Science.gov

Sample records for compressed spinal ganglia

  1. The chelonian spinal nerve ganglia are a conglomerate of the spinal nerve ganglia proper and the sympathetic ganglia.

    PubMed

    Kadota, Tetsuo; Nakano, Masato; Atobe, Yoshitoshi; Goris, Richard C; Funakoshi, Kengo

    2009-01-01

    A tyrosine hydroxylase-immunoreactive cell mass is found in the caudal portion of the dorsal nerve ganglion of the red-eared slider, Trachemys scripta elegans. The ganglion appears as a flat oval structure in the horizontal plane, where the major axis runs latero-medially, and the minor axis rostro-caudally in the ventral view. A communicating branch to the sympathetic chain diverges from the top of each tubercle which lies on the caudo-lateral side of the ganglion. A tyrosine hydroxylase- immunoreactive cell mass is located in this tubercle. This cell mass exists in both sexes. Tyrosine hydroxylase-immunoreactive cells, that contain Nissl bodies in cytoplasm and are enveloped by the satellite cells, are multipolar and their neural processes are distributed in a distal direction into the spinal nerve. The range of distribution of the synapsin I-immunoreactive structures is limited to the tyrosine hydroxylase-immunoreactive cell mass. The chelonian dorsal spinal nerve ganglia are a conglomerate of the spinal nerve ganglion proper and the sympathetic ganglion.

  2. Spinal cord compression due to ethmoid adenocarcinoma.

    PubMed

    Johns, D R; Sweriduk, S T

    1987-10-15

    Adenocarcinoma of the ethmoid sinus is a rare tumor which has been epidemiologically linked to woodworking in the furniture industry. It has a low propensity to metastasize and has not been previously reported to cause spinal cord compression. A symptomatic epidural spinal cord compression was confirmed on magnetic resonance imaging (MRI) scan in a former furniture worker with widely disseminated metastases. The clinical features of ethmoid sinus adenocarcinoma and neoplastic spinal cord compression, and the comparative value of MRI scanning in the neuroradiologic diagnosis of spinal cord compression are reviewed.

  3. [Histochemistry and choline acetyltransferase in cat spinal cord and spinal ganglia].

    PubMed

    Motavkin, P A; Okhotin, V E

    1978-09-01

    Cytochemical activity of choline acetyltransferase has been studied in the pericaryon of motor neurons of the spinal enlargement and sensitive neurocytes of the intervertebral ganglia in the cat by means of Burt's method. It has been demonstrated that cytoplasm of all motor neurons positively reacts with acetyl KoA. According to the activity of choline acetyltransferase, four groups of neurons have been determined. In cerebrospinal ganglia, the enzyme is present in 58% of pseudounipolar cells, which seem to be cholinergic neurocytes. It has been stated that for all nonspecific reactions the presence of massive and dense residue in all the neurons, walls of small blood vessels and sometimes in astrocytes is a characteristic feature. PMID:718431

  4. Chronic sciatic nerve compression induces fibrosis in dorsal root ganglia.

    PubMed

    Li, Qinwen; Chen, Jianghai; Chen, Yanhua; Cong, Xiaobin; Chen, Zhenbing

    2016-03-01

    In the present study, pathological alterations in neurons of the dorsal root ganglia (DRG) were investigated in a rat model of chronic sciatic nerve compression. The rat model of chronic sciatic nerve compression was established by placing a 1 cm Silastic tube around the right sciatic nerve. Histological examination was performed via Masson's trichrome staining. DRG injury was assessed using Fluoro Ruby (FR) or Fluoro Gold (FG). The expression levels of target genes were examined using reverse transcription‑quantitative polymerase chain reaction, western blot and immunohistochemical analyses. At 3 weeks post‑compression, collagen fiber accumulation was observed in the ipsilateral area and, at 8 weeks, excessive collagen formation with muscle atrophy was observed. The collagen volume fraction gradually and significantly increased following sciatic nerve compression. In the model rats, the numbers of FR‑labeled DRG neurons were significantly higher, relative to the sham‑operated group, however, the numbers of FG‑labeled neurons were similar. In the ipsilateral DRG neurons of the model group, the levels of transforming growth factor‑β1 (TGF‑β1) and connective tissue growth factor (CTGF) were elevated and, surrounding the neurons, the levels of collagen type I were increased, compared with those in the contralateral DRG. In the ipsilateral DRG, chronic nerve compression was associated with significantly higher levels of phosphorylated (p)‑extracellular signal‑regulated kinase 1/2, and significantly lower levels of p‑c‑Jun N‑terminal kinase and p‑p38, compared with those in the contralateral DRGs. Chronic sciatic nerve compression likely induced DRG pathology by upregulating the expression levels of TGF‑β1, CTGF and collagen type I, with involvement of the mitogen‑activated protein kinase signaling pathway. PMID:26820076

  5. Unusual aetiology of malignant spinal cord compression.

    PubMed

    Boland, Jason; Rennick, Adrienne

    2013-06-01

    Malignant spinal cord compression (MSCC) is an oncological emergency requiring rapid diagnosis and treatment to prevent irreversible spinal cord injury and disability. A case is described in a 45-year-old male with renal cell carcinoma in which the presentation of the MSCC was atypical with principally proximal left leg weakness with no evidence of bone metastasis. This was due to an unusual aetiology of the MSCC as the renal carcinoma had metastasised to his left psoas muscle causing a lumbosacral plexopathy and infiltrated through the intervertebral disc spaces, initially causing left lateral cauda equina and upper lumbar cord compression, before complete spinal cord compression. This case illustrates the varied aetiology of MSCC and reinforces the importance of maintaining a high index of suspicion of the possibility of spinal cord compression. PMID:24644568

  6. Mediastinal paraganglioma causing spinal cord compression.

    PubMed Central

    Reyes, M G; Fresco, R; Bruetman, M E

    1977-01-01

    An invasive paraganglioma of the posterior mediastinum caused spinal cord compression in a 31 year old women. Electron microscopic examination of the paraganglioma invading the epidural space revealed numerous dense-cored granules in the cytoplasm of the tumour cells. We are reporting this case to present the ultrastructure of mediastinal paraganglioma, and to call attention to an unusual cause of spinal cord compression. Images PMID:886352

  7. [Topographo-anatomic interrelationships between the branches of the lumbar arteries and the spinal ganglia, nerves and roots].

    PubMed

    Kravchuk, V N

    1975-01-01

    By using a complex of investigation methods variants of branchingout of the spinal cord and spinal ganglia blood supply sources and their anatomo-topographic interrelations were discerned in 140 preparations of lumbar spinal ganglia obtained from human cadavers of both sexes and different age. With the help of anastomoses these sources form a specific arterial circle around the ganglion. The radicular arteries are noted to be non-equivalent. The annular architectonics of the blood vessels is considered as a morphological manifestation of a functionally reliable blood supply to the border area between the central and peripheral divisions of the nervous system.

  8. Thoracic spinal cord compression by a tophus.

    PubMed

    Ntsiba, Honoré; Makosso, Edouard; Moyikoua, Armand

    2010-03-01

    We report a case of thoracic (T10) spinal cord compression by a tophus in a patient with known chronic gout. Spastic paraplegia developed gradually over 6 months in this 43-year-old man with hypertension, alcohol abuse, and chronic gouty arthritis with tophi. Magnetic resonance imaging and computed tomography visualized an intradural nodule measuring 1.5cm in diameter at the level of T10, as well as geodes in the left T10 lamina and left T9-T10 articular processes. The nodule was removed surgically and shown by histological examination to be a tophus. The neurological impairments resolved rapidly and completely. We found about 60 similar cases in the literature. Spinal cord compression in a patient with chronic gout can be caused by a tophus.

  9. [Spinal cord compression disclosing rib hydatidosis].

    PubMed

    Ousehal, A; Adil, A; El Azhari, A; Kadiri, R

    1995-12-01

    The authors report an exceptional case of spinal compression following an isolate rib hydatidosis. The CT scan has suspected the diagnosis. The authors recall the anatomoclinic features and specify the radiologic aspects of the osseous hydatidosis, especially the rib's localization which is very rare. MR imaging in addition of its diagnosis role showing a very evocative cyst images, is the exam of choice in order to appreciate the disease's extent and the degree of medular sufferance. PMID:8676297

  10. Sympathetic Fiber Sprouting in Chronically Compressed Dorsal Root Ganglia Without Peripheral Axotomy

    PubMed Central

    Chien, Shelby Q.; Li, Chunling; Li, Huiqing; Xie, Wenrui; Pablo, Carmelita S.; Zhang, Jun-Ming

    2006-01-01

    Sympathetic axonal sprouting in axotomized dorsal root ganglia (DRG) has been shown to be a major phenomenon implicated in neuropathic pain. However, it is not known whether sympathetic sprouting can occur in pathologic ganglia without peripheral axotomy. We thus examined presence and density of sympathetic axonal sprouting within DRG of rats subjected to a persistent compressive injury by inserting a stainless steel metal rod into L4 and L5 lumbar intervertebral foramen. Sympathetic axons were identified by immunohistochemical staining with anti-tyrosine hydroxylase antibodies. Results indicate that progressive increase in sympathetic axonal sprouting occurred in the bilateral DRGs between postoperative days 2 and 28. The sympathetic fiber density was greater on the lesion side than the contralateral side. In conclusion, chronic compressive injury of the DRG results in sympathetic sprouting in the non-axotomized ganglion and may partially contribute to the development and maintenance of certain pathological pain states. PMID:17387381

  11. Extramedullary haematopoiesis in thalassaemia major causing spinal cord compression.

    PubMed

    Chiam, Q L L; Lau, K K

    2007-04-01

    A 33-year-old, homozygous beta-thalassaemic, Jehovah witness man presented with subacute spinal cord compression secondary to extramedullary haematopoiesis within the thoracic spinal canal. In this case, MRI showed characteristic features of extramedullary haematopoiesis, leading to an early diagnosis. PMID:17419864

  12. Direct communication of the spinal subarachnoid space with the rat dorsal root ganglia.

    PubMed

    Joukal, Marek; Klusáková, Ilona; Dubový, Petr

    2016-05-01

    The anatomical position of the subarachnoid space (SAS) in relation to dorsal root ganglia (DRG) and penetration of tracer from the SAS into DRG were investigated. We used intrathecal injection of methylene blue to visualize the anatomical position of the SAS in relation to DRG and immunostaining of dipeptidyl peptidase IV (DPP-IV) for detecting arachnoid limiting the SAS. Intrathecal administration of fluorescent-conjugated dextran (fluoro-emerald; FE) was used to demonstrate direct communication between the SAS and DRG. Intrathecal injection of methylene blue and DPP-IV immunostaining revealed that SAS delimited by the arachnoid was extended up to the capsule of DRG in a fold-like recess that may reach approximately half of the DRG length. The arachnoid was found in direct contact to the neuronal body-rich area in the angle between dorsal root and DRG as well as between spinal nerve roots at DRG. Particles of FE were found in the cells of DRG capsule, satellite glial cells, interstitial space, as well as in small and medium-sized neurons after intrathecal injection. Penetration of FE from the SAS into the DRG induced an immune reaction expressed by colocalization of FE and immunofluorescence indicating antigen-presenting cells (MHC-II+), activated (ED1+) and resident (ED2+) macrophages, and activation of satellite glial cells (GFAP+). Penetration of lumbar-injected FE into the cervical DRG was greater than that into the lumbar DRG after intrathecal injection of FE into the cisterna magna. Our results demonstrate direct communication between DRG and cerebrospinal fluid in the SAS that can create another pathway for possible propagation of inflammatory and signaling molecules from DRG primary affected by peripheral nerve injury into DRG of remote spinal segments. PMID:26844624

  13. Critical evaluation of the expression of gastrin-releasing peptide in dorsal root ganglia and spinal cord

    PubMed Central

    Barry, Devin M; Li, Hui; Liu, Xian-Yu; Shen, Kai-Feng; Liu, Xue-Ting; Wu, Zhen-Yu; Munanairi, Admire; Chen, Xiao-Jun; Yin, Jun; Sun, Yan-Gang; Li, Yun-Qing

    2016-01-01

    There are substantial disagreements about the expression of gastrin-releasing peptide (GRP) in sensory neurons and whether GRP antibody cross-reacts with substance P (SP). These concerns necessitate a critical revaluation of GRP expression using additional approaches. Here, we show that a widely used GRP antibody specifically recognizes GRP but not SP. In the spinal cord of mice lacking SP (Tac1 KO), the expression of not only GRP but also other peptides, notably neuropeptide Y (NPY), is significantly diminished. We detected Grp mRNA in dorsal root ganglias using reverse transcription polymerase chain reaction, in situ hybridization and RNA-seq. We demonstrated that Grp mRNA and protein are upregulated in dorsal root ganglias, but not in the spinal cord, of mice with chronic itch. Few GRP+ immunostaining signals were detected in spinal sections following dorsal rhizotomy and GRP+ cell bodies were not detected in dissociated dorsal horn neurons. Ultrastructural analysis further shows that substantially more GRPergic fibers form synaptic contacts with gastrin releasing peptide receptor-positive (GRPR+) neurons than SPergic fibers. Our comprehensive study demonstrates that a majority of GRPergic fibers are of primary afferent origin. A number of factors such as low copy number of Grp transcripts, small percentage of cells expressing Grp, and the use of an eGFP GENSAT transgenic as a surrogate for GRP protein have contributed to the controversy. Optimization of experimental procedures facilitates the specific detection of GRP expression in dorsal root ganglia neurons. PMID:27068287

  14. Spinal cord compression in two related Ursus arctos horribilis.

    PubMed

    Thomovsky, Stephanie A; Chen, Annie V; Roberts, Greg R; Schmidt, Carrie E; Layton, Arthur W

    2012-09-01

    Two 15-yr-old grizzly bear littermates were evaluated within 9 mo of each other with the symptom of acute onset of progressive paraparesis and proprioceptive ataxia. The most significant clinical examination finding was pelvic limb paresis in both bears. Magnetic resonance examinations of both bears showed cranial thoracic spinal cord compression. The first bear had left-sided extradural, dorsolateral spinal cord compression at T3-T4. Vertebral canal stenosis was also observed at T2-T3. Images of the second bear showed lateral spinal cord compression from T2-T3 to T4-T5. Intervertebral disk disease and associated spinal cord compression was also observed at T2-T3 and T3-T4. One grizzly bear continued to deteriorate despite reduced exercise, steroid, and antibiotic therapy. The bear was euthanized, and a necropsy was performed. The postmortem showed a spinal ganglion cyst that caused spinal cord compression at the level of T3-T4. Wallerian-like degeneration was observed from C3-T6. The second bear was prescribed treatment that consisted of a combination of reduced exercise and steroid therapy. He continued to deteriorate with these medical therapies and was euthanized 4 mo after diagnosis. A necropsy showed hypertrophy and protrusion of the dorsal longitudinal ligament at T2-T3 and T3-T4, with resulting spinal cord compression in this region. Wallerian-like degeneration was observed from C2-L1. This is one of few case reports that describes paresis in bears. It is the only case report, to the authors' knowledge, that describes spinal magnetic resonance imaging findings in a grizzly bear and also the only report that describes a cranial thoracic myelopathy in two related grizzly bears with neurologic signs.

  15. Spinal cord compression in two related Ursus arctos horribilis.

    PubMed

    Thomovsky, Stephanie A; Chen, Annie V; Roberts, Greg R; Schmidt, Carrie E; Layton, Arthur W

    2012-09-01

    Two 15-yr-old grizzly bear littermates were evaluated within 9 mo of each other with the symptom of acute onset of progressive paraparesis and proprioceptive ataxia. The most significant clinical examination finding was pelvic limb paresis in both bears. Magnetic resonance examinations of both bears showed cranial thoracic spinal cord compression. The first bear had left-sided extradural, dorsolateral spinal cord compression at T3-T4. Vertebral canal stenosis was also observed at T2-T3. Images of the second bear showed lateral spinal cord compression from T2-T3 to T4-T5. Intervertebral disk disease and associated spinal cord compression was also observed at T2-T3 and T3-T4. One grizzly bear continued to deteriorate despite reduced exercise, steroid, and antibiotic therapy. The bear was euthanized, and a necropsy was performed. The postmortem showed a spinal ganglion cyst that caused spinal cord compression at the level of T3-T4. Wallerian-like degeneration was observed from C3-T6. The second bear was prescribed treatment that consisted of a combination of reduced exercise and steroid therapy. He continued to deteriorate with these medical therapies and was euthanized 4 mo after diagnosis. A necropsy showed hypertrophy and protrusion of the dorsal longitudinal ligament at T2-T3 and T3-T4, with resulting spinal cord compression in this region. Wallerian-like degeneration was observed from C2-L1. This is one of few case reports that describes paresis in bears. It is the only case report, to the authors' knowledge, that describes spinal magnetic resonance imaging findings in a grizzly bear and also the only report that describes a cranial thoracic myelopathy in two related grizzly bears with neurologic signs. PMID:23082524

  16. Spinal epidural angiolipoma: A rare cause of spinal cord compression.

    PubMed

    Ghanta, Rajesh K; Koti, Kalyan; Dandamudi, Srinivas

    2012-09-01

    Spinal epidural angiolipomas are rare, benign tumors composed of mature lipocytes admixed with abnormal blood vessels. Only 128 cases of spinal epidural angiolipomas have been reported in literature till now. Spinal angiolipomas are predominantly located in the mid-thoracic region. We report a case of dorsal epidural angiolipoma in a 56-year-old male who presented with paraparesis and was diagnosed to have D4-5 epidural angiolipoma. Total surgical excision of the epidural angiolipoma was done and his paraparesis gradually improved.

  17. Effects of gabapentin on thermal sensitivity following spinal nerve ligation or spinal cord compression.

    PubMed

    Yezierski, Robert P; Green, Megan; Murphy, Karen; Vierck, Charles J

    2013-10-01

    Neuropathic pain challenges healthcare professionals and researchers to develop new strategies of treatment and experimental models to better understand the pathophysiology of this condition. In the present study, the efficacy of gabapentin on thermal sensitivity following spinal nerve ligation and spinal cord compression was evaluated. The method of behavioral assessment was a well-validated cortically dependent operant escape task. Spinal nerve ligation produced peripheral neuropathic pain whereas spinal cord compression, achieved with an expanding polymer placed extradurally, produced a condition of central neuropathic pain. Changes in thermal sensitivity were also observed in animals undergoing nerve ligation surgery without nerve injury. Gabapentin (50 and 100 mg/kg) significantly reduced thermal sensitivity to 10 and 44.5 °C in surgically naive animals as well as those undergoing spinal nerve ligation and spinal cord compression. In conclusion, an operant method of behavioral assessment was used to show that spinal nerve ligation and spinal cord compression produced increases in sensitivity to noxious cold and heat stimuli. A decrease in thermal sensitivity was observed following administration of gabapentin. The results achieved with these methods are consistent with the clinical profile of gabapentin in treating conditions of neuropathic pain.

  18. The immunocytochemical distribution of seven peptides in the spinal cord and dorsal root ganglia of horse and pig.

    PubMed

    Merighi, A; Kar, S; Gibson, S J; Ghidella, S; Gobetto, A; Peirone, S M; Polak, J M

    1990-01-01

    The distribution of calcitonin gene-related peptide (CGRP), enkephalin, galanin, neuropeptide Y (NPY), somatostatin, tachykinins and vasoactive intestinal polypeptide (VIP) was compared in cervical, thoracic, lumbar and sacral segmental levels of spinal cord and dorsal root ganglia of horse and pig. In both species, immunoreactivity for the peptides under study was observed at all segmental levels of the spinal cord. Peptide-immunoreactive fibres were generally concentrated in laminae I-III, the region around the central canal, and in the autonomic nuclei. A general increase in the number of immunoreactive nerve fibres was noted in the lumbosacral segments of the spinal cord, which was particularly exaggerated in the case of VIP immunoreactivity. In the horse, some CGRP-, somatostatin- or tachykinin-immunoreactive cell bodies were present in the dorsal horn. In the pig, cells immunoreactive for somatostatin, enkephalin or NPY were noted in a similar location. In the ventral horn most motoneurones were CGRP-immunoreactive in both species. However, in pig many other cell types were CGRP-immunoreactive not only in the ventral horn, but also in laminae V-VI of the dorsal horn. With the exception of enkephalin and NPY immunoreactivity, which was not seen in pig dorsal root ganglia, all peptides studied were localised to neuronal cell bodies and/or fibres in the dorsal root ganglia. In both species, immunolabeled cell bodies were observed in ganglia from cervical, thoracic, lumbar and sacral levels, with the exception of VIP-immunoreactive cells that were detected only in the lumbosacral ganglia. Numerous CGRP- and tachykinin-immunoreactive cell bodies were visualised in both species, while the cells immunolabeled with other peptide antisera were much lower in number. In both species, immunostaining of serial sections revealed that a subset of CGRP-immunoreactive cells co-expressed tachykinin, galanin or somatostatin immunoreactivity. In the horse some enkephalin

  19. Neuroimmune and Neuropathic Responses of Spinal Cord and Dorsal Root Ganglia in Middle Age.

    PubMed

    Galbavy, William; Kaczocha, Martin; Puopolo, Michelino; Liu, Lixin; Rebecchi, Mario J

    2015-01-01

    Prior studies of aging and neuropathic injury have focused on senescent animals compared to young adults, while changes in middle age, particularly in the dorsal root ganglia (DRG), have remained largely unexplored. 14 neuroimmune mRNA markers, previously associated with peripheral nerve injury, were measured in multiplex assays of lumbar spinal cord (LSC), and DRG from young and middle-aged (3, 17 month) naïve rats, or from rats subjected to chronic constriction injury (CCI) of the sciatic nerve (after 7 days), or from aged-matched sham controls. Results showed that CD2, CD3e, CD68, CD45, TNF-α, IL6, CCL2, ATF3 and TGFβ1 mRNA levels were substantially elevated in LSC from naïve middle-aged animals compared to young adults. Similarly, LSC samples from older sham animals showed increased levels of T-cell and microglial/macrophage markers. CCI induced further increases in CCL2, and IL6, and elevated ATF3 mRNA levels in LSC of young and middle-aged adults. Immunofluorescence images of dorsal horn microglia from middle-aged naïve or sham rats were typically hypertrophic with mostly thickened, de-ramified processes, similar to microglia following CCI. Unlike the spinal cord, marker expression profiles in naïve DRG were unchanged across age (except increased ATF3); whereas, levels of GFAP protein, localized to satellite glia, were highly elevated in middle age, but independent of nerve injury. Most neuroimmune markers were elevated in DRG following CCI in young adults, yet middle-aged animals showed little response to injury. No age-related changes in nociception (heat, cold, mechanical) were observed in naïve adults, or at days 3 or 7 post-CCI. The patterns of marker expression and microglial morphologies in healthy middle age are consistent with development of a para-inflammatory state involving microglial activation and T-cell marker elevation in the dorsal horn, and neuronal stress and satellite cell activation in the DRG. These changes, however, did not

  20. Vertebral compression fracture after stereotactic body radiotherapy for spinal metastases.

    PubMed

    Sahgal, Arjun; Whyne, Cari M; Ma, Lijun; Larson, David A; Fehlings, Michael G

    2013-07-01

    The use of stereotactic body radiotherapy for metastatic spinal tumours is increasing. Serious adverse events for this treatment include vertebral compression fracture (VCF) and radiation myelopathy. Although VCF is a fairly low-risk adverse event (approximately 5% risk) after conventional radiotherapy, crude risk estimates for VCF after spinal SBRT range from 11% to 39%. In this Review, we summarise the evidence and predictive factors for VCF induced by spinal SBRT, review the pathophysiology of VCF in the metastatic spine, and discuss strategies used to prevent and manage this potentially disabling complication. PMID:23816297

  1. Thalassemia, extramedullary hematopoiesis, and spinal cord compression: A case report

    PubMed Central

    Bukhari, Syed Sarmad; Junaid, Muhammad; Rashid, Mamoon Ur

    2016-01-01

    Background: Extramedullary hematopoiesis (EMH) refers to hematopoiesis outside of the medulla of the bone. Chronic anemia states such as thalassemia can cause hematopoietic tissue to expand in certain locations. We report a case of spinal cord compression due to recurrent spinal epidural EMH, which was treated with a combination of surgery and radiotherapy. Pakistan has one of the highest incidence and prevalence of thalassemia in the world. We describe published literature on diagnosis and management of such cases. Case Description: An 18-year-old male presented with bilateral lower limb paresis. He was a known case of homozygous beta thalassemia major. He had undergone surgery for spinal cord compression due to EMH 4 months prior to presentation. Symptom resolution was followed by deterioration 5 days later. He was operated again at our hospital with complete resection of the mass. He underwent local radiotherapy to prevent recurrence. At 2 years follow-up, he showed complete resolution of symptoms. Follow-up imaging demonstrated no residual mass. Conclusion: The possibility of EMH should be considered in every patient with ineffective erythropoiesis as a cause of spinal cord compression. Treatment of such cases is usually done with blood transfusions, which can reduce the hematopoietic drive for EMH. Other options include surgery, hydroxyurea, radiotherapy, or a combination of these on a case to case basis. PMID:27069747

  2. Origin and distribution of cerebral vascular innervation from superior cervical, trigeminal and spinal ganglia investigated with retrograde and anterograde WGA-HRP tracing in the rat.

    PubMed

    Arbab, M A; Wiklund, L; Svendgaard, N A

    1986-11-01

    Peripheral sources of cerebral vascular innervation have been investigated with retrograde and anterograde neuronal tracing of wheat germ agglutinin conjugated with horseradish peroxidase (WGA-HRP) in the rat. For retrograde identification of sources of innervation, WGA-HRP was applied to the exposed basilar artery through a fine slit in the overlying meninges, and sections of brain and peripheral ganglia were reacted with tetramethylbenzidine for detection of the tracer. A high density of tetramethylbenzidine reaction product was observed around the basilar artery and in the surrounding pial tissue, but the application sites were not completely selective since some tracer always had spread into the ventral brain stem. Retrogradely labelled cell bodies were identified in the superior cervical, stellate, first and second spinal, and trigeminal ganglia, i.e. these ganglia may represent origins of basilar artery innervation. In a second series of experiments, microinjections of WGA-HRP were placed into the indicated ganglia to obtain anterograde labelling of nerve fibres on whole-mounts of the cerebral vessels. Injections into trigeminal ganglia labelled nerve fibres on the ipsilateral half of the circle of Willis, as well as the contralateral anterior cerebral artery and the rostral part of the basilar artery. The first and second spinal ganglia projected to the vertebrobasilar arteries, while the ipsilateral part of the internal carotid (outside the circle of Willis) received fibres from the second spinal ganglion. Nerve fibres originating in trigeminal and spinal ganglia were organised in bundles, and between these a sparse plexus of thin single fibres appeared. Injection of WGA-HRP into superior cervical ganglion labelled a plexus of nerve fibres on the ipsilateral circle of Willis and the (rostral) basilar artery. These experiments demonstrated the origin and distribution of sympathetic and sensory innervation to major cerebral arteries in the rat.

  3. Intervertebral disc responses during spinal loading with MRI-compatible spinal compression apparatus

    NASA Astrophysics Data System (ADS)

    Mitsui, Iwane; Yamada, Yoshiya

    2004-07-01

    This study addresses the development of an MRI-compatible spinal compression harness for use as a research and diagnostic tool. This apparatus adds valuable information to MRI imaging regarding the physiology/biomechanics of intervertebral discs and pathophysiology of back pain in patients and astronauts in space. All materials of the spinal compression apparatus are non-metallic for MRI compatibility. The compact design fits into standard MRI or CT scanners and loading is adjusted to specific percentages of BW with elastic cords. Previously this capability has not been available. Three healthy male subjects were fitted with a spinal compression harness and placed supine in a MRI scanner. Longitudinal distance between T7/8 and L5/S1 discs decreased 5.6 mm with 50% BW compression. Lumbosacral angle increased 17.2 degrees. T2 values of nucleus pulposus from L1/2 to L5/S1 discs increased 18.2+/-6.1% (+/-SD) during 50% BW compression and 25.3+/-7.4% (+/-SD) during 75% BW compression.

  4. MRI Evaluation of Spinal Length and Vertebral Body Angle During Loading with a Spinal Compression Harness

    NASA Technical Reports Server (NTRS)

    Campbell, James A.; Hargens, Alan R.; Murthy, G.; Ballard, R. E.; Watenpaugh, D. E.; Hargens, Alan, R.; Sanchez, E.; Yang, C.; Mitsui, I.; Schwandt, D.; Fechner, K. P.; Holton, Emily M. (Technical Monitor)

    1998-01-01

    Weight bearing by the spinal column during upright posture often plays a role in the common problem of low back pain. Therefore, we developed a non-ferromagnetic spinal compression harness to enable MRI investigations of the spinal column during axial loading. Human subjects were fitted with a Nest and a footplate which were connected by adjustable straps to an analog load cell. MRI scans of human subjects (5 males and 1 female with age range of 27-53 yrs) during loaded and unloaded conditions were accomplished with a 1.5 Tesla GE Signa scanner. Studies of two subjects undergoing sequentially increasing spinal loads revealed significant decreases (r(sup 2) = 0.852) in spinal length between T4 and L5 culminating in a 1.5 to 2% length decrease during loading with 75% body weight. Sagittal vertebral body angles of four subjects placed under a constant 50% body weight load for one hour demonstrated increased lordotic and kyphotic curvatures. In the lumbar spine, the L2 vertebral body experienced the greatest angular change (-3 deg. to -5 deg.) in most subjects while in the thoracic spine, T4 angles increased from the unloaded state by +2 deg. to +9 deg. Overall, our studies demonstrate: 1) a progressive, although surprisingly small, decrease in spinal length with increasing load and 2) relatively large changes in spinal column angulation with 50% body weight.

  5. A Neonatal Mouse Spinal Cord Compression Injury Model.

    PubMed

    Züchner, Mark; Glover, Joel C; Boulland, Jean-Luc

    2016-01-01

    Spinal cord injury (SCI) typically causes devastating neurological deficits, particularly through damage to fibers descending from the brain to the spinal cord. A major current area of research is focused on the mechanisms of adaptive plasticity that underlie spontaneous or induced functional recovery following SCI. Spontaneous functional recovery is reported to be greater early in life, raising interesting questions about how adaptive plasticity changes as the spinal cord develops. To facilitate investigation of this dynamic, we have developed a SCI model in the neonatal mouse. The model has relevance for pediatric SCI, which is too little studied. Because neural plasticity in the adult involves some of the same mechanisms as neural plasticity in early life(1), this model may potentially have some relevance also for adult SCI. Here we describe the entire procedure for generating a reproducible spinal cord compression (SCC) injury in the neonatal mouse as early as postnatal (P) day 1. SCC is achieved by performing a laminectomy at a given spinal level (here described at thoracic levels 9-11) and then using a modified Yasargil aneurysm mini-clip to rapidly compress and decompress the spinal cord. As previously described, the injured neonatal mice can be tested for behavioral deficits or sacrificed for ex vivo physiological analysis of synaptic connectivity using electrophysiological and high-throughput optical recording techniques(1). Earlier and ongoing studies using behavioral and physiological assessment have demonstrated a dramatic, acute impairment of hindlimb motility followed by a complete functional recovery within 2 weeks, and the first evidence of changes in functional circuitry at the level of identified descending synaptic connections(1). PMID:27078037

  6. A Neonatal Mouse Spinal Cord Compression Injury Model

    PubMed Central

    Züchner, Mark; Glover, Joel C.; Boulland, Jean-Luc

    2016-01-01

    Spinal cord injury (SCI) typically causes devastating neurological deficits, particularly through damage to fibers descending from the brain to the spinal cord. A major current area of research is focused on the mechanisms of adaptive plasticity that underlie spontaneous or induced functional recovery following SCI. Spontaneous functional recovery is reported to be greater early in life, raising interesting questions about how adaptive plasticity changes as the spinal cord develops. To facilitate investigation of this dynamic, we have developed a SCI model in the neonatal mouse. The model has relevance for pediatric SCI, which is too little studied. Because neural plasticity in the adult involves some of the same mechanisms as neural plasticity in early life1, this model may potentially have some relevance also for adult SCI. Here we describe the entire procedure for generating a reproducible spinal cord compression (SCC) injury in the neonatal mouse as early as postnatal (P) day 1. SCC is achieved by performing a laminectomy at a given spinal level (here described at thoracic levels 9-11) and then using a modified Yasargil aneurysm mini-clip to rapidly compress and decompress the spinal cord. As previously described, the injured neonatal mice can be tested for behavioral deficits or sacrificed for ex vivo physiological analysis of synaptic connectivity using electrophysiological and high-throughput optical recording techniques1. Earlier and ongoing studies using behavioral and physiological assessment have demonstrated a dramatic, acute impairment of hindlimb motility followed by a complete functional recovery within 2 weeks, and the first evidence of changes in functional circuitry at the level of identified descending synaptic connections1. PMID:27078037

  7. Continuous Cervical Epidural Analgesia in Metastatic Spinal Cord Compression

    PubMed Central

    Menon, Mahesh; Taha, Nafisa; Purohit, Navita; Kothari, Vatsal; Singh, Shweta

    2016-01-01

    Metastatic spinal cord compression is a devastating complication of cancer. Patients may often require high doses of opioids that may cause side effects, myoclonus being one such. A 63-year-old male suffering from malignant spinal cord compression was admitted to our institution. The primary team managed him conservatively with pharmacotherapy with no relief of pain, and he experienced myoclonus and sedation as adverse effects. A continuous cervical epidural catheter with local anesthetic infusion was inserted for 5 days to control his pain. This relieved his pain, which was sustained even after we removed the epidural catheter on day 5, for up to 64 days until the time of his death. Continuous cervical epidural local anesthetic infusions may help with refractory pain by deafferentation of noxious stimuli. Central neuraxial blocks may be a valuable rescue in selected patients. PMID:27803576

  8. Effective gene expression in the rat dorsal root ganglia with a non-viral vector delivered via spinal nerve injection

    PubMed Central

    Chang, Ming-Fong; Hsieh, Jung-Hsien; Chiang, Hao; Kan, Hung-Wei; Huang, Cho-Min; Chellis, Luke; Lin, Bo-Shiou; Miaw, Shi-Chuen; Pan, Chun-Liang; Chao, Chi-Chao; Hsieh, Sung-Tsang

    2016-01-01

    Delivering gene constructs into the dorsal root ganglia (DRG) is a powerful but challenging therapeutic strategy for sensory disorders affecting the DRG and their peripheral processes. The current delivery methods of direct intra-DRG injection and intrathecal injection have several disadvantages, including potential injury to DRG neurons and low transfection efficiency, respectively. This study aimed to develop a spinal nerve injection strategy to deliver polyethylenimine mixed with plasmid (PEI/DNA polyplexes) containing green fluorescent protein (GFP). Using this spinal nerve injection approach, PEI/DNA polyplexes were delivered to DRG neurons without nerve injury. Within one week of the delivery, GFP expression was detected in 82.8% ± 1.70% of DRG neurons, comparable to the levels obtained by intra-DRG injection (81.3% ± 5.1%, p = 0.82) but much higher than those obtained by intrathecal injection. The degree of GFP expression by neurofilament(+) and peripherin(+) DRG neurons was similar. The safety of this approach was documented by the absence of injury marker expression, including activation transcription factor 3 and ionized calcium binding adaptor molecule 1 for neurons and glia, respectively, as well as the absence of behavioral changes. These results demonstrated the efficacy and safety of delivering PEI/DNA polyplexes to DRG neurons via spinal nerve injection. PMID:27748450

  9. Distribution of purinergic P2X receptors in the equine digit, cervical spinal cord and dorsal root ganglia.

    PubMed

    Zamboulis, D E; Senior, J M; Clegg, P D; Gallagher, J A; Carter, S D; Milner, P I

    2013-09-01

    Purinergic pathways are considered important in pain transmission, and P2X receptors are a key part of this system which has received little attention in the horse. The aim of this study was to identify and characterise the distribution of P2X receptor subtypes in the equine digit and associated vasculature and nervous tissue, including peripheral nerves, dorsal root ganglia and cervical spinal cord, using PCR, Western blot analysis and immunohistochemistry. mRNA signal for most of the tested P2X receptor subunits (P2X1-5, 7) was detected in all sampled equine tissues, whereas P2X6 receptor subunit was predominantly expressed in the dorsal root ganglia and spinal cord. Western blot analysis validated the specificity of P2X1-3, 7 antibodies, and these were used in immunohistochemistry studies. P2X1-3, 7 receptor subunits were found in smooth muscle cells in the palmar digital artery and vein with the exception of the P2X3 subunit that was present only in the vein. However, endothelial cells in the palmar digital artery and vein were positive only for P2X2 and P2X3 receptor subunits. Neurons and nerve fibres in the peripheral and central nervous system were positive for P2X1-3 receptor subunits, whereas glial cells were positive for P2X7 and P2X1 and 2 receptor subunits. This previously unreported distribution of P2X subtypes may suggest important tissue specific roles in physiological and pathological processes.

  10. Percutaneous Technique for Sclerotherapy of Vertebral Hemangioma Compressing Spinal Cord

    SciTech Connect

    Gabal, Abdelwahab M.

    2002-12-15

    Purpose: In this study we report a percutaneous technique to achieve sclerosis of vertebral hemangioma and decompression of the spinal cord and nerve roots. Methods: Under CT guidance the affected vertebral body is punctured by a biopsy needle and sclerosant is injected directly into the tumor. In the case of large paravertebral extension, additional injection is given in the paravertebral soft tissue component to induce shrinkage of the whole tumor mass and release of the compressed spinal cord. Results: Using this technique we treated five patients in whom vertebral hemangioma gave rise to neurologic symptoms.In three patients, sclerotherapy was the only treatment given. In the other two patients, sclerotherapy was preceded by transcatheter embolization. Neither decompressive surgery, radiation therapy nor stabilization was required with this technique. Conclusion: Our experience with CT-guided intraosseous sclerotherapy has proved highly satisfactory.

  11. Perineuronal satellite cells in mouse spinal ganglia express the gap junction protein connexin43 throughout life with decline in old age.

    PubMed

    Procacci, Patrizia; Magnaghi, Valerio; Pannese, Ennio

    2008-03-28

    Satellite glial cells that envelope the bodies of sensory neurons in spinal ganglia are connected to each other by gap junctions and exhibit dye coupling. These junctions may endow perineuronal satellite cells with the coordination necessary for the efficient performance of functions such as buffering of K(+) in the perineuronal microenvironment, provision of metabolic support to ganglionic neurons, and neuroprotection. Our knowledge of gap junctions has increased considerably in recent years, but little information is available on the connexins that form these junctions in spinal ganglia. In the present study we set out to determine whether the perineuronal satellite cells of mouse spinal ganglia express the connexins that are mainly present in neuroglial cells (Cx32 and Cx43). In young (3 months) mice, PCR showed the presence of both Cx32 and Cx43 transcripts. By immunocytochemistry, we localized Cx32 to axon-ensheathing Schwann cells, but not to other parts of the ganglion. We found Cx43 positivity in the perineuronal satellite cells, which were identified by their immunoreactivity to S100 protein and to glutamine synthetase. PCR showed Cx43 transcripts also in the spinal ganglia of adult (8 months) and old (24 months) animals. Cx43 immunostaining was present in satellite cells surrounding all nerve cell bodies, irrespective of size. The mean number of Cx43-immunoreactive puncta was significantly lower in the perineuronal satellite cells of aged mice compared to young and adult animals. This latter finding is consistent with observations in non-nervous tissues, and the hypothesis that a prominent decrease in Cx43 is a marker of senescence. PMID:18355632

  12. Motoneuron development influences dorsal root ganglia survival and Schwann cell development in a vertebrate model of spinal muscular atrophy.

    PubMed

    Hao, Le Thi; Duy, Phan Q; Jontes, James D; Beattie, Christine E

    2015-01-15

    Low levels of the survival motor neuron protein (SMN) cause the disease spinal muscular atrophy. A primary characteristic of this disease is motoneuron dysfunction and paralysis. Understanding why motoneurons are affected by low levels of SMN will lend insight into this disease and to motoneuron biology in general. Motoneurons in zebrafish smn mutants develop abnormally; however, it is unclear where Smn is needed for motoneuron development since it is a ubiquitously expressed protein. We have addressed this issue by expressing human SMN in motoneurons in zebrafish maternal-zygotic (mz) smn mutants. First, we demonstrate that SMN is present in axons, but only during the period of robust motor axon outgrowth. We also conclusively demonstrate that SMN acts cell autonomously in motoneurons for proper motoneuron development. This includes the formation of both axonal and dendritic branches. Analysis of the peripheral nervous system revealed that Schwann cells and dorsal root ganglia (DRG) neurons developed abnormally in mz-smn mutants. Schwann cells did not wrap axons tightly and had expanded nodes of Ranvier. The majority of DRG neurons had abnormally short peripheral axons and later many of them failed to divide and died. Expressing SMN just in motoneurons rescued both of these cell types showing that their failure to develop was secondary to the developmental defects in motoneurons. Driving SMN just in motoneurons did not increase survival of the animal, suggesting that SMN is needed for motoneuron development and motor circuitry, but that SMN in other cells types factors into survival.

  13. Cellular components of the immune barrier in the spinal meninges and dorsal root ganglia of the normal rat: immunohistochemical (MHC class II) and electron-microscopic observations.

    PubMed

    Braun, J S; Kaissling, B; Le Hir, M; Zenker, W

    1993-08-01

    This report deals with the distribution, morphology and specific topical relationships of bone-marrow-derived cells (free cells) in the spinal meninges and dorsal root ganglia of the normal rat. The morphology of these cells has been studied by transmission and scanning electron microscopy. Cells expressing the major histocompatibility complex (MHC) class II gene product have been recognized by immunofluorescence. At the level of the transmission electron microscope, free cells are found in all layers of the meninges. Many of them display characteristic ultrastructural features of macrophages, whereas others show a highly vacuolated cytoplasm and are endowed with many processes. These elements lack a conspicuous lysosomal system and might represent dendritic cells. Scanning electron microscopy has revealed that free cells contact the cerebrospinal fluid via abundant cytoplasmic processes that cross the cell layers of the pia mater and of the arachnoid. Cells expressing the MHC class II antigen are also found in all layers of the meninges. They are particularly abundant in the layers immediately adjacent to the subarachnoid space, in the neighbourhood of dural vessels, along the spinal roots and in the dural funnels. In addition to the meninges, strong immunoreactivity for MHC class II antigen is observed in the dorsal root ganglia. The ultrastructural and immunohistochemical findings of this study suggest the existence of a well-developed system of immunological surveillance of the subarachnoid space and of the dorsal root ganglia.

  14. Dysregulation of Kv3.4 Channels in Dorsal Root Ganglia Following Spinal Cord Injury

    PubMed Central

    Ritter, David M.; Zemel, Benjamin M.; Hala, Tamara J.; O'Leary, Michael E.; Lepore, Angelo C.

    2015-01-01

    Spinal cord injury (SCI) patients develop chronic pain involving poorly understood central and peripheral mechanisms. Because dysregulation of the voltage-gated Kv3.4 channel has been implicated in the hyperexcitable state of dorsal root ganglion (DRG) neurons following direct injury of sensory nerves, we asked whether such a dysregulation also plays a role in SCI. Kv3.4 channels are expressed in DRG neurons, where they help regulate action potential (AP) repolarization in a manner that depends on the modulation of inactivation by protein kinase C (PKC)-dependent phosphorylation of the channel's inactivation domain. Here, we report that, 2 weeks after cervical hemicontusion SCI, injured rats exhibit contralateral hypersensitivity to stimuli accompanied by accentuated repetitive spiking in putative DRG nociceptors. Also in these neurons at 1 week after laminectomy and SCI, Kv3.4 channel inactivation is impaired compared with naive nonsurgical controls. At 2–6 weeks after laminectomy, however, Kv3.4 channel inactivation returns to naive levels. Conversely, Kv3.4 currents at 2–6 weeks post-SCI are downregulated and remain slow-inactivating. Immunohistochemistry indicated that downregulation mainly resulted from decreased surface expression of the Kv3.4 channel, as whole-DRG-protein and single-cell mRNA transcript levels did not change. Furthermore, consistent with Kv3.4 channel dysregulation, PKC activation failed to shorten the AP duration of small-diameter DRG neurons. Finally, re-expressing synthetic Kv3.4 currents under dynamic clamp conditions dampened repetitive spiking in the neurons from SCI rats. These results suggest a novel peripheral mechanism of post-SCI pain sensitization implicating Kv3.4 channel dysregulation and potential Kv3.4-based therapeutic interventions. PMID:25609640

  15. Ossified ligamentum flavum causing spinal cord compression in a patient with acromegaly.

    PubMed

    Schmidt, Richard F; Goldstein, Ira M; Liu, James K

    2013-11-01

    Acromegaly is a relatively rare neuroendocrine disorder associated with diffuse hypertrophy of bony and soft tissues due to growth hormone hypersecretion from a pituitary adenoma. Acromegaly can also cause numerous pathological changes in the spine, including degenerative osteoarticular disease, axial arthropathy, spinal stenosis, vertebral fracture and diffuse idiopathic skeletal hyperostosis (Forestier's disease). Ossified ligamentum flavum (OLF) is a rare disorder that often presents as thoracic spinal stenosis, but to our knowledge has never been described in patients with acromegaly. Previously, no link has been established between these two entities. We present, to our knowledge, the first reported case of OLF in a patient with acromegaly who presented with thoracic spinal cord compression. OLF is a potential spinal manifestation of acromegaly and should be considered in the differential diagnosis of spinal stenosis or spinal cord compression in the context of growth hormone hypersecretion.

  16. Improved rat spinal cord injury model using spinal cord compression by percutaneous method

    PubMed Central

    Chung, Wook-Hun; Lee, Jae-Hoon; Chung, Dai-Jung; Yang, Wo-Jong; Lee, A-Jin; Choi, Chi-Bong; Chang, Hwa-Seok; Kim, Dae-Hyun; Chung, Hyo Jin; Suh, Hyun Jung; Hwang, Soo-Han; Han, Hoon; Do, Sun Hee

    2013-01-01

    Here, percutaneous spinal cord injury (SCI) methods using a balloon catheter in adult rats are described. A balloon catheter was inserted into the epidural space through the lumbosacral junction and then inflated between T9-T10 for 10min under fluoroscopic guidance. Animals were divided into three groups with respect to inflation volume: 20 µL (n = 18), 50 µL (n = 18) and control (Fogarty catheter inserted but not inflated; n = 10). Neurological assessments were then made based on BBB score, magnetic resonance imaging and histopathology. Both inflation volumes produced complete paralysis. Gradual recovery of motor function occurred when 20 µL was used, but not after 50 µL was applied. In the 50 µL group, all gray and white matter was lost from the center of the lesion. In addition, supramaximal damage was noted, which likely prevented spontaneous recovery. This percutaneous spinal cord compression injury model is simple, rapid with high reproducibility and the potential to serve as a useful tool for investigation of pathophysiology and possible protective treatments of SCI in vivo. PMID:23820159

  17. Minimally Invasive Drainage of a Post-Laminectomy Subfascial Seroma with Cervical Spinal Cord Compression.

    PubMed

    Kitshoff, Adriaan Mynhardt; Van Goethem, Bart; Cornelis, Ine; Combes, Anais; Dvm, Ingeborgh Polis; Gielen, Ingrid; Vandekerckhove, Peter; de Rooster, Hilde

    2016-01-01

    A 14 mo old female neutered Doberman pinscher was evaluated for difficulty in rising, a wide based stance, pelvic limb gait abnormalities, and cervical pain of 2 mo duration. Neurologic examination revealed pelvic limb ataxia and cervical spinal hyperesthesia. Spinal reflexes and cranial nerve examination were normal. The pathology was localized to the C1-C5 or C6-T2 spinal cord segments. Computed tomography (CT) findings indicated bony proliferation of the caudal articular processes of C6 and the cranial articular processes of C7, resulting in bilateral dorsolateral spinal cord compression that was more pronounced on the left side. A limited dorsal laminectomy was performed at C6-C7. Due to progressive neurological deterioration, follow-up CT examination was performed 4 days postoperatively. At the level of the laminectomy defect, a subfacial seroma had developed, entering the spinal canal and causing significant spinal cord compression. Under ultrasonographic guidance a closed-suction wound catheter was placed. Drainage of the seroma successfully relieved its compressive effects on the spinal cord and the patient's neurological status improved. CT was a valuable tool in assessing spinal cord compression as a result of a postoperative subfascial seroma. Minimally invasive application of a wound catheter can be successfully used to manage this condition.

  18. Minimally Invasive Drainage of a Post-Laminectomy Subfascial Seroma with Cervical Spinal Cord Compression.

    PubMed

    Kitshoff, Adriaan Mynhardt; Van Goethem, Bart; Cornelis, Ine; Combes, Anais; Dvm, Ingeborgh Polis; Gielen, Ingrid; Vandekerckhove, Peter; de Rooster, Hilde

    2016-01-01

    A 14 mo old female neutered Doberman pinscher was evaluated for difficulty in rising, a wide based stance, pelvic limb gait abnormalities, and cervical pain of 2 mo duration. Neurologic examination revealed pelvic limb ataxia and cervical spinal hyperesthesia. Spinal reflexes and cranial nerve examination were normal. The pathology was localized to the C1-C5 or C6-T2 spinal cord segments. Computed tomography (CT) findings indicated bony proliferation of the caudal articular processes of C6 and the cranial articular processes of C7, resulting in bilateral dorsolateral spinal cord compression that was more pronounced on the left side. A limited dorsal laminectomy was performed at C6-C7. Due to progressive neurological deterioration, follow-up CT examination was performed 4 days postoperatively. At the level of the laminectomy defect, a subfacial seroma had developed, entering the spinal canal and causing significant spinal cord compression. Under ultrasonographic guidance a closed-suction wound catheter was placed. Drainage of the seroma successfully relieved its compressive effects on the spinal cord and the patient's neurological status improved. CT was a valuable tool in assessing spinal cord compression as a result of a postoperative subfascial seroma. Minimally invasive application of a wound catheter can be successfully used to manage this condition. PMID:27008321

  19. Radiotherapy of metastatic spinal cord compression in very elderly patients

    SciTech Connect

    Rades, Dirk . E-mail: Rades.Dirk@gmx.net; Hoskin, Peter J.; Karstens, Johann H.; Rudat, Volker; Veninga, Theo; Stalpers, Lukas J.A.; Schild, Steven E.; Dunst, Juergen

    2007-01-01

    Purpose: Owing to the aging of the population, the proportion of elderly patients receiving cancer treatment has increased. This study investigated the results of radiotherapy (RT) for metastatic spinal cord compression (MSCC) in the very elderly, because few data are available for these patients. Methods and Materials: The data from 308 patients aged {>=}75 years who received short-course (treatment time 1-5 days) or long-course RT (2-4 weeks) for MSCC were retrospectively analyzed for functional outcome, local control, and survival. Furthermore, nine potential prognostic factors were investigated: gender, performance status, interval from tumor diagnosis to MSCC, tumor type, number of involved vertebrae, other bone or visceral metastases, ambulatory status, and speed at which motor deficits developed. Results: Improvement of motor deficits occurred in 25% of patients, with no further progression of MSCC in an additional 59%. The 1-year local control and survival rate was 92% and 43%, respectively. Improved functional outcomes were associated with ambulatory status and slower developing motor deficits. Improved local control resulted from long-course RT. Improved survival was associated with a longer interval from tumor diagnosis to MSCC, tumor type (breast/prostate cancer, myeloma/lymphoma), lack of visceral or other bone metastases, ambulatory status, and a slower development of motor deficits. Conclusion: Short- and long-course RT are similarly effective in patients aged {>=}75 years regarding functional outcome and survival. Long-course RT provided better local control. Patients with better expected survival should receive long-course RT and others short-course RT. The criteria for selection of an appropriate regimen for MSCC in very elderly patients should be the same as for younger individuals.

  20. Solitary C1 spinal osteochondroma causing vertebral artery compression and acute cerebellar infarct.

    PubMed

    Zhang, Yaxia; Ilaslan, Hakan; Hussain, Muhammad S; Bain, Mark; Bauer, Thomas W

    2015-02-01

    Osteochondroma is a common benign bone lesion, usually involving the long bones. Spinal involvement is rare. The clinical presentation of spinal osteochondroma varies according to the site of the lesion. The most common reported clinical presentation is secondary to encroachment of the lesion on the spinal canal or nerve roots. Less common presentations such as a palpable neck mass, dysphagia, sleep apnea, paralysis of left vocal cord or acute respiratory distress have been reported when the lesions compress the anatomic structures anteriorly. We describe a rare case of a young patient who presented with an emergent critical condition of acute cerebellar infarct as a result of vertebral artery compression caused by a solitary C1 spinal osteochondroma. PMID:25109381

  1. Effect of melatonin on the functional recovery from experimental traumatic compression of the spinal cord

    PubMed Central

    Schiaveto-de-Souza, A.; da-Silva, C.A.; Defino, H.L.A.; Bel, E.A.Del

    2013-01-01

    Spinal cord injury is an extremely severe condition with no available effective therapies. We examined the effect of melatonin on traumatic compression of the spinal cord. Sixty male adult Wistar rats were divided into three groups: sham-operated animals and animals with 35 and 50% spinal cord compression with a polycarbonate rod spacer. Each group was divided into two subgroups, each receiving an injection of vehicle or melatonin (2.5 mg/kg, intraperitoneal) 5 min prior to and 1, 2, 3, and 4 h after injury. Functional recovery was monitored weekly by the open-field test, the Basso, Beattie and Bresnahan locomotor scale and the inclined plane test. Histological changes of the spinal cord were examined 35 days after injury. Motor scores were progressively lower as spacer size increased according to the motor scale and inclined plane test evaluation at all times of assessment. The results of the two tests were correlated. The open-field test presented similar results with a less pronounced difference between the 35 and 50% compression groups. The injured groups presented functional recovery that was more evident in the first and second weeks. Animals receiving melatonin treatment presented more pronounced functional recovery than vehicle-treated animals as measured by the motor scale or inclined plane. NADPH-d histochemistry revealed integrity of the spinal cord thoracic segment in sham-operated animals and confirmed the severity of the lesion after spinal cord narrowing. The results obtained after experimental compression of the spinal cord support the hypothesis that melatonin may be considered for use in clinical practice because of its protective effect on the secondary wave of neuronal death following the primary wave after spinal cord injury. PMID:23579633

  2. Posterior approaches for symptomatic metastatic spinal cord compression.

    PubMed

    Molina, Camilo; Goodwin, C Rory; Abu-Bonsrah, Nancy; Elder, Benjamin D; De la Garza Ramos, Rafael; Sciubba, Daniel M

    2016-08-01

    Surgical interventions for spinal metastasis are commonly performed for mechanical stabilization, pain relief, preservation of neurological function, and local tumor reduction. Although multiple surgical approaches can be used for the treatment of metastatic spinal lesions, posterior approaches are commonly performed. In this study, the role of posterior surgical procedures in the treatment of spinal metastases was reviewed, including posterior laminectomy with and without instrumentation for stabilization, transpedicular corpectomy, and costotransversectomy. A review of the literature from 1980 to 2015 was performed using Medline, as was a review of the bibliographies of articles meeting preset inclusion criteria, to identify studies on the role of these posterior approaches among adults with spinal metastasis. Thirty-four articles were ultimately analyzed, including 1 randomized controlled trial, 6 prospective cohort studies, and 27 retrospective case reports and/or series. Some of the reviewed articles had Level II evidence indicating that laminectomy with stabilization can be recommended for improvement in neurological outcome and reduction of pain in selected patients. However, the use of laminectomy alone should be carefully considered. Additionally, transpedicular corpectomy and costotransversectomy can be recommended with the expectation of improving neurological outcomes and reducing pain in properly selected patients with spinal metastases. With improvements in the treatment paradigms for patients with spinal metastasis, as well as survival, surgical therapy will continue to play an important role in the management of spinal metastasis. While this review presents a window into determining the utility of posterior approaches, future prospective studies will provide essential data to better define the roles of the various options now available to surgeons in treating spinal metastases. PMID:27476835

  3. Impact of Instrumented Spinal Fusion on the Development of Vertebral Compression Fracture.

    PubMed

    Chiu, Yen-Chun; Tsai, Tsung-Ting; Yang, Shih-Chieh; Chen, Hung-Shu; Kao, Yu-Hsien; Tu, Yuan-Kun

    2016-04-01

    Instrumented spinal fusion has become one of the most common surgeries for patients with various spinal disorders. Only few studies have reported subsequent vertebral compression fractures (VCFs) after instrumented spinal fusion. The purpose of this study was to evaluate the risk of new VCFs in patients undergoing instrumented spinal fusion.We obtained claims data from the National Health Insurance Research Database of Taiwan and retrospectively reviewed 6949 patients with instrumented spinal fusion as the spinal fusion cohort. Control subjects were individually matched at a ratio of 10:1 with those of the spinal fusion cohort according to age, sex, and the index day. Comorbidities were classified as those existing before the index day, and these included diabetes mellitus, hypertension, osteoporosis, and cerebrovascular accident. The end of the follow-up period for the analyses was marked on the day new VCFs developed, enrolment in the National Health Insurance was terminated, on the day of death, or until the end of 2012. We used the Cox proportion hazards model to analyze the hazard ratio (HR) for developing new VCFs.Patients with instrumented spinal fusion were significantly more likely to develop new VCFs (1.87% vs .25%, HR: 8.56; P < 0.001). Female, elderly, and osteoporotic patients had a high incidence of new VCFs after spinal fusion. The HR for developing new VCFs after instrumented spinal fusion was higher in patients younger than 65 years than in those 65 years or older (HR: 10.61 vs 8.09). Male patients with instrumented spinal fusion also had a higher HR of developing new VCFs than female patients (men, HR: 26.42; women, HR: 7.53).In our retrospective cohort study, patients who had undergone instrumented spinal fusion surgery exhibited an increased risk of developing new VCFs. Particularly, the HR increased in young (age <65 years) and male patients. PMID:27124040

  4. Impact of Instrumented Spinal Fusion on the Development of Vertebral Compression Fracture

    PubMed Central

    Chiu, Yen-Chun; Tsai, Tsung-Ting; Yang, Shih-Chieh; Chen, Hung-Shu; Kao, Yu-Hsien; Tu, Yuan-Kun

    2016-01-01

    Abstract Instrumented spinal fusion has become one of the most common surgeries for patients with various spinal disorders. Only few studies have reported subsequent vertebral compression fractures (VCFs) after instrumented spinal fusion. The purpose of this study was to evaluate the risk of new VCFs in patients undergoing instrumented spinal fusion. We obtained claims data from the National Health Insurance Research Database of Taiwan and retrospectively reviewed 6949 patients with instrumented spinal fusion as the spinal fusion cohort. Control subjects were individually matched at a ratio of 10:1 with those of the spinal fusion cohort according to age, sex, and the index day. Comorbidities were classified as those existing before the index day, and these included diabetes mellitus, hypertension, osteoporosis, and cerebrovascular accident. The end of the follow-up period for the analyses was marked on the day new VCFs developed, enrolment in the National Health Insurance was terminated, on the day of death, or until the end of 2012. We used the Cox proportion hazards model to analyze the hazard ratio (HR) for developing new VCFs. Patients with instrumented spinal fusion were significantly more likely to develop new VCFs (1.87% vs .25%, HR: 8.56; P < 0.001). Female, elderly, and osteoporotic patients had a high incidence of new VCFs after spinal fusion. The HR for developing new VCFs after instrumented spinal fusion was higher in patients younger than 65 years than in those 65 years or older (HR: 10.61 vs 8.09). Male patients with instrumented spinal fusion also had a higher HR of developing new VCFs than female patients (men, HR: 26.42; women, HR: 7.53). In our retrospective cohort study, patients who had undergone instrumented spinal fusion surgery exhibited an increased risk of developing new VCFs. Particularly, the HR increased in young (age <65 years) and male patients. PMID:27124040

  5. Impact of Instrumented Spinal Fusion on the Development of Vertebral Compression Fracture.

    PubMed

    Chiu, Yen-Chun; Tsai, Tsung-Ting; Yang, Shih-Chieh; Chen, Hung-Shu; Kao, Yu-Hsien; Tu, Yuan-Kun

    2016-04-01

    Instrumented spinal fusion has become one of the most common surgeries for patients with various spinal disorders. Only few studies have reported subsequent vertebral compression fractures (VCFs) after instrumented spinal fusion. The purpose of this study was to evaluate the risk of new VCFs in patients undergoing instrumented spinal fusion.We obtained claims data from the National Health Insurance Research Database of Taiwan and retrospectively reviewed 6949 patients with instrumented spinal fusion as the spinal fusion cohort. Control subjects were individually matched at a ratio of 10:1 with those of the spinal fusion cohort according to age, sex, and the index day. Comorbidities were classified as those existing before the index day, and these included diabetes mellitus, hypertension, osteoporosis, and cerebrovascular accident. The end of the follow-up period for the analyses was marked on the day new VCFs developed, enrolment in the National Health Insurance was terminated, on the day of death, or until the end of 2012. We used the Cox proportion hazards model to analyze the hazard ratio (HR) for developing new VCFs.Patients with instrumented spinal fusion were significantly more likely to develop new VCFs (1.87% vs .25%, HR: 8.56; P < 0.001). Female, elderly, and osteoporotic patients had a high incidence of new VCFs after spinal fusion. The HR for developing new VCFs after instrumented spinal fusion was higher in patients younger than 65 years than in those 65 years or older (HR: 10.61 vs 8.09). Male patients with instrumented spinal fusion also had a higher HR of developing new VCFs than female patients (men, HR: 26.42; women, HR: 7.53).In our retrospective cohort study, patients who had undergone instrumented spinal fusion surgery exhibited an increased risk of developing new VCFs. Particularly, the HR increased in young (age <65 years) and male patients.

  6. Restricted replication of herpes simplex virus in spinal ganglia of resistant mice is accompanied by an early infiltration of immunoglobulin G-bearing cells.

    PubMed Central

    Cook, M L; Stevens, J G

    1983-01-01

    In an attempt to define the nature of the difference in the susceptibility of C57BL/6 (resistant) and A/J (susceptible) mice to herpes simplex virus type 1, we initiated a study of virus progression through the nervous system. After inoculation of virus in a rear footpad, C57BL/6 mice were found to be more than 500-fold more resistant, but resistance did not extend to pseudorabies virus. In additional investigations, it was found that the virus was selectively restricted at the level of spinal ganglia in C57BL/6 mice. No intrinsic difference in the ability of this tissue from either mouse strain to replicate virus was found. However, by 4 days after infection, morphological investigations indicated that a mononuclear cell infiltrate was present surrounding infected neurons and satellite cells both earlier and in greater numbers in the ganglia of C57BL/6 mice. Immunohistochemical methods showed that most of these cells did not express Thy 1.2 antigen, but the vast majority bore immunoglobulin G. The mechanism by which these infiltrating cells could restrict virus spread is discussed. Images PMID:6302004

  7. Age-dependent decline in density of human nerve and spinal ganglia neurons expressing the α3 isoform of Na/K-ATPase.

    PubMed

    Romanovsky, D; Mrak, R E; Dobretsov, M

    2015-12-01

    Ambulatory instability and falls are a major source of morbidity in the elderly. Age-related loss of tendon reflexes is a major contributing factor to this morbidity, and deterioration of the afferent limb of the stretch reflex is a potential contributing factor to such age-dependent loss of tendon reflexes. To evaluate this, we assessed the number and distribution of muscle spindle afferent fibers in human sacral spinal ganglia (S1) and tibial nerve samples obtained at autopsy, using immunohistochemical staining for the α3 isoform of Na(+), K(+)-ATPase (α3NKA), a marker of muscle spindle afferents. Across all age groups, an average of 26 ± 4% of myelinated fibers of tibial nerve and 17 ± 2% of ganglion neuronal profiles were α3NKA-positive (n = 8 per group). Subject age explained 85% of the variability in these counts. The relative frequency of α3NKA-labeled fibers/neurons starts to decline during the 5th decade of life, approaching half that of young adult values in 65-year-old subjects. At all ages, α3NKA-positive neurons were among the largest of spinal ganglia neurons. However, as compared to younger subjects, the population of α3NKA-positive neurons from advanced-age subjects showed diminished numbers of large (both moderately and strongly labeled), and medium-sized (strongly labeled) profiles. Considering the critical significance of ion transport by NKA for neuronal activity, our data suggest that functional impairment and, also, most likely atrophy and/or degeneration of muscle spindle afferents, are mechanisms underlying loss of tendon reflexes with age. The larger and more strongly α3NKA-expressing spindle afferents appear to be proportionally more vulnerable. PMID:26386295

  8. [Radiation diagnosis of uncomplicated compression spinal fractures in children].

    PubMed

    Ignat'ev, Iu T; Novikov, V P; Konev, V P; Polishchuk, T I

    2002-01-01

    Experiments on rabbits compared the X-ray, morphological, and magnetic resonance imaging of compression fractures of the vertebral body. Edema of the bone marrow of the vertebral body was ascertained to be a basic morphological substrate that evokes a modified MR signal. The data on 178 children with suspected compression fracture of the vertebral body were used to consider the potentialities of MRI and X-ray study in this pathology. The MRI semiotics of uncomplicated compression fractures of vertebral bodies is presented. The sensitivities of MRI and spondylography in the diagnosis of compression fractures of vertebral bodies were 100 and 62.5%, respectively.

  9. Greatly improved neurological outcome after spinal cord compression injury in AQP4-deficient mice.

    PubMed

    Saadoun, Samira; Bell, B Anthony; Verkman, A S; Papadopoulos, Marios C

    2008-04-01

    Aquaporin-4 (AQP4) is a water channel protein expressed in astrocytes throughout the CNS. In brain, AQP4 facilitates water balance and glial scar formation, which are important determinants of outcome after injury. Here, we provide evidence for AQP4-dependent spinal cord swelling following compression injury, resulting in remarkably improved outcome in AQP4-null mice. Two days after transient T6 spinal cord compression injury, wild-type mice developed more severe hindlimb weakness than AQP4-null mice, as assayed by the Basso open-field motor score, inclined plane method and footprint analysis. Basso motor scores were 1.3 +/- 0.5 (wild-type) versus 4.9 +/- 0.6 (AQP4-null) (SE, P < 0.001). Improved motor outcome in AQP4-null mice was independent of mouse strain and persisted at least 4 weeks. AQP4-null mice also had improved sensory outcome at 2 days, as assessed by spinal somatosensory evoked responses, with signal amplitudes approximately 10 microV (uninjured), 1.7 +/- 0.7 microV (wild-type) and 6.4 +/- 1.3 microV (AQP4-null) (P < 0.01). The improved motor and sensory indices in AQP4-null mice corresponded to remarkably less neuronal death and myelin vacuolation, as well as reduced spinal cord swelling and intraparenchymal spinal cord pressure measured at T6 at 2 days after injury. AQP4 immunoreactivity at the injury site was increased in grey and white matter at 48 h. Taken together, our findings indicate that AQP4 provides a major route for excess water entry into the injured spinal cord, which in turn causes spinal cord swelling and elevated spinal cord pressure. Our data suggest AQP4 inhibition or downregulation as novel early neuroprotective manoeuvres in spinal cord injury.

  10. Hydralazine inhibits compression and acrolein-mediated injuries in ex vivo spinal cord.

    PubMed

    Hamann, Kristin; Nehrt, Genevieve; Ouyang, Hui; Duerstock, Brad; Shi, Riyi

    2008-02-01

    We have previously shown that acrolein, a lipid peroxidation byproduct, is significantly increased following spinal cord injury in vivo, and that exposure to neuronal cells results in oxidative stress, mitochondrial dysfunction, increased membrane permeability, impaired axonal conductivity, and eventually cell death. Acrolein thus may be a key player in the pathogenesis of spinal cord injury, where lipid peroxidation is known to be involved. The current study demonstrates that the acrolein scavenger hydralazine protects against not only acrolein-mediated injury, but also compression in guinea pig spinal cord ex vivo. Specifically, hydralazine (500 mumol/L to 1 mmol/L) can significantly alleviate acrolein (100-500 mumol/L)-induced superoxide production, glutathione depletion, mitochondrial dysfunction, loss of membrane integrity, and reduced compound action potential conduction. Additionally, 500 mumol/L hydralazine significantly attenuated compression-mediated membrane disruptions at 2 and 3 h following injury. This was consistent with our findings that acrolein-lys adducts were increased following compression injury ex vivo, an effect that was prevented by hydralazine treatment. These findings provide further evidence for the role of acrolein in spinal cord injury, and suggest that acrolein-scavenging drugs such as hydralazine may represent a novel therapy to effectively reduce oxidative stress in disorders such as spinal cord injury and neurodegenerative diseases, where oxidative stress is known to play a role.

  11. Effects of tetramethylpyrazine on microglia activation in spinal cord compression injury of mice.

    PubMed

    Shin, Jung-Won; Moon, Ja-Young; Seong, Ju-Won; Song, Sang-Hoon; Cheong, Young-Jin; Kang, Chulhun; Sohn, Nak-Won

    2013-01-01

    Secondary mechanisms, including inflammation and microglia activation, serve as targets for the development and application of pharmacological strategies in the management of spinal cord injury (SCI). Tetramethylpyrazine (TMP), an active ingredient of Ligusticum wallichii (chuanxiong), has shown anti-inflammatory and neuroprotective effects against SCI. However, it remains uncertain whether the inflammation-suppressive effects of TMP play a modulatory role over microglia activation in SCI. The present study investigated the effects of TMP on microglia activation and pro-inflammatory cytokines in spinal cord compression injury in mice. For a real-time PCR measurement of pro-inflammatory cytokines, SCI was induced in mice by the clip compression method (30 g force, 1 min) and TMP (15 or 30 mg/kg, i.p.) was administered once, 30 minutes before the SCI induction. For immunohistochemistry, TMP (30 mg/kg, i.p.) treatment was given three times during the first 48 hours after the SCI. 30 mg/kg of TMP treatment reduced the up-regulation of TNF-α, IL-1β and COX-2 mRNA in the spinal tissue at four hours after the SCI induction. TMP also significantly attenuated microglia activation and neutrophil infiltration at 48 hours after the SCI induction. In addition, iNOS expression in the spinal tissue was attenuated with TMP treatment. These results suggest that TMP plays a modulatory role in microglia activation and may protect the spinal cord from or potentially delay secondary spinal cord injury. PMID:24228606

  12. Spinal Cord Compression Secondary to Extramedullary Hematopoiesis: Case Report and Review of the Literature

    PubMed Central

    Wang, Arthur; Carberry, Nathan; Solli, Elena; Gillick, John; Islam, Humayun; Hillard, Virany

    2016-01-01

    Extramedullary hematopoiesis (EMH) is a rare cause of spinal cord compression (SCC). EMH represents the growth of blood cells outside of the bone marrow and occurs in a variety of hematologic illnesses, including various types of anemia and myeloproliferative disorders. Although EMH usually occurs in the liver, spleen, and lymph nodes, it may also occur within the spinal canal. When this occurs, the mass effect can compress the spinal cord, potentially leading to the development of neurological deficits. We present a case of SCC secondary to EMH. This report illustrates the importance of considering EMH in the differential diagnosis of SCC, even in the absence of signs of its most common etiologies. PMID:27462228

  13. An efficient device to experimentally model compression injury of mammalian spinal cord.

    PubMed

    Ropper, Alexander E; Zeng, Xiang; Anderson, Jamie E; Yu, Dou; Han, InBo; Haragopal, Hariprakash; Teng, Yang D

    2015-09-01

    We report an efficient and effective device to reproducibly model clinically relevant spinal cord injury (SCI) via controlled mechanical compression. In the present study, following skin incision, dorsal laminectomy was performed to expose T10 spinal cord of adult female Sprague-Dawley rats (230-250 g). The vertebral column was suspended and stabilized by Allis clamps at T8 and 12 spinous processes. A metal impounder was then gently loaded onto T10 dura (20, 35 or 50 g × 5 min; n=7/group), resulting in acute mild, moderate, or severe standing weight compression, respectively. Neurobehavioral outcomes were evaluated using the BBB locomotor scale and inclined plane test for coordinated hindlimb function, and a battery of spinal reflex tests for sensorimotor functions, at 1 day following SCI and weekly thereafter for 7 weeks. Quantitative histopathology was used to assess injury-triggered loss of white matter, gray matter and ventral horn motor neurons. Immunocytochemical levels of glial fibrillary acidic protein (GFAP) and β-amyloid precursor protein (APP) at the cervical and lumbar regions were measured to determine the distal segment impact of T10 compression. The data demonstrates that the standardized protocol generates weight-dependent hindlimb motosensory deficits and neurodegeneration primarily at and near the lesion epicenter. Importantly, there are significantly increased GFAP and APP expressions in spinal cord segments involved in eliciting post-SCI allodynia. Therefore, the described system reliably produces compression trauma in manners partially emulating clinical quasi-static insults to the spinal cord, providing a pragmatic model to investigate pathophysiological events and potential therapeutics for compression SCI. PMID:26210871

  14. Effects of sciatic nerve transection on glucose uptake in the presence and absence of lactate in the frog dorsal root ganglia and spinal cord.

    PubMed

    Rigon, F; Horst, A; Kucharski, L C; Silva, R S M; Faccioni-Heuser, M C; Partata, W A

    2014-08-01

    Frogs have been used as an alternative model to study pain mechanisms because the simplicity of their nervous tissue and the phylogenetic aspect of this question. One of these models is the sciatic nerve transection (SNT), which mimics the clinical symptoms of "phantom limb", a condition that arises in humans after amputation or transverse spinal lesions. In mammals, the SNT increases glucose metabolism in the central nervous system, and the lactate generated appears to serve as an energy source for nerve cells. An answerable question is whether there is elevated glucose uptake in the dorsal root ganglia (DRG) after peripheral axotomy. As glucose is the major energy substrate for frog nervous tissue, and these animals accumulate lactic acid under some conditions, bullfrogs Lithobates catesbeianus were used to demonstrate the effect of SNT on DRG and spinal cord 1-[14C] 2-deoxy-D-glucose (14C-2-DG) uptake in the presence and absence of lactate. We also investigated the effect of this condition on the formation of 14CO2 from 14C-glucose and 14C-L-lactate, and plasmatic glucose and lactate levels. The 3-O-[14C] methyl-D-glucose (14C-3-OMG) uptake was used to demonstrate the steady-state tissue/medium glucose distribution ratio under these conditions. Three days after SNT, 14C-2-DG uptake increased, but 14C-3-OMG uptake remained steady. The increase in 14C-2-DG uptake was lower when lactate was added to the incubation medium. No change was found in glucose and lactate oxidation after SNT, but lactate and glucose levels in the blood were reduced. Thus, our results showed that SNT increased the glucose metabolism in the frog DRG and spinal cord. The effect of lactate on this uptake suggests that glucose is used in glycolytic pathways after SNT. PMID:25627385

  15. Chronic Spinal Compression Model in Minipigs: A Systematic Behavioral, Qualitative, and Quantitative Neuropathological Study

    PubMed Central

    Navarro, Roman; Juhas, Stefan; Keshavarzi, Sassan; Juhasova, Jana; Motlik, Jan; Johe, Karl; Marsala, Silvia; Scadeng, Miriam; Lazar, Peter; Tomori, Zoltan; Schulteis, Gery; Beattie, Michael; Ciacci, Joseph D.

    2012-01-01

    Abstract The goal of the present study was to develop a porcine spinal cord injury (SCI) model, and to describe the neurological outcome and characterize the corresponding quantitative and qualitative histological changes at 4–9 months after injury. Adult Gottingen-Minnesota minipigs were anesthetized and placed in a spine immobilization frame. The exposed T12 spinal segment was compressed in a dorso-ventral direction using a 5-mm-diameter circular bar with a progressively increasing peak force (1.5, 2.0, or 2.5 kg) at a velocity of 3 cm/sec. During recovery, motor and sensory function were periodically monitored. After survival, the animals were perfusion fixed and the extent of local SCI was analyzed by (1) post-mortem MRI analysis of dissected spinal cords, (2) qualitative and quantitative analysis of axonal survival at the epicenter of injury, and (3) defining the presence of local inflammatory changes, astrocytosis, and schwannosis. Following 2.5-kg spinal cord compression the animals demonstrated a near complete loss of motor and sensory function with no recovery over the next 4–9 months. Those that underwent spinal cord compression with 2 kg force developed an incomplete injury with progressive partial neurological recovery characterized by a restricted ability to stand and walk. Animals injured with a spinal compression force of 1.5 kg showed near normal ambulation 10 days after injury. In fully paralyzed animals (2.5 kg), MRI analysis demonstrated a loss of spinal white matter integrity and extensive septal cavitations. A significant correlation between the magnitude of loss of small and medium-sized myelinated axons in the ventral funiculus and neurological deficits was identified. These data, demonstrating stable neurological deficits in severely injured animals, similarities of spinal pathology to humans, and relatively good post-injury tolerance of this strain of minipigs to spinal trauma, suggest that this model can successfully be used

  16. Spinal cord compression by multistrand cables after solid posterior atlantoaxial fusion. Report of three cases.

    PubMed

    Sudo, Hideki; Abumi, Kuniyoshi; Ito, Manabu; Kotani, Yoshihisa; Minami, Akio

    2002-10-01

    The sublaminar wiring procedure has been commonly used for stabilizing the atlantoaxial complex. Multistrand braided cables were introduced in the early 1990s. In previous biomechanical studies these cables were demonstrated to be superior to monofilament wires in terms of their flexibility, mechanical strength, and fatigue-related characteristics. To the authors' knowledge, they are the first to describe clinically the occurrence of delayed spinal cord compression resulting from multistrand cables after the completion of rigid spinal arthrodesis in the upper cervical spine. Three patients underwent posterior atlantoaxial fusion in which two sublaminar multistrand cables were placed. Between 15 and 48 months postoperatively, they suffered from upper- and lower-extremity numbness as well as gait disturbance. Plain radiography and computerized tomography myelography revealed spinal cord compression caused by the sublaminar cables, although fusion was complete and physiological alignment was maintained at the fused segment. The radiographs obtained immediately after surgery demonstrated that the initial cable placement had been properly performed. The shape of the cable at the initial surgery was oval and then gradually became circular. The anterior arc of the circular shape of the cable in fact led to the spinal cord compression. Considering the mechanism of this late complication, a cable tends to spring open because of its high flexibility and becomes circular shaped even after the complete arthrodesis. When applying multistrand cables for intersegmental fixation at the atlantoaxial complex, delayed complications related to bowing of the cables is possible. PMID:12408393

  17. Distinct cis regulatory elements govern the expression of TAG1 in embryonic sensory ganglia and spinal cord.

    PubMed

    Hadas, Yoav; Nitzan, Noa; Furley, Andrew J W; Kozlov, Serguei V; Klar, Avihu

    2013-01-01

    Cell fate commitment of spinal progenitor neurons is initiated by long-range, midline-derived, morphogens that regulate an array of transcription factors that, in turn, act sequentially or in parallel to control neuronal differentiation. Included among these are transcription factors that regulate the expression of receptors for guidance cues, thereby determining axonal trajectories. The Ig/FNIII superfamily molecules TAG1/Axonin1/CNTN2 (TAG1) and Neurofascin (Nfasc) are co-expressed in numerous neuronal cell types in the CNS and PNS - for example motor, DRG and interneurons - both promote neurite outgrowth and both are required for the architecture and function of nodes of Ranvier. The genes encoding TAG1 and Nfasc are adjacent in the genome, an arrangement which is evolutionarily conserved. To study the transcriptional network that governs TAG1 and Nfasc expression in spinal motor and commissural neurons, we set out to identify cis elements that regulate their expression. Two evolutionarily conserved DNA modules, one located between the Nfasc and TAG1 genes and the second directly 5' to the first exon and encompassing the first intron of TAG1, were identified that direct complementary expression to the CNS and PNS, respectively, of the embryonic hindbrain and spinal cord. Sequential deletions and point mutations of the CNS enhancer element revealed a 130bp element containing three conserved E-boxes required for motor neuron expression. In combination, these two elements appear to recapitulate a major part of the pattern of TAG1 expression in the embryonic nervous system.

  18. Spinal cord compression by primary non-Hodgkin's lymphoma.

    PubMed

    Lakshmaiah, K C; Lokanath, D; Suresh, T M; Babu, K G; Ramesh, C; Rao, C R; Lalitha, N; Anantha, N

    1995-06-01

    Epidural Cord Compression (ECC) by primary lymphomas is rare entity and constitutes less than 3% of total malignant lymphoma with Non-Hodgkin's Lymphoma (NHL), diffuse large cell type being the most common histological subtype. In this paper 16 cases of primary NHL with cord compression seen at the Department of Medical Oncology, during the period 1988-1990 are reviewed. At presentation all patients had undergone Laminectomy with decompression of epidural mass. The histological diagnosis of NHL was subclassified according to the International working formulation and was evaluated for disease process elsewhere in the body. All patients with ECC by lymphoma received high dose steroids with concurrent Radiotherapy (local) and combination Chemotherapy. These patients had longer duration of neurological deficit prior to treatment had poor response. After 6 courses of chemotherapy 50% of the patients had complete neurological recovery (CR), 31% had partial neurological recovery (PR) and in 19% there was no neurological recovery (NR). PMID:9136463

  19. Osteological features in pure-bred dogs predisposing to cervical spinal cord compression

    PubMed Central

    BREIT, S.; KÜNZEL, W.

    2001-01-01

    Relative to body size, midsagittal and interpedicular diameters of the cranial and caudal aspects of cervical vertebral foramina (C3–C7) were found to be significantly (P < 0·05) larger in small breeds than in large breeds and Dachshunds, and also larger in Dachshunds (P < 0·05) than in large breeds. This condition increases the risk for spinal cord compression resulting from relative stenosis of the cervical vertebral foramina, especially in large dogs, and this is also exacerbated by the typical shape of the vertebral foramina (i.e. dorsoventrally flattened cranially and bilaterally narrowed caudally). Within large dogs those breeds highly predisposed to cervical spinal cord compression were Great Danes (the breed with the smallest midsagittal vertebral foramen diameters from cranial C6 to cranial T1) and Doberman Pinschers, because of the most strikingly cranially dorsoventrally narrowed cone-shaped vertebral foramina at C6 and C7. The existence of a small midsagittal diameter in the cranial cervical spine was a high risk factor predisposing to spinal cord compression in small breeds and Dachshunds. Remarkable consistency was noted between the spinal level of the maximum enlargement of the spinal cord which previously was reported to be at C6, and the site of maximum enlargement of the vertebral canal currently stated in Dachshunds and small breeds. In large breeds the maximum enlargement of the vertebral canal tended to be located more caudally at the caudal limit of C7. The average age at which large dogs were most susceptible to noxious factors causing abnormal growth of the pedicles was determined to be 16 wk. PMID:11760884

  20. Efficient Gene Suppression in Dorsal Root Ganglia and Spinal Cord Using Adeno-Associated Virus Vectors Encoding Short-Hairpin RNA.

    PubMed

    Enomoto, Mitsuhiro; Hirai, Takashi; Kaburagi, Hidetoshi; Yokota, Takanori

    2016-01-01

    RNA interference is a powerful tool used to induce loss-of-function phenotypes through post-transcriptional gene silencing. Small interfering RNA (siRNA) molecules have been used to target the central nervous system (CNS) and are expected to have clinical utility against refractory neurodegenerative diseases. However, siRNA is characterized by low transduction efficiency, insufficient inhibition of gene expression, and short duration of therapeutic effects, and is thus not ideal for treatment of neural tissues and diseases. To address these problems, viral delivery of short-hairpin RNA (shRNA) expression cassettes that support more efficient and long-lasting transduction into target tissues is expected to be a promising delivery tool. Various types of gene therapy vectors have been developed, such as adenovirus, adeno-associated virus (AAV), herpes simplex virus and lentivirus; however, AAV is particularly advantageous because of its relative lack of immunogenicity and lack of chromosomal integration. In human clinical trials, recombinant AAV vectors are relatively safe and well-tolerated. In particular, serotype 9 of AAV (AAV9) vectors show the highest tropism for neural tissue and can cross the blood-brain barrier, and we have shown that intrathecal delivery of AAV9 yields relatively high gene transduction into dorsal root ganglia or spinal cord. This chapter describes how to successfully use AAV vectors encoding shRNA in vivo, particularly for RNA interference in the central and peripheral nervous system. PMID:26472458

  1. Efficient Gene Suppression in Dorsal Root Ganglia and Spinal Cord Using Adeno-Associated Virus Vectors Encoding Short-Hairpin RNA.

    PubMed

    Enomoto, Mitsuhiro; Hirai, Takashi; Kaburagi, Hidetoshi; Yokota, Takanori

    2016-01-01

    RNA interference is a powerful tool used to induce loss-of-function phenotypes through post-transcriptional gene silencing. Small interfering RNA (siRNA) molecules have been used to target the central nervous system (CNS) and are expected to have clinical utility against refractory neurodegenerative diseases. However, siRNA is characterized by low transduction efficiency, insufficient inhibition of gene expression, and short duration of therapeutic effects, and is thus not ideal for treatment of neural tissues and diseases. To address these problems, viral delivery of short-hairpin RNA (shRNA) expression cassettes that support more efficient and long-lasting transduction into target tissues is expected to be a promising delivery tool. Various types of gene therapy vectors have been developed, such as adenovirus, adeno-associated virus (AAV), herpes simplex virus and lentivirus; however, AAV is particularly advantageous because of its relative lack of immunogenicity and lack of chromosomal integration. In human clinical trials, recombinant AAV vectors are relatively safe and well-tolerated. In particular, serotype 9 of AAV (AAV9) vectors show the highest tropism for neural tissue and can cross the blood-brain barrier, and we have shown that intrathecal delivery of AAV9 yields relatively high gene transduction into dorsal root ganglia or spinal cord. This chapter describes how to successfully use AAV vectors encoding shRNA in vivo, particularly for RNA interference in the central and peripheral nervous system.

  2. High-resolution MRI of spinal cords by compressive sensing parallel imaging.

    PubMed

    Peng Li; Xiangdong Yu; Griffin, Jay; Levine, Jonathan M; Jim Ji

    2015-08-01

    Spinal Cord Injury (SCI) is a common injury due to diseases or accidents. Noninvasive imaging methods play a critical role in diagnosing SCI and monitoring the response to therapy. Magnetic Resonance Imaging (MRI), by the virtue of providing excellent soft tissue contrast, is the most promising imaging method for this application. However, spinal cord has a very small cross-section, which needs high-resolution images for better visualization and diagnosis. Acquiring high-resolution spinal cord MRI images requires long acquisition time due to the physical and physiological constraints. Moreover, long acquisition time makes MRI more susceptible to motion artifacts. In this paper, we studied the application of compressive sensing (CS) and parallel imaging to achieve high-resolution imaging from sparsely sampled and reduced k-space data acquired by parallel receive arrays. In particular, the studies are limited to the effects of 2D Cartesian sampling with different subsampling schemes and reduction factors. The results show that compressive sensing parallel MRI has the potential to provide high-resolution images of the spinal cord in 1/3 of the acquisition time required by the conventional methods.

  3. Intramedullary Sarcoidosis Presenting with Delayed Spinal Cord Swelling after Cervical Laminoplasty for Compressive Cervical Myelopathy

    PubMed Central

    Kwon, Du Ho; Kim, Eun-Sang; Eoh, Whan

    2014-01-01

    Sarcoidosis is a systemic disease of unknown etiology that may affect any organ in the body. The nervous system is involved in 5-16% of cases of sarcoidosis. Here, we report a case of intramedullary sarcoidosis presenting with delayed spinal cord swelling after laminoplasty for the treatment of compressive cervical myelopathy. A 56-year-old woman was admitted to our hospital complaining of upper extremity pain and gait disturbance. The patient had undergone laminoplasty for compressive cervical myelopathy 3 months previously. Follow-up magnetic resonance imaging revealed a large solitary intramedullary lesion with associated extensive cord swelling, signal changes, and heterogeneous enhancement of spinal cord from C2 to C7. Spinal cord biopsy revealed non-necrotizing granulomas with signs of chronic inflammation. The final diagnosis of sarcoidosis was based upon laboratory data, imaging findings, histological findings, and the exclusion of other diagnoses. Awareness of such presentations and a high degree of suspicion of sarcoidosis may help arrive at the correct diagnosis. PMID:25535524

  4. Left Second Rib Exostosis, Spinal Cord Compression and Left Upper Thoracic Scoliosis: A Rare Triad

    PubMed Central

    Venkatesh, Krishnan; Sundararaj, Gabriel David

    2012-01-01

    Exostosis of the rib with neural foraminal extension as a cause of spinal cord compression and scoliosis has to the best of our knowledge not been reported. We describe a young male with hereditary multiple exostosis who presented with a spastic gait, lower limb weakness and a deformity of the upper back. Radiographic imaging revealed a lesion arising from the left second rib which was encroaching the spinal canal and a scoliotic deformity of the upper thoracic spine. Through a single T shaped posterior approach he underwent a decompressive laminectomy of T1 and T2 vertebra and excision of the lesion. The diagnosis of osteochondroma was confirmed by histopathological studies. He was followed up at one year when his neurological condition had returned to normal however the scoliosis had increased. PMID:22977702

  5. Impacts of anti-nerve growth factor antibody on pain-related behaviors and expressions of opioid receptor in spinal dorsal horn and dorsal root ganglia of rats with cancer-induced bone pain

    PubMed Central

    Ding, Yuanyuan; Wang, Zhibin; Ma, Jiaming; Hong, Tao; Zhu, Yongqiang; Li, Hongxi; Pan, Shinong

    2016-01-01

    Objective To investigate the impacts of anti-nerve growth factor antibody on pain-related behaviors and expressions of μ-opioid receptor in spinal dorsal horn and dorsal root ganglia of rats with cancer-induced bone pain. Methods The rats were randomly grouped and then injected with 10 μl of phosphate buffer saline or Walker256 tumor cells into the upper segment of left tibia. Thirteen days after the injection, the intrathecal catheterization was performed, followed by the injection of saline, anti-nerve growth factor, nerve growth factor, and naloxone twice a day. The pain ethological changes were measured at the set time points; the expression changes of μ-opioid receptor protein and mRNA in spinal dorsal horn and dorsal root ganglia were detected on the 18th day. Results After the tumor cells were injected into the tibia, hyperalgesia appeared and the expression of μ-opioid receptor protein and mRNA in spinal dorsal horn and dorsal root ganglia was increased, compared with the sham group; after intrathecally injected anti-nerve growth factor, the significant antinociceptive effects appeared, and the μ-opioid receptor expression was increased, compared with the cancer pain group; the μ-opioid receptor expressions in the other groups showed no statistical significance. The naloxone pretreatment could mostly inverse the antinociception effects of anti-nerve growth factor. Conclusions Anti-nerve growth factor could reduce hyperalgesia in the cancer-induced bone pain rats, and the antinociceptive effects were related with the upregulation of μ-opioid receptor. PMID:27118770

  6. Treatment of Costal Osteochondroma Causing Spinal Cord Compression by Costotransversectomy: Case Report and Review of the Literature

    PubMed Central

    Mazur, Marcus D.; Mumert, Michael L.; Schmidt, Meic H.

    2015-01-01

    In laminectomies for costal osteochondroma causing spinal cord compression, visualization of the extraforaminal part of the tumor is limited. The authors describe using a costotransversectomy to resolve spinal cord compression by a costal osteochondroma invading through the neural foramen. A 21-year-old woman with hereditary multiple exostoses presented with hand numbness and progressive neck and upper back pain. Plain radiographs identified a large lesion of the T2 and T3 pedicles, with encroachment on the T2-3 neural foramen causing ~50% spinal canal stenosis. Costotransversectomy was performed to resect the cartilaginous portions of the osteochondroma, debulk the mass, and decompress the spinal canal. A mass of mature bone was left, but no appreciable cartilaginous tumor. At five-year follow-up, the patient had improvement of neck pain, no new neurological deficits. a stable residual mass, and no new osteochondromas, indicating that appropriate surgical management can yield good results and no evidence of recurrence. PMID:26236451

  7. Compression and contact area of anterior strut grafts in spinal instrumentation: a biomechanical study

    PubMed Central

    2013-01-01

    Background Anterior bone grafts are used as struts to reconstruct the anterior column of the spine in kyphosis or following injury. An incomplete fusion can lead to later correction losses and compromise further healing. Despite the different stabilizing techniques that have evolved, from posterior or anterior fixating implants to combined anterior/posterior instrumentation, graft pseudarthrosis rates remain an important concern. Furthermore, the need for additional anterior implant fixation is still controversial. In this bench-top study, we focused on the graft-bone interface under various conditions, using two simulated spinal injury models and common surgical fixation techniques to investigate the effect of implant-mediated compression and contact on the anterior graft. Methods Calf spines were stabilised with posterior internal fixators. The wooden blocks as substitutes for strut grafts were impacted using a “pressfit” technique and pressure-sensitive films placed at the interface between the vertebral bone and the graft to record the compression force and the contact area with various stabilization techniques. Compression was achieved either with posterior internal fixator alone or with an additional anterior implant. The importance of concomitant ligament damage was also considered using two simulated injury models: pure compression Magerl/AO fracture type A or rotation/translation fracture type C models. Results In type A injury models, 1 mm-oversized grafts for impaction grafting provided good compression and fair contact areas that were both markedly increased by the use of additional compressing anterior rods or by shortening the posterior fixator construct. Anterior instrumentation by itself had similar effects. For type C injuries, dramatic differences were observed between the techniques, as there was a net decrease in compression and an inadequate contact on the graft occurred in this model. Under these circumstances, both compression and the

  8. Progressive foot drop caused by below-knee compression stocking after spinal surgery

    PubMed Central

    Malhotra, Karan; Butler, Joseph S.; Benton, Adam; Molloy, Sean

    2016-01-01

    Foot drop is a debilitating condition, which may take many months to recover. The most common cause of foot drop is a neuropathy of the common peroneal nerve (CPN). However, similar symptoms can be caused by proximal lesions of the sciatic nerve, lumbar plexus or L5 nerve root. We present a rare and unusual case of a patient undergoing spinal surgery at the level of L5/S1 and presenting 4 weeks postoperatively with progressive foot drop. Although the initial concern was a postoperative lesion at L5, the cause for this delayed presentation was extrinsic compression of the CPN at the level of the fibular head by a tight-fitting below-knee thromboembolic deterrent stocking. Compression stockings are widely used in all branches of medicine and in the community. It is important to recognize this potential cause of progressive foot drop early as it is preventable by simple measures, which can significantly reduce morbidity.

  9. Progressive foot drop caused by below-knee compression stocking after spinal surgery.

    PubMed

    Malhotra, Karan; Butler, Joseph S; Benton, Adam; Molloy, Sean

    2016-09-01

    Foot drop is a debilitating condition, which may take many months to recover. The most common cause of foot drop is a neuropathy of the common peroneal nerve (CPN). However, similar symptoms can be caused by proximal lesions of the sciatic nerve, lumbar plexus or L5 nerve root. We present a rare and unusual case of a patient undergoing spinal surgery at the level of L5/S1 and presenting 4 weeks postoperatively with progressive foot drop. Although the initial concern was a postoperative lesion at L5, the cause for this delayed presentation was extrinsic compression of the CPN at the level of the fibular head by a tight-fitting below-knee thromboembolic deterrent stocking. Compression stockings are widely used in all branches of medicine and in the community. It is important to recognize this potential cause of progressive foot drop early as it is preventable by simple measures, which can significantly reduce morbidity. PMID:27617106

  10. Progressive foot drop caused by below-knee compression stocking after spinal surgery

    PubMed Central

    Malhotra, Karan; Butler, Joseph S.; Benton, Adam; Molloy, Sean

    2016-01-01

    Foot drop is a debilitating condition, which may take many months to recover. The most common cause of foot drop is a neuropathy of the common peroneal nerve (CPN). However, similar symptoms can be caused by proximal lesions of the sciatic nerve, lumbar plexus or L5 nerve root. We present a rare and unusual case of a patient undergoing spinal surgery at the level of L5/S1 and presenting 4 weeks postoperatively with progressive foot drop. Although the initial concern was a postoperative lesion at L5, the cause for this delayed presentation was extrinsic compression of the CPN at the level of the fibular head by a tight-fitting below-knee thromboembolic deterrent stocking. Compression stockings are widely used in all branches of medicine and in the community. It is important to recognize this potential cause of progressive foot drop early as it is preventable by simple measures, which can significantly reduce morbidity. PMID:27617106

  11. High dose compressive loads attenuate bone mineral loss in humans with spinal cord injury

    PubMed Central

    Dudley-Javoroski, S.; Saha, P. K.; Liang, G.; Li, C.; Gao, Z.

    2012-01-01

    Summary People with spinal cord injury (SCI) lose bone and muscle integrity after their injury. Early doses of stress, applied through electrically induced muscle contractions, preserved bone density at high-risk sites. Appropriately prescribed stress early after the injury may be an important consideration to prevent bone loss after SCI. Introduction Skeletal muscle force can deliver high compressive loads to bones of people with spinal cord injury (SCI). The effective osteogenic dose of load for the distal femur, a chief site of fracture, is unknown. The purpose of this study is to compare three doses of bone compressive loads at the distal femur in individuals with complete SCI who receive a novel stand training intervention. Methods Seven participants performed unilateral quadriceps stimulation in supported stance [150% body weight (BW) compressive load—“High Dose” while opposite leg received 40% BW—“Low Dose”]. Five participants stood passively without applying quadriceps electrical stimulation to either leg (40% BW load—“Low Dose”). Fifteen participants performed no standing (0% BW load—“Untrained”) and 14 individuals without SCI provided normative data. Participants underwent bone mineral density (BMD) assessment between one and six times over a 3-year training protocol. Results BMD for the High Dose group significantly exceeded BMD for both the Low Dose and the Untrained groups (p<0.05). No significant difference existed between the Low Dose and Untrained groups (p>0.05), indicating that BMD for participants performing passive stance did not differ from individuals who performed no standing. High-resolution CT imaging of one High Dose participant revealed 86% higher BMD and 67% higher trabecular width in the High Dose limb. Conclusion Over 3 years of training, 150% BW compressive load in upright stance significantly attenuated BMD decline when compared to passive standing or to no standing. High-resolution CT indicated that

  12. Multimodal Approach to the Management of Metastatic Epidural Spinal Cord Compression (MESCC) Due to Solid Tumors

    SciTech Connect

    Tancioni, Flavio; Navarria, Pierina; Lorenzetti, Martin A.; Pedrazzoli, Paolo; Masci, Giovanna; Mancosu, Pietro; Alloisio, Marco; Morenghi, Emanuela; Santoro, Armando; Rodriguez y Baena, Riccardo; Scorsetti, Marta

    2010-12-01

    Purpose: To assess the impact of a multidisciplinary approach for treatment of patients with metastatic epidural spinal cord compression in terms of feasibility, local control, and survival. Methods and Materials: Eighty-nine consecutive patients treated between January 2004 and December 2007 were included. The most common primary cancers were lung, breast, and kidney cancers. Ninety-eight surgical procedures were performed. Radiotherapy was performed within the first month postoperatively. Clinical outcome was evaluated by modified visual analog scale for pain, Frankel scale for neurologic deficit, and magnetic resonance imaging or computed tomography scan. Nearly all patients (93%) had back pain before treatment, whereas major or minor preoperative neurologic deficit was present in 62 cases (63%). Results: Clinical remission of pain was obtained in the vast majority of patients (91%). Improvement of neurologic deficit was observed in 45 cases (72.5%). Local relapse occurred in 10%. Median survival was 11 months (range, 0-46 months). Overall survival at 1 year was 43.6%. Type of primary tumor significantly affected survival. Conclusions: In patients with metastatic epidural spinal cord compression, the combination of surgery plus radiotherapy is feasible and provides clinical benefit in most patients. The discussion of each single case within a multidisciplinary team has been of pivotal importance in implementing the most appropriate therapeutic approach.

  13. Trunk Muscle Activation and Estimating Spinal Compressive Force in Rope and Harness Vertical Dance.

    PubMed

    Wilson, Margaret; Dai, Boyi; Zhu, Qin; Humphrey, Neil

    2015-12-01

    Rope and harness vertical dance takes place off the floor with the dancer suspended from his or her center of mass in a harness attached to a rope from a point overhead. Vertical dance represents a novel environment for training and performing in which expected stresses on the dancer's body are different from those that take place during dance on the floor. Two male and eleven female dancers with training in vertical dance performed six typical vertical dance movements with electromyography (EMG) electrodes placed bilaterally on rectus abdominus, external oblique, erector spinae, and latissimus dorsi. EMG data were expressed as a percentage of maximum voluntary isometric contraction (MVIC). A simplified musculoskeletal model based on muscle activation for these four muscle groups was used to estimate the compressive force on the spine. The greatest muscle activation for erector spinae and latissimus dorsi and the greatest trunk compressive forces were seen in vertical axis positions where the dancer was moving the trunk into a hyper-extended position. The greatest muscle activation for rectus abdominus and external oblique and the second highest compressive force were seen in a supine position with the arms and legs extended away from the center of mass (COM). The least muscle activation occurred in positions where the limbs were hanging below the torso. These movements also showed relatively low muscle activation compression forces. Post-test survey results revealed that dancers felt comfortable in these positions; however, observation of some positions indicated insufficient muscular control. Computing the relative contribution of muscles, expressed as muscle activation and estimated spinal compression, provided a measure of how much the muscle groups were working to support the spine and the rest of the dancer's body in the different movements tested. Additionally, identifying typical muscle recruitment patterns in each movement will help identify key exercises

  14. A glucagon-secreting pancreatic alpha islet cell tumor presenting as spinal cord compression.

    PubMed

    Staren, E D; Steinecker, G A; Gould, V E

    1987-08-01

    We describe a patient with a pancreatic islet carcinoma presenting with spinal cord compression owing to vertebral metastases. Subsequent studies demonstrated a typical islet cell carcinoma by light microscopy. By electron microscopy, the neurosecretory granules were morphologically suggestive of glucagon production. Radioimmunoassay studies revealed markedly elevated levels of serum glucagon. Notably, the patient did not exhibit the characteristic glucagonoma syndrome. This case exemplifies clearly that elevated levels of immunoreactive neuropeptide hormones are not necessarily associated with overt hormonal syndromes. Possible mechanisms for explaining this apparent discrepancy include the production of immunoreactive molecules with weak or absent systemic biological activity. Nevertheless, the determination of immunoreactive hormone levels in neuroendocrine neoplasms is an extremely effective adjunct method for their diagnosis and monitoring.

  15. ANESTHETIC MANAGEMENT IN UNEXPECTED EXTRA- ADRENAL PHEOCROMOCYTOMA PRESENTING WITH THORACIC SPINAL CORD COMPRESSION.

    PubMed

    El Kouny, Amr; Al Harbi, Mohammed; Arif, Rashid Muhammad; Ilyas, Nazar; Hamed, El Abbasy Omar; Memon, Maqsood; Nawaz, Ali; Dimitriou, Vassilios

    2016-02-01

    A 52 yearold female presented with a thoracic paravertebral tumour causing spinal nerve root compression and lower limbs neurologic symptoms. The patient was scheduled to undergo thoracic decompression laminectomy and instrumentation. Markedly severe hemodynamic fluctuations happened during the manipulation of the tumor and continued after the tumor was removed. After multimodal antihypertensive therapy the vital signs were adequately managed and the surgery was successfully performed without complications. The patient was discharged without any sequelae ten days later. The pathology report indicated the diagnosis of extra-adrenal pheochromocytoma. Unexpected pheochromocytoma may lead to a fatal hypertensive crisis during surgery. For anesthesiologists and surgeons who encounter an unexpected hypertensive crisis during surgery, undiagnosed pheochromocytoma should always be considered. PMID:27382822

  16. Excellent outcomes after radiotherapy alone for malignant spinal cord compression from myeloma

    PubMed Central

    Conde-Moreno, Antonio J.; Cacicedo, Jon; Segedin, Barbara; Rudat, Volker; Schild, Steven E.

    2016-01-01

    Abstract Background Uncertainty exists whether patients with spinal cord compression (SCC) from a highly radiosensitive tumor require decompressive spinal surgery in addition to radiotherapy (RT). This study addressed the question by evaluating patients receiving RT alone for SCC from myeloma. Patients and methods Data of 238 patients were retrospectively analyzed for response to RT and local control of SCC. In addition, the effect of RT on motor function (improvement, no further progression, deterioration) was evaluated. Overall response was defined as improvement or no further progression of motor dysfunction. Prior to RT, patients were presented to a neurosurgeon for evaluation whether upfront decompressive surgery was indicated (e.g. vertebral fracture or unstable spine). Results In the entire cohort, the overall response rate was 97% (53% improvement plus 44% no further progression). Following RT, 88% of the patients were able to walk. Of the 69 non-ambulatory patients 44 patients (64%) regained the ability to walk. Local control rates at 1, 2 and 3 years were 93%, 82% and 82%, respectively. A trend towards better local control was observed for patients who were ambulatory before starting RT (p = 0.08) and those with a more favorable performance status (p = 0.07). Conclusions RT alone provided excellent response rates, functional outcomes and local control in patients with SCC from myeloma. These results should be confirmed in a prospective randomized trial.

  17. Excellent outcomes after radiotherapy alone for malignant spinal cord compression from myeloma

    PubMed Central

    Conde-Moreno, Antonio J.; Cacicedo, Jon; Segedin, Barbara; Rudat, Volker; Schild, Steven E.

    2016-01-01

    Abstract Background Uncertainty exists whether patients with spinal cord compression (SCC) from a highly radiosensitive tumor require decompressive spinal surgery in addition to radiotherapy (RT). This study addressed the question by evaluating patients receiving RT alone for SCC from myeloma. Patients and methods Data of 238 patients were retrospectively analyzed for response to RT and local control of SCC. In addition, the effect of RT on motor function (improvement, no further progression, deterioration) was evaluated. Overall response was defined as improvement or no further progression of motor dysfunction. Prior to RT, patients were presented to a neurosurgeon for evaluation whether upfront decompressive surgery was indicated (e.g. vertebral fracture or unstable spine). Results In the entire cohort, the overall response rate was 97% (53% improvement plus 44% no further progression). Following RT, 88% of the patients were able to walk. Of the 69 non-ambulatory patients 44 patients (64%) regained the ability to walk. Local control rates at 1, 2 and 3 years were 93%, 82% and 82%, respectively. A trend towards better local control was observed for patients who were ambulatory before starting RT (p = 0.08) and those with a more favorable performance status (p = 0.07). Conclusions RT alone provided excellent response rates, functional outcomes and local control in patients with SCC from myeloma. These results should be confirmed in a prospective randomized trial. PMID:27679551

  18. Cost-effectiveness of surgery plus radiotherapy versus radiotherapy alone for metastatic epidural spinal cord compression

    SciTech Connect

    Thomas, Kenneth C.; Nosyk, Bohdan; Fisher, Charles G.; Dvorak, Marcel; Patchell, Roy A.; Regine, William F.; Loblaw, Andrew; Bansback, Nick; Guh, Daphne; Sun, Huiying; Anis, Aslam . E-mail: aslam.anis@ubc.ca

    2006-11-15

    Purpose: A recent randomized clinical trial has demonstrated that direct decompressive surgery plus radiotherapy was superior to radiotherapy alone for the treatment of metastatic epidural spinal cord compression. The current study compared the cost-effectiveness of the two approaches. Methods and Materials: In the original clinical trial, clinical effectiveness was measured by ambulation and survival time until death. In this study, an incremental cost-effectiveness analysis was performed from a societal perspective. Costs related to treatment and posttreatment care were estimated and extended to the lifetime of the cohort. Weibull regression was applied to extrapolate outcomes in the presence of censored clinical effectiveness data. Results: From a societal perspective, the baseline incremental cost-effectiveness ratio (ICER) was found to be $60 per additional day of ambulation (all costs in 2003 Canadian dollars). Using probabilistic sensitivity analysis, 50% of all generated ICERs were lower than $57, and 95% were lower than $242 per additional day of ambulation. This analysis had a 95% CI of -$72.74 to 309.44, meaning that this intervention ranged from a financial savings of $72.74 to a cost of $309.44 per additional day of ambulation. Using survival as the measure of effectiveness resulted in an ICER of $30,940 per life-year gained. Conclusions: We found strong evidence that treatment of metastatic epidural spinal cord compression with surgery in addition to radiotherapy is cost-effective both in terms of cost per additional day of ambulation, and cost per life-year gained.

  19. Spinal cord compression due to primary intramedullary tuberculoma of the spinal cord presenting as paraplegia: A case report and literature review

    PubMed Central

    Mishra, Sudhansu Sekhar; Das, Deepak; Das, Srikanta; Mohanta, Itibrata; Tripathy, Soubhagya Ranjan

    2015-01-01

    Background: Spinal cord compression can be due to various causes but spinal intramedullary tuberculoma is a rare cause. We report a case that had an intramedullary spinal cord tuberculomas in which the diagnosis was made histologically, without evidence of symptoms of systemic tuberculosis. This lesion, located in the thoracic region, mimicked as an intramedullary tumor radiologically. Case Description: The patient was a 25-year-old male who presented with a history of progressive paraparesis. Initial diagnosis was made as an intramedullary tumor by magnetic resonance imaging (MRI). The treatment of the patient involved is complete surgical excision of intramedullary lesion followed by appropriate antituberculous therapy. Postoperatively, his neurological symptoms were dramatically improved. With combination of both surgical and medical treatments, excellent clinical outcome was obtained. Conclusion: This case illustrates the risk of misdiagnosis and the importance of histological confirmation of a pathological lesion as spinal cord tuberculoma prior to surgical therapy, which should be kept in mind as a differential diagnosis of the intramedullary spinal cord tumors. PMID:25883834

  20. A re-assessment of erythropoietin as a neuroprotective agent following rat spinal cord compression or contusion injury.

    PubMed

    Pinzon, Alberto; Marcillo, Alexander; Pabon, Diego; Bramlett, Helen M; Bunge, Mary Bartlett; Dietrich, W Dalton

    2008-09-01

    This study was initiated due to an NIH "Facilities of Research--Spinal Cord Injury" contract to support independent replication of published studies that appear promising for eventual clinical testing. We repeated a study reporting the beneficial effects of recombinant human erythropoietin (rhEPO) treatment after spinal cord injury (SCI). Moderate thoracic SCI was produced by two methods: 1) compression due to placement of a modified aneurysm clip (20 g, 10 s) at the T3 spinal segment (n=45) [followed by administration of rhEPO 1000 IU/kg/IP in 1 or 3 doses (treatment groups)] and 2) contusion by means of the MASCIS impactor (n = 42) at spinal T9 (height 12.5 cm, weight 10 g) [followed by the administration of rhEPO 5000 IU/kg/IP for 7d or single dose (treatment groups)]. The use of rhEPO following moderate compressive or contusive injury of the thoracic spinal cord did not improve the locomotor behavior (BBB rating scale). Also, secondary changes (i.e. necrotic changes followed by cavitation) were not significantly improved with rhEPO therapy. With these results, although we cannot conclude that there will be no beneficial effect in different SCI models, we caution researchers that the use of rhEPO requires further investigation before implementing clinical trials. PMID:18625498

  1. Diagnostic evaluation, monitoring, and perioperative management of spinal cord compression in patients with Morquio syndrome.

    PubMed

    Charrow, Joel; Alden, Tord D; Breathnach, Catherine Ann R; Frawley, Geoffrey P; Hendriksz, Christian J; Link, Bianca; Mackenzie, William G; Manara, Renzo; Offiah, Amaka C; Solano, Martha L; Theroux, Mary

    2015-01-01

    Mucopolysaccharidosis IVA is an autosomal recessive condition caused by mutations in the GALNS gene, which encodes N-acetylgalactosamine-6-sulfatase, also called galactosamine-6-sulfatase (GALNS). A reduction in or absence of effective GALNS leads to faulty catabolism of keratan sulfate and chondroitin-6-sulfate within the lysosome; their accumulation causes cell, tissue, and organ dysfunction. The connective tissue, cartilage, ligaments, and bone of patients with Morquio A syndrome are particularly affected. Patients with Morquio A syndrome are at high risk of neurological complications because of their skeletal abnormalities; many patients are in danger of cervical myelopathy due to odontoid hypoplasia and ligamentous laxity leading to atlantoaxial subluxation. The multisystemic involvement of patients with Morquio A syndrome requires treatment by multidisciplinary teams; not all members of these teams may be aware of the potential for subluxation and quadriparesis. A multinational, multidisciplinary panel of 10 skeletal dysplasia or Morquio A syndrome specialists convened in Miami, FL on December 7 and 8, 2012 to develop consensus recommendations for early identification and effective management of spinal cord compression, for anesthesia and surgical best practices, and for effectual cardiac and respiratory management in patients with Morquio A syndrome. The target audience for these recommendations includes any physician who may encounter a patient with Morquio A syndrome, however doctors who do not have access to the full spectrum of specialists and resources needed to support patients with Morquio A syndrome should attempt to refer patients to a center that does. Physicians who manage Morquio A syndrome or comorbid conditions within specialty centers should review these expert panel recommendations and fully understand the implications of spinal cord instability for their own practices. PMID:25496828

  2. A Score Predicting Posttreatment Ambulatory Status in Patients Irradiated for Metastatic Spinal Cord Compression

    SciTech Connect

    Rades, Dirk Rudat, Volker; Veninga, Theo; Stalpers, Lukas J.A.; Basic, Hiba; Karstens, Johann H.; Hoskin, Peter J.; Schild, Steven E.

    2008-11-01

    Purpose: To create a scoring system to predict ambulatory status after radiotherapy (RT) for metastatic spinal cord compression (MSCC). Methods and Materials: On the basis of a multivariate analysis of 2096 MSCC patients, a scoring system was developed. This included the five prognostic factors significantly associated with post-RT ambulatory status: primary tumor type, interval between tumor diagnosis and MSCC, visceral metastases, motor function before RT, and time developing motor deficits before RT. The score for each factor was determined by dividing the post-RT ambulatory rate (as a percentage) by 10. Total scores represented the sum of the scores for each factor and ranged between 21 and 44 points. Patients were divided into five groups according to this score. Results: The post-RT ambulatory rates were 6% (24 of 389) for patients with scores of {<=}28 points, 44% (121 of 278) for those with 29-31 points, 70% (212 of 303) for those with 32-34 points, 86% (315 of 266) for those with 35-37 points, and 99% (750 of 760) for those with {>=}38 points. The 3-month survival rates were 29%, 62%, 77%, 84%, and 98%, respectively. The 6-months survival rates were 6%, 31%, 42%, 61%, and 93%, respectively. Conclusions: Because patients with scores of {<=}28 points had poor functional outcome after RT and extraordinarily poor survival rates, short-course RT to decrease pain or best supportive care may be considered. Patients with scores of 29-37 points should be considered surgical candidates, because RT-alone results were not optimal. Patients with scores of {>=}38 points seem to have excellent results with RT alone.

  3. Dose Escalation for Metastatic Spinal Cord Compression in Patients With Relatively Radioresistant Tumors

    SciTech Connect

    Rades, Dirk; Freundt, Katja; Meyners, Thekla; Bajrovic, Amira; Basic, Hiba; Karstens, Johann H.; Adamietz, Irenaeus A.; Wildfang, Ingeborg; Rudat, Volker; Schild, Steven E.; Dunst, Juergen

    2011-08-01

    Purpose: Radiotherapy alone is the most common treatment for metastatic spinal cord compression (MSCC) from relatively radioresistant tumors such as renal cell carcinoma, colorectal cancer, and malignant melanoma. However, the results of the 'standard' regimen 30 Gy/10 fractions need to be improved with respect to functional outcome. This study investigated whether a dose escalation beyond 30 Gy can improve treatment outcomes. Methods and Materials: A total of 91 patients receiving 30 Gy/10 fractions were retrospectively compared to 115 patients receiving higher doses (37.5 Gy/15 fractions, 40 Gy/20 fractions) for motor function and local control of MSCC. Ten further potential prognostic factors were evaluated: age, gender, tumor type, performance status, number of involved vertebrae, visceral or other bone metastases, interval from tumor diagnosis to radiotherapy, pretreatment ambulatory status, and time developing motor deficits before radiotherapy. Results: Motor function improved in 18% of patients after 30 Gy and in 22% after higher doses (p = 0.81). On multivariate analysis, functional outcome was associated with visceral metastases (p = 0.030), interval from tumor diagnosis to radiotherapy (p = 0.010), and time developing motor deficits (p < 0.001). The 1-year local control rates were 76% after 30 Gy and 80% after higher doses, respectively (p = 0.64). On multivariate analysis, local control was significantly associated with visceral metastases (p = 0.029) and number of involved vertebrae (p = 0.043). Conclusions: Given the limitations of a retrospective study, escalation of the radiation dose beyond 30 Gy/10 fractions did not significantly improve motor function and local control of MSCC in patients with relatively radioresistant tumors.

  4. Short-course radiotherapy is not optimal for spinal cord compression due to myeloma

    SciTech Connect

    Rades, Dirk . E-mail: Rades.Dirk@gmx.net; Hoskin, Peter J.; Stalpers, Lukas J.A.; Schulte, Rainer; Poortmans, Philip; Veninga, Theo; Dahm-Daphi, Jochen; Obralic, Nermina; Wildfang, Ingeborg; Bahrehmand, Roja; Engenhart-Cabilic, Rita; Schild, Steven E.

    2006-04-01

    Purpose: To investigate the suitability of short-course radiotherapy (RT) for spinal cord compression (SCC) in myeloma patients. Methods and Materials: Data for 172 myeloma patients irradiated between January 1994 and December 2004 for SCC were retrospectively evaluated. Short-course RT (1 x 8 Gy, 5 x 4 Gy, n = 61) and long-course RT (10 x 3 Gy, 15 x 2.5 Gy, 20 x 2 Gy, n = 111) were compared for functional outcome up to 24 months after RT. In addition, 10 potential prognostic factors were investigated. Results: Improvement of motor function occurred in 90 patients (52%). Forty-seven percent of nonambulatory patients regained the ability to walk. Functional outcome was significantly influenced by the time of developing motor deficits before RT. Improvement of motor function was more frequent after long-course RT than after short-course RT: 59% vs. 39% (p = 0.10) at 1 month, 67% vs. 43% (p 0.043) at 6 months, 76% vs. 40% (p = 0.003) at 12 months, 78% vs. 43% (p 0.07) at 18 months, and 83% v 54% (p = 0.33) at 24 months. A subgroup analysis of the long-course RT group demonstrated a similar functional outcome for 10 x 3 Gy when compared with 15 x 2.5 Gy and 20 x 2 Gy. Conclusions: Long-course RT is preferable for SCC in myeloma patients because it resulted in better functional outcome than short-course RT. Treatment with 10 x 3 Gy can be considered appropriate.

  5. Surgery Followed by Radiotherapy Versus Radiotherapy Alone for Metastatic Spinal Cord Compression From Unfavorable Tumors

    SciTech Connect

    Rades, Dirk; Huttenlocher, Stefan; Bajrovic, Amira; Karstens, Johann H.; Adamietz, Irenaeus A.; Kazic, Nadja; Rudat, Volker; Schild, Steven E.

    2011-12-01

    Purpose: Despite a previously published randomized trial, controversy exists regarding the benefit of adding surgery to radiotherapy for metastatic spinal cord compression (MSCC). It is thought that patients with MSCC from relatively radioresistant tumors or tumors associated with poor functional outcome after radiotherapy alone may benefit from surgery. This study focuses on these tumors. Methods and Materials: Data from 67 patients receiving surgery plus radiotherapy (S+RT) were matched to 134 patients (1:2) receiving radiotherapy alone (RT). Groups were matched for 10 factors and compared for motor function, ambulatory status, local control, and survival. Additional separate matched-pair analyses were performed for patients receiving direct decompressive surgery plus stabilization of involved vertebrae (DDSS) and patients receiving laminectomy (LE). Results: Improvement of motor function occurred in 22% of patients after S+RT and 16% after RT (p = 0.25). Posttreatment ambulatory rates were 67% and 61%, respectively (p = 0.68). Of nonambulatory patients, 29% and 19% (p = 0.53) regained ambulatory status. One-year local control rates were 85% and 89% (p = 0.87). One-year survival rates were 38% and 24% (p = 0.20). The matched-pair analysis of patients receiving LE showed no significant differences between both therapies. In the matched-pair analysis of patients receiving DDSS, improvement of motor function occurred more often after DDSS+RT than RT (28% vs. 19%, p = 0.024). Posttreatment ambulatory rates were 86% and 67% (p = 0.30); 45% and 18% of patients regained ambulatory status (p = 0.29). Conclusions: Patients with MSCC from an unfavorable primary tumor appeared to benefit from DDSS but not LE when added to radiotherapy in terms of improved functional outcome.

  6. TRANSCRIPT EXPRESSION OF VESICULAR GLUTAMATE TRANSPORTERS IN LUMBAR DORSAL ROOT GANGLIA AND THE SPINAL CORD OF MICE – EFFECTS OF PERIPHERAL AXOTOMY OR HINDPAW INFLAMMATION

    PubMed Central

    MALET, M.; VIEYTES, C. A.; LUNDGREN, K. H.; SEAL, R. P.; TOMASELLA, E.; SEROOGY, K. B.; HÖKFELT, T.; GEBHART, G.F.; BRUMOVSKY, P. R.

    2013-01-01

    Using specific riboprobes, we characterized the expression of VGLUT1-VGLUT3 transcripts in lumbar 4-5 (L4-5) DRGs and the thoracolumbar to lumbosacral spinal cord in male BALB/C mice after a 1- or 3-day hindpaw inflammation, or a 7-day sciatic nerve axotomy. Sham animals were also included. In sham and contralateral L4-5 DRGs of injured mice, VGLUT1-, VGLUT2- and VGLUT3 mRNAs were expressed in ~45%, ~69% or ~17% of neuron profiles (NPs), respectively. VGLUT1 was expressed in large and medium-sized NPs, VGLUT2 in NPs of all sizes, and VGLUT3 in small and medium-sized NPs. In the spinal cord, VGLUT1 was restricted to a number of NPs at thoracolumbar and lumbar segments, in what appears to be the dorsal nucleus of Clarke, and in mid laminae III-IV. In contrast, VGLUT2 was present in numerous NPs at all analyzed spinal segments, except the lateral aspects of the ventral horns, especially at the lumbar enlargement, where it was virtually absent. VGLUT3 was detected in a discrete number of NPs in laminae III-IV of the dorsal horn. Axotomy resulted in a moderate decrease in the number of DRG NPs expressing VGLUT3, whereas VGLUT1 and VGLUT2 were unaffected. Likewise, the percentage of NPs expressing VGLUT transcripts remained unaltered after hindpaw inflammation, both in DRGs and the spinal cord. Altogether, these results confirm previous descriptions on VGLUTs expression in adult mice DRGs, with the exception of VGLUT1, whose protein expression was detected in a lower percentage of mouse DRG NPs. A detailed account on the location of neurons expressing VGLUTs transcripts in the adult mouse spinal cord is also presented. Finally, the lack of change in the number of neurons expressing VGLUT1 and VGLUT2 transcripts after axotomy, as compared to data on protein expression, suggests translational rather than transcriptional regulation of VGLUTs after injury. PMID:23727452

  7. Radiographic association of schwannomas with sensory ganglia

    PubMed Central

    Tryggvason, Geir; Barnett, Andrew; Kim, John; Soken, Hakan; Maley, Joan; Hansen, Marlan R.

    2012-01-01

    Objective Clinical experience suggests that the majority of schwannomas arise within sensory ganglia, suggesting that intraganglionic glial cells represent a potential cell of origin for schwannomas. To support this clinical impression, we reviewed magnetic resonance imaging (MRI) studies performed over a 5 year period at our institution to determine the relationship of cranial and spinal nerve schwannomas with the ganglia of the associated nerves. Study design Retrospective cohort study Setting Tertiary referral center Patients Patients undergoing imaging study at our institution over a 5 year period. Intervention(s) Radiographical images at our institution were reviewed as well as published studies to determine the anatomic location of schwannomas. Main outcome measure(s) Anatomical location of schwannomas Results A total of 372 patients were found over the 5-year study period, 31 of those were diagnosed with neurofibromatosis type 2 (NF2). Vestibular schwannomas comprised the greatest number of schwannomas, followed by spinal schwannomas. In NF2 patients, spinal schwannomas were the most common tumor, followed by vestibular schwannomas. In NF2 patients and those with sporadic schwannomas, the overwhelming majority of tumors arose in nerves with a sensory component and were associated with sensory ganglia of the nerves (562/607, 92.6%). Very few tumors arose from pure motor nerves. This is supported by review of published articles on anatomic location of schwannomas. Conclusions Schwannomas are strongly associated anatomically with ganglia of sensory nerves. These findings raise the possibility that intraganglionic glial cells give rise to the majority of schwannomas. PMID:22858714

  8. How Effective Is a Virtual Consultation Process in Facilitating Multidisciplinary Decision-Making for Malignant Epidural Spinal Cord Compression?

    SciTech Connect

    Fitzpatrick, David; Grabarz, Daniel; Wang, Lisa; Bezjak, Andrea; Fehlings, Michael G.; Fosker, Christopher; Rampersaud, Raja; Wong, Rebecca K.S.

    2012-10-01

    Purpose: The purpose of this study was to assess the accuracy of a virtual consultation (VC) process in determining treatment strategy for patients with malignant epidural spinal cord compression (MESCC). Methods and Materials: A prospective clinical database was maintained for patients with MESCC. A virtual consultation process (involving exchange of key predetermined clinical information and diagnostic imaging) facilitated rapid decision-making between oncologists and spinal surgeons. Diagnostic imaging was reviewed retrospectively (by R.R.) for surgical opinions in all patients. The primary outcome was the accuracy of virtual consultation opinion in predicting the final treatment recommendation. Results: After excluding 20 patients who were referred directly to the spinal surgeon, 125 patients were eligible for virtual consultation. Of the 46 patients who had a VC, surgery was recommended in 28 patients and actually given to 23. A retrospective review revealed that 5/79 patients who did not have a VC would have been considered surgical candidates. The overall accuracy of the virtual consultation process was estimated at 92%. Conclusion: The VC process for MESCC patients provides a reliable means of arriving at a multidisciplinary opinion while minimizing patient transfer. This can potentially shorten treatment decision time and enhance clinical outcomes.

  9. Investigation of the compressive stiffness of spinal cages in various experimental conditions based on finite element analysis.

    PubMed

    Kim, Yoon Hyuk; Choi, Dae Kyung; Kim, Kyungsoo

    2012-04-01

    Recently, novel polymers, including polyetheretherketone and carbon fibre reinforced polymer, have been used for spinal implants. Because the in vitro experimental test uses metal blocks with different material properties from those of polymer cages in standard test protocols for prediction of the mechanical performance, it is necessary to analyse the influence of various experimental conditions, such as the material of the blocks. In this study, the compressive stiffness of spinal cages was investigated for different materials (polyetheretherketone, carbon fibre reinforced polymer, and titanium) under simulations of the mechanical experimental tests and the in vivo situation based on finite element analysis. The stiffness was affected by shapes of cage as well as experimental conditions, such as the load application method or fixation block. In the open cages, the polymer cages showed a greater dependence on the experimental situation than the metal cages. Hence, it may be necessary to consider the experimental conditions during in vitro mechanical tests for the stiffness evaluation of spinal cages made of novel polymers to obtain results relevant for an in vivo situation.

  10. Primary central nervous system lymphoma causing multiple spinal cord compression and carcinomatous meningitis in a 6-year-old: a case report.

    PubMed

    Quadri, Syed A; Sobani, Zain A; Enam, Syed Ather; Enam, Kishwar; Ashraf, M Shamvil

    2011-05-01

    Primary central nervous system lymphoma (PCNSL) is an uncommon form of non-Hodgkin lymphoma affecting the brain, spinal cord, and leptomeninges. Carcinomatous meningitis (CM) and spinal cord compression in PCNSL are very rare and usually present in advanced stages of the disease. The average survival time of a CM patient is about 4 to 6 weeks, which may be extended to about 4 to 6 months with treatment. Here we present a case of CM and spinal cord compression by multiple PCNSL in a 6-year-old girl, who has survived 2 years and 9 months posttreatment with no recurrence. To the best of our knowledge this is the very first case reporting survival after CM. The patient presented with weakness of her right arm, right leg, and left side of the face. Examination revealed mild facial asymmetry with left facial lower motor neuron palsy and lateral gaze restriction of left eye. Magnetic resonance imaging of her spinal cord showed postcontrast enhancement of the intradural structures on the spinal canal at levels C3-C6 and L1-L5 and along with the intracranial leptomeninges. Histopathological examination of the neoplastic tissue from cauda equina revealed B-cell non-Hodgkin lymphoma. After chemotherapy her disease regressed and magnetic resonance imaging showed no evidence of recurrence or residual disease. In our experience the response to chemotherapy was remarkable and recommend that aggressive tumor resection strategies should be reserved for cases with severe signs of spinal compression. PMID:21464767

  11. Assessment of axonal dysfunction in an in vitro model of acute compressive injury to adult rat spinal cord axons.

    PubMed

    Fehlings, M G; Nashmi, R

    1995-04-24

    An in vitro model of spinal cord injury was developed to study the pathophysiology of posttraumatic axonal dysfunction. A 25 mm length of thoracic spinal cord was removed from the adult male rat (n = 27). A dorsal column segment was isolated and pinned in a recording chamber and superfused with oxygenated (95% O2/5% CO2) Ringer. The cord was stimulated with a bipolar electrode, while two point responses were recorded extracellularly. Injury was accomplished by compression with a modified aneurysm clip which applied a 2 g force for 15 s. With injury the compound action potential (CAP) amplitude decreased to 53.7 +/- 5.4% (P < 0.001), while the latency increased to 115.6 +/- 3.1% (P < 0.0025) of control values. The absolute refractory period increased with injury from 1.7 +/- 0.1 ms to 2.1 +/- 0.1 ms (P < 0.05). The infusion of 5 mM 4-aminopyridine (4-AP), a blocker of voltage-sensitive 'fast' K channels confined to internodal regions, resulted in broadening of the CAP of injured axons to 114.9 +/- 3.1% of control (P < 0.05). Ultrastructural analysis of the injured dorsal column segments revealed marked axonal and myelin pathology, including considerable myelin disruption. In conclusion, we have developed and characterized an in vitro model of mammalian spinal cord injury which simulates many of the features of in vivo trauma. Injured axons display characteristic changes in physiological function including a shift in refractory period and high frequency conduction failure. The ultrastructural data and response of injured axons to 4-AP suggest that myelin disruption with exposure of 'fast' K+ channels contributes to posttraumatic axonal dysfunction.

  12. The Impact of Posture on the Mechanical Properties of a Functional Spinal Unit During Cyclic Compressive Loading.

    PubMed

    Barrett, Jeff M; Gooyers, Chad E; Karakolis, Thomas; Callaghan, Jack P

    2016-08-01

    To assess how posture affects the transmission of mechanical energy up the spinal column during vibration, 18 porcine functional spinal units (FSUs) were exposed to a sinusoidal force (1500 ± 1200 N) at 5 Hz for 120 min in either a flexed, extended, or neutral posture. Force and FSU height were measured continuously throughout the collection. From these data, specimen height loss, dynamic stiffness, hysteresis, and parameters from a standard linear solid (SLS) model were determined and analyzed for differences between postures. Posture had an influence on all of these parameters. In extension, the FSU had higher dynamic stiffness values than when neutral or flexed (p < 0.0001). In flexion, the FSU had higher hysteresis than both an extended or neutral posture (p < 0.0001). Height loss was greatest in a flexed posture and smallest in an extended posture (p < 0.0001). In extension, the series spring element in the SLS model had a stiffness value higher than both flexed and neutral posture conditions, whereas the stiffness in the parallel spring was the same between extension and neutral (p < 0.01), both higher than in flexion. Viscosity coefficients were highest in extension compared to both flexed and neutral (p < 0.01). Based on these results, it was determined that posture had a significant influence in determining the mechanical properties of the spine when exposed to cyclic compressive loading. PMID:27322199

  13. Osteolysis and Cervical Cord Compression Secondary to Silicone Granuloma Formation around a Dorsal Spinal Cord Stimulator: A Case Report

    PubMed Central

    Dimar, John R.; Endriga, David T.; Carreon, Leah Y.

    2016-01-01

    Spinal cord stimulators (SCSs) have long been in use as a modality for the management of numerous pain pathologies. Along with commonly anticipated morbidities such as displacement, failure (due to fracture or breakage), or infection, there have also been rare but well-documented complications of fibrous scarring, resulting in spinal cord compression. This is the first known case that demonstrates osteolysis and bony destruction of the vertebrae adjacent to the SCS along with the foreign-body granulomatous reaction. A 61-year-old man who underwent prior posterior cervical implantation with an SCS followed by multiple revisions presented with progressive paresthesias, numbness, and weakness of his upper extremities 10 years later. The SCS was removed followed by decompression, and instrumented fusion of the cervical spine. Histopathologic analysis reveals foreign-body reaction to the SCS and its silicone debris. Tissue cultures were negative for bacterial, fungal, or mycobacterial infection. No malignancy was seen. The current case illustrates the inherent possibility of foreign-body granulomatous reactions with SCS and its silicone particulate matter, made unique in this instance by the associated bony destruction of the adjacent vertebrae. PMID:27247910

  14. Genome-wide gene expression profiling of stress response in a spinal cord clip compression injury model

    PubMed Central

    2013-01-01

    Background The aneurysm clip impact-compression model of spinal cord injury (SCI) is a standard injury model in animals that closely mimics the primary mechanism of most human injuries: acute impact and persisting compression. Its histo-pathological and behavioural outcomes are extensively similar to human SCI. To understand the distinct molecular events underlying this injury model we analyzed global mRNA abundance changes during the acute, subacute and chronic stages of a moderate to severe injury to the rat spinal cord. Results Time-series expression analyses resulted in clustering of the majority of deregulated transcripts into eight statistically significant expression profiles. Systematic application of Gene Ontology (GO) enrichment pathway analysis allowed inference of biological processes participating in SCI pathology. Temporal analysis identified events specific to and common between acute, subacute and chronic time-points. Processes common to all phases of injury include blood coagulation, cellular extravasation, leukocyte cell-cell adhesion, the integrin-mediated signaling pathway, cytokine production and secretion, neutrophil chemotaxis, phagocytosis, response to hypoxia and reactive oxygen species, angiogenesis, apoptosis, inflammatory processes and ossification. Importantly, various elements of adaptive and induced innate immune responses span, not only the acute and subacute phases, but also persist throughout the chronic phase of SCI. Induced innate responses, such as Toll-like receptor signaling, are more active during the acute phase but persist throughout the chronic phase. However, adaptive immune response processes such as B and T cell activation, proliferation, and migration, T cell differentiation, B and T cell receptor-mediated signaling, and B cell- and immunoglobulin-mediated immune response become more significant during the chronic phase. Conclusions This analysis showed that, surprisingly, the diverse series of molecular events that

  15. Brown tumor as an unusual but preventable cause of spinal cord compression: Case report and review of the literature.

    PubMed

    Tayfun, Hakan; Metin, Orakdöğen; Hakan, Somay; Zafer, Berkman; Vardar, Aker Fügen

    2014-01-01

    Brown tumor (BT), also known as osteoclastoma, may appear in the context of primary and secondary hyperparathyroidism. Spinal cord compression due to the BT is extremely rare. We present here an unusual case of BT involving thoracal spine and mandible. A 26-year-old woman, who had been on hemodialysis for chronic renal failure for over 6 years, got admitted with dorsal pain and progressive weakness in her lower extremities and gait disturbances. Neurological examination revealed spastic paraparesis and symmetrically hyperactive tendon reflex in the lower extremities. She had hypoesthesia under T10 level. On physical examination, a swelling on the left side of her jaw was also detected. Magnetic resonance imaging (MRI) showed cord compression due to an extradural mass lesion at T8 level. A computerized tomography (CT) scan showed that this expansile lytic lesion was caused by the collapse of vertebra corpus (T8) at that level. CT of the mandible revealed an expansile lytic lesion on left arm of the mandible. Laboratory findings were nearly normal except parathormone level elevation to 1289 pg/mL (normal 30-70 pg/mL). Ultrasound examination showed enlargement of the parathyroid glands. The patient underwent an emergency decompression and stabilization surgery. The lesion was fragile and reddish in appearance and was easy to aspirate. The tumor was reported as "BT." Her weakness in the lower extremities improved in the early postoperative period. Following surgical intervention, the patient was transferred to nephrology clinic for additional medical treatment. PMID:24891890

  16. Brown tumor as an unusual but preventable cause of spinal cord compression: Case report and review of the literature

    PubMed Central

    Tayfun, Hakan; Metin, Orakdöğen; Hakan, Somay; Zafer, Berkman; Vardar, Aker Fügen

    2014-01-01

    Brown tumor (BT), also known as osteoclastoma, may appear in the context of primary and secondary hyperparathyroidism. Spinal cord compression due to the BT is extremely rare. We present here an unusual case of BT involving thoracal spine and mandible. A 26-year-old woman, who had been on hemodialysis for chronic renal failure for over 6 years, got admitted with dorsal pain and progressive weakness in her lower extremities and gait disturbances. Neurological examination revealed spastic paraparesis and symmetrically hyperactive tendon reflex in the lower extremities. She had hypoesthesia under T10 level. On physical examination, a swelling on the left side of her jaw was also detected. Magnetic resonance imaging (MRI) showed cord compression due to an extradural mass lesion at T8 level. A computerized tomography (CT) scan showed that this expansile lytic lesion was caused by the collapse of vertebra corpus (T8) at that level. CT of the mandible revealed an expansile lytic lesion on left arm of the mandible. Laboratory findings were nearly normal except parathormone level elevation to 1289 pg/mL (normal 30-70 pg/mL). Ultrasound examination showed enlargement of the parathyroid glands. The patient underwent an emergency decompression and stabilization surgery. The lesion was fragile and reddish in appearance and was easy to aspirate. The tumor was reported as “BT.” Her weakness in the lower extremities improved in the early postoperative period. Following surgical intervention, the patient was transferred to nephrology clinic for additional medical treatment. PMID:24891890

  17. Objective measures of motor dysfunction after compression spinal cord injury in adult rats: correlations with locomotor rating scores.

    PubMed

    Semler, Joerg; Wellmann, Katharina; Wirth, Felicitas; Stein, Gregor; Angelova, Srebrina; Ashrafi, Mahak; Schempf, Greta; Ankerne, Janina; Ozsoy, Ozlem; Ozsoy, Umut; Schönau, Eckhard; Angelov, Doychin N; Irintchev, Andrey

    2011-07-01

    Precise assessment of motor deficits after traumatic spinal cord injury (SCI) in rodents is crucial for understanding the mechanisms of functional recovery and testing therapeutic approaches. Here we analyzed the applicability to a rat SCI model of an objective approach, the single-frame motion analysis, created and used for functional analysis in mice. Adult female Wistar rats were subjected to graded compression of the spinal cord. Recovery of locomotion was analyzed using video recordings of beam walking and inclined ladder climbing. Three out of four parameters used in mice appeared suitable: the foot-stepping angle (FSA) and the rump-height index (RHI), measured during beam walking, and for estimating paw placement and body weight support, respectively, and the number of correct ladder steps (CLS), assessing skilled limb movements. These parameters, similar to the Basso, Beattie, and Bresnahan (BBB) locomotor rating scores, correlated with lesion volume and showed significant differences between moderately and severely injured rats at 1-9 weeks after SCI. The beam parameters, but not CLS, correlated well with the BBB scores within ranges of poor and good locomotor abilities. FSA co-varied with RHI only in the severely impaired rats, while RHI and CLS were barely correlated. Our findings suggest that the numerical parameters estimate, as intended by design, predominantly different aspects of locomotion. The use of these objective measures combined with BBB rating provides a time- and cost-efficient opportunity for versatile and reliable functional evaluations in both severely and moderately impaired rats, combining clinical assessment with precise numerical measures. PMID:21428717

  18. Effect of DSPE-PEG on compound action potential, injury potential and ion concentration following compression in ex vivo spinal cord.

    PubMed

    Wang, Aihua; Huo, Xiaolin; Zhang, Guanghao; Wang, Xiaochen; Zhang, Cheng; Wu, Changzhe; Rong, Wei; Xu, Jing; Song, Tao

    2016-05-01

    It has been shown that polyethylene glycol (PEG) can reseal membrane disruption on the spinal cord, but only high concentrations of PEG have been shown to have this effect. Therefore, the effect of PEG is somewhat limited, and it is necessary to investigate a new approach to repair spinal cord injury. This study assesses the ability of 1, 2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(poly (ethylene glycol)) 2000] (DSPE-PEG) to recover physiological function and attenuate the injury-induced influx of extracellular ions in ex vivo spinal cord injury. Isolated spinal cords were subjected to compression injury and treated with PEG or DSPE-PEG immediately after injury. The compound action potential (CAP) was recorded before and after injury to assess the functional recovery. Furthermore, injury potential, the difference in gap potentials before and after compression, and the concentration of intracellular ions were used to evaluate the effect of DSPE-PEG on reducing ion influx. Data showed that the injury potential and ion concentration of the untreated, PEG and DSPE-PEG group, without significant difference among them, are remarkably higher than those of the intact group. Moreover, the CAP recovery of the DSPE-PEG and PEG treated spinal cords was significantly greater than that of the untreated spinal cords. The level of CAP recovery in the DSPE-PEG and PEG treated groups was the same, but the concentration of DSPE-PEG used was much lower than the concentration of PEG. These results suggest that instant application of DSPE-PEG could effectively repair functional disturbance in SCI at a much lower concentration than PEG.

  19. Prevention of urinary tract infections in palliative radiation for vertebral metastasis and spinal compression: A pilot study in 71 patients

    SciTech Connect

    Manas, Ana . E-mail: amanas.hdoc@salud.madrid.org; Glaria, Luis; Pena, Carmen; Sotoca, Amalia; Lanzos, Eduardo; Fernandez, Castalia; Riviere, Marc

    2006-03-01

    Purpose: To assess the impact of bladder instillations of hyaluronic acid (HA) on the prevalence of urinary tract infection (UTI) in patients receiving emergency radiotherapy for metastatic spinal cord compression. Methods and Materials: Patients were recruited consecutively at one center and assigned to usual care (UC) (n = 34, mean age 62.2 years) or UC with once-weekly HA instillation (UC + HA) (Cystistat: 40 mg in 50 mL phosphate-buffered saline) (n = 37; mean age, 63.1 years). All patients had an indwelling catheter and received radiotherapy. UTI status was assessed at baseline and during hospitalization. Results: At baseline, patient groups were comparable, except for the prevalence of UTI at baseline, which was 11.8% and 0% in the UC and UC + HA patients, respectively (p = 0.0477). During hospitalization, 76.5% (vs. 11.8% at baseline, p < 0.0001) of the UC patients had a UTI compared with 13.5% (vs. 0% at baseline, p = 0.0541) of the UC + HA patients (p < 0.0001). Both groups were hospitalized for similar periods (19.8 days [UC] vs. 18.5 days, p = 0.4769) and received equivalent radiotherapy sessions (4.6 [UC] vs. 5.8 sessions, p = 0.2368). Conclusions: Patients receiving UC + HA had a 5.7-fold decrease in UTI prevalence over the hospitalization period compared to UC patients, suggesting that bladder instillations of HA effectively prevent UTI in patients with indwelling catheters receiving radiotherapy for nerve compression.

  20. Delayed myelopathy induced by chronic compression in the rat spinal cord.

    PubMed

    Kim, Phyo; Haisa, Toshihiko; Kawamoto, Toshiki; Kirino, Takaaki; Wakai, Susumu

    2004-04-01

    Cervical myelopathy is a common cause of neurological disability among the elderly; however, the exact mechanism for the insidious and progressive deterioration remains to be elucidated. To study the pathophysiology, we developed a simple experimental model reproducing the course. In rats, a thin sheet of expanding polymer was implanted microsurgically underneath the C5-C6 laminae. In the control group, the polymer sheet was removed immediately. Changes in motor functions were monitored for 25 weeks after the operation, with voluntary exercise activity measured by odometer attached to revolving cages, and forced running capability measured by duration of exercise on a rotating treadmill. Motor neurons were counted stereologically in continuous sections. In the compression group, the forced running capability deteriorated after a latent period of 17 weeks and progressively thereafter. In the control group, it stayed unchanged throughout 25 weeks. Course of the voluntary exercise was comparable between the groups. Motor neuron density in the compression group decreased significantly in 9 weeks (-20.3%) and 25 weeks (-35.5%), but not in 1 or 3 weeks. This practical model properly reproduces characteristic features of the clinical cervical myelopathy, with progressive motor disturbance after a latency and insidious neuronal loss preceding the symptoms.

  1. Reactions of the rat musculoskeletal system to compressive spinal cord injury (SCI) and whole body vibration (WBV) therapy.

    PubMed

    Schwarz, A; Pick, C; Harrach, R; Stein, G; Bendella, H; Ozsoy, O; Ozsoy, U; Schoenau, E; Jaminet, P; Sarikcioglu, L; Dunlop, S; Angelov, D N

    2015-06-01

    Traumatic spinal cord injury (SCI) causes a loss of locomotor function with associated compromise of the musculo-skeletal system. Whole body vibration (WBV) is a potential therapy following SCI, but little is known about its effects on the musculo-skeletal system. Here, we examined locomotor recovery and the musculo-skeletal system after thoracic (T7-9) compression SCI in adult rats. Daily WBV was started at 1, 7, 14 and 28 days after injury (WBV1-WBV28 respectively) and continued over a 12-week post-injury period. Intact rats, rats with SCI but no WBV (sham-treated) and a group that received passive flexion and extension (PFE) of their hind limbs served as controls. Compared to sham-treated rats, neither WBV nor PFE improved motor function. Only WBV14 and PFE improved body support. In line with earlier studies we failed to detect signs of soleus muscle atrophy (weight, cross sectional diameter, total amount of fibers, mean fiber diameter) or bone loss in the femur (length, weight, bone mineral density). One possible explanation is that, despite of injury extent, the preservation of some axons in the white matter, in combination with quadripedal locomotion, may provide sufficient trophic and neuronal support for the musculoskeletal system. PMID:26032204

  2. Assessment of the diagnostic value of diffusion tensor imaging in patients with spinal cord compression: a meta-analysis

    PubMed Central

    Li, X.F.; Yang, Y.; Lin, C.B.; Xie, F.R.; Liang, W.G.

    2015-01-01

    We investigated the diagnostic value of the apparent diffusion coefficient (ADC) and fractional anisotropy (FA) of magnetic resonance diffusion tensor imaging (DTI) in patients with spinal cord compression (SCC) using a meta-analysis framework. Multiple scientific literature databases were exhaustively searched to identify articles relevant to this study. Mean values and standardized mean differences (SMDs) were calculated for the ADC and FA in normal and diseased tissues. The STATA version 12.0 software was used for statistical analysis. Of the 41 articles initially retrieved through database searches, 11 case-control studies were eligible for the meta-analysis and contained a combined total of 645 human subjects (394 patients with SCC and 251 healthy controls). All 11 studies reported data on FA, and 9 contained data related to the ADC. The combined SMDs of the ADC and FA showed that the ADC was significantly higher and the FA was lower in patients with SCC than in healthy controls. Subgroup analysis based on the b value showed higher ADCs in patients with SCC than in healthy controls at b values of both ≤500 and >500 s/mm2. In summary, the main findings of this meta-analysis revealed an increased ADC and decreased FA in patients with SCC, indicating that DTI is an important diagnostic imaging tool to assess patients suspected to have SCC. PMID:26628393

  3. Assessment of the diagnostic value of diffusion tensor imaging in patients with spinal cord compression: a meta-analysis.

    PubMed

    Li, X F; Yang, Y; Lin, C B; Xie, F R; Liang, W G

    2016-01-01

    We investigated the diagnostic value of the apparent diffusion coefficient (ADC) and fractional anisotropy (FA) of magnetic resonance diffusion tensor imaging (DTI) in patients with spinal cord compression (SCC) using a meta-analysis framework. Multiple scientific literature databases were exhaustively searched to identify articles relevant to this study. Mean values and standardized mean differences (SMDs) were calculated for the ADC and FA in normal and diseased tissues. The STATA version 12.0 software was used for statistical analysis. Of the 41 articles initially retrieved through database searches, 11 case-control studies were eligible for the meta-analysis and contained a combined total of 645 human subjects (394 patients with SCC and 251 healthy controls). All 11 studies reported data on FA, and 9 contained data related to the ADC. The combined SMDs of the ADC and FA showed that the ADC was significantly higher and the FA was lower in patients with SCC than in healthy controls. Subgroup analysis based on the b value showed higher ADCs in patients with SCC than in healthy controls at b values of both ≤500 and >500 s/mm2. In summary, the main findings of this meta-analysis revealed an increased ADC and decreased FA in patients with SCC, indicating that DTI is an important diagnostic imaging tool to assess patients suspected to have SCC. PMID:26628393

  4. Improved Posttreatment Functional Outcome is Associated with Better Survival in Patients Irradiated for Metastatic Spinal Cord Compression

    SciTech Connect

    Rades, Dirk . E-mail: Rades.Dirk@gmx.net; Veninga, Theo; Stalpers, Lukas J.A.; Basic, Hiba; Hoskin, Peter J.; Karstens, Johann H.; Schild, Steven E.; Dunst, Juergen

    2007-04-01

    Purpose: To evaluate the potential prognostic impact of the effect of radiotherapy (RT) on motor function and of the post-RT ambulatory status on survival in metastatic spinal cord compression (MSCC) patients. Methods and Materials: Of 1,852 patients irradiated for MSCC, 778 patients (42%) received short-course RT and 1,074 (58%) received long-course RT. The effect of RT on motor function (improvement vs. no change vs. deterioration) and the ambulatory status after RT (ambulatory vs. nonambulatory) were evaluated with respect to survival. Results: The actuarial survival rate of the entire cohort was 56% at 6 months, 43% at 12 months, and 32% at 24 months. The patients in whom motor function improved after RT had a significantly better 1-year survival rate than those who had no change or deterioration of motor function (75% vs. 40% and 3%, p < 0.001). The 1-year survival rate of the patients who were ambulatory after RT was significantly better than for those who were not ambulatory (63% vs. 4%, p < 0.001). The results were confirmed in multivariate analysis. Conclusions: The response to RT and the post-RT ambulatory status are important predictors for survival in MSCC patients. This finding can be used by physicians to stratify future studies, plan further therapy, and improve follow-up strategy in these patients.

  5. Acute spinal cord compression: a rare complication of dual antiplatelet therapy.

    PubMed

    Iskandar, Muhammad Zaid; Chong, Victor; Hutcheon, Stuart

    2015-01-01

    A 73-year-old woman presented with acute shortness of breath and exacerbation of chronic back pain. She was diagnosed with pulmonary oedema and a non-ST-elevation myocardial infarction following chest X-ray, ECG and high sensitivity troponin levels. She subsequently underwent coronary angioplasty with deployment of drug-eluting stents to her circumflex and left anterior descending arteries and was started on aspirin and clopidogrel for her dual antiplatelet therapy. Unfortunately, following the procedure, she gradually lost power and sensation in both lower limbs. MRI of her spine confirmed an extradural haematoma causing thoracic cord compression. She was managed conservatively following discussions with neurosurgeons and developed further complications secondary to her immobility. PMID:26202314

  6. An Intensive Locomotor Training Paradigm Improves Neuropathic Pain following Spinal Cord Compression Injury in Rats.

    PubMed

    Dugan, Elizabeth A; Sagen, Jacqueline

    2015-05-01

    Spinal cord injury (SCI) is often associated with both locomotor deficits and sensory dysfunction, including debilitating neuropathic pain. Unfortunately, current conventional pharmacological, physiological, or psychological treatments provide only marginal relief for more than two-thirds of patients, highlighting the need for improved treatment options. Locomotor training is often prescribed as an adjunct therapy for peripheral neuropathic pain but is rarely used to treat central neuropathic pain. The goal of this study was to evaluate the potential anti-nociceptive benefits of intensive locomotor training (ILT) on neuropathic pain consequent to traumatic SCI. Using a rodent SCI model for central neuropathic pain, ILT was initiated either 5 d after injury prior to development of neuropathic pain symptoms (the "prevention" group) or delayed until pain symptoms fully developed (∼3 weeks post-injury, the "reversal" group). The training protocol consisted of 5 d/week of a ramping protocol that started with 11 m/min for 5 min and increased in speed (+1 m/min/week) and time (1-4 minutes/week) to a maximum of two 20-min sessions/d at 15 m/min by the fourth week of training. ILT prevented and reversed the development of heat hyperalgesia and cold allodynia, as well as reversed developed tactile allodynia, suggesting analgesic benefits not seen with moderate levels of locomotor training. Further, the analgesic benefits of ILT persisted for several weeks once training had been stopped. The unique ability of an ILT protocol to produce robust and sustained anti-nociceptive effects, as assessed by three distinct outcome measures for below-level SCI neuropathic pain, suggests that this adjunct therapeutic approach has great promise in a comprehensive treatment strategy for SCI pain.

  7. A 2011 Updated Systematic Review and Clinical Practice Guideline for the Management of Malignant Extradural Spinal Cord Compression

    SciTech Connect

    Loblaw, D. Andrew; Mitera, Gunita; Ford, Michael; Laperriere, Normand J.

    2012-10-01

    Purpose: To update the 2005 Cancer Care Ontario practice guidelines for the diagnosis and treatment of adult patients with a suspected or confirmed diagnosis of extradural malignant spinal cord compression (MESCC). Methods: A review and analysis of data published from January 2004 to May 2011. The systematic literature review included published randomized control trials (RCTs), systematic reviews, meta-analyses, and prospective/retrospective studies. Results: An RCT of radiation therapy (RT) with or without decompressive surgery showed improvements in pain, ambulatory ability, urinary continence, duration of continence, functional status, and overall survival. Two RCTs of RT (30 Gy in eight fractions vs. 16 Gy in two fractions; 16 Gy in two fractions vs. 8 Gy in one fraction) in patients with a poor prognosis showed no difference in ambulation, duration of ambulation, bladder function, pain response, in-field failure, and overall survival. Retrospective multicenter studies reported that protracted RT schedules in nonsurgical patients with a good prognosis improved local control but had no effect on functional or survival outcomes. Conclusions: If not medically contraindicated, steroids are recommended for any patient with neurologic deficits suspected or confirmed to have MESCC. Surgery should be considered for patients with a good prognosis who are medically and surgically operable. RT should be given to nonsurgical patients. For those with a poor prognosis, a single fraction of 8 Gy should be given; for those with a good prognosis, 30 Gy in 10 fractions could be considered. Patients should be followed up clinically and/or radiographically to determine whether a local relapse develops. Salvage therapies should be introduced before significant neurologic deficits occur.

  8. Functional outcome and survival after radiotherapy of metastatic spinal cord compression in patients with cancer of unknown primary

    SciTech Connect

    Rades, Dirk . E-mail: Rades.Dirk@gmx.net; Fehlauer, Fabian; Veninga, Theo; Stalpers, Lukas J.A.; Basic, Hiba; Hoskin, Peter J.; Rudat, Volker; Karstens, Johann H.; Schild, Steven E.; Dunst, Juergen

    2007-02-01

    Purpose: Patients with cancer of unknown primary (CUP) account for about 10% of patients with metastatic spinal cord compression (MSCC). This study aims to define the appropriate radiation regimen for these patients. Methods and Materials: Data of 143 CUP patients irradiated for MSCC were retrospectively evaluated. Short-course radiotherapy (RT) (1x8 Gy, 5x4 Gy, n = 68) and long-course RT (10x3 Gy, 15x2.5 Gy, 20x2 Gy, n = 75) plus 8 further potential prognostic factors (age, gender, performance status, visceral metastases, other bone metastases, number of involved vertebrae, ambulatory status, time of developing motor deficits before RT) were compared for functional outcome and survival. Results: Improvement of motor function occurred in 10% of patients, no further progression of motor deficits in 57%, and deterioration in 33%. On multivariate analysis, functional outcome was positively associated with slower development of motor deficits (p < 0.001), absence of visceral metastases (p = 0.008) and other bone metastases (p = 0.027), and ambulatory status (p = 0.054), not with the radiation regimen (p = 0.74). Recurrence of MSCC in the irradiated region occurred in 7 patients after median 6 months. Median survival was 4 months. On multivariate analysis, better survival was significantly associated with absence of visceral metastases (p < 0.001), absence of other bone metastases (p = 0.005), ambulatory status (p = 0.001), and slower development of motor deficits (p = 0.030). Conclusions: For MSCC treatment in patients with CUP, no significant difference was observed between short-course and long-course RT regarding functional outcome and survival. Short-course RT appears preferable, at least for patients with a poor predicted survival, as it is more patient convenient and more cost-effective.

  9. Who are the Best Candidates for Decompressive Surgery and Spine Stabilization in Patients With Metastatic Spinal Cord Compression?

    PubMed Central

    Lei, Mingxing; Li, Jianjie; Liu, Yaosheng; Jiang, Weigang; Liu, Shubin; Zhou, Shiguo

    2016-01-01

    Study Design. A retrospective study. Objective. This study aims to develop a new scoring system that can guild surgeons to select the best candidates for decompressive surgery in patients with metastatic spinal cord compression (MSCC). Summary of Background Data. Predicting survival and functional outcome is essential when selecting the individual treatment for patients with MSCC. The criteria for identifying MSCC patients who are most likely to benefit from decompressive surgery remain unclear. Methods. We retrospectively analyzed 12 preoperative characteristics for postoperative survival in a series of 206 patients with MSCC who were operated with decompressive surgery and spine stabilization. Characteristics significantly associated with survival in the multivariate analysis were included in the scoring system. Postoperative function outcome was also analyzed on the basis of the scoring system. Results. According to the multivariate analysis, primary site (P < 0.01), preoperative ambulatory status (P < 0.01), visceral metastases (P < 0.01), preoperative chemotherapy (P = 0.02), and bone metastasis at cancer diagnosis (P = 0.03) had a significant impact on postoperative survival and were included in the scoring system. According to the prognostic scores, which ranged from 0 to 10 points, three risk groups were designed: 0 to 2, 3 to 5, and 6 to 10 points. The corresponding 6 months survival rates were 8.2%, 56.5%, and 91.5%, respectively (P < 0.01), and postoperative ambulatory rates were 35.7%, 73.3%, and 95.9%, respectively (P < 0.01). Conclusion. We present a new scoring system for predicting survival and function outcome of MSCC patients after surgical decompression and spine stabilization. This new scoring system can help surgeons select the best candidates for surgical treatment. Level of Evidence: 4 PMID:26937605

  10. Preliminary Results of Spinal Cord Compression Recurrence Evaluation (Score-1) Study Comparing Short-Course Versus Long-Course Radiotherapy for Local Control of Malignant Epidural Spinal Cord Compression

    SciTech Connect

    Rades, Dirk Lange, Marisa; Veninga, Theo; Rudat, Volker; Bajrovic, Amira; Stalpers, Lukas J.A.; Dunst, Juergen; Schild, Steven E.

    2009-01-01

    Purpose: To compare the results of short-course vs. long-course radiotherapy (RT) for metastatic spinal cord compression. Methods and Materials: A total of 231 patients who underwent RT between January 2006 and August 2007 were included in this two-arm prospective nonrandomized study. Patients received short-course (n = 114) or long-course (n = 117) RT. The primary endpoint was progression-free survival (PFS). The secondary endpoints were local control (LC), functional outcome, and overall survival (OS). An additional 10 potential prognostic factors were investigated for outcomes. PFS and LC were judged according to motor function, not pain control. Results: The PFS rate at 12 months was 72% after long-course and 55% after short-course RT (p = 0.034). These results were confirmed in a multivariate analysis (relative risk, 1.33; 95% confidence interval, 1.01-1.79; p = 0.046). The 12-month LC rate was 77% and 61% after long-course and short-course RT, respectively (p = 0.032). These results were also confirmed in a multivariate analysis (relative risk, 1.49; 95% confidence interval, 1.03-2.24; p = 0.035). The corresponding 12-month OS rates were 32% and 25% (p = 0.37). Improvement in motor function was observed in 30% and 28% of patients undergoing long-course vs. short-course RT, respectively (p = 0.61). In addition to radiation schedule, PFS was associated with the interval to developing motor deficits before RT (relative risk, 1.99; 95% confidence interval, 1.10-3.55; p = 0.024). LC was associated only with the radiation schedule. Post-RT motor function was associated with performance status (p = 0.031), tumor type (p = 0.013), interval to developing motor deficits (p = 0.001), and bisphosphonate administration (p = 0.006). OS was associated with performance status (p < 0.001), number of involved vertebrae (p = 0.007), visceral metastases (p < 0.001), ambulatory status (p < 0.001), and bisphosphonate administration (p < 0.001). Conclusion: Short-course and long

  11. Incidence and Treatment Patterns in Hospitalizations for Malignant Spinal Cord Compression in the United States, 1998-2006

    SciTech Connect

    Mak, Kimberley S.; Lee, Leslie K.; Mak, Raymond H.; Wang, Shuang; Pile-Spellman, John; Abrahm, Janet L.; Prigerson, Holly G.; Balboni, Tracy A.

    2011-07-01

    Purpose: To characterize patterns in incidence, management, and costs of malignant spinal cord compression (MSCC) hospitalizations in the United States, using population-based data. Methods and Materials: Using the Nationwide Inpatient Sample, an all-payer healthcare database representative of all U.S. hospitalizations, MSCC-related hospitalizations were identified for the period 1998-2006. Cases were combined with age-adjusted Surveillance, Epidemiology and End Results cancer death data to estimate annual incidence. Linear regression characterized trends in patient, treatment, and hospital characteristics, costs, and outcomes. Logistic regression was used to examine inpatient treatment (radiotherapy [RT], surgery, or neither) by hospital characteristics and year, adjusting for confounding. Results: We identified 15,367 MSCC-related cases, representing 75,876 hospitalizations. Lung cancer (24.9%), prostate cancer (16.2%), and multiple myeloma (11.1%) were the most prevalent underlying cancer diagnoses. The annual incidence of MSCC hospitalization among patients dying of cancer was 3.4%; multiple myeloma (15.0%), Hodgkin and non-Hodgkin lymphomas (13.9%), and prostate cancer (5.5%) exhibited the highest cancer-specific incidence. Over the study period, inpatient RT for MSCC decreased (odds ratio [OR] 0.68, 95% confidence interval [CI] 0.61-0.81), whereas surgery increased (OR 1.48, 95% CI 1.17-1.84). Hospitalization costs for MSCC increased (5.3% per year, p < 0.001). Odds of inpatient RT were greater at teaching hospitals (OR 1.41, 95% CI 1.19-1.67), whereas odds of surgery were greater at urban institutions (OR 1.82, 95% CI 1.29-2.58). Conclusions: In the United States, patients dying of cancer have an estimated 3.4% annual incidence of MSCC requiring hospitalization. Inpatient management of MSCC varied over time and by hospital characteristics, with hospitalization costs increasing. Future studies are required to determine the impact of treatment patterns on MSCC

  12. Validation of a Score Predicting Post-Treatment Ambulatory Status After Radiotherapy for Metastatic Spinal Cord Compression

    SciTech Connect

    Rades, Dirk; Douglas, Sarah; Huttenlocher, Stefan; Rudat, Volker; Veninga, Theo; Stalpers, Lukas J.A.; Basic, Hiba; Karstens, Johann H.; Hoskin, Peter J.; Adamietz, Irenaeus A.; Schild, Steven E.

    2011-04-01

    Purpose: A score predicting post-radiotherapy (RT) ambulatory status was developed based on 2,096 retrospectively evaluated metastatic spinal cord compression (MSCC) patients. This study aimed to validate the score in a prospective series. Methods and Materials: The score included five factors associated with post-RT ambulatory status: tumor type, interval tumor diagnosis to MSCC, visceral metastases, pre-RT motor function, time developing motor deficits. Patients were divided into five groups: 21-28, 29-31, 32-34, 35-37, 38-44 points. In this study, 653 prospectively followed patients were divided into the same groups. Furthermore, the number of prognostic groups was reduced from five to three (21-28, 29-37, 38-44 points). Post-RT ambulatory rates from this series were compared with the retrospective series. Additionally, this series was compared with 104 patients receiving decompressive surgery plus RT (41 laminectomy, 63 laminectomy plus stabilization of vertebrae). Results: In this study, post-RT ambulatory rates were 10.6% (21-28 points), 43.5% (29-31 points), 71.0% (32-34 points), 89.5% (35-37 points), and 98.5% (38-44 points). Ambulatory rates from the retrospective study were 6.2%, 43.5%, 70.0%, 86.1%, and 98.7%. After regrouping, ambulatory rates were 10.6% (21-28 points), 70.9% (29-37 points), and 98.5% (38-44 points) in this series, and 6.2%, 68.4%, and 98.7% in the retrospective series. Ambulatory rates were 0%, 62.5%, and 90.9% in the laminectomy plus RT group, and 14.3%, 83.9%, and 100% in the laminectomy + stabilization plus RT group. Conclusions: Ambulatory rates in the different groups in this study were similar to those in the retrospective study demonstrating the validity of the score. Using only three groups is simplier for clinical routine.

  13. Inhibition of SNL-induced upregulation of CGRP and NPY in the spinal cord and dorsal root ganglia by the 5-HT(2A) receptor antagonist ketanserin in rats.

    PubMed

    Wang, Dongmei; Chen, Tingjun; Gao, Yun; Quirion, Rémi; Hong, Yanguo

    2012-05-01

    Our previous study has demonstrated that topical and systemic administration of the 5-HT(2A) receptor antagonist ketanserin attenuates neuropathic pain. To explore the mechanisms involved, we examined whether ketanserin reversed the plasticity changes associated with calcitonin gene-related peptides (CGRP) and neuropeptide Y (NPY) which may reflect distinct mechanisms: involvement and compensatory protection. Behavioral responses to thermal and tactile stimuli after spinal nerve ligation (SNL) at L5 demonstrated neuropathic pain and its attenuation in the vehicle- and ketanserin-treated groups, respectively. SNL surgery induced an increase in CGRP and NPY immunoreactivity (IR) in laminae I-II of the spinal cord. L5 SNL produced an expression of NPY-IR in large, medium and small diameter neurons in dorsal root ganglion (DRG) only at L5, but not adjacent L4 and L6. Daily injection of ketanserin (0.3 mg/kg, s.c.) for two weeks suppressed the increase in CGRP-IR and NPY-IR in the spinal cord or DRG. The present study demonstrated that: (1) the expression of CGRP was enhanced in the spinal dorsal horn and NPY was expressed in the DRG containing injured neurons, but not in the adjacent DRG containing intact neurons, following L5 SNL; (2) the maladaptive changes in CGRP and NPY expression in the spinal cord and DRG mediated the bioactivity of 5-HT/5-HT(2A) receptors in neuropathic pain and (3) the blockade of 5-HT(2A) receptors by ketanserin reversed the evoked upregulation of both CGRP and NPY in the spinal cord and DRG contributing to the inhibition of neuropathic pain.

  14. Neuropsychiatry of the basal ganglia

    PubMed Central

    Ring, H; Serra-Mestres, J

    2002-01-01

    This review aims to relate recent findings describing the role and neural connectivity of the basal ganglia to the clinical neuropsychiatry of basal ganglia movement disorders and to the role of basal ganglia disturbances in "psychiatric"' states. Articles relating to the relevant topics were initially collected through MEDLINE and papers relating to the clinical conditions discussed were also reviewed. The anatomy and connections of the basal ganglia indicate that these structures are important links between parts of the brain that have classically been considered to be related to emotional functioning and brain regions previously considered to have largely motor functions. The basal ganglia have a role in the development and integration of psychomotor behaviours, involving motor functions, memory and attentional mechanisms, and reward processes. PMID:11784818

  15. Spinal tumor

    MedlinePlus

    Tumor - spinal cord ... spinal tumors occur in the nerves of the spinal cord itself. Most often these are ependymomas and other ... gene mutations. Spinal tumors can occur: Inside the spinal cord (intramedullary) In the membranes (meninges) covering the spinal ...

  16. THE SIGNIFICANCE OF LESIONS IN PERIPHERAL GANGLIA IN CHIMPANZEE AND IN HUMAN POLIOMYELITIS

    PubMed Central

    Bodian, David; Howe, Howard A.

    1947-01-01

    1. The peripheral ganglia of eighteen inoculated chimpanzees and thirteen uninoculated controls, and of eighteen fatal human poliomyelitis cases, were studied for histopathological evidence of the route of transmission of virus from the alimentary tract to the CNS. 2. Lesions thought to be characteristic of poliomyelitis in inoculated chimpanzees could not be sharply differentiated from lesions of unknown origin in uninoculated control animals. Moreover, although the inoculated animals as a group, in comparison with the control animals, had a greater number of infiltrative lesions in sympathetic as well as in sensory ganglia, it was not possible to make satisfactory correlations between the distribution of these lesions and the routes of inoculation. 3. In sharp contrast with chimpanzees, the celiac and stellate ganglia of the human poliomyelitis cases were free of any but insignificant infiltrative lesions. Lesions in human trigeminal and spinal sensory ganglia included neuronal damage as well as focal and perivascular inflitrative lesions, as is well known. In most ganglia, as in monkey and chimpanzee sensory ganglia, these were correlated in intensify with the degree of severity of lesions in the region of the CNS receiving their axons. This suggested that lesions in sensory ganglia probably resulted from spread of virus centrifugally from the CNS, in accord with considerable experimental evidence. 4. Two principal difficulties in the interpretation of histopathological findings in peripheral ganglia were revealed by this study. The first is that the specificity of lesions in sympathetic ganglia has not been established beyond doubt as being due to poliomyelitis. The second is that the presence of characteristic lesions in sensory ganglia does not, and cannot, reveal whether the virus reached the ganglia from the periphery or from the central nervous system, except in very early preparalytic stages or in exceptional cases of early arrest of virus spread and of

  17. [Anti-basal ganglia antibody].

    PubMed

    Hayashi, Masaharu

    2013-04-01

    Sydenham's chorea (SC) is a major manifestation of rheumatic fever, and the production of anti-basal ganglia antibodies (ABGA) has been proposed in SC. The pathogenesis is hypothesized as autoimmune targeting of the basal ganglia via molecular mimicry, triggered by streptococcal infection. The spectrum of diseases in which ABGA may be involved has been broadened to include other extrapyramidal movement disorders, such as tics, dystonia, and Parkinsonism, as well as other psychiatric disorders. The autoimmune hypothesis in the presence and absence of ABGA has been suggested in Tourette's syndrome (TS), early onset obsessive-compulsive disorders (OCD), and pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections (PANDAS). Recently, the relationship between ABGA and dopamine neurons in the basal ganglia has been examined, and autoantibodies against dopamine receptors were detected in the sera from patients with basal ganglia encephalitis. In Japan, the occurrence of subacute encephalitis, where patients suffer from episodes of altered behavior and involuntary movements, has increased. Immune-modulating treatments are effective, indicating the involvement of an autoimmune mechanism. We aimed to detect the anti-neuronal autoantibodies in such encephalitis, using immunohistochemical assessment of patient sera. The sera from patients showing involuntary movements had immunoreactivity for basal ganglia neurons. Further epitopes for ABGA will be investigated in basal ganglia disorders other than SC, TS, OCD, and PANDAS. PMID:23568985

  18. Selective extracellular stimulation of individual neurons in ganglia

    NASA Astrophysics Data System (ADS)

    Lu, Hui; Chestek, Cynthia A.; Shaw, Kendrick M.; Chiel, Hillel J.

    2008-09-01

    Selective control of individual neurons could clarify neural functions and aid disease treatments. To target specific neurons, it may be useful to focus on ganglionic neuron clusters, which are found in the peripheral nervous system in vertebrates. Because neuron cell bodies are found primarily near the surface of invertebrate ganglia, and often found near the surface of vertebrate ganglia, we developed a technique for controlling individual neurons extracellularly using the buccal ganglia of the marine mollusc Aplysia californica as a model system. We experimentally demonstrated that anodic currents can selectively activate an individual neuron and cathodic currents can selectively inhibit an individual neuron using this technique. To define spatial specificity, we studied the minimum currents required for stimulation, and to define temporal specificity, we controlled firing frequencies up to 45 Hz. To understand the mechanisms of spatial and temporal specificity, we created models using the NEURON software package. To broadly predict the spatial specificity of arbitrary neurons in any ganglion sharing similar geometry, we created a steady-state analytical model. A NEURON model based on cat spinal motor neurons showed responses to extracellular stimulation qualitatively similar to those of the Aplysia NEURON model, suggesting that this technique could be widely applicable to vertebrate and human peripheral ganglia having similar geometry.

  19. AMPA glutamatergic receptor-immunoreactive subunits are expressed in lumbosacral neurons of the spinal cord and neurons of the dorsal root and pelvic ganglia controlling pelvic functions in the rat.

    PubMed

    Chambille, I; Rampin, O

    2002-04-12

    Sacral preganglionic neurons innervate the pelvic organs via a relay in the major pelvic ganglion. Pudendal motoneurons innervate striated muscles and sphincters of the lower urinary, genital and digestive tracts. The activity of these spinal neurons is regulated by sensory afferents of visceral and somatic origins. Glutamate is released by sensory afferents in the spinal cord, and interacts with a variety of receptor subtypes. The aim of the present study was to investigated the presence of AMPA glutamate receptor subunits (GluR1-GluR4) in the neural network controlling the lower urogenital and digestive tracts of male rats. We performed double-immunohistochemistry directed against a neuronal tracer, the cholera toxin beta subunit (Ctbeta) and each of the four receptor subunits. GluR1, GluR2 and GluR3 subunits were present in many sacral preganglionic neurons retrogradely labelled with Ctbeta applied to the pelvic nerve, and in some dorsolateral and dorsomedian motoneurons retrogradely labelled with Ctbeta injected in ischiocavernosus and bulbospongiosus muscles. The four subunits were detected in postganglionic neurons of the major pelvic ganglion retrogradely labelled with Ctbeta injected in the corpus cavernosum, and in some somata of sensory afferents of the L6 dorsal root ganglion labelled with Ctbeta applied to the dorsal penile nerve or injected in corpus cavernosum. The results provide a detailed knowledge of the neural targets expressing the various AMPA receptor subunits and suggest that part of the neural network that controls pelvic organs, including sensory afferents and postganglionic neurons, is sensitive to glutamate through the whole family of AMPA subunits.

  20. Final Results of a Prospective Study Comparing the Local Control of Short-Course and Long-Course Radiotherapy for Metastatic Spinal Cord Compression

    SciTech Connect

    Rades, Dirk; Lange, Marisa; Veninga, Theo; Stalpers, Lukas J.A.; Bajrovic, Amira; Adamietz, Irenaeus A.; Rudat, Volker; Schild, Steven E.

    2011-02-01

    Purpose: Many patients with metastatic spinal cord compression (MSCC) live long enough to develop a recurrence in the irradiated spinal area. This is the first prospective study that has compared local control of different radiotherapy schedules for MSCC. Methods and Materials: A total of 265 patients treated with radiotherapy alone were included in this prospective nonrandomized study. The primary goal was to compare local control from short-course (1 x 8 Gy/5 x 4 Gy, n = 131) and long-course radiotherapy (10 x 3 Gy/15 x 2.5 Gy/20 x 2 Gy, n = 134). Secondary end points were motor function and survival. The analysis of local control (no MSCC recurrence in the irradiated spinal area) included the 224 patients with improvement or no change of motor deficits during radiotherapy. Eleven additional factors were evaluated for outcomes. Results: One-year local control was 61% after short-course and 81% after long-course radiotherapy (p = 0.005). On multivariate analysis (MVA), improved local control was associated with long-course radiotherapy (p = 0.018). Motor function improved in 37% after short-course and 39% after long-course radiotherapy (p = 0.95). Improved motor function was associated with better performance status (p = 0.015), favorable tumor type (p = 0.034), and slower development of motor deficits (p < 0.001). One-year survival rates were 23% after short-course and 30% after long-course radiotherapy (p = 0.28). On MVA, improved survival was associated with better performance status (p < 0.001), no visceral metastases (p < 0.001), involvement of only one to three vertebrae (p = 0.040), ambulatory status (p = 0.038), and bisphosphonate administration after radiotherapy (p < 0.001). Conclusions: Long-course radiotherapy was associated with better local control, similar functional outcome, and similar survival compared to short-course radiotherapy. Patients with a relatively favorable expected survival should receive long-course radiotherapy.

  1. [Dorso-lumbar spinal compression fractures in the child. Follow-up at the termination of development].

    PubMed

    Zambelli, P Y; Dutoit, M; Genton, N

    1991-07-01

    Between 1970 and 1985, we count 32 children with compressive fractures of the vertebral column. None of them undergo a surgical procedure. We examine 24 of these 32 children with a mean delay of 10.5 years. Most of the fractures were referring to sporting activities and home games. The main localization was dorsal (T6) and upper-lumbar (12). The mean reduced height of the ventral portion of the vertebra was 27%. Some 10 years later, two third of the patients have some persistent pains and half of them daily. Most of the aches concerned children of more than 12 years when trauma occurred and those who developed a scoliosis during evolution. Wonder the global static of the rachis is little concerned in most of these children. Therefore compressive vertebral fracture of the youngster should be reduced and fixed by a corset. But the immobilization shouldn't be longer than 2 months, accompanied by appropriate gymnastics and followed by a quick renewal of the sporting activities.

  2. Protective Effect of Electroacupuncture on Neural Myelin Sheaths is Mediated via Promotion of Oligodendrocyte Proliferation and Inhibition of Oligodendrocyte Death After Compressed Spinal Cord Injury.

    PubMed

    Huang, Siqin; Tang, Chenglin; Sun, Shanquan; Cao, Wenfu; Qi, Wei; Xu, Jin; Huang, Juan; Lu, Weitian; Liu, Qian; Gong, Biao; Zhang, Yi; Jiang, Jin

    2015-12-01

    Electroacupuncture (EA) has been used worldwide to treat demyelinating diseases, but its therapeutic mechanism is poorly understood. In this study, a custom-designed model of compressed spinal cord injury (CSCI) was used to induce demyelination. Zusanli (ST36) and Taixi (KI3) acupoints of adult rats were stimulated by EA to demonstrate its protective effect. At 14 days after EA, both locomotor skills and ultrastructural features of myelin sheath were significantly improved. Phenotypes of proliferating cells were identified by double immunolabeling of 5-ethynyl-2'-deoxyuridine with antibodies to cell markers: NG2 [oligodendrocyte precursor cell (OPC) marker], 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase) (oligodendrocyte marker), and glial fibrillary acidic protein (GFAP) (astrocyte marker). EA enhanced the proliferation of OPCs and CNPase, as well as the differentiation of OPCs by promoting Olig2 (the basic helix-loop-helix protein) and attenuating Id2 (the inhibitor of DNA binding 2). EA could also improve myelin basic protein (MBP) and protect existing oligodendrocytes from apoptosis by inhibiting caspase-12 (a representative of endoplasmic reticulum stress) and cytochrome c (an apoptotic factor and hallmark of mitochondria). Therefore, our results indicate that the protective effect of EA on neural myelin sheaths is mediated via promotion of oligodendrocyte proliferation and inhibition of oligodendrocyte death after CSCI.

  3. Apathy and the basal ganglia.

    PubMed

    Levy, Richard; Czernecki, Virginie

    2006-12-01

    We should like to emphasize the following points: 1. Apathy is defined here as a quantified and observable behavioral syndrome consisting in a quantitative reduction of voluntary (or goal-directed) behaviors; 2. Therefore, apathy occurs when the systems that generate and control voluntary actions are altered; 3. These systems are mostly represented by the different subregions embedded in the Prefrontal cortex (PFC) and in the basal ganglia regions that are closely connected with the PFC; 4. In consequence, clinically, apathy is a prefrontal syndrome either due to direct lesions of the PFC or to lesions of basal ganglia areas that are closely related to the PFC; 5. Apathy is not a single entity but rather heterogeneous. Several different mechanisms may lead to apathy; Because there are several anatomical-functional prefrontal-basal ganglia circuits, the underlying mechanisms responsible for apathy may differ according to which prefrontal-basal ganglia circuit is affected; 6. In this context, apathy is the macroscopic results of the disruption of one or several elementary steps necessary for goal-directed behavior that are subserved by different prefrontal-basal ganglia circuits; 7. Intense apathy is related to caudate nucleus and GPi, disrupting associative and limbic pathways from/to the PFC; 8. in progressive supranuclear palsy (PSP) and focal lesions (caudate nuclei, GPi), apathy may be due to a loss of PFC activation; 9. In Parkinson's disease (PD), apathy may be due to a loss of signal focalization; 10. More globally, we propose that apathy may be explained by the impact of lesions or dysfunctions of the BG, because these lesions or dysfunctions lead to a loss of amplification of the relevant signal and/or to a loss of temporal and spatial focalization, both of which result in a diminished extraction of the relevant signal within the frontal cortex, thereby inhibiting the capacity of the frontal cortex to select, initiate, maintain and shift programs of action.

  4. Communication between neuronal somata and satellite glial cells in sensory ganglia.

    PubMed

    Huang, Li-Yen M; Gu, Yanping; Chen, Yong

    2013-10-01

    Studies of the structural organization and functions of the cell body of a neuron (soma) and its surrounding satellite glial cells (SGCs) in sensory ganglia have led to the realization that SGCs actively participate in the information processing of sensory signals from afferent terminals to the spinal cord. SGCs use a variety ways to communicate with each other and with their enwrapped soma. Changes in this communication under injurious conditions often lead to abnormal pain conditions. "What are the mechanisms underlying the neuronal soma and SGC communication in sensory ganglia?" and "how do tissue or nerve injuries affect the communication?" are the main questions addressed in this review.

  5. Advance Directives and Do-Not-Resuscitate Orders in Patients with Cancer with Metastatic Spinal Cord Compression: Advanced Care Planning Implications

    PubMed Central

    Palmer, J. Lynn; Bianty, Josephine; Konzen, Benedict; Shin, Ki; Bruera, Eduardo

    2010-01-01

    Abstract Objectives Communication about end-of-life decisions is crucial. Although patients with metastatic spinal cord compression (MSCC) have a median survival time of 3 to 6 months, few data are available concerning the presence of advance directives and do-not-resuscitate (DNR) orders in this population. The objective of this study was to determine presence of advance directives and DNR order among patients with MSCC. Methods We retrospectively reviewed data concerning advance directives for 88 consecutive patients with cancer who had MSCC and required rehabilitation consultation at The University of Texas M. D. Anderson Cancer Center from September 20, 2005 to August 29, 2008. We characterized the data using univariate descriptive statistics and used the Fisher exact test to find correlations. Results The mean age of this patient population was 55 years (range, 24–81). Thirty patients (33%) were female. Twenty patients (23%) had a living will, 27 patients (31%) had health care proxies, and 10 patients (11%) had either out-of-hospital DNR order and/or dictated DNR note. The median survival time for these patients was 4.3 months. Conclusion Despite strong evidence showing short survival times for MSCC patients, it seems many of these patients are not aware of the urgency to have an advance directive. This may be an indicator of delayed end-of-life palliative care and suboptimal doctor–patient communication. Using the catastrophic event of a diagnosis of MSCC to trigger communication and initiate palliative care may be beneficial to patients and their families. PMID:20192843

  6. Neuropathic pain induced by spinal cord injury: Role of endothelin ETA and ETB receptors.

    PubMed

    Forner, S; Martini, A C; de Andrade, E L; Rae, G A

    2016-03-23

    Spinal cord injury (SCI) is a devastating neurologic disorder that often inflicts neuropathic pain, which further impacts negatively on the patient's quality of life. Endothelin peptides, which exert their effects via endothelin A (ETAR) and endothelin B (ETBR) receptors, can contribute to sensory changes associated with inflammatory and neuropathic pain, but their role in nociception following SCI is unknown. At different time points after subjecting male Wistar rats to surgery for compression-induced T10 level SCI, the spinal cord levels of ETAR and ETBR were assessed by Western blot and immunohistochemistry, and the corresponding mRNAs by real-time PCR, alongside recordings of behavioural responses to mechanical stimulation of the hind paws with von Frey hairs. SCI was associated with development of hind paw mechanical allodynia from day 14 onwards, and up-regulation of ETAR and ETBR mRNA in the spinal cord and dorsal root ganglia, and of ETAR protein in the spinal cord. SCI increased ETAR protein expression in spinal grey matter. Treatment on day 21 after surgery with the ETAR selective antagonist BQ-123 (40 and 90 pmol, intrathecally) or the dual ETAR/ETBR antagonist bosentan (30 and 100mg/kg, orally) transiently reduced SCI-induced mechanical allodynia, but the ETBR antagonist BQ-788 was ineffective. Altogether, these data show that SCI upregulates ETAR expression in the spinal cord, which appears to contribute to the hind paw mechanical allodynia associated with this condition. Therapies directed towards blockade of spinal ETAR may hold potential to limit SCI-induced neuropathic pain.

  7. Hemorrhagic onset of spinal angiolipoma.

    PubMed

    da Costa, Marcos Devanir Silva; Paz, Daniel de Araujo; Rodrigues, Thiago Pereira; Gandolfi, Ana Camila de Castro; Lamis, Fabricio Correa; Stavale, João Norberto; Suriano, Italo Capraro; Cetl, Luiz Daniel Marques Neves; Cavalheiro, Sergio

    2014-12-01

    Spinal angiolipomas are rare benign tumors that generally induce slow progressive cord compression. Here, the authors describe a case of sudden-onset palsy of the lower extremities caused by hemorrhagic spinal angiolipoma. An emergent laminectomy was performed to achieve total lesion removal. Follow-up examinations indicated neurological improvement and the absence of recurrence.

  8. Single-Fraction Versus 5-Fraction Radiation Therapy for Metastatic Epidural Spinal Cord Compression in Patients With Limited Survival Prognoses: Results of a Matched-Pair Analysis

    SciTech Connect

    Rades, Dirk; Huttenlocher, Stefan; Šegedin, Barbara; Perpar, Ana; Conde, Antonio J.; Garcia, Raquel; Veninga, Theo; Stalpers, Lukas J.A.; Cacicedo, Jon; Rudat, Volker; Schild, Steven E.

    2015-10-01

    Purpose: This study compared single-fraction to multi-fraction short-course radiation therapy (RT) for symptomatic metastatic epidural spinal cord compression (MESCC) in patients with limited survival prognosis. Methods and Materials: A total of 121 patients who received 8 Gy × 1 fraction were matched (1:1) to 121 patients treated with 4 Gy × 5 fractions for 10 factors including age, sex, performance status, primary tumor type, number of involved vertebrae, other bone metastases, visceral metastases, interval between tumor diagnosis and MESCC, pre-RT ambulatory status, and time developing motor deficits prior to RT. Endpoints included in-field repeated RT (reRT) for MESCC, overall survival (OS), and impact of RT on motor function. Univariate analyses were performed with the Kaplan-Meier method and log-rank test for in-field reRT for MESCC and OS and with the ordered-logit model for effect of RT on motor function. Results: Doses of 8 Gy × 1 fraction and 4 Gy × 5 fractions were not significantly different with respect to the need for in-field reRT for MESCC (P=.11) at 6 months (18% vs 9%, respectively) and 12 months (30% vs 22%, respectively). The RT regimen also had no significant impact on OS (P=.65) and post-RT motor function (P=.21). OS rates at 6 and 12 months were 24% and 9%, respectively, after 8 Gy × 1 fraction versus 25% and 13%, respectively, after 4 Gy × 5 fractions. Improvement of motor function was observed in 17% of patients after 8 Gy × 1 fraction and 23% after 4 Gy × 5 fractions, respectively. Conclusions: There were no significant differences with respect to need for in-field reRT for MESCC, OS, and motor function by dose fractionation regimen. Thus, 8 Gy × 1 fraction may be a reasonable option for patients with survival prognosis of a few months.

  9. Comparison of Short-Course Radiotherapy Versus Long-Course Radiotherapy for Treatment of Metastatic Spinal Cord Compression: A Systematic Review and Meta-Analysis.

    PubMed

    Qu, Song; Meng, Hui-Ling; Liang, Zhong-Guo; Zhu, Xiao-Dong; Li, Ling; Chen, Ling-Xiao; Zhou, Zhi-Rui

    2015-10-01

    In this study, we evaluate the efficacy of short-course radiotherapy (SCRT) versus long-course radiotherapy (LCRT) in the treatment of metastatic spinal cord compression (MSCC).PubMed, EMBASE, and Web of Science were searched up to April 2015. Relevant data were extracted based on inclusion and exclusion criteria. Methodological quality of randomized controlled trial (RCT) was evaluated using modified Jadad scale; non-RCT was evaluated using Newcastle-Ottawa Scale. Meta-analysis was performed using RevMan 5.3 software.Fourteen studies with 2239 patients were included. Results of meta-analysis showed that there were no significant differences between SCRT and long-course radiotherapy LCRT in 6-month overall survival rate (risk ratio [RR] = 0.97, 95% confidence interval [CI] 0.88, 1.07, P = 0.55), 1-year overall survival rate (RR = 0.94, 95% CI 0.85, 1.04, P = 0.22), motor function improvement (RR = 0.96, 95% CI 0.81, 1.13, P = 0.63), no change on motor function (RR = 0.98, 95% CI (0.88, 1.09), P = 0.74], and deterioration on motor function (RR = 0.96, 95% CI 0.71, 1.31, P = 0.78). Compared with SCRT, LCRT significantly increased 6-month local control rate (RR = 0.87, 95% CI 0.80, 0.95, P = 0.002), 1-year local control rate (RR = 0.83, 95% CI 0.71, 0.97, P = 0.02), and 2-year local control rate (RR = 0.83, 95% CI 0.79, 0.87, P < 0.00001).Both LCRT and SCRT provided similar survival rates and functional outcome, but LCRT showed better local control rates than SCRT. However, considering low cost and good patient's compliance, SCRT may be a better choice.

  10. Migraine attacks the Basal Ganglia

    PubMed Central

    2011-01-01

    Background With time, episodes of migraine headache afflict patients with increased frequency, longer duration and more intense pain. While episodic migraine may be defined as 1-14 attacks per month, there are no clear-cut phases defined, and those patients with low frequency may progress to high frequency episodic migraine and the latter may progress into chronic daily headache (> 15 attacks per month). The pathophysiology of this progression is completely unknown. Attempting to unravel this phenomenon, we used high field (human) brain imaging to compare functional responses, functional connectivity and brain morphology in patients whose migraine episodes did not progress (LF) to a matched (gender, age, age of onset and type of medication) group of patients whose migraine episodes progressed (HF). Results In comparison to LF patients, responses to pain in HF patients were significantly lower in the caudate, putamen and pallidum. Paradoxically, associated with these lower responses in HF patients, gray matter volume of the right and left caudate nuclei were significantly larger than in the LF patients. Functional connectivity analysis revealed additional differences between the two groups in regard to response to pain. Conclusions Supported by current understanding of basal ganglia role in pain processing, the findings suggest a significant role of the basal ganglia in the pathophysiology of the episodic migraine. PMID:21936901

  11. Segmentation of nerve bundles and ganglia in spine MRI using particle filters.

    PubMed

    Dalca, Adrian; Danagoulian, Giovanna; Kikinis, Ron; Schmidt, Ehud; Golland, Polina

    2011-01-01

    Automatic segmentation of spinal nerve bundles that originate within the dural sac and exit the spinal canal is important for diagnosis and surgical planning. The variability in intensity, contrast, shape and direction of nerves seen in high resolution myelographic MR images makes segmentation a challenging task. In this paper, we present an automatic tracking method for nerve segmentation based on particle filters. We develop a novel approach to particle representation and dynamics, based on Bézier splines. Moreover, we introduce a robust image likelihood model that enables delineation of nerve bundles and ganglia from the surrounding anatomical structures. We demonstrate accurate and fast nerve tracking and compare it to expert manual segmentation.

  12. Identification of bladder and colon afferents in the nodose ganglia of male rats.

    PubMed

    Herrity, April N; Rau, Kristofer K; Petruska, Jeffrey C; Stirling, David P; Hubscher, Charles H

    2014-11-01

    The sensory neurons innervating the urinary bladder and distal colon project to similar regions of the central nervous system and often are affected simultaneously by various diseases and disorders, including spinal cord injury. Anatomical and physiological commonalities between the two organs involve the participation of shared spinally derived pathways, allowing mechanisms of communication between the bladder and colon. Prior electrophysiological data from our laboratory suggest that the bladder also may receive sensory innervation from a nonspinal source through the vagus nerve, which innervates the distal colon as well. The present study therefore aimed to determine whether anatomical evidence exists for vagal innervation of the male rat urinary bladder and to assess whether those vagal afferents also innervate the colon. Additionally, the relative contribution to bladder and colon sensory innervation of spinal and vagal sources was determined. By using lipophilic tracers, neurons that innervated the bladder and colon in both the nodose ganglia (NG) and L6/S1 and L1/L2 dorsal root ganglia (DRG) were quantified. Some single vagal and spinal neurons provided dual innervation to both organs. The proportions of NG afferents labeled from the bladder did not differ from spinal afferents labeled from the bladder when considering the collective population of total neurons from either group. Our results demonstrate evidence for vagal innervation of the bladder and colon and suggest that dichotomizing vagal afferents may provide a neural mechanism for cross-talk between the organs. PMID:24845615

  13. Spinal fusion

    MedlinePlus

    ... Anterior spinal fusion; Spine surgery - spinal fusion; Low back pain - fusion; Herniated disk - fusion ... If you had chronic back pain before surgery, you will likely still have some pain afterward. Spinal fusion is unlikely to take away all your pain ...

  14. Spinal injury

    MedlinePlus

    ... head. Alternative Names Spinal cord injury; SCI Images Skeletal spine Vertebra, cervical (neck) Vertebra, lumbar (low back) Vertebra, thoracic (mid back) Vertebral column Central nervous system Spinal cord injury Spinal anatomy Two person roll - ...

  15. Technique of spinal cord compression induced by inflation of epidural balloon catheter in rabbits (Oryctologus cuniculus): efficient and easy to use model.

    PubMed

    Fonseca, Antonio F B DA; Scheffer, Jussara P; Coelho, Barbara P; Aiello, Graciane; Guimarães, Arthur G; Gama, Carlos R B; Vescovini, Victor; Cabral, Paula G A; Oliveira, André L A

    2016-09-01

    The most common cause of spinal cord injury are high impact trauma, which often result in some motor impairment, sensory or autonomic a greater or lesser extent in the distal areas the level of trauma. In terms of survival and complications due to sequelae, veterinary patients have a poor prognosis unfavorable. Therefore justified the study of experimental models of spinal cord injury production that could provide more support to research potential treatments for spinal cord injuries in medicine and veterinary medicine. Preclinical studies of acute spinal cord injury require an experimental animal model easily reproducible. The most common experimental animal model is the rat, and several techniques for producing a spinal cord injury. The objective of this study was to describe and evaluate the effectiveness of acute spinal cord injury production technique through inflation of Fogarty(r) catheter using rabbits as an experimental model because it is a species that has fewer conclusive publications and contemplating. The main requirements of a model as low cost, handling convenience, reproducibility and uniformity. The technique was adequate for performing preclinical studies in neuro-traumatology area, effectively leading to degeneration and necrosis of the nervous tissue fostering the emergence of acute paraplegia.

  16. Spinal angiolipoma with acute subarachnoid hemorrhage.

    PubMed

    Raghavendra, S; Krishnamoorthy, T; Ashalatha, R; Kesavadas, C

    2007-10-01

    Angiolipoma is a rare tumor of the spine commonly presenting with compressive myelopathy. We report a spinal angiolipoma in a 14-year-old patient with acute spinal subarachnoid hemorrhage (SAH). To our knowledge this is the first reported case of a spinal angiolipoma presenting with SAH, associated with post-subclavian coarctation with diffuse hypoplasia of the descending aorta. This association of coarctation of aorta, aortic hypoplasia and spinal angiolipoma has also not been reported previously.

  17. Expression of Cystic Fibrosis Transmembrane Conductance Regulator in Ganglia of Human Gastrointestinal Tract.

    PubMed

    Xue, Ruiqi; Gu, Huan; Qiu, Yamei; Guo, Yong; Korteweg, Christine; Huang, Jin; Gu, Jiang

    2016-01-01

    CF is caused by mutations of the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) which is an anion selective transmembrane ion channel that mainly regulates chloride transport, expressed in the epithelia of various organs. Recently, we have demonstrated CFTR expression in the brain, the spinal cord and the sympathetic ganglia. This study aims to investigate the expression and distribution of CFTR in the ganglia of the human gastrointestinal tract. Fresh tissue and formalin-fixed paraffin-embedded normal gastrointestinal tract samples were collected from eleven surgical patients and five autopsy cases. Immunohistochemistry, in situ hybridization, laser-assisted microdissection and nested reverse transcriptase polymerase chain reaction were performed. Expression of CFTR protein and mRNA was detected in neurons of the ganglia of all segments of the human gastrointestinal tract examined, including the stomach, duodenum, jejunum, ileum, cecum, appendix, colon and rectum. The extensive expression of CFTR in the enteric ganglia suggests that CFTR may play a role in the physiology of the innervation of the gastro-intestinal tract. The presence of dysfunctional CFTRs in enteric ganglia could, to a certain extent, explain the gastrointestinal symptoms frequently experienced by CF patients. PMID:27491544

  18. Expression of Cystic Fibrosis Transmembrane Conductance Regulator in Ganglia of Human Gastrointestinal Tract

    PubMed Central

    Xue, Ruiqi; Gu, Huan; Qiu, Yamei; Guo, Yong; Korteweg, Christine; Huang, Jin; Gu, Jiang

    2016-01-01

    CF is caused by mutations of the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) which is an anion selective transmembrane ion channel that mainly regulates chloride transport, expressed in the epithelia of various organs. Recently, we have demonstrated CFTR expression in the brain, the spinal cord and the sympathetic ganglia. This study aims to investigate the expression and distribution of CFTR in the ganglia of the human gastrointestinal tract. Fresh tissue and formalin-fixed paraffin-embedded normal gastrointestinal tract samples were collected from eleven surgical patients and five autopsy cases. Immunohistochemistry, in situ hybridization, laser-assisted microdissection and nested reverse transcriptase polymerase chain reaction were performed. Expression of CFTR protein and mRNA was detected in neurons of the ganglia of all segments of the human gastrointestinal tract examined, including the stomach, duodenum, jejunum, ileum, cecum, appendix, colon and rectum. The extensive expression of CFTR in the enteric ganglia suggests that CFTR may play a role in the physiology of the innervation of the gastro-intestinal tract. The presence of dysfunctional CFTRs in enteric ganglia could, to a certain extent, explain the gastrointestinal symptoms frequently experienced by CF patients. PMID:27491544

  19. Spinal Subdural Haematoma

    PubMed Central

    Manish K, Kothari; Chandrakant, Shah Kunal; Abhay M, Nene

    2015-01-01

    Introduction: Spinal Subdural hematoma is a rare cause of radiculopathy and spinal cord compression syndromes. It’s early diagnosis is essential. Chronological appearance of these bleeds vary on MRI. Case Report: A 56 year old man presented with progressive left lower limb radiculopathy and paraesthesias with claudication of three days duration. MRI revealed a subdural space occupying lesion compressing the cauda equina at L5-S1 level producing a ‘Y’ shaped dural sac (Y sign), which was hyperintense on T1W imaging and hypointense to cord on T2W image. The STIR sequence showed hyperintensity to cord. There was no history of bleeding diathesis. The patient underwent decompressive durotomy and biopsy which confirmed the diagnosis. Conclusion: Spinal subdural hematoma may present with rapidly progressive neurological symptoms. MRI is the investigation of choice. The knowledge of MRI appearance with respect to the chronological stage of the bleed is essential to avoid diagnostic and hence surgical dilemma PMID:27299051

  20. Spinal angiolipoma--case report.

    PubMed

    Chotai, Silky; Hur, Jun Seok; Moon, Hong Joo; Kwon, Taek-Hyun; Park, Youn Kwan; Kim, Joo Han

    2011-01-01

    A 69-year-old male presented with a rare spinal angiolipoma manifesting as history of back pain, and numbness in both lower limbs, which progressed over a period of 5 years. Total T10-T12 laminectomy was performed and the tumor was removed en bloc. The symptoms gradually improved postoperatively. Spinal angiolipoma is an uncommon benign extradural tumor of spine, which accounts for 0.14-1.2% of all spinal tumors and is a rare cause of spinal cord compression. Recognition of this entity is crucial as a benign and curable cause of paraplegia and back pain.

  1. The basal ganglia communicate with the cerebellum.

    PubMed

    Bostan, Andreea C; Dum, Richard P; Strick, Peter L

    2010-05-01

    The basal ganglia and cerebellum are major subcortical structures that influence not only movement, but putatively also cognition and affect. Both structures receive input from and send output to the cerebral cortex. Thus, the basal ganglia and cerebellum form multisynaptic loops with the cerebral cortex. Basal ganglia and cerebellar loops have been assumed to be anatomically separate and to perform distinct functional operations. We investigated whether there is any direct route for basal ganglia output to influence cerebellar function that is independent of the cerebral cortex. We injected rabies virus (RV) into selected regions of the cerebellar cortex in cebus monkeys and used retrograde transneuronal transport of the virus to determine the origin of multisynaptic inputs to the injection sites. We found that the subthalamic nucleus of the basal ganglia has a substantial disynaptic projection to the cerebellar cortex. This pathway provides a means for both normal and abnormal signals from the basal ganglia to influence cerebellar function. We previously showed that the dentate nucleus of the cerebellum has a disynaptic projection to an input stage of basal ganglia processing, the striatum. Taken together these results provide the anatomical substrate for substantial two-way communication between the basal ganglia and cerebellum. Thus, the two subcortical structures may be linked together to form an integrated functional network. PMID:20404184

  2. Purification and culture of adult rat dorsal root ganglia neurons.

    PubMed

    Delree, P; Leprince, P; Schoenen, J; Moonen, G

    1989-06-01

    To study the trophic requirements of adult rat dorsal root ganglia neurons (DRG) in vitro, we developed a purification procedure that yields highly enriched neuronal cultures. Forty to fifty ganglia are dissected from the spinal column of an adult rat. After enzymatic and mechanical dissociation of the ganglia, myelin debris are eliminated by centrifugation on a Percoll gradient. The resulting cell suspension is layered onto a nylon mesh with a pore size of 10 microns. Most of the neurons, the diameter of which ranged from 17 microns to greater than 100 microns, are retained on the upper surface of the sieve; most of the non-neuronal cells with a caliber of less than 10 microns after trypsinization go through it. Recovery of neurons is achieved by reversing the mesh onto a Petri dish containing culture medium. Neurons to non-neurons ratio is 1 to 10 in the initial cell suspension and 1 to 1 after separation. When these purified neurons are seeded at a density of 3,000 neurons/cm2 in 6 mm polyornithine-laminin (PORN-LAM) coated wells, neuronal survival (assessed by the ability to extend neurites), measured after 48 hr of culture, is very low (from 0 to 16%). Addition of nerve growth factor (NGF) does not improve neuronal survival. However, when neurons are cultured in the presence of medium conditioned (CM) by astrocytes or Schwann cells, 60-80% of the seeded, dye-excluding neurons survive. So, purified adult DRG neurons require for their short-term survival and regeneration in culture, a trophic support that is present in conditioned medium from PNS or CNS glia.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. The Basal Ganglia-Circa 1982

    NASA Technical Reports Server (NTRS)

    Mehler, William R.

    1981-01-01

    Our review has shown that recent studies with the new anterograde and retrograde axon transport methods have confirmed and extended our knowledge of the projection of the basal ganglia and clarified their sites of origin. They have thrown new light on certain topographic connectional relationships and revealed several new reciprocal connections between constituent nuclei of the basal ganglia. Similarly, attention has been drawn to the fact that there have also been many new histochemical techniques introduced in recent years that are now providing regional biochemical overlays for connectional maps of the central nervous system, especially regions in, or interconnecting with, the basal ganglia. However, although these new morphological biochemical maps are very complex and technically highly advanced, our understanding of the function controlled by the basal ganglia still remains primitive. The reader who is interested in some new ideas of the functional aspects of the basal ganglia is directed to Nauta's proposed conceptual reorganization of the basal ganglia telencephalon and to Marsden's more clinically orientated appraisal of the unsolved mysteries of the basal ganglia participation in the control of movement.

  4. Action, time and the basal ganglia

    PubMed Central

    Yin, Henry H.

    2014-01-01

    The ability to control the speed of movement is compromised in neurological disorders involving the basal ganglia, a set of subcortical cerebral nuclei that receive prominent dopaminergic projections from the midbrain. For example, bradykinesia, slowness of movement, is a major symptom of Parkinson's disease, whereas rapid tics are observed in patients with Tourette syndrome. Recent experimental work has also implicated dopamine (DA) and the basal ganglia in action timing. Here, I advance the hypothesis that the basal ganglia control the rate of change in kinaesthetic perceptual variables. In particular, the sensorimotor cortico-basal ganglia network implements a feedback circuit for the control of movement velocity. By modulating activity in this network, DA can change the gain of velocity reference signals. The lack of DA thus reduces the output of the velocity control system which specifies the rate of change in body configurations, slowing the transition from one body configuration to another. PMID:24446506

  5. Skiing and spinal trauma.

    PubMed

    Frymoyer, J W; Pope, M H; Kristiansen, T

    1982-07-01

    Spinal injury in skiers can either be acute or chronic. Acute spinal injury accounts for 3 to 3.6 per cent of all injuries occurring in Alpine skiing. Fewer acute injuries occur in cross-country skiing, and those that do usually are the result of a sudden, compressive force from a seated fall. The prevalence of chronic spinal trauma in skiing is unknown. Both cross-country and Alpine skiers appear to have greater complaints of mild to moderate low back pain as compared with their nonskiing counterparts. These differences may be the result of a complex interaction between recreational and occupational activities. Theoretical analyses suggest a risk for low-grade torsional injury to the Alpine skier's spine, whereas in cross-country skiing significant shear forces are applied to lumbar discs during the kick but not the double-poling phase.

  6. Trinitrobenzenesulphonic acid colitis alters Na 1.8 channel expression in mouse dorsal root ganglia neurons.

    PubMed

    King, D E; Macleod, R J; Vanner, S J

    2009-08-01

    Visceral inflammation evokes hyperexcitability in nociceptive dorsal root ganglia (DRG) neurons and these changes are associated with increased voltage-gated sodium channel (Na(v)) 1.8 current density, but the molecular determinants of these changes are unclear. This study used Western blotting to measure changes in Na(v) 1.7, 1.8 and 1.9 protein expression during trinitrobenzenesulphonic acid (TNBS) colitis and quantitative polymerase chain reaction (PCR) to examine corresponding changes in mRNA. Colonic neurons were labelled with the retrograde tracer Fast Blue injected into the wall of the distal colon and quantitative PCR performed on laser-captured labelled colonic neurons from ganglia at T9-13 or unlabelled DRG neurons from the upper spinal cord. Immunohistochemistry and western blots were performed on whole DRG from the same sites. Fast Blue-labelled neurons demonstrated Na(v) 1.7, 1.8 and 1.9 immunoreactivity. On day 7 of colitis, which correlated with electrophysiological studies, there was a threefold increase in Na(v) 1.8 protein in ganglia from T9 to 13, but Na(v) 1.7 and 1.9 levels were unchanged. There was no corresponding change in the Na(v) 1.8 alpha-subunit mRNA levels. However, on days 2 and 4, Na(v) 1.8 mRNA was decreased 10-fold. Na(v) 1.8 protein and mRNA levels were unchanged in neurons isolated from ganglia in the upper spinal cord, where colonic neurons are not found. These findings suggest that the TNBS evoked increase in Na(v) 1.8 currents is associated with increased numbers of channels. The absence of corresponding changes in transcript suggests a translational or post-translational mechanism, but the 10-fold recovery of transcript preceding this time point also demonstrates a complex transcriptional regulation. PMID:19239624

  7. The basal ganglia: anatomy, physiology, and pharmacology.

    PubMed

    Tisch, Stephen; Silberstein, Paul; Limousin-Dowsey, Patricia; Jahanshahi, Marjan

    2004-12-01

    The basal ganglia are perceived as important nodes in cortico-subcortical networks involved in the transfer, convergence, and processing of information in motor, cognitive, and limbic domains. How this integration might occur remains a matter of some debate, particularly given the consistent finding in anatomic and physiologic studies of functional segregation in cortico-subcortical loops. More recent theories, however, have raised the notion that modality-specific information might be integrated not spatially, but rather temporally, by coincident processing in discrete neuronal populations. Basal ganglia neurotransmitters, given their diverse roles in motor performance, learning, working memory, and reward-related activity are also likely to play an important role in the integration of cerebral activity. Further work will elucidate this to a greater extent, but for now, it is clear that the basal ganglia form an important nexus in the binding of cognitive, limbic, and motor information into thought and action. PMID:15550292

  8. Shaping Action Sequences in Basal Ganglia Circuits

    PubMed Central

    Jin, Xin; Costa, Rui M

    2015-01-01

    Many behaviors necessary for organism survival are learned anew and become organized as complex sequences of actions. Recent studies suggest that cortico-basal ganglia circuits are important for chunking isolated movements into precise and robust action sequences that permit the achievement of particular goals. During sequence learning many neurons in the basal ganglia develop sequence-related activity - related to the initiation, execution, and termination of sequences - suggesting that action sequences are processed as action units. Corticostriatal plasticity is critical for the crystallization of action sequences, and for the development of sequence-related neural activity. Furthermore, this sequence-related activity is differentially expressed in direct and indirect basal ganglia pathways. These findings have implications for understanding the symptoms associated with movement and psychiatric disorders. PMID:26189204

  9. Spinal brucellosis.

    PubMed

    Tali, E Turgut; Koc, A Murat; Oner, A Yusuf

    2015-05-01

    Spinal involvement in human brucellosis is a common condition and a significant cause of morbidity and mortality, particularly in endemic areas, because it is often associated with therapeutic failure. Most chronic brucellosis cases are the result of inadequate treatment of the initial episode. Recognition of spinal brucellosis is challenging. Early diagnosis is important to ensure proper treatment and decrease morbidity and mortality. Radiologic evaluation has gained importance in diagnosis and treatment planning, including interventional procedures and monitoring of all spinal infections.

  10. Basal ganglia orient eyes to reward.

    PubMed

    Hikosaka, Okihide; Nakamura, Kae; Nakahara, Hiroyuki

    2006-02-01

    Expectation of reward motivates our behaviors and influences our decisions. Indeed, neuronal activity in many brain areas is modulated by expected reward. However, it is still unclear where and how the reward-dependent modulation of neuronal activity occurs and how the reward-modulated signal is transformed into motor outputs. Recent studies suggest an important role of the basal ganglia. Sensorimotor/cognitive activities of neurons in the basal ganglia are strongly modulated by expected reward. Through their abundant outputs to the brain stem motor areas and the thalamocortical circuits, the basal ganglia appear capable of producing body movements based on expected reward. A good behavioral measure to test this hypothesis is saccadic eye movement because its brain stem mechanism has been extensively studied. Studies from our laboratory suggest that the basal ganglia play a key role in guiding the gaze to the location where reward is available. Neurons in the caudate nucleus and the substantia nigra pars reticulata are extremely sensitive to the positional difference in expected reward, which leads to a bias in excitability between the superior colliculi such that the saccade to the to-be-rewarded position occurs more quickly. It is suggested that the reward modulation occurs in the caudate where cortical inputs carrying spatial signals and dopaminergic inputs carrying reward-related signals are integrated. These data support a specific form of reinforcement learning theories, but also suggest further refinement of the theory.

  11. Reward functions of the basal ganglia.

    PubMed

    Schultz, Wolfram

    2016-07-01

    Besides their fundamental movement function evidenced by Parkinsonian deficits, the basal ganglia are involved in processing closely linked non-motor, cognitive and reward information. This review describes the reward functions of three brain structures that are major components of the basal ganglia or are closely associated with the basal ganglia, namely midbrain dopamine neurons, pedunculopontine nucleus, and striatum (caudate nucleus, putamen, nucleus accumbens). Rewards are involved in learning (positive reinforcement), approach behavior, economic choices and positive emotions. The response of dopamine neurons to rewards consists of an early detection component and a subsequent reward component that reflects a prediction error in economic utility, but is unrelated to movement. Dopamine activations to non-rewarded or aversive stimuli reflect physical impact, but not punishment. Neurons in pedunculopontine nucleus project their axons to dopamine neurons and process sensory stimuli, movements and rewards and reward-predicting stimuli without coding outright reward prediction errors. Neurons in striatum, besides their pronounced movement relationships, process rewards irrespective of sensory and motor aspects, integrate reward information into movement activity, code the reward value of individual actions, change their reward-related activity during learning, and code own reward in social situations depending on whose action produces the reward. These data demonstrate a variety of well-characterized reward processes in specific basal ganglia nuclei consistent with an important function in non-motor aspects of motivated behavior. PMID:26838982

  12. Basal ganglia germinoma with progressive cerebral hemiatrophy.

    PubMed

    Liu, E; Robertson, R L; du Plessis, A; Pomeroy, S L

    1999-04-01

    The authors describe a 7-year-old Chinese-American female with a germinoma of the basal ganglia who presented with progressive hemiparesis and cerebral hemiatrophy. The additional finding of markedly elevated antiphospholipid antibodies suggests the possibility of an autoimmune pathogenesis for the progressive cerebral atrophy, as well as the later development of cognitive decline, tics, and obsessive-compulsive behaviors. PMID:10328283

  13. Traumatic bilateral basal ganglia hematoma: A report of two cases

    PubMed Central

    Bhargava, Pranshu; Grewal, Sarvpreet Singh; Gupta, Bharat; Jain, Vikas; Sobti, Harman

    2012-01-01

    Traumatic Basal ganglia hemorrhage is relatively uncommon. Bilateral basal ganglia hematoma after trauma is extremely rare and is limited to case reports. We report two cases of traumatic bilateral basal ganglia hemorrhage, and review the literature in brief. Both cases were managed conservatively. PMID:23293672

  14. Antinociceptive effect of ambroxol in rats with neuropathic spinal cord injury pain

    PubMed Central

    Hama, Aldric T.; Plum, Ann Woodhouse; Sagen, Jacqueline

    2010-01-01

    Symptoms of neuropathic spinal cord injury (SCI) pain include evoked cutaneous hypersensitivity and spontaneous pain, which can be present below the level of the injury. Adverse side-effects obtained with currently available analgesics complicate effective pain management in SCI patients. Voltage-gated Na+ channels expressed in primary afferent nociceptors have been identified to mediate persistent hyperexcitability in dorsal root ganglia (DRG) neurons, which in part underlies the symptoms of nerve injury-induced pain. Ambroxol has previously demonstrated antinociceptive effects in rat chronic pain models and has also shown to potently block Na+ channel current in DRG neurons. Ambroxol was tested in rats that underwent a mid-thoracic spinal cord compression injury. Injured rats demonstrated robust hind paw (below-level) heat and mechanical hypersensitivity. Orally administered ambroxol significantly attenuated below-level hypersensitivity at doses that did not affect performance on the rotarod test. Intrathecal injection of ambroxol did not ameliorate below-level hypersensitivity. The current data suggest that ambroxol could be effective for clinical neuropathic SCI pain. Furthermore, the data suggests that peripherally expressed Na+ channels could lend themselves as targets for the development of pharmacotherapies for SCI pain. PMID:20732348

  15. Antinociceptive effect of ambroxol in rats with neuropathic spinal cord injury pain.

    PubMed

    Hama, Aldric T; Plum, Ann Woodhouse; Sagen, Jacqueline

    2010-12-01

    Symptoms of neuropathic spinal cord injury (SCI) pain include evoked cutaneous hypersensitivity and spontaneous pain, which can be present below the level of the injury. Adverse side-effects obtained with currently available analgesics complicate effective pain management in SCI patients. Voltage-gated Na(+) channels expressed in primary afferent nociceptors have been identified to mediate persistent hyperexcitability in dorsal root ganglia (DRG) neurons, which in part underlies the symptoms of nerve injury-induced pain. Ambroxol has previously demonstrated antinociceptive effects in rat chronic pain models and has also shown to potently block Na(+) channel current in DRG neurons. Ambroxol was tested in rats that underwent a mid-thoracic spinal cord compression injury. Injured rats demonstrated robust hind paw (below-level) heat and mechanical hypersensitivity. Orally administered ambroxol significantly attenuated below-level hypersensitivity at doses that did not affect performance on the rotarod test. Intrathecal injection of ambroxol did not ameliorate below-level hypersensitivity. The current data suggest that ambroxol could be effective for clinical neuropathic SCI pain. Furthermore, the data suggest that peripherally expressed Na(+) channels could lend themselves as targets for the development of pharmacotherapies for SCI pain.

  16. Segmentation of Nerve Bundles and Ganglia in Spine MRI Using Particle Filters

    PubMed Central

    Dalca, Adrian; Danagoulian, Giovanna; Kikinis, Ron; Schmidt, Ehud; Golland, Polina

    2011-01-01

    Automatic segmentation of spinal nerve bundles that originate within the dural sac and exit the spinal canal is important for diagnosis and surgical planning. The variability in intensity, contrast, shape and direction of nerves seen in high resolution myelographic MR images makes segmentation a challenging task. In this paper, we present an automatic tracking method for nerve segmentation based on particle filters. We develop a novel approach to particle representation and dynamics, based on Bézier splines. Moreover, we introduce a robust image likelihood model that enables delineation of nerve bundles and ganglia from the surrounding anatomical structures. We demonstrate accurate and fast nerve tracking and compare it to expert manual segmentation. PMID:22003741

  17. Herpes Simplex Virus 1 Reactivates from Autonomic Ciliary Ganglia Independently from Sensory Trigeminal Ganglia To Cause Recurrent Ocular Disease

    PubMed Central

    Lee, Sungseok; Ives, Angela M.

    2015-01-01

    ABSTRACT Herpes simplex virus 1 (HSV-1) and HSV-2 establish latency in sensory and autonomic neurons after ocular or genital infection, but their recurrence patterns differ. HSV-1 reactivates from latency to cause recurrent orofacial disease, and while HSV-1 also causes genital lesions, HSV-2 recurs more efficiently in the genital region and rarely causes ocular disease. The mechanisms regulating these anatomical preferences are unclear. To determine whether differences in latent infection and reactivation in autonomic ganglia contribute to differences in HSV-1 and HSV-2 anatomical preferences for recurrent disease, we compared HSV-1 and HSV-2 clinical disease, acute and latent viral loads, and viral gene expression in sensory trigeminal and autonomic superior cervical and ciliary ganglia in a guinea pig ocular infection model. HSV-2 produced more severe acute disease, correlating with higher viral DNA loads in sensory and autonomic ganglia, as well as higher levels of thymidine kinase expression, a marker of productive infection, in autonomic ganglia. HSV-1 reactivated in ciliary ganglia, independently from trigeminal ganglia, to cause more frequent recurrent symptoms, while HSV-2 replicated simultaneously in autonomic and sensory ganglia to cause more persistent disease. While both HSV-1 and HSV-2 expressed the latency-associated transcript (LAT) in the trigeminal and superior cervical ganglia, only HSV-1 expressed LAT in ciliary ganglia, suggesting that HSV-2 is not reactivation competent or does not fully establish latency in ciliary ganglia. Thus, differences in replication and viral gene expression in autonomic ganglia may contribute to differences in HSV-1 and HSV-2 acute and recurrent clinical disease. IMPORTANCE Herpes simplex virus 1 (HSV-1) and HSV-2 establish latent infections, from which the viruses reactivate to cause recurrent disease throughout the life of the host. However, the viruses exhibit different manifestations and frequencies of recurrent

  18. Real-time control of walking using recordings from dorsal root ganglia

    PubMed Central

    Holinski, B J; Everaert, D G; Mushahwar, V K; Stein, R B

    2013-01-01

    Objective The goal of this study was to decode sensory information from the dorsal root ganglia (DRG) in real time, and to use this information to adapt the control of unilateral stepping with a state-based control algorithm consisting of both feed-forward and feedback components. Approach In five anesthetized cats, hind limb stepping on a walkway or treadmill was produced by patterned electrical stimulation of the spinal cord through implanted microwire arrays, while neuronal activity was recorded from the dorsal root ganglia. Different parameters, including distance and tilt of the vector between hip and limb endpoint, integrated gyroscope and ground reaction force were modeled from recorded neural firing rates. These models were then used for closed-loop feedback. Main Results Overall, firing-rate based predictions of kinematic sensors (limb endpoint, integrated gyroscope) were the most accurate with variance accounted for >60% on average. Force prediction had the lowest prediction accuracy (48±13%) but produced the greatest percentage of successful rule activations (96.3%) for stepping under closed-loop feedback control. The prediction of all sensor modalities degraded over time, with the exception of tilt. Significance Sensory feedback from moving limbs would be a desirable component of any neuroprosthetic device designed to restore walking in people after a spinal cord injury. This study provides a proof-of-principle that real-time feedback from the DRG is possible and could form part of a fully implantable neuroprosthetic device with further development. PMID:23928579

  19. Learning Reward Uncertainty in the Basal Ganglia.

    PubMed

    Mikhael, John G; Bogacz, Rafal

    2016-09-01

    Learning the reliability of different sources of rewards is critical for making optimal choices. However, despite the existence of detailed theory describing how the expected reward is learned in the basal ganglia, it is not known how reward uncertainty is estimated in these circuits. This paper presents a class of models that encode both the mean reward and the spread of the rewards, the former in the difference between the synaptic weights of D1 and D2 neurons, and the latter in their sum. In the models, the tendency to seek (or avoid) options with variable reward can be controlled by increasing (or decreasing) the tonic level of dopamine. The models are consistent with the physiology of and synaptic plasticity in the basal ganglia, they explain the effects of dopaminergic manipulations on choices involving risks, and they make multiple experimental predictions. PMID:27589489

  20. Learning Reward Uncertainty in the Basal Ganglia

    PubMed Central

    Bogacz, Rafal

    2016-01-01

    Learning the reliability of different sources of rewards is critical for making optimal choices. However, despite the existence of detailed theory describing how the expected reward is learned in the basal ganglia, it is not known how reward uncertainty is estimated in these circuits. This paper presents a class of models that encode both the mean reward and the spread of the rewards, the former in the difference between the synaptic weights of D1 and D2 neurons, and the latter in their sum. In the models, the tendency to seek (or avoid) options with variable reward can be controlled by increasing (or decreasing) the tonic level of dopamine. The models are consistent with the physiology of and synaptic plasticity in the basal ganglia, they explain the effects of dopaminergic manipulations on choices involving risks, and they make multiple experimental predictions. PMID:27589489

  1. Basal ganglia lesions in children and adults.

    PubMed

    Bekiesinska-Figatowska, Monika; Mierzewska, Hanna; Jurkiewicz, Elżbieta

    2013-05-01

    The term "basal ganglia" refers to caudate and lentiform nuclei, the latter composed of putamen and globus pallidus, substantia nigra and subthalamic nuclei and these deep gray matter structures belong to the extrapyramidal system. Many diseases may present as basal ganglia abnormalities. Magnetic resonance imaging (MRI) and computed tomography (CT) - to a lesser degree - allow for detection of basal ganglia injury. In many cases, MRI alone does not usually allow to establish diagnosis but together with the knowledge of age and circumstances of onset and clinical course of the disease is a powerful tool of differential diagnosis. The lesions may be unilateral: in Rassmussen encephalitis, diabetes with hemichorea/hemiballism and infarction or - more frequently - bilateral in many pathologic conditions. Restricted diffusion is attributable to infarction, acute hypoxic-ischemic injury, hypoglycemia, Leigh disease, encephalitis and CJD. Contrast enhancement may be seen in cases of infarction and encephalitis. T1-hyperintensity of the lesions is uncommon and may be observed unilaterally in case of hemichorea/hemiballism and bilaterally in acute asphyxia in term newborns, in hypoglycemia, NF1, Fahr disease and manganese intoxication. Decreased signal intensity on GRE/T2*-weighted images and/or SWI indicating iron, calcium or hemosiderin depositions is observed in panthotenate kinase-associated neurodegeneration, Parkinson variant of multiple system atrophy, Fahr disease (and other calcifications) as well as with the advancing age. There are a few papers in the literature reviewing basal ganglia lesions. The authors present a more detailed review with rich iconography from the own archive. PMID:23313708

  2. Spinal pain.

    PubMed

    Izzo, R; Popolizio, T; D'Aprile, P; Muto, M

    2015-05-01

    The spinal pain, and expecially the low back pain (LBP), represents the second cause for a medical consultation in primary care setting and a leading cause of disability worldwide [1]. LBP is more often idiopathic. It has as most frequent cause the internal disc disruption (IDD) and is referred to as discogenic pain. IDD refers to annular fissures, disc collapse and mechanical failure, with no significant modification of external disc shape, with or without endplates changes. IDD is described as a separate clinical entity in respect to disc herniation, segmental instability and degenerative disc desease (DDD). The radicular pain has as most frequent causes a disc herniation and a canal stenosis. Both discogenic and radicular pain also have either a mechanical and an inflammatory genesis. For to be richly innervated, facet joints can be a direct source of pain, while for their degenerative changes cause compression of nerve roots in lateral recesses and in the neural foramina. Degenerative instability is a common and often misdiagnosed cause of axial and radicular pain, being also a frequent indication for surgery. Acute pain tends to extinguish along with its cause, but the setting of complex processes of peripheral and central sensitization may influence its evolution in chronic pain, much more difficult to treat. The clinical assessment of pain source can be a challenge because of the complex anatomy and function of the spine; the advanced imaging methods are often not sufficient for a definitive diagnosis because similar findings could be present in either asymptomatic and symptomatic subjects: a clinical correlation is always mandatory and the therapy cannot rely uniquely upon any imaging abnormalities. Purpose of this review is to address the current concepts on the pathophysiology of discogenic, radicular, facet and dysfunctional pain, focusing on the role of the imaging in the diagnostic setting, to potentially address a correct approach also to minimally

  3. Spinal deformity.

    PubMed

    Bunnell, W P

    1986-12-01

    Spinal deformity is a relatively common disorder, particularly in teenage girls. Early detection is possible by a simple, quick visual inspection that should be a standard part of the routine examination of all preteen and teenage patients. Follow-up observation will reveal those curvatures that are progressive and permit orthotic treatment to prevent further increase in the deformity. Spinal fusion offers correction and stabilization of more severe degrees of scoliosis. PMID:3786010

  4. [Subarachnoid hematoma and spinal anesthesia].

    PubMed

    Dupeyrat, A; Dequiré, P M; Mérouani, A; Moullier, P; Eid, G

    1990-01-01

    Two cases of spinal subarachnoid haematoma occurring after spinal anaesthesia are reported. In the first case, lumbar puncture was attempted three times in a 81-year-old man; spinal anaesthesia trial was than abandoned, and the patient given a general anaesthetic. He was given prophylactic calcium heparinate soon after surgery. On the fourth day, the patient became paraparetic. Radioculography revealed a blockage between T10 and L3. Laminectomy was performed to remove the haematoma, but the patient recovered motor activity only very partially. The second case was a 67-year-old man, in whom spinal anaesthesia was easily carried out. He was also given prophylactic calcium heparinate soon after surgery. On the fourth postoperative day, pulmonary embolism was suspected. Heparin treatment was then started. Twelve hours later, lumbar and bilateral buttock pain occurred, which later spread to the neck. On the eighth day, the patient had neck stiffness and two seizures. Emergency laminectomy was carried out, which revealed a subarachnoid haematoma spreading to a level higher than T6 and below L1, with no flow of cerebrospinal fluid, and a non pulsatile spinal cord. Surgery was stopped. The patient died on the following day. Both these cases are similar to those previously reported and point out the role played by anticoagulants. Because early diagnosis of spinal cord compression is difficult, the prognosis is poor, especially in case of paraplegia. PMID:2278424

  5. Spinal dural ossification causing neurological signs in a cat.

    PubMed

    Antila, Johanna M; Jeserevics, Janis; Rakauskas, Mindaugas; Anttila, Marjukka; Cizinauskas, Sigitas

    2013-06-19

    A six-year-old Ragdoll cat underwent examination due to a six-month history of slowly progressive gait abnormalities. The cat presented with an ambulatory tetraparesis with a neurological examination indicating a C1-T2 myelopathy. Radiographs of the spine showed a radiopaque irregular line ventrally in the vertebral canal dorsal to vertebral bodies C3-C5. In this area, magnetic resonance imaging revealed an intradural extramedullary/extradural lesion compressing the spinal cord. The spinal cord was surgically decompressed. The cause of the spinal cord compression was dural ossification, a diagnosis confirmed by histopathological examination of the surgically dissected sample of dura mater. The cat gradually improved after the procedure and was ambulating better than prior to the surgery. The cat's locomotion later worsened again due to ossified plaques in the dura causing spinal cord compression on the same cervical area as before. Oral prednisolone treatment provided temporary remission. Ten months after surgery, the cat was euthanized due to severe worsening of gait abnormalities, non-ambulatory tetraparesis. Necropsy confirmed spinal cord compression and secondary degenerative changes in the spinal cord on cervical and lumbar areas caused by dural ossification. To our knowledge, this is the first report of spinal dural ossification in a cat. The reported cat showed neurological signs associated with these dural changes. Dural ossification should be considered in the differential diagnosis of compressive spinal cord disorders in cats.

  6. Spinal dural ossification causing neurological signs in a cat

    PubMed Central

    2013-01-01

    A six-year-old Ragdoll cat underwent examination due to a six-month history of slowly progressive gait abnormalities. The cat presented with an ambulatory tetraparesis with a neurological examination indicating a C1-T2 myelopathy. Radiographs of the spine showed a radiopaque irregular line ventrally in the vertebral canal dorsal to vertebral bodies C3-C5. In this area, magnetic resonance imaging revealed an intradural extramedullary/extradural lesion compressing the spinal cord. The spinal cord was surgically decompressed. The cause of the spinal cord compression was dural ossification, a diagnosis confirmed by histopathological examination of the surgically dissected sample of dura mater. The cat gradually improved after the procedure and was ambulating better than prior to the surgery. The cat’s locomotion later worsened again due to ossified plaques in the dura causing spinal cord compression on the same cervical area as before. Oral prednisolone treatment provided temporary remission. Ten months after surgery, the cat was euthanized due to severe worsening of gait abnormalities, non-ambulatory tetraparesis. Necropsy confirmed spinal cord compression and secondary degenerative changes in the spinal cord on cervical and lumbar areas caused by dural ossification. To our knowledge, this is the first report of spinal dural ossification in a cat. The reported cat showed neurological signs associated with these dural changes. Dural ossification should be considered in the differential diagnosis of compressive spinal cord disorders in cats. PMID:23777582

  7. Pathophysiology of primary spinal syringomyelia

    PubMed Central

    Heiss, John D.; Snyder, Kendall; Peterson, Matthew M.; Patronas, Nicholas J.; Butman, John A.; Smith, René K.; DeVroom, Hetty L.; Sansur, Charles A.; Eskioglu, Eric; Kammerer, William A.; Oldfield, Edward H.

    2013-01-01

    Object The pathogenesis of syringomyelia in patients with an associated spinal lesion is incompletely understood. The authors hypothesized that in primary spinal syringomyelia, a subarachnoid block effectively shortens the length of the spinal subarachnoid space (SAS), reducing compliance and the ability of the spinal theca to dampen the subarachnoid CSF pressure waves produced by brain expansion during cardiac systole. This creates exaggerated spinal subarachnoid pressure waves during every heartbeat that act on the spinal cord above the block to drive CSF into the spinal cord and create a syrinx. After a syrinx is formed, enlarged subarachnoid pressure waves compress the external surface of the spinal cord, propel the syrinx fluid, and promote syrinx progression. Methods To elucidate the pathophysiology, the authors prospectively studied 36 adult patients with spinal lesions obstructing the spinal SAS. Testing before surgery included clinical examination; evaluation of anatomy on T1-weighted MRI; measurement of lumbar and cervical subarachnoid mean and pulse pressures at rest, during Valsalva maneuver, during jugular compression, and after removal of CSF (CSF compliance measurement); and evaluation with CT myelography. During surgery, pressure measurements from the SAS above the level of the lesion and the lumbar intrathecal space below the lesion were obtained, and cardiac-gated ultrasonography was performed. One week after surgery, CT myelography was repeated. Three months after surgery, clinical examination, T1-weighted MRI, and CSF pressure recordings (cervical and lumbar) were repeated. Clinical examination and MRI studies were repeated annually thereafter. Findings in patients were compared with those obtained in a group of 18 healthy individuals who had already undergone T1-weighted MRI, cine MRI, and cervical and lumbar subarachnoid pressure testing. Results In syringomyelia patients compared with healthy volunteers, cervical subarachnoid pulse pressure

  8. Mössbauer spectroscopy of Basal Ganglia

    SciTech Connect

    Miglierini, Marcel; Lančok, Adriana; Kopáni, Martin; Boča, Roman

    2014-10-27

    Chemical states, structural arrangement, and magnetic features of iron deposits in biological tissue of Basal Ganglia are characterized. The methods of SQUID magnetometry and electron microscopy are employed. {sup 57}Fe Mössbauer spectroscopy is used as a principal method of investigation. Though electron microscopy has unveiled robust crystals (1-3 μm in size) of iron oxides, they are not manifested in the corresponding {sup 57}Fe Mössbauer spectra. The latter were acquired at 300 K and 4.2 K and resemble ferritin-like behavior.

  9. [Case of painful muscle spasm induced by thoracic vertebral fracture: successful treatment with lumbar sympathetic ganglia block].

    PubMed

    Shimizu, Fumitaka; Kawai, Motoharu; Koga, Michiaki; Ogasawara, Jun-ichi; Negoro, Kiyoshi; Kanda, Takashi

    2008-10-01

    We report a 70-year-old man, who developed painful involuntary muscle contraction of the left leg after the lumbar discectomy, which exacerbated after a vertebral fracture of Th12. This involuntary movement was accompanied with the abnormal position of left leg simulating triple flexion response, and was induced by active or passive movement of his left knee and foot joints. Several drugs including benzodiazepines and dantrolene were ineffective, although treatment with baclofen or carbamazepine was effective. These findings suggest that hyperexcitability of the anterior horn cells following the disturbance of spinal inhibitory interneurons was involved. Electophysiological studies suggested the disturbance of left lumber nerve roots. The spinal root blocks from L3 to S1 were performed, after which the painful involuntary muscle spasm was resolved. The lumbar sympathetic ganglia block was also effective; suggesting that abnormal afferent neuronal input to spinal cord was caused by the nerve root trauma which triggered the formation of secondary abnormal network in the spine. Lumbar sympathetic ganglia block should be recommended to a therapeutic option for the refractory painful muscle spasm of the leg.

  10. Management of infiltrating spinal epidural angiolipoma.

    PubMed

    Nadi, Mustafa M; Nadi, Arwa M; Zabara, Mohammad Y; Ahmad, Tahani M

    2015-04-01

    Angiolipomas of the spine are rare benign tumors commonly presenting with compressive myelopathy. The present report describes a case of spinal angiolipoma with thoracic mediastinal extension in a 50-year-old woman. She presented with a long-standing history of mid-back pain with progressive lower extremities weakness. An MRI showed a heterogeneously enhancing mass located in the posterior epidural space of the thoracic spine with mediastinal extension. Histopathological examination demonstrated features consistent with spinal angiolipoma. This report emphasizes the diagnosis and therapeutic management options of infiltrating spinal angiolipomas.

  11. Management of infiltrating spinal epidural angiolipoma

    PubMed Central

    Nadi, Mustafa M.; Nadi, Arwa M.; Zabara, Mohammad Y.; Ahmad, Tahani M.

    2015-01-01

    Angiolipomas of the spine are rare benign tumors commonly presenting with compressive myelopathy. The present report describes a case of spinal angiolipoma with thoracic mediastinal extension in a 50-year-old woman. She presented with a long-standing history of mid-back pain with progressive lower extremities weakness. An MRI showed a heterogeneously enhancing mass located in the posterior epidural space of the thoracic spine with mediastinal extension. Histopathological examination demonstrated features consistent with spinal angiolipoma. This report emphasizes the diagnosis and therapeutic management options of infiltrating spinal angiolipomas. PMID:25864069

  12. [The Anatomical Method of Isolating Central Ganglia from Oncomelania hupensis].

    PubMed

    TAN, Ping; YU, Zhi-jun

    2015-10-01

    In this experiment the soft tissue of Oncomelania hupensis was obtained by breaking the shell with a hemostat. The central ganglia of 0. hupensis were then collected from the fresh soft tissue under a dissecting microscope. This method lays a base for studying the effects of molluscicides or various biological and physicochemical factors on the central ganglia of 0. hupensis. PMID:26931039

  13. Calcium Signaling in Intact Dorsal Root Ganglia

    PubMed Central

    Gemes, Geza; Rigaud, Marcel; Koopmeiners, Andrew S.; Poroli, Mark J.; Zoga, Vasiliki; Hogan, Quinn H.

    2013-01-01

    Background Ca2+ is the dominant second messenger in primary sensory neurons. In addition, disrupted Ca2+ signaling is a prominent feature in pain models involving peripheral nerve injury. Standard cytoplasmic Ca2+ recording techniques use high K+ or field stimulation and dissociated neurons. To compare findings in intact dorsal root ganglia, we used a method of simultaneous electrophysiologic and microfluorimetric recording. Methods Dissociated neurons were loaded by bath-applied Fura-2-AM and subjected to field stimulation. Alternatively, we adapted a technique in which neuronal somata of intact ganglia were loaded with Fura-2 through an intracellular microelectrode that provided simultaneous membrane potential recording during activation by action potentials (APs) conducted from attached dorsal roots. Results Field stimulation at levels necessary to activate neurons generated bath pH changes through electrolysis and failed to predictably drive neurons with AP trains. In the intact ganglion technique, single APs produced measurable Ca2+ transients that were fourfold larger in presumed nociceptive C-type neurons than in nonnociceptive Aβ-type neurons. Unitary Ca2+ transients summated during AP trains, forming transients with amplitudes that were highly dependent on stimulation frequency. Each neuron was tuned to a preferred frequency at which transient amplitude was maximal. Transients predominantly exhibited monoexponential recovery and had sustained plateaus during recovery only with trains of more than 100 APs. Nerve injury decreased Ca2+ transients in C-type neurons, but increased transients in Aβ-type neurons. Conclusions Refined observation of Ca2+ signaling is possible through natural activation by conducted APs in undissociated sensory neurons and reveals features distinct to neuronal types and injury state. PMID:20526180

  14. Communication between neuronal somata and satellite glial cells in sensory ganglia

    PubMed Central

    Huang, Li-Yen M.; Gu, Yanping; Chen, Yong

    2013-01-01

    Studies of the structural organization and functions of the cell body of a neuron (soma) and its surrounding satellite glial cells (SGCs) in sensory ganglia have led to the realization that SGCs actively participate in the information processing of sensory signals from afferent terminals to the spinal cord. SGCs use a variety ways to communicate with each other and with their enwrapped soma. Changes in this communication under injurious conditions often lead to abnormal pain conditions. “What are the mechanisms underlying the neuronal soma and SGC communication in sensory ganglia” and “how do tissue or nerve injuries affect the communication?” are the main questions addressed in this review. PMID:23918214

  15. Spinal cord compression secondary to vertebral echinococcosis

    PubMed Central

    Sahlu, Abat; Mesfin, Brook; Tirsit, Abenezer; Wester, Knut

    2016-01-01

    We describe a patient with progressive lower limb weakness and paresthesia 3 days after falling from a considerable height. Magnetic resonance imaging and computed tomography revealed collapsed Th2 and Th3 vertebrae. A tuberculous (TB) spondylitis was suspected, and anti-TB medication was started however with no clinical improvement. She was referred to our center and operated. A 3 level discectomy and 2 level corpectomy were performed with iliac bone grafting and anterior plating via an anterior cervical approach. The patient developed an esophagocutaneous fistula that was repaired and cured. The biopsy specimen showed a hydatid cyst of the vertebra as the cause of the lesion. After the result, she was started on oral albendazole. At follow-up nearly 4 months after surgery, the patient had regained significant power in her lower limbs with a muscular strength of 5/5 in both legs, thus making it possible to walk without support. PMID:26933365

  16. Transcriptional changes in sensory ganglia associated with primary afferent axon collateral sprouting in spared dermatome model

    PubMed Central

    Harrison, Benjamin J.; Venkat, Gayathri; Hutson, Thomas; Rau, Kristofer K.; Bunge, Mary Bartlett; Mendell, Lorne M.; Gage, Fred H.; Johnson, Richard D.; Hill, Caitlin; Rouchka, Eric C.; Moon, Lawrence; Petruska, Jeffrey C.

    2015-01-01

    Primary afferent collateral sprouting is a process whereby non-injured primary afferent neurons respond to some stimulus and extend new branches from existing axons. Neurons of both the central and peripheral nervous systems undergo this process, which contributes to both adaptive and maladaptive plasticity (e.g., [1], [2], [3], [4], [5], [6], [7], [8], [9]). In the model used here (the “spared dermatome” model), the intact sensory neurons respond to the denervation of adjacent areas of skin by sprouting new axon branches into that adjacent denervated territory. Investigations of gene expression changes associated with collateral sprouting can provide a better understanding of the molecular mechanisms controlling this process. Consequently, it can be used to develop treatments to promote functional recovery for spinal cord injury and other similar conditions. This report includes raw gene expression data files from microarray experiments in order to study the gene regulation in spared sensory ganglia in the initiation (7 days) and maintenance (14 days) phases of the spared dermatome model relative to intact (“naïve”) sensory ganglia. Data has been deposited into GEO (GSE72551). PMID:26697387

  17. Transcriptional changes in sensory ganglia associated with primary afferent axon collateral sprouting in spared dermatome model.

    PubMed

    Harrison, Benjamin J; Venkat, Gayathri; Hutson, Thomas; Rau, Kristofer K; Bunge, Mary Bartlett; Mendell, Lorne M; Gage, Fred H; Johnson, Richard D; Hill, Caitlin; Rouchka, Eric C; Moon, Lawrence; Petruska, Jeffrey C

    2015-12-01

    Primary afferent collateral sprouting is a process whereby non-injured primary afferent neurons respond to some stimulus and extend new branches from existing axons. Neurons of both the central and peripheral nervous systems undergo this process, which contributes to both adaptive and maladaptive plasticity (e.g., [1], [2], [3], [4], [5], [6], [7], [8], [9]). In the model used here (the "spared dermatome" model), the intact sensory neurons respond to the denervation of adjacent areas of skin by sprouting new axon branches into that adjacent denervated territory. Investigations of gene expression changes associated with collateral sprouting can provide a better understanding of the molecular mechanisms controlling this process. Consequently, it can be used to develop treatments to promote functional recovery for spinal cord injury and other similar conditions. This report includes raw gene expression data files from microarray experiments in order to study the gene regulation in spared sensory ganglia in the initiation (7 days) and maintenance (14 days) phases of the spared dermatome model relative to intact ("naïve") sensory ganglia. Data has been deposited into GEO (GSE72551). PMID:26697387

  18. Anatomic study of human laryngeal ganglia: number and distribution.

    PubMed

    Maranillo, Eva; Vazquez, Teresa; Ibanez, Marta; Hurtado, Miguel; Pascual-Font, Aran; McHanwell, Stephen; Valderrama-Canales, Francisco; Sanudo, Jose

    2008-10-01

    We have studied 12 laryngeal nerves: six internal branches of the superior laryngeal nerve (ILN) and six recurrent laryngeal nerves (RLN) from three human adult larynges (two males and one female). After dissection of each individual laryngeal nerve using a surgical microscope, the nerves were preserved in 10% formalin, embedded in paraffin wax, serially sectioned transversely at a thickness of 10 microm and stained with hematoxylin and eosin. We found 2-4 ganglia associated with the ILN. At least two ganglia were always present (six out of six cases), the largest one being associated with the branch of the nerve innervating the vestibule and the smallest one associated with the branch innervating the aryepiglottic fold. Other ganglia were found associated with the branches for the glosso-epiglottic fold and vallecula (four out of six cases) and interarytenoid muscle (three out of six cases). The RLN showed from two to six ganglia, all of them located in its anterior terminal division. Two of the ganglia were located in the part of the nerve between the origin of the branches for the interarytenoid and lateral cricoarytenoid muscles (three out of six cases). The remaining ganglia were located close to or at the origin of the muscular branches innervating the intrinsic laryngeal muscles. The cytology of the ganglia reported suggests that they were all autonomic in nature, probably parasympathetic.

  19. The role of the autonomic ganglia in atrial fibrillation

    PubMed Central

    Stavrakis, Stavros; Nakagawa, Hiroshi; Po, Sunny S.; Scherlag, Benjamin J.; Lazzara, Ralph; Jackman, Warren M.

    2015-01-01

    Recent experimental and clinical studies have shown that the epicardial autonomic ganglia play an important role in the initiation and maintenance of atrial fibrillation (AF). In this review, we present the current data on the role of the autonomic ganglia in the pathogenesis of AF and discuss potential therapeutic implications. Experimental studies have demonstrated that acute autonomic remodeling may play a crucial role in AF maintenance in the very early stages. The benefit of adding ablation of the autonomic ganglia to the standard pulmonary vein (PV) isolation procedure for patients with paroxysmal AF is supported by both experimental and clinical data. The interruption of axons from these hyperactive autonomic ganglia to the PV myocardial sleeves may be an important factor in the success of PV isolation procedures. The vagus nerve exerts an inhibitory control over the autonomic ganglia and attenuation or loss of this control may allow these ganglia to become hyperactive. Autonomic neuromodulation using low-level vagus nerve stimulation inhibits the activity of the autonomic ganglia and reverses acute electrical atrial remodeling during rapid atrial pacing and may provide an alternative non-ablative approach for the treatment of AF, especially in the early stages. This notion is supported by a preliminary human study. Further studies are warranted to confirm these findings. PMID:26301262

  20. Spinal Osteosarcoma

    PubMed Central

    Katonis, P.; Datsis, G.; Karantanas, A.; Kampouroglou, A.; Lianoudakis, S.; Licoudis, S.; Papoutsopoulou, E.; Alpantaki, K.

    2013-01-01

    Although osteosarcoma represents the second most common primary bone tumor, spinal involvement is rare, accounting for 3%–5% of all osteosarcomas. The most frequent symptom of osteosarcoma is pain, which appears in almost all patients, whereas more than 70% exhibit neurologic deficit. At a molecular level, it is a tumor of great genetic complexity and several genetic disorders have been associated with its appearance. Early diagnosis and careful surgical staging are the most important factors in accomplishing sufficient management. Even though overall prognosis remains poor, en-block tumor removal combined with adjuvant radiotherapy and chemotherapy is currently the treatment of choice. This paper outlines histopathological classification, epidemiology, diagnostic procedures, and current concepts of management of spinal osteosarcoma. PMID:24179411

  1. Spinal Bracing

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Dr. Arthur Copes of the Copes Foundation, Baton Rouge, LA, says that 35 percent of the 50 technical reports he received from the NASA/Southern University Industrial Applications Center in Baton Rouge and the Central Industrial Applications Center, Durant, OK, were vital to the development of his Copes Scoliosis Braces, which are custom designed and feature a novel pneumatic bladder that exerts constant corrective pressure to the torso to slowly reduce or eliminate the spinal curve.

  2. Tethered Spinal Cord Syndrome

    MedlinePlus

    ... Enhancing Diversity Find People About NINDS NINDS Tethered Spinal Cord Syndrome Information Page Table of Contents (click to ... being done? Clinical Trials Organizations What is Tethered Spinal Cord Syndrome? Tethered spinal cord syndrome is a neurological ...

  3. Spinal Cord Infarction

    MedlinePlus

    ... Awards Enhancing Diversity Find People About NINDS NINDS Spinal Cord Infarction Information Page Table of Contents (click to ... Organizations Related NINDS Publications and Information What is Spinal Cord Infarction? Spinal cord infarction is a stroke either ...

  4. Spinal injury - resources

    MedlinePlus

    Resources - spinal injury ... The following organizations are good resources for information on spinal injury : National Institute of Neurological Disorders and Stroke -- www.ninds.nih.gov The National Spinal Cord Injury ...

  5. Spinal Cord Injury Map

    MedlinePlus

    ... on the severity of the injury. Tap this spinal column to see how the level of injury affects loss of function and control. Learn more about spinal cord injuries. A spinal cord injury affects the ...

  6. Spinal dysraphism.

    PubMed

    Sgouros, Spyros

    2013-09-01

    In the last decade there have been significant improvements in all the fields of management of patients with spinal dysraphism, which have increased dramatically the quality of life of these children. Prevention of spina bifida with food fortification is becoming increasingly practiced worldwide. As result, in many parts of the world the frequency of myelomeningocele has decreased. Intrauterine closure of myelomeningocele has been attempted in many institutions with variable results. While it is still at the sphere of experimental therapy, it is reasonable to anticipate progress in this field in the next decade. Antenatal MR imaging is already providing very high level of detail even before the child is born. This creates new ethical dilemmas and requires additional care, but has improved significantly the overall management of patients and their families. Further improvements are anticipated in this field. Management of neuropathic bladder has improved significantly in the last decade and is anticipated to play an increasing role in the long term follow up. Surgery for spinal cord tethering in all its forms has improved in the last decade, with far more chances of complete untethering now in comparison to 10-15 years ago, with the use of micro-neurosurgical techniques and intraoperative monitoring. It is reasonable to expect that in the next decade, intraoperative neurophysiological monitoring during spinal cord surgery will become mandatory. In the 2013 Annual Special Issue we have assembled a team of authors distinguished in their fields, who bring us up to date with all the latest developments. PMID:24013314

  7. The basal ganglia-circa 1982 - A review and commentary

    NASA Technical Reports Server (NTRS)

    Mehler, W. R.

    1981-01-01

    A review is presented of recent studies which utilize new anterograde and retrograde axon transport methods in order to improve knowledge of the projection of the basal ganglia and to clarify their sites of origin. These studies have thrown new light on certain topographic connectional relationships and have revealed several new reciprocal connections between constituent nuclei of the basal ganglia. Also examined are the many new histochemical techniques that are now providing regional biochemical overlays for connectional maps of the central nervous system, especially regions in or interconnecting with the basal ganglia.

  8. The expanding universe of disorders of the basal ganglia.

    PubMed

    Obeso, Jose A; Rodriguez-Oroz, Maria C; Stamelou, Maria; Bhatia, Kailash P; Burn, David J

    2014-08-01

    The basal ganglia were originally thought to be associated purely with motor control. However, dysfunction and pathology of different regions and circuits are now known to give rise to many clinical manifestations beyond the association of basal ganglia dysfunction with movement disorders. Moreover, disorders that were thought to be caused by dysfunction of the basal ganglia only, such as Parkinson's disease and Huntington's disease, have diverse abnormalities distributed not only in the brain but also in the peripheral and autonomic nervous systems; this knowledge poses new questions and challenges. We discuss advances and the unanswered questions, and ways in which progress might be made.

  9. The expanding universe of disorders of the basal ganglia.

    PubMed

    Obeso, Jose A; Rodriguez-Oroz, Maria C; Stamelou, Maria; Bhatia, Kailash P; Burn, David J

    2014-08-01

    The basal ganglia were originally thought to be associated purely with motor control. However, dysfunction and pathology of different regions and circuits are now known to give rise to many clinical manifestations beyond the association of basal ganglia dysfunction with movement disorders. Moreover, disorders that were thought to be caused by dysfunction of the basal ganglia only, such as Parkinson's disease and Huntington's disease, have diverse abnormalities distributed not only in the brain but also in the peripheral and autonomic nervous systems; this knowledge poses new questions and challenges. We discuss advances and the unanswered questions, and ways in which progress might be made. PMID:24954674

  10. Spinal surgery -- cervical - series (image)

    MedlinePlus

    The cervical spinal column is made up of vertebral bodies which protect the spinal cord. ... spinal nerves, trauma, and narrowing (stenosis) of the spinal column around the spinal cord. Symptoms of cervical spine ...

  11. Synaptic dimorphism in Onychophoran cephalic ganglia.

    PubMed

    Peña-Contreras, Z; Mendoza-Briceño, R V; Miranda-Contreras, L; Palacios-Prü, E L

    2007-03-01

    The taxonomic location of the Onychophora has been controversial because of their phenotypic and genotypic characteristics, related to both annelids and arthropods. We analyzed the ultrastructure of the neurons and their synapses in the cephalic ganglion of a poorly known invertebrate, the velvet worm Peripatus sedgwicki, from the mountainous region of El Valle, Mérida, Venezuela. Cephalic ganglia were dissected, fixed and processed for transmission electron microscopy. The animal has a high degree of neurobiological development, as evidenced by the presence of asymmetric (excitatory) and symmetric (inhibitory) synapses, as well as the existence of glial cell processes in a wide neuropile zone. The postsynaptic terminals were seen to contain subsynaptic cisterns formed by membranes of smooth endoplasmic reticulum beneath the postsynaptic density, whereas the presynaptic terminal showed numerous electron transparent synaptic vesicles. From the neurophylogenetic perspectives, the ultrastructural characteristics of the central nervous tissue of the Onychophora show important evolutionary acquirements, such as the presence of both excitatory and inhibitory synapses, indicating functional synaptic transmission, and the appearance of mature glial cells. PMID:18457135

  12. Genetics Home Reference: familial idiopathic basal ganglia calcification

    MedlinePlus

    ... in regulating phosphate levels within the body (phosphate homeostasis) by transporting phosphate across cell membranes. The SLC20A2 ... link familial idiopathic basal ganglia calcification with phosphate homeostasis. Nat Genet. 2012 Feb 12;44(3):254- ...

  13. Human laryngeal ganglia contain both sympathetic and parasympathetic cell types.

    PubMed

    Ibanez, Marta; Valderrama-Canales, Francisco J; Maranillo, Eva; Vazquez, Teresa; Pascual-Font, Arán; McHanwell, Stephen; Sanudo, Jose

    2010-09-01

    The presence of ganglia associated with the laryngeal nerves is well documented. In man, these ganglia have been less well studied than in other species and, in particular, the cell types within these ganglia are less well characterized. Using a panel of antibodies to a variety of markers found in the paraganglion cells of other species, we were able to show the existence of at least two populations of cells within human laryngeal paraganglia. One population contained chromogranin and tyrosine hydroxylase representing a neurosecretory population possibly secreting dopamine. A second population of choline acetyltransferase positive cells would appear to have a putative parasympathetic function. Further work is needed to characterize these cell populations more fully before it will be possible to assign functions to these cell types but our results are consistent with the postulated functions of these ganglia as chemoreceptors, neurosecretory cells, and regulators of laryngeal mucus secretion.

  14. Cognitive-motor interactions of the basal ganglia in development

    PubMed Central

    Leisman, Gerry; Braun-Benjamin, Orit; Melillo, Robert

    2014-01-01

    Neural circuits linking activity in anatomically segregated populations of neurons in subcortical structures and the neocortex throughout the human brain regulate complex behaviors such as walking, talking, language comprehension, and other cognitive functions associated with frontal lobes. The basal ganglia, which regulate motor control, are also crucial elements in the circuits that confer human reasoning and adaptive function. The basal ganglia are key elements in the control of reward-based learning, sequencing, discrete elements that constitute a complete motor act, and cognitive function. Imaging studies of intact human subjects and electrophysiologic and tracer studies of the brains and behavior of other species confirm these findings. We know that the relation between the basal ganglia and the cerebral cortical region allows for connections organized into discrete circuits. Rather than serving as a means for widespread cortical areas to gain access to the motor system, these loops reciprocally interconnect a large and diverse set of cerebral cortical areas with the basal ganglia. Neuronal activity within the basal ganglia associated with motor areas of the cerebral cortex is highly correlated with parameters of movement. Neuronal activity within the basal ganglia and cerebellar loops associated with the prefrontal cortex is related to the aspects of cognitive function. Thus, individual loops appear to be involved in distinct behavioral functions. Damage to the basal ganglia of circuits with motor areas of the cortex leads to motor symptoms, whereas damage to the subcortical components of circuits with non-motor areas of the cortex causes higher-order deficits. In this report, we review some of the anatomic, physiologic, and behavioral findings that have contributed to a reappraisal of function concerning the basal ganglia and cerebellar loops with the cerebral cortex and apply it in clinical applications to attention deficit/hyperactivity disorder (ADHD

  15. Regenerative treatment in spinal cord injury.

    PubMed

    Ozdemir, Mevci; Attar, Ayhan; Kuzu, Isinsu

    2012-09-01

    Spinal cord injury is a devastating, traumatic event, and experienced mainly among young people. Until the modern era, spinal cord injury was so rapidly fatal that no seriously injured persons would survive long enough for regeneration to occur. Treatment of spinal cord injury can be summarized as follows: prevent further cord injury, maintain blood flow, relieve spinal cord compression, and provide secure vertebral stabilization so as to allow mobilization and rehabilitation, none of which achieves functional recovery. Previous studies have focused on analyzing the pathogenesis of secondary injury that extends from the injury epicenter to the periphery, as well as the tissue damage and neural cell death associated with secondary injury. Now, there are hundreds of current experimental and clinical regenerative treatment studies. One of the most popular treatment method is cell transplantation in injured spinal cord. For this purpose bone marrow stromal cells, mononuclear stem cells, mesenchymal stem cells, embryonic stem cells, neural stem cells, and olfactory ensheathing cells can be used. As a result, cell transplantation has become a promising therapeutic option for spinal cord injury patients. In this paper we discuss the effectiveness of stem cell therapy in spinal cord injury.

  16. Bilateral mechanical and thermal hyperalgesia and tactile allodynia after chronic compression of dorsal root ganglion in mice.

    PubMed

    Chen, Rong-Gui; Kong, Wei-Wei; Ge, Da-Long; Luo, Ceng; Hu, San-Jue

    2011-08-01

    OBJECTIVE Low back pain is one of the most inextricable problems encountered in clinics. Animal models that imitate symptoms in humans are valuable tools for investigating low back pain mechanisms and the possible therapeutic applications. With the development of genetic technology in pain field, the possibility of mutating specific genes in mice has provided a potent tool for investigating the specific mechanisms of pain. The aim of the present study was to develop a mouse model of chronic compression of dorsal root ganglion (CCD), in which gene mutation can be applied to facilitate the studies of chronic pain. METHODS Chronic compression of L4 and L5 dorsal root ganglia was conducted in mice by inserting fine stainless steel rods into the intervertebral foramina, one at L4 and the other at L5. Mechanical allodynia and thermal hyperalgesia were examined with von Frey filaments and radiating heat stimulator, respectively. RESULTS The CCD mice displayed dramatic mechanical and thermal hyperalgesia as well as tactile allodynia in the hindpaw ipsilateral to CCD. In addition, this mechanical and thermal hyperalgesia as well as tactile allodynia was also found to spread to the contralateral hindpaw. CONCLUSION This model, combined with the possible genetic modification, will strengthen our knowledge of the underlying mechanisms of low back pain. It also favors the development of new treatment strategies for pain and hyperalgesia after spinal injury and other disorders which affect the dorsal root ganglion in humans. PMID:21788994

  17. Real-time control of walking using recordings from dorsal root ganglia

    NASA Astrophysics Data System (ADS)

    Holinski, B. J.; Everaert, D. G.; Mushahwar, V. K.; Stein, R. B.

    2013-10-01

    Objective. The goal of this study was to decode sensory information from the dorsal root ganglia (DRG) in real time, and to use this information to adapt the control of unilateral stepping with a state-based control algorithm consisting of both feed-forward and feedback components. Approach. In five anesthetized cats, hind limb stepping on a walkway or treadmill was produced by patterned electrical stimulation of the spinal cord through implanted microwire arrays, while neuronal activity was recorded from the DRG. Different parameters, including distance and tilt of the vector between hip and limb endpoint, integrated gyroscope and ground reaction force were modelled from recorded neural firing rates. These models were then used for closed-loop feedback. Main results. Overall, firing-rate-based predictions of kinematic sensors (limb endpoint, integrated gyroscope) were the most accurate with variance accounted for >60% on average. Force prediction had the lowest prediction accuracy (48 ± 13%) but produced the greatest percentage of successful rule activations (96.3%) for stepping under closed-loop feedback control. The prediction of all sensor modalities degraded over time, with the exception of tilt. Significance. Sensory feedback from moving limbs would be a desirable component of any neuroprosthetic device designed to restore walking in people after a spinal cord injury. This study provides a proof-of-principle that real-time feedback from the DRG is possible and could form part of a fully implantable neuroprosthetic device with further development.

  18. Distribution of Neuron Cell Bodies in the Intraspinal Portion of the Spinal Accessory Nerve in Humans.

    PubMed

    Boehm, Karl E; Kondrashov, Peter

    2016-01-01

    The spinal accessory nerve is often identified as a purely motor nerve innervating the trapezius and sternocleidomastoid muscles. Although it may contain proprioceptive neurons found in cervical spinal levels C2-C4, limited research has focused on the histology of the spinal accessory nerve. The objective of the present study was to examine the spinal accessory nerve to determine if there are neuronal cell bodies within the spinal accessory nerve in humans. Cervical spinal cords were dissected from eight cadavers that had previously been used for dissection in other body regions. The segmental rootlets were removed to quantify the neuron cell bodies present at each spinal level. Samples were embedded in paraffin; sectioned; stained with hematoxylin and eosin; and examined using a microscope at 4×, 10×, and 40× magnification. Digital photography was used to image the samples. Neuronal cell bodies were found in 100% of the specimens examined, with non-grossly visible ganglia found at spinal levels C1-C4. The C1 spinal level of the spinal accessory nerve had the highest number of neuron cell bodies.

  19. Spinal instrumentation.

    PubMed

    Spivak, J M; Balderston, R A

    1994-03-01

    The past decade has seen a dramatic increase in the availability of spinal instrumentation devices, enabling surgeons to treat a variety of spinal disorders with improved results and lower morbidity. In each anatomic region new fixation systems exist. Improvement in fusion rates with supplemental plate fixation following anterior cervical diskectomies and reconstructions has been demonstrated; these devices can now be applied more safely than ever before. Posterior occipitocervical plating to the C-2 pedicle and C3-6 lateral masses can provide stable fixation despite incompetent posterior arch bony structures. Newer, more rigid anterior thoracolumbar instrumentation allows for correction of thoracolumbar and lumbar scoliosis along fewer levels and with better maintenance of lordosis and is also useful following anterior decompression for tumor and trauma. Segmental hook fixation of the posterior thoracolumbar spine has allowed for improved correction of deformity without increased morbidity or the need for postoperative bracing in many cases. Finally, the use of transpedicular screw fixation of the lumbosacral spine allows for excellent segmental fixation without intact posterior elements, including facet joints, and has significantly improved the fusion rate in lumbosacral fusions. PMID:8024965

  20. [Iatrogenic spinal epidermoid tumors. A late complication of spinal puncture].

    PubMed

    Reina, M A; López-García, A; Dittmann, M; de Andrés, J A; Blázquez, M G

    1996-04-01

    INTRODUCTION. Epidermoid tumors in the spinal canal are rare. Whether congenitally or iatrogenically caused, they form as the result of epidermal cells implanted within the spinal channel. Such implantation can occur during a variety of procedures and events such as bullet wounds, surgery, myelography or punctures for diagnosis, anesthesia or treatment. Although this complication is not discussed in books or journals on anesthesiology, we have found it mentioned in over 100 published cases reporting iatrogenically caused spinal epidermoid tumors. ETIOPATHOGENESIS. Iatrogenic epidermoid tumors of the spine derive from the implantation of epidermal tissue transported inside the spinal canal during lumbar punctures without guidance or with inadequate guidance. There is ample evidence that such tumors are iatrogenic. All cases occur in patients with a history of lumbar puncture. They are rarely associated with congenital anomalies. They are extramedullary. They tend to develop near sites of earlier lumbar puncture, usually near the conus medullaris and the cauda equina. Iatrogenic epidermoid tumors of the spine have been reproduced experimentally in two studies in which autologous skin fragments were implanted in the spinal canal. CLINICAL SIGNS. These tumors are well tolerated by patients for extended periods of time, ranging from 2 to 10 years. At the cauda equinus, tumors can grow slowly for long periods without signs of nerve compression. Symptoms are directly related to tumor size and site. All patients with tumors at the cauda equinus report severe pain radiating toward the roots of compressed nerves. Nuclear magnetic resonance makes it possible to detect the tumor without administration of intrathecal contrast. At present gadolinium-DTPA improves the image so that these tumors can be distinguished from other types. The prognosis for epidermoid tumors of the spine is good, as they are histologically benign. Treatment is always surgical. CONCLUSION. Although the

  1. Spinal nerve injury increases the percentage of cold-responsive DRG neurons.

    PubMed

    Djouhri, L; Wrigley, D; Thut, P D; Gold, M S

    2004-03-01

    We tested the hypothesis that cold allodynia, observed following nerve injury reflects change(s) in the cold responsiveness of sensory neurons. To test this hypothesis we assessed the impact of the spinal nerve ligation (SNL) model of nerve injury on the responses of cutaneous sensory neurons to cooling in vitro. Nerve injury induced a significant increase in the incidence of cold responsive cutaneous neurons in uninjured but not injured ganglia. Because an increase in the percentage of cold responsive neurons in uninjured ganglia should increase the total neuronal response to cooling of peripheral tissue, these findings suggest that cold allodynia reflects, at least in part, a change in sensory neurons. PMID:15094503

  2. DNABIT Compress - Genome compression algorithm.

    PubMed

    Rajarajeswari, Pothuraju; Apparao, Allam

    2011-01-01

    Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, "DNABIT Compress" for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our proposed algorithm achieves the best compression ratio for DNA sequences for larger genome. Significantly better compression results show that "DNABIT Compress" algorithm is the best among the remaining compression algorithms. While achieving the best compression ratios for DNA sequences (Genomes),our new DNABIT Compress algorithm significantly improves the running time of all previous DNA compression programs. Assigning binary bits (Unique BIT CODE) for (Exact Repeats, Reverse Repeats) fragments of DNA sequence is also a unique concept introduced in this algorithm for the first time in DNA compression. This proposed new algorithm could achieve the best compression ratio as much as 1.58 bits/bases where the existing best methods could not achieve a ratio less than 1.72 bits/bases.

  3. The distribution and origin of VIP in the spinal cord of six mammalian species.

    PubMed

    Gibson, S J; Polak, J M; Anand, P; Blank, M A; Morrison, J F; Kelly, J S; Bloom, S R

    1984-01-01

    The distribution of VIP-immunoreactivity was studied in the spinal cord and dorsal root ganglia of 6 mammalian species. Immunoreactive fibres and cell bodies were most apparent in the dorsal horn, dorsolateral funiculus, intermediolateral cell columns and the area around the central canal. The distribution of VIP immunoreactivity was similar in all species studied, mouse, rat, guinea pig, cat, horse and the marmoset monkey. There were fewer VIP fibres in the dorsal horn of cervical and thoracic segments than in lumbosacral segments. Using radioimmunoassay this gradient increase was quantitatively most marked in the sacral spinal cord of the cat. In dorsal root ganglia few nerve cell bodies but numerous fibres were present. A dual origin for VIP in the spinal cord is suggested: (A) Extrinsic, from dorsal root afferent fibres since immunoreactivity was decreased in dorsally rhizotomized animals (cats and rats) and in capsaicin pretreated rats (microinjection of dorsal root ganglia). (B) From local cell bodies intrinsic to the spinal cord which became visible after colchicine pretreatment of rats.

  4. Neuroimaging of Spinal Canal Stenosis.

    PubMed

    Cowley, Peter

    2016-08-01

    Spinal stenosis is common and presents in a variety of forms. Symptomatic lumbar stenosis occurs in approximately 10% of the population and cervical stenosis in 9% over age 70. Imaging is central to the management decision process and first-choice MR imaging may be substituted with CT and CT myelography. A review of the literature is presented with particular emphasis on the clinical-radiologic correlation in both neurogenic intermittent claudication and cervical spondylotic myelopathy. Advanced techniques promise improvements, particularly with radicular compressive lesions, but remain underutilized in routine clinical practice.

  5. Marked Increase in Nitric Oxide Synthase mRNA in Rat Dorsal Root Ganglia after Peripheral Axotomy: In situ Hybridization and Functional Studies

    NASA Astrophysics Data System (ADS)

    Verge, Valerie M. K.; Xu, Zhang; Xu, Xiao-Jun; Wiesenfeld-Hallin, Zsuzsanna; Hokfelt, Tomas

    1992-12-01

    Using in situ hybridization, we studied nitric oxide (NO) synthase (EC 1.14.23.-) mRNA in lumbar dorsal root ganglia after peripheral transection of the sciatic nerve in rats. The effect of the NO synthase inhibitor N^ω-nitro-L-arginine methyl ester on the nociceptive flexor reflex was also studied in axotomized rats. Nerve section induced a dramatic increase in number of NO synthase mRNA-positive cells in the ipsilateral dorsal root ganglia. In some of these cells the peptides galanin and/or vasoactive intestinal polypeptide and/or neuropeptide Y were also strongly up-regulated. Intravenous administration of nitro-L-arginine methyl ester blocked spinal hyperexcitability at much lower dosages in axotomized than in normal animals. The results suggest involvement of NO in the function of lumbar sensory neurons, especially after axotomy, perhaps preferentially at peripheral sites.

  6. The basal ganglia optimize decision making over general perceptual hypotheses.

    PubMed

    Lepora, Nathan F; Gurney, Kevin N

    2012-11-01

    The basal ganglia are a subcortical group of interconnected nuclei involved in mediating action selection within cortex. A recent proposal is that this selection leads to optimal decision making over multiple alternatives because the basal ganglia anatomy maps onto a network implementation of an optimal statistical method for hypothesis testing, assuming that cortical activity encodes evidence for constrained gaussian-distributed alternatives. This letter demonstrates that this model of the basal ganglia extends naturally to encompass general Bayesian sequential analysis over arbitrary probability distributions, which raises the proposal to a practically realizable theory over generic perceptual hypotheses. We also show that the evidence in this model can represent either log likelihoods, log-likelihood ratios, or log odds, all leading proposals for the cortical processing of sensory data. For these reasons, we claim that the basal ganglia optimize decision making over general perceptual hypotheses represented in cortex. The relation of this theory to cortical encoding, cortico-basal ganglia anatomy, and reinforcement learning is discussed.

  7. Basal ganglia output reflects internally-specified movements

    PubMed Central

    Lintz, Mario J; Felsen, Gidon

    2016-01-01

    How movements are selected is a fundamental question in systems neuroscience. While many studies have elucidated the sensorimotor transformations underlying stimulus-guided movements, less is known about how internal goals – critical drivers of goal-directed behavior – guide movements. The basal ganglia are known to bias movement selection according to value, one form of internal goal. Here, we examine whether other internal goals, in addition to value, also influence movements via the basal ganglia. We designed a novel task for mice that dissociated equally rewarded internally-specified and stimulus-guided movements, allowing us to test how each engaged the basal ganglia. We found that activity in the substantia nigra pars reticulata, a basal ganglia output, predictably differed preceding internally-specified and stimulus-guided movements. Incorporating these results into a simple model suggests that internally-specified movements may be facilitated relative to stimulus-guided movements by basal ganglia processing. DOI: http://dx.doi.org/10.7554/eLife.13833.001 PMID:27377356

  8. Downregulation of miR-219 enhances brain-derived neurotrophic factor production in mouse dorsal root ganglia to mediate morphine analgesic tolerance by upregulating CaMKIIγ

    PubMed Central

    Hu, Xue-Ming; Cao, Shou-Bin; Zhang, Hai-Long; Lyu, Dong-Mei; Chen, Li-Ping; Xu, Heng; Pan, Zhi-Qiang

    2016-01-01

    Background Increasing evidence suggests that microRNAs are functionally involved in the initiation and maintenance of pain hypersensitivity, including chronic morphine analgesic tolerance, through the posttranscriptional regulation of pain-related genes. We have previously demonstrated that miR-219 regulates inflammatory pain in the spinal cord by targeting calcium/calmodulin-dependent protein kinase II gamma (CaMKIIγ). However, whether miR-219 regulates CaMKIIγ expression in the dorsal root ganglia to mediate morphine tolerance remains unclear. Results MiR-219 expression was downregulated and CaMKIIγ expression was upregulated in mouse dorsal root ganglia following chronic morphine treatment. The changes in miR-219 and CaMKIIγ expression closely correlated with the development of morphine tolerance, which was measured using the reduction of percentage of maximum potential efficiency to thermal stimuli. Morphine tolerance was markedly delayed by upregulating miR-219 expression using miR-219 mimics or downregulating CaMKIIγ expression using CaMKIIγ small interfering RNA. The protein and mRNA expression of brain-derived neurotrophic factor were also induced in dorsal root ganglia by prolonged morphine exposure in a time-dependent manner, which were transcriptionally regulated by miR-219 and CaMKIIγ. Scavenging brain-derived neurotrophic factor via tyrosine receptor kinase B-Fc partially attenuated morphine tolerance. Moreover, functional inhibition of miR-219 via miR-219-sponge in naive mice elicited thermal hyperalgesia and spinal neuronal sensitization, which were both suppressed by CaMKIIγ small interfering RNA or tyrosine receptor kinase B-Fc. Conclusions These results demonstrate that miR-219 contributes to the development of chronic tolerance to morphine analgesia in mouse dorsal root ganglia by targeting CaMKIIγ and enhancing CaMKIIγ-dependent brain-derived neurotrophic factor expression. PMID:27599867

  9. Intramedullary cyst formation after removal of multiple intradural spinal arachnoid cysts: A case report

    PubMed Central

    Zekaj, Edvin; Saleh, Christian; Servello, Domenico

    2016-01-01

    Background: A rare cause of spinal cord compression is spinal arachnoid cysts. Symptoms are caused by spinal cord compression, however, asymptomatic patients have been also reported. Treatment options depend upon symptom severity and clinical course. Case Description: We report the case of a 47-year-old patient who developed an intramedullary arachnoid cyst after removal of an intradural extramedullary cyst. Conclusion: Surgery should be considered early in a symptomatic disease course. Longstanding medullary compression may reduce the possibility of neurological recovery as well as secondary complications such as intramedullary cyst formation. PMID:27512608

  10. Neurotransmitters in the human and nonhuman primate basal ganglia.

    PubMed

    Haber, S N

    1986-01-01

    In recent years, a number of new molecules, particularly peptides, have been identified as putative neurotransmitters. The basal ganglia, is especially rich in a number of classical transmitter molecules, amino acids and neuropeptides considered to function in neurotransmission. These include: the well-described terminal fields in the striatum which originate from the brain stem and contain the monoamines, dopamine and serotonin; amino acid containing axons projecting from the cortex and thalamus; striatal cholinergic and peptide-positive interneurons; and amino acid and peptide containing projection neurons to the globus pallidus and substantia nigra. Two amino acids, glutamate and aspartate, are considered to provide excitatory input to the striatum while gamma aminobutyric acid is thought to mediate inhibitory output. Neuropeptides which are richly concentrated in the basal ganglia include, enkephalin, dynorphin, substance P, somatostatin, neuropeptide Y and cholincystokinease. Changes in many of these peptide levels have recently been associated with a number of basal ganglia disorders.

  11. A Critical Review of Habit Learning and the Basal Ganglia

    PubMed Central

    Seger, Carol A.; Spiering, Brian J.

    2011-01-01

    The current paper briefly outlines the historical development of the concept of habit learning and discusses its relationship to the basal ganglia. Habit learning has been studied in many different fields of neuroscience using different species, tasks, and methodologies, and as a result it has taken on a wide range of definitions from these various perspectives. We identify five common but not universal, definitional features of habit learning: that it is inflexible, slow or incremental, unconscious, automatic, and insensitive to reinforcer devaluation. We critically evaluate for each of these how it has been defined, its utility for research in both humans and non-human animals, and the evidence that it serves as an accurate description of basal ganglia function. In conclusion, we propose a multi-faceted approach to habit learning and its relationship to the basal ganglia, emphasizing the need for formal definitions that will provide directions for future research. PMID:21909324

  12. Synchronizing activity of basal ganglia and pathophysiology of Parkinson's disease.

    PubMed

    Heimer, G; Rivlin, M; Israel, Z; Bergman, H

    2006-01-01

    Early physiological studies emphasized changes in the discharge rate of basal ganglia in the pathophysiology of Parkinson's disease (PD), whereas recent studies stressed the role of the abnormal oscillatory activity and neuronal synchronization of pallidal cells. However, human observations cast doubt on the synchronization hypothesis since increased synchronization may be an epi-phenomenon of the tremor or of independent oscillators with similar frequency. Here, we show that modern actor/ critic models of the basal ganglia predict the emergence of synchronized activity in PD and that significant non-oscillatory and oscillatory correlations are found in MPTP primates. We conclude that the normal fluctuation of basal ganglia dopamine levels combined with local cortico-striatal learning rules lead to noncorrelated activity in the pallidum. Dopamine depletion, as in PD, results in correlated pallidal activity, and reduced information capacity. We therefore suggest that future deep brain stimulation (DBS) algorithms may be improved by desynchronizing pallidal activity. PMID:17017503

  13. Time representation in reinforcement learning models of the basal ganglia

    PubMed Central

    Gershman, Samuel J.; Moustafa, Ahmed A.; Ludvig, Elliot A.

    2014-01-01

    Reinforcement learning (RL) models have been influential in understanding many aspects of basal ganglia function, from reward prediction to action selection. Time plays an important role in these models, but there is still no theoretical consensus about what kind of time representation is used by the basal ganglia. We review several theoretical accounts and their supporting evidence. We then discuss the relationship between RL models and the timing mechanisms that have been attributed to the basal ganglia. We hypothesize that a single computational system may underlie both RL and interval timing—the perception of duration in the range of seconds to hours. This hypothesis, which extends earlier models by incorporating a time-sensitive action selection mechanism, may have important implications for understanding disorders like Parkinson's disease in which both decision making and timing are impaired. PMID:24409138

  14. BASAL GANGLIA PATHOLOGY IN SCHIZOPHRENIA: DOPAMINE CONNECTIONS and ANOMALIES

    PubMed Central

    Perez-Costas, Emma; Melendez-Ferro, Miguel; Roberts, Rosalinda C.

    2010-01-01

    Schizophrenia is a severe mental illness that affects 1% of the world population. The disease usually manifests itself in early adulthood with hallucinations, delusions, cognitive and emotional disturbances and disorganized thought and behavior. Dopamine was the first neurotransmitter to be implicated in the disease, and though no longer the only suspect in schizophrenia pathophysiology, it obviously plays an important role. The basal ganglia are the site of most of the dopamine neurons in the brain and the target of antipsychotic drugs. In this review we will start with an overview of basal ganglia anatomy emphasizing dopamine circuitry. Then, we will review the major deficits in dopamine function in schizophrenia, emphasizing the role of excessive dopamine in the basal ganglia and the link to psychosis. PMID:20089137

  15. Covert skill learning in a cortical-basal ganglia circuit.

    PubMed

    Charlesworth, Jonathan D; Warren, Timothy L; Brainard, Michael S

    2012-06-14

    We learn complex skills such as speech and dance through a gradual process of trial and error. Cortical-basal ganglia circuits have an important yet unresolved function in this trial-and-error skill learning; influential 'actor-critic' models propose that basal ganglia circuits generate a variety of behaviours during training and learn to implement the successful behaviours in their repertoire. Here we show that the anterior forebrain pathway (AFP), a cortical-basal ganglia circuit, contributes to skill learning even when it does not contribute to such 'exploratory' variation in behavioural performance during training. Blocking the output of the AFP while training Bengalese finches to modify their songs prevented the gradual improvement that normally occurs in this complex skill during training. However, unblocking the output of the AFP after training caused an immediate transition from naive performance to excellent performance, indicating that the AFP covertly gained the ability to implement learned skill performance without contributing to skill practice. In contrast, inactivating the output nucleus of the AFP during training completely prevented learning, indicating that learning requires activity within the AFP during training. Our results suggest a revised model of skill learning: basal ganglia circuits can monitor the consequences of behavioural variation produced by other brain regions and then direct those brain regions to implement more successful behaviours. The ability of the AFP to identify successful performances generated by other brain regions indicates that basal ganglia circuits receive a detailed efference copy of premotor activity in those regions. The capacity of the AFP to implement successful performances that were initially produced by other brain regions indicates precise functional connections between basal ganglia circuits and the motor regions that directly control performance. PMID:22699618

  16. Number processing and basal ganglia dysfunction: a single case study.

    PubMed

    Delazer, Margarete; Domahs, Frank; Lochy, Aliette; Karner, Elfriede; Benke, Thomas; Poewe, Werner

    2004-01-01

    Numerical processing has never been investigated in a case of Fahr's disease (FD) and only rarely in cases of basal ganglia dysfunction. The study describes the cognitive decline of a pre-morbidly high-functioning patient (medical doctor) affected by FD and his difficulties in number processing. A MRI scan revealed bilateral calcifications in the basal ganglia and a brain PET showed a massive reduction of glucose metabolism in the basal ganglia and both frontal lobes, but no other brain abnormalities. The patient's cognitive deficits included impairments in problem solving, in cognitive set shifting and in mental flexibility, as well as in verbal memory. These deficits are attributed to the disruption of the dorsolateral prefrontal circuit involving the basal ganglia. In number processing, the patient showed a severe deficit in the retrieval of multiplication facts, deficits in all tasks of numerical problem solving and in the execution of complex procedures. Importantly, he also showed a dense deficit in conceptual knowledge, which concerned all test conditions and all operations. The findings confirm the predictions of the triple code model in so far, as a disruption of cortico-subcortical loops involving the basal-ganglia may lead to specific deficits in fact retrieval. However, no verbal deficit, as assumed in the triple code model and reported in similar cases, could be observed. The present findings further add to current knowledge on numerical processing, showing how fronto-executive dysfunction may disrupt conceptual understanding of arithmetic. This study shows that not only parietal lesions may lead to severe deficits in conceptual understanding, but that basal ganglia lesions leading to frontal dysfunction may have a devastating effect. PMID:15093144

  17. Depression in adult patients with biotin responsive basal ganglia disease.

    PubMed

    Bubshait, Dalal K; Rashid, Asif; Al-Owain, Mohammed A; Sulaiman, Raashda A

    2016-01-01

    Biotin responsive basal ganglia disease (BBGD), is a potentially treatable inherited metabolic disorder which clinically presents as sub-acute encephalopathy in children. Early diagnosis and treatment of this disorder results in good clinical recovery in childhood. However, there is no report in the literature on the long term outcome of these treated patients in adult life. We report two patients with BBGD who were metabolically stable on treatment and developed depression later in life. These cases highlight the association of depression with basal ganglia disorders and demonstrate that depression is the potential long term complication of BBGD.

  18. Compression embedding

    DOEpatents

    Sandford, II, Maxwell T.; Handel, Theodore G.; Bradley, Jonathan N.

    1998-01-01

    A method and apparatus for embedding auxiliary information into the digital representation of host data created by a lossy compression technique and a method and apparatus for constructing auxiliary data from the correspondence between values in a digital key-pair table with integer index values existing in a representation of host data created by a lossy compression technique. The methods apply to data compressed with algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as ordered sequences of blocks containing integer indices having redundancy and uncertainty of value by one unit, allowing indices which are adjacent in value to be manipulated to encode auxiliary data. Also included is a method to improve the efficiency of lossy compression algorithms by embedding white noise into the integer indices. Lossy compression methods use loss-less compression to reduce to the final size the intermediate representation as indices. The efficiency of the loss-less compression, known also as entropy coding compression, is increased by manipulating the indices at the intermediate stage. Manipulation of the intermediate representation improves lossy compression performance by 1 to 10%.

  19. Compression embedding

    DOEpatents

    Sandford, M.T. II; Handel, T.G.; Bradley, J.N.

    1998-07-07

    A method and apparatus for embedding auxiliary information into the digital representation of host data created by a lossy compression technique and a method and apparatus for constructing auxiliary data from the correspondence between values in a digital key-pair table with integer index values existing in a representation of host data created by a lossy compression technique are disclosed. The methods apply to data compressed with algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as ordered sequences of blocks containing integer indices having redundancy and uncertainty of value by one unit, allowing indices which are adjacent in value to be manipulated to encode auxiliary data. Also included is a method to improve the efficiency of lossy compression algorithms by embedding white noise into the integer indices. Lossy compression methods use loss-less compression to reduce to the final size the intermediate representation as indices. The efficiency of the loss-less compression, known also as entropy coding compression, is increased by manipulating the indices at the intermediate stage. Manipulation of the intermediate representation improves lossy compression performance by 1 to 10%. 21 figs.

  20. Mechanisms underlying spinal cord damage in decompression sickness.

    PubMed

    Hallenbeck, J M; Bove, A A; Elliott, D H

    1975-04-01

    Decompression sickness, which damaged the spinal cord, was produced in anesthetized dogs using a compression chamber. Cerebrospinal fluid pressure and several intravascular and intracardiac pressures were monitored during the course of the simulated dives. Manometric responses to forcible lung inflation and abdominal compression were measured both predive and postdive after signs of spinal cord damage were evident. Cinevenography of the epidural vertebral venous system was performed both predive and postdive. Histopathologic studies of the brains and cords of both predive and postdive. Histopathologic studies of the brains and cords of paretic animals were carried out. The results indicate that the epidural vertebral venous system becomes obstructed during spinal cord damaging decompression sickness and strongly suggests that spinal cord infarction in decompression sickness is caused by obstruction of cord venous drainage at the level of the epidural vertebral venous system. PMID:1168317

  1. Translational constraint influences dynamic spinal canal occlusion of the thoracic spine: an in vitro experimental study.

    PubMed

    Zhu, Qingan; Lane, Chris; Ching, Randal P; Gordon, Jeff D; Fisher, Charles G; Dvorak, Marcel F; Cripton, Peter A; Oxland, Thomas R

    2008-01-01

    Mechanical constraints to spine motion can arise in a variety of real-world situations such as when shoulder belts prevent anterior translation of the thorax during automotive collisions. The effect of such constraint on spinal column-spinal cord interaction during injury remains unknown. The purpose of the present study was to compare maximal dynamic spinal canal occlusion, measured via a specialized transducer, in cadaveric upper thoracic spine specimens under a variety of anterior-posterior constraint conditions. Four injury models were produced using 24 cadaveric spine specimens (T1-T4). Incremental compressive trauma was applied under constrained (i.e. blocked anterior-posterior translation) flexion-compression, pure-compression and extension-compression, and under unconstrained (i.e. free anterior-posterior translation) flexion-compression. All displacements were applied at 500 mm/s. For all three constrained trauma groups, complete transducer occlusion occurred between 20 and 30 mm of compressive displacement. The extension-compression caused transducer occlusion significantly less than the other constrained models (p < 0.022) at 20 mm compression. For unconstrained flexion-compression, a compression of up to 50 mm resulted in a mean of 26% transducer occlusion. The constrained pure-compression tests led to burst fracture with significant body height loss at T2. The constrained flexion-compression and extension-compression tests caused fracture-dislocation injury at the T2-T3 level. Constrained trauma clearly led to more spinal canal occlusion than the unconstrained in these models, and more severe injury to the spinal column. The results add to our understanding of the effect of column injury pattern on spinal cord injury. This information has clear implications for the design of injury prevention devices. PMID:17709110

  2. Therapeutic Effect of Epidurally Administered Lipo-Prostaglandin E1 Agonist in a Rat Spinal Stenosis Model

    PubMed Central

    Park, Sang Hyun; Choe, Ghee Young; Moon, Jee Yeon; Nahm, Francis Sahngun; Kim, Yong Chul

    2014-01-01

    Background A lipo-prostaglandin E1 agonist is effective for the treatment of neurological symptoms of spinal stenosis when administered by an oral or intravenous route. we would like to reveal the therapeutic effect of an epidural injection of lipo-prostaglandin E1 on hyperalgesia in foraminal stenosis. Methods A total of 40 male Sprague-Dawley rats were included. A small stainless steel rod was inserted into the L5/L6 intervertebral foramen to produce intervertebral foraminal stenosis and chronic compression of the dorsal root ganglia (DRG). The rats were divided into three groups: epidural PGE1 (EP) (n = 15), saline (n = 15), and control (n = 10). In the EP group, 0.15 µg.kg-1 of a lipo-PGE1 agonist was injected daily via an epidural catheter for 10 days from postoperative day 3. In the saline group, saline was injected. Behavioral tests for mechanical hyperalgesia were performed for 3 weeks. Then, the target DRG was analyzed for the degree of chromatolysis, chronic inflammation, and fibrosis in light microscopic images. Results From the fifth day after lipo-PGE1 agonist injection, the EP group showed significant recovery from mechanical hyperalgesia, which was maintained for 3 weeks (P < 0.05). Microscopic analysis showed much less chromatolysis in the EP group than in the saline or control groups. Conclusions An epidurally administered lipo-PGE1 agonist relieved neuropathic pain, such as mechanical hyperalgesia, in a rat foraminal stenosis model, with decreasing chromatolysis in target DRG. We suggest that epidurally administered lipo-PGE1 may be a useful therapeutic candidate for patients with spinal stenosis. PMID:25031807

  3. Compression embedding

    DOEpatents

    Sandford, M.T. II; Handel, T.G.; Bradley, J.N.

    1998-03-10

    A method of embedding auxiliary information into the digital representation of host data created by a lossy compression technique is disclosed. The method applies to data compressed with lossy algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as integer indices having redundancy and uncertainty in value by one unit. Indices which are adjacent in value are manipulated to encode auxiliary data. By a substantially reverse process, the embedded auxiliary data can be retrieved easily by an authorized user. Lossy compression methods use loss-less compressions known also as entropy coding, to reduce to the final size the intermediate representation as indices. The efficiency of the compression entropy coding, known also as entropy coding is increased by manipulating the indices at the intermediate stage in the manner taught by the method. 11 figs.

  4. Compression embedding

    DOEpatents

    Sandford, II, Maxwell T.; Handel, Theodore G.; Bradley, Jonathan N.

    1998-01-01

    A method of embedding auxiliary information into the digital representation of host data created by a lossy compression technique. The method applies to data compressed with lossy algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as integer indices having redundancy and uncertainty in value by one unit. Indices which are adjacent in value are manipulated to encode auxiliary data. By a substantially reverse process, the embedded auxiliary data can be retrieved easily by an authorized user. Lossy compression methods use loss-less compressions known also as entropy coding, to reduce to the final size the intermediate representation as indices. The efficiency of the compression entropy coding, known also as entropy coding is increased by manipulating the indices at the intermediate stage in the manner taught by the method.

  5. Spinal cord trauma

    MedlinePlus

    ... if the bones or disks have been weakened Fragments of bone (such as from broken vertebrae, which are the ... presses on the spinal cord (decompression laminectomy ) Remove bone fragments, disk fragments, or foreign objects Fuse broken spinal ...

  6. Intractable Pruritus After Traumatic Spinal Cord Injury

    PubMed Central

    Crane, Deborah A; Jaffee, Kenneth M; Kundu, Anjana

    2009-01-01

    Background: This report describes a young woman with incomplete traumatic cervical spinal cord injury and intractable pruritus involving her dorsal forearm. Method: Case report. Findings: Anatomic distribution of the pruritus corresponded to the dermatomal distribution of her level of spinal cord injury and vertebral fusion. Symptoms were attributed to the spinal cord injury and possible cervical root injury. Pruritus was refractory to all treatments, including topical lidocaine, gabapentin, transcutaneous electrical nerve stimulation, intravenous Bier block, stellate ganglion block, and acupuncture. Conclusions: Further understanding of neuropathic pruritus is needed. Diagnostic workup of intractable pruritus should include advanced imaging to detect ongoing nerve root compression. If diagnostic studies suggest radiculopathy, epidural steroid injection should be considered. Because the autonomic nervous system may be involved in complex chronic pain or pruritic syndromes, sympatholysis via such techniques as stellate ganglion block might be effective. PMID:19777867

  7. Spinal cord injury following operative shoulder intervention: A case report

    PubMed Central

    Cleveland, Christine; Walker, Heather

    2015-01-01

    Context Cervical myelopathy is a spinal cord dysfunction that results from extrinsic compression of the spinal cord, its blood supply, or both. It is the most common cause of spinal cord dysfunction in patients greater than 55 years of age. Findings: A 57-year-old male with right shoulder septic arthritis underwent surgical debridement of his right shoulder and sustained a spinal cord injury intraoperatively. The most likely etiology is damage to the cervical spinal cord during difficult intubation requiring multiple attempts in this patient with underlying asymptomatic severe cervical stenosis. Conclusion Although it is not feasible to perform imaging studies on all patients undergoing intubation for surgery, this patient's outcome would suggest consideration of inclusion of additional pre-surgical screening examination techniques, such as testing for a positive Hoffman's reflex, is appropriate to detect asymptomatic patients who may have underlying cervical stenosis. PMID:24679185

  8. Brain and Spinal Tumors

    MedlinePlus

    ... Awards Enhancing Diversity Find People About NINDS NINDS Brain and Spinal Tumors Information Page Synonym(s): Spinal Cord ... en Español Additional resources from MedlinePlus What are Brain and Spinal Tumors? Tumors of the brain and ...

  9. Spinal Cord Diseases

    MedlinePlus

    ... damages the vertebrae or other parts of the spine, this can also injure the spinal cord. Other spinal cord problems include Tumors Infections such as meningitis and polio Inflammatory diseases Autoimmune diseases Degenerative diseases such as amyotrophic lateral sclerosis and spinal ...

  10. Spinal Cord Injuries

    MedlinePlus

    ... your body and your brain. A spinal cord injury disrupts the signals. Spinal cord injuries usually begin with a blow that fractures or ... bone disks that make up your spine. Most injuries don't cut through your spinal cord. Instead, ...

  11. Management of Spinal Meningiomas.

    PubMed

    Ravindra, Vijay M; Schmidt, Meic H

    2016-04-01

    Spinal meningiomas are the most common spinal tumors encountered in adults, and account for 6.5% of all craniospinal tumors. The treatment for these lesions is primarily surgical, but emerging modalities may include chemotherapy and radiosurgery. In this article, the current management of spinal meningiomas and the body of literature surrounding conventional treatment is reviewed and discussed.

  12. Mephedrone alters basal ganglia and limbic neurotensin systems.

    PubMed

    German, Christopher L; Hoonakker, Amanda H; Fleckenstein, Annette E; Hanson, Glen R

    2014-08-01

    Mephedrone (4-methylmethcathinone) is a synthetic cathinone designer drug that alters pre-synaptic dopamine (DA) activity like many psychostimulants. However, little is known about the post-synaptic dopaminergic impacts of mephedrone. The neuropeptide neurotensin (NT) provides inhibitory feedback for basal ganglia and limbic DA pathways, and post-synaptic D1 -like and D2 -like receptor activity affects NT tissue levels. This study evaluated how mephedrone alters basal ganglia and limbic system NT content and the role of NT receptor activation in drug consumption behavior. Four 25 mg/kg injections of mephedrone increased NT content in basal ganglia (striatum, substantia nigra and globus pallidus) and the limbic regions (nucleus accumbens core), while a lower dosage (5 mg/kg/injection) only increased striatal NT content. Mephedrone-induced increases in basal ganglia NT levels were mediated by D1 -like receptors in the striatum and the substantia nigra by both D1 -like and D2 -like receptors in the globus pallidus. Mephedrone increased substance P content, another neuropeptide, in the globus pallidus, but not in the dorsal striatum or substantia nigra. Finally, the NT receptor agonist PD149163 blocked mephedrone self-administration, suggesting reduced NT release, as indicated by increased tissue levels, likely contributing to patterns of mephedrone consumption.

  13. Evidence for Glutamate as a Neuroglial Transmitter within Sensory Ganglia

    PubMed Central

    Kung, Ling-Hsuan; Gong, Kerui; Adedoyin, Mary; Ng, Johnson; Bhargava, Aditi; Ohara, Peter T.; Jasmin, Luc

    2013-01-01

    This study examines key elements of glutamatergic transmission within sensory ganglia of the rat. We show that the soma of primary sensory neurons release glutamate when depolarized. Using acute dissociated mixed neuronal/glia cultures of dorsal root ganglia (DRG) or trigeminal ganglia and a colorimetric assay, we show that when glutamate uptake by satellite glial cells (SGCs) is inhibited, KCl stimulation leads to simultaneous increase of glutamate in the culture medium. With calcium imaging we see that the soma of primary sensory neurons and SGCs respond to AMPA, NMDA, kainate and mGluR agonists, and selective antagonists block this response. Using whole cell patch-clamp technique, inward currents were recorded from small diameter (<30 µm) DRG neurons from intact DRGs (ex-vivo whole ganglion preparation) in response to local application of the above glutamate receptor agonists. Following a chronic constriction injury (CCI) of either the inferior orbital nerve or the sciatic nerve, glutamate expression increases in the trigeminal ganglia and DRG respectively. This increase occurs in neurons of all diameters and is present in the somata of neurons with injured axons as well as in somata of neighboring uninjured neurons. These data provides additional evidence that glutamate can be released within the sensory ganglion, and that the somata of primary sensory neurons as well as SGCs express functional glutamate receptors at their surface. These findings, together with our previous gene knockdown data, suggest that glutamatergic transmission within the ganglion could impact nociceptive threshold. PMID:23844184

  14. Genetics Home Reference: biotin-thiamine-responsive basal ganglia disease

    MedlinePlus

    ... 4 links) Encyclopedia: Basal Ganglia Dysfunction Health Topic: B Vitamins Health Topic: Brain Diseases Health Topic: Movement Disorders ... doi: 10.1055/s-0028-1128152. Epub 2009 Mar 17. Review. Citation on PubMed GeneReview: Biotin-Thiamine-Responsive ...

  15. Mitochondrial variations in the spinal ganglion cells of the slow loris: an electron microscopic study.

    PubMed

    Ahmed, M M; Kanagasuntheram, R

    1976-04-01

    The fine structure os spinal ganglia from seven slow lorises (Nycticebus coucang coucang) was studied following perfusion fixation using different concentrations of glutaraldehyde and post-fixation in 1% osmic acid. Two cell types, one light (63%), and the other dark (37%) were reported out of the total number of 425 neurons counted. Almost all the light cells contained filamentous mitochondria, whereas only 35% of the dark cells contained filamentous mitochondria, the other 65% having vacuolated mitochondria. The significance of this mitochondrial variation in the spinal ganglion cells of the slow loris is undecided.

  16. α-Synuclein pathology in the cranial and spinal nerves in Lewy body disease.

    PubMed

    Nakamura, Keiko; Mori, Fumiaki; Tanji, Kunikazu; Miki, Yasuo; Toyoshima, Yasuko; Kakita, Akiyoshi; Takahashi, Hitoshi; Yamada, Masahito; Wakabayashi, Koichi

    2016-06-01

    Accumulation of phosphorylated α-synuclein in neurons and glial cells is a histological hallmark of Lewy body disease (LBD) and multiple system atrophy (MSA). Recently, filamentous aggregations of phosphorylated α-synuclein have been reported in the cytoplasm of Schwann cells, but not in axons, in the peripheral nervous system in MSA, mainly in the cranial and spinal nerve roots. Here we conducted an immunohistochemical investigation of the cranial and spinal nerves and dorsal root ganglia of patients with LBD. Lewy axons were found in the oculomotor, trigeminal and glossopharyngeal-vagus nerves, but not in the hypoglossal nerve. The glossopharyngeal-vagus nerves were most frequently affected, with involvement in all of 20 subjects. In the spinal nerve roots, Lewy axons were found in all of the cases examined. Lewy axons in the anterior nerves were more frequent and numerous in the thoracic and sacral segments than in the cervical and lumbar segments. On the other hand, axonal lesions in the posterior spinal nerve roots appeared to increase along a cervical-to-sacral gradient. Although Schwann cell cytoplasmic inclusions were found in the spinal nerves, they were only minimal. In the dorsal root ganglia, axonal lesions were seldom evident. These findings indicate that α-synuclein pathology in the peripheral nerves is axonal-predominant in LBD, whereas it is restricted to glial cells in MSA.

  17. Basal Ganglia Shapes Predict Social, Communication, and Motor Dysfunctions in Boys with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Qiu, Anqi; Adler, Marcy; Crocetti, Deana; Miller, Michael I.; Mostofsky, Stewart H.

    2010-01-01

    Objective: Basal ganglia abnormalities have been suggested as contributing to motor, social, and communicative impairments in autism spectrum disorder (ASD). Volumetric analyses offer limited ability to detect localized differences in basal ganglia structure. Our objective was to investigate basal ganglia shape abnormalities and their association…

  18. Proprioceptive neuropathy affects normalization of the H-reflex by exercise after spinal cord injury

    PubMed Central

    Ollivier-Lanvin, Karen; Keeler, Benjamin E.; Siegfried, Rachel; Houlé, John D.; Lemay, Michel A.

    2009-01-01

    The H-reflex habituates at relatively low frequency (10 Hz) stimulation in the intact spinal cord, but loss of descending inhibition resulting from spinal cord transection reduces this habituation. There is a return towards a normal pattern of low-frequency habituation in the reflex activity with cycling exercise of the affected hind limbs. This implies that repetitive passive stretching of the muscles in spinalized animals and the accompanying stimulation of large (Group I and II) proprioceptive fibers has modulatory effects on spinal cord reflexes after injury. To test this hypothesis, we induced pyridoxine neurotoxicity that preferentially affects large dorsal root ganglia neurons in intact and spinalized rats. Pyridoxine or saline injections were given twice daily (IP) for 6 weeks and half of the spinalized animals were subjected to cycling exercise during that period. After 6 weeks, the tibial nerve was stimulated electrically and recordings of M and H waves were made from interosseous muscles of the hind paw. Results show that pyridoxine treatment completely eliminated the H-reflex in spinal intact animals. In contrast, transection paired with pyridoxine treatment resulted in a reduction of the frequency-dependent habituation of the H-reflex that was not affected by exercise. These results indicate that normal Group I and II afferent input is critical to achieve exercise-based reversal of hyper-reflexia of the H-reflex after spinal cord injury. PMID:19913536

  19. Spinal cord contusion models.

    PubMed

    Young, Wise

    2002-01-01

    Most human spinal cord injuries involve contusions of the spinal cord. Many investigators have long used weight-drop contusion animal models to study the pathophysiology and genetic responses of spinal cord injury. All spinal cord injury therapies tested to date in clinical trial were validated in such models. In recent years, the trend has been towards use of rats for spinal cord injury studies. The MASCIS Impactor is a well-standardized rat spinal cord contusion model that produces very consistent graded spinal cord damage that linearly predicts 24-h lesion volumes, 6-week white matter sparing, and locomotor recovery in rats. All aspects of the model, including anesthesia for male and female rats, age rather than body weight criteria, and arterial blood gases were empirically selected to enhance the consistency of injury. PMID:12440371

  20. Spinal Nerve Ligation in Mouse Upregulates TRPV1 Heat Function in Injured IB4 Positive Nociceptors

    PubMed Central

    Vilceanu, Daniel; Honore, Prisca; Hogan, Quinn H.; Stucky, Cheryl L.

    2009-01-01

    Peripheral nerve injury leads to neuropathic pain, but the underlying mechanisms are not clear. The TRPV1 channel expressed by nociceptors is one receptor for noxious heat and inflammatory molecules. Lumbar 4 spinal nerve ligation (SNL) in mice induced persistent heat hyperalgesia 4–10 days following injury. The heat hypersensitivity was completely reversed by the TRPV1 antagonist A-425619. Furthermore, DRG neurons were isolated from the injured L4 ganglia or adjacent L3 ganglia 4–10 days after L4 SNL. Whole-cell patch clamp recordings were performed and heat stimuli (22–50°C/3 sec) were applied to the soma. Neurons were classified by soma size and isolectin-B4 (IB4) binding. Among directly injured L4 neurons, SNL increased the percentage of small-diameter IB4 positive neurons that were heat sensitive from 13% (naive controls) to 56% and conversely, decreased the proportion of small IB4-negative neurons that were heat sensitive from 66% (naive controls) to 34%. There was no change in IB4 binding in neurons from the injured ganglia. Surprisingly, in neurons from the adjacent L3 ganglia, SNL had no effect on the heat responsiveness of either IB4 positive or negative small neurons. Also, SNL had no effect on heat responses in medium-large diameter neurons from either the injured or adjacent ganglia. PMID:20015699

  1. Spinal hydatid with meralgia paresthetica in a female: A rare case report

    PubMed Central

    Lonkar, Yeshwant; Amale, Amar; Acharya, Sourya; Banode, Pankaj; Yeola, Meenakshi

    2012-01-01

    Meralgia paresthetica presents as tingling sensation in the antero-lateral aspect of thigh. It occurs due to compression of the lateral cutaneous nerve of thigh. Proximal spinal lesions may present as meralgia paresthetica due to radiculopathy. We present a rare case of spinal hydatid with meralgia paresthetica. PMID:24082690

  2. The pathogenesis of spinal epidural abscess: microangiographic studies in an experimental model.

    PubMed

    Feldenzer, J A; McKeever, P E; Schaberg, D R; Campbell, J A; Hoff, J T

    1988-07-01

    An experimental model of spinal epidural abscess was developed in rabbits by injecting Staphylococcus aureus into the posterior thoracolumbar epidural space. This model has been shown to reproduce the neurological, bacteriological, and radiological aspects of the human disease. In this study, the effect of the infectious epidural mass on the vasculature of the spinal cord in paraplegic rabbits was studied using microangiographic techniques. The normal vascular anatomy of the rabbit spinal cord was defined in control experiments. Vascular proliferation was demonstrated in the epidural space surrounding the abscesses. Anterior and paired posterior spinal arteries remained patent in paraplegic rabbits with mild or moderate spinal cord compression and in some cases of severe compression. In animals with severe compression, the anterior epidural venous plexus remained patent, but the dorsal spinal vein was occluded. Occlusion of perforating arteries occurred only with extreme spinal cord compression. These data indicate that the initial neurological deficit associated with experimental spinal epidural abscess is not due to vascular thrombosis. PMID:2454302

  3. A polynomial equation to predict low back compression force: accounting for the effects of load height on instability.

    PubMed

    Calder, Inger Christina; Potvin, Jim R

    2012-01-01

    The purpose of this study was to develop a regression equation that, incorporating the potential energy of the load in the hands, was capable of improved predictions of spinal compression forces. A stepwise polynomial equation was developed from EMG profiles of 15 muscles, and its spinal joint loading predictions at L4/L5 were compared to current methods of calculating spinal compression. Absolute muscle activation was shown to increase with increased loading height, indicating that the central nervous system responds to changes in spinal stability. The inclusion of potential energy into the calculation of spinal disc compression at L4/L5 improved estimates of the compressive forces acting on the spine. This is the first model to incorporate potential energy into a predictive model for lumbar spine compression without the use of electromyography. It was concluded that potential energy plays a vital role in dictating the recruitment patterns of the trunk.

  4. EFFECTS OF THALLIUM SALTS ON NEURONAL MITOCHONDRIA IN ORGANOTYPIC CORD-GANGLIA-MUSCLE COMBINATION CULTURES

    PubMed Central

    Spencer, Peter S.; Peterson, Edith R.; Madrid A., Ricardo; Raine, Cedric S.

    1973-01-01

    A functionally coupled organotypic complex of cultured dorsal root ganglia, spinal cord peripheral nerve, and muscle has been employed in an experimental approach to the investigation of the neurotoxic effects of thallium. Selected cultures, grown for up to 12 wk in vitro, were exposed to thallous salts for periods ranging up to 4 days. Cytopathic effects were first detected after 2 h of exposure with the appearance of considerably enlarged mitochondria in axons of peripheral nerve fibers. With time, the matrix space of these mitochondria became progressively swollen, transforming the organelle into an axonal vacuole bounded by the original outer mitochondrial membrane. Coalescence of adjacent axonal vacuoles produced massive internal axon compartments, the membranes of which were shown by electron microprobe mass spectrometry to have an affinity for thallium. Other axoplasmic components were displaced within a distended but intact axolemma. The resultant fiber swelling caused myelin retraction from nodes of Ranvier but no degeneration. Impulses could still propagate along the nerve fibers throughout the time course of the experiment. Comparable, but less severe changes were seen in dorsal root ganglion neurons and in central nerve fibers. Other cell types showed no mitochondrial change. It is uncertain how these findings relate to the neurotoxic effects of thallium in vivo, but a sensitivity of the nerve cell and especially its axon to thallous salts is indicated. PMID:4125375

  5. Pedunculopontine nucleus and basal ganglia: distant relatives or part of the same family?

    PubMed

    Mena-Segovia, Juan; Bolam, J Paul; Magill, Peter J

    2004-10-01

    The basal ganglia are more highly interconnected with the pedunculopontine tegmental nucleus (PPN) than with any other brain region. Regulation and relay of basal ganglia activity are two key functions of the PPN. The PPN provides an interface for the basal ganglia to influence sleep and waking, and the two structures are similarly implicated in learning, reward and other cognitive functions. Perturbations of basal ganglia activity have consequences for the PPN and vice versa, exemplified by their interdependencies in motor function and Parkinson's disease. Thus, close anatomical and physiological links between the PPN and basal ganglia make it increasingly difficult to consider the two as separate functional entities. PMID:15374668

  6. Tageted bipolar radiofrequency decompression with vertebroplasty for intractable radicular pain due to spinal metastasis: a case report

    PubMed Central

    Baek, Seong Jin; Lee, Eun Young

    2016-01-01

    Metastatic spinal tumors are usually quite difficult to treat. In patients with metastatic spinal tumors, conventional radiotherapy fails to relieve pain in 20–30% of cases and open surgery often causes considerable trauma and complications, which delays treatment of the primary disease. Percutaneous vertebroplasty (PVP) is considered to be useful in achieving rapid pain control and preventing further vertebral collapse due to spinal metastasis. However, symptoms of intraspinal neural compression can be contraindications to PVP. To overcome this problem, we performed PVP following targeted bipolar radiofrequency decompression, and examined the effect of the combined treatment in relieving severe radicular pain related to spinal cord compression caused by malignant metastatic tumors. PMID:27482319

  7. Cerebellar networks with the cerebral cortex and basal ganglia.

    PubMed

    Bostan, Andreea C; Dum, Richard P; Strick, Peter L

    2013-05-01

    The dominant view of cerebellar function has been that it is exclusively concerned with motor control and coordination. Recent findings from neuroanatomical, behavioral, and imaging studies have profoundly changed this view. Neuroanatomical studies using virus transneuronal tracers have demonstrated that cerebellar output reaches vast areas of the neocortex, including regions of prefrontal and posterior parietal cortex. Furthermore, it has recently become clear that the cerebellum is reciprocally connected with the basal ganglia, which suggests that the two subcortical structures are part of a densely interconnected network. Taken together, these findings elucidate the neuroanatomical substrate for cerebellar involvement in non-motor functions mediated by the prefrontal and posterior parietal cortex, as well as in processes traditionally associated with the basal ganglia. PMID:23579055

  8. Morphological elucidation of basal ganglia circuits contributing reward prediction

    PubMed Central

    Fujiyama, Fumino; Takahashi, Susumu; Karube, Fuyuki

    2015-01-01

    Electrophysiological studies in monkeys have shown that dopaminergic neurons respond to the reward prediction error. In addition, striatal neurons alter their responsiveness to cortical or thalamic inputs in response to the dopamine signal, via the mechanism of dopamine-regulated synaptic plasticity. These findings have led to the hypothesis that the striatum exhibits synaptic plasticity under the influence of the reward prediction error and conduct reinforcement learning throughout the basal ganglia circuits. The reinforcement learning model is useful; however, the mechanism by which such a process emerges in the basal ganglia needs to be anatomically explained. The actor–critic model has been previously proposed and extended by the existence of role sharing within the striatum, focusing on the striosome/matrix compartments. However, this hypothesis has been difficult to confirm morphologically, partly because of the complex structure of the striosome/matrix compartments. Here, we review recent morphological studies that elucidate the input/output organization of the striatal compartments. PMID:25698913

  9. Morphological elucidation of basal ganglia circuits contributing reward prediction.

    PubMed

    Fujiyama, Fumino; Takahashi, Susumu; Karube, Fuyuki

    2015-01-01

    Electrophysiological studies in monkeys have shown that dopaminergic neurons respond to the reward prediction error. In addition, striatal neurons alter their responsiveness to cortical or thalamic inputs in response to the dopamine signal, via the mechanism of dopamine-regulated synaptic plasticity. These findings have led to the hypothesis that the striatum exhibits synaptic plasticity under the influence of the reward prediction error and conduct reinforcement learning throughout the basal ganglia circuits. The reinforcement learning model is useful; however, the mechanism by which such a process emerges in the basal ganglia needs to be anatomically explained. The actor-critic model has been previously proposed and extended by the existence of role sharing within the striatum, focusing on the striosome/matrix compartments. However, this hypothesis has been difficult to confirm morphologically, partly because of the complex structure of the striosome/matrix compartments. Here, we review recent morphological studies that elucidate the input/output organization of the striatal compartments. PMID:25698913

  10. [Morphological Re-evaluation of the Basal Ganglia Network].

    PubMed

    Fujiyama, Fumino

    2016-07-01

    Electrophysiological studies in monkeys have shown that dopaminergic neurons respond to the reward prediction error. In addition, striatal neurons alter their responsiveness to cortical or thalamic inputs in response to dopamine signals, via dopamine-regulated synaptic plasticity. These findings have led to the hypothesis that the striatum exhibits synaptic plasticity under the influence of reward prediction error and conducts reinforcement learning throughout the basal ganglia circuits. The reinforcement learning model is useful; however, the mechanism by which such a process emerges in the basal ganglia needs to be anatomically explained. The actor-critic model has been previously proposed and extended by the existence of role sharing within the striatum, with particular focus on the striosome and matrix compartments. However, this hypothesis has been difficult to confirm morphologically, partly because of the complex structure of the striosome and matrix compartments. Here, we review recent morphological studies that elucidate the input/output organization of the striatal compartments. PMID:27395470

  11. Cerebellar networks with the cerebral cortex and basal ganglia

    PubMed Central

    Bostan, Andreea C.; Dum, Richard P.; Strick, Peter L.

    2013-01-01

    The dominant view of cerebellar function has been that it is exclusively concerned with motor control and coordination. Recent results from neuroanatomical, behavioral and imaging studies have profoundly changed this view. Neuroanatomical studies using virus transneuronal tracers have demonstrated that the output from the cerebellum reaches vast areas of the neocortex, including regions of prefrontal and posterior parietal cortex. Furthermore, it has recently become clear that the cerebellum is reciprocally connected with the basal ganglia, indicating that the two subcortical structures are part of a densely interconnected network. Altogether, these results provide the neuroanatomical substrate for cerebellar involvement in non-motor functions mediated by the prefrontal and posterior parietal cortex, as well as in processes traditionally associated with the basal ganglia. PMID:23579055

  12. Neural representation of time in cortico-basal ganglia circuits

    PubMed Central

    Jin, Dezhe Z.; Fujii, Naotaka; Graybiel, Ann M.

    2009-01-01

    Encoding time is universally required for learning and structuring motor and cognitive actions, but how the brain keeps track of time is still not understood. We searched for time representations in cortico-basal ganglia circuits by recording from thousands of neurons in the prefrontal cortex and striatum of macaque monkeys performing a routine visuomotor task. We found that a subset of neurons exhibited time-stamp encoding strikingly similar to that required by models of reinforcement-based learning: They responded with spike activity peaks that were distributed at different time delays after single task events. Moreover, the temporal evolution of the population activity allowed robust decoding of task time by perceptron models. We suggest that time information can emerge as a byproduct of event coding in cortico-basal ganglia circuits and can serve as a critical infrastructure for behavioral learning and performance. PMID:19850874

  13. Light-Induced Alterations in Basil Ganglia Kynurenic Acid Levels

    NASA Technical Reports Server (NTRS)

    Sroufe, Angela E.; Whittaker, J. A.; Patrickson, J. W.; Orr, M. C.

    1997-01-01

    The metabolic synthesis, release and breakdown of several known CNS neurotransmitters have been shown to follow a circadian pattern entrained to the environmental light/dark cycle. The levels of excitatory amino acid (EAA) transmitters such as glutamate, have been shown to vary with environmental lighting conditions. Kynurenic Acid (KA), an endogenous tryptophan metabolite and glutamate receptor antagonist, has been reported to have neuroprotective effects against EAA-induced excitotoxic cell damage. Changes in KA's activity within the mammalian basal ganglia has been proposed as being contributory to neurotoxicity in Huntington's Disease. It is not known whether CNS KA levels follow a circadian pattern or exhibit light-induced fluctuations. However, because the symptoms of certain degenerative motor disorders seem to fluctuate with daily 24 hour rhythm, we initiated studies to determine if basal ganglia KA were influenced by the daily light/dark cycle and could influence motor function. Therefore in this study, HPLC-EC was utilized to determine if basal ganglia KA levels in tissue extracts from adult male Long-Evans rats (200-250g) entrained to 24 and 48 hours constant light and dark conditions, respectively. Samples were taken one hour before the onset of the subjective day and one hour prior to the onset of the subjective night in order to detect possible phase differences in KA levels and to allow for accumulation of factors expressed in association with the light or dark phase. Data analysis revealed that KA levels in the basal ganglia vary with environmental lighting conditions; being elevated generally during the dark. Circadian phase differences in KA levels were also evident during the subjective night and subjective day, respectively. Results from these studies are discussed with respect to potential cyclic changes in neuronal susceptibility to excitotoxic damage during the daily 24 hour cycle and its possible relevance to future therapeutic approaches in

  14. A role for Sv2c in basal ganglia functions.

    PubMed

    Dardou, D; Monlezun, S; Foerch, P; Courade, J P; Cuvelier, L; De Ryck, M; Schiffmann, S N

    2013-04-24

    SV2C is an isoform of the synaptic vesicle 2 protein family that exhibits a particular pattern of brain expression with enriched expression in several basal ganglia nuclei. In the present study, we have investigated SV2C implication in both normal and pathological basal ganglia functioning with a peculiar attention to dopamine neuron containing regions. In SV2C-/- mice, the expression of tyrosine hydroxylase mRNA in midbrain dopaminergic neurons was largely and significantly increased and enkephalin mRNA expression was significantly decreased in the caudate-putamen and accumbens nucleus. The expression of SV2C was studied in two models of dopaminergic denervation (6-OHDA- and MPTP-induced lesions). In dopamine-depleted animals, SV2C mRNA expression was significant increased in the striatum. In order to further understand the role of SV2C, we performed behavioral experiments on SV2C-/- mice and on knock-down mice receiving an injection of adeno-associated virus expressing SV2C miRNA specifically in the ventral midbrain. These modifications of SV2C expression had little or no impact on behavior in open field and elevated plus maze. However, even if complete loss of SV2C had no impact on conditioned place preference induced by cocaine, the specific knock-down of SV2C expression in the dopaminergic neurons completely abolished the development of a CPP while the reaction to an acute drug injection remains similar in these mice compared to control mice. These results showed that SV2C, a poorly functionally characterized protein is strongly involved in normal operation of the basal ganglia network and could be also involved in system adaptation in basal ganglia pathological conditions. PMID:23458503

  15. Movement Disorders Following Cerebrovascular Lesion in the Basal Ganglia Circuit.

    PubMed

    Park, Jinse

    2016-05-01

    Movement disorders are primarily associated with the basal ganglia and the thalamus; therefore, movement disorders are more frequently manifest after stroke compared with neurological injuries associated with other structures of the brain. Overall clinical features, such as types of movement disorder, the time of onset and prognosis, are similar with movement disorders after stroke in other structures. Dystonia and chorea are commonly occurring post-stroke movement disorders in basal ganglia circuit, and these disorders rarely present with tremor. Rarer movement disorders, including tic, restless leg syndrome, and blepharospasm, can also develop following a stroke. Although the precise mechanisms underlying the pathogenesis of these conditions have not been fully characterized, disruptions in the crosstalk between the inhibitory and excitatory circuits resulting from vascular insult are proposed to be the underlying cause. The GABA (gamma-aminobutyric acid)ergic and dopaminergic systems play key roles in post-stroke movement disorders. This review summarizes movement disorders induced by basal ganglia and thalamic stroke according to the anatomical regions in which they manifest. PMID:27240808

  16. Proactive selective response suppression is implemented via the basal ganglia.

    PubMed

    Majid, D S Adnan; Cai, Weidong; Corey-Bloom, Jody; Aron, Adam R

    2013-08-14

    In the welter of everyday life, people can stop particular response tendencies without affecting others. A key requirement for such selective suppression is that subjects know in advance which responses need stopping. We hypothesized that proactively setting up and implementing selective suppression relies on the basal ganglia and, specifically, regions consistent with the inhibitory indirect pathway for which there is scant functional evidence in humans. Consistent with this hypothesis, we show, first, that the degree of proactive motor suppression when preparing to stop selectively (indexed by transcranial magnetic stimulation) corresponds to striatal, pallidal, and frontal activation (indexed by functional MRI). Second, we demonstrate that greater striatal activation at the time of selective stopping correlates with greater behavioral selectivity. Third, we show that people with striatal and pallidal volume reductions (those with premanifest Huntington's disease) have both absent proactive motor suppression and impaired behavioral selectivity when stopping. Thus, stopping goals are used to proactively set up specific basal ganglia channels that may then be triggered to implement selective suppression. By linking this suppression to the striatum and pallidum, these results provide compelling functional evidence in humans of the basal ganglia's inhibitory indirect pathway.

  17. Movement Disorders Following Cerebrovascular Lesion in the Basal Ganglia Circuit

    PubMed Central

    Park, Jinse

    2016-01-01

    Movement disorders are primarily associated with the basal ganglia and the thalamus; therefore, movement disorders are more frequently manifest after stroke compared with neurological injuries associated with other structures of the brain. Overall clinical features, such as types of movement disorder, the time of onset and prognosis, are similar with movement disorders after stroke in other structures. Dystonia and chorea are commonly occurring post-stroke movement disorders in basal ganglia circuit, and these disorders rarely present with tremor. Rarer movement disorders, including tic, restless leg syndrome, and blepharospasm, can also develop following a stroke. Although the precise mechanisms underlying the pathogenesis of these conditions have not been fully characterized, disruptions in the crosstalk between the inhibitory and excitatory circuits resulting from vascular insult are proposed to be the underlying cause. The GABA (gamma-aminobutyric acid)ergic and dopaminergic systems play key roles in post-stroke movement disorders. This review summarizes movement disorders induced by basal ganglia and thalamic stroke according to the anatomical regions in which they manifest. PMID:27240808

  18. Basal ganglia correlates of fatigue in young adults

    PubMed Central

    Nakagawa, Seishu; Takeuchi, Hikaru; Taki, Yasuyuki; Nouchi, Rui; Kotozaki, Yuka; Shinada, Takamitsu; Maruyama, Tsukasa; Sekiguchi, Atsushi; Iizuka, Kunio; Yokoyama, Ryoichi; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Miyauchi, Carlos Makoto; Magistro, Daniele; Sakaki, Kohei; Jeong, Hyeonjeong; Sasaki, Yukako; Kawashima, Ryuta

    2016-01-01

    Although the prevalence of chronic fatigue is approximately 20% in healthy individuals, there are no studies of brain structure that elucidate the neural correlates of fatigue outside of clinical subjects. We hypothesized that fatigue without evidence of disease might be related to changes in the basal ganglia and prefrontal cortex and be implicated in fatigue with disease. We aimed to identify the white matter structures of fatigue in young subjects without disease using magnetic resonance imaging (MRI). Healthy young adults (n = 883; 489 males and 394 females) were recruited. As expected, the degrees of fatigue and motivation were associated with larger mean diffusivity (MD) in the right putamen, pallidus and caudate. Furthermore, the degree of physical activity was associated with a larger MD only in the right putamen. Accordingly, motivation was the best candidate for widespread basal ganglia, whereas physical activity might be the best candidate for the putamen. A plausible mechanism of fatigue may involve abnormal function of the motor system, as well as areas of the dopaminergic system in the basal ganglia that are associated with motivation and reward. PMID:26893077

  19. Spinal epidural angiolipomas: Clinical characteristics, management and outcomes

    PubMed Central

    Bouali, Sofiene; Maatar, Nidhal; Bouhoula, Asma; Abderrahmen, Khansa; Said, Imed Ben; Boubaker, Adnen; Kallel, Jalel; Jemel, Hafedh

    2016-01-01

    Purpose: The spinal epidural angiolipomas are rare expansive processes made of mature lipomatous and angiomatous elements. They often have a benign character. Their etiology, pathogenesis remains uncertain, and it is a cause of spinal cord compression. The magnetic resonance imaging is the most important neuroradiological examination. Histological examination is the only examination to confirm the diagnosis. Surgery is the treatment of choice. Methods: A retrospective study of all patients operated on for a spinal epidural angiolipoma at the Department of Neurosurgery at the National Institute of Neurology of Tunis between January 2000 and December 2014 (15 years) was performed. The aim of this study is to describe the clinical, radiological, histological characteristics and the treatment of this tumor. Results: A total of nine patients were operated from January 01, 2000 to November 30, 2014. The average age of our patients was 51 years with ages that ranged from 29 to 65 with a male predominance. The period between onset of symptoms and diagnosis ranged from 24 months with an average 12 months. Posterior localization of the tumor was seen in all patients. Surgical resection was performed for all cases. The postoperative course has been satisfactory, with a complete recovery of neurological functions in all patients. Conclusions: The spinal epidural angiolipomas is rare expansive process causing spinal cord compression. Treatment is exclusively surgical resection. The functional outcome of spinal epidural angiolipomas is particularly favorable with a complete neurological recovery is if the patient was quickly operated. PMID:27695535

  20. Spinal epidural angiolipomas: Clinical characteristics, management and outcomes

    PubMed Central

    Bouali, Sofiene; Maatar, Nidhal; Bouhoula, Asma; Abderrahmen, Khansa; Said, Imed Ben; Boubaker, Adnen; Kallel, Jalel; Jemel, Hafedh

    2016-01-01

    Purpose: The spinal epidural angiolipomas are rare expansive processes made of mature lipomatous and angiomatous elements. They often have a benign character. Their etiology, pathogenesis remains uncertain, and it is a cause of spinal cord compression. The magnetic resonance imaging is the most important neuroradiological examination. Histological examination is the only examination to confirm the diagnosis. Surgery is the treatment of choice. Methods: A retrospective study of all patients operated on for a spinal epidural angiolipoma at the Department of Neurosurgery at the National Institute of Neurology of Tunis between January 2000 and December 2014 (15 years) was performed. The aim of this study is to describe the clinical, radiological, histological characteristics and the treatment of this tumor. Results: A total of nine patients were operated from January 01, 2000 to November 30, 2014. The average age of our patients was 51 years with ages that ranged from 29 to 65 with a male predominance. The period between onset of symptoms and diagnosis ranged from 24 months with an average 12 months. Posterior localization of the tumor was seen in all patients. Surgical resection was performed for all cases. The postoperative course has been satisfactory, with a complete recovery of neurological functions in all patients. Conclusions: The spinal epidural angiolipomas is rare expansive process causing spinal cord compression. Treatment is exclusively surgical resection. The functional outcome of spinal epidural angiolipomas is particularly favorable with a complete neurological recovery is if the patient was quickly operated.

  1. THE LOCALIZED ACTION ON THE SPINAL CORD OF INTRAMUSCULARLY INJECTED TETANUS TOXIN

    PubMed Central

    Acheson, George H.; Ratnoff, Oscar D.; Schoenbach, Emanuel B.

    1942-01-01

    Local tetanus limited to one leg was studied in cats after intramuscular injection of tetanus toxin. 1. The electric and mechanical response of the affected muscle after a single stimulus to the intact sensory-motor nerve is greater in amplitude and duration than the response of the corresponding muscle of the unaffected leg (Fig. 1). 2. This augmented response of the muscle is associated with an augmented response arising from the ipsilateral portion of the spinal cord, while the contralateral part of the cord is unaffected, as demonstrated by electrographic records from the motor nerves (Figs. 2 to 5). 3. The augmented muscular response is abolished when the reflex arc is broken, but the augmented response in the spinal cord is independent of changes in the muscle, the neuromuscular junction, the afferent and efferent peripheral nerves, and the dorsal root ganglia. 4. The augmented spinal response develops in the absence of the peripheral signs of local tetanus. Hence the pathogenesis of the altered state in the spinal cord is independent of the peripheral effects of the toxin. 5. In local tetanus, therefore, the toxin injected intramuscularly acts selectively upon the segments of the spinal cord which supply the innervation of the injected area. 6. The augmented spinal response may be prevented by section of the nerve trunks supplying the area of injection prior to the injection of the toxin. 7. It is concluded that in local tetanus the toxin is carried to the spinal cord by way of peripheral nerves. PMID:19871198

  2. Comprehensive RNA-Seq Expression Analysis of Sensory Ganglia with a Focus on Ion Channels and GPCRs in Trigeminal Ganglia

    PubMed Central

    Manteniotis, Stavros; Lehmann, Ramona; Flegel, Caroline; Vogel, Felix; Hofreuter, Adrian; Schreiner, Benjamin S. P.; Altmüller, Janine; Becker, Christian; Schöbel, Nicole; Hatt, Hanns; Gisselmann, Günter

    2013-01-01

    The specific functions of sensory systems depend on the tissue-specific expression of genes that code for molecular sensor proteins that are necessary for stimulus detection and membrane signaling. Using the Next Generation Sequencing technique (RNA-Seq), we analyzed the complete transcriptome of the trigeminal ganglia (TG) and dorsal root ganglia (DRG) of adult mice. Focusing on genes with an expression level higher than 1 FPKM (fragments per kilobase of transcript per million mapped reads), we detected the expression of 12984 genes in the TG and 13195 in the DRG. To analyze the specific gene expression patterns of the peripheral neuronal tissues, we compared their gene expression profiles with that of the liver, brain, olfactory epithelium, and skeletal muscle. The transcriptome data of the TG and DRG were scanned for virtually all known G-protein-coupled receptors (GPCRs) as well as for ion channels. The expression profile was ranked with regard to the level and specificity for the TG. In total, we detected 106 non-olfactory GPCRs and 33 ion channels that had not been previously described as expressed in the TG. To validate the RNA-Seq data, in situ hybridization experiments were performed for several of the newly detected transcripts. To identify differences in expression profiles between the sensory ganglia, the RNA-Seq data of the TG and DRG were compared. Among the differentially expressed genes (> 1 FPKM), 65 and 117 were expressed at least 10-fold higher in the TG and DRG, respectively. Our transcriptome analysis allows a comprehensive overview of all ion channels and G protein-coupled receptors that are expressed in trigeminal ganglia and provides additional approaches for the investigation of trigeminal sensing as well as for the physiological and pathophysiological mechanisms of pain. PMID:24260241

  3. In Vivo Measurement of Cervical Spinal Cord Deformation During Traumatic Spinal Cord Injury in a Rodent Model.

    PubMed

    Bhatnagar, Tim; Liu, Jie; Yung, Andrew; Cripton, Peter A; Kozlowski, Piotr; Oxland, Thomas

    2016-04-01

    The spinal cord undergoes physical deformation during traumatic spinal cord injury (TSCI), which results in biological damage. This study demonstrates a novel approach, using magnetic resonance imaging and image registration techniques, to quantify the three-dimensional deformation of the cervical spinal cord in an in vivo rat model. Twenty-four male rats were subjected to one of two clinically relevant mechanisms of TSCI (i.e. contusion and dislocation) inside of a MR scanner using a novel apparatus, enabling imaging of the deformed spinal cords. The displacement fields demonstrated qualitative differences between injury mechanisms. Three-dimensional Lagrangian strain fields were calculated, and the results from the contusion injury mechanism were deemed most reliable. Strain field error was assessed using a Monte Carlo approach, which showed that simulated normal strain error experienced a bias, whereas shear strain error did not. In contusion injury, a large region of dorso-ventral compressive strain was observed under the impactor which extended into the ventral region of the spinal cord. High tensile lateral strains under the impactor and compressive lateral strains in the lateral white matter were also observed in contusion. The ability to directly observe and quantify in vivo spinal cord deformation informs our knowledge of the mechanics of TSCI.

  4. Spinal computed tomography scanning in the evaluation of metastatic disease

    SciTech Connect

    Redmond, J.; Spring, D.B.; Munderloh, S.H.; George, C.B.; Mansour, R.P.; Volk, S.A.

    1984-07-15

    Twenty patients with known metastatic cancer or high-risk primary cancer developed new lesions on Tc/sup 99m/ bone scans and had normal plain radiographs. Spinal computed tomography (CT) was performed on all new bone-scan-positive lesions in minimal examination time. Fifteen patients had extensive metastatic vertebral disease and received local radiotherapy. One patient with new metastatic vertebral disease on CT was treated only with chemotherapy and developed acute spinal cord compression. Four patients had discogenic disease or degenerative disease but no evidence of metastases. Radionuclide bone scans are more sensitive but less specific than plain radiographs in detecting early bone metastases. Early and accurate diagnosis of metastasis is particularly important in the axial spine to prevent epidural compression and fracture. Spinal CT is valuable for identifying the presence and extent of vertebral metastases, as well as the presence of benign disease in cancer patients.

  5. Multicentric osseous lymphoma with spinal extradural involvement in a dog.

    PubMed

    Turner, J L; Luttgen, P J; VanGundy, T E; Roenigk, W J; Hightower, D; Frelier, P F

    1992-01-15

    Multicentric osseous lymphoma involving the ribs and multiple vertebrae was observed in a 7-year-old Siberian Husky. Extradural spinal cord compression was treated by surgical decompressive hemilaminectomy of L1-2 without noticeable improvement of signs neurologic dysfunction. However, palliation of signs of pain was noticed after irradiation in conjunction with chemotherapy and surgical decompression.

  6. Video Compression

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Optivision developed two PC-compatible boards and associated software under a Goddard Space Flight Center Small Business Innovation Research grant for NASA applications in areas such as telerobotics, telesciences and spaceborne experimentation. From this technology, the company used its own funds to develop commercial products, the OPTIVideo MPEG Encoder and Decoder, which are used for realtime video compression and decompression. They are used in commercial applications including interactive video databases and video transmission. The encoder converts video source material to a compressed digital form that can be stored or transmitted, and the decoder decompresses bit streams to provide high quality playback.

  7. Retroperitoneal spinal extradural arachnoid cyst combined with congenital hemivertebrae.

    PubMed

    Park, Se-Hwan; Kuh, Sung-Uk; Lim, Beom Jin

    2012-09-01

    Spinal extradural arachnoid cysts usually cause symptoms related to spinal cord or nerve root compression. Here, we report an atypical presentation of a spinal extradural arachnoid cyst combined with congenital hemivertebra which was presented as a retroperitoneal mass that exerted mass effects to the abdominal organs. On image studies, the communication between the cystic pedicle and the spinal arachnoid space was indistinct. Based on our experience and the literature of the pathogenesis, we planned anterior approach for removal of the arachnoid cyst in order to focus on mass removal rather than ligation of the fistulous channel. In our estimation this was feasible considering radiologic findings and also essential for the symptom relief. The cyst was totally removed with the clogged 'thecal sac-side' end of the cystic pedicle. The patient was free of abdominal discomfort by one month after the surgery.

  8. Dynamic loading characteristics of an intradural spinal cord stimulator

    NASA Astrophysics Data System (ADS)

    Oliynyk, M. S.; Gillies, G. T.; Oya, H.; Wilson, S.; Reddy, C. G.; Howard, M. A.

    2013-01-01

    We have measured the forces that act on the electrode-bearing surface of an intradural neuromodulator designed to be in direct contact with the pial surface of the spinal cord, as part of our effort to develop a new method for treating intractable pain. The goal was to investigate the pressures produced by this device on the spinal cord and compare them with normal intrathecal pressure. For this purpose, we employed a dual-sensor arrangement that allowed us to measure the response of a custom-designed silicone spinal cord surrogate to the forces applied by the device. We found that the device had a mean compliance of ≈63 μN μm-1, and that over a 3 mm range of compression, the mid-span pressure it exerted on the spinal cord was ≈1.88 × 103 Pa = 14.1 mm Hg, which lies within the range of normal intrathecal pressure in humans.

  9. Spinal angiolipoma: case report and review of the literature.

    PubMed

    Samdani, A F; Garonzik, I M; Jallo, G; Eberhart, C G; Zahos, P

    2004-03-01

    Spinal angiolipomas are rare lesions usually found in the epidural space of the thoracic spine. This report presents a case of and reviews the literature on this rare entity. The etiology, clinical presentation, imaging, and treatment are discussed. In 92 reported cases of spinal angiolipoma 56 occurred in women (61%), and 36 in men (39%). Mean age of occurrence is 42.9 years (range 10 days-85 years) with most patients presenting with slowly progressive symptoms of spinal cord compression. Most cases occur in the extradural compartment, and are of the non-invasive subtype. This rare clinical entity must be considered in the differential diagnosis of spinal epidural lesions. In most cases complete removal is possible, however, prognosis is good even for infiltrating lesions. Thus, one must not risk neurological damage to attain complete resection.

  10. Lumbar spinal angiolipoma: case report and review of the literature.

    PubMed

    Konya, Deniz; Ozgen, Serdar; Kurtkaya, Ozlem; Pamir, Necmettin M

    2006-06-01

    Spinal angiolipomas are extremely rare benign tumors composed of mature lipomatous and angiomatous elements. Most are symptomatic due to progressive spinal cord or root compression. This article describes the case of a 60-year-old woman who presented with a 6-month history of low back pain radiating to her right leg. The pain was multisegmental. The condition had worsened with time. Lumbar magnetic resonance imaging revealed a dorsal epidural mass at L5 and erosion of the lamina of the L5 vertebra. Laminectomy was performed, and an extradural tumor was totally excised. Neuropathologic examination identified it as a lumbar spinal angiolipoma. There was no evidence of recurrence in follow-up 12 months later. This rare clinical entity must be considered in the differential diagnosis for any spinal epidural lesion.

  11. Thoracic epidural spinal angiolipoma with coexisting lumbar spinal stenosis: Case report and review of the literature

    PubMed Central

    Benvenutti-Regato, Mario; De la Garza-Ramos, Rafael

    2015-01-01

    Background Spinal angiolipomas (SALs) are uncommon benign lesions that may present insidiously with back pain or acutely with weakness due to tumor bleeding/thrombosis. Given their rarity, these lesions are often overlooked in the differential diagnosis of epidural masses. The purpose of this article is to report the case of an epidural SAL and to conduct a literature review on the topic. Methods A case report and review of the literature using the PubMed/Medline databases. All case reports and case series were reviewed up to June 2015. Results A 65-year old female presented with neurogenic claudication and magnetic resonance imaging (MRI) revealed lumbar spinal stenosis. Following decompressive surgery, she experienced symptom resolution, but three months postoperatively she presented to the emergency department with acute paraparesis. A thoracic MRI revealed a lesion located between T8 and T10 causing severe spinal cord compression. Following emergent laminectomy and en bloc resection, the patient regained function and the lesion was diagnosed as SAL. Our literature review revealed 178 reported cases, with a female and thoracic predominance. The majority of patients underwent surgical treatment, achieving a gross total resection in most cases. Similarly, complete symptom resolution was the most common outcome. Conclusion Spinal angiolipomas are uncommon spinal tumors. However, they may be treated as any other space-occupying lesion, and surgical resection allows for complete symptom recovery in most patients. PMID:26767159

  12. Spinal subarachnoid haematoma after spinal anaesthesia: case report.

    PubMed

    Vidal, Marion; Strzelecki, Antoine; Houadec, Mireille; Krikken, Isabelle Ranz; Danielli, Antoine; Souza Neto, Edmundo Pereira de

    2016-01-01

    Subarachnoid haematoma after spinal anaesthesia is known to be very rare. In the majority of these cases, spinal anaesthesia was difficult to perform and/or unsuccessful; other risk factors included antiplatelet or anticoagulation therapy, and direct spinal cord trauma. We report a case of subarachnoid haematoma after spinal anaesthesia in a young patient without risk factors. PMID:27591468

  13. Lumbar spine disc heights and curvature: upright posture vs. supine compression harness

    NASA Technical Reports Server (NTRS)

    Lee, Shi-Uk; Hargens, Alan R.; Fredericson, Michael; Lang, Philipp K.

    2003-01-01

    INTRODUCTION: Spinal lengthening in microgravity is thought to cause back pain in astronauts. A spinal compression harness can compress the spine to eliminate lengthening but the loading condition with harness is different than physiologic conditions. Our purpose was to compare the effect of spine compression with a harness in supine position on disk height and spinal curvature in the lumbar spine to that of upright position as measured using a vertically open magnetic resonance imaging system. METHODS: Fifteen healthy subjects volunteered. On day 1, each subject lay supine for an hour and a baseline scan of the lumbar spine was performed. After applying a load of fifty percent of body weight with the harness for thirty minutes, the lumbar spine was scanned again. On day 2, after a baseline scan, a follow up scan was performed after kneeling for thirty minutes within the gap between two vertically oriented magnetic coils. Anterior and posterior disk heights, posterior disk bulging, and spinal curvature were measured from the baseline and follow up scans. RESULTS: Anterior disk heights increased and posterior disk heights decreased compared with baseline scans both after spinal compression with harness and upright posture. The spinal curvature increased by both loading conditions of the spine. DISCUSSION: The spinal compression with specially designed harness has the same effect as the physiologic loading of the spine in the kneeling upright position. The harness shows some promise as a tool to increase the diagnostic capabilities of a conventional MR system.

  14. Acute compressive myelopathy due to vertebral haemangioma.

    PubMed

    Macki, Mohamed; Bydon, Mohamad; Kaloostian, Paul; Bydon, Ali

    2014-04-28

    A 47-year-old woman with a history of anaemia presented to the emergency room with an acute onset of leg weakness. Physical examination of the bilateral lower extremities was significant for 0/5 muscle strength in all muscle groups with decreased pinprick and temperature sensation. A sensory level at the umbilicus was appreciated. Fine touch and proprioception were preserved. Bowel and bladder function were intact. CT revealed several thoracic, vertebral haemangiomatas. An MRI was suggestive of an epidural clot at the T8-T10-weighted posterior epidural space. At the level of the lesion, the cerebrospinal fluid space was completely effaced, and the flattened spinal cord exhibited signs of oedema and compressive myelopathy. The patient immediately underwent surgical decompression of the spinal cord. An epidural clot and vessel conglomeration were identified. A postoperative spinal angiogram confirmed the diagnosis of vertebral haemangioma. At 1-month follow-up, the patient regained strength and sensation.

  15. Sympathetic storming in a patient with intracranial basal ganglia hemorrhage.

    PubMed

    Siu, Gilbert; Marino, Michael; Desai, Anjuli; Nissley, Frederick

    2011-03-01

    Neurologic deficits and medical complications are common sequelae after intracranial hemorrhage. Among the medical complications, sympathetic storming is relatively rare. We describe a case of a patient with an acute right basal ganglia hemorrhage. During the patient's hospital course, he developed tachypnea, diaphoresis, hypertension, hyperthermia, and tachycardia for three consecutive days. A complete laboratory work-up and imaging studies were unremarkable for infectious etiology, new intracranial hemorrhage, and deep vein thrombosis. The patient was diagnosed with sympathetic storming, a relatively uncommon cause of these symptoms. The storming was secondary to a kinked Foley catheter, and subsequent placement of a new catheter resulted in the resolution of his symptoms. PMID:21297401

  16. Traumatic bilateral basal ganglia bleed: A report of rare two cases and review of the literature

    PubMed Central

    Kankane, Vivek Kumar; Gupta, Tarun Kumar; Jaiswal, Gaurav

    2016-01-01

    Traumatic basal ganglia hemorrhage (TBGH) is relatively uncommon. Bilateral basal ganglia hematoma after trauma is extremely rare and is limited to case reports. We report two cases of traumatic bilateral basal ganglia hemorrhage and review the literature in brief. Both cases were managed conservatively. The general incidence of TBGH is reported between 2.4% and 3% of closed head injury. However, the incidence is higher in postmortem studies (9.8%). Bilateral traumatic basal ganglia hematoma is extremely rare. Descriptions are limited to case reports.

  17. Traumatic bilateral basal ganglia bleed: A report of rare two cases and review of the literature

    PubMed Central

    Kankane, Vivek Kumar; Gupta, Tarun Kumar; Jaiswal, Gaurav

    2016-01-01

    Traumatic basal ganglia hemorrhage (TBGH) is relatively uncommon. Bilateral basal ganglia hematoma after trauma is extremely rare and is limited to case reports. We report two cases of traumatic bilateral basal ganglia hemorrhage and review the literature in brief. Both cases were managed conservatively. The general incidence of TBGH is reported between 2.4% and 3% of closed head injury. However, the incidence is higher in postmortem studies (9.8%). Bilateral traumatic basal ganglia hematoma is extremely rare. Descriptions are limited to case reports. PMID:27695573

  18. Expression of varicella-zoster virus and herpes simplex virus in normal human trigeminal ganglia

    SciTech Connect

    Vafai, A.; Wellish, M.; Devlin, M.; Gilden, D.H. ); Murray, R.S. Veterans Administration Medical Center, Denver, CO )

    1988-04-01

    Lysates of radiolabeled explants from four human trigeminal ganglia were immunoprecipitated with antibodies to varicella-zoster virus (VZV) and to herpes simplex virus. Both herpes simplex virus- and VZV-specific proteins were detected in lysates of all four ganglia. Absence of reactivity in ganglion explants with monoclonal antibodies suggested that herpes simplex virus and VZV were not reactivated during the culture period. In situ hybridization studies demonstrated the presence of RNA transcripts from the VZV immediate early gene 63. This approach to the detection of herpes simplex virus and VZV expression in human ganglia should facilitate analysis of viral RNA and proteins in human sensory ganglia.

  19. Role of spinal afferents and calcitonin gene-related peptide in the postoperative gastric ileus in anesthetized rats.

    PubMed Central

    Zittel, T T; Reddy, S N; Plourde, V; Raybould, H E

    1994-01-01

    OBJECTIVE: The object of this study was to investigate the mechanisms of postoperative gastric ileus in an experimental model of abdominal surgery in anesthetized rats. SUMMARY BACKGROUND DATA: Sensory neurons partly mediate postoperative gastric ileus. Among other neuropeptides, sensory neurons contain calcitonin gene-related peptide (CGRP) and release CGRP in response to noxious stimulation. Because CGRP inhibits gastric motility, it was hypothesized that abdominal surgery stimulates sensory neurons, which then releases CGRP, thereby inhibiting gastric motility. METHODS: Postoperative ileus was induced by abdominal surgery. Gastric corpus motility was measured by an intragastric catheter. CGRP action was blocked by CGRP immunoneutralization or by a CGRP receptor antagonist. Spinal sensory neurons were ablated by application of a sensory neurotoxin (capsaicin) to the celiac and superior mesenteric ganglia. RESULTS: Abdominal surgery decreased gastric corpus motility in the first 5 minutes after abdominal surgery by 59 +/- 5% and by 24 +/- 4% during the 1st postoperative hour. Capsaicin pretreatment of the celiac and superior mesenteric ganglia, CGRP immunoneutralization, or CGRP receptor antagonism reversed the postoperative decrease in gastric corpus motility during the 1st postoperative hour by 50%, 100%, and 59%, respectively. CONCLUSIONS: These data indicate that spinal sensory neurons and CGRP partly mediate postoperative gastric ileus. CGRP may be released from spinal sensory neuron terminals in the celiac and superior mesenteric ganglia as part of an extraspinal intestinogastric inhibitory reflex activated by abdominal surgery. PMID:8297181

  20. Compressed Genotyping

    PubMed Central

    Erlich, Yaniv; Gordon, Assaf; Brand, Michael; Hannon, Gregory J.; Mitra, Partha P.

    2011-01-01

    Over the past three decades we have steadily increased our knowledge on the genetic basis of many severe disorders. Nevertheless, there are still great challenges in applying this knowledge routinely in the clinic, mainly due to the relatively tedious and expensive process of genotyping. Since the genetic variations that underlie the disorders are relatively rare in the population, they can be thought of as a sparse signal. Using methods and ideas from compressed sensing and group testing, we have developed a cost-effective genotyping protocol to detect carriers for severe genetic disorders. In particular, we have adapted our scheme to a recently developed class of high throughput DNA sequencing technologies. The mathematical framework presented here has some important distinctions from the ’traditional’ compressed sensing and group testing frameworks in order to address biological and technical constraints of our setting. PMID:21451737

  1. Prodynorphine opioid peptides and aspartate aminotransferase studied in spinal cord and sensory neurons

    SciTech Connect

    Sweetnam, P.M.

    1985-01-01

    An objective of this research was to obtain evidence for the synthesis and release of newly discovered opioid peptides, such as dynorphin, in spinal cord and sensory neurons. Several specific antisera were used to visualize dynorphin and related peptides in spinal cord and dorsal root ganglion neurons in dissociated cell culture. Antisera specific for the midportion of the dynorphin molecule revealed a subpopulation of spinal cord neurons with dense immunoreactive dynorphin in cell perikarya, but none in their associated neurites. Antisera specific for either the amino or carboxy terminal sequences of the molecule produced intense immunoreactivity in both cell perikarya and neurites of spinal neurons. These data suggest the cleavage products of dynorphin and not the complete molecule are possible neurotransmitters in the spinal cord. Additional evidence in support of this hypothesis was derived from radioimmunoassays of these cells and their culture medium following depolarization induced by elevated extracellular potassium. Antisera against aspartate aminotransferase revealed no differentially elevated immunoreactive aspartate aminotransferase in tissue sections of spinal cord or dorsal root ganglia.

  2. The "beneficial" effects of locomotor training after various types of spinal lesions in cats and rats.

    PubMed

    Rossignol, Serge; Martinez, Marina; Escalona, Manuel; Kundu, Aritra; Delivet-Mongrain, Hugo; Alluin, Olivier; Gossard, Jean-Pierre

    2015-01-01

    This chapter reviews a number of experiments on the recovery of locomotion after various types of spinal lesions and locomotor training mainly in cats. We first recall the major evidence on the recovery of hindlimb locomotion in completely spinalized cats at the T13 level and the role played by the spinal locomotor network, also known as the central pattern generator, as well as the beneficial effects of locomotor training on this recovery. Having established that hindlimb locomotion can recover, we raise the issue as to whether spinal plastic changes could also contribute to the recovery after partial spinal lesions such as unilateral hemisections. We found that after such hemisection at T10, cats could recover quadrupedal locomotion and that deficits could be improved by training. We further showed that, after a complete spinalization a few segments below the first hemisection (at T13, i.e., the level of previous studies on spinalization), cats could readily walk with the hindlimbs within hours of completely severing the remaining spinal tracts and not days as is usually the case with only a single complete spinalization. This suggests that neuroplastic changes occurred below the first hemisection so that the cat was already primed to walk after the spinalization subsequent to the hemispinalization 3 weeks before. Of interest is the fact that some characteristic kinematic features in trained or untrained hemispinalized cats could remain after complete spinalization, suggesting that spinal changes induced by training could also be durable. Other studies on reflexes and on the pattern of "fictive" locomotion recorded after curarization corroborate this view. More recent work deals with training cats in more demanding situations such as ladder treadmill (vs. flat treadmill) to evaluate how the locomotor training regimen can influence the spinal cord. Finally, we report our recent studies in rats using compressive lesions or surgical complete spinalization and find

  3. Mephedrone alters basal ganglia and limbic dynorphin systems.

    PubMed

    German, Christopher L; Alburges, Mario E; Hoonakker, Amanda J; Fleckenstein, Annette E; Hanson, Glen R

    2014-08-25

    Mephedrone (4-methymethcathinone) is a synthetic cathinone designer drug that disrupts central nervous system (CNS) dopamine (DA) signaling. Numerous central neuropeptide systems reciprocally interact with dopaminergic neurons to provide regulatory counterbalance, and are altered by aberrant DA activity associated with stimulant exposure. Endogenous opioid neuropeptides are highly concentrated within dopaminergic CNS regions and facilitate many rewarding and aversive properties associated with drug use. Dynorphin, an opioid neuropeptide and kappa receptor agonist, causes dysphoria and aversion to drug consumption through signaling within the basal ganglia and limbic systems, which is affected by stimulants. This study evaluated how mephedrone alters basal ganglia and limbic system dynorphin content, and the role of DA signaling in these changes. Repeated mephedrone administrations (4 × 25 mg/kg/injection, 2-h intervals) selectively increased dynorphin content throughout the dorsal striatum and globus pallidus, decreased dynorphin content within the frontal cortex, and did not alter dynorphin content within most limbic system structures. Pretreatment with D1 -like (SCH-23380) or D2 -like (eticlopride) antagonists blocked mephedrone-induced changes in dynorphin content in most regions examined, indicating altered dynorphin activity is a consequence of excessive DA signaling. Synapse, 2014. © 2014 Wiley Periodicals, Inc.

  4. Mephedrone alters basal ganglia and limbic dynorphin systems

    PubMed Central

    German, Christopher L.; Alburges, Mario E.; Hoonakker, Amanda J.; Fleckenstein, Annette E.; Hanson, Glen R.

    2014-01-01

    Mephedrone (4-methymethcathinone) is a synthetic cathinone designer drug that disrupts central nervous system (CNS) dopamine (DA) signaling. Numerous central neuropeptide systems reciprocally interact with dopaminergic neurons to provide regulatory counterbalance, and are altered by aberrant DA activity associated with stimulant exposure. Endogenous opioid neuropeptides are highly concentrated within dopaminergic CNS regions and facilitate many rewarding and aversive properties associated with drug use. Dynorphin, an opioid neuropeptide and kappa receptor agonist, causes dysphoria and aversion to drug consumption through signaling within the basal ganglia and limbic systems, which is affected by stimulants. This study evaluated how mephedrone alters basal ganglia and limbic system dynorphin content, and the role of DA signaling in these changes. Repeated mephedrone administrations (4 × 25 mg/kg/injection, 2-h intervals) selectively increased dynorphin content throughout the dorsal striatum and globus pallidus, decreased dynorphin content within the frontal cortex, and did not alter dynorphin content within most limbic system structures. Pre-treatment with D1-like (SCH-23380) or D2-like (eticlopride) antagonists blocked mephedrone-induced changes in dynorphin content in most regions examined, indicating altered dynorphin activity is a consequence of excessive DA signaling. PMID:25155699

  5. Epidermal growth factor receptor in adult human dorsal root ganglia.

    PubMed

    Huerta, J J; Diaz-Trelles, R; Naves, F J; Llamosas, M M; Del Valle, M E; Vega, J A

    1996-09-01

    Transforming growth factor-alpha (TGFalpha) enhances neuronal survival and neurite outgrowth in cultured dorsal root ganglia (DRG) sensory neurons. It binds a membrane protein, denominated epidermal growth factor receptor (EGFr). EGFr has been localized in developing and adult human DRG. However, it remains to be elucidated whether all DRG neurons express EGFr or whether differences exist among neuronal subtypes. This study was undertaken to investigate these topics in adult human DRG using immunoblotting, and combined immunohistochemistry and image analysis techniques. A mouse monoclonal antibody (clone F4) mapping within the intracytoplasmic domain of EGFr was used. Immunoblotting revealed two main proteins with estimated molecular masses of approximately/equal to 65 kDa and 170 kDa, and thus consistent with the full-length EGFr. Additional protein bands were also encountered. Light immunohistochemistry revealed specific immunoreactivity (IR) for EGFr-like proteins in most (86%) primary sensory neurons, the intensity of immunostaining being stronger in the small- and intermediate-sized ones. Furthermore, EGFr-like IR was also observed in the satellite glial cells of the ganglia as well as in the intraganglionic and dorsal root Schwann cells. Taken together, our findings demonstrate that EGFr, and other related proteins containing the epitope labeled with the antibody F4, are responsible for the EGFr IR reported in DRG. Furthermore, we demonstrated heterogeneity in the expression of EGFr-like IR in adult human primary sensory neurons, which suggests different responsiveness to their ligands.

  6. Monitoring Temperature and Fan Speed Using Ganglia and Winbond Chips

    SciTech Connect

    McCaffrey, Cattie; /SLAC

    2006-09-27

    Effective monitoring is essential to keep a large group of machines, like the ones at Stanford Linear Accelerator Center (SLAC), up and running. SLAC currently uses Ganglia Monitoring System to observe about 2000 machines, analyzing metrics like CPU usage and I/O rate. However, metrics essential to machine hardware health, such as temperature and fan speed, are not being monitored. Many machines have a Winbond w83782d chip which monitors three temperatures, two of which come from dual CPUs, and returns the information when the sensor command is invoked. Ganglia also provides a feature, gmetric, that allows the users to monitor their own metrics and incorporate them into the monitoring system. The programming language Perl is chosen to implement a script that invokes the sensors command, extracts the temperature and fan speed information, and calls gmetric with the appropriate arguments. Two machines were used to test the script; the two CPUs on each machine run at about 65 Celsius, which is well within the operating temperature range (The maximum safe temperature range is 77-82 Celsius for the Pentium III processors being used). Installing the script on all machines with a Winbond w83782d chip allows the SLAC Scientific Computing and Computing Services group (SCCS) to better evaluate current cooling methods.

  7. Expression of serotonin receptor genes in cranial ganglia.

    PubMed

    Maeda, Naohiro; Ohmoto, Makoto; Yamamoto, Kurumi; Kurokawa, Azusa; Narukawa, Masataka; Ishimaru, Yoshiro; Misaka, Takumi; Matsumoto, Ichiro; Abe, Keiko

    2016-03-23

    Taste cells release neurotransmitters to gustatory neurons to transmit chemical information they received. Sweet, umami, and bitter taste cells use ATP as a neurotransmitter. However, ATP release from sour taste cells has not been observed so far. Instead, they release serotonin when they are activated by sour/acid stimuli. Thus it is still controversial whether sour taste cells use ATP, serotonin, or both. By reverse transcription-polymerase chain reaction and subsequent in situ hybridization (ISH) analyses, we revealed that of 14 serotonin receptor genes only 5-HT3A and 5-HT3B showed significant/clear signals in a subset of neurons of cranial sensory ganglia in which gustatory neurons reside. Double-fluorescent labeling analyses of ISH for serotonin receptor genes with wheat germ agglutinin (WGA) in cranial sensory ganglia of pkd1l3-WGA mice whose sour neural pathway is visualized by the distribution of WGA originating from sour taste cells in the posterior region of the tongue revealed that WGA-positive cranial sensory neurons rarely express either of serotonin receptor gene. These results suggest that serotonin receptors expressed in cranial sensory neurons do not play any role as neurotransmitter receptor from sour taste cells. PMID:26854841

  8. Familial idiopathic basal ganglia calcification (Fahr’s disease)

    PubMed Central

    Mufaddel, Amir A.; Al-Hassani, Ghanem A.

    2014-01-01

    Familial idiopathic basal ganglia calcification (Fahr’s disease) is a rare neurodegenerative disorder characterized by symmetrical and bilateral calcification of the basal ganglia. Calcifications may also occur in other brain regions such as dentate nucleus, thalamus, and cerebral cortex. Both familial and non-familial cases of Fahr’s disease have been reported, predominantly with autosomal-dominant fashion. The disease has a wide range of clinical presentations, predominantly with neuropsychiatric features and movement disorders. Psychiatric features reported in the literature include: cognitive impairment, depression, hallucinations, delusions, manic symptoms, anxiety, schizophrenia-like psychosis, and personality change. Other clinical features include: Parkinsonism, ataxia, headache, seizures, vertigo, stroke-like events, orthostatic hypotension, tremor, dysarthria, and paresis. Fahr’s disease should be considered in the differential diagnosis of psychiatric symptoms, particularly when associated with movement disorder. The disease should be differentiated from other conditions that can cause intracranial calcification. No specific treatment is currently available. Further research is needed to bridge the gap existing in our current knowledge of the prevalence, etiology, symptoms, and treatment of Fahr’s disease. PMID:24983277

  9. Familial idiopathic basal ganglia calcification (Fahr`s disease).

    PubMed

    Mufaddel, Amir A; Al-Hassani, Ghanem A

    2014-07-01

    Familial idiopathic basal ganglia calcification (Fahr`s disease) is a rare neurodegenerative disorder characterized by symmetrical and bilateral calcification of the basal ganglia. Calcifications may also occur in other brain regions such as dentate nucleus, thalamus, and cerebral cortex. Both familial and non-familial cases of Fahr`s disease have been reported, predominantly with autosomal-dominant fashion. The disease has a wide range of clinical presentations, predominantly with neuropsychiatric features and movement disorders. Psychiatric features reported in the literature include: cognitive impairment, depression, hallucinations, delusions, manic symptoms, anxiety, schizophrenia-like psychosis, and personality change. Other clinical features include: Parkinsonism, ataxia, headache, seizures, vertigo, stroke-like events, orthostatic hypotension, tremor, dysarthria, and paresis. Fahr`s disease should be considered in the differential diagnosis of psychiatric symptoms, particularly when associated with movement disorder. The disease should be differentiated from other conditions that can cause intracranial calcification. No specific treatment is currently available. Further research is needed to bridge the gap existing in our current knowledge of the prevalence, etiology, symptoms, and treatment of Fahr`s disease.

  10. Identification of Different Types of Spinal Afferent Nerve Endings That Encode Noxious and Innocuous Stimuli in the Large Intestine Using a Novel Anterograde Tracing Technique

    PubMed Central

    Spencer, Nick J.; Kyloh, Melinda; Duffield, Michael

    2014-01-01

    In mammals, sensory stimuli in visceral organs, including those that underlie pain perception, are detected by spinal afferent neurons, whose cell bodies lie in dorsal root ganglia (DRG). One of the major challenges in visceral organs has been how to identify the different types of nerve endings of spinal afferents that transduce sensory stimuli into action potentials. The reason why spinal afferent nerve endings have been so challenging to identify is because no techniques have been available, until now, that can selectively label only spinal afferents, in high resolution. We have utilized an anterograde tracing technique, recently developed in our laboratory, which facilitates selective labeling of only spinal afferent axons and their nerve endings in visceral organs. Mice were anesthetized, lumbosacral DRGs surgically exposed, then injected with dextran-amine. Seven days post-surgery, the large intestine was removed. The characteristics of thirteen types of spinal afferent nerve endings were identified in detail. The greatest proportion of nerve endings was in submucosa (32%), circular muscle (25%) and myenteric ganglia (22%). Two morphologically distinct classes innervated myenteric ganglia. These were most commonly a novel class of intraganglionic varicose endings (IGVEs) and occasionally rectal intraganglionic laminar endings (rIGLEs). Three distinct classes of varicose nerve endings were found to innervate the submucosa and circular muscle, while one class innervated internodal strands, blood vessels, crypts of lieberkuhn, the mucosa and the longitudinal muscle. Distinct populations of sensory endings were CGRP-positive. We present the first complete characterization of the different types of spinal afferent nerve endings in a mammalian visceral organ. The findings reveal an unexpectedly complex array of different types of primary afferent endings that innervate specific layers of the large intestine. Some of the novel classes of nerve endings identified

  11. Spinal and epidural anesthesia

    MedlinePlus

    Intraspinal anesthesia; Subarachnoid anesthesia; Epidural; Peridural anesthesia ... Spinal and epidural anesthesia have fewer side effects and risks than general anesthesia (asleep and pain-free). Patients usually recover their senses ...

  12. Spinal Muscular Atrophy

    MedlinePlus

    ... diseases that progressively destroy lower motor neurons—nerve cells in the brain stem and spinal cord that control essential voluntary muscle activity such as speaking, walking, breathing, and swallowing. ...

  13. Spinal Cord Injury 101

    MedlinePlus

    ... is "Braingate" research? What is the status of stem-cell research? How would stem-cell therapies work in the treatment of spinal cord injuries? What does stem-cell research on animals tell us? When can we expect ...

  14. Spinal Cord Injury

    MedlinePlus

    ... Dramatically Improves Function After Spinal Cord Injury in Rats May 2004 press release on an experimental treatment ... NINDS). Signaling Molecule Improves Nerve Cell Regeneration in Rats August 2002 news summary on a signaling molecule ...

  15. What Is Spinal Stenosis?

    MedlinePlus

    ... To order the Sports Injuries Handout on Health full-text version, please contact NIAMS using the contact information ... publication. To order the Spinal Stenosis Q&A full-text version, please contact NIAMS using the contact information ...

  16. Spinal cord abscess

    MedlinePlus

    ... irritation (inflammation) and the collection of infected material (pus) in or around the spinal cord. ... occurs as a complication of an epidural abscess . Pus forms as a collection of: Destroyed tissue cells ...

  17. [Meningitis after spinal anesthesia].

    PubMed

    Mouchrif, Issam; Berdaii, Adnane; Labib, Ismail; Harrandou, Moustapha

    2016-01-01

    Meningitis is a rare but serious complication of epidural and spinal anesthesia. Bacterial meningitis is mainly caused by Gram-positive cocci, implying an exogenous contamination which suggests a lack of asepsis. The evolution is usually favorable after treatment, but at the expense of increased health care costs and, sometimes, of significant neurological sequelae. We report a case of bacterial meningitis after spinal anesthesia for caesarean section. PMID:27642477

  18. Rodent Models and Behavioral Outcomes of Cervical Spinal Cord Injury

    PubMed Central

    Geissler, Sydney A.; Schmidt, Christine E.; Schallert, Timothy

    2014-01-01

    Rodent spinal cord injury (SCI) models have been developed to examine functional and physiological deficits after spinal cord injury with the hope that these models will elucidate information about human SCI. Models are needed to examine possible treatments and to understand histopathology after SCI; however, they should be considered carefully and chosen based on the goals of the study being performed. Contusion, compression, transection, and other models exist and have the potential to reveal important information about SCI that may be related to human SCI and the outcomes of treatment and timing of intervention. PMID:25309824

  19. Segmental spinal cord hypoplasia in a Holstein Friesian calf.

    PubMed

    Binanti, D; Fantinato, E; De Zani, D; Riccaboni, P; Pravettoni, D; Zani, D D

    2013-08-01

    An 8-day-old female Holstein Friesian calf was examined because of congenital spastic paresis of the hind limbs. Myelography revealed deviation and thinning of subarachnoid contrast medium columns in the lumbar segment. Upon magnetic resonance imaging, the 'hour-glass' subdural compression appeared as a T1-hypointense, T2-hyperintense ovoidal area suggestive of cerebral spinal fluid collection, compatible with hydrosyringomyelia. The calf was euthanized and the necropsy confirmed the diagnosis of segmental spinal cord hypoplasia of the lumbar tract associated to hydromyelic and syringomyelic cavities.

  20. Development of bioceramic material for spinal surgery implants

    NASA Astrophysics Data System (ADS)

    Sablina, T.; Savchenko, N.; Pshenichnyy, A.; Grigoriev, M.; Buyakova, S.; Kulkov, S.

    2016-07-01

    Highly porous zirconia-based ceramics were prepared. The ceramic samples sintered at 1600°C had porosities from 40% to 43%, with pore size ranges as follows: “big pore” 100-220 pm and “small pore” 0.8-8 pm. This makes the ceramic structure to be very similar to the structure of the natural spinal bone. The level of mechanical properties of the synthesized zirconia-based ceramics is determined by the pore sizes. The values of the compressive strength and the effective Young's modulus are very similar to those characteristics of the natural spinal bone.

  1. Ischemic lesions in basal ganglia in children after minor head injury.

    PubMed

    Dharker, S R; Mittal, R S; Bhargava, N

    1993-11-01

    Twenty-three children under the age of 6 1/2 years developed immediate unilateral weakness after an apparently minor head injury. Computed tomography disclosed a hypodense lesion in the basal ganglia. The lesion appeared to be caused by an infarct in the basal ganglia. All but one of the children recovered completely within 4 months.

  2. Distinct Hippocampal and Basal Ganglia Contributions to Probabilistic Learning and Reversal

    ERIC Educational Resources Information Center

    Shohamy, Daphna; Myers, Catherine E.; Hopkins, Ramona O.; Sage, Jake; Gluck, Mark A.

    2009-01-01

    The hippocampus and the basal ganglia are thought to play fundamental and distinct roles in learning and memory, supporting two dissociable memory systems. Interestingly, however, the hippocampus and the basal ganglia have each, separately, been implicated as necessary for reversal learning--the ability to adaptively change a response when…

  3. [Hyperechogenicity within the basal ganglia of neonates: incidence, etiology, and neurological outcome].

    PubMed

    Gourmet, C; Decortis, Th; Rigo, J

    2003-12-01

    Ramifying hyperechogenicities within the basal ganglia were observed in two neonates followed for prematurity. The investigations demonstrated an asymptomatic cytomegalo-virus infection in both. The literature was reviewed about this association. Incidence, etiology of hyperechoic lesions in the basal ganglia of neonates and neurodevelopmental outcome of the patients were also reviewed.

  4. Modeling spinal cord biomechanics

    NASA Astrophysics Data System (ADS)

    Luna, Carlos; Shah, Sameer; Cohen, Avis; Aranda-Espinoza, Helim

    2012-02-01

    Regeneration after spinal cord injury is a serious health issue and there is no treatment for ailing patients. To understand regeneration of the spinal cord we used a system where regeneration occurs naturally, such as the lamprey. In this work, we analyzed the stress response of the spinal cord to tensile loading and obtained the mechanical properties of the cord both in vitro and in vivo. Physiological measurements showed that the spinal cord is pre-stressed to a strain of 10%, and during sinusoidal swimming, there is a local strain of 5% concentrated evenly at the mid-body and caudal sections. We found that the mechanical properties are homogeneous along the body and independent of the meninges. The mechanical behavior of the spinal cord can be characterized by a non-linear viscoelastic model, described by a modulus of 20 KPa for strains up to 15% and a modulus of 0.5 MPa for strains above 15%, in agreement with experimental data. However, this model does not offer a full understanding of the behavior of the spinal cord fibers. Using polymer physics we developed a model that relates the stress response as a function of the number of fibers.

  5. Imaging studies in patients with spinal pain

    PubMed Central

    Ferrari, Robert

    2016-01-01

    Abstract Objective To evaluate an a priori threshold for advanced imaging in patients with spinal pain. Design Patients with spinal pain in any region for 6 to 52 weeks were assessed to determine if radiologic studies beyond x-ray scans were indicated, including magnetic resonance imaging (MRI), computed tomography (CT), and radionuclide bone scans. An a priori threshold was set before MRI, CT, or bone scans would be considered. Those who did not have MRI, CT, or bone scans ordered were followed for at least 1 year to determine if any of them went on to be diagnosed with a more serious spinal disorder (eg, infection, fracture, spondylitis, tumour, neurologic compression). Setting Four large primary care clinics in Edmonton, Alta. Participants A total of 1003 consecutively presenting patients with symptoms suspected to be related to the spine (for a duration of generally 6 to 52 weeks) who had not already undergone advanced imaging and did not have a diagnosis of nonbenign back pain. Main outcome measures Number of cases of nonbenign spinal disorder in participants who underwent advanced imaging and participants who did not undergo advanced imaging (ie, did not have any red flags). Results There were 399 women (39.8%) and 604 men (60.2%). The mean (SD) age of the group was 47.2 (14.6) years. The mean (SD) duration of symptoms was 15.1 (8.6) weeks. Of the 1003 participants, 110 met an a priori threshold for undergoing at least 1 of MRI, CT, or bone scan. In these 110 participants, there were newly diagnosed cases of radiculopathy (n = 12), including a case of cauda equina syndrome; spondyloarthropathy (n = 6); occult fracture (n = 2); solitary metastasis (n = 1); epidural lipomatosis (n = 1); osteomyelitis (n = 1), and retroperitoneal hematoma (n = 1), each of which was considered likely to be the cause of the patient’s spinal symptoms. The remaining 893 participants were followed for at least 1 year and none showed evidence of a nonbenign cause of his or her

  6. Optimizing the management of patients with spinal myeloma disease.

    PubMed

    Molloy, Sean; Lai, Maggie; Pratt, Guy; Ramasamy, Karthik; Wilson, David; Quraishi, Nasir; Auger, Martin; Cumming, David; Punekar, Maqsood; Quinn, Michael; Ademonkun, Debo; Willis, Fenella; Tighe, Jane; Cook, Gordon; Stirling, Alistair; Bishop, Timothy; Williams, Cathy; Boszczyk, Bronek; Reynolds, Jeremy; Grainger, Mel; Craig, Niall; Hamilton, Alastair; Chalmers, Isobel; Ahmedzai, Sam; Selvadurai, Susanne; Low, Eric; Kyriakou, Charalampia

    2015-11-01

    Myeloma is one of the most common malignancies that results in osteolytic lesions of the spine. Complications, including pathological fractures of the vertebrae and spinal cord compression, may cause severe pain, deformity and neurological sequelae. They may also have significant consequences for quality of life and prognosis for patients. For patients with known or newly diagnosed myeloma presenting with persistent back or radicular pain/weakness, early diagnosis of spinal myeloma disease is therefore essential to treat and prevent further deterioration. Magnetic resonance imaging is the initial imaging modality of choice for the evaluation of spinal disease. Treatment of the underlying malignancy with systemic chemotherapy together with supportive bisphosphonate treatment reduces further vertebral damage. Additional interventions such as cement augmentation, radiotherapy, or surgery are often necessary to prevent, treat and control spinal complications. However, optimal management is dependent on the individual nature of the spinal involvement and requires careful assessment and appropriate intervention throughout. This article reviews the treatment and management options for spinal myeloma disease and highlights the value of defined pathways to enable the proper management of patients affected by it. PMID:26184699

  7. Input to the lateral habenula from the basal ganglia is excitatory, aversive, and suppressed by serotonin

    PubMed Central

    Shabel, Steven J.; Proulx, Christophe D.; Trias, Anthony; Murphy, Ryan T.; Malinow, Roberto

    2012-01-01

    Summary The lateral habenula (LHb) has recently been identified as a key regulator of the reward system by driving inhibition onto dopaminergic neurons. However, the nature and potential modulation of the major input to the LHb originating from the basal ganglia are poorly understood. Although the output of the basal ganglia is thought to be primarily inhibitory, here we show that transmission from the basal ganglia to the LHb is excitatory, glutamatergic and suppressed by serotonin. Behaviorally, activation of this pathway is aversive, consistent with its role as an ‘anti-reward’ signal. Our demonstration of an excitatory projection from the basal ganglia to the LHb explains how LHb-projecting basal ganglia neurons can have similar encoding properties as LHb neurons themselves. Our results also provide a link between ‘anti-reward’ excitatory synapses and serotonin, a neuromodulator implicated in depression. PMID:22578499

  8. Input to the lateral habenula from the basal ganglia is excitatory, aversive, and suppressed by serotonin.

    PubMed

    Shabel, Steven J; Proulx, Christophe D; Trias, Anthony; Murphy, Ryan T; Malinow, Roberto

    2012-05-10

    The lateral habenula (LHb) has recently been identified as a key regulator of the reward system by driving inhibition onto dopaminergic neurons. However, the nature and potential modulation of the major input to the LHb originating from the basal ganglia are poorly understood. Although the output of the basal ganglia is thought to be primarily inhibitory, here we show that transmission from the basal ganglia to the LHb is excitatory, glutamatergic, and suppressed by serotonin. Behaviorally, activation of this pathway is aversive, consistent with its role as an "antireward" signal. Our demonstration of an excitatory projection from the basal ganglia to the LHb explains how LHb-projecting basal ganglia neurons can have similar encoding properties as LHb neurons themselves. Our results also provide a link between antireward excitatory synapses and serotonin, a neuromodulator implicated in depression.

  9. Input to the lateral habenula from the basal ganglia is excitatory, aversive, and suppressed by serotonin.

    PubMed

    Shabel, Steven J; Proulx, Christophe D; Trias, Anthony; Murphy, Ryan T; Malinow, Roberto

    2012-05-10

    The lateral habenula (LHb) has recently been identified as a key regulator of the reward system by driving inhibition onto dopaminergic neurons. However, the nature and potential modulation of the major input to the LHb originating from the basal ganglia are poorly understood. Although the output of the basal ganglia is thought to be primarily inhibitory, here we show that transmission from the basal ganglia to the LHb is excitatory, glutamatergic, and suppressed by serotonin. Behaviorally, activation of this pathway is aversive, consistent with its role as an "antireward" signal. Our demonstration of an excitatory projection from the basal ganglia to the LHb explains how LHb-projecting basal ganglia neurons can have similar encoding properties as LHb neurons themselves. Our results also provide a link between antireward excitatory synapses and serotonin, a neuromodulator implicated in depression. PMID:22578499

  10. Neurophysiology of gait: from the spinal cord to the frontal lobe.

    PubMed

    Takakusaki, Kaoru

    2013-09-15

    Locomotion is a purposeful, goal-directed behavior initiated by signals arising from either volitional processing in the cerebral cortex or emotional processing in the limbic system. Regardless of whether the locomotion initiation is volitional or emotional, locomotion is accompanied by automatic controlled movement processes, such as the adjustment of postural muscle tone and rhythmic limb movements. Sensori-motor integration in the brainstem and the spinal cord plays crucial roles in this process. The basic locomotor motor pattern is generated by spinal interneuronal networks, termed central pattern generators (CPGs). Responding to signals in proprioceptive and skin afferents, the spinal interneuronal networks modify the locomotor pattern in cooperation with descending signals from the brainstem structures and the cerebral cortex. Information processing between the basal ganglia, the cerebellum, and the brainstem may enable automatic regulation of muscle tone and rhythmic limb movements in the absence of conscious awareness. However, when a locomoting subject encounters obstacles, the subject has to intentionally adjust bodily alignment to guide limb movements. Such an intentional gait modification requires motor programming in the premotor cortices. The motor programs utilize one's bodily information, such as the body schema, which is preserved and updated in the temporoparietal cortex. The motor programs are transmitted to the brainstem by the corticoreticulospinal system, so that one's posture is anticipatorily controlled. These processes enable the corticospinal system to generate limb trajectory and achieve accurate foot placement. Loops from the motor cortical areas to the basal ganglia and the cerebellum can serve this purpose.

  11. Uptake of nerve growth factor along peripheral and spinal axons of primary sensory neurons

    SciTech Connect

    Richardson, P.M.; Riopelle, R.J.

    1984-07-01

    To investigate the distribution of nerve growth factor (NGF) receptors on peripheral and central axons, (/sup 125/I)NGF was injected into the sciatic nerve or spinal cord of adult rats. Accumulation of (/sup 125/I)NGF in lumbar dorsal root ganglia was monitored by gamma emission counting and radioautography. (/sup 125/I)NGF, injected endoneurially in small quantities, was taken into sensory axons by a saturable process and was transported retrogradely to their cell bodies at a maximal rate of 2.5 to 7.5 mm/hr. Because very little (/sup 125/I)NGF reached peripheral terminals, the results were interpreted to indicate that receptors for NGF are present on nonterminal segments of sensory axons. The specificity and high affinity of NGF uptake were illustrated by observations that negligible amounts of gamma activity accumulated in lumbar dorsal root ganglia after comparable intraneural injection of (/sup 125/I) cytochrome C or (/sup 125/I)oxidized NGF. Similar techniques were used to demonstrate avid internalization and retrograde transport of (/sup 125/I)NGF by intraspinal axons arising from dorsal root ganglia. Following injection of (/sup 125/I)NGF into lumbar or cervical regions of the spinal cord, neuronal perikarya were clearly labeled in radioautographs of lumbar dorsal root ganglia. Sites for NGF uptake on primary sensory neurons in the adult rat are not restricted to peripheral axon terminals but are extensively distributed along both peripheral and central axons. Receptors on axons provide a mechanism whereby NGF supplied by glia could influence neuronal maintenance or axonal regeneration.

  12. Neuroprotective effects of human spinal cord-derived neural precursor cells after transplantation to the injured spinal cord.

    PubMed

    Emgård, Mia; Piao, Jinghua; Aineskog, Helena; Liu, Jia; Calzarossa, Cinzia; Odeberg, Jenny; Holmberg, Lena; Samuelsson, Eva-Britt; Bezubik, Bartosz; Vincent, Per Henrik; Falci, Scott P; Seiger, Åke; Åkesson, Elisabet; Sundström, Erik

    2014-03-01

    To validate human neural precursor cells (NPCs) as potential donor cells for transplantation therapy after spinal cord injury (SCI), we investigated the effect of NPCs, transplanted as neurospheres, in two different rat SCI models. Human spinal cord-derived NPCs (SC-NPCs) transplanted 9 days after spinal contusion injury enhanced hindlimb recovery, assessed by the BBB locomotor test. In spinal compression injuries, SC-NPCs transplanted immediately or after 1 week, but not 7 weeks after injury, significantly improved hindlimb recovery compared to controls. We could not detect signs of mechanical allodynia in transplanted rats. Four months after transplantation, we found more human cells in the host spinal cord than were transplanted, irrespective of the time of transplantation. There was no focal tumor growth. In all groups the vast majority of NPCs differentiated into astrocytes. Importantly, the number of surviving rat spinal cord neurons was highest in groups transplanted acutely and subacutely, which also showed the best hindlimb function. This suggests that transplanted SC-NPCs improve the functional outcome by a neuroprotective effect. We conclude that SC-NPCs reliably enhance the functional outcome after SCI if transplanted acutely or subacutely, without causing allodynia. This therapeutic effect is mainly the consequence of a neuroprotective effect of the SC-NPCs.

  13. Methamphetamine increases basal ganglia iron to levels observed in aging.

    PubMed

    Melega, William P; Laćan, Goran; Harvey, Dennis C; Way, Baldwin M

    2007-10-29

    Increases in basal ganglia iron are well documented for neurodegenerative diseases but have not been associated with methamphetamine (METH). In this study, vervet monkeys that received two doses of METH (2 mg/kg, intramuscularly, 6 h apart) showed at 1 month, iron increases in substantia nigra pars reticulata and globus pallidus, with concurrent increases of ferritin-immunoreactivity and decreases of tyrosine hydroxylase-immunoreactivity in substantia nigra. At 1.5 years, substantia nigra tyrosine hydroxylase-immunoreactivity had recovered while iron and ferritin-immunoreactivity increases persisted. Globus pallidus and substantia nigra iron levels of the adult METH-exposed animals (age 5-9 years) were now comparable with those of drug-naive, aged animals (19-22 years), suggesting an aging-related condition that might render those regions more vulnerable to oxidative stress.

  14. Numerical deficits in a single case of basal ganglia dysfunction.

    PubMed

    Zamarian, L; Bodner, T; Revkin, S K; Benke, T; Boesch, S; Donnemiller, E; Delazer, M

    2009-10-01

    The present investigation assesses specific numerical difficulties in a patient (SJ) with basal ganglia (BG) dysfunction. While previous studies on number processing in BG disorders typically tested arithmetic facts by production tasks, the present study uses production, recognition (verification, multiple-choice) and indirect (number-matching) arithmetic tasks. Patient SJ was severely impaired in production and to a lesser extent in verification and multiple-choice tasks. In number-matching, an abnormal latency pattern was found. This study extends previous research by indicating that BG dysfunction may not only affect production processes and sequencing, as was found in previous investigations, but may lead to a breakdown of semantic relationships of arithmetic facts. PMID:19370479

  15. Idiopathic Basal Ganglia Calcification Presented with Impulse Control Disorder

    PubMed Central

    Sahin, Cem; Levent, Mustafa; Akbaba, Gulhan; Kara, Bilge; Yeniceri, Emine Nese; Inanc, Betul Battaloglu

    2015-01-01

    Primary familial brain calcification (PFBC), also referred to as Idiopathic Basal Ganglia Calcification (IBGC) or “Fahr's disease,” is a clinical condition characterized by symmetric and bilateral calcification of globus pallidus and also basal ganglions, cerebellar nuclei, and other deep cortical structures. It could be accompanied by parathyroid disorder and other metabolic disturbances. The clinical features are dysfunction of the calcified anatomic localization. IBGC most commonly presents with mental damage, convulsion, parkinson-like clinical picture, and neuropsychiatric behavior disorders; however, presentation with impulse control disorder is not a frequent presentation. In the current report, a 43-year-old male patient who has been admitted to psychiatry policlinic with the complaints of aggressive behavior episodes and who has been diagnosed with impulse control disorder and IBGC was evaluated in the light of the literature. PMID:26246920

  16. An indirect basal ganglia pathway in anuran amphibians?

    PubMed

    Maier, Silke; Walkowiak, Wolfgang; Luksch, Harald; Endepols, Heike

    2010-09-01

    The mammalian subthalamic nucleus (STN) is a glutamatergic cell group within the indirect pathway of the basal ganglia. It receives input from the external globus pallidus (GP) and in turn projects to the internal GP and the substantia nigra pars reticulata (SNr). While the direct pathway from striatum to SNr is well established in anurans, it is unknown whether they possess an indirect pathway including a STN homologue. The subthalamic region comprises the dorsocaudal suprachiasmatic nucleus (dcSC), the posterior entopeduncular nucleus (EP), and the ventral part of the ventral thalamus (vVM/VL). In the fire-bellied toad Bombina orientalis we investigated whether one of these areas match the criteria established for the mammalian STN. We delineated the SNr in the midbrain tegmentum by labeling the striatonigral terminal field by means of GABA-, substance P-, and enkephalin immunohistochemistry and striatal tracer injections. Subsequently, we used double fluorescence tracing with injections into the SNr and GP to stain different parts of the indirect pathway. Confocal laser scan analysis revealed that dcSC, EP, and vVM/VL contain retrogradely labeled neurons projecting to the SNr, contacted by anterogradely labeled terminals arising in the GP. Immunohistochemical stainings with antibodies against glutamate and the glutamate transporters EAAC1 and vGluT2 demonstrated that the investigated nuclei contain glutamatergic neurons. Our results suggest that all regions in the subthalamic region fulfill our morphological criteria, except the connection back to the GP. An indirect basal ganglia pathway seems to be present in anuran amphibians, although we cannot exclusively delineate an STN homologue.

  17. Dorsal Root Ganglia Damage in SIV-Infected Rhesus Macaques

    PubMed Central

    Burdo, Tricia H.; Orzechowski, Krystyna; Knight, Heather L.; Miller, Andrew D.; Williams, Kenneth

    2012-01-01

    HIV-associated sensory neuropathy (HIV-SN) is currently the most common neurological complication of chronic HIV infection and continues to substantially affect patient quality of life. Mechanisms underlying the neuronal damage and loss observed in sensory ganglia of HIV-infected individuals have not been sufficiently studied. The present study aimed to develop and characterize a model of HIV-SN using SIV-infected CD8 T-lymphocyte-depleted rhesus macaques (Macaca mulatta). Uninfected controls (n = 5), SIV-infected CD8-depleted (n = 4), and SIV-infected non-CD8-depleted (n = 6) animals were used. Of the six non-CD8-depleted animals, three were conventional progressors (progressing to AIDS >1 year after infection) and three were rapid progressors (AIDS within 6 months). Dorsal root ganglia (DRG) were examined for histological hallmarks of HIV-SN, including satellitosis, presence of Nageotte nodules, and neuronophagia, as well as increased numbers of CD68+ macrophages and abundant viral replication. In contrast to non-CD8-depleted animals, which had mild to moderate DRG pathology, the CD8-depleted SIV-infected animals had moderate to severe DRG damage, with increased numbers of CD68+ satellite cells. Additionally, there was marked active viral replication in the affected DRG. These findings confirm that many features of HIV-SN can be recapitulated in the CD8-depleted SIV-infected rhesus macaque model within a short time frame and illustrate the importance of this model for study of sensory neuropathy. PMID:22322298

  18. Ankylosing Spondylitis: Patterns of Spinal Injury and Treatment Outcomes

    PubMed Central

    Yuksel, Kasım Zafer

    2016-01-01

    Study Design Retrospective review. Purpose We retrospectively reviewed our patients with ankylosing spondylitis (AS) to identify their patterns of spinal fractures to help clarify management strategies and the morbidity and mortality rates associated with this group of patients. Overview of Literature Because of the brittleness of bone and long autofused spinal segments in AS, spinal fractures are common even after minor trauma and often associated with overt instability. Methods Between January 1, 1998 and March 2011, 30 patients (23 males, 7 females; mean age, 70.43 years; range, 45 to 95 years) with the radiographic diagnosis of AS of the spinal column had 42 fractures. Eight patients presented with significant trauma, 17 after falls, and 5 after minor falls or no recorded trauma. Eleven patients presented with a neurological injury, ranging from mild sensory loss to quadriplegia. Results There were 16 compression and 10 transverse fractures, two Jefferson's fractures, one type II and two type III odontoid process fractures, and five fractures of the posterior spinal elements (including lamina and/or facet, three spinous process fractures, three transverse process fractures). Twenty-four fractures affected the craniocervical junction and/or cervical vertebrae, 17 were thoracic, and one involved the lumbar spine. The most affected vertebrae were C6 and T10. The mean follow-up was 29.9 months. One patient was lost to follow-up. Eighteen patients were treated conservatively with bed rest and bracing. Twelve patients underwent surgery for spinal stabilization either with an anterior, posterior or combined approach. Conclusions Nonsurgical treatment can be considered especially in the elderly patients with AS and spinal trauma but without instability or major neurological deficits. The nonfusion rate in conservatively treated patients is low. When treatment is selected for patients with spinal fractures and AS, the pattern of injury must be considered and the need

  19. Spinal computed tomography and computed tomographic metrizamide myelography in the early diagnosis of metastatic disease

    SciTech Connect

    O'Rourke, T.; George, C.B.; Redmond, J. 3d.; Davidson, H.; Cornett, P.; Fill, W.L.; Spring, D.B.; Sobel, D.; Dabe, I.B.; Karl, R.D. Jr.

    1986-04-01

    New lesions were shown by Tc99m bone scans to have developed in sixty patients with known metastatic cancer or high-risk primary cancer and normal neurologic examinations; they were further evaluated with plain radiographs, spinal computed tomography (CT), and CT myelography (CT-M) according to an algorithm. Three groups were identified based on plain radiographs: group 1 (normal radiograph), group 2 (compression fracture as indicated by radiograph), group 3 (evidence of metastasis as indicated by radiograph). In group 1 (n = 18), spinal CT revealed that 33% of the patients had benign disease and 67%, metastases; epidural compression was seen in 25% of the patients with metastasis as indicated by CT-M. In group 2 (n = 26), CT-M disclosed that 38% had a benign compression fracture and 62% had metastases and that 63% of the patients with metastases had an epidural compression. In group 3 (n = 16), spinal CT revealed that 15 patients had metastases (one patient had benign disease). Epidural cord compression was seen in 47% of the patients with metastatic disease. In all groups, the presence of cortical bone discontinuity around the neural canal (seen in 31 patients) was highly associated with epidural compression (seen in 20 patients). Our approach allowed the early and accurate diagnosis of spinal metastasis and epidural tumor as well as the diagnosis of benign disease and was useful in planning optimal local therapy.

  20. Establishment of a rat model of chronic thoracolumbar cord compression with a flat plastic screw.

    PubMed

    Sun, Yong; Zhang, Li-Hai; Fu, Yang-Mu; Li, Zhi-Rui; Liu, Jian-Heng; Peng, Jiang; Liu, Bin; Tang, Pei-Fu

    2016-06-01

    Previous studies of animal models of chronic mechanical compression of the spinal cord have mainly focused on cervical and thoracic lesions, but few studies have investigated thoracolumbar injury. The specific pathophysiological mechanism of chronic thoracolumbar cord injury has not yet been elucidated. The purpose of this study was to improve animal models of chronic thoracolumbar cord compression using the progressive screw. A custom-designed flat plastic screw was implanted in the spinal cord between thoracic vertebrae 12 and lumbar 1 of rats. The screw was tightened one complete turn (0.5 mm) every 7 days for 4 weeks to create different levels of chronic spinal cord compression. Following insertion of the screw, there was a significant decline in motor function of the hind limbs, and severe stenosis of micro-computed tomography parameters in the spinal cord. Cortical somatosensory evoked potential amplitudes were reduced remarkably, and latencies were prolonged at 30 minutes after surgery. The loss of motor neurons in the gray matter was marked. Demyelination and cavitation were observed in the white matter. An appropriate rat model of chronic thoracolumbar cord compression was successfully created using the progressive screw compression method, which simulated spinal cord compression injury. PMID:27482226

  1. Establishment of a rat model of chronic thoracolumbar cord compression with a flat plastic screw

    PubMed Central

    Sun, Yong; Zhang, Li-hai; Fu, Yang-mu; Li, Zhi-rui; Liu, Jian-heng; Peng, Jiang; Liu, Bin; Tang, Pei-fu

    2016-01-01

    Previous studies of animal models of chronic mechanical compression of the spinal cord have mainly focused on cervical and thoracic lesions, but few studies have investigated thoracolumbar injury. The specific pathophysiological mechanism of chronic thoracolumbar cord injury has not yet been elucidated. The purpose of this study was to improve animal models of chronic thoracolumbar cord compression using the progressive screw. A custom-designed flat plastic screw was implanted in the spinal cord between thoracic vertebrae 12 and lumbar 1 of rats. The screw was tightened one complete turn (0.5 mm) every 7 days for 4 weeks to create different levels of chronic spinal cord compression. Following insertion of the screw, there was a significant decline in motor function of the hind limbs, and severe stenosis of micro-computed tomography parameters in the spinal cord. Cortical somatosensory evoked potential amplitudes were reduced remarkably, and latencies were prolonged at 30 minutes after surgery. The loss of motor neurons in the gray matter was marked. Demyelination and cavitation were observed in the white matter. An appropriate rat model of chronic thoracolumbar cord compression was successfully created using the progressive screw compression method, which simulated spinal cord compression injury. PMID:27482226

  2. Expansion duroplasty improves intraspinal pressure, spinal cord perfusion pressure, and vascular pressure reactivity index in patients with traumatic spinal cord injury: injured spinal cord pressure evaluation study.

    PubMed

    Phang, Isaac; Werndle, Melissa C; Saadoun, Samira; Varsos, Georgios; Czosnyka, Marek; Zoumprouli, Argyro; Papadopoulos, Marios C

    2015-06-15

    We recently showed that, after traumatic spinal cord injury (TSCI), laminectomy does not improve intraspinal pressure (ISP), spinal cord perfusion pressure (SCPP), or the vascular pressure reactivity index (sPRx) at the injury site sufficiently because of dural compression. This is an open label, prospective trial comparing combined bony and dural decompression versus laminectomy. Twenty-one patients with acute severe TSCI had re-alignment of the fracture and surgical fixation; 11 had laminectomy alone (laminectomy group) and 10 had laminectomy and duroplasty (laminectomy+duroplasty group). Primary outcomes were magnetic resonance imaging evidence of spinal cord decompression (increase in intradural space, cerebrospinal fluid around the injured cord) and spinal cord physiology (ISP, SCPP, sPRx). The laminectomy and laminectomy+duroplasty groups were well matched. Compared with the laminectomy group, the laminectomy+duroplasty group had greater increase in intradural space at the injury site and more effective decompression of the injured cord. In the laminectomy+duroplasty group, ISP was lower, SCPP higher, and sPRx lower, (i.e., improved vascular pressure reactivity), compared with the laminectomy group. Laminectomy+duroplasty caused cerebrospinal fluid leak that settled with lumbar drain in one patient and pseudomeningocele that resolved completely in five patients. We conclude that, after TSCI, laminectomy+duroplasty improves spinal cord radiological and physiological parameters more effectively than laminectomy alone.

  3. Organization of spinal inputs to the perihypoglossal complex in the cat.

    PubMed

    Stechison, M T; Saint-Cyr, J A

    1986-04-22

    First- and second-order spinal afferents to the perihypoglossal complex were sought by using axonal transport of WGA-HRP. Injections in C1, 2, and 3 dorsal root ganglia resulted in axonal labeling in the nucleus intercalatus and the external cuneate nucleus, with a number of retrogradely labeled cells seen as well in the latter. A similar pattern of axonal labeling in the nucleus intercalatus as well as several retrogradely labeled cells were found after spinal cord injections at levels C1, 2, and 3. A prominent field of labeled axons was also present in the rostral main cuneate nucleus. No labeling was seen in the perihypoglossal nuclei after injections in the spinal cord or dorsal root ganglia at levels caudal to C3. After injections of HRP into the perihypoglossal nucleus we were able to identify labeled neurons within Rexed's laminae V-VIII and the central cervical nucleus. Anterograde labeling in the main cuneate nucleus was observed after C1 to C5 ganglion and C1 to C6 cord injections. The pattern and extent of labeling in the perihypoglossal nuclei and adjacent structures seen after cerebellar injections into lobules V and VI were comparable to those previously reported and permitted evaluation of the relay from dorsal root ganglia through the intercalatus to the vermis. Topography of the cervical projections to the nucleus intercalatus is considered with respect to that of the perihypoglossal-collicular projection. A discussion is offered of the apparent importance of nucleus intercalatus as a relay of cervical and vestibular afferent information to premotor structures involved in neck motor control. The perihypoglossal complex is viewed as being organized in such a fashion as to allow the nuclei intercalatus and prepositus hypoglossi to function as key structures in the integration of inputs related to neck and ocular motor control, respectively.

  4. Thoracic compression fracture in a basketball player.

    PubMed

    McHugh-Pierzina, V L; Zillmer, D A; Giangarra, C E

    1995-06-01

    Thoracolumbar pain is a frequent complaint of many athletes, but the cause is often difficult to diagnose. Compression fractures of the spine are rarely seen in athletics and are not always recognized as a potential cause of the symptoms. Reported here is a case of a T12 compression fracture in a male basketball player. Pain films revealed the percentage of loss of vertebral body height, thereby determining the stability of the fracture. If treated with a thoracolumbar spinal orthosis brace and activity restrictions, stable compression fractures heal without surgical intervention and athletes can return to activity within a number of months. Athletic trainers and physicians should maintain a level of suspicion for this injury when violent trunk flexion or lateral flexion is the mechanism of injury.

  5. Pediatric spinal trauma.

    PubMed

    Huisman, Thierry A G M; Wagner, Matthias W; Bosemani, Thangamadhan; Tekes, Aylin; Poretti, Andrea

    2015-01-01

    Pediatric spinal trauma is unique. The developing pediatric spinal column and spinal cord deal with direct impact and indirect acceleration/deceleration or shear forces very different compared to adult patients. In addition children are exposed to different kind of traumas. Moreover, each age group has its unique patterns of injury. Familiarity with the normal developing spinal anatomy and kind of traumas is essential to correctly diagnose injury. Various imaging modalities can be used. Ultrasound is limited to the neonatal time period; plain radiography and computer tomography are typically used in the acute work-up and give highly detailed information about the osseous lesions. Magnetic resonance imaging is more sensitive for disco-ligamentous and spinal cord injuries. Depending on the clinical presentation and timing of trauma the various imaging modalities will be employed. In the current review article, a summary of the epidemiology and distribution of posttraumatic lesions is discussed in the context of the normal anatomical variations due to progressing development of the child. PMID:25512255

  6. Speed and spinal injuries.

    PubMed

    Healy, D G; Connolly, P; Stephens, M M; O'Byrne, J M; McManus, F; McCormack, D

    2004-09-01

    Road traffic accidents (RTA) are a significant cause of spinal trauma. On the 31st of October 2002 a new penalty system for speed related driving offences was introduced in Ireland. Our intention was to assess the effects of the introduction of this system on the activity of the National Spinal Injuries Centre (NSIC) with a retrospective review of all admissions from November 1998 until October 2003. The number of new acute admissions to the spinal injury unit during the study period was 831. In the first 6 months of the new system the number of RTA related admissions fell significantly to 17 compared to an average of 33 in the preceding 4 years. However, this effect was not maintained in the second 6 months. The fall in spinal injuries following RTA in the first 6 months of the new system parallels the pattern of road death reduction in this period. This suggests that driving behaviour can be modified with direct benefits in reducing spinal injuries. However, this effect has not persisted in the second 6 months of the new system suggesting that to maintain this change the perception and familiarity of a penalty are important factors in its impact.

  7. Learning Spinal Manipulation

    PubMed Central

    Harvey, Marie-Pierre; Wynd, Shari; Richardson, Lance; Dugas, Claude; Descarreaux, Martin

    2011-01-01

    Purpose: The goal of the present study was to quantify the high-velocity, low-amplitude spinal manipulation biomechanical parameters in two cohorts of students from different teaching institutions. The first cohort of students was taught chiropractic techniques in a patient–doctor positioning practice setting, while the second cohort of students was taught in a “complete practice” manipulation setting, thus performing spinal manipulation skills on fellow student colleagues. It was hypothesized that the students exposed to complete practice would perform the standardized spinal manipulation with better biomechanical parameters. Methods: Participants (n = 88) were students enrolled in two distinct chiropractic programs. Thoracic spine manipulation skills were assessed using an instrumented manikin, which allowed the measurement of applied force. Dependent variables included peak force, time to peak force, rate of force production, peak force variability, and global coordination. Results: The results revealed that students exposed to complete practice demonstrated lower time to peak force values, higher peak force, and a steeper rate of force production compared with students in the patient–doctor positioning scenario. A significant group by gender interaction was also noted for the time to peak force and rate of force production variables. Conclusion: The results of the present study confirm the importance of chiropractic technique curriculum and perhaps gender in spinal manipulation skill learning. It also stresses the importance of integrating spinal manipulation skills practice early in training to maximize the number and the quality of significant learner–instructor interactions. PMID:22069337

  8. Traumatic bleeding of spinal angiolipoma presenting with subacute paraparesis--a case report and histopathological aspects.

    PubMed

    Sankaran, Vijay; Carey, Martyn; Shad, Amjad

    2010-12-01

    Spinal angiolipoma is a rare benign tumour. It usually presents as a slowly progressive compressive lesion. Bleeding in this tumour is extremely rare and is spontaneous and acute. This is the first reported case of post-traumatic bleeding from a spinal angiolipoma, who developed subacute progressive paraparesis. The pathological definition of this rare entity is not well established. Histologically it is distinct from cutaneous angiolipoma.

  9. [Spinal stroke in the acute myeloblast leucosis].

    PubMed

    Kotova, N A; Klimovich, A V; Krasnoruzhskiĭ, A I; Skoromets, A A; Aliev, K T; Volkova, S A; Lalaian, T V

    2013-01-01

    Data of literature on the frequency of the nervous system lesions in different variants of leucosis are analyzed. A case of a man with petechial skin rash and bruises on the body, gingival hemorrhage and general sickness is described in details. The hematologic tests revealed acute myeloblast leucosis. A lumbar puncture revealed blood in the cerebrospinal fluid and MRI showed an epidural hematoma in lumbar segments 3 and 4. At this level, the hematoma compressed the dural bag and roots of the horse tail with accompanying vessels (the radicular medullar artery and large radicular veins). A paracentetic removal of the hematoma with the decompression of spinal roots was carried out. The blasts in the cerebrospinal fluid and symptoms of the left facial nerve lesion allowed to diagnose neuroleucosis. This case presented the mixed pathogenesis of myeloischemia. The epidural hematoma compressed not only the roots of the horse tail but the accompanying vessels (arteries and veins). The venous outflow obstruction along radicular veins worsened the microcirculation in the cross-sectional area of the spinal cord. Complex polychemotherapy in the combination with neuroprotectors (cortexin, gliatiline), antiaggregants and vitamins is recommended. PMID:23612398

  10. [Spinal and extra-spinal tumors mimicking discal herniation].

    PubMed

    Tamir, E; Mirovsky, Y; Robinson, D; Halperin, N

    1999-12-15

    Low back pain radiating to a limb is usually caused by lumbar disc herniation. Tumors of the spinal cord or near the sciatic or femoral plexus can cause neural compression and clinical signs similar to those of disc herniation. Such tumors are usually misdiagnosed as discal herniation and appropriate treatment is delayed. We present 4 men who had tumors causing low back pain radiating to the leg: a 70-year-old with metastatic squamous cell carcinoma of the lung, a 20-year-old with aneurysmal bone cyst of the vertebral column, a 52-year-old with retroperitoneal sarcoma and a 32-year-old who also had retroperitoneal sarcoma. Diagnosis and treatment were delayed because the clinical symptoms were ascribed to lumbar disc herniation. The latter 2 patients had CT-scans showing lumbar disc herniation, but similar findings are common among asymptomatic individuals. The differential diagnosis of low back pain radiating to the leg should include tumor when there is a history of cancer, pain not relieved by conservative treatment nor by lying down, pain is increased at night, pain accompanied by weight loss, and when physical examination demonstrates injury to more than 1 nerve root. In these circumstances work-up should include EMG, radioisotope scan and CT of the pelvis.

  11. [Spinal and extra-spinal tumors mimicking discal herniation].

    PubMed

    Tamir, E; Mirovsky, Y; Robinson, D; Halperin, N

    1999-12-15

    Low back pain radiating to a limb is usually caused by lumbar disc herniation. Tumors of the spinal cord or near the sciatic or femoral plexus can cause neural compression and clinical signs similar to those of disc herniation. Such tumors are usually misdiagnosed as discal herniation and appropriate treatment is delayed. We present 4 men who had tumors causing low back pain radiating to the leg: a 70-year-old with metastatic squamous cell carcinoma of the lung, a 20-year-old with aneurysmal bone cyst of the vertebral column, a 52-year-old with retroperitoneal sarcoma and a 32-year-old who also had retroperitoneal sarcoma. Diagnosis and treatment were delayed because the clinical symptoms were ascribed to lumbar disc herniation. The latter 2 patients had CT-scans showing lumbar disc herniation, but similar findings are common among asymptomatic individuals. The differential diagnosis of low back pain radiating to the leg should include tumor when there is a history of cancer, pain not relieved by conservative treatment nor by lying down, pain is increased at night, pain accompanied by weight loss, and when physical examination demonstrates injury to more than 1 nerve root. In these circumstances work-up should include EMG, radioisotope scan and CT of the pelvis. PMID:10959387

  12. Spontaneous spinal epidural hemorrhage from intense piano playing.

    PubMed

    Chang, Hui-Ju; Su, Fang Jy; Huang, Ying C; Chen, Shih-Han

    2014-06-01

    Spontaneous spinal epidural hematoma (SSEH) is a rare but real neurosurgical emergency. It is caused by atraumatic rupture of the vertebral epidural vein that results in nerve root or spinal cord compression. Most cases of SSEH have a multifactorial etiology, including congenital and acquired coagulopathies; platelet dysfunction; vascular malformation; tumors; uncontrolled hypertension; pregnancy; and, very rarely, activities requiring Valsalva. Herein we reported the case of a young pianist who was attacked by SSEH during piano practice. Playing the piano is a joyful, relaxing entertainment; however, this musical activity can be a highly demanding physical and mental exercise for pianists. Emotional and expressive performance, especially in professional performing, has been reported to result in significant increase of sympathetic and decrease of parasympathetic activities and thus influence the cardiorespiratory variables. The increased biomechanical stress from fluctuating hemodynamics was thought to trigger the rupture of her spinal arteriovenous malformation. PMID:24418452

  13. Primary Intradural Extramedullary Spinal Melanoma in the Lower Thoracic Spine

    PubMed Central

    Hering, Kathrin; Bresch, Anke; Lobsien, Donald; Mueller, Wolf; Kortmann, Rolf-Dieter; Seidel, Clemens

    2016-01-01

    Background Context. Up to date, only four cases of primary intradural extramedullary spinal cord melanoma (PIEM) have been reported. No previous reports have described a case of PIEM located in the lower thoracic spine with long-term follow-up. Purpose. Demonstrating an unusual, extremely rare case of melanoma manifestation. Study Design. Case report. Methods. We report a case of a 57-year-old female suffering from increasing lower extremity pain, left-sided paresis, and paraesthesia due to spinal cord compression caused by PIEM in the lower thoracic spine. Results. Extensive investigation excluded other possible primary melanoma sites and metastases. For spinal cord decompression, the tumor at level T12 was resected, yet incompletely. Adjuvant radiotherapy was administered two weeks after surgery. The patient was recurrence-free at 104 weeks after radiotherapy but presents with unchanged neurological symptoms. Conclusion. Primary intradural extramedullary melanoma (PIEM) is extremely rare and its clinical course is unpredictable. PMID:27127667

  14. A rare cause of lumbar radiculopathy: spinal gas collection.

    PubMed

    Tamburrelli, F; Leone, A; Pitta, L

    2000-10-01

    The presence of gas in the intervertebral disk space, known as the vacuum phenomenon, is a relatively common radiologic finding, especially on computed tomographic investigation. In a few cases, the gas can be collected into the lumbar spinal canal and can also compress the nerve root. To date only seven cases of symptomatic lumbar radiculopathy caused by a bubble of gas are reported in the literature. The presence of gas inside a narrowed disk and the collection of gas in the spinal canal suggest a communication between the two structures. A case of lumbar radiculopathy caused by a collection of gas in the spinal canal provided the authors the opportunity to study this rare condition by magnetic resonance imaging. Magnetic resonance imaging had not been used before in the referred cases and proved conclusively the discal origin of the gas. PMID:11052357

  15. Spontaneous spinal epidural hemorrhage from intense piano playing.

    PubMed

    Chang, Hui-Ju; Su, Fang Jy; Huang, Ying C; Chen, Shih-Han

    2014-06-01

    Spontaneous spinal epidural hematoma (SSEH) is a rare but real neurosurgical emergency. It is caused by atraumatic rupture of the vertebral epidural vein that results in nerve root or spinal cord compression. Most cases of SSEH have a multifactorial etiology, including congenital and acquired coagulopathies; platelet dysfunction; vascular malformation; tumors; uncontrolled hypertension; pregnancy; and, very rarely, activities requiring Valsalva. Herein we reported the case of a young pianist who was attacked by SSEH during piano practice. Playing the piano is a joyful, relaxing entertainment; however, this musical activity can be a highly demanding physical and mental exercise for pianists. Emotional and expressive performance, especially in professional performing, has been reported to result in significant increase of sympathetic and decrease of parasympathetic activities and thus influence the cardiorespiratory variables. The increased biomechanical stress from fluctuating hemodynamics was thought to trigger the rupture of her spinal arteriovenous malformation.

  16. Parallel basal ganglia circuits for voluntary and automatic behaviour to reach rewards.

    PubMed

    Kim, Hyoung F; Hikosaka, Okihide

    2015-07-01

    The basal ganglia control body movements, value processing and decision-making. Many studies have shown that the inputs and outputs of each basal ganglia structure are topographically organized, which suggests that the basal ganglia consist of separate circuits that serve distinct functions. A notable example is the circuits that originate from the rostral (head) and caudal (tail) regions of the caudate nucleus, both of which target the superior colliculus. These two caudate regions encode the reward values of visual objects differently: flexible (short-term) values by the caudate head and stable (long-term) values by the caudate tail. These value signals in the caudate guide the orienting of gaze differently: voluntary saccades by the caudate head circuit and automatic saccades by the caudate tail circuit. Moreover, separate groups of dopamine neurons innervate the caudate head and tail and may selectively guide the flexible and stable learning/memory in the caudate regions. Studies focusing on manual handling of objects also suggest that rostrocaudally separated circuits in the basal ganglia control the action differently. These results suggest that the basal ganglia contain parallel circuits for two steps of goal-directed behaviour: finding valuable objects and manipulating the valuable objects. These parallel circuits may underlie voluntary behaviour and automatic skills, enabling animals (including humans) to adapt to both volatile and stable environments. This understanding of the functions and mechanisms of the basal ganglia parallel circuits may inform the differential diagnosis and treatment of basal ganglia disorders.

  17. Gene expression for peptides in neurons of the petrosal and nodose ganglia in rat.

    PubMed

    Czyzyk-Krzeska, M F; Bayliss, D A; Seroogy, K B; Millhorn, D E

    1991-01-01

    In situ hybridization was used to determine whether genes for neuropeptides [substance P/neurokinin A (SP/NKA), calcitonin gene-related peptide (CGRP), somatostatin (SOM), neuropeptide tyrosine (NPY) and cholecystokinin (CCK)] are expressed in inferior ganglia of the vagus (nodose) and glossopharyngeal (petrosal) nerves. Synthetic oligodeoxyribonucleotides, complementary to the cognate, mRNAs were labeled with [32P] or [35S], and hybridized to 10 microns thick sections of unperfused tissue which were then processed for film and emulsion autoradiography. We found numerous, clustered neuronal perikarya throughout the nodose and petrosal ganglia that expressed preprotachykinin A (SP/NKA) and CGRP mRNAs to varying degrees. Neurons expressing preproSOM mRNA were less abundant and more scattered throughout both ganglia. Notably, we found mRNA for NPY in cells (usually 5-10 per section) in both ganglia. To our knowledge, this is first evidence for NPY in these sensory ganglia. In contrast to previous immunohistochemical findings, we found no evidence for expression of preproCCK in either the nodose or petrosal ganglia. The present findings demonstrate that cells of the nodose and petrosal ganglia express the genes for a number of neuropeptides that are presumably involved with transmission of visceral sensory afferent information to higher order neurons of the central nervous system. PMID:1708726

  18. Parallel basal ganglia circuits for voluntary and automatic behaviour to reach rewards

    PubMed Central

    Hikosaka, Okihide

    2015-01-01

    The basal ganglia control body movements, value processing and decision-making. Many studies have shown that the inputs and outputs of each basal ganglia structure are topographically organized, which suggests that the basal ganglia consist of separate circuits that serve distinct functions. A notable example is the circuits that originate from the rostral (head) and caudal (tail) regions of the caudate nucleus, both of which target the superior colliculus. These two caudate regions encode the reward values of visual objects differently: flexible (short-term) values by the caudate head and stable (long-term) values by the caudate tail. These value signals in the caudate guide the orienting of gaze differently: voluntary saccades by the caudate head circuit and automatic saccades by the caudate tail circuit. Moreover, separate groups of dopamine neurons innervate the caudate head and tail and may selectively guide the flexible and stable learning/memory in the caudate regions. Studies focusing on manual handling of objects also suggest that rostrocaudally separated circuits in the basal ganglia control the action differently. These results suggest that the basal ganglia contain parallel circuits for two steps of goal-directed behaviour: finding valuable objects and manipulating the valuable objects. These parallel circuits may underlie voluntary behaviour and automatic skills, enabling animals (including humans) to adapt to both volatile and stable environments. This understanding of the functions and mechanisms of the basal ganglia parallel circuits may inform the differential diagnosis and treatment of basal ganglia disorders. PMID:25981958

  19. A new lumbar posterior fixation system, the memory metal spinal system: an in-vitro mechanical evaluation

    PubMed Central

    2013-01-01

    Background Spinal systems that are currently available for correction of spinal deformities or degeneration such as lumbar spondylolisthesis or degenerative disc disease use components manufactured from stainless steel or titanium and typically comprise two spinal rods with associated connection devices (for example: DePuy Spines Titanium Moss Miami Spinal System). The Memory Metal Spinal System of this study consists of a single square spinal rod made of a nickel titanium alloy (Nitinol) used in conjunction with connecting transverse bridges and pedicle screws made of Ti-alloy. Nitinol is best known for its shape memory effect, but is also characterized by its higher flexibility when compared to either stainless steel or titanium. A higher fusion rate with less degeneration of adjacent segments may result because of the elastic properties of the memory metal. In addition, the use of a single, unilateral rod may be of great value for a TLIF procedure. Our objective is to evaluate the mechanical properties of the new Memory Metal Spinal System compared to the Titanium Moss Miami Spinal System. Methods An in-vitro mechanical evaluation of the lumbar Memory Metal Spinal System was conducted. The test protocol followed ASTM Standard F1717-96, “Standard Test Methods for Static and Fatigue for Spinal Implant Constructs in a Corpectomy Model.” 1. Static axial testing in a load to failure mode in compression bending, 2. Static testing in a load to failure mode in torsion, 3. Cyclical testing to estimate the maximum run out load value at 5.0 x 10^6 cycles. Results In the biomechanical testing for static axial compression bending there was no statistical difference between the 2% yield strength and the stiffness of the two types of spinal constructs. In axial compression bending fatigue testing, the Memory Metal Spinal System construct showed a 50% increase in fatigue life compared to the Titanium Moss Miami Spinal System. In static torsional testing the Memory Metal

  20. Chitosan produces potent neuroprotection and physiological recovery following traumatic spinal cord injury.

    PubMed

    Cho, Youngnam; Shi, Riyi; Borgens, Richard B

    2010-05-01

    Chitosan, a non-toxic biodegradable polycationic polymer with low immunogenicity, has been extensively investigated in various biomedical applications. In this work, chitosan has been demonstrated to seal compromised nerve cell membranes thus serving as a potent neuroprotector following acute spinal cord trauma. Topical application of chitosan after complete transection or compression of the guinea pig spinal cord facilitated sealing of neuronal membranes in ex vivo tests, and restored the conduction of nerve impulses through the length of spinal cords in vivo, using somatosensory evoked potential recordings. Moreover, chitosan preferentially targeted damaged tissues, served as a suppressor of reactive oxygen species (free radical) generation, and the resultant lipid peroxidation of membranes, as shown in ex vivo spinal cord samples. These findings suggest a novel medical approach to reduce the catastrophic loss of behavior after acute spinal cord and brain injury.

  1. Effective repair of traumatically injured spinal cord by nanoscale block copolymer micelles

    NASA Astrophysics Data System (ADS)

    Shi, Yunzhou; Kim, Sungwon; Huff, Terry B.; Borgens, Richard B.; Park, Kinam; Shi, Riyi; Cheng, Ji-Xin

    2010-01-01

    Spinal cord injury results in immediate disruption of neuronal membranes, followed by extensive secondary neurodegenerative processes. A key approach for repairing injured spinal cord is to seal the damaged membranes at an early stage. Here, we show that axonal membranes injured by compression can be effectively repaired using self-assembled monomethoxy poly(ethylene glycol)-poly(D,L-lactic acid) di-block copolymer micelles. Injured spinal tissue incubated with micelles (60 nm diameter) showed rapid restoration of compound action potential and reduced calcium influx into axons for micelle concentrations much lower than the concentrations of polyethylene glycol, a known sealing agent for early-stage spinal cord injury. Intravenously injected micelles effectively recovered locomotor function and reduced the volume and inflammatory response of the lesion in injured rats, without any adverse effects. Our results show that copolymer micelles can interrupt the spread of primary spinal cord injury damage with minimal toxicity.

  2. Effective repair of traumatically injured spinal cord by nanoscale block copolymer micelles.

    PubMed

    Shi, Yunzhou; Kim, Sungwon; Huff, Terry B; Borgens, Richard B; Park, Kinam; Shi, Riyi; Cheng, Ji-Xin

    2010-01-01

    Spinal cord injury results in immediate disruption of neuronal membranes, followed by extensive secondary neurodegenerative processes. A key approach for repairing injured spinal cord is to seal the damaged membranes at an early stage. Here, we show that axonal membranes injured by compression can be effectively repaired using self-assembled monomethoxy poly(ethylene glycol)-poly(d,l-lactic acid) di-block copolymer micelles. Injured spinal tissue incubated with micelles (60 nm diameter) showed rapid restoration of compound action potential and reduced calcium influx into axons for micelle concentrations much lower than the concentrations of polyethylene glycol, a known sealing agent for early-stage spinal cord injury. Intravenously injected micelles effectively recovered locomotor function and reduced the volume and inflammatory response of the lesion in injured rats, without any adverse effects. Our results show that copolymer micelles can interrupt the spread of primary spinal cord injury damage with minimal toxicity.

  3. [Lumbar spinal angiolipoma].

    PubMed

    Isla, Alberto; Ortega Martinez, Rodrigo; Pérez López, Carlos; Gómez de la Riva, Alvaro; Mansilla, Beatriz

    2016-01-01

    Spinal angiolipomas are fairly infrequent benign tumours that are usually located in the epidural space of the thoracic column and represent 0.14% to 1.3% of all spinal tumours. Lumbar angiolipomas are extremely rare, representing only 9.6% of all spinal extradural angiolipomas. We report the case of a woman who complained of a lumbar pain of several months duration with no neurological focality and that had intensified in the last three days without her having had any injury or made a physical effort. The MR revealed an extradural mass L1-L2, on the posterior face of the medulla, decreasing the anteroposterior diameter of the canal. The patient symptoms improved after surgery. Total extirpation of the lesion is possible in most cases, and the prognosis is excellent even if the lesion is infiltrative. For this reason, excessively aggressive surgery is not necessary to obtain complete resection. PMID:27263067

  4. Spinal injuries in children.

    PubMed

    Babcock, J L

    1975-05-01

    Spinal injuries with neurologic sequelae are a rare but catastrophic injury. Many of these injuries might be preventable through proper parent and child education, particularly in water sports and vehicles accidents. A significant number of neurologic injuries are incomplete at the time of injury and proper rescue and initial care may make the difference between life as a quadriplegic and life as a normal individual. Because of the complexity of the management of the child with spinal injuries and their relative rarity, the definitive care is best undertaken at hospitals which specialize in the care of spinal injuries. Progressive deformity of the spine, a problem unique to childhood and adolescent paralysis, is often preventable with prolonged immobilization and protection of the spine. Progressive deformities which interfere with function or result in neurologic deterioration require an aggressive surgical approach. PMID:1124228

  5. [Spinal cord infarction].

    PubMed

    Naumann, N; Shariat, K; Ulmer, S; Stippich, C; Ahlhelm, F J

    2012-05-01

    Infarction of the spinal cord can cause a variety of symptoms and neurological deficits because of the complex vascular supply of the myelon. The most common leading symptom is distal paresis ranging from paraparesis to tetraplegia caused by arterial ischemia or infarction of the myelon. Venous infarction, however, cannot always be distinguished from arterial infarction based on the symptoms alone.Modern imaging techniques, such as computed tomography angiography (CTA) and magnetic resonance angiography (MRA) assist in preoperative planning of aortic operations to reliably identify not only the most important vascular structure supplying the spinal cord, the artery of Adamkiewicz, but also other pathologies such as tumors or infectious disorders. In contrast to CT, MRI can reliably depict infarction of the spinal cord.

  6. [Lumbar spinal angiolipoma].

    PubMed

    Isla, Alberto; Ortega Martinez, Rodrigo; Pérez López, Carlos; Gómez de la Riva, Alvaro; Mansilla, Beatriz

    2016-01-01

    Spinal angiolipomas are fairly infrequent benign tumours that are usually located in the epidural space of the thoracic column and represent 0.14% to 1.3% of all spinal tumours. Lumbar angiolipomas are extremely rare, representing only 9.6% of all spinal extradural angiolipomas. We report the case of a woman who complained of a lumbar pain of several months duration with no neurological focality and that had intensified in the last three days without her having had any injury or made a physical effort. The MR revealed an extradural mass L1-L2, on the posterior face of the medulla, decreasing the anteroposterior diameter of the canal. The patient symptoms improved after surgery. Total extirpation of the lesion is possible in most cases, and the prognosis is excellent even if the lesion is infiltrative. For this reason, excessively aggressive surgery is not necessary to obtain complete resection.

  7. Recovery of viscerosensory innervation from the dorsal root ganglia of the adult rat following capsaicin-induced injury.

    PubMed

    Gallaher, Zachary R; Larios, Rose Marie; Ryu, Vitaly; Sprunger, Leslie K; Czaja, Krzysztof

    2010-09-01

    Capsaicin is a neurotoxin selective for C- and Adelta-type neurons. Systemic treatment with capsaicin is known to reduce this subpopulation in the dorsal root ganglia (DRG) of neonatal rats. To better understand the effects of capsaicin on adult afferent fibers, we examined DRG neurons retrogradely labeled by an i.p. injection of Fast Blue (FB) administered 3, 30, or 60 days after systemic capsaicin treatment (125 mg/kg i.p.). FB labeling in the 12th and 13th thoracic DRG was dramatically reduced 3 and 30 days post capsaicin (50% and 35% of control, respectively). However, the number of retrogradely labeled neurons rose to 65% of control by 60 days post capsaicin. In addition to FB labeling, we quantified the immunoreactivity of NR1, the obligatory N-methyl-D-aspartate receptor subunit, and Na(v)1.8, a DRG-specific sodium channel, in FB-labeled neurons as well as mRNA levels for both proteins in the 5th and 6th lumbar DRG. NR1 immunoreactivity and mRNA expression followed a pattern of early reduction and subsequent partial restoration similar to FB labeling. Na(v)1.8 immunoreactivity and mRNA expression dropped to approximately 50% of control at 3 days post capsaicin but completely recovered by 60 days. These data strongly support the conclusion that restoration of spinal afferent projections and signaling occurs in adult rats following capsaicin-induced damage. PMID:20593356

  8. Controlled release of 6-aminonicotinamide from aligned, electrospun fibers alters astrocyte metabolism and dorsal root ganglia neurite outgrowth

    NASA Astrophysics Data System (ADS)

    Schaub, Nicholas J.; Gilbert, Ryan J.

    2011-08-01

    Following central nervous system (CNS) injury, activated astrocytes form a glial scar that inhibits the migration of axons ultimately leading to regeneration failure. Biomaterials developed for CNS repair can provide local delivery of therapeutics and/or guidance mechanisms to encourage cell migration into damaged regions of the brain or spinal cord. Electrospun fibers are a promising type of biomaterial for CNS injury since these fibers can direct cellular and axonal migration while slowly delivering therapy to the injury site. In this study, it was hypothesized that inclusion of an anti-metabolite, 6-aminonicotinamide (6AN), within poly-l-lactic acid electrospun fibers could attenuate astrocyte metabolic activity while still directing axonal outgrowth. Electrospinning parameters were varied to produce highly aligned electrospun fibers that contained 10% or 20% (w/w) 6AN. 6AN release from the fiber substrates occurred continuously over 2 weeks. Astrocytes placed onto drug-releasing fibers were less active than those cultured on scaffolds without 6AN. Dorsal root ganglia placed onto control and drug-releasing scaffolds were able to direct neurites along the aligned fibers. However, neurite outgrowth was stunted by fibers that contained 20% 6AN. These results show that 6AN release from aligned, electrospun fibers can decrease astrocyte activity while still directing axonal outgrowth.

  9. Photoplethysmographic sensors for perfusion measurements in spinal cord tissue

    NASA Astrophysics Data System (ADS)

    Phillips, J. P.; Kyriacou, P. A.

    2011-08-01

    Sensors for recording photoplethysmographic signals from the nervous tissue of the spinal cord are described. The purpose of these sensors is to establish whether perfusion is compromised in various states of injury which occur in certain animal models of spinal cord injury, for example compression injury. Various measures of perfusion are applicable such as the amplitude of the photoplethysmograph signal and the oxygen saturation, measured using a dual wavelength configuration. Signals are usually compared to baseline measurements made in uninjured subjects. This paper describes two types of probe, one based on optical fibres, and one in which optotes are placed in direct contact with the tissue surface. Results from a study based on a compression model utilising a fibreoptic sensor are presented.

  10. Acquired cervical spinal arachnoid diverticulum in a cat.

    PubMed

    Adams, R J; Garosi, L; Matiasek, K; Lowrie, M

    2015-04-01

    A one-year-old, female entire, domestic, shorthair cat presented with acute onset non-ambulatory tetraparesis. Magnetic resonance imaging was consistent with a C3-C4 acute non-compressive nucleus pulposus extrusion and the cat was treated conservatively. The cat was able to walk after 10 days and was normal 2 months after presentation. The cat was referred five and a half years later for investigation of an insidious onset 3-month history of ataxia and tetraparesis. Magnetic resonance imaging of the cervical spine was repeated, demonstrating a spinal arachnoid diverticulum at C3 causing marked focal compression of the spinal cord. This was treated surgically with hemilaminectomy and durectomy. The cat improved uneventfully and was discharged 12 days later.

  11. Complete rat spinal cord transection as a faithful model of spinal cord injury for translational cell transplantation.

    PubMed

    Lukovic, Dunja; Moreno-Manzano, Victoria; Lopez-Mocholi, Eric; Rodriguez-Jiménez, Francisco Javier; Jendelova, Pavla; Sykova, Eva; Oria, Marc; Stojkovic, Miodrag; Erceg, Slaven

    2015-01-01

    Spinal cord injury (SCI) results in neural loss and consequently motor and sensory impairment below the injury. There are currently no effective therapies for the treatment of traumatic SCI in humans. Various animal models have been developed to mimic human SCI. Widely used animal models of SCI are complete or partial transection or experimental contusion and compression, with both bearing controversy as to which one more appropriately reproduces the human SCI functional consequences. Here we present in details the widely used procedure of complete spinal cord transection as a faithful animal model to investigate neural and functional repair of the damaged tissue by exogenous human transplanted cells. This injury model offers the advantage of complete damage to a spinal cord at a defined place and time, is relatively simple to standardize and is highly reproducible. PMID:25860664

  12. Complete rat spinal cord transection as a faithful model of spinal cord injury for translational cell transplantation.

    PubMed

    Lukovic, Dunja; Moreno-Manzano, Victoria; Lopez-Mocholi, Eric; Rodriguez-Jiménez, Francisco Javier; Jendelova, Pavla; Sykova, Eva; Oria, Marc; Stojkovic, Miodrag; Erceg, Slaven

    2015-04-10

    Spinal cord injury (SCI) results in neural loss and consequently motor and sensory impairment below the injury. There are currently no effective therapies for the treatment of traumatic SCI in humans. Various animal models have been developed to mimic human SCI. Widely used animal models of SCI are complete or partial transection or experimental contusion and compression, with both bearing controversy as to which one more appropriately reproduces the human SCI functional consequences. Here we present in details the widely used procedure of complete spinal cord transection as a faithful animal model to investigate neural and functional repair of the damaged tissue by exogenous human transplanted cells. This injury model offers the advantage of complete damage to a spinal cord at a defined place and time, is relatively simple to standardize and is highly reproducible.

  13. Atypical Chest Pain: An Unusual Presentation of Spinal Metastasis due to Penile Carcinoma

    PubMed Central

    Pywell, Sarah; Dott, Cameron; Khan, Mohammad Taimur; Sivanadarajah, Naveethan

    2016-01-01

    Spinal metastases may present in a myriad of ways, most commonly back pain with or without neurology. We report an unusual presentation of isolated atypical chest pain preceding metastatic cord compression, secondary to penile carcinoma. Spinal metastasis from penile carcinoma is rare with few cases reported. This unusual presentation highlights the need for a heightened level of clinical suspicion for spinal metastases as a possible cause for chest pain in any patients with a history of carcinoma. The case is discussed with reference to the literature. PMID:27429829

  14. Latent Herpes Simplex Virus 1 Infection Does Not Induce Apoptosis in Human Trigeminal Ganglia

    PubMed Central

    Lindemann, Anja; Sinicina, Inga; Strupp, Michael; Brandt, Thomas; Hüfner, Katharina

    2015-01-01

    Herpes simplex virus 1 (HSV-1) can establish lifelong latency in human trigeminal ganglia. Latently infected ganglia contain CD8+ T cells, which secrete granzyme B and are thus capable of inducing neuronal apoptosis. Using immunohistochemistry and single-cell reverse transcription-quantitative PCR (RT-qPCR), higher frequency and transcript levels of caspase-3 were found in HSV-1-negative compared to HSV-1-positive ganglia and neurons, respectively. No terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) assay-positive neurons were detected. The infiltrating T cells do not induce apoptosis in latently infected neurons. PMID:25762734

  15. Changes in spinal alignment.

    PubMed

    Veintemillas Aráiz, M T; Beltrán Salazar, V P; Rivera Valladares, L; Marín Aznar, A; Melloni Ribas, P; Valls Pascual, R

    2016-04-01

    Spinal misalignments are a common reason for consultation at primary care centers and specialized departments. Misalignment has diverse causes and is influenced by multiple factors: in adolescence, the most frequent misalignment is scoliosis, which is idiopathic in 80% of cases and normally asymptomatic. In adults, the most common cause is degenerative. It is important to know the natural history and to detect factors that might predict progression. The correct diagnosis of spinal deformities requires specific imaging studies. The degree of deformity determines the type of treatment. The aim is to prevent progression of the deformity and to recover the flexibility and balance of the body.

  16. Further amputations of the tail in adult Triturus carnifex: contribution to the study on the nature of regenerated spinal cord.

    PubMed

    Margotta, Vito

    2008-01-01

    Adult Urodele Amphibians, if deprived of the tail, are able to fully regenerate it. This occurs owing to a typical epimorphic phenomenon which takes place in various phases. Within this matter, in particular on the reconstruction of the caudal nervous component, literature sources refer to a great quantity of research following only one amputation of the tail. Being aware of these data we programmed to investigate the possible persistence, decrease or disappearance of the medullary regenerative power after repeated amputations of the regenerated tail. With this objective in view, we have performed on adult Triturus carnifex a series of such operations at time spaced out from one another. In previous experiments, the amputations of the tail have been before seven and then nine. In the current experiment, the same specimens have been subjected to further removals of the tail. This study has developed into three cycles going on over a period of more than ten years. Overall, our panorama rising from the integration of present results and those of former observations is in agreement with what occurs in the area which is the centre of the beginnings of medullary regeneration processes and the bibliographic information concerning the pre-blastematic and blastematic phases. In the subsequent morphogenetic and differentiative phases, however, with the recurrence of the re-establishment of the spinal cord, these events proceed more slowly (gap which reduces when the time interval starting from the operation increases) than in the spinal cords which regenerated after only one tail amputation. Furthermore, although the regenerated spinal cords, if compared to normal spinal cord, show some anomalies (regarding medullary length and diameter, distribution of the spinal nerves and ganglia), the regenerated spinal cords (as well-known uncapable to re-form the Mauthner fibres and supplied with the Rohon-Beard sensitive neurons), their nerves and ganglia reacquire the same complex

  17. Global developmental delay, progressive relapsing-remitting parkinsonism, and spinal syrinx in a child with SOX6 mutation.

    PubMed

    Scott, Ori; Pugh, Jeffrey; Kiddoo, Darcie; Sonnenberg, Lyn K; Bamforth, Steven; Goez, Helly R

    2014-11-01

    SOX6, a member of the SOX gene family, plays a key role in the development of several mammalian tissues and organs, including the central nervous system. Specifically, this gene modulates the differentiation and proliferation of interneurons in the medial ganglionic eminence, as well as oligodendrocytes in the spinal cord. We describe the case of a 4-year-old girl with global developmental delay and a spinal cord syrinx who presented with recurrent episodes of parkinsonian symptoms subsequent to febrile illnesses. The symptoms included gait instability, tremor, and dysarthria, with a progressive relapsing-remitting course over the span of 2 years. The patient was later found to have a large deletion-type mutation in the SOX6 gene. This case is the first report in humans implying a role for SOX6 in basal ganglia function, as well as spinal cord development.

  18. Genetic disorders producing compressive radiculopathy.

    PubMed

    Corey, Joseph M

    2006-11-01

    Back pain is a frequent complaint seen in neurological practice. In evaluating back pain, neurologists are asked to evaluate patients for radiculopathy, determine whether they may benefit from surgery, and help guide management. Although disc herniation is the most common etiology of compressive radiculopathy, there are many other causes, including genetic disorders. This article is a discussion of genetic disorders that cause or contribute to radiculopathies. These genetic disorders include neurofibromatosis, Paget's disease of bone, and ankylosing spondylitis. Numerous genetic disorders can also lead to deformities of the spine, including spinal muscular atrophy, Friedreich's ataxia, Charcot-Marie-Tooth disease, familial dysautonomia, idiopathic torsional dystonia, Marfan's syndrome, and Ehlers-Danlos syndrome. However, the extent of radiculopathy caused by spine deformities is essentially absent from the literature. Finally, recent investigation into the heritability of disc degeneration and lumbar disc herniation suggests a significant genetic component in the etiology of lumbar disc disease. PMID:17048153

  19. Genetic disorders producing compressive radiculopathy.

    PubMed

    Corey, Joseph M

    2006-11-01

    Back pain is a frequent complaint seen in neurological practice. In evaluating back pain, neurologists are asked to evaluate patients for radiculopathy, determine whether they may benefit from surgery, and help guide management. Although disc herniation is the most common etiology of compressive radiculopathy, there are many other causes, including genetic disorders. This article is a discussion of genetic disorders that cause or contribute to radiculopathies. These genetic disorders include neurofibromatosis, Paget's disease of bone, and ankylosing spondylitis. Numerous genetic disorders can also lead to deformities of the spine, including spinal muscular atrophy, Friedreich's ataxia, Charcot-Marie-Tooth disease, familial dysautonomia, idiopathic torsional dystonia, Marfan's syndrome, and Ehlers-Danlos syndrome. However, the extent of radiculopathy caused by spine deformities is essentially absent from the literature. Finally, recent investigation into the heritability of disc degeneration and lumbar disc herniation suggests a significant genetic component in the etiology of lumbar disc disease.

  20. Sudden post-traumatic sciatica caused by a thoracic spinal meningioma.

    PubMed

    Mariniello, Giuseppe; Malacario, Francesca; Dones, Flavia; Severino, Rocco; Ugga, Lorenzo; Russo, Camilla; Elefante, Andrea; Maiuri, Francesco

    2016-10-01

    Spinal meningiomas usually present with slowly progressive symptoms of cord and root compression, while a sudden clinical onset is very rare. A 35-year-old previously symptom-free woman presented sudden right sciatica and weakness of her right leg following a fall with impact to her left foot. A neurological examination showed paresis of the right quadriceps, tibial and sural muscles, increased bilateral knee and ankle reflexes and positive Babinski sign. Magnetic resonance imaging (MRI) revealed the presence of a spinal T11 meningioma in the left postero-lateral compartment of the spinal canal; at this level, the spinal cord was displaced to the contralateral side with the conus in the normal position. At surgery, a meningioma with dural attachment of the left postero-lateral dural surface was removed. The intervention resulted in rapid remission of both pain and neurological deficits. Spinal meningiomas may exceptionally present with sudden pain and neurological deficits as result of tumour bleeding or post-traumatic injury of the already compressed nervous structures, both in normal patients and in those with conus displacement or tethered cord. In this case, the traumatic impact of the left foot was transmitted to the spine, resulting in stretching of the already compressed cord and of the contralateral lombosacral roots. This case suggests that low thoracic cord compression should be suspected in patients with post-traumatic radicular leg pain with normal lumbar spine MRI. PMID:27316567

  1. Spinal cord stimulation for radicular pain following retained bullet in the spinal canal.

    PubMed

    Keel, John C; Lau, Mary E; Gulur, Padma

    2013-01-01

    We are reporting on the implantation of a spinal cord stimulator to treat intractable radicular pain following a retained bullet fragment in the spinal canal. Such retained fragments are associated with risks including pain, neurological deficit, infection, toxic effects, and migration. Our patient was a young man with radicular pain and history of a gunshot entering the abdomen. Computed tomography of the spine had revealed a nearly complete bullet in the right paracentral canal at L4, partially extending into the lateral recess. He presented 17 months after his injury with gradually worsening pain and parasthesias radiating from the back to the whole right leg and foot. There was no weakness. As the patient had failed conservative therapy, procedural options were considered. In this case, the potential benefits of epidural steroid injection by any approach might not have outweighed risks of infection, related to foreign body and local steroid, or possible migration due to mechanical forces during injection. As he may well need repeated epidural steroid injections to manage his pain, this increases his risk for infection. A percutaneous trial spinal cord stimulation lead was placed, with epidural entry well away from the bullet. After good results, a permanent system was implanted. There was no evidence of infection or migration, and excellent pain relief was achieved. Bullets and other foreign bodies retained in the spinal canal can cause progressive neurologic symptoms through reactive tissue formation and compression. Spinal cord stimulation can relieve radicular pain while avoiding risks associated with altering the location of the offending foreign body. PMID:23511684

  2. Use of topically applied rt-PA in the evacuation of extensive acute spinal subdural haematoma.

    PubMed

    Little, C P; Patel, N; Nagaria, J; Kumar, R; Nanra, J; Bolger, C M

    2004-07-01

    Spontaneous spinal subdural haematoma is a rare cause of spinal cord compression, usually confined to a few vertebral levels. When the haematoma extends over several spinal segments, surgical decompression is a major undertaking. Recombinant tissue plasminogen activator (rt-PA) has previously been used in a number of surgical procedures, but not in the setting of acute spinal subdural haematoma. A minimally invasive technique of decompression, using topical rt-PA, is presented in two patients with extensive spinal intradural haematoma. Two patients receiving long-term anticoagulation therapy presented with acute-onset back pain progressing to paraparesis. Magnetic resonance imaging of the spine demonstrated spinal subdural haematomas extending over 15 vertebral levels in one patient and 12 in the other. An angiography catheter was introduced into the subdural space through a limited laminectomy. Thrombolysis and evacuation of haematoma was then achieved by intermittent irrigation of the subdural space with rt-PA, followed by saline lavage. Postoperative imaging demonstrated satisfactory decompression in both patients. There was significant improvement of neurological function in one patient. Topical application of rt-PA for spinal subdural haematoma allows evacuation of the haematoma through a limited surgical exposure. Decompression of the subdural space by this minimally invasive technique may be advantageous over extensive surgery by minimising surgical exposure, reducing postoperative pain and risk of neuronal injury. This technique may be useful in patients presenting with compression extending over several vertebral levels or poor surgical candidates. PMID:12920622

  3. Rat hair follicle stem cells differentiate and promote recovery following spinal cord injury.

    PubMed

    Najafzadeh, Nowruz; Nobakht, Maliheh; Pourheydar, Bagher; Golmohammadi, Mohammad Ghasem

    2013-12-25

    Emerging studies of treating spinal cord injury (SCI) with adult stem cells led us to evaluate the effects of transplantation of hair follicle stem cells in rats with a compression-induced spinal cord lesion. Here, we proposed a hypothesis that rat hair follicle stem cell transplantation can promote the recovery of injured spinal cord. Compression-induced spinal cord injury was induced in Wistar rats in this study. The bulge area of the rat vibrissa follicles was isolated, cultivated and characterized with nestin as a stem cell marker. 5-Bromo-2'-deoxyuridine (BrdU) labeled bulge stem cells were transplanted into rats with spinal cord injury. Immunohistochemical staining results showed that some of the grafted cells could survive and differentiate into oligodendrocytes (receptor-interacting protein positive cells) and neuronal-like cells (βIII-tubulin positive cells) at 3 weeks after transplantation. In addition, recovery of hind limb locomotor function in spinal cord injury rats at 8 weeks following cell transplantation was assessed using the Basso, Beattie and Bresnahan (BBB) locomotor rating scale. The results demonstrate that the grafted hair follicle stem cells can survive for a long time period in vivo and differentiate into neuronal- and glial-like cells. These results suggest that hair follicle stem cells can promote the recovery of spinal cord injury.

  4. Rat hair follicle stem cells differentiate and promote recovery following spinal cord injury

    PubMed Central

    Najafzadeh, Nowruz; Nobakht, Maliheh; Pourheydar, Bagher; Golmohammadi, Mohammad Ghasem

    2013-01-01

    Emerging studies of treating spinal cord injury (SCI) with adult stem cells led us to evaluate the effects of transplantation of hair follicle stem cells in rats with a compression-induced spinal cord lesion. Here, we proposed a hypothesis that rat hair follicle stem cell transplantation can promote the recovery of injured spinal cord. Compression-induced spinal cord injury was induced in Wistar rats in this study. The bulge area of the rat vibrissa follicles was isolated, cultivated and characterized with nestin as a stem cell marker. 5-Bromo-2′-deoxyuridine (BrdU) labeled bulge stem cells were transplanted into rats with spinal cord injury. Immunohistochemical staining results showed that some of the grafted cells could survive and differentiate into oligodendrocytes (receptor-interacting protein positive cells) and neuronal-like cells (βIII-tubulin positive cells) at 3 weeks after transplantation. In addition, recovery of hind limb locomotor function in spinal cord injury rats at 8 weeks following cell transplantation was assessed using the Basso, Beattie and Bresnahan (BBB) locomotor rating scale. The results demonstrate that the grafted hair follicle stem cells can survive for a long time period in vivo and differentiate into neuronal- and glial-like cells. These results suggest that hair follicle stem cells can promote the recovery of spinal cord injury. PMID:25206658

  5. Neurosurgical approaches to spinal infections.

    PubMed

    Hazer, Derya Burcu; Ayhan, Selim; Palaoglu, Selcuk

    2015-05-01

    Spinal infection is rare. Clinical suspicion is important in patients with nonmechanical neck and/or back pain to make the proper diagnosis in early disease. Before planning surgery, a thorough evaluation of the spinal stability, alignment, and deformity is necessary. Timing of surgery, side of approach, appropriate surgical technique, and spinal instruments used are crucial. Biomechanical preservation of the spinal column during and after the infection is a significant issue. Postoperative spine infection is another entity of which spinal surgeons should be aware of. Proper septic conditions with meticulous planning of surgery are essential for successful spine surgery and better outcome. PMID:25952179

  6. Complete sciatic nerve transection induces increase of neuropeptide Y-like immunoreactivity in primary sensory neurons and spinal cord of frogs.

    PubMed

    Guedes, Renata P; Marchi, Melina I; Achaval, Matilde; Partata, Wania A

    2004-12-01

    Neuropeptide Y (NPY) was immunohistochemically investigated in the frog spinal cord and dorsal root ganglia after axotomy. In normal ganglia, moderate NPY-like immunoreactivity (NPY-IR) prevailed in large and medium cells. In the spinal cord, the NPY-IR was densest in the dorsal part of the lateral funiculus. Other fibers and neurons NPY-IR were observed in the dorsal and ventral terminal fields and mediolateral band. NPY-IR fibers were also found in the ventral horn and in the ventral and lateral funiculi. The sciatic nerve transection increased the NPY-IR in large and medium neurons of the ipsilateral and contralateral dorsal root ganglia at 3 and 7 days, but no clear change was found at 15 days. In the spinal cord, there was a bilateral increase in the NPY-IR of the dorsal part of the lateral funiculus. In the ipsilateral side, the NPY-IR was increased at 3 and 7 days but was decreased at 15 days. In the contralateral side, a significant reduction at 15 days occurred. These findings seem to favor the role of NPY in the modulation of pain-related information in frogs, suggesting that this role of NPY may have appeared early in vertebrate evolution.

  7. Spinal Cord Injury

    MedlinePlus

    ... How much do you know about taking good care of yourself? Links to more information girlshealth glossary girlshealth.gov home http://www.girlshealth.gov/ Home Illness & disability Types of ... Spinal cord injury Read advice from Dr. Jeffrey Rabin , a pediatric rehabilitation specialist at the Children’s National Medical Center. ...

  8. Maladaptive spinal plasticity opposes spinal learning and recovery in spinal cord injury

    PubMed Central

    Ferguson, Adam R.; Huie, J. Russell; Crown, Eric D.; Baumbauer, Kyle M.; Hook, Michelle A.; Garraway, Sandra M.; Lee, Kuan H.; Hoy, Kevin C.; Grau, James W.

    2012-01-01

    Synaptic plasticity within the spinal cord has great potential to facilitate recovery of function after spinal cord injury (SCI). Spinal plasticity can be induced in an activity-dependent manner even without input from the brain after complete SCI. A mechanistic basis for these effects is provided by research demonstrating that spinal synapses have many of the same plasticity mechanisms that are known to underlie learning and memory in the brain. In addition, the lumbar spinal cord can sustain several forms of learning and memory, including limb-position training. However, not all spinal plasticity promotes recovery of function. Central sensitization of nociceptive (pain) pathways in the spinal cord may emerge in response to various noxious inputs, demonstrating that plasticity within the spinal cord may contribute to maladaptive pain states. In this review we discuss interactions between adaptive and maladaptive forms of activity-dependent plasticity in the spinal cord below the level of SCI. The literature demonstrates that activity-dependent plasticity within the spinal cord must be carefully tuned to promote adaptive spinal training. Prior work from our group has shown that stimulation that is delivered in a limb position-dependent manner or on a fixed interval can induce adaptive plasticity that promotes future spinal cord learning and reduces nociceptive hyper-reactivity. On the other hand, stimulation that is delivered in an unsynchronized fashion, such as randomized electrical stimulation or peripheral skin injuries, can generate maladaptive spinal plasticity that undermines future spinal cord learning, reduces recovery of locomotor function, and promotes nociceptive hyper-reactivity after SCI. We review these basic phenomena, how these findings relate to the broader spinal plasticity literature, discuss the cellular and molecular mechanisms, and finally discuss implications of these and other findings for improved rehabilitative therapies after SCI. PMID

  9. Fibromyalgia and arachnoiditis presented as an acute spinal disorder

    PubMed Central

    Idris, Zamzuri; Ghazali, Faizul H.; Abdullah, Jafri M.

    2014-01-01

    Background: Adhesive arachnoiditis is a chronic, insidious condition that causes debilitating intractable pain and a range of other neurological problems. Its pathophysiology is not well understood. This manuscript discusses its presentations, which can mimic an acute spinal disorder, its hypothetical pathophysiology, treatment, and its relationship with fibromyalgia. Case Description: The authors present a case of a 47-year-old female who presented with clinical features mimicking an acute spinal disorder but later found to have an adhesive arachnoiditis. She was admitted following a trauma with complaints of back pain and paraplegia. On examination, there was marked tenderness over thoracolumbar spine with lower limbs upper motor neuron weakness. An urgent magnetic resonance imaging (MRI) of the spine revealed multiple lesions at her thoracic and lumbar spinal canals, which did not compress the spinal cord. Therefore, conservative management was initiated. Despite on regular therapies, her back and body pain worsened and little improvement in her limbs power was noted. Laminectomy was pursued and found to have spinal cord arachnoiditis. Subsequently, she was operated by other team members for multiple pelvic masses, which later proved to be benign. After gathering all the clinical information obtained at surgery and after taking detailed history inclusive of cognitive functions, diagnosis of an adhesive arachnoiditis syndrome was made. Currently, she is managed by neuropsychologist and pain specialist. Conclusion: This case report highlights the importance of knowing an adhesive arachnoiditis syndrome – a rarely discussed pathology by the neurosurgeon, which discloses a significant relationship between immune and nervous systems. PMID:25396073

  10. Basal ganglia outputs map instantaneous position coordinates during behavior.

    PubMed

    Barter, Joseph W; Li, Suellen; Sukharnikova, Tatyana; Rossi, Mark A; Bartholomew, Ryan A; Yin, Henry H

    2015-02-11

    The basal ganglia (BG) are implicated in many movement disorders, yet how they contribute to movement remains unclear. Using wireless in vivo recording, we measured BG output from the substantia nigra pars reticulata (SNr) in mice while monitoring their movements with video tracking. The firing rate of most nigral neurons reflected Cartesian coordinates (either x- or y-coordinates) of the animal's head position during movement. The firing rates of SNr neurons are either positively or negatively correlated with the coordinates. Using an egocentric reference frame, four types of neurons can be classified: each type increases firing during movement in a particular direction (left, right, up, down), and decreases firing during movement in the opposite direction. Given the high correlation between the firing rate and the x and y components of the position vector, the movement trajectory can be reconstructed from neural activity. Our results therefore demonstrate a quantitative and continuous relationship between BG output and behavior. Thus, a steady BG output signal from the SNr (i.e., constant firing rate) is associated with the lack of overt movement, when a stable posture is maintained by structures downstream of the BG. Any change in SNr firing rate is associated with a change in position (i.e., movement). We hypothesize that the SNr output quantitatively determines the direction, velocity, and amplitude of voluntary movements. By changing the reference signals to downstream position control systems, the BG can produce transitions in body configurations and initiate actions.

  11. Dynamic Clamp Analysis of Synaptic Integration in Sympathetic Ganglia

    PubMed Central

    Horn, J. P.; Kullmann, P. H. M.

    2008-01-01

    Advances in modern neuroscience require the identification of principles that connect different levels of experimental analysis, from molecular mechanisms to explanations of cellular functions, then to circuits, and, ultimately, to systems and behavior. Here, we examine how synaptic organization of the sympathetic ganglia may enable them to function as use-dependent amplifiers of preganglionic activity and how the gain of this amplification may be modulated by metabotropic signaling mechanisms. The approach combines a general computational model of ganglionic integration together with experimental tests of the model using the dynamic clamp method. In these experiments, we recorded intracellularly from dissociated bullfrog sympathetic neurons and then mimicked physiological synapses with virtual computer-generated synapses. It thus became possible to analyze the synaptic gain by recording cellular responses to complex patterns of synaptic activity that normally arise in vivo from convergent nicotinic and muscarinic synapses. The results of these studies are significant because they illustrate how gain generated through ganglionic integration may contribute to the feedback control of important autonomic behaviors, in particular to the control of the blood pressure. We dedicate this paper to the memory of Professor Vladimir Skok, whose rich legacy in synaptic physiology helped establish the modern paradigm for connecting multiple levels of analysis in studies of the nervous system. PMID:19756262

  12. Origins of basal ganglia output signals in singing juvenile birds

    PubMed Central

    Pidoux, Morgane; Bollu, Tejapratap; Riccelli, Tori

    2014-01-01

    Across species, complex circuits inside the basal ganglia (BG) converge on pallidal output neurons that exhibit movement-locked firing patterns. Yet the origins of these firing patterns remain poorly understood. In songbirds during vocal babbling, BG output neurons homologous to those found in the primate internal pallidal segment are uniformly activated in the tens of milliseconds prior to syllable onsets. To test the origins of this remarkably homogenous BG output signal, we recorded from diverse upstream BG cell types during babbling. Prior to syllable onsets, at the same time that internal pallidal segment-like neurons were activated, putative medium spiny neurons, fast spiking and tonically active interneurons also exhibited transient rate increases. In contrast, pallidal neurons homologous to those found in primate external pallidal segment exhibited transient rate decreases. To test origins of these signals, we performed recordings following lesion of corticostriatal inputs from premotor nucleus HVC. HVC lesions largely abolished these syllable-locked signals. Altogether, these findings indicate a striking homogeneity of syllable timing signals in the songbird BG during babbling and are consistent with a role for the indirect and hyperdirect pathways in transforming cortical inputs into BG outputs during an exploratory behavior. PMID:25392171

  13. Basal ganglia outputs map instantaneous position coordinates during behavior.

    PubMed

    Barter, Joseph W; Li, Suellen; Sukharnikova, Tatyana; Rossi, Mark A; Bartholomew, Ryan A; Yin, Henry H

    2015-02-11

    The basal ganglia (BG) are implicated in many movement disorders, yet how they contribute to movement remains unclear. Using wireless in vivo recording, we measured BG output from the substantia nigra pars reticulata (SNr) in mice while monitoring their movements with video tracking. The firing rate of most nigral neurons reflected Cartesian coordinates (either x- or y-coordinates) of the animal's head position during movement. The firing rates of SNr neurons are either positively or negatively correlated with the coordinates. Using an egocentric reference frame, four types of neurons can be classified: each type increases firing during movement in a particular direction (left, right, up, down), and decreases firing during movement in the opposite direction. Given the high correlation between the firing rate and the x and y components of the position vector, the movement trajectory can be reconstructed from neural activity. Our results therefore demonstrate a quantitative and continuous relationship between BG output and behavior. Thus, a steady BG output signal from the SNr (i.e., constant firing rate) is associated with the lack of overt movement, when a stable posture is maintained by structures downstream of the BG. Any change in SNr firing rate is associated with a change in position (i.e., movement). We hypothesize that the SNr output quantitatively determines the direction, velocity, and amplitude of voluntary movements. By changing the reference signals to downstream position control systems, the BG can produce transitions in body configurations and initiate actions. PMID:25673860

  14. Unilateral germinomas involving the basal ganglia and thalamus.

    PubMed

    Kobayashi, T; Kageyama, N; Kida, Y; Yoshida, J; Shibuya, N; Okamura, K

    1981-07-01

    Clinical characteristics of six cases of germinoma involving a unilateral basal ganglion and thalamus are summarized. The incidence was estimated as 10% of all intracranial germinomas. The average age at the onset was 10.5 years. The sex incidence showed a male dominance. The clinical course was slowly progressive, and the average duration between onset and diagnosis was 2 years 5 months. Common symptoms and signs were hemiparesis in all cases, fever of unknown origin and eye symptoms in most, mental deterioration and psychiatric signs in three, and convulsions, pubertas praecox, and diabetes insipidus in two. Signs of increased intracranial pressure were found in only two cases in the later state of the disease. Early diagnosis is difficult because of nonspecific symptomatology and slow progression. Carotid angiography and pneumoencephalography showed abnormal findings compatible with basal ganglia and thalamic tumors, but not specific to germinoma. Ipsilateral cortical atrophy and ventricular dilatation might be significant findings. Radioisotope scanning was useful. Computerized tomography scans were the best method of detecting the location and nature of this tumor, and repeat scans showed response to radiation therapy. PMID:7241216

  15. Modeling basal ganglia for understanding Parkinsonian reaching movements.

    PubMed

    Magdoom, K N; Subramanian, D; Chakravarthy, V S; Ravindran, B; Amari, Shun-Ichi; Meenakshisundaram, N

    2011-02-01

    We present a computational model that highlights the role of basal ganglia (BG) in generating simple reaching movements. The model is cast within the reinforcement learning (RL) framework with correspondence between RL components and neuroanatomy as follows: dopamine signal of substantia nigra pars compacta as the temporal difference error, striatum as the substrate for the critic, and the motor cortex as the actor. A key feature of this neurobiological interpretation is our hypothesis that the indirect pathway is the explorer. Chaotic activity, originating from the indirect pathway part of the model, drives the wandering, exploratory movements of the arm. Thus, the direct pathway subserves exploitation, while the indirect pathway subserves exploration. The motor cortex becomes more and more independent of the corrective influence of BG as training progresses. Reaching trajectories show diminishing variability with training. Reaching movements associated with Parkinson's disease (PD) are simulated by reducing dopamine and degrading the complexity of indirect pathway dynamics by switching it from chaotic to periodic behavior. Under the simulated PD conditions, the arm exhibits PD motor symptoms like tremor, bradykinesia and undershooting. The model echoes the notion that PD is a dynamical disease. PMID:21105828

  16. Saccade learning with concurrent cortical and subcortical basal ganglia loops

    PubMed Central

    N'Guyen, Steve; Thurat, Charles; Girard, Benoît

    2014-01-01

    The Basal Ganglia (BG) is a central structure involved in multiple cortical and subcortical loops. Some of these loops are believed to be responsible for saccade target selection. We study here how the very specific structural relationships of these saccadic loops can affect the ability of learning spatial and feature-based tasks. We propose a model of saccade generation with reinforcement learning capabilities based on our previous BG and superior colliculus models. It is structured around the interactions of two parallel cortico-basal loops and one tecto-basal loop. The two cortical loops separately deal with spatial and non-spatial information to select targets in a concurrent way. The subcortical loop is used to make the final target selection leading to the production of the saccade. These different loops may work in concert or disturb each other regarding reward maximization. Interactions between these loops and their learning capabilities are tested on different saccade tasks. The results show the ability of this model to correctly learn basic target selection based on different criteria (spatial or not). Moreover the model reproduces and explains training dependent express saccades toward targets based on a spatial criterion. Finally, the model predicts that in absence of prefrontal control, the spatial loop should dominate. PMID:24795615

  17. Neuropsychological impairment after hemorrhagic stroke in basal ganglia.

    PubMed

    Su, Chwen-Yng; Chen, Hui-Mei; Kwan, Aij-Lie; Lin, Yueh-Hsieh; Guo, Nai-Wen

    2007-05-01

    We aimed to determine the severity and pattern of cognitive dysfunction in patients with basal ganglia (BG) hemorrhage within the first 6 months after stroke and to identify its clinical correlates. The study samples consisted of 30 patients with BG hemorrhage and 37 healthy controls. A comprehensive neuropsychological battery including tests of attention, memory, language, visuospatial function, and executive function was administered to all participants. Relative to healthy controls, BG patients performed significantly worse across different cognitive domains after controlling for age, sex, and education. 96.7% of patients displayed defective performance on at least three neuropsychological tests. Discriminant function analysis showed that visuospatial function and memory were the best predictors of group membership (patient/control), with an overall classification rate of 95.5%. Only side of stroke and admission Glasgow Coma Scale (GCS) score correlated significantly with some of the cognitive domains. The widespread pattern of cognitive deficits seen in BG patients provides evidence for the substantial involvement of the BG in many neuronal pathways connecting cortical and subcortical brain areas responsible for various cognitive functions. PMID:17336034

  18. Bilateral Traumatic Basal Ganglia Hemorrhage Associated With Epidural Hematoma: Case Report and Literature Review

    PubMed Central

    Calderon-Miranda, Willem Guillermo; Alvis-Miranda, Hernando Raphael; Alcala-Cerra, Gabriel; M. Rubiano, Andres; Moscote-Salazar, Luis Rafael

    2014-01-01

    Traumatic basal ganglia hematoma is a rare condition defined as presence of hemorrhagic lesions in basal ganglia or adjacent structures suchas internal capsule, putamen and thalamus. Bilateral basal ganglia hematoma are among the devastating and rare condition. We herein report a 28-year old man, a victim of car-car accident who was brought to our surgical emergency room by immediate loss of consciousness and was diagnosed to have hyperdense lesion in the basal ganglia bilaterally, with the presence of right parietal epidural hematoma. Craniotomy and epidural hematoma drainage were considered, associated to conservative management of gangliobasal traumatic contusions. On day 7 the patient had sudden neurologic deterioration, cardiac arrest unresponsive to resuscitation. Management of these lesions is similar to any other injury in moderate to severe traumatic injury. The use of intracranial pressure monitoring must be guaranteed. PMID:27162882

  19. The role of basal ganglia in language production: evidence from Parkinson's disease.

    PubMed

    Macoir, Joël; Fossard, Marion; Mérette, Chantal; Langlois, Mélanie; Chantal, Sophie; Auclair-Ouellet, Noémie

    2013-01-01

    According to the dominant view in the literature, basal ganglia do not play a direct role in language but are involved in cognitive control required by linguistic and non-linguistic processing. In Parkinson's disease, basal ganglia impairment leads to motor symptoms and language deficits; those affecting the production of verbs have been frequently explored. According to a controversial theory, basal ganglia play a specific role in the conjugation of regular verbs as compared to irregular verbs. We report the results of 15 patients with Parkinson's disease in experimental conjugation tasks. They performed below healthy controls but their performance did not differ for regular and irregular verbs. These results confirm that basal ganglia are involved in language processing but do not play a specific role in verb production. PMID:23948988

  20. The role of basal ganglia in language production: evidence from Parkinson's disease.

    PubMed

    Macoir, Joël; Fossard, Marion; Mérette, Chantal; Langlois, Mélanie; Chantal, Sophie; Auclair-Ouellet, Noémie

    2013-01-01

    According to the dominant view in the literature, basal ganglia do not play a direct role in language but are involved in cognitive control required by linguistic and non-linguistic processing. In Parkinson's disease, basal ganglia impairment leads to motor symptoms and language deficits; those affecting the production of verbs have been frequently explored. According to a controversial theory, basal ganglia play a specific role in the conjugation of regular verbs as compared to irregular verbs. We report the results of 15 patients with Parkinson's disease in experimental conjugation tasks. They performed below healthy controls but their performance did not differ for regular and irregular verbs. These results confirm that basal ganglia are involved in language processing but do not play a specific role in verb production.

  1. Gliocyte and Synapse Analyses in Cerebral Ganglia of the Chinese Mitten Crab, Eriocheir Sinensis: Ultrastructural Study

    PubMed Central

    Zhang, H.; Yu, P.; Zhong, S.; Ge, T.; Peng, S.; Zhou, Z.; Guo, X.

    2016-01-01

    The Chinese mitten crab Eriocheir sinensis is an economically important aquatic species in China. Many studies on gene structure, breeding, and diseases of the crab have been reported. However, knowledge about the organization of the nerve system of the crab remains largely unknown. To study the ultrastructure of the cerebral ganglia of E. sinensis and to compare the histological findings regarding the nerve systems of crustaceans, the cerebral ganglia were observed by transmission electron microscopy. The results showed that four types of gliocytes, including type I, II, III, and IV gliocytes were located in the cerebral ganglia. In addition, three types of synapses were present in the cerebral ganglia, including unidirectional synapses, bidirectional synapses, and combined type synapses. PMID:27734995

  2. Basal ganglia dysfunction in idiopathic REM sleep behaviour disorder parallels that in early Parkinson's disease.

    PubMed

    Rolinski, Michal; Griffanti, Ludovica; Piccini, Paola; Roussakis, Andreas A; Szewczyk-Krolikowski, Konrad; Menke, Ricarda A; Quinnell, Timothy; Zaiwalla, Zenobia; Klein, Johannes C; Mackay, Clare E; Hu, Michele T M

    2016-08-01

    SEE POSTUMA DOI101093/AWW131 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Resting state functional magnetic resonance imaging dysfunction within the basal ganglia network is a feature of early Parkinson's disease and may be a diagnostic biomarker of basal ganglia dysfunction. Currently, it is unclear whether these changes are present in so-called idiopathic rapid eye movement sleep behaviour disorder, a condition associated with a high rate of future conversion to Parkinson's disease. In this study, we explore the utility of resting state functional magnetic resonance imaging to detect basal ganglia network dysfunction in rapid eye movement sleep behaviour disorder. We compare these data to a set of healthy control subjects, and to a set of patients with established early Parkinson's disease. Furthermore, we explore the relationship between resting state functional magnetic resonance imaging basal ganglia network dysfunction and loss of dopaminergic neurons assessed with dopamine transporter single photon emission computerized tomography, and perform morphometric analyses to assess grey matter loss. Twenty-six patients with polysomnographically-established rapid eye movement sleep behaviour disorder, 48 patients with Parkinson's disease and 23 healthy control subjects were included in this study. Resting state networks were isolated from task-free functional magnetic resonance imaging data using dual regression with a template derived from a separate cohort of 80 elderly healthy control participants. Resting state functional magnetic resonance imaging parameter estimates were extracted from the study subjects in the basal ganglia network. In addition, eight patients with rapid eye movement sleep behaviour disorder, 10 with Parkinson's disease and 10 control subjects received (123)I-ioflupane single photon emission computerized tomography. We tested for reduction of basal ganglia network connectivity, and for loss of tracer uptake in rapid eye movement sleep

  3. Actor-critic models of the basal ganglia: new anatomical and computational perspectives.

    PubMed

    Joel, Daphna; Niv, Yael; Ruppin, Eytan

    2002-01-01

    A large number of computational models of information processing in the basal ganglia have been developed in recent years. Prominent in these are actor-critic models of basal ganglia functioning, which build on the strong resemblance between dopamine neuron activity and the temporal difference prediction error signal in the critic, and between dopamine-dependent long-term synaptic plasticity in the striatum and learning guided by a prediction error signal in the actor. We selectively review several actor-critic models of the basal ganglia with an emphasis on two important aspects: the way in which models of the critic reproduce the temporal dynamics of dopamine firing, and the extent to which models of the actor take into account known basal ganglia anatomy and physiology. To complement the efforts to relate basal ganglia mechanisms to reinforcement learning (RL), we introduce an alternative approach to modeling a critic network, which uses Evolutionary Computation techniques to 'evolve' an optimal RL mechanism, and relate the evolved mechanism to the basic model of the critic. We conclude our discussion of models of the critic by a critical discussion of the anatomical plausibility of implementations of a critic in basal ganglia circuitry, and conclude that such implementations build on assumptions that are inconsistent with the known anatomy of the basal ganglia. We return to the actor component of the actor-critic model, which is usually modeled at the striatal level with very little detail. We describe an alternative model of the basal ganglia which takes into account several important, and previously neglected, anatomical and physiological characteristics of basal ganglia-thalamocortical connectivity and suggests that the basal ganglia performs reinforcement-biased dimensionality reduction of cortical inputs. We further suggest that since such selective encoding may bias the representation at the level of the frontal cortex towards the selection of rewarded

  4. Basal ganglia dysfunction in idiopathic REM sleep behaviour disorder parallels that in early Parkinson's disease.

    PubMed

    Rolinski, Michal; Griffanti, Ludovica; Piccini, Paola; Roussakis, Andreas A; Szewczyk-Krolikowski, Konrad; Menke, Ricarda A; Quinnell, Timothy; Zaiwalla, Zenobia; Klein, Johannes C; Mackay, Clare E; Hu, Michele T M

    2016-08-01

    SEE POSTUMA DOI101093/AWW131 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Resting state functional magnetic resonance imaging dysfunction within the basal ganglia network is a feature of early Parkinson's disease and may be a diagnostic biomarker of basal ganglia dysfunction. Currently, it is unclear whether these changes are present in so-called idiopathic rapid eye movement sleep behaviour disorder, a condition associated with a high rate of future conversion to Parkinson's disease. In this study, we explore the utility of resting state functional magnetic resonance imaging to detect basal ganglia network dysfunction in rapid eye movement sleep behaviour disorder. We compare these data to a set of healthy control subjects, and to a set of patients with established early Parkinson's disease. Furthermore, we explore the relationship between resting state functional magnetic resonance imaging basal ganglia network dysfunction and loss of dopaminergic neurons assessed with dopamine transporter single photon emission computerized tomography, and perform morphometric analyses to assess grey matter loss. Twenty-six patients with polysomnographically-established rapid eye movement sleep behaviour disorder, 48 patients with Parkinson's disease and 23 healthy control subjects were included in this study. Resting state networks were isolated from task-free functional magnetic resonance imaging data using dual regression with a template derived from a separate cohort of 80 elderly healthy control participants. Resting state functional magnetic resonance imaging parameter estimates were extracted from the study subjects in the basal ganglia network. In addition, eight patients with rapid eye movement sleep behaviour disorder, 10 with Parkinson's disease and 10 control subjects received (123)I-ioflupane single photon emission computerized tomography. We tested for reduction of basal ganglia network connectivity, and for loss of tracer uptake in rapid eye movement sleep

  5. Analysis of T Cell Responses during Active Varicella-Zoster Virus Reactivation in Human Ganglia

    PubMed Central

    Steain, Megan; Sutherland, Jeremy P.; Rodriguez, Michael; Cunningham, Anthony L.; Slobedman, Barry

    2014-01-01

    ABSTRACT Varicella-zoster virus (VZV) is responsible for both varicella (chickenpox) and herpes zoster (shingles). During varicella, the virus establishes latency within the sensory ganglia and can reactivate to cause herpes zoster, but the immune responses that occur in ganglia during herpes zoster have not previously been defined. We examined ganglia obtained from individuals who, at the time of death, had active herpes zoster. Ganglia innervating the site of the cutaneous herpes zoster rash showed evidence of necrosis, secondary to vasculitis, or localized hemorrhage. Despite this, there was limited evidence of VZV antigen expression, although a large inflammatory infiltrate was observed. Characterization of the infiltrating T cells showed a large number of infiltrating CD4+ T cells and cytolytic CD8+ T cells. Many of the infiltrating T cells were closely associated with neurons within the reactivated ganglia, yet there was little evidence of T cell-induced neuronal apoptosis. Notably, an upregulation in the expression of major histocompatibility complex class I (MHC-I) and MHC-II molecules was observed on satellite glial cells, implying these cells play an active role in directing the immune response during herpes zoster. This is the first detailed characterization of the interaction between T cells and neuronal cells within ganglia obtained from patients suffering herpes zoster at the time of death and provides evidence that CD4+ and cytolytic CD8+ T cell responses play an important role in controlling VZV replication in ganglia during active herpes zoster. IMPORTANCE VZV is responsible for both varicella (chickenpox) and herpes zoster (shingles). During varicella, the virus establishes a life-long dormant infection within the sensory ganglia and can reawaken to cause herpes zoster, but the immune responses that occur in ganglia during herpes zoster have not previously been defined. We examined ganglia obtained from individuals who, at the time of death, had

  6. The evolutionary origin of the vertebrate basal ganglia and its role in action selection

    PubMed Central

    Grillner, Sten; Robertson, Brita; Stephenson-Jones, Marcus

    2013-01-01

    The group of nuclei within the basal ganglia of the forebrain is central to the control of movement. We present data showing that the structure and function of the basal ganglia have been conserved throughout vertebrate evolution over some 560 million years. The interaction between the different nuclei within the basal ganglia is conserved as well as the cellular and synaptic properties and transmitters. We consider the role of the conserved basal ganglia circuitry for basic patterns of motor behaviour controlled via brainstem circuits. The output of the basal ganglia consists of tonically active GABAergic neurones, which target brainstem motor centres responsible for different patterns of behaviour, such as eye and locomotor movements, posture, and feeding. A prerequisite for activating or releasing a motor programme is that this GABAergic inhibition is temporarily reduced. This can be achieved through activation of GABAergic projection neurons from striatum, the input level of the basal ganglia, given an appropriate synaptic drive from cortex, thalamus and the dopamine system. The tonic inhibition of the motor centres at rest most likely serves to prevent the different motor programmes from becoming active when not intended. Striatal projection neurones are subdivided into one group with dopamine 1 receptors that provides increased excitability of the direct pathway that can initiate movements, while inhibitory dopamine 2 receptors are expressed on neurones that instead inhibit movements and are part of the ‘indirect loop’ in mammals as well as lamprey. We review the evidence showing that all basic features of the basal ganglia have been conserved throughout vertebrate phylogeny, and discuss these findings in relation to the role of the basal ganglia in selection of behaviour. PMID:23318875

  7. Dopaminergic Control of the Exploration-Exploitation Trade-Off via the Basal Ganglia.

    PubMed

    Humphries, Mark D; Khamassi, Mehdi; Gurney, Kevin

    2012-01-01

    We continuously face the dilemma of choosing between actions that gather new information or actions that exploit existing knowledge. This "exploration-exploitation" trade-off depends on the environment: stability favors exploiting knowledge to maximize gains; volatility favors exploring new options and discovering new outcomes. Here we set out to reconcile recent evidence for dopamine's involvement in the exploration-exploitation trade-off with the existing evidence for basal ganglia control of action selection, by testing the hypothesis that tonic dopamine in the striatum, the basal ganglia's input nucleus, sets the current exploration-exploitation trade-off. We first advance the idea of interpreting the basal ganglia output as a probability distribution function for action selection. Using computational models of the full basal ganglia circuit, we showed that, under this interpretation, the actions of dopamine within the striatum change the basal ganglia's output to favor the level of exploration or exploitation encoded in the probability distribution. We also found that our models predict striatal dopamine controls the exploration-exploitation trade-off if we instead read-out the probability distribution from the target nuclei of the basal ganglia, where their inhibitory input shapes the cortical input to these nuclei. Finally, by integrating the basal ganglia within a reinforcement learning model, we showed how dopamine's effect on the exploration-exploitation trade-off could be measurable in a forced two-choice task. These simulations also showed how tonic dopamine can appear to affect learning while only directly altering the trade-off. Thus, our models support the hypothesis that changes in tonic dopamine within the striatum can alter the exploration-exploitation trade-off by modulating the output of the basal ganglia.

  8. Basal ganglia intensity indices and diffusion weighted imaging in manganese-exposed welders

    PubMed Central

    Criswell, Susan R; Perlmutter, Joel S; Huang, John L; Golchin, Nima; Flores, Hubert P; Hobson, Angela; Aschner, Michael; Erikson, Keith M; Checkoway, Harvey; Racette, Brad A

    2013-01-01

    Objectives Manganese exposure leads to diffuse cerebral metal deposition with the highest concentration in the globus pallidus associated with increased T1-weighted MRI signal. T1 signal intensity in extra-pallidal basal ganglia (caudate and putamen) has not been studied in occupationally exposed workers. Diffusion weighted imaging is a non-invasive measure of neuronal damage and may provide a quantification of neurotoxicity associated with welding and manganese exposure. This study investigated extra-pallidal T1 basal ganglia signal intensity as a marker of manganese exposure and basal ganglia diffusion weighted imaging abnormalities as a potential marker of neurotoxicity. Methods A 3T MR case:control imaging study was performed on 18 welders and 18 age- and gender-matched controls. Basal ganglia regions of interest were identified for each subject. T1-weighted intensity indices and apparent diffusion coefficients were generated for each region. Results All regional indices were higher in welders than controls (p≤0.05). Combined basal ganglia (ρ=0.610), caudate (ρ=0.645), anterior (ρ=0.595) and posterior putamen (ρ=0.511) indices were more correlated with exposure than pallidal (ρ=0.484) index. Welder apparent diffusion coefficient values were lower than controls for globus pallidus (p=0.03) and anterior putamen (p=0.004). Conclusions Welders demonstrated elevated T1 indices throughout the basal ganglia. Combined basal ganglia, caudate and putamen indices were more correlated with exposure than pallidal index suggesting more inclusive basal ganglia sampling results in better exposure markers. Elevated indices were associated with diffusion weighted abnormalities in the pallidum and anterior putamen suggesting neurotoxicity in these regions. PMID:22447645

  9. Providing Explicit Information Disrupts Implicit Motor Learning After Basal Ganglia Stroke

    PubMed Central

    Boyd, Lara A.; Winstein, Carolee J.

    2004-01-01

    Despite their purported neuroanatomic and functional isolation, empirical evidence suggests that sometimes conscious explicit processes can influence implicit motor skill learning. Our goal was to determine if the provision of explicit information affected implicit motor-sequence learning after damage to the basal ganglia. Individuals with stroke affecting the basal ganglia (BG) and healthy controls (HC) practiced a continuous implicit motor-sequencing task; half were provided with explicit information (EI) and half were not (No-EI). The focus of brain damage for both BG groups was in the putamen. All of the EI participants were at least explicitly aware of the repeating sequence. Across three days of practice, explicit information had a differential effect on the groups. Explicit information disrupted acquisition performance in participants with basal ganglia stroke but not healthy controls. By retention (day 4), a dissociation was apparent—explicit information hindered implicit learning in participants with basal ganglia lesions but aided healthy controls. It appears that after basal ganglia stroke explicit information is less helpful in the development of the motor plan than is discovering a motor solution using the implicit system alone. This may be due to the increased demand placed on working memory by explicit information. Thus, basal ganglia integrity may be a crucial factor in determining the efficacy of explicit information for implicit motor-sequence learning. PMID:15286181

  10. Deep Brain Stimulation for Movement Disorders of Basal Ganglia Origin: Restoring Function or Functionality?

    PubMed

    Wichmann, Thomas; DeLong, Mahlon R

    2016-04-01

    Deep brain stimulation (DBS) is highly effective for both hypo- and hyperkinetic movement disorders of basal ganglia origin. The clinical use of DBS is, in part, empiric, based on the experience with prior surgical ablative therapies for these disorders, and, in part, driven by scientific discoveries made decades ago. In this review, we consider anatomical and functional concepts of the basal ganglia relevant to our understanding of DBS mechanisms, as well as our current understanding of the pathophysiology of two of the most commonly DBS-treated conditions, Parkinson's disease and dystonia. Finally, we discuss the proposed mechanism(s) of action of DBS in restoring function in patients with movement disorders. The signs and symptoms of the various disorders appear to result from signature disordered activity in the basal ganglia output, which disrupts the activity in thalamocortical and brainstem networks. The available evidence suggests that the effects of DBS are strongly dependent on targeting sensorimotor portions of specific nodes of the basal ganglia-thalamocortical motor circuit, that is, the subthalamic nucleus and the internal segment of the globus pallidus. There is little evidence to suggest that DBS in patients with movement disorders restores normal basal ganglia functions (e.g., their role in movement or reinforcement learning). Instead, it appears that high-frequency DBS replaces the abnormal basal ganglia output with a more tolerable pattern, which helps to restore the functionality of downstream networks. PMID:26956115

  11. The subdiaphragmatic part of the phrenic nerve - morphometry and connections to autonomic ganglia.

    PubMed

    Loukas, Marios; Du Plessis, Maira; Louis, Robert G; Tubbs, R Shane; Wartmann, Christopher T; Apaydin, Nihal

    2016-01-01

    Few anatomical textbooks offer much information concerning the anatomy and distribution of the phrenic nerve inferior to the diaphragm. The aim of this study was to identify the subdiaphragmatic distribution of the phrenic nerve, the presence of phrenic ganglia, and possible connections to the celiac plexus. One hundred and thirty formalin-fixed adult cadavers were studied. The right phrenic nerve was found inferior to the diaphragm in 98% with 49.1% displaying a right phrenic ganglion. In 22.8% there was an additional smaller ganglion (right accessory phrenic ganglion). The remaining 50.9% had no grossly identifiable right phrenic ganglion. Most (65.5% of specimens) exhibited plexiform communications with the celiac ganglion, aorticorenal ganglion, and suprarenal gland. The left phrenic nerve inferior to the diaphragm was observed in 60% of specimens with 19% containing a left phrenic ganglion. No accessory left phrenic ganglia were observed. The left phrenic ganglion exhibited plexiform communications to several ganglia in 71.4% of specimens. Histologically, the right phrenic and left phrenic ganglia contained large soma concentrated in their peripheries. Both phrenic nerves and ganglia were closely related to the diaphragmatic crura. Surgically, sutures to approximate the crura for repair of hiatal hernias must be placed above the ganglia in order to avoid iatrogenic injuries to the autonomic supply to the diaphragm and abdomen. These findings could also provide a better understanding of the anatomy and distribution of the fibers of that autonomic supply.

  12. Calcitonin gene-related peptide immunoreactivity in the spinal cord of man and of eight other species.

    PubMed

    Gibson, S J; Polak, J M; Bloom, S R; Sabate, I M; Mulderry, P M; Ghatei, M A; McGregor, G P; Morrison, J F; Kelly, J S; Evans, R M

    1984-12-01

    Calcitonin gene-related peptide (CGRP) immunoreactivity was found throughout the entire spinal cord of man, marmoset, horse, pig, cat, guinea pig, mouse, rat, and frog. CGRP-immunoreactive fibers were most concentrated in the dorsal horn. In the ventral horn of some species large immunoreactive cells, tentatively characterized as motoneurons, were present. Pretreatment of rats with colchicine enhanced staining of these large cells but did not reveal CGRP-immunoreactive cell bodies in the dorsal horn. In the dorsal root ganglia, CGRP immunoreactivity was observed in most of the small and some of the intermediate sized cells. Substance P immunoreactivity, where present, was co-localized with CGRP to a proportion of the small cells. In the cat the ratio of substance P-immunoreactive to CGRP-immunoreactive ganglion cells was 1:2.7 (p less than 0.001). The concentration of CGRP-immunoreactive material in tissue extracts was determined by radioimmunoassay. In the dorsal horn of the rat spinal cord the levels of peptide were found to range from 225.7 +/- 30.0 pmol/gm of wet weight in the cervical region to 340.6 +/- 74.6 pmol/gm in the sacral spinal cord. In the rat ventral spinal cord, levels of 15.7 +/- 2.7 to 35.1 +/- 10.6 pmol/gm were found. The concentration in dorsal root ganglia of the lumbar region was 225.4 +/- 46.9 pmol/gm. Gel permeation chromatography of this extractable CGRP-like immunoreactivity revealed three distinct immunoreactive peaks, one eluting at the position of synthetic CGRP and the others, of smaller size, eluting later. In cats and rats, rhizotomy induced a marked loss of CGRP-immunoreactive fibers from the dorsal horn of the spinal cord. In the cat, unilateral lumbosacral dorsal rhizotomy resulted in a significant (p less than 0.05) reduction of extractable CGRP from the ipsilateral lumbar dorsal horn (5.6 +/- 1.2 pmol/gm of wet weight) compared to the contralateral side (105.0 +/- 36.0 pmol/gm of wet weight). We conclude that the major origin

  13. Focal expression of mutant huntingtin in the songbird basal ganglia disrupts cortico-basal ganglia networks and vocal sequences

    PubMed Central

    Tanaka, Masashi; Singh Alvarado, Jonnathan; Murugan, Malavika; Mooney, Richard

    2016-01-01

    The basal ganglia (BG) promote complex sequential movements by helping to select elementary motor gestures appropriate to a given behavioral context. Indeed, Huntington’s disease (HD), which causes striatal atrophy in the BG, is characterized by hyperkinesia and chorea. How striatal cell loss alters activity in the BG and downstream motor cortical regions to cause these disorganized movements remains unknown. Here, we show that expressing the genetic mutation that causes HD in a song-related region of the songbird BG destabilizes syllable sequences and increases overall vocal activity, but leave the structure of individual syllables intact. These behavioral changes are paralleled by the selective loss of striatal neurons and reduction of inhibitory synapses on pallidal neurons that serve as the BG output. Chronic recordings in singing birds revealed disrupted temporal patterns of activity in pallidal neurons and downstream cortical neurons. Moreover, reversible inactivation of the cortical neurons rescued the disorganized vocal sequences in transfected birds. These findings shed light on a key role of temporal patterns of cortico-BG activity in the regulation of complex motor sequences and show how a genetic mutation alters cortico-BG networks to cause disorganized movements. PMID:26951661

  14. Focal expression of mutant huntingtin in the songbird basal ganglia disrupts cortico-basal ganglia networks and vocal sequences.

    PubMed

    Tanaka, Masashi; Singh Alvarado, Jonnathan; Murugan, Malavika; Mooney, Richard

    2016-03-22

    The basal ganglia (BG) promote complex sequential movements by helping to select elementary motor gestures appropriate to a given behavioral context. Indeed, Huntington's disease (HD), which causes striatal atrophy in the BG, is characterized by hyperkinesia and chorea. How striatal cell loss alters activity in the BG and downstream motor cortical regions to cause these disorganized movements remains unknown. Here, we show that expressing the genetic mutation that causes HD in a song-related region of the songbird BG destabilizes syllable sequences and increases overall vocal activity, but leave the structure of individual syllables intact. These behavioral changes are paralleled by the selective loss of striatal neurons and reduction of inhibitory synapses on pallidal neurons that serve as the BG output. Chronic recordings in singing birds revealed disrupted temporal patterns of activity in pallidal neurons and downstream cortical neurons. Moreover, reversible inactivation of the cortical neurons rescued the disorganized vocal sequences in transfected birds. These findings shed light on a key role of temporal patterns of cortico-BG activity in the regulation of complex motor sequences and show how a genetic mutation alters cortico-BG networks to cause disorganized movements.

  15. Turbulence in Compressible Flows

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Lecture notes for the AGARD Fluid Dynamics Panel (FDP) Special Course on 'Turbulence in Compressible Flows' have been assembled in this report. The following topics were covered: Compressible Turbulent Boundary Layers, Compressible Turbulent Free Shear Layers, Turbulent Combustion, DNS/LES and RANS Simulations of Compressible Turbulent Flows, and Case Studies of Applications of Turbulence Models in Aerospace.

  16. Prospects for cannabinoid therapies in basal ganglia disorders

    PubMed Central

    Fernández-Ruiz, Javier; Moreno-Martet, Miguel; Rodríguez-Cueto, Carmen; Palomo-Garo, Cristina; Gómez-Cañas, María; Valdeolivas, Sara; Guaza, Carmen; Romero, Julián; Guzmán, Manuel; Mechoulam, Raphael; Ramos, José A

    2011-01-01

    Cannabinoids are promising medicines to slow down disease progression in neurodegenerative disorders including Parkinson's disease (PD) and Huntington's disease (HD), two of the most important disorders affecting the basal ganglia. Two pharmacological profiles have been proposed for cannabinoids being effective in these disorders. On the one hand, cannabinoids like Δ9-tetrahydrocannabinol or cannabidiol protect nigral or striatal neurons in experimental models of both disorders, in which oxidative injury is a prominent cytotoxic mechanism. This effect could be exerted, at least in part, through mechanisms independent of CB1 and CB2 receptors and involving the control of endogenous antioxidant defences. On the other hand, the activation of CB2 receptors leads to a slower progression of neurodegeneration in both disorders. This effect would be exerted by limiting the toxicity of microglial cells for neurons and, in particular, by reducing the generation of proinflammatory factors. It is important to mention that CB2 receptors have been identified in the healthy brain, mainly in glial elements and, to a lesser extent, in certain subpopulations of neurons, and that they are dramatically up-regulated in response to damaging stimuli, which supports the idea that the cannabinoid system behaves as an endogenous neuroprotective system. This CB2 receptor up-regulation has been found in many neurodegenerative disorders including HD and PD, which supports the beneficial effects found for CB2 receptor agonists in both disorders. In conclusion, the evidence reported so far supports that those cannabinoids having antioxidant properties and/or capability to activate CB2 receptors may represent promising therapeutic agents in HD and PD, thus deserving a prompt clinical evaluation. LINKED ARTICLES This article is part of a themed issue on Cannabinoids in Biology and Medicine. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2011.163.issue-7 PMID:21545415

  17. Quantitation of the human basal ganglia with Positron Emission Tomography

    SciTech Connect

    Bendriem, B.; Dewey, S.L.; Schlyer, D.J.; Wolf, A.P.; Volkow, N.D.

    1990-01-01

    The accurate measurement of the concentration of a radioisotope in small structures with PET requires a correction for quantitation loss due to the partial volume effect and the effect of scattered radiation. To evaluate errors associated with measures in the human basal ganglia (BG) we have built a unilateral model of the BG that we have inserted in a 20 cm cylinder. The recovery coefficient (RC = measured activity/true activity) for our BG phantom has been measured on a CTI tomograph (model 931-08/12) with different background concentrations (contrast) and at different axial locations in the gantry. The BG was visualized on 4 or 5 slices depending on its position in the gantry and on the contrast used. The RC was 0.75 with no background (contrast equal to 1.0). Increasing the relative radioactivity concentration in the background increased the RC from 0.75 to 2.00 when the contrast was {minus}0.7 (BG < Background). The RC was also affected by the size and the shape of the region of interest (ROI) used (RC from 0.75 to 0.67 with ROI size from 0.12 to 1.41 cm{sup 2}). These results show that accurate RC correction depends not only on the volume of the structure but also on its contrast with its surroundings as well as on the selection of the ROI. They also demonstrate that the higher the contrast the more sensitive to axial positioning PET measurements in the BG are. These data provide us with some information about the variability of PET measurements in small structure like the BG and we have proposed some strategies to improve the reproducibility. 18 refs., 3 figs., 5 tabs.

  18. Glutamate-dopamine-GABA interactions in the aging basal ganglia.

    PubMed

    Mora, Francisco; Segovia, Gregorio; Del Arco, Alberto

    2008-08-01

    The study of neurotransmitter interactions gives a better understanding of the physiology of specific circuits in the brain. In this review we focus mostly on our own results on the interaction of the neurotransmitters glutamate, dopamine and GABA in the basal ganglia during the normal process of aging. We review first the studies on the action of endogenous glutamate on the extracellular concentrations of dopamine and GABA in the neostriatum and nucleus accumbens during aging. It was found that there exists an age-related change in the interaction of glutamate, dopamine and GABA and that these effects of aging exhibit a dorsal-to-ventral pattern of effects with no changes in the dorsal parts (dorsal striatum) and changes in the most ventral parts (nucleus accumbens). Second we reviewed the data on the effects of different ionotropic and metabotropic glutamate receptor agonists on the extracellular concentrations of dopamine and GABA in the nucleus accumbens. The results obtained clearly show the different contribution of each glutamate receptor subtype in the age-related changes produced on the interaction of glutamate, dopamine and GABA in this area of the brain. Third the effects of an enriched environment on the action of AMPA and NMDA-receptor agonists in the nucleus accumbens of rats during aging are also evaluated. Finally, and since the nucleus accumbens has been suggested to play a role in emotion and motivation and also motor behaviour, we speculated on the possibility of a specific contribution for the different glutamatergic pathways terminating in the nucleus accumbens and their interaction with a decreased dopamine playing a relevant role in motor behaviour during aging.

  19. Aspergillus spinal epidural abscess

    SciTech Connect

    Byrd, B.F. III; Weiner, M.H.; McGee, Z.A.

    1982-12-17

    A spinal epidural abscess developed in a renal transplant recipient; results of a serum radioimmunoassay for Aspergillus antigen were positive. Laminectomy disclosed an abscess of the L4-5 interspace and L-5 vertebral body that contained hyphal forms and from which Aspergillus species was cultured. Serum Aspergillus antigen radioimmunoassay may be a valuable, specific early diagnostic test when systemic aspergillosis is a consideration in an immunosuppressed host.

  20. The distribution and origin of a novel brain peptide, neuropeptide Y, in the spinal cord of several mammals.

    PubMed

    Gibson, S J; Polak, J M; Allen, J M; Adrian, T E; Kelly, J S; Bloom, S R

    1984-07-20

    The distribution of neuropeptide Y [NPY]-immunoreactive material was examined in the spinal cord and dorsal root ganglia of rat, guinea-pig, cat, marmoset, and horse. Considerable concentrations of NPY and similar distribution patterns of immunoreactive nerve fibres were found in the spinal cord of all species investigated. The dorsal root ganglia of the cat and the horse contained numerous immunoreactive nerve fibres, but in these species, as in the other three studied [rat, guinea-pig, marmoset], no positively stained cell bodies were found. Neuropeptide Y-immunoreactive nerves were observed at all levels of the spinal cord, being most concentrated in the dorsal horn. In the rat, guinea-pig, and marmoset, there was a marked increase of NPY-immunoreactive fibres in the lumbosacral regions of the spinal cord, and this was reflected by a considerable increase of extractable NPY. Estimations of NPY-immunoreactive material in the various regions of the rat spinal cord were as follows: cervical, 13.8 +/- 1.0; thoracic, 21.1 +/- 2.5; lumbar, 16.3 +/- 2.9; sacral, 92.4 +/- 8.5 pmol/gm wet weight of tissue +/- SEM. In the ventral portion of the guinea-pig spinal cord they were as follows: cervical, 7.1 +/- 1.2; thoracic, 8.2 +/- 3.6; lumbar, 22.6 +/- 7.0; sacral, 36.7 +/- 9.5 pmol/gm wet weight of tissue +/- SEM. Analysis of spinal cord extracts by reverse phase high performance liquid chromatography [HPLC] demonstrated that NPY-immunoreactive material elutes in the position of pure NPY standard. No changes in the concentration and distribution of the NPY-like material in the rat spinal cord were observed following a variety of surgical and pharmacological manipulations, including cervical rhizotomy, sciatic nerve section and ligation, and local application of capsaicin [50 mM] to one sciatic nerve. It is therefore suggested that most of the NPY-immunoreactive material in the spinal cord is derived either from intrinsic nerve cell bodies or from supraspinal tracts.

  1. FAQs about Spinal Cord Injury (SCI)

    MedlinePlus

    ... Website Managing Bowel Function After Spinal Cord Injury Resilience, Depression and Bouncing Back after SCI Getting to ... a “complete” and “incomplete” spinal cord injury? What recovery is expected following spinal cord injury? Where is ...

  2. Functional Validation of a Complex Loading Whole Spinal Segment Bioreactor Design.

    PubMed

    Beatty, Amanda M; Bowden, Anton E; Bridgewater, Laura C

    2016-06-01

    Intervertebral disk (IVD) degeneration is a prevalent health problem that is highly linked to back pain. To understand the disease and tissue response to therapies, ex vivo whole IVD organ culture systems have recently been introduced. The goal of this work was to develop and validate the design of a whole spinal segment culturing system that loads the disk in complex loading similar to the in vivo condition, while preserving the adjacent endplates and vertebral bodies. The complex loading applied to the spinal segment (flexion-extension (FE), bilateral bending, and compression) was achieved with three pneumatic cylinders rigidly attached to a triangular loading platform. A culture container housed the spinal segment and was attached to the loading mechanism, which allowed for loading of the spinal segment. The dynamic bioreactor was able to achieve physiologic loading conditions with 100 N of applied compression and approximately 2-4 N · m of applied torque. The function of the bioreactor was validated through testing of bovine caudal IVDs with intact endplates and vertebral bodies that were isolated within 2 hrs of death and cultured for 14 days. The resulting IVD cell viability following 14 days of loading was much higher than unloaded control IVDs. The loading system accurately mimicked FE, bilateral bending, and compression motions seen during daily activities. The results indicate that this complex dynamic bioreactor may be appropriate for extended preclinical testing of vertebral-mounted spinal devices and therapies. PMID:27149909

  3. Conceptual convergence: increased inflammation is associated with increased basal ganglia glutamate in patients with major depression.

    PubMed

    Haroon, E; Fleischer, C C; Felger, J C; Chen, X; Woolwine, B J; Patel, T; Hu, X P; Miller, A H

    2016-10-01

    Inflammation and altered glutamate metabolism are two pathways implicated in the pathophysiology of depression. Interestingly, these pathways may be linked given that administration of inflammatory cytokines such as interferon-α to otherwise non-depressed controls increased glutamate in the basal ganglia and dorsal anterior cingulate cortex (dACC) as measured by magnetic resonance spectroscopy (MRS). Whether increased inflammation is associated with increased glutamate among patients with major depression is unknown. Accordingly, we conducted a cross-sectional study of 50 medication-free, depressed outpatients using single-voxel MRS, to measure absolute glutamate concentrations in basal ganglia and dACC. Multivoxel chemical shift imaging (CSI) was used to explore creatine-normalized measures of other metabolites in basal ganglia. Plasma and cerebrospinal fluid (CSF) inflammatory markers were assessed along with anhedonia and psychomotor speed. Increased log plasma C-reactive protein (CRP) was significantly associated with increased log left basal ganglia glutamate controlling for age, sex, race, body mass index, smoking status and depression severity. In turn, log left basal ganglia glutamate was associated with anhedonia and psychomotor slowing measured by the finger-tapping test, simple reaction time task and the Digit Symbol Substitution Task. Plasma CRP was not associated with dACC glutamate. Plasma and CSF CRP were also associated with CSI measures of basal ganglia glutamate and the glial marker myoinositol. These data indicate that increased inflammation in major depression may lead to increased glutamate in the basal ganglia in association with glial dysfunction and suggest that therapeutic strategies targeting glutamate may be preferentially effective in depressed patients with increased inflammation as measured by CRP. PMID:26754953

  4. Substrates for normal gait and pathophysiology of gait disturbances with respect to the basal ganglia dysfunction.

    PubMed

    Takakusaki, Kaoru; Tomita, Nozomi; Yano, Masafumi

    2008-08-01

    In this review, we have tried to elucidate substrates for the execution of normal gait and to understand pathophysiological mechanisms of gait failure in basal ganglia dysfunctions. In Parkinson's disease, volitional and emotional expressions of movement processes are seriously affected in addition to the disturbance of automatic movement processes, such as adjustment of postural muscle tone before gait initiation and rhythmic limb movements during walking. These patients also suffer from muscle tone rigidity and postural instability, which may also cause reduced walking capabilities in adapting to various environments. Neurophysiological and clinical studies have suggested the importance of basal ganglia connections with the cerebral cortex and limbic system in the expression of volitional and emotional behaviors. Here we hypothesize a crucial role played by the basal ganglia-brainstem system in the integrative control of muscle tone and locomotion. The hypothetical model may provide a rational explanation for the role of the basal ganglia in the control of volitional and automatic aspects of movements. Moreover, it might also be beneficial for understanding pathophysiological mechanisms of basal ganglia movement disorders. A part of this hypothesis has been supported by studies utilizing a constructive simulation engineering technique that clearly shows that an appropriate level of postural muscle tone and proper acquisition and utilization of sensory information are essential to maintain adaptable bodily functions for the full execution of bipedal gait. In conclusion, we suggest that the major substrates for supporting bipedal posture and executing bipedal gait are 1) fine neural networks such as the cortico-basal ganglia loop and basal ganglia-brainstem system, 2) fine musculoskeletal structures with adequately developed (postural) muscle tone, and 3) proper sensory processing. It follows that any dysfunction of the above sensorimotor integration processes

  5. Conceptual convergence: increased inflammation is associated with increased basal ganglia glutamate in patients with major depression

    PubMed Central

    Haroon, E; Fleischer, C C; Felger, J C; Chen, X; Woolwine, B J; Patel, T; Hu, X P; Miller, A H

    2016-01-01

    Inflammation and altered glutamate metabolism are two pathways implicated in the pathophysiology of depression. Interestingly, these pathways may be linked given that administration of inflammatory cytokines such as interferon-α to otherwise non-depressed controls increased glutamate in the basal ganglia and dorsal anterior cingulate cortex (dACC) as measured by magnetic resonance spectroscopy (MRS). Whether increased inflammation is associated with increased glutamate among patients with major depression is unknown. Accordingly, we conducted a cross-sectional study of 50 medication-free, depressed outpatients using single-voxel MRS, to measure absolute glutamate concentrations in basal ganglia and dACC. Multivoxel chemical shift imaging (CSI) was used to explore creatine-normalized measures of other metabolites in basal ganglia. Plasma and cerebrospinal fluid (CSF) inflammatory markers were assessed along with anhedonia and psychomotor speed. Increased log plasma C-reactive protein (CRP) was significantly associated with increased log left basal ganglia glutamate controlling for age, sex, race, body mass index, smoking status and depression severity. In turn, log left basal ganglia glutamate was associated with anhedonia and psychomotor slowing measured by the finger-tapping test, simple reaction time task and the Digit Symbol Substitution Task. Plasma CRP was not associated with dACC glutamate. Plasma and CSF CRP were also associated with CSI measures of basal ganglia glutamate and the glial marker myoinositol. These data indicate that increased inflammation in major depression may lead to increased glutamate in the basal ganglia in association with glial dysfunction and suggest that therapeutic strategies targeting glutamate may be preferentially effective in depressed patients with increased inflammation as measured by CRP. PMID:26754953

  6. Cerebral spinal fluid (CSF) collection

    MedlinePlus

    Spinal tap; Ventricular puncture; Lumbar puncture; Cisternal puncture; Cerebrospinal fluid culture ... brain stem. It is always done with fluoroscopy. Ventricular puncture may be recommended in people with possible ...

  7. Imaging of Spinal Cord Injury: Acute Cervical Spinal Cord Injury, Cervical Spondylotic Myelopathy, and Cord Herniation.

    PubMed

    Talekar, Kiran; Poplawski, Michael; Hegde, Rahul; Cox, Mougnyan; Flanders, Adam

    2016-10-01

    We review the pathophysiology and imaging findings of acute traumatic spinal cord injury (SCI), cervical spondylotic myelopathy, and briefly review the much less common cord herniation as a unique cause of myelopathy. Acute traumatic SCI is devastating to the patient and the costs to society are staggering. There are currently no "cures" for SCI and the only accepted pharmacologic treatment regimen for traumatic SCI is currently being questioned. Evaluation and prognostication of SCI is a demanding area with significant deficiencies, including lack of biomarkers. Accurate classification of SCI is heavily dependent on a good clinical examination, the results of which can vary substantially based upon the patient׳s condition or comorbidities and the skills of the examiner. Moreover, the full extent of a patients׳ neurologic injury may not become apparent for days after injury; by then, therapeutic response may be limited. Although magnetic resonance imaging (MRI) is the best imaging modality for the evaluation of spinal cord parenchyma, conventional MR techniques do not appear to differentiate edema from axonal injury. Recently, it is proposed that in addition to characterizing the anatomic extent of injury, metrics derived from conventional MRI and diffusion tensor imaging, in conjunction with the neurological examination, can serve as a reliable objective biomarker for determination of the extent of neurologic injury and early identification of patients who would benefit from treatment. Cervical spondylosis is a common disorder affecting predominantly the elderly with a potential to narrow the spinal canal and thereby impinge or compress upon the neural elements leading to cervical spondylotic myelopathy and radiculopathy. It is the commonest nontraumatic cause of spinal cord disorder in adults. Imaging plays an important role in grading the severity of spondylosis and detecting cord abnormalities suggesting myelopathy.

  8. Imaging of Spinal Cord Injury: Acute Cervical Spinal Cord Injury, Cervical Spondylotic Myelopathy, and Cord Herniation.

    PubMed

    Talekar, Kiran; Poplawski, Michael; Hegde, Rahul; Cox, Mougnyan; Flanders, Adam

    2016-10-01

    We review the pathophysiology and imaging findings of acute traumatic spinal cord injury (SCI), cervical spondylotic myelopathy, and briefly review the much less common cord herniation as a unique cause of myelopathy. Acute traumatic SCI is devastating to the patient and the costs to society are staggering. There are currently no "cures" for SCI and the only accepted pharmacologic treatment regimen for traumatic SCI is currently being questioned. Evaluation and prognostication of SCI is a demanding area with significant deficiencies, including lack of biomarkers. Accurate classification of SCI is heavily dependent on a good clinical examination, the results of which can vary substantially based upon the patient׳s condition or comorbidities and the skills of the examiner. Moreover, the full extent of a patients׳ neurologic injury may not become apparent for days after injury; by then, therapeutic response may be limited. Although magnetic resonance imaging (MRI) is the best imaging modality for the evaluation of spinal cord parenchyma, conventional MR techniques do not appear to differentiate edema from axonal injury. Recently, it is proposed that in addition to characterizing the anatomic extent of injury, metrics derived from conventional MRI and diffusion tensor imaging, in conjunction with the neurological examination, can serve as a reliable objective biomarker for determination of the extent of neurologic injury and early identification of patients who would benefit from treatment. Cervical spondylosis is a common disorder affecting predominantly the elderly with a potential to narrow the spinal canal and thereby impinge or compress upon the neural elements leading to cervical spondylotic myelopathy and radiculopathy. It is the commonest nontraumatic cause of spinal cord disorder in adults. Imaging plays an important role in grading the severity of spondylosis and detecting cord abnormalities suggesting myelopathy. PMID:27616315

  9. Peripheral injury and anterograde transport of wheat germ agglutinin-horse radish peroxidase to the spinal cord.

    PubMed

    Valtschanoff, J G; Weinberg, R J; Rustioni, A

    1992-10-01

    Previous observations have revealed labeling in the extracellular space surrounding boutons and unmyelinated fibers in superficial laminae of the spinal cord after injection of the tracer wheat germ agglutinin conjugated to horseradish peroxidase in dorsal root ganglia. The degree of extracellular labeling appeared related to the extent of the damage to the ganglia at the time of the injection. To determine whether injury might produce extracellular labeling, we investigated the effects of unilateral nerve crush or transection on spinal labeling after bilateral injections of the tracer into sciatic nerves. Confirming previous reports, labeling was confined to small dorsal root ganglion cells and to spinal laminae I and II, suggesting a selective affinity of this tracer for unmyelinated fibers. Labeling of both ganglion neurons and superficial spinal laminae was increased on the injured side, probably as a result of increased efficiency of receptor-mediated endocytosis. Electron microscopical observations revealed that the tracer was largely confined to unmyelinated dorsal root fibers bilaterally; a higher percentage of these fibers were labeled on the injured side. In the dorsal horn, the tracer was predominantly within unmyelinated axons and their terminals on the control side, whereas most of the labeling was extracellular and transneuronal on the injured side. The extracellular labeling surrounded unmyelinated fibers and their terminals in the spinal cord, but was excluded from the synaptic cleft. The demonstration that injury is accompanied by significantly increased release of this tracer from the terminals of unmyelinated fibers into the extracellular space suggests that endogenous substances may be released after peripheral lesions as a central signal of injury.

  10. Spinal loads during cycling on an ergometer.

    PubMed

    Rohlmann, Antonius; Zander, Thomas; Graichen, Friedmar; Schmidt, Hendrik; Bergmann, Georg

    2014-01-01

    Cycling on an ergometer is an effective exercise for improving fitness. However, people with back problems or previous spinal surgery are often not aware of whether cycling could be harmful for them. To date, little information exists about spinal loads during cycling. A telemeterized vertebral body replacement allows in vivo measurement of implant loads during the activities of daily living. Five patients with a severe compression fracture of a lumbar vertebral body received these implants. During one measurement session, four of the participants exercised on a bicycle ergometer at various power levels. As the power level increased, the maximum resultant force and the difference between the maximum and minimum force (force range) during each pedal revolution increased. The average maximum-force increases between the two power levels 25 and 85 W were 73, 84, 225 and 75 N for the four patients. The corresponding increases in the force range during a pedal revolution were 84, 98, 166 and 101 N. There were large variations in the measured forces between the patients and also within the same patient, especially for high power levels. In two patients, the maximum forces during high-power cycling were higher than the forces during walking measured on the same day. Therefore, the authors conclude that patients with back problems should not cycle at high power levels shortly after surgery as a precaution.

  11. An update on spinal cord injury research.

    PubMed

    Cao, He-Qi; Dong, Er-Dan

    2013-02-01

    Spinal cord injury (SCI) can have a range of debilitating effects and permanently alter the capabilities and quality of life of survivors. The first specialized centers of care for SCI were established in 1944 and since then an increasing amount of research has been carried out in this area. Despite this, the present treatment and care levels for SCI are not comparable to those in other areas of medicine. In the clinic, the aim of SCI treatment is primarily to limit secondary damage by reducing compression in trauma spots and stabilizing the spinal column. Currently, no effective strategy for functional recovery is offered. In this review, we focus on research progress on the molecular mechanisms underlying SCI, and assess the treatment outcomes of SCI in animal models, i.e., neurotrophins and stem cells are discussed as pre-clinical therapies in animal models. We also assess the resources available and national research projects carried out on SCI in China in recent years, as well as making recommendations for the future allocation of funds in this area.

  12. Spinal motor and sensory neurons are androgen targets in an acrobatic bird.

    PubMed

    Fuxjager, Matthew J; Schultz, J Douglas; Barske, Julia; Feng, Ni Y; Fusani, Leonida; Mirzatoni, Anahid; Day, Lainy B; Hau, Michaela; Schlinger, Barney A

    2012-08-01

    Sex steroids affect the motivation to court mates, but less is known about how they influence motor movements associated with courtship behavior. Steroidal control of motor function may be especially important for species in which courtship requires superior strength, stamina, and neuromuscular coordination. Here we use the golden-collared manakin (Manacus vitellinus) to examine whether the neuromuscular circuitry that controls motoric aspects of courtship activity is sensitive to androgens. Males of this tropical species attract mates by rapidly jumping among branches in a courtship arena and using their wings to produce loud wing snaps. Testosterone activates this display via the androgen receptor (AR), and past work reveals that manakins injected with radio-labeled T ((3)H-T) accumulate radioactivity in the spinal cord. Thus, we used quantitative PCR to measure AR, estrogen receptor-α (ER-α) subtype, and aromatase (AROM) mRNA in spinal cords of male and female manakins and zebra finches. Expression of AR, but not ER-α or aromatase, was higher throughout the manakin spinal cord compared with the zebra finch. Next, we tested whether AR-expressing skeletal muscles are innervated by motor and sensory neurons that also express AR. To do this, we backfilled spinal neurons by injecting fluorescent tracers into select AR-sensitive wing and leg muscles of wild caught male and female manakins. We then removed these spinal cords and measured AR expression with in situ hybridization. Both sexes showed abundant AR mRNA in the cervical and lumbosacral spinal enlargements as well as in dorsal root ganglia attached to these enlargements. Together our findings suggest that androgens act widely on peripheral motor and sensory circuits in golden-collared manakins to influence wing snapping displays. PMID:22635677

  13. Idiopathic Hypertrophic Spinal Pachymeningitis with an Osteolytic Lesion

    PubMed Central

    Jee, Tae Keun; Lee, Sun-Ho; Kim, Eun-Sang

    2014-01-01

    Idiopathic hypertrophic spinal pachymeningitis (IHSP) is a chronic, progressive, inflammatory disorder characterized by marked fibrosis of the spinal dura mater with unknown etiology. According to the location of the lesion, it might induce neurologic deficits by compression of spinal cord and nerve root. A 58-year old female with a 3-year history of progressive weakness in both lower extremities was referred to our institute. Spinal computed tomography (CT) scan showed an osteolytic lesion involving base of the C6 spinous process with adjacent epidural mass. Magnetic resonance imaging (MRI) revealed an epidural mass involving dorsal aspect of cervical spinal canal from C5 to C7 level, with low signal intensity on T1 and T2 weighted images and non-enhancement on T1 weighted-enhanced images. We decided to undertake surgical exploration. At the operation field, there was yellow colored, thickened fibrous tissue over the dura mater. The lesion was removed totally, and decompression of spinal cord was achieved. Symptoms improved partially after the operation. Histopathologically, fibrotic pachymeninges with scanty inflammatory cells was revealed, which was compatible with diagnosis of idiopathic hypertrophic pachymeningitis. Six months after operation, motor power grade of both lower extremities was normal on physical examination. However, the patient still complained of mild weakness in the right lower extremity. Although the nature of IHSP is generally indolent, decompressive surgery should be considered for the patient with definite or progressive neurologic symptoms in order to prevent further deterioration. In addition, IHSP can present as an osteolytic lesion. Differential diagnosis with neoplastic disease, including giant cell tumor, is important. PMID:25328657

  14. Idiopathic hypertrophic spinal pachymeningitis with an osteolytic lesion.

    PubMed

    Jee, Tae Keun; Lee, Sun-Ho; Kim, Eun-Sang; Eoh, Whan

    2014-08-01

    Idiopathic hypertrophic spinal pachymeningitis (IHSP) is a chronic, progressive, inflammatory disorder characterized by marked fibrosis of the spinal dura mater with unknown etiology. According to the location of the lesion, it might induce neurologic deficits by compression of spinal cord and nerve root. A 58-year old female with a 3-year history of progressive weakness in both lower extremities was referred to our institute. Spinal computed tomography (CT) scan showed an osteolytic lesion involving base of the C6 spinous process with adjacent epidural mass. Magnetic resonance imaging (MRI) revealed an epidural mass involving dorsal aspect of cervical spinal canal from C5 to C7 level, with low signal intensity on T1 and T2 weighted images and non-enhancement on T1 weighted-enhanced images. We decided to undertake surgical exploration. At the operation field, there was yellow colored, thickened fibrous tissue over the dura mater. The lesion was removed totally, and decompression of spinal cord was achieved. Symptoms improved partially after the operation. Histopathologically, fibrotic pachymeninges with scanty inflammatory cells was revealed, which was compatible with diagnosis of idiopathic hypertrophic pachymeningitis. Six months after operation, motor power grade of both lower extremities was normal on physical examination. However, the patient still complained of mild weakness in the right lower extremity. Although the nature of IHSP is generally indolent, decompressive surgery should be considered for the patient with definite or progressive neurologic symptoms in order to prevent further deterioration. In addition, IHSP can present as an osteolytic lesion. Differential diagnosis with neoplastic disease, including giant cell tumor, is important. PMID:25328657

  15. Spinal bone density following spinal fusion

    SciTech Connect

    Lipscomb, H.J.; Grubb, S.A.; Talmage, R.V.

    1989-04-01

    Spinal bone densities were assessed in 25 patients following lumbar fusion and bracing, in an attempt to study bone remodeling by noninvasive methods. Dual-photon densitometry was used to study specific areas of autologous bone grafts and adjacent vertebrae above the fusion mass. Measurements were made preoperatively and at 6-week intervals postoperatively. The data for the first 12 months postoperatively are reported here. In all patients there was at first a consistent loss in density in the vertebrae above the fusion mass, averaging 15.7%. This was followed by a gradual density increase such that by 1 year postoperatively, in 60% of the subjects, the density of these vertebrae was higher than the preoperative level. In the grafted areas, bone changes were cyclical, demonstrating a remodeling pattern consistent with that described in animal literature for graft healing and also consistent with modern bone remodeling theory. There was a general tendency toward a gradual increase in the density of the fusion mass.

  16. Strain differences in the toxicity of cadmium to trigeminal ganglia in mice.

    PubMed

    Habeebu, S S; Liu, Y; Park, J D; Klaassen, C D

    2001-12-15

    Cadmium (Cd) is toxic to sensory ganglia in many animal species. Cadmium uptake is low in the central nervous system, but it distributes preferentially to peripheral sensory and autonomic ganglia. Strain differences have been demonstrated in the sensitivity of mice to Cd-induced hepatotoxicity, testicular toxicity, and teratogenicity. To study the sensitivity of different mouse strains to Cd toxicity in sensory ganglia, eight strains of mice (four sensitive to testicular toxicity: 129/SVIM, AKR/J, DBA/1J, and C57BR/J; and four resistant: Balb/C, C3H/HeJ, A/J, and C57BL/6J) were given 15 micromol CdCl(2)/kg iv. Trigeminal ganglia (TG) were harvested 24 h later and examined by light microscopy for pathologic lesions. Cadmium induced degeneration of ganglion cells in five strains, namely 129/SVIM, AKR/J, DBA/1J, C57BR/J, and C3H/HeJ mice. These are the same strains that show sensitivity to testicular toxicity, except for C3H/HeJ, which is resistant to testicular toxicity. Cd also induced focal hemorrhages around the ganglion cells and nerve fibers in two of these strains (129/SVIM and AKR/J) and scattered foci of necrosis in C3H/HeJ and 129/SVIM strains. There was no morphologic abnormality in three strains, namely Balb/C, A/J, and C57BL/6J. To examine the mechanism of these strain differences in toxicity, all eight strains of mice were given a nontoxic dose of Cd (0.4 micromol CdCl(2)/kg, 20 microCi (109)Cd/kg iv). Cadmium distribution to the brain and trigeminal ganglia was determined 30 min later by gamma scintillation spectrometry. Cadmium content in the brain was very low and did not differ among the eight strains. In contrast, Cd content was higher in trigeminal ganglia of four of the five strains showing trigeminal ganglia sensitivity than in the three strains showing resistance. In conclusion, the toxicity of Cd to trigeminal ganglia is different among various strains of mice. This strain difference in toxicity appears to be due, at least in part, to

  17. A review of pathologies associated with high T1W signal intensity in the basal ganglia on Magnetic Resonance Imaging

    PubMed Central

    Zaitout, Zahia; Romanowski, Charles; Karunasaagarar, Kavitasagary; Connolly, Daniel; Batty, Ruth

    2014-01-01

    Summary With several functions and a fundamental influence over cognition and motor functions, the basal ganglia are the cohesive centre of the brain. There are several conditions which affect the basal ganglia and these have various clinical and radiological manifestations. Nevertheless, on magnetic resonance imaging there is a limited differential diagnosis for those conditions presenting with T1 weighted spin echo hyperintensity within the central nervous system in general and the basal ganglia in particular. The aim of our review is to explore some of these basal ganglia pathologies and provide image illustrations. PMID:24900164

  18. Selection of cortical dynamics for motor behaviour by the basal ganglia.

    PubMed

    Mannella, Francesco; Baldassarre, Gianluca

    2015-12-01

    The basal ganglia and cortex are strongly implicated in the control of motor preparation and execution. Re-entrant loops between these two brain areas are thought to determine the selection of motor repertoires for instrumental action. The nature of neural encoding and processing in the motor cortex as well as the way in which selection by the basal ganglia acts on them is currently debated. The classic view of the motor cortex implementing a direct mapping of information from perception to muscular responses is challenged by proposals viewing it as a set of dynamical systems controlling muscles. Consequently, the common idea that a competition between relatively segregated cortico-striato-nigro-thalamo-cortical channels selects patterns of activity in the motor cortex is no more sufficient to explain how action selection works. Here, we contribute to develop the dynamical view of the basal ganglia-cortical system by proposing a computational model in which a thalamo-cortical dynamical neural reservoir is modulated by disinhibitory selection of the basal ganglia guided by top-down information, so that it responds with different dynamics to the same bottom-up input. The model shows how different motor trajectories can so be produced by controlling the same set of joint actuators. Furthermore, the model shows how the basal ganglia might modulate cortical dynamics by preserving coarse-grained spatiotemporal information throughout cortico-cortical pathways.

  19. Effects on hypothalamus when CPG is fed back to basal ganglia based on KIV model.

    PubMed

    Lu, Qiang; Li, Wenfeng; Tian, Juan; Zhang, Xixue

    2015-02-01

    The KIV model approximates the operation of the basic vertebrate forebrain together with the basal ganglia and motor systems. In KIV model, the hypothalamus and the basal ganglia which are two important parts in the midline forebrain are closely associated with the locomotion. The CPG model with time delay is established in this paper and the stability of this CPG model is discussed. The CPG output is treated as the proprioception and fed back to the basal ganglia. We focus on the effects on the hypothalamus and the basal ganglia when the time delay parameter a d , the CPG amplitude parameter e and the CPG frequency parameter T r are changed. Through analysis, we find that there exists optimum value of the parameters a d or T r which can make the synchronization of the hypothalamus optimum when the CPG is added into the basal ganglia. The results could have important implications for biological processes which are about interaction between the neural network and the CPG.

  20. Position of Larval Tapeworms, Polypocephalus sp., in the Ganglia of Shrimp, Litopenaeus setiferus

    PubMed Central

    Carreon, Nadia; Faulkes, Zen

    2014-01-01

    Parasites that invade the nervous system of their hosts have perhaps the best potential to manipulate their host’s behavior, but how they manipulate the host, if they do at all, could depend on their position within the host’s nervous system. We hypothesize that parasites that live in the nervous system of their host will be randomly distributed if they exert their influence through non-specific effects (i.e., general pathology), but that their position in the nervous system will be non-random if they exert their influence by targeting specific neural circuits. We recorded the position of larval tapeworms, Polypocephalus sp., in the abdominal ganglia of white shrimp, Litopenaeus setiferus. Tapeworms are more common within ganglia than in the section of the nerve cord between ganglia, even though the nerve cord has a greater volume than the ganglia. The tapeworms are also more abundant in the periphery of the ganglia. Because most synaptic connections are within the central region of the ganglion, such positioning may represent a trade-off between controlling the nervous system and damaging it. PMID:24820854

  1. Changes in basal ganglia processing of cortical input following magnetic stimulation in Parkinsonism.

    PubMed

    Tischler, Hadass; Moran, Anan; Belelovsky, Katya; Bronfeld, Maya; Korngreen, Alon; Bar-Gad, Izhar

    2012-12-01

    Parkinsonism is associated with major changes in neuronal activity throughout the cortico-basal ganglia loop. Current measures quantify changes in baseline neuronal and network activity but do not capture alterations in information propagation throughout the system. Here, we applied a novel non-invasive magnetic stimulation approach using a custom-made mini-coil that enabled us to study transmission of neuronal activity throughout the cortico-basal ganglia loop in both normal and parkinsonian primates. By magnetically perturbing cortical activity while simultaneously recording neuronal responses along the cortico-basal ganglia loop, we were able to directly investigate modifications in descending cortical activity transmission. We found that in both the normal and parkinsonian states, cortical neurons displayed similar multi-phase firing rate modulations in response to magnetic stimulation. However, in the basal ganglia, large synaptically driven stereotypic neuronal modulation was present in the parkinsonian state that was mostly absent in the normal state. The stimulation-induced neuronal activity pattern highlights the change in information propagation along the cortico-basal ganglia loop. Our findings thus point to the role of abnormal dynamic activity transmission rather than changes in baseline activity as a major component in parkinsonian pathophysiology. Moreover, our results hint that the application of transcranial magnetic stimulation (TMS) in human patients of different disorders may result in different neuronal effects than the one induced in normal subjects. PMID:22885186

  2. Toll-like receptor 2-mediated alternative activation of microglia is protective after spinal cord injury.

    PubMed

    Stirling, David P; Cummins, Karen; Mishra, Manoj; Teo, Wulin; Yong, V Wee; Stys, Peter

    2014-03-01

    Improving neurological outcome after spinal cord injury is a major clinical challenge because axons, once severed, do not regenerate but 'dieback' from the lesion site. Although microglia, the immunocompetent cells of the brain and spinal cord respond rapidly to spinal cord injury, their role in subsequent injury or repair remains unclear. To assess the role of microglia in spinal cord white matter injury we used time-lapse two-photon and spectral confocal imaging of green fluorescent protein-labelled microglia, yellow fluorescent protein-labelled axons, and Nile Red-labelled myelin of living murine spinal cord and revealed dynamic changes in white matter elements after laser-induced spinal cord injury in real time. Importantly, our model of acute axonal injury closely mimics the axonopathy described in well-characterized clinically relevant models of spinal cord injury including contusive-, compressive- and transection-based models. Time-lapse recordings revealed that microglia were associated with some acute pathophysiological changes in axons and myelin acutely after laser-induced spinal cord injury. These pathophysiological changes included myelin and axonal spheroid formation, spectral shifts in Nile Red emission spectra in axonal endbulbs detected with spectral microscopy, and 'bystander' degeneration of axons that survived the initial injury, but then succumbed to secondary degeneration. Surprisingly, modulation of microglial-mediated release of neurotoxic molecules failed to protect axons and myelin. In contrast, sterile stimulation of microglia with the specific toll-like receptor 2 agonist Pam2CSK4 robustly increased the microglial response to ablation, reduced secondary degeneration of central myelinated fibres, and induced an alternative (mixed M1:M2) microglial activation profile. Conversely, Tlr2 knock out: Thy1 yellow fluorescent protein double transgenic mice experienced greater axonal dieback than littermate controls. Thus, promoting an alternative

  3. Spinal giant cell tumor in tuberous sclerosis: Case report and review of the literature

    PubMed Central

    Fraioli, Mario Francesco; Lecce, Mario; Fraioli, Chiara; Paolo, Curatolo

    2013-01-01

    Background Patients affected by tuberous sclerosis (TS) have a greater incidence of tumors than the healthy population. Spinal tumours in TS are reported very rarely and consist mainly of sacrococcygeal and cervical chordomas. Method Case report. Findings A 21-year-old man, affected by TS, presented a spinal dorsal T2 tumor that caused medullary compression. He underwent decompressive laminectomy and microsurgical excision of a giant cell tumor and an associated aneurysmal bone cyst. Postoperative hypofractionated radiotherapy was performed on the surgical field. At 2.4 years of follow-up the patient reported total recovery of neurological deficits and was free from tumor recurrence. Conclusion Considering this association, which is the first reported in the literature, spinal magnetic resonance imaging with gadolinium should be performed at the onset of spinal pain in patients affected by TS. PMID:23809532

  4. Adult Primary Spinal Epidural Extraosseous Ewing's Sarcoma: A Case Report and Review of the Literature

    PubMed Central

    Thomas, Cheddhi; Modrek, Aram S.; Bayin, N. Sumru; Snuderl, Matija; Schiff, Peter B.

    2016-01-01

    Background. Extraosseous Ewing's sarcoma in the spinal epidural space is a rare malignancy, especially in adults. Case Presentation. A 40-year-old male presented with back pain and urinary hesitancy. MRI revealed a thoracic extradural mass with no osseous involvement. He underwent surgery for gross total resection of the mass, which was diagnosed as Ewing's sarcoma. He was subsequently treated with chemoradiotherapy. He remains disease-free 1 year after surgery. Review of the literature indicated only 45 previously reported cases of spinal epidural extraosseous Ewing's sarcoma in adults. Conclusions. Extraosseous Ewing's sarcoma in the spinal epidural space is a rare clinical entity that should be included in the differential for spinal epidural masses. Its treatment is multidisciplinary but frequently requires surgical intervention due to compressive neurologic symptoms. Gross total resection appears to correlate with improved outcomes. PMID:27610254

  5. Adult Primary Spinal Epidural Extraosseous Ewing's Sarcoma: A Case Report and Review of the Literature.

    PubMed

    Bustoros, Mark; Thomas, Cheddhi; Frenster, Joshua; Modrek, Aram S; Bayin, N Sumru; Snuderl, Matija; Rosen, Gerald; Schiff, Peter B; Placantonakis, Dimitris G

    2016-01-01

    Background. Extraosseous Ewing's sarcoma in the spinal epidural space is a rare malignancy, especially in adults. Case Presentation. A 40-year-old male presented with back pain and urinary hesitancy. MRI revealed a thoracic extradural mass with no osseous involvement. He underwent surgery for gross total resection of the mass, which was diagnosed as Ewing's sarcoma. He was subsequently treated with chemoradiotherapy. He remains disease-free 1 year after surgery. Review of the literature indicated only 45 previously reported cases of spinal epidural extraosseous Ewing's sarcoma in adults. Conclusions. Extraosseous Ewing's sarcoma in the spinal epidural space is a rare clinical entity that should be included in the differential for spinal epidural masses. Its treatment is multidisciplinary but frequently requires surgical intervention due to compressive neurologic symptoms. Gross total resection appears to correlate with improved outcomes. PMID:27610254

  6. Intracranial Vasospasm without Intracranial Hemorrhage due to Acute Spontaneous Spinal Subdural Hematoma

    PubMed Central

    Oh, Jung-Hwan; Jwa, Seung-Joo; Yang, Tae Ki; Lee, Chang Sub; Oh, Kyungmi

    2015-01-01

    Spontaneous spinal subdural hematoma (SDH) is very rare. Furthermore, intracranial vasospasm (ICVS) associated with spinal hemorrhage has been very rarely reported. We present an ICVS case without intracranial hemorrhage following SDH. A 41-year-old woman was admitted to our hospital with a complaint of severe headache. Multiple intracranial vasospasms were noted on a brain CT angiogram and transfemoral cerebral angiography. However, intracranial hemorrhage was not revealed by brain MRI or CT. On day 3 after admission, weakness of both legs and urinary incontinence developed. Spine MRI showed C7~T6 spinal cord compression due to hyperacute stage of SDH. After hematoma evacuation, her symptoms gradually improved. We suggest that spinal cord evaluation should be considered in patients with headache who have ICVS, although intracranial hemorrhage would not be visible in brain images. PMID:26713084

  7. Adult Primary Spinal Epidural Extraosseous Ewing's Sarcoma: A Case Report and Review of the Literature

    PubMed Central

    Thomas, Cheddhi; Modrek, Aram S.; Bayin, N. Sumru; Snuderl, Matija; Schiff, Peter B.

    2016-01-01

    Background. Extraosseous Ewing's sarcoma in the spinal epidural space is a rare malignancy, especially in adults. Case Presentation. A 40-year-old male presented with back pain and urinary hesitancy. MRI revealed a thoracic extradural mass with no osseous involvement. He underwent surgery for gross total resection of the mass, which was diagnosed as Ewing's sarcoma. He was subsequently treated with chemoradiotherapy. He remains disease-free 1 year after surgery. Review of the literature indicated only 45 previously reported cases of spinal epidural extraosseous Ewing's sarcoma in adults. Conclusions. Extraosseous Ewing's sarcoma in the spinal epidural space is a rare clinical entity that should be included in the differential for spinal epidural masses. Its treatment is multidisciplinary but frequently requires surgical intervention due to compressive neurologic symptoms. Gross total resection appears to correlate with improved outcomes.

  8. Skeletal metastases - the role of the orthopaedic and spinal surgeon.

    PubMed

    Eastley, Nicholas; Newey, Martyn; Ashford, Robert U

    2012-09-01

    . Patients who suffer a slowly progressive deficit, present within hours of complete neurological deficit, or have compression caused by bone alone are those most likely to benefit from surgery. Back pain in the presence of MBD should be regarded as impending spinal cord compression, and investigated urgently to allow intervention prior to the development of neurological compromise.

  9. Computational analyses of different intervertebral cages for lumbar spinal fusion.

    PubMed

    Bashkuev, Maxim; Checa, Sara; Postigo, Sergio; Duda, Georg; Schmidt, Hendrik

    2015-09-18

    Lumbar spinal fusion is the most common approach for treating spinal disorders such as degeneration or instability. Although this procedure has been performed for many years, there are still important challenges that must be overcome and questions that need to be addressed regarding the high rates of non-union. The present finite element model study aimed to investigate the influence of different cage designs on the fusion process. An axisymmetric finite element model of a spinal segment with an interbody fusion cage was used. The fusion process was based on an existing mechano-regulation algorithm for tissue formation. With this model, the following principal concepts of cage design were investigated: (1) different cage geometries with constant compressive stiffness and (2) cage designs optimized to provide the ideal mechanical stimulus for bone formation, first at the beginning of fusion and then throughout the entire fusion process. The cage geometry substantially influenced the fusion outcome. A cage that created an optimized initial mechanical stimulus did not necessarily lead to accelerated fusion, but rather resulted in delayed fusion or non-union. In contrast, a cage made of a degradable material produced a significantly higher amount of bone and resulted in higher segmental stiffness. However, different compressive loads (250, 500 and 1000 N) substantially affected the amount of newly formed bone tissue. The results of the present study suggest that aiming for an optimal initial mechanical stimulus may be misleading because the initial mechanical environment is not preserved throughout the bone modeling process.

  10. MRI morphometric characterisation of the paediatric cervical spine and spinal cord in children with MPS IVA (Morquio-Brailsford syndrome).

    PubMed

    Solanki, Guirish A; Lo, William B; Hendriksz, Christian J

    2013-03-01

    Nearly all children with MPS IVA develop skeletal deformities affecting the spine. At the atlanto-axial spine, odontoid hypoplasia occurs. GAG deposition around the dens, leads to peri-odontoid infiltration. Transverse/alar ligament incompetence causes instability. Atlanto-axial instability is associated with cord compression and myelopathy, leading to major morbidity and mortality. Intervention is often required. Does the presence of widened bullet shaped vertebra in platyspondily encroach on the spinal canal and cause spinal stenosis in MPS IVA? So far, there have been no standardised morphometric measurements of the paediatric MPS IVA cervical spine to evaluate whether there is pre-existing spinal stenosis predisposing to compressive myelopathy or whether this is purely an acquired process secondary to instability and compression. This study provides the first radiological quantitative analysis of the cervical spine and spinal cord in a series of affected children. MRI morphometry indicates that the MPS IVA spine is narrower at C1-2 level giving an inverted funnel shape. There is no evidence of a reduction in the Torg ratio (canal-body ratio) in the cervical spine. The spinal canal does not exceed 11 mm at any level, significantly smaller than normal historical cohorts (14 mm). The sagittal diameter and axial surface area of both spinal canal and cord are reduced. C1-2 level cord compression was evident in the canal-cord ratio but the Torg ratio was not predictive of cord compression. In MPS IVA the reduction in the space available for the cord (SAC) is multifactorial rather than due to congenital spinal stenosis.

  11. Voltage-gated sodium channel function and expression in injured and uninjured rat dorsal root ganglia neurons.

    PubMed

    Yin, Ruoyuan; Liu, Dong; Chhoa, Mark; Li, Chi-Ming; Luo, Yi; Zhang, Maosheng; Lehto, Sonya G; Immke, David C; Moyer, Bryan D

    2016-01-01

    The nine members of the voltage-gated sodium channel (Nav) family mediate inward sodium currents that depolarize neurons and lead to action potential firing. Increased Nav expression and function in sensory ganglia may drive ectopic action potentials and result in neuropathic pain. Using patch-clamp electrophysiology and molecular biology techniques, experiments were performed to elucidate the contribution of Nav channels to sodium currents in rat dorsal root ganglion (DRG) neurons following the L5/L6 spinal nerve ligation (SNL) model of neuropathic pain. The abundance of DRG neurons with fast, tetrodotoxin sensitive (TTX-S) currents was seven-fold higher whereas the abundance of DRG neurons with slow, tetrodotoxin resistant (TTX-R) currents was nearly thirty-fold lower when comparing ipsilateral (injured) to contralateral (uninjured) neurons. TTX-S currents were elevated in larger neurons while TTX-R currents were reduced in both small and large neurons. Among Nav transcripts encoding TTX-R channels, Scn10a (Nav1.8) and Scn11a (Nav1.9) expression was twenty- to thirty-fold lower, while among Nav transcripts encoding TTX-S channels, Scn3a (Nav1.3) expression was four-fold higher in injured compared to uninjured DRG by qRT-PCR analysis. In summary, the SNL model of neuropathic pain induced a phenotypic switch in Nav expression from TTX-R to TTX-S channels in injured DRG neurons. Transcriptional reprogramming of Nav genes may drive ectopic action potential firing and contribute to neuropathic pain. PMID:25562420

  12. Voltage-gated sodium channel function and expression in injured and uninjured rat dorsal root ganglia neurons.

    PubMed

    Yin, Ruoyuan; Liu, Dong; Chhoa, Mark; Li, Chi-Ming; Luo, Yi; Zhang, Maosheng; Lehto, Sonya G; Immke, David C; Moyer, Bryan D

    2016-01-01

    The nine members of the voltage-gated sodium channel (Nav) family mediate inward sodium currents that depolarize neurons and lead to action potential firing. Increased Nav expression and function in sensory ganglia may drive ectopic action potentials and result in neuropathic pain. Using patch-clamp electrophysiology and molecular biology techniques, experiments were performed to elucidate the contribution of Nav channels to sodium currents in rat dorsal root ganglion (DRG) neurons following the L5/L6 spinal nerve ligation (SNL) model of neuropathic pain. The abundance of DRG neurons with fast, tetrodotoxin sensitive (TTX-S) currents was seven-fold higher whereas the abundance of DRG neurons with slow, tetrodotoxin resistant (TTX-R) currents was nearly thirty-fold lower when comparing ipsilateral (injured) to contralateral (uninjured) neurons. TTX-S currents were elevated in larger neurons while TTX-R currents were reduced in both small and large neurons. Among Nav transcripts encoding TTX-R channels, Scn10a (Nav1.8) and Scn11a (Nav1.9) expression was twenty- to thirty-fold lower, while among Nav transcripts encoding TTX-S channels, Scn3a (Nav1.3) expression was four-fold higher in injured compared to uninjured DRG by qRT-PCR analysis. In summary, the SNL model of neuropathic pain induced a phenotypic switch in Nav expression from TTX-R to TTX-S channels in injured DRG neurons. Transcriptional reprogramming of Nav genes may drive ectopic action potential firing and contribute to neuropathic pain.

  13. Spinal Injury Rehabilitation in Singapore.

    ERIC Educational Resources Information Center

    Yen, H. L.; Chua, K.; Chan, W.

    1998-01-01

    This study reviewed 231 cases of spinal cord injury treated in Singapore. Data on demographic characteristics, common causes (mostly falls and traffic accidents), types of spinal damage, and outcomes are reported. Following rehabilitation, 68 patients were able to ambulate independently and 45 patients achieved independence in activities of daily…

  14. Adjustment to Spinal Cord Injury

    MedlinePlus

    ... of injury are alive and easily get educational information on the Internet. Web happy. sites such as the National Spinal Cord Injury Association (www.spinalcord.org) and SPINAL CORD Injury ♦ “Because of my injury, it is now impossible for me Information Network (www.spinalcord.uab.edu) have to ever ...

  15. Imaging modalities in spinal disorders

    SciTech Connect

    Kricun, M.E.

    1986-01-01

    This book provides an approach to the various imaging modalities used to view the spine. It discusses the indications, limitations and practical use of each in the diagnosis, work-up and staging of various spinal disorders, and compares each of them in various clinical settings. Topics covered include low back pain syndrome, disk disease, spinal cord lesions, congenital abnormalities, and trauma.

  16. Large anaplastic spinal B-cell lymphoma in a cat.

    PubMed

    Flatland, Bente; Fry, Michael M; Newman, Shelley J; Moore, Peter F; Smith, Joanne R; Thomas, William B; Casimir, Roslyn H

    2008-12-01

    A 5-year-old female spayed domestic shorthair cat was presented for evaluation of tetraparesis. The neurologic lesion was localized to the cervical spinal segment (C1-C6). A left axillary mass was identified, and the results of fine needle aspiration cytology indicated malignant round cell neoplasia of possible histiocytic origin. The cells were large, had marked anisocytosis and anisokaryosis, occasional bi- and multinucleation, and cytoplasmic vacuolation. Euthanasia was performed due to the poor prognosis associated with severe, progressive neurologic signs and a malignant neoplasm. Postmortem examination revealed spinal cord compression and an extradural mass at the C1-C2 spinal segment, with neoplastic cells in the adjacent vertebral bodies, surrounding skeletal muscle, left axillary lymph node, and bone marrow from the right femur. The initial histologic diagnosis was anaplastic sarcoma, but immunohistochemical results indicated the cells were CD20+ and CD45R+ and CD3-, compatible with a diagnosis of B-cell lymphoma. CD79a staining was nonspecific and uninterpretable. Weak to moderate CD18 positivity and E-cadherin positivity were also observed. Clonality of the B-cell population could not be demonstrated using PCR testing for antigen receptor gene rearrangement. To the authors' knowledge, this is the first reported case of a feline spinal anaplastic B-cell lymphoma exhibiting bi- and multinucleated cells. The prognostic significance of this cell morphology and immunophenotype is unknown.

  17. The effect of spinal instrumentation on lumbar intradiscal pressure.

    PubMed

    Abe, E; Nickel, T; Buttermann, G R; Lewis, J L; Transfeldt, E E

    1999-03-01

    The purpose of this study was to investigate the effect of spinal instrumentation on the intradiscal pressure (IDP) within the fixed motion segment. In vitro biomechanical testing was performed in six single functional spinal units of fresh calf lumbar spines using a pressure needle transducer. Various loads were applied by a materials testing system device. In addition to intact spine (control), anterior spinal instrumentation (ASI) and pedicle screw fixation (PS) constructs, as well as destabilized spine were tested. Relative to the control, the destabilized spine tended to have an increased IDP; by 15% in axial compression and by 9-36% in flexion-extension. Compared to the control, PS decreased the IDP by 23% in axial loading and 51% in extension loading and increased it by 60% in flexion for each loading. ASI decreased the IDP by 32% in flexion and 1% in extension. Lateral bending produced symmetrical changes of IDP in the control and destabilized spine, but no change in the PS construct. The IDP of the ASI construct was decreased by 77% in ipsilateral bending and increased by 22% in contralateral bending. These results demonstrated that eccentric loading from the spinal instruments increased IDP and significant disc pressure may still exist despite an increase in motion segment stiffness after lumbar stabilization. PMID:10458480

  18. Large anaplastic spinal B-cell lymphoma in a cat.

    PubMed

    Flatland, Bente; Fry, Michael M; Newman, Shelley J; Moore, Peter F; Smith, Joanne R; Thomas, William B; Casimir, Roslyn H

    2008-12-01

    A 5-year-old female spayed domestic shorthair cat was presented for evaluation of tetraparesis. The neurologic lesion was localized to the cervical spinal segment (C1-C6). A left axillary mass was identified, and the results of fine needle aspiration cytology indicated malignant round cell neoplasia of possible histiocytic origin. The cells were large, had marked anisocytosis and anisokaryosis, occasional bi- and multinucleation, and cytoplasmic vacuolation. Euthanasia was performed due to the poor prognosis associated with severe, progressive neurologic signs and a malignant neoplasm. Postmortem examination revealed spinal cord compression and an extradural mass at the C1-C2 spinal segment, with neoplastic cells in the adjacent vertebral bodies, surrounding skeletal muscle, left axillary lymph node, and bone marrow from the right femur. The initial histologic diagnosis was anaplastic sarcoma, but immunohistochemical results indicated the cells were CD20+ and CD45R+ and CD3-, compatible with a diagnosis of B-cell lymphoma. CD79a staining was nonspecific and uninterpretable. Weak to moderate CD18 positivity and E-cadherin positivity were also observed. Clonality of the B-cell population could not be demonstrated using PCR testing for antigen receptor gene rearrangement. To the authors' knowledge, this is the first reported case of a feline spinal anaplastic B-cell lymphoma exhibiting bi- and multinucleated cells. The prognostic significance of this cell morphology and immunophenotype is unknown. PMID:19055573

  19. Assessment of spinal pain.

    PubMed

    Braun, J; Baraliakos, X; Regel, A; Kiltz, U

    2014-12-01

    Spinal pain or back pain is a very common symptom that can have many reasons. The most studied location is low back pain, and it is considered to be nonspecific in the majority of cases. Only a small proportion of patients have axial inflammation as the major cause of their back complaints with chronic inflammatory back pain (IBP) as the most prominent clinical feature of spondyloarthritis (SpA). The recognition of IBP and patients with axial spondyloarthritis (axSpA) is challenging in primary care, and it is important to further facilitate the early diagnosis of SpA. Proposals for improving the referral of patients with a possible diagnosis of axSpA include clinical parameters, human leukocyte antigen (HLA) B27, and imaging parameters. Imaging is crucial for the visualization, objective validation, and understanding of back pain. Numerous diseases such as degenerative disk disease, degenerative changes in the intervertebral (facet) joints and the associated ligaments, spinal instability, herniation of the intervertebral disk, and spinal stenosis have to be differentiated in interpreting imaging of the spine. The sacroiliac joints and the spine are of major importance for the diagnosis and classification of axSpA. Conventional radiographs and magnetic resonance imaging (MRI) are the most important imaging technologies for visualization of structural changes such as syndesmophytes and axial inflammation such as sacroiliitis and spondylitis. The pathogenesis of axSpA is largely genetically determined. HLA B27 has the strongest contribution to the total genetic burden, but other major contributors such as endoplasmic reticulum aminopeptidase (ERAP)-1 and interleukin (IL)-23R have also been identified. PMID:26096091

  20. Over-Expression of PUMA Correlates with the Apoptosis of Spinal Cord Cells in Rat Neuropathic Intermittent Claudication Model

    PubMed Central

    Ma, Bin; Shi, Jiangang; Jia, Lianshun; Yuan, Wen; Wu, Jianfeng; Fu, Zhiyi; Wang, Yuan; Liu, Ning; Guan, Zhengmao

    2013-01-01

    Background Neuropathic intermittent claudication (NIC) is a typical clinical symptom of lumbar spinal stenosis and the apoptosis of neurons caused by cauda equina compression (CEC) has been proposed as an important reason. Whereas, the factors and the mechanism involved in the process of apoptosis induced by CEC remain unclear. Methodology and Results In our modified rat model of NIC, a trapezoid-shaped silicon rubber was inserted into the epidural space under the L5 and L6 vertebral plate. Obvious apoptosis was observed in spinal cord cells after compression by TUNEL assay. Simultaneously, qRT-PCR and immunohistochemistry showed that the expression levels of PUMA (p53 up-regulated modulator of apoptosis) and p53 were upregulated significantly in spinal cord under compression, while the expression of p53 inhibitor MDM2 and SirT2 decreased in the same region. Furthermore, CEC also resulted in the upregulation of Bcl-2 pro-apoptotic genes expression and caspase-3 activation. With the protection of Methylprednisolone, the upregulation of PUMA and p53 expression as well as the decrease of MDM2 and SirT2 in spinal cord were partially rescued in western bolt analysis. Conclusions These results suggest that over-expression of PUMA correlates with CEC caused apoptosis of spinal cord cells, which is characterized by the increase of p53, Bax and Bad expression. PUMA upregulation might be crucial to induce apoptosis of spinal cord cells through p53-dependent pathway in CEC. PMID:23658678

  1. Novel aspects of spinal cord evoked potentials (SCEPs) in the evaluation of dorso-ventral and lateral mechanical impacts on the spinal cord

    NASA Astrophysics Data System (ADS)

    Rad, Iman; Kouhzaei, Sogolie; Mobasheri, Hamid; Saberi, Hooshang

    2015-02-01

    Objectives. The aim of the current study was to mimic mechanical impacts on the spinal cord by manifesting the effects of dorsoventral (DVMP) and lateral (LMP) mechanical pressure on neural activity to address points to be considered during surgery for different purposes, including spinal cord decompression. Approaches. Spinal cords of anesthetized rats were compressed at T13. Different characteristics of axons, including vulnerability, excitability, and conduction velocity (CV), in response to promptness, severity, and duration of pressure were assessed by spinal cord evoked potentials (SCEPs). Real-time SCEPs recorded at L4-5 revealed N1, N2, and N3 peaks that were used to represent the activity of injured sensory afferents, interneurons, and MN fibers. The averaged SCEP recordings were fitted by trust-region algorithm to find the equivalent Gaussian and polynomial equations. Main results. The pyramidal and extrapyramidal pathways possessed CVs of 3-11 and 16-80 m s-1, respectively. DVMP decreased the excitability of myelinated neural fibers in antidromic and orthodromic pathways. The excitability of fibers in extrapyramidal and pyramidal pathways of lateral corticospinal (LCS) and anterior corticospinal (ACS) tracts decreased following LMP. A significant drop in the amplitude of N3 and its conduction velocity (CV) revealed higher susceptibility of less-myelinated fibers to both DVMP and LMP. The best parametric fitting model for triplet healthy spinal cord CAP was a six-term Gaussian equation (G6) that fell into a five-term equation (G5) at the complete compression stage. Significance. The spinal cord is more susceptible to dorsoventral than lateral mechanical pressures, and this should be considered in spinal cord operations. SCEPs have shown promising capabilities for evaluating the severity of SCI and thus can be applied for diagnostic or prognostic intraoperative monitoring (IOM).

  2. Microbunching and RF Compression

    SciTech Connect

    Venturini, M.; Migliorati, M.; Ronsivalle, C.; Ferrario, M.; Vaccarezza, C.

    2010-05-23

    Velocity bunching (or RF compression) represents a promising technique complementary to magnetic compression to achieve the high peak current required in the linac drivers for FELs. Here we report on recent progress aimed at characterizing the RF compression from the point of view of the microbunching instability. We emphasize the development of a linear theory for the gain function of the instability and its validation against macroparticle simulations that represents a useful tool in the evaluation of the compression schemes for FEL sources.

  3. Infiltrating spinal angiolipoma.

    PubMed

    Yen, Han-Lin; Tsai, Shih-Chung; Liu, Shian-Min

    2008-10-01

    Infiltrating angiolipomas are rarely encountered in the spine. We present a case involving a 71-year-old man with a dorsal epidural angiolipoma at the T5-T7 level. The tumor involved the T5-T6 vertebral bodies and left pedicle. The patient presented with acute paraparesis and MRI showed a homogeneously hyphointense lesion on T1-weighted images. The epidural component of the tumor was removed via laminectomy to achieve adequate cord decompression. The patient was symptom-free at a 2-year follow-up. This report emphasizes the unusual clinical presentation and MRI features of an infiltrating spinal angiolipoma and discusses therapeutic management options.

  4. Lumbar spinal epidural angiolipoma.

    PubMed

    Nanassis, Kimon; Tsitsopoulos, Parmenion; Marinopoulos, Dimitrios; Mintelis, Apostolos; Tsitsopoulos, Philippos

    2008-04-01

    Spinal angiolipomas are rare benign tumours most commonly found in the thoracic spine. A case of an extradural lumbar angiolipoma in a 47-year-old female is described. She had a recent history of lower back pain accompanied by sciatica. Lumbar MRI revealed a dorsal epidural mass at the L2-L3 level. The patient underwent a bilateral laminectomy, in which the tumour was totally excised. The pathological examination indicated haemangiolipoma. Post-operatively, the patient's neurological signs and symptoms improved remarkably quickly. MRI at 6 and 18 months after surgery revealed no evidence of tumour recurrence.

  5. Functional study of endothelin B receptors in satellite glial cells in trigeminal ganglia.

    PubMed

    Feldman-Goriachnik, Rachel; Hanani, Menachem

    2011-07-13

    There is immunohistochemical evidence for endothelin (ET) receptors in satellite glial cells in sensory ganglia, but there is no information on the function of these receptors. We used calcium imaging to study this question in isolated mouse trigeminal ganglia and found that satellite glial cells are highly sensitive to ET-1, with threshold at 0.05 nM. Responses displayed strong desensitization at ET-1 concentrations of more than 1 nM. A large component of the response persisted when Ca was deleted from the external medium, consistent with Ca release from internal stores. The use of receptor selective agents showed that the responses were mediated by ETB receptors. We conclude that satellite glial cells display endothelin receptors, which may participate in neuron-glia communications in the trigeminal ganglia.

  6. MR-DTI and PET multimodal imaging of dopamine release within subdivisions of basal ganglia

    NASA Astrophysics Data System (ADS)

    Tziortzi, A.; Searle, G.; Tsoumpas, C.; Long, C.; Shotbolt, P.; Rabiner, E.; Jenkinson, M.; Gunn, R. N.

    2011-09-01

    The basal ganglia is a group of anatomical nuclei, functionally organised into limbic, associative and sensorimotor regions, which plays a central role in dopamine related neurological and psychiatric disorders. In this study, we combine two imaging modalities to enable the measurement of dopamine release in functionally related subdivisions of the basal ganglia. [11C]-(+)-PHNO Positron Emission Tomography (PET) measurements in the living human brain pre- and post-administration of amphetamine allow for the estimation of regional dopamine release. Combined Magnetic Resonance Diffusion Tensor Imaging (MR-DTI) data allows for the definition of functional territories of the basal ganglia from connectivity information. The results suggest that there is a difference in dopamine release among the connectivity derived functional subdivisions. Dopamine release is highest in the limbic area followed by the sensorimotor and then the associative area with this pattern reflected in both striatum and pallidum.

  7. Peripheral ganglia supplying the genital smooth musculature in the female pig: an experimental study

    PubMed Central

    PANU, RINO; BO MINELLI, LUISA; BOTTI, MADDALENA; GAZZA, FERDINANDO; ACONE, FRANCA; PALMIERI, GIOVANNI

    2001-01-01

    The aim of the present study was to locate the sensory and autonomic ganglia innervating the female genital musculature in pigs. The retrograde neuronal tracers horseradish peroxidase (HRP) or fast blue (FB) were injected into the left retractor clitoridis muscle (RCM), which was treated as a typical model of the genital smooth musculature. Labelled cells were found in ipsilateral dorsal root ganglia Sl–S4, in bilateral sympathetic paravertebral ganglia from L5–L6 or L6–L7 to S3 and in the left and right caudal mesenteric ganglion. In two of the five animals treated, presumably preganglionic parasympathetic cells were labelled in the ipsilateral intermediate grey substance of the segments Sl–S2. PMID:11554508

  8. Dopamine transporter SPECT/CT and perfusion brain SPECT imaging in idiopathic basal ganglia calcinosis.

    PubMed

    Paschali, Anna; Lakiotis, Velissarios; Messinis, Lambros; Markaki, Elli; Constantoyannis, Constantine; Ellul, John; Vassilakos, Pavlos

    2009-07-01

    A case of idiopathic basal ganglia calcification in a 56-year-old woman with parkinsonism and cognitive impairment is described. The nigrostriatal dopaminergic pathway and regional cerebral blood flow were evaluated using dopamine transporter (DAT) brain single photon emission tomography combined with a low-dose x-ray computerized tomography transmission (hybrid SPECT/CT) and Tc-99m HMPAO brain perfusion SPECT study, respectively. DAT SPECT/CT imaging revealed a reduction in DAT binding in both striatum regions coinciding with bilateral calcifications in the basal ganglia. Brain perfusion scan showed hypoperfusion in basal ganglia regions, posterior parietal cortex bilaterally, left frontopolar and dorsolateral prefrontal cortex, and left temporal lobe. These findings correlated well with the clinical condition of the patient. Mineralization may play a critical role in the pathogenesis of neuronal degeneration. Cortical perfusion changes in patients may better explain the patient's altered cognitive and motor functions.

  9. Compressed gas manifold

    SciTech Connect

    Hildebrand, Richard J.; Wozniak, John J.

    2001-01-01

    A compressed gas storage cell interconnecting manifold including a thermally activated pressure relief device, a manual safety shut-off valve, and a port for connecting the compressed gas storage cells to a motor vehicle power source and to a refueling adapter. The manifold is mechanically and pneumatically connected to a compressed gas storage cell by a bolt including a gas passage therein.

  10. Orofacial inflammatory pain affects the expression of MT1 and NADPH-d in rat caudal spinal trigeminal nucleus and trigeminal ganglion

    PubMed Central

    Huang, Fang; He, Hongwen; Fan, Wenguo; Liu, Yongliang; Zhou, Hongyu; Cheng, Bin

    2013-01-01

    Very little is known about the role of melatonin in the trigeminal system, including the function of melatonin receptor 1. In the present study, adult rats were injected with formaldehyde into the right vibrissae pad to establish a model of orofacial inflammatory pain. The distribution of melatonin receptor 1 and nicotinamide adenine dinucleotide phosphate diaphorase in the caudal spinal trigeminal nucleus and trigeminal ganglion was determined with immunohistochemistry and histochemistry. The results show that there are significant differences in melatonin receptor 1 expression and nicotinamide adenine dinucleotide phosphate diaphorase expression in the trigeminal ganglia and caudal spinal nucleus during the early stage of orofacial inflammatory pain. Our findings suggest that when melatonin receptor 1 expression in the caudal spinal nucleus is significantly reduced, melatonin's regulatory effect on pain is attenuated. PMID:25206619

  11. Retraining the injured spinal cord

    NASA Technical Reports Server (NTRS)

    Edgerton, V. R.; Leon, R. D.; Harkema, S. J.; Hodgson, J. A.; London, N.; Reinkensmeyer, D. J.; Roy, R. R.; Talmadge, R. J.; Tillakaratne, N. J.; Timoszyk, W.; Tobin, A.

    2001-01-01

    The present review presents a series of concepts that may be useful in developing rehabilitative strategies to enhance recovery of posture and locomotion following spinal cord injury. First, the loss of supraspinal input results in a marked change in the functional efficacy of the remaining synapses and neurons of intraspinal and peripheral afferent (dorsal root ganglion) origin. Second, following a complete transection the lumbrosacral spinal cord can recover greater levels of motor performance if it has been exposed to the afferent and intraspinal activation patterns that are associated with standing and stepping. Third, the spinal cord can more readily reacquire the ability to stand and step following spinal cord transection with repetitive exposure to standing and stepping. Fourth, robotic assistive devices can be used to guide the kinematics of the limbs and thus expose the spinal cord to the new normal activity patterns associated with a particular motor task following spinal cord injury. In addition, such robotic assistive devices can provide immediate quantification of the limb kinematics. Fifth, the behavioural and physiological effects of spinal cord transection are reflected in adaptations in most, if not all, neurotransmitter systems in the lumbosacral spinal cord. Evidence is presented that both the GABAergic and glycinergic inhibitory systems are up-regulated following complete spinal cord transection and that step training results in some aspects of these transmitter systems being down-regulated towards control levels. These concepts and observations demonstrate that (a) the spinal cord can interpret complex afferent information and generate the appropriate motor task; and (b) motor ability can be defined to a large degree by training.

  12. Compressible turbulent mixing: Effects of compressibility

    NASA Astrophysics Data System (ADS)

    Ni, Qionglin

    2016-04-01

    We studied by numerical simulations the effects of compressibility on passive scalar transport in stationary compressible turbulence. The turbulent Mach number varied from zero to unity. The difference in driven forcing was the magnitude ratio of compressive to solenoidal modes. In the inertial range, the scalar spectrum followed the k-5 /3 scaling and suffered negligible influence from the compressibility. The growth of the Mach number showed (1) a first reduction and second enhancement in the transfer of scalar flux; (2) an increase in the skewness and flatness of the scalar derivative and a decrease in the mixed skewness and flatness of the velocity-scalar derivatives; (3) a first stronger and second weaker intermittency of scalar relative to that of velocity; and (4) an increase in the intermittency parameter which measures the intermittency of scalar in the dissipative range. Furthermore, the growth of the compressive mode of forcing indicated (1) a decrease in the intermittency parameter and (2) less efficiency in enhancing scalar mixing. The visualization of scalar dissipation showed that, in the solenoidal-forced flow, the field was filled with the small-scale, highly convoluted structures, while in the compressive-forced flow, the field was exhibited as the regions dominated by the large-scale motions of rarefaction and compression.

  13. Global dysrhythmia of cerebro-basal ganglia-cerebellar networks underlies motor tics following striatal disinhibition.

    PubMed

    McCairn, Kevin W; Iriki, Atsushi; Isoda, Masaki

    2013-01-01

    Motor tics, a cardinal symptom of Tourette syndrome (TS), are hypothesized to arise from abnormalities within cerebro-basal ganglia circuits. Yet noninvasive neuroimaging of TS has previously identified robust activation in the cerebellum. To date, electrophysiological properties of cerebellar activation and its role in basal ganglia-mediated tic expression remain unknown. We performed multisite, multielectrode recordings of single-unit activity and local field potentials from the cerebellum, basal ganglia, and primary motor cortex using a pharmacologic monkey model of motor tics/TS. Following microinjections of bicuculline into the sensorimotor putamen, periodic tics occurred predominantly in the orofacial region, and a sizable number of cerebellar neurons showed phasic changes in activity associated with tic episodes. Specifically, 64% of the recorded cerebellar cortex neurons exhibited increases in activity, and 85% of the dentate nucleus neurons displayed excitatory, inhibitory, or multiphasic responses. Critically, abnormal discharges of cerebellar cortex neurons and excitatory-type dentate neurons mostly preceded behavioral tic onset, indicating their central origins. Latencies of pathological activity in the cerebellum and primary motor cortex substantially overlapped, suggesting that aberrant signals may be traveling along divergent pathways to these structures from the basal ganglia. Furthermore, the occurrence of tic movement was most closely associated with local field potential spikes in the cerebellum and primary motor cortex, implying that these structures may function as a gate to release overt tic movements. These findings indicate that tic-generating networks in basal ganglia mediated tic disorders extend beyond classical cerebro-basal ganglia circuits, leading to global network dysrhythmia including cerebellar circuits.

  14. Dopaminergic Control of the Exploration-Exploitation Trade-Off via the Basal Ganglia

    PubMed Central

    Humphries, Mark D.; Khamassi, Mehdi; Gurney, Kevin

    2012-01-01

    We continuously face the dilemma of choosing between actions that gather new information or actions that exploit existing knowledge. This “exploration-exploitation” trade-off depends on the environment: stability favors exploiting knowledge to maximize gains; volatility favors exploring new options and discovering new outcomes. Here we set out to reconcile recent evidence for dopamine’s involvement in the exploration-exploitation trade-off with the existing evidence for basal ganglia control of action selection, by testing the hypothesis that tonic dopamine in the striatum, the basal ganglia’s input nucleus, sets the current exploration-exploitation trade-off. We first advance the idea of interpreting the basal ganglia output as a probability distribution function for action selection. Using computational models of the full basal ganglia circuit, we showed that, under this interpretation, the actions of dopamine within the striatum change the basal ganglia’s output to favor the level of exploration or exploitation encoded in the probability distribution. We also found that our models predict striatal dopamine controls the exploration-exploitation trade-off if we instead read-out the probability distribution from the target nuclei of the basal ganglia, where their inhibitory input shapes the cortical input to these nuclei. Finally, by integrating the basal ganglia within a reinforcement learning model, we showed how dopamine’s effect on the exploration-exploitation trade-off could be measurable in a forced two-choice task. These simulations also showed how tonic dopamine can appear to affect learning while only directly altering the trade-off. Thus, our models support the hypothesis that changes in tonic dopamine within the striatum can alter the exploration-exploitation trade-off by modulating the output of the basal ganglia. PMID:22347155

  15. Profiling of dynamically changed gene expression in dorsal root ganglia post peripheral nerve injury and a critical role of injury-induced glial fibrillary acidic protein in maintenance of pain behaviors [corrected].

    PubMed

    Kim, Doo-Sik; Figueroa, Katherine W; Li, Kang-Wu; Boroujerdi, Amin; Yolo, Tim; Luo, Z David

    2009-05-01

    To explore cellular changes in sensory neurons after nerve injury and to identify potential target genes contributing to different stages of neuropathic pain development, we used Affymetrix oligo arrays to profile gene expression patterns in L5/6 dorsal root ganglia (DRG) from the neuropathic pain model of left L5/6 spinal nerve ligation at different stages of neuropathic pain development. Our data indicated that nerve injury induced changes in expression of genes with similar biological functions in a temporal specific manner that correlates with particular stages of neuropathic pain development, indicating dynamic neuroplasticity in the DRG in response to peripheral nerve injury and during neuropathic pain development. Data from post-array validation indicated that there was a temporal correlation between injury-induced expression of the glial fibrillary acidic protein (GFAP), a marker for activated astrocytes, and neuropathic pain development. Spinal nerve ligation injury in GFAP knockout mice resulted in neuropathic pain states with similar onset, but a shortened duration compared with that in age, and gender-matched wild-type littermates. Intrathecal GFAP antisense oligonucleotide treatment in injured rats with neuropathic pain states reversed injury-induced behavioral hypersensitivity and GFAP upregulation in DRG and spinal cord. Together, these findings indicate that injury-induced GFAP upregulation not only serves as a marker for astrocyte activation, but it may also play a critical, but yet identified, role in the maintenance of neuropathic pain states. PMID:19307059

  16. Intraoperative monitoring during decompression of the spinal cord and spinal nerves using transcranial motor-evoked potentials: The law of twenty percent.

    PubMed

    Tanaka, Satoshi; Hirao, Jun; Oka, Hidehiro; Akimoto, Jiro; Takanashi, Junko; Yamada, Junichi

    2015-09-01

    Motor-evoked potential (MEP) monitoring was performed during 196 consecutive spinal (79 cervical and 117 lumbar) surgeries for the decompression of compressive spinal and spinal nerve diseases. MEP monitoring in spinal surgery has been considered sensitive to predict postoperative neurological recovery. In this series, transcranial stimulation consisted of trains of five pulses at a constant voltage (200-600 V). For the normalization of MEP, we recorded compound muscle action potentials (CMAP) after peripheral nerve stimulation, usually on the median nerve at the wrist 2 seconds before or after each transcranial stimulation of the motor area, for all operations. The sensitivity and specificity of MEP monitoring was 100% and 97.4%, respectively, or 96.9% with or without CMAP compensation (if the threshold of postoperative motor palsy was defined as 20% relative amplitude rate [RAR]). The mean RAR after CMAP normalization, of the most affected muscle in the patient group with excellent postoperative results (recovery rate of a Japan Orthopedic Association score of more than 50%) was significantly higher than that in the other groups (p=0.0224). All patients with an amplitude increase rate (AIR) with CMAP normalization of more than 20% achieved neurological recovery postoperatively. Our results suggest that if the RAR is more than 20%, postoperative motor palsy can be avoided in spinal surgery. If the AIR with normalization by CMAP after peripheral nerve stimulation is more than 20%, neurological recovery can be expected in spinal surgery. PMID:26142049

  17. Expression of an Activated Integrin Promotes Long-Distance Sensory Axon Regeneration in the Spinal Cord

    PubMed Central

    Cheah, Menghon; Chew, Daniel J.; Moloney, Elizabeth B.; Verhaagen, Joost; Fässler, Reinhard

    2016-01-01

    After CNS injury, axon regeneration is blocked by an inhibitory environment consisting of the highly upregulated tenascin-C and chondroitin sulfate proteoglycans (CSPGs). Tenascin-C promotes growth of axons if they express a tenascin-binding integrin, particularly α9β1. Additionally, integrins can be inactivated by CSPGs, and this inhibition can be overcome by the presence of a β1-binding integrin activator, kindlin-1. We examined the synergistic effect of α9 integrin and kindlin-1 on sensory axon regeneration in adult rat spinal cord after dorsal root crush and adeno-associated virus transgene expression in dorsal root ganglia. After 12 weeks, axons from C6–C7 dorsal root ganglia regenerated through the tenascin-C-rich dorsal root entry zone into the dorsal column up to C1 level and above (>25 mm axon length) through a normal pathway. Animals also showed anatomical and electrophysiological evidence of reconnection to the dorsal horn and behavioral recovery in mechanical pressure, thermal pain, and ladder-walking tasks. Expression of α9 integrin or kindlin-1 alone promoted much less regeneration and recovery. SIGNIFICANCE STATEMENT The study demonstrates that long-distance sensory axon regeneration over a normal pathway and with sensory and sensory–motor recovery can be achieved. This was achieved by expressing an integrin that recognizes tenascin-C, one of the components of glial scar tissue, and an integrin activator. This enabled extensive long-distance (>25 mm) regeneration of both myelinated and unmyelinated sensory axons with topographically correct connections in the spinal cord. The extent of growth and recovery we have seen would probably be clinically significant. Restoration of sensation to hands, perineum, and genitalia would be a significant improvement for a spinal cord-injured patient. PMID:27383601

  18. The immediate effect of repeated loading on the compressive strength of young porcine lumbar spine.

    PubMed

    Thoreson, Olof; Baranto, Adad; Ekström, Lars; Holm, Sten; Hellström, Mikael; Swärd, Leif

    2010-05-01

    The human spine is exposed to repeated loading during daily activities and more extremely during sports. Despite this, there remains a lack of knowledge regarding the immediate effects on the spine due to this mode of loading. Age-specific spinal injury patterns has been demonstrated and this implies differences in reaction to load mode and load history The purpose of the present study was to investigate the impact of cyclic pre-loading on the biomechanical properties and fracture patterns of the adolescent spine in an experimental model. Eight functional spinal units from four young porcine spines were harvested. The functional spinal units were cyclic loaded with 20,000 cycles and then axially compressed to failure. The compression load at failure, ultimate stress and viscoelastic parameters were calculated. The functional spinal units were examined with plain radiography, computer tomography and MRI before and after the loading, and finally macroscopically and histologically. The median compression load at failure in this study was 8.3 kN (range 5.6-8.7 kN). The median deformation for all cases was 2.24 mm (range 2.30-2.7 mm) and stiffness was 3.45 N/mm (range 3.5-4.5 N/mm). A fracture was seen on radiograph in one case, on CT and macroscopically in seven, and on MRI and histologically in all eight cases. The cyclic loaded functional spinal units in the present study were not more sensitive to axial compression than non-cyclic loaded functional spinal units from young porcine. The endplate and the growth zone were the weakest part in the cyclic loaded functional spinal units. Disc signal reduction and disc height reduction was found on MRI. The E-modulus value found in this study was of the same order of magnitude as found by others using a porcine animal model.

  19. Spinal stimulator peri-electrode masses: case report.

    PubMed

    Scranton, Robert A; Skaribas, Ioannis M; Simpson, Richard K

    2015-01-01

    The authors describe a case of delayed spastic quadriparesis caused by a peri-electrode mass following the implantation of a minimally invasive percutaneous spinal cord stimulator (SCS). Prior reports with paddle-type electrodes are reviewed, and a detailed histological and pathophysiological comparison with the present case is made. The patient developed tolerance to a cervical percutaneous SCS 4 months after implantation, followed by the onset of spastic quadriparesis 9 months after implantation. The stimulator was removed, and contrast-enhanced MRI revealed an enhancing epidural mass where the system had been placed, with severe spinal cord compression. Decompression was carried out, and the patient experienced neurological improvement. Pathological examination revealed fibrotic tissue with granulomatous and multinucleated giant cell reactions. No evidence of infection or hemorrhage was found. Professionals treating patients with SCSs or contemplating their insertion should be aware of this delayed complication and associated risk factors. PMID:25380541

  20. Biomechanical responses to open experimental spinal cord injury.

    PubMed

    Hung, T K; Albin, M S; Brown, T D; Bunegin, L; Albin, R; Jannetta, P J

    1975-08-01

    This study evaluates the dynamic biomechanical responses of the cat spinal cord during experimental impact injury. Temporal deformations of the laminectomized spinal cord were recorded by a high speed camera (1500-3000 frames/sec). The cinematograph revealed large deformations, the cord being compressed to half its posterior-anterior diameter 7 msec after the onset of the impact. Peak impact force produced by a 20 gm mass falling from 15 cm height (300 GCF) averaged about 1.2 pounds, and the corresponding stress acting on the dural surface reached 42 pounds per square inch (or 2200 mm Hg). Both positive and negative pressure waves were found to be propagated in the cerebrospinal fluid.

  1. Decompression surgery for spinal metastases: a systematic review.

    PubMed

    Bakar, Dara; Tanenbaum, Joseph E; Phan, Kevin; Alentado, Vincent J; Steinmetz, Michael P; Benzel, Edward C; Mroz, Thomas E

    2016-08-01

    OBJECTIVE The aim of this study was to systematically review the literature on reported outcomes following decompression surgery for spinal metastases. METHODS The authors conducted MEDLINE, Scopus, and Web of Science database searches for studies reporting clinical outcomes and complications associated with decompression surgery for metastatic spinal tumors. Both retrospective and prospective studies were included. After meeting inclusion criteria, articles were categorized based on the following reported outcomes: survival, ambulation, surgical technique, neurological function, primary tumor histology, and miscellaneous outcomes. RESULTS Of the 4148 articles retrieved from databases, 36 met inclusion criteria. Of those included, 8 were prospective studies and 28 were retrospective studies. The year of publication ranged from 1992 to 2015. Study size ranged from 21 to 711 patients. Three studies found that good preoperative Karnofsky Performance Status (KPS ≥ 80%) was a significant predictor of survival. No study reported a significant effect of time-to-surgery following the onset of spinal cord compression symptoms on survival. Three studies reported improvement in neurological function following surgery. The most commonly cited complication was wound infection or dehiscence (22 studies). Eight studies reported that preoperative ambulatory or preoperative motor status was a significant predictor of postoperative ambulatory status. A wide variety of surgical techniques were reported: posterior decompression and stabilization, posterior decompression without stabilization, and posterior decompression with total or subtotal tumor resection. Although a wide range of functional scales were used to assess neurological outcomes, four studies used the American Spinal Injury Association (ASIA) Impairment Scale to assess neurological function. Four studies reported the effects of radiation therapy and local disease control for spinal metastases. Two studies reported that

  2. Attitudes Towards Individuals with Spinal Cord Injuries

    ERIC Educational Resources Information Center

    Conway, Cassandra Sligh D.; Gooden, Randy; Nowell, Jennifer; Wilson, Navodda

    2010-01-01

    This paper will shed light on the lives of persons with spinal cord injuries by revealing the literature on spinal cord injuries that focuses on research that can shed light on attitudes towards persons with spinal cord injuries. The background literature related to incidences, the definition of spinal cord injury, and vocational opportunities are…

  3. Conditional Routing of Information to the Cortex: A Model of the Basal Ganglia's Role in Cognitive Coordination

    ERIC Educational Resources Information Center

    Stocco, Andrea; Lebiere, Christian; Anderson, John R.

    2010-01-01

    The basal ganglia play a central role in cognition and are involved in such general functions as action selection and reinforcement learning. Here, we present a model exploring the hypothesis that the basal ganglia implement a conditional information-routing system. The system directs the transmission of cortical signals between pairs of regions…

  4. Functions of the cortico-basal ganglia circuits for spoken language may extend beyond emotional-affective modulation in adults.

    PubMed

    Hanakawa, Takashi; Hosoda, Chihiro

    2014-12-01

    We support Ackermann et al.'s proposal that the cortico-basal ganglia circuits may play essential roles in the evolution of spoken language. Here we discuss further evidence indicating that the cortico-basal ganglia circuits may contribute to various aspects of spoken language including planning, learning, and controlling of speech in adulthood.

  5. Mirror-writing and reversed repetition of digits in a right-handed patient with left basal ganglia haematoma.

    PubMed Central

    Chia, L G; Kinsbourne, M

    1987-01-01

    A 57 year old right-handed Chinese man sustained a left basal ganglia haemorrhage resulting in speech disorder and right hemiplegia. He mirror-wrote with his left hand and during speech recovery repeated digits in reverse sequence. The abnormal right to left directionality possibly reflected release of right basal ganglia from left-sided control. Images PMID:3612156

  6. Measurement of Intraspinal Pressure After Spinal Cord Injury: Technical Note from the Injured Spinal Cord Pressure Evaluation Study.

    PubMed

    Werndle, Melissa C; Saadoun, Samira; Phang, Isaac; Czosnyka, Marek; Varsos, Georgios; Czosnyka, Zofia; Smielewski, Peter; Jamous, Ali; Bell, B Anthony; Zoumprouli, Argyro; Papadopoulos, Marios C

    2016-01-01

    Intracranial pressure (ICP) is routinely measured in patients with severe traumatic brain injury (TBI). We describe a novel technique that allowed us to monitor intraspinal pressure (ISP) at the injury site in 14 patients who had severe acute traumatic spinal cord injury (TSCI), analogous to monitoring ICP after brain injury. A Codman probe was inserted subdurally to measure the pressure of the injured spinal cord compressed against the surrounding dura. Our key finding is that it is feasible and safe to monitor ISP for up to a week in patients after TSCI, starting within 72 h of the injury. With practice, probe insertion and calibration take less than 10 min. The ISP signal characteristics after TSCI were similar to the ICP signal characteristics recorded after TBI. Importantly, there were no associated complications. Future studies are required to determine whether reducing ISP improves neurological outcome after severe TSCI. PMID:27165930

  7. Whiplash-like facet joint loading initiates glutamatergic responses in the DRG and spinal cord associated with behavioral hypersensitivity

    PubMed Central

    Dong, Ling; Quindlen, Julia C.; Lipschutz, Daniel E.; Winkelstein, Beth A.

    2012-01-01

    The cervical facet joint and its capsule are a common source of neck pain from whiplash. Mechanical hyperalgesia elicited by painful facet joint distraction is associated with spinal neuronal hyperexcitability that can be induced by transmitter/receptor systems that potentiate the synaptic activation of neurons. This study investigated the temporal response of a glutamate receptor and transporters in the dorsal root ganglia (DRG) and spinal cord. Bilateral C6/C7 facet joint distractions were imposed in the rat either to produce behavioral sensitivity or without inducing any sensitivity. Neuronal metabotropic glutamate receptor-5 (mGluR5) and protein kinase C-epsilon (PKCε) expression in the DRG and spinal cord were evaluated on days 1 and 7. Spinal expression of a glutamate transporter, excitatory amino acid carrier 1 (EAAC1), was also quantified at both time points. Painful distraction produced immediate behavioral hypersensitivity that was sustained for 7 days. Increased expression of mGluR5 and PKCε in the DRG was not evident until day 7 and only following painful distraction; this increase was observed in small-diameter neurons. Only painful facet joint distraction produced a significant increase (p<0.001) in neuronal mGluR5 over time, and this increase also was significantly elevated (p ≤ 0.05) over responses in the other groups at day 7. However, there were no differences in spinal PKCε expression on either day or between groups. Spinal EAAC1 expression was significantly increased (p<0.03) only in the nonpainful groups on day 7. Results from this study suggest spinal glutamatergic plasticity is selectively modulated in association with facet-mediated pain. PMID:22578356

  8. Selective attentional enhancement and inhibition of fronto-posterior connectivity by the basal ganglia during attention switching.

    PubMed

    van Schouwenburg, Martine R; den Ouden, Hanneke E M; Cools, Roshan

    2015-06-01

    The prefrontal cortex and the basal ganglia interact to selectively gate a desired action. Recent studies have shown that this selective gating mechanism of the basal ganglia extends to the domain of attention. Here, we investigate the nature of this action-like gating mechanism for attention using a spatial attention-switching paradigm in combination with functional neuroimaging and dynamic causal modeling. We show that the basal ganglia guide attention by focally releasing inhibition of task-relevant representations, while simultaneously inhibiting task-irrelevant representations by selectively modulating prefrontal top-down connections. These results strengthen and specify the role of the basal ganglia in attention. Moreover, our findings have implications for psychological theorizing by suggesting that inhibition of unattended sensory regions is not only a consequence of mutual suppression, but is an active process, subserved by the basal ganglia. PMID:24343891

  9. Spinal Plasticity following Intermittent Hypoxia: Implications for Spinal Injury

    PubMed Central

    Dale-Nagle, Erica A.; Hoffman, Michael S.; MacFarlane, Peter M.; Satriotomo, Irawan; Lovett-Barr, Mary Rachael; Vinit, Stéphane; Mitchell, Gordon S.

    2011-01-01

    Plasticity is a fundamental property of the neural system controlling breathing. One frequently studied model of respiratory plasticity is long-term facilitation of phrenic motor output (pLTF) following acute intermittent hypoxia (AIH). pLTF arises from spinal plasticity, increasing respiratory motor output through a mechanism that requires new synthesis of brain derived neurotrophic factor (BDNF), activation of its high affinity receptor, tropomyosin-related kinase B (TrkB) and extracellular-related kinase (ERK) mitogen-activated protein (MAP) kinase signaling in or near phrenic motor neurons. Since intermittent hypoxia induces spinal plasticity, we are exploring the potential to harness repetitive AIH as a means of inducing functional recovery in conditions causing respiratory insufficiency, such as cervical spinal injury. Since repetitive AIH induces phenotypic plasticity in respiratory and motor neurons, it may restore respiratory motor function in patients with incomplete spinal injury. PMID:20536940

  10. Loss of Hoxb8 alters spinal dorsal laminae and sensory responses in mice

    PubMed Central

    Holstege, Jan C.; de Graaff, Wim; Hossaini, Mehdi; Cano, Sebastian Cardona; Jaarsma, Dick; van den Akker, Eric; Deschamps, Jacqueline

    2008-01-01

    Although Hox gene expression has been linked to motoneuron identity, a role of these genes in development of the spinal sensory system remained undocumented. Hoxb genes are expressed at high levels in the dorsal horn of the spinal cord. Hoxb8 null mutants manifest a striking phenotype of excessive grooming and hairless lesions on the lower back. Applying local anesthesia underneath the hairless skin suppressed excessive grooming, indicating that this behavior depends on peripheral nerve activity. Functional ablation of mouse Hoxb8 also leads to attenuated response to nociceptive and thermal stimuli. Although spinal ganglia were normal, a lower postmitotic neural count was found in the dorsalmost laminae at lumbar levels around birth, leading to a smaller dorsal horn and a correspondingly narrowed projection field of nociceptive and thermoceptive afferents. The distribution of the dorsal neuronal cell types that we assayed, including neurons expressing the itch-specific gastrin-releasing peptide receptor, was disorganized in the lumbar region of the mutant. BrdU labeling experiments and gene-expression studies at stages around the birth of these neurons suggest that loss of Hoxb8 starts impairing development of the upper laminae of the lumbar spinal cord at approximately embryonic day (E)15.5. Because none of the neuronal markers used was unexpressed in the adult dorsal horn, absence of Hoxb8 does not impair neuronal differentiation. The data therefore suggest that a lower number of neurons in the upper spinal laminae and neuronal disorganization in the dorsal horn underlie the sensory defects including the excessive grooming of the Hoxb8 mutant. PMID:18430798

  11. The disrupted basal ganglia and behavioural control: an integrative cross-domain perspective of spontaneous stereotypy.

    PubMed

    McBride, Sebastian D; Parker, Matthew O

    2015-01-01

    Spontaneous stereotypic behaviour (SB) is common in many captive animal species, as well as in humans with some severe psychiatric disorders, and is often cited as being related to general basal ganglia dysfunction. Despite this assertion, there is little in the literature examining SB specifically in terms of the basal ganglia mechanics. In this review, we attempt to fill this gap by offering an integrative, cross-domain perspective of SB by linking what we currently understand about the SB phenotype with the ever-growing literature on the anatomy and functionality of the basal ganglia. After outlining current models of SB from different theoretical perspectives, we offer a broad but detailed overview of normally functioning basal ganglia mechanics, and attempt to link this with current neurophysiological evidence related to spontaneous SB. Based on this we present an empirically derived theoretical framework, which proposes that SB is the result of a dysfunctional action selection system that may reflect dysregulation of excitatory (direct) and inhibitory (indirect and hyperdirect) pathways as well as alterations in mechanisms of behavioural switching. This approach also suggests behaviours that specifically become stereotypic may reflect inbuilt low selection threshold behavioural sequences associated with early development and the species-specific ethogram or, low threshold behavioural sequences that are the result of stress-induced dopamine exposure at the time of performance.

  12. [Distinct roles of the direct and indirect pathways in the basal ganglia circuit mechanism].

    PubMed

    Morita, Makiko; Hikida, Takatoshi

    2015-11-01

    The basal ganglia are key neural substrates that control not only motor balance but also emotion, motivation, cognition, learning, and decision-making. Dysfunction of the basal ganglia leads to neurodegenerative diseases (e.g. Parkinson's disease and Huntington's disease) and psychiatric disorders (e.g. drug addiction, schizophrenia, and depression). In the basal ganglia circuit, there are two important pathways: the direct and indirect striatal pathways. Recently, new molecular techniques that activate or inactive selectively the direct or indirect pathway neurons have revealed the function of each pathway. Here we review the distinct roles of the direct and indirect striatal pathways in brain function and drug addiction. We have developed a reversible neurotransmission blocking technique, in which transmission of each pathway is selectively blocked by specific expression of transmission-blocking tetanus toxin, and revealed that the activation of D1 receptors in the direct pathway is critical for reward learning/cocaine addiction, and that the inactivation of D2 receptors is critical for aversive learning/learning flexibility. We propose a new circuit mechanism by which the dopaminergic input from the ventral tegmental area can switch the direct and indirect pathways in the nucleus accumbens. These basal ganglia circuit mechanisms will give us insights into the pathophysiology of mental diseases. PMID:26785520

  13. How may the basal ganglia contribute to auditory categorization and speech perception?

    PubMed Central

    Lim, Sung-Joo; Fiez, Julie A.; Holt, Lori L.

    2014-01-01

    Listeners must accomplish two complementary perceptual feats in extracting a message from speech. They must discriminate linguistically-relevant acoustic variability and generalize across irrelevant variability. Said another way, they must categorize speech. Since the mapping of acoustic variability is language-specific, these categories must be learned from experience. Thus, understanding how, in general, the auditory system acquires and represents categories can inform us about the toolbox of mechanisms available to speech perception. This perspective invites consideration of findings from cognitive neuroscience literatures outside of the speech domain as a means of constraining models of speech perception. Although neurobiological models of speech perception have mainly focused on cerebral cortex, research outside the speech domain is consistent with the possibility of significant subcortical contributions in category learning. Here, we review the functional role of one such structure, the basal ganglia. We examine research from animal electrophysiology, human neuroimaging, and behavior to consider characteristics of basal ganglia processing that may be advantageous for speech category learning. We also present emerging evidence for a direct role for basal ganglia in learning auditory categories in a complex, naturalistic task intended to model the incidental manner in which speech categories are acquired. To conclude, we highlight new research questions that arise in incorporating the broader neuroscience research literature in modeling speech perception, and suggest how understanding contributions of the basal ganglia can inform attempts to optimize training protocols for learning non-native speech categories in adulthood. PMID:25136291

  14. Opponent and bidirectional control of movement velocity in the basal ganglia.

    PubMed

    Yttri, Eric A; Dudman, Joshua T

    2016-05-02

    For goal-directed behaviour it is critical that we can both select the appropriate action and learn to modify the underlying movements (for example, the pitch of a note or velocity of a reach) to improve outcomes. The basal ganglia are a critical nexus where circuits necessary for the production of behaviour, such as the neocortex and thalamus, are integrated with reward signalling to reinforce successful, purposive actions. The dorsal striatum, a major input structure of basal ganglia, is composed of two opponent pathways, direct and indirect, thought to select actions that elicit positive outcomes and suppress actions that do not, respectively. Activity-dependent plasticity modulated by reward is thought to be sufficient for selecting actions in the striatum. Although perturbations of basal ganglia function produce profound changes in movement, it remains unknown whether activity-dependent plasticity is sufficient to produce learned changes in movement kinematics, such as velocity. Here we use cell-type-specific stimulation in mice delivered in closed loop during movement to demonstrate that activity in either the direct or indirect pathway is sufficient to produce specific and sustained increases or decreases in velocity, without affecting action selection or motivation. These behavioural changes were a form of learning that accumulated over trials, persisted after the cessation of stimulation, and were abolished in the presence of dopamine antagonists. Our results reveal that the direct and indirect pathways can each bidirectionally control movement velocity, demonstrating unprecedented specificity and flexibility in the control of volition by the basal ganglia.

  15. RNA-Seq Analysis of Human Trigeminal and Dorsal Root Ganglia with a Focus on Chemoreceptors.

    PubMed

    Flegel, Caroline; Schöbel, Nicole; Altmüller, Janine; Becker, Christian; Tannapfel, Andrea; Hatt, Hanns; Gisselmann, Günter

    2015-01-01

    The chemosensory capacity of the somatosensory system relies on the appropriate expression of chemoreceptors, which detect chemical stimuli and transduce sensory information into cellular signals. Knowledge of the complete repertoire of the chemoreceptors expressed in human sensory ganglia is lacking. This study employed the next-generation sequencing technique (RNA-Seq) to conduct the first expression analysis of human trigeminal ganglia (TG) and dorsal root ganglia (DRG). We analyzed the data with a focus on G-protein coupled receptors (GPCRs) and ion channels, which are (potentially) involved in chemosensation by somatosensory neurons in the human TG and DRG. For years, transient receptor potential (TRP) channels have been considered the main group of receptors for chemosensation in the trigeminal system. Interestingly, we could show that sensory ganglia also express a panel of different olfactory receptors (ORs) with putative chemosensory function. To characterize OR expression in more detail, we performed microarray, semi-quantitative RT-PCR experiments, and immunohistochemical staining. Additionally, we analyzed the expression data to identify further known or putative classes of chemoreceptors in the human TG and DRG. Our results give an overview of the major classes of chemoreceptors expressed in the human TG and DRG and provide the basis for a broader understanding of the reception of chemical cues. PMID:26070209

  16. The Role of the Basal Ganglia in Implicit Contextual Learning: A Study of Parkinson's Disease

    ERIC Educational Resources Information Center

    van Asselen, Marieke; Almeida, Ines; Andre, Rui; Januario, Cristina; Goncalves, Antonio Freire; Castelo-Branco, Miguel

    2009-01-01

    Implicit contextual learning refers to the ability to memorize contextual information from our environment. This contextual information can then be used to guide our attention to a specific location. Although the medial temporal lobe is important for this type of learning, the basal ganglia might also be involved considering its role in many…

  17. Differential diagnosis for bilateral abnormalities of the basal ganglia and thalamus.

    PubMed

    Hegde, Amogh N; Mohan, Suyash; Lath, Narayan; Lim, C C Tchoyoson

    2011-01-01

    The basal ganglia and thalamus are paired deep gray matter structures that may be involved by a wide variety of disease entities. The basal ganglia are highly metabolically active and are symmetrically affected in toxic poisoning, metabolic abnormalities, and neurodegeneration with brain iron accumulation. Both the basal ganglia and thalamus may be affected by other systemic or metabolic disease, degenerative disease, and vascular conditions. Focal flavivirus infections, toxoplasmosis, and primary central nervous system lymphoma may also involve both deep gray matter structures. The thalamus is more typically affected alone by focal conditions than by systemic disease. Radiologists may detect bilateral abnormalities of the basal ganglia and thalamus in different acute and chronic clinical situations, and although magnetic resonance (MR) imaging is the modality of choice for evaluation, the correct diagnosis can be made only by taking all relevant clinical and laboratory information into account. The neuroimaging diagnosis is influenced not only by detection of specific MR imaging features such as restricted diffusion and the presence of hemorrhage, but also by detection of abnormalities involving other parts of the brain, especially the cerebral cortex, brainstem, and white matter. Judicious use of confirmatory neuroimaging investigations, especially diffusion-weighted imaging, MR angiography, MR venography, and MR spectroscopy during the same examination, may help improve characterization of these abnormalities and help narrow the differential diagnosis.

  18. Evidence for "direct" and "indirect" pathways through the song system basal ganglia.

    PubMed

    Farries, Michael A; Ding, Long; Perkel, David J

    2005-03-28

    Song learning in oscine birds relies on a circuit known as the "anterior forebrain pathway," which includes a specialized region of the avian basal ganglia. This region, area X, is embedded within a telencephalic structure considered homologous to the striatum, the input structure of the mammalian basal ganglia. Area X has many features in common with the mammalian striatum, yet has distinctive traits, including largely aspiny projection neurons that directly innervate the thalamus and a cell type that physiologically resembles neurons recorded in the mammalian globus pallidus. We have proposed that area X is a mixture of striatum and globus pallidus and has the same functional organization as circuits in the mammalian basal ganglia. Using electrophysiological and anatomical approaches, we found that area X contains a functional analog of the "direct" striatopallidothalamic pathway of mammals: axons of the striatal spiny neurons make close contacts on the somata and dendrites of pallidal cells. A subset of pallidal neurons project directly to the thalamus. Surprisingly, we found evidence that many pallidal cells may not project to the thalamus, but rather participate in a functional analog of the mammalian "indirect" pathway, which may oppose the effects of the direct pathway. Our results deepen our understanding of how information flows through area X and provide more support for the notion that song learning in oscines employs physiological mechanisms similar to basal ganglia-dependent forms of motor learning in mammals. PMID:15717304

  19. Opponent and bidirectional control of movement velocity in the basal ganglia.

    PubMed

    Yttri, Eric A; Dudman, Joshua T

    2016-05-19

    For goal-directed behaviour it is critical that we can both select the appropriate action and learn to modify the underlying movements (for example, the pitch of a note or velocity of a reach) to improve outcomes. The basal ganglia are a critical nexus where circuits necessary for the production of behaviour, such as the neocortex and thalamus, are integrated with reward signalling to reinforce successful, purposive actions. The dorsal striatum, a major input structure of basal ganglia, is composed of two opponent pathways, direct and indirect, thought to select actions that elicit positive outcomes and suppress actions that do not, respectively. Activity-dependent plasticity modulated by reward is thought to be sufficient for selecting actions in the striatum. Although perturbations of basal ganglia function produce profound changes in movement, it remains unknown whether activity-dependent plasticity is sufficient to produce learned changes in movement kinematics, such as velocity. Here we use cell-type-specific stimulation in mice delivered in closed loop during movement to demonstrate that activity in either the direct or indirect pathway is sufficient to produce specific and sustained increases or decreases in velocity, without affecting action selection or motivation. These behavioural changes were a form of learning that accumulated over trials, persisted after the cessation of stimulation, and were abolished in the presence of dopamine antagonists. Our results reveal that the direct and indirect pathways can each bidirectionally control movement velocity, demonstrating unprecedented specificity and flexibility in the control of volition by the basal ganglia. PMID:27135927

  20. Bidirectional Plasticity in Striatonigral Synapses: A Switch to Balance Direct and Indirect Basal Ganglia Pathways

    ERIC Educational Resources Information Center

    Aceves, Jose J.; Rueda-Orozco, Pavel E.; Hernandez-Martinez, Ricardo; Galarraga, Elvira; Bargas, Jose

    2011-01-01

    There is no hypothesis to explain how direct and indirect basal ganglia (BG) pathways interact to reach a balance during the learning of motor procedures. Both pathways converge in the substantia nigra pars reticulata (SNr) carrying the result of striatal processing. Unfortunately, the mechanisms that regulate synaptic plasticity in striatonigral…

  1. Alterations in neuronal activity in basal ganglia-thalamocortical circuits in the parkinsonian state

    PubMed Central

    Galvan, Adriana; Devergnas, Annaelle; Wichmann, Thomas

    2015-01-01

    In patients with Parkinson’s disease and in animal models of this disorder, neurons in the basal ganglia and related regions in thalamus and cortex show changes that can be recorded by using electrophysiologic single-cell recording techniques, including altered firing rates and patterns, pathologic oscillatory activity and increased inter-neuronal synchronization. In addition, changes in synaptic potentials or in the joint spiking activities of populations of neurons can be monitored as alterations in local field potentials (LFPs), electroencephalograms (EEGs) or electrocorticograms (ECoGs). Most of the mentioned electrophysiologic changes are probably related to the degeneration of diencephalic dopaminergic neurons, leading to dopamine loss in the striatum and other basal ganglia nuclei, although degeneration of non-dopaminergic cell groups may also have a role. The altered electrical activity of the basal ganglia and associated nuclei may contribute to some of the motor signs of the disease. We here review the current knowledge of the electrophysiologic changes at the single cell level, the level of local populations of neural elements, and the level of the entire basal ganglia-thalamocortical network in parkinsonism, and discuss the possible use of this information to optimize treatment approaches to Parkinson’s disease, such as deep brain stimulation (DBS) therapy. PMID:25698937

  2. Association Between Invisible Basal Ganglia and ZNF335 Mutations: A Case Report.

    PubMed

    Sato, Rieko; Takanashi, Jun-Ichi; Tsuyusaki, Yu; Kato, Mitsuhiro; Saitsu, Hirotomo; Matsumoto, Naomichi; Takahashi, Takao

    2016-09-01

    ZNF335 was first reported in 2012 as a causative gene for microcephaly. Because only 1 consanguineous pedigree has ever been reported, the key clinical features associated with ZNF335 mutations remain unknown. In this article, we describe another family harboring ZNF335 mutations. The female proband was the first child of nonconsanguineous Japanese parents. At birth, microcephaly was absent; her head circumference was 32.0 cm (-0.6 SD). At 3 months, microcephaly was noted, (head circumference, 34.0 cm [-4.6 SD]). Brain MRI showed invisible basal ganglia, cerebral atrophy, brainstem hypoplasia, and cerebellar atrophy. At 33 months, (head circumference, 41.0 cm [-5.1 SD]), she had severe psychomotor retardation. After obtaining informed consent from her parents, we performed exome sequencing in the proband and identified 1 novel and 1 known mutation in ZNF335, namely, c.1399T>C (p.C467R) and c.1505A>G (p.Y502C), respectively. The mutations were individually transmitted by her parents, indicating that the proband was compound heterozygous for the mutations. Her brain imaging findings, including invisible basal ganglia, were similar to those observed in the previous case with ZNF335 mutations. We speculate that invisible basal ganglia may be the key feature of ZNF335 mutations. For infants presenting with both microcephaly and invisible basal ganglia, ZNF335 mutations should be considered as a differential diagnosis. PMID:27540107

  3. The Differential Effects of Thalamus and Basal Ganglia on Facial Emotion Recognition

    ERIC Educational Resources Information Center

    Cheung, Crystal C. Y.; Lee, Tatia M. C.; Yip, James T. H.; King, Kristin E.; Li, Leonard S. W.

    2006-01-01

    This study examined if subcortical stroke was associated with impaired facial emotion recognition. Furthermore, the lateralization of the impairment and the differential profiles of facial emotion recognition deficits with localized thalamic or basal ganglia damage were also studied. Thirty-eight patients with subcortical strokes and 19 matched…

  4. Basal ganglia volume in unmedicated patients with schizophrenia is associated with treatment response to antipsychotic medication.

    PubMed

    Hutcheson, Nathan L; Clark, David G; Bolding, Mark S; White, David M; Lahti, Adrienne C

    2014-01-30

    We investigated the relationship between basal ganglia volume and treatment response to the atypical antipsychotic medication risperidone in unmedicated patients with schizophrenia. Basal ganglia volumes included the bilateral caudate, putamen, and pallidum and were measured using the Freesurfer automated segmentation pipeline in 23 subjects. Also, baseline symptom severity, duration of illness, age, gender, time off medication, and exposure to previous antipsychotic were measured. Treatment response was significantly correlated with all three regions of the bilateral basal ganglia (caudate, putamen, and pallidum), baseline symptom severity, duration of illness, and age but not gender, time off antipsychotic medication, or exposure to previous antipsychotic medication. The caudate volume was the basal ganglia region that demonstrated the strongest correlation with treatment response and was significantly negatively correlated with patient age. Caudate volume was not significantly correlated with any other measure. We demonstrated a novel finding that the caudate volume explains a significant amount of the variance in treatment response over the course of 6 weeks of risperidone pharmacotherapy even when controlling for baseline symptom severity and duration of illness.

  5. Acute movement disorder with bilateral basal ganglia lesions in diabetic uremia

    PubMed Central

    Wali, Gurusidheshwar M.; Khanpet, Mallikarjun S.; Mali, Rajendra V.

    2011-01-01

    Acute movement disorder associated with symmetrical basal ganglia lesions occurring in the background of diabetic end stage renal disease is a recently described condition. It has distinct clinico-radiological features and is commonly described in Asian patients. We report the first Indian case report of this potentially reversible condition and discuss its various clinico-radiological aspects. PMID:22028539

  6. Effects of Focal Basal Ganglia Lesions on Timing and Force Control

    ERIC Educational Resources Information Center

    Aparicio, P.; Diedrichsen, J.; Ivry, R.B.

    2005-01-01

    Studies of basal ganglia dysfunction in humans have generally involved patients with degenerative disorders, notably Parkinson's disease. In many instances, the performance of these patients is compared to that of patients with focal lesions of other brain structures such as the cerebellum. In the present report, we studied the performance of…

  7. RNA-Seq Analysis of Human Trigeminal and Dorsal Root Ganglia with a Focus on Chemoreceptors

    PubMed Central

    Flegel, Caroline; Schöbel, Nicole; Altmüller, Janine; Becker, Christian; Tannapfel, Andrea; Hatt, Hanns; Gisselmann, Günter

    2015-01-01

    The chemosensory capacity of the somatosensory system relies on the appropriate expression of chemoreceptors, which detect chemical stimuli and transduce sensory information into cellular signals. Knowledge of the complete repertoire of the chemoreceptors expressed in human sensory ganglia is lacking. This study employed the next-generation sequencing technique (RNA-Seq) to conduct the first expression analysis of human trigeminal ganglia (TG) and dorsal root ganglia (DRG). We analyzed the data with a focus on G-protein coupled receptors (GPCRs) and ion channels, which are (potentially) involved in chemosensation by somatosensory neurons in the human TG and DRG. For years, transient receptor potential (TRP) channels have been considered the main group of receptors for chemosensation in the trigeminal system. Interestingly, we could show that sensory ganglia also express a panel of different olfactory receptors (ORs) with putative chemosensory function. To characterize OR expression in more detail, we performed microarray, semi-quantitative RT-PCR experiments, and immunohistochemical staining. Additionally, we analyzed the expression data to identify further known or putative classes of chemoreceptors in the human TG and DRG. Our results give an overview of the major classes of chemoreceptors expressed in the human TG and DRG and provide the basis for a broader understanding of the reception of chemical cues. PMID:26070209

  8. Spinal Chondrosarcoma: A Review

    PubMed Central

    Katonis, Pavlos; Alpantaki, Kalliopi; Michail, Konstantinos; Lianoudakis, Stratos; Christoforakis, Zaharias; Tzanakakis, George; Karantanas, Apostolos

    2011-01-01

    Chondrosarcoma is the third most common primary malignant bone tumor. Yet the spine represents the primary location in only 2% to 12% of these tumors. Almost all patients present with pain and a palpable mass. About 50% of patients present with neurologic symptoms. Chemotherapy and radiotherapy are generally unsuccessful while surgical resection is the treatment of choice. Early diagnosis and careful surgical staging are important to achieve adequate management. This paper provides an overview of the histopathological classification, clinical presentation, and diagnostic procedures regarding spinal chondrosarcoma. We highlight specific treatment modalities and discuss which is truly the most suitable approach for these tumors. Abstracts and original articles in English investigating these tumors were searched and analyzed with the use of the PubMed and Scopus databases with “chondrosarcoma and spine” as keywords. PMID:21437176

  9. Simulation in spinal diseases.

    PubMed

    Aso Escario, José; Martínez Quiñones, José Vicente; Aso Vizán, Alberto; Arregui Calvo, Ricardo; Bernal Lafuente, Marta; Alcázar Crevillén, Andrés

    2014-01-01

    Simulation is frequent in spinal disease, resulting in problems for specialists like Orthopedic Surgeons, Neurosurgeons, Reumathologists, etc. Simulation requires demonstration of the intentional production of false or exaggerated symptoms following an external incentive. The clinician has difficulties in demonstrating these criteria, resulting in misdiagnosis of simulation or misinterpretation of the normal patient as a simulator, with the possibility of iatrogenic distress and litigation. We review simulation-related problems in spine, proposing a terminological, as well as a diagnostic strategy including clinical and complementary diagnosis, as a way to avoid misinterpretation and minimize the iatrogenic distress and liability Based on the clinical-Forensic author's expertise, the literature is analyzed and the terminology readdressed to develop new terms (inconsistences, incongruences, discrepancies and contradictions). Clinical semiology and complementary test are adapted to the new scenario. Diagnostic strategy relies on anamnesis, clinical and complementary tests, adapting them to a uniform terminology with clear meaning of signs and symptoms.

  10. Simulation in spinal diseases.

    PubMed

    Aso Escario, José; Martínez Quiñones, José Vicente; Aso Vizán, Alberto; Arregui Calvo, Ricardo; Bernal Lafuente, Marta; Alcázar Crevillén, Andrés

    2014-01-01

    Simulation is frequent in spinal disease, resulting in problems for specialists like Orthopedic Surgeons, Neurosurgeons, Reumathologists, etc. Simulation requires demonstration of the intentional production of false or exaggerated symptoms following an external incentive. The clinician has difficulties in demonstrating these criteria, resulting in misdiagnosis of simulation or misinterpretation of the normal patient as a simulator, with the possibility of iatrogenic distress and litigation. We review simulation-related problems in spine, proposing a terminological, as well as a diagnostic strategy including clinical and complementary diagnosis, as a way to avoid misinterpretation and minimize the iatrogenic distress and liability Based on the clinical-Forensic author's expertise, the literature is analyzed and the terminology readdressed to develop new terms (inconsistences, incongruences, discrepancies and contradictions). Clinical semiology and complementary test are adapted to the new scenario. Diagnostic strategy relies on anamnesis, clinical and complementary tests, adapting them to a uniform terminology with clear meaning of signs and symptoms. PMID:24913963

  11. Magnetic Resonance Imaging of the Cervical, Thoracic, and Lumbar Spine in Children: Spinal Incidental Findings in Pediatric Patients

    PubMed Central

    Ramadorai, Uma E.; Hire, Justin M.; DeVine, John G.

    2014-01-01

    Study Design Retrospective case series. Objective To determine the rate of spinal incidental findings on magnetic resonance imaging (MRI) of the cervical, thoracic, and lumbar spine in the pediatric population. Methods We reviewed MRI imaging of the neuraxial spine in patients less than 18 years of age and documented abnormal spinal findings. We then reviewed the charts of these patients to determine the reason for ordering the study. Those who presented with pain were considered symptomatic. Those who had no presenting complaint were considered asymptomatic. The data were analyzed to break down the rate of spinal incidental findings in the cervical, thoracic, and lumbar spine, respectively. Results Thirty-one of the 99 MRIs had positive findings, with the most common being disk protrusion (51.6%). Spinal incidental findings were most common in the lumbar spine (9.4%) versus the cervical spine (8%) or thoracic spine (4.7%). In this group, Schmorl nodes and disk protrusion were the two most common findings (37.5% each). Other spinal incidental findings included a vertebral hemangioma and a Tarlov cyst. In the thoracic spine, the only spinal incidental finding was a central disk protrusion without spinal cord or nerve root compression. Conclusion MRI is a useful modality in the pediatric patient with scoliosis or complaints of pain, but the provider should remain cognizant of the potential for spinal incidental findings. PMID:25396102

  12. Magnetic resonance imaging of the cervical, thoracic, and lumbar spine in children: spinal incidental findings in pediatric patients.

    PubMed

    Ramadorai, Uma E; Hire, Justin M; DeVine, John G

    2014-12-01

    Study Design Retrospective case series. Objective To determine the rate of spinal incidental findings on magnetic resonance imaging (MRI) of the cervical, thoracic, and lumbar spine in the pediatric population. Methods We reviewed MRI imaging of the neuraxial spine in patients less than 18 years of age and documented abnormal spinal findings. We then reviewed the charts of these patients to determine the reason for ordering the study. Those who presented with pain were considered symptomatic. Those who had no presenting complaint were considered asymptomatic. The data were analyzed to break down the rate of spinal incidental findings in the cervical, thoracic, and lumbar spine, respectively. Results Thirty-one of the 99 MRIs had positive findings, with the most common being disk protrusion (51.6%). Spinal incidental findings were most common in the lumbar spine (9.4%) versus the cervical spine (8%) or thoracic spine (4.7%). In this group, Schmorl nodes and disk protrusion were the two most common findings (37.5% each). Other spinal incidental findings included a vertebral hemangioma and a Tarlov cyst. In the thoracic spine, the only spinal incidental finding was a central disk protrusion without spinal cord or nerve root compression. Conclusion MRI is a useful modality in the pediatric patient with scoliosis or complaints of pain, but the provider should remain cognizant of the potential for spinal incidental findings. PMID:25396102

  13. Endovascular treatment of iatrogenic aortic injury after spinal surgery.

    PubMed

    Rabellino, Martin; Garcia-Monaco, Ricardo; Cesareo, Vicente; Rostagno, Roman; Sola, Carlos

    2013-02-01

    A 59-year-old female presented to our institution with paraparesis caused by medullar compression secondary to multiple myeloma. Spinal cord decompression and transpedicular spine fixation were performed. A month later, the patient complained of sudden pain in her middle back. A CT scan revealed screw impingement on the aortic wall at T8 level. A thoracic stent-graft was deployed before removing the fixation. The patient had an uneventful postoperative course, without complications during the four-year follow-up. In this case report, stent-graft placement proved to be safe and effective in avoiding bleeding during screw removal.

  14. Characterization of vascular disruption and blood-spinal cord barrier permeability following traumatic spinal cord injury.

    PubMed

    Figley, Sarah A; Khosravi, Ramak; Legasto, Jean M; Tseng, Yun-Fan; Fehlings, Michael G

    2014-03-15

    Significant vascular changes occur subsequent to spinal cord injury (SCI), which contribute to progressive pathophysiology. In the present study, we used female Wistar rats (300-350 g) and a 35-g clip-compression injury at T6 to T7 to characterize the spatial and temporal vascular changes that ensue post-SCI. Before sacrifice, animals were injected with vascular tracing dyes (2% Evans Blue (EB) or fluorescein isothiocyanate/Lycopersicon esculentum agglutinin [FITC-LEA]) to assess blood-spinal cord barrier (BSCB) integrity or vascular architecture, respectively. Spectrophotometry of EB tissue showed maximal BSCB disruption at 24 h postinjury, with significant disruption observed until 5 days postinjury (p<0.01). FITC-LEA-identified functional vasculature was dramatically reduced by 24 h. Similarly, RECA-1 immunohistochemistry showed a significant decrease in the number of vessels at 24 h postinjury, compared to uninjured animals (p<0.01), with slight increases in endogenous revascularization by 10 days postinjury. White versus gray matter (GM) quantification showed that GM vessels are more susceptible to SCI. Finally, we observed an endogenous angiogenic response between 3 and 7 days postinjury: maximal endothelial cell proliferation was observed at day 5. These data indicate that BSCB disruption and endogenous revascularization occur at specific time points after injury, which may be important for developing effective therapeutic interventions for SCI. PMID:24237182

  15. Overview of Spinal Cord Disorders

    MedlinePlus

    ... temperature from the body to the spinal cord. Did You Know... Doctors can often tell where the ... on symptoms and results of a physical examination. Did You Know... Nerves from the lowest parts of ...

  16. What Is Spinal Cord Injury?

    MedlinePlus

    ... lowest point on the spinal cord below which sensory feeling and motor movement diminish or disappear. The ... injury is so severe that almost all feeling (sensory function) and all ability to control movement (motor ...

  17. Sildenafil promotes neuroprotection of the pelvic ganglia neurones after bilateral cavernosal nerve resection in the rat

    PubMed Central

    Hlaing, Su M.; Garcia, Leah A.; Kovanecz, Istvan; Martinez, Ramon A.; Shah, Sanjana; Artaza, Jorge N.; Ferrini, Monica G.

    2012-01-01

    Objectives To determine the gene expression profile of pelvic ganglia neurones after bilateral cavernosal nerve resection (BCNR) and subsequent treatment with sildenafil in relation to neurotrophic-related pathways. Materials and methods Fisher rats aged 5 months were subjected to BCNR or sham operation and treated with or without sildenafil (20 mg/kg body-weight in drinking water) for 7 days. Total RNA isolated from pelvic ganglia was subjected to reverse transcription and then to quantitative reverse transcriptase-polymerase chain reaction (PCR) with the RAT-neurotrophic array. Results were corroborated by real-time PCR and western blotting. Another set of animals were injected with a fluorescent tracer at the base of the penis, 7 days before BCNR or sham operation, and were sacrificed 7 days after surgery. Sections of pelvic ganglia were used for immunohistochemistry with antibodies against neurturin, neuronal nitric oxide synthase, tyrosine hydroxylase and glial cell line-derived neurotrophic factor receptor α2. Results A down-regulation of the expression of neuronal nitric oxide synthase accompanied by changes in the level of cholinergic neurotrophic factors, such as neurturin and its receptor glial cell line-derived neurotrophic factor receptor α2, artemin, neurotrophin-4 and cilliary neurotrophic factor, was observed 7 days after BCNR in pelvic ganglia neurones. Treatment with sildenafil, starting immediately after surgery, reversed all these changes at a level similar to that in sham-operated animals. Conclusions Sildenafil treatment promotes changes in the neurotrophic phenotype, leading to a regenerative state of pelvic ganglia neurones. The present study provides a justification for the use of phosphodiesterase 5 inhibitors as a neuroprotective agent after BCNR. PMID:22672418

  18. Transcriptome analysis of trigeminal ganglia following masseter muscle inflammation in rats

    PubMed Central

    Park, Jennifer; Asgar, Jamila; Ro, Jin Y.

    2016-01-01

    Background Chronic pain in masticatory muscles is a major medical problem. Although mechanisms underlying persistent pain in masticatory muscles are not fully understood, sensitization of nociceptive primary afferents following muscle inflammation or injury contributes to muscle hyperalgesia. It is well known that craniofacial muscle injury or inflammation induces regulation of multiple genes in trigeminal ganglia, which is associated with muscle hyperalgesia. However, overall transcriptional profiles within trigeminal ganglia following masseter inflammation have not yet been determined. In the present study, we performed RNA sequencing assay in rat trigeminal ganglia to identify transcriptome profiles of genes relevant to hyperalgesia following inflammation of the rat masseter muscle. Results Masseter inflammation differentially regulated >3500 genes in trigeminal ganglia. Predominant biological pathways were predicted to be related with activation of resident non-neuronal cells within trigeminal ganglia or recruitment of immune cells. To focus our analysis on the genes more relevant to nociceptors, we selected genes implicated in pain mechanisms, genes enriched in small- to medium-sized sensory neurons, and genes enriched in TRPV1-lineage nociceptors. Among the 2320 candidate genes, 622 genes showed differential expression following masseter inflammation. When the analysis was limited to these candidate genes, pathways related with G protein-coupled signaling and synaptic plasticity were predicted to be enriched. Inspection of individual gene expression changes confirmed the transcriptional changes of multiple nociceptor genes associated with masseter hyperalgesia (e.g., Trpv1, Trpa1, P2rx3, Tac1, and Bdnf) and also suggested a number of novel probable contributors (e.g., Piezo2, Tmem100, and Hdac9). Conclusion These findings should further advance our understanding of peripheral mechanisms involved in persistent craniofacial muscle pain conditions and provide a

  19. Basal ganglia hyperechogenicity does not distinguish between patients with primary dystonia and healthy individuals.

    PubMed

    Hagenah, Johann; König, Inke R; Kötter, Charlotte; Seidel, Günter; Klein, Christine; Brüggemann, Norbert

    2011-04-01

    Transcranial sonography (TCS) of the basal ganglia is a non-invasive tool to study movement disorders. Very few studies have addressed the question of whether TCS may detect specific echofeatures in patients with primary dystonia. The basal ganglia including the substantia nigra (SN) and the ventricular system were investigated by TCS in 84 primary dystonia patients and 43 neurologically healthy controls. Any hyperechogenicity of the lenticular nucleus was present in 57.5% of the patients and in 50.0% of the controls (p = 0.453). While marked hyperechogenicity was more frequently present in the patients (17.8 vs. 7.9%), this difference was not significant (p = 0.227). No differences in the occurrence of hyperechogenicity were detectable either in the caudate nucleus (21.6 vs. 39.5%, p = 0.122) or the thalamus (4.1 vs. 0%, p = 0.199). Marked hyperechogenicity of the caudate nucleus was rare in dystonia (4.1%) and absent in controls. There was no relationship between the side of basal ganglia hyperechogenicity and the clinically affected side of cervical dystonia. The area of SN echogenicity was similar in patients and controls (0.19 ± 0.14 vs. 0.20 ± 0.13 cm(2)), but correlated negatively with increasing disease duration in the dystonia patients (ρ = -0.257, p = 0.028). Width of the third ventricle correlated with increasing age (ρ = 0.511, p = 0.000) and, in patients, with disease duration (ρ = 0.244, p = 0.034) and severity of cervical dystonia (ρ = 0.281, p = 0.038). No characteristic abnormalities were found in the basal ganglia of primary dystonia patients. It remains to be explored whether this is due to a true absence of signal alterations in the basal ganglia of dystonia patients or to limitations of the current technology used.

  20. Coupling in the cortico-basal ganglia circuit is aberrant in the ketamine model of schizophrenia.

    PubMed

    Cordon, Ivan; Nicolás, María Jesús; Arrieta, Sandra; Lopetegui, Eneko; López-Azcárate, Jon; Alegre, Manuel; Artieda, Julio; Valencia, Miguel

    2015-08-01

    Recent studies have suggested the implication of the basal ganglia in the pathogenesis of schizophrenia. To investigate this hypothesis, here we have used the ketamine model of schizophrenia to determine the oscillatory abnormalities induced in the rat motor circuit of the basal ganglia. The activity of free moving rats was recorded in different structures of the cortico-basal ganglia circuit before and after an injection of a subanesthesic dose of ketamine (10mg/kg). Spectral estimates of the oscillatory activity, phase-amplitude cross-frequency coupling interactions (CFC) and imaginary event-related coherence together with animals׳ behavior were analyzed. Oscillatory patterns in the cortico-basal ganglia circuit were highly altered by the effect of ketamine. CFC between the phases of low-frequency activities (delta, 1-4; theta 4-8Hz) and the amplitude of high-gamma (~80Hz) and high-frequency oscillations (HFO) (~150Hz) increased dramatically and correlated with the movement increment shown by the animals. Between-structure analyses revealed that ketamine had also a massive effect in the low-frequency mediated synchronization of the HFO's across the whole circuit. Our findings suggest that ketamine administration results in an aberrant hypersynchronization of the whole cortico-basal circuit where the tandem theta/HFO seems to act as the main actor in the hyperlocomotion shown by the animals. Here we stress the importance of the basal ganglia circuitry in the ketamine model of schizophrenia and leave the door open to further investigations devoted to elucidate to what extent these abnormalities also reflect the prominent neurophysiological deficits observed in schizophrenic patients.