized DA transients are seen in vivo using voltammetric methods with high spatial and temporal resolution. Mechanistic studies using similar methods in vitro have revealed local regulation of DA release by other transmitters and modulators, as well as by proteins known to be disrupted in Parkinson’s disease and other movement disorders. Notably, the actions of most other striatal transmitters on DA release also do not conform to the synaptic doctrine, with the absence of direct synaptic contacts for glutamate, GABA and aceylcholie (ACh) on striatal DA axons. Overall, the findings reviewed here indicate that DA signaling in the basal ganglia is sculpted by cooperation between the timing and pattern of DA input and those of local regulatory factors. PMID:21939738

  14. Mössbauer spectroscopy of Basal Ganglia

    NASA Astrophysics Data System (ADS)

    Miglierini, Marcel; Lančok, Adriana; Kopáni, Martin; Boča, Roman

    2014-10-01

    Chemical states, structural arrangement, and magnetic features of iron deposits in biological tissue of Basal Ganglia are characterized. The methods of SQUID magnetometry and electron microscopy are employed. 57Fe Mössbauer spectroscopy is used as a principal method of investigation. Though electron microscopy has unveiled robust crystals (1-3 μm in size) of iron oxides, they are not manifested in the corresponding 57Fe Mössbauer spectra. The latter were acquired at 300 K and 4.2 K and resemble ferritin-like behavior.

  15. The Basal Ganglia and Adaptive Motor Control

    NASA Astrophysics Data System (ADS)

    Graybiel, Ann M.; Aosaki, Toshihiko; Flaherty, Alice W.; Kimura, Minoru

    1994-09-01

    The basal ganglia are neural structures within the motor and cognitive control circuits in the mammalian forebrain and are interconnected with the neocortex by multiple loops. Dysfunction in these parallel loops caused by damage to the striatum results in major defects in voluntary movement, exemplified in Parkinson's disease and Huntington's disease. These parallel loops have a distributed modular architecture resembling local expert architectures of computational learning models. During sensorimotor learning, such distributed networks may be coordinated by widely spaced striatal interneurons that acquire response properties on the basis of experienced reward.

  16. Mössbauer spectroscopy of Basal Ganglia

    SciTech Connect

    Miglierini, Marcel; Lančok, Adriana; Kopáni, Martin; Boča, Roman

    2014-10-27

    Chemical states, structural arrangement, and magnetic features of iron deposits in biological tissue of Basal Ganglia are characterized. The methods of SQUID magnetometry and electron microscopy are employed. {sup 57}Fe Mössbauer spectroscopy is used as a principal method of investigation. Though electron microscopy has unveiled robust crystals (1-3 μm in size) of iron oxides, they are not manifested in the corresponding {sup 57}Fe Mössbauer spectra. The latter were acquired at 300 K and 4.2 K and resemble ferritin-like behavior.

  17. Spinal deformity.

    PubMed

    Bunnell, W P

    1986-12-01

    Spinal deformity is a relatively common disorder, particularly in teenage girls. Early detection is possible by a simple, quick visual inspection that should be a standard part of the routine examination of all preteen and teenage patients. Follow-up observation will reveal those curvatures that are progressive and permit orthotic treatment to prevent further increase in the deformity. Spinal fusion offers correction and stabilization of more severe degrees of scoliosis.

  18. [Effects of ablation of the hindlimb on the organization of the ventral horn of the spinal cord in the lumbar region of green lizard embryos (Lacerta viridis Laur.)].

    PubMed

    Raynaud, A; Clairambault, P

    1978-01-01

    After extirpation of an hind limb in embryos of Lacerta viridis, numerous motor neuroblasts degenerate on the operated side, in the ventral horn of the lumbar spinal cord and the corresponding motor column is reduced or disappears. The lumbar spinal ganglia are affected and reduced on the operated side.

  19. Spinal fusion - series (image)

    MedlinePlus

    ... vertebrae are the bones that make up the spinal column, which surrounds and protects the spinal cord. The ... cushions between vertebrae, and absorb energy while the spinal column flexes, extends, and twists. Nerves from the spinal ...

  20. Spinal Cord Tumor

    MedlinePlus

    Spinal cord tumor Overview By Mayo Clinic Staff A spinal tumor is a growth that develops within your ... as vertebral tumors. Tumors that begin within the spinal cord itself are called spinal cord tumors. There are ...

  1. Reward Based Motor Adaptation Mediated by Basal Ganglia

    PubMed Central

    Kim, Taegyo; Hamade, Khaldoun C.; Todorov, Dmitry; Barnett, William H.; Capps, Robert A.; Latash, Elizaveta M.; Markin, Sergey N.; Rybak, Ilya A.; Molkov, Yaroslav I.

    2017-01-01

    It is widely accepted that the basal ganglia (BG) play a key role in action selection and reinforcement learning. However, despite considerable number of studies, the BG architecture and function are not completely understood. Action selection and reinforcement learning are facilitated by the activity of dopaminergic neurons, which encode reward prediction errors when reward outcomes are higher or lower than expected. The BG are thought to select proper motor responses by gating appropriate actions, and suppressing inappropriate ones. The direct striato-nigral (GO) and the indirect striato-pallidal (NOGO) pathways have been suggested to provide the functions of BG in the two-pathway concept. Previous models confirmed the idea that these two pathways can mediate the behavioral choice, but only for a relatively small number of potential behaviors. Recent studies have provided new evidence of BG involvement in motor adaptation tasks, in which adaptation occurs in a non-error-based manner. In such tasks, there is a continuum of possible actions, each represented by a complex neuronal activity pattern. We extended the classical concept of the two-pathway BG by creating a model of BG interacting with a movement execution system, which allows for an arbitrary number of possible actions. The model includes sensory and premotor cortices, BG, a spinal cord network, and a virtual mechanical arm performing 2D reaching movements. The arm is composed of 2 joints (shoulder and elbow) controlled by 6 muscles (4 mono-articular and 2 bi-articular). The spinal cord network contains motoneurons, controlling the muscles, and sensory interneurons that receive afferent feedback and mediate basic reflexes. Given a specific goal-oriented motor task, the BG network through reinforcement learning constructs a behavior from an arbitrary number of basic actions represented by cortical activity patterns. Our study confirms that, with slight modifications, the classical two-pathway BG concept is

  2. Retentive multipotency of adult dorsal root ganglia stem cells.

    PubMed

    Singh, Rabindra P; Cheng, Ying-Hua; Nelson, Paul; Zhou, Feng C

    2009-01-01

    Preservation of neural stem cells (NSCs) in the adult peripheral nervous system (PNS) has recently been confirmed. However, it is not clear whether peripheral NSCs possess predestined, bona fide phenotypes or a response to innate developmental cues. In this study, we first demonstrated the longevity, multipotency, and high fidelity of sensory features of postmigrating adult dorsal root ganglia (aDRG) stem cells. Derived from aDRG and after 4-5 years in culture without dissociating, the aDRG NSCs were found capable of proliferation, expressing neuroepithelial, neuronal, and glial markers. Remarkably, these aDRG NSCs expressed sensory neuronal markers vesicular glutamate transporter 2 (VGluT2--glutamate terminals), transient receptor potential vanilloid 1 (TrpV1--capsaicin sensitive), phosphorylated 200 kDa neurofilaments (pNF200--capsaicin insensitive, myelinated), and the serotonin transporter (5-HTT), which normally is transiently expressed in developing DRG. Furthermore, in response to neurotrophins, the aDRG NSCs enhanced TrpV1 expression upon exposure to nerve growth factor (NGF), but not to brain-derived neurotrophic factor (BDNF). On the contrary, BDNF increased the expression of NeuN. Third, the characterization of aDRG NSCs was demonstrated by transplantation of red fluorescent-expressing aDRG NSCs into injured spinal cord. These cells expressed nestin, Hu, and beta-III-tubulin (immature neuronal markers), GFAP (astrocyte marker) as well as sensory neural marker TrpV1 (capsaicin sensitive) and pNF200 (mature, capsaicin insensitive, myelinated). Our results demonstrated that the postmigrating neural crest adult DRG stem cells not only preserved their multipotency but also were retentive in sensory potency despite the age and long-term ex vivo status.

  3. [Case of painful muscle spasm induced by thoracic vertebral fracture: successful treatment with lumbar sympathetic ganglia block].

    PubMed

    Shimizu, Fumitaka; Kawai, Motoharu; Koga, Michiaki; Ogasawara, Jun-ichi; Negoro, Kiyoshi; Kanda, Takashi

    2008-10-01

    We report a 70-year-old man, who developed painful involuntary muscle contraction of the left leg after the lumbar discectomy, which exacerbated after a vertebral fracture of Th12. This involuntary movement was accompanied with the abnormal position of left leg simulating triple flexion response, and was induced by active or passive movement of his left knee and foot joints. Several drugs including benzodiazepines and dantrolene were ineffective, although treatment with baclofen or carbamazepine was effective. These findings suggest that hyperexcitability of the anterior horn cells following the disturbance of spinal inhibitory interneurons was involved. Electophysiological studies suggested the disturbance of left lumber nerve roots. The spinal root blocks from L3 to S1 were performed, after which the painful involuntary muscle spasm was resolved. The lumbar sympathetic ganglia block was also effective; suggesting that abnormal afferent neuronal input to spinal cord was caused by the nerve root trauma which triggered the formation of secondary abnormal network in the spine. Lumbar sympathetic ganglia block should be recommended to a therapeutic option for the refractory painful muscle spasm of the leg.

  4. Working together: basal ganglia pathways in action selection

    PubMed Central

    Friend, DM; Kravitz, AV

    2014-01-01

    Jin, Tecuapetla, and Costa combined in vivo electrophysiology with optogenetic-identification to examine firing in multiple basal ganglia nuclei during rapid motor sequences. Their results support a model of basal ganglia function in which co-activation of the direct and indirect pathways facilitate appropriate, while inhibiting competing, motor programs. PMID:24816402

  5. Protocadherin 17 regulates presynaptic assembly in topographic corticobasal Ganglia circuits.

    PubMed

    Hoshina, Naosuke; Tanimura, Asami; Yamasaki, Miwako; Inoue, Takeshi; Fukabori, Ryoji; Kuroda, Teiko; Yokoyama, Kazumasa; Tezuka, Tohru; Sagara, Hiroshi; Hirano, Shinji; Kiyonari, Hiroshi; Takada, Masahiko; Kobayashi, Kazuto; Watanabe, Masahiko; Kano, Masanobu; Nakazawa, Takanobu; Yamamoto, Tadashi

    2013-06-05

    Highly topographic organization of neural circuits exists for the regulation of various brain functions in corticobasal ganglia circuits. Although neural circuit-specific refinement during synapse development is essential for the execution of particular neural functions, the molecular and cellular mechanisms for synapse refinement are largely unknown. Here, we show that protocadherin 17 (PCDH17), one of the nonclustered δ2-protocadherin family members, is enriched along corticobasal ganglia synapses in a zone-specific manner during synaptogenesis and regulates presynaptic assembly in these synapses. PCDH17 deficiency in mice causes facilitated presynaptic vesicle accumulation and enhanced synaptic transmission efficacy in corticobasal ganglia circuits. Furthermore, PCDH17(-/-) mice exhibit antidepressant-like phenotypes that are known to be regulated by corticobasal ganglia circuits. Our findings demonstrate a critical role for PCDH17 in the synaptic development of specific corticobasal ganglia circuits and suggest the involvement of PCDH17 in such circuits in depressive behaviors.

  6. Basal Ganglia Mechanisms Underlying Precision Grip Force Control

    PubMed Central

    Prodoehl, Janey; Corcos, Daniel M.; Vaillancourt, David E.

    2009-01-01

    The classic grasping network has been well studied but thus far the focus has been on cortical regions in the control of grasping. Sub-cortically, specific nuclei of the basal ganglia have been shown to be important in different aspects of precision grip force control but these findings have not been well integrated. In this review we outline the evidence to support the hypothesis that key basal ganglia nuclei are involved in parameterizing specific properties of precision grip force. We review literature from different areas of human and animal work that converges to build a case for basal ganglia involvement in the control of precision gripping. Following on from literature showing anatomical connectivity between the basal ganglia nuclei and key nodes in the cortical grasping network, we suggest a conceptual framework for how the basal ganglia could function within the grasping network, particularly as it relates to the control of precision grip force. PMID:19428499

  7. Comparative imaging of spinal extradural lymphoma in a Bordeaux dog.

    PubMed

    Veraa, Stefanie; Dijkman, Reinie; Meij, Björn P; Voorhout, George

    2010-05-01

    A lumbar extradural lymphoma compressing the spinal cord was identified on contrast enhanced computed tomography (CT) and magnetic resonance imaging (MRI) images in a 4-year-old Bordeaux dog presented with posterior paresis. A significant paravertebral extension was only clearly defined on contrast MRI images; therefore, MRI was more useful than CT in imaging of spinal extradural lymphoma in this dog.

  8. Disseminated Tuberculosis of Central Nervous System : Spinal Intramedullary and Intracranial Tuberculomas

    PubMed Central

    Lim, Yu Seok; Kim, Min Ki; Lim, Young Jin

    2013-01-01

    As a cause of spinal cord compression, intramedullary spinal tuberculoma with central nervous system (CNS) involvement is rare. Aurthors report a 66-year-old female presented with multiple CNS tuberculomas including spinal intramedullary tuberculoma manifesting paraparesis and urinary dysfunction. We review the clinical menifestation and experiences of previous reported literature. PMID:24044085

  9. Calcium Signaling in Intact Dorsal Root Ganglia

    PubMed Central

    Gemes, Geza; Rigaud, Marcel; Koopmeiners, Andrew S.; Poroli, Mark J.; Zoga, Vasiliki; Hogan, Quinn H.

    2013-01-01

    Background Ca2+ is the dominant second messenger in primary sensory neurons. In addition, disrupted Ca2+ signaling is a prominent feature in pain models involving peripheral nerve injury. Standard cytoplasmic Ca2+ recording techniques use high K+ or field stimulation and dissociated neurons. To compare findings in intact dorsal root ganglia, we used a method of simultaneous electrophysiologic and microfluorimetric recording. Methods Dissociated neurons were loaded by bath-applied Fura-2-AM and subjected to field stimulation. Alternatively, we adapted a technique in which neuronal somata of intact ganglia were loaded with Fura-2 through an intracellular microelectrode that provided simultaneous membrane potential recording during activation by action potentials (APs) conducted from attached dorsal roots. Results Field stimulation at levels necessary to activate neurons generated bath pH changes through electrolysis and failed to predictably drive neurons with AP trains. In the intact ganglion technique, single APs produced measurable Ca2+ transients that were fourfold larger in presumed nociceptive C-type neurons than in nonnociceptive Aβ-type neurons. Unitary Ca2+ transients summated during AP trains, forming transients with amplitudes that were highly dependent on stimulation frequency. Each neuron was tuned to a preferred frequency at which transient amplitude was maximal. Transients predominantly exhibited monoexponential recovery and had sustained plateaus during recovery only with trains of more than 100 APs. Nerve injury decreased Ca2+ transients in C-type neurons, but increased transients in Aβ-type neurons. Conclusions Refined observation of Ca2+ signaling is possible through natural activation by conducted APs in undissociated sensory neurons and reveals features distinct to neuronal types and injury state. PMID:20526180

  10. DNABIT Compress - Genome compression algorithm.

    PubMed

    Rajarajeswari, Pothuraju; Apparao, Allam

    2011-01-22

    Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, "DNABIT Compress" for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our proposed algorithm achieves the best compression ratio for DNA sequences for larger genome. Significantly better compression results show that "DNABIT Compress" algorithm is the best among the remaining compression algorithms. While achieving the best compression ratios for DNA sequences (Genomes),our new DNABIT Compress algorithm significantly improves the running time of all previous DNA compression programs. Assigning binary bits (Unique BIT CODE) for (Exact Repeats, Reverse Repeats) fragments of DNA sequence is also a unique concept introduced in this algorithm for the first time in DNA compression. This proposed new algorithm could achieve the best compression ratio as much as 1.58 bits/bases where the existing best methods could not achieve a ratio less than 1.72 bits/bases.

  11. Transcriptional changes in sensory ganglia associated with primary afferent axon collateral sprouting in spared dermatome model

    PubMed Central

    Harrison, Benjamin J.; Venkat, Gayathri; Hutson, Thomas; Rau, Kristofer K.; Bunge, Mary Bartlett; Mendell, Lorne M.; Gage, Fred H.; Johnson, Richard D.; Hill, Caitlin; Rouchka, Eric C.; Moon, Lawrence; Petruska, Jeffrey C.

    2015-01-01

    Primary afferent collateral sprouting is a process whereby non-injured primary afferent neurons respond to some stimulus and extend new branches from existing axons. Neurons of both the central and peripheral nervous systems undergo this process, which contributes to both adaptive and maladaptive plasticity (e.g., [1], [2], [3], [4], [5], [6], [7], [8], [9]). In the model used here (the “spared dermatome” model), the intact sensory neurons respond to the denervation of adjacent areas of skin by sprouting new axon branches into that adjacent denervated territory. Investigations of gene expression changes associated with collateral sprouting can provide a better understanding of the molecular mechanisms controlling this process. Consequently, it can be used to develop treatments to promote functional recovery for spinal cord injury and other similar conditions. This report includes raw gene expression data files from microarray experiments in order to study the gene regulation in spared sensory ganglia in the initiation (7 days) and maintenance (14 days) phases of the spared dermatome model relative to intact (“naïve”) sensory ganglia. Data has been deposited into GEO (GSE72551). PMID:26697387

  12. The basal ganglia-circa 1982. A review and commentary.

    PubMed

    Mehler, W R

    1981-01-01

    Our review has shown that recent studies with the new anterograde and retrograde axon transport methods have confirmed and extended our knowledge of the projection of the basal ganglia and clarified their sites of origin. They have thrown new light on certain topographic connectional relationships and revealed several new reciprocal connections between constituent nuclei of the basal ganglia. Similarly, attention has been drawn to the fact that there have also been many new histochemical techniques introduced in recent years that are now providing regional biochemical overlays for connectional maps of the central nervous system, especially regions in, or interconnecting with, the basal ganglia. However, although these new morphological biochemical maps are very complex and technically highly advanced, our understanding of the function controlled by the basal ganglia still remains primitive. The reader who is interested in some new ideas of the functional aspects of the basal ganglia is directed to Nauta's [88] proposed conceptual reorganization of the basal ganglia telencephalon and to Marsden's [72] more clinically orientated appraisal of the unsolved mysteries of the basal ganglia participation in the control of movement.

  13. Anatomic study of human laryngeal ganglia: number and distribution.

    PubMed

    Maranillo, Eva; Vazquez, Teresa; Ibanez, Marta; Hurtado, Miguel; Pascual-Font, Aran; McHanwell, Stephen; Valderrama-Canales, Francisco; Sanudo, Jose

    2008-10-01

    We have studied 12 laryngeal nerves: six internal branches of the superior laryngeal nerve (ILN) and six recurrent laryngeal nerves (RLN) from three human adult larynges (two males and one female). After dissection of each individual laryngeal nerve using a surgical microscope, the nerves were preserved in 10% formalin, embedded in paraffin wax, serially sectioned transversely at a thickness of 10 microm and stained with hematoxylin and eosin. We found 2-4 ganglia associated with the ILN. At least two ganglia were always present (six out of six cases), the largest one being associated with the branch of the nerve innervating the vestibule and the smallest one associated with the branch innervating the aryepiglottic fold. Other ganglia were found associated with the branches for the glosso-epiglottic fold and vallecula (four out of six cases) and interarytenoid muscle (three out of six cases). The RLN showed from two to six ganglia, all of them located in its anterior terminal division. Two of the ganglia were located in the part of the nerve between the origin of the branches for the interarytenoid and lateral cricoarytenoid muscles (three out of six cases). The remaining ganglia were located close to or at the origin of the muscular branches innervating the intrinsic laryngeal muscles. The cytology of the ganglia reported suggests that they were all autonomic in nature, probably parasympathetic.

  14. Interactions between the Midbrain Superior Colliculus and the Basal Ganglia

    PubMed Central

    Redgrave, Peter; Coizet, Veronique; Comoli, Eliane; McHaffie, John G.; Leriche, Mariana; Vautrelle, Nicolas; Hayes, Lauren M.; Overton, Paul

    2010-01-01

    An important component of the architecture of cortico-basal ganglia connections is the parallel, re-entrant looped projections that originate and return to specific regions of the cerebral cortex. However, such loops are unlikely to have been the first evolutionary example of a closed-loop architecture involving the basal ganglia. A phylogenetically older, series of subcortical loops can be shown to link the basal ganglia with many brainstem sensorimotor structures. While the characteristics of individual components of potential subcortical re-entrant loops have been documented, the full extent to which they represent functionally segregated parallel projecting channels remains to be determined. However, for one midbrain structure, the superior colliculus (SC), anatomical evidence for closed-loop connectivity with the basal ganglia is robust, and can serve as an example against which the loop hypothesis can be evaluated for other subcortical structures. Examination of ascending projections from the SC to the thalamus suggests there may be multiple functionally segregated systems. The SC also provides afferent signals to the other principal input nuclei of the basal ganglia, the dopaminergic neurones in substantia nigra and to the subthalamic nucleus. Recent electrophysiological investigations show that the afferent signals originating in the SC carry important information concerning the onset of biologically significant events to each of the basal ganglia input nuclei. Such signals are widely regarded as crucial for the proposed functions of selection and reinforcement learning with which the basal ganglia have so often been associated. PMID:20941324

  15. Probabilistic mapping of the cervical sympathetic trunk ganglia.

    PubMed

    Stark, M Elena; Safir, Ilan; Wisco, Jonathan J

    2014-04-01

    The goal of this study was to create a heat map indicating the probabilistic location of major ganglia of the cervical sympathetic trunk (CST). Detailed dissections of human cadaveric specimens, followed by spatial registration and analysis of the cervical sympathetic ganglia in the neck and upper thorax regions (C1-T1) were performed in 104 neck specimens (both sides from 52 cadavers). Unbiased parametric mapping, visualized with a heat map, revealed a general pattern of two major ganglia located on both sides of the neck: The superior cervical ganglion (SCG) was located 80-90 mm superior to the point at which the vertebral artery entered the transverse foramen (VA-TF); the stellate ganglion (SG) was located approximately 10 mm inferior to the VA-TF in 80% of our sample, or surrounding the VA-TF in the remaining 20% of our sample. In between these ganglia, a highly variable number of smaller and less prevalent ganglia were present on either side of the neck. The middle ganglia on the right side of the neck were located closer to the SCG, possibly indicative of the middle cervical ganglion. On the left side the middle ganglia were located closer to the SG, perhaps indicative of the vertebral ganglion or the inferior cervical ganglion. Individual specimens could be classified into one of seven different patterns of cervical trunks. The results may help surgeons and anesthesiologists more accurately target and preserve these structures during medical procedures.

  16. The expanding universe of disorders of the basal ganglia.

    PubMed

    Obeso, Jose A; Rodriguez-Oroz, Maria C; Stamelou, Maria; Bhatia, Kailash P; Burn, David J

    2014-08-09

    The basal ganglia were originally thought to be associated purely with motor control. However, dysfunction and pathology of different regions and circuits are now known to give rise to many clinical manifestations beyond the association of basal ganglia dysfunction with movement disorders. Moreover, disorders that were thought to be caused by dysfunction of the basal ganglia only, such as Parkinson's disease and Huntington's disease, have diverse abnormalities distributed not only in the brain but also in the peripheral and autonomic nervous systems; this knowledge poses new questions and challenges. We discuss advances and the unanswered questions, and ways in which progress might be made.

  17. The basal ganglia-circa 1982 - A review and commentary

    NASA Technical Reports Server (NTRS)

    Mehler, W. R.

    1981-01-01

    A review is presented of recent studies which utilize new anterograde and retrograde axon transport methods in order to improve knowledge of the projection of the basal ganglia and to clarify their sites of origin. These studies have thrown new light on certain topographic connectional relationships and have revealed several new reciprocal connections between constituent nuclei of the basal ganglia. Also examined are the many new histochemical techniques that are now providing regional biochemical overlays for connectional maps of the central nervous system, especially regions in or interconnecting with the basal ganglia.

  18. Diagnosis and management of spinal cord emergencies.

    PubMed

    Flanagan, E P; Pittock, S J

    2017-01-01

    Most spinal cord injury is seen with trauma. Nontraumatic spinal cord emergencies are discussed in this chapter. These myelopathies are rare but potentially devastating neurologic disorders. In some situations prior comorbidity (e.g., advanced cancer) provides a clue, but in others (e.g., autoimmune myelopathies) it may come with little warning. Neurologic examination helps distinguish spinal cord emergencies from peripheral nervous system emergencies (e.g., Guillain-Barré), although some features overlap. Neurologic deficits are often severe and may quickly become irreversible, highlighting the importance of early diagnosis and treatment. Emergent magnetic resonance imaging (MRI) of the entire spine is the imaging modality of choice for nontraumatic spinal cord emergencies and helps differentiate extramedullary compressive causes (e.g., epidural abscess, metastatic compression, epidural hematoma) from intramedullary etiologies (e.g., transverse myelitis, infectious myelitis, or spinal cord infarct). The MRI characteristics may give a clue to the diagnosis (e.g., flow voids dorsal to the cord in dural arteriovenous fistula). However, additional investigations (e.g., aquaporin-4-IgG) are often necessary to diagnose intramedullary etiologies and guide treatment. Emergency decompressive surgery is necessary for many extramedullary compressive causes, either alone or in combination with other treatments (e.g., radiation) and preoperative neurologic deficit is the best predictor of outcome.

  19. Spinal Osteosarcoma

    PubMed Central

    Katonis, P.; Datsis, G.; Karantanas, A.; Kampouroglou, A.; Lianoudakis, S.; Licoudis, S.; Papoutsopoulou, E.; Alpantaki, K.

    2013-01-01

    Although osteosarcoma represents the second most common primary bone tumor, spinal involvement is rare, accounting for 3%–5% of all osteosarcomas. The most frequent symptom of osteosarcoma is pain, which appears in almost all patients, whereas more than 70% exhibit neurologic deficit. At a molecular level, it is a tumor of great genetic complexity and several genetic disorders have been associated with its appearance. Early diagnosis and careful surgical staging are the most important factors in accomplishing sufficient management. Even though overall prognosis remains poor, en-block tumor removal combined with adjuvant radiotherapy and chemotherapy is currently the treatment of choice. This paper outlines histopathological classification, epidemiology, diagnostic procedures, and current concepts of management of spinal osteosarcoma. PMID:24179411

  20. Spinal Bracing

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Dr. Arthur Copes of the Copes Foundation, Baton Rouge, LA, says that 35 percent of the 50 technical reports he received from the NASA/Southern University Industrial Applications Center in Baton Rouge and the Central Industrial Applications Center, Durant, OK, were vital to the development of his Copes Scoliosis Braces, which are custom designed and feature a novel pneumatic bladder that exerts constant corrective pressure to the torso to slowly reduce or eliminate the spinal curve.

  1. Subarachnoid-subarachnoid bypass for spinal adhesive arachnoiditis.

    PubMed

    Tachibana, Toshiya; Moriyama, Tokuhide; Maruo, Keishi; Inoue, Shinichi; Arizumi, Fumihiro; Yoshiya, Shinichi

    2014-11-01

    The authors report a case of adhesive arachnoiditis (AA) and arachnoid cyst successfully treated by subarachnoid to subarachnoid bypass (S-S bypass). Arachnoid cysts or syringes sometimes compress the spinal cord and cause compressive myelopathy that requires surgical treatment. However, surgical treatment for AA is challenging. A 57-year-old woman developed leg pain and gait disturbance. A dorsal arachnoid cyst compressed the spinal cord at T7-9, the spinal cord was swollen, and a small syrinx was present at T9-10. An S-S bypass was performed from T6-7 to T11-12. The patient's gait disturbance resolved immediately after surgery. Two years later, a small arachnoid cyst developed. However, there was no neurological deterioration. The myelopathy associated with thoracic spinal AA, subarachnoid cyst, and syrinx improved after S-S bypass.

  2. Spinal Cord Injury

    MedlinePlus

    ... Types of illnesses and disabilities Spinal cord injury Spinal cord injury Read advice from Dr. Jeffrey Rabin , a ... your health on a daily basis. Living with spinal cord injury — your questions answered top What are pediatric ...

  3. Tethered Spinal Cord Syndrome

    MedlinePlus

    ... the movement of the spinal cord within the spinal column. Attachments may occur congenitally at the base of ... or may be due to narrowing of the spinal column (stenosis) with age. Tethering may also develop after ...

  4. Spinal Cord Injury Map

    MedlinePlus

    ... Counseling About Blog Facing Disability Jeff Shannon Donate Spinal Cord Injury Map Loss of function depends on what ... control. Learn more about spinal cord injuries. A spinal cord injury affects the entire family FacingDisability is designed ...

  5. Spinal injury - resources

    MedlinePlus

    Resources - spinal injury ... The following organizations are good resources for information on spinal injury : National Institute of Neurological Disorders and Stroke -- www.ninds.nih.gov/Disorders/All-Disorders/Spinal-Cord- ...

  6. Juxtafacet Spinal Synovial Cysts

    PubMed Central

    2016-01-01

    Study Design This was a retrospective study. Purpose To study the surgical outcome of synovial cysts of the lumbar spine through posterior laminectomy in combination with transpedicular screw fixation. Overview of Literature Synovial cysts of the lumbar spine contribute significantly to narrowing of the spinal canal and lateral thecal sac and nerve root compression. Cysts form as a result of arthrotic disruption of the facet joint, leading to degenerative spondylolisthesis in up to 40% of patients. Methods Retrospective data from 6 patients, treated during the period of March 2007 to February 2011, were analyzed. All preoperative and postoperative manifestations, extension/flexion radiographs, magnetic resonance imaging, and computed tomography records were reviewed. All underwent surgery for synovial cysts with excision and decompression combined with posterior fixation. The result of surgery was evaluated with Macnab's classification. An excellent or good outcome was considered as satisfactory. Japanese Orthopedic Association Scale was used for evaluation of back pain. Results All patients included in this study had excellent outcomes as regarding to improvement of all preoperative manifestations and returning to normal daily activities. Only 2 cases developed postoperative transient cerebro-spinal fluid leak and were treated conservatively and improved during the follow up period. Conclusions Although this study included a small number of cases and we could not have statistically significant results, the good outcome of decompression of synovial cysts combined with posterior fixation and fusion encouraged us to recommend this approach for patients with juxtafacet synovial cysts. PMID:26949457

  7. Short latency cerebellar modulation of the basal ganglia

    PubMed Central

    Chen, Christopher H.; Fremont, Rachel; Arteaga-Bracho, Eduardo E.; Khodakhah, Kamran

    2014-01-01

    The graceful, purposeful motion of our body is an engineering feat which remains unparalleled in robotic devices using advanced artificial intelligence. Much of the information required for complex movements is generated by the cerebellum and the basal ganglia in conjunction with the cortex. Cerebellum and basal ganglia have been thought to communicate with each other only through slow multi-synaptic cortical loops, begging the question as to how they coordinate their outputs in real time. Here we show in mice that the cerebellum rapidly modulates the activity of the striatum via a disynaptic pathway. Under physiological conditions this short latency pathway is capable of facilitating optimal motor control by allowing the basal ganglia to incorporate time-sensitive cerebellar information and by guiding the sign of cortico-striatal plasticity. Conversely, under pathological condition this pathway relays aberrant cerebellar activity to the basal ganglia to cause dystonia. PMID:25402853

  8. Short latency cerebellar modulation of the basal ganglia.

    PubMed

    Chen, Christopher H; Fremont, Rachel; Arteaga-Bracho, Eduardo E; Khodakhah, Kamran

    2014-12-01

    The graceful, purposeful motion of our body is an engineering feat that remains unparalleled in robotic devices using advanced artificial intelligence. Much of the information required for complex movements is generated by the cerebellum and the basal ganglia in conjunction with the cortex. Cerebellum and basal ganglia have been thought to communicate with each other only through slow, multi-synaptic cortical loops, begging the question as to how they coordinate their outputs in real time. We found that the cerebellum rapidly modulates the activity of the striatum via a disynaptic pathway in mice. Under physiological conditions, this short latency pathway was capable of facilitating optimal motor control by allowing the basal ganglia to incorporate time-sensitive cerebellar information and by guiding the sign of cortico-striatal plasticity. Conversely, under pathological condition, this pathway relayed aberrant cerebellar activity to the basal ganglia to cause dystonia.

  9. Genetics Home Reference: familial idiopathic basal ganglia calcification

    MedlinePlus

    ... in regulating phosphate levels within the body (phosphate homeostasis) by transporting phosphate across cell membranes. The SLC20A2 ... link familial idiopathic basal ganglia calcification with phosphate homeostasis. Nat Genet. 2012 Feb 12;44(3):254- ...

  10. Human laryngeal ganglia contain both sympathetic and parasympathetic cell types.

    PubMed

    Ibanez, Marta; Valderrama-Canales, Francisco J; Maranillo, Eva; Vazquez, Teresa; Pascual-Font, Arán; McHanwell, Stephen; Sanudo, Jose

    2010-09-01

    The presence of ganglia associated with the laryngeal nerves is well documented. In man, these ganglia have been less well studied than in other species and, in particular, the cell types within these ganglia are less well characterized. Using a panel of antibodies to a variety of markers found in the paraganglion cells of other species, we were able to show the existence of at least two populations of cells within human laryngeal paraganglia. One population contained chromogranin and tyrosine hydroxylase representing a neurosecretory population possibly secreting dopamine. A second population of choline acetyltransferase positive cells would appear to have a putative parasympathetic function. Further work is needed to characterize these cell populations more fully before it will be possible to assign functions to these cell types but our results are consistent with the postulated functions of these ganglia as chemoreceptors, neurosecretory cells, and regulators of laryngeal mucus secretion.

  11. Satellite glial cells in sensory ganglia: from form to function.

    PubMed

    Hanani, Menachem

    2005-06-01

    Current information indicates that glial cells participate in all the normal and pathological processes of the central nervous system. Although much less is known about satellite glial cells (SGCs) in sensory ganglia, it appears that these cells share many characteristics with their central counterparts. This review presents information that has been accumulated recently on the physiology and pharmacology of SGCs. It appears that SGCs carry receptors for numerous neuroactive agents (e.g., ATP, bradykinin) and can therefore receive signals from other cells and respond to changes in their environment. Activation of SGCs might in turn influence neighboring neurons. Thus SGCs are likely to participate in signal processing and transmission in sensory ganglia. Damage to the axons of sensory ganglia is known to contribute to neuropathic pain. Such damage also affects SGCs, and it can be proposed that these cells have a role in pathological changes in the ganglia.

  12. Role of neurotrophin signalling in the differentiation of neurons from dorsal root ganglia and sympathetic ganglia.

    PubMed

    Ernsberger, Uwe

    2009-06-01

    Manipulation of neurotrophin (NT) signalling by administration or depletion of NTs, by transgenic overexpression or by deletion of genes coding for NTs and their receptors has demonstrated the importance of NT signalling for the survival and differentiation of neurons in sympathetic and dorsal root ganglia (DRG). Combination with mutation of the proapoptotic Bax gene allows the separation of survival and differentiation effects. These studies together with cell culture analysis suggest that NT signalling directly regulates the differentiation of neuron subpopulations and their integration into neural networks. The high-affinity NT receptors trkA, trkB and trkC are restricted to subpopulations of mature neurons, whereas their expression at early developmental stages largely overlaps. trkC is expressed throughout sympathetic ganglia and DRG early after ganglion formation but becomes restricted to small neuron subpopulations during embryogenesis when trkA is turned on. The temporal relationship between trkA and trkC expression is conserved between sympathetic ganglia and DRG. In DRG, NGF signalling is required not only for survival, but also for the differentiation of nociceptors. Expression of neuropeptides calcitonin gene-related peptide and substance P, which specify peptidergic nociceptors, depends on nerve growth factor (NGF) signalling. ret expression indicative of non-peptidergic nociceptors is also promoted by the NGF-signalling pathway. Regulation of TRP channels by NGF signalling might specify the temperature sensitivity of afferent neurons embryonically. The manipulation of NGF levels "tunes" heat sensitivity in nociceptors at postnatal and adult stages. Brain-derived neurotrophic factor signalling is required for subpopulations of DRG neurons that are not fully characterized; it affects mechanical sensitivity in slowly adapting, low-threshold mechanoreceptors and might involve the regulation of DEG/ENaC ion channels. NT3 signalling is required for the

  13. Spinal surgery -- cervical - series (image)

    MedlinePlus

    The cervical spinal column is made up of vertebral bodies which protect the spinal cord. ... spinal nerves, trauma, and narrowing (stenosis) of the spinal column around the spinal cord. Symptoms of cervical spine ...

  14. Compression embedding

    DOEpatents

    Sandford, M.T. II; Handel, T.G.; Bradley, J.N.

    1998-07-07

    A method and apparatus for embedding auxiliary information into the digital representation of host data created by a lossy compression technique and a method and apparatus for constructing auxiliary data from the correspondence between values in a digital key-pair table with integer index values existing in a representation of host data created by a lossy compression technique are disclosed. The methods apply to data compressed with algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as ordered sequences of blocks containing integer indices having redundancy and uncertainty of value by one unit, allowing indices which are adjacent in value to be manipulated to encode auxiliary data. Also included is a method to improve the efficiency of lossy compression algorithms by embedding white noise into the integer indices. Lossy compression methods use loss-less compression to reduce to the final size the intermediate representation as indices. The efficiency of the loss-less compression, known also as entropy coding compression, is increased by manipulating the indices at the intermediate stage. Manipulation of the intermediate representation improves lossy compression performance by 1 to 10%. 21 figs.

  15. Compression embedding

    DOEpatents

    Sandford, II, Maxwell T.; Handel, Theodore G.; Bradley, Jonathan N.

    1998-01-01

    A method and apparatus for embedding auxiliary information into the digital representation of host data created by a lossy compression technique and a method and apparatus for constructing auxiliary data from the correspondence between values in a digital key-pair table with integer index values existing in a representation of host data created by a lossy compression technique. The methods apply to data compressed with algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as ordered sequences of blocks containing integer indices having redundancy and uncertainty of value by one unit, allowing indices which are adjacent in value to be manipulated to encode auxiliary data. Also included is a method to improve the efficiency of lossy compression algorithms by embedding white noise into the integer indices. Lossy compression methods use loss-less compression to reduce to the final size the intermediate representation as indices. The efficiency of the loss-less compression, known also as entropy coding compression, is increased by manipulating the indices at the intermediate stage. Manipulation of the intermediate representation improves lossy compression performance by 1 to 10%.

  16. Disruption of automatic speech following a right basal ganglia lesion.

    PubMed

    Speedie, L J; Wertman, E; Ta'ir, J; Heilman, K M

    1993-09-01

    Following a right basal ganglia lesion, a right-handed man, age 75, was unable to recite familiar verses. Serial automatic speech, singing, recitation of rhymes, and swearing were impaired, and only idioms and social greetings were preserved. Speech no longer contained overused phrases and he could comprehend automatic speech. In contrast, propositional speech was preserved in both French and Hebrew. Right basal ganglia lesions may impair production but not comprehension of automatic speech.

  17. Cognitive-motor interactions of the basal ganglia in development.

    PubMed

    Leisman, Gerry; Braun-Benjamin, Orit; Melillo, Robert

    2014-01-01

    Neural circuits linking activity in anatomically segregated populations of neurons in subcortical structures and the neocortex throughout the human brain regulate complex behaviors such as walking, talking, language comprehension, and other cognitive functions associated with frontal lobes. The basal ganglia, which regulate motor control, are also crucial elements in the circuits that confer human reasoning and adaptive function. The basal ganglia are key elements in the control of reward-based learning, sequencing, discrete elements that constitute a complete motor act, and cognitive function. Imaging studies of intact human subjects and electrophysiologic and tracer studies of the brains and behavior of other species confirm these findings. We know that the relation between the basal ganglia and the cerebral cortical region allows for connections organized into discrete circuits. Rather than serving as a means for widespread cortical areas to gain access to the motor system, these loops reciprocally interconnect a large and diverse set of cerebral cortical areas with the basal ganglia. Neuronal activity within the basal ganglia associated with motor areas of the cerebral cortex is highly correlated with parameters of movement. Neuronal activity within the basal ganglia and cerebellar loops associated with the prefrontal cortex is related to the aspects of cognitive function. Thus, individual loops appear to be involved in distinct behavioral functions. Damage to the basal ganglia of circuits with motor areas of the cortex leads to motor symptoms, whereas damage to the subcortical components of circuits with non-motor areas of the cortex causes higher-order deficits. In this report, we review some of the anatomic, physiologic, and behavioral findings that have contributed to a reappraisal of function concerning the basal ganglia and cerebellar loops with the cerebral cortex and apply it in clinical applications to attention deficit/hyperactivity disorder (ADHD

  18. Cognitive-motor interactions of the basal ganglia in development

    PubMed Central

    Leisman, Gerry; Braun-Benjamin, Orit; Melillo, Robert

    2014-01-01

    Neural circuits linking activity in anatomically segregated populations of neurons in subcortical structures and the neocortex throughout the human brain regulate complex behaviors such as walking, talking, language comprehension, and other cognitive functions associated with frontal lobes. The basal ganglia, which regulate motor control, are also crucial elements in the circuits that confer human reasoning and adaptive function. The basal ganglia are key elements in the control of reward-based learning, sequencing, discrete elements that constitute a complete motor act, and cognitive function. Imaging studies of intact human subjects and electrophysiologic and tracer studies of the brains and behavior of other species confirm these findings. We know that the relation between the basal ganglia and the cerebral cortical region allows for connections organized into discrete circuits. Rather than serving as a means for widespread cortical areas to gain access to the motor system, these loops reciprocally interconnect a large and diverse set of cerebral cortical areas with the basal ganglia. Neuronal activity within the basal ganglia associated with motor areas of the cerebral cortex is highly correlated with parameters of movement. Neuronal activity within the basal ganglia and cerebellar loops associated with the prefrontal cortex is related to the aspects of cognitive function. Thus, individual loops appear to be involved in distinct behavioral functions. Damage to the basal ganglia of circuits with motor areas of the cortex leads to motor symptoms, whereas damage to the subcortical components of circuits with non-motor areas of the cortex causes higher-order deficits. In this report, we review some of the anatomic, physiologic, and behavioral findings that have contributed to a reappraisal of function concerning the basal ganglia and cerebellar loops with the cerebral cortex and apply it in clinical applications to attention deficit/hyperactivity disorder (ADHD

  19. Surgical Outcome of Spinal Neurilemmoma

    PubMed Central

    Yeh, Kuang-Ting; Lee, Ru-Ping; Yu, Tzai-Chiu; Chen, Ing-Ho; Peng, Cheng-Huan; Liu, Kuan-Lin; Wang, Jen-Hung; Wu, Wen-Tien

    2015-01-01

    Abstract Neurilemmoma commonly occurs from the fourth to sixth decades of life with an incidence of 3 to 10 per 100,000 people, and is rare in adolescence. This case report describes the clinical and radiographic features of 2 rare cases with intraspinal neurilemmoma of the cervical and thoracic spine. A 29-year-old man who experienced middle back pain with prominent right lower limb weakness, and an 11-year-old boy who suffered from sudden onset neck pain with left arm weakness and hand clawing for 2 weeks before admission to our department were included in this case report. Magnetic resonance imaging of both patients revealed an intraspinal mass causing spinal cord compression at the cervical and thoracic spine. The patients subsequently received urgent posterior spinal cord decompression and tumor resection surgery. The histopathology reports revealed neurilemmoma. The 2 patients recovered and resumed their normal lives within 1 year. Intraspinal neurilemmoma is rare but should be considered in the differential diagnosis of spinal cord compression. Advances in imaging techniques and surgical procedures have yielded substantially enhanced clinical outcomes in intraspinal neoplasm cases. Delicate preoperative study and surgical skill with rehabilitation and postoperative observation are critical. PMID:25654395

  20. Congenital narrowing of the cervical spinal canal.

    PubMed Central

    Kessler, J T

    1975-01-01

    The clinical and laboratory findings in six patients with congenital narrowing of the cervical spinal canal and neurological symptoms are described. A variable age of onset and an entirely male occurrence were found. Signs and symptoms of spinal cord dysfunction predominated in all but one patient. Symptoms were produced in five patients by increased physical activity alone. Congenital narrowing of the cervical spinal canal may result in cord compression without a history of injury and occasionally without evidence of significant bony degenerative changes. The clinical features may be distinguishable from those found in cervical spondylosis without congenital narrowing. Intermittent claudication of the cervical spinal cord appears to be an important feature of this syndrome. Surgery improved four out of five people. PMID:1219087

  1. Adrenal adrenaline- and noradrenaline-containing cells and celiac sympathetic ganglia are differentially controlled by centrally administered corticotropin-releasing factor and arginine-vasopressin in rats.

    PubMed

    Yamaguchi-Shima, Naoko; Okada, Shoshiro; Shimizu, Takahiro; Usui, Daisuke; Nakamura, Kumiko; Lu, Lianyi; Yokotani, Kunihiko

    2007-06-14

    The adrenal glands and sympathetic celiac ganglia are innervated mainly by the greater splanchnic nerves, which contain preganglionic sympathetic nerves that originated from the thoracic spinal cord. The adrenal medulla has two separate populations of chromaffin cells, adrenaline-containing cells (A-cells) and noradrenaline-containing cells (NA-cells), which have been shown to be differentially innervated by separate groups of the preganglionic sympathetic neurons. The present study was designed to characterize the centrally activating mechanisms of the adrenal A-cells, NA-cells and celiac sympathetic ganglia with expression of cFos (a marker for neural excitation), in regard to the brain prostanoids, in anesthetized rats. Intracerebroventricularly (i.c.v.) administered corticotropin-releasing factor (CRF) induced cFos expression in the adrenal A-cells, but not NA-cells, and celiac ganglia. On the other hand, i.c.v. administered arginine-vasopressin (AVP) resulted in cFos induction in both A-cells and NA-cells in the adrenal medulla, but not in the celiac ganglia. Intracerebroventricular pretreatment with indomethacin (an inhibitor of cyclooxygenase) abolished the CRF- and AVP-induced cFos expression in all regions described above. On the other hand, intracerebroventricular pretreatment with furegrelate (an inhibitor of thromboxane A2 synthase) abolished the CRF-induced cFos expression in the adrenal A-cells, but not in the celiac ganglia, and also abolished the AVP-induced cFos expression in both A-cells and NA-cells in the adrenal medulla. These results suggest that centrally administered CRF activates adrenal A-cells and celiac sympathetic ganglia by brain thromboxane A2-mediated and other prostanoid than thromboxane A2 (probably prostaglandin E2)-mediated mechanisms, respectively. On the other hand, centrally administered AVP activates adrenal A-cells and NA-cells by brain thromboxane A2-mediated mechanisms in rats.

  2. An MRI atlas of the mouse basal ganglia.

    PubMed

    Ullmann, Jeremy F P; Watson, Charles; Janke, Andrew L; Kurniawan, Nyoman D; Paxinos, George; Reutens, David C

    2014-07-01

    The basal ganglia are a group of subpallial nuclei that play an important role in motor, emotional, and cognitive functions. Morphological changes and disrupted afferent/efferent connections in the basal ganglia have been associated with a variety of neurological disorders including psychiatric and movement disorders. While high-resolution magnetic resonance imaging has been used to characterize changes in brain structure in mouse models of these disorders, no systematic method for segmentation of the C57BL/6 J mouse basal ganglia exists. In this study we have used high-resolution MR images of ex vivo C57BL/6 J mouse brain to create a detailed protocol for segmenting the basal ganglia. We created a three-dimensional minimum deformation atlas, which includes the segmentation of 35 striatal, pallidal, and basal ganglia-related structures. In addition, we provide mean volumes, mean T2 contrast intensities and mean FA and ADC values for each structure. This MR atlas is available for download, and enables researchers to perform automated segmentation in genetic models of basal ganglia disorders.

  3. Compression embedding

    DOEpatents

    Sandford, II, Maxwell T.; Handel, Theodore G.; Bradley, Jonathan N.

    1998-01-01

    A method of embedding auxiliary information into the digital representation of host data created by a lossy compression technique. The method applies to data compressed with lossy algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as integer indices having redundancy and uncertainty in value by one unit. Indices which are adjacent in value are manipulated to encode auxiliary data. By a substantially reverse process, the embedded auxiliary data can be retrieved easily by an authorized user. Lossy compression methods use loss-less compressions known also as entropy coding, to reduce to the final size the intermediate representation as indices. The efficiency of the compression entropy coding, known also as entropy coding is increased by manipulating the indices at the intermediate stage in the manner taught by the method.

  4. Compression embedding

    DOEpatents

    Sandford, M.T. II; Handel, T.G.; Bradley, J.N.

    1998-03-10

    A method of embedding auxiliary information into the digital representation of host data created by a lossy compression technique is disclosed. The method applies to data compressed with lossy algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as integer indices having redundancy and uncertainty in value by one unit. Indices which are adjacent in value are manipulated to encode auxiliary data. By a substantially reverse process, the embedded auxiliary data can be retrieved easily by an authorized user. Lossy compression methods use loss-less compressions known also as entropy coding, to reduce to the final size the intermediate representation as indices. The efficiency of the compression entropy coding, known also as entropy coding is increased by manipulating the indices at the intermediate stage in the manner taught by the method. 11 figs.

  5. DISCUSSION ON SPINAL INJURIES

    PubMed Central

    1928-01-01

    (1).—Varieties of spinal injuries, the three groups of common usage: fractures, dislocations, fracture-dislocations. Shall not refer in detail to fractures of the spinous or transverse processes. (2) Mechanics of injury to vertebræ. Two variables: (1) the nature of the bones; (2) the qualities of the force. Spinal injury usually caused by indirect violence. (3) The different results of injuries applied to the head; may break skull, failing that, the neck. Atlas fracture. Difference in qualities of the force causing atlas fracture and low cervical dislocation. (4) The compound nature of the vertebral body. The two columns, anterior, spongy; posterior, compact. The nature of wedge-compression of the vertebral body. Variations in the shape of the wedge. Reasons. Occur at all levels, including cervical spine. (5) Frequency of injury at different levels of vertebral column. “Localization” of injury. The two places of the graph of injury. The cervical at C. 5. Reason. The thoracic-lumbar peak at T. 12, L. 1 industrial. Is there a third peak at C. 2? (6) The effects of violent flexion of the spine: cervical flexion causes luxation at C. 5 or so. Extension causes fracture of odontoid. Violent flexion and extension therefore cause injury at very different levels. Thoracic region, why is there no “peak” of injury at T.6, 7? Lumbar region. (7) Displacement of fragments. Continuation of violence after the essential injury has been effected. Kümmell's disease, no inflammatory process involved. (8) Injury to the intervertebral discs, essential for displacement. Imperfect rupture a cause for difficulty in reducing luxations. The worst cases those in which it is most easily done, but most of these have cord damage. (9) Spinal injury from minimal violence. Examples of trivial cases, diving, brushing hair and so forth. Vertebral displacement in disease a much more serious thing. (10) Curious stability of many cervical luxations. Reasons. Locking of the inferior

  6. Compressive Holography

    NASA Astrophysics Data System (ADS)

    Lim, Se Hoon

    Compressive holography estimates images from incomplete data by using sparsity priors. Compressive holography combines digital holography and compressive sensing. Digital holography consists of computational image estimation from data captured by an electronic focal plane array. Compressive sensing enables accurate data reconstruction by prior knowledge on desired signal. Computational and optical co-design optimally supports compressive holography in the joint computational and optical domain. This dissertation explores two examples of compressive holography: estimation of 3D tomographic images from 2D data and estimation of images from under sampled apertures. Compressive holography achieves single shot holographic tomography using decompressive inference. In general, 3D image reconstruction suffers from underdetermined measurements with a 2D detector. Specifically, single shot holographic tomography shows the uniqueness problem in the axial direction because the inversion is ill-posed. Compressive sensing alleviates the ill-posed problem by enforcing some sparsity constraints. Holographic tomography is applied for video-rate microscopic imaging and diffuse object imaging. In diffuse object imaging, sparsity priors are not valid in coherent image basis due to speckle. So incoherent image estimation is designed to hold the sparsity in incoherent image basis by support of multiple speckle realizations. High pixel count holography achieves high resolution and wide field-of-view imaging. Coherent aperture synthesis can be one method to increase the aperture size of a detector. Scanning-based synthetic aperture confronts a multivariable global optimization problem due to time-space measurement errors. A hierarchical estimation strategy divides the global problem into multiple local problems with support of computational and optical co-design. Compressive sparse aperture holography can be another method. Compressive sparse sampling collects most of significant field

  7. Distribution of Neuron Cell Bodies in the Intraspinal Portion of the Spinal Accessory Nerve in Humans.

    PubMed

    Boehm, Karl E; Kondrashov, Peter

    2016-01-01

    The spinal accessory nerve is often identified as a purely motor nerve innervating the trapezius and sternocleidomastoid muscles. Although it may contain proprioceptive neurons found in cervical spinal levels C2-C4, limited research has focused on the histology of the spinal accessory nerve. The objective of the present study was to examine the spinal accessory nerve to determine if there are neuronal cell bodies within the spinal accessory nerve in humans. Cervical spinal cords were dissected from eight cadavers that had previously been used for dissection in other body regions. The segmental rootlets were removed to quantify the neuron cell bodies present at each spinal level. Samples were embedded in paraffin; sectioned; stained with hematoxylin and eosin; and examined using a microscope at 4×, 10×, and 40× magnification. Digital photography was used to image the samples. Neuronal cell bodies were found in 100% of the specimens examined, with non-grossly visible ganglia found at spinal levels C1-C4. The C1 spinal level of the spinal accessory nerve had the highest number of neuron cell bodies.

  8. Basal ganglia output reflects internally-specified movements

    PubMed Central

    Lintz, Mario J; Felsen, Gidon

    2016-01-01

    How movements are selected is a fundamental question in systems neuroscience. While many studies have elucidated the sensorimotor transformations underlying stimulus-guided movements, less is known about how internal goals – critical drivers of goal-directed behavior – guide movements. The basal ganglia are known to bias movement selection according to value, one form of internal goal. Here, we examine whether other internal goals, in addition to value, also influence movements via the basal ganglia. We designed a novel task for mice that dissociated equally rewarded internally-specified and stimulus-guided movements, allowing us to test how each engaged the basal ganglia. We found that activity in the substantia nigra pars reticulata, a basal ganglia output, predictably differed preceding internally-specified and stimulus-guided movements. Incorporating these results into a simple model suggests that internally-specified movements may be facilitated relative to stimulus-guided movements by basal ganglia processing. DOI: http://dx.doi.org/10.7554/eLife.13833.001 PMID:27377356

  9. A basal ganglia circuit for evaluating action outcomes.

    PubMed

    Stephenson-Jones, Marcus; Yu, Kai; Ahrens, Sandra; Tucciarone, Jason M; van Huijstee, Aile N; Mejia, Luis A; Penzo, Mario A; Tai, Lung-Hao; Wilbrecht, Linda; Li, Bo

    2016-11-10

    The basal ganglia, a group of subcortical nuclei, play a crucial role in decision-making by selecting actions and evaluating their outcomes. While much is known about the function of the basal ganglia circuitry in selection, how these nuclei contribute to outcome evaluation is less clear. Here we show that neurons in the habenula-projecting globus pallidus (GPh) in mice are essential for evaluating action outcomes and are regulated by a specific set of inputs from the basal ganglia. We find in a classical conditioning task that individual mouse GPh neurons bidirectionally encode whether an outcome is better or worse than expected. Mimicking these evaluation signals with optogenetic inhibition or excitation is sufficient to reinforce or discourage actions in a decision-making task. Moreover, cell-type-specific synaptic manipulations reveal that the inhibitory and excitatory inputs to the GPh are necessary for mice to appropriately evaluate positive and negative feedback, respectively. Finally, using rabies-virus-assisted monosynaptic tracing, we show that the GPh is embedded in a basal ganglia circuit wherein it receives inhibitory input from both striosomal and matrix compartments of the striatum, and excitatory input from the 'limbic' regions of the subthalamic nucleus. Our results provide evidence that information about the selection and evaluation of actions is channelled through distinct sets of basal ganglia circuits, with the GPh representing a key locus in which information of opposing valence is integrated to determine whether action outcomes are better or worse than expected.

  10. Spinal canal narrowing during simulated frontal impact.

    PubMed

    Ivancic, Paul C; Panjabi, Manohar M; Tominaga, Yasuhiro; Pearson, Adam M; Elena Gimenez, S; Maak, Travis G

    2006-06-01

    Between 23 and 70% of occupants involved in frontal impacts sustain cervical spine injuries, many with neurological involvement. It has been hypothesized that cervical spinal cord compression and injury may explain the variable neurological profile described by frontal impact victims. The goals of the present study, using a biofidelic whole cervical spine model with muscle force replication, were to quantify canal pinch diameter (CPD) narrowing during frontal impact and to evaluate the potential for cord compression. The biofidelic model and a sled apparatus were used to simulate frontal impacts at 4, 6, 8, and 10 g horizontal accelerations of the T1 vertebra. The CPD was measured in the intact specimen in the neutral posture (neutral posture CPD), under static sagittal pure moments of 1.5 Nm (pre-impact CPD), during dynamic frontal impact (dynamic impact CPD), and again under static pure moments following each impact (post-impact CPD). Frontal impact caused significant (P<0.05) dynamic CPD narrowing at C0-dens, C2-C3, and C6-C7. The narrowest dynamic CPD was observed at C0-dens during the 10 g impact and was 25.9% narrower than the corresponding neutral posture CPD. Interpretation of the present results indicate that the neurological symptomatology reported by frontal impact victims is most likely not due to cervical spinal cord compression. Cord compression due to residual spinal instability is also not likely.

  11. Downregulation of miR-219 enhances brain-derived neurotrophic factor production in mouse dorsal root ganglia to mediate morphine analgesic tolerance by upregulating CaMKIIγ

    PubMed Central

    Hu, Xue-Ming; Cao, Shou-Bin; Zhang, Hai-Long; Lyu, Dong-Mei; Chen, Li-Ping; Xu, Heng; Pan, Zhi-Qiang

    2016-01-01

    Background Increasing evidence suggests that microRNAs are functionally involved in the initiation and maintenance of pain hypersensitivity, including chronic morphine analgesic tolerance, through the posttranscriptional regulation of pain-related genes. We have previously demonstrated that miR-219 regulates inflammatory pain in the spinal cord by targeting calcium/calmodulin-dependent protein kinase II gamma (CaMKIIγ). However, whether miR-219 regulates CaMKIIγ expression in the dorsal root ganglia to mediate morphine tolerance remains unclear. Results MiR-219 expression was downregulated and CaMKIIγ expression was upregulated in mouse dorsal root ganglia following chronic morphine treatment. The changes in miR-219 and CaMKIIγ expression closely correlated with the development of morphine tolerance, which was measured using the reduction of percentage of maximum potential efficiency to thermal stimuli. Morphine tolerance was markedly delayed by upregulating miR-219 expression using miR-219 mimics or downregulating CaMKIIγ expression using CaMKIIγ small interfering RNA. The protein and mRNA expression of brain-derived neurotrophic factor were also induced in dorsal root ganglia by prolonged morphine exposure in a time-dependent manner, which were transcriptionally regulated by miR-219 and CaMKIIγ. Scavenging brain-derived neurotrophic factor via tyrosine receptor kinase B-Fc partially attenuated morphine tolerance. Moreover, functional inhibition of miR-219 via miR-219-sponge in naive mice elicited thermal hyperalgesia and spinal neuronal sensitization, which were both suppressed by CaMKIIγ small interfering RNA or tyrosine receptor kinase B-Fc. Conclusions These results demonstrate that miR-219 contributes to the development of chronic tolerance to morphine analgesia in mouse dorsal root ganglia by targeting CaMKIIγ and enhancing CaMKIIγ-dependent brain-derived neurotrophic factor expression. PMID:27599867

  12. A Critical Review of Habit Learning and the Basal Ganglia

    PubMed Central

    Seger, Carol A.; Spiering, Brian J.

    2011-01-01

    The current paper briefly outlines the historical development of the concept of habit learning and discusses its relationship to the basal ganglia. Habit learning has been studied in many different fields of neuroscience using different species, tasks, and methodologies, and as a result it has taken on a wide range of definitions from these various perspectives. We identify five common but not universal, definitional features of habit learning: that it is inflexible, slow or incremental, unconscious, automatic, and insensitive to reinforcer devaluation. We critically evaluate for each of these how it has been defined, its utility for research in both humans and non-human animals, and the evidence that it serves as an accurate description of basal ganglia function. In conclusion, we propose a multi-faceted approach to habit learning and its relationship to the basal ganglia, emphasizing the need for formal definitions that will provide directions for future research. PMID:21909324

  13. Oscillations and the basal ganglia: Motor control and beyond

    PubMed Central

    Brittain, John-Stuart; Brown, Peter

    2016-01-01

    Oscillations form a ubiquitous feature of the central nervous system. Evidence is accruing from cortical and sub-cortical recordings that these rhythms may be functionally important, although the precise details of their roles remain unclear. The basal ganglia share this predilection for rhythmic activity which, as we see in Parkinson’s disease, becomes further enhanced in the dopamine depleted state. While certain cortical rhythms appear to penetrate the basal ganglia, others are transformed or blocked. Here, we discuss the functional association of oscillations in the basal ganglia and their relationship with cortical activity. We further explore the neural underpinnings of such oscillatory activity, including the important balance to be struck between facilitating information transmission and limiting information coding capacity. Finally, we introduce the notion that synchronised oscillatory activity can be broadly categorised as immutability promoting rhythms that reinforce incumbent processes, and mutability promoting rhythms that favour novel processing. PMID:23711535

  14. Time representation in reinforcement learning models of the basal ganglia

    PubMed Central

    Gershman, Samuel J.; Moustafa, Ahmed A.; Ludvig, Elliot A.

    2014-01-01

    Reinforcement learning (RL) models have been influential in understanding many aspects of basal ganglia function, from reward prediction to action selection. Time plays an important role in these models, but there is still no theoretical consensus about what kind of time representation is used by the basal ganglia. We review several theoretical accounts and their supporting evidence. We then discuss the relationship between RL models and the timing mechanisms that have been attributed to the basal ganglia. We hypothesize that a single computational system may underlie both RL and interval timing—the perception of duration in the range of seconds to hours. This hypothesis, which extends earlier models by incorporating a time-sensitive action selection mechanism, may have important implications for understanding disorders like Parkinson's disease in which both decision making and timing are impaired. PMID:24409138

  15. Covert skill learning in a cortical-basal ganglia circuit.

    PubMed

    Charlesworth, Jonathan D; Warren, Timothy L; Brainard, Michael S

    2012-05-20

    We learn complex skills such as speech and dance through a gradual process of trial and error. Cortical-basal ganglia circuits have an important yet unresolved function in this trial-and-error skill learning; influential 'actor-critic' models propose that basal ganglia circuits generate a variety of behaviours during training and learn to implement the successful behaviours in their repertoire. Here we show that the anterior forebrain pathway (AFP), a cortical-basal ganglia circuit, contributes to skill learning even when it does not contribute to such 'exploratory' variation in behavioural performance during training. Blocking the output of the AFP while training Bengalese finches to modify their songs prevented the gradual improvement that normally occurs in this complex skill during training. However, unblocking the output of the AFP after training caused an immediate transition from naive performance to excellent performance, indicating that the AFP covertly gained the ability to implement learned skill performance without contributing to skill practice. In contrast, inactivating the output nucleus of the AFP during training completely prevented learning, indicating that learning requires activity within the AFP during training. Our results suggest a revised model of skill learning: basal ganglia circuits can monitor the consequences of behavioural variation produced by other brain regions and then direct those brain regions to implement more successful behaviours. The ability of the AFP to identify successful performances generated by other brain regions indicates that basal ganglia circuits receive a detailed efference copy of premotor activity in those regions. The capacity of the AFP to implement successful performances that were initially produced by other brain regions indicates precise functional connections between basal ganglia circuits and the motor regions that directly control performance.

  16. Application research of Ganglia in Hadoop monitoring and management

    NASA Astrophysics Data System (ADS)

    Li, Gang; Ding, Jing; Zhou, Lixia; Yang, Yi; Liu, Lei; Wang, Xiaolei

    2017-03-01

    There are many applications of Hadoop System in the field of large data, cloud computing. The test bench of storage and application in seismic network at Earthquake Administration of Tianjin use with Hadoop system, which is used the open source software of Ganglia to operate and monitor. This paper reviews the function, installation and configuration process, application effect of operating and monitoring in Hadoop system of the Ganglia system. It briefly introduces the idea and effect of Nagios software monitoring Hadoop system. It is valuable for the industry in the monitoring system of cloud computing platform.

  17. Complete Spinal Accessory Nerve Palsy From Carrying Climbing Gear.

    PubMed

    Coulter, Jess M; Warme, Winston J

    2015-09-01

    We report an unusual case of spinal accessory nerve palsy sustained while transporting climbing gear. Spinal accessory nerve injury is commonly a result of iatrogenic surgical trauma during lymph node excision. This particular nerve is less frequently injured by blunt trauma. The case reported here results from compression of the spinal accessory nerve for a sustained period-that is, carrying a load over the shoulder using a single nylon rope for 2.5 hours. This highlights the importance of using proper load-carrying equipment to distribute weight over a greater surface area to avoid nerve compression in the posterior triangle of the neck. The signs and symptoms of spinal accessory nerve palsy and its etiology are discussed. This report is particularly relevant to individuals involved in mountaineering and rock climbing but can be extended to anyone carrying a load with a strap over one shoulder and across the body.

  18. TRESK contributes to pain threshold changes by mediating apoptosis via MAPK pathway in the spinal cord.

    PubMed

    Zhou, Jun; Lin, Wenjing; Chen, Hongtao; Fan, Youling; Yang, Chengxiang

    2016-12-17

    The mechanism underlying neuropathic pain (NP) is complex and has not been fully elucidated. The TWIK-related spinal cord K(+) (TRESK) is the major background potassium current in dorsal root ganglia (DRG), we found that mitogen-activated protein kinase (MAPK) signal pathway were activated in spinal cord accompanied by TRESK down regulation in response to NP. Therefore, we investigated whether TRESK mediates inflammation and apoptosis by MAPK pathway in the spinal cord of NP rats. SNI rats exhibited reduced TRESK expression in DRG and spinal cord and higher sensitivity to mechanical stimuli but no effect on thermal stimuli. Intrathecal injections of TRESK overexpressing adenovirus alleviated mechanical allodynia, inhibited phosphorylation of extracellular signal-regulated kinase (ERK) and p38, and decreased inflammatory reactions and apoptosis in the spinal cords of SNI rats. Down regulation of TRESK in DRG and spinal cord was detected in normal rats after intrathecal TRESK shRNA lentivirus injection, which induced mechanical allodynia but had no effect on pain thresholds for heat stimulation. Phosphorylated ERK and p38 were increased in the spinal cord. Intrathecal injection of an ERK antagonist (PD98059) and p38 antagonist (SB203580) prevented ERK and p38 activation in the spinal cord and mechanical allodynia induced by TRESK shRNA lentivirus. In conclusion, our study clearly demonstrated an important role for TRESK in NP and that TRESK regulation contributes to pain sensitivity mediates inflammation and apoptosis by ERK and p38 MAPK signaling in the spinal cord.

  19. Targeted Iron Chelation Will Improve Recovery after Spinal Cord Injury

    DTIC Science & Technology

    2014-10-01

    Treatment with the flavonoid quercetin starting 1 h after compression SCI in rats had a var- iable effect on improving locomotor function in that a...Kendall, E., Kamencic, H., Ghong, Z., Griebel, R.W., Juurlink, B.H., 2003. Quercetin promotes functional recovery following acute spinal cord injury. J...Neurotrauma 20 (6), 583-591. Schultke, E., Griebel, R.W., Juurlink, B.H., 2010a. Quercetin attenuates inflammatory pro- cesses after spinal cord

  20. Therapeutic Effect of Epidurally Administered Lipo-Prostaglandin E1 Agonist in a Rat Spinal Stenosis Model

    PubMed Central

    Park, Sang Hyun; Choe, Ghee Young; Moon, Jee Yeon; Nahm, Francis Sahngun; Kim, Yong Chul

    2014-01-01

    Background A lipo-prostaglandin E1 agonist is effective for the treatment of neurological symptoms of spinal stenosis when administered by an oral or intravenous route. we would like to reveal the therapeutic effect of an epidural injection of lipo-prostaglandin E1 on hyperalgesia in foraminal stenosis. Methods A total of 40 male Sprague-Dawley rats were included. A small stainless steel rod was inserted into the L5/L6 intervertebral foramen to produce intervertebral foraminal stenosis and chronic compression of the dorsal root ganglia (DRG). The rats were divided into three groups: epidural PGE1 (EP) (n = 15), saline (n = 15), and control (n = 10). In the EP group, 0.15 µg.kg-1 of a lipo-PGE1 agonist was injected daily via an epidural catheter for 10 days from postoperative day 3. In the saline group, saline was injected. Behavioral tests for mechanical hyperalgesia were performed for 3 weeks. Then, the target DRG was analyzed for the degree of chromatolysis, chronic inflammation, and fibrosis in light microscopic images. Results From the fifth day after lipo-PGE1 agonist injection, the EP group showed significant recovery from mechanical hyperalgesia, which was maintained for 3 weeks (P < 0.05). Microscopic analysis showed much less chromatolysis in the EP group than in the saline or control groups. Conclusions An epidurally administered lipo-PGE1 agonist relieved neuropathic pain, such as mechanical hyperalgesia, in a rat foraminal stenosis model, with decreasing chromatolysis in target DRG. We suggest that epidurally administered lipo-PGE1 may be a useful therapeutic candidate for patients with spinal stenosis. PMID:25031807

  1. Primary Spinal Epidural Lymphoma As a Cause of Spontaneous Spinal Anterior Syndrome: A Case Report and Literature Review.

    PubMed

    Córdoba-Mosqueda, M E; Guerra-Mora, J R; Sánchez-Silva, M C; Vicuña-González, R M; Torre, A Ibarra-de la

    2017-01-01

    Background Primary spinal epidural lymphoma (PSEL) is one of the rarest categories of tumors. Spinal cord compression is an uncommon primary manifestation and requires to be treated with surgery for the purpose of diagnosis and decompression. Case Presentation A 45-year-old man presented with a new onset thoracic pain and progress to an anterior spinal syndrome with hypoesthesia and loss of thermalgesia. Magnetic resonance image showed a paravertebral mass that produces medullary compression at T3. The patient was taken up to surgery, where the pathology examination showed a diffuse large B-cell lymphoma. Conclusions PSEL is a pathological entity, which must be considered on a middle-aged man who began with radicular compression, and the treatment of choice is decompression and biopsy. The specific management has not been established yet, but the literature suggests chemotherapy and radiotherapy; however, the outcome is unclear.

  2. Radiation-induced spinal cord hemorrhage (hematomyelia).

    PubMed

    Agarwal, Amit; Kanekar, Sangam; Thamburaj, Krishnamurthy; Vijay, Kanupriya

    2014-10-23

    Intraspinal hemorrhage is very rare and intramedullary hemorrhage, also called hematomyelia, is the rarest form of intraspinal hemorrhage, usually related to trauma. Spinal vascular malformations such intradural arteriovenous malformations are the most common cause of atraumatic hematomyelia. Other considerations include warfarin or heparin anticoagulation, bleeding disorders, spinal cord tumors. Radiation-induced hematomyelia of the cord is exceedingly rare with only one case in literature to date. We report the case of an 8 year old girl with Ewing's sarcoma of the thoracic vertebra, under radiation therapy, presenting with hematomyelia. We describe the clinical course, the findings on imaging studies and the available information in the literature. Recognition of the clinical pattern of spinal cord injury should lead clinicians to perform imaging studies to evaluate for compressive etiologies.

  3. Intractable Pruritus After Traumatic Spinal Cord Injury

    PubMed Central

    Crane, Deborah A; Jaffee, Kenneth M; Kundu, Anjana

    2009-01-01

    Background: This report describes a young woman with incomplete traumatic cervical spinal cord injury and intractable pruritus involving her dorsal forearm. Method: Case report. Findings: Anatomic distribution of the pruritus corresponded to the dermatomal distribution of her level of spinal cord injury and vertebral fusion. Symptoms were attributed to the spinal cord injury and possible cervical root injury. Pruritus was refractory to all treatments, including topical lidocaine, gabapentin, transcutaneous electrical nerve stimulation, intravenous Bier block, stellate ganglion block, and acupuncture. Conclusions: Further understanding of neuropathic pruritus is needed. Diagnostic workup of intractable pruritus should include advanced imaging to detect ongoing nerve root compression. If diagnostic studies suggest radiculopathy, epidural steroid injection should be considered. Because the autonomic nervous system may be involved in complex chronic pain or pruritic syndromes, sympatholysis via such techniques as stellate ganglion block might be effective. PMID:19777867

  4. Extraforaminal ligament attachments of the thoracic spinal nerves in humans.

    PubMed

    Kraan, G A; Hoogland, P V J M; Wuisman, P I J M

    2009-04-01

    An anatomical study of the extraforaminal attachments of the thoracic spinal nerves was performed using human spinal columns. The objectives of the study are to identify and describe the existence of ligamentous structures at each thoracic level that attach spinal nerves to structures at the extraforaminal region. During the last 120 years, several mechanisms have been described to protect the spinal nerve against traction. All the described structures were located inside the spinal canal proximal to the intervertebral foramen. Ligaments with a comparable function just outside the intervertebral foramen are mentioned ephemerally. No studies are available about ligamentous attachments of thoracic spinal nerves to the spine. Five embalmed human thoracic spines (Th2-Th11) were dissected. Bilaterally, the extraforaminal region was dissected to describe and measure anatomical structures and their relationships with the thoracic spinal nerves. Histology was done at the sites of attachment of the ligaments to the nerves and along the ligaments. The thoracic spinal nerves are attached to the transverse process of the vertebrae cranial and caudal to the intervertebral foramen. The ligaments consist mainly of collagenous fibers. In conclusion, at the thoracic level, direct ligamentous connections exist between extraforaminal thoracic spinal nerves and nearby structures. They may serve as a protective mechanism against traction and compression of the nerves by positioning the nerve in the intervertebral foramen.

  5. Evidence for Glutamate as a Neuroglial Transmitter within Sensory Ganglia

    PubMed Central

    Kung, Ling-Hsuan; Gong, Kerui; Adedoyin, Mary; Ng, Johnson; Bhargava, Aditi; Ohara, Peter T.; Jasmin, Luc

    2013-01-01

    This study examines key elements of glutamatergic transmission within sensory ganglia of the rat. We show that the soma of primary sensory neurons release glutamate when depolarized. Using acute dissociated mixed neuronal/glia cultures of dorsal root ganglia (DRG) or trigeminal ganglia and a colorimetric assay, we show that when glutamate uptake by satellite glial cells (SGCs) is inhibited, KCl stimulation leads to simultaneous increase of glutamate in the culture medium. With calcium imaging we see that the soma of primary sensory neurons and SGCs respond to AMPA, NMDA, kainate and mGluR agonists, and selective antagonists block this response. Using whole cell patch-clamp technique, inward currents were recorded from small diameter (<30 µm) DRG neurons from intact DRGs (ex-vivo whole ganglion preparation) in response to local application of the above glutamate receptor agonists. Following a chronic constriction injury (CCI) of either the inferior orbital nerve or the sciatic nerve, glutamate expression increases in the trigeminal ganglia and DRG respectively. This increase occurs in neurons of all diameters and is present in the somata of neurons with injured axons as well as in somata of neighboring uninjured neurons. These data provides additional evidence that glutamate can be released within the sensory ganglion, and that the somata of primary sensory neurons as well as SGCs express functional glutamate receptors at their surface. These findings, together with our previous gene knockdown data, suggest that glutamatergic transmission within the ganglion could impact nociceptive threshold. PMID:23844184

  6. Phenotypic changes in satellite glial cells in cultured trigeminal ganglia.

    PubMed

    Belzer, Vitali; Shraer, Nathanael; Hanani, Menachem

    2010-11-01

    Satellite glial cells (SGCs) are specialized cells that form a tight sheath around neurons in sensory ganglia. In recent years, there is increasing interest in SGCs and they have been studied in both intact ganglia and in tissue culture. Here we studied phenotypic changes in SGCs in cultured trigeminal ganglia from adult mice, containing both neurons and SGCs, using phase optics, immunohistochemistry and time-lapse photography. Cultures were followed for up to 14 days. After isolation virtually every sensory neuron is ensheathed by SGCs, as in the intact ganglia. After one day in culture, SGCs begin to migrate away from their parent neurons, but in most cases the neurons still retain an intact glial cover. At later times in culture, there is a massive migration of SGCs away from the neurons and they undergo clear morphological changes, and at 7 days they become spindle-shaped. At one day in culture SGCs express the glial marker glutamine synthetase, and also the purinergic receptor P2X7. From day 2 in culture the glutamine synthetase expression is greatly diminished, whereas that of P2X7 is largely unchanged. We conclude that SGCs retain most of their characteristics for about 24 h after culturing, but undergo major phenotypic changes at later times.

  7. Glial cell plasticity in sensory ganglia induced by nerve damage.

    PubMed

    Hanani, M; Huang, T Y; Cherkas, P S; Ledda, M; Pannese, E

    2002-01-01

    Numerous studies have been done on the effect of nerve injury on neurons of sensory ganglia but little is known about the contribution of satellite glial cells (SCs) in these ganglia to post-injury events. We investigated cell-to-cell coupling and ultrastructure of SCs in mouse dorsal root ganglia after nerve injury (axotomy). Under control conditions SCs were mutually coupled, but mainly to other SCs around a given neuron. After axotomy SCs became extensively coupled to SCs that enveloped other neurons, apparently by gap junctions. Serial section electron microscopy showed that after axotomy SC sheaths enveloping neighboring neurons formed connections with each other. Such connections were absent in control ganglia. The number of gap junctions between SCs increased 6.5-fold after axotomy. We propose that axotomy induces growth of perineuronal SC sheaths, leading to contacts between SCs enveloping adjacent neurons and to formation of new gap junctions between SCs. These changes may be an important mode of glial plasticity and can contribute to neuropathic pain.

  8. Multidimensional Sequence Learning in Patients with Focal Basal Ganglia Lesions

    ERIC Educational Resources Information Center

    Shin, J.C.; Aparicio, P.; Ivry, R.B.

    2005-01-01

    Parkinson's patients have been found to be impaired in learning movement sequences. In the current study, patients with unilateral basal ganglia lesions due to stroke were tested on a serial reaction time task in which responses were based on the spatial location of each stimulus. The spatial locations either followed a fixed sequence or were…

  9. Evidence for glutamate as a neuroglial transmitter within sensory ganglia.

    PubMed

    Kung, Ling-Hsuan; Gong, Kerui; Adedoyin, Mary; Ng, Johnson; Bhargava, Aditi; Ohara, Peter T; Jasmin, Luc

    2013-01-01

    This study examines key elements of glutamatergic transmission within sensory ganglia of the rat. We show that the soma of primary sensory neurons release glutamate when depolarized. Using acute dissociated mixed neuronal/glia cultures of dorsal root ganglia (DRG) or trigeminal ganglia and a colorimetric assay, we show that when glutamate uptake by satellite glial cells (SGCs) is inhibited, KCl stimulation leads to simultaneous increase of glutamate in the culture medium. With calcium imaging we see that the soma of primary sensory neurons and SGCs respond to AMPA, NMDA, kainate and mGluR agonists, and selective antagonists block this response. Using whole cell patch-clamp technique, inward currents were recorded from small diameter (<30 µm) DRG neurons from intact DRGs (ex-vivo whole ganglion preparation) in response to local application of the above glutamate receptor agonists. Following a chronic constriction injury (CCI) of either the inferior orbital nerve or the sciatic nerve, glutamate expression increases in the trigeminal ganglia and DRG respectively. This increase occurs in neurons of all diameters and is present in the somata of neurons with injured axons as well as in somata of neighboring uninjured neurons. These data provides additional evidence that glutamate can be released within the sensory ganglion, and that the somata of primary sensory neurons as well as SGCs express functional glutamate receptors at their surface. These findings, together with our previous gene knockdown data, suggest that glutamatergic transmission within the ganglion could impact nociceptive threshold.

  10. Results of radiotherapy in non round cell spinal metastasis.

    PubMed

    Kraiwattanapong, Chaiwat; Buranapanitkit, Boonsin; Kiriratnikom, Theerasan

    2004-03-01

    Spinal metastases are commonly encountered by physicians in a variety of clinical fields. There are some controversies in choice of treatment between surgery and radiotherapy. This report is a study of the outcomes of radiotherapy for metastatic nonround cell tumors of the spine. Medical records and films of 31 patients who were treated with radiotherapy at Songklanakarind Hospital were retrospectively reviewed. The most common primary tumors were prostate and breast. One patient had spinal metastases from malignant serous cystadenoma of the fallopian tube of which no previous report has been published. This patient had excellent results after radiotherapy. Back and neck pain were the primary symptoms of the patients, while motor or sensory deficits (or both) were found in 58 per cent of the cases. Seven patients had neurological recovery and 18 patients had pain relief after radiotherapy. Cause of compression is the only factor effecting the result from univariate and multivariate analysis. Spinal cord compressed by a tumor had a better recovery than those which were compressed by a bony fragment or intervertebral disc. The authors concluded that radiotherapy remains a good treatment for patient with non round cell spinal metastasis. Cause of spinal cord compression is the only factor predicting the result of treatment.

  11. Spinal Cord Injury

    MedlinePlus

    ... care for people with spinal cord injuries and aggressive treatment and rehabilitation can minimize damage to the ... care for people with spinal cord injuries and aggressive treatment and rehabilitation can minimize damage to the ...

  12. Spinal Cord Diseases

    MedlinePlus

    ... diseases Autoimmune diseases Degenerative diseases such as amyotrophic lateral sclerosis and spinal muscular atrophy Symptoms vary but might include pain, numbness, loss of sensation and muscle weakness. These symptoms can occur around the spinal ...

  13. Basal ganglia-cortical structural connectivity in Huntington's disease.

    PubMed

    Novak, Marianne J U; Seunarine, Kiran K; Gibbard, Clare R; McColgan, Peter; Draganski, Bogdan; Friston, Karl; Clark, Chris A; Tabrizi, Sarah J

    2015-05-01

    Huntington's disease is an incurable neurodegenerative disease caused by inheritance of an expanded cytosine-adenine-guanine (CAG) trinucleotide repeat within the Huntingtin gene. Extensive volume loss and altered diffusion metrics in the basal ganglia, cortex and white matter are seen when patients with Huntington's disease (HD) undergo structural imaging, suggesting that changes in basal ganglia-cortical structural connectivity occur. The aims of this study were to characterise altered patterns of basal ganglia-cortical structural connectivity with high anatomical precision in premanifest and early manifest HD, and to identify associations between structural connectivity and genetic or clinical markers of HD. 3-Tesla diffusion tensor magnetic resonance images were acquired from 14 early manifest HD subjects, 17 premanifest HD subjects and 18 controls. Voxel-based analyses of probabilistic tractography were used to quantify basal ganglia-cortical structural connections. Canonical variate analysis was used to demonstrate disease-associated patterns of altered connectivity and to test for associations between connectivity and genetic and clinical markers of HD; this is the first study in which such analyses have been used. Widespread changes were seen in basal ganglia-cortical structural connectivity in early manifest HD subjects; this has relevance for development of therapies targeting the striatum. Premanifest HD subjects had a pattern of connectivity more similar to that of controls, suggesting progressive change in connections over time. Associations between structural connectivity patterns and motor and cognitive markers of disease severity were present in early manifest subjects. Our data suggest the clinical phenotype in manifest HD may be at least partly a result of altered connectivity.

  14. A basal ganglia circuit for evaluating action outcomes

    PubMed Central

    Stephenson-Jones, Marcus; Yu, Kai; Ahrens, Sandra; Tucciarone, Jason M.; van Huijstee, Aile N.; Mejia, Luis A.; Penzo, Mario A.; Tai, Lung-Hao; Wilbrecht, Linda; Li, Bo

    2016-01-01

    The basal ganglia, a group of subcortical nuclei, play a crucial role in decision making by selecting actions and evaluating their outcomes1,2. While much is known about the function of the basal ganglia circuitry in selection1,3,4, how these nuclei contribute to outcome evaluation is less clear. Here we show that neurons in the habenula-projecting globus pallidus (GPh) are essential for evaluating action outcomes and are regulated by a specific set of inputs from the basal ganglia. We found in a classical conditioning task that individual mouse GPh neurons bidirectionally encode whether an outcome is better or worse than expected. Mimicking these evaluation signals with optogenetic inhibition or excitation is sufficient to reinforce or discourage actions in a decision making task. Moreover, cell-type-specific synaptic manipulations revealed that the inhibitory and excitatory inputs to the GPh are necessary for mice to appropriately evaluate positive and negative feedback, respectively. Finally, using rabies virus-assisted monosynaptic tracing5, we discovered that the GPh is embedded in a basal ganglia circuit wherein it receives inhibitory input from both striosomal and matrix compartments of the striatum, and excitatory input from the “limbic” regions of the subthalamic nucleus (STN). Our results provide the first direct evidence that information about the selection and evaluation of actions is channelled through distinct sets of basal ganglia circuits, with the GPh representing a key locus where information of opposing valence is integrated to determine whether action outcomes are better or worse than expected. PMID:27652894

  15. Basal Ganglia Shapes Predict Social, Communication, and Motor Dysfunctions in Boys with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Qiu, Anqi; Adler, Marcy; Crocetti, Deana; Miller, Michael I.; Mostofsky, Stewart H.

    2010-01-01

    Objective: Basal ganglia abnormalities have been suggested as contributing to motor, social, and communicative impairments in autism spectrum disorder (ASD). Volumetric analyses offer limited ability to detect localized differences in basal ganglia structure. Our objective was to investigate basal ganglia shape abnormalities and their association…

  16. [TNF-alpha in prognosis of a recovery of the spinal marrow function in patients with spinal tuberculosis].

    PubMed

    Oleĭnik, V V; Potapenko, E I; Iakunova, O A

    2003-01-01

    The TNF-alpha significance in forecasting a degree of recovering of the spinal marrow functions was studied in complicated courses of tuberculous spondylitis in 37 patients with generalized and multiple tuberculosis. The TNF-alpha level in the cerebrospinal fluid was found to be related with a severity of inflammation and of neurological disorders, as well as with a degree of spinal marrow compression and with a speed of regression of postoperative disorders in the spinal marrow. The initial TNF-alpha concentration of > or = 400 pg/ml was indicative of a possibility to ensure a fast regression of postoperative disorders in the spinal marrow, while no complete recovery of spinal-marrow functions was observed in cases the TNF-alpha was < 400 pg/ml.

  17. Spinal Extradural Arachnoid Cyst

    PubMed Central

    Choi, Seung Won; Seong, Han Yu

    2013-01-01

    Spinal extradural arachnoid cyst (SEAC) is a rare disease and uncommon cause of compressive myelopathy. The etiology remains still unclear. We experienced 2 cases of SEACs and reviewed the cases and previous literatures. A 59-year-old man complained of both leg radiating pain and paresthesia for 4 years. His MRI showed an extradural cyst from T12 to L3 and we performed cyst fenestration and repaired the dural defect with tailored laminectomy. Another 51-year-old female patient visited our clinical with left buttock pain and paresthesia for 3 years. A large extradural cyst was found at T1-L2 level on MRI and a communication between the cyst and subarachnoid space was illustrated by CT-myelography. We performed cyst fenestration with primary repair of dural defect. Both patients' symptoms gradually subsided and follow up images taken 1-2 months postoperatively showed nearly disappeared cysts. There has been no documented recurrence in these two cases so far. Tailored laminotomy with cyst fenestration can be a safe and effective alternative choice in treating SEACs compared to traditional complete resection of cyst wall with multi-level laminectomy. PMID:24294463

  18. Myelopathy due to Spinal Extramedullary Hematopoiesis in a Patient with Polycythemia Vera

    PubMed Central

    Ito, Shuhei; Hosogane, Naobumi; Nagoshi, Narihito; Yagi, Mitsuru; Iwanami, Akio; Watanabe, Kota; Tsuji, Takashi; Nakamura, Masaya; Matsumoto, Morio; Ishii, Ken

    2017-01-01

    Extramedullary hematopoiesis (EMH) occasionally occurs in patients exhibiting hematological disorders with decreased hematopoietic efficacy. EMH is rarely observed in the spinal epidural space and patients are usually asymptomatic. In particular, in the patients with polycythemia vera, spinal cord compression due to EMH is extremely rare. We report a case of polycythemia vera, in which operative therapy proved to be an effective treatment for myelopathy caused by spinal EMH. PMID:28133558

  19. Spinal Cord Injuries

    MedlinePlus

    ... your body and your brain. A spinal cord injury disrupts the signals. Spinal cord injuries usually begin with a blow that fractures or ... bone disks that make up your spine. Most injuries don't cut through your spinal cord. Instead, ...

  20. Spinal hydatid with meralgia paresthetica in a female: A rare case report

    PubMed Central

    Lonkar, Yeshwant; Amale, Amar; Acharya, Sourya; Banode, Pankaj; Yeola, Meenakshi

    2012-01-01

    Meralgia paresthetica presents as tingling sensation in the antero-lateral aspect of thigh. It occurs due to compression of the lateral cutaneous nerve of thigh. Proximal spinal lesions may present as meralgia paresthetica due to radiculopathy. We present a rare case of spinal hydatid with meralgia paresthetica. PMID:24082690

  1. Compression stockings

    MedlinePlus

    ... knee bend. Compression Stockings Can Be Hard to Put on If it's hard for you to put on the stockings, try these tips: Apply lotion ... your legs, but let it dry before you put on the stockings. Use a little baby powder ...

  2. α-Synuclein pathology in the cranial and spinal nerves in Lewy body disease.

    PubMed

    Nakamura, Keiko; Mori, Fumiaki; Tanji, Kunikazu; Miki, Yasuo; Toyoshima, Yasuko; Kakita, Akiyoshi; Takahashi, Hitoshi; Yamada, Masahito; Wakabayashi, Koichi

    2016-06-01

    Accumulation of phosphorylated α-synuclein in neurons and glial cells is a histological hallmark of Lewy body disease (LBD) and multiple system atrophy (MSA). Recently, filamentous aggregations of phosphorylated α-synuclein have been reported in the cytoplasm of Schwann cells, but not in axons, in the peripheral nervous system in MSA, mainly in the cranial and spinal nerve roots. Here we conducted an immunohistochemical investigation of the cranial and spinal nerves and dorsal root ganglia of patients with LBD. Lewy axons were found in the oculomotor, trigeminal and glossopharyngeal-vagus nerves, but not in the hypoglossal nerve. The glossopharyngeal-vagus nerves were most frequently affected, with involvement in all of 20 subjects. In the spinal nerve roots, Lewy axons were found in all of the cases examined. Lewy axons in the anterior nerves were more frequent and numerous in the thoracic and sacral segments than in the cervical and lumbar segments. On the other hand, axonal lesions in the posterior spinal nerve roots appeared to increase along a cervical-to-sacral gradient. Although Schwann cell cytoplasmic inclusions were found in the spinal nerves, they were only minimal. In the dorsal root ganglia, axonal lesions were seldom evident. These findings indicate that α-synuclein pathology in the peripheral nerves is axonal-predominant in LBD, whereas it is restricted to glial cells in MSA.

  3. EFFECTS OF THALLIUM SALTS ON NEURONAL MITOCHONDRIA IN ORGANOTYPIC CORD-GANGLIA-MUSCLE COMBINATION CULTURES

    PubMed Central

    Spencer, Peter S.; Peterson, Edith R.; Madrid A., Ricardo; Raine, Cedric S.

    1973-01-01

    A functionally coupled organotypic complex of cultured dorsal root ganglia, spinal cord peripheral nerve, and muscle has been employed in an experimental approach to the investigation of the neurotoxic effects of thallium. Selected cultures, grown for up to 12 wk in vitro, were exposed to thallous salts for periods ranging up to 4 days. Cytopathic effects were first detected after 2 h of exposure with the appearance of considerably enlarged mitochondria in axons of peripheral nerve fibers. With time, the matrix space of these mitochondria became progressively swollen, transforming the organelle into an axonal vacuole bounded by the original outer mitochondrial membrane. Coalescence of adjacent axonal vacuoles produced massive internal axon compartments, the membranes of which were shown by electron microprobe mass spectrometry to have an affinity for thallium. Other axoplasmic components were displaced within a distended but intact axolemma. The resultant fiber swelling caused myelin retraction from nodes of Ranvier but no degeneration. Impulses could still propagate along the nerve fibers throughout the time course of the experiment. Comparable, but less severe changes were seen in dorsal root ganglion neurons and in central nerve fibers. Other cell types showed no mitochondrial change. It is uncertain how these findings relate to the neurotoxic effects of thallium in vivo, but a sensitivity of the nerve cell and especially its axon to thallous salts is indicated. PMID:4125375

  4. Tageted bipolar radiofrequency decompression with vertebroplasty for intractable radicular pain due to spinal metastasis: a case report

    PubMed Central

    Baek, Seong Jin; Lee, Eun Young

    2016-01-01

    Metastatic spinal tumors are usually quite difficult to treat. In patients with metastatic spinal tumors, conventional radiotherapy fails to relieve pain in 20–30% of cases and open surgery often causes considerable trauma and complications, which delays treatment of the primary disease. Percutaneous vertebroplasty (PVP) is considered to be useful in achieving rapid pain control and preventing further vertebral collapse due to spinal metastasis. However, symptoms of intraspinal neural compression can be contraindications to PVP. To overcome this problem, we performed PVP following targeted bipolar radiofrequency decompression, and examined the effect of the combined treatment in relieving severe radicular pain related to spinal cord compression caused by malignant metastatic tumors. PMID:27482319

  5. Centrality of Striatal Cholinergic Transmission in Basal Ganglia Function

    PubMed Central

    Bonsi, Paola; Cuomo, Dario; Martella, Giuseppina; Madeo, Graziella; Schirinzi, Tommaso; Puglisi, Francesca; Ponterio, Giulia; Pisani, Antonio

    2011-01-01

    Work over the past two decades revealed a previously unexpected role for striatal cholinergic interneurons in the context of basal ganglia function. The recognition that these interneurons are essential in synaptic plasticity and motor learning represents a significant step ahead in deciphering how the striatum processes cortical inputs, and why pathological circumstances cause motor dysfunction. Loss of the reciprocal modulation between dopaminergic inputs and the intrinsic cholinergic innervation within the striatum appears to be the trigger for pathophysiological changes occurring in basal ganglia disorders. Accordingly, there is now compelling evidence showing profound changes in cholinergic markers in these disorders, in particular Parkinson's disease and dystonia. Based on converging experimental and clinical evidence, we provide an overview of the role of striatal cholinergic transmission in physiological and pathological conditions, in the context of the pathogenesis of movement disorders. PMID:21344017

  6. Basal ganglia circuits for reward value-guided behavior

    PubMed Central

    Hikosaka, Okihide; Kim, Hyoung F.; Yasuda, Masaharu; Yamamoto, Shinya

    2014-01-01

    The basal ganglia are equipped with inhibitory and disinhibitory mechanisms that enable to choose valuable objects and actions. Notably, a value can be determined flexibly by recent experience or stably by prolonged experience. Recent studies have revealed that the head and tail of the caudate nucleus selectively and differentially process flexible and stable values of visual objects. These signals are sent to the superior colliculus through different parts of the substantia nigra, so that the animal looks preferentially at high-valued objects, but in different manners. Relying on short-term value memories, the caudate head circuit allows gaze to move expectantly to recently valued objects. Relying on long-term value memories, the caudate tail circuit allows gaze to move automatically to previously valued objects. The basal ganglia also contain an equivalent parallel mechanism for action values. Such flexible-stable parallel mechanisms for object and action values create a highly adaptable system for decision making. PMID:25032497

  7. Basal ganglia function, stuttering, sequencing, and repair in adult songbirds.

    PubMed

    Kubikova, Lubica; Bosikova, Eva; Cvikova, Martina; Lukacova, Kristina; Scharff, Constance; Jarvis, Erich D

    2014-10-13

    A pallial-basal-ganglia-thalamic-pallial loop in songbirds is involved in vocal motor learning. Damage to its basal ganglia part, Area X, in adult zebra finches has been noted to have no strong effects on song and its function is unclear. Here we report that neurotoxic damage to adult Area X induced changes in singing tempo and global syllable sequencing in all animals, and considerably increased syllable repetition in birds whose song motifs ended with minor repetitions before lesioning. This stuttering-like behavior started at one month, and improved over six months. Unexpectedly, the lesioned region showed considerable recovery, including immigration of newly generated or repaired neurons that became active during singing. The timing of the recovery and stuttering suggest that immature recovering activity of the circuit might be associated with stuttering. These findings indicate that even after juvenile learning is complete, the adult striatum plays a role in higher level organization of learned vocalizations.

  8. Light-Induced Alterations in Basil Ganglia Kynurenic Acid Levels

    NASA Technical Reports Server (NTRS)

    Sroufe, Angela E.; Whittaker, J. A.; Patrickson, J. W.; Orr, M. C.

    1997-01-01

    The metabolic synthesis, release and breakdown of several known CNS neurotransmitters have been shown to follow a circadian pattern entrained to the environmental light/dark cycle. The levels of excitatory amino acid (EAA) transmitters such as glutamate, have been shown to vary with environmental lighting conditions. Kynurenic Acid (KA), an endogenous tryptophan metabolite and glutamate receptor antagonist, has been reported to have neuroprotective effects against EAA-induced excitotoxic cell damage. Changes in KA's activity within the mammalian basal ganglia has been proposed as being contributory to neurotoxicity in Huntington's Disease. It is not known whether CNS KA levels follow a circadian pattern or exhibit light-induced fluctuations. However, because the symptoms of certain degenerative motor disorders seem to fluctuate with daily 24 hour rhythm, we initiated studies to determine if basal ganglia KA were influenced by the daily light/dark cycle and could influence motor function. Therefore in this study, HPLC-EC was utilized to determine if basal ganglia KA levels in tissue extracts from adult male Long-Evans rats (200-250g) entrained to 24 and 48 hours constant light and dark conditions, respectively. Samples were taken one hour before the onset of the subjective day and one hour prior to the onset of the subjective night in order to detect possible phase differences in KA levels and to allow for accumulation of factors expressed in association with the light or dark phase. Data analysis revealed that KA levels in the basal ganglia vary with environmental lighting conditions; being elevated generally during the dark. Circadian phase differences in KA levels were also evident during the subjective night and subjective day, respectively. Results from these studies are discussed with respect to potential cyclic changes in neuronal susceptibility to excitotoxic damage during the daily 24 hour cycle and its possible relevance to future therapeutic approaches in

  9. Osteochondroma of the cervical spine extending multiple segments with cord compression.

    PubMed

    Moon, Kyung-Sub; Lee, Jung-Kil; Kim, Yeon-Seong; Kwak, Hyung-Jun; Joo, Sung-Pil; Kim, In-Young; Kim, Jae-Hyoo; Kim, Soo-Han

    2006-01-01

    Involvement of the cervical spinal cord by a solitary osteochondroma is rare. We describe a case of cervical osteochondroma extending from C5 to C7 in a 16-year-old male. The tumor, arising from the inner aspect of the C6 spinous process, projected longitudinally into the spinal canal and compressed the spinal cord; this caused clinical symptoms associated with myelopathy and radiculopathy. Total excision of the tumor by C5-C7 hemilaminectomy resulted in a good functional recovery.

  10. Acute compressive myelopathy due to vertebral haemangioma.

    PubMed

    Macki, Mohamed; Bydon, Mohamad; Kaloostian, Paul; Bydon, Ali

    2014-04-28

    A 47-year-old woman with a history of anaemia presented to the emergency room with an acute onset of leg weakness. Physical examination of the bilateral lower extremities was significant for 0/5 muscle strength in all muscle groups with decreased pinprick and temperature sensation. A sensory level at the umbilicus was appreciated. Fine touch and proprioception were preserved. Bowel and bladder function were intact. CT revealed several thoracic, vertebral haemangiomatas. An MRI was suggestive of an epidural clot at the T8-T10-weighted posterior epidural space. At the level of the lesion, the cerebrospinal fluid space was completely effaced, and the flattened spinal cord exhibited signs of oedema and compressive myelopathy. The patient immediately underwent surgical decompression of the spinal cord. An epidural clot and vessel conglomeration were identified. A postoperative spinal angiogram confirmed the diagnosis of vertebral haemangioma. At 1-month follow-up, the patient regained strength and sensation.

  11. Movement Disorders Following Cerebrovascular Lesion in the Basal Ganglia Circuit.

    PubMed

    Park, Jinse

    2016-05-01

    Movement disorders are primarily associated with the basal ganglia and the thalamus; therefore, movement disorders are more frequently manifest after stroke compared with neurological injuries associated with other structures of the brain. Overall clinical features, such as types of movement disorder, the time of onset and prognosis, are similar with movement disorders after stroke in other structures. Dystonia and chorea are commonly occurring post-stroke movement disorders in basal ganglia circuit, and these disorders rarely present with tremor. Rarer movement disorders, including tic, restless leg syndrome, and blepharospasm, can also develop following a stroke. Although the precise mechanisms underlying the pathogenesis of these conditions have not been fully characterized, disruptions in the crosstalk between the inhibitory and excitatory circuits resulting from vascular insult are proposed to be the underlying cause. The GABA (gamma-aminobutyric acid)ergic and dopaminergic systems play key roles in post-stroke movement disorders. This review summarizes movement disorders induced by basal ganglia and thalamic stroke according to the anatomical regions in which they manifest.

  12. Movement Disorders Following Cerebrovascular Lesion in the Basal Ganglia Circuit

    PubMed Central

    Park, Jinse

    2016-01-01

    Movement disorders are primarily associated with the basal ganglia and the thalamus; therefore, movement disorders are more frequently manifest after stroke compared with neurological injuries associated with other structures of the brain. Overall clinical features, such as types of movement disorder, the time of onset and prognosis, are similar with movement disorders after stroke in other structures. Dystonia and chorea are commonly occurring post-stroke movement disorders in basal ganglia circuit, and these disorders rarely present with tremor. Rarer movement disorders, including tic, restless leg syndrome, and blepharospasm, can also develop following a stroke. Although the precise mechanisms underlying the pathogenesis of these conditions have not been fully characterized, disruptions in the crosstalk between the inhibitory and excitatory circuits resulting from vascular insult are proposed to be the underlying cause. The GABA (gamma-aminobutyric acid)ergic and dopaminergic systems play key roles in post-stroke movement disorders. This review summarizes movement disorders induced by basal ganglia and thalamic stroke according to the anatomical regions in which they manifest. PMID:27240808

  13. Lumbar spine disc heights and curvature: upright posture vs. supine compression harness

    NASA Technical Reports Server (NTRS)

    Lee, Shi-Uk; Hargens, Alan R.; Fredericson, Michael; Lang, Philipp K.

    2003-01-01

    INTRODUCTION: Spinal lengthening in microgravity is thought to cause back pain in astronauts. A spinal compression harness can compress the spine to eliminate lengthening but the loading condition with harness is different than physiologic conditions. Our purpose was to compare the effect of spine compression with a harness in supine position on disk height and spinal curvature in the lumbar spine to that of upright position as measured using a vertically open magnetic resonance imaging system. METHODS: Fifteen healthy subjects volunteered. On day 1, each subject lay supine for an hour and a baseline scan of the lumbar spine was performed. After applying a load of fifty percent of body weight with the harness for thirty minutes, the lumbar spine was scanned again. On day 2, after a baseline scan, a follow up scan was performed after kneeling for thirty minutes within the gap between two vertically oriented magnetic coils. Anterior and posterior disk heights, posterior disk bulging, and spinal curvature were measured from the baseline and follow up scans. RESULTS: Anterior disk heights increased and posterior disk heights decreased compared with baseline scans both after spinal compression with harness and upright posture. The spinal curvature increased by both loading conditions of the spine. DISCUSSION: The spinal compression with specially designed harness has the same effect as the physiologic loading of the spine in the kneeling upright position. The harness shows some promise as a tool to increase the diagnostic capabilities of a conventional MR system.

  14. Spinal epidural angiolipomas: Clinical characteristics, management and outcomes

    PubMed Central

    Bouali, Sofiene; Maatar, Nidhal; Bouhoula, Asma; Abderrahmen, Khansa; Said, Imed Ben; Boubaker, Adnen; Kallel, Jalel; Jemel, Hafedh

    2016-01-01

    Purpose: The spinal epidural angiolipomas are rare expansive processes made of mature lipomatous and angiomatous elements. They often have a benign character. Their etiology, pathogenesis remains uncertain, and it is a cause of spinal cord compression. The magnetic resonance imaging is the most important neuroradiological examination. Histological examination is the only examination to confirm the diagnosis. Surgery is the treatment of choice. Methods: A retrospective study of all patients operated on for a spinal epidural angiolipoma at the Department of Neurosurgery at the National Institute of Neurology of Tunis between January 2000 and December 2014 (15 years) was performed. The aim of this study is to describe the clinical, radiological, histological characteristics and the treatment of this tumor. Results: A total of nine patients were operated from January 01, 2000 to November 30, 2014. The average age of our patients was 51 years with ages that ranged from 29 to 65 with a male predominance. The period between onset of symptoms and diagnosis ranged from 24 months with an average 12 months. Posterior localization of the tumor was seen in all patients. Surgical resection was performed for all cases. The postoperative course has been satisfactory, with a complete recovery of neurological functions in all patients. Conclusions: The spinal epidural angiolipomas is rare expansive process causing spinal cord compression. Treatment is exclusively surgical resection. The functional outcome of spinal epidural angiolipomas is particularly favorable with a complete neurological recovery is if the patient was quickly operated. PMID:27695535

  15. Comprehensive RNA-Seq Expression Analysis of Sensory Ganglia with a Focus on Ion Channels and GPCRs in Trigeminal Ganglia

    PubMed Central

    Manteniotis, Stavros; Lehmann, Ramona; Flegel, Caroline; Vogel, Felix; Hofreuter, Adrian; Schreiner, Benjamin S. P.; Altmüller, Janine; Becker, Christian; Schöbel, Nicole; Hatt, Hanns; Gisselmann, Günter

    2013-01-01

    The specific functions of sensory systems depend on the tissue-specific expression of genes that code for molecular sensor proteins that are necessary for stimulus detection and membrane signaling. Using the Next Generation Sequencing technique (RNA-Seq), we analyzed the complete transcriptome of the trigeminal ganglia (TG) and dorsal root ganglia (DRG) of adult mice. Focusing on genes with an expression level higher than 1 FPKM (fragments per kilobase of transcript per million mapped reads), we detected the expression of 12984 genes in the TG and 13195 in the DRG. To analyze the specific gene expression patterns of the peripheral neuronal tissues, we compared their gene expression profiles with that of the liver, brain, olfactory epithelium, and skeletal muscle. The transcriptome data of the TG and DRG were scanned for virtually all known G-protein-coupled receptors (GPCRs) as well as for ion channels. The expression profile was ranked with regard to the level and specificity for the TG. In total, we detected 106 non-olfactory GPCRs and 33 ion channels that had not been previously described as expressed in the TG. To validate the RNA-Seq data, in situ hybridization experiments were performed for several of the newly detected transcripts. To identify differences in expression profiles between the sensory ganglia, the RNA-Seq data of the TG and DRG were compared. Among the differentially expressed genes (> 1 FPKM), 65 and 117 were expressed at least 10-fold higher in the TG and DRG, respectively. Our transcriptome analysis allows a comprehensive overview of all ion channels and G protein-coupled receptors that are expressed in trigeminal ganglia and provides additional approaches for the investigation of trigeminal sensing as well as for the physiological and pathophysiological mechanisms of pain. PMID:24260241

  16. Considering symptomatic spinal epidural lipomatosis in the differential diagnosis.

    PubMed

    Alvarez, Adriana; Induru, Raghava; Lagman, Ruth

    2013-09-01

    Spinal epidural lipomatosis (SEL) is the abnormal accumulation of normal fat within the spinal canal. It is more frequent in those patients receiving chronic glucocorticoid therapy or in cases of endogenous hypercortisolism states. We report a case of SEL in a patient with metastatic prostate cancer with history of steroid treatment as part of his chemotherapy regimen, presenting with clinical manifestations of partial cord compression. Magnetic resonance imaging images of the lumbar spine revealed the presence of epidural tumor suspicious for metastatic disease. Operative findings were consistent with epidural lipomatosis. Spinal epidural lipomatosis is a rare condition that needs to be included in the differential diagnosis of patients with risk factors, presenting with symptomatic cord compression.

  17. In Vivo Measurement of Cervical Spinal Cord Deformation During Traumatic Spinal Cord Injury in a Rodent Model.

    PubMed

    Bhatnagar, Tim; Liu, Jie; Yung, Andrew; Cripton, Peter A; Kozlowski, Piotr; Oxland, Thomas

    2016-04-01

    The spinal cord undergoes physical deformation during traumatic spinal cord injury (TSCI), which results in biological damage. This study demonstrates a novel approach, using magnetic resonance imaging and image registration techniques, to quantify the three-dimensional deformation of the cervical spinal cord in an in vivo rat model. Twenty-four male rats were subjected to one of two clinically relevant mechanisms of TSCI (i.e. contusion and dislocation) inside of a MR scanner using a novel apparatus, enabling imaging of the deformed spinal cords. The displacement fields demonstrated qualitative differences between injury mechanisms. Three-dimensional Lagrangian strain fields were calculated, and the results from the contusion injury mechanism were deemed most reliable. Strain field error was assessed using a Monte Carlo approach, which showed that simulated normal strain error experienced a bias, whereas shear strain error did not. In contusion injury, a large region of dorso-ventral compressive strain was observed under the impactor which extended into the ventral region of the spinal cord. High tensile lateral strains under the impactor and compressive lateral strains in the lateral white matter were also observed in contusion. The ability to directly observe and quantify in vivo spinal cord deformation informs our knowledge of the mechanics of TSCI.

  18. Spontaneous spinal epidural hematoma after abrupt sneezing with prompt recovery of severe paraparesis.

    PubMed

    Štětkářová, Ivana; Jelínková, Lenka; Janík, Vaclav; Peisker, Tomas

    2014-12-01

    Spontaneous spinal epidural hematoma (SSEH) is a rare neurologic condition with threatening consequences when spinal cord compression is present. The diagnosis must be performed quickly using magnetic resonance imaging (MRI), which shows collection of blood in the epidural space. With spinal cord compression, there is an indication for urgent surgical decompression. Here, we present a 64-year-old woman who developed sudden thoracic and lower back pain accompanied by severe paraparesis and urinary retention after sneezing abruptly. An MRI revealed a posterior thoracic epidural hematoma extending from the T6 to T11 vertebral level with spinal cord compression. Decompression was recommended, but the patient refused surgery, while neurologically improving with time. Complete neurologic recovery was observed within 24 hours after SSEH onset. A conservative therapeutic approach with careful observation may therefore be considered as a treatment of choice in some cases where surgery is refused, (due to high risk or other reasons) and neurologic recovery is early and sustained.

  19. IgG4-related spinal pachymeningitis.

    PubMed

    Lu, Zhang; Tongxi, Liu; Jie, Luo; Yujuan, Jiao; Wei, Jiang; Xia, Liu; Yumin, Zheng; Xin, Lu

    2016-06-01

    The aim of this study is to study the clinical, laboratory, imaging pathology, and prognosis features of IgG4-related spinal pachymeningitis. We worked with a 55-year-old man suffering from IgG4-related spinal pachymeningitis who had the most widespread lesion in his dura mater. We also review previous related studies and discuss the clinical characteristics of this rare disease. In total, eight IgG4-related spinal pachymeningitis patients have been reported in the literature since 2009. They were mostly male patients, 51.7 ± 11.9 years old on average. Cervical and thoracic vertebrae were the most common sites for lesions. The most prominent symptom was varying numbness and weakness of the limbs and/or body associated with spinal cord compression. There was one patient (1/5) with elevated serum IgG4 levels and three patients (3/3) with increased cerebrospinal fluid (CSF) IgG4 index. Positive histopathologic findings are the strongest basis for a diagnosis. All the patients with IgG4-related spinal pachymeningitis responded well to glucocorticoid therapy. IgG4-related spinal pachymeningitis is an orphan disease that mainly occurs in cervical and thoracic vertebrae. Older males are the most susceptible group. Serum IgG4 levels were consistently normal in these cases, so analysis of CSF for IgG4 production (IgG4 index) could become a useful tool. Pathological findings remain the gold standard for diagnosis. Most patients responded favorably to glucocorticoid treatment.

  20. Compressed convolution

    NASA Astrophysics Data System (ADS)

    Elsner, Franz; Wandelt, Benjamin D.

    2014-01-01

    We introduce the concept of compressed convolution, a technique to convolve a given data set with a large number of non-orthogonal kernels. In typical applications our technique drastically reduces the effective number of computations. The new method is applicable to convolutions with symmetric and asymmetric kernels and can be easily controlled for an optimal trade-off between speed and accuracy. It is based on linear compression of the collection of kernels into a small number of coefficients in an optimal eigenbasis. The final result can then be decompressed in constant time for each desired convolved output. The method is fully general and suitable for a wide variety of problems. We give explicit examples in the context of simulation challenges for upcoming multi-kilo-detector cosmic microwave background (CMB) missions. For a CMB experiment with detectors with similar beam properties, we demonstrate that the algorithm can decrease the costs of beam convolution by two to three orders of magnitude with negligible loss of accuracy. Likewise, it has the potential to allow the reduction of disk space required to store signal simulations by a similar amount. Applications in other areas of astrophysics and beyond are optimal searches for a large number of templates in noisy data, e.g. from a parametrized family of gravitational wave templates; or calculating convolutions with highly overcomplete wavelet dictionaries, e.g. in methods designed to uncover sparse signal representations.

  1. Acute cervical spinal subdural hematoma not related to head injury.

    PubMed

    Kim, Hee Yul; Ju, Chang Il; Kim, Seok Won

    2010-06-01

    We report an extremely rare case of traumatic cervical spinal subdural hematoma not related to intracranial injury. There has been no report on traumatic cervical spinal subdrual hematoma not related to intracranial injury. A 27-year-old female patient was admitted to our emergency room due to severe neck pain and right arm motor weakness after car collision. On admission, she presented with complete monoplegia and hypoesthesia of right arm. Magnetic resonance imaging (MRI) revealed subdural hematoma compressing spinal cord. Lumbar cerebrospinal fluid (CSF) analysis revealed 210,000 red blood cells/mm(3). She was managed conservatively by administrations of steroid pulse therapy and CSF drainage. Her muscle power of right arm improved to a Grade III 16 days after admission. Follow-up MRI taken 16th days after admission revealed almost complete resolution of the hematoma. Here, the authors report a traumatic cervical spinal SDH not associated with intracranial injury.

  2. Dynamic loading characteristics of an intradural spinal cord stimulator

    NASA Astrophysics Data System (ADS)

    Oliynyk, M. S.; Gillies, G. T.; Oya, H.; Wilson, S.; Reddy, C. G.; Howard, M. A.

    2013-01-01

    We have measured the forces that act on the electrode-bearing surface of an intradural neuromodulator designed to be in direct contact with the pial surface of the spinal cord, as part of our effort to develop a new method for treating intractable pain. The goal was to investigate the pressures produced by this device on the spinal cord and compare them with normal intrathecal pressure. For this purpose, we employed a dual-sensor arrangement that allowed us to measure the response of a custom-designed silicone spinal cord surrogate to the forces applied by the device. We found that the device had a mean compliance of ≈63 μN μm-1, and that over a 3 mm range of compression, the mid-span pressure it exerted on the spinal cord was ≈1.88 × 103 Pa = 14.1 mm Hg, which lies within the range of normal intrathecal pressure in humans.

  3. Spinal Subarachnoid Hemorrhage Migrated from Traumatic Intracranial Subarachnoid Hemorrhage

    PubMed Central

    Kim, Tae Jin; Koh, Eun Jung

    2016-01-01

    Very rarely, spinal subarachnoid hemorrhage (SSAH) can occur without any direct spinal injury in patients with traumatic intracranial SAH. A-59-year-old male with traumatic intracranial subarachnoid hemorrhage (SAH) presented with pain and numbness in his buttock and thigh two days after trauma. Pain and numbness rapidly worsened and perianal numbness and voiding difficulty began on the next day. Magnetic resonance imaging showed intraspinal hemorrhage in the lumbosacral region. The cauda equina was displaced and compressed. Emergent laminectomy and drainage of hemorrhage were performed and SSAH was found intraoperatively. The symptoms were relieved immediately after the surgery. Patients with traumatic intracranial hemorrhage who present with delayed pain or neurological deficits should be evaluated for intraspinal hemorrhage promptly, even when the patients had no history of direct spinal injury and had no apparent symptoms related to the spinal injury in the initial period of trauma. PMID:27857928

  4. 1989 Volvo Award in basic science. Device-related osteoporosis with spinal instrumentation.

    PubMed

    McAfee, P C; Farey, I D; Sutterlin, C E; Gurr, K R; Warden, K E; Cunningham, B W

    1989-09-01

    An animal model of anterior and posterior column instability was developed to allow in vivo observation of bone remodeling and arthrodesis after spinal instrumentation. After an initial anterior and posterior destabilizing lesion was created at the L5-L6 vertebral levels in 42 adult beagles, various spinal reconstructive surgical procedures were performed--with or without bilateral posterolateral bone grafting, and with or without spinal instrumentation (Harrington distraction; Luque rectangular, or Cotrel-Dubousset transpedicular methods). After 6 months' postoperative observation, there was a significantly improved probability of achieving a spinal fusion if spinal instrumentation had been used (P = 0.058). Nondestructive mechanical testing after removal of all metal instrumentation in torsion, axial compression, and flexion revealed that the fusions performed in conjunction with spinal instrumentation were more rigid (P less than 0.05). Quantitative histomorphometry showed that the volumetric density of bone was significantly lower (ie, device-related osteoporosis occurred) for fused versus unfused spines; and Harrington- and Cotrel-Dubousset-instrumented dogs became more osteoporotic than the other three groups. The rigidity of spinal instrumentation led to device-related osteoporosis (stress shielding) of the vertebra. However, as the rigidity of spinal instrumentation increased, there was an increased probability of achieving a successful spinal fusion. The improved mechanical properties of spinal instrumentation on spinal arthrodesis more than compensate for the occurrence of device-related osteoporosis in the spine.

  5. Controversies in Spinal Trauma and Evolution of Care.

    PubMed

    Harrop, James S; Rymarczuk, George N; Vaccaro, Alexander R; Steinmetz, Michael P; Tetreault, Lindsay A; Fehlings, Michael G

    2017-03-01

    Management of spinal trauma is a complex and rapidly evolving field. To optimize patient treatment algorithms, an understanding of and appreciation for current controversies and advancing technologies in the field of spinal trauma is necessary. Therefore, members of the AOSpine Knowledge Forum Trauma initiative used a modified Delphi method to compile a list of controversial issues and emerging technologies in the field of spinal trauma, and a list of the 14 most relevant topics was generated. A total of 45 440 manuscripts covering the breadth of spine and spinal trauma were initially identified. This broad search was then refined using the 14 categories felt to be most relevant to the current field of spinal trauma. The results were further pared down using inclusion criteria to select for the most relevant topics. The 8 remaining topics were classification schemes, treatment of vertebral compression fractures, treatment of burst fractures, timing of surgery in spinal trauma, hypothermia, the importance of global sagittal balance, lumbar subarachnoid drainage, and diffusion magnetic resonance imaging. These 8 topics were felt to be the most relevant, controversial, rapidly evolving, and most deserving of inclusion in this summary. In summary, despite recent advances, the field of spinal trauma has many ongoing points of controversy. We must continue to refine our ability to care for this patient population through education, research, and development. It is anticipated that the new AOSpine fracture classification system will assist with prospective research efforts.

  6. Ultrastructural aspects of metamorphic development of sensory ganglia in Bufo calamita.

    PubMed

    Alvarez, M P; Solas, M T; Fernández, B

    1993-01-01

    This EM investigation was undertaken with tadpoles of Bufo to study the fine structure of dorsal root ganglia at two different metamorphic stages. Ultrastructural examinations revealed a progressive development in the case of thoracic and lumbar sensory ganglia. The end of metamorphosis, however, did not mean the attainment of ganglion maturation which must continue through the juvenile life. By contrast, tail sensory ganglia became affected by a degenerative process that finishes at the end of metamorphosis with the total resorption of the tail.

  7. The basal ganglia: an overview of circuits and function.

    PubMed

    Utter, Amy A; Basso, Michele A

    2008-01-01

    The technique of electrical stimulation of brain tissue-known clinically as deep brain stimulation (DBS)-is at the fore of treatment of human neurological disease. Here we provide a general overview highlighting the anatomy and circuitry of the basal ganglia (BG). We introduce common disease states associated with BG dysfunction and current hypotheses of BG function. Throughout this introductory review we direct the reader to other reviews in this special issue of Neuroscience and Biobehavioral Reviews highlighting the interaction between basic science and clinical investigation to more fully understand the BG in both health and disease.

  8. Alphaherpesvirus DNA replication in dissociated human trigeminal ganglia.

    PubMed

    Cohrs, Randall J; Badani, Hussain; Bos, Nathan; Scianna, Charles; Hoskins, Ian; Baird, Nicholas L; Gilden, Don

    2016-10-01

    Analysis of the frequency and PCR-quantifiable abundance of herpes simplex virus type 1 (HSV-1) and varicella zoster virus (VZV) DNA in multiple biological replicates of cells from dissociated randomly distributed human trigeminal ganglia (TG) of four subjects revealed an increase in both parameters and in both viruses during 5 days of culture, with no further change by 10 days. Dissociated TG provides a platform to analyze initiation of latent virus DNA replication within 5 days of culture.

  9. Histological verification of the prehypogastric and ovarian ganglia confirms a bilaterally symmetrical organization of the ganglia comprising the aortic plexus in female human cadavers.

    PubMed

    Beveridge, Tyler S; Johnson, Marjorie; Power, Nicholas E; Allman, Brian L

    2016-05-01

    The aortic plexus is a network of sympathetic nerves positioned along the infrarenal abdominal aorta. Recently, we characterized the aortic plexus and its ganglia (inferior mesenteric, left/right spermatic, and prehypogastric ganglion) in males; however, the literature minimally describes its anatomy in females. In the present study, we conducted the first histological examination of the left and right ovarian ganglia, while also investigating whether females, like males, exhibit a prehypogastric ganglion. The ganglia were dissected from embalmed (n = 32) and fresh (n = 1) human cadavers, and H&E staining was used to confirm the presence of a left ovarian ganglion in 31/31 specimens, a right ovarian ganglion in 29/29 specimens and a prehypogastric ganglion in 25/28 specimens. Comparable to the topographic arrangement in males, there is a bilateral organization of the ganglia comprising the aortic plexus in females. More specifically, the left and right ovarian ganglia were positioned in close relation to their respective ovarian artery, whereas the prehypogastric ganglion was positioned within the right cord of the aortic plexus, contralateral to the inferior mesenteric ganglion. Using immunohistochemistry, it was shown that all ganglia from the fresh cadaver stained positive for tyrosine hydroxylase, thereby confirming their sympathetic nature. Having provided the first topographical and histological characterization of the ovarian and prehypogastric ganglia in females, future studies should seek to determine their specific function.

  10. Traumatic bilateral basal ganglia bleed: A report of rare two cases and review of the literature

    PubMed Central

    Kankane, Vivek Kumar; Gupta, Tarun Kumar; Jaiswal, Gaurav

    2016-01-01

    Traumatic basal ganglia hemorrhage (TBGH) is relatively uncommon. Bilateral basal ganglia hematoma after trauma is extremely rare and is limited to case reports. We report two cases of traumatic bilateral basal ganglia hemorrhage and review the literature in brief. Both cases were managed conservatively. The general incidence of TBGH is reported between 2.4% and 3% of closed head injury. However, the incidence is higher in postmortem studies (9.8%). Bilateral traumatic basal ganglia hematoma is extremely rare. Descriptions are limited to case reports. PMID:27695573

  11. Probing ganglia dissolution and mobilization in a water-saturated porous medium using MRI

    SciTech Connect

    Johns, M.L.; Gladden, L.F.

    2000-05-01

    Magnetic resonance imaging (MRI) is used to probe the evolution of geometric characteristics such as the volume, shape, surface area, and cluster size of octanol ganglia trapped in a model porous medium, in this case a packing of spheres, as they dissolve into a mobile aqueous phase. The resulting pore-scale information is used to assess various assumptions used in existing models of the dissolution process. Dissolution of the ganglia was characterized by a reduction in the overall number of ganglia with little effect on the shape and mean of the volume distribution of the ganglia. This apparently anomalous result is explained by dissolution of the ganglia until they reach a critical size, which is dependent on the structure of the pore space, at which point they are mobilized and subsequently removed from the porous medium. The shape of the entrapped ganglia is characterized by a fractal dimension in the range 2.2--2.3, suggesting that models which assume a Euclidean geometry for the entrapped ganglia are appropriate. No significant change in the shape of entrapped ganglia is observed during dissolution. In agreement with the results of earlier workers, most hydrocarbon ganglia exist as singlets within the pore structure.

  12. Expression of varicella-zoster virus and herpes simplex virus in normal human trigeminal ganglia

    SciTech Connect

    Vafai, A.; Wellish, M.; Devlin, M.; Gilden, D.H. ); Murray, R.S. Veterans Administration Medical Center, Denver, CO )

    1988-04-01

    Lysates of radiolabeled explants from four human trigeminal ganglia were immunoprecipitated with antibodies to varicella-zoster virus (VZV) and to herpes simplex virus. Both herpes simplex virus- and VZV-specific proteins were detected in lysates of all four ganglia. Absence of reactivity in ganglion explants with monoclonal antibodies suggested that herpes simplex virus and VZV were not reactivated during the culture period. In situ hybridization studies demonstrated the presence of RNA transcripts from the VZV immediate early gene 63. This approach to the detection of herpes simplex virus and VZV expression in human ganglia should facilitate analysis of viral RNA and proteins in human sensory ganglia.

  13. Spinal Muscular Atrophy (SMA)

    MedlinePlus

    ... Lessons? Visit KidsHealth in the Classroom What Other Parents Are Reading Your Child's Development (Birth to 3 Years) Feeding Your 1- to 3-Month-Old Feeding Your 4- to 7-Month-Old Feeding Your 8- to 12-Month-Old Feeding Your 1- to 2-Year-Old Spinal ... > For Parents > Spinal Muscular Atrophy (SMA) Print A A A ...

  14. What Is Spinal Stenosis?

    MedlinePlus

    ... and problems with joints. Rheumatoid arthritis:  Affects most people at a younger age than osteoarthritis.  Causes the soft tissues of the joints to swell and can affect the internal organs and systems.  Is not a common cause of spinal ... Conditions Some people are born with conditions that cause spinal stenosis. ...

  15. Differences in spinal distribution and neurochemical phenotype of colonic afferents in mouse and rat.

    PubMed

    Christianson, Julie A; Traub, Richard J; Davis, Brian M

    2006-01-10

    Visceral pain is a prevalent clinical problem and one of the most common ailments for which patients seek medical attention. Recent studies have described many of the physiological properties of visceral afferents, but not much is known regarding their anatomical characteristics. To determine the spinal distribution and neurochemical phenotype of colonic afferents in rodents, Alexa Fluor-conjugated cholera toxin-beta (CTB) was injected subserosally into the proximal and distal portions of the descending colon in Sprague Dawley rats and C57Bl/6 mice. Dorsal root ganglia (T10-S2) were processed for fluorescent immunohistochemistry and visualized by confocal microscopy. In the mouse, CTB-positive neurons were most numerous in the lumbosacral region (LS; L6-S1), with a smaller contribution in the thoracolumbar ganglia (TL; T13-L1). In contrast, CTB-positive neurons in the rat were most numerous in the TL ganglia, with a smaller contribution in the LS ganglia. The vast majority of CTB-positive neurons in both mouse and rat were positive for TRPV1 and CGRP and most likely unmyelinated, in that most colonic afferents were not positive for neurofilament heavy chain. In the mouse, the TL ganglia had a significantly higher percentage of TRPV1- and CGRP-positive neurons than did the LS ganglia, whereas no differences were observed in the rat. The high incidence of TRPV1-positive colonic afferents in rodents suggests that hypersensitivity from the viscera may be partially a TRPV1-mediated event, thereby providing a suitable target for the treatment of visceral pain.

  16. Spinal arachnoid pseudocysts in 10 rottweilers.

    PubMed

    Jurina, K; Grevel, V

    2004-01-01

    Ten rottweilers presenting with spinal arachnoid pseudocysts were investigated. In six dogs, the lesions were localised dorsally at C2-C3; in three dogs, dorsally and ventrally at C5-C6; and, in one dog, dorsally and ventrally at C6-C7. Clinical signs were consistent with focal compression of the affected spinal cord segments. The animals showed ataxia of all four limbs, with truncal ataxia and marked hypermetria in cases of C2-C3 involvement, or ambulatory tetraparesis in cases of C5-C6 or C6-C7 involvement. Other than signs indicative of spina bifida in one dog, no abnormalities could be detected on plain radiographs. Myelography was used to define the localisation and extent of the pseudocysts. Additional information was obtained using magnetic resonance imaging in five dogs. Five dogs underwent a dorsal laminectomy; in three cases, the pseudocyst was treated by marsupialisation and, in two, by durectomy.

  17. Spinal Myoclonus After Spinal Cord Injury

    PubMed Central

    Calancie, Blair

    2006-01-01

    Background/Objective: In the course of examining spinal motor function in many hundreds of people with traumatic spinal cord injury, we encountered 6 individuals who developed involuntary and rhythmic contractions in muscles of their legs. Although there are many reports of unusual muscle activation patterns associated with different forms of myoclonus, we believe that certain aspects of the patterns seen with these 6 subjects have not been previously reported. These patterns share many features with those associated with a spinal central pattern generator for walking. Methods: Subjects in this case series had a history of chronic injury to the cervical spinal cord, resulting in either complete (ASIA A; n = 4) or incomplete (ASIA D; n = 2) quadriplegia. We used multi-channel electromyography recordings of trunk and leg muscles of each subject to document muscle activation patterns associated with different postures and as influenced by a variety of sensory stimuli. Results: Involuntary contractions spanned multiple leg muscles bilaterally, sometimes including weak abdominal contractions. Contractions were smooth and graded and were highly reproducible in rate for a given subject (contraction rates were 0.3–0.5 Hz). These movements did not resemble the brief rapid contractions (ie, "jerks") ascribed to some forms of spinal myoclonus. For all subjects, the onset of involuntary muscle contraction was dependent upon hip angle; contractions did not occur unless the hips (and knees) were extended (ie, subjects were supine). In the 4 ASIA A subjects, contractions occurred simultaneously in all muscles (agonists and antagonists) bilaterally. In sharp contrast, contractions in the 2 ASIA D subjects were reciprocal between agonists and antagonists within a limb and alternated between limbs, such that movements in these 2 subjects looked just like repetitive stepping. Finally, each of the 6 subjects had a distinct pathology of their spinal cord, nerve roots, distal trunk

  18. Basal Ganglia Calcification with Tetanic Seizure Suggest Mitochondrial Disorder.

    PubMed

    Finsterer, Josef; Enzelsberger, Barbara; Bastowansky, Adam

    2017-04-09

    BACKGROUND Basal ganglia calcification (BGC) is a rare sporadic or hereditary central nervous system (CNS) abnormality, characterized by symmetric or asymmetric calcification of the basal ganglia. CASE REPORT We report the case of a 65-year-old Gypsy female who was admitted for a tetanic seizure, and who had a history of polyneuropathy, restless-leg syndrome, retinopathy, diabetes, hyperlipidemia, osteoporosis with consecutive hyperkyphosis, cervicalgia, lumbalgia, struma nodosa requiring thyroidectomy and consecutive hypothyroidism, adipositas, resection of a vocal chord polyp, arterial hypertension, coronary heart disease, atheromatosis of the aorta, peripheral artery disease, chronic obstructive pulmonary disease, steatosis hepatis, mild renal insufficiency, long-term hypocalcemia, hyperphosphatemia, impingement syndrome, spondylarthrosis of the lumbar spine, and hysterectomy. History and clinical presentation suggested a mitochondrial defect which also manifested as hypoparathyroidism or Fanconi syndrome resulting in BGC. After substitution of calcium, no further tetanic seizures occurred. CONCLUSIONS Patients with BGC should be investigated for a mitochondrial disorder. A mitochondrial disorder may also manifest as tetanic seizure.

  19. Monitoring Temperature and Fan Speed Using Ganglia and Winbond Chips

    SciTech Connect

    McCaffrey, Cattie; /SLAC

    2006-09-27

    Effective monitoring is essential to keep a large group of machines, like the ones at Stanford Linear Accelerator Center (SLAC), up and running. SLAC currently uses Ganglia Monitoring System to observe about 2000 machines, analyzing metrics like CPU usage and I/O rate. However, metrics essential to machine hardware health, such as temperature and fan speed, are not being monitored. Many machines have a Winbond w83782d chip which monitors three temperatures, two of which come from dual CPUs, and returns the information when the sensor command is invoked. Ganglia also provides a feature, gmetric, that allows the users to monitor their own metrics and incorporate them into the monitoring system. The programming language Perl is chosen to implement a script that invokes the sensors command, extracts the temperature and fan speed information, and calls gmetric with the appropriate arguments. Two machines were used to test the script; the two CPUs on each machine run at about 65 Celsius, which is well within the operating temperature range (The maximum safe temperature range is 77-82 Celsius for the Pentium III processors being used). Installing the script on all machines with a Winbond w83782d chip allows the SLAC Scientific Computing and Computing Services group (SCCS) to better evaluate current cooling methods.

  20. Basal ganglia circuits for reward value-guided behavior.

    PubMed

    Hikosaka, Okihide; Kim, Hyoung F; Yasuda, Masaharu; Yamamoto, Shinya

    2014-01-01

    The basal ganglia are equipped with inhibitory and disinhibitory mechanisms that enable a subject to choose valuable objects and actions. Notably, a value can be determined flexibly by recent experience or stably by prolonged experience. Recent studies have revealed that the head and tail of the caudate nucleus selectively and differentially process flexible and stable values of visual objects. These signals are sent to the superior colliculus through different parts of the substantia nigra so that the animal looks preferentially at high-valued objects, but in different manners. Thus, relying on short-term value memories, the caudate head circuit allows the subject's gaze to move expectantly to recently valued objects. Relying on long-term value memories, the caudate tail circuit allows the subject's gaze to move automatically to previously valued objects. The basal ganglia also contain an equivalent parallel mechanism for action values. Such flexible-stable parallel mechanisms for object and action values create a highly adaptable system for decision making.

  1. Mobilization of NAPL ganglia due to dissolution: Effect on modeling

    SciTech Connect

    Baldwin, C.A.

    1997-12-31

    The contamination of groundwater from Nonaqueous Phase Liquids (NAPLs) poses a serious threat to those who consume it. After a spill or leakage, NAPLs become trapped as small, discrete ganglia which dissolve over time, contaminating water flowing through the region. Models of NAPL dissolution have failed to provide a predictive representation of real spills. One very common simplification made in one-dimensional dissolution models is that ganglia are stationary throughout the dissolution process. This assumption is typically justified by arguing that the pressure gradients across the length of any ganglion are not great enough for its displacement. A recent experiment using Magnetic Resonance Imaging (MRI) to image ganglion structure during a dissolution experiment showed that substantial displacement occurred at pressures well below those normally thought to induce motion. Typically, this displacement was seen early in the dissolution process, and it has been hypothesized that displacement can be attributed to mechanical instabilities which arise as a ganglion loses volume. This work discusses the evidence for dissolution-induced displacement and its implications for modeling efforts.

  2. Comparison of Naloxone and Thyrotropin-Releasing Hormone in the Treatment of Experimental Spinal Injury: Endogenous Opioids and Experimental Spinal Injury.

    DTIC Science & Technology

    1983-09-30

    For these reasons we evaluated TRH treatment in a feline model of cervical spinal cord injury (8). Animals treated with -1...photomicrograph of lung illustrates severe pulmonary edema. Alveoli are filled with an eosinophilic , proteinaceous fluid. Scattered macrophages are...compression trauma to the feline spinal cord. J Neurosurg 55:200-208, 1981 26. Meyer GA, Berman IR, Dote DB, et al: Hemodynamic responses to acute

  3. Complications in the management of metastatic spinal disease

    PubMed Central

    Dunning, Eilis Catherine; Butler, Joseph Simon; Morris, Seamus

    2012-01-01

    Metastatic spine disease accounts for 10% to 30% of new cancer diagnoses annually. The most frequent presentation is axial spinal pain. No treatment has been proven to increase the life expectancy of patients with spinal metastasis. The goals of therapy are pain control and functional preservation. The most important prognostic indicator for spinal metastases is the initial functional score. Treatment is multidisciplinary, and virtually all treatment is palliative. Management is guided by three key issues; neurologic compromise, spinal instability, and individual patient factors. Site-directed radiation, with or without chemotherapy is the most commonly used treatment modality for those patients presenting with spinal pain, causative by tumours which are not impinging on neural elements. Operative intervention has, until recently been advocated for establishing a tissue diagnosis, mechanical stabilization and for reduction of tumor burden but not for a curative approach. It is treatment of choice patients with diseaseadvancement despite radiotherapy and in those with known radiotherapy-resistant tumors. Vertebral resection and anterior stabilization with methacrylate or hardware (e.g., cages) has been advocated.Surgical decompression and stabilization, however, along with radiotherapy, may provide the most promising treatment. It stabilizes the metastatic deposited areaand allows ambulation with pain relief. In general, patients who are nonambulatory at diagnosis do poorly, as do patients in whom more than one vertebra is involved. Surgical intervention is indicated in patients with radiation-resistant tumors, spinal instability, spinal compression with bone or disk fragments, progressive neurologic deterioration, previous radiation exposure, and uncertain diagnosis that requires tissue diagnosis. The main goal in the management of spinal metastatic deposits is always palliative rather than curative, with the primary aim being pain relief and improved mobility

  4. Protrusion of a rod into the spinal canal 10 years after segmental lumbar spine surgery.

    PubMed

    Cai, Siyi; Kong, Xiangyi; Yan, Chengrui; Wang, Yipeng; Wan, Xueshuai; Zhang, Jialu; Qiu, Guixing; Yu, Keyi

    2017-03-01

    The objective of this article is to report an unusual case of a spinal rod that protruded into the spinal canal after lumbar spine surgery.Only 4 cases of spinal rod migration with protrusion into the spinal canal have been reported. This is the first report of a case involving the use of posterior low lumbar segmental instrumentation with a screw-rod system. The left side of the rod gradually migrated and finally protruded into the canal and compressed the cord.A 60-year-old woman presented with pain and numbness of the posterior aspect of the left leg after a long-distance walk. Intermittent claudication became worse, and she developed pain and numbness in the perineal region. An x-ray showed that the left side of a spinal rod among the segmental spinal instruments that had been placed 10 years previously had protruded into the spinal canal.We removed the rod and decompressed the canal at the level of L5-S1. The patient became totally asymptomatic.Rods used as spinal instrumentation have the possibility of protruding into the spinal canal and endangering the nervous system. Long-term follow-up with radiological examinations should be conducted upon completion of spinal operations conducting using instrumentation.

  5. Protrusion of a rod into the spinal canal 10 years after segmental lumbar spine surgery

    PubMed Central

    Cai, Siyi; Kong, Xiangyi; Yan, Chengrui; Wang, Yipeng; Wan, Xueshuai; Zhang, Jialu; Qiu, Guixing; Yu, Keyi

    2017-01-01

    Abstract The objective of this article is to report an unusual case of a spinal rod that protruded into the spinal canal after lumbar spine surgery. Only 4 cases of spinal rod migration with protrusion into the spinal canal have been reported. This is the first report of a case involving the use of posterior low lumbar segmental instrumentation with a screw–rod system. The left side of the rod gradually migrated and finally protruded into the canal and compressed the cord. A 60-year-old woman presented with pain and numbness of the posterior aspect of the left leg after a long-distance walk. Intermittent claudication became worse, and she developed pain and numbness in the perineal region. An x-ray showed that the left side of a spinal rod among the segmental spinal instruments that had been placed 10 years previously had protruded into the spinal canal. We removed the rod and decompressed the canal at the level of L5-S1. The patient became totally asymptomatic. Rods used as spinal instrumentation have the possibility of protruding into the spinal canal and endangering the nervous system. Long-term follow-up with radiological examinations should be conducted upon completion of spinal operations conducting using instrumentation. PMID:28328849

  6. Prodynorphine opioid peptides and aspartate aminotransferase studied in spinal cord and sensory neurons

    SciTech Connect

    Sweetnam, P.M.

    1985-01-01

    An objective of this research was to obtain evidence for the synthesis and release of newly discovered opioid peptides, such as dynorphin, in spinal cord and sensory neurons. Several specific antisera were used to visualize dynorphin and related peptides in spinal cord and dorsal root ganglion neurons in dissociated cell culture. Antisera specific for the midportion of the dynorphin molecule revealed a subpopulation of spinal cord neurons with dense immunoreactive dynorphin in cell perikarya, but none in their associated neurites. Antisera specific for either the amino or carboxy terminal sequences of the molecule produced intense immunoreactivity in both cell perikarya and neurites of spinal neurons. These data suggest the cleavage products of dynorphin and not the complete molecule are possible neurotransmitters in the spinal cord. Additional evidence in support of this hypothesis was derived from radioimmunoassays of these cells and their culture medium following depolarization induced by elevated extracellular potassium. Antisera against aspartate aminotransferase revealed no differentially elevated immunoreactive aspartate aminotransferase in tissue sections of spinal cord or dorsal root ganglia.

  7. Spinal cordectomy: A new hope for morbid spinal conditions.

    PubMed

    Konar, Subhas K; Maiti, Tanmoy K; Bir, Shyamal C; Nanda, Anil

    2017-01-01

    A spinal cordectomy is a treatment option for several disorders of the spinal cord like post-traumatic syringomyelia, spinal cord tumor and myelomeningocele. We have done a systematic analysis of all reported cases of spinal cordectomy to investigate the possible outcomes and complications. A PubMed search was performed for literature published from 1949 to 2015 with search words "spinal cordectomy", "spinal cord transection" and "cordectomy for malignant spinal cord tumors" to select articles containing information about the indication, outcome and complication of spinal cordectomy performed for diverse etiologies. Spinal cordectomy was performed for post-traumatic syrinx (76 cases), SPAM (2 cases), Central pain of spinal cord origin (22 cases), Spasticity (8 cases), Spinal tumors (16 cases) and Myelomeningocele (30 cases). Among the 76 cases, 60 cases fulfilled the inclusion criteria for our outcome analysis in terms of improvement, stabilization or deterioration after spinal cordectomy. The results showed 78.3% excellent improvement, 13.4% stable and 8.3% (5 cases) deterioration. The reported causes of failure of spinal cordectomy for post-traumatic syrinx were scarring of a proximal stump and severe arachnoid adhesion. Sixteen cases of spinal cordectomy related with spinal cord tumors have been reported. Also reported were seven cases of GBM, two cases of AA and one each case of anaplastic tanycytic ependymoma, schwanoma, neurofibroma, atypical meningioma and malignant ganglioglioma. Cordectomy shouldbe strongly considered in patients having malignant spinal cord tumors with complete motor loss and sensory loss below the level of the lesion as a means of preventing the spread of disease from the original tumor focus. Spinal cordectomy is a treatment option with a good outcome for post-traumatic spinal morbidity, spinal cord tumors and myelomeningocele. However, since it is an invasive and irreversible procedure, it is only considered when other options have

  8. Development of bioceramic material for spinal surgery implants

    NASA Astrophysics Data System (ADS)

    Sablina, T.; Savchenko, N.; Pshenichnyy, A.; Grigoriev, M.; Buyakova, S.; Kulkov, S.

    2016-07-01

    Highly porous zirconia-based ceramics were prepared. The ceramic samples sintered at 1600°C had porosities from 40% to 43%, with pore size ranges as follows: “big pore” 100-220 pm and “small pore” 0.8-8 pm. This makes the ceramic structure to be very similar to the structure of the natural spinal bone. The level of mechanical properties of the synthesized zirconia-based ceramics is determined by the pore sizes. The values of the compressive strength and the effective Young's modulus are very similar to those characteristics of the natural spinal bone.

  9. Distinct Hippocampal and Basal Ganglia Contributions to Probabilistic Learning and Reversal

    ERIC Educational Resources Information Center

    Shohamy, Daphna; Myers, Catherine E.; Hopkins, Ramona O.; Sage, Jake; Gluck, Mark A.

    2009-01-01

    The hippocampus and the basal ganglia are thought to play fundamental and distinct roles in learning and memory, supporting two dissociable memory systems. Interestingly, however, the hippocampus and the basal ganglia have each, separately, been implicated as necessary for reversal learning--the ability to adaptively change a response when…

  10. [Neurobiology of parkinsonism. I. Neural substrates an neurochemistry of the basal ganglia].

    PubMed

    Ponzoni, S; Garcia-Cairasco, N

    1995-09-01

    Movement disorders, in general, are characterized by a breakdown in the integrated coordination of posture and motion by multiple brain and muscular systems. In the expression of parkinsonism, in particular, critical and altered structures such as substantia nigra, appear to be related to the cortex-basal ganglia and thalamus-basal ganglia sub-circuits.

  11. Identification of different types of spinal afferent nerve endings that encode noxious and innocuous stimuli in the large intestine using a novel anterograde tracing technique.

    PubMed

    Spencer, Nick J; Kyloh, Melinda; Duffield, Michael

    2014-01-01

    In mammals, sensory stimuli in visceral organs, including those that underlie pain perception, are detected by spinal afferent neurons, whose cell bodies lie in dorsal root ganglia (DRG). One of the major challenges in visceral organs has been how to identify the different types of nerve endings of spinal afferents that transduce sensory stimuli into action potentials. The reason why spinal afferent nerve endings have been so challenging to identify is because no techniques have been available, until now, that can selectively label only spinal afferents, in high resolution. We have utilized an anterograde tracing technique, recently developed in our laboratory, which facilitates selective labeling of only spinal afferent axons and their nerve endings in visceral organs. Mice were anesthetized, lumbosacral DRGs surgically exposed, then injected with dextran-amine. Seven days post-surgery, the large intestine was removed. The characteristics of thirteen types of spinal afferent nerve endings were identified in detail. The greatest proportion of nerve endings was in submucosa (32%), circular muscle (25%) and myenteric ganglia (22%). Two morphologically distinct classes innervated myenteric ganglia. These were most commonly a novel class of intraganglionic varicose endings (IGVEs) and occasionally rectal intraganglionic laminar endings (rIGLEs). Three distinct classes of varicose nerve endings were found to innervate the submucosa and circular muscle, while one class innervated internodal strands, blood vessels, crypts of lieberkuhn, the mucosa and the longitudinal muscle. Distinct populations of sensory endings were CGRP-positive. We present the first complete characterization of the different types of spinal afferent nerve endings in a mammalian visceral organ. The findings reveal an unexpectedly complex array of different types of primary afferent endings that innervate specific layers of the large intestine. Some of the novel classes of nerve endings identified

  12. Symptomatic Large Spinal Extradural Arachnoid Cyst: A Case Report

    PubMed Central

    Cho, Ho-Yeon; Lee, Sun-Ho; Kim, Eun-Sang

    2015-01-01

    Spinal extradural arachnoid cysts (SEACs) are relatively rare cause of compressive myelopathy. SEACs can be either congenital or acquired, but the etiology and the mechanism for their development are still unclear. A number of cases have been reported in the literature, and the one-way valve mechanism is the most widely accepted theory which explains the expansion of cysts and spinal cord compression. We report two cases of SEAC in this article. Patients had intermittent, progressive cord compressing symptoms. MRI image showed large SEAC which caused compression of the spinal cord. Pre-operative cystography and CT myelography were performed to identify the communicating tract. Pre-operative epidural cystography showed a fistulous tract. The patients underwent primary closure of the dural defect which was a communicating tract. The operative finding (nerve root herniation through the tract) suggested that the SEAC developed through a checkvalve mechanism. Postoperatively, the patients had no surgical complications and symptoms were relieved. Based on our experience, preoperative identification of the communicating tract is important in surgical planning. Although surgical excision is the standard surgical treatment, primary closure of the dural defect which was a communicating tract can be an acceptable surgical strategy. PMID:26512289

  13. Effect of pressure on the release of radioactive glycine and gamma-aminobutyric acid from spinal cord synaptosomes

    SciTech Connect

    Gilman, S.C.; Colton, J.S.; Dutka, A.J.

    1987-11-01

    Exposure to high hydrostatic pressure produces neurological changes referred to as the high-pressure nervous syndrome (HPNS). Manifestations of HPNS include tremor, EEG changes, and convulsions. These symptoms suggest an alteration in synaptic transmission, particularly with inhibitory neural pathways. Because spinal cord transmission has been implicated in HPNS, this study investigated inhibitory neurotransmitter function in the cord at high pressure. Guinea pig spinal cord synaptosome preparations were used to study the effect of compression to 67.7 atmospheres. This study suggest that decreased tonic inhibitory regulation at the level of the spinal cord contributes to the hyperexcitability observed in animals with compression to high pressure.

  14. What Is Spinal Stenosis?

    MedlinePlus

    ... To order the Sports Injuries Handout on Health full-text version, please contact NIAMS using the contact information ... publication. To order the Spinal Stenosis Q&A full-text version, please contact NIAMS using the contact information ...

  15. Spinal cord trauma

    MedlinePlus

    ... Oh's Intensive Care Manual . 7th ed. Philadelphia, PA: Elsevier; 2014:chap 78. Bryce TN. Spinal cord injury. ... Physical Medicine and Rehabilitation . 5th ed. Philadelphia, PA: Elsevier; 2016:chap 49. Dalzell K, Nouri A, Fehlings ...

  16. Spinal Cord Injury 101

    MedlinePlus Videos and Cool Tools

    ... is "Braingate" research? What is the status of stem-cell research? How would stem-cell therapies work in the treatment of spinal cord injuries? What does stem-cell research on animals tell us? When can we ...

  17. Spinal Muscular Atrophy (SMA)

    MedlinePlus

    ... children with SMA develop spinal deformities, such as scoliosis (sideways curvature of the spine) and kyphosis (front- ... Magnetic Resonance Imaging (MRI) Brain and Nervous System Scoliosis Contact Us Print Resources Send to a friend ...

  18. Influence of Fatigue in Neuromuscular Control of Spinal Stability

    PubMed Central

    Granata, Kevin P.; Slota, Greg P.; Wilson, Sara E.

    2006-01-01

    Lifting-induced fatigue may influence neuromuscular control of spinal stability. Stability is primarily controlled by muscle recruitment, active muscle stiffness, and reflex response. Fatigue has been observed to affect each of these neuromuscular parameters and may therefore affect spinal stability. A biomechanical model of spinal stability was implemented to evaluate the effects of fatigue on spinal stability. The model included a 6-degree-of-freedom representation of the spine controlled by 12 deformable muscles from which muscle recruitment was determined to simultaneously achieve equilibrium and stability. Fatigue-induced reduction in active muscle stiffness necessitated increased antagonistic cocontraction to maintain stability resulting in increased spinal compression with fatigue. Fatigueinduced reduction in force-generating capacity limited the feasible set of muscle recruitment patterns, thereby restricting the estimated stability of the spine. Electromyographic and trunk kinematics from 21 healthy participants were recorded during sudden-load trials in fatigued and unfatigued states. Empirical data supported the model predictions, demonstrating increased antagonistic cocontraction during fatigued exertions. Results suggest that biomechanical factors including spinal load and stability should be considered when performing ergonomic assessments of fatiguing lifting tasks. Potential applications of this research include a biomechanical tool for the design of administrative ergonomic controls in manual materials handling industries. PMID:15151156

  19. The Purification of Choline Acetyltransferase of Squid-Head Ganglia

    PubMed Central

    Husain, S. S.; Mautner, Henry G.

    1973-01-01

    Choline acetyltransferase (EC 2.3.1.6) isolated from the head ganglia of squid could be purified by use of mercurial-Sepharose columns as well as Sepharose columns to which the enzyme inhibitor p-(m-bromophenyl)vinyl pyridinium had been attached. These columns, in conjunction with 30-55% ammonium sulfate precipitation, 40-30% ammonium sulfate extraction, chromatography on sulfopropyl-Sephadex and on cellulose phosphate and hydroxylapatite columns, led to the isolation of three factions of choline acetyltransferase ranging in activity from 1000 to 4000 μmole/mg of protein/per hr. Polyacrylamide gel electrophoresis suggests that two of these fractions are homogeneous. The squid choline acetyltransferase is different from the mammalian-brain enzymes in having a larger molecular weight under the conditions used and in being relatively poorly inhibited by styryl pyridinium compounds. Images PMID:4521199

  20. Methamphetamine increases basal ganglia iron to levels observed in aging.

    PubMed

    Melega, William P; Laćan, Goran; Harvey, Dennis C; Way, Baldwin M

    2007-10-29

    Increases in basal ganglia iron are well documented for neurodegenerative diseases but have not been associated with methamphetamine (METH). In this study, vervet monkeys that received two doses of METH (2 mg/kg, intramuscularly, 6 h apart) showed at 1 month, iron increases in substantia nigra pars reticulata and globus pallidus, with concurrent increases of ferritin-immunoreactivity and decreases of tyrosine hydroxylase-immunoreactivity in substantia nigra. At 1.5 years, substantia nigra tyrosine hydroxylase-immunoreactivity had recovered while iron and ferritin-immunoreactivity increases persisted. Globus pallidus and substantia nigra iron levels of the adult METH-exposed animals (age 5-9 years) were now comparable with those of drug-naive, aged animals (19-22 years), suggesting an aging-related condition that might render those regions more vulnerable to oxidative stress.

  1. Experience with examination of the spinal cord and peripheral nervous system (PNS) in mice: A brief overview.

    PubMed

    Krinke, Georg J; Herrmann, Annika; Körner, Annette; Landes, Christian; Sauner, Francine

    2014-09-01

    The representative areas for examination of the mouse peripheral nervous system are the spinal cord, containing central components of the peripheral nervous system that needs to be examined at least at cervical and lumbar level, the sciatic and the tibial nerve. Skeletal muscle samples should include the soleus muscle and the quadriceps femoris or long digital extensor, as well as the medial gastrocnemius. Examination can be extended to the thoracic spinal cord, lumbar dorsal root ganglia and spinal nerve roots, as well as the plantar nerve, and other areas of interest. Perfusion fixation is considered optimal for the nervous system; however, immersion fixation allows producing microscopic sections of excellent quality as well. Paraffin-embedded, hematoxylin and eosin-stained sections can be made from all areas, save for small nerves such as the tibial or plantar nerve, which are examined with advantage in hard plastic sections. It is possible to produce hard plastic sections also of the vertebral column, including the spinal cord, dorsal root ganglia and nerve roots. For special investigations, mice can be fixed in toto, decalcified, embedded and sectioned to reveal the areas of interest. In the mouse peripheral nerves, myelination progresses until the adult age. In aging peripheral nerves there is axonal atrophy, degeneration, nerve fiber loss, increase of collagen and sporadic demyelination, especially radiculoneuropathy. The dorsal root ganglia of untreated control animals show frequent cytoplasmic vacuolation. Axonal degeneration is distally, primary demyelination proximally accentuated. Mouse is not very sensitive to peripheral neurotoxicity: to induce toxic peripheral neuropathy mostly parenteral administration and/or newborn animals are used. Naturally occurring infection affecting the spinal cord and peripheral nerves is Theiler's encephalomyelitis virus inducing acute poliomyelitis or chronic demyelination. Any experimental results are to be assessed

  2. Imaging studies in patients with spinal pain

    PubMed Central

    Ferrari, Robert

    2016-01-01

    Abstract Objective To evaluate an a priori threshold for advanced imaging in patients with spinal pain. Design Patients with spinal pain in any region for 6 to 52 weeks were assessed to determine if radiologic studies beyond x-ray scans were indicated, including magnetic resonance imaging (MRI), computed tomography (CT), and radionuclide bone scans. An a priori threshold was set before MRI, CT, or bone scans would be considered. Those who did not have MRI, CT, or bone scans ordered were followed for at least 1 year to determine if any of them went on to be diagnosed with a more serious spinal disorder (eg, infection, fracture, spondylitis, tumour, neurologic compression). Setting Four large primary care clinics in Edmonton, Alta. Participants A total of 1003 consecutively presenting patients with symptoms suspected to be related to the spine (for a duration of generally 6 to 52 weeks) who had not already undergone advanced imaging and did not have a diagnosis of nonbenign back pain. Main outcome measures Number of cases of nonbenign spinal disorder in participants who underwent advanced imaging and participants who did not undergo advanced imaging (ie, did not have any red flags). Results There were 399 women (39.8%) and 604 men (60.2%). The mean (SD) age of the group was 47.2 (14.6) years. The mean (SD) duration of symptoms was 15.1 (8.6) weeks. Of the 1003 participants, 110 met an a priori threshold for undergoing at least 1 of MRI, CT, or bone scan. In these 110 participants, there were newly diagnosed cases of radiculopathy (n = 12), including a case of cauda equina syndrome; spondyloarthropathy (n = 6); occult fracture (n = 2); solitary metastasis (n = 1); epidural lipomatosis (n = 1); osteomyelitis (n = 1), and retroperitoneal hematoma (n = 1), each of which was considered likely to be the cause of the patient’s spinal symptoms. The remaining 893 participants were followed for at least 1 year and none showed evidence of a nonbenign cause of his or her

  3. [Meningitis after spinal anesthesia].

    PubMed

    Mouchrif, Issam; Berdaii, Adnane; Labib, Ismail; Harrandou, Moustapha

    2016-01-01

    Meningitis is a rare but serious complication of epidural and spinal anesthesia. Bacterial meningitis is mainly caused by Gram-positive cocci, implying an exogenous contamination which suggests a lack of asepsis. The evolution is usually favorable after treatment, but at the expense of increased health care costs and, sometimes, of significant neurological sequelae. We report a case of bacterial meningitis after spinal anesthesia for caesarean section.

  4. Modeling spinal cord biomechanics

    NASA Astrophysics Data System (ADS)

    Luna, Carlos; Shah, Sameer; Cohen, Avis; Aranda-Espinoza, Helim

    2012-02-01

    Regeneration after spinal cord injury is a serious health issue and there is no treatment for ailing patients. To understand regeneration of the spinal cord we used a system where regeneration occurs naturally, such as the lamprey. In this work, we analyzed the stress response of the spinal cord to tensile loading and obtained the mechanical properties of the cord both in vitro and in vivo. Physiological measurements showed that the spinal cord is pre-stressed to a strain of 10%, and during sinusoidal swimming, there is a local strain of 5% concentrated evenly at the mid-body and caudal sections. We found that the mechanical properties are homogeneous along the body and independent of the meninges. The mechanical behavior of the spinal cord can be characterized by a non-linear viscoelastic model, described by a modulus of 20 KPa for strains up to 15% and a modulus of 0.5 MPa for strains above 15%, in agreement with experimental data. However, this model does not offer a full understanding of the behavior of the spinal cord fibers. Using polymer physics we developed a model that relates the stress response as a function of the number of fibers.

  5. Canine spinal cord glioma.

    PubMed

    Rissi, Daniel R; Barber, Renee; Burnum, Annabelle; Miller, Andrew D

    2017-01-01

    Spinal cord glioma is uncommonly reported in dogs. We describe the clinicopathologic and diagnostic features of 7 cases of canine spinal cord glioma and briefly review the veterinary literature on this topic. The median age at presentation was 7.2 y. Six females and 1 male were affected and 4 dogs were brachycephalic. The clinical course lasted from 3 d to 12 wk, and clinical signs were progressive and associated with multiple suspected neuroanatomic locations in the spinal cord. Magnetic resonance imaging of 6 cases revealed T2-weighted hyperintense lesions with variable contrast enhancement in the spinal cord. All dogs had a presumptive clinical diagnosis of intraparenchymal neoplasia or myelitis based on history, advanced imaging, and cerebrospinal fluid analysis. Euthanasia was elected in all cases because of poor outcome despite anti-inflammatory or immunosuppressive treatment or because of poor prognosis at the time of diagnosis. Tumor location during autopsy ranged from C1 to L6, with no clear predilection for a specific spinal cord segment. The diagnosis was based on histopathology and the immunohistochemistry expression of glial fibrillary acidic protein, oligodendrocyte lineage transcription factor 2, 2',3'-cyclic-nucleotide 3'-phosphodiesterase, neuron-specific enolase, synaptophysin, and Ki-67. Diagnoses consisted of 4 cases of oligodendroglioma, 2 cases of gliomatosis cerebri, and 1 astrocytoma. This case series further defines the clinicopathologic features of canine spinal glioma and highlights the need for comprehensive immunohistochemistry in addition to routine histopathology to confirm the diagnosis of these tumors.

  6. Turbulence in Compressible Flows

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Lecture notes for the AGARD Fluid Dynamics Panel (FDP) Special Course on 'Turbulence in Compressible Flows' have been assembled in this report. The following topics were covered: Compressible Turbulent Boundary Layers, Compressible Turbulent Free Shear Layers, Turbulent Combustion, DNS/LES and RANS Simulations of Compressible Turbulent Flows, and Case Studies of Applications of Turbulence Models in Aerospace.

  7. Intervertebral disc extrusion and spinal decompression in a binturong (Arctictis binturong).

    PubMed

    Spriggs, Maria; Arble, Jason; Myers, Gwen

    2007-03-01

    A 10-yr-old binturong (Arctictis binturong) developed an acute onset of hind limb paralysis. Neurological examination revealed sensorimotor paraplegia. Myelography and computed tomography demonstrated a ventrolateral extradural compression of the spinal cord centered over the L3-L4 intervertebral disc space. Spinal decompression was performed via hemilaminectomy and excision of degenerate nucleus pulposus, confirmed by histopathologic examination. The binturong regained slight motor function by day 8 postoperatively but succumbed to pancreatitis 19 days postoperatively.

  8. Ankylosing Spondylitis: Patterns of Spinal Injury and Treatment Outcomes

    PubMed Central

    Yuksel, Kasım Zafer

    2016-01-01

    Study Design Retrospective review. Purpose We retrospectively reviewed our patients with ankylosing spondylitis (AS) to identify their patterns of spinal fractures to help clarify management strategies and the morbidity and mortality rates associated with this group of patients. Overview of Literature Because of the brittleness of bone and long autofused spinal segments in AS, spinal fractures are common even after minor trauma and often associated with overt instability. Methods Between January 1, 1998 and March 2011, 30 patients (23 males, 7 females; mean age, 70.43 years; range, 45 to 95 years) with the radiographic diagnosis of AS of the spinal column had 42 fractures. Eight patients presented with significant trauma, 17 after falls, and 5 after minor falls or no recorded trauma. Eleven patients presented with a neurological injury, ranging from mild sensory loss to quadriplegia. Results There were 16 compression and 10 transverse fractures, two Jefferson's fractures, one type II and two type III odontoid process fractures, and five fractures of the posterior spinal elements (including lamina and/or facet, three spinous process fractures, three transverse process fractures). Twenty-four fractures affected the craniocervical junction and/or cervical vertebrae, 17 were thoracic, and one involved the lumbar spine. The most affected vertebrae were C6 and T10. The mean follow-up was 29.9 months. One patient was lost to follow-up. Eighteen patients were treated conservatively with bed rest and bracing. Twelve patients underwent surgery for spinal stabilization either with an anterior, posterior or combined approach. Conclusions Nonsurgical treatment can be considered especially in the elderly patients with AS and spinal trauma but without instability or major neurological deficits. The nonfusion rate in conservatively treated patients is low. When treatment is selected for patients with spinal fractures and AS, the pattern of injury must be considered and the need

  9. Evaluation and management of spinal epidural abscess.

    PubMed

    DeFroda, Steven F; DePasse, J Mason; Eltorai, Adam E M; Daniels, Alan H; Palumbo, Mark A

    2016-02-01

    Spinal epidural abscess (SEA) is an uncommon and potentially catastrophic condition. SEA often presents a diagnostic challenge, as the "classic triad" of fever, spinal pain, and neurological deficit is evident in only a minority of patients. When diagnosis is delayed, irreversible neurological damage may ensue. To minimize morbidity, an appropriate level of suspicion and an understanding of the diagnostic evaluation are essential. Infection should be suspected in patients presenting with axial pain, fever, or elevated inflammatory markers. Although patients with no known risk factors can develop SEA, clinical concern should be heightened in the presence of diabetes, intravenous drug use, chronic renal failure, immunosuppressant therapy, or a recent invasive spine procedure. When the clinical profile is consistent with the diagnosis of SEA, gadolinium-enhanced magnetic resonance imaging of the spinal column should be obtained on an emergent basis to delineate the location and neural compressive effect of the abscess. Rapid diagnosis allows for efficient treatment, which optimizes the potential for a positive outcome.

  10. Parallel basal ganglia circuits for voluntary and automatic behaviour to reach rewards

    PubMed Central

    Hikosaka, Okihide

    2015-01-01

    The basal ganglia control body movements, value processing and decision-making. Many studies have shown that the inputs and outputs of each basal ganglia structure are topographically organized, which suggests that the basal ganglia consist of separate circuits that serve distinct functions. A notable example is the circuits that originate from the rostral (head) and caudal (tail) regions of the caudate nucleus, both of which target the superior colliculus. These two caudate regions encode the reward values of visual objects differently: flexible (short-term) values by the caudate head and stable (long-term) values by the caudate tail. These value signals in the caudate guide the orienting of gaze differently: voluntary saccades by the caudate head circuit and automatic saccades by the caudate tail circuit. Moreover, separate groups of dopamine neurons innervate the caudate head and tail and may selectively guide the flexible and stable learning/memory in the caudate regions. Studies focusing on manual handling of objects also suggest that rostrocaudally separated circuits in the basal ganglia control the action differently. These results suggest that the basal ganglia contain parallel circuits for two steps of goal-directed behaviour: finding valuable objects and manipulating the valuable objects. These parallel circuits may underlie voluntary behaviour and automatic skills, enabling animals (including humans) to adapt to both volatile and stable environments. This understanding of the functions and mechanisms of the basal ganglia parallel circuits may inform the differential diagnosis and treatment of basal ganglia disorders. PMID:25981958

  11. Parallel basal ganglia circuits for voluntary and automatic behaviour to reach rewards.

    PubMed

    Kim, Hyoung F; Hikosaka, Okihide

    2015-07-01

    The basal ganglia control body movements, value processing and decision-making. Many studies have shown that the inputs and outputs of each basal ganglia structure are topographically organized, which suggests that the basal ganglia consist of separate circuits that serve distinct functions. A notable example is the circuits that originate from the rostral (head) and caudal (tail) regions of the caudate nucleus, both of which target the superior colliculus. These two caudate regions encode the reward values of visual objects differently: flexible (short-term) values by the caudate head and stable (long-term) values by the caudate tail. These value signals in the caudate guide the orienting of gaze differently: voluntary saccades by the caudate head circuit and automatic saccades by the caudate tail circuit. Moreover, separate groups of dopamine neurons innervate the caudate head and tail and may selectively guide the flexible and stable learning/memory in the caudate regions. Studies focusing on manual handling of objects also suggest that rostrocaudally separated circuits in the basal ganglia control the action differently. These results suggest that the basal ganglia contain parallel circuits for two steps of goal-directed behaviour: finding valuable objects and manipulating the valuable objects. These parallel circuits may underlie voluntary behaviour and automatic skills, enabling animals (including humans) to adapt to both volatile and stable environments. This understanding of the functions and mechanisms of the basal ganglia parallel circuits may inform the differential diagnosis and treatment of basal ganglia disorders.

  12. A cadherin-based code for the divisions of the mouse basal ganglia.

    PubMed

    Hertel, Nicole; Krishna-K; Nuernberger, Monique; Redies, Christoph

    2008-06-01

    The expression of 12 different classic cadherins and delta-protocadherins was mapped in consecutive series of sections through the basal ganglia of the postnatal and adult mouse by in situ hybridization. A particular focus was the caudoputamen, which consists of patches (striosomes) and a surrounding matrix that is histologically uniform. The different areas within the caudoputamen are connected specifically to other parts of the basal ganglia and to other brain regions, for example, the substantia nigra. The molecules regulating the morphogenesis and functional connectivity of the basal ganglia are largely unknown. Previous studies suggested that cadherins, a large family of adhesion molecules, are involved in basal ganglia development. In the present work, we study the expression of 12 cadherins and show that the patch and matrix compartments of the caudoputamen express the cadherins differentially, although partial overlap is observed. Moreover, the cadherins are expressed in multiple and diverse gradients within the caudoputamen and other parts of the basal ganglia. The persistence of the expression patterns in the adult basal ganglia suggests the possibility that cadherins also play a role at adult stages. Our results suggest that cadherins provide a code of potentially adhesive cues that specify not only patch and matrix compartments but also multiple molecular gradients within the basal ganglia. This code may relate to patterns of connectivity.

  13. Somatostatin and its 2A receptor in dorsal root ganglia and dorsal horn of mouse and human: expression, trafficking and possible role in pain

    PubMed Central

    2014-01-01

    Background Somatostatin (SST) and some of its receptor subtypes have been implicated in pain signaling at the spinal level. In this study we have investigated the role of SST and its sst2A receptor (sst2A) in dorsal root ganglia (DRGs) and spinal cord. Results SST and sst2A protein and sst2 transcript were found in both mouse and human DRGs, sst2A-immunoreactive (IR) cell bodies and processes in lamina II in mouse and human spinal dorsal horn, and sst2A-IR nerve terminals in mouse skin. The receptor protein was associated with the cell membrane. Following peripheral nerve injury sst2A-like immunoreactivity (LI) was decreased, and SST-LI increased in DRGs. sst2A-LI accumulated on the proximal and, more strongly, on the distal side of a sciatic nerve ligation. Fluorescence-labeled SST administered to a hind paw was internalized and retrogradely transported, indicating that a SST-sst2A complex may represent a retrograde signal. Internalization of sst2A was seen in DRG neurons after systemic treatment with the sst2 agonist octreotide (Oct), and in dorsal horn and DRG neurons after intrathecal administration. Some DRG neurons co-expressed sst2A and the neuropeptide Y Y1 receptor on the cell membrane, and systemic Oct caused co-internalization, hypothetically a sign of receptor heterodimerization. Oct treatment attenuated the reduction of pain threshold in a neuropathic pain model, in parallel suppressing the activation of p38 MAPK in the DRGs Conclusions The findings highlight a significant and complex role of the SST system in pain signaling. The fact that the sst2A system is found also in human DRGs and spinal cord, suggests that sst2A may represent a potential pharmacologic target for treatment of neuropathic pain. PMID:24521084

  14. Use of intraoperative sodium tetradecyl sulfate for the treatment of a spinal epidural hemangioma. Technical note.

    PubMed

    Baig, Mirza N; Saquib, Syed; Christoforidis, Greg; Caragine, Louis P

    2007-08-01

    Spinal hemangiomas can be categorized into three different groups based on location. Vertebral body (VB) hemangiomas are frequent incidental findings on magnetic resonance (MR) imaging. There is a subdivision of these with spinal epidural extension that have been reported in the literature. Spinal hemangiomas can also be epidural without VB involvement; these are extremely rare with few reported cases in the thoracic epidural spinal column. The diagnosis and imaging characteristics as well as the surgical tools used in gross-total resection of spinal epidural hemangioma are not well understood. The authors present a detailed characterization of a spinal epidural hemangioma in a 30-year-old woman who presented with complaints of gradual onset of low-back pain that worsened over 1 year. The MR imaging findings indicated a large L2-S1 epidural spinal mass causing thecal sac compression. The patient underwent an L2-S1 laminectomy, and a vascular extradural mass was noted on the posterior aspect of the dura mater. Preoperative spinal angiography as well as intraoperative angiography was performed. Total resection of the tumor was achieved using intraoperative embolization with sodium tetradecyl sulfate and microscopic dissection. The postoperative MR imaging findings and clinical outcome were excellent. The findings and use of sodium tetradecyl sulfate in gross-total resection are discussed. The authors also review treatment modalities and demonstrate the utility and effectiveness of intraoperative sodium tetradecyl sulfate in grosstotal resection of large difficult spinal epidural hemangiomas.

  15. [Spinal and extra-spinal tumors mimicking discal herniation].

    PubMed

    Tamir, E; Mirovsky, Y; Robinson, D; Halperin, N

    1999-12-15

    Low back pain radiating to a limb is usually caused by lumbar disc herniation. Tumors of the spinal cord or near the sciatic or femoral plexus can cause neural compression and clinical signs similar to those of disc herniation. Such tumors are usually misdiagnosed as discal herniation and appropriate treatment is delayed. We present 4 men who had tumors causing low back pain radiating to the leg: a 70-year-old with metastatic squamous cell carcinoma of the lung, a 20-year-old with aneurysmal bone cyst of the vertebral column, a 52-year-old with retroperitoneal sarcoma and a 32-year-old who also had retroperitoneal sarcoma. Diagnosis and treatment were delayed because the clinical symptoms were ascribed to lumbar disc herniation. The latter 2 patients had CT-scans showing lumbar disc herniation, but similar findings are common among asymptomatic individuals. The differential diagnosis of low back pain radiating to the leg should include tumor when there is a history of cancer, pain not relieved by conservative treatment nor by lying down, pain is increased at night, pain accompanied by weight loss, and when physical examination demonstrates injury to more than 1 nerve root. In these circumstances work-up should include EMG, radioisotope scan and CT of the pelvis.

  16. Acquired cervical spinal arachnoid diverticulum in a cat.

    PubMed

    Adams, R J; Garosi, L; Matiasek, K; Lowrie, M

    2015-04-01

    A one-year-old, female entire, domestic, shorthair cat presented with acute onset non-ambulatory tetraparesis. Magnetic resonance imaging was consistent with a C3-C4 acute non-compressive nucleus pulposus extrusion and the cat was treated conservatively. The cat was able to walk after 10 days and was normal 2 months after presentation. The cat was referred five and a half years later for investigation of an insidious onset 3-month history of ataxia and tetraparesis. Magnetic resonance imaging of the cervical spine was repeated, demonstrating a spinal arachnoid diverticulum at C3 causing marked focal compression of the spinal cord. This was treated surgically with hemilaminectomy and durectomy. The cat improved uneventfully and was discharged 12 days later.

  17. Photoplethysmographic sensors for perfusion measurements in spinal cord tissue

    NASA Astrophysics Data System (ADS)

    Phillips, J. P.; Kyriacou, P. A.

    2011-08-01

    Sensors for recording photoplethysmographic signals from the nervous tissue of the spinal cord are described. The purpose of these sensors is to establish whether perfusion is compromised in various states of injury which occur in certain animal models of spinal cord injury, for example compression injury. Various measures of perfusion are applicable such as the amplitude of the photoplethysmograph signal and the oxygen saturation, measured using a dual wavelength configuration. Signals are usually compared to baseline measurements made in uninjured subjects. This paper describes two types of probe, one based on optical fibres, and one in which optotes are placed in direct contact with the tissue surface. Results from a study based on a compression model utilising a fibreoptic sensor are presented.

  18. Spinal accessory neuropathy, droopy shoulder, and thoracic outlet syndrome.

    PubMed

    Al-Shekhlee, Amer; Katirji, Bashar

    2003-09-01

    Droopy shoulder has been proposed as a cause of thoracic outlet syndrome. Two patients developed manifestations of neurovascular compression upon arm abduction, associated with unilateral droopy shoulder and trapezius muscle weakness caused by iatrogenic spinal accessory neuropathies following cervical lymph node biopsies. The first patient developed a cold, numb hand with complete axillary artery occlusion when his arm was abducted to 90 degrees. The second patient complained of paresthesias in digits 4 and 5 of the right hand, worsened by elevation of the arm, with nerve conduction findings of right lower trunk plexopathy (low ulnar and medial antebrachial cutaneous sensory nerve action potentials). Spinal accessory nerve grafting (in the first patient) coupled with shoulder strengthening physical exercises in both patients resulted in gradual improvement of symptoms in 2 years. These two cases demonstrate that unilateral droopy shoulder secondary to trapezius muscle weakness may cause compression of the thoracic outlet structures.

  19. Caspase-2 and microRNA34a/c regulate lidocaine-induced dorsal root ganglia apoptosis in vitro.

    PubMed

    Li, Yandong; Jia, Zhi; Zhang, Laizhu; Wang, Jianguo; Yin, Guangming

    2015-11-15

    Epidural administration of lidocaine may cause neurotoxicity in spinal cord dorsal root ganglia neurons (DRGNs). In this study, we explored the underling mechanisms of apoptotic pathways of lidocaine-induced apoptosis in DRGNs. Neonatal rat DRGNs were treated with lidocaine to induced apoptosis in vitro. Western blot showed caspase- (casp-) 2/3/9 proteins were all upregulated by lidocaine in DRGNs. However, inhibition of casp-2 protected lidocaine-induced apoptosis in DRGNs, whereas Casp3/9 inhibition did not. The possible upstream epigenetic regulators of casp-2, microRNA-34 (miR-34) family, including miR-34a/b/c, were evaluated by dual-luciferase reporter assay and qRT-PCR. We found miR-34a/c, but not miR-34b, were down-regulated in lidocaine-induced DRGN apoptosis. Subsequent upregulation of miR-34 family showed miR-34a/c were able to inhibit casp-2 and protect lidocaine-induced apoptosis in DRGNs, whereas miR-34b did not. Thus, out study shows that casp-2, in association with miR-34a/c was actively involved in lidocaine-induced apoptosis in DRGNs. Inhibiting casp-2 or upregulating miR-34a/c may provide novel meanings to protect local anesthetic-induced neurotoxicity.

  20. Controlled release of 6-aminonicotinamide from aligned, electrospun fibers alters astrocyte metabolism and dorsal root ganglia neurite outgrowth

    NASA Astrophysics Data System (ADS)

    Schaub, Nicholas J.; Gilbert, Ryan J.

    2011-08-01

    Following central nervous system (CNS) injury, activated astrocytes form a glial scar that inhibits the migration of axons ultimately leading to regeneration failure. Biomaterials developed for CNS repair can provide local delivery of therapeutics and/or guidance mechanisms to encourage cell migration into damaged regions of the brain or spinal cord. Electrospun fibers are a promising type of biomaterial for CNS injury since these fibers can direct cellular and axonal migration while slowly delivering therapy to the injury site. In this study, it was hypothesized that inclusion of an anti-metabolite, 6-aminonicotinamide (6AN), within poly-l-lactic acid electrospun fibers could attenuate astrocyte metabolic activity while still directing axonal outgrowth. Electrospinning parameters were varied to produce highly aligned electrospun fibers that contained 10% or 20% (w/w) 6AN. 6AN release from the fiber substrates occurred continuously over 2 weeks. Astrocytes placed onto drug-releasing fibers were less active than those cultured on scaffolds without 6AN. Dorsal root ganglia placed onto control and drug-releasing scaffolds were able to direct neurites along the aligned fibers. However, neurite outgrowth was stunted by fibers that contained 20% 6AN. These results show that 6AN release from aligned, electrospun fibers can decrease astrocyte activity while still directing axonal outgrowth.

  1. Latent Herpes Simplex Virus 1 Infection Does Not Induce Apoptosis in Human Trigeminal Ganglia

    PubMed Central

    Lindemann, Anja; Sinicina, Inga; Strupp, Michael; Brandt, Thomas; Hüfner, Katharina

    2015-01-01

    Herpes simplex virus 1 (HSV-1) can establish lifelong latency in human trigeminal ganglia. Latently infected ganglia contain CD8+ T cells, which secrete granzyme B and are thus capable of inducing neuronal apoptosis. Using immunohistochemistry and single-cell reverse transcription-quantitative PCR (RT-qPCR), higher frequency and transcript levels of caspase-3 were found in HSV-1-negative compared to HSV-1-positive ganglia and neurons, respectively. No terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) assay-positive neurons were detected. The infiltrating T cells do not induce apoptosis in latently infected neurons. PMID:25762734

  2. Epidural Injections for Spinal Pain

    MedlinePlus

    ... back or leg pain after spinal surgery) Other injuries to spinal nerves, vertebrae and surrounding tissues Bone ... Bleeding if a blood vessel is inadvertently damaged. Injury to the nerves at the injection site. Temporary ...

  3. Living with Spinal Cord Injury

    MedlinePlus

    ... to send and receive messages to and from the brain. About 200,000 people in the United States have spinal cord injuries. Most injuries occur from a traumatic event, according to the National Spinal Cord Injury ...

  4. Complete rat spinal cord transection as a faithful model of spinal cord injury for translational cell transplantation

    PubMed Central

    Lukovic, Dunja; Moreno-Manzano, Victoria; Lopez-Mocholi, Eric; Rodriguez-Jiménez, Francisco Javier; Jendelova, Pavla; Sykova, Eva; Oria, Marc; Stojkovic, Miodrag; Erceg, Slaven

    2015-01-01

    Spinal cord injury (SCI) results in neural loss and consequently motor and sensory impairment below the injury. There are currently no effective therapies for the treatment of traumatic SCI in humans. Various animal models have been developed to mimic human SCI. Widely used animal models of SCI are complete or partial transection or experimental contusion and compression, with both bearing controversy as to which one more appropriately reproduces the human SCI functional consequences. Here we present in details the widely used procedure of complete spinal cord transection as a faithful animal model to investigate neural and functional repair of the damaged tissue by exogenous human transplanted cells. This injury model offers the advantage of complete damage to a spinal cord at a defined place and time, is relatively simple to standardize and is highly reproducible. PMID:25860664

  5. Spectrum of Neuropathophysiology in Spinal Muscular Atrophy Type I

    PubMed Central

    Harding, Brian N.; Kariya, Shingo; Monani, Umrao R.; Chung, Wendy K.; Benton, Maryjane; Yum, Sabrina W.; Tennekoon, Gihan; Finkel, Richard S.

    2014-01-01

    Neuropathological findings within the CNS and PNS in patients with spinal muscular atrophy type I (SMA-I) were examined in relation to genetic, clinical and electrophysiological features. Five infants representing the full clinical spectrum of SMAI were examined clinically for compound motor action potential amplitude and SMN2 gene copy number; morphologic analyses of postmortem CNS, neuromuscular junction and muscle tissue samples were performed and SMN protein was assessed in muscle samples. The 2 clinically most severely affected patients had a single copy of the SMN2 gene; in addition to anterior horn cells, dorsal root ganglia and thalamus, neuronal degeneration in them was widespread in cerebral cortex, basal ganglia, pigmented nuclei, brainstem and cerebellum. Two typical SMA-I patients and a milder case each had 2 copies of the SMN2 gene and more restricted neuropathological abnormalities. Maturation of acetylcholine receptor subunits was delayed and the neuromuscular junctions were abnormally formed in the SMA-1 patients. Thus, the neuropathological findings in human SMA-I are similar to many findings in animal models; factors other than SMN2 copy number modify disease severity. We present a pathophysiologic model for SMA-I as a protein deficiency disease affecting a neuronal network with variable clinical thresholds. Because new treatment strategies improve survival of infants with SMA-I, a better understanding of these factors will guide future treatments. PMID:25470343

  6. Neuronal plasticity of trigeminal ganglia in mice following nerve injury

    PubMed Central

    Lynds, Randi; Lyu, Chuang; Lyu, Gong-Wei; Shi, Xie-Qi; Rosén, Annika; Mustafa, Kamal; Shi, Tie-Jun Sten

    2017-01-01

    Background Nerve injury may induce neuropathic pain. In studying the mechanisms of orofacial neuropathic pain, attention has been paid to the plastic changes that occur in the trigeminal ganglia (TGs) and nucleus in response to an injury of the trigeminal nerve branches. Previous studies have explored the impact of sciatic nerve injury on dorsal root ganglia (DRGs) and it has shown dramatic changes in the expression of multiple biomarkers. In large, the changes in biomarker expression in TGs after trigeminal nerve injury are similar to that in DRGs after sciatic nerve injury. However, important differences exist. Therefore, there is a need to study the plasticity of biomarkers in TGs after nerve injury in the context of the development of neuropathic pain-like behaviors. Aim The aim of this study was to investigate the plasticity of biomarkers associated with chronic persistent pain in TGs after trigeminal nerve injury. Materials and methods To mimic the chronic nature of the disorder, we used an intraoral procedure to access the infraorbital nerve (ION) and induced a nerve injury in mice. Immunohistochemistry and quantification were used for revealing the expression level of each biomarker in TGs after nerve injury. Results Two weeks after partial ION injury, immunohistochemistry results showed strongly upregulated expressions of activating transcription factor 3 and neuropeptide Y (NPY) in the ipsilateral TGs. Microglial cells were also activated after nerve injury. In regard to positive neuronal profile counting, however, no significant difference in expression was observed in galanin, substance P, calcitonin gene-related peptide, neuronal nitric oxide synthase, phosphorylated AKT, or P2X3 in ipsilateral TGs when compared to contralateral TGs. Conclusion In this study, the expression and regulation of biomarkers in TGs have been observed in response to trigeminal nerve injury. Our results suggest that NPY and Iba1 might play crucial roles in the pathogenesis of

  7. +Gz associated stenosis of the cervical spinal canal in fighter pilots.

    PubMed

    Hämäläinen, O; Toivakka-Hämäläinen, S K; Kuronen, P

    1999-04-01

    Previous magnetic resonance imaging (MRI) studies have shown that repeated exposure to +Gz forces can cause premature degenerative changes of the cervical spine (i.e. a work-related disease). This paper reports on two clinical cases of +Gz-associated degenerative cervical spinal stenosis caused by dorsal osteophytes in fighter pilots. Conventional x-rays and MRI were used to demonstrate narrowing of the cervical spinal canal. The first case was complicated by a C6-7 intervertebral disk prolapse and a congenitally narrow spinal canal. The second case involved progressive degenerative spinal stenosis in the C5-6 disk space which required surgery. The findings in this case were confirmed by surgery which showed posterior osteophytes and thickened ligaments compressing the cervical medulla. These two cases suggest that +Gz forces can cause degenerative spinal stenosis of the cervical spine. Flight safety may be jeopardized if symptoms and signs of medullar compression occur during high +Gz stress. It is recommended that student fighter pilots undergo conventional x-rays and MRI studies in order to screen out and reject candidates with a congenitally narrow spinal canal. These examination methods might be useful in fighter pilots' periodic medical check-ups in order to reveal acquired degenerative spinal stenosis.

  8. Cyclooxygenase-1 and -2 in spinally projecting neurons are involved in CRF-induced sympathetic activation.

    PubMed

    Yamaguchi, Naoko; Okada, Shoshiro

    2009-12-03

    Corticotropin-releasing factor (CRF) in the brain has been shown to stimulate sympathetic activity, leading to elevations of blood pressure, heart rate and plasma catecholamine levels and neuronal activation of the sympathetic ganglia and adrenal medulla. We previously reported that brain cyclooxygenase (COX), the rate-limiting enzyme in the synthesis of prostanoids, is involved in centrally administered CRF-induced sympathetic activation in rats. Therefore, the present study was designed to reveal the effect of centrally administered CRF (1.5 nmol/animal) on the expression of COX isozymes, COX-1 and COX-2, in spinally projecting neurons until 6h after the administration, using rats microinjected with a monosynaptic retrograde tracer into the intermediolateral cell column of the thoracic spinal cord. Retrogradely labeled neurons were detected in the paraventricular hypothalamic nucleus (PVN), locus coeruleus (LC), raphe pallidus nucleus and rostral ventrolateral medulla. Centrally administered CRF significantly increased the number of spinally projecting PVN neurons expressing COX-1 throughout the experimental period and those expressing COX-2 during only the late phase. CRF also increased the number of spinally projecting LC neurons expressing COX-2 throughout the experimental period. In other regions, the CRF administration had no effect on COXs expression in spinally projecting neurons. These results suggest that COX-1 and COX-2 in the PVN and COX-2 in the LC play roles in the CRF-induced sympathetic regulation in rats.

  9. Spinal Injuries in Children

    PubMed Central

    Basu, Saumyajit

    2012-01-01

    About 5% of spinal injuries occur in children – however the consequences to the society are devastating, all the more so because the cervical spine is more commonly affected. Anatomical differences with adults along with the inherent elasticity of the pediatric spine, makes these injuries a biomechanically separate entity. Hence clinical manifestations are unique, one of which is the Spinal Cord Injury Without Radiological Abnormality. With the advent of high quality MRI and CT scan along with digital X-ray, it is now possible to exactly delineate the anatomical location, geometrical configuration, and the pathological extent of the injury. This has improved the management strategies of these unfortunate children and the role of surgical stabilization in unstable injuries can be more sharply defined. However these patients should be followed up diligently because of the recognized long term complications of spinal deformity and syringomyelia. PMID:22855681

  10. Posterior Trans-Dural Repair of Iatrogenic Spinal Cord Herniation after Resection of Ossification of Posterior Longitudinal Ligament

    PubMed Central

    Kim, Hong-Ki; Kim, Ki-Jeong; Jahng, Tae-Ahn; Kim, Hyun-Jib

    2016-01-01

    Iatrogenic spinal cord herniation is a rare complication following spinal surgery. We introduce a posterior trans-dural repair technique used in a case of thoracic spinal cord herniation through a ventral dural defect following resection of ossification of the posterior longitudinal ligament (OPLL) in the cervicothoracic spine. A 51-year-old female was suffering from paraplegia after laminectomy alone for cervicothoracic OPLL. Magnetic resonance imaging revealed a severely compressed spinal cord with pseudomeningocele identified postoperatively. Cerebrospinal fluid leak and iatrogenic spinal cord herniation persisted despite several operations with duroplasty and sealing agent. Finally, the problems were treated by repair of the ventral dural defect with posterior trans-dural duroplasty. Several months after surgery, the patient could walk independently. This surgical technique can be applied to treat ventral dural defect and spinal cord herniation. PMID:27114779

  11. Noxious Colorectal Distention in Spinalized Rats Reduces Pseudorabies Virus Labeling of Sympathetic Neurons

    PubMed Central

    Duale, Hanad; Lyttle, Travis S.; Smith, Bret N.

    2010-01-01

    Abstract The retrograde transsynaptic tracer pseudorabies virus (PRV) has been widely used as a marker for synaptic connectivity in the spinal cord. Notably, the PRV-152 construct expresses enhanced green fluorescent protein (EGFP). We recently reported a significant attenuation of PRV-152 labeling of the intermediolateral cell column (IML) and celiac ganglia after complete T4 spinal cord transection versus sham injury in rats at 96 h after PRV-152 inoculation of the left kidney. Here we found a significant increase in noxious colorectal distention (CRD)-evoked c-Fos expression in spinal cords of injured versus sham rats without PRV infection. In order to assess whether enhancing neuronal activity in spinalized rats might increase PRV-152 labeling, we subjected awake spinalized rats to 1.5 h of intermittent noxious CRD either: (1) just prior to inoculation, or (2) 96 h after inoculation (n = 3/group). Equal numbers of spinalized rats in both groups received PRV-152 inoculations without CRD (non-stimulated; n = 3/group). At 96 h post-inoculation fixed spinal cords and left celiac ganglionic tissues were assessed for the distribution and quantification of EGFP-labeled cells. The injured cohort that received CRD just prior to PRV injection showed a significant reduction in EGFP-labeled cells in both the IML and left celiac ganglion compared to non-stimulated injured rats. In contrast, the injured cohort that received CRD 96 h after PRV-152 inoculation showed no differences in EGFP-labeled cell numbers in the IML or celiac ganglia versus non-stimulated injured rats. Interestingly, microglia near c-Fos-positive cells after acute CRD appeared more reactive compared to non-stimulated spinalized rats, and activated microglial cells markedly reduce viral transduction and progression following PRV inoculation of the CNS. Hence our results imply that increased CRD-induced c-Fos expression in the injured paradigm, prior to but not after PRV injection, further

  12. Schwannosis induced medullary compression in VACTERL syndrome.

    PubMed

    Treacy, A; Redmond, M; Lynch, B; Ryan, S; Farrell, M; Devaney, D

    2009-01-01

    A 7-year-old boy with a history of VACTERL syndrome was found collapsed in bed. MRI had shown basilar invagination of the skull base and narrowing of the foramen magnum. Angulation, swelling and abnormal high signal at the cervicomedullary junction were felt to be secondary to compression of the medulla. Neuropathologic examination showed bilateral replacement of the medullary tegmentum by an irregularly circumscribed cellular lesion which was composed of elongated GFAP/S 100-positive cells with spindled nuclei and minimal atypia. The pathologic findings were interpreted as intramedullary schwannosis with mass effect. Schwannosis, is observed in traumatized spinal cords where its presence may represent attempted, albeit aberrant, repair by inwardly migrating Schwann cells ofperipheral origin. In our view the compressive effect of the basilar invagination on this boy's medulla was of sufficient magnitude to have caused tumoral medullary schwannosis with resultant intermittent respiratory compromise leading to reflex anoxic seizures.

  13. Marked antiinflammatory effects of decentralization of the superior cervical ganglia

    PubMed Central

    1990-01-01

    Intravenous challenge with parasite antigens in Nippostrongylus brasiliensis-sensitized rats resulted in anaphylactic shock and, in some animals, death. Surviving animals showed significant drop in mean arterial blood pressure, cardiac output, and blood flow to the trachea, bronchioles, and mesentery. After anaphylaxis, changes in the cellular and protein composition in bronchoalveolar lavage fluids (BALF) were assessed. 8 h after antigen challenge, there was significant influx of inflammatory cells and an increase in the levels of histamine and serum- derived immunoglobulins (IgG and IgM) in BALF. Chemotactic activity for neutrophils was also present in BALF. Once we established this anaphylaxis-induced model of pulmonary inflammation, we sought to determine whether or not the superior cervical ganglia (SCG) modulate this inflammation. We performed bilateral superior cervical ganglionectomy or decentralization of the SCG. Our results show that decentralization significantly reduced mortality (by 68%) after anaphylaxis. Furthermore, the increases in levels of serum-derived proteins, histamine, and influx of cells (especially neutrophils) observed in BALF after anaphylaxis were attenuated by both decentralization and ganglionectomy. By contrast, hemodynamic parameters in the respiratory tract and the presence of neutrophil chemotactic activity in BALF were not influenced by decentralization. Thus, the severity of pulmonary inflammation initiated by systemic anaphylaxis is depressed by bilateral ganglionectomy or decentralization of SCG. PMID:2258709

  14. The integrative function of the basal ganglia in instrumental conditioning.

    PubMed

    Balleine, Bernard W; Liljeholm, Mimi; Ostlund, Sean B

    2009-04-12

    Recent research in instrumental conditioning has focused on the striatum, particularly the role of the dorsal striatum in the learning processes that contribute to instrumental performance in rats. This research has found evidence of what appear to be parallel, functionally and anatomically distinct circuits involving dorsomedial striatum (DMS) and dorsolateral striatum (DLS) that contribute to two independent instrumental learning processes. Evidence suggests that the formation of the critical action-outcome associations mediating goal-directed action are localized to the dorsomedial striatum, whereas the sensorimotor connections that control the performance of habitual actions are localized to the dorsolateral striatum. In addition to the dorsal striatum, these learning processes appear to engage distinct cortico-striatal networks and to be embedded in a complex of converging and partially segregated loops that constitute the cortico-striatal thalamo-cortical feedback circuit. As the entry point for the basal ganglia, cortical circuits involving the dorsal striatum are clearly in a position to control a variety of motor functions but, as recent studies of various neurodegenerative disorders have made clear, they are also involved in a number of cognitive and executive functions including action selection, planning, and decision-making.

  15. Origins of basal ganglia output signals in singing juvenile birds

    PubMed Central

    Pidoux, Morgane; Bollu, Tejapratap; Riccelli, Tori

    2014-01-01

    Across species, complex circuits inside the basal ganglia (BG) converge on pallidal output neurons that exhibit movement-locked firing patterns. Yet the origins of these firing patterns remain poorly understood. In songbirds during vocal babbling, BG output neurons homologous to those found in the primate internal pallidal segment are uniformly activated in the tens of milliseconds prior to syllable onsets. To test the origins of this remarkably homogenous BG output signal, we recorded from diverse upstream BG cell types during babbling. Prior to syllable onsets, at the same time that internal pallidal segment-like neurons were activated, putative medium spiny neurons, fast spiking and tonically active interneurons also exhibited transient rate increases. In contrast, pallidal neurons homologous to those found in primate external pallidal segment exhibited transient rate decreases. To test origins of these signals, we performed recordings following lesion of corticostriatal inputs from premotor nucleus HVC. HVC lesions largely abolished these syllable-locked signals. Altogether, these findings indicate a striking homogeneity of syllable timing signals in the songbird BG during babbling and are consistent with a role for the indirect and hyperdirect pathways in transforming cortical inputs into BG outputs during an exploratory behavior. PMID:25392171

  16. Basal ganglia outputs map instantaneous position coordinates during behavior.

    PubMed

    Barter, Joseph W; Li, Suellen; Sukharnikova, Tatyana; Rossi, Mark A; Bartholomew, Ryan A; Yin, Henry H

    2015-02-11

    The basal ganglia (BG) are implicated in many movement disorders, yet how they contribute to movement remains unclear. Using wireless in vivo recording, we measured BG output from the substantia nigra pars reticulata (SNr) in mice while monitoring their movements with video tracking. The firing rate of most nigral neurons reflected Cartesian coordinates (either x- or y-coordinates) of the animal's head position during movement. The firing rates of SNr neurons are either positively or negatively correlated with the coordinates. Using an egocentric reference frame, four types of neurons can be classified: each type increases firing during movement in a particular direction (left, right, up, down), and decreases firing during movement in the opposite direction. Given the high correlation between the firing rate and the x and y components of the position vector, the movement trajectory can be reconstructed from neural activity. Our results therefore demonstrate a quantitative and continuous relationship between BG output and behavior. Thus, a steady BG output signal from the SNr (i.e., constant firing rate) is associated with the lack of overt movement, when a stable posture is maintained by structures downstream of the BG. Any change in SNr firing rate is associated with a change in position (i.e., movement). We hypothesize that the SNr output quantitatively determines the direction, velocity, and amplitude of voluntary movements. By changing the reference signals to downstream position control systems, the BG can produce transitions in body configurations and initiate actions.

  17. Humanized Foxp2 specifically affects cortico-basal ganglia circuits.

    PubMed

    Reimers-Kipping, S; Hevers, W; Pääbo, S; Enard, W

    2011-02-23

    It has been proposed that two amino acid substitutions in the transcription factor FOXP2 have been positively selected during human evolution and influence aspects of speech and language. Recently it was shown that when these substitutions are introduced into the endogenous Foxp2 gene of mice, they increase dendrite length and long-term depression (LTD) in medium spiny neurons of the striatum. Here we investigated if these effects are found in other brain regions. We found that neurons in the cerebral cortex, the thalamus and the striatum have increased dendrite lengths in the humanized mice whereas neurons in the amygdala and the cerebellum do not. In agreement with previous work we found increased LTD in medium spiny neurons, but did not detect alterations of synaptic plasticity in Purkinje cells. We conclude that although Foxp2 is expressed in many brain regions and has multiple roles during mammalian development, the evolutionary changes that occurred in the protein in human ancestors specifically affect brain regions that are connected via cortico-basal ganglia circuits.

  18. Intranuclear inclusions in Schwann cells of aged fowl ciliary ganglia.

    PubMed Central

    Fiori, M G

    1987-01-01

    Schwann cells in ciliary ganglia of fowls aged five to seven years were found to contain numerous intranuclear inclusions and pseudo-inclusions. Similar inclusions were usually absent from both neurons and non-neuronal cells, including connective tissue cells, and were rare in Schwann cells of chickens aged less than five years. Inclusions were of two different types: filamentous bundles and granulofibrillar bodies. Individual nuclei contained one to three inclusions. Pseudo-inclusions, i.e. cytoplasmic pockets invaginated into the nuclei, were found more rarely and accompanied one or both types of 'true' inclusions. The possible significance of these findings in relation to ageing phenomena is discussed. It is concluded that intranuclear inclusions appear to be a consequence of nuclear/cellular activation and may be regarded as aggregates of previously dispersed intranuclear proteins. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Figs. 11-12 Fig. 13 Figs. 14-19 PMID:2833482

  19. Changes in spinal alignment.

    PubMed

    Veintemillas Aráiz, M T; Beltrán Salazar, V P; Rivera Valladares, L; Marín Aznar, A; Melloni Ribas, P; Valls Pascual, R

    2016-04-01

    Spinal misalignments are a common reason for consultation at primary care centers and specialized departments. Misalignment has diverse causes and is influenced by multiple factors: in adolescence, the most frequent misalignment is scoliosis, which is idiopathic in 80% of cases and normally asymptomatic. In adults, the most common cause is degenerative. It is important to know the natural history and to detect factors that might predict progression. The correct diagnosis of spinal deformities requires specific imaging studies. The degree of deformity determines the type of treatment. The aim is to prevent progression of the deformity and to recover the flexibility and balance of the body.

  20. Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences.

    PubMed

    Jin, Xin; Tecuapetla, Fatuel; Costa, Rui M

    2014-03-01

    Chunking allows the brain to efficiently organize memories and actions. Although basal ganglia circuits have been implicated in action chunking, little is known about how individual elements are concatenated into a behavioral sequence at the neural level. Using a task in which mice learned rapid action sequences, we uncovered neuronal activity encoding entire sequences as single actions in basal ganglia circuits. In addition to neurons with activity related to the start/stop activity signaling sequence parsing, we found neurons displaying inhibited or sustained activity throughout the execution of an entire sequence. This sustained activity covaried with the rate of execution of individual sequence elements, consistent with motor concatenation. Direct and indirect pathways of basal ganglia were concomitantly active during sequence initiation, but behaved differently during sequence performance, revealing a more complex functional organization of these circuits than previously postulated. These results have important implications for understanding the functional organization of basal ganglia during the learning and execution of action sequences.

  1. Functional Neuroanatomy and Behavioural Correlates of the Basal Ganglia: Evidence from Lesion Studies

    PubMed Central

    Ward, Peter; Seri, Stefano; Cavanna, Andrea Eugenio

    2013-01-01

    Introduction: The basal ganglia are interconnected with cortical areas involved in behavioural, cognitive and emotional processes, in addition to movement regulation. Little is known about which of these functions are associated with individual basal ganglia substructures. Methods: Pubmed was searched for literature related to behavioural, cognitive and emotional symptoms associated with focal lesions to basal ganglia structures in humans. Results: Six case-control studies and two case reports were identified as relevant. Lesion sites included the caudate nucleus, putamen and globus pallidus. These were associated with a spectrum of behavioural and cognitive symptoms, including abulia, poor working memory and deficits in emotional recognition. Discussion: It is often difficult to precisely map associations between cognitive, emotional or behavioural functions and particular basal ganglia substructures, due to the non-specific nature of the lesions. However, evidence from lesion studies shows that most symptoms correspond with established non-motor frontal-subcortical circuits. PMID:22713407

  2. Emergence of context-dependent variability across a basal ganglia network.

    PubMed

    Woolley, Sarah C; Rajan, Raghav; Joshua, Mati; Doupe, Allison J

    2014-04-02

    Context dependence is a key feature of cortical-basal ganglia circuit activity, and in songbirds the cortical outflow of a basal ganglia circuit specialized for song, LMAN, shows striking increases in trial-by-trial variability and bursting when birds sing alone rather than to females. To reveal where this variability and its social regulation emerge, we recorded stepwise from corticostriatal (HVC) neurons and their target spiny and pallidal neurons in Area X. We find that corticostriatal and spiny neurons both show precise singing-related firing across both social settings. Pallidal neurons, in contrast, exhibit markedly increased trial-by-trial variation when birds sing alone, created by highly variable pauses in firing. This variability persists even when recurrent inputs from LMAN are ablated. These data indicate that variability and its context sensitivity emerge within the basal ganglia network, suggest a network mechanism for this emergence, and highlight variability generation and regulation as basal ganglia functions.

  3. Gliocyte and Synapse Analyses in Cerebral Ganglia of the Chinese Mitten Crab, Eriocheir Sinensis: Ultrastructural Study

    PubMed Central

    Zhang, H.; Yu, P.; Zhong, S.; Ge, T.; Peng, S.; Zhou, Z.; Guo, X.

    2016-01-01

    The Chinese mitten crab Eriocheir sinensis is an economically important aquatic species in China. Many studies on gene structure, breeding, and diseases of the crab have been reported. However, knowledge about the organization of the nerve system of the crab remains largely unknown. To study the ultrastructure of the cerebral ganglia of E. sinensis and to compare the histological findings regarding the nerve systems of crustaceans, the cerebral ganglia were observed by transmission electron microscopy. The results showed that four types of gliocytes, including type I, II, III, and IV gliocytes were located in the cerebral ganglia. In addition, three types of synapses were present in the cerebral ganglia, including unidirectional synapses, bidirectional synapses, and combined type synapses. PMID:27734995

  4. Basal ganglia dysfunction in idiopathic REM sleep behaviour disorder parallels that in early Parkinson's disease.

    PubMed

    Rolinski, Michal; Griffanti, Ludovica; Piccini, Paola; Roussakis, Andreas A; Szewczyk-Krolikowski, Konrad; Menke, Ricarda A; Quinnell, Timothy; Zaiwalla, Zenobia; Klein, Johannes C; Mackay, Clare E; Hu, Michele T M

    2016-08-01

    SEE POSTUMA DOI101093/AWW131 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Resting state functional magnetic resonance imaging dysfunction within the basal ganglia network is a feature of early Parkinson's disease and may be a diagnostic biomarker of basal ganglia dysfunction. Currently, it is unclear whether these changes are present in so-called idiopathic rapid eye movement sleep behaviour disorder, a condition associated with a high rate of future conversion to Parkinson's disease. In this study, we explore the utility of resting state functional magnetic resonance imaging to detect basal ganglia network dysfunction in rapid eye movement sleep behaviour disorder. We compare these data to a set of healthy control subjects, and to a set of patients with established early Parkinson's disease. Furthermore, we explore the relationship between resting state functional magnetic resonance imaging basal ganglia network dysfunction and loss of dopaminergic neurons assessed with dopamine transporter single photon emission computerized tomography, and perform morphometric analyses to assess grey matter loss. Twenty-six patients with polysomnographically-established rapid eye movement sleep behaviour disorder, 48 patients with Parkinson's disease and 23 healthy control subjects were included in this study. Resting state networks were isolated from task-free functional magnetic resonance imaging data using dual regression with a template derived from a separate cohort of 80 elderly healthy control participants. Resting state functional magnetic resonance imaging parameter estimates were extracted from the study subjects in the basal ganglia network. In addition, eight patients with rapid eye movement sleep behaviour disorder, 10 with Parkinson's disease and 10 control subjects received (123)I-ioflupane single photon emission computerized tomography. We tested for reduction of basal ganglia network connectivity, and for loss of tracer uptake in rapid eye movement sleep

  5. Microbunching and RF Compression

    SciTech Connect

    Venturini, M.; Migliorati, M.; Ronsivalle, C.; Ferrario, M.; Vaccarezza, C.

    2010-05-23

    Velocity bunching (or RF compression) represents a promising technique complementary to magnetic compression to achieve the high peak current required in the linac drivers for FELs. Here we report on recent progress aimed at characterizing the RF compression from the point of view of the microbunching instability. We emphasize the development of a linear theory for the gain function of the instability and its validation against macroparticle simulations that represents a useful tool in the evaluation of the compression schemes for FEL sources.

  6. Fibromyalgia and arachnoiditis presented as an acute spinal disorder

    PubMed Central

    Idris, Zamzuri; Ghazali, Faizul H.; Abdullah, Jafri M.

    2014-01-01

    Background: Adhesive arachnoiditis is a chronic, insidious condition that causes debilitating intractable pain and a range of other neurological problems. Its pathophysiology is not well understood. This manuscript discusses its presentations, which can mimic an acute spinal disorder, its hypothetical pathophysiology, treatment, and its relationship with fibromyalgia. Case Description: The authors present a case of a 47-year-old female who presented with clinical features mimicking an acute spinal disorder but later found to have an adhesive arachnoiditis. She was admitted following a trauma with complaints of back pain and paraplegia. On examination, there was marked tenderness over thoracolumbar spine with lower limbs upper motor neuron weakness. An urgent magnetic resonance imaging (MRI) of the spine revealed multiple lesions at her thoracic and lumbar spinal canals, which did not compress the spinal cord. Therefore, conservative management was initiated. Despite on regular therapies, her back and body pain worsened and little improvement in her limbs power was noted. Laminectomy was pursued and found to have spinal cord arachnoiditis. Subsequently, she was operated by other team members for multiple pelvic masses, which later proved to be benign. After gathering all the clinical information obtained at surgery and after taking detailed history inclusive of cognitive functions, diagnosis of an adhesive arachnoiditis syndrome was made. Currently, she is managed by neuropsychologist and pain specialist. Conclusion: This case report highlights the importance of knowing an adhesive arachnoiditis syndrome – a rarely discussed pathology by the neurosurgeon, which discloses a significant relationship between immune and nervous systems. PMID:25396073

  7. Compressed gas manifold

    DOEpatents

    Hildebrand, Richard J.; Wozniak, John J.

    2001-01-01

    A compressed gas storage cell interconnecting manifold including a thermally activated pressure relief device, a manual safety shut-off valve, and a port for connecting the compressed gas storage cells to a motor vehicle power source and to a refueling adapter. The manifold is mechanically and pneumatically connected to a compressed gas storage cell by a bolt including a gas passage therein.

  8. Deep Brain Stimulation for Movement Disorders of Basal Ganglia Origin: Restoring Function or Functionality?

    PubMed

    Wichmann, Thomas; DeLong, Mahlon R

    2016-04-01

    Deep brain stimulation (DBS) is highly effective for both hypo- and hyperkinetic movement disorders of basal ganglia origin. The clinical use of DBS is, in part, empiric, based on the experience with prior surgical ablative therapies for these disorders, and, in part, driven by scientific discoveries made decades ago. In this review, we consider anatomical and functional concepts of the basal ganglia relevant to our understanding of DBS mechanisms, as well as our current understanding of the pathophysiology of two of the most commonly DBS-treated conditions, Parkinson's disease and dystonia. Finally, we discuss the proposed mechanism(s) of action of DBS in restoring function in patients with movement disorders. The signs and symptoms of the various disorders appear to result from signature disordered activity in the basal ganglia output, which disrupts the activity in thalamocortical and brainstem networks. The available evidence suggests that the effects of DBS are strongly dependent on targeting sensorimotor portions of specific nodes of the basal ganglia-thalamocortical motor circuit, that is, the subthalamic nucleus and the internal segment of the globus pallidus. There is little evidence to suggest that DBS in patients with movement disorders restores normal basal ganglia functions (e.g., their role in movement or reinforcement learning). Instead, it appears that high-frequency DBS replaces the abnormal basal ganglia output with a more tolerable pattern, which helps to restore the functionality of downstream networks.

  9. The Pedunculopontine Tegmental Nucleus as a Motor and Cognitive Interface between the Cerebellum and Basal Ganglia

    PubMed Central

    Mori, Fumika; Okada, Ken-ichi; Nomura, Taishin; Kobayashi, Yasushi

    2016-01-01

    As an important component of ascending activating systems, brainstem cholinergic neurons in the pedunculopontine tegmental nucleus (PPTg) are involved in the regulation of motor control (locomotion, posture and gaze) and cognitive processes (attention, learning and memory). The PPTg is highly interconnected with several regions of the basal ganglia, and one of its key functions is to regulate and relay activity from the basal ganglia. Together, they have been implicated in the motor control system (such as voluntary movement initiation or inhibition), and modulate aspects of executive function (such as motivation). In addition to its intimate connection with the basal ganglia, projections from the PPTg to the cerebellum have been recently reported to synaptically activate the deep cerebellar nuclei. Classically, the cerebellum and basal ganglia were regarded as forming separated anatomical loops that play a distinct functional role in motor and cognitive behavioral control. Here, we suggest that the PPTg may also act as an interface device between the basal ganglia and cerebellum. As such, part of the therapeutic effect of PPTg deep brain stimulation (DBS) to relieve gait freezing and postural instability in advanced Parkinson’s disease (PD) patients might also involve modulation of the cerebellum. We review the anatomical position and role of the PPTg in the pathway of basal ganglia and cerebellum in relation to motor control, cognitive function and PD. PMID:27872585

  10. Spinal epidural abscess.

    PubMed

    Miftode, E; Luca, V; Mihalache, D; Leca, D; Stefanidis, E; Anuţa, C; Sabadis, L

    2001-01-01

    In a retrospective study, 68 patients with Spinal Epidural Abscess (SEA) were reviewed. Of these, 66% had different predisposing factors such as staphylococcal skin infections, surgical procedures, rachicentesis, trauma, spondilodiscitis. Abscess had a lumbar region location in 53% of cases. Staphylococcus aureus was the most frequent etiological agent (81%). The overall rate of mortality in SEA patients was 13.2%.

  11. Role of spinal 5-HT5A, and 5-HT1A/1B/1D, receptors in neuropathic pain induced by spinal nerve ligation in rats.

    PubMed

    Avila-Rojas, Sabino Hazael; Velázquez-Lagunas, Isabel; Salinas-Abarca, Ana Belen; Barragán-Iglesias, Paulino; Pineda-Farias, Jorge Baruch; Granados-Soto, Vinicio

    2015-10-05

    Serotonin (5-HT) participates in pain modulation by interacting with different 5-HT receptors. The role of 5-HT5A receptor in neuropathic pain has not previously studied. The purpose of this study was to investigate: A) the role of 5-HT5A receptors in rats subjected to spinal nerve injury; B) the expression of 5-HT5A receptors in dorsal spinal cord and dorsal root ganglia (DRG). Neuropathic pain was induced by L5/L6 spinal nerve ligation. Tactile allodynia in neuropathic rats was assessed with von Frey filaments. Western blot methodology was used to determine 5-HT5A receptor protein expression. Intrathecal administration (on day 14th) of 5-HT (10-100 nmol) or 5-carboxamidotryptamine (5-CT, 0.03-0.3 nmol) reversed nerve injury-induced tactile allodynia. Intrathecal non-selective (methiothepin, 0.1-0.8 nmol) and selective (SB-699551, 1-10 nmol) 5-HT5A receptor antagonists reduced, by ~60% and ~25%, respectively, the antiallodynic effect of 5-HT (100 nmol) or 5-CT (0.3 nmol). Moreover, both selective 5-HT1A and 5-HT1B/1D receptor antagonists, WAY-100635 (0.3-1 nmol) and GR-127935 (0.3-1 nmol), respectively, partially diminished the antiallodynic effect of 5-HT or 5-CT by about 30%. Injection of antagonists, by themselves, did not affect allodynia. 5-HT5A receptors were expressed in the ipsilateral dorsal lumbar spinal cord and DRG and L5/L6 spinal nerve ligation did not modify 5-HT5A receptor protein expression in those sites. Results suggest that 5-HT5A receptors reduce pain processing in the spinal cord and that 5-HT and 5-CT reduce neuropathic pain through activation of 5-HT5A and 5-HT1A/1B/1D receptors. These receptors could be an important part of the descending pain inhibitory system.

  12. Spinal Cord Ischemia Secondary to Epidural Metastasis from Small Cell Lung Carcinoma

    PubMed Central

    Yasui, Hirotoshi; Ozawa, Naoya; Mikami, Satoshi; Shimizu, Kenji; Hatta, Takahiro; Makino, Nami; Fukushima, Mayu; Baba, Satoshi; Makino, Yasushi

    2017-01-01

    Patient: Male, 56 Final Diagnosis: Small cell lung carcinoma Symptoms: Back pain • paralysis Medication: — Clinical Procedure: MRI Specialty: Pulmonology Objective: Unusual clinical course Background: Spinal cord ischemia is an uncommon event that is mainly caused by dissociation of the ascending aorta as a complication after aortic surgery. Spinal arteries can develop collateral circulation; therefore, the frequency of spinal infarction is about 1% of that in the brain. Few cases of spinal cord ischemia developing in the course of lung cancer have been reported. Case Report: We presented the case of a 56-year-old man with small cell lung carcinoma, cT4N2M1a (stage IV). He was treated with irradiation and 2 courses of platinum and etoposide combination chemotherapy. He complained of back pain followed by quadriplegia and sensory disturbance after cessation of chemotherapy. With a diagnosis of spinal cord metastasis, steroids were administered. However, diaphragmatic paralysis appeared a few hours later. He was started on palliative care and died after 6 days. Autopsy showed epidural metastasis and spinal ischemia at the C5 level. Conclusions: Epidural metastasis can compress the spinal artery and cause circulatory disorders. Spinal cord ischemia should be considered in patients with rapid paralysis in the course of lung cancer. PMID:28302996

  13. Spinal Cord Ischemia Secondary to Epidural Metastasis from Small Cell Lung Carcinoma.

    PubMed

    Yasui, Hirotoshi; Ozawa, Naoya; Mikami, Satoshi; Shimizu, Kenji; Hatta, Takahiro; Makino, Nami; Fukushima, Mayu; Baba, Satoshi; Makino, Yasushi

    2017-03-17

    BACKGROUND Spinal cord ischemia is an uncommon event that is mainly caused by dissociation of the ascending aorta as a complication after aortic surgery. Spinal arteries can develop collateral circulation; therefore, the frequency of spinal infarction is about 1% of that in the brain. Few cases of spinal cord ischemia developing in the course of lung cancer have been reported. CASE REPORT We presented the case of a 56-year-old man with small cell lung carcinoma, cT4N2M1a (stage IV). He was treated with irradiation and 2 courses of platinum and etoposide combination chemotherapy. He complained of back pain followed by quadriplegia and sensory disturbance after cessation of chemotherapy. With a diagnosis of spinal cord metastasis, steroids were administered. However, diaphragmatic paralysis appeared a few hours later. He was started on palliative care and died after 6 days. Autopsy showed epidural metastasis and spinal ischemia at the C5 level. CONCLUSIONS Epidural metastasis can compress the spinal artery and cause circulatory disorders. Spinal cord ischemia should be considered in patients with rapid paralysis in the course of lung cancer.

  14. Fetal grafts alter chronic behavioral outcome after contusion damage to the adult rat spinal cord.

    PubMed

    Stokes, B T; Reier, P J

    1992-04-01

    In the present experiments, we have examined the capacity of intraspinal transplants to effect alterations in certain locomotor behaviors after spinal contusion injuries. An electromechanical impactor that was sensitive to tissue biomechanical characteristics was used to produce rapid (20 ms) compression injuries to the thoracic spinal cord (T8). Suspensions of fetal spinal tissue (14-day) were placed at 10 days postinjury into the intraspinal cavity created by these reproducible spinal injuries. In the pre- and postinjury period, a number of general and sensitive motor behaviors were used to characterize the immediate and long-term progress of hindlimb behavioral recovery over an extended period of time (73 days). Our data reveal that a lasting alteration in some motor behaviors can be achieved by suspension grafts. While little improvement in some generalized motor tasks (inclined plane analysis, grid walking) takes place, fetal transplants precipitate a rapid and enduring change in certain motivated fine motor behaviors (gait analysis). The base of support and stride length of the hindlimbs were improved by 7 days post-transplantation and the effect was stable over time. The angle of rotation was, however, not altered. The lasting effect in two gait parameters noted was accompanied by the presence of well-developed spinal grafts that often fused with the host spinal parenchyma. These results provide the first documentation of an influence of fetal transplants on motivated locomotor capacity in a well-characterized spinal injury model that mimics lesions seen in the contused adult human spinal cord.

  15. Prospects for cannabinoid therapies in basal ganglia disorders

    PubMed Central

    Fernández-Ruiz, Javier; Moreno-Martet, Miguel; Rodríguez-Cueto, Carmen; Palomo-Garo, Cristina; Gómez-Cañas, María; Valdeolivas, Sara; Guaza, Carmen; Romero, Julián; Guzmán, Manuel; Mechoulam, Raphael; Ramos, José A

    2011-01-01

    Cannabinoids are promising medicines to slow down disease progression in neurodegenerative disorders including Parkinson's disease (PD) and Huntington's disease (HD), two of the most important disorders affecting the basal ganglia. Two pharmacological profiles have been proposed for cannabinoids being effective in these disorders. On the one hand, cannabinoids like Δ9-tetrahydrocannabinol or cannabidiol protect nigral or striatal neurons in experimental models of both disorders, in which oxidative injury is a prominent cytotoxic mechanism. This effect could be exerted, at least in part, through mechanisms independent of CB1 and CB2 receptors and involving the control of endogenous antioxidant defences. On the other hand, the activation of CB2 receptors leads to a slower progression of neurodegeneration in both disorders. This effect would be exerted by limiting the toxicity of microglial cells for neurons and, in particular, by reducing the generation of proinflammatory factors. It is important to mention that CB2 receptors have been identified in the healthy brain, mainly in glial elements and, to a lesser extent, in certain subpopulations of neurons, and that they are dramatically up-regulated in response to damaging stimuli, which supports the idea that the cannabinoid system behaves as an endogenous neuroprotective system. This CB2 receptor up-regulation has been found in many neurodegenerative disorders including HD and PD, which supports the beneficial effects found for CB2 receptor agonists in both disorders. In conclusion, the evidence reported so far supports that those cannabinoids having antioxidant properties and/or capability to activate CB2 receptors may represent promising therapeutic agents in HD and PD, thus deserving a prompt clinical evaluation. LINKED ARTICLES This article is part of a themed issue on Cannabinoids in Biology and Medicine. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2011.163.issue-7 PMID:21545415

  16. Quantitation of the human basal ganglia with Positron Emission Tomography

    SciTech Connect

    Bendriem, B.; Dewey, S.L.; Schlyer, D.J.; Wolf, A.P.; Volkow, N.D.

    1990-01-01

    The accurate measurement of the concentration of a radioisotope in small structures with PET requires a correction for quantitation loss due to the partial volume effect and the effect of scattered radiation. To evaluate errors associated with measures in the human basal ganglia (BG) we have built a unilateral model of the BG that we have inserted in a 20 cm cylinder. The recovery coefficient (RC = measured activity/true activity) for our BG phantom has been measured on a CTI tomograph (model 931-08/12) with different background concentrations (contrast) and at different axial locations in the gantry. The BG was visualized on 4 or 5 slices depending on its position in the gantry and on the contrast used. The RC was 0.75 with no background (contrast equal to 1.0). Increasing the relative radioactivity concentration in the background increased the RC from 0.75 to 2.00 when the contrast was {minus}0.7 (BG < Background). The RC was also affected by the size and the shape of the region of interest (ROI) used (RC from 0.75 to 0.67 with ROI size from 0.12 to 1.41 cm{sup 2}). These results show that accurate RC correction depends not only on the volume of the structure but also on its contrast with its surroundings as well as on the selection of the ROI. They also demonstrate that the higher the contrast the more sensitive to axial positioning PET measurements in the BG are. These data provide us with some information about the variability of PET measurements in small structure like the BG and we have proposed some strategies to improve the reproducibility. 18 refs., 3 figs., 5 tabs.

  17. Basal ganglia-thalamus and the "crowning enigma".

    PubMed

    Garcia-Munoz, Marianela; Arbuthnott, Gordon W

    2015-01-01

    When Hubel (1982) referred to layer 1 of primary visual cortex as "… a 'crowning mystery' to keep area-17 physiologists busy for years to come …" he could have been talking about any cortical area. In the 80's and 90's there were no methods to examine this neuropile on the surface of the cortex: a tangled web of axons and dendrites from a variety of different places with unknown specificities and doubtful connections to the cortical output neurons some hundreds of microns below. Recently, three changes have made the crowning enigma less of an impossible mission: the clear presence of neurons in layer 1 (L1), the active conduction of voltage along apical dendrites and optogenetic methods that might allow us to look at one source of input at a time. For all of those reasons alone, it seems it is time to take seriously the function of L1. The functional properties of this layer will need to wait for more experiments but already L1 cells are GAD67 positive, i.e., inhibitory! They could reverse the sign of the thalamic glutamate (GLU) input for the entire cortex. It is at least possible that in the near future normal activity of individual sources of L1 could be detected using genetic tools. We are at the outset of important times in the exploration of thalamic functions and perhaps the solution to the crowning enigma is within sight. Our review looks forward to that solution from the solid basis of the anatomy of the basal ganglia output to motor thalamus. We will focus on L1, its afferents, intrinsic neurons and its influence on responses of pyramidal neurons in layers 2/3 and 5. Since L1 is present in the whole cortex we will provide a general overview considering evidence mainly from the somatosensory (S1) cortex before focusing on motor cortex.

  18. Clinical analysis of 36 multiple myeloma patients with extramedullary plasmacytoma invasion of the spinal canal.

    PubMed

    Zhang, Jiajia; Zhong, Yuping

    2015-06-01

    Few physicians are familiar with extramedullary plasmacytoma (EMP) invasion of the spinal canal in multiple myeloma (MM) patients, and little information about this rare disease is available. The purpose of the present study was to investigate the clinical features, prognosis and treatment of MM patients with EMP invasion of the spinal canal. We evaluated 36 MM patients with EMP invasion of the spinal canal. EMP invasion was confirmed by magnetic resonance imaging, computed tomography and/or histopathological analysis of bone marrow biopsy samples. Patients underwent surgery followed by chemotherapy or received chemotherapy alone. Chemotherapy consisted of bortezomib-containing regimens and other combination therapies. The patients' median age was 58.6 years (range, 31-78 years). Eight patients had negative immunofixation electrophoresis results, and nine patients had a bone marrow plasma cell infiltration rate of less than 5%. Of the 36 MM patients with EMP invasion of the spinal canal that we identified, 19 had thoracic spinal cord involvement, 10 had lumbar spinal cord involvement, 2 had sacral spinal cord involvement and 5 had both lumbar and thoracic spinal cord involvement. The findings of our study, which is the largest study in MM patients with EMP spinal canal invasion conducted to date, suggest the importance of the early detection of spinal invasion in MM patients. Extramedullary disease was resistant to conventional treatments but responded well to regimens containing novel drugs such as bortezomib. In patients with symptoms of nerve root involvement, the tumour should be resected as soon as possible to relieve spinal cord compression.

  19. A database of lumbar spinal mechanical behavior for validation of spinal analytical models.

    PubMed

    Stokes, Ian A F; Gardner-Morse, Mack

    2016-03-21

    Data from two experimental studies with eight specimens each of spinal motion segments and/or intervertebral discs are presented in a form that can be used for comparison with finite element model predictions. The data include the effect of compressive preload (0, 250 and 500N) with quasistatic cyclic loading (0.0115Hz) and the effect of loading frequency (1, 0.1, 0.01 and 0.001Hz) with a physiological compressive preload (mean 642N). Specimens were tested with displacements in each of six degrees of freedom (three translations and three rotations) about defined anatomical axes. The three forces and three moments in the corresponding axis system were recorded during each test. Linearized stiffness matrices were calculated that could be used in multi-segmental biomechanical models of the spine and these matrices were analyzed to determine whether off-diagonal terms and symmetry assumptions should be included. These databases of lumbar spinal mechanical behavior under physiological conditions quantify behaviors that should be present in finite element model simulations. The addition of more specimens to identify sources of variability associated with physical dimensions, degeneration, and other variables would be beneficial. Supplementary data provide the recorded data and Matlab® codes for reading files. Linearized stiffness matrices derived from the tests at different preloads revealed few significant unexpected off-diagonal terms and little evidence of significant matrix asymmetry.

  20. Dysfunctions of the basal ganglia-cerebellar-thalamo-cortical system produce motor tics in Tourette syndrome

    PubMed Central

    Arbib, Michael A.; Baldassarre, Gianluca

    2017-01-01

    Motor tics are a cardinal feature of Tourette syndrome and are traditionally associated with an excess of striatal dopamine in the basal ganglia. Recent evidence increasingly supports a more articulated view where cerebellum and cortex, working closely in concert with basal ganglia, are also involved in tic production. Building on such evidence, this article proposes a computational model of the basal ganglia-cerebellar-thalamo-cortical system to study how motor tics are generated in Tourette syndrome. In particular, the model: (i) reproduces the main results of recent experiments about the involvement of the basal ganglia-cerebellar-thalamo-cortical system in tic generation; (ii) suggests an explanation of the system-level mechanisms underlying motor tic production: in this respect, the model predicts that the interplay between dopaminergic signal and cortical activity contributes to triggering the tic event and that the recently discovered basal ganglia-cerebellar anatomical pathway may support the involvement of the cerebellum in tic production; (iii) furnishes predictions on the amount of tics generated when striatal dopamine increases and when the cortex is externally stimulated. These predictions could be important in identifying new brain target areas for future therapies. Finally, the model represents the first computational attempt to study the role of the recently discovered basal ganglia-cerebellar anatomical links. Studying this non-cortex-mediated basal ganglia-cerebellar interaction could radically change our perspective about how these areas interact with each other and with the cortex. Overall, the model also shows the utility of casting Tourette syndrome within a system-level perspective rather than viewing it as related to the dysfunction of a single brain area. PMID:28358814

  1. Acute morphine activates satellite glial cells and up-regulates IL-1β in dorsal root ganglia in mice via matrix metalloprotease-9

    PubMed Central

    2012-01-01

    Background Activation of spinal cord glial cells such as microglia and astrocytes has been shown to regulate chronic opioid-induced antinociceptive tolerance and hyperalgesia, due to spinal up-regulation of the proinflammatory cytokines such as interleukin-1 beta (IL-1β). Matrix metalloprotease-9 (MMP-9) has been implicated in IL-1β activation in neuropathic pain. However, it is unclear whether acute opioid treatment can activate glial cells in the peripheral nervous system. We examined acute morphine-induced activation of satellite glial cells (SGCs) and up-regulation of IL-1β in dorsal root ganglia (DRGs), and further investigated the involvement of MMP-9 in these opioid-induced peripheral changes. Results Subcutaneous morphine injection (10 mg/kg) induced robust peripheral glial responses, as evidenced by increased GFAP expression in DRGs but not in spinal cords. The acute morphine-induced GFAP expression is transient, peaking at 2 h and declining after 3 h. Acute morphine treatment also increased IL-1β immunoreactivity in SGCs and IL-1β activation in DRGs. MMP-9 and GFAP are expressed in DRG neurons and SGCs, respectively. Confocal analysis revealed a close proximity of MMP-9 and GFAP immunostaining. Importantly, morphine-induced DRG up-regulation of GFAP expression and IL-1β activation was abolished after Mmp9 deletion or naloxone pre-treatment. Finally, intrathecal injections of IL-1β-selective siRNA not only reduced DRG IL-1β expression but also prolonged acute morphine-induced analgesia. Conclusions Acute morphine induces opioid receptors- and MMP-9-dependent up-regulation of GFAP expression and IL-1β activation in SGCs of DRGs. MMP-9 could mask and shorten morphine analgesia via peripheral neuron-glial interactions. Targeting peripheral glial activation might prolong acute opioid analgesia. PMID:22439811

  2. Spinal Arteriovenous Fistula with Progressive Paraplegia after Spinal Anaesthesia

    PubMed Central

    Argyrakis, Nikolaos; Matis, Georgios K.; Mpata-Tshibemba, Stephanie

    2014-01-01

    A case of an iatrogenic spinal arteriovenous fistula with progressive paraplegia in a young woman is reported. The fistula was eventually created after repetitive lumbar punctures performed in the process of spinal anaesthesia. Her symptoms were progressed to paraplegia over a period of 2 years. The digital subtraction angiography demonstrated a single-hole fistula, involving the anterior spinal artery and vein. The lesion was occluded by embolization with immediate improvement. The potential mechanism is discussed. PMID:24653807

  3. Extradural Spinal Schwannoma in 12 Year Old Child : A Case Report

    PubMed Central

    Jeng, Toh Charng; Abdullah, Jafri Malin; George, Jain; Tharakan KJ, John; Casilda, Sharon; Ghazali, Mazira Mohamad; Jaafar, Hasnan; Salmah, Win Mar

    2005-01-01

    We report a case of a 12 year old girl who presented with cord compression. Imaging studies demonstrated an extradural spinal tumour in the lower thoracic and upper lumbar levels. Histology confirmed the diagnosis of schwannoma while associated findings suggested the possibility of Neurofibromatosis Type I. PMID:22605960

  4. How to avoid perioperative visual loss following prone spinal surgery

    PubMed Central

    Epstein, Nancy E.

    2016-01-01

    Background: In a prior article, “Perioperative visual loss (POVL) following prone spinal surgery: A review,” Epstein documented that postoperative visual loss (POVL) occurs in from 0.013% to 0.2% of spine procedures performed in the prone position. POVL is largely attributed to ischemic optic neuropathy (ION), central retinal artery occlusion (CRAO), cortical blindness (CB), direct compression (prone pillows/horseshoe, eye protectors), and rarely, acute angle closure glaucoma. Methods: Risk factors for ION include prolonged surgery, extensive fusions, anemia, hypotension, hypovolemia, diabetes, obesity, use of the Wilson frame, male sex, and microvascular pathology. CRAO may result from improper prone positioning (e.g., eye compression or rotation contributing to jugular/venous or carotid compression), while CB more typically results from both direct compression and obesity. Results: Several preventive/prophylactic measures should limit the risk of POVL. The routine use of an arterial line and continuous intraoperative monitoring document intraoperative hypotension/hypovolemia/anemia that can be immediately corrected with appropriate resuscitative measures. Application of a 3-pin head holder completely eliminates direct eye compression and maintains the neck in a neutral posture, thus avoiding rotation that can contribute to jugular/venous obstruction and/or inadvertent carotid compression. In addition, elevating the head 10° from the horizontal directly reduces intraocular pressure. Conclusions: The best way to avoid POVL following prone spine surgery is to prevent it. Routine use of an arterial line, intraoperative monitoring, a 3-pin head holder, and elevation of the head 10° from the horizontal should limit the risk of encountering POVL after spinal procedures performed in the prone position. PMID:27274406

  5. [Protective effect of adenosine receptor agonists in a model of spinal cord injury in rats].

    PubMed

    Sufianova, G Z; Usov, L A; Sufianov, A A; Perelomov, Iu P; Raevskaia, L Iu; Shapkin, A G

    2002-01-01

    Possibilities of the neuroprotector therapy using adenosine and cyclopentyladenosine (CPA), an adenosine receptor agonist, were studied on a model of spinal cord injury by compression in rats (most closely reproducing the analogous clinical pathological process in humans). The model was induced by slow, graded compression of the spinal cord at the thoracic level. Adenosine and CPA were introduced 60 min before injury by subcutaneous injections in a dose of 300 and 2.5 micrograms/kg, respectively. The protective effect was judged by comparing the neurological, electromyographic, and histopathological changes in animals with the model injury and in the control group (adenosine and CPA background). The A1-agonist CPA injections produced a pronounced, statistically significant neuroprotector effect on the given spinal cord injury model in rats. The neuroprotective effect of adenosine was significant but not as strong. It is concluded that it is expedient to use A-agonists in clinics.

  6. Experience with symptomatic spinal epidural cysts.

    PubMed

    Freidberg, S R; Fellows, T; Thomas, C B; Mancall, A C

    1994-06-01

    Epidural cysts, either synovial or ganglion, are an unusual cause of epidural compressive syndromes. We report a series of 26 patients with cysts, including 1 cervical, 2 thoracic, and 23 lumbar. Complaints at the time of admission and findings were similar to those associated with other epidural lesions at the same locations. The surgical technique is similar to that for other spinal lesions, with a wide exposure to enable a clear view of the cyst and surrounding structures, and is governed by imaging studies. Patients with cervical and thoracic lumbar cysts were free of symptoms and signs postoperatively. Of the 23 patients with lumbar cysts, 15 were free of symptoms after an operation, 7 had symptomatic improvement but had some pain and neurological findings, and 1 patient had no improvement. Computed tomography and magnetic resonance imaging permit accurate preoperative evaluation.

  7. Imaging features of intraosseous ganglia: a report of 45 cases.

    PubMed

    Williams, H J; Davies, A M; Allen, G; Evans, N; Mangham, D C

    2004-10-01

    The aim of this study is to report the spectrum of imaging findings of intraosseous ganglia (IG) with particular emphasis on the radiographic and magnetic resonance (MR) features. Forty-five patients with a final diagnosis of IG were referred to a specialist orthopaedic oncology service with the presumptive diagnosis of either a primary or secondary bone tumour. The diagnosis was established by histology in 25 cases. In the remainder, the imaging features were considered characteristic and the lesion was stable on follow-up radiographic examination. Radiographs were available for retrospective review in all cases and MR imaging in 29. There was a minor male preponderance with a wide adult age range. Three quarters were found in relation to the weight-bearing long bones of the lower limb, particularly round the knee. On radiographs all were juxta-articular and osteolytic; 74% were eccentric in location, 80% had a sclerotic endosteal margin and 60% of cases showed a degree of trabeculation. Periosteal new bone formation and matrix mineralization were not present. Of the 29 cases that underwent MR imaging, 66% were multiloculated. On T1-weighted images the IG contents were isointense or mildly hypointense in 90% cases. Forty-one per cent of the cases showed a slightly hyperintense rim lining that enhanced with a gadolinium chelate. Thirty-eight per cent were associated with soft tissue extension and 17% with a defect of the adjacent articular cortex. Fifty-five per cent showed surrounding marrow oedema on T2-weighted or STIR images and two cases (7%) a fluid-fluid level prior to any surgical intervention. The authors contend that it is semantics to differentiate between an IG and a degenerate subchondral cyst as, while the initial pathogenesis may vary, the histological endpoint is identical, as are the imaging features apart from the degree of associated degenerative joint disease. IGs, particularly when large, may be mistaken for a bone tumour. Correlation of the

  8. Spinal epidural abscess.

    PubMed

    Krishnamohan, Prashanth; Berger, Joseph R

    2014-11-01

    Spinal epidural abscess (SEA) remains a relatively infrequent diagnosis. Staphylococcus aureus is the most common organism identified, and the infectious source in SEA emanates from skin and soft tissue infections in about 20 % of instances. The thoracic spine is most often involved followed by the lumbar spine. The classic triad of fever, spinal pain, and neurological deficit is present in but a minority of patients. The appearance of neurological deficits with SEA has a significant impact on the prognosis; therefore, early diagnosis is imperative. Magnetic resonance imaging has permitted earlier diagnosis, although significant delays in diagnosis are common due to the nonspecific symptoms that frequently attend the disorder. Due to the rarity of this condition, there have been few randomized controlled trials to evaluate new treatment strategies, and most recommendations regarding treatment are based on case series studies often derived from the experiences at a single center.

  9. Aspergillus spinal epidural abscess

    SciTech Connect

    Byrd, B.F. III; Weiner, M.H.; McGee, Z.A.

    1982-12-17

    A spinal epidural abscess developed in a renal transplant recipient; results of a serum radioimmunoassay for Aspergillus antigen were positive. Laminectomy disclosed an abscess of the L4-5 interspace and L-5 vertebral body that contained hyphal forms and from which Aspergillus species was cultured. Serum Aspergillus antigen radioimmunoassay may be a valuable, specific early diagnostic test when systemic aspergillosis is a consideration in an immunosuppressed host.

  10. Spontaneous spinal epidural abscess.

    PubMed

    Ellanti, P; Morris, S

    2011-10-01

    Spinal epidural abscess is an uncommon entity, the frequency of which is increasing. They occur spontaneously or as a complication of intervention. The classical triad of fever, back pain and neurological symptoms are not always present. High index of suspicion is key to diagnosis. Any delay in diagnosis and treatment can have significant neurological consequences. We present the case of a previously well man with a one month history of back pain resulting from an epidural abscess.

  11. Proceedings of a symposium on the neurobiology of the basal ganglia. Glasgow, United Kingdom, July 1999.

    PubMed

    2000-05-01

    The basal ganglia occupy a commanding place in neuroscience research, in clinical neurology and in biomedical education. The paucity of our understanding of the role of the basal ganglia in normal everyday life combined with our more extensive knowledge of their deficiencies in a variety of clinical syndromes is a potent spur to continuing investigation. That some of these neurodegenerative syndromes-such as Parkinson's disease-are already common only heightens the need for insight in the face of a population with increasing expectations of longevity. About a decade ago an explosion of information on the connectivity and immunocytochemistry of forebrain structures gave rise to concepts which have shaped the fabric of basal ganglia theory-'patch and matrix', 'disinhibition', 'parallel circuits'. Some of these ideas seemed to facilitate an understanding of the basal ganglia, others to render them more complex and impenetrable. Perhaps unsurprisingly, the work of the last decade has tended towards consolidation and refinement. However, several new developments are receiving attention, many of them related to disorders of the basal ganglia. The realisation that some forms of Parkinson's disease have a genetic determinant is gaining strength. The molecular biology of the dopaminergic synapse on the one hand and of the production of insoluble proteins on the other will clearly influence future research into therapeutic options and neuroprotection. The importance of apoptosis, neural plasticity and free radical formation remains unresolved but these are potential areas of promise. Meanwhile, scanning techniques for brain imaging are allowing real time investigation of the working striatum in normal and disordered humans and animals.We believe that the time is opportune for a broad review of current thinking on the basal ganglia in health and disease. The following articles are based on presentations given at a Symposium on the Neurobiology of the Basal Ganglia held at

  12. Spinal neurenteric cyst in a dog.

    PubMed

    Alder, Daniela S; Oevermann, Anna; Pfister, Stephan A; Steffen, Frank

    2017-04-01

    CASE DESCRIPTION An 11-year-old English Cocker Spaniel was evaluated because of chronic progressive ataxia of the hind limbs. CLINICAL FINDINGS The dog had no history of previous illness, and findings of physical examination and laboratory tests were unremarkable. Neurologic examination revealed that the dog was ambulatory with severe ataxia of the hind limbs. Proprioception was decreased in the right and left hind limbs (right affected more than left), and spinal reflexes were bilaterally unremarkable. Moderate signs of pain were detected during palpation of the lumbar portion of the vertebral column. Findings suggested a lesion within the thoracolumbar or lumbar segments of the spinal cord. Magnetic resonance imaging revealed extradural spinal cord compression attributable to an extradural space-occupying lesion originating from or infiltrating the L4 lamina on the right side. TREATMENT AND OUTCOME Hemilaminectomy was performed to remove the extradural lesion. Histologic findings for tissue samples collected during the procedure were consistent with a neurenteric cyst. The late onset and progression of clinical signs of this rare congenital malformation were suspected to have been the result of enlargement of the neurenteric cyst through continuous production of mucus by goblet cells. The dog responded favorably to surgical decompression and was clinically normal 1 year after surgery. It was euthanized 2 years after surgery for an unrelated reason (end-stage heart disease), and no neurologic deficits were evident before that point. CLINICAL RELEVANCE Congenital neurenteric cysts should be considered as a differential diagnosis for neoplastic disease in dogs in which results of diagnostic imaging indicate the presence of an extradural mass affecting vertebral structures.

  13. Spinal arteriovenous shunts in children.

    PubMed

    Davagnanam, Indran; Toma, Ahmed K; Brew, Stefan

    2013-11-01

    Pediatric spinal arteriovenous shunts are rare and, in contrast to those in adults, are often congenital or associated with underlying genetic disorders. These are thought to be a more severe and complete phenotypic spectrum of all spinal arteriovenous shunts seen in the overall spinal shunt population. The pediatric presentation thus accounts for its association with significant morbidity and, in general, a more challenging treatment process compared with the adult presentation.

  14. Regulation of neuropilin 1 by spinal cord injury in adult rats.

    PubMed

    Agudo, Marta; Robinson, Michelle; Cafferty, William; Bradbury, Elizabeth J; Kilkenny, Carol; Hunt, Stephen P; McMahon, Stephen B

    2005-03-01

    Using RT-PCR, in situ hybridization, Western blotting, and immunofluorescence, we have analyzed the expression of neuropilin 1 (Np1) in two models of spinal cord injury (spinal cord hemisection and dorsal column crush) and following dorsal root rhizotomy in adult rats. Our results show that Np1 RNA and protein are up-regulated in the spinal cord after all these lesions but remain unaltered in the adjacent dorsal root ganglia. In control animals, Np1 levels in the spinal cord are low and appear to be localized mainly in blood vessels, motoneurons, and in the superficial layers of the dorsal horn. After DCC and rhizotomy, Np1 is expressed de novo around the injury and in the deafferentated dorsal horn, respectively, mainly by OX42-positive microglial cells. Both lesions affect the sensory projections, and interestingly a consistent increase of Np1 signal is additionally seen in the dorsal horn where these projections terminate. Unexpectedly, this increase is bilateral after unilateral rhizotomy.

  15. Parallel image compression

    NASA Technical Reports Server (NTRS)

    Reif, John H.

    1987-01-01

    A parallel compression algorithm for the 16,384 processor MPP machine was developed. The serial version of the algorithm can be viewed as a combination of on-line dynamic lossless test compression techniques (which employ simple learning strategies) and vector quantization. These concepts are described. How these concepts are combined to form a new strategy for performing dynamic on-line lossy compression is discussed. Finally, the implementation of this algorithm in a massively parallel fashion on the MPP is discussed.

  16. Latency-associated transcripts of equine herpesvirus type 4 in trigeminal ganglia of naturally infected horses.

    PubMed

    Borchers, K; Wolfinger, U; Ludwig, H

    1999-08-01

    Equine herpesvirus type 4 (EHV-4) is a major respiratory pathogen of horses. Unlike most other members of the Alphaherpesvirinae, EHV-4 was regarded as non-neurotropic. Here, neural and lymphoid tissues of 17 horses have been analysed post-mortem. EHV-4 DNA was detected in 11 cases (65%) by PCR, exclusively in the trigeminal ganglia. In order to define the transcriptional activity, RNA preparations of 10 EHV-4 DNA-positive ganglia were investigated by nested RT-PCR. EHV-4-specific transcripts derived from genes 63 [herpes simplex virus type 1 (HSV-1) ICPO gene homologue] and 64 (HSV-1 ICP4 gene homologue) were detected in six trigeminal ganglia. In one other case, only gene 64-specific transcripts were present. All of the transcripts proved to be antisense orientated when a strand-specific RT-PCR was applied. Type-specific primers for gene 33 (encoding glycoprotein B) served to detect transcripts of an acute EHV-4-infection, which were found in only one of the six ganglia positive for gene 63- and gene 64-specific transcripts. Overall, these studies clearly demonstrate that EHV-4 is latent in trigeminal ganglia.

  17. Position of Larval Tapeworms, Polypocephalus sp., in the Ganglia of Shrimp, Litopenaeus setiferus

    PubMed Central

    Carreon, Nadia; Faulkes, Zen

    2014-01-01

    Parasites that invade the nervous system of their hosts have perhaps the best potential to manipulate their host’s behavior, but how they manipulate the host, if they do at all, could depend on their position within the host’s nervous system. We hypothesize that parasites that live in the nervous system of their host will be randomly distributed if they exert their influence through non-specific effects (i.e., general pathology), but that their position in the nervous system will be non-random if they exert their influence by targeting specific neural circuits. We recorded the position of larval tapeworms, Polypocephalus sp., in the abdominal ganglia of white shrimp, Litopenaeus setiferus. Tapeworms are more common within ganglia than in the section of the nerve cord between ganglia, even though the nerve cord has a greater volume than the ganglia. The tapeworms are also more abundant in the periphery of the ganglia. Because most synaptic connections are within the central region of the ganglion, such positioning may represent a trade-off between controlling the nervous system and damaging it. PMID:24820854

  18. Satellite glial cells in sympathetic and parasympathetic ganglia: in search of function.

    PubMed

    Hanani, Menachem

    2010-09-24

    Glial cells are established as essential for many functions of the central nervous system, and this seems to hold also for glial cells in the peripheral nervous system. The main type of glial cells in most types of peripheral ganglia - sensory, sympathetic, and parasympathetic - is satellite glial cells (SGCs). These cells usually form envelopes around single neurons, which create a distinct functional unit consisting of a neuron and its attending SGCs. This review presents the knowledge on the morphology of SGCs in sympathetic and parasympathetic ganglia, and the (limited) available information on their physiology and pharmacology. It appears that SGCs carry receptors for ATP and can thus respond to the release of this neurotransmitter by the neurons. There is evidence that SGCs have an uptake mechanism for GABA, and possibly other neurotransmitters, which enables them to control the neuronal microenvironment. Damage to post- or preganglionic nerve fibers influences both the ganglionic neurons and the SGCs. One major consequence of postganglionic nerve section is the detachment of preganglionic nerve terminals, resulting in decline of synaptic transmission. It appears that, at least in sympathetic ganglia, SGCs participate in the detachment process, and possibly in the subsequent recovery of the synaptic connections. Unlike sensory neurons, neurons in autonomic ganglia receive synaptic inputs, and SGCs are in very close contact with synaptic boutons. This places the SGCs in a position to influence synaptic transmission and information processing in autonomic ganglia, but this topic requires much further work.

  19. Basal ganglia activity patterns in parkinsonism and computational modeling of their downstream effects

    PubMed Central

    Rubin, Jonathan E.; McIntyre, Cameron C.; Turner, Robert S.; Wichmann, Thomas

    2012-01-01

    The availability of suitable animal models and of the opportunity to record electrophysiologic data in movement disorder patients undergoing neurosurgical procedures has allowed researchers to investigate parkinsonism-related changes in neuronal firing patterns in the basal ganglia and associated areas of thalamus and cortex. These studies have shown that parkinsonism is associated with increased activity in the basal ganglia output nuclei, along with an increase in burst discharges, oscillatory firing, and synchronous firing patterns throughout the basal ganglia. Computational approaches have the potential to play an important role in the interpretation of these data. Such efforts can provide a formalized view of neuronal interactions in the network of connections between basal ganglia, thalamus and cortex, allow for the exploration of possible contributions of particular network components to parkinsonism, and potentially result in new conceptual frameworks and hypotheses that can be subjected to biological testing. It has proven very difficult, however, to integrate the wealth of the experimental findings into coherent models of the disease. In this review, we provide an overview of the abnormalities in neuronal activity that have been associated with parkinsonism. Subsequently, we discuss some particular efforts to model the pathophysiologic mechanisms that may link abnormal basal ganglia activity to the cardinal parkinsonian motor signs and may help explain the mechanisms underlying the therapeutic efficacy of deep brain stimulation for Parkinson’s disease. We emphasize the logical structure of these computational studies, making clear the assumptions from which they proceed and the consequences and predictions that follow from these assumptions. PMID:22805066

  20. Childhood onset generalised dystonia can be modelled by increased gain in the indirect basal ganglia pathway.

    PubMed

    Sanger, T D

    2003-11-01

    Clinical experience suggests an important role of the indirect basal ganglia pathway in the genesis of childhood onset generalised dystonia, but it has been difficult to reconcile the increased muscle activity in dystonia with the current model of basal ganglia function in which the indirect pathway is considered primarily inhibitory. The aim of this study was to present a modification of the direct-indirect pathway model, in which the indirect pathway is inverting rather than purely inhibitory, so that while high signals are inhibited, low signals are amplified. As the basal ganglia may be a feedback loop that modifies cortical activity, instability from excessive gain in this feedback loop could explain features of dystonia. A detailed mathematical model is provided, together with simulations of cortical cell population spiking behaviour when connected through a basal ganglia loop. The simulations show that increased gain in the indirect pathway relative to the direct pathway can lead to unstable uncontrolled synchronous oscillations in cortex and basal ganglia. This behaviour could result in dystonia. The model provides a consistent explanation for the association of dystonia with parkinsonism and disorders characterised by dopamine depletion, the ability to treat some dystonias with dopamine, the ability of neuroleptic drug treatment to cause an acute dystonic reaction treatable with anticholinergic drugs, and the ability of pallidotomy or deep brain stimulation of the internal pallidum to alleviate symptoms of generalised dystonia.

  1. Position of larval tapeworms, Polypocephalus sp., in the ganglia of shrimp, Litopenaeus setiferus.

    PubMed

    Carreon, Nadia; Faulkes, Zen

    2014-07-01

    Parasites that invade the nervous system of their hosts have perhaps the best potential to manipulate their host's behavior, but how they manipulate the host, if they do at all, could depend on their position within the host's nervous system. We hypothesize that parasites that live in the nervous system of their host will be randomly distributed if they exert their influence through non-specific effects (i.e., general pathology), but that their position in the nervous system will be non-random if they exert their influence by targeting specific neural circuits. We recorded the position of larval tapeworms, Polypocephalus sp., in the abdominal ganglia of white shrimp, Litopenaeus setiferus. Tapeworms are more common within ganglia than in the section of the nerve cord between ganglia, even though the nerve cord has a greater volume than the ganglia. The tapeworms are also more abundant in the periphery of the ganglia. Because most synaptic connections are within the central region of the ganglion, such positioning may represent a trade-off between controlling the nervous system and damaging it.

  2. Anatomy of the nerves and ganglia of the aortic plexus in males

    PubMed Central

    Beveridge, Tyler S; Johnson, Marjorie; Power, Adam; Power, Nicholas E; Allman, Brian L

    2015-01-01

    It is well accepted that the aortic plexus is a network of pre- and post-ganglionic nerves overlying the abdominal aorta, which is primarily involved with the sympathetic innervation to the mesenteric, pelvic and urogenital organs. Because a comprehensive anatomical description of the aortic plexus and its connections with adjacent plexuses are lacking, these delicate structures are prone to unintended damage during abdominal surgeries. Through dissection of fresh, frozen human cadavers (n = 7), the present study aimed to provide the first complete mapping of the nerves and ganglia of the aortic plexus in males. Using standard histochemical procedures, ganglia of the aortic plexus were verified through microscopic analysis using haematoxylin & eosin (H&E) and anti-tyrosine hydroxylase stains. All specimens exhibited four distinct sympathetic ganglia within the aortic plexus: the right and left spermatic ganglia, the inferior mesenteric ganglion and one previously unidentified ganglion, which has been named the prehypogastric ganglion by the authors. The spermatic ganglia were consistently supplied by the L1 lumbar splanchnic nerves and the inferior mesenteric ganglion and the newly characterized prehypogastric ganglion were supplied by the left and right L2 lumbar splanchnic nerves, respectively. Additionally, our examination revealed the aortic plexus does have potential for variation, primarily in the possibility of exhibiting accessory splanchnic nerves. Clinically, our results could have significant implications for preserving fertility in men as well as sympathetic function to the hindgut and pelvis during retroperitoneal surgeries. PMID:25382240

  3. MRI morphometric characterisation of the paediatric cervical spine and spinal cord in children with MPS IVA (Morquio-Brailsford syndrome).

    PubMed

    Solanki, Guirish A; Lo, William B; Hendriksz, Christian J

    2013-03-01

    Nearly all children with MPS IVA develop skeletal deformities affecting the spine. At the atlanto-axial spine, odontoid hypoplasia occurs. GAG deposition around the dens, leads to peri-odontoid infiltration. Transverse/alar ligament incompetence causes instability. Atlanto-axial instability is associated with cord compression and myelopathy, leading to major morbidity and mortality. Intervention is often required. Does the presence of widened bullet shaped vertebra in platyspondily encroach on the spinal canal and cause spinal stenosis in MPS IVA? So far, there have been no standardised morphometric measurements of the paediatric MPS IVA cervical spine to evaluate whether there is pre-existing spinal stenosis predisposing to compressive myelopathy or whether this is purely an acquired process secondary to instability and compression. This study provides the first radiological quantitative analysis of the cervical spine and spinal cord in a series of affected children. MRI morphometry indicates that the MPS IVA spine is narrower at C1-2 level giving an inverted funnel shape. There is no evidence of a reduction in the Torg ratio (canal-body ratio) in the cervical spine. The spinal canal does not exceed 11 mm at any level, significantly smaller than normal historical cohorts (14 mm). The sagittal diameter and axial surface area of both spinal canal and cord are reduced. C1-2 level cord compression was evident in the canal-cord ratio but the Torg ratio was not predictive of cord compression. In MPS IVA the reduction in the space available for the cord (SAC) is multifactorial rather than due to congenital spinal stenosis.

  4. HYDRODYNAMIC COMPRESSIVE FORGING.

    DTIC Science & Technology

    HYDRODYNAMICS), (*FORGING, COMPRESSIVE PROPERTIES, LUBRICANTS, PERFORMANCE(ENGINEERING), DIES, TENSILE PROPERTIES, MOLYBDENUM ALLOYS , STRAIN...MECHANICS), BERYLLIUM ALLOYS , NICKEL ALLOYS , CASTING ALLOYS , PRESSURE, FAILURE(MECHANICS).

  5. Peripheral injury and anterograde transport of wheat germ agglutinin-horse radish peroxidase to the spinal cord.

    PubMed

    Valtschanoff, J G; Weinberg, R J; Rustioni, A

    1992-10-01

    Previous observations have revealed labeling in the extracellular space surrounding boutons and unmyelinated fibers in superficial laminae of the spinal cord after injection of the tracer wheat germ agglutinin conjugated to horseradish peroxidase in dorsal root ganglia. The degree of extracellular labeling appeared related to the extent of the damage to the ganglia at the time of the injection. To determine whether injury might produce extracellular labeling, we investigated the effects of unilateral nerve crush or transection on spinal labeling after bilateral injections of the tracer into sciatic nerves. Confirming previous reports, labeling was confined to small dorsal root ganglion cells and to spinal laminae I and II, suggesting a selective affinity of this tracer for unmyelinated fibers. Labeling of both ganglion neurons and superficial spinal laminae was increased on the injured side, probably as a result of increased efficiency of receptor-mediated endocytosis. Electron microscopical observations revealed that the tracer was largely confined to unmyelinated dorsal root fibers bilaterally; a higher percentage of these fibers were labeled on the injured side. In the dorsal horn, the tracer was predominantly within unmyelinated axons and their terminals on the control side, whereas most of the labeling was extracellular and transneuronal on the injured side. The extracellular labeling surrounded unmyelinated fibers and their terminals in the spinal cord, but was excluded from the synaptic cleft. The demonstration that injury is accompanied by significantly increased release of this tracer from the terminals of unmyelinated fibers into the extracellular space suggests that endogenous substances may be released after peripheral lesions as a central signal of injury.

  6. Differentiated thyroid carcinoma as a cause of cervical spinal injury.

    PubMed

    Masmiquel, L; Simó, R; Galofré, P; Mesa, J

    1995-01-01

    Cervical cord compression due to local extension of differentiated thyroid carcinoma (DTC) is an extremely rare condition and, to our knowledge, only one case has been reported in the literature. Among 256 patients with DTC treated at our hospital, we have observed 3 cases of spinal injury due to local extension of DTC. A Brown-Séquard syndrome was detected at physical examination in 2 cases. In both patients, cervical cord compression precipitated a fatal event. In the remaining patient, a radiculopathy C5-C7 was observed. Magnetic resonance imaging was very successful in outlining the mass, clearly differentiating the extrinsic invasion from a metastasis, and allowing the surgical possibilities to be evaluated. Poor cervical uptake of 131I was observed on scans performed in two cases, suggesting a certain degree of cell dedifferentiation. We suggest that cervical spinal injury due to local extension of DTC may be an underreported complication of DTC that seems to condition the patient's outcome. Careful neurological examination is warranted in patients with DTC at stages III-IV and magnetic resonance imaging must be performed when spinal injury is suspected.

  7. Surgical outcome of spinal neurilemmoma: two case reports.

    PubMed

    Yeh, Kuang-Ting; Lee, Ru-Ping; Yu, Tzai-Chiu; Chen, Ing-Ho; Peng, Cheng-Huan; Liu, Kuan-Lin; Wang, Jen-Hung; Wu, Wen-Tien

    2015-02-01

    Neurilemmoma commonly occurs from the fourth to sixth decades of life with an incidence of 3 to 10 per 100,000 people, and is rare in adolescence. This case report describes the clinical and radiographic features of 2 rare cases with intraspinal neurilemmoma of the cervical and thoracic spine. A 29-year-old man who experienced middle back pain with prominent right lower limb weakness, and an 11-year-old boy who suffered from sudden onset neck pain with left arm weakness and hand clawing for 2 weeks before admission to our department were included in this case report. Magnetic resonance imaging of both patients revealed an intraspinal mass causing spinal cord compression at the cervical and thoracic spine. The patients subsequently received urgent posterior spinal cord decompression and tumor resection surgery. The histopathology reports revealed neurilemmoma. The 2 patients recovered and resumed their normal lives within 1 year. Intraspinal neurilemmoma is rare but should be considered in the differential diagnosis of spinal cord compression. Advances in imaging techniques and surgical procedures have yielded substantially enhanced clinical outcomes in intraspinal neoplasm cases. Delicate preoperative study and surgical skill with rehabilitation and postoperative observation are critical.

  8. Adult Primary Spinal Epidural Extraosseous Ewing's Sarcoma: A Case Report and Review of the Literature

    PubMed Central

    Thomas, Cheddhi; Modrek, Aram S.; Bayin, N. Sumru; Snuderl, Matija; Schiff, Peter B.

    2016-01-01

    Background. Extraosseous Ewing's sarcoma in the spinal epidural space is a rare malignancy, especially in adults. Case Presentation. A 40-year-old male presented with back pain and urinary hesitancy. MRI revealed a thoracic extradural mass with no osseous involvement. He underwent surgery for gross total resection of the mass, which was diagnosed as Ewing's sarcoma. He was subsequently treated with chemoradiotherapy. He remains disease-free 1 year after surgery. Review of the literature indicated only 45 previously reported cases of spinal epidural extraosseous Ewing's sarcoma in adults. Conclusions. Extraosseous Ewing's sarcoma in the spinal epidural space is a rare clinical entity that should be included in the differential for spinal epidural masses. Its treatment is multidisciplinary but frequently requires surgical intervention due to compressive neurologic symptoms. Gross total resection appears to correlate with improved outcomes. PMID:27610254

  9. Skeletal metastases - the role of the orthopaedic and spinal surgeon.

    PubMed

    Eastley, Nicholas; Newey, Martyn; Ashford, Robert U

    2012-09-01

    . Patients who suffer a slowly progressive deficit, present within hours of complete neurological deficit, or have compression caused by bone alone are those most likely to benefit from surgery. Back pain in the presence of MBD should be regarded as impending spinal cord compression, and investigated urgently to allow intervention prior to the development of neurological compromise.

  10. High-resolution MRI of intact and transected rat spinal cord.

    PubMed

    Fraidakis, M; Klason, T; Cheng, H; Olson, L; Spenger, C

    1998-10-01

    Spinal cord transection at midthoracic level leads to an immediate loss of hindlimb motor function as well as to a progressive degeneration of descending and ascending spinal cord pathways. Thoracic spinal cord in unlesioned control rats and in rats 2 to 6 months after complete midthoracic transection were imaged in vivo using an ultrahigh-field (4.7 T) magnetic resonance spectrometer. High-resolution spin-echo and inversion-recovery pulse sequences were employed. In addition, the apparent diffusion coefficients (ADCs) in longitudinal and transverse directions of the spinal cord were determined. Anatomical MRI findings were confirmed in histological spinal cord tissue preparations. In healthy spinal cord, gray and white matter were easily discerned in proton density-weighted images. An infield resolution of max. 76 micrometers per pixel was achieved. In animals with chronic spinal cord transection changes in gray-white matter structure and contrast were observed toward the cut end. The spinal cord stumps showed a tapering off. This coincided with changes in the longitudinal/transverse ADC ratio. Fluid-filled cysts were found in most cases at the distal end of the rostral stump. The gap between the stumps contained richly vascularized scar tissue. Additional pathologic changes included intramedullary microcysts, vertebral dislocations, and in one animal compression of the spinal cord. In conclusion, MRI was found to be a useful method for in vivo investigation of anatomical and physiological changes following spinal cord transection and to estimate the degree of neural degeneration. In addition, MRI allows the description of the accurate extension of fluid spaces (e.g., cysts) and of water diffusion characteristics which cannot be achieved by other means in vivo.

  11. Toll-like receptor 2-mediated alternative activation of microglia is protective after spinal cord injury.

    PubMed

    Stirling, David P; Cummins, Karen; Mishra, Manoj; Teo, Wulin; Yong, V Wee; Stys, Peter

    2014-03-01

    Improving neurological outcome after spinal cord injury is a major clinical challenge because axons, once severed, do not regenerate but 'dieback' from the lesion site. Although microglia, the immunocompetent cells of the brain and spinal cord respond rapidly to spinal cord injury, their role in subsequent injury or repair remains unclear. To assess the role of microglia in spinal cord white matter injury we used time-lapse two-photon and spectral confocal imaging of green fluorescent protein-labelled microglia, yellow fluorescent protein-labelled axons, and Nile Red-labelled myelin of living murine spinal cord and revealed dynamic changes in white matter elements after laser-induced spinal cord injury in real time. Importantly, our model of acute axonal injury closely mimics the axonopathy described in well-characterized clinically relevant models of spinal cord injury including contusive-, compressive- and transection-based models. Time-lapse recordings revealed that microglia were associated with some acute pathophysiological changes in axons and myelin acutely after laser-induced spinal cord injury. These pathophysiological changes included myelin and axonal spheroid formation, spectral shifts in Nile Red emission spectra in axonal endbulbs detected with spectral microscopy, and 'bystander' degeneration of axons that survived the initial injury, but then succumbed to secondary degeneration. Surprisingly, modulation of microglial-mediated release of neurotoxic molecules failed to protect axons and myelin. In contrast, sterile stimulation of microglia with the specific toll-like receptor 2 agonist Pam2CSK4 robustly increased the microglial response to ablation, reduced secondary degeneration of central myelinated fibres, and induced an alternative (mixed M1:M2) microglial activation profile. Conversely, Tlr2 knock out: Thy1 yellow fluorescent protein double transgenic mice experienced greater axonal dieback than littermate controls. Thus, promoting an alternative

  12. Spinal motor and sensory neurons are androgen targets in an acrobatic bird.

    PubMed

    Fuxjager, Matthew J; Schultz, J Douglas; Barske, Julia; Feng, Ni Y; Fusani, Leonida; Mirzatoni, Anahid; Day, Lainy B; Hau, Michaela; Schlinger, Barney A

    2012-08-01

    Sex steroids affect the motivation to court mates, but less is known about how they influence motor movements associated with courtship behavior. Steroidal control of motor function may be especially important for species in which courtship requires superior strength, stamina, and neuromuscular coordination. Here we use the golden-collared manakin (Manacus vitellinus) to examine whether the neuromuscular circuitry that controls motoric aspects of courtship activity is sensitive to androgens. Males of this tropical species attract mates by rapidly jumping among branches in a courtship arena and using their wings to produce loud wing snaps. Testosterone activates this display via the androgen receptor (AR), and past work reveals that manakins injected with radio-labeled T ((3)H-T) accumulate radioactivity in the spinal cord. Thus, we used quantitative PCR to measure AR, estrogen receptor-α (ER-α) subtype, and aromatase (AROM) mRNA in spinal cords of male and female manakins and zebra finches. Expression of AR, but not ER-α or aromatase, was higher throughout the manakin spinal cord compared with the zebra finch. Next, we tested whether AR-expressing skeletal muscles are innervated by motor and sensory neurons that also express AR. To do this, we backfilled spinal neurons by injecting fluorescent tracers into select AR-sensitive wing and leg muscles of wild caught male and female manakins. We then removed these spinal cords and measured AR expression with in situ hybridization. Both sexes showed abundant AR mRNA in the cervical and lumbosacral spinal enlargements as well as in dorsal root ganglia attached to these enlargements. Together our findings suggest that androgens act widely on peripheral motor and sensory circuits in golden-collared manakins to influence wing snapping displays.

  13. Medicolegal cases for spinal epidural hematoma and spinal epidural abscess.

    PubMed

    French, Keisha L; Daniels, Eldra W; Ahn, Uri M; Ahn, Nicholas U

    2013-01-01

    Spinal epidural hematoma and spinal epidural abscess are rare surgical emergencies resulting in significant neurologic deficits. Making the diagnosis for spinal epidural hematoma and spinal epidural abscess can be challenging; however, a delay in recognition and treatment can be devastating. The objective of this retrospective analysis study was to identify risk factors for an adverse outcome for the provider. The LexisNexis Academic legal search database was used to identify a total of 19 cases of spinal epidural hematoma and spinal epidural abscess filed against medical providers. Outcome data on trial verdicts, age, sex, initial site of injury, time to consultation, time to appropriate imaging studies, time to surgery, and whether a rectal examination was performed or not were recorded. The results demonstrated a significant association between time to surgery more than 48 hours and an unfavorable verdict for the provider. The degree of permanent neurologic impairment did not appear to affect the verdicts. Fifty-eight percent of the cases did not present with an initial deficit, including loss of bowel or bladder control. All medical professionals must maintain a high level of suspicion and act quickly. Physicians who are able to identify early clinical features, appropriately image, and treat within a 48 hour time frame have demonstrated a more favorable medicolegal outcome compared with their counterparts in filed lawsuits for spinal epidural hematoma and spinal epidural abscess cases.

  14. Functional study of endothelin B receptors in satellite glial cells in trigeminal ganglia.

    PubMed

    Feldman-Goriachnik, Rachel; Hanani, Menachem

    2011-07-13

    There is immunohistochemical evidence for endothelin (ET) receptors in satellite glial cells in sensory ganglia, but there is no information on the function of these receptors. We used calcium imaging to study this question in isolated mouse trigeminal ganglia and found that satellite glial cells are highly sensitive to ET-1, with threshold at 0.05 nM. Responses displayed strong desensitization at ET-1 concentrations of more than 1 nM. A large component of the response persisted when Ca was deleted from the external medium, consistent with Ca release from internal stores. The use of receptor selective agents showed that the responses were mediated by ETB receptors. We conclude that satellite glial cells display endothelin receptors, which may participate in neuron-glia communications in the trigeminal ganglia.

  15. MR-DTI and PET multimodal imaging of dopamine release within subdivisions of basal ganglia

    NASA Astrophysics Data System (ADS)

    Tziortzi, A.; Searle, G.; Tsoumpas, C.; Long, C.; Shotbolt, P.; Rabiner, E.; Jenkinson, M.; Gunn, R. N.

    2011-09-01

    The basal ganglia is a group of anatomical nuclei, functionally organised into limbic, associative and sensorimotor regions, which plays a central role in dopamine related neurological and psychiatric disorders. In this study, we combine two imaging modalities to enable the measurement of dopamine release in functionally related subdivisions of the basal ganglia. [11C]-(+)-PHNO Positron Emission Tomography (PET) measurements in the living human brain pre- and post-administration of amphetamine allow for the estimation of regional dopamine release. Combined Magnetic Resonance Diffusion Tensor Imaging (MR-DTI) data allows for the definition of functional territories of the basal ganglia from connectivity information. The results suggest that there is a difference in dopamine release among the connectivity derived functional subdivisions. Dopamine release is highest in the limbic area followed by the sensorimotor and then the associative area with this pattern reflected in both striatum and pallidum.

  16. Basal ganglia damage and impaired visual function in the newborn infant

    PubMed Central

    Mercuri, E.; Atkinson, J.; Braddick, O.; Anker, S.; Cowan, F.; Rutherford, M.; Pennock, J.; Dubowitz, L.

    1997-01-01

    AIM—To examine the effects of early lesions in the visual pathway on visual function; and to identify early prognostic indicators of visual abnormalities.
METHODS—The visual function of 37 infants with perinatal brain lesions on magnetic resonance imaging was assessed using behavioural and electrophysiological variables.
RESULTS—Normal visual behaviour was observed in most infants with large bilateral occipital lesions, but all the infants with associated basal ganglia involvement had abnormal visual function. Visual abnormalities were also present in six infants with isolated basal ganglia lesions.
CONCLUSIONS—These observations suggest that basal ganglia may have an integral role in human visual development and that their presence on neonatal MRI could be an early marker of abnormal visual function.

 PMID:9377131

  17. A humanized version of Foxp2 affects cortico-basal ganglia circuits in mice.

    PubMed

    Enard, Wolfgang; Gehre, Sabine; Hammerschmidt, Kurt; Hölter, Sabine M; Blass, Torsten; Somel, Mehmet; Brückner, Martina K; Schreiweis, Christiane; Winter, Christine; Sohr, Reinhard; Becker, Lore; Wiebe, Victor; Nickel, Birgit; Giger, Thomas; Müller, Uwe; Groszer, Matthias; Adler, Thure; Aguilar, Antonio; Bolle, Ines; Calzada-Wack, Julia; Dalke, Claudia; Ehrhardt, Nicole; Favor, Jack; Fuchs, Helmut; Gailus-Durner, Valérie; Hans, Wolfgang; Hölzlwimmer, Gabriele; Javaheri, Anahita; Kalaydjiev, Svetoslav; Kallnik, Magdalena; Kling, Eva; Kunder, Sandra; Mossbrugger, Ilona; Naton, Beatrix; Racz, Ildikó; Rathkolb, Birgit; Rozman, Jan; Schrewe, Anja; Busch, Dirk H; Graw, Jochen; Ivandic, Boris; Klingenspor, Martin; Klopstock, Thomas; Ollert, Markus; Quintanilla-Martinez, Leticia; Schulz, Holger; Wolf, Eckhard; Wurst, Wolfgang; Zimmer, Andreas; Fisher, Simon E; Morgenstern, Rudolf; Arendt, Thomas; de Angelis, Martin Hrabé; Fischer, Julia; Schwarz, Johannes; Pääbo, Svante

    2009-05-29

    It has been proposed that two amino acid substitutions in the transcription factor FOXP2 have been positively selected during human evolution due to effects on aspects of speech and language. Here, we introduce these substitutions into the endogenous Foxp2 gene of mice. Although these mice are generally healthy, they have qualitatively different ultrasonic vocalizations, decreased exploratory behavior and decreased dopamine concentrations in the brain suggesting that the humanized Foxp2 allele affects basal ganglia. In the striatum, a part of the basal ganglia affected in humans with a speech deficit due to a nonfunctional FOXP2 allele, we find that medium spiny neurons have increased dendrite lengths and increased synaptic plasticity. Since mice carrying one nonfunctional Foxp2 allele show opposite effects, this suggests that alterations in cortico-basal ganglia circuits might have been important for the evolution of speech and language in humans.

  18. Goal-directed and habitual control in the basal ganglia: implications for Parkinson’s disease

    PubMed Central

    Redgrave, Peter; Rodriguez, Manuel; Smith, Yoland; Rodriguez-Oroz, Maria C.; Lehericy, Stephane; Bergman, Hagai; Agid, Yves; DeLong, Mahlon R.; Obeso, Jose A.

    2011-01-01

    Progressive loss of the ascending dopaminergic projection in the basal ganglia is a fundamental pathological feature of Parkinson’s disease. Studies in animals and humans have identified spatially segregated functional territories in the basal ganglia for the control of goal-directed and habitual actions. In patients with Parkinson’s disease the loss of dopamine is predominantly in the posterior putamen, a region of the basal ganglia associated with the control of habitual behaviour. These patients may therefore be forced into a progressive reliance on the goal-directed mode of action control that is mediated by comparatively preserved processing in the rostromedial striatum. Thus, many of their behavioural difficulties may reflect a loss of normal automatic control owing to distorting output signals from habitual control circuits, which impede the expression of goal-directed action. PMID:20944662

  19. Cross-Excitation in Peripheral Sensory Ganglia Associated with Pain Transmission

    PubMed Central

    Omoto, Katsuhiro; Maruhama, Kotaro; Terayama, Ryuji; Yamamoto, Yumiko; Matsushita, Osamu; Sugimoto, Tomosada; Oguma, Keiji; Matsuka, Yoshizo

    2015-01-01

    Despite the absence of synaptic contacts, cross-excitation of neurons in sensory ganglia during signal transmission is considered to be chemically mediated and appears increased in chronic pain states. In this study, we modulated neurotransmitter release in sensory neurons by direct application of type A botulinum neurotoxin (BoNT/A) to sensory ganglia in an animal model of neuropathic pain and evaluated the effect of this treatment on nocifensive. Unilateral sciatic nerve entrapment (SNE) reduced the ipsilateral hindpaw withdrawal threshold to mechanical stimulation and reduced hindpaw withdrawal latency to thermal stimulation. Direct application of BoNT/A to the ipsilateral L4 dorsal root ganglion (DRG) was localized in the cell bodies of the DRG and reversed the SNE-induced decreases in withdrawal thresholds within 2 days of BoNT/A administration. Results from this study suggest that neurotransmitter release within sensory ganglia is involved in the regulation of pain-related signal transmission. PMID:26248078

  20. Cross-Excitation in Peripheral Sensory Ganglia Associated with Pain Transmission.

    PubMed

    Omoto, Katsuhiro; Maruhama, Kotaro; Terayama, Ryuji; Yamamoto, Yumiko; Matsushita, Osamu; Sugimoto, Tomosada; Oguma, Keiji; Matsuka, Yoshizo

    2015-08-04

    Despite the absence of synaptic contacts, cross-excitation of neurons in sensory ganglia during signal transmission is considered to be chemically mediated and appears increased in chronic pain states. In this study, we modulated neurotransmitter release in sensory neurons by direct application of type A botulinum neurotoxin (BoNT/A) to sensory ganglia in an animal model of neuropathic pain and evaluated the effect of this treatment on nocifensive. Unilateral sciatic nerve entrapment (SNE) reduced the ipsilateral hindpaw withdrawal threshold to mechanical stimulation and reduced hindpaw withdrawal latency to thermal stimulation. Direct application of BoNT/A to the ipsilateral L4 dorsal root ganglion (DRG) was localized in the cell bodies of the DRG and reversed the SNE-induced decreases in withdrawal thresholds within 2 days of BoNT/A administration. Results from this study suggest that neurotransmitter release within sensory ganglia is involved in the regulation of pain-related signal transmission.

  1. Novel aspects of spinal cord evoked potentials (SCEPs) in the evaluation of dorso-ventral and lateral mechanical impacts on the spinal cord

    NASA Astrophysics Data System (ADS)

    Rad, Iman; Kouhzaei, Sogolie; Mobasheri, Hamid; Saberi, Hooshang

    2015-02-01

    Objectives. The aim of the current study was to mimic mechanical impacts on the spinal cord by manifesting the effects of dorsoventral (DVMP) and lateral (LMP) mechanical pressure on neural activity to address points to be considered during surgery for different purposes, including spinal cord decompression. Approaches. Spinal cords of anesthetized rats were compressed at T13. Different characteristics of axons, including vulnerability, excitability, and conduction velocity (CV), in response to promptness, severity, and duration of pressure were assessed by spinal cord evoked potentials (SCEPs). Real-time SCEPs recorded at L4-5 revealed N1, N2, and N3 peaks that were used to represent the activity of injured sensory afferents, interneurons, and MN fibers. The averaged SCEP recordings were fitted by trust-region algorithm to find the equivalent Gaussian and polynomial equations. Main results. The pyramidal and extrapyramidal pathways possessed CVs of 3-11 and 16-80 m s-1, respectively. DVMP decreased the excitability of myelinated neural fibers in antidromic and orthodromic pathways. The excitability of fibers in extrapyramidal and pyramidal pathways of lateral corticospinal (LCS) and anterior corticospinal (ACS) tracts decreased following LMP. A significant drop in the amplitude of N3 and its conduction velocity (CV) revealed higher susceptibility of less-myelinated fibers to both DVMP and LMP. The best parametric fitting model for triplet healthy spinal cord CAP was a six-term Gaussian equation (G6) that fell into a five-term equation (G5) at the complete compression stage. Significance. The spinal cord is more susceptible to dorsoventral than lateral mechanical pressures, and this should be considered in spinal cord operations. SCEPs have shown promising capabilities for evaluating the severity of SCI and thus can be applied for diagnostic or prognostic intraoperative monitoring (IOM).

  2. Spinal cord injuries in older children: is there a role for high-dose methylprednisolone?

    PubMed

    Arora, Bhawana; Suresh, Srinivasan

    2011-12-01

    We present a retrospective case series of 15 children (aged 8-16 years) with blunt traumatic spinal cord injury who were treated with methylprednisolone as per the National Acute Spinal Cord Injury Study protocol. Of all patients, 12 (80%) were male. Causes were sports injuries (n = 9), motor vehicle crashes (n = 2), and falls (n = 4). Most injuries were nonskeletal (n = 14), and all patients had incomplete injury of the spinal cord. The most common location of tenderness was cervical (n = 7). Of the 15 patients, methylprednisolone was initiated within 3 hours in 13 patients and between 3 and 8 hours in 2 patients. All patients received the medication for 23 hours as per the National Acute Spinal Cord Injury Study protocol. Of the 15 patients, 13 recovered completely by 24 hours and were discharged with a diagnosis of spinal cord concussion. One patient had compression fracture of T5 and T3-T5 spinal contusion but no long-term neurological deficit. One patient was discharged with diagnosis of C1-C3 spinal cord contusion (by magnetic resonance imaging) and had partial recovery at 2 years after injury. All patients with a diagnosis of cord concussion had normal plain films of the spine and computed tomographic and magnetic resonance imaging findings. None of the patients had any associated major traumatic injuries to other organ systems. The high-dose steroid therapy did not result in any serious bacterial infections.

  3. A mixed Ca2+ channel blocker, A-1264087, utilizes peripheral and spinal mechanisms to inhibit spinal nociceptive transmission in a rat model of neuropathic pain.

    PubMed

    Xu, Jun; Chu, Katharine L; Zhu, Chang Z; Niforatos, Wende; Swensen, Andrew; Searle, Xenia; Lee, Lance; Jarvis, Michael F; McGaraughty, Steve

    2014-01-01

    N-, T- and P/Q-type voltage-gated Ca(2+) channels are critical for regulating neurotransmitter release and cellular excitability and have been implicated in mediating pathological nociception. A-1264087 is a novel state-dependent blocker of N-, T- and P/Q-type channels. In the present studies, A-1264087 blocked (IC50 = 1.6 μM) rat dorsal root ganglia N-type Ca(2+) in a state-dependent fashion. A-1264087 (1, 3 and 10 mg/kg po) dose-dependently reduced mechanical allodynia in rats with a spinal nerve ligation (SNL) injury. A-1264087 (4 mg/kg iv) inhibited both spontaneous and mechanically evoked activity of spinal wide dynamic range (WDR) neurons in SNL rats but had no effect in uninjured rats. The inhibitory effect on WDR neurons remained in spinally transected SNL rats. Injection of A-1264087 (10 nmol/0.5 μl) into the spinal cord reduced both spontaneous and evoked WDR activity in SNL rats. Application of A-1264087 (300 nmol/20 μl) into the receptive field on the hindpaw attenuated evoked but not spontaneous firing of WDR neurons. Using electrical stimulation, A-1264087 (4 mg/kg iv) inhibited Aδ- and C-fiber evoked responses and after-discharge of WDR neurons in SNL rats. These effects by A-1264087 were not present in uninjured rats. A-1264087 moderately attenuated WDR neuron windup in both uninjured and SNL rats. In summary, these results indicate that A-1264087 selectively inhibited spinal nociceptive transmission in sensitized states through both peripheral and central mechanisms.

  4. A Genome-Wide Screen to Identify Transcription Factors Expressed in Pelvic Ganglia of the Lower Urinary Tract

    PubMed Central

    Wiese, Carrie B.; Ireland, Sara; Fleming, Nicole L.; Yu, Jing; Valerius, M. Todd; Georgas, Kylie; Chiu, Han Sheng; Brennan, Jane; Armstrong, Jane; Little, Melissa H.; McMahon, Andrew P.; Southard-Smith, E. Michelle

    2012-01-01

    Relative positions of neurons within mature murine pelvic ganglia based on expression of neurotransmitters have been described. However the spatial organization of developing innervation in the murine urogenital tract (UGT) and the gene networks that regulate specification and maturation of neurons within the pelvic ganglia of the lower urinary tract (LUT) are unknown. We used whole-mount immunohistochemistry and histochemical stains to localize neural elements in 15.5 days post coitus (dpc) fetal mice. To identify potential regulatory factors expressed in pelvic ganglia, we surveyed expression patterns for known or probable transcription factors (TF) annotated in the mouse genome by screening a whole-mount in situ hybridization library of fetal UGTs. Of the 155 genes detected in pelvic ganglia, 88 encode TFs based on the presence of predicted DNA-binding domains. Neural crest (NC)-derived progenitors within the LUT were labeled by Sox10, a well-known regulator of NC development. Genes identified were categorized based on patterns of restricted expression in pelvic ganglia, pelvic ganglia and urethral epithelium, or pelvic ganglia and urethral mesenchyme. Gene expression patterns and the distribution of Sox10+, Phox2b+, Hu+, and PGP9.5+ cells within developing ganglia suggest previously unrecognized regional segregation of Sox10+ progenitors and differentiating neurons in early development of pelvic ganglia. Reverse transcription-PCR of pelvic ganglia RNA from fetal and post-natal stages demonstrated that multiple TFs maintain post-natal expression, although Pax3 is extinguished before weaning. Our analysis identifies multiple potential regulatory genes including TFs that may participate in segregation of discrete lineages within pelvic ganglia. The genes identified here are attractive candidate disease genes that may now be further investigated for their roles in malformation syndromes or in LUT dysfunction. PMID:22988430

  5. Dopaminergic Control of the Exploration-Exploitation Trade-Off via the Basal Ganglia

    PubMed Central

    Humphries, Mark D.; Khamassi, Mehdi; Gurney, Kevin

    2012-01-01

    We continuously face the dilemma of choosing between actions that gather new information or actions that exploit existing knowledge. This “exploration-exploitation” trade-off depends on the environment: stability favors exploiting knowledge to maximize gains; volatility favors exploring new options and discovering new outcomes. Here we set out to reconcile recent evidence for dopamine’s involvement in the exploration-exploitation trade-off with the existing evidence for basal ganglia control of action selection, by testing the hypothesis that tonic dopamine in the striatum, the basal ganglia’s input nucleus, sets the current exploration-exploitation trade-off. We first advance the idea of interpreting the basal ganglia output as a probability distribution function for action selection. Using computational models of the full basal ganglia circuit, we showed that, under this interpretation, the actions of dopamine within the striatum change the basal ganglia’s output to favor the level of exploration or exploitation encoded in the probability distribution. We also found that our models predict striatal dopamine controls the exploration-exploitation trade-off if we instead read-out the probability distribution from the target nuclei of the basal ganglia, where their inhibitory input shapes the cortical input to these nuclei. Finally, by integrating the basal ganglia within a reinforcement learning model, we showed how dopamine’s effect on the exploration-exploitation trade-off could be measurable in a forced two-choice task. These simulations also showed how tonic dopamine can appear to affect learning while only directly altering the trade-off. Thus, our models support the hypothesis that changes in tonic dopamine within the striatum can alter the exploration-exploitation trade-off by modulating the output of the basal ganglia. PMID:22347155

  6. The effects of endothelin-1 on satellite glial cells in peripheral ganglia.

    PubMed

    Feldman-Goriachnik, Rachel; Hanani, Menachem

    2017-03-18

    Endothelins (ET) are a family of highly active neuropeptides with manifold influences via ET receptors (ETR) in both the peripheral and central nervous systems. We have shown previously that satellite glial cells (SGCs) in mouse trigeminal ganglia (TG) are extremely sensitive to ET-1 in evoking [Ca(2+)]in increase, apparently via ETBR activation, but there is no functional information on ETR in SGCs of other peripheral ganglia. Here we tested the effects of ET-1 on SGCs in nodose ganglia (NG), which is sensory, and superior cervical ganglia (Sup-CG), which is part of the sympathetic nervous system, and further investigated the influence of ET-1 on SGCs in TG. Using calcium imaging we found that SGCs in intact, freshly isolated NG and Sup-CG are highly sensitive to ET-1, with threshold concentration at 0.1nM. Our results showed that [Ca(2+)]in elevation in response to ET-1 was partially due to Ca(2+) influx from the extracellular space and partially to Ca(2+) release from intracellular stores. Using receptor selective ETR agonists and antagonists, we found that the responses were mediated by mixed ETAR/ETBR in SGCs of NG and predominantly by ETBR in SGCs of Sup-CG. By employing intracellular dye injection we examined coupling among SGCs around different neurons in the presence of 5nM ET-1 and observed coupling inhibition in all the three ganglion types. In summary, our work showed that SGCs in mouse sensory and sympathetic ganglia are highly sensitive to ET-1 and that this peptide markedly reduces SGCs coupling. We conclude that ET-1, which may participate in neuron-glia communications, has similar functions in wide range of peripheral ganglia.

  7. Global dysrhythmia of cerebro-basal ganglia-cerebellar networks underlies motor tics following striatal disinhibition.

    PubMed

    McCairn, Kevin W; Iriki, Atsushi; Isoda, Masaki

    2013-01-09

    Motor tics, a cardinal symptom of Tourette syndrome (TS), are hypothesized to arise from abnormalities within cerebro-basal ganglia circuits. Yet noninvasive neuroimaging of TS has previously identified robust activation in the cerebellum. To date, electrophysiological properties of cerebellar activation and its role in basal ganglia-mediated tic expression remain unknown. We performed multisite, multielectrode recordings of single-unit activity and local field potentials from the cerebellum, basal ganglia, and primary motor cortex using a pharmacologic monkey model of motor tics/TS. Following microinjections of bicuculline into the sensorimotor putamen, periodic tics occurred predominantly in the orofacial region, and a sizable number of cerebellar neurons showed phasic changes in activity associated with tic episodes. Specifically, 64% of the recorded cerebellar cortex neurons exhibited increases in activity, and 85% of the dentate nucleus neurons displayed excitatory, inhibitory, or multiphasic responses. Critically, abnormal discharges of cerebellar cortex neurons and excitatory-type dentate neurons mostly preceded behavioral tic onset, indicating their central origins. Latencies of pathological activity in the cerebellum and primary motor cortex substantially overlapped, suggesting that aberrant signals may be traveling along divergent pathways to these structures from the basal ganglia. Furthermore, the occurrence of tic movement was most closely associated with local field potential spikes in the cerebellum and primary motor cortex, implying that these structures may function as a gate to release overt tic movements. These findings indicate that tic-generating networks in basal ganglia mediated tic disorders extend beyond classical cerebro-basal ganglia circuits, leading to global network dysrhythmia including cerebellar circuits.

  8. Frozen storage increases the ultimate compressive load of porcine vertebrae.

    PubMed

    Callaghan, J P; McGill, S M

    1995-09-01

    The use of freezing as a method of storage is commonplace in mechanical testing of biological tissues. The effects of freezing on tissues that comprise spinal segments have been examined separately, but little work has been done on intact specimens. We examined the effect of freezing on the structural properties of porcine cervical spines. The intact cervical spines of seven pigs (a total of 14 specimens--seven of C2-C4 and seven of C5-C7) were stored frozen (-20 degrees C) for 1 month. The ultimate compressive load, displacement, stiffness, and energy absorbed were obtained using a monotonic compressive load applied at 3,000 N/sec. The structural properties were compared with those of another 14 porcine cervical specimens (control group, matched for age and weight) that were tested in a fresh state. The frozen storage of the vertebral specimens significantly increased the ultimate compressive load (24%) and energy absorbed to failure (33%). The stiffness and displacement at failure were not affected. We concluded that the use of freezing as a storage medium should be of concern when the resulting measures are used to quantify the ultimate compressive load of the spinal motion segments.

  9. The narrowing of the lumbar spinal canal during loaded MRI: the effects of the disc and ligamentum flavum.

    PubMed

    Hansson, Tommy; Suzuki, Nobuyuki; Hebelka, Hanna; Gaulitz, Arne

    2009-05-01

    Load and activity changes of the spine typically cause symptoms of nerve root compression in subjects with spinal stenosis. Protrusion of the intervertebral disc has been regarded as the main cause of the compression. The objective was to determine the changes in the size of the lumbar spinal canal and especially those caused by the ligamentum flavum and the disc during loaded MRI. For this purpose an interventional clinical study on consecutive patients was made. The lumbar spines in 24 supine patients were examined with MRI: first without any external load and then with an axial load corresponding to half the body weight. The effect of the load was determined through the cross-sectional areas of the spinal canal and the ligamentum flavum, the thickness of ligamentum flavum, the posterior bulge of the disc and the intervertebral angle. External load decreased the size of the spinal canal. Bulging of the ligamentum flavum contributed to between 50 and 85% of the spinal canal narrowing. It was concluded that the ligamentum flavum, not the disc had a dominating role for the load induced narrowing of the lumbar spinal canal, a finding that can improve the understanding of the patho-physiology in spinal stenosis.

  10. 26. Central compression lock, north span facing north. Compression lock ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Central compression lock, north span facing north. Compression lock locks two spans together at highest point. There are three compression locks. - Henry Ford Bridge, Spanning Cerritos Channel, Los Angeles-Long Beach Harbor, Los Angeles, Los Angeles County, CA

  11. Fractal image compression

    NASA Technical Reports Server (NTRS)

    Barnsley, Michael F.; Sloan, Alan D.

    1989-01-01

    Fractals are geometric or data structures which do not simplify under magnification. Fractal Image Compression is a technique which associates a fractal to an image. On the one hand, the fractal can be described in terms of a few succinct rules, while on the other, the fractal contains much or all of the image information. Since the rules are described with less bits of data than the image, compression results. Data compression with fractals is an approach to reach high compression ratios for large data streams related to images. The high compression ratios are attained at a cost of large amounts of computation. Both lossless and lossy modes are supported by the technique. The technique is stable in that small errors in codes lead to small errors in image data. Applications to the NASA mission are discussed.

  12. Imaging modalities in spinal disorders

    SciTech Connect

    Kricun, M.E.

    1986-01-01

    This book provides an approach to the various imaging modalities used to view the spine. It discusses the indications, limitations and practical use of each in the diagnosis, work-up and staging of various spinal disorders, and compares each of them in various clinical settings. Topics covered include low back pain syndrome, disk disease, spinal cord lesions, congenital abnormalities, and trauma.

  13. Intraoperative monitoring during decompression of the spinal cord and spinal nerves using transcranial motor-evoked potentials: The law of twenty percent.

    PubMed

    Tanaka, Satoshi; Hirao, Jun; Oka, Hidehiro; Akimoto, Jiro; Takanashi, Junko; Yamada, Junichi

    2015-09-01

    Motor-evoked potential (MEP) monitoring was performed during 196 consecutive spinal (79 cervical and 117 lumbar) surgeries for the decompression of compressive spinal and spinal nerve diseases. MEP monitoring in spinal surgery has been considered sensitive to predict postoperative neurological recovery. In this series, transcranial stimulation consisted of trains of five pulses at a constant voltage (200-600 V). For the normalization of MEP, we recorded compound muscle action potentials (CMAP) after peripheral nerve stimulation, usually on the median nerve at the wrist 2 seconds before or after each transcranial stimulation of the motor area, for all operations. The sensitivity and specificity of MEP monitoring was 100% and 97.4%, respectively, or 96.9% with or without CMAP compensation (if the threshold of postoperative motor palsy was defined as 20% relative amplitude rate [RAR]). The mean RAR after CMAP normalization, of the most affected muscle in the patient group with excellent postoperative results (recovery rate of a Japan Orthopedic Association score of more than 50%) was significantly higher than that in the other groups (p=0.0224). All patients with an amplitude increase rate (AIR) with CMAP normalization of more than 20% achieved neurological recovery postoperatively. Our results suggest that if the RAR is more than 20%, postoperative motor palsy can be avoided in spinal surgery. If the AIR with normalization by CMAP after peripheral nerve stimulation is more than 20%, neurological recovery can be expected in spinal surgery.

  14. Spontaneous spinal epidural hematoma presenting as paraplegia after cardiac surgery.

    PubMed

    Kin, Hajime; Mukaida, Masayuki; Koizumi, Junichi; Kamada, Takeshi; Mitsunaga, Yoshino; Iwase, Tomoyuki; Ikai, Akio; Okabayashi, Hitoshi

    2016-03-01

    An 86-year-old woman was scheduled to undergo aortic valve replacement and coronary artery bypass graft. On postoperative day 3, she developed sudden-onset neck pain followed by weakness in the right arm. Her symptoms worsened with time, and she developed paraplegia. At 60 h after the first complaint, spontaneous spinal epidural hematoma (SSEH) from C2 to C6 with spinal cord compression was diagnosed from a magnetic resonance image of the cervical region. We decided on conservative therapy because operative recovery was impossible. Delayed diagnosis led to grievous results in the present case. When neurological abnormalities follow neck or back pain after open heart surgery, SSEH must be considered in the differential diagnosis. Further, if it is suspected, early cervical computed tomography/magnetic resonance imaging and surgery should be considered.

  15. Acute lymphocytic leukemia recurring in the spinal epidural space.

    PubMed

    Higashida, Tetsuhiro; Kawasaki, Takashi; Sakata, Katsumi; Tanabe, Yutaka; Kanno, Hiroshi; Yamamoto, Isao

    2007-08-01

    A 27-year-old man presented with a very rare spinal epidural mass associated with recurrence of acute lymphocytic leukemia (ALL) manifesting as acute progressive neurological deficits. The patient presented with shoulder pain and ambulatory difficulties 3 years after remission of ALL treated by bone marrow transplantation. Magnetic resonance imaging revealed an epidural mass extending from C-7 to T-3, which compressed the cord and extended to the intervertebral foramen along the roots. After decompression surgery, the symptoms dramatically improved. Histological examination showed clusters of immature lymphocytes consistent with recurrence of leukemia, so chemotherapy and radiation therapy were carried out. At 1 year after the operation, no local mass expansion or systemic progression of leukemia had occurred. Leukemic mass must be considered in the differential diagnosis of spinal epidural mass, even in patients with ALL.

  16. Spinal adhesive arachnoiditis.

    PubMed

    Dolan, R A

    1993-06-01

    Forty-one cases of spinal adhesive arachnoiditis are presented. The key points are, first, that lumbar disc lesions, their investigations and surgical treatment and the use of nonabsorbable contrast materials are the most common etiological factors and, secondly, that operation is the best treatment. It is our contention that the majority of patients so treated do experience some improvement in what otherwise can be an unbearable amount of pain and disability. The use of adsorbable, nonirritative contrast materials such as Iohexol Parenteral will result in a marked reduction in the frequency of occurrence of arachnoiditis.

  17. CNS and spinal tumors.

    PubMed

    Furtado, Andre D; Panigrahy, Ashok; Fitz, Charles R

    2016-01-01

    Primary CNS tumors consist of a diverse group of neoplasms originating from various cell types in the CNS. Brain tumors are the most common solid malignancy in children under the age of 15 years and the second leading cause of cancer death after leukemia. The most common brain neoplasms in children differ consistently from those in older age groups. Pediatric brain tumors demonstrate distinct patterns of occurrence and biologic behavior according to sex, age, and race. This chapter highlights the imaging features of the most common tumors that affect the child's CNS (brain and spinal cord).

  18. Orofacial inflammatory pain affects the expression of MT1 and NADPH-d in rat caudal spinal trigeminal nucleus and trigeminal ganglion

    PubMed Central

    Huang, Fang; He, Hongwen; Fan, Wenguo; Liu, Yongliang; Zhou, Hongyu; Cheng, Bin

    2013-01-01

    Very little is known about the role of melatonin in the trigeminal system, including the function of melatonin receptor 1. In the present study, adult rats were injected with formaldehyde into the right vibrissae pad to establish a model of orofacial inflammatory pain. The distribution of melatonin receptor 1 and nicotinamide adenine dinucleotide phosphate diaphorase in the caudal spinal trigeminal nucleus and trigeminal ganglion was determined with immunohistochemistry and histochemistry. The results show that there are significant differences in melatonin receptor 1 expression and nicotinamide adenine dinucleotide phosphate diaphorase expression in the trigeminal ganglia and caudal spinal nucleus during the early stage of orofacial inflammatory pain. Our findings suggest that when melatonin receptor 1 expression in the caudal spinal nucleus is significantly reduced, melatonin's regulatory effect on pain is attenuated. PMID:25206619

  19. Consensus Paper: Towards a Systems-Level View of Cerebellar Function: the Interplay Between Cerebellum, Basal Ganglia, and Cortex.

    PubMed

    Caligiore, Daniele; Pezzulo, Giovanni; Baldassarre, Gianluca; Bostan, Andreea C; Strick, Peter L; Doya, Kenji; Helmich, Rick C; Dirkx, Michiel; Houk, James; Jörntell, Henrik; Lago-Rodriguez, Angel; Galea, Joseph M; Miall, R Chris; Popa, Traian; Kishore, Asha; Verschure, Paul F M J; Zucca, Riccardo; Herreros, Ivan

    2017-02-01

    Despite increasing evidence suggesting the cerebellum works in concert with the cortex and basal ganglia, the nature of the reciprocal interactions between these three brain regions remains unclear. This consensus paper gathers diverse recent views on a variety of important roles played by the cerebellum within the cerebello-basal ganglia-thalamo-cortical system across a range of motor and cognitive functions. The paper includes theoretical and empirical contributions, which cover the following topics: recent evidence supporting the dynamical interplay between cerebellum, basal ganglia, and cortical areas in humans and other animals; theoretical neuroscience perspectives and empirical evidence on the reciprocal influences between cerebellum, basal ganglia, and cortex in learning and control processes; and data suggesting possible roles of the cerebellum in basal ganglia movement disorders. Although starting from different backgrounds and dealing with different topics, all the contributors agree that viewing the cerebellum, basal ganglia, and cortex as an integrated system enables us to understand the function of these areas in radically different ways. In addition, there is unanimous consensus between the authors that future experimental and computational work is needed to understand the function of cerebellar-basal ganglia circuitry in both motor and non-motor functions. The paper reports the most advanced perspectives on the role of the cerebellum within the cerebello-basal ganglia-thalamo-cortical system and illustrates other elements of consensus as well as disagreements and open questions in the field.

  20. Conditional Routing of Information to the Cortex: A Model of the Basal Ganglia's Role in Cognitive Coordination

    ERIC Educational Resources Information Center

    Stocco, Andrea; Lebiere, Christian; Anderson, John R.

    2010-01-01

    The basal ganglia play a central role in cognition and are involved in such general functions as action selection and reinforcement learning. Here, we present a model exploring the hypothesis that the basal ganglia implement a conditional information-routing system. The system directs the transmission of cortical signals between pairs of regions…

  1. Retraining the injured spinal cord

    NASA Technical Reports Server (NTRS)

    Edgerton, V. R.; Leon, R. D.; Harkema, S. J.; Hodgson, J. A.; London, N.; Reinkensmeyer, D. J.; Roy, R. R.; Talmadge, R. J.; Tillakaratne, N. J.; Timoszyk, W.; Tobin, A.

    2001-01-01

    The present review presents a series of concepts that may be useful in developing rehabilitative strategies to enhance recovery of posture and locomotion following spinal cord injury. First, the loss of supraspinal input results in a marked change in the functional efficacy of the remaining synapses and neurons of intraspinal and peripheral afferent (dorsal root ganglion) origin. Second, following a complete transection the lumbrosacral spinal cord can recover greater levels of motor performance if it has been exposed to the afferent and intraspinal activation patterns that are associated with standing and stepping. Third, the spinal cord can more readily reacquire the ability to stand and step following spinal cord transection with repetitive exposure to standing and stepping. Fourth, robotic assistive devices can be used to guide the kinematics of the limbs and thus expose the spinal cord to the new normal activity patterns associated with a particular motor task following spinal cord injury. In addition, such robotic assistive devices can provide immediate quantification of the limb kinematics. Fifth, the behavioural and physiological effects of spinal cord transection are reflected in adaptations in most, if not all, neurotransmitter systems in the lumbosacral spinal cord. Evidence is presented that both the GABAergic and glycinergic inhibitory systems are up-regulated following complete spinal cord transection and that step training results in some aspects of these transmitter systems being down-regulated towards control levels. These concepts and observations demonstrate that (a) the spinal cord can interpret complex afferent information and generate the appropriate motor task; and (b) motor ability can be defined to a large degree by training.

  2. Expression of an Activated Integrin Promotes Long-Distance Sensory Axon Regeneration in the Spinal Cord

    PubMed Central

    Cheah, Menghon; Chew, Daniel J.; Moloney, Elizabeth B.; Verhaagen, Joost; Fässler, Reinhard

    2016-01-01

    After CNS injury, axon regeneration is blocked by an inhibitory environment consisting of the highly upregulated tenascin-C and chondroitin sulfate proteoglycans (CSPGs). Tenascin-C promotes growth of axons if they express a tenascin-binding integrin, particularly α9β1. Additionally, integrins can be inactivated by CSPGs, and this inhibition can be overcome by the presence of a β1-binding integrin activator, kindlin-1. We examined the synergistic effect of α9 integrin and kindlin-1 on sensory axon regeneration in adult rat spinal cord after dorsal root crush and adeno-associated virus transgene expression in dorsal root ganglia. After 12 weeks, axons from C6–C7 dorsal root ganglia regenerated through the tenascin-C-rich dorsal root entry zone into the dorsal column up to C1 level and above (>25 mm axon length) through a normal pathway. Animals also showed anatomical and electrophysiological evidence of reconnection to the dorsal horn and behavioral recovery in mechanical pressure, thermal pain, and ladder-walking tasks. Expression of α9 integrin or kindlin-1 alone promoted much less regeneration and recovery. SIGNIFICANCE STATEMENT The study demonstrates that long-distance sensory axon regeneration over a normal pathway and with sensory and sensory–motor recovery can be achieved. This was achieved by expressing an integrin that recognizes tenascin-C, one of the components of glial scar tissue, and an integrin activator. This enabled extensive long-distance (>25 mm) regeneration of both myelinated and unmyelinated sensory axons with topographically correct connections in the spinal cord. The extent of growth and recovery we have seen would probably be clinically significant. Restoration of sensation to hands, perineum, and genitalia would be a significant improvement for a spinal cord-injured patient. PMID:27383601

  3. Vascular compression syndromes.

    PubMed

    Czihal, Michael; Banafsche, Ramin; Hoffmann, Ulrich; Koeppel, Thomas

    2015-11-01

    Dealing with vascular compression syndromes is one of the most challenging tasks in Vascular Medicine practice. This heterogeneous group of disorders is characterised by external compression of primarily healthy arteries and/or veins as well as accompanying nerval structures, carrying the risk of subsequent structural vessel wall and nerve damage. Vascular compression syndromes may severely impair health-related quality of life in affected individuals who are typically young and otherwise healthy. The diagnostic approach has not been standardised for any of the vascular compression syndromes. Moreover, some degree of positional external compression of blood vessels such as the subclavian and popliteal vessels or the celiac trunk can be found in a significant proportion of healthy individuals. This implies important difficulties in differentiating physiological from pathological findings of clinical examination and diagnostic imaging with provocative manoeuvres. The level of evidence on which treatment decisions regarding surgical decompression with or without revascularisation can be relied on is generally poor, mostly coming from retrospective single centre studies. Proper patient selection is critical in order to avoid overtreatment in patients without a clear association between vascular compression and clinical symptoms. With a focus on the thoracic outlet-syndrome, the median arcuate ligament syndrome and the popliteal entrapment syndrome, the present article gives a selective literature review on compression syndromes from an interdisciplinary vascular point of view.

  4. Selective attentional enhancement and inhibition of fronto-posterior connectivity by the basal ganglia during attention switching.

    PubMed

    van Schouwenburg, Martine R; den Ouden, Hanneke E M; Cools, Roshan

    2015-06-01

    The prefrontal cortex and the basal ganglia interact to selectively gate a desired action. Recent studies have shown that this selective gating mechanism of the basal ganglia extends to the domain of attention. Here, we investigate the nature of this action-like gating mechanism for attention using a spatial attention-switching paradigm in combination with functional neuroimaging and dynamic causal modeling. We show that the basal ganglia guide attention by focally releasing inhibition of task-relevant representations, while simultaneously inhibiting task-irrelevant representations by selectively modulating prefrontal top-down connections. These results strengthen and specify the role of the basal ganglia in attention. Moreover, our findings have implications for psychological theorizing by suggesting that inhibition of unattended sensory regions is not only a consequence of mutual suppression, but is an active process, subserved by the basal ganglia.

  5. Vertebral Compression Exacerbates Osteoporotic Pain in an Ovariectomy-Induced Osteoporosis Rat Model.

    PubMed

    Suzuki, Miyako; Orita, Sumihisa; Miyagi, Masayuki; Ishikawa, Tetsuhiro; Kamoda, Hiroto; Eguchi, Yawara; Arai, Gen; Yamauchi, Kazuyo; Sakuma, Yoshihiro; Oikawa, Yasuhiro; Kubota, Go; Inage, Kazuhide; Sainoh, Takeshi; Kawarai, Yuya; Yoshino, Kensuke; Ozawa, Tomoyuki; Aoki, Yasuchika; Toyone, Tomoaki; Takahashi, Kazuhisa; Kawakami, Mamoru; Ohtori, Seiji; Inoue, Gen

    2013-09-10

    Study Design. Basic pain study using osteoporotic rodent models.Objective. To examine alterations in distribution of pain-related neuropeptides following compressive force on osteoporotic vertebrae and their chronic pain-related properties.Summary of Background Data. We previously reported significantly increased production of calcitonin gene-related peptide (CGRP), a marker of inflammatory pain, in the dorsal root ganglia (DRG) of vertebrae in osteoporosis-model ovariectomized (OVX) rats. Here, we hypothesized that longitudinal compressive force on vertebrae can affect osteoporotic pain properties, which has not been examined yet.Methods. OVX rats were used as the osteoporosis model. Female Sprague Dawley rats were prepared and Fluoro-Gold (FG) neurotracer was applied to the periosteal surface of the Co5 vertebra. After FG-labeling, the animals were divided into 4 groups: Control, Control + compression, OVX, and OVX + compression. The Control groups were not ovariectomized. In the compression groups, K-wires were stabbed transversely through Co4 and Co6 with Co5 compressed longitudinally by rubber bands bridged between the two. One, 2, 4, and 8 weeks after surgery, bilateral S1 to S3 DRGs were excised for immunofluorescence assays. Expression of CGRP and activating transcription factor 3 (ATF-3), a marker of neuronal injury, were compared among the 4 groups.Results. Sustained upregulation of CGRP in DRG neurons was observed following compression of the Co5 vertebra, and Co5 compression caused significant increase in CGRP production in DRG neurons, while a greater level of ATF-3 upregulation was observed in DRGs in OVX rats following dynamic vertebral compression 8 weeks after surgery, implying potential neuropathic pain.Conclusion: There was sustained upregulation of CGRP and ATF3 in DRGs in osteoporotic model rats compared with controls, and levels were further enhanced by dynamic vertebral compression. These findings imply that dynamic compression stress on

  6. Attitudes Towards Individuals with Spinal Cord Injuries

    ERIC Educational Resources Information Center

    Conway, Cassandra Sligh D.; Gooden, Randy; Nowell, Jennifer; Wilson, Navodda

    2010-01-01

    This paper will shed light on the lives of persons with spinal cord injuries by revealing the literature on spinal cord injuries that focuses on research that can shed light on attitudes towards persons with spinal cord injuries. The background literature related to incidences, the definition of spinal cord injury, and vocational opportunities are…

  7. Spinal Cord Repair with Engineered Nervous Tissue

    DTIC Science & Technology

    2014-04-01

    in order to minimize scarring and injected dissociated adult DRGs rostral to a dorsal column transection of the spinal cord. From the sensory... columns were dissected and post-fixed overnight in 4% paraformaldehyde, and then spinal cords were dissected from spinal columns and cryoprotected...AD______________ Award Number: W81XWH-10-1-0941 TITLE: Spinal Cord Repair with Engineered Nervous Tissue

  8. Dental Compressed Air Systems.

    DTIC Science & Technology

    1992-03-01

    I AL-TR-IWI-0uuu AD-A249 954 DENTAL COMPRESSED AIMYTM R Curtis D. Weyrmuch, Mejor, USAP, D Samuel P.Dvs iueatclpi SF.O N AEROSPACE MwaEDIN mwr~ComA G...FUNDING NUMBERS Dental Compressed Air Systems PE - 87714F PR - 7350 TA - 22 D. Weyrauch WU - XX Samuel P. Davis George W. Gaines 7. PERFORMING...words) The purpose of this report is to update guidelines on dental compressed air systems (DCA). Much of the information was obtained from a survey

  9. Modeling Compressed Turbulence

    SciTech Connect

    Israel, Daniel M.

    2012-07-13

    From ICE to ICF, the effect of mean compression or expansion is important for predicting the state of the turbulence. When developing combustion models, we would like to know the mix state of the reacting species. This involves density and concentration fluctuations. To date, research has focused on the effect of compression on the turbulent kinetic energy. The current work provides constraints to help development and calibration for models of species mixing effects in compressed turbulence. The Cambon, et al., re-scaling has been extended to buoyancy driven turbulence, including the fluctuating density, concentration, and temperature equations. The new scalings give us helpful constraints for developing and validating RANS turbulence models.

  10. Clinical outcomes of stereotactic body radiotherapy for spinal metastases from hepatocellular carcinoma

    PubMed Central

    Lee, Eonju; Kim, Tae Gyu; Yu, Jeong Il; Lim, Do Hoon; Nam, Heerim; Lee, Hyebin; Lee, Joon Hyeok

    2015-01-01

    Purpose To investigate the outcomes of patients with spinal metastases from hepatocellular carcinoma (HCC), who were treated by stereotactic body radiotherapy (SBRT). Materials and Methods This retrospective study evaluated 23 patients who underwent SBRT from October 2008 to August 2012 for 36 spinal metastases from HCC. SBRT consisted of approximately 2 fractionation schedules, which were 18 to 40 Gy in 1 to 4 fractions for group A lesions (n = 15) and 50 Gy in 10 fractions for group B lesions (n = 21). Results The median follow-up period was 7 months (range, 2 to 16 months). Seven patients developed grade 1 or 2 gastrointestinal toxicity, and one developed grade 2 leucopenia. Compression fractures occurred in association with 25% of the lesions, with a median time to fracture of 2 months. Pain relief occurred in 92.3% and 68.4% of group A and B lesions, respectively. Radiologic response (complete and partial response) occurred in 80.0% and 61.9% of group A and B lesions, respectively. The estimated 1-year spinal-tumor progression-free survival rate was 78.5%. The median overall survival period and 1-year overall survival rate were 9 months (range, 2 to 16 months) and 25.7%, respectively. Conclusion SBRT for spinal metastases from HCC is well tolerated and effective at providing pain relief and radiologic response. Because compression fractures develop at a high rate following SBRT for spinal metastases from primary HCC, careful follow up of the patient is required. PMID:26484305

  11. The Differential Effects of Thalamus and Basal Ganglia on Facial Emotion Recognition

    ERIC Educational Resources Information Center

    Cheung, Crystal C. Y.; Lee, Tatia M. C.; Yip, James T. H.; King, Kristin E.; Li, Leonard S. W.

    2006-01-01

    This study examined if subcortical stroke was associated with impaired facial emotion recognition. Furthermore, the lateralization of the impairment and the differential profiles of facial emotion recognition deficits with localized thalamic or basal ganglia damage were also studied. Thirty-eight patients with subcortical strokes and 19 matched…

  12. Visuo-Motor and Cognitive Procedural Learning in Children with Basal Ganglia Pathology

    ERIC Educational Resources Information Center

    Mayor-Dubois, C.; Maeder, P.; Zesiger, P.; Roulet-Perez, E.

    2010-01-01

    We investigated procedural learning in 18 children with basal ganglia (BG) lesions or dysfunctions of various aetiologies, using a visuo-motor learning test, the Serial Reaction Time (SRT) task, and a cognitive learning test, the Probabilistic Classification Learning (PCL) task. We compared patients with early (less than 1 year old, n=9), later…

  13. The disrupted basal ganglia and behavioural control: an integrative cross-domain perspective of spontaneous stereotypy.

    PubMed

    McBride, Sebastian D; Parker, Matthew O

    2015-01-01

    Spontaneous stereotypic behaviour (SB) is common in many captive animal species, as well as in humans with some severe psychiatric disorders, and is often cited as being related to general basal ganglia dysfunction. Despite this assertion, there is little in the literature examining SB specifically in terms of the basal ganglia mechanics. In this review, we attempt to fill this gap by offering an integrative, cross-domain perspective of SB by linking what we currently understand about the SB phenotype with the ever-growing literature on the anatomy and functionality of the basal ganglia. After outlining current models of SB from different theoretical perspectives, we offer a broad but detailed overview of normally functioning basal ganglia mechanics, and attempt to link this with current neurophysiological evidence related to spontaneous SB. Based on this we present an empirically derived theoretical framework, which proposes that SB is the result of a dysfunctional action selection system that may reflect dysregulation of excitatory (direct) and inhibitory (indirect and hyperdirect) pathways as well as alterations in mechanisms of behavioural switching. This approach also suggests behaviours that specifically become stereotypic may reflect inbuilt low selection threshold behavioural sequences associated with early development and the species-specific ethogram or, low threshold behavioural sequences that are the result of stress-induced dopamine exposure at the time of performance.

  14. Current controversies and future directions in basal ganglia research. Integrating basic neuroscience and clinical investigation.

    PubMed

    Garcia-Cairasco, N; Miguel, E C; Rauch, S L; Leckman, J F

    1997-12-01

    This article discusses current controversies and future directions in basal ganglia research, detailing behavioral aspects, anatomic models, neurochemistry, pharmacology, and diagnostic methods as well as surgical techniques. A neuroethologic perspective is highlighted. Furthermore, the relevant literature pertaining to contemporary molecular approaches such as brain microinjections of embryonic or genetically modified cells, for therapeutic purposes and the use of transgenic and knockout animals.

  15. Control of Basal Ganglia Output by Direct and Indirect Pathway Projection Neurons

    PubMed Central

    Freeze, Benjamin S.; Kravitz, Alexxai V.; Hammack, Nora; Berke, Joshua D.

    2013-01-01

    The direct and indirect efferent pathways from striatum ultimately reconverge to influence basal ganglia output nuclei, which in turn regulate behavior via thalamocortical and brainstem motor circuits. However, the distinct contributions of these two efferent pathways in shaping basal ganglia output are not well understood. We investigated these processes using selective optogenetic control of the direct and indirect pathways, in combination with single-unit recording in the basal ganglia output nucleus substantia nigra pars reticulata (SNr) in mice. Optogenetic activation of striatal direct and indirect pathway projection neurons produced diverse cellular responses in SNr neurons, with stimulation of each pathway eliciting both excitations and inhibitions. Despite this response heterogeneity, the effectiveness of direct pathway stimulation in producing movement initiation correlated selectively with the subpopulation of inhibited SNr neurons. In contrast, effective indirect pathway-mediated motor suppression was most strongly influenced by excited SNr neurons. Our results support the theory that key basal ganglia output neurons serve as an inhibitory gate over motor output that can be opened or closed by striatal direct and indirect pathways, respectively. PMID:24259575

  16. Abnormal Astrocytosis in the Basal Ganglia Pathway of Git1(-/-) Mice.

    PubMed

    Lim, Soo-Yeon; Mah, Won

    2015-06-01

    Attention deficit/hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders, affecting approximately 5% of children. However, the neural mechanisms underlying its development and treatment are yet to be elucidated. In this study, we report that an ADHD mouse model, which harbors a deletion in the Git1 locus, exhibits severe astrocytosis in the globus pallidus (GP) and thalamic reticular nucleus (TRN), which send modulatory GABAergic inputs to the thalamus. A moderate level of astrocytosis was displayed in other regions of the basal ganglia pathway, including the ventrobasal thalamus and cortex, but not in other brain regions, such as the caudate putamen, basolateral amygdala, and hippocampal CA1. This basal ganglia circuit-selective astrocytosis was detected in both in adult (2-3 months old) and juvenile (4 weeks old) Git1(-/-) mice, suggesting a developmental origin. Astrocytes play an active role in the developing synaptic circuit; therefore, we performed an immunohistochemical analysis of synaptic markers. We detected increased and decreased levels of GABA and parvalbumin (PV), respectively, in the GP. This suggests that astrocytosis may alter synaptic transmission in the basal ganglia. Intriguingly, increased GABA expression colocalized with the astrocyte marker, GFAP, indicative of an astrocytic origin. Collectively, these results suggest that defects in basal ganglia circuitry, leading to impaired inhibitory modulation of the thalamus, are neural correlates for the ADHD-associated behavioral manifestations in Git1(-/-) mice.

  17. Mapping the basal ganglia alterations in children chronically exposed to manganese

    PubMed Central

    Lao, Yi; Dion, Laurie-Anne; Gilbert, Guillaume; Bouchard, Maryse F.; Rocha, Gabriel; Wang, Yalin; Leporé, Natasha; Saint-Amour, Dave

    2017-01-01

    Chronic manganese (Mn) exposure is associated with neuromotor and neurocognitive deficits, but the exact mechanism of Mn neurotoxicity is still unclear. With the advent of magnetic resonance imaging (MRI), in-vivo analysis of brain structures has become possible. Among different sub-cortical structures, the basal ganglia (BG) has been investigated as a putative anatomical biomarker in MR-based studies of Mn toxicity. However, previous investigations have yielded inconsistent results in terms of regional MR signal intensity changes. These discrepancies may be due to the subtlety of brain alterations caused by Mn toxicity, coupled to analysis techniques that lack the requisite detection power. Here, based on brain MRI, we apply a 3D surface-based morphometry method on 3 bilateral basal ganglia structures in school-age children chronically exposed to Mn through drinking water to investigate the effect of Mn exposure on brain anatomy. Our method successfully pinpointed significant enlargement of many areas of the basal ganglia structures, preferentially affecting the putamen. Moreover, these areas showed significant correlations with fine motor performance, indicating a possible link between altered basal ganglia neurodevelopment and declined motor performance in high Mn exposed children. PMID:28155922

  18. Bidirectional Plasticity in Striatonigral Synapses: A Switch to Balance Direct and Indirect Basal Ganglia Pathways

    ERIC Educational Resources Information Center

    Aceves, Jose J.; Rueda-Orozco, Pavel E.; Hernandez-Martinez, Ricardo; Galarraga, Elvira; Bargas, Jose

    2011-01-01

    There is no hypothesis to explain how direct and indirect basal ganglia (BG) pathways interact to reach a balance during the learning of motor procedures. Both pathways converge in the substantia nigra pars reticulata (SNr) carrying the result of striatal processing. Unfortunately, the mechanisms that regulate synaptic plasticity in striatonigral…

  19. RNA-Seq Analysis of Human Trigeminal and Dorsal Root Ganglia with a Focus on Chemoreceptors

    PubMed Central

    Flegel, Caroline; Schöbel, Nicole; Altmüller, Janine; Becker, Christian; Tannapfel, Andrea; Hatt, Hanns; Gisselmann, Günter

    2015-01-01

    The chemosensory capacity of the somatosensory system relies on the appropriate expression of chemoreceptors, which detect chemical stimuli and transduce sensory information into cellular signals. Knowledge of the complete repertoire of the chemoreceptors expressed in human sensory ganglia is lacking. This study employed the next-generation sequencing technique (RNA-Seq) to conduct the first expression analysis of human trigeminal ganglia (TG) and dorsal root ganglia (DRG). We analyzed the data with a focus on G-protein coupled receptors (GPCRs) and ion channels, which are (potentially) involved in chemosensation by somatosensory neurons in the human TG and DRG. For years, transient receptor potential (TRP) channels have been considered the main group of receptors for chemosensation in the trigeminal system. Interestingly, we could show that sensory ganglia also express a panel of different olfactory receptors (ORs) with putative chemosensory function. To characterize OR expression in more detail, we performed microarray, semi-quantitative RT-PCR experiments, and immunohistochemical staining. Additionally, we analyzed the expression data to identify further known or putative classes of chemoreceptors in the human TG and DRG. Our results give an overview of the major classes of chemoreceptors expressed in the human TG and DRG and provide the basis for a broader understanding of the reception of chemical cues. PMID:26070209

  20. The inhibitory microcircuit of the substantia nigra provides feedback gain control of the basal ganglia output

    PubMed Central

    Brown, Jennifer; Pan, Wei-Xing; Dudman, Joshua Tate

    2014-01-01

    Dysfunction of the basal ganglia produces severe deficits in the timing, initiation, and vigor of movement. These diverse impairments suggest a control system gone awry. In engineered systems, feedback is critical for control. By contrast, models of the basal ganglia highlight feedforward circuitry and ignore intrinsic feedback circuits. In this study, we show that feedback via axon collaterals of substantia nigra projection neurons control the gain of the basal ganglia output. Through a combination of physiology, optogenetics, anatomy, and circuit mapping, we elaborate a general circuit mechanism for gain control in a microcircuit lacking interneurons. Our data suggest that diverse tonic firing rates, weak unitary connections and a spatially diffuse collateral circuit with distinct topography and kinetics from feedforward input is sufficient to implement divisive feedback inhibition. The importance of feedback for engineered systems implies that the intranigral microcircuit, despite its absence from canonical models, could be essential to basal ganglia function. DOI: http://dx.doi.org/10.7554/eLife.02397.001 PMID:24849626

  1. Mapping the basal ganglia alterations in children chronically exposed to manganese.

    PubMed

    Lao, Yi; Dion, Laurie-Anne; Gilbert, Guillaume; Bouchard, Maryse F; Rocha, Gabriel; Wang, Yalin; Leporé, Natasha; Saint-Amour, Dave

    2017-02-03

    Chronic manganese (Mn) exposure is associated with neuromotor and neurocognitive deficits, but the exact mechanism of Mn neurotoxicity is still unclear. With the advent of magnetic resonance imaging (MRI), in-vivo analysis of brain structures has become possible. Among different sub-cortical structures, the basal ganglia (BG) has been investigated as a putative anatomical biomarker in MR-based studies of Mn toxicity. However, previous investigations have yielded inconsistent results in terms of regional MR signal intensity changes. These discrepancies may be due to the subtlety of brain alterations caused by Mn toxicity, coupled to analysis techniques that lack the requisite detection power. Here, based on brain MRI, we apply a 3D surface-based morphometry method on 3 bilateral basal ganglia structures in school-age children chronically exposed to Mn through drinking water to investigate the effect of Mn exposure on brain anatomy. Our method successfully pinpointed significant enlargement of many areas of the basal ganglia structures, preferentially affecting the putamen. Moreover, these areas showed significant correlations with fine motor performance, indicating a possible link between altered basal ganglia neurodevelopment and declined motor performance in high Mn exposed children.

  2. Stuttering and the Basal Ganglia Circuits: A Critical Review of Possible Relations

    ERIC Educational Resources Information Center

    Alm, Per A.

    2004-01-01

    The possible relation between stuttering and the basal ganglia is discussed. Important clues to the pathophysiology of stuttering are given by conditions known to alleviate dysfluency, like the rhythm effect, chorus speech, and singing. Information regarding pharmacologic trials, lesion studies, brain imaging, genetics, and developmental changes…

  3. The Role of the Basal Ganglia in Implicit Contextual Learning: A Study of Parkinson's Disease

    ERIC Educational Resources Information Center

    van Asselen, Marieke; Almeida, Ines; Andre, Rui; Januario, Cristina; Goncalves, Antonio Freire; Castelo-Branco, Miguel

    2009-01-01

    Implicit contextual learning refers to the ability to memorize contextual information from our environment. This contextual information can then be used to guide our attention to a specific location. Although the medial temporal lobe is important for this type of learning, the basal ganglia might also be involved considering its role in many…

  4. Effects of Focal Basal Ganglia Lesions on Timing and Force Control

    ERIC Educational Resources Information Center

    Aparicio, P.; Diedrichsen, J.; Ivry, R.B.

    2005-01-01

    Studies of basal ganglia dysfunction in humans have generally involved patients with degenerative disorders, notably Parkinson's disease. In many instances, the performance of these patients is compared to that of patients with focal lesions of other brain structures such as the cerebellum. In the present report, we studied the performance of…

  5. Alterations in neuronal activity in basal ganglia-thalamocortical circuits in the parkinsonian state

    PubMed Central

    Galvan, Adriana; Devergnas, Annaelle; Wichmann, Thomas

    2015-01-01

    In patients with Parkinson’s disease and in animal models of this disorder, neurons in the basal ganglia and related regions in thalamus and cortex show changes that can be recorded by using electrophysiologic single-cell recording techniques, including altered firing rates and patterns, pathologic oscillatory activity and increased inter-neuronal synchronization. In addition, changes in synaptic potentials or in the joint spiking activities of populations of neurons can be monitored as alterations in local field potentials (LFPs), electroencephalograms (EEGs) or electrocorticograms (ECoGs). Most of the mentioned electrophysiologic changes are probably related to the degeneration of diencephalic dopaminergic neurons, leading to dopamine loss in the striatum and other basal ganglia nuclei, although degeneration of non-dopaminergic cell groups may also have a role. The altered electrical activity of the basal ganglia and associated nuclei may contribute to some of the motor signs of the disease. We here review the current knowledge of the electrophysiologic changes at the single cell level, the level of local populations of neural elements, and the level of the entire basal ganglia-thalamocortical network in parkinsonism, and discuss the possible use of this information to optimize treatment approaches to Parkinson’s disease, such as deep brain stimulation (DBS) therapy. PMID:25698937

  6. [A Role of the Basal Ganglia in Processing of Complex Sounds and Auditory Attention].

    PubMed

    Silkis, I G

    2015-01-01

    A hypothetical mechanism is suggested for processing of complex sounds and auditory attention in parallel neuronal loops including various auditory cortical areas connected with parts of the medial geniculate body, inferior colliculus and basal ganglia. Release of dopamine in the striatum promotes bidirectional modulation of strong and weak inputs from the neocortex to striatal neurons giving rise to direct and indirect pathways through the basal ganglia. Subsequent synergistic disinhibition of one and inhibition of other groups of thalamic neurons by the basal ganglia result in the creation of contrasted neuronal representations of properties of auditory stimuli in related cortical areas. Contrasting is strengthened due to a simultaneous disinhibition of pedunculopontine nucleus and action at muscarine receptors on neurons in the medial geniculate body. It follows from this mechanism that involuntary attention to sound tone can enhance an early component of the responses of neurons in the primary auditory cortical area (50 msec) in the absence of dopamine due to a disinhibition of thalamic neurons via the direct pathway through the basal ganglia, whereas voluntary attention to complex sounds can enhance only those components of responses of neurones in secondary auditory cortical areas which latencies exceeds latencies of dopaminergic cells (i.e. after 100 msec). Various consequences of proposed mechanism are in agreement with known experimental data.

  7. Providing Explicit Information Disrupts Implicit Motor Learning after Basal Ganglia Stroke

    ERIC Educational Resources Information Center

    Boyd, Lara A.; Winstein, Carolee J.

    2004-01-01

    Despite their purported neuroanatomic and functional isolation, empirical evidence suggests that sometimes conscious explicit processes can influence implicit motor skill learning. Our goal was to determine if the provision of explicit information affected implicit motor-sequence learning after damage to the basal ganglia. Individuals with stroke…

  8. Innervation of the gallbladder: structure, neurochemical coding, and physiological properties of guinea pig gallbladder ganglia.

    PubMed

    Mawe, G M; Talmage, E K; Cornbrooks, E B; Gokin, A P; Zhang, L; Jennings, L J

    1997-10-01

    The muscle and epithelial tissues of the gallbladder are regulated by a ganglionated plexus that lies within the wall of the organ. Although these ganglia are derived from the same set of precursor neural crest cells that colonize the gut, they exhibit structural, neurochemical and physiological characteristics that are distinct from the myenteric and submucous plexuses of the enteric nervous system. Structurally, the ganglionated plexus of the guinea pig gallbladder is comprised of small clusters of neurons that are located in the outer wall of the organ, between the serosa and underlying smooth muscle. The ganglia are encapsulated by a shell of fibroblasts and a basal lamina, and are devoid of collagen. Gallbladder neurons are rather simple in structure, consisting of a soma, a few short dendritic processes and one or two long axons. Results reported here indicate that all gallbladder neurons are probably cholinergic since they all express immunoreactivity for choline acetyltransferase. The majority of these neurons also express substance P, neuropeptide Y, and somatostatin, and a small remaining population of neurons express vasoactive intestinal peptide (VIP) immunoreactivity and NADPH-diaphorase enzymatic activity. We report here that NADPH-diaphorase activity, nitric oxide synthase immunoreactivity, and VIP immunoreactivity are expressed by the same neurons in the gallbladder. Physiological studies indicate that the ganglia of the gallbladder are the site of action of the following neurohumoral inputs: 1) all neurons receive nicotinic input from vagal preganglionic fibers; 2) norepinephrine released from sympathetic postganglionic fibers acts presynaptically on vagal terminals within gallbladder ganglia to decrease the release of acetylcholine from vagal terminals; 3) substance P and calcitonin gene-related peptide, which are co-expressed in sensory fibers, cause prolonged depolarizations of gallbladder neurons that resemble slow EPSPs; and 4) cholecystokinin

  9. Compressive Optical Image Encryption

    PubMed Central

    Li, Jun; Sheng Li, Jiao; Yang Pan, Yang; Li, Rong

    2015-01-01

    An optical image encryption technique based on compressive sensing using fully optical means has been proposed. An object image is first encrypted to a white-sense stationary noise pattern using a double random phase encoding (DRPE) method in a Mach-Zehnder interferometer. Then, the encrypted image is highly compressed to a signal using single-pixel compressive holographic imaging in the optical domain. At the receiving terminal, the encrypted image is reconstructed well via compressive sensing theory, and the original image can be decrypted with three reconstructed holograms and the correct keys. The numerical simulations show that the method is effective and suitable for optical image security transmission in future all-optical networks because of the ability of completely optical implementation and substantially smaller hologram data volume. PMID:25992946

  10. Compressive holographic video

    NASA Astrophysics Data System (ADS)

    Wang, Zihao; Spinoulas, Leonidas; He, Kuan; Tian, Lei; Cossairt, Oliver; Katsaggelos, Aggelos K.; Chen, Huaijin

    2017-01-01

    Compressed sensing has been discussed separately in spatial and temporal domains. Compressive holography has been introduced as a method that allows 3D tomographic reconstruction at different depths from a single 2D image. Coded exposure is a temporal compressed sensing method for high speed video acquisition. In this work, we combine compressive holography and coded exposure techniques and extend the discussion to 4D reconstruction in space and time from one coded captured image. In our prototype, digital in-line holography was used for imaging macroscopic, fast moving objects. The pixel-wise temporal modulation was implemented by a digital micromirror device. In this paper we demonstrate $10\\times$ temporal super resolution with multiple depths recovery from a single image. Two examples are presented for the purpose of recording subtle vibrations and tracking small particles within 5 ms.

  11. The Compressibility Burble

    NASA Technical Reports Server (NTRS)

    Stack, John

    1935-01-01

    Simultaneous air-flow photographs and pressure-distribution measurements have been made of the NACA 4412 airfoil at high speeds in order to determine the physical nature of the compressibility burble. The flow photographs were obtained by the Schlieren method and the pressures were simultaneously measured for 54 stations on the 5-inch-chord wing by means of a multiple-tube photographic manometer. Pressure-measurement results and typical Schlieren photographs are presented. The general nature of the phenomenon called the "compressibility burble" is shown by these experiments. The source of the increased drag is the compression shock that occurs, the excess drag being due to the conversion of a considerable amount of the air-stream kinetic energy into heat at the compression shock.

  12. Muon cooling: longitudinal compression.

    PubMed

    Bao, Yu; Antognini, Aldo; Bertl, Wilhelm; Hildebrandt, Malte; Khaw, Kim Siang; Kirch, Klaus; Papa, Angela; Petitjean, Claude; Piegsa, Florian M; Ritt, Stefan; Sedlak, Kamil; Stoykov, Alexey; Taqqu, David

    2014-06-06

    A 10  MeV/c positive muon beam was stopped in helium gas of a few mbar in a magnetic field of 5 T. The muon "swarm" has been efficiently compressed from a length of 16 cm down to a few mm along the magnetic field axis (longitudinal compression) using electrostatic fields. The simulation reproduces the low energy interactions of slow muons in helium gas. Phase space compression occurs on the order of microseconds, compatible with the muon lifetime of 2  μs. This paves the way for the preparation of a high-quality low-energy muon beam, with an increase in phase space density relative to a standard surface muon beam of 10^{7}. The achievable phase space compression by using only the longitudinal stage presented here is of the order of 10^{4}.

  13. Compressive laser ranging.

    PubMed

    Babbitt, Wm Randall; Barber, Zeb W; Renner, Christoffer

    2011-12-15

    Compressive sampling has been previously proposed as a technique for sampling radar returns and determining sparse range profiles with a reduced number of measurements compared to conventional techniques. By employing modulation on both transmission and reception, compressive sensing in ranging is extended to the direct measurement of range profiles without intermediate measurement of the return waveform. This compressive ranging approach enables the use of pseudorandom binary transmit waveforms and return modulation, along with low-bandwidth optical detectors to yield high-resolution ranging information. A proof-of-concept experiment is presented. With currently available compact, off-the-shelf electronics and photonics, such as high data rate binary pattern generators and high-bandwidth digital optical modulators, compressive laser ranging can readily achieve subcentimeter resolution in a compact, lightweight package.

  14. Compressive optical image encryption.

    PubMed

    Li, Jun; Sheng Li, Jiao; Yang Pan, Yang; Li, Rong

    2015-05-20

    An optical image encryption technique based on compressive sensing using fully optical means has been proposed. An object image is first encrypted to a white-sense stationary noise pattern using a double random phase encoding (DRPE) method in a Mach-Zehnder interferometer. Then, the encrypted image is highly compressed to a signal using single-pixel compressive holographic imaging in the optical domain. At the receiving terminal, the encrypted image is reconstructed well via compressive sensing theory, and the original image can be decrypted with three reconstructed holograms and the correct keys. The numerical simulations show that the method is effective and suitable for optical image security transmission in future all-optical networks because of the ability of completely optical implementation and substantially smaller hologram data volume.

  15. Compressible Astrophysics Simulation Code

    SciTech Connect

    Howell, L.; Singer, M.

    2007-07-18

    This is an astrophysics simulation code involving a radiation diffusion module developed at LLNL coupled to compressible hydrodynamics and adaptive mesh infrastructure developed at LBNL. One intended application is to neutrino diffusion in core collapse supernovae.

  16. Compressive holographic video.

    PubMed

    Wang, Zihao; Spinoulas, Leonidas; He, Kuan; Tian, Lei; Cossairt, Oliver; Katsaggelos, Aggelos K; Chen, Huaijin

    2017-01-09

    Compressed sensing has been discussed separately in spatial and temporal domains. Compressive holography has been introduced as a method that allows 3D tomographic reconstruction at different depths from a single 2D image. Coded exposure is a temporal compressed sensing method for high speed video acquisition. In this work, we combine compressive holography and coded exposure techniques and extend the discussion to 4D reconstruction in space and time from one coded captured image. In our prototype, digital in-line holography was used for imaging macroscopic, fast moving objects. The pixel-wise temporal modulation was implemented by a digital micromirror device. In this paper we demonstrate 10× temporal super resolution with multiple depths recovery from a single image. Two examples are presented for the purpose of recording subtle vibrations and tracking small particles within 5 ms.

  17. Vertebral Compression Fractures

    MedlinePlus

    ... OI: Information on Vertebral Compression Fractures 804 W. Diamond Ave., Ste. 210 Gaithersburg, MD 20878 (800) 981- ... osteogenesis imperfecta contact : Osteogenesis Imperfecta Foundation 804 W. Diamond Avenue, Suite 210, Gaithersburg, MD 20878 Tel: 800- ...

  18. Potential Clinical Applications for Spinal Functional MRI

    PubMed Central

    Kornelsen, Jennifer; Mackey, Sean

    2010-01-01

    Functional MRI (fMRI) of the spinal cord is a noninvasive technique for obtaining information regarding spinal cord neuronal function. This article provides a brief overview of recent developments in spinal cord fMRI and outlines potential applications, as well as the limitations that must be overcome, for using spinal fMRI in the clinic. This technique is currently used for research purposes, but significant potential exists for spinal fMRI to become an important clinical tool. PMID:17504642

  19. Transcriptome analysis of trigeminal ganglia following masseter muscle inflammation in rats

    PubMed Central

    Park, Jennifer; Asgar, Jamila; Ro, Jin Y.

    2016-01-01

    Background Chronic pain in masticatory muscles is a major medical problem. Although mechanisms underlying persistent pain in masticatory muscles are not fully understood, sensitization of nociceptive primary afferents following muscle inflammation or injury contributes to muscle hyperalgesia. It is well known that craniofacial muscle injury or inflammation induces regulation of multiple genes in trigeminal ganglia, which is associated with muscle hyperalgesia. However, overall transcriptional profiles within trigeminal ganglia following masseter inflammation have not yet been determined. In the present study, we performed RNA sequencing assay in rat trigeminal ganglia to identify transcriptome profiles of genes relevant to hyperalgesia following inflammation of the rat masseter muscle. Results Masseter inflammation differentially regulated >3500 genes in trigeminal ganglia. Predominant biological pathways were predicted to be related with activation of resident non-neuronal cells within trigeminal ganglia or recruitment of immune cells. To focus our analysis on the genes more relevant to nociceptors, we selected genes implicated in pain mechanisms, genes enriched in small- to medium-sized sensory neurons, and genes enriched in TRPV1-lineage nociceptors. Among the 2320 candidate genes, 622 genes showed differential expression following masseter inflammation. When the analysis was limited to these candidate genes, pathways related with G protein-coupled signaling and synaptic plasticity were predicted to be enriched. Inspection of individual gene expression changes confirmed the transcriptional changes of multiple nociceptor genes associated with masseter hyperalgesia (e.g., Trpv1, Trpa1, P2rx3, Tac1, and Bdnf) and also suggested a number of novel probable contributors (e.g., Piezo2, Tmem100, and Hdac9). Conclusion These findings should further advance our understanding of peripheral mechanisms involved in persistent craniofacial muscle pain conditions and provide a

  20. Neuroanatomical Correlates of Intelligence in Healthy Young Adults: The Role of Basal Ganglia Volume

    PubMed Central

    Rhein, Cosima; Mühle, Christiane; Richter-Schmidinger, Tanja; Alexopoulos, Panagiotis; Doerfler, Arnd; Kornhuber, Johannes

    2014-01-01

    Background In neuropsychiatric diseases with basal ganglia involvement, higher cognitive functions are often impaired. In this exploratory study, we examined healthy young adults to gain detailed insight into the relationship between basal ganglia volume and cognitive abilities under non-pathological conditions. Methodology/Principal Findings We investigated 137 healthy adults that were between the ages of 21 and 35 years with similar educational backgrounds. Magnetic resonance imaging (MRI) was performed, and volumes of basal ganglia nuclei in both hemispheres were calculated using FreeSurfer software. The cognitive assessment consisted of verbal, numeric and figural aspects of intelligence for either the fluid or the crystallised intelligence factor using the intelligence test Intelligenz-Struktur-Test (I-S-T 2000 R). Our data revealed significant correlations of the caudate nucleus and pallidum volumes with figural and numeric aspects of intelligence, but not with verbal intelligence. Interestingly, figural intelligence associations were dependent on sex and intelligence factor; in females, the pallidum volumes were correlated with crystallised figural intelligence (r = 0.372, p = 0.01), whereas in males, the caudate volumes were correlated with fluid figural intelligence (r = 0.507, p = 0.01). Numeric intelligence was correlated with right-lateralised caudate nucleus volumes for both females and males, but only for crystallised intelligence (r = 0.306, p = 0.04 and r = 0.459, p = 0.04, respectively). The associations were not mediated by prefrontal cortical subfield volumes when controlling with partial correlation analyses. Conclusions/Significance The findings of our exploratory analysis indicate that figural and numeric intelligence aspects, but not verbal aspects, are strongly associated with basal ganglia volumes. Unlike numeric intelligence, the type of figural intelligence appears to be related to distinct basal ganglia

  1. Basal ganglia and cortical networks for sequential ordering and rhythm of complex movements

    PubMed Central

    Bednark, Jeffery G.; Campbell, Megan E. J.; Cunnington, Ross

    2015-01-01

    Voluntary actions require the concurrent engagement and coordinated control of complex temporal (e.g., rhythm) and ordinal motor processes. Using high-resolution functional magnetic resonance imaging (fMRI) and multi-voxel pattern analysis (MVPA), we sought to determine the degree to which these complex motor processes are dissociable in basal ganglia and cortical networks. We employed three different finger-tapping tasks that differed in the demand on the sequential temporal rhythm or sequential ordering of submovements. Our results demonstrate that sequential rhythm and sequential order tasks were partially dissociable based on activation differences. The sequential rhythm task activated a widespread network centered around the supplementary motor area (SMA) and basal-ganglia regions including the dorsomedial putamen and caudate nucleus, while the sequential order task preferentially activated a fronto-parietal network. There was also extensive overlap between sequential rhythm and sequential order tasks, with both tasks commonly activating bilateral premotor, supplementary motor, and superior/inferior parietal cortical regions, as well as regions of the caudate/putamen of the basal ganglia and the ventro-lateral thalamus. Importantly, within the cortical regions that were active for both complex movements, MVPA could accurately classify different patterns of activation for the sequential rhythm and sequential order tasks. In the basal ganglia, however, overlapping activation for the sequential rhythm and sequential order tasks, which was found in classic motor circuits of the putamen and ventro-lateral thalamus, could not be accurately differentiated by MVPA. Overall, our results highlight the convergent architecture of the motor system, where complex motor information that is spatially distributed in the cortex converges into a more compact representation in the basal ganglia. PMID:26283945

  2. Neural basis of singing in crickets: central pattern generation in abdominal ganglia

    NASA Astrophysics Data System (ADS)

    Schöneich, Stefan; Hedwig, Berthold

    2011-12-01

    The neural mechanisms underlying cricket singing behavior have been the focus of several studies, but the central pattern generator (CPG) for singing has not been localized conclusively. To test if the abdominal ganglia contribute to the singing motor pattern and to analyze if parts of the singing CPG are located in these ganglia, we systematically truncated the abdominal nerve cord of fictively singing crickets while recording the singing motor pattern from a front-wing nerve. Severing the connectives anywhere between terminal ganglion and abdominal ganglion A3 did not preclude singing, although the motor pattern became more variable and failure-prone as more ganglia were disconnected. Singing terminated immediately and permanently after transecting the connectives between the metathoracic ganglion complex and the first unfused abdominal ganglion A3. The contribution of abdominal ganglia for singing pattern generation was confirmed by intracellular interneuron recordings and current injections. During fictive singing, an ascending interneuron with its soma and dendrite in A3 depolarized rhythmically. It spiked 10 ms before the wing-opener activity and hyperpolarized in phase with the wing-closer activity. Depolarizing current injection elicited rhythmic membrane potential oscillations and spike bursts that elicited additional syllables and reliably reset the ongoing chirp rhythm. Our results disclose that the abdominal ganglion A3 is directly involved in generating the singing motor pattern, whereas the more posterior ganglia seem to provide only stabilizing feedback to the CPG circuit. Localizing the singing CPG in the anterior abdominal neuromeres now allows analyzing its circuitry at the level of identified interneurons in subsequent studies.

  3. Sildenafil promotes neuroprotection of the pelvic ganglia neurones after bilateral cavernosal nerve resection in the rat

    PubMed Central

    Hlaing, Su M.; Garcia, Leah A.; Kovanecz, Istvan; Martinez, Ramon A.; Shah, Sanjana; Artaza, Jorge N.; Ferrini, Monica G.

    2012-01-01

    Objectives To determine the gene expression profile of pelvic ganglia neurones after bilateral cavernosal nerve resection (BCNR) and subsequent treatment with sildenafil in relation to neurotrophic-related pathways. Materials and methods Fisher rats aged 5 months were subjected to BCNR or sham operation and treated with or without sildenafil (20 mg/kg body-weight in drinking water) for 7 days. Total RNA isolated from pelvic ganglia was subjected to reverse transcription and then to quantitative reverse transcriptase-polymerase chain reaction (PCR) with the RAT-neurotrophic array. Results were corroborated by real-time PCR and western blotting. Another set of animals were injected with a fluorescent tracer at the base of the penis, 7 days before BCNR or sham operation, and were sacrificed 7 days after surgery. Sections of pelvic ganglia were used for immunohistochemistry with antibodies against neurturin, neuronal nitric oxide synthase, tyrosine hydroxylase and glial cell line-derived neurotrophic factor receptor α2. Results A down-regulation of the expression of neuronal nitric oxide synthase accompanied by changes in the level of cholinergic neurotrophic factors, such as neurturin and its receptor glial cell line-derived neurotrophic factor receptor α2, artemin, neurotrophin-4 and cilliary neurotrophic factor, was observed 7 days after BCNR in pelvic ganglia neurones. Treatment with sildenafil, starting immediately after surgery, reversed all these changes at a level similar to that in sham-operated animals. Conclusions Sildenafil treatment promotes changes in the neurotrophic phenotype, leading to a regenerative state of pelvic ganglia neurones. The present study provides a justification for the use of phosphodiesterase 5 inhibitors as a neuroprotective agent after BCNR. PMID:22672418

  4. Smoothing DCT Compression Artifacts

    NASA Technical Reports Server (NTRS)

    Ahumada, A. J., Jr.; Horng, R.; Statler, Irving C. (Technical Monitor)

    1994-01-01

    Image compression based on quantizing the image in the discrete cosine transform (DCT) domain can generate blocky artifacts in the output image. It is possible to reduce these artifacts and RMS error by adjusting measures of block edginess and image roughness, while restricting the DCT coefficient values to values that would have been quantized to those of the compressed image. We also introduce a DCT coefficient amplitude adjustment that reduces RMS error.

  5. Magnetic Resonance Imaging of the Cervical, Thoracic, and Lumbar Spine in Children: Spinal Incidental Findings in Pediatric Patients

    PubMed Central

    Ramadorai, Uma E.; Hire, Justin M.; DeVine, John G.

    2014-01-01

    Study Design Retrospective case series. Objective To determine the rate of spinal incidental findings on magnetic resonance imaging (MRI) of the cervical, thoracic, and lumbar spine in the pediatric population. Methods We reviewed MRI imaging of the neuraxial spine in patients less than 18 years of age and documented abnormal spinal findings. We then reviewed the charts of these patients to determine the reason for ordering the study. Those who presented with pain were considered symptomatic. Those who had no presenting complaint were considered asymptomatic. The data were analyzed to break down the rate of spinal incidental findings in the cervical, thoracic, and lumbar spine, respectively. Results Thirty-one of the 99 MRIs had positive findings, with the most common being disk protrusion (51.6%). Spinal incidental findings were most common in the lumbar spine (9.4%) versus the cervical spine (8%) or thoracic spine (4.7%). In this group, Schmorl nodes and disk protrusion were the two most common findings (37.5% each). Other spinal incidental findings included a vertebral hemangioma and a Tarlov cyst. In the thoracic spine, the only spinal incidental finding was a central disk protrusion without spinal cord or nerve root compression. Conclusion MRI is a useful modality in the pediatric patient with scoliosis or complaints of pain, but the provider should remain cognizant of the potential for spinal incidental findings. PMID:25396102

  6. Compression Myelopathy due to Proliferative Changes around C2 Pars Defects without Instability

    PubMed Central

    Kimura, Tetsuya; Tezuka, Fumitake; Abe, Mitsunobu; Yamashita, Kazuta; Takata, Yoichiro; Higashino, Kosaku; Sairyo, Koichi

    2016-01-01

    We report a case with compression myelopathy due to proliferative changes around the C2 pars defects without instability. A 69-year-old man presented with progressive clumsy hands and spastic gait. Plain radiographs showed bilateral spondylolysis (pars defects) at C2 and fusion between C2 and C3 spinous processes. Dynamic views revealed mobility through the pars defects, but there was no apparent instability. Computed tomography showed proliferative changes at the pars defects, which protruded into spinal canal. On magnetic resonance imaging, the spinal cord was compressed and intramedullary high signal change was found. A diagnosis of compression myelopathy due to proliferative changes around the C2 pars defects was made. We performed posterior decompression. Postoperatively, symptoms have been alleviated and images revealed sufficient decompression and no apparent instability. In patients with the cervical spondylolysis, myelopathy caused by instability or slippage have been periodically reported. The present case involving C2 spondylolysis is extremely rare. PMID:27340539

  7. Investigation of impact loading rate effects on the ligamentous cervical spinal load-partitioning using finite element model of functional spinal unit C2-C3.

    PubMed

    Mustafy, Tanvir; El-Rich, Marwan; Mesfar, Wissal; Moglo, Kodjo

    2014-09-22

    The cervical spine functions as a complex mechanism that responds to sudden loading in a unique manner, due to intricate structural features and kinematics. The spinal load-sharing under pure compression and sagittal flexion/extension at two different impact rates were compared using a bio-fidelic finite element (FE) model of the ligamentous cervical functional spinal unit (FSU) C2-C3. This model was developed using a comprehensive and realistic geometry of spinal components and material laws that include strain rate dependency, bone fracture, and ligament failure. The range of motion, contact pressure in facet joints, failure forces in ligaments were compared to experimental findings. The model demonstrated that resistance of spinal components to impact load is dependent on loading rate and direction. For the loads applied, stress increased with loading rate in all spinal components, and was concentrated in the outer intervertebral disc (IVD), regions of ligaments to bone attachment, and in the cancellous bone of the facet joints. The highest stress in ligaments was found in capsular ligament (CL) in all cases. Intradiscal pressure (IDP) in the nucleus was affected by loading rate change. It increased under compression/flexion but decreased under extension. Contact pressure in the facet joints showed less variation under compression, but increased significantly under flexion/extension particularly under extension. Cancellous bone of the facet joints region was the only component fractured and fracture occurred under extension at both rates. The cervical ligaments were the primary load-bearing component followed by the IVD, endplates and cancellous bone; however, the latter was the most vulnerable to extension as it fractured at low energy impact.

  8. Alternative Compression Garments

    NASA Technical Reports Server (NTRS)

    Stenger, M. B.; Lee, S. M. C.; Ribeiro, L. C.; Brown, A. K.; Westby, C. M.; Platts, S. H.

    2011-01-01

    Orthostatic intolerance after spaceflight is still an issue for astronauts as no in-flight countermeasure has been 100% effective. Future anti-gravity suits (AGS) may be similar to the Shuttle era inflatable AGS or may be a mechanical compression device like the Russian Kentavr. We have evaluated the above garments as well as elastic, gradient compression garments of varying magnitude and determined that breast-high elastic compression garments may be a suitable replacement to the current AGS. This new garment should be more comfortable than the AGS, easy to don and doff, and as effective a countermeasure to orthostatic intolerance. Furthermore, these new compression garments could be worn for several days after space flight as necessary if symptoms persisted. We conducted two studies to evaluate elastic, gradient compression garments. The purpose of these studies was to evaluate the comfort and efficacy of an alternative compression garment (ACG) immediately after actual space flight and 6 degree head-down tilt bed rest as a model of space flight, and to determine if they would impact recovery if worn for up to three days after bed rest.

  9. Compressed image deblurring

    NASA Astrophysics Data System (ADS)

    Xu, Yuquan; Hu, Xiyuan; Peng, Silong

    2014-03-01

    We propose an algorithm to recover the latent image from the blurred and compressed input. In recent years, although many image deblurring algorithms have been proposed, most of the previous methods do not consider the compression effect in blurry images. Actually, it is unavoidable in practice that most of the real-world images are compressed. This compression will introduce a typical kind of noise, blocking artifacts, which do not meet the Gaussian distribution assumed in most existing algorithms. Without properly handling this non-Gaussian noise, the recovered image will suffer severe artifacts. Inspired by the statistic property of compression error, we model the non-Gaussian noise as hyper-Laplacian distribution. Based on this model, an efficient nonblind image deblurring algorithm based on variable splitting technique is proposed to solve the resulting nonconvex minimization problem. Finally, we also address an effective blind image deblurring algorithm which can deal with the compressed and blurred images efficiently. Extensive experiments compared with state-of-the-art nonblind and blind deblurring methods demonstrate the effectiveness of the proposed method.

  10. Image compression technique

    DOEpatents

    Fu, C.Y.; Petrich, L.I.

    1997-03-25

    An image is compressed by identifying edge pixels of the image; creating a filled edge array of pixels each of the pixels in the filled edge array which corresponds to an edge pixel having a value equal to the value of a pixel of the image array selected in response to the edge pixel, and each of the pixels in the filled edge array which does not correspond to an edge pixel having a value which is a weighted average of the values of surrounding pixels in the filled edge array which do correspond to edge pixels; and subtracting the filled edge array from the image array to create a difference array. The edge file and the difference array are then separately compressed and transmitted or stored. The original image is later reconstructed by creating a preliminary array in response to the received edge file, and adding the preliminary array to the received difference array. Filling is accomplished by solving Laplace`s equation using a multi-grid technique. Contour and difference file coding techniques also are described. The techniques can be used in a method for processing a plurality of images by selecting a respective compression approach for each image, compressing each of the images according to the compression approach selected, and transmitting each of the images as compressed, in correspondence with an indication of the approach selected for the image. 16 figs.

  11. Image compression technique

    DOEpatents

    Fu, Chi-Yung; Petrich, Loren I.

    1997-01-01

    An image is compressed by identifying edge pixels of the image; creating a filled edge array of pixels each of the pixels in the filled edge array which corresponds to an edge pixel having a value equal to the value of a pixel of the image array selected in response to the edge pixel, and each of the pixels in the filled edge array which does not correspond to an edge pixel having a value which is a weighted average of the values of surrounding pixels in the filled edge array which do correspond to edge pixels; and subtracting the filled edge array from the image array to create a difference array. The edge file and the difference array are then separately compressed and transmitted or stored. The original image is later reconstructed by creating a preliminary array in response to the received edge file, and adding the preliminary array to the received difference array. Filling is accomplished by solving Laplace's equation using a multi-grid technique. Contour and difference file coding techniques also are described. The techniques can be used in a method for processing a plurality of images by selecting a respective compression approach for each image, compressing each of the images according to the compression approach selected, and transmitting each of the images as compressed, in correspondence with an indication of the approach selected for the image.

  12. Anterior column reconstruction with PMMA: an effective long-term alternative in spinal oncologic surgery.

    PubMed

    Salem, Khalid M I; Fisher, Charles G

    2016-12-01

    A number of anterior reconstruction options are available in patients managed for symptomatic metastatic spinal column disease. Polymethylmethacrylate (PMMA) has been traditionally used as a reconstruction option in patients with limited life expectancy as an anterior fusion is not expected. In this article, we present the outcome of a 13-year follow-up of a long anterior reconstruction using PMMA of the upper thoracic spine in a myelopathic female secondary to a compressive breast metastasis affecting the upper 4 thoracic vertebrae. We discuss the use of PMMA in spinal oncological surgery and review the evidence pertinent to its use.

  13. Spontaneous Spinal Epidural Hematoma Coexisting Guillan-Barré Syndrome in a Child: A Case Report.

    PubMed

    Lee, Chi Hyung; Song, Geun Sung; Kim, Young Ha; Son, Dong Wuk; Lee, Sang Weon

    2016-09-01

    Spontaneous spinal epidural hematoma (SSEH) has been reported as a rare cause of spinal cord compression, especially in children. Clinical features are usually nonspecific, although cervicothoracic location of hematoma could be presented with progressive paraplegia. Guillian-Barré syndrome (GBS) is clinically defined as an acute peripheral neuropathy causing progressive limb weakness. Because SSEH and GBS have very similar signs and symptoms, SSEH could be misdiagnosed as GBS. Nevertheless, they can be presented together. We describe a rare case of SSEH coexisting with GBS.

  14. Spontaneous Spinal Epidural Hematoma Coexisting Guillan-Barré Syndrome in a Child: A Case Report

    PubMed Central

    Lee, Chi Hyung; Kim, Young Ha; Son, Dong Wuk; Lee, Sang Weon

    2016-01-01

    Spontaneous spinal epidural hematoma (SSEH) has been reported as a rare cause of spinal cord compression, especially in children. Clinical features are usually nonspecific, although cervicothoracic location of hematoma could be presented with progressive paraplegia. Guillian-Barré syndrome (GBS) is clinically defined as an acute peripheral neuropathy causing progressive limb weakness. Because SSEH and GBS have very similar signs and symptoms, SSEH could be misdiagnosed as GBS. Nevertheless, they can be presented together. We describe a rare case of SSEH coexisting with GBS. PMID:27800000

  15. Surgery for spinal tuberculosis: a multi-center experience of 582 cases

    PubMed Central

    Phan, Kevin; Karim, Rezaul; Jonayed, Sharif Ahmed; Munir, Hasan Khalid Md.; Chakraborty, Shubhendu; Alam, Tashfique

    2015-01-01

    Background Tuberculosis (TB) of the spine is a common site of osseous TB, accounting for 50%-60% of cases. Spinal TB still occurs in both developed and developing countries. The diagnosis of spinal TB is difficult and it commonly presents at an advanced stage. Delays in establishing diagnosis and management result in complications such as spinal cord compression and spinal deformity. Methods A total of 582 patients with TB of the cervical, thoracic and lumbar spine with moderate to severe cord compression were studied. Variable degrees of neurological deficit with deformity were treated from January, 2003 to July, 2014. Thoracotomy along with anterolateral decompression and autogenous strut bone grafting with simultaneous fixation by screws and rods were performed in 113 cases. Posterior decompression, posterior interbody and posterolateral fusion by bone graft with stabilization by transpedicular screws and rods were done in the remaining 469 cases. Appropriate anti-TB drugs were given to all patients for 18-24 months. The follow-up period was 3 months to 10 years. Results The average age was 32.5 years. All patients survived surgery. There were 7 cases of superficial infections (1.2%) whilst there were 4 cases (0.7%) of deep infections. Revision surgery was performed in 6 patients (1.0%). Implant failure occurred in 4 cases (0.7%) whilst malposition of screws occurred in 12 cases (2.1%). Perioperative bleeding complications were reported for 4 patients (0.7%). Neurological improvement occurred in all patients except for 2 cases (0.3%). Preoperatively, the majority of patients (n=221, 38%) were classified with Class A on the American Spinal Injury Association (ASIS) neurological impairment scale. This was significantly reduced postoperatively to 0.4%. Conclusions For patients with spinal TB anterior debridement, auto graft bone fusion, anterior or posterior fixation appears to be effective in arresting disease, correcting kyphotic deformity and maintaining

  16. Changes of blood flow, oxygen tension, action potential and vascular permeability induced by arterial ischemia or venous congestion on the spinal cord in canine model.

    PubMed

    Kobayashi, Shigeru; Yoshizawa, Hidezo; Shimada, Seiichiro; Guerrero, Alexander Rodríguez; Miyachi, Masaya

    2013-01-01

    It is generally considered that the genesis of myelopathy associated with the degenerative conditions of the spine may result from both mechanical compression and circulatory disturbance. Many references about spinal cord tissue ischemic damage can be found in the literature, but not detailed studies about spinal cord microvasculature damage related to congestion or blood permeability. This study investigates the effect of ischemia and congestion on the spinal cord using an in vivo model. The aorta was clamped as an ischemia model of the spinal cord and the inferior vena cava was clamped as a congestion model at the 6th costal level for 30 min using forceps transpleurally. Measurements of blood flow, partial oxygen pressure, and conduction velocity in the spinal cord were repeated over a period of 1 h after release of clamping. Finally, we examined the status of blood-spinal cord barrier under fluorescence and transmission electron microscope. Immediately after clamping of the inferior vena cava, the central venous pressure increased by about four times. Blood flow, oxygen tension and action potential were more severely affected by the aorta clamping; but this ischemic model did not show any changes of blood permeability in the spinal cord. The intramedullar edema was more easily produced by venous congestion than by arterial ischemia. In conclusions, venous congestion may be a preceding and essential factor of circulatory disturbance in the compressed spinal cord inducing myelopathy.

  17. Clinical applicability of biologically effective dose calculation for spinal cord in fractionated spine stereotactic body radiation therapy

    PubMed Central

    Lee, Seung Heon; Lee, Kyu Chan; Choi, Jinho; Ahn, So Hyun; Lee, Seok Ho; Sung, Ki Hoon; Kil, Se Hee

    2015-01-01

    Background. The aim of the study was to investigate whether biologically effective dose (BED) based on linear-quadratic model can be used to estimate spinal cord tolerance dose in spine stereotactic body radiation therapy (SBRT) delivered in 4 or more fractions. Patients and methods. Sixty-three metastatic spinal lesions in 47 patients were retrospectively evaluated. The most frequently prescribed dose was 36 Gy in 4 fractions. In planning, we tried to limit the maximum dose to the spinal cord or cauda equina less than 50% of prescription or 45 Gy2/2. BED was calculated using maximum point dose of spinal cord. Results. Maximum spinal cord dose per fraction ranged from 2.6 to 6.0 Gy (median 4.3 Gy). Except 4 patients with 52.7, 56.4, 62.4, and 67.9 Gy2/2, equivalent total dose in 2-Gy fraction of the patients was not more than 50 Gy2/2 (12.1–67.9, median 32.0). The ratio of maximum spinal cord dose to prescription dose increased up to 82.2% of prescription dose as epidural spinal cord compression grade increased. No patient developed grade 2 or higher radiation-induced spinal cord toxicity during follow-up period of 0.5 to 53.9 months. Conclusions. In fractionated spine SBRT, BED can be used to estimate spinal cord tolerance dose, provided that the dose per fraction to the spinal cord is moderate, e.g. < 6.0 Gy. It appears that a maximum dose of up to 45–50 Gy2/2 to the spinal cord is tolerable in 4 or more fractionation regimen. PMID:26029031

  18. MAPK Pathways Are Involved in Neuropathic Pain in Rats with Chronic Compression of the Dorsal Root Ganglion.

    PubMed

    Qu, Yu-Juan; Jia, Lei; Zhang, Xiao; Wei, Hui; Yue, Shou-Wei

    2016-01-01

    The aim of the present study was to investigate whether the MAPK pathways were involved in the mechanism of neuropathic pain in rats with chronic compression of the dorsal root ganglion. We determined the paw withdrawal mechanical threshold (PWMT) of rats before and after CCD surgery and then after p38, JNK, or ERK inhibitors administration. Western blotting, RT-PCR, and immunofluorescence of dorsal root ganglia were performed to investigate the protein and mRNA level of MAPKs and also the alternation in distributions of positive neurons in dorsal root ganglia. Intrathecal administration of MAPKs inhibitors, SB203580 (p38 inhibitor), SP600125 (JNK inhibitor), and U0126 (ERK inhibitor), resulted in a partial reduction in CCD-induced mechanical allodynia. The reduction of allodynia was associated with significant depression in the level of both MAPKs mRNA and protein expression in CCD rats and also associated with the decreased ratios of large size MAPKs positive neurons in dorsal root ganglia. In conclusion, the specific inhibitors of MAPKs contributed to the attenuation of mechanical allodynia in CCD rats and the large size MAPKs positive neurons in dorsal root ganglia were crucial.

  19. Simulation in spinal diseases.

    PubMed

    Aso Escario, José; Martínez Quiñones, José Vicente; Aso Vizán, Alberto; Arregui Calvo, Ricardo; Bernal Lafuente, Marta; Alcázar Crevillén, Andrés

    2014-01-01

    Simulation is frequent in spinal disease, resulting in problems for specialists like Orthopedic Surgeons, Neurosurgeons, Reumathologists, etc. Simulation requires demonstration of the intentional production of false or exaggerated symptoms following an external incentive. The clinician has difficulties in demonstrating these criteria, resulting in misdiagnosis of simulation or misinterpretation of the normal patient as a simulator, with the possibility of iatrogenic distress and litigation. We review simulation-related problems in spine, proposing a terminological, as well as a diagnostic strategy including clinical and complementary diagnosis, as a way to avoid misinterpretation and minimize the iatrogenic distress and liability Based on the clinical-Forensic author's expertise, the literature is analyzed and the terminology readdressed to develop new terms (inconsistences, incongruences, discrepancies and contradictions). Clinical semiology and complementary test are adapted to the new scenario. Diagnostic strategy relies on anamnesis, clinical and complementary tests, adapting them to a uniform terminology with clear meaning of signs and symptoms.

  20. Spinal 5-HT3 receptor mediates nociceptive effect on central neuropathic pain; possible therapeutic role for tropisetron

    PubMed Central

    Nasirinezhad, Farinaz; Hosseini, Marjan; Karami, Zohre; Yousefifard, Mahmoud; Janzadeh, Autosa

    2016-01-01

    Objectives To test the analgesic effect of 5-HT-3 receptor antagonist, tropisetron, in a clip compression injury model of spinal cord pain in rats. Methods Four weeks post compression of the spinal cord at lumbar level, tropisetron was administered intrathecally at 100 μg and 150 μg dosages. Behavioral tests were assessed before administration. Fifteen minutes after injection, behavioral tests were repeated. Randall-Sellitto and plantar test was used for mechanical and thermal hyperalgesia, respectively. Mechanical and cold allodynia were evaluated by Von Frey filament and acetone droplets, respectively. The analgesic effect of tropisetron was compared with intrathecal administration of salicylate. Locomotor score was evaluated by Basso, Beattie and Bresnahan (BBB) test every week after spinal cord injury. Results Intrathecal administration of tropisetron, decreased hyperalgesia and mechanical allodynia, but not cold allodynia were observed after compression of the spinal cord. Conclusion Blockade of 5-HT-3 receptors by tropisetron at the spinal level induces an antinociceptive effect on chronic central neuropathic pain and suggests that this compound may have potential clinical utility for the management of central neuropathic pain, particularly in patients with hyperalgesia and tactile allodynia. PMID:26338446