Methods for compressible multiphase flows and their applications
NASA Astrophysics Data System (ADS)
Kim, H.; Choe, Y.; Kim, H.; Min, D.; Kim, C.
2018-06-01
This paper presents an efficient and robust numerical framework to deal with multiphase real-fluid flows and their broad spectrum of engineering applications. A homogeneous mixture model incorporated with a real-fluid equation of state and a phase change model is considered to calculate complex multiphase problems. As robust and accurate numerical methods to handle multiphase shocks and phase interfaces over a wide range of flow speeds, the AUSMPW+_N and RoeM_N schemes with a system preconditioning method are presented. These methods are assessed by extensive validation problems with various types of equation of state and phase change models. Representative realistic multiphase phenomena, including the flow inside a thermal vapor compressor, pressurization in a cryogenic tank, and unsteady cavitating flow around a wedge, are then investigated as application problems. With appropriate physical modeling followed by robust and accurate numerical treatments, compressible multiphase flow physics such as phase changes, shock discontinuities, and their interactions are well captured, confirming the suitability of the proposed numerical framework to wide engineering applications.
Viscous and gravitational fingering in multiphase compositional and compressible flow
NASA Astrophysics Data System (ADS)
Moortgat, Joachim
2016-03-01
Viscous and gravitational fingering refer to flow instabilities in porous media that are triggered by adverse mobility or density ratios, respectively. These instabilities have been studied extensively in the past for (1) single-phase flow (e.g., contaminant transport in groundwater, first-contact-miscible displacement of oil by gas in hydrocarbon production), and (2) multi-phase immiscible and incompressible flow (e.g., water-alternating-gas (WAG) injection in oil reservoirs). Fingering in multiphase compositional and compressible flow has received much less attention, perhaps due to its high computational complexity. However, many important subsurface processes involve multiple phases that exchange species. Examples are carbon sequestration in saline aquifers and enhanced oil recovery (EOR) by gas or WAG injection below the minimum miscibility pressure. In multiphase flow, relative permeabilities affect the mobility contrast for a given viscosity ratio. Phase behavior can also change local fluid properties, which can either enhance or mitigate viscous and gravitational instabilities. This work presents a detailed study of fingering behavior in compositional multiphase flow in two and three dimensions and considers the effects of (1) Fickian diffusion, (2) mechanical dispersion, (3) flow rates, (4) domain size and geometry, (5) formation heterogeneities, (6) gravity, and (7) relative permeabilities. Results show that fingering in compositional multiphase flow is profoundly different from miscible conditions and upscaling techniques used for the latter case are unlikely to be generalizable to the former.
An immersed boundary method for fluid-structure interaction with compressible multiphase flows
NASA Astrophysics Data System (ADS)
Wang, Li; Currao, Gaetano M. D.; Han, Feng; Neely, Andrew J.; Young, John; Tian, Fang-Bao
2017-10-01
This paper presents a two-dimensional immersed boundary method for fluid-structure interaction with compressible multiphase flows involving large structure deformations. This method involves three important parts: flow solver, structure solver and fluid-structure interaction coupling. In the flow solver, the compressible multiphase Navier-Stokes equations for ideal gases are solved by a finite difference method based on a staggered Cartesian mesh, where a fifth-order accuracy Weighted Essentially Non-Oscillation (WENO) scheme is used to handle spatial discretization of the convective term, a fourth-order central difference scheme is employed to discretize the viscous term, the third-order TVD Runge-Kutta scheme is used to discretize the temporal term, and the level-set method is adopted to capture the multi-material interface. In this work, the structure considered is a geometrically non-linear beam which is solved by using a finite element method based on the absolute nodal coordinate formulation (ANCF). The fluid dynamics and the structure motion are coupled in a partitioned iterative manner with a feedback penalty immersed boundary method where the flow dynamics is defined on a fixed Lagrangian grid and the structure dynamics is described on a global coordinate. We perform several validation cases (including fluid over a cylinder, structure dynamics, flow induced vibration of a flexible plate, deformation of a flexible panel induced by shock waves in a shock tube, an inclined flexible plate in a hypersonic flow, and shock-induced collapse of a cylindrical helium cavity in the air), and compare the results with experimental and other numerical data. The present results agree well with the published data and the current experiment. Finally, we further demonstrate the versatility of the present method by applying it to a flexible plate interacting with multiphase flows.
Modeling compressible multiphase flows with dispersed particles in both dense and dilute regimes
NASA Astrophysics Data System (ADS)
McGrath, T.; St. Clair, J.; Balachandar, S.
2018-05-01
Many important explosives and energetics applications involve multiphase formulations employing dispersed particles. While considerable progress has been made toward developing mathematical models and computational methodologies for these flows, significant challenges remain. In this work, we apply a mathematical model for compressible multiphase flows with dispersed particles to existing shock and explosive dispersal problems from the literature. The model is cast in an Eulerian framework, treats all phases as compressible, is hyperbolic, and satisfies the second law of thermodynamics. It directly applies the continuous-phase pressure gradient as a forcing function for particle acceleration and thereby retains relaxed characteristics for the dispersed particle phase that remove the constituent material sound velocity from the eigenvalues. This is consistent with the expected characteristics of dispersed particle phases and can significantly improve the stable time-step size for explicit methods. The model is applied to test cases involving the shock and explosive dispersal of solid particles and compared to data from the literature. Computed results compare well with experimental measurements, providing confidence in the model and computational methods applied.
NASA Astrophysics Data System (ADS)
Moortgat, J.; Amooie, M. A.; Soltanian, M. R.
2016-12-01
Problems in hydrogeology and hydrocarbon reservoirs generally involve the transport of solutes in a single solvent phase (e.g., contaminants or dissolved injection gas), or the flow of multiple phases that may or may not exchange mass (e.g., brine, NAPL, oil, gas). Often, flow is viscously and gravitationally unstable due to mobility and density contrasts within a phase or between phases. Such instabilities have been studied in detail for single-phase incompressible fluids and for two-phase immiscible flow, but to a lesser extent for multiphase multicomponent compressible flow. The latter is the subject of this presentation. Robust phase stability analyses and phase split calculations, based on equations of state, determine the mass exchange between phases and the resulting phase behavior, i.e., phase densities, viscosities, and volumes. Higher-order finite element methods and fine grids are used to capture the small-scale onset of flow instabilities. A full matrix of composition dependent coefficients is considered for each Fickian diffusive phase flux. Formation heterogeneity can have a profound impact and is represented by realistic geostatistical models. Qualitatively, fingering in multiphase compositional flow is different from single-phase problems because 1) phase mobilities depend on rock wettability through relative permeabilities, and 2) the initial density and viscosity ratios between phases may change due to species transfer. To quantify mixing rates in different flow regimes and for varying degrees of miscibility and medium heterogeneities, we define the spatial variance, scalar dissipation rate, dilution index, skewness, and kurtosis of the molar density of introduced species. Molar densities, unlike compositions, include compressibility effects. The temporal evolution of these measures shows that, while transport at the small-scale (cm) is described by the classical advection-diffusion-dispersion relations, scaling at the macro-scale (> 10 m) shows
Multiphase flow calculation software
Fincke, James R.
2003-04-15
Multiphase flow calculation software and computer-readable media carrying computer executable instructions for calculating liquid and gas phase mass flow rates of high void fraction multiphase flows. The multiphase flow calculation software employs various given, or experimentally determined, parameters in conjunction with a plurality of pressure differentials of a multiphase flow, preferably supplied by a differential pressure flowmeter or the like, to determine liquid and gas phase mass flow rates of the high void fraction multiphase flows. Embodiments of the multiphase flow calculation software are suitable for use in a variety of applications, including real-time management and control of an object system.
NASA Astrophysics Data System (ADS)
Shallcross, Gregory; Capecelatro, Jesse
2017-11-01
Compressible particle-laden flows are common in engineering systems. Applications include but are not limited to water injection in high-speed jet flows for noise suppression, rocket-plume surface interactions during planetary landing, and explosions during coal mining operations. Numerically, it is challenging to capture these interactions due to the wide range of length and time scales. Additionally, there are many forms of the multiphase compressible flow equations with volume fraction effects, some of which are conflicting in nature. The purpose of this presentation is to develop the capability to accurately capture particle-shock interactions in systems with a large number of particles from dense to dilute regimes. A thorough derivation of the volume filtered equations is presented. The volume filtered equations are then implemented in a high-order, energy-stable Eulerian-Lagrangian framework. We show this framework is capable of decoupling the fluid mesh from the particle size, enabling arbitrary particle size distributions in the presence of shocks. The proposed method is then assessed against particle-laden shock tube data. Quantities of interest include fluid-phase pressure profiles and particle spreading rates. The effect of collisions in 2D and 3D are also evaluated.
EDITORIAL: Measurement techniques for multiphase flows Measurement techniques for multiphase flows
NASA Astrophysics Data System (ADS)
Okamoto, Koji; Murai, Yuichi
2009-11-01
Research on multiphase flows is very important for industrial applications, including power stations, vehicles, engines, food processing and so on. Multiphase flows originally have nonlinear features because of multiphase systems. The interaction between the phases plays a very interesting role in the flows. The nonlinear interaction causes the multiphase flows to be very complicated. Therefore techniques for measuring multiphase flows are very useful in helping to understand the nonlinear phenomena. The state-of-the-art measurement techniques were presented and discussed at the sixth International Symposium on Measurement Techniques for Multiphase Flows (ISMTMF2008) held in Okinawa, Japan, on 15-17 December 2008. This special feature of Measurement Science and Technology includes selected papers from ISMTMF2008. Okinawa has a long history as the Ryukyus Kingdom. China, Japan and many western Pacific countries have had cultural and economic exchanges through Okinawa for over 1000 years. Much technical and scientific information was exchanged at the symposium in Okinawa. The proceedings of ISMTMF2008 apart from these special featured papers were published in Journal of Physics: Conference Series vol. 147 (2009). We would like to express special thanks to all the contributors to the symposium and this special feature. This special feature will be a milestone in measurement techniques for multiphase flows.
NASA Astrophysics Data System (ADS)
Henry de Frahan, Marc T.; Varadan, Sreenivas; Johnsen, Eric
2015-01-01
Although the Discontinuous Galerkin (DG) method has seen widespread use for compressible flow problems in a single fluid with constant material properties, it has yet to be implemented in a consistent fashion for compressible multiphase flows with shocks and interfaces. Specifically, it is challenging to design a scheme that meets the following requirements: conservation, high-order accuracy in smooth regions and non-oscillatory behavior at discontinuities (in particular, material interfaces). Following the interface-capturing approach of Abgrall [1], we model flows of multiple fluid components or phases using a single equation of state with variable material properties; discontinuities in these properties correspond to interfaces. To represent compressible phenomena in solids, liquids, and gases, we present our analysis for equations of state belonging to the Mie-Grüneisen family. Within the DG framework, we propose a conservative, high-order accurate, and non-oscillatory limiting procedure, verified with simple multifluid and multiphase problems. We show analytically that two key elements are required to prevent spurious pressure oscillations at interfaces and maintain conservation: (i) the transport equation(s) describing the material properties must be solved in a non-conservative weak form, and (ii) the suitable variables must be limited (density, momentum, pressure, and appropriate properties entering the equation of state), coupled with a consistent reconstruction of the energy. Further, we introduce a physics-based discontinuity sensor to apply limiting in a solution-adaptive fashion. We verify this approach with one- and two-dimensional problems with shocks and interfaces, including high pressure and density ratios, for fluids obeying different equations of state to illustrate the robustness and versatility of the method. The algorithm is implemented on parallel graphics processing units (GPU) to achieve high speedup.
Compressible, multiphase semi-implicit method with moment of fluid interface representation
Jemison, Matthew; Sussman, Mark; Arienti, Marco
2014-09-16
A unified method for simulating multiphase flows using an exactly mass, momentum, and energy conserving Cell-Integrated Semi-Lagrangian advection algorithm is presented. The deforming material boundaries are represented using the moment-of-fluid method. Our new algorithm uses a semi-implicit pressure update scheme that asymptotically preserves the standard incompressible pressure projection method in the limit of infinite sound speed. The asymptotically preserving attribute makes the new method applicable to compressible and incompressible flows including stiff materials; enabling large time steps characteristic of incompressible flow algorithms rather than the small time steps required by explicit methods. Moreover, shocks are captured and material discontinuities aremore » tracked, without the aid of any approximate or exact Riemann solvers. As a result, wimulations of underwater explosions and fluid jetting in one, two, and three dimensions are presented which illustrate the effectiveness of the new algorithm at efficiently computing multiphase flows containing shock waves and material discontinuities with large “impedance mismatch.”« less
NETL Crosscutting Research Video Series: Multiphase Flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Tingwen; Vaidheeswaran, Avinash
For over 30 years, NETL’s work in multiphase flow science has served as one of the cornerstones of the lab’s research portfolio. Multiphase flow refers to the simultaneous flow of gases, liquids and/or solid materials. The goal of the multiphase flow science team is to provide computational modeling tools to help offset the risk and cost of multiphase reactor development.
Simulation of Inviscid Compressible Multi-Phase Flow with Condensation
NASA Technical Reports Server (NTRS)
Kelleners, Philip
2003-01-01
Condensation of vapours in rapid expansions of compressible gases is investigated. In the case of high temperature gradients the condensation will start at conditions well away from thermodynamic equilibrium of the fluid. In those cases homogeneous condensation is dominant over heterogeneous condensation. The present work is concerned with development of a simulation tool for computation of high speed compressible flows with homogeneous condensation. The resulting ow solver should preferably be accurate and robust to be used for simulation of industrial flows in general geometries.
Equations and simulations for multiphase compressible gas-dust flows
NASA Astrophysics Data System (ADS)
Oran, Elaine; Houim, Ryan
2014-11-01
Dust-gas multiphase flows are important in physical scenarios such as dust explosions in coal mines, asteroid impact disturbing lunar regolith, and soft aircraft landings dispersing desert or beach sand. In these cases, the gas flow regime can range from highly subsonic and nearly incompressible to supersonic and shock-laden flow, the grain packing can range from fully packed to completely dispersed, and both the gas and the dust can range from chemically inert to highly exothermic. To cover the necessary parameter range in a single model, we solve coupled sets of Navier-Stokes equations describing the background gas and the dust. As an example, a reactive-dust explosion that results in a type of shock-flame complex is described and discussed. Sponsored by the University of Maryland through Minta Martin Endowment Funds in the Department of Aerospace Engineering, and through the Glenn L. Martin Institute Chaired Professorship at the A. James Clark School of Engineering.
Recent advances in high-order WENO finite volume methods for compressible multiphase flows
NASA Astrophysics Data System (ADS)
Dumbser, Michael
2013-10-01
We present two new families of better than second order accurate Godunov-type finite volume methods for the solution of nonlinear hyperbolic partial differential equations with nonconservative products. One family is based on a high order Arbitrary-Lagrangian-Eulerian (ALE) formulation on moving meshes, which allows to resolve the material contact wave in a very sharp way when the mesh is moved at the speed of the material interface. The other family of methods is based on a high order Adaptive Mesh Refinement (AMR) strategy, where the mesh can be strongly refined in the vicinity of the material interface. Both classes of schemes have several building blocks in common, in particular: a high order WENO reconstruction operator to obtain high order of accuracy in space; the use of an element-local space-time Galerkin predictor step which evolves the reconstruction polynomials in time and that allows to reach high order of accuracy in time in one single step; the use of a path-conservative approach to treat the nonconservative terms of the PDE. We show applications of both methods to the Baer-Nunziato model for compressible multiphase flows.
NETL Crosscutting Research Video Series: Multiphase Flow (Short Version)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
For over 30 years, NETL’s work in multiphase flow science has served as one of the cornerstones of the lab’s research portfolio. Multiphase flow refers to the simultaneous flow of gases, liquids and/or solid materials. The goal of the multiphase flow science team is to provide computational modeling tools to help offset the risk and cost of multiphase reactor development.
Oscillatory multiphase flow strategy for chemistry and biology.
Abolhasani, Milad; Jensen, Klavs F
2016-07-19
Continuous multiphase flow strategies are commonly employed for high-throughput parameter screening of physical, chemical, and biological processes as well as continuous preparation of a wide range of fine chemicals and micro/nano particles with processing times up to 10 min. The inter-dependency of mixing and residence times, and their direct correlation with reactor length have limited the adaptation of multiphase flow strategies for studies of processes with relatively long processing times (0.5-24 h). In this frontier article, we describe an oscillatory multiphase flow strategy to decouple mixing and residence times and enable investigation of longer timescale experiments than typically feasible with conventional continuous multiphase flow approaches. We review current oscillatory multiphase flow technologies, provide an overview of the advancements of this relatively new strategy in chemistry and biology, and close with a perspective on future opportunities.
Scalable Methods for Eulerian-Lagrangian Simulation Applied to Compressible Multiphase Flows
NASA Astrophysics Data System (ADS)
Zwick, David; Hackl, Jason; Balachandar, S.
2017-11-01
Multiphase flows can be found in countless areas of physics and engineering. Many of these flows can be classified as dispersed two-phase flows, meaning that there are solid particles dispersed in a continuous fluid phase. A common technique for simulating such flow is the Eulerian-Lagrangian method. While useful, this method can suffer from scaling issues on larger problem sizes that are typical of many realistic geometries. Here we present scalable techniques for Eulerian-Lagrangian simulations and apply it to the simulation of a particle bed subjected to expansion waves in a shock tube. The results show that the methods presented here are viable for simulation of larger problems on modern supercomputers. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138. This work was supported in part by the U.S. Department of Energy under Contract No. DE-NA0002378.
Statistical representation of multiphase flow
NASA Astrophysics Data System (ADS)
Subramaniam
2000-11-01
The relationship between two common statistical representations of multiphase flow, namely, the single--point Eulerian statistical representation of two--phase flow (D. A. Drew, Ann. Rev. Fluid Mech. (15), 1983), and the Lagrangian statistical representation of a spray using the dropet distribution function (F. A. Williams, Phys. Fluids 1 (6), 1958) is established for spherical dispersed--phase elements. This relationship is based on recent work which relates the droplet distribution function to single--droplet pdfs starting from a Liouville description of a spray (Subramaniam, Phys. Fluids 10 (12), 2000). The Eulerian representation, which is based on a random--field model of the flow, is shown to contain different statistical information from the Lagrangian representation, which is based on a point--process model. The two descriptions are shown to be simply related for spherical, monodisperse elements in statistically homogeneous two--phase flow, whereas such a simple relationship is precluded by the inclusion of polydispersity and statistical inhomogeneity. The common origin of these two representations is traced to a more fundamental statistical representation of a multiphase flow, whose concepts derive from a theory for dense sprays recently proposed by Edwards (Atomization and Sprays 10 (3--5), 2000). The issue of what constitutes a minimally complete statistical representation of a multiphase flow is resolved.
A mass-conserving multiphase lattice Boltzmann model for simulation of multiphase flows
NASA Astrophysics Data System (ADS)
Niu, Xiao-Dong; Li, You; Ma, Yi-Ren; Chen, Mu-Feng; Li, Xiang; Li, Qiao-Zhong
2018-01-01
In this study, a mass-conserving multiphase lattice Boltzmann (LB) model is proposed for simulating the multiphase flows. The proposed model developed in the present study is to improve the model of Shao et al. ["Free-energy-based lattice Boltzmann model for simulation of multiphase flows with density contrast," Phys. Rev. E 89, 033309 (2014)] by introducing a mass correction term in the lattice Boltzmann model for the interface. The model of Shao et al. [(the improved Zheng-Shu-Chew (Z-S-C model)] correctly considers the effect of the local density variation in momentum equation and has an obvious improvement over the Zheng-Shu-Chew (Z-S-C) model ["A lattice Boltzmann model for multiphase flows with large density ratio," J. Comput. Phys. 218(1), 353-371 (2006)] in terms of solution accuracy. However, due to the physical diffusion and numerical dissipation, the total mass of each fluid phase cannot be conserved correctly. To solve this problem, a mass correction term, which is similar to the one proposed by Wang et al. ["A mass-conserved diffuse interface method and its application for incompressible multiphase flows with large density ratio," J. Comput. Phys. 290, 336-351 (2015)], is introduced into the lattice Boltzmann equation for the interface to compensate the mass losses or offset the mass increase. Meanwhile, to implement the wetting boundary condition and the contact angle, a geometric formulation and a local force are incorporated into the present mass-conserving LB model. The proposed model is validated by verifying the Laplace law, simulating both one and two aligned droplets splashing onto a liquid film, droplets standing on an ideal wall, droplets with different wettability splashing onto smooth wax, and bubbles rising under buoyancy. Numerical results show that the proposed model can correctly simulate multiphase flows. It was found that the mass is well-conserved in all cases considered by the model developed in the present study. The developed
Multiphase flow and transport in porous media
NASA Astrophysics Data System (ADS)
Parker, J. C.
1989-08-01
Multiphase flow and transport of compositionally complex fluids in geologic media is of importance in a number of applied problems which have major social and economic effects. In petroleum reservoir engineering, efficient recovery of energy reserves is the principal goal. Unfortunately, some of these hydrocarbons and other organic chemicals often find their way unwanted into the soils and groundwater supplies. Removal in the latter case is predicated on ensuring the public health and safety. In this paper, principles of modeling fluid flow in systems containing up to three fluid phases (namely, water, air, and organic liquid) are described. Solution of the governing equations for multiphase flow requires knowledge of functional relationships between fluid pressures, saturations, and permeabilities which may be formulated on the basis of conceptual models of fluid-porous media interactions. Mechanisms of transport in multicomponent multiphase systems in which species may partition between phases are also described, and the governing equations are presented for the case in which local phase equilibrium may be assumed. A number of hypothetical numerical problems are presented to illustrate the physical behavior of systems in which multiphase flow and transport arise.
FOREWORD: International Symposium of Cavitation and Multiphase Flow (ISCM 2014)
NASA Astrophysics Data System (ADS)
Wu, Yulin
2015-01-01
The International Symposium on Cavitation and Multiphase Flow (ISCM 2014) was held in Beijing, China during 18th-21st October, 2014, which was jointly organized by Tsinghua University, Beijing, China and Jiangsu University, Zhenjiang, China. The co-organizer was the State Key Laboratory of Hydroscience and Engineering, Beijing, China. Cavitation and multiphase flow is one of paramount topics of fluid mechanics with many engineering applications covering a broad range of topics, e.g. hydraulic machinery, biomedical engineering, chemical and process industry. In order to improve the performances of engineering facilities (e.g. hydraulic turbines) and to accelerate the development of techniques for medical treatment of serious diseases (e.g. tumors), it is essential to improve our understanding of cavitation and Multiphase Flow. For example, the present development towards the advanced hydrodynamic systems (e.g. space engine, propeller, hydraulic machinery system) often requires that the systems run under cavitating conditions and the risk of cavitation erosion needs to be controlled. The purpose of the ISCM 2014 was to discuss the state-of-the-art cavitation and multiphase flow research and their up-to-date applications, and to foster discussion and exchange of knowledge, and to provide an opportunity for the researchers, engineers and graduate students to report their latest outputs in these fields. Furthermore, the participants were also encouraged to present their work in progress with short lead time and discuss the encountered problems. ISCM 2014 covers all aspects of cavitation and Multiphase Flow, e.g. both fundamental and applied research with a focus on physical insights, numerical modelling and applications in engineering. Some specific topics are: Cavitating and Multiphase Flow in hydroturbines, pumps, propellers etc. Numerical simulation techniques Cavitation and multiphase flow erosion and anti-erosion techniques Measurement techniques for cavitation and
Reactive multiphase flow simulation workshop summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
VanderHeyden, W.B.
1995-09-01
A workshop on computer simulation of reactive multiphase flow was held on May 18 and 19, 1995 in the Computational Testbed for Industry at Los Alamos National Laboratory (LANL), Los Alamos, New Mexico. Approximately 35 to 40 people attended the workshop. This included 21 participants from 12 companies representing the petroleum, chemical, environmental and consumer products industries, two representatives from the DOE Office of Industrial Technologies and several from Los Alamos. The dialog at the meeting suggested that reactive multiphase flow simulation represents an excellent candidate for government/industry/academia collaborative research. A white paper on a potential consortium for reactive multiphasemore » flow with input from workshop participants will be issued separately.« less
Online recognition of the multiphase flow regime and study of slug flow in pipeline
NASA Astrophysics Data System (ADS)
Liejin, Guo; Bofeng, Bai; Liang, Zhao; Xin, Wang; Hanyang, Gu
2009-02-01
Multiphase flow is the phenomenon existing widely in nature, daily life, as well as petroleum and chemical engineering industrial fields. The interface structure among multiphase and their movement are complicated, which distribute random and heterogeneously in the spatial and temporal scales and have multivalue of the flow structure and state[1]. Flow regime is defined as the macro feature about the multiphase interface structure and its distribution, which is an important feature to describe multiphase flow. The energy and mass transport mechanism differ much for each flow regimes. It is necessary to solve the flow regime recognition to get a clear understanding of the physical phenomena and their mechanism of multiphase flow. And the flow regime is one of the main factors affecting the online measurement accuracy of phase fraction, flow rate and other phase parameters. Therefore, it is of great scientific and technological importance to develop new principles and methods of multiphase flow regime online recognition, and of great industrial background. In this paper, the key reasons that the present method cannot be used to solve the industrial multiphase flow pattern recognition are clarified firstly. Then the prerequisite to realize the online recognition of multiphase flow regime is analyzed, and the recognition rules for partial flow pattern are obtained based on the massive experimental data. The standard templates for every flow regime feature are calculated with self-organization cluster algorithm. The multi-sensor data fusion method is proposed to realize the online recognition of multiphase flow regime with the pressure and differential pressure signals, which overcomes the severe influence of fluid flow velocity and the oil fraction on the recognition. The online recognition method is tested in the practice, which has less than 10 percent measurement error. The method takes advantages of high confidence, good fault tolerance and less requirement of
Direct Numerical Simulations of Multiphase Flows
NASA Astrophysics Data System (ADS)
Tryggvason, Gretar
2013-03-01
Many natural and industrial processes, such as rain and gas exchange between the atmosphere and oceans, boiling heat transfer, atomization and chemical reactions in bubble columns, involve multiphase flows. Often the mixture can be described as a disperse flow where one phase consists of bubbles or drops. Direct numerical simulations (DNS) of disperse flow have recently been used to study the dynamics of multiphase flows with a large number of bubbles and drops, often showing that the collective motion results in relatively simple large-scale structure. Here we review simulations of bubbly flows in vertical channels where the flow direction, as well as the bubble deformability, has profound implications on the flow structure and the total flow rate. Results obtained so far are summarized and open questions identified. The resolution for DNS of multiphase flows is usually determined by a dominant scale, such as the average bubble or drop size, but in many cases much smaller scales are also present. These scales often consist of thin films, threads, or tiny drops appearing during coalescence or breakup, or are due to the presence of additional physical processes that operate on a very different time scale than the fluid flow. The presence of these small-scale features demand excessive resolution for conventional numerical approaches. However, at small flow scales the effects of surface tension are generally strong so the interface geometry is simple and viscous forces dominate the flow and keep it simple also. These are exactly the conditions under which analytical models can be used and we will discuss efforts to combine a semi-analytical description for the small-scale processes with a fully resolved simulation of the rest of the flow. We will, in particular, present an embedded analytical description to capture the mass transfer from bubbles in liquids where the diffusion of mass is much slower than the diffusion of momentum. This results in very thin mass
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGrath, Thomas P., E-mail: thomas.p.mcgrath@navy.mil; St Clair, Jeffrey G.; Department of Mechanical and Aerospace Engineering, University of Florida, 231 MAE-A, P.O. Box 116250, Gainesville, Florida 32611
2016-05-07
Multiphase flows are present in many important fields ranging from multiphase explosions to chemical processing. An important subset of multiphase flow applications involves dispersed materials, such as particles, droplets, and bubbles. This work presents an Eulerian–Eulerian model for multiphase flows containing dispersed particles surrounded by a continuous media such as air or water. Following a large body of multiphase literature, the driving force for particle acceleration is modeled as a direct function of both the continuous-phase pressure gradient and the gradient of intergranular stress existing within the particle phase. While the application of these two components of driving force ismore » well accepted in much of the literature, other models exist in which the particle-phase pressure gradient itself drives particle motion. The multiphase model treats all phases as compressible and is derived to ensure adherence to the 2nd Law of Thermodynamics. The governing equations are presented and discussed, and a characteristic analysis shows the model to be hyperbolic, with a degeneracy in the case that the intergranular stress, which is modeled as a configuration pressure, is zero. Finally, results from a two sample problems involving shock-induced particle dispersion are presented. The results agree well with experimental measurements, providing initial confidence in the proposed model.« less
System for measuring multiphase flow using multiple pressure differentials
Fincke, James R.
2003-01-01
An improved method and system for measuring a multi-phase flow in a pressure flow meter. An extended throat venturi is used and pressure of the multi-phase flow is measured at three or more positions in the venturi, which define two or more pressure differentials in the flow conduit. The differential pressures are then used to calculate the mass flow of the gas phase, the total mass flow, and the liquid phase. The system for determining the mass flow of the high void fraction fluid flow and the gas flow includes taking into account a pressure drop experienced by the gas phase due to work performed by the gas phase in accelerating the liquid phase.
PREFACE: The 6th International Symposium on Measurement Techniques for Multiphase Flows
NASA Astrophysics Data System (ADS)
Okamoto, Koji; Murai, Yuichi
2009-02-01
Research on multi-phase flows is very important for industrial applications, including power stations, vehicles, engines, food processing, and so on. Also, from the environmental viewpoint, multi-phase flows need to be investigated to overcome global warming. Multi-phase flows originally have non-linear features because they are multi-phased. The interaction between the phases plays a very interesting role in the flows. The non-linear interaction causes the multi-phase flows to be very difficult to understand phenomena. The International Symposium on Measurement Techniques for Multi-phase Flows (ISMTMF) is a unique symposium. The target of the symposium is to exchange the state-of-the-art knowledge on the measurement techniques for non-linear multi-phase flows. Measurement technique is the key technology to understanding non-linear phenomena. The ISMTMF began in 1995 in Nanjing, China. The symposium has continuously been held every two or three years. The ISMTMF-2008 was held in Okinawa, Japan as the 6th symposium of ISMTMF on 15-17 December 2008. Okinawa has a long history as the Ryukyus Kingdom. China and Japan have had cultural and economic exchanges through Okinawa for more than 1000 years. Please enjoy Okinawa and experience its history to enhance our international communication. The present symposium was attended by 124 participants, the program included 107 contributions with 5 plenary lectures, 2 keynote lectures, and 100 oral regular paper presentations. The topics include, besides the ordinary measurement techniques for multiphase flows, acoustic and electric sensors, bubbles and microbubbles, computed tomography, gas-liquid interface, laser-imaging and PIV, oil/coal/drop and spray, solid and powder, spectral and multi-physics. This volume includes the presented papers at ISMTMF-2008. In addition to this volume, ten selected papers will be published in a special issue of Measurement Science and Technology. We would like to express special thanks to all
Multiscale Modeling of Multiphase Fluid Flow
2016-08-01
the disparate time and length scales involved in modeling fluid flow and heat transfer. Molecular dynamics simulations were carried out to provide a...fluid dynamics methods were used to investigate the heat transfer process in open-cell micro-foam with phase change material; enhancement of natural...Computational fluid dynamics, Heat transfer, Phase change material in Micro-foam, Molecular Dynamics, Multiphase flow, Multiscale modeling, Natural
Seeking simplicity for the understanding of multiphase flows
NASA Astrophysics Data System (ADS)
Stone, Howard A.
2017-10-01
Fluid mechanics is a discipline with rich phenomena, with motions occurring over an enormous range of length scales, and spanning a wide range of laminar and turbulent flows, instabilities, and applications in industry, nature, biology, and medicine. The subfield of complex fluids typically refers to those flows where the complexity is introduced, for example, by the presence of suspended particles, multiple phases, soft boundaries, and electrokinetic effects; several distinct multiphase flows of Newtonian fluids make up the examples in this article. Interfaces play a significant role and modify the flow with feedback that further changes the shapes of the interfaces. I will provide examples of our work highlighting (i) new features of classical instabilities triggered by changes in geometry, (ii) multiphase flows relevant to the design of liquid-infused substrates exhibiting effective slip while retaining the trapped liquid, and (iii) unexpected dynamics in flow at a T-junction. The interplay of experiments and mathematical models and/or simulations is critical to the new understanding developed.
NASA Astrophysics Data System (ADS)
Krimi, Abdelkader; Rezoug, Mehdi; Khelladi, Sofiane; Nogueira, Xesús; Deligant, Michael; Ramírez, Luis
2018-04-01
In this work, a consistent Smoothed Particle Hydrodynamics (SPH) model to deal with interfacial multiphase fluid flows simulation is proposed. A modification to the Continuum Stress Surface formulation (CSS) [1] to enhance the stability near the fluid interface is developed in the framework of the SPH method. A non-conservative first-order consistency operator is used to compute the divergence of stress surface tensor. This formulation benefits of all the advantages of the one proposed by Adami et al. [2] and, in addition, it can be applied to more than two phases fluid flow simulations. Moreover, the generalized wall boundary conditions [3] are modified in order to be well adapted to multiphase fluid flows with different density and viscosity. In order to allow the application of this technique to wall-bounded multiphase flows, a modification of generalized wall boundary conditions is presented here for using the SPH method. In this work we also present a particle redistribution strategy as an extension of the damping technique presented in [3] to smooth the initial transient phase of gravitational multiphase fluid flow simulations. Several computational tests are investigated to show the accuracy, convergence and applicability of the proposed SPH interfacial multiphase model.
3D CFD simulation of Multi-phase flow separators
NASA Astrophysics Data System (ADS)
Zhu, Zhiying
2017-10-01
During the exploitation of natural gas, some water and sands are contained. It will be better to separate water and sands from natural gas to insure favourable transportation and storage. In this study, we use CFD to analyse the effect of multi-phase flow separator, whose detailed geometrical parameters are designed in advanced. VOF model and DPM are used here. From the results of CFD, we can draw a conclusion that separated effect of multi-phase flow achieves better results. No solid and water is carried out from gas outlet. CFD simulation provides an economical and efficient approach to shed more light on details of the flow behaviour.
Development of axisymmetric lattice Boltzmann flux solver for complex multiphase flows
NASA Astrophysics Data System (ADS)
Wang, Yan; Shu, Chang; Yang, Li-Ming; Yuan, Hai-Zhuan
2018-05-01
This paper presents an axisymmetric lattice Boltzmann flux solver (LBFS) for simulating axisymmetric multiphase flows. In the solver, the two-dimensional (2D) multiphase LBFS is applied to reconstruct macroscopic fluxes excluding axisymmetric effects. Source terms accounting for axisymmetric effects are introduced directly into the governing equations. As compared to conventional axisymmetric multiphase lattice Boltzmann (LB) method, the present solver has the kinetic feature for flux evaluation and avoids complex derivations of external forcing terms. In addition, the present solver also saves considerable computational efforts in comparison with three-dimensional (3D) computations. The capability of the proposed solver in simulating complex multiphase flows is demonstrated by studying single bubble rising in a circular tube. The obtained results compare well with the published data.
Multiphase flow modelling of explosive volcanic eruptions using adaptive unstructured meshes
NASA Astrophysics Data System (ADS)
Jacobs, Christian T.; Collins, Gareth S.; Piggott, Matthew D.; Kramer, Stephan C.
2014-05-01
Explosive volcanic eruptions generate highly energetic plumes of hot gas and ash particles that produce diagnostic deposits and pose an extreme environmental hazard. The formation, dispersion and collapse of these volcanic plumes are complex multiscale processes that are extremely challenging to simulate numerically. Accurate description of particle and droplet aggregation, movement and settling requires a model capable of capturing the dynamics on a range of scales (from cm to km) and a model that can correctly describe the important multiphase interactions that take place. However, even the most advanced models of eruption dynamics to date are restricted by the fixed mesh-based approaches that they employ. The research presented herein describes the development of a compressible multiphase flow model within Fluidity, a combined finite element / control volume computational fluid dynamics (CFD) code, for the study of explosive volcanic eruptions. Fluidity adopts a state-of-the-art adaptive unstructured mesh-based approach to discretise the domain and focus numerical resolution only in areas important to the dynamics, while decreasing resolution where it is not needed as a simulation progresses. This allows the accurate but economical representation of the flow dynamics throughout time, and potentially allows large multi-scale problems to become tractable in complex 3D domains. The multiphase flow model is verified with the method of manufactured solutions, and validated by simulating published gas-solid shock tube experiments and comparing the numerical results against pressure gauge data. The application of the model considers an idealised 7 km by 7 km domain in which the violent eruption of hot gas and volcanic ash high into the atmosphere is simulated. Although the simulations do not correspond to a particular eruption case study, the key flow features observed in a typical explosive eruption event are successfully captured. These include a shock wave resulting
Modeling variability in porescale multiphase flow experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ling, Bowen; Bao, Jie; Oostrom, Mart
Microfluidic devices and porescale numerical models are commonly used to study multiphase flow in biological, geological, and engineered porous materials. In this work, we perform a set of drainage and imbibition experiments in six identical microfluidic cells to study the reproducibility of multiphase flow experiments. We observe significant variations in the experimental results, which are smaller during the drainage stage and larger during the imbibition stage. We demonstrate that these variations are due to sub-porescale geometry differences in microcells (because of manufacturing defects) and variations in the boundary condition (i.e.,fluctuations in the injection rate inherent to syringe pumps). Computational simulationsmore » are conducted using commercial software STAR-CCM+, both with constant and randomly varying injection rate. Stochastic simulations are able to capture variability in the experiments associated with the varying pump injection rate.« less
Characterizing Drainage Multiphase Flow in Heterogeneous Sandstones
NASA Astrophysics Data System (ADS)
Jackson, Samuel J.; Agada, Simeon; Reynolds, Catriona A.; Krevor, Samuel
2018-04-01
In this work, we analyze the characterization of drainage multiphase flow properties on heterogeneous rock cores using a rich experimental data set and mm-m scale numerical simulations. Along with routine multiphase flow properties, 3-D submeter scale capillary pressure heterogeneity is characterized by combining experimental observations and numerical calibration, resulting in a 3-D numerical model of the rock core. The uniqueness and predictive capability of the numerical models are evaluated by accurately predicting the experimentally measured relative permeability of N2—DI water and CO2—brine systems in two distinct sandstone rock cores across multiple fractional flow regimes and total flow rates. The numerical models are used to derive equivalent relative permeabilities, which are upscaled functions incorporating the effects of submeter scale capillary pressure. The functions are obtained across capillary numbers which span four orders of magnitude, representative of the range of flow regimes that occur in subsurface CO2 injection. Removal of experimental boundary artifacts allows the derivation of equivalent functions which are characteristic of the continuous subsurface. We also demonstrate how heterogeneities can be reorientated and restructured to efficiently estimate flow properties in rock orientations differing from the original core sample. This analysis shows how combined experimental and numerical characterization of rock samples can be used to derive equivalent flow properties from heterogeneous rocks.
MULTIPHASE FLOW AND TRANSPORT IN POROUS MEDIA
Multiphase flow and transport of compositionally complex fluids in geologic media is of importance in a number of applied problems which have major social and economic effects. n petroleum reservoir engineering efficient recovery of energy reserves is the principal goal. nfortuna...
Proper Orthogonal Decomposition on Experimental Multi-phase Flow in a Pipe
NASA Astrophysics Data System (ADS)
Viggiano, Bianca; Tutkun, Murat; Cal, Raúl Bayoán
2016-11-01
Multi-phase flow in a 10 cm diameter pipe is analyzed using proper orthogonal decomposition. The data were obtained using X-ray computed tomography in the Well Flow Loop at the Institute for Energy Technology in Kjeller, Norway. The system consists of two sources and two detectors; one camera records the vertical beams and one camera records the horizontal beams. The X-ray system allows measurement of phase holdup, cross-sectional phase distributions and gas-liquid interface characteristics within the pipe. The mathematical framework in the context of multi-phase flows is developed. Phase fractions of a two-phase (gas-liquid) flow are analyzed and a reduced order description of the flow is generated. Experimental data deepens the complexity of the analysis with limited known quantities for reconstruction. Comparison between the reconstructed fields and the full data set allows observation of the important features. The mathematical description obtained from the decomposition will deepen the understanding of multi-phase flow characteristics and is applicable to fluidized beds, hydroelectric power and nuclear processes to name a few.
The study of multiphase flow control during odor reproduction
NASA Astrophysics Data System (ADS)
Luo, Dehan; Yu, Hao; Fan, Danjun; He, Meiqiu
2014-04-01
Odor reproduction, is the use of the chemical composition of the basic components of odor recipe, according to a certain proportion, to control the flow of the various components, which make them sufficiently blended to achieve reproduction. In this paper, reproducing method is to find the corresponding liquid flavor, and then based on chemical flavor recipes, using flowmeters to control the chemical composition of the liquid flavor ratio. In the proportional control, the liquid chemical composition is very likely to be volatile, so that the proportional control is multiphase flow control. Measurement of the flow control will directly affect the odor reproducible results. Using electronic nose to obtain reproducible odor data, and then use pattern recognition algorithm to determine reproducible results. The experimental results can be achieved on the process of odor components multiphase flow proportional control parameter adjustment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guenther, Chris; Garg, Rahul
2013-08-19
The Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) sponsored a workshop on non-Newtonian multiphase slurry at NETL’s Morgantown campus August 19 and 20, 2013. The objective of this special two-day meeting of 20-30 invited experts from industry, National Labs and academia was to identify and address technical issues associated with handling non-Newtonian multiphase slurries across various facilities managed by DOE. Particular emphasis during this workshop was placed on applications managed by the Office of Environmental Management (EM). The workshop was preceded by two webinars wherein personnel from ORP and NETL provided background information on the Hanford WTP projectmore » and discussed the critical design challenges facing this project. In non-Newtonian fluids, viscosity is not constant and exhibits a complex dependence on applied shear stress or deformation. Many applications under EM’s tank farm mission involve non-Newtonian slurries that are multiphase in nature; tank farm storage and handling, slurry transport, and mixing all involve multiphase flow dynamics, which require an improved understanding of the mechanisms responsible for rheological changes in non-Newtonian multiphase slurries (NNMS). To discuss the issues in predicting the behavior of NNMS, the workshop focused on two topic areas: (1) State-of-the-art in non-Newtonian Multiphase Slurry Flow, and (2) Scaling up with Confidence and Ensuring Safe and Reliable Long-Term Operation.« less
Multiphase flow of miscible liquids: jets and drops
NASA Astrophysics Data System (ADS)
Walker, Travis W.; Logia, Alison N.; Fuller, Gerald G.
2015-05-01
Drops and jets of liquids that are miscible with the surrounding bulk liquid are present in many processes from cleaning surfaces with the aid of liquid soaps to the creation of biocompatible implants for drug delivery. Although the interactions of immiscible drops and jets show similarities to miscible systems, the small, transient interfacial tension associated with miscible systems create distinct outcomes such as intricate droplet shapes and breakup resistant jets. Experiments have been conducted to understand several basic multiphase flow problems involving miscible liquids. Using high-speed imaging of the morphological evolution of the flows, we have been able to show that these processes are controlled by interfacial tensions. Further multiphase flows include investigating miscible jets, which allow the creation of fibers from inelastic materials that are otherwise difficult to process due to capillary breakup. This work shows that stabilization from the diminishing interfacial tensions of the miscible jets allows various elongated morphologies to be formed.
Mixing and reactions in multiphase flow through porous media
NASA Astrophysics Data System (ADS)
Jimenez-Martinez, J.; Le Borgne, T.; Meheust, Y.; Porter, M. L.; De Anna, P.; Hyman, J.; Tabuteau, H.; Turuban, R.; Carey, J. W.; Viswanathan, H. S.
2016-12-01
The understanding and quantification of flow and transport processes in multiphase systems remains a grand scientific and engineering challenge in natural and industrial systems (e.g., soils and vadose zone, CO2 sequestration, unconventional oil and gas extraction, enhanced oil recovery). Beyond the kinetic of the chemical reactions, mixing processes in porous media play a key role in controlling both fluid-fluid and fluid-solid reactions. However, conventional continuum-scale models and theories oversimplify and/or ignore many important pore-scale processes. Multiphase flows, with the creation of highly heterogeneous fluid velocity fields (i.e., low velocities regions or stagnation zones, and high velocity regions or preferential paths), makes conservative and reactive transport more complex. We present recent multi-scale experimental developments and theoretical approaches to quantify transport, mixing, and reaction and their coupling with multiphase flows. We discuss our main findings: i) the sustained concentration gradients and enhanced reactivity in a two-phase system for a continuous injection, and the comparison with a pulse line injection; ii) the enhanced mixing by a third mobile-immiscible phase; and iii) the role that capillary forces play in the localization of the fluid-solid reactions. These experimental results are for highly-idealized geometries, however, the proposed models are related to basic porous media and unsaturated flow properties, and could be tested on more complex systems.
Constitutive Relationships and Models in Continuum Theories of Multiphase Flows. [conferences
NASA Technical Reports Server (NTRS)
Decker, Rand (Editor)
1989-01-01
In April, 1989, a workshop on constitutive relationships and models in continuum theories of multiphase flows was held at NASA's Marshall Space Flight Center. Topics of constitutive relationships for the partial or per phase stresses, including the concept of solid phase pressure are discussed. Models used for the exchange of mass, momentum, and energy between the phases in a multiphase flow are also discussed. The program, abstracts, and texts of the presentations from the workshop are included.
Statistical analysis on the signals monitoring multiphase flow patterns in pipeline-riser system
NASA Astrophysics Data System (ADS)
Ye, Jing; Guo, Liejin
2013-07-01
The signals monitoring petroleum transmission pipeline in offshore oil industry usually contain abundant information about the multiphase flow on flow assurance which includes the avoidance of most undesirable flow pattern. Therefore, extracting reliable features form these signals to analyze is an alternative way to examine the potential risks to oil platform. This paper is focused on characterizing multiphase flow patterns in pipeline-riser system that is often appeared in offshore oil industry and finding an objective criterion to describe the transition of flow patterns. Statistical analysis on pressure signal at the riser top is proposed, instead of normal prediction method based on inlet and outlet flow conditions which could not be easily determined during most situations. Besides, machine learning method (least square supported vector machine) is also performed to classify automatically the different flow patterns. The experiment results from a small-scale loop show that the proposed method is effective for analyzing the multiphase flow pattern.
Mixing and Demixing Processes in Multiphase Flows With Application to Propulsion Systems
NASA Technical Reports Server (NTRS)
Decker, Rand (Editor); Schafer, Charles F. (Editor)
1988-01-01
A workshop on transport processes in multiphase flow was held at the Marshall Space Flight Center on February 25 and 26, 1988. The program, abstracts and text of the presentations at this workshop are presented. The objective of the workshop was to enhance our understanding of mass, momentum, and energy transport processes in laminar and turbulent multiphase shear flows in combustion and propulsion environments.
New Turbulent Multiphase Flow Facilities for Simulation Benchmarking
NASA Astrophysics Data System (ADS)
Teoh, Chee Hau; Salibindla, Ashwanth; Masuk, Ashik Ullah Mohammad; Ni, Rui
2017-11-01
The Fluid Transport Lab at Penn State has devoted last few years on developing new experimental facilities to unveil the underlying physics of coupling between solid-gas and gas-liquid multiphase flow in a turbulent environment. In this poster, I will introduce one bubbly flow facility and one dusty flow facility for validating and verifying simulation results. Financial support for this project was provided by National Science Foundation under Grant Number: 1653389 and 1705246.
NASA Technical Reports Server (NTRS)
Melcher, Kevin J.
2006-01-01
The Compressible Flow Toolbox is primarily a MATLAB-language implementation of a set of algorithms that solve approximately 280 linear and nonlinear classical equations for compressible flow. The toolbox is useful for analysis of one-dimensional steady flow with either constant entropy, friction, heat transfer, or Mach number greater than 1. The toolbox also contains algorithms for comparing and validating the equation-solving algorithms against solutions previously published in open literature. The classical equations solved by the Compressible Flow Toolbox are as follows: The isentropic-flow equations, The Fanno flow equations (pertaining to flow of an ideal gas in a pipe with friction), The Rayleigh flow equations (pertaining to frictionless flow of an ideal gas, with heat transfer, in a pipe of constant cross section), The normal-shock equations, The oblique-shock equations, and The expansion equations.
Measurement Of Multiphase Flow Water Fraction And Water-cut
NASA Astrophysics Data System (ADS)
Xie, Cheng-gang
2007-06-01
This paper describes a microwave transmission multiphase flow water-cut meter that measures the amplitude attenuation and phase shift across a pipe diameter at multiple frequencies using cavity-backed antennas. The multiphase flow mixture permittivity and conductivity are derived from a unified microwave transmission model for both water- and oil-continuous flows over a wide water-conductivity range; this is far beyond the capability of microwave-resonance-based sensors currently on the market. The water fraction and water cut are derived from a three-component gas-oil-water mixing model using the mixture permittivity or the mixture conductivity and an independently measured mixture density. Water salinity variations caused, for example, by changing formation water or formation/injection water breakthrough can be detected and corrected using an online water-conductivity tracking technique based on the interpretation of the mixture permittivity and conductivity, simultaneously measured by a single-modality microwave sensor.
NASA Astrophysics Data System (ADS)
Meng, Yiqing; Lucas, Gary P.
2017-05-01
This paper presents the design and implementation of an inductive flow tomography (IFT) system, employing a multi-electrode electromagnetic flow meter (EMFM) and novel reconstruction techniques, for measuring the local water velocity distribution in water continuous single and multiphase flows. A series of experiments were carried out in vertical-upward and upward-inclined single phase water flows and ‘water continuous’ gas-water and oil-gas-water flows in which the velocity profiles ranged from axisymmetric (single phase and vertical-upward multiphase flows) to highly asymmetric (upward-inclined multiphase flows). Using potential difference measurements obtained from the electrode array of the EMFM, local axial velocity distributions of the continuous water phase were reconstructed using two different IFT reconstruction algorithms denoted RT#1, which assumes that the overall water velocity profile comprises the sum of a series of polynomial velocity components, and RT#2, which is similar to RT#1 but which assumes that the zero’th order velocity component may be replaced by an axisymmetric ‘power law’ velocity distribution. During each experiment, measurement of the local water volume fraction distribution was also made using the well-established technique of electrical resistance tomography (ERT). By integrating the product of the local axial water velocity and the local water volume fraction in the cross section an estimate of the water volumetric flow rate was made which was compared with a reference measurement of the water volumetric flow rate. In vertical upward flows RT#2 was found to give rise to water velocity profiles which are consistent with the previous literature although the profiles obtained in the multiphase flows had relatively higher central velocity peaks than was observed for the single phase profiles. This observation was almost certainly a result of the transfer of axial momentum from the less dense dispersed phases to the water
Turbulence in Compressible Flows
NASA Technical Reports Server (NTRS)
1997-01-01
Lecture notes for the AGARD Fluid Dynamics Panel (FDP) Special Course on 'Turbulence in Compressible Flows' have been assembled in this report. The following topics were covered: Compressible Turbulent Boundary Layers, Compressible Turbulent Free Shear Layers, Turbulent Combustion, DNS/LES and RANS Simulations of Compressible Turbulent Flows, and Case Studies of Applications of Turbulence Models in Aerospace.
NMR studies of multiphase flows II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altobelli, S.A.; Caprihan, A.; Fukushima, E.
NMR techniques for measurements of spatial distribution of material phase, velocity and velocity fluctuation are being developed and refined. Versions of these techniques which provide time average liquid fraction and fluid phase velocity have been applied to several concentrated suspension systems which will not be discussed extensively here. Technical developments required to further extend the use of NMR to the multi-phase flow arena and to provide measurements of previously unobtainable parameters are the focus of this report.
Numerical modelling of multiphase liquid-vapor-gas flows with interfaces and cavitation
NASA Astrophysics Data System (ADS)
Pelanti, Marica
2017-11-01
We are interested in the simulation of multiphase flows where the dynamical appearance of vapor cavities and evaporation fronts in a liquid is coupled to the dynamics of a third non-condensable gaseous phase. We describe these flows by a single-velocity three-phase compressible flow model composed of the phasic mass and total energy equations, the volume fraction equations, and the mixture momentum equation. The model includes stiff mechanical and thermal relaxation source terms for all the phases, and chemical relaxation terms to describe mass transfer between the liquid and vapor phases of the species that may undergo transition. The flow equations are solved by a mixture-energy-consistent finite volume wave propagation scheme, combined with simple and robust procedures for the treatment of the stiff relaxation terms. An analytical study of the characteristic wave speeds of the hierarchy of relaxed models associated to the parent model system is also presented. We show several numerical experiments, including two-dimensional simulations of underwater explosive phenomena where highly pressurized gases trigger cavitation processes close to a rigid surface or to a free surface. This work was supported by the French Government Grant DGA N. 2012.60.0011.00.470.75.01, and partially by the Norwegian Grant RCN N. 234126/E30.
FINITE-ELEMENT ANALYSIS OF MULTIPHASE IMMISCIBLE FLOW THROUGH SOILS
A finite-element model is developed for multiphase flow through soil involving three immiscible fluids: namely, air, water, and a nonaqueous phase liquid (NAPL). A variational method is employed for the finite-element formulation corresponding to the coupled differential equation...
Experimental and Computational Study of Multiphase Flow Hydrodynamics in 2D Trickle Bed Reactors
NASA Astrophysics Data System (ADS)
Nadeem, H.; Ben Salem, I.; Kurnia, J. C.; Rabbani, S.; Shamim, T.; Sassi, M.
2014-12-01
Trickle bed reactors are largely used in the refining processes. Co-current heavy oil and hydrogen gas flow downward on catalytic particle bed. Fine particles in the heavy oil and/or soot formed by the exothermic catalytic reactions deposit on the bed and clog the flow channels. This work is funded by the refining company of Abu Dhabi and aims at mitigating pressure buildup due to fine deposition in the TBR. In this work, we focus on meso-scale experimental and computational investigations of the interplay between flow regimes and the various parameters that affect them. A 2D experimental apparatus has been built to investigate the flow regimes with an average pore diameter close to the values encountered in trickle beds. A parametric study is done for the development of flow regimes and the transition between them when the geometry and arrangement of the particles within the porous medium are varied. Liquid and gas flow velocities have also been varied to capture the different flow regimes. Real time images of the multiphase flow are captured using a high speed camera, which were then used to characterize the transition between the different flow regimes. A diffused light source was used behind the 2D Trickle Bed Reactor to enhance visualizations. Experimental data shows very good agreement with the published literature. The computational study focuses on the hydrodynamics of multiphase flow and to identify the flow regime developed inside TBRs using the ANSYS Fluent Software package. Multiphase flow inside TBRs is investigated using the "discrete particle" approach together with Volume of Fluid (VoF) multiphase flow modeling. The effect of the bed particle diameter, spacing, and arrangement are presented that may be used to provide guidelines for designing trickle bed reactors.
Intrusive Method for Uncertainty Quantification in a Multiphase Flow Solver
NASA Astrophysics Data System (ADS)
Turnquist, Brian; Owkes, Mark
2016-11-01
Uncertainty quantification (UQ) is a necessary, interesting, and often neglected aspect of fluid flow simulations. To determine the significance of uncertain initial and boundary conditions, a multiphase flow solver is being created which extends a single phase, intrusive, polynomial chaos scheme into multiphase flows. Reliably estimating the impact of input uncertainty on design criteria can help identify and minimize unwanted variability in critical areas, and has the potential to help advance knowledge in atomizing jets, jet engines, pharmaceuticals, and food processing. Use of an intrusive polynomial chaos method has been shown to significantly reduce computational cost over non-intrusive collocation methods such as Monte-Carlo. This method requires transforming the model equations into a weak form through substitution of stochastic (random) variables. Ultimately, the model deploys a stochastic Navier Stokes equation, a stochastic conservative level set approach including reinitialization, as well as stochastic normals and curvature. By implementing these approaches together in one framework, basic problems may be investigated which shed light on model expansion, uncertainty theory, and fluid flow in general. NSF Grant Number 1511325.
Impact of eliminating fracture intersection nodes in multiphase compositional flow simulation
NASA Astrophysics Data System (ADS)
Walton, Kenneth M.; Unger, Andre J. A.; Ioannidis, Marios A.; Parker, Beth L.
2017-04-01
Algebraic elimination of nodes at discrete fracture intersections via the star-delta technique has proven to be a valuable tool for making multiphase numerical simulations more tractable and efficient. This study examines the assumptions of the star-delta technique and exposes its effects in a 3-D, multiphase context for advective and dispersive/diffusive fluxes. Key issues of relative permeability-saturation-capillary pressure (kr-S-Pc) and capillary barriers at fracture-fracture intersections are discussed. This study uses a multiphase compositional, finite difference numerical model in discrete fracture network (DFN) and discrete fracture-matrix (DFM) modes. It verifies that the numerical model replicates analytical solutions and performs adequately in convergence exercises (conservative and decaying tracer, one and two-phase flow, DFM and DFN domains). The study culminates in simulations of a two-phase laboratory experiment in which a fluid invades a simple fracture intersection. The experiment and simulations evoke different invading fluid flow paths by varying fracture apertures as oil invades water-filled fractures and as water invades air-filled fractures. Results indicate that the node elimination technique as implemented in numerical model correctly reproduces the long-term flow path of the invading fluid, but that short-term temporal effects of the capillary traps and barriers arising from the intersection node are lost.
A compressible multiphase framework for simulating supersonic atomization
NASA Astrophysics Data System (ADS)
Regele, Jonathan D.; Garrick, Daniel P.; Hosseinzadeh-Nik, Zahra; Aslani, Mohamad; Owkes, Mark
2016-11-01
The study of atomization in supersonic combustors is critical in designing efficient and high performance scramjets. Numerical methods incorporating surface tension effects have largely focused on the incompressible regime as most atomization applications occur at low Mach numbers. Simulating surface tension effects in high speed compressible flow requires robust numerical methods that can handle discontinuities caused by both material interfaces and shocks. A shock capturing/diffused interface method is developed to simulate high-speed compressible gas-liquid flows with surface tension effects using the five-equation model. This includes developments that account for the interfacial pressure jump that occurs in the presence of surface tension. A simple and efficient method for computing local interface curvature is developed and an acoustic non-dimensional scaling for the surface tension force is proposed. The method successfully captures a variety of droplet breakup modes over a range of Weber numbers and demonstrates the impact of surface tension in countering droplet deformation in both subsonic and supersonic cross flows.
A model and numerical method for compressible flows with capillary effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidmayer, Kevin, E-mail: kevin.schmidmayer@univ-amu.fr; Petitpas, Fabien, E-mail: fabien.petitpas@univ-amu.fr; Daniel, Eric, E-mail: eric.daniel@univ-amu.fr
2017-04-01
A new model for interface problems with capillary effects in compressible fluids is presented together with a specific numerical method to treat capillary flows and pressure waves propagation. This new multiphase model is in agreement with physical principles of conservation and respects the second law of thermodynamics. A new numerical method is also proposed where the global system of equations is split into several submodels. Each submodel is hyperbolic or weakly hyperbolic and can be solved with an adequate numerical method. This method is tested and validated thanks to comparisons with analytical solutions (Laplace law) and with experimental results onmore » droplet breakup induced by a shock wave.« less
Eliminating cubic terms in the pseudopotential lattice Boltzmann model for multiphase flow
NASA Astrophysics Data System (ADS)
Huang, Rongzong; Wu, Huiying; Adams, Nikolaus A.
2018-05-01
It is well recognized that there exist additional cubic terms of velocity in the lattice Boltzmann (LB) model based on the standard lattice. In this work, elimination of these cubic terms in the pseudopotential LB model for multiphase flow is investigated, where the force term and density gradient are considered. By retaining high-order (≥3 ) Hermite terms in the equilibrium distribution function and the discrete force term, as well as introducing correction terms in the LB equation, the additional cubic terms of velocity are entirely eliminated. With this technique, the computational simplicity of the pseudopotential LB model is well maintained. Numerical tests, including stationary and moving flat and circular interface problems, are carried out to show the effects of such cubic terms on the simulation of multiphase flow. It is found that the elimination of additional cubic terms is beneficial to reduce the numerical error, especially when the velocity is relatively large. Numerical results also suggest that these cubic terms mainly take effect in the interfacial region and that the density-gradient-related cubic terms are more important than the other cubic terms for multiphase flow.
Impact Detection for Characterization of Complex Multiphase Flows
NASA Astrophysics Data System (ADS)
Chan, Wai Hong Ronald; Urzay, Javier; Mani, Ali; Moin, Parviz
2016-11-01
Multiphase flows often involve a wide range of impact events, such as liquid droplets impinging on a liquid pool or gas bubbles coalescing in a liquid medium. These events contribute to a myriad of large-scale phenomena, including breaking waves on ocean surfaces. As impacts between surfaces necessarily occur at isolated points, numerical simulations of impact events will require the resolution of molecular scales near the impact points for accurate modeling. This can be prohibitively expensive unless subgrid impact and breakup models are formulated to capture the effects of the interactions. The first step in a large-eddy simulation (LES) based computational methodology for complex multiphase flows like air-sea interactions requires effective detection of these impact events. The starting point of this work is a collision detection algorithm for structured grids on a coupled level set / volume of fluid (CLSVOF) solver adapted from an earlier algorithm for cloth animations that triangulates the interface with the marching cubes method. We explore the extension of collision detection to a geometric VOF solver and to unstructured grids. Supported by ONR/A*STAR. Agency of Science, Technology and Research, Singapore; Office of Naval Research, USA.
A Finite Element Method for Simulation of Compressible Cavitating Flows
NASA Astrophysics Data System (ADS)
Shams, Ehsan; Yang, Fan; Zhang, Yu; Sahni, Onkar; Shephard, Mark; Oberai, Assad
2016-11-01
This work focuses on a novel approach for finite element simulations of multi-phase flows which involve evolving interface with phase change. Modeling problems, such as cavitation, requires addressing multiple challenges, including compressibility of the vapor phase, interface physics caused by mass, momentum and energy fluxes. We have developed a mathematically consistent and robust computational approach to address these problems. We use stabilized finite element methods on unstructured meshes to solve for the compressible Navier-Stokes equations. Arbitrary Lagrangian-Eulerian formulation is used to handle the interface motions. Our method uses a mesh adaptation strategy to preserve the quality of the volumetric mesh, while the interface mesh moves along with the interface. The interface jump conditions are accurately represented using a discontinuous Galerkin method on the conservation laws. Condensation and evaporation rates at the interface are thermodynamically modeled to determine the interface velocity. We will present initial results on bubble cavitation the behavior of an attached cavitation zone in a separated boundary layer. We acknowledge the support from Army Research Office (ARO) under ARO Grant W911NF-14-1-0301.
LOW-VELOCITY COMPRESSIBLE FLOW THEORY
The widespread application of incompressible flow theory dominates low-velocity fluid dynamics, virtually preventing research into compressible low-velocity flow dynamics. Yet, compressible solutions to simple and well-defined flow problems and a series of contradictions in incom...
Nonequilibrium capillarity effects in multiphase flow through small volume fractured porous media
NASA Astrophysics Data System (ADS)
Tang, M.; Zhan, H.; Lu, S.
2017-12-01
Analyzing and understanding the capillary pressure curves in fractured porous media is a crucial subject in a number of industrial applications, such as crude oil recovery in the fractured reservoir, CO2 sequestration in fractured brine aquifers and shale gas development. Many studies have observed the significant nonequilibrium capillarity effects in multiphase flow through porous media and proposed that conventional equilibrium capillary pressure may not accurately describe transient two-phase flow behavior under dynamical conditions. To date, only several laboratory experiments and numerical models have been conducted into investigating the characteristic of nonequilibrium capillary pressure in unfractured porous media, a clear picture of the effects of fractures on the dynamic capillary pressure in fractured porous media remains elusive. In this study, four digital porous models were built based on CT image data from ZEISS Xradia 520 Versa CT scanning, a series of direct simulations of multiphase flow in fractured porous media were carried out based on lattice Boltzmann method and three-dimensional porous models. The results show that both the aperture and orientation of the fractures have significant effects on the nonequilibrium capillary pressure coefficients and multiphase flow behaviors. The nonequilibrium capillary pressure coefficients in fractured porous media are one to two orders of magnitude lower than unfractured porous media. This study presents a new direct simulation based methodology for the detailed analysis of nonequilibrium capillary pressure in fractured porous media.
Optimal Power Flow in Multiphase Radial Networks with Delta Connections: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Changhong; Dall-Anese, Emiliano; Low, Steven H.
This paper focuses on multiphase radial distribution networks with mixed wye and delta connections, and proposes a semidefinite relaxation of the AC optimal power flow (OPF) problem. Two multiphase power-flow models are developed to facilitate the integration of delta-connected generation units/loads in the OPF problem. The first model extends traditional branch flow models - and it is referred to as extended branch flow model (EBFM). The second model leverages a linear relationship between per-phase power injections and delta connections, which holds under a balanced voltage approximation (BVA). Based on these models, pertinent OPF problems are formulated and relaxed to semidefinitemore » programs (SDPs). Numerical studies on IEEE test feeders show that SDP relaxations can be solved efficiently by a generic optimization solver. Numerical evidences indicate that solving the resultant SDP under BVA is faster than under EBFM. Moreover, both SDP solutions are numerically exact with respect to voltages and branch flows. It is also shown that the SDP solution under BVA has a small optimality gap, while the BVA model is accurate in the sense that it reflects actual system voltages.« less
NASA Technical Reports Server (NTRS)
Singh, Bhim S.
2003-01-01
NASA is preparing to undertake science-driven exploration missions. The NASA Exploration Team's vision is a cascade of stepping stones. The stepping-stone will build the technical capabilities needed for each step with multi-use technologies and capabilities. An Agency-wide technology investment and development program is necessary to implement the vision. The NASA Exploration Team has identified a number of areas where significant advances are needed to overcome all engineering and medical barriers to the expansion of human space exploration beyond low-Earth orbit. Closed-loop life support systems and advanced propulsion and power technologies are among the areas requiring significant advances from the current state-of-the-art. Studies conducted by the National Academy of Science's National Research Council and Workshops organized by NASA have shown that multiphase flow and phase change play a crucial role in many of these advanced technology concepts. Lack of understanding of multiphase flow, phase change, and interfacial phenomena in the microgravity environment has been a major hurdle. An understanding of multiphase flow and phase change in microgravity is, therefore, critical to advancing many technologies needed. Recognizing this, the Office of Biological and Physical Research (OBPR) has initiated a strategic research thrust to augment the ongoing fundamental research in fluid physics and transport phenomena discipline with research especially aimed at understanding key multiphase flow related issues in propulsion, power, thermal control, and closed-loop advanced life support systems. A plan for integrated theoretical and experimental research that has the highest probability of providing data, predictive tools, and models needed by the systems developers to incorporate highly promising multiphase-based technologies is currently in preparation. This plan is being developed with inputs from scientific community, NASA mission planners and industry personnel
Viscosity and surface tension effects during multiphase flow in propped fractures
NASA Astrophysics Data System (ADS)
Dzikowski, Michał; Dąbrowski, Marcin
2017-04-01
Geological sequestration of CO2 was proposed as an important mechanism to reduce its emission into atmosphere. CO2 exhibits a higher affinity to organic matter than methane molecules and, potentially, it could be pumped and stored in shale reservoirs while enhancing late stage shale gas production. A successful analysis of CO2 sequestration in low matrix permeability rocks such as shales requires a thorough understanding of multiphase flow in stimulated rock fractures, which provide most significant pathways for fluids in such systems. Multiphase fracture flows are also of great relevance to brine, oil and gas migration in petroleum systems, water and stream circulation in geothermal reservoirs, and chemical transport of non-aqueous phase liquids in shallow hydrogeological systems, particularly in partially saturated zones. There are various physical models that describe phenomena taking place during multiphase flow through porous media. One of key aspects that need to be considered are pore-scale effects related to capillarity. Unfortunately, detailed models that describe motion and evolution of phase or component boundary require direct numerical simulations and spatial resolutions that are hard to reach when considering industrial relevant systems. Main aim of the presented work was the development of reduced 2.5D models based on Brinkman approximation of thin domain flow that would be able to capture local scale phenomena without expensive 3D simulations. Presented approach was designed specifically to tackle incompressible and immiscible systems and is based on Continuous Surface Force approach presented by Brackbill et al., implemented using Lattice Boltzmann Method. Presented approach where firstly validated against standard test cases with known classical solution and known experimental data. In the second part, we present and discuss two component, immiscible permeability data for rough and propped fracture obtained with our code for a rage of proppants
Multiphase groundwater flow near cooling plutons
Hayba, D.O.; Ingebritsen, S.E.
1997-01-01
We investigate groundwater flow near cooling plutons with a computer program that can model multiphase flow, temperatures up to 1200??C, thermal pressurization, and temperature-dependent rock properties. A series of experiments examines the effects of host-rock permeability, size and depth of pluton emplacement, single versus multiple intrusions, the influence of a caprock, and the impact of topographically driven groundwater flow. We also reproduce and evaluate some of the pioneering numerical experiments on flow around plutons. Host-rock permeability is the principal factor influencing fluid circulation and heat transfer in hydrothermal systems. The hottest and most steam-rich systems develop where permeability is of the order of 10-15 m2. Temperatures and life spans of systems decrease with increasing permeability. Conduction-dominated systems, in which permeabilities are ???10-16m2, persist longer but exhibit relatively modest increases in near-surface temperatures relative to ambient conditions. Pluton size, emplacement depth, and initial thermal conditions have less influence on hydrothermal circulation patterns but affect the extent of boiling and duration of hydrothermal systems. Topographically driven groundwater flow can significantly alter hydrothermal circulation; however, a low-permeability caprock effectively decouples the topographically and density-driven systems and stabilizes the mixing interface between them thereby defining a likely ore-forming environment.
A finite-volume HLLC-based scheme for compressible interfacial flows with surface tension
NASA Astrophysics Data System (ADS)
Garrick, Daniel P.; Owkes, Mark; Regele, Jonathan D.
2017-06-01
Shock waves are often used in experiments to create a shear flow across liquid droplets to study secondary atomization. Similar behavior occurs inside of supersonic combustors (scramjets) under startup conditions, but it is challenging to study these conditions experimentally. In order to investigate this phenomenon further, a numerical approach is developed to simulate compressible multiphase flows under the effects of surface tension forces. The flow field is solved via the compressible multicomponent Euler equations (i.e., the five equation model) discretized with the finite volume method on a uniform Cartesian grid. The solver utilizes a total variation diminishing (TVD) third-order Runge-Kutta method for time-marching and second order TVD spatial reconstruction. Surface tension is incorporated using the Continuum Surface Force (CSF) model. Fluxes are upwinded with a modified Harten-Lax-van Leer Contact (HLLC) approximate Riemann solver. An interface compression scheme is employed to counter numerical diffusion of the interface. The present work includes modifications to both the HLLC solver and the interface compression scheme to account for capillary force terms and the associated pressure jump across the gas-liquid interface. A simple method for numerically computing the interface curvature is developed and an acoustic scaling of the surface tension coefficient is proposed for the non-dimensionalization of the model. The model captures the surface tension induced pressure jump exactly if the exact curvature is known and is further verified with an oscillating elliptical droplet and Mach 1.47 and 3 shock-droplet interaction problems. The general characteristics of secondary atomization at a range of Weber numbers are also captured in a series of simulations.
A finite-volume HLLC-based scheme for compressible interfacial flows with surface tension
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrick, Daniel P.; Owkes, Mark; Regele, Jonathan D., E-mail: jregele@iastate.edu
Shock waves are often used in experiments to create a shear flow across liquid droplets to study secondary atomization. Similar behavior occurs inside of supersonic combustors (scramjets) under startup conditions, but it is challenging to study these conditions experimentally. In order to investigate this phenomenon further, a numerical approach is developed to simulate compressible multiphase flows under the effects of surface tension forces. The flow field is solved via the compressible multicomponent Euler equations (i.e., the five equation model) discretized with the finite volume method on a uniform Cartesian grid. The solver utilizes a total variation diminishing (TVD) third-order Runge–Kuttamore » method for time-marching and second order TVD spatial reconstruction. Surface tension is incorporated using the Continuum Surface Force (CSF) model. Fluxes are upwinded with a modified Harten–Lax–van Leer Contact (HLLC) approximate Riemann solver. An interface compression scheme is employed to counter numerical diffusion of the interface. The present work includes modifications to both the HLLC solver and the interface compression scheme to account for capillary force terms and the associated pressure jump across the gas–liquid interface. A simple method for numerically computing the interface curvature is developed and an acoustic scaling of the surface tension coefficient is proposed for the non-dimensionalization of the model. The model captures the surface tension induced pressure jump exactly if the exact curvature is known and is further verified with an oscillating elliptical droplet and Mach 1.47 and 3 shock-droplet interaction problems. The general characteristics of secondary atomization at a range of Weber numbers are also captured in a series of simulations.« less
9th International Conference on Multiphase Flow (ICMF 2016)
2016-08-12
Office of Naval Research Global (ONRG) Final CSP (Collaborative Science Program) Report Administrative Details: Event Name: 9th ...International Conference on Multiphase Flows Event Dates: May 22-27, 2016 Event City and Country: Florence, Italy Grantee (Name and Contact...2043 Date of the Final Report: August 12, 2016 Abstract: This report summarizes the main activities and outcomes of the 9th International
NASA Astrophysics Data System (ADS)
Juanes, R.; Jha, B.
2014-12-01
The coupling between subsurface flow and geomechanical deformation is critical in the assessment of the environmental impacts of groundwater use, underground liquid waste disposal, geologic storage of carbon dioxide, and exploitation of shale gas reserves. In particular, seismicity induced by fluid injection and withdrawal has emerged as a central element of the scientific discussion around subsurface technologies that tap into water and energy resources. Here we present a new computational approach to model coupled multiphase flow and geomechanics of faulted reservoirs. We represent faults as surfaces embedded in a three-dimensional medium by using zero-thickness interface elements to accurately model fault slip under dynamically evolving fluid pressure and fault strength. We incorporate the effect of fluid pressures from multiphase flow in the mechanical stability of faults and employ a rigorous formulation of nonlinear multiphase geomechanics that is capable of handling strong capillary effects. We develop a numerical simulation tool by coupling a multiphase flow simulator with a mechanics simulator, using the unconditionally stable fixed-stress scheme for the sequential solution of two-way coupling between flow and geomechanics. We validate our modeling approach using several synthetic, but realistic, test cases that illustrate the onset and evolution of earthquakes from fluid injection and withdrawal. We also present the application of the coupled flow-geomechanics simulation technology to the post mortem analysis of the Mw=5.1, May 2011 Lorca earthquake in south-east Spain, and assess the potential that the earthquake was induced by groundwater extraction.
Method and system for measuring multiphase flow using multiple pressure differentials
Fincke, James R.
2001-01-01
An improved method and system for measuring a multiphase flow in a pressure flow meter. An extended throat venturi is used and pressure of the multiphase flow is measured at three or more positions in the venturi, which define two or more pressure differentials in the flow conduit. The differential pressures are then used to calculate the mass flow of the gas phase, the total mass flow, and the liquid phase. The method for determining the mass flow of the high void fraction fluid flow and the gas flow includes certain steps. The first step is calculating a gas density for the gas flow. The next two steps are finding a normalized gas mass flow rate through the venturi and computing a gas mass flow rate. The following step is estimating the gas velocity in the venturi tube throat. The next step is calculating the pressure drop experienced by the gas-phase due to work performed by the gas phase in accelerating the liquid phase between the upstream pressure measuring point and the pressure measuring point in the venturi throat. Another step is estimating the liquid velocity in the venturi throat using the calculated pressure drop experienced by the gas-phase due to work performed by the gas phase. Then the friction is computed between the liquid phase and a wall in the venturi tube. Finally, the total mass flow rate based on measured pressure in the venturi throat is calculated, and the mass flow rate of the liquid phase is calculated from the difference of the total mass flow rate and the gas mass flow rate.
Multiphase flow modeling and simulation of explosive volcanic eruptions
NASA Astrophysics Data System (ADS)
Neri, Augusto
Recent worldwide volcanic activity, such as eruptions at Mt. St. Helens, Washington, in 1980, Mt. Pinatubo, Philippines, in 1991, as well as the ongoing eruption at Montserrat, West Indies, highlighted again the complex nature of explosive volcanic eruptions as well as the tremendous risk associated to them. In the year 2000, about 500 million people are expected to live under the shadow of an active volcano. The understanding of pyroclastic dispersion processes produced by explosive eruptions is, therefore, of primary interest, not only from the scientific point of view, but also for the huge worldwide risk associated with them. The thesis deals with an interdisciplinary research aimed at the modeling and simulation of explosive volcanic eruptions by using multiphase thermo-fluid-dynamic models. The first part of the work was dedicated to the understanding and validation of recently developed kinetic theory of two-phase flow. The hydrodynamics of fluid catalytic cracking particles in the IIT riser were simulated and compared with lab experiments. Simulation results confirm the validity of the kinetic theory approach. Transport of solids in the riser is due to dense clusters. On a time-average basis the bottom of the riser and the walls are dense, in agreement with IIT experimental data. The low frequency of oscillation (about 0.2 Hz) is also in agreement with data. The second part of the work was devoted to the development of transient two-dimensional multiphase and multicomponent flow models of pyroclastic dispersion processes. In particular, the dynamics of ground-hugging high-speed and high-temperature pyroclastic flows generated by the collapse of volcanic columns or by impulsive discrete explosions, was investigated. The model accounts for the mechanical and thermal non-equilibrium between a multicomponent gas phase and N different solid phases representative of pyroclastic particles of different sizes. Pyroclastic dispersion dynamics describes the formation
TOUGH2: A general-purpose numerical simulator for multiphase nonisothermal flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pruess, K.
1991-06-01
Numerical simulators for multiphase fluid and heat flows in permeable media have been under development at Lawrence Berkeley Laboratory for more than 10 yr. Real geofluids contain noncondensible gases and dissolved solids in addition to water, and the desire to model such `compositional` systems led to the development of a flexible multicomponent, multiphase simulation architecture known as MULKOM. The design of MULKOM was based on the recognition that the mass-and energy-balance equations for multiphase fluid and heat flows in multicomponent systems have the same mathematical form, regardless of the number and nature of fluid components and phases present. Application ofmore » MULKOM to different fluid mixtures, such as water and air, or water, oil, and gas, is possible by means of appropriate `equation-of-state` (EOS) modules, which provide all thermophysical and transport parameters of the fluid mixture and the permeable medium as a function of a suitable set of primary thermodynamic variables. Investigations of thermal and hydrologic effects from emplacement of heat-generating nuclear wastes into partially water-saturated formations prompted the development and release of a specialized version of MULKOM for nonisothermal flow of water and air, named TOUGH. TOUGH is an acronym for `transport of unsaturated groundwater and heat` and is also an allusion to the tuff formations at Yucca Mountain, Nevada. The TOUGH2 code is intended to supersede TOUGH. It offers all the capabilities of TOUGH and includes a considerably more general subset of MULKOM modules with added capabilities. The paper briefly describes the simulation methodology and user features.« less
Quantitative tomographic measurements of opaque multiphase flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
GEORGE,DARIN L.; TORCZYNSKI,JOHN R.; SHOLLENBERGER,KIM ANN
2000-03-01
An electrical-impedance tomography (EIT) system has been developed for quantitative measurements of radial phase distribution profiles in two-phase and three-phase vertical column flows. The EIT system is described along with the computer algorithm used for reconstructing phase volume fraction profiles. EIT measurements were validated by comparison with a gamma-densitometry tomography (GDT) system. The EIT system was used to accurately measure average solid volume fractions up to 0.05 in solid-liquid flows, and radial gas volume fraction profiles in gas-liquid flows with gas volume fractions up to 0.15. In both flows, average phase volume fractions and radial volume fraction profiles from GDTmore » and EIT were in good agreement. A minor modification to the formula used to relate conductivity data to phase volume fractions was found to improve agreement between the methods. GDT and EIT were then applied together to simultaneously measure the solid, liquid, and gas radial distributions within several vertical three-phase flows. For average solid volume fractions up to 0.30, the gas distribution for each gas flow rate was approximately independent of the amount of solids in the column. Measurements made with this EIT system demonstrate that EIT may be used successfully for noninvasive, quantitative measurements of dispersed multiphase flows.« less
Direct numerical simulation of incompressible multiphase flow with phase change
NASA Astrophysics Data System (ADS)
Lee, Moon Soo; Riaz, Amir; Aute, Vikrant
2017-09-01
Simulation of multiphase flow with phase change is challenging because of the potential for unphysical pressure oscillations, spurious velocity fields and mass flux errors across the interface. The resulting numerical errors may become critical when large density contrasts are present. To address these issues, we present a new approach for multiphase flow with phase change that features, (i) a smooth distribution of sharp velocity jumps and mass flux within a narrow region surrounding the interface, (ii) improved mass flux projection from the implicit interface onto the uniform Cartesian grid and (iii) post-advection velocity correction step to ensure accurate velocity divergence in interfacial cells. These new features are implemented in combination with a sharp treatment of the jumps in pressure and temperature gradient. A series of 1-D, 2-D, axisymmetric and 3-D problems are solved to verify the improvements afforded by the new approach. Axisymmetric film boiling results are also presented, which show good qualitative agreement with heat transfer correlations as well as experimental observations of bubble shapes.
NASA Astrophysics Data System (ADS)
Diggs, Angela; Balachandar, Sivaramakrishnan
2015-06-01
The present work addresses the numerical methods required for particle-gas and particle-particle interactions in Eulerian-Lagrangian simulations of multiphase flow. Local volume fraction as seen by each particle is the quantity of foremost importance in modeling and evaluating such interactions. We consider a general multiphase flow with a distribution of particles inside a fluid flow discretized on an Eulerian grid. Particle volume fraction is needed both as a Lagrangian quantity associated with each particle and also as an Eulerian quantity associated with the flow. In Eulerian Projection (EP) methods, the volume fraction is first obtained within each cell as an Eulerian quantity and then interpolated to each particle. In Lagrangian Projection (LP) methods, the particle volume fraction is obtained at each particle and then projected onto the Eulerian grid. Traditionally, EP methods are used in multiphase flow, but sub-grid resolution can be obtained through use of LP methods. By evaluating the total error and its components we compare the performance of EP and LP methods. The standard von Neumann error analysis technique has been adapted for rigorous evaluation of rate of convergence. The methods presented can be extended to obtain accurate field representations of other Lagrangian quantities. Most importantly, we will show that such careful attention to numerical methodologies is needed in order to capture complex shock interaction with a bed of particles. Supported by U.S. Department of Defense SMART Program and the U.S. Department of Energy PSAAP-II program under Contract No. DE-NA0002378.
NASA Astrophysics Data System (ADS)
Annamalai, Subramanian; Balachandar, S.; Sridharan, P.; Jackson, T. L.
2017-02-01
An analytical expression describing the unsteady pressure evolution of the dispersed phase driven by variations in the carrier phase is presented. In this article, the term "dispersed phase" represents rigid particles, droplets, or bubbles. Letting both the dispersed and continuous phases be inhomogeneous, unsteady, and compressible, the developed pressure equation describes the particle response and its eventual equilibration with that of the carrier fluid. The study involves impingement of a plane traveling wave of a given frequency and subsequent volume-averaged particle pressure calculation due to a single wave. The ambient or continuous fluid's pressure and density-weighted normal velocity are identified as the source terms governing the particle pressure. Analogous to the generalized Faxén theorem, which is applicable to the particle equation of motion, the pressure expression is also written in terms of the surface average of time-varying incoming flow properties. The surface average allows the current formulation to be generalized for any complex incident flow, including situations where the particle size is comparable to that of the incoming flow. Further, the particle pressure is also found to depend on the dispersed-to-continuous fluid density ratio and speed of sound ratio in addition to dynamic viscosities of both fluids. The model is applied to predict the unsteady pressure variation inside an aluminum particle subjected to normal shock waves. The results are compared against numerical simulations and found to be in good agreement. Furthermore, it is shown that, although the analysis is conducted in the limit of negligible flow Reynolds and Mach numbers, it can be used to compute the density and volume of the dispersed phase to reasonable accuracy. Finally, analogous to the pressure evolution expression, an equation describing the time-dependent particle radius is deduced and is shown to reduce to the Rayleigh-Plesset equation in the linear limit.
Development of an Efficient Meso- scale Multi-phase Flow Solver in Nuclear Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Taehun
2015-10-20
The proposed research aims at formulating a predictive high-order Lattice Boltzmann Equation for multi-phase flows relevant to nuclear energy related application - namely, saturated and sub-cooled boiling in reactors, and liquid- liquid mixing and extraction for fuel cycle separation. An efficient flow solver will be developed based on the Finite Element based Lattice Boltzmann Method (FE- LBM), accounting for phase-change heat transfer and capable of treating multiple phases over length scales from the submicron to the meter. A thermal LBM will be developed in order to handle adjustable Prandtl number, arbitrary specific heat ratio, a wide range of temperature variations,more » better numerical stability during liquid-vapor phase change, and full thermo-hydrodynamic consistency. Two-phase FE-LBM will be extended to liquid–liquid–gas multi-phase flows for application to high-fidelity simulations building up from the meso-scale up to the equipment sub-component scale. While several relevant applications exist, the initial applications for demonstration of the efficient methods to be developed as part of this project include numerical investigations of Critical Heat Flux (CHF) phenomena in nuclear reactor fuel bundles, and liquid-liquid mixing and interfacial area generation for liquid-liquid separations. In addition, targeted experiments will be conducted for validation of this advanced multi-phase model.« less
Simulating compressible-incompressible two-phase flows
NASA Astrophysics Data System (ADS)
Denner, Fabian; van Wachem, Berend
2017-11-01
Simulating compressible gas-liquid flows, e.g. air-water flows, presents considerable numerical issues and requires substantial computational resources, particularly because of the stiff equation of state for the liquid and the different Mach number regimes. Treating the liquid phase (low Mach number) as incompressible, yet concurrently considering the gas phase (high Mach number) as compressible, can improve the computational performance of such simulations significantly without sacrificing important physical mechanisms. A pressure-based algorithm for the simulation of two-phase flows is presented, in which a compressible and an incompressible fluid are separated by a sharp interface. The algorithm is based on a coupled finite-volume framework, discretised in conservative form, with a compressive VOF method to represent the interface. The bulk phases are coupled via a novel acoustically-conservative interface discretisation method that retains the acoustic properties of the compressible phase and does not require a Riemann solver. Representative test cases are presented to scrutinize the proposed algorithm, including the reflection of acoustic waves at the compressible-incompressible interface, shock-drop interaction and gas-liquid flows with surface tension. Financial support from the EPSRC (Grant EP/M021556/1) is gratefully acknowledged.
A Numerical Study of Mesh Adaptivity in Multiphase Flows with Non-Newtonian Fluids
NASA Astrophysics Data System (ADS)
Percival, James; Pavlidis, Dimitrios; Xie, Zhihua; Alberini, Federico; Simmons, Mark; Pain, Christopher; Matar, Omar
2014-11-01
We present an investigation into the computational efficiency benefits of dynamic mesh adaptivity in the numerical simulation of transient multiphase fluid flow problems involving Non-Newtonian fluids. Such fluids appear in a range of industrial applications, from printing inks to toothpastes and introduce new challenges for mesh adaptivity due to the additional ``memory'' of viscoelastic fluids. Nevertheless, the multiscale nature of these flows implies huge potential benefits for a successful implementation. The study is performed using the open source package Fluidity, which couples an unstructured mesh control volume finite element solver for the multiphase Navier-Stokes equations to a dynamic anisotropic mesh adaptivity algorithm, based on estimated solution interpolation error criteria, and conservative mesh-to-mesh interpolation routine. The code is applied to problems involving rheologies ranging from simple Newtonian to shear-thinning to viscoelastic materials and verified against experimental data for various industrial and microfluidic flows. This work was undertaken as part of the EPSRC MEMPHIS programme grant EP/K003976/1.
Methodologies for extracting kinetic constants for multiphase reacting flow simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, S.L.; Lottes, S.A.; Golchert, B.
1997-03-01
Flows in industrial reactors often involve complex reactions of many species. A computational fluid dynamics (CFD) computer code, ICRKFLO, was developed to simulate multiphase, multi-species reacting flows. The ICRKFLO uses a hybrid technique to calculate species concentration and reaction for a large number of species in a reacting flow. This technique includes a hydrodynamic and reacting flow simulation with a small but sufficient number of lumped reactions to compute flow field properties followed by a calculation of local reaction kinetics and transport of many subspecies (order of 10 to 100). Kinetic rate constants of the numerous subspecies chemical reactions aremore » difficult to determine. A methodology has been developed to extract kinetic constants from experimental data efficiently. A flow simulation of a fluid catalytic cracking (FCC) riser was successfully used to demonstrate this methodology.« less
Upscaling Multiphase Fluid Flow in Naturally Fractured Reservoirs
NASA Astrophysics Data System (ADS)
Matthai, S.; Maghami-Nick, H.; Belayneh, M.; Geiger, S.
2009-04-01
Hydrocarbon recovery from fractured porous reservoirs is difficult to predict as it depends on the focusing of the flow and the local balance of viscous, gravitational, and capillary forces. Hecto-metre scale sub-volumes of fractured oil reservoirs contain thousands of fractures with highly variable flow properties, dimensions and orientations. This complexity precludes direct geometric incorporation into field scale multiphase flow models. Macroscopic laws of their integral effects on multiphase flow are required. These can be investigated by DFM (discrete fracture and matrix) numerical simulations based on discrete fracture models representing fractured reservoir analogues. Here we present DFM results indicating that hecto-metre-scale relative permeability, the time to water breakthrough, and the subsequent water cut primarily depend on the fracture-to-rock matrix flux ratio, qf/qm, quantifying the proportion of the cross-sectional flux that occurs through the fractures. Relative permeability during imbibition runs is best approximated by a rate-dependent new model taking into account capillary fracture-matrix transfer. The up-scaled fractional flow function fo(sw) derived from this new kri formulation is convex with a near-infinity slope at the residual water saturation. This implies that the hector-metre scale spatially averaged Buckley-Leverett equation for fractured porous media does not contain a shock, but a long leading edge in the averaged profile of the invading phase. This dispersive behaviour marks the progressively widening saturation front and an early water breakthrough observed in the discrete fracture reservoir analogues. Since fracture porosity φf is usually only a fraction of a percent, a cross-over from krw < kro to krw/kro ≈ qf/qm occurs after the first few percent of recovery, and because qf/qm ranges between 10-1,000, sweep efficiency ignoring the positive influence of counter-current imbibition is extremely low. The accuracy of reservoir
Advances in Multiphase Flow and Transport in the Subsurface Environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Xiaoqing; Finsterle, Stefan; Zhang, Keni
Multiphase flow and transport processes in the subsurface environment are extremely important in a number of industrial and environmental applications at various spatial and temporal scales. Thus, it is necessary to identify, understand, and predict these processes to improve the production of conventional and unconventional oil and gas, to increase the safety of geological sequestration of carbon dioxide and nuclear waste disposal, and to make remediation of contaminated aquifers more effective.
Advances in Multiphase Flow and Transport in the Subsurface Environment
Shi, Xiaoqing; Finsterle, Stefan; Zhang, Keni; ...
2018-03-04
Multiphase flow and transport processes in the subsurface environment are extremely important in a number of industrial and environmental applications at various spatial and temporal scales. Thus, it is necessary to identify, understand, and predict these processes to improve the production of conventional and unconventional oil and gas, to increase the safety of geological sequestration of carbon dioxide and nuclear waste disposal, and to make remediation of contaminated aquifers more effective.
NASA Astrophysics Data System (ADS)
Bulovich, S. V.; Smirnov, E. M.
2018-05-01
The paper covers application of the artificial viscosity technique to numerical simulation of unsteady one-dimensional multiphase compressible flows on the base of the multi-fluid approach. The system of the governing equations is written under assumption of the pressure equilibrium between the "fluids" (phases). No interfacial exchange is taken into account. A model for evaluation of the artificial viscosity coefficient that (i) assumes identity of this coefficient for all interpenetrating phases and (ii) uses the multiphase-mixture Wood equation for evaluation of a scale speed of sound has been suggested. Performance of the artificial viscosity technique has been evaluated via numerical solution of a model problem of pressure discontinuity breakdown in a three-fluid medium. It has been shown that a relatively simple numerical scheme, explicit and first-order, combined with the suggested artificial viscosity model, predicts a physically correct behavior of the moving shock and expansion waves, and a subsequent refinement of the computational grid results in a monotonic approaching to an asymptotic time-dependent solution, without non-physical oscillations.
The application of single particle hydrodynamics in continuum models of multiphase flow
NASA Technical Reports Server (NTRS)
Decker, Rand
1988-01-01
A review of the application of single particle hydrodynamics in models for the exchange of interphase momentum in continuum models of multiphase flow is presented. Considered are the equations of motion for a laminar, mechanical two phase flow. Inherent to this theory is a model for the interphase exchange of momentum due to drag between the dispersed particulate and continuous fluid phases. In addition, applications of two phase flow theory to de-mixing flows require the modeling of interphase momentum exchange due to lift forces. The applications of single particle analysis in deriving models for drag and lift are examined.
Multiphase Fluid Dynamics for Spacecraft Applications
NASA Astrophysics Data System (ADS)
Shyy, W.; Sim, J.
2011-09-01
Multiphase flows involving moving interfaces between different fluids/phases are observed in nature as well as in a wide range of engineering applications. With the recent development of high fidelity computational techniques, a number of challenging multiphase flow problems can now be computed. We introduce the basic notion of the main categories of multiphase flow computation; Lagrangian, Eulerian, and Eulerian-Lagrangian techniques to represent and follow interface, and sharp and continuous interface methods to model interfacial dynamics. The marker-based adaptive Eulerian-Lagrangian method, which is one of the most popular methods, is highlighted with microgravity and space applications including droplet collision and spacecraft liquid fuel tank surface stability.
NASA Astrophysics Data System (ADS)
Pawar, R.; Dash, Z.; Sakaki, T.; Plampin, M. R.; Lassen, R. N.; Illangasekare, T. H.; Zyvoloski, G.
2011-12-01
One of the concerns related to geologic CO2 sequestration is potential leakage of CO2 and its subsequent migration to shallow groundwater resources leading to geochemical impacts. Developing approaches to monitor CO2 migration in shallow aquifer and mitigate leakage impacts will require improving our understanding of gas phase formation and multi-phase flow subsequent to CO2 leakage in shallow aquifers. We are utilizing an integrated approach combining laboratory experiments and numerical simulations to characterize the multi-phase flow of CO2 in shallow aquifers. The laboratory experiments involve a series of highly controlled experiments in which CO2 dissolved water is injected in homogeneous and heterogeneous soil columns and tanks. The experimental results are used to study the effects of soil properties, temperature, pressure gradients and heterogeneities on gas formation and migration. We utilize the Finite Element Heat and Mass (FEHM) simulator (Zyvoloski et al, 2010) to numerically model the experimental results. The numerical models capture the physics of CO2 exsolution, multi-phase fluid flow as well as sand heterogeneity. Experimental observations of pressure, temperature and gas saturations are used to develop and constrain conceptual models for CO2 gas-phase formation and multi-phase CO2 flow in porous media. This talk will provide details of development of conceptual models based on experimental observation, development of numerical models for laboratory experiments and modelling results.
Fingering and fracturing during multiphase flow in porous media (Invited)
NASA Astrophysics Data System (ADS)
Juanes, R.
2013-12-01
The displacement of one fluid by another in a porous medium give rise to a rich variety of hydrodynamic instabilities. Beyond their scientific value as fascinating models of pattern formation, unstable porous-media flows are essential to understanding many natural and man-made processes, including water infiltration in the vadose zone, carbon dioxide injection and storage in deep saline aquifers, and hydrocarbon recovery. Here, we review the pattern-selection mechanisms of a wide spectrum of porous-media flows that develop hydrodynamic instabilities, discuss their origin and the mathematical models that have been used to describe them. We point out many challenges that remain to be resolved in the context of multiphase flows, and suggest modeling approaches that may offer new quantitative understanding.
Simurda, Matej; Duggen, Lars; Basse, Nils T; Lassen, Benny
2018-02-01
A numerical model for transit-time ultrasonic flowmeters operating under multiphase flow conditions previously presented by us is extended by mesh refinement and grid point redistribution. The method solves modified first-order stress-velocity equations of elastodynamics with additional terms to account for the effect of the background flow. Spatial derivatives are calculated by a Fourier collocation scheme allowing the use of the fast Fourier transform, while the time integration is realized by the explicit third-order Runge-Kutta finite-difference scheme. The method is compared against analytical solutions and experimental measurements to verify the benefit of using mapped grids. Additionally, a study of clamp-on and in-line ultrasonic flowmeters operating under multiphase flow conditions is carried out.
Chen, Li; He, YaLing; Tao, Wen -Quan; ...
2017-07-21
The electrode of a vanadium redox flow battery generally is a carbon fibre-based porous medium, in which important physicochemical processes occur. In this work, pore-scale simulations are performed to study complex multiphase flow and reactive transport in the electrode by using the lattice Boltzmann method (LBM). Four hundred fibrous electrodes with different fibre diameters and porosities are reconstructed. Both the permeability and diffusivity of the reconstructed electrodes are predicted and compared with empirical relationships in the literature. Reactive surface area of the electrodes is also evaluated and it is found that existing empirical relationship overestimates the reactive surface under lowermore » porosities. Further, a pore-scale electrochemical reaction model is developed to study the effects of fibre diameter and porosity on electrolyte flow, V II/V III transport, and electrochemical reaction at the electrolyte-fibre surface. Finally, evolution of bubble cluster generated by the side reaction is studied by adopting a LB multiphase flow model. Effects of porosity, fibre diameter, gas saturation and solid surface wettability on average bubble diameter and reduction of reactive surface area due to coverage of bubbles on solid surface are investigated in detail. It is found that gas coverage ratio is always lower than that adopted in the continuum model in the literature. Furthermore, the current pore-scale studies successfully reveal the complex multiphase flow and reactive transport processes in the electrode, and the simulation results can be further upscaled to improve the accuracy of the current continuum-scale models.« less
Dynamic fluid connectivity during steady-state multiphase flow in a sandstone.
Reynolds, Catriona A; Menke, Hannah; Andrew, Matthew; Blunt, Martin J; Krevor, Samuel
2017-08-01
The current conceptual picture of steady-state multiphase Darcy flow in porous media is that the fluid phases organize into separate flow pathways with stable interfaces. Here we demonstrate a previously unobserved type of steady-state flow behavior, which we term "dynamic connectivity," using fast pore-scale X-ray imaging. We image the flow of N 2 and brine through a permeable sandstone at subsurface reservoir conditions, and low capillary numbers, and at constant fluid saturation. At any instant, the network of pores filled with the nonwetting phase is not necessarily connected. Flow occurs along pathways that periodically reconnect, like cars controlled by traffic lights. This behavior is consistent with an energy balance, where some of the energy of the injected fluids is sporadically converted to create new interfaces.
NASA Astrophysics Data System (ADS)
Hao, Y.; Settgast, R. R.; Fu, P.; Tompson, A. F. B.; Morris, J.; Ryerson, F. J.
2016-12-01
It has long been recognized that multiphase flow and transport in fractured porous media is very important for various subsurface applications. Hydrocarbon fluid flow and production from hydraulically fractured shale reservoirs is an important and complicated example of multiphase flow in fractured formations. The combination of horizontal drilling and hydraulic fracturing is able to create extensive fracture networks in low permeability shale rocks, leading to increased formation permeability and enhanced hydrocarbon production. However, unconventional wells experience a much faster production decline than conventional hydrocarbon recovery. Maintaining sustainable and economically viable shale gas/oil production requires additional wells and re-fracturing. Excessive fracturing fluid loss during hydraulic fracturing operations may also drive up operation costs and raise potential environmental concerns. Understanding and modeling processes that contribute to decreasing productivity and fracturing fluid loss represent a critical component for unconventional hydrocarbon recovery analysis. Towards this effort we develop a discrete fracture model (DFM) in GEOS (LLNL multi-physics computational code) to simulate multiphase flow and transfer in hydraulically fractured reservoirs. The DFM model is able to explicitly account for both individual fractures and their surrounding rocks, therefore allowing for an accurate prediction of impacts of fracture-matrix interactions on hydrocarbon production. We apply the DFM model to simulate three-phase (water, oil, and gas) flow behaviors in fractured shale rocks as a result of different hydraulic stimulation scenarios. Numerical results show that multiphase flow behaviors at the fracture-matrix interface play a major role in controlling both hydrocarbon production and fracturing fluid recovery rates. The DFM model developed in this study will be coupled with the existing hydro-fracture model to provide a fully integrated
Near-wall modelling of compressible turbulent flows
NASA Technical Reports Server (NTRS)
So, Ronald M. C.
1990-01-01
Work was carried out to formulate near-wall models for the equations governing the transport of the temperature-variance and its dissipation rate. With these equations properly modeled, a foundation is laid for their extension together with the heat-flux equations to compressible flows. This extension is carried out in a manner similar to that used to extend the incompressible near-wall Reynolds-stress models to compressible flows. The methodology used to accomplish the extension of the near-wall Reynolds-stress models is examined and the actual extension of the models for the Reynolds-stress equations and the near-wall dissipation-rate equation to compressible flows is given. Then the formulation of the near-wall models for the equations governing the transport of the temperature variance and its dissipation rate is discussed. Finally, a sample calculation of a flat plate compressible turbulent boundary-layer flow with adiabatic wall boundary condition and a free-stream Mach number of 2.5 using a two-equation near-wall closure is presented. The results show that the near-wall two-equation closure formulated for compressible flows is quite valid and the calculated properties are in good agreement with measurements. Furthermore, the near-wall behavior of the turbulence statistics and structure parameters is consistent with that found in incompressible flows.
Compressible flow about symmetrical Joukowski profiles
NASA Technical Reports Server (NTRS)
Kaplan, Carl
1938-01-01
The method of Poggi is employed for the determination of the effects of compressibility upon the flow past an obstacle. A general expression for the velocity increment due to compressibility is obtained. The general result holds whatever the shape of the obstacle; but, in order to obtain the complete solution, it is necessary to know a certain Fourier expansion of the square of the velocity of flow past the obstacle. An application is made to the case flow of a symmetrical Joukowski profile with a sharp trailing edge, fixed in a stream of an arbitrary angle of attack and with the circulation determined by the Kutta condition. The results are obtained in a closed form and are exact insofar as the second approximation to the compressible flow is concerned, the first approximation being the result for the corresponding incompressible flow. Formulas for lift and moment analogous to the Blasius formulas in incompressible flow are developed and are applied to thin symmetrical Joukowski profiles for small angles of attack.
Sampling device for withdrawing a representative sample from single and multi-phase flows
Apley, Walter J.; Cliff, William C.; Creer, James M.
1984-01-01
A fluid stream sampling device has been developed for the purpose of obtaining a representative sample from a single or multi-phase fluid flow. This objective is carried out by means of a probe which may be inserted into the fluid stream. Individual samples are withdrawn from the fluid flow by sampling ports with particular spacings, and the sampling parts are coupled to various analytical systems for characterization of the physical, thermal, and chemical properties of the fluid flow as a whole and also individually.
COMPRESSIBLE FLOW, ENTRAINMENT, AND MEGAPLUME
It is generally believed that low Mach number, i.e., low-velocity, flow may be assumed to be incompressible flow. Under steady-state conditions, an exact equation of continuity may then be used to show that such flow is non-divergent. However, a rigorous, compressible fluid-dynam...
Application of PDF methods to compressible turbulent flows
NASA Astrophysics Data System (ADS)
Delarue, B. J.; Pope, S. B.
1997-09-01
A particle method applying the probability density function (PDF) approach to turbulent compressible flows is presented. The method is applied to several turbulent flows, including the compressible mixing layer, and good agreement is obtained with experimental data. The PDF equation is solved using a Lagrangian/Monte Carlo method. To accurately account for the effects of compressibility on the flow, the velocity PDF formulation is extended to include thermodynamic variables such as the pressure and the internal energy. The mean pressure, the determination of which has been the object of active research over the last few years, is obtained directly from the particle properties. It is therefore not necessary to link the PDF solver with a finite-volume type solver. The stochastic differential equations (SDE) which model the evolution of particle properties are based on existing second-order closures for compressible turbulence, limited in application to low turbulent Mach number flows. Tests are conducted in decaying isotropic turbulence to compare the performances of the PDF method with the Reynolds-stress closures from which it is derived, and in homogeneous shear flows, at which stage comparison with direct numerical simulation (DNS) data is conducted. The model is then applied to the plane compressible mixing layer, reproducing the well-known decrease in the spreading rate with increasing compressibility. It must be emphasized that the goal of this paper is not as much to assess the performance of models of compressibility effects, as it is to present an innovative and consistent PDF formulation designed for turbulent inhomogeneous compressible flows, with the aim of extending it further to deal with supersonic reacting flows.
Hutnak, M.; Hurwitz, S.; Ingebritsen, S.E.; Hsieh, P.A.
2009-01-01
Ground surface displacement (GSD) in large calderas is often interpreted as resulting from magma intrusion at depth. Recent advances in geodetic measurements of GSD, notably interferometric synthetic aperture radar, reveal complex and multifaceted deformation patterns that often require complex source models to explain the observed GSD. Although hydrothermal fluids have been discussed as a possible deformation agent, very few quantitative studies addressing the effects of multiphase flow on crustal mechanics have been attempted. Recent increases in the power and availability of computing resources allow robust quantitative assessment of the complex time-variant thermal interplay between aqueous fluid flow and crustal deformation. We carry out numerical simulations of multiphase (liquid-gas), multicomponent (H 2O-CO2) hydrothermal fluid flow and poroelastic deformation using a range of realistic physical parameters and processes. Hydrothermal fluid injection, circulation, and gas formation can generate complex, temporally and spatially varying patterns of GSD, with deformation rates, magnitudes, and geometries (including subsidence) similar to those observed in several large calderas. The potential for both rapid and gradual deformation resulting from magma-derived fluids suggests that hydrothermal fluid circulation may help explain deformation episodes at calderas that have not culminated in magmatic eruption.
Pore-scale Simulation and Imaging of Multi-phase Flow and Transport in Porous Media (Invited)
NASA Astrophysics Data System (ADS)
Crawshaw, J.; Welch, N.; Daher, I.; Yang, J.; Shah, S.; Grey, F.; Boek, E.
2013-12-01
We combine multi-scale imaging and computer simulation of multi-phase flow and reactive transport in rock samples to enhance our fundamental understanding of long term CO2 storage in rock formations. The imaging techniques include Confocal Laser Scanning Microscopy (CLSM), micro-CT and medical CT scanning, with spatial resolutions ranging from sub-micron to mm respectively. First, we report a new sample preparation technique to study micro-porosity in carbonates using CLSM in 3 dimensions. Second, we use micro-CT scanning to generate high resolution 3D pore space images of carbonate and cap rock samples. In addition, we employ micro-CT to image the processes of evaporation in fractures and cap rock degradation due to exposure to CO2 flow. Third, we use medical CT scanning to image spontaneous imbibition in carbonate rock samples. Our imaging studies are complemented by computer simulations of multi-phase flow and transport, using the 3D pore space images obtained from the scanning experiments. We have developed a massively parallel lattice-Boltzmann (LB) code to calculate the single phase flow field in these pore space images. The resulting flow fields are then used to calculate hydrodynamic dispersion using a novel scheme to predict probability distributions for molecular displacements using the LB method and a streamline algorithm, modified for optimal solid boundary conditions. We calculate solute transport on pore-space images of rock cores with increasing degree of heterogeneity: a bead pack, Bentheimer sandstone and Portland carbonate. We observe that for homogeneous rock samples, such as bead packs, the displacement distribution remains Gaussian with time increasing. In the more heterogeneous rocks, on the other hand, the displacement distribution develops a stagnant part. We observe that the fraction of trapped solute increases from the beadpack (0 %) to Bentheimer sandstone (1.5 %) to Portland carbonate (8.1 %), in excellent agreement with PFG
Near-wall modeling of compressible turbulent flow
NASA Technical Reports Server (NTRS)
So, Ronald M. C.
1991-01-01
A near-wall two-equation model for compressible flows is proposed. The model is formulated by relaxing the assumption of dynamic field similarity between compressible and incompressible flows. A postulate is made to justify the extension of incompressible models to ammount for compressibility effects. This requires formulation the turbulent kinetic energy equation in a form similar to its incompressible counterpart. As a result, the compressible dissipation function has to be split into a solenoidal part, which is not sensitive to changes of compressibility indicators, and a dilatational part, which is directly affected by these changes. A model with an explicit dependence on the turbulent Mach number is proposed for the dilatational dissipation rate.
Persistent Homology to describe Solid and Fluid Structures during Multiphase Flow
NASA Astrophysics Data System (ADS)
Herring, A. L.; Robins, V.; Liu, Z.; Armstrong, R. T.; Sheppard, A.
2017-12-01
The question of how to accurately and effectively characterize essential fluid and solid distributions and structures is a long-standing topic within the field of porous media and fluid transport. For multiphase flow applications, considerable research effort has been made to describe fluid distributions under a range of conditions; including quantification of saturation levels, fluid-fluid pressure differences and interfacial areas, and fluid connectivity. Recent research has effectively used topological metrics to describe pore space and fluid connectivity, with researchers demonstrating links between pore-scale nonwetting phase topology to fluid mobilization and displacement mechanisms, relative permeability, fluid flow regimes, and thermodynamic models of multiphase flow. While topology is clearly a powerful tool to describe fluid distribution, topological metrics by definition provide information only on the connectivity of a phase, not its geometry (shape or size). Physical flow characteristics, e.g. the permeability of a fluid phase within a porous medium, are dependent on the connectivity of the pore space or fluid phase as well as the size of connections. Persistent homology is a technique which provides a direct link between topology and geometry via measurement of topological features and their persistence from the signed Euclidean distance transform of a segmented digital image (Figure 1). We apply persistent homology analysis to measure the occurrence and size of pore-scale topological features in a variety of sandstones, for both the dry state and the nonwetting phase fluid during two-phase fluid flow (drainage and imbibition) experiments, visualized with 3D X-ray microtomography. The results provide key insights into the dominant topological features and length scales of a media which control relevant field-scale engineering properties such as fluid trapping, absolute permeability, and relative permeability.
NASA Astrophysics Data System (ADS)
Balakin, B. V.; Adamsen, T. C. H.; Chang, Y.-F.; Kosinski, P.; Hoffmann, A. C.
2017-01-01
Positron emission particle tracking (PEPT) is a novel experimental technique for non-invasive inspection of industrial fluid/particle flows. The method is based on the dynamic positioning of a positron-emitting, flowing object (particle) performed through the sensing of annihilation events and subsequent numerical treatment to determine the particle position. The present paper shows an integrated overview of PEPT studies which were carried out using a new PET scanner in the Bergen University Hospital to study multiphase flows in different geometric configurations.
Linear Power-Flow Models in Multiphase Distribution Networks: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernstein, Andrey; Dall'Anese, Emiliano
This paper considers multiphase unbalanced distribution systems and develops approximate power-flow models where bus-voltages, line-currents, and powers at the point of common coupling are linearly related to the nodal net power injections. The linearization approach is grounded on a fixed-point interpretation of the AC power-flow equations, and it is applicable to distribution systems featuring (i) wye connections; (ii) ungrounded delta connections; (iii) a combination of wye-connected and delta-connected sources/loads; and, (iv) a combination of line-to-line and line-to-grounded-neutral devices at the secondary of distribution transformers. The proposed linear models can facilitate the development of computationally-affordable optimization and control applications -- frommore » advanced distribution management systems settings to online and distributed optimization routines. Performance of the proposed models is evaluated on different test feeders.« less
NASA Astrophysics Data System (ADS)
Li, Y.; Ma, X.; Su, N.
2013-12-01
The movement of water and solute into and through the vadose zone is, in essence, an issue of immiscible displacement in pore-space network of a soil. Therefore, multiphase flow and transport in porous media, referring to three medium: air, water, and the solute, pose one of the largest unresolved challenges for porous medium fluid seepage. However, this phenomenon has always been largely neglected. It is expected that a reliable analysis model of the multi-phase flow in soil can truly reflect the process of natural movement about the infiltration, which is impossible to be observed directly. In such cases, geophysical applications of the nuclear magnetic resonance (NMR) provides the opportunity to measure the water movements into soils directly over a large scale from tiny pore to regional scale, accordingly enable it available both on the laboratory and on the field. In addition, the NMR provides useful information about the pore space properties. In this study, we proposed both laboratory and field experiments to measure the multi-phase flow parameters, together with optimize the model in computer programming based on the fractional partial differential equations (fPDE). In addition, we establish, for the first time, an infiltration model including solute flowing with water, which has huge influence on agriculture and soil environment pollution. Afterwards, with data collected from experiments, we simulate the model and analyze the spatial variability of parameters. Simulations are also conducted according to the model to evaluate the effects of airflow on water infiltration and other effects such as solute and absorption. It has significant meaning to oxygen irrigation aiming to higher crop yield, and shed more light into the dam slope stability. In summary, our framework is a first-time model added in solute to have a mathematic analysis with the fPDE and more instructive to agriculture activities.
NASA Astrophysics Data System (ADS)
Shao, H.; Huang, Y.; Kolditz, O.
2015-12-01
Multiphase flow problems are numerically difficult to solve, as it often contains nonlinear Phase transition phenomena A conventional technique is to introduce the complementarity constraints where fluid properties such as liquid saturations are confined within a physically reasonable range. Based on such constraints, the mathematical model can be reformulated into a system of nonlinear partial differential equations coupled with variational inequalities. They can be then numerically handled by optimization algorithms. In this work, two different approaches utilizing the complementarity constraints based on persistent primary variables formulation[4] are implemented and investigated. The first approach proposed by Marchand et.al[1] is using "local complementary constraints", i.e. coupling the constraints with the local constitutive equations. The second approach[2],[3] , namely the "global complementary constrains", applies the constraints globally with the mass conservation equation. We will discuss how these two approaches are applied to solve non-isothermal componential multiphase flow problem with the phase change phenomenon. Several benchmarks will be presented for investigating the overall numerical performance of different approaches. The advantages and disadvantages of different models will also be concluded. References[1] E.Marchand, T.Mueller and P.Knabner. Fully coupled generalized hybrid-mixed finite element approximation of two-phase two-component flow in porous media. Part I: formulation and properties of the mathematical model, Computational Geosciences 17(2): 431-442, (2013). [2] A. Lauser, C. Hager, R. Helmig, B. Wohlmuth. A new approach for phase transitions in miscible multi-phase flow in porous media. Water Resour., 34,(2011), 957-966. [3] J. Jaffré, and A. Sboui. Henry's Law and Gas Phase Disappearance. Transp. Porous Media. 82, (2010), 521-526. [4] A. Bourgeat, M. Jurak and F. Smaï. Two-phase partially miscible flow and transport modeling in
Lagrangian particle method for compressible fluid dynamics
NASA Astrophysics Data System (ADS)
Samulyak, Roman; Wang, Xingyu; Chen, Hsin-Chiang
2018-06-01
A new Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface/multiphase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) a second-order particle-based algorithm that reduces to the first-order upwind method at local extremal points, providing accuracy and long term stability, and (c) more accurate resolution of entropy discontinuities and states at free interfaces. While the method is consistent and convergent to a prescribed order, the conservation of momentum and energy is not exact and depends on the convergence order. The method is generalizable to coupled hyperbolic-elliptic systems. Numerical verification tests demonstrating the convergence order are presented as well as examples of complex multiphase flows.
PDF approach for compressible turbulent reacting flows
NASA Technical Reports Server (NTRS)
Hsu, A. T.; Tsai, Y.-L. P.; Raju, M. S.
1993-01-01
The objective of the present work is to develop a probability density function (pdf) turbulence model for compressible reacting flows for use with a CFD flow solver. The probability density function of the species mass fraction and enthalpy are obtained by solving a pdf evolution equation using a Monte Carlo scheme. The pdf solution procedure is coupled with a compressible CFD flow solver which provides the velocity and pressure fields. A modeled pdf equation for compressible flows, capable of capturing shock waves and suitable to the present coupling scheme, is proposed and tested. Convergence of the combined finite-volume Monte Carlo solution procedure is discussed, and an averaging procedure is developed to provide smooth Monte-Carlo solutions to ensure convergence. Two supersonic diffusion flames are studied using the proposed pdf model and the results are compared with experimental data; marked improvements over CFD solutions without pdf are observed. Preliminary applications of pdf to 3D flows are also reported.
Density and Cavitating Flow Results from a Full-Scale Optical Multiphase Cryogenic Flowmeter
NASA Technical Reports Server (NTRS)
Korman, Valentin
2007-01-01
Liquid propulsion systems are hampered by poor flow measurements. The measurement of flow directly impacts safe motor operations, performance parameters as well as providing feedback from ground testing and developmental work. NASA Marshall Space Flight Center, in an effort to improve propulsion sensor technology, has developed an all optical flow meter that directly measures the density of the fluid. The full-scale sensor was tested in a transient, multiphase liquid nitrogen fluid environment. Comparison with traditional density models shows excellent agreement with fluid density with an error of approximately 0.8%. Further evaluation shows the sensor is able to detect cavitation or bubbles in the flow stream and separate out their resulting effects in fluid density.
Multiphase flows with digital and traditional microfluidics
NASA Astrophysics Data System (ADS)
Nilsson, Michael A.
Multi-phase fluid systems are an important concept in fluid mechanics, seen every day in how fluids interact with solids, gases, and other fluids in many industrial, medical, agricultural, and other regimes. In this thesis, the development of a two-dimensional digital microfluidic device is presented, followed by the development of a two-phase microfluidic diagnostic tool designed to simulate sandstone geometries in oil reservoirs. In both instances, it is possible to take advantage of the physics involved in multiphase flows to affect positive outcomes in both. In order to make an effective droplet-based digital microfluidic device, one must be able to precisely control a number of key processes including droplet positioning, motion, coalescence, mixing, and sorting. For planar or open microfluidic devices, many of these processes have yet to be demonstrated. A suitable platform for an open system is a superhydrophobic surface, as suface characteristics are critical. Great efforts have been spent over the last decade developing hydrophobic surfaces exhibiting very large contact angles with water, and which allow for high droplet mobility. We demonstrate that sanding Teflon can produce superhydrophobic surfaces with advancing contact angles of up to 151° and contact angle hysteresis of less than 4°. We use these surfaces to characterize droplet coalescence, mixing, motion, deflection, positioning, and sorting. This research culminates with the presentation of two digital microfluidic devices: a droplet reactor/analyzer and a droplet sorter. As global energy usage increases, maximizing oil recovery from known reserves becomes a crucial multiphase challenge in order to meet the rising demand. This thesis presents the development of a microfluidic sandstone platform capable of quickly and inexpensively testing the performance of fluids with different rheological properties on the recovery of oil. Specifically, these microfluidic devices are utilized to examine how
Compressible Turbulent Channel Flows: DNS Results and Modeling
NASA Technical Reports Server (NTRS)
Huang, P. G.; Coleman, G. N.; Bradshaw, P.; Rai, Man Mohan (Technical Monitor)
1994-01-01
The present paper addresses some topical issues in modeling compressible turbulent shear flows. The work is based on direct numerical simulation of two supersonic fully developed channel flows between very cold isothermal walls. Detailed decomposition and analysis of terms appearing in the momentum and energy equations are presented. The simulation results are used to provide insights into differences between conventional time-and Favre-averaging of the mean-flow and turbulent quantities. Study of the turbulence energy budget for the two cases shows that the compressibility effects due to turbulent density and pressure fluctuations are insignificant. In particular, the dilatational dissipation and the mean product of the pressure and dilatation fluctuations are very small, contrary to the results of simulations for sheared homogeneous compressible turbulence and to recent proposals for models for general compressible turbulent flows. This provides a possible explanation of why the Van Driest density-weighted transformation is so successful in correlating compressible boundary layer data. Finally, it is found that the DNS data do not support the strong Reynolds analogy. A more general representation of the analogy is analysed and shown to match the DNS data very well.
Methane hydrate induced permeability modification for multiphase flow in unsaturated porous media
NASA Astrophysics Data System (ADS)
Seol, Yongkoo; Kneafsey, Timothy J.
2011-08-01
An experimental study was performed using X-ray computed tomography (CT) scanning to capture three-dimensional (3-D) methane hydrate distributions and potential discrete flow pathways in a sand pack sample. A numerical study was also performed to develop and analyze empirical relations that describe the impacts of hydrate accumulation habits within pore space (e.g., pore filling or grain cementing) on multiphase fluid migration. In the experimental study, water was injected into a hydrate-bearing sand sample that was monitored using an X-ray CT scanner. The CT images were converted into numerical grid elements, providing intrinsic sample data including porosity and phase saturations. The impacts of hydrate accumulation were examined by adapting empirical relations into the flow simulations as additional relations governing the evolution of absolute permeability of hydrate bearing sediment with hydrate deposition. The impacts of pore space hydrate accumulation habits on fluid migration were examined by comparing numerical predictions with experimentally measured water saturation distributions and breakthrough curves. A model case with 3-D heterogeneous initial conditions (hydrate saturation, porosity, and water saturation) and pore body-preferred hydrate accumulations best captured water migration behavior through the hydrate-bearing sample observed in the experiment. In the best matching model, absolute permeability in the hydrate bearing sample does not decrease significantly with increasing hydrate saturation until hydrate saturation reaches about 40%, after which it drops rapidly, and complete blockage of flow through the sample can occur as hydrate accumulations approach 70%. The result highlights the importance of permeability modification due to hydrate accumulation habits when predicting multiphase flow through high-saturation, reservoir quality hydrate-bearing sediments.
Multiphase flow microfluidics for the production of single or multiple emulsions for drug delivery.
Zhao, Chun-Xia
2013-11-01
Considerable effort has been directed towards developing novel drug delivery systems. Microfluidics, capable of generating monodisperse single and multiple emulsion droplets, executing precise control and operations on these droplets, is a powerful tool for fabricating complex systems (microparticles, microcapsules, microgels) with uniform size, narrow size distribution and desired properties, which have great potential in drug delivery applications. This review presents an overview of the state-of-the-art multiphase flow microfluidics for the production of single emulsions or multiple emulsions for drug delivery. The review starts with a brief introduction of the approaches for making single and multiple emulsions, followed by presentation of some potential drug delivery systems (microparticles, microcapsules and microgels) fabricated in microfluidic devices using single or multiple emulsions as templates. The design principles, manufacturing processes and properties of these drug delivery systems are also discussed and compared. Furthermore, drug encapsulation and drug release (including passive and active controlled release) are provided and compared highlighting some key findings and insights. Finally, site-targeting delivery using multiphase flow microfluidics is also briefly introduced. Copyright © 2013 Elsevier B.V. All rights reserved.
Coupled multiphase flow and geomechanics analysis of the 2011 Lorca earthquake
NASA Astrophysics Data System (ADS)
Jha, B.; Hager, B. H.; Juanes, R.; Bechor, N.
2013-12-01
We present a new approach for modeling coupled multiphase flow and geomechanics of faulted reservoirs. We couple a flow simulator with a mechanics simulator using the unconditionally stable fixed-stress sequential solution scheme [Kim et al, 2011]. We model faults as surfaces of discontinuity using interface elements [Aagaard et al, 2008]. This allows us to model stick-slip behavior on the fault surface for dynamically evolving fault strength. We employ a rigorous formulation of nonlinear multiphase geomechanics [Coussy, 1995], which is based on the increment in mass of fluid phases instead of the traditional, and less accurate, scheme based on the change in porosity. Our nonlinear formulation is capable of handling strong capillarity and large changes in saturation in the reservoir. To account for the effect of surface stresses along fluid-fluid interfaces, we use the equivalent pore pressure in the definition of the multiphase effective stress [Coussy et al, 1998; Kim et al, 2013]. We use our simulation tool to study the 2011 Lorca earthquake [Gonzalez et al, 2012], which has received much attention because of its potential anthropogenic triggering (long-term groundwater withdrawal leading to slip along the regional Alhama de Murcia fault). Our coupled fluid flow and geomechanics approach to model fault slip allowed us to take a fresh look at this seismic event, which to date has only been analyzed using simple elastic dislocation models and point source solutions. Using a three-dimensional model of the Lorca region, we simulate the groundwater withdrawal and subsequent unloading of the basin over the period of interest (1960-2010). We find that groundwater withdrawal leads to unloading of the crust and changes in the stress across the impermeable fault plane. Our analysis suggests that the combination of these two factors played a critical role in inducing the fault slip that ultimately led to the Lorca earthquake. Aagaard, B. T., M. G. Knepley, and C. A
NASA Astrophysics Data System (ADS)
Pendota, Premchand
Many physical phenomena and industrial applications involve multiphase fluid flows and hence it is of high importance to be able to simulate various aspects of these flows accurately. The Dynamic Contact Angles (DCA) and the contact lines at the wall boundaries are a couple of such important aspects. In the past few decades, many mathematical models were developed for predicting the contact angles of the inter-face with the wall boundary under various flow conditions. These models are used to incorporate the physics of DCA and contact line motion in numerical simulations using various interface capturing/tracking techniques. In the current thesis, a simple approach to incorporate the static and dynamic contact angle boundary conditions using the level set method is developed and implemented in multiphase CFD codes, LIT (Level set Interface Tracking) (Herrmann (2008)) and NGA (flow solver) (Desjardins et al (2008)). Various DCA models and associated boundary conditions are reviewed. In addition, numerical aspects such as the occurrence of a stress singularity at the contact lines and grid convergence of macroscopic interface shape are dealt with in the context of the level set approach.
NASA Astrophysics Data System (ADS)
McClure, J. E.; Prins, J. F.; Miller, C. T.
2014-07-01
Multiphase flow implementations of the lattice Boltzmann method (LBM) are widely applied to the study of porous medium systems. In this work, we construct a new variant of the popular "color" LBM for two-phase flow in which a three-dimensional, 19-velocity (D3Q19) lattice is used to compute the momentum transport solution while a three-dimensional, seven velocity (D3Q7) lattice is used to compute the mass transport solution. Based on this formulation, we implement a novel heterogeneous GPU-accelerated algorithm in which the mass transport solution is computed by multiple shared memory CPU cores programmed using OpenMP while a concurrent solution of the momentum transport is performed using a GPU. The heterogeneous solution is demonstrated to provide speedup of 2.6 × as compared to multi-core CPU solution and 1.8 × compared to GPU solution due to concurrent utilization of both CPU and GPU bandwidths. Furthermore, we verify that the proposed formulation provides an accurate physical representation of multiphase flow processes and demonstrate that the approach can be applied to perform heterogeneous simulations of two-phase flow in porous media using a typical GPU-accelerated workstation.
NASA Astrophysics Data System (ADS)
Valentine, Greg A.; Sweeney, Matthew R.
2018-02-01
Many geological flows are sourced by falling gas-particle mixtures, such as during collapse of lava domes, and impulsive eruptive jets, and sustained columns, and rock falls. The transition from vertical to lateral flow is complex due to the range of coupling between particles of different sizes and densities and the carrier gas, and due to the potential for compressible flow phenomena. We use multiphase modeling to explore these dynamics. In mixtures with small particles, and with subsonic speeds, particles follow the gas such that outgoing lateral flows have similar particle concentration and speed as the vertical flows. Large particles concentrate immediately upon impact and move laterally away as granular flows overridden by a high-speed jet of expelled gas. When a falling flow is supersonic, a bow shock develops above the impact zone, and this produces a zone of high pressure from which lateral flows emerge as overpressured wall jets. The jets form complex structures as the mixtures expand and accelerate and then recompress through a recompression zone that mimics a Mach disk shock in ideal gas jets. In mixtures with moderate to high ratios of fine to coarse particles, the latter tend to follow fine particles through the expansion-recompression flow fields because of particle-particle drag. Expansion within the flow fields can lead to locally reduced gas pressure that could enhance substrate erosion in natural flows. The recompression zones form at distances, and have peak pressures, that are roughly proportional to the Mach numbers of impacting flows.
NASA Technical Reports Server (NTRS)
Rothe, Paul H.; Martin, Christine; Downing, Julie
1994-01-01
Adiabatic two-phase flow is of interest to the design of multiphase fluid and thermal management systems for spacecraft. This paper presents original data and unifies existing data for capillary tubes as a step toward assessing existing multiphase flow analysis and engineering software. Comparisons of theory with these data once again confirm the broad accuracy of the theory. Due to the simplicity and low cost of the capillary tube experiments, which were performed on earth, we were able to closely examine for the first time a flow situation that had not previously been examined appreciably by aircraft tests. This is the situation of a slug flow at high quality, near transition to annular flow. Our comparison of software calculations with these data revealed overprediction of pipeline pressure drop by up to a factor of three. In turn, this finding motivated a reexamination of the existing theory, and then development of a new analytical and is in far better agreement with the data. This sequence of discovery illustrates the role of inexpensive miniscale modeling on earth to anticipate microgravity behavior in space and to complete and help define needs for aircraft tests.
Lagrangian particle method for compressible fluid dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samulyak, Roman; Wang, Xingyu; Chen, Hsin -Chiang
A new Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface / multi-phase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) a second-order particle-based algorithm that reduces to the first-order upwind method at local extremalmore » points, providing accuracy and long term stability, and (c) more accurate resolution of entropy discontinuities and states at free inter-faces. While the method is consistent and convergent to a prescribed order, the conservation of momentum and energy is not exact and depends on the convergence order . The method is generalizable to coupled hyperbolic-elliptic systems. As a result, numerical verification tests demonstrating the convergence order are presented as well as examples of complex multiphase flows.« less
Lagrangian particle method for compressible fluid dynamics
Samulyak, Roman; Wang, Xingyu; Chen, Hsin -Chiang
2018-02-09
A new Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface / multi-phase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) a second-order particle-based algorithm that reduces to the first-order upwind method at local extremalmore » points, providing accuracy and long term stability, and (c) more accurate resolution of entropy discontinuities and states at free inter-faces. While the method is consistent and convergent to a prescribed order, the conservation of momentum and energy is not exact and depends on the convergence order . The method is generalizable to coupled hyperbolic-elliptic systems. As a result, numerical verification tests demonstrating the convergence order are presented as well as examples of complex multiphase flows.« less
NASA Astrophysics Data System (ADS)
Ostrowski, Z.; Melka, B.; Adamczyk, W.; Rojczyk, M.; Golda, A.; Nowak, A. J.
2016-09-01
In the research a numerical Computational Fluid Dynamics (CFD) model of the pulsatile blood flow was created and analyzed. A real geometry of aorta and its thoracic branches of 8-year old patient diagnosed with a congenital heart defect - coarctation of aorta was used. The inlet boundary condition were implemented as the User Define Function according to measured values of volumetric blood flow. The blood flow was treated as multiphase: plasma, set as the primary fluid phase, was dominant with volume fraction of 0.585 and morphological elements of blood were treated in Euler-Euler approach as dispersed phases (with 90% Red Blood Cells and White Blood Cells as remaining solid volume fraction).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bui, Quan M.; Wang, Lu; Osei-Kuffuor, Daniel
Multiphase flow is a critical process in a wide range of applications, including oil and gas recovery, carbon sequestration, and contaminant remediation. Numerical simulation of multiphase flow requires solving of a large, sparse linear system resulting from the discretization of the partial differential equations modeling the flow. In the case of multiphase multicomponent flow with miscible effect, this is a very challenging task. The problem becomes even more difficult if phase transitions are taken into account. A new approach to handle phase transitions is to formulate the system as a nonlinear complementarity problem (NCP). Unlike in the primary variable switchingmore » technique, the set of primary variables in this approach is fixed even when there is phase transition. Not only does this improve the robustness of the nonlinear solver, it opens up the possibility to use multigrid methods to solve the resulting linear system. The disadvantage of the complementarity approach, however, is that when a phase disappears, the linear system has the structure of a saddle point problem and becomes indefinite, and current algebraic multigrid (AMG) algorithms cannot be applied directly. In this study, we explore the effectiveness of a new multilevel strategy, based on the multigrid reduction technique, to deal with problems of this type. We demonstrate the effectiveness of the method through numerical results for the case of two-phase, two-component flow with phase appearance/disappearance. In conclusion, we also show that the strategy is efficient and scales optimally with problem size.« less
Bui, Quan M.; Wang, Lu; Osei-Kuffuor, Daniel
2018-02-06
Multiphase flow is a critical process in a wide range of applications, including oil and gas recovery, carbon sequestration, and contaminant remediation. Numerical simulation of multiphase flow requires solving of a large, sparse linear system resulting from the discretization of the partial differential equations modeling the flow. In the case of multiphase multicomponent flow with miscible effect, this is a very challenging task. The problem becomes even more difficult if phase transitions are taken into account. A new approach to handle phase transitions is to formulate the system as a nonlinear complementarity problem (NCP). Unlike in the primary variable switchingmore » technique, the set of primary variables in this approach is fixed even when there is phase transition. Not only does this improve the robustness of the nonlinear solver, it opens up the possibility to use multigrid methods to solve the resulting linear system. The disadvantage of the complementarity approach, however, is that when a phase disappears, the linear system has the structure of a saddle point problem and becomes indefinite, and current algebraic multigrid (AMG) algorithms cannot be applied directly. In this study, we explore the effectiveness of a new multilevel strategy, based on the multigrid reduction technique, to deal with problems of this type. We demonstrate the effectiveness of the method through numerical results for the case of two-phase, two-component flow with phase appearance/disappearance. In conclusion, we also show that the strategy is efficient and scales optimally with problem size.« less
Universality Results for Multi-phase Hele-Shaw Flows
NASA Astrophysics Data System (ADS)
Daripa, Prabir
2013-03-01
Saffman-Taylor instability is a well known viscosity driven instability of an interface separating two immiscible fluids. We study linear stability of displacement processes in a Hele-Shaw cell involving an arbitrary number of immiscible fluid phases. This is a problem involving many interfaces. Universal stability results have been obtained for this multi-phase immiscible flow in the sense that the results hold for arbitrary number of interfaces. These stability results have been applied to design displacement processes that are considerably less unstable than the pure Saffman-Taylor case. In particular, we derive universal formula which gives specific values of the viscosities of the fluid layers corresponding to smallest unstable band. Other similar universal results will also be presented. The talk is based on the following paper. This work was supported by the Qatar National Research Fund (a member of The Qatar Foundation).
Multiphase Flow Technology Impacts on Thermal Control Systems for Exploration
NASA Technical Reports Server (NTRS)
McQuillen, John; Sankovic, John; Lekan, Jack
2006-01-01
The Two-Phase Flow Facility (TPHIFFy) Project focused on bridging the critical knowledge gap by developing and demonstrating critical multiphase fluid products for advanced life support, thermal management and power conversion systems that are required to enable the Vision for Space Exploration. Safety and reliability of future systems will be enhanced by addressing critical microgravity fluid physics issues associated with flow boiling, condensation, phase separation, and system stability. The project included concept development, normal gravity testing, and reduced gravity aircraft flight campaigns, in preparation for the development of a space flight experiment implementation. Data will be utilized to develop predictive models that could be used for system design and operation. A single fluid, two-phase closed thermodynamic loop test bed was designed, assembled and tested. The major components in this test bed include: a boiler, a condenser, a phase separator and a circulating pump. The test loop was instrumented with flow meters, thermocouples, pressure transducers and both high speed and normal speed video cameras. A low boiling point surrogate fluid, FC-72, was selected based on scaling analyses using preliminary designs for operational systems. Preliminary results are presented which include flow regime transitions and some observations regarding system stability.
NASA Astrophysics Data System (ADS)
Patel, Jitendra Kumar; Natarajan, Ganesh
2017-12-01
We discuss the development and assessment of a robust numerical algorithm for simulating multiphase flows with complex interfaces and high density ratios on arbitrary polygonal meshes. The algorithm combines the volume-of-fluid method with an incremental projection approach for incompressible multiphase flows in a novel hybrid staggered/non-staggered framework. The key principles that characterise the algorithm are the consistent treatment of discrete mass and momentum transport and the similar discretisation of force terms appearing in the momentum equation. The former is achieved by invoking identical schemes for convective transport of volume fraction and momentum in the respective discrete equations while the latter is realised by representing the gravity and surface tension terms as gradients of suitable scalars which are then discretised in identical fashion resulting in a balanced formulation. The hybrid staggered/non-staggered framework employed herein solves for the scalar normal momentum at the cell faces, while the volume fraction is computed at the cell centroids. This is shown to naturally lead to similar terms for pressure and its correction in the momentum and pressure correction equations respectively, which are again treated discretely in a similar manner. We show that spurious currents that corrupt the solution may arise both from an unbalanced formulation where forces (gravity and surface tension) are discretised in dissimilar manner and from an inconsistent approach where different schemes are used to convect the mass and momentum, with the latter prominent in flows which are convection-dominant with high density ratios. Interestingly, the inconsistent approach is shown to perform as well as the consistent approach even for high density ratio flows in some cases while it exhibits anomalous behaviour for other scenarios, even at low density ratios. Using a plethora of test problems of increasing complexity, we conclusively demonstrate that the
Bernstein, Andrey; Wang, Cong; Dall'Anese, Emiliano; ...
2018-01-01
This paper considers unbalanced multiphase distribution systems with generic topology and different load models, and extends the Z-bus iterative load-flow algorithm based on a fixed-point interpretation of the AC load-flow equations. Explicit conditions for existence and uniqueness of load-flow solutions are presented. These conditions also guarantee convergence of the load-flow algorithm to the unique solution. The proposed methodology is applicable to generic systems featuring (i) wye connections; (ii) ungrounded delta connections; (iii) a combination of wye-connected and delta-connected sources/loads; and, (iv) a combination of line-to-line and line-to-grounded-neutral devices at the secondary of distribution transformers. Further, a sufficient condition for themore » non-singularity of the load-flow Jacobian is proposed. Finally, linear load-flow models are derived, and their approximation accuracy is analyzed. Theoretical results are corroborated through experiments on IEEE test feeders.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernstein, Andrey; Wang, Cong; Dall'Anese, Emiliano
This paper considers unbalanced multiphase distribution systems with generic topology and different load models, and extends the Z-bus iterative load-flow algorithm based on a fixed-point interpretation of the AC load-flow equations. Explicit conditions for existence and uniqueness of load-flow solutions are presented. These conditions also guarantee convergence of the load-flow algorithm to the unique solution. The proposed methodology is applicable to generic systems featuring (i) wye connections; (ii) ungrounded delta connections; (iii) a combination of wye-connected and delta-connected sources/loads; and, (iv) a combination of line-to-line and line-to-grounded-neutral devices at the secondary of distribution transformers. Further, a sufficient condition for themore » non-singularity of the load-flow Jacobian is proposed. Finally, linear load-flow models are derived, and their approximation accuracy is analyzed. Theoretical results are corroborated through experiments on IEEE test feeders.« less
General Equation Set Solver for Compressible and Incompressible Turbomachinery Flows
NASA Technical Reports Server (NTRS)
Sondak, Douglas L.; Dorney, Daniel J.
2002-01-01
Turbomachines for propulsion applications operate with many different working fluids and flow conditions. The flow may be incompressible, such as in the liquid hydrogen pump in a rocket engine, or supersonic, such as in the turbine which may drive the hydrogen pump. Separate codes have traditionally been used for incompressible and compressible flow solvers. The General Equation Set (GES) method can be used to solve both incompressible and compressible flows, and it is not restricted to perfect gases, as are many compressible-flow turbomachinery solvers. An unsteady GES turbomachinery flow solver has been developed and applied to both air and water flows through turbines. It has been shown to be an excellent alternative to maintaining two separate codes.
Rheological flow laws for multiphase magmas: An empirical approach
NASA Astrophysics Data System (ADS)
Pistone, Mattia; Cordonnier, Benoît; Ulmer, Peter; Caricchi, Luca
2016-07-01
The physical properties of magmas play a fundamental role in controlling the eruptive dynamics of volcanoes. Magmas are multiphase mixtures of crystals and gas bubbles suspended in a silicate melt and, to date, no flow laws describe their rheological behaviour. In this study we present a set of equations quantifying the flow of high-viscosity (> 105 Pa·s) silica-rich multiphase magmas, containing both crystals (24-65 vol.%) and gas bubbles (9-12 vol.%). Flow laws were obtained using deformation experiments performed at high temperature (673-1023 K) and pressure (200-250 MPa) over a range of strain-rates (5 · 10- 6 s- 1 to 4 · 10- 3 s- 1), conditions that are relevant for volcanic conduit processes of silica-rich systems ranging from crystal-rich lava domes to crystal-poor obsidian flows. We propose flow laws in which stress exponent, activation energy, and pre-exponential factor depend on a parameter that includes the volume fraction of weak phases (i.e. melt and gas bubbles) present in the magma. The bubble volume fraction has opposing effects depending on the relative crystal volume fraction: at low crystallinity bubble deformation generates gas connectivity and permeability pathways, whereas at high crystallinity bubbles do not connect and act as ;lubricant; objects during strain localisation within shear bands. We show that such difference in the evolution of texture is mainly controlled by the strain-rate (i.e. the local stress within shear bands) at which the experiments are performed, and affect the empirical parameters used for the flow laws. At low crystallinity (< 44 vol.%) we observe an increase of viscosity with increasing strain-rate, while at high crystallinity (> 44 vol.%) the viscosity decreases with increasing strain-rate. Because these behaviours are also associated with modifications of sample textures during the experiment and, thus, are not purely the result of different deformation rates, we refer to ;apparent shear-thickening; and
NASA Astrophysics Data System (ADS)
Liao, Qinzhuo; Zhang, Dongxiao; Tchelepi, Hamdi
2017-02-01
A new computational method is proposed for efficient uncertainty quantification of multiphase flow in porous media with stochastic permeability. For pressure estimation, it combines the dimension-adaptive stochastic collocation method on Smolyak sparse grids and the Kronrod-Patterson-Hermite nested quadrature formulas. For saturation estimation, an additional stage is developed, in which the pressure and velocity samples are first generated by the sparse grid interpolation and then substituted into the transport equation to solve for the saturation samples, to address the low regularity problem of the saturation. Numerical examples are presented for multiphase flow with stochastic permeability fields to demonstrate accuracy and efficiency of the proposed two-stage adaptive stochastic collocation method on nested sparse grids.
The Pore-scale modeling of multiphase flows in reservoir rocks using the lattice Boltzmann method
NASA Astrophysics Data System (ADS)
Mu, Y.; Baldwin, C. H.; Toelke, J.; Grader, A.
2011-12-01
Digital rock physics (DRP) is a new technology to compute the physical and fluid flow properties of reservoir rocks. In this approach, pore scale images of the porous rock are obtained and processed to create highly accurate 3D digital rock sample, and then the rock properties are evaluated by advanced numerical methods at the pore scale. Ingrain's DRP technology is a breakthrough for oil and gas companies that need large volumes of accurate results faster than the current special core analysis (SCAL) laboratories can normally deliver. In this work, we compute the multiphase fluid flow properties of 3D digital rocks using D3Q19 immiscible LBM with two relaxation times (TRT). For efficient implementation on GPU, we improved and reformulated color-gradient model proposed by Gunstensen and Rothmann. Furthermore, we only use one-lattice with the sparse data structure: only allocate memory for pore nodes on GPU. We achieved more than 100 million fluid lattice updates per second (MFLUPS) for two-phase LBM on single Fermi-GPU and high parallel efficiency on Multi-GPUs. We present and discuss our simulation results of important two-phase fluid flow properties, such as capillary pressure and relative permeabilities. We also investigate the effects of resolution and wettability on multiphase flows. Comparison of direct measurement results with the LBM-based simulations shows practical ability of DRP to predict two-phase flow properties of reservoir rock.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, T.; Spycher, N.; Sonnenthal, E.
2010-08-01
TOUGHREACT is a numerical simulation program for chemically reactive non-isothermal flows of multiphase fluids in porous and fractured media, and was developed by introducing reactive chemistry into the multiphase fluid and heat flow simulator TOUGH2 V2. The first version of TOUGHREACT was released to the public through the U.S. Department of Energy's Energy Science and Technology Software Center (ESTSC) in August 2004. It is among the most frequently requested of ESTSC's codes. The code has been widely used for studies in CO{sub 2} geological sequestration, nuclear waste isolation, geothermal energy development, environmental remediation, and increasingly for petroleum applications. Over themore » past several years, many new capabilities have been developed, which were incorporated into Version 2 of TOUGHREACT. Major additions and improvements in Version 2 are discussed here, and two application examples are presented: (1) long-term fate of injected CO{sub 2} in a storage reservoir and (2) biogeochemical cycling of metals in mining-impacted lake sediments.« less
NASA Astrophysics Data System (ADS)
Bretin, Elie; Danescu, Alexandre; Penuelas, José; Masnou, Simon
2018-07-01
The structure of many multiphase systems is governed by an energy that penalizes the area of interfaces between phases weighted by surface tension coefficients. However, interface evolution laws depend also on interface mobility coefficients. Having in mind some applications where highly contrasted or even degenerate mobilities are involved, for which classical phase field models are inapplicable, we propose a new effective phase field approach to approximate multiphase mean curvature flows with mobilities. The key aspect of our model is to incorporate the mobilities not in the phase field energy (which is conventionally the case) but in the metric which determines the gradient flow. We show the consistency of such an approach by a formal analysis of the sharp interface limit. We also propose an efficient numerical scheme which allows us to illustrate the advantages of the model on various examples, as the wetting of droplets on solid surfaces or the simulation of nanowires growth generated by the so-called vapor-liquid-solid method.
The stabilizing effect of compressibility in turbulent shear flow
NASA Technical Reports Server (NTRS)
Sarkar, S.
1994-01-01
Direct numerical simulation of turbulent homogeneous shear flow is performed in order to clarify compressibility effects on the turbulence growth in the flow. The two Mach numbers relevant to homogeneous shear flow are the turbulent Mach number M(t) and the gradient Mach number M(g). Two series of simulations are performed where the initial values of M(g) and M(t) are increased separately. The growth rate of turbulent kinetic energy is observed to decrease in both series of simulations. This 'stabilizing' effect of compressibility on the turbulent energy growth rate is observed to be substantially larger in the DNS series where the initial value of M(g) is changed. A systematic companion of the different DNS cues shows that the compressibility effect of reduced turbulent energy growth rate is primarily due to the reduced level of turbulence production and not due to explicit dilatational effects. The reduced turbulence production is not a mean density effect since the mean density remains constant in compressible homogeneous shear flow. The stabilizing effect of compressibility on the turbulence growth is observed to increase with the gradient Mach number M(g) in the homogeneous shear flow DNS. Estimates of M(g) for the mixing and the boundary layer are obtained. These estimates show that the parameter M(g) becomes much larger in the high-speed mixing layer relative to the high-speed boundary layer even though the mean flow Mach numbers are the same in the two flows. Therefore, the inhibition of turbulent energy production and consequent 'stabilizing' effect of compressibility on the turbulence (over and above that due to the mean density variation) is expected to be larger in the mixing layer relative to the boundary layer in agreement with experimental observations.
Stability of compressible Taylor-Couette flow
NASA Technical Reports Server (NTRS)
Kao, K.; Chow, C.
1992-01-01
The objectives of this paper are to: (1) develop both analytical and numerical tools that can be used to predict the onset of instability and subsequently to simulate the transition process by which the originally laminar flow evolves into a turbulent flow; and (2) conduct the preliminary investigations with the purpose of understanding the mechanisms of the vortical structures of the compressible flow between tow concentric cylinders.
Assessment of chemistry models for compressible reacting flows
NASA Astrophysics Data System (ADS)
Lapointe, Simon; Blanquart, Guillaume
2014-11-01
Recent technological advances in propulsion and power devices and renewed interest in the development of next generation supersonic and hypersonic vehicles have increased the need for detailed understanding of turbulence-combustion interactions in compressible reacting flows. In numerical simulations of such flows, accurate modeling of the fuel chemistry is a critical component of capturing the relevant physics. Various chemical models are currently being used in reacting flow simulations. However, the differences between these models and their impacts on the fluid dynamics in the context of compressible flows are not well understood. In the present work, a numerical code is developed to solve the fully coupled compressible conservation equations for reacting flows. The finite volume code is based on the theoretical and numerical framework developed by Oefelein (Prog. Aero. Sci. 42 (2006) 2-37) and employs an all-Mach-number formulation with dual time-stepping and preconditioning. The numerical approach is tested on turbulent premixed flames at high Karlovitz numbers. Different chemical models of varying complexity and computational cost are used and their effects are compared.
Design optimization of natural laminar flow bodies in compressible flow
NASA Technical Reports Server (NTRS)
Dodbele, Simha S.
1992-01-01
An optimization method has been developed to design axisymmetric body shapes such as fuselages, nacelles, and external fuel tanks with increased transition Reynolds numbers in subsonic compressible flow. The new design method involves a constraint minimization procedure coupled with analysis of the inviscid and viscous flow regions and linear stability analysis of the compressible boundary-layer. In order to reduce the computer time, Granville's transition criterion is used to predict boundary-layer transition and to calculate the gradients of the objective function, and linear stability theory coupled with the e(exp n)-method is used to calculate the objective function at the end of each design iteration. Use of a method to design an axisymmetric body with extensive natural laminar flow is illustrated through the design of a tiptank of a business jet. For the original tiptank, boundary layer transition is predicted to occur at a transition Reynolds number of 6.04 x 10(exp 6). For the designed body shape, a transition Reynolds number of 7.22 x 10(exp 6) is predicted using compressible linear stability theory coupled with the e(exp n)-method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leggett, R.B.; Borling, D.C.; Powers, B.S.
1998-02-01
A multiphase flowmeter (MPFM) installed in offshore Egypt has accurately measured three-phase flow in extremely gassy flow conditions. The meter is completely nonintrusive, with no moving parts, requires no flow mixing before measurement, and has no bypass loop to remove gas before multiphase measurement. Flow regimes observed during the field test of this meter ranged from severe slugging to annular flow caused by the dynamics of gas-lift gas in the production stream. Average gas-volume fraction ranged from 93 to 98% during tests conducted on seven wells. The meter was installed in the Gulf of Suez on a well protector platformmore » in the Gulf of Suez Petroleum Co. (Gupco) October field, and was placed in series with a test separator located on a nearby production platform. Wells were individually tested with flow conditions ranging from 1,300 to 4,700 B/D fluid, 2.4 to 3.9 MMscf/D of gas, and water cuts from 1 to 52%. The meter is capable of measuring water cuts up to 100%. Production was routed through both the MPFM and the test separator simultaneously as wells flowed with the assistance of gas-lift gas. The MPFM measured gas and liquid rates to within {+-} 10% of test-separator reference measurement flow rates, and accomplished this at gas-volume fractions from 93 to 96%. At higher gas-volume fractions up to 98%, accuracy deteriorated but the meter continued to provide repeatable results.« less
Multiphase flow models for hydraulic fracturing technology
NASA Astrophysics Data System (ADS)
Osiptsov, Andrei A.
2017-10-01
drift-flux approaches. The derivation of the drift-flux model from conservation olaws is criticall revisited in order to define the list of underlying assumptions and to mark the applicability margins of the model. All these fundamental problems share the same technological application (hydraulic fracturing) and the same method of research, namely, the multi-fluid approach to multiphase flow modeling and the consistent use of asymptotic methods. Multi-fluid models are then discussed in comparison with semi-empirical (often postulated) models widely used in the industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gokaltun, Seckin; McDaniel, Dwayne; Roelant, David
2012-07-01
Multiphase flows involving gas and liquid phases can be observed in engineering operations at various Department of Energy sites, such as mixing of slurries using pulsed-air mixers and hydrogen gas generation in liquid waste tanks etc. The dynamics of the gas phase in the liquid domain play an important role in the mixing effectiveness of the pulsed-air mixers or in the level of gas pressure build-up in waste tanks. To understand such effects, computational fluid dynamics methods (CFD) can be utilized by developing a three-dimensional computerized multiphase flow model that can predict accurately the behavior of gas motion inside liquid-filledmore » tanks by solving the governing mathematical equations that represent the physics of the phenomena. In this paper, such a CFD method, lattice Boltzmann method (LBM), is presented that can model multiphase flows accurately and efficiently. LBM is favored over traditional Navier-Stokes based computational models since interfacial forces are handled more effectively in LBM. The LBM is easier to program, more efficient to solve on parallel computers, and has the ability to capture the interface between different fluid phases intrinsically. The LBM used in this paper can solve for the incompressible and viscous flow field in three dimensions, while at the same time, solve the Cahn-Hillard equation to track the position of the gas-liquid interface specifically when the density and viscosity ratios between the two fluids are high. This feature is of primary importance since the previous LBM models proposed for multiphase flows become unstable when the density ratio is larger than 10. The ability to provide stable and accurate simulations at large density ratios becomes important when the simulation case involves fluids such as air and water with a density ratio around 1000 that are common to many engineering problems. In order to demonstrate the capability of the 3D LBM method at high density ratios, a static bubble
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, Qinzhuo, E-mail: liaoqz@pku.edu.cn; Zhang, Dongxiao; Tchelepi, Hamdi
A new computational method is proposed for efficient uncertainty quantification of multiphase flow in porous media with stochastic permeability. For pressure estimation, it combines the dimension-adaptive stochastic collocation method on Smolyak sparse grids and the Kronrod–Patterson–Hermite nested quadrature formulas. For saturation estimation, an additional stage is developed, in which the pressure and velocity samples are first generated by the sparse grid interpolation and then substituted into the transport equation to solve for the saturation samples, to address the low regularity problem of the saturation. Numerical examples are presented for multiphase flow with stochastic permeability fields to demonstrate accuracy and efficiencymore » of the proposed two-stage adaptive stochastic collocation method on nested sparse grids.« less
Compressed-air flow control system.
Bong, Ki Wan; Chapin, Stephen C; Pregibon, Daniel C; Baah, David; Floyd-Smith, Tamara M; Doyle, Patrick S
2011-02-21
We present the construction and operation of a compressed-air driven flow system that can be used for a variety of microfluidic applications that require rapid dynamic response and precise control of multiple inlet streams. With the use of inexpensive and readily available parts, we describe how to assemble this versatile control system and further explore its utility in continuous- and pulsed-flow microfluidic procedures for the synthesis and analysis of microparticles.
Probability density function approach for compressible turbulent reacting flows
NASA Technical Reports Server (NTRS)
Hsu, A. T.; Tsai, Y.-L. P.; Raju, M. S.
1994-01-01
The objective of the present work is to extend the probability density function (PDF) tubulence model to compressible reacting flows. The proability density function of the species mass fractions and enthalpy are obtained by solving a PDF evolution equation using a Monte Carlo scheme. The PDF solution procedure is coupled with a compression finite-volume flow solver which provides the velocity and pressure fields. A modeled PDF equation for compressible flows, capable of treating flows with shock waves and suitable to the present coupling scheme, is proposed and tested. Convergence of the combined finite-volume Monte Carlo solution procedure is discussed. Two super sonic diffusion flames are studied using the proposed PDF model and the results are compared with experimental data; marked improvements over solutions without PDF are observed.
Modeling of multiphase flow with solidification and chemical reaction in materials processing
NASA Astrophysics Data System (ADS)
Wei, Jiuan
Understanding of multiphase flow and related heat transfer and chemical reactions are the keys to increase the productivity and efficiency in industrial processes. The objective of this thesis is to utilize the computational approaches to investigate the multiphase flow and its application in the materials processes, especially in the following two areas: directional solidification, and pyrolysis and synthesis. In this thesis, numerical simulations will be performed for crystal growth of several III-V and II-VI compounds. The effects of Prandtl and Grashof numbers on the axial temperature profile, the solidification interface shape, and melt flow are investigated. For the material with high Prandtl and Grashof numbers, temperature field and growth interface will be significantly influenced by melt flow, resulting in the complicated temperature distribution and curved interface shape, so it will encounter tremendous difficulty using a traditional Bridgman growth system. A new design is proposed to reduce the melt convection. The geometric configuration of top cold and bottom hot in the melt will dramatically reduce the melt convection. The new design has been employed to simulate the melt flow and heat transfer in crystal growth with large Prandtl and Grashof numbers and the design parameters have been adjusted. Over 90% of commercial solar cells are made from silicon and directional solidification system is the one of the most important method to produce multi-crystalline silicon ingots due to its tolerance to feedstock impurities and lower manufacturing cost. A numerical model is developed to simulate the silicon ingot directional solidification process. Temperature distribution and solidification interface location are presented. Heat transfer and solidification analysis are performed to determine the energy efficiency of the silicon production furnace. Possible improvements are identified. The silicon growth process is controlled by adjusting heating power and
Multiphase Modeling of Secondary Atomization in a Shock Environment
NASA Astrophysics Data System (ADS)
St. Clair, Jeffrey; McGrath, Thomas; Balachandar, Sivaramakrishnan
2017-06-01
Understanding and developing accurate modeling strategies for shock-particulate interaction remains a challenging and important topic, with application to energetic materials development, volcanic eruptions, and safety/risk assessment. This work presents computational modeling of compressible multiphase flows with shock-induced droplet atomization. Droplet size has a strong influence on the interphase momentum and heat transfer. A test case is presented that is sensitive to this, requiring the dynamic modeling of the secondary atomization process occurring when the shock impacts the droplets. An Eulerian-Eulerian computational model that treats all phases as compressible, is hyperbolic and satisfies the 2nd Law of Thermodynamics is applied. Four different breakup models are applied to the test case in which a planar shock wave encounters a cloud of water droplets. The numerical results are compared with both experimental and previously-generated modeling results. The effect of the drag relation used is also investigated. The computed results indicate the necessity of using a droplet breakup model for this application, and the relative accuracy of results obtained with the different droplet breakup and drag models is discussed.
Smoothed particle hydrodynamics method for evaporating multiphase flows.
Yang, Xiufeng; Kong, Song-Charng
2017-09-01
The smoothed particle hydrodynamics (SPH) method has been increasingly used for simulating fluid flows; however, its ability to simulate evaporating flow requires significant improvements. This paper proposes an SPH method for evaporating multiphase flows. The present SPH method can simulate the heat and mass transfers across the liquid-gas interfaces. The conservation equations of mass, momentum, and energy were reformulated based on SPH, then were used to govern the fluid flow and heat transfer in both the liquid and gas phases. The continuity equation of the vapor species was employed to simulate the vapor mass fraction in the gas phase. The vapor mass fraction at the interface was predicted by the Clausius-Clapeyron correlation. An evaporation rate was derived to predict the mass transfer from the liquid phase to the gas phase at the interface. Because of the mass transfer across the liquid-gas interface, the mass of an SPH particle was allowed to change. Alternative particle splitting and merging techniques were developed to avoid large mass difference between SPH particles of the same phase. The proposed method was tested by simulating three problems, including the Stefan problem, evaporation of a static drop, and evaporation of a drop impacting a hot surface. For the Stefan problem, the SPH results of the evaporation rate at the interface agreed well with the analytical solution. For drop evaporation, the SPH result was compared with the result predicted by a level-set method from the literature. In the case of drop impact on a hot surface, the evolution of the shape of the drop, temperature, and vapor mass fraction were predicted.
Stability of compressible Taylor-Couette flow
NASA Technical Reports Server (NTRS)
Kao, Kai-Hsiung; Chow, Chuen-Yen
1991-01-01
Compressible stability equations are solved using the spectral collocation method in an attempt to study the effects of temperature difference and compressibility on the stability of Taylor-Couette flow. It is found that the Chebyshev collocation spectral method yields highly accurate results using fewer grid points for solving stability problems. Comparisons are made between the result obtained by assuming small Mach number with a uniform temperature distribution and that based on fully incompressible analysis.
A hybrid interface tracking - level set technique for multiphase flow with soluble surfactant
NASA Astrophysics Data System (ADS)
Shin, Seungwon; Chergui, Jalel; Juric, Damir; Kahouadji, Lyes; Matar, Omar K.; Craster, Richard V.
2018-04-01
A formulation for soluble surfactant transport in multiphase flows recently presented by Muradoglu and Tryggvason (JCP 274 (2014) 737-757) [17] is adapted to the context of the Level Contour Reconstruction Method, LCRM, (Shin et al. IJNMF 60 (2009) 753-778, [8]) which is a hybrid method that combines the advantages of the Front-tracking and Level Set methods. Particularly close attention is paid to the formulation and numerical implementation of the surface gradients of surfactant concentration and surface tension. Various benchmark tests are performed to demonstrate the accuracy of different elements of the algorithm. To verify surfactant mass conservation, values for surfactant diffusion along the interface are compared with the exact solution for the problem of uniform expansion of a sphere. The numerical implementation of the discontinuous boundary condition for the source term in the bulk concentration is compared with the approximate solution. Surface tension forces are tested for Marangoni drop translation. Our numerical results for drop deformation in simple shear are compared with experiments and results from previous simulations. All benchmarking tests compare well with existing data thus providing confidence that the adapted LCRM formulation for surfactant advection and diffusion is accurate and effective in three-dimensional multiphase flows with a structured mesh. We also demonstrate that this approach applies easily to massively parallel simulations.
Entropic lattice Boltzmann model for compressible flows.
Frapolli, N; Chikatamarla, S S; Karlin, I V
2015-12-01
We present a lattice Boltzmann model (LBM) that covers the entire range of fluid flows, from low Mach weakly compressible to transonic and supersonic flows. One of the most restrictive limitations of the lattice Boltzmann method, the low Mach number limit, is overcome here by three fundamental changes to the LBM scheme: use of an appropriately chosen multispeed lattice, accurate evaluation of the equilibrium, and the entropic relaxation for the collision. The range of applications is demonstrated through the simulation of a bow shock in front of an airfoil and the simulation of decaying compressible turbulence with shocklets.
Compressible viscous flows generated by oscillating flexible cylinders
NASA Astrophysics Data System (ADS)
Van Eysden, Cornelis A.; Sader, John E.
2009-01-01
The fluid dynamics of oscillating elastic beams underpin the operation of many modern technological devices ranging from micromechanical sensors to the atomic force microscope. While viscous effects are widely acknowledged to have a strong influence on these dynamics, fluid compressibility is commonly neglected. Here, we theoretically study the three-dimensional flow fields that are generated by the motion of flexible cylinders immersed in viscous compressible fluids and discuss the implications of compressibility in practice. We consider cylinders of circular cross section and flat blades of zero thickness that are executing flexural and torsional oscillations of arbitrary wave number. Exact analytical solutions are derived for these flow fields and their resulting hydrodynamic loads.
Advancement and Application of Multi-Phase CFD Modeling to High Speed Supercavitating Flows
2013-08-13
5a. CONTRACT NUMBER 5b. GRANT NUMBER N00014-09-1-0042 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Jules W. Lindau and Michael P. Kinzel 5d. PROJECT...REPORT U b. ABSTRACT U c. THIS PAGE U 17. LIMITATION OF ABSTRACT U 18. NUMBER OF PAGES 29 19a. NAME OF RESPONSIBLE PERSON Jules W. Lindau...Application of Multi-Phase CFD Modeling to High Speed Supercavitating Flows Michael P. Kinzel Jules W. Lindau Penn State University Applied Research
This manual describes a two-dimensional, finite element model for coupled multiphase flow and multicomponent transport in planar or radially symmetric vertical sections. low and transport of three fluid phases, including water, nonaqueous phase liquid (NAPL), and gas are consider...
Potential Flow Model for Compressible Stratified Rayleigh-Taylor Instability
NASA Astrophysics Data System (ADS)
Rydquist, Grant; Reckinger, Scott; Owkes, Mark; Wieland, Scott
2017-11-01
The Rayleigh-Taylor Instability (RTI) is an instability that occurs when a heavy fluid lies on top of a lighter fluid in a gravitational field, or a gravity-like acceleration. It occurs in many fluid flows of a highly compressive nature. In this study potential flow analysis (PFA) is used to model the early stages of RTI growth for compressible fluids. In the localized region near the bubble tip, the effects of vorticity are negligible, so PFA is applicable, as opposed to later stages where the induced velocity due to vortices generated from the growth of the instability dominate the flow. The incompressible PFA is extended for compressibility effects by applying the growth rate and the associated perturbation spatial decay from compressible linear stability theory. The PFA model predicts theoretical values for a bubble terminal velocity for single-mode compressible RTI, dependent upon the Atwood (A) and Mach (M) numbers, which is a parameter that measures both the strength of the stratification and intrinsic compressibility. The theoretical bubble terminal velocities are compared against numerical simulations. The PFA model correctly predicts the M dependence at high A, but the model must be further extended to include additional physics to capture the behavior at low A. Undergraduate Scholars Program - Montana State University.
Shock tube Multiphase Experiments
NASA Astrophysics Data System (ADS)
Middlebrooks, John; Allen, Roy; Paudel, Manoj; Young, Calvin; Musick, Ben; McFarland, Jacob
2017-11-01
Shock driven multiphase instabilities (SDMI) are unique physical phenomena that have far-reaching practical applications in engineering and science. The instability is present in high energy explosions, scramjet combustors, and supernovae events. The SDMI arises when a multiphase interface is impulsively accelerated by the passage of a shockwave. It is similar in development to the Richtmyer-Meshkov (RM) instability however, particle-to-gas coupling is the driving mechanism of the SDMI. As particle effects such as lag and phase change become more prominent, the SDMI's development begins to significantly deviate from the RM instability. We have developed an experiment for studying the SDMI in our shock tube facility. In our experiments, a multiphase interface is created using a laminar jet and flowed into the shock tube where it is accelerated by the passage of a planar shockwave. The interface development is captured using CCD cameras synchronized with planar laser illumination. This talk will give an overview of new experiments conducted to examine the development of a shocked cylindrical multiphase interface. The effects of Atwood number, particle size, and a second acceleration (reshock) of the interface will be discussed.
NASA Astrophysics Data System (ADS)
Wei, Xiaohui; Li, Weishan; Tian, Hailong; Li, Hongliang; Xu, Haixiao; Xu, Tianfu
2015-07-01
The numerical simulation of multiphase flow and reactive transport in the porous media on complex subsurface problem is a computationally intensive application. To meet the increasingly computational requirements, this paper presents a parallel computing method and architecture. Derived from TOUGHREACT that is a well-established code for simulating subsurface multi-phase flow and reactive transport problems, we developed a high performance computing THC-MP based on massive parallel computer, which extends greatly on the computational capability for the original code. The domain decomposition method was applied to the coupled numerical computing procedure in the THC-MP. We designed the distributed data structure, implemented the data initialization and exchange between the computing nodes and the core solving module using the hybrid parallel iterative and direct solver. Numerical accuracy of the THC-MP was verified through a CO2 injection-induced reactive transport problem by comparing the results obtained from the parallel computing and sequential computing (original code). Execution efficiency and code scalability were examined through field scale carbon sequestration applications on the multicore cluster. The results demonstrate successfully the enhanced performance using the THC-MP on parallel computing facilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tartakovsky, Alexandre M.; Trask, Nathaniel; Pan, K.
2016-03-11
Smoothed Particle Hydrodynamics (SPH) is a Lagrangian method based on a meshless discretization of partial differential equations. In this review, we present SPH discretization of the Navier-Stokes and Advection-Diffusion-Reaction equations, implementation of various boundary conditions, and time integration of the SPH equations, and we discuss applications of the SPH method for modeling pore-scale multiphase flows and reactive transport in porous and fractured media.
Revisiting directed flow in relativistic heavy-ion collisions from a multiphase transport model
NASA Astrophysics Data System (ADS)
Guo, Chong-Qiang; Zhang, Chun-Jian; Xu, Jun
2017-12-01
We have revisited several interesting questions on how the rapidity-odd directed flow is developed in relativistic 197Au+197Au collisions at √{s_{NN}} = 200 and 39 GeV based on a multiphase transport model. As the partonic phase evolves with time, the slope of the parton directed flow at midrapidity region changes from negative to positive as a result of the later dynamics at 200 GeV, while it remains negative at 39 GeV due to the shorter life time of the partonic phase. The directed flow splitting for various quark species due to their different initial eccentricities is observed at 39 GeV, while the splitting is very small at 200GeV. From a dynamical coalescence algorithm with Wigner functions, we found that the directed flow of hadrons is a result of competition between the coalescence in momentum and coordinate space as well as further modifications by the hadronic rescatterings.
NASA Astrophysics Data System (ADS)
Jin, G.
2012-12-01
Multiphase flow modeling is an important numerical tool for a better understanding of transport processes in the fields including, but not limited to, petroleum reservoir engineering, remedy of ground water contamination, and risk evaluation of greenhouse gases such as CO2 injected into deep saline reservoirs. However, accurate numerical modeling for multiphase flow remains many challenges that arise from the inherent tight coupling and strong non-linear nature of the governing equations and the highly heterogeneous media. The existence of counter current flow which is caused by the effect of adverse relative mobility contrast and gravitational and capillary forces will introduce additional numerical instability. Recently multipoint flux approximation (MPFA) has become a subject of extensive research and has been demonstrated with great success in reducing considerable grid orientation effects compared to the conventional single point upstream (SPU) weighting scheme, especially in higher dimensions. However, the present available MPFA schemes are mathematically targeted to certain types of grids in two dimensions, a more general form of MPFA scheme is needed for both 2-D and 3-D problems. In this work a new upstream weighting scheme based on multipoint directional incoming fluxes is proposed which incorporates full permeability tensor to account for the heterogeneity of the porous media. First, the multiphase governing equations are decoupled into an elliptic pressure equation and a hyperbolic or parabolic saturation depends on whether the gravitational and capillary pressures are presented or not. Next, a dual secondary grid (called finite volume grid) is formulated from a primary grid (called finite element grid) to create interaction regions for each grid cell over the entire simulation domain. Such a discretization must ensure the conservation of mass and maintain the continuity of the Darcy velocity across the boundaries between neighboring interaction regions
Fluctuation diagrams for hot-wire anemometry in subsonic compressible flows
NASA Technical Reports Server (NTRS)
Stainback, P. C.; Nagabushana, K. A.
1991-01-01
The concept of using 'fluctuation diagrams' for describing basic fluctuations in compressible flows was reported by Kovasznay in the 1950's. The application of this technique, for the most part, was restricted to supersonic flows. Recently, Zinovev and Lebiga published reports where they considered the fluctuation diagrams in subsonic compressible flows. For the above studies, the velocity and density sensitivities of the heated wires were equal. However, there are considerable data, much taken in the 1950's, which indicate that under some conditions the velocity and density sensitivities are not equal in subsonic compressible flows. Therefore, possible fluctuation diagrams are described for the cases where the velocity and density sensitivities are equal and the more general cases where they are unequal.
Sneddon, Kristen W.; Powers, Michael H.; Johnson, Raymond H.; Poeter, Eileen P.
2002-01-01
Dense nonaqueous phase liquids (DNAPLs) are a pervasive and persistent category of groundwater contamination. In an effort to better understand their unique subsurface behavior, a controlled and carefully monitored injection of PCE (perchloroethylene), a typical DNAPL, was performed in conjunction with the University of Waterloo at Canadian Forces Base Borden in 1991. Of the various geophysical methods used to monitor the migration of injected PCE, the U.S. Geological Survey collected 500-MHz ground penetrating radar (GPR) data. These data are used in determining calibration parameters for a multiphase flow simulation. GPR data were acquired over time on a fixed two-dimensional surficial grid as the DNAPL was injected into the subsurface. Emphasis is on the method of determining DNAPL saturation values from this time-lapse GPR data set. Interactive full-waveform GPR modeling of regularized field traces resolves relative dielectric permittivity versus depth profiles for pre-injection and later-time data. Modeled values are end members in recursive calculations of the Bruggeman-Hanai-Sen (BHS) mixing formula, yielding interpreted pre-injection porosity and post-injection DNAPL saturation values. The resulting interpreted physical properties of porosity and DNAPL saturation of the Borden test cell, defined on a grid spacing of 50 cm with 1-cm depth resolution, are used as observations for calibration of a 3-D multiphase flow simulation. Calculated values of DNAPL saturation in the subsurface at 14 and 22 hours after the start of injection, from both the GPR and the multiphase flow modeling, are interpolated volumetrically and presented for visual comparison.
Near-wall modelling of compressible turbulent flows
NASA Technical Reports Server (NTRS)
So, Ronald M. C.
1990-01-01
Work was carried out to extend the near-wall models formulated for the incompressible Reynolds stress equations to compressible flows. The idea of splitting the compressible dissipation function into a solenoidal part that is not sensitive to changes of compressibility indicators and a compressible part that is directly affected by these changes is adopted. This means that all models involving the dissipation rate could be expressed in terms of the solenoidal dissipation rate and an equation governing its transport could be formulated to close the set of compressible Reynolds stress equations. The near-wall modelling of the dissipation rate equation is investigated and its behavior near a wall is studied in detail using k-epsilon closure. It is found that all existing modelled equations give the wrong behavior for the dissipation rate near a wall. Improvements are suggested and the resultant behavior is found to be in good agreement with near-wall data. Furthermore, the present modified k-epsilon closure is used too calculate a flat plate boundary layer and the results are compared with four existing k-epsilon closures. These comparisons show that all closures tested give essentially the same flow properties, except in a region very close to the wall. In this region, the present k-epsilon closure calculations are in better agreement with measurements and direct simulation data; in particular, the behavior of the dissipation rate.
NASA Astrophysics Data System (ADS)
Kaur, K.; Laanearu, J.; Annus, I.
2017-10-01
The numerical experiments are carried out for qualitative and quantitative interpretation of a multi-phase flow processes associated with malfunctioning of the Tallinn storm-water system during rain storms. The investigations are focused on the single-line inverted siphon, which is used as under-road connection of pipes of the storm-water system under interest. A multi-phase flow solver of Computational Fluid Dynamics software OpenFOAM is used for simulating the three-phase flow dynamics in the hydraulic system. The CFD simulations are performed with different inflow rates under same initial conditions. The computational results are compared essentially in two cases 1) design flow rate and 2) larger flow rate, for emptying the initially filled inverted siphon from a slurry-fluid. The larger flow-rate situations are under particular interest to detected possible flooding. In this regard, it is anticipated that the CFD solutions provide an important insight to functioning of inverted siphon under a restricted water-flow conditions at simultaneous presence of air and slurry-fluid.
NASA Astrophysics Data System (ADS)
Birdsell, D.; Karra, S.; Rajaram, H.
2016-12-01
The governing equations for subsurface flow codes in deformable porous media are derived from the fluid mass balance equation. One class of these codes, which we call general subsurface flow (GSF) codes, does not explicitly track the motion of the solid porous media but does accept general constitutive relations for porosity, density, and fluid flux. Examples of GSF codes include PFLOTRAN, FEHM, STOMP, and TOUGH2. Meanwhile, analytical and numerical solutions based on the groundwater flow equation have assumed forms for porosity, density, and fluid flux. We review the derivation of the groundwater flow equation, which uses the form of Darcy's equation that accounts for the velocity of fluids with respect to solids and defines the soil matrix compressibility accordingly. We then show how GSF codes have a different governing equation if they use the form of Darcy's equation that is written only in terms of fluid velocity. The difference is seen in the porosity change, which is part of the specific storage term in the groundwater flow equation. We propose an alternative definition of soil matrix compressibility to correct for the untracked solid velocity. Simulation results show significantly less error for our new compressibility definition than the traditional compressibility when compared to analytical solutions from the groundwater literature. For example, the error in one calculation for a pumped sandstone aquifer goes from 940 to <70 Pa when the new compressibility is used. Code users and developers need to be aware of assumptions in the governing equations and constitutive relations in subsurface flow codes, and our newly-proposed compressibility function should be incorporated into GSF codes.
NASA Astrophysics Data System (ADS)
Birdsell, D.; Karra, S.; Rajaram, H.
2017-12-01
The governing equations for subsurface flow codes in deformable porous media are derived from the fluid mass balance equation. One class of these codes, which we call general subsurface flow (GSF) codes, does not explicitly track the motion of the solid porous media but does accept general constitutive relations for porosity, density, and fluid flux. Examples of GSF codes include PFLOTRAN, FEHM, STOMP, and TOUGH2. Meanwhile, analytical and numerical solutions based on the groundwater flow equation have assumed forms for porosity, density, and fluid flux. We review the derivation of the groundwater flow equation, which uses the form of Darcy's equation that accounts for the velocity of fluids with respect to solids and defines the soil matrix compressibility accordingly. We then show how GSF codes have a different governing equation if they use the form of Darcy's equation that is written only in terms of fluid velocity. The difference is seen in the porosity change, which is part of the specific storage term in the groundwater flow equation. We propose an alternative definition of soil matrix compressibility to correct for the untracked solid velocity. Simulation results show significantly less error for our new compressibility definition than the traditional compressibility when compared to analytical solutions from the groundwater literature. For example, the error in one calculation for a pumped sandstone aquifer goes from 940 to <70 Pa when the new compressibility is used. Code users and developers need to be aware of assumptions in the governing equations and constitutive relations in subsurface flow codes, and our newly-proposed compressibility function should be incorporated into GSF codes.
Using Self Potential and Multiphase Flow Modeling to Optimize Groundwater Pumping
NASA Astrophysics Data System (ADS)
Gasperikova, E.; Zhang, Y.; Hubbard, S.
2008-12-01
Numerical and field hydrological and geophysical studies have been conducted to investigate the impact of groundwater pumping on near-river hydrology for a segment of the Russian River at the Wohler Site, California, which is a riverbed filtration system managed by the Sonoma County Water Agency. Groundwater pumping near streams can cause a creation of unsaturated regions and hence reduce the pumping capacity and change the flow paths. A three-dimensional multiphase flow and transport model can be calibrated to the temperature, and water levels at monitoring wells based on known pumping rates, and the river stage. Streaming (self) potential (SP) is one of the electrokinetic processes that describes the coupled behavior of hydraulic and electrical flow within a porous medium, and is easily measured on the surface or in boreholes. Observing temporal and spatial variations in geophysical signatures provides a powerful approach for monitoring changes in the natural systems due to natural or forced (pumping) system perturbations. Geophysical and hydrological data were collected before, during and after a pumping experiment at the Wohler Site. Using this monitoring dataset, we illustrate how loose coupling between hydrogeological and geophysical (SP) processes and data can be used to calibrate the flow model and to optimize pumping schedules as needed to guide sustainable water resource development.
A compressibility correction of the pressure strain correlation model in turbulent flow
NASA Astrophysics Data System (ADS)
Klifi, Hechmi; Lili, Taieb
2013-07-01
This paper is devoted to the second-order closure for compressible turbulent flows with special attention paid to modeling the pressure-strain correlation appearing in the Reynolds stress equation. This term appears as the main one responsible for the changes of the turbulence structures that arise from structural compressibility effects. From the analysis and DNS results of Simone et al. and Sarkar, the compressibility effects on the homogeneous turbulence shear flow are parameterized by the gradient Mach number. Several experiment and DNS results suggest that the convective Mach number is appropriate to study the compressibility effects on the mixing layers. The extension of the LRR model recently proposed by Marzougui, Khlifi and Lili for the pressure-strain correlation gives results that are in disagreement with the DNS results of Sarkar for high-speed shear flows. This extension is revised to derive a turbulence model for the pressure-strain correlation in which the compressibility is included in the turbulent Mach number, the gradient Mach number and then the convective Mach number. The behavior of the proposed model is compared to the compressible model of Adumitroiae et al. for the pressure-strain correlation in two turbulent compressible flows: homogeneous shear flow and mixing layers. In compressible homogeneous shear flows, the predicted results are compared with the DNS data of Simone et al. and those of Sarkar. For low compressibility, the two compressible models are similar, but they become substantially different at high compressibilities. The proposed model shows good agreement with all cases of DNS results. Those of Adumitroiae et al. do not reflect any effect of a change in the initial value of the gradient Mach number on the Reynolds stress anisotropy. The models are used to simulate compressible mixing layers. Comparison of our predictions with those of Adumitroiae et al. and with the experimental results of Goebel et al. shows good qualitative
The Existence of Steady Compressible Subsonic Impinging Jet Flows
NASA Astrophysics Data System (ADS)
Cheng, Jianfeng; Du, Lili; Wang, Yongfu
2018-03-01
In this paper, we investigate the compressible subsonic impinging jet flows through a semi-infinitely long nozzle and impacting on a solid wall. Firstly, it is shown that given a two-dimensional semi-infinitely long nozzle and a wall behind the nozzle, and an appropriate atmospheric pressure, then there exists a smooth global subsonic compressible impinging jet flow with two asymptotic directions. The subsonic impinging jet develops two free streamlines, which initiate smoothly at the end points of the semi-infinitely long nozzles. In particular, there exists a smooth curve which separates the fluids which go to different places downstream. Moreover, under some suitable asymptotic assumptions of the nozzle, the asymptotic behaviors of the compressible subsonic impinging jet flows in the inlet and the downstream are obtained by means of a blow-up argument. On the other hand, the non-existence of compressible subsonic impinging jet flows with only one asymptotic direction is also established. This main result in this paper solves the open problem (4) in Chapter 16.3 proposed by uc(Friedman) in his famous survey (uc(Friedman) in Mathematics in industrial problems, II, I.M.A. volumes in mathematics and its applications, vol 24, Springer, New York, 1989).
A PDF closure model for compressible turbulent chemically reacting flows
NASA Technical Reports Server (NTRS)
Kollmann, W.
1992-01-01
The objective of the proposed research project was the analysis of single point closures based on probability density function (pdf) and characteristic functions and the development of a prediction method for the joint velocity-scalar pdf in turbulent reacting flows. Turbulent flows of boundary layer type and stagnation point flows with and without chemical reactions were be calculated as principal applications. Pdf methods for compressible reacting flows were developed and tested in comparison with available experimental data. The research work carried in this project was concentrated on the closure of pdf equations for incompressible and compressible turbulent flows with and without chemical reactions.
NASA Astrophysics Data System (ADS)
Esposti Ongaro, Tomaso; Cerminara, Matteo
2016-10-01
In the framework of the IAVCEI (International Association of Volcanology and Chemistry of the Earth Interior) initiative on volcanic plume models intercomparison, we discuss three-dimensional numerical simulations performed with the multiphase flow model PDAC (Pyroclastic Dispersal Analysis Code). The model describes the dynamics of volcanic and atmospheric gases (in absence of wind) and two pyroclastic phases by adopting a non-equilibrium Eulerian-Eulerian formulation. Accordingly, gas and particulate phases are treated as interpenetrating fluids, interacting with each other through momentum (drag) and heat exchange. Numerical results describe the time-wise and spatial evolution of weak (mass eruption rate: 1.5 × 106 kg/s) and strong (mass eruption rate: 1.5 × 109 kg/s) plumes. The two tested cases display a remarkably different phenomenology, associated with the different roles of atmospheric stratification, compressibility and mechanism of buoyancy reversal, reflecting in a different structure of the plume, of the turbulent eddies and of the atmospheric circulation. This also brings about different rates of turbulent mixing and atmospheric air entrainment. The adopted multiphase flow model allows to quantify temperature and velocity differences between the gas and particles, including settling, preferential concentration by turbulence and thermal non-equilibrium, as a function of their Stokes number, i.e., the ratio between their kinetic equilibrium time and the characteristic large-eddy turnover time of the turbulent plume. As a result, the spatial and temporal distribution of coarse ash in the atmosphere significantly differs from that of the fine ash, leading to a modification of the plume shape. Finally, three-dimensional numerical results have been averaged in time and across horizontal slices in order to obtain a one-dimensional picture of the plume in a stationary regime. For the weak plume, the results are consistent with one-dimensional models, at
Investigation of Compressibility Effect for Aeropropulsive Shear Flows
NASA Technical Reports Server (NTRS)
Balasubramanyam, M. S.; Chen, C. P.
2005-01-01
Rocket Based Combined Cycle (RBCC) engines operate within a wide range of Mach numbers and altitudes. Fundamental fluid dynamic mechanisms involve complex choking, mass entrainment, stream mixing and wall interactions. The Propulsion Research Center at the University of Alabama in Huntsville is involved in an on- going experimental and numerical modeling study of non-axisymmetric ejector-based combined cycle propulsion systems. This paper attempts to address the modeling issues related to mixing, shear layer/wall interaction in a supersonic Strutjet/ejector flow field. Reynolds Averaged Navier-Stokes (RANS) solutions incorporating turbulence models are sought and compared to experimental measurements to characterize detailed flow dynamics. The effect of compressibility on fluids mixing and wall interactions were investigated using an existing CFD methodology. The compressibility correction to conventional incompressible two- equation models is found to be necessary for the supersonic mixing aspect of the ejector flows based on 2-D simulation results. 3-D strut-base flows involving flow separations were also investigated.
Chattoraj, Sayantan; Sun, Changquan Calvin
2018-04-01
Continuous manufacturing of tablets has many advantages, including batch size flexibility, demand-adaptive scale up or scale down, consistent product quality, small operational foot print, and increased manufacturing efficiency. Simplicity makes direct compression the most suitable process for continuous tablet manufacturing. However, deficiencies in powder flow and compression of active pharmaceutical ingredients (APIs) limit the range of drug loading that can routinely be considered for direct compression. For the widespread adoption of continuous direct compression, effective API engineering strategies to address power flow and compression problems are needed. Appropriate implementation of these strategies would facilitate the design of high-quality robust drug products, as stipulated by the Quality-by-Design framework. Here, several crystal and particle engineering strategies for improving powder flow and compression properties are summarized. The focus is on the underlying materials science, which is the foundation for effective API engineering to enable successful continuous manufacturing by the direct compression process. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Self-assembly of silica microparticles in magnetic multiphase flows: Experiment and simulation
NASA Astrophysics Data System (ADS)
Li, Xiang; Niu, Xiao-Dong; Li, You; Chen, Mu-Feng
2018-04-01
Dynamic self-assembly, especially self-assembly under magnetic field, is vital not only for its marvelous phenomenon but also for its mechanisms. Revealing the underlying mechanisms is crucial for a deeper understanding of self-assembly. In this paper, several magnetic induced self-assembly experiments by using the mixed magnetic multiphase fluids comprised of silica microspheres were carried out. The relations of the strength of external magnetic field, the inverse magnetorheological effect, and the structures of self-assembled particles were investigated. In addition, a momentum-exchanged immersed boundary-based lattice Boltzmann method (MEIB-LBM) for modeling multi-physical coupling multiphase flows was employed to numerically study the magnetic induced self-assembly process in detail. The present work showed that the external magnetic field can be used to control the form of self-assembly of nonmagnetic microparticles in a chain-like structure, and the self-assembly process can be classified into four stages with magnetic hysteresis, magnetization of nonmagnetic microparticles, self-assembly in chain-like structures, and the stable chain state. The combination of experimental and numerical results could offer a method to control the self-assembled nonmagnetic microparticles, which can provide the technical and theoretical support for the design and fabrication of micro/nanomaterials.
Moving and adaptive grid methods for compressible flows
NASA Technical Reports Server (NTRS)
Trepanier, Jean-Yves; Camarero, Ricardo
1995-01-01
This paper describes adaptive grid methods developed specifically for compressible flow computations. The basic flow solver is a finite-volume implementation of Roe's flux difference splitting scheme or arbitrarily moving unstructured triangular meshes. The grid adaptation is performed according to geometric and flow requirements. Some results are included to illustrate the potential of the methodology.
Load Balancing Strategies for Multiphase Flows on Structured Grids
NASA Astrophysics Data System (ADS)
Olshefski, Kristopher; Owkes, Mark
2017-11-01
The computation time required to perform large simulations of complex systems is currently one of the leading bottlenecks of computational research. Parallelization allows multiple processing cores to perform calculations simultaneously and reduces computational times. However, load imbalances between processors waste computing resources as processors wait for others to complete imbalanced tasks. In multiphase flows, these imbalances arise due to the additional computational effort required at the gas-liquid interface. However, many current load balancing schemes are only designed for unstructured grid applications. The purpose of this research is to develop a load balancing strategy while maintaining the simplicity of a structured grid. Several approaches are investigated including brute force oversubscription, node oversubscription through Message Passing Interface (MPI) commands, and shared memory load balancing using OpenMP. Each of these strategies are tested with a simple one-dimensional model prior to implementation into the three-dimensional NGA code. Current results show load balancing will reduce computational time by at least 30%.
SUPG Finite Element Simulations of Compressible Flows
NASA Technical Reports Server (NTRS)
Kirk, Brnjamin, S.
2006-01-01
The Streamline-Upwind Petrov-Galerkin (SUPG) finite element simulations of compressible flows is presented. The topics include: 1) Introduction; 2) SUPG Galerkin Finite Element Methods; 3) Applications; and 4) Bibliography.
Videos and images from 25 years of teaching compressible flow
NASA Astrophysics Data System (ADS)
Settles, Gary
2008-11-01
Compressible flow is a very visual topic due to refractive optical flow visualization and the public fascination with high-speed flight. Films, video clips, and many images are available to convey this in the classroom. An overview of this material is given and selected examples are shown, drawn from educational films, the movies, television, etc., and accumulated over 25 years of teaching basic and advanced compressible-flow courses. The impact of copyright protection and the doctrine of fair use is also discussed.
Towards a new method for modeling multicomponent, multiphase flow and transport in porous media
NASA Astrophysics Data System (ADS)
Kong, X. Z.; Schaedle, P.; Leal, A. M. M.; Saar, M. O.
2016-12-01
The ability to computationally simulate multiphase-multicomponent fluid flow, coupled with geochemical reactions between fluid species and rock minerals, in porous and/or fractured subsurface systems is of major importance to a vast number of applications. These include (1) carbon dioxide storage in geologic formations, (2) geothermal energy extraction, (3) combinations of the latter two applications during CO2-Plume Geothermal energy extraction, (4) waste fluid and waste storage, as well as (5) groundwater and contaminant transport. Modeling these systems with such a wide variety of coupled physical and chemical processes is both challenging and computationally expensive. In this work we present a new approach to develop a simulator for multicomponent-multiphase flow and reactive transport in porous media by using state of the art numerical tools, namely FEniCS (fenicsproject.org) and Reaktoro (reaktoro.org). The governing partial differential equations for fluid flow and transport are solved using FEniCS, which enables fast and efficient implementation of computer codes for the simulation of complex physical phenomena using finite element methods on unstructured meshes. FEniCS supports a wide range of finite element schemes of special interest to porous media flow. In addition, FEniCS interfaces with many sparse linear solvers and provides convenient tools for adaptive mesh refinement and the capability of massively parallel calculations. A fundamental component of our contribution is the coupling of our FEniCS based flow and transport solver with our chemical reaction simulator, Reaktoro, which implements efficient, robust, and accurate methods for chemical equilibrium and kinetics calculations at every node of the mesh, at every time step. These numerical methods for reaction modeling have been especially developed for performance-critical applications such as reactive transport modeling. Furthermore, Reaktoro is also used for the calculation of thermodynamic
Accounting For Compressibility In Viscous Flow In Pipes
NASA Technical Reports Server (NTRS)
Steinle, Frank W.; Gee, Ken; Murthy, Sreedhara V.
1991-01-01
Method developed to account for effects of compressibility in viscous flows through long, circular pipes of uniform diameter. Based on approximation of variations in density and velocity across pipe cross section by profile equations developed for boundary-layer flow between flat plates.
The pressure-dilatation correlation in compressible flows
NASA Technical Reports Server (NTRS)
Sarkar, S.
1992-01-01
Simulations of simple compressible flows have been performed to enable the direct estimation of the pressure-dilatation correlation. The generally accepted belief that this correlation may be important in high-speed flows has been verified by the simulations. The pressure-dilatation correlation is theoretically investigated by considering the equation for fluctuating pressure in an arbitrary compressible flow. This leads to the isolation of a component of the pressure-dilatation that exhibits temporal oscillations on a fast time scale. Direct numerical simulations of homogeneous shear turbulence and isotropic turbulence show that this fast component has a negligible contribution to the evolution of turbulent kinetic energy. Then, an analysis for the case of homogeneous turbulence is performed to obtain a formal solution for the nonoscillatory pressure-dilatation. Simplifications lead to a model that algebraically relates the pressure-dilatation to quantities traditionally obtained in incompressible turbulence closures. The model is validated by direct comparison with the simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lei, Huan; Baker, Nathan A.; Wu, Lei
2016-08-05
Thermal fluctuations cause perturbations of fluid-fluid interfaces and highly nonlinear hydrodynamics in multiphase flows. In this work, we develop a novel multiphase smoothed dissipative particle dynamics model. This model accounts for both bulk hydrodynamics and interfacial fluctuations. Interfacial surface tension is modeled by imposing a pairwise force between SDPD particles. We show that the relationship between the model parameters and surface tension, previously derived under the assumption of zero thermal fluctuation, is accurate for fluid systems at low temperature but overestimates the surface tension for intermediate and large thermal fluctuations. To analyze the effect of thermal fluctuations on surface tension,more » we construct a coarse-grained Euler lattice model based on the mean field theory and derive a semi-analytical formula to directly relate the surface tension to model parameters for a wide range of temperatures and model resolutions. We demonstrate that the present method correctly models the dynamic processes, such as bubble coalescence and capillary spectra across the interface.« less
Multiphase flow simulations of a moving fluidized bed regenerator in a carbon capture unit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkar, Avik; Pan, Wenxiao; Suh, Dong-Myung
2014-10-01
To accelerate the commercialization and deployment of carbon capture technologies, computational fluid dynamics (CFD)-based tools may be used to model and analyze the performance of carbon capture devices. This work presents multiphase CFD-based flow simulations for the regeneration device responsible for extracting CO 2 from CO 2-loaded sorbent particles before the particles are recycled. The use of solid particle sorbents in this design is a departure from previously reported systems, where aqueous sorbents are employed. Another new feature is the inclusion of a series of perforated plates along the regenerator height. The influence of these plates on sorbent distribution ismore » examined for varying sorbent holdup, fluidizing gas velocity, and particle size. The residence time distribution of sorbents is also measured to classify the low regime as plug flow or well-mixed flow. The purpose of this work is to better understand the sorbent flow characteristics before reaction kinetics of CO 2 desorption can be implemented.« less
Vertical multiphase flow correlations for high production rates and large tubulars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aggour, M.A.; Al-Yousef, H.Y.; Al-Muraikhi, A.J.
1996-02-01
Numerous correlations exist for predicting pressure drop in vertical multiphase flow. These correlations, however, were all developed and tested under limited operating conditions that do not match the high production rates and large tubulars normally found in the Middle East fields. This paper presents a comprehensive evaluation of existing correlations and modifications of some correlations to determine and recommend the best correlation or correlations for various field conditions. More than 400 field data sets covering tubing sizes from 2 3/8 to 7 inches, oil rates up to 23,200 B/D, water cuts up to 95%, and gas/oil ratio (GOR) up tomore » 927 scf/STB were used in this study. Considering all data combined, the Beggs and Brill correlation provided the best pressure predictions. However, the Hagedorn and Brown correlation was better for water cuts above 80%, while the Hasan and Kabir model was better for total liquid rates above 20,000 B/D. The Aziz correlation was significantly improved when the Orkiszewski flow-pattern transition criteria were used.« less
Diffuse interface method for a compressible binary fluid.
Liu, Jiewei; Amberg, Gustav; Do-Quang, Minh
2016-01-01
Multicomponent, multiphase, compressible flows are very important in real life, as well as in scientific research, while their modeling is in an early stage. In this paper, we propose a diffuse interface model for compressible binary mixtures, based on the balance of mass, momentum, energy, and the second law of thermodynamics. We show both analytically and numerically that this model is able to describe the phase equilibrium for a real binary mixture (CO_{2} + ethanol is considered in this paper) very well by adjusting the parameter which measures the attraction force between molecules of the two components in the model. We also show that the calculated surface tension of the CO_{2} + ethanol mixture at different concentrations match measurements in the literature when the mixing capillary coefficient is taken to be the geometric mean of the capillary coefficient of each component. Three different cases of two droplets in a shear flow, with the same or different concentration, are simulated, showing that the higher concentration of CO_{2} the smaller the surface tension and the easier the drop deforms.
ITOUGH2(UNIX). Inverse Modeling for TOUGH2 Family of Multiphase Flow Simulators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finsterle, S.
1999-03-01
ITOUGH2 provides inverse modeling capabilities for the TOUGH2 family of numerical simulators for non-isothermal multiphase flows in fractured-porous media. The ITOUGH2 can be used for estimating parameters by automatic modeling calibration, for sensitivity analyses, and for uncertainity propagation analyses (linear and Monte Carlo simulations). Any input parameter to the TOUGH2 simulator can be estimated based on any type of observation for which a corresponding TOUGH2 output is calculated. ITOUGH2 solves a non-linear least-squares problem using direct or gradient-based minimization algorithms. A detailed residual and error analysis is performed, which includes the evaluation of model identification criteria. ITOUGH2 can also bemore » run in forward mode, solving subsurface flow problems related to nuclear waste isolation, oil, gas, and geothermal resevoir engineering, and vadose zone hydrology.« less
Dual domain material point method for multiphase flows
NASA Astrophysics Data System (ADS)
Zhang, Duan
2017-11-01
Although the particle-in-cell method was first invented in the 60's for fluid computations, one of its later versions, the material point method, is mostly used for solid calculations. Recent development of the multi-velocity formulations for multiphase flows and fluid-structure interactions requires the Lagrangian capability of the method be combined with Eulerian calculations for fluids. Because of different numerical representations of the materials, additional numerical schemes are needed to ensure continuity of the materials. New applications of the method to compute fluid motions have revealed numerical difficulties in various versions of the method. To resolve these difficulties, the dual domain material point method is introduced and improved. Unlike other particle based methods, the material point method uses both Lagrangian particles and Eulerian mesh, therefore it avoids direct communication between particles. With this unique property and the Lagrangian capability of the method, it is shown that a multiscale numerical scheme can be efficiently built based on the dual domain material point method. In this talk, the theoretical foundation of the method will be introduced. Numerical examples will be shown. Work sponsored by the next generation code project of LANL.
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. Dartevelle
2005-09-05
The objective of this manuscript is to fully derive a geophysical multiphase model able to ''accommodate'' different multiphase turbulence approaches; viz., the Reynolds Averaged Navier-Stokes (RANS), the Large Eddy Simulation (LES), or hybrid RANSLES. This manuscript is the first part of a larger geophysical multiphase project--lead by LANL--that aims to develop comprehensive modeling tools for large-scale, atmospheric, transient-buoyancy dusty jets and plume (e.g., plinian clouds, nuclear ''mushrooms'', ''supercell'' forest fire plumes) and for boundary-dominated geophysical multiphase gravity currents (e.g., dusty surges, diluted pyroclastic flows, dusty gravity currents in street canyons). LES is a partially deterministic approach constructed on either amore » spatial- or a temporal-separation between the large and small scales of the flow, whereas RANS is an entirely probabilistic approach constructed on a statistical separation between an ensemble-averaged mean and higher-order statistical moments (the so-called ''fluctuating parts''). Within this specific multiphase context, both turbulence approaches are built up upon the same phasic binary-valued ''function of presence''. This function of presence formally describes the occurrence--or not--of any phase at a given position and time and, therefore, allows to derive the same basic multiphase Navier-Stokes model for either the RANS or the LES frameworks. The only differences between these turbulence frameworks are the closures for the various ''turbulence'' terms involving the unknown variables from the fluctuating (RANS) or from the subgrid (LES) parts. Even though the hydrodynamic and thermodynamic models for RANS and LES have the same set of Partial Differential Equations, the physical interpretations of these PDEs cannot be the same, i.e., RANS models an averaged field, while LES simulates a filtered field. In this manuscript, we also demonstrate that this multiphase model fully fulfills the second law
Multidomain approach for calculating compressible flows
NASA Technical Reports Server (NTRS)
Cambier, L.; Chazzi, W.; Veuillot, J. P.; Viviand, H.
1982-01-01
A multidomain approach for calculating compressible flows by using unsteady or pseudo-unsteady methods is presented. This approach is based on a general technique of connecting together two domains in which hyperbolic systems (that may differ) are solved with the aid of compatibility relations associated with these systems. Some examples of this approach's application to calculating transonic flows in ideal fluids are shown, particularly the adjustment of shock waves. The approach is then applied to treating a shock/boundary layer interaction problem in a transonic channel.
Direct simulation of compressible turbulence in a shear flow
NASA Technical Reports Server (NTRS)
Sarkar, S.; Erlebacher, G.; Hussaini, M. Y.
1991-01-01
Compressibility effects on the turbulence in homogeneous shear flow are investigated. The growth of the turbulent kinetic energy was found to decrease with increasing Mach number: a phenomenon which is similar to the reduction of turbulent velocity intensities observed in experiments on supersonic free shear layers. An examination of the turbulent energy budget shows that both the compressible dissipation and the pressure-dilatation contribute to the decrease in the growth of kinetic energy. The pressure-dilatation is predominantly negative in homogeneous shear flow, in contrast to its predominantly positive behavior in isotropic turbulence. The different signs of the pressure-dilatation are explained by theoretical consideration of the equations for the pressure variance and density variance. Previously, the following results were obtained for isotropic turbulence: (1) the normalized compressible dissipation is of O(M(sub t)(exp 2)); and (2) there is approximate equipartition between the kinetic and potential energies associated with the fluctuating compressible mode. Both of these results were substantiated in the case of homogeneous shear. The dilatation field is significantly more skewed and intermittent than the vorticity field. Strong compressions seem to be more likely than strong expansions.
Planar temperature measurement in compressible flows using laser-induced iodine fluorescence
NASA Technical Reports Server (NTRS)
Hartfield, Roy J., Jr.; Hollo, Steven D.; Mcdaniel, James C.
1991-01-01
A laser-induced iodine fluorescence technique that is suitable for the planar measurement of temperature in cold nonreacting compressible air flows is investigated analytically and demonstrated in a known flow field. The technique is based on the temperature dependence of the broadband fluorescence from iodine excited by the 514-nm line of an argon-ion laser. Temperatures ranging from 165 to 245 K were measured in the calibration flow field. This technique makes complete, spatially resolved surveys of temperature practical in highly three-dimensional, low-temperature compressible flows.
Modeling Compressibility Effects in High-Speed Turbulent Flows
NASA Technical Reports Server (NTRS)
Sarkar, S.
2004-01-01
Man has strived to make objects fly faster, first from subsonic to supersonic and then to hypersonic speeds. Spacecraft and high-speed missiles routinely fly at hypersonic Mach numbers, M greater than 5. In defense applications, aircraft reach hypersonic speeds at high altitude and so may civilian aircraft in the future. Hypersonic flight, while presenting opportunities, has formidable challenges that have spurred vigorous research and development, mainly by NASA and the Air Force in the USA. Although NASP, the premier hypersonic concept of the eighties and early nineties, did not lead to flight demonstration, much basic research and technology development was possible. There is renewed interest in supersonic and hypersonic flight with the HyTech program of the Air Force and the Hyper-X program at NASA being examples of current thrusts in the field. At high-subsonic to supersonic speeds, fluid compressibility becomes increasingly important in the turbulent boundary layers and shear layers associated with the flow around aerospace vehicles. Changes in thermodynamic variables: density, temperature and pressure, interact strongly with the underlying vortical, turbulent flow. The ensuing changes to the flow may be qualitative such as shocks which have no incompressible counterpart, or quantitative such as the reduction of skin friction with Mach number, large heat transfer rates due to viscous heating, and the dramatic reduction of fuel/oxidant mixing at high convective Mach number. The peculiarities of compressible turbulence, so-called compressibility effects, have been reviewed by Fernholz and Finley. Predictions of aerodynamic performance in high-speed applications require accurate computational modeling of these "compressibility effects" on turbulence. During the course of the project we have made fundamental advances in modeling the pressure-strain correlation and developed a code to evaluate alternate turbulence models in the compressible shear layer.
Anisotropic flow and flow fluctuations for Au + Au at √sNN =200 GeV in a multiphase transport model
NASA Astrophysics Data System (ADS)
Ma, L.; Ma, G. L.; Ma, Y. G.
2014-04-01
Anisotropic flow coefficients and their fluctuations are investigated for Au + Au collisions at center-of-mass energy √sNN = 200 GeV by using a multiphase transport model with string melting scenario. Experimental results of azimuthal anisotropies by means of the two- and four-particle cumulants are generally well reproduced by the model including both parton cascade and hadronic rescatterings. Event-by-event treatments of the harmonic flow coefficients vn (for n =2, 3, and 4) are performed, in which event distributions of vn for different orders are consistent with Gaussian shapes over all centrality bins. Systematic studies on centrality, transverse momentum (pT), and pseudorapidity (η) dependencies of anisotropic flows and quantitative estimations of the flow fluctuations are presented. The pT and η dependencies of absolute fluctuations for both v2 and v3 follow trends similar to their flow coefficients. Relative fluctuation of triangular flow v3 is slightly centrality dependent, which is quite different from that of elliptic flow v2. It is observed that parton cascade has a large effect on the flow fluctuations, but hadronic scatterings make little contribution to the flow fluctuations, which indicates flow fluctuations are mainly modified during partonic evolution stage.
Calculation of external-internal flow fields for mixed-compression inlets
NASA Technical Reports Server (NTRS)
Chyu, W. J.; Kawamura, T.; Bencze, D. P.
1986-01-01
Supersonic inlet flows with mixed external-internal compressions were computed using a combined implicit-explicit (Beam-Warming-Steger/MacCormack) method for solving the three-dimensional unsteady, compressible Navier-Stokes equations in conservation form. Numerical calculations were made of various flows related to such inlet operations as the shock-wave intersections, subsonic spillage around the cowl lip, and inlet started versus unstarted conditions. Some of the computed results were compared with wind tunnel data.
Calculation of external-internal flow fields for mixed-compression inlets
NASA Technical Reports Server (NTRS)
Chyu, W. J.; Kawamura, T.; Bencze, D. P.
1987-01-01
Supersonic inlet flows with mixed external-internal compressions were computed using a combined implicit-explicit (Beam-Warming-Steger/MacCormack) method for solving the three-dimensional unsteady, compressible Navier-Stokes equations in conservation form. Numerical calculations were made of various flows related to such inlet operations as the shock-wave intersections, subsonic spillage around the cowl lip, and inlet started versus unstarted conditions. Some of the computed results were compared with wind tunnel data.
Some Effects of Compressibility on the Flow Through Fans and Turbines
NASA Technical Reports Server (NTRS)
Perl, W.; Epstein, H. T.
1946-01-01
The laws of conservation of mass, momentum, and energy are applied to the compressible flow through a two-dimensional cascade of airfoils. A fundamental relation between the ultimate upstream and downstream flow angles, the inlet Mach number, and the pressure ratio across the cascade is derived. Comparison with the corresponding relation for incompressible flow shows large differences. The fundamental relation reveals two ranges of flow angles and inlet Mach numbers, for which no ideal pressure ratio exists. One of these nonideal operating ranges is analogous to a similar type in incompressible flow. The other is characteristic only of compressible flow. The effect of variable axial-flow area is treated. Some implications of the basic conservation laws in the case of nonideal flow through cascades are discussed.
A simple mass-conserved level set method for simulation of multiphase flows
NASA Astrophysics Data System (ADS)
Yuan, H.-Z.; Shu, C.; Wang, Y.; Shu, S.
2018-04-01
In this paper, a modified level set method is proposed for simulation of multiphase flows with large density ratio and high Reynolds number. The present method simply introduces a source or sink term into the level set equation to compensate the mass loss or offset the mass increase. The source or sink term is derived analytically by applying the mass conservation principle with the level set equation and the continuity equation of flow field. Since only a source term is introduced, the application of the present method is as simple as the original level set method, but it can guarantee the overall mass conservation. To validate the present method, the vortex flow problem is first considered. The simulation results are compared with those from the original level set method, which demonstrates that the modified level set method has the capability of accurately capturing the interface and keeping the mass conservation. Then, the proposed method is further validated by simulating the Laplace law, the merging of two bubbles, a bubble rising with high density ratio, and Rayleigh-Taylor instability with high Reynolds number. Numerical results show that the mass is a well-conserved by the present method.
NASA Astrophysics Data System (ADS)
Jin, G.
2015-12-01
Subsurface storage of carbon dioxide in geological formations is widely regarded as a promising tool for reducing global atmospheric CO2 emissions. Successful geologic storage for sequestrated carbon dioxides must prove to be safe by means of risk assessments including post-injection analysis of injected CO2 plumes. Because fractured reservoirs exhibit a higher degree of heterogeneity, it is imperative to conduct such simulation studies in order to reliably predict the geometric evolution of plumes and risk assessment of post CO2injection. The research has addressed the pressure footprint of CO2 plumes through the development of new techniques which combine discrete fracture network and stochastic continuum modeling of multiphase flow in fractured geologic formations. A subsequent permeability tensor map in 3-D, derived from our preciously developed method, can accurately describe the heterogeneity of fracture reservoirs. A comprehensive workflow integrating the fracture permeability characterization and multiphase flow modeling has been developed to simulate the CO2plume migration and risk assessments. A simulated fractured reservoir model based on high-priority geological carbon sinks in central Alabama has been employed for preliminary study. Discrete fracture networks were generated with an NE-oriented regional fracture set and orthogonal NW-fractures. Fracture permeability characterization revealed high permeability heterogeneity with an order of magnitude of up to three. A multiphase flow model composed of supercritical CO2 and saline water was then applied to predict CO2 plume volume, geometry, pressure footprint, and containment during and post injection. Injection simulation reveals significant permeability anisotropy that favors development of northeast-elongate CO2 plumes, which are aligned with systematic fractures. The diffusive spreading front of the CO2 plume shows strong viscous fingering effects. Post-injection simulation indicates significant
NASA Astrophysics Data System (ADS)
Salinas, P.; Pavlidis, D.; Xie, Z.; Osman, H.; Pain, C. C.; Jackson, M. D.
2018-01-01
We present a new, high-order, control-volume-finite-element (CVFE) method for multiphase porous media flow with discontinuous 1st-order representation for pressure and discontinuous 2nd-order representation for velocity. The method has been implemented using unstructured tetrahedral meshes to discretize space. The method locally and globally conserves mass. However, unlike conventional CVFE formulations, the method presented here does not require the use of control volumes (CVs) that span the boundaries between domains with differing material properties. We demonstrate that the approach accurately preserves discontinuous saturation changes caused by permeability variations across such boundaries, allowing efficient simulation of flow in highly heterogeneous models. Moreover, accurate solutions are obtained at significantly lower computational cost than using conventional CVFE methods. We resolve a long-standing problem associated with the use of classical CVFE methods to model flow in highly heterogeneous porous media.
Analytical skin friction and heat transfer formula for compressible internal flows
NASA Technical Reports Server (NTRS)
Dechant, Lawrence J.; Tattar, Marc J.
1994-01-01
An analytic, closed-form friction formula for turbulent, internal, compressible, fully developed flow was derived by extending the incompressible law-of-the-wall relation to compressible cases. The model is capable of analyzing heat transfer as a function of constant surface temperatures and surface roughness as well as analyzing adiabatic conditions. The formula reduces to Prandtl's law of friction for adiabatic, smooth, axisymmetric flow. In addition, the formula reduces to the Colebrook equation for incompressible, adiabatic, axisymmetric flow with various roughnesses. Comparisons with available experiments show that the model averages roughly 12.5 percent error for adiabatic flow and 18.5 percent error for flow involving heat transfer.
A new numerical approach for compressible viscous flows
NASA Technical Reports Server (NTRS)
Wu, J. C.; Lekoudis, S. G.
1982-01-01
A numerical approach for computing unsteady compressible viscous flows was developed. This approach offers the capability of confining the region of computation to the viscous region of the flow. The viscous region is defined as the region where the vorticity is nonnegligible and the difference in dilatation between the potential flow and the real flow around the same geometry is also nonnegligible. The method was developed and tested. Also, an application of the procedure to the solution of the steady Navier-Stokes equations for incompressible internal flows is presented.
NASA Technical Reports Server (NTRS)
Orlin, W James; Lindner, Norman J; Butterly, Jack G
1947-01-01
The theory of the hydraulic analogy -- that is, the analogy between water flow with a free surface and two-dimensional compressible gas flow -- and the limitations and conditions of the analogy are discussed. A test was run using the hydraulic analogy as applied to the flow about circular cylinders of various diameters at subsonic velocities extending into the supercritical range. The apparatus and techniques used in this application are described and criticized. Reasonably satisfactory agreement of pressure distributions and flow fields existed between water and air flow about corresponding bodies. This agreement indicated the possibility of extending experimental compressibility research by new methods.
Turbulence modeling for compressible flows
NASA Technical Reports Server (NTRS)
Marvin, J. G.
1977-01-01
Material prepared for a course on Applications and Fundamentals of Turbulence given at the University of Tennessee Space Institute, January 10 and 11, 1977, is presented. A complete concept of turbulence modeling is described, and examples of progess for its use in computational aerodynimics are given. Modeling concepts, experiments, and computations using the concepts are reviewed in a manner that provides an up-to-date statement on the status of this problem for compressible flows.
Simulating immiscible multi-phase flow and wetting with 3D stochastic rotation dynamics (SRD)
NASA Astrophysics Data System (ADS)
Hiller, Thomas; Sanchez de La Lama, Marta; Herminghaus, Stephan; Brinkmann, Martin
2013-11-01
We use a variant of the mesoscopic particle method stochastic rotation dynamics (SRD) to simulate immiscible multi-phase flow on the pore and sub-pore scale in three dimensions. As an extension to the multi-color SRD method, first proposed by Inoue et al., we present an implementation that accounts for complex wettability on heterogeneous surfaces. In order to demonstrate the versatility of this algorithm, we consider immiscible two-phase flow through a model porous medium (disordered packing of spherical beads) where the substrate exhibits different spatial wetting patterns. We show that these patterns have a significant effect on the interface dynamics. Furthermore, the implementation of angular momentum conservation into the SRD algorithm allows us to extent the applicability of SRD also to micro-fluidic systems. It is now possible to study e.g. the internal flow behaviour of a droplet depending on the driving velocity of the surrounding bulk fluid or the splitting of droplets by an obstacle.
Multiphase fluid characterization system
Sinha, Dipen N.
2014-09-02
A measurement system and method for permitting multiple independent measurements of several physical parameters of multiphase fluids flowing through pipes are described. Multiple acoustic transducers are placed in acoustic communication with or attached to the outside surface of a section of existing spool (metal pipe), typically less than 3 feet in length, for noninvasive measurements. Sound speed, sound attenuation, fluid density, fluid flow, container wall resonance characteristics, and Doppler measurements for gas volume fraction may be measured simultaneously by the system. Temperature measurements are made using a temperature sensor for oil-cut correction.
Johnson, R.H.; Poeter, E.P.
2007-01-01
Perchloroethylene (PCE) saturations determined from GPR surveys were used as observations for inversion of multiphase flow simulations of a PCE injection experiment (Borden 9??m cell), allowing for the estimation of optimal bulk intrinsic permeability values. The resulting fit statistics and analysis of residuals (observed minus simulated PCE saturations) were used to improve the conceptual model. These improvements included adjustment of the elevation of a permeability contrast, use of the van Genuchten versus Brooks-Corey capillary pressure-saturation curve, and a weighting scheme to account for greater measurement error with larger saturation values. A limitation in determining PCE saturations through one-dimensional GPR modeling is non-uniqueness when multiple GPR parameters are unknown (i.e., permittivity, depth, and gain function). Site knowledge, fixing the gain function, and multiphase flow simulations assisted in evaluating non-unique conceptual models of PCE saturation, where depth and layering were reinterpreted to provide alternate conceptual models. Remaining bias in the residuals is attributed to the violation of assumptions in the one-dimensional GPR interpretation (which assumes flat, infinite, horizontal layering) resulting from multidimensional influences that were not included in the conceptual model. While the limitations and errors in using GPR data as observations for inverse multiphase flow simulations are frustrating and difficult to quantify, simulation results indicate that the error and bias in the PCE saturation values are small enough to still provide reasonable optimal permeability values. The effort to improve model fit and reduce residual bias decreases simulation error even for an inversion based on biased observations and provides insight into alternate GPR data interpretations. Thus, this effort is warranted and provides information on bias in the observation data when this bias is otherwise difficult to assess. ?? 2006 Elsevier B
Compression Shocks in Two-Dimensional Gas Flows
NASA Technical Reports Server (NTRS)
Busemann, A.
1949-01-01
The following are arguments on the compression shocks in gas flow start with a simplified representation of the results of the study made by Th. Meyer as published in the Forschungsheft 62 of the VDI, supplemented by several amplifications for the application.In the treatment of compression shocks, the equation of energy, the equation of continuity, the momentum equation, the equation of state of the particular gas, as well as the condition Of the second law of thermodynamics that no decrease of entropy is possible in an isolated system, must be taken into consideration. The result is that, in those cases where the sudden change of state according to the second law of thermodynamics is possible, there always occurs a compression of the gas which is uniquely determined by the other conditions.
Computational Flow Modeling of Hydrodynamics in Multiphase Trickle-Bed Reactors
NASA Astrophysics Data System (ADS)
Lopes, Rodrigo J. G.; Quinta-Ferreira, Rosa M.
2008-05-01
This study aims to incorporate most recent multiphase models in order to investigate the hydrodynamic behavior of a TBR in terms of pressure drop and liquid holdup. Taking into account transport phenomena such as mass and heat transfer, an Eulerian k-fluid model was developed resulting from the volume averaging of the continuity and momentum equations and solved for a 3D representation of the catalytic bed. Computational fluid dynamics (CFD) model predicts hydrodynamic parameters quite well if good closures for fluid/fluid and fluid/particle interactions are incorporated in the multiphase model. Moreover, catalytic performance is investigated with the catalytic wet oxidation of a phenolic pollutant.
NASA Astrophysics Data System (ADS)
Wright, Stuart F.; Zadrazil, Ivan; Markides, Christos N.
2017-09-01
Experimental techniques based on optical measurement principles have experienced significant growth in recent decades. They are able to provide detailed information with high-spatiotemporal resolution on important scalar (e.g., temperature, concentration, and phase) and vector (e.g., velocity) fields in single-phase or multiphase flows, as well as interfacial characteristics in the latter, which has been instrumental to step-changes in our fundamental understanding of these flows, and the development and validation of advanced models with ever-improving predictive accuracy and reliability. Relevant techniques rely upon well-established optical methods such as direct photography, laser-induced fluorescence, laser Doppler velocimetry/phase Doppler anemometry, particle image/tracking velocimetry, and variants thereof. The accuracy of the resulting data depends on numerous factors including, importantly, the refractive indices of the solids and liquids used. The best results are obtained when the observational materials have closely matched refractive indices, including test-section walls, liquid phases, and any suspended particles. This paper reviews solid-liquid and solid-liquid-liquid refractive-index-matched systems employed in different fields, e.g., multiphase flows, turbomachinery, bio-fluid flows, with an emphasis on liquid-liquid systems. The refractive indices of various aqueous and organic phases found in the literature span the range 1.330-1.620 and 1.251-1.637, respectively, allowing the identification of appropriate combinations to match selected transparent or translucent plastics/polymers, glasses, or custom materials in single-phase liquid or multiphase liquid-liquid flow systems. In addition, the refractive indices of fluids can be further tuned with the use of additives, which also allows for the matching of important flow similarity parameters such as density and viscosity.
A computer code for multiphase all-speed transient flows in complex geometries. MAST version 1.0
NASA Technical Reports Server (NTRS)
Chen, C. P.; Jiang, Y.; Kim, Y. M.; Shang, H. M.
1991-01-01
The operation of the MAST code, which computes transient solutions to the multiphase flow equations applicable to all-speed flows, is described. Two-phase flows are formulated based on the Eulerian-Lagrange scheme in which the continuous phase is described by the Navier-Stokes equation (or Reynolds equations for turbulent flows). Dispersed phase is formulated by a Lagrangian tracking scheme. The numerical solution algorithms utilized for fluid flows is a newly developed pressure-implicit algorithm based on the operator-splitting technique in generalized nonorthogonal coordinates. This operator split allows separate operation on each of the variable fields to handle pressure-velocity coupling. The obtained pressure correction equation has the hyperbolic nature and is effective for Mach numbers ranging from the incompressible limit to supersonic flow regimes. The present code adopts a nonstaggered grid arrangement; thus, the velocity components and other dependent variables are collocated at the same grid. A sequence of benchmark-quality problems, including incompressible, subsonic, transonic, supersonic, gas-droplet two-phase flows, as well as spray-combustion problems, were performed to demonstrate the robustness and accuracy of the present code.
Linear stability of compressible Taylor-Couette flow
NASA Technical Reports Server (NTRS)
Kao, Kai-Hsiung; Chow, Chuen-Yen
1992-01-01
A temporal stability analysis of compressible Taylor-Couette flow is presented. The viscous flow studied in this paper is contained between two concentric cylinders of infinite length, which are rotating with different angular velocities and are kept at different surface temperatures. The effects of differential rotation and temperature difference on the stability of Taylor-Couette flow are contrasted for a range of Mach numbers ranging from incompressible to Mach 3.0. The relative motion of the cylinders dramatically affects the characteristics of the Couette flow at the onset of instability. The flow is stabilized or destabilized depending upon the temperature ratio and speeds of the two cylinders. Independent of Mach number and temperature ratio, increasing Reynolds number generally promotes a destabilizing effect, indicating the inviscid nature of the Taylor-Couette flow.
multiUQ: An intrusive uncertainty quantification tool for gas-liquid multiphase flows
NASA Astrophysics Data System (ADS)
Turnquist, Brian; Owkes, Mark
2017-11-01
Uncertainty quantification (UQ) can improve our understanding of the sensitivity of gas-liquid multiphase flows to variability about inflow conditions and fluid properties, creating a valuable tool for engineers. While non-intrusive UQ methods (e.g., Monte Carlo) are simple and robust, the cost associated with these techniques can render them unrealistic. In contrast, intrusive UQ techniques modify the governing equations by replacing deterministic variables with stochastic variables, adding complexity, but making UQ cost effective. Our numerical framework, called multiUQ, introduces an intrusive UQ approach for gas-liquid flows, leveraging a polynomial chaos expansion of the stochastic variables: density, momentum, pressure, viscosity, and surface tension. The gas-liquid interface is captured using a conservative level set approach, including a modified reinitialization equation which is robust and quadrature free. A least-squares method is leveraged to compute the stochastic interface normal and curvature needed in the continuum surface force method for surface tension. The solver is tested by applying uncertainty to one or two variables and verifying results against the Monte Carlo approach. NSF Grant #1511325.
NASA Technical Reports Server (NTRS)
Orlin, W James; Lindner, Norman J; Bitterly, Jack G
1947-01-01
The theory of hydraulic analogy, that is, the analogy between water flow with a free surface and two-dimensional compressible gas flow and the limitations and conditions of the analogy are discussed. A test run was made using the hydraulic analogy as applied to the flow about circular cylinders at various diameters at subsonic velocities extending to the super critical range. The apparatus and techniques used in this application are described and criticized. Reasonably satisfactory agreement of pressure distributions and flow fields existed between water and airflow about corresponding bodies. This agreement indicated the possibility of extending experimental compressibility research by new methods.
The least-squares finite element method for low-mach-number compressible viscous flows
NASA Technical Reports Server (NTRS)
Yu, Sheng-Tao
1994-01-01
The present paper reports the development of the Least-Squares Finite Element Method (LSFEM) for simulating compressible viscous flows at low Mach numbers in which the incompressible flows pose as an extreme. Conventional approach requires special treatments for low-speed flows calculations: finite difference and finite volume methods are based on the use of the staggered grid or the preconditioning technique; and, finite element methods rely on the mixed method and the operator-splitting method. In this paper, however, we show that such difficulty does not exist for the LSFEM and no special treatment is needed. The LSFEM always leads to a symmetric, positive-definite matrix through which the compressible flow equations can be effectively solved. Two numerical examples are included to demonstrate the method: first, driven cavity flows at various Reynolds numbers; and, buoyancy-driven flows with significant density variation. Both examples are calculated by using full compressible flow equations.
Thermodynamical effects and high resolution methods for compressible fluid flows
NASA Astrophysics Data System (ADS)
Li, Jiequan; Wang, Yue
2017-08-01
One of the fundamental differences of compressible fluid flows from incompressible fluid flows is the involvement of thermodynamics. This difference should be manifested in the design of numerical schemes. Unfortunately, the role of entropy, expressing irreversibility, is often neglected even though the entropy inequality, as a conceptual derivative, is verified for some first order schemes. In this paper, we refine the GRP solver to illustrate how the thermodynamical variation is integrated into the design of high resolution methods for compressible fluid flows and demonstrate numerically the importance of thermodynamic effects in the resolution of strong waves. As a by-product, we show that the GRP solver works for generic equations of state, and is independent of technical arguments.
Theoretical analysis of multiphase flow during oil-well drilling by a conservative model
NASA Astrophysics Data System (ADS)
Nicolas-Lopez, Ruben
2005-11-01
In order to decrease cost and improve drilling operations is necessary a better understood of the flow mechanisms. Therefore, it was carried out a multiphase conservative model that includes three mass equations and a momentum equation. Also, the measured geothermal gradient is utilized by state equations for estimating physical properties of the phases flowing. The mathematical model is solved by numerical conservative schemes. It is used to analyze the interaction among solid-liquid-gas phases. The circulating system consists as follow, the circulating fluid is pumped downward into the drilling pipe until the bottom of the open hole then it flows through the drill bit, and at this point formation cuttings are incorporated to the circulating fluid and carried upward to the surface. The mixture returns up to the surface by an annular flow area. The real operational conditions are fed to conservative model and the results are matched up to field measurements in several oil wells. Mainly, flow rates, drilling rate, well and tool geometries are data to estimate the profiles of pressure, mixture density, equivalent circulating density, gas fraction and solid carrying capacity. Even though the problem is very complex, the model describes, properly, the hydrodynamics of drilling techniques applied at oil fields. *Authors want to thank to Instituto Mexicano del Petroleo and Petroleos Mexicanos for supporting this research.
NASA Astrophysics Data System (ADS)
Rice, Amy K.; McCray, John E.; Singha, Kamini
2018-04-01
Methane leakage due to compromised hydrocarbon well integrity can lead to impaired groundwater quality. Here we use a three-dimensional, multiphase (vapor and aqueous), multicomponent (methane, water, salt), numerical model (TOUGH2 EOS7C) to investigate hydrogeological conditions that could result in groundwater contamination from natural gas wellbore leakage that migrates upward toward a freshwater aquifer. The conceptual model used for the simulations assumes methane leakage at 20-30 m below groundwater. We perform 180 simulations for a sensitivity analysis, examining (1) multiphase flow parameters related to storage, capillarity, and relative permeability, including porosity (ϕ), initial fluid-phase saturation (SL), and van Genuchten n and α, (2) geostatistical variations in intrinsic permeability (ki), and (3) methane source-zone pressure. Simulated mean ki values are 10-18 and 10-13 m2 with variances of 1 and 5 m4. Simulated source-zone pressures range from just over ambient hydrostatic pressure at the depth of leakage (100 kPa) to the maximum pressure that steel casings are commonly rated to withstand (20,340 kPa). ki, initial SL, ϕ, and van Genuchten's n and α were the most important parameters in determining the volume of methane reaching groundwater during a given time period. Multiphase parameterization of formations underlying freshwater aquifers and overlying hydrocarbon production zones is fundamental to assessing aquifer vulnerability to methane leakage.
Asahi, Kouichi; Hori, M; Hamasaki, N; Sato, S; Nakanishi, H; Kuwatsuru, R; Sasai, K; Aoki, S
2012-01-01
It is difficult to non-invasively visualize changes in regional cerebral blood flow caused by manual compression of the carotid artery. To visualize dynamic changes in regional cerebral blood flow during and after manual compression of the carotid artery. Two healthy volunteers were recruited. Anatomic features and flow directions in the circle of Willis were evaluated with time-of-flight magnetic resonance angiography (MRA) and two-dimensional phase-contrast (2DPC) MRA, respectively. Regional cerebral blood flow was visualized with territorial arterial spin-labeling magnetic resonance imaging (TASL-MRI). TASL-MRI and 2DPC-MRA were performed in three states: at rest, during manual compression of the right carotid artery, and after decompression. In one volunteer, time-space labeling inversion pulse (Time-SLIP) MRA was performed to confirm collateral flow. During manual carotid compression, in one volunteer, the right thalamus changed to be fed only by the vertebrobasilar system, and the right basal ganglia changed to be fed by the left internal carotid artery. In the other volunteer, the right basal ganglia changed to be fed by the vertebrobasilar system. 2DPC-MRA showed that the flow direction changed in the right A1 segment of the anterior cerebral artery and the right posterior communicating artery. Perfusion patterns and flow directions recovered after decompression. Time-SLIP MRA showed pial vessels and dural collateral circulation when the right carotid artery was manually compressed. Use of TASL-MRI and 2DPC-MRA was successful for non-invasive visualization of the dynamic changes in regional cerebral blood flow during and after manual carotid compression.
A priori evaluation of the Pantano and Sarkar model in compressible homogeneous shear flows
NASA Astrophysics Data System (ADS)
Khlifi, Hechmi; Abdallah, J.; Aïcha, H.; Taïeb, L.
2011-01-01
In this study, a Reynolds stress closure, including the Pantano and Sarkar model of the mean part of the pressure-strain correlation is used for the computation of compressible homogeneous at high-speed shear flow. Several studies concerning the compressible homogeneous shear flow show that the changes of the turbulence structures are principally due to the structural compressibility effects which significantly affect the pressure field and then the pressure-strain correlation. Eventually, this term appears as the main term responsible for the changes in the magnitude of the Reynolds stress anisotropies. The structure of the gradient Mach number is similar to that of turbulence, therefore this parameter may be appropriate to study the changes in turbulence structures that arise from structural compressibility effects. Thus, the incompressible model of the pressure strain correlation and its corrected form by using the turbulent Mach turbulent only, fail to correctly evaluate the compressibility effects at high shear flow. An extension of the widely used incompressible Launder, Reece and Rodi model on compressible homogeneous shear flow is the major aim of the present work. From this extension, the standard coefficients C become a function of the extra compressibility parameters (the turbulent Mach number M and the gradient Mach number M) through the Pantano and Sarkar model. Application of the model on compressible homogeneous shear flow by considering various initial conditions shows reasonable agreement with the DNS results of Simone et al. and Sarkar. The observed trend of the dramatic increase in the normal Reynolds stress anisotropies, the significant decrease in the Reynolds shear stress anisotropy and the increase of the turbulent kinetic energy amplification rate with increasing the gradient Mach number are well predicted by the model. The ability of the model to predict the equilibrium states for the flow in cases A to A from DNS results of Sarkar is
A numerical study of axisymmetric compressible non-isothermal and reactive swirling flow
NASA Astrophysics Data System (ADS)
Tavernetti, William E.; Hafez, Mohamed M.
2017-09-01
Non-linear dynamical phenomena in combustion processes is an active area of experimental and theoretical research. This is in large part due to increasingly strict environmental pressures to make gas turbine engines and industrial burners more efficient. Using numerical methods, for steady and unsteady confined and unconfined compressible flow, this study examines the modeling influence of compressibility for axisymmetric swirling flow. The compressible reactive Navier-Stokes equations in terms of stream function, vorticity, circulation are used. Results, details of the numerical algorithms, as well as numerical verification techniques and validation with sources from the literature will be presented. Understanding how vortex breakdown phenomena are affected by modeling reactant consumption with compressibility effect is the main goal of this study.
Energetics of the multi-phase fluid flow in a narrow kerf in laser cutting conditions
NASA Astrophysics Data System (ADS)
Golyshev, A. A.; Orishich, A. M.; Shulyatyev, V. B.
2016-10-01
The energy balance of the multi-phase medium flow is studied experimentally under the laser cutting. Experimental data are generalized due to the condition of minimal roughness of the created surface used as a quality criterion of the melt flow, and also due to the application of dimensionless parameters: Peclet number and dimensionless absorbed laser power. For the first time ever it is found that, regardless the assistant gas (oxygen or nitrogen), laser type (the fiber one with the wavelength of 1.07 µm or CO2-laser with the wavelength of 10.6 µm), the minimal roughness is provided at a certain energy input in a melt unit, about 26 J/mm3. With oxygen, 50% of this input is provided by the radiation, the other 50% - by the exothermic reaction of iron oxidation.
NASA Astrophysics Data System (ADS)
Melka, Bartlomiej; Gracka, Maria; Adamczyk, Wojciech; Rojczyk, Marek; Golda, Adam; Nowak, Andrzej J.; Białecki, Ryszard A.; Ostrowski, Ziemowit
2017-08-01
In the research, a numerical Computational Fluid Dynamics (CFD) model of the pulsatile blood flow was created and analysed. A real geometry of aorta and its thoracic branches of an 8-year old patient diagnosed with a congenital heart defect - coarctation of the aorta was used. The inlet boundary condition was implemented as the User Define Function according to measured values of volumetric blood flow. The blood flow was treated as multiphase using Euler-Euler approach. Plasma was set as the primary and dominant fluid phase, with the volume fraction of 0.585. The morphological elements (RBC and WBC) were set as dispersed phases being the remaining volume fraction.
Solution of weakly compressible isothermal flow in landfill gas collection networks
NASA Astrophysics Data System (ADS)
Nec, Y.; Huculak, G.
2017-12-01
Pipe networks collecting gas in sanitary landfills operate under the regime of a weakly compressible isothermal flow of ideal gas. The effect of compressibility has been traditionally neglected in this application in favour of simplicity, thereby creating a conceptual incongruity between the flow equations and thermodynamic equation of state. Here the flow is solved by generalisation of the classic Darcy-Weisbach equation for an incompressible steady flow in a pipe to an ordinary differential equation, permitting continuous variation of density, viscosity and related fluid parameters, as well as head loss or gain due to gravity, in isothermal flow. The differential equation is solved analytically in the case of ideal gas for a single edge in the network. Thereafter the solution is used in an algorithm developed to construct the flow equations automatically for a network characterised by an incidence matrix, and determine pressure distribution, flow rates and all associated parameters therein.
Parallel multiphase microflows: fundamental physics, stabilization methods and applications.
Aota, Arata; Mawatari, Kazuma; Kitamori, Takehiko
2009-09-07
Parallel multiphase microflows, which can integrate unit operations in a microchip under continuous flow conditions, are discussed. Fundamental physics, stabilization methods and some applications are shown.
Lycett-Brown, Daniel; Luo, Kai H
2016-11-01
A recently developed forcing scheme has allowed the pseudopotential multiphase lattice Boltzmann method to correctly reproduce coexistence curves, while expanding its range to lower surface tensions and arbitrarily high density ratios [Lycett-Brown and Luo, Phys. Rev. E 91, 023305 (2015)PLEEE81539-375510.1103/PhysRevE.91.023305]. Here, a third-order Chapman-Enskog analysis is used to extend this result from the single-relaxation-time collision operator, to a multiple-relaxation-time cascaded collision operator, whose additional relaxation rates allow a significant increase in stability. Numerical results confirm that the proposed scheme enables almost independent control of density ratio, surface tension, interface width, viscosity, and the additional relaxation rates of the cascaded collision operator. This allows simulation of large density ratio flows at simultaneously high Reynolds and Weber numbers, which is demonstrated through binary collisions of water droplets in air (with density ratio up to 1000, Reynolds number 6200 and Weber number 440). This model represents a significant improvement in multiphase flow simulation by the pseudopotential lattice Boltzmann method in which real-world parameters are finally achievable.
On compressible and piezo-viscous flow in thin porous media.
Pérez-Ràfols, F; Wall, P; Almqvist, A
2018-01-01
In this paper, we study flow through thin porous media as in, e.g. seals or fractures. It is often useful to know the permeability of such systems. In the context of incompressible and iso-viscous fluids, the permeability is the constant of proportionality relating the total flow through the media to the pressure drop. In this work, we show that it is also relevant to define a constant permeability when compressible and/or piezo-viscous fluids are considered. More precisely, we show that the corresponding nonlinear equation describing the flow of any compressible and piezo-viscous fluid can be transformed into a single linear equation. Indeed, this linear equation is the same as the one describing the flow of an incompressible and iso-viscous fluid. By this transformation, the total flow can be expressed as the product of the permeability and a nonlinear function of pressure, which represents a generalized pressure drop.
On the implicit density based OpenFOAM solver for turbulent compressible flows
NASA Astrophysics Data System (ADS)
Fürst, Jiří
The contribution deals with the development of coupled implicit density based solver for compressible flows in the framework of open source package OpenFOAM. However the standard distribution of OpenFOAM contains several ready-made segregated solvers for compressible flows, the performance of those solvers is rather week in the case of transonic flows. Therefore we extend the work of Shen [15] and we develop an implicit semi-coupled solver. The main flow field variables are updated using lower-upper symmetric Gauss-Seidel method (LU-SGS) whereas the turbulence model variables are updated using implicit Euler method.
NASA Technical Reports Server (NTRS)
Bandyopadhyay, Alak; Majumdar, Alok
2007-01-01
The present paper describes the verification and validation of a quasi one-dimensional pressure based finite volume algorithm, implemented in Generalized Fluid System Simulation Program (GFSSP), for predicting compressible flow with friction, heat transfer and area change. The numerical predictions were compared with two classical solutions of compressible flow, i.e. Fanno and Rayleigh flow. Fanno flow provides an analytical solution of compressible flow in a long slender pipe where incoming subsonic flow can be choked due to friction. On the other hand, Raleigh flow provides analytical solution of frictionless compressible flow with heat transfer where incoming subsonic flow can be choked at the outlet boundary with heat addition to the control volume. Nonuniform grid distribution improves the accuracy of numerical prediction. A benchmark numerical solution of compressible flow in a converging-diverging nozzle with friction and heat transfer has been developed to verify GFSSP's numerical predictions. The numerical predictions compare favorably in all cases.
Device and method for measuring multi-phase fluid flow in a conduit having an abrupt gradual bend
Ortiz, M.G.
1998-02-10
A system is described for measuring fluid flow in a conduit having an abrupt bend. The system includes pressure transducers, one disposed in the conduit at the inside of the bend and one or more disposed in the conduit at the outside of the bend but spaced a distance therefrom. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.
Device and method for measuring multi-phase fluid flow in a conduit having an abrupt gradual bend
Ortiz, Marcos German
1998-01-01
A system for measuring fluid flow in a conduit having an abrupt bend. The system includes pressure transducers, one disposed in the conduit at the inside of the bend and one or more disposed in the conduit at the outside of the bend but spaced a distance therefrom. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.
Study of high viscous multiphase phase flow in a horizontal pipe
NASA Astrophysics Data System (ADS)
Baba, Yahaya D.; Aliyu, Aliyu M.; Archibong, Archibong-Eso; Almabrok, Almabrok A.; Igbafe, A. I.
2018-03-01
Heavy oil accounts for a major portion of the world's total oil reserves. Its production and transportation through pipelines is beset with great challenges due to its highly viscous nature. This paper studies the effects of high viscosity on heavy oil two-phase flow characteristics such as pressure gradient, liquid holdup, slug liquid holdup, slug frequency and slug liquid holdup using an advanced instrumentation (i.e. Electrical Capacitance Tomography). Experiments were conducted in a horizontal flow loop with a pipe internal diameter (ID) of 0.0762 m; larger than most reported in the open literature for heavy oil flow. Mineral oil of 1.0-5.0 Pa.s viscosity range and compressed air were used as the liquid and gas phases respectively. Pressure gradient (measured by means differential pressure transducers) and mean liquid holdup was observed to increase as viscosity of oil is increased. Obtained results also revealed that increase in liquid viscosity has significant effects on flow pattern and slug flow features.
NASA Astrophysics Data System (ADS)
Chatterjee, Saikat; Li, Donghui; Chattopadhyay, Kinnor
2018-04-01
Multiphase flows are frequently encountered in metallurgical operations. One of the most effective ways to understand these processes is by flow modeling. The process of tundish open eye (TOE) formation involves three-phase interaction between liquid steel, slag, and argon gas. The two-phase interaction involving argon gas bubbles and liquid steel can be modeled relatively easily using the discrete phase modeling technique. However, the effect of an upper slag layer cannot be captured using this approach. The presence of an upper buoyant phase can have a major effect on the behavior of TOEs. Hence, a multiphase model, including three phases, viz. liquid steel, slag, and argon gas, in a two-strand slab caster tundish, was developed to study the formation and evolution of TOEs. The volume of fluid model was used to track the interphase between liquid steel and slag phases, while the discrete phase model was used to trace the movement of the argon gas bubbles in liquid steel. The variation in the TOE areas with different amounts of aspirated argon gas was examined in the presence of an overlying slag phase. The mathematical model predictions were compared against steel plant measurements.
Three-dimensional lattice Boltzmann model for compressible flows.
Sun, Chenghai; Hsu, Andrew T
2003-07-01
A three-dimensional compressible lattice Boltzmann model is formulated on a cubic lattice. A very large particle-velocity set is incorporated in order to enable a greater variation in the mean velocity. Meanwhile, the support set of the equilibrium distribution has only six directions. Therefore, this model can efficiently handle flows over a wide range of Mach numbers and capture shock waves. Due to the simple form of the equilibrium distribution, the fourth-order velocity tensors are not involved in the formulation. Unlike the standard lattice Boltzmann model, no special treatment is required for the homogeneity of fourth-order velocity tensors on square lattices. The Navier-Stokes equations were recovered, using the Chapman-Enskog method from the Bhatnagar-Gross-Krook (BGK) lattice Boltzmann equation. The second-order discretization error of the fluctuation velocity in the macroscopic conservation equation was eliminated by means of a modified collision invariant. The model is suitable for both viscous and inviscid compressible flows with or without shocks. Since the present scheme deals only with the equilibrium distribution that depends only on fluid density, velocity, and internal energy, boundary conditions on curved wall are easily implemented by an extrapolation of macroscopic variables. To verify the scheme for inviscid flows, we have successfully simulated a three-dimensional shock-wave propagation in a box and a normal shock of Mach number 10 over a wedge. As an application to viscous flows, we have simulated a flat plate boundary layer flow, flow over a cylinder, and a transonic flow over a NACA0012 airfoil cascade.
Study on stress-strain response of multi-phase TRIP steel under cyclic loading
NASA Astrophysics Data System (ADS)
Dan, W. J.; Hu, Z. G.; Zhang, W. G.; Li, S. H.; Lin, Z. Q.
2013-12-01
The stress-strain response of multi-phase TRIP590 sheet steel is studied in cyclic loading condition at room temperature based on a cyclic phase transformation model and a multi-phase mixed kinematic hardening model. The cyclic martensite transformation model is proposed based on the shear-band intersection, where the repeat number, strain amplitude and cyclic frequency are used to control the phase transformation process. The multi-phase mixed kinematic hardening model is developed based on the non-linear kinematic hardening rule of per-phase. The parameters of transformation model are identified with the relationship between the austenite volume fraction and the repeat number. The parameters in Kinematic hardening model are confirmed by the experimental hysteresis loops in different strain amplitude conditions. The responses of hysteresis loop and stress amplitude are evaluated by tension-compression data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Modest, Michael
The effects of radiation in particle-laden flows were the object of the present research. The presence of particles increases optical thickness substantially, making the use of the “optically thin” approximation in most cases a very poor assumption. However, since radiation fluxes peak at intermediate optical thicknesses, overall radiative effects may not necessarily be stronger than in gas combustion. Also, the spectral behavior of particle radiation properties is much more benign, making spectral models simpler (and making the assumption of a gray radiator halfway acceptable, at least for fluidized beds when gas radiation is not large). On the other hand, particlesmore » scatter radiation, making the radiative transfer equation (RTE) much more di fficult to solve. The research carried out in this project encompassed three general areas: (i) assessment of relevant radiation properties of particle clouds encountered in fluidized bed and pulverized coal combustors, (ii) development of proper spectral models for gas–particulate mixtures for various types of two-phase combustion flows, and (iii) development of a Radiative Transfer Equation (RTE) solution module for such applications. The resulting models were validated against artificial cases since open literature experimental data were not available. The final models are in modular form tailored toward maximum portability, and were incorporated into two research codes: (i) the open-source CFD code OpenFOAM, which we have extensively used in our previous work, and (ii) the open-source multi-phase flow code MFIX, which is maintained by NETL.« less
Direct simulation of compressible turbulence in a shear flow
NASA Technical Reports Server (NTRS)
Sarkar, S.; Erlebacher, G.; Hussaini, M. Y.
1991-01-01
The purpose of this study is to investigate compressibility effects on the turbulence in homogeneous shear flow. It is found that the growth of the turbulent kinetic energy decreases with increasing Mach number, a phenomenon similar to the reduction of turbulent velocity intensities observed in experiments on supersonic free shear layers. An examination of the turbulent energy budget shows that both the compressible dissipation and the pressure-dilatation contribute to the decrease in the growth of kinetic energy. The pressure-dilatation is predominantly negative in homogeneous shear flow, in contrast to its predominantly positive behavior in isotropic turbulence. The different signs of the pressure-dilatation are explained by theoretical consideration of the equations for the pressure variance and density variance.
Evaluation of Subgrid-Scale Models for Large Eddy Simulation of Compressible Flows
NASA Technical Reports Server (NTRS)
Blaisdell, Gregory A.
1996-01-01
The objective of this project was to evaluate and develop subgrid-scale (SGS) turbulence models for large eddy simulations (LES) of compressible flows. During the first phase of the project results from LES using the dynamic SGS model were compared to those of direct numerical simulations (DNS) of compressible homogeneous turbulence. The second phase of the project involved implementing the dynamic SGS model in a NASA code for simulating supersonic flow over a flat-plate. The model has been successfully coded and a series of simulations has been completed. One of the major findings of the work is that numerical errors associated with the finite differencing scheme used in the code can overwhelm the SGS model and adversely affect the LES results. Attached to this overview are three submitted papers: 'Evaluation of the Dynamic Model for Simulations of Compressible Decaying Isotropic Turbulence'; 'The effect of the formulation of nonlinear terms on aliasing errors in spectral methods'; and 'Large-Eddy Simulation of a Spatially Evolving Compressible Boundary Layer Flow'.
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Alej, M., E-mail: m.elalej@cranfield.ac.uk; Mba, D., E-mail: m.elalej@cranfield.ac.uk; Yeung, H., E-mail: m.elalej@cranfield.ac.uk
2014-04-11
The monitoring of multiphase flow is an established process that has spanned several decades. This paper demonstrates the use of acoustic emission (AE) technology to investigate sand transport characteristic in three-phase (air-water-sand) flow in a horizontal pipe where the superficial gas velocity (VSG) had a range of between 0.2 ms{sup −1} to 2.0 ms{sup −1} and superficial liquid velocity (VSL) had a range of between 0.2 ms{sup −1} to 1.0 ms{sup −1}. The experimental findings clearly show a correlation exists between AE energy levels, sand concentration, superficial gas velocity (VSG) and superficial liquid velocity (VSL)
An incompressible two-dimensional multiphase particle-in-cell model for dense particle flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snider, D.M.; O`Rourke, P.J.; Andrews, M.J.
1997-06-01
A two-dimensional, incompressible, multiphase particle-in-cell (MP-PIC) method is presented for dense particle flows. The numerical technique solves the governing equations of the fluid phase using a continuum model and those of the particle phase using a Lagrangian model. Difficulties associated with calculating interparticle interactions for dense particle flows with volume fractions above 5% have been eliminated by mapping particle properties to a Eulerian grid and then mapping back computed stress tensors to particle positions. This approach utilizes the best of Eulerian/Eulerian continuum models and Eulerian/Lagrangian discrete models. The solution scheme allows for distributions of types, sizes, and density of particles,more » with no numerical diffusion from the Lagrangian particle calculations. The computational method is implicit with respect to pressure, velocity, and volume fraction in the continuum solution thus avoiding courant limits on computational time advancement. MP-PIC simulations are compared with one-dimensional problems that have analytical solutions and with two-dimensional problems for which there are experimental data.« less
A semi-implicit level set method for multiphase flows and fluid-structure interaction problems
NASA Astrophysics Data System (ADS)
Cottet, Georges-Henri; Maitre, Emmanuel
2016-06-01
In this paper we present a novel semi-implicit time-discretization of the level set method introduced in [8] for fluid-structure interaction problems. The idea stems from a linear stability analysis derived on a simplified one-dimensional problem. The semi-implicit scheme relies on a simple filter operating as a pre-processing on the level set function. It applies to multiphase flows driven by surface tension as well as to fluid-structure interaction problems. The semi-implicit scheme avoids the stability constraints that explicit scheme need to satisfy and reduces significantly the computational cost. It is validated through comparisons with the original explicit scheme and refinement studies on two-dimensional benchmarks.
2D Slightly Compressible Ideal Flow in an Exterior Domain
NASA Astrophysics Data System (ADS)
Secchi, Paolo
2006-12-01
We consider the Euler equations of barotropic inviscid compressible fluids in the exterior domain. It is well known that, as the Mach number goes to zero, the compressible flows approximate the solution of the equations of motion of inviscid, incompressible fluids. In dimension 2 such limit solution exists on any arbitrary time interval, with no restriction on the size of the initial data. It is then natural to expect the same for the compressible solution, if the Mach number is sufficiently small. First we study the life span of smooth irrotational solutions, i.e. the largest time interval T(ɛ) of existence of classical solutions, when the initial data are a small perturbation of size ɛ from a constant state. Then, we study the nonlinear interaction between the irrotational part and the incompressible part of a general solution. This analysis yields the existence of smooth compressible flow on any arbitrary time interval and with no restriction on the size of the initial velocity, for any Mach number sufficiently small. Finally, the approach is applied to the study of the incompressible limit. For the proofs we use a combination of energy estimates and a decay estimate for the irrotational part.
Shao, J Y; Shu, C; Huang, H B; Chew, Y T
2014-03-01
A free-energy-based phase-field lattice Boltzmann method is proposed in this work to simulate multiphase flows with density contrast. The present method is to improve the Zheng-Shu-Chew (ZSC) model [Zheng, Shu, and Chew, J. Comput. Phys. 218, 353 (2006)] for correct consideration of density contrast in the momentum equation. The original ZSC model uses the particle distribution function in the lattice Boltzmann equation (LBE) for the mean density and momentum, which cannot properly consider the effect of local density variation in the momentum equation. To correctly consider it, the particle distribution function in the LBE must be for the local density and momentum. However, when the LBE of such distribution function is solved, it will encounter a severe numerical instability. To overcome this difficulty, a transformation, which is similar to the one used in the Lee-Lin (LL) model [Lee and Lin, J. Comput. Phys. 206, 16 (2005)] is introduced in this work to change the particle distribution function for the local density and momentum into that for the mean density and momentum. As a result, the present model still uses the particle distribution function for the mean density and momentum, and in the meantime, considers the effect of local density variation in the LBE as a forcing term. Numerical examples demonstrate that both the present model and the LL model can correctly simulate multiphase flows with density contrast, and the present model has an obvious improvement over the ZSC model in terms of solution accuracy. In terms of computational time, the present model is less efficient than the ZSC model, but is much more efficient than the LL model.
Multiphase flow of carbon dioxide and brine in dual porosity carbonates
NASA Astrophysics Data System (ADS)
Pentland, Christopher; Oedai, Sjaam; Ott, Holger
2014-05-01
The storage of carbon dioxide in subsurface formations presents a challenge in terms of multiphase flow characterisation. Project planning requires an understanding of multiphase flow characteristics such as the relationship between relative permeability and saturation. At present there are only a limited number of relative permeability relations for carbon dioxide-brine fluid systems, most of which are measured on sandstone rocks. In this study coreflood experiments are performed to investigate the relative permeability of carbon dioxide and brine in two dual porosity carbonate systems. Carbon dioxide is injected into the brine saturated rocks in a primary drainage process. The rock fluid system is pre-equilibrated to avoid chemical reactions and physical mass transfer between phases. The pressure drop across the samples, the amount of brine displaced and the saturation distribution within the rocks are measured. The experiments are repeated on the same rocks for the decane-brine fluid system. The experimental data is interpreted by simulating the experiments with a continuum scale Darcy solver. Selected functional representations of relative permeability are investigated, the parameters of which are chosen such that a least squares objective function is minimised (i.e. the difference between experimental observations and simulated response). The match between simulation and measurement is dependent upon the form of the functional representations. The best agreement is achieved with the Corey [Brooks and Corey, 1964] or modified Corey [Masalmeh et al., 2007] functions which best represent the relative permeability of brine at low brine saturations. The relative permeability of carbon dioxide is shown to be lower than the relative permeability of decane over the saturation ranges investigated. The relative permeability of the brine phase is comparable for the two fluid systems. These observations are consistent with the rocks being water-wet. During the experiment
NASA Technical Reports Server (NTRS)
Kwak, Dochan; Kiris, C.; Smith, Charles A. (Technical Monitor)
1998-01-01
Performance of the two commonly used numerical procedures, one based on artificial compressibility method and the other pressure projection method, are compared. These formulations are selected primarily because they are designed for three-dimensional applications. The computational procedures are compared by obtaining steady state solutions of a wake vortex and unsteady solutions of a curved duct flow. For steady computations, artificial compressibility was very efficient in terms of computing time and robustness. For an unsteady flow which requires small physical time step, pressure projection method was found to be computationally more efficient than an artificial compressibility method. This comparison is intended to give some basis for selecting a method or a flow solution code for large three-dimensional applications where computing resources become a critical issue.
Application of a New Hybrid RANS/LES Modeling Paradigm to Compressible Flow
NASA Astrophysics Data System (ADS)
Oliver, Todd; Pederson, Clark; Haering, Sigfried; Moser, Robert
2017-11-01
It is well-known that traditional hybrid RANS/LES modeling approaches suffer from a number of deficiencies. These deficiencies often stem from overly simplistic blending strategies based on scalar measures of turbulence length scale and grid resolution and from use of isotropic subgrid models in LES regions. A recently developed hybrid modeling approach has shown promise in overcoming these deficiencies in incompressible flows [Haering, 2015]. In the approach, RANS/LES blending is accomplished using a hybridization parameter that is governed by an additional model transport equation and is driven to achieve equilibrium between the resolved and unresolved turbulence for the given grid. Further, the model uses an tensor eddy viscosity that is formulated to represent the effects of anisotropic grid resolution on subgrid quantities. In this work, this modeling approach is extended to compressible flows and implemented in the compressible flow solver SU2 (http://su2.stanford.edu/). We discuss both modeling and implementation challenges and show preliminary results for compressible flow test cases with smooth wall separation.
NASA Technical Reports Server (NTRS)
Melcher, Kevin J.
2006-01-01
This report provides a user guide for the Compressible Flow Toolbox, a collection of algorithms that solve almost 300 linear and nonlinear classical compressible flow relations. The algorithms, implemented in the popular MATLAB programming language, are useful for analysis of one-dimensional steady flow with constant entropy, friction, heat transfer, or shock discontinuities. The solutions do not include any gas dissociative effects. The toolbox also contains functions for comparing and validating the equation-solving algorithms against solutions previously published in the open literature. The classical equations solved by the Compressible Flow Toolbox are: isentropic-flow equations, Fanno flow equations (pertaining to flow of an ideal gas in a pipe with friction), Rayleigh flow equations (pertaining to frictionless flow of an ideal gas, with heat transfer, in a pipe of constant cross section.), normal-shock equations, oblique-shock equations, and Prandtl-Meyer expansion equations. At the time this report was published, the Compressible Flow Toolbox was available without cost from the NASA Software Repository.
NASA Astrophysics Data System (ADS)
Xiao, Kai; Liu, Feng; Wang, Fu-Qiang
2017-09-01
Sources of event-by-event elliptic flow fluctuations in relativistic heavy-ion collisions are investigated in a multiphase parton transport model (AMPT). Besides the well-known initial eccentricity fluctuations, several other sources of elliptic flow dynamical fluctuations are identified. One is fluctuations in initial parton configurations at a given eccentricity. Configuration fluctuations are found to be as important as eccentricity fluctuations in elliptic flow development. A second is quantum fluctuations in parton-parton interactions during system evolution. A third is fluctuations caused by hadronization and final-state hadronic scatterings. The magnitudes of these fluctuations are investigated relative to the eccentricity fluctuations and the average elliptic flow magnitude. The fluctuations from the latter two sources are found to be negative. The results may have important implications for the interpretation of elliptic flow data. Supported by MOST, China, under 973 Grant 2015CB856901, National Natural Science Foundation of China (11521064, 11547143, 11228513), U.S. Department of Energy (DE-FG02-88ER40412), Fundamental Research Funds for the Central Universities, South-Central University for Nationalities (CZQ15001) and Excellent Doctorial Dissertation Cultivation Grant from Central China Normal University (2013YBZD18)
Computation of Thermally Perfect Compressible Flow Properties
NASA Technical Reports Server (NTRS)
Witte, David W.; Tatum, Kenneth E.; Williams, S. Blake
1996-01-01
A set of compressible flow relations for a thermally perfect, calorically imperfect gas are derived for a value of c(sub p) (specific heat at constant pressure) expressed as a polynomial function of temperature and developed into a computer program, referred to as the Thermally Perfect Gas (TPG) code. The code is available free from the NASA Langley Software Server at URL http://www.larc.nasa.gov/LSS. The code produces tables of compressible flow properties similar to those found in NACA Report 1135. Unlike the NACA Report 1135 tables which are valid only in the calorically perfect temperature regime the TPG code results are also valid in the thermally perfect, calorically imperfect temperature regime, giving the TPG code a considerably larger range of temperature application. Accuracy of the TPG code in the calorically perfect and in the thermally perfect, calorically imperfect temperature regimes are verified by comparisons with the methods of NACA Report 1135. The advantages of the TPG code compared to the thermally perfect, calorically imperfect method of NACA Report 1135 are its applicability to any type of gas (monatomic, diatomic, triatomic, or polyatomic) or any specified mixture of gases, ease-of-use, and tabulated results.
NASA Astrophysics Data System (ADS)
Kwon, Young-Sam; Lin, Ying-Chieh; Su, Cheng-Fang
2018-04-01
In this paper, we consider the compressible models of magnetohydrodynamic flows giving rise to a variety of mathematical problems in many areas. We derive a rigorous quasi-geostrophic equation governed by magnetic field from the rotational compressible magnetohydrodynamic flows with the well-prepared initial data. It is a first derivation of quasi-geostrophic equation governed by the magnetic field, and the tool is based on the relative entropy method. This paper covers two results: the existence of the unique local strong solution of quasi-geostrophic equation with the good regularity and the derivation of a quasi-geostrophic equation.
Compression of Flow Can Reveal Overlapping-Module Organization in Networks
NASA Astrophysics Data System (ADS)
Viamontes Esquivel, Alcides; Rosvall, Martin
2011-10-01
To better understand the organization of overlapping modules in large networks with respect to flow, we introduce the map equation for overlapping modules. In this information-theoretic framework, we use the correspondence between compression and regularity detection. The generalized map equation measures how well we can compress a description of flow in the network when we partition it into modules with possible overlaps. When we minimize the generalized map equation over overlapping network partitions, we detect modules that capture flow and determine which nodes at the boundaries between modules should be classified in multiple modules and to what degree. With a novel greedy-search algorithm, we find that some networks, for example, the neural network of the nematode Caenorhabditis elegans, are best described by modules dominated by hard boundaries, but that others, for example, the sparse European-roads network, have an organization of highly overlapping modules.
NASA Technical Reports Server (NTRS)
Costello, George R; Cummings, Robert L; Sinnette, John T , Jr
1952-01-01
A detailed step-by-step computational outline is presented for the design of two-dimensional cascade blades having a prescribed velocity distribution on the blade in a potential flow of the usual compressible fluid. The outline is based on the assumption that the magnitude of the velocity in the flow of the usual compressible nonviscous fluid is proportional to the magnitude of the velocity in the flow of a compressible nonviscous fluid with linear pressure-volume relation.
Tollmien-Schlichting/vortex interactions in compressible boundary layer flows
NASA Technical Reports Server (NTRS)
Blackaby, Nicholas D.
1993-01-01
The weakly nonlinear interaction of oblique Tollmien-Schlichting waves and longitudinal vortices in compressible, high Reynolds number, boundary-layer flow over a flat plate is considered for all ranges of the Mach number. The interaction equations comprise of equations for the vortex which is indirectly forced by the waves via a boundary condition, whereas a vortex term appears in the amplitude equation for the wave pressure. The downstream solution properties of interaction equations are found to depend on the sign of an interaction coefficient. Compressibility is found to have a significant effect on the interaction properties; principally through its impact on the waves and their governing mechanism, the triple-deck structure. It is found that, in general, the flow quantities will grow slowly with increasing downstream co-ordinate; i.e. in general, solutions do not terminate in abrupt, finite-distance 'break-ups'.
A genuinely discontinuous approach for multiphase EHD problems
NASA Astrophysics Data System (ADS)
Natarajan, Mahesh; Desjardins, Olivier
2017-11-01
Electrohydrodynamics (EHD) involves solving the Poisson equation for the electric field potential. For multiphase flows, although the electric field potential is a continuous quantity, due to the discontinuity in the electric permittivity between the phases, additional jump conditions at the interface, for the normal and tangential components of the electric field need to be satisfied. All approaches till date either ignore the jump conditions, or involve simplifying assumptions, and hence yield unconvincing results even for simple test problems. In the present work, we develop a genuinely discontinuous approach for the Poisson equation for multiphase flows using a Finite Volume Unsplit Volume of Fluid method. The governing equation and the jump conditions without assumptions are used to develop the method, and its efficiency is demonstrated by comparison of the numerical results with canonical test problems having exact solutions. Postdoctoral Associate, Department of Mechanical and Aerospace Engineering.
NASA Technical Reports Server (NTRS)
Hartfield, Roy J., Jr.; Abbitt, John D., III; Mcdaniel, James C.
1989-01-01
A technique is described for imaging the injectant mole-fraction distribution in nonreacting compressible mixing flow fields. Planar fluorescence from iodine, seeded into air, is induced by a broadband argon-ion laser and collected using an intensified charge-injection-device array camera. The technique eliminates the thermodynamic dependence of the iodine fluorescence in the compressible flow field by taking the ratio of two images collected with identical thermodynamic flow conditions but different iodine seeding conditions.
NASA Astrophysics Data System (ADS)
Li, Y.; Kazemifar, F.; Blois, G.; Christensen, K. T.
2017-12-01
Geological sequestration of CO2 within saline aquifers is a viable technology for reducing CO2 emissions. Central to this goal is accurately predicting both the fidelity of candidate sites pre-injection of CO2 and its post-injection migration. Moreover, local fluid pressure buildup may cause activation of small pre-existing unidentified faults, leading to micro-seismic events, which could prove disastrous for societal acceptance of CCS, and possibly compromise seal integrity. Recent evidence shows that large-scale events are coupled with pore-scale phenomena, which necessitates the representation of pore-scale stress, strain, and multiphase flow processes in large-scale modeling. To this end, the pore-scale flow of water and liquid/supercritical CO2 is investigated under reservoir-relevant conditions, over a range of wettability conditions in 2D heterogeneous micromodels that reflect the complexity of a real sandstone. High-speed fluorescent microscopy, complemented by a fast differential pressure transmitter, allows for simultaneous measurement of the flow field within and the instantaneous pressure drop across the micromodels. A flexible micromodel is also designed and fabricated, to be used in conjunction with the micro-PIV technique, enabling the quantification of coupled solid-liquid interactions.
NASA Technical Reports Server (NTRS)
Hamrick, Joseph T; Ginsburg, Ambrose; Osborn, Walter M
1952-01-01
A method is presented for analysis of the compressible flow between the hub and the shroud of mixed-flow impellers of arbitrary design. Axial symmetry was assumed, but the forces in the meridional (hub to shroud) plane, which are derived from tangential pressure gradients, were taken into account. The method was applied to an experimental mixed-flow impeller. The analysis of the flow in the meridional plane of the impeller showed that the rotational forces, the blade curvature, and the hub-shroud profile can introduce severe velocity gradients along the hub and the shroud surfaces. Choked flow at the impeller inlet as determined by the analysis was verified by experimental results.
Developments in the simulation of compressible inviscid and viscous flow on supercomputers
NASA Technical Reports Server (NTRS)
Steger, J. L.; Buning, P. G.
1985-01-01
In anticipation of future supercomputers, finite difference codes are rapidly being extended to simulate three-dimensional compressible flow about complex configurations. Some of these developments are reviewed. The importance of computational flow visualization and diagnostic methods to three-dimensional flow simulation is also briefly discussed.
Compressibility Corrections to Closure Approximations for Turbulent Flow Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cloutman, L D
2003-02-01
We summarize some modifications to the usual closure approximations for statistical models of turbulence that are necessary for use with compressible fluids at all Mach numbers. We concentrate here on the gradient-flu approximation for the turbulent heat flux, on the buoyancy production of turbulence kinetic energy, and on a modification of the Smagorinsky model to include buoyancy. In all cases, there are pressure gradient terms that do not appear in the incompressible models and are usually omitted in compressible-flow models. Omission of these terms allows unphysical rates of entropy change.
Castillo, Edward; Castillo, Richard; White, Benjamin; Rojo, Javier; Guerrero, Thomas
2012-01-01
Compressible flow based image registration operates under the assumption that the mass of the imaged material is conserved from one image to the next. Depending on how the mass conservation assumption is modeled, the performance of existing compressible flow methods is limited by factors such as image quality, noise, large magnitude voxel displacements, and computational requirements. The Least Median of Squares Filtered Compressible Flow (LFC) method introduced here is based on a localized, nonlinear least squares, compressible flow model that describes the displacement of a single voxel that lends itself to a simple grid search (block matching) optimization strategy. Spatially inaccurate grid search point matches, corresponding to erroneous local minimizers of the nonlinear compressible flow model, are removed by a novel filtering approach based on least median of squares fitting and the forward search outlier detection method. The spatial accuracy of the method is measured using ten thoracic CT image sets and large samples of expert determined landmarks (available at www.dir-lab.com). The LFC method produces an average error within the intra-observer error on eight of the ten cases, indicating that the method is capable of achieving a high spatial accuracy for thoracic CT registration. PMID:22797602
Numerical simulation for the air entrainment of aerated flow with an improved multiphase SPH model
NASA Astrophysics Data System (ADS)
Wan, Hang; Li, Ran; Pu, Xunchi; Zhang, Hongwei; Feng, Jingjie
2017-11-01
Aerated flow is a complex hydraulic phenomenon that exists widely in the field of environmental hydraulics. It is generally characterised by large deformation and violent fragmentation of the free surface. Compared to Euler methods (volume of fluid (VOF) method or rigid-lid hypothesis method), the existing single-phase Smooth Particle Hydrodynamics (SPH) method has performed well for solving particle motion. A lack of research on interphase interaction and air concentration, however, has affected the application of SPH model. In our study, an improved multiphase SPH model is presented to simulate aeration flows. A drag force was included in the momentum equation to ensure accuracy of the air particle slip velocity. Furthermore, a calculation method for air concentration is developed to analyse the air entrainment characteristics. Two studies were used to simulate the hydraulic and air entrainment characteristics. And, compared with the experimental results, the simulation results agree with the experimental results well.
NASA Astrophysics Data System (ADS)
Ongaro, T. E.; Clarke, A.; Neri, A.; Voight, B.; Widiwijayanti, C.
2005-12-01
For the first time the dynamics of directed blasts from explosive lava-dome decompression have been investigated by means of transient, multiphase flow simulations in 2D and 3D. Multiphase flow models developed for the analysis of pyroclastic dispersal from explosive eruptions have been so far limited to 2D axisymmetric or Cartesian formulations which cannot properly account for important 3D features of the volcanic system such as complex morphology and fluid turbulence. Here we use a new parallel multiphase flow code, named PDAC (Pyroclastic Dispersal Analysis Code) (Esposti Ongaro et al., 2005), able to simulate the transient and 3D thermofluid-dynamics of pyroclastic dispersal produced by collapsing columns and volcanic blasts. The code solves the equations of the multiparticle flow model of Neri et al. (2003) on 3D domains extending up to several kilometres in 3D and includes a new description of the boundary conditions over topography which is automatically acquired from a DEM. The initial conditions are represented by a compact volume of gas and pyroclasts, with clasts of different sizes and densities, at high temperature and pressure. Different dome porosities and pressurization models were tested in 2D to assess the sensitivity of the results to the distribution of initial gas pressure, and to the total mass and energy stored in the dome, prior to 3D modeling. The simulations have used topographies appropriate for the 1997 Boxing Day directed blast on Montserrat, which eradicated the village of St. Patricks. Some simulations tested the runout of pyroclastic density currents over the ocean surface, corresponding to observations of over-water surges to several km distances at both locations. The PDAC code was used to perform 3D simulations of the explosive event on the actual volcano topography. The results highlight the strong topographic control on the propagation of the dense pyroclastic flows, the triggering of thermal instabilities, and the elutriation
Multigrid Acceleration of Time-Accurate DNS of Compressible Turbulent Flow
NASA Technical Reports Server (NTRS)
Broeze, Jan; Geurts, Bernard; Kuerten, Hans; Streng, Martin
1996-01-01
An efficient scheme for the direct numerical simulation of 3D transitional and developed turbulent flow is presented. Explicit and implicit time integration schemes for the compressible Navier-Stokes equations are compared. The nonlinear system resulting from the implicit time discretization is solved with an iterative method and accelerated by the application of a multigrid technique. Since we use central spatial discretizations and no artificial dissipation is added to the equations, the smoothing method is less effective than in the more traditional use of multigrid in steady-state calculations. Therefore, a special prolongation method is needed in order to obtain an effective multigrid method. This simulation scheme was studied in detail for compressible flow over a flat plate. In the laminar regime and in the first stages of turbulent flow the implicit method provides a speed-up of a factor 2 relative to the explicit method on a relatively coarse grid. At increased resolution this speed-up is enhanced correspondingly.
Ramsey, Scott D.; Ivancic, Philip R.; Lilieholm, Jennifer F.
2015-12-10
This work is concerned with the use of similarity solutions of the compressible flow equations as benchmarks or verification test problems for finite-volume compressible flow simulation software. In practice, this effort can be complicated by the infinite spatial/temporal extent of many candidate solutions or “test problems.” Methods can be devised with the intention of ameliorating this inconsistency with the finite nature of computational simulation; the exact strategy will depend on the code and problem archetypes under investigation. For example, self-similar shock wave propagation can be represented in Lagrangian compressible flow simulations as rigid boundary-driven flow, even if no such “piston”more » is present in the counterpart mathematical similarity solution. The purpose of this work is to investigate in detail the methodology of representing self-similar shock wave propagation as a piston-driven flow in the context of various test problems featuring simple closed-form solutions of infinite spatial/temporal extent. The closed-form solutions allow for the derivation of similarly closed-form piston boundary conditions (BCs) for use in Lagrangian compressible flow solvers. Finally, the consequences of utilizing these BCs (as opposed to directly initializing the self-similar solution in a computational spatial grid) are investigated in terms of common code verification analysis metrics (e.g., shock strength/position errors and global convergence rates).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramsey, Scott D.; Ivancic, Philip R.; Lilieholm, Jennifer F.
This work is concerned with the use of similarity solutions of the compressible flow equations as benchmarks or verification test problems for finite-volume compressible flow simulation software. In practice, this effort can be complicated by the infinite spatial/temporal extent of many candidate solutions or “test problems.” Methods can be devised with the intention of ameliorating this inconsistency with the finite nature of computational simulation; the exact strategy will depend on the code and problem archetypes under investigation. For example, self-similar shock wave propagation can be represented in Lagrangian compressible flow simulations as rigid boundary-driven flow, even if no such “piston”more » is present in the counterpart mathematical similarity solution. The purpose of this work is to investigate in detail the methodology of representing self-similar shock wave propagation as a piston-driven flow in the context of various test problems featuring simple closed-form solutions of infinite spatial/temporal extent. The closed-form solutions allow for the derivation of similarly closed-form piston boundary conditions (BCs) for use in Lagrangian compressible flow solvers. Finally, the consequences of utilizing these BCs (as opposed to directly initializing the self-similar solution in a computational spatial grid) are investigated in terms of common code verification analysis metrics (e.g., shock strength/position errors and global convergence rates).« less
Three-dimensional supersonic flow around double compression ramp with finite span
NASA Astrophysics Data System (ADS)
Lee, H. S.; Lee, J. H.; Park, G.; Park, S. H.; Byun, Y. H.
2017-01-01
Three-dimensional flows of Mach number 3 around a double-compression ramp with finite span have been investigated numerically. Shadowgraph visualisation images obtained in a supersonic wind tunnel are used for comparison. A three-dimensional Reynolds-averaged Navier-Stokes solver was used to obtain steady numerical solutions. Two-dimensional numerical results are also compared. Four different cases were studied: two different second ramp angles of 30° and 45° in configurations with and without sidewalls, respectively. Results showed that there is a leakage of mass and momentum fluxes heading outwards in the spanwise direction for three-dimensional cases without sidewalls. The leakage changed the flow characteristics of the shock-induced boundary layer and resulted in the discrepancy between the experimental data and two-dimensional numerical results. It is found that suppressing the flow leakage by attaching the sidewalls enhances the two-dimensionality of the experimental data for the double-compression ramp flow.
Nonlinear stability of non-stationary cross-flow vortices in compressible boundary layers
NASA Technical Reports Server (NTRS)
Gajjar, J. S. B.
1995-01-01
The nonlinear evolution of long wavelength non-stationary cross-flow vortices in a compressible boundary layer is investigated and the work extends that of Gajjar (1994) to flows involving multiple critical layers. The basic flow profile considered in this paper is that appropriate for a fully three-dimensional boundary layer with O(1) Mach number and with wall heating or cooling. The governing equations for the evolution of the cross-flow vortex are obtained and some special cases are discussed. One special case includes linear theory where exact analytic expressions for the growth rate of the vortices are obtained. Another special case is a generalization of the Bassom & Gajjar (1988) results for neutral waves to compressible flows. The viscous correction to the growth rate is derived and it is shown how the unsteady nonlinear critical layer structure merges with that for a Haberman type of viscous critical layer.
A weakly-compressible Cartesian grid approach for hydrodynamic flows
NASA Astrophysics Data System (ADS)
Bigay, P.; Oger, G.; Guilcher, P.-M.; Le Touzé, D.
2017-11-01
The present article aims at proposing an original strategy to solve hydrodynamic flows. In introduction, the motivations for this strategy are developed. It aims at modeling viscous and turbulent flows including complex moving geometries, while avoiding meshing constraints. The proposed approach relies on a weakly-compressible formulation of the Navier-Stokes equations. Unlike most hydrodynamic CFD (Computational Fluid Dynamics) solvers usually based on implicit incompressible formulations, a fully-explicit temporal scheme is used. A purely Cartesian grid is adopted for numerical accuracy and algorithmic simplicity purposes. This characteristic allows an easy use of Adaptive Mesh Refinement (AMR) methods embedded within a massively parallel framework. Geometries are automatically immersed within the Cartesian grid with an AMR compatible treatment. The method proposed uses an Immersed Boundary Method (IBM) adapted to the weakly-compressible formalism and imposed smoothly through a regularization function, which stands as another originality of this work. All these features have been implemented within an in-house solver based on this WCCH (Weakly-Compressible Cartesian Hydrodynamic) method which meets the above requirements whilst allowing the use of high-order (> 3) spatial schemes rarely used in existing hydrodynamic solvers. The details of this WCCH method are presented and validated in this article.
NASA Astrophysics Data System (ADS)
Murakami, Sunao; Ohtaki, Kenichiro; Matsumoto, Sohei; Inoue, Tomoya
2012-06-01
High-throughput and stable treatments are required to achieve the practical production of chemicals with microreactors. However, the flow maldistribution to the paralleled microchannels has been a critical problem in achieving the productive use of multichannel microreactors for multiphase flow conditions. In this study, we newly designed and fabricated a glass four-channel catalytic packed-bed microreactor for the scale-up of gas-liquid multiphase chemical reactions. We embedded microstructures generating high pressure losses at the upstream side of each packed bed, and experimentally confirmed the efficacy of the microstructures in decreasing the maldistribution of the gas-liquid flow to the parallel microchannels.
A 3-dimensional mass conserving element for compressible flows
NASA Technical Reports Server (NTRS)
Fix, G.; Suri, M.
1985-01-01
A variety of finite element schemes has been used in the numerical approximation of compressible flows particularly in underwater acoustics. In many instances instabilities have been generated due to the lack of mass conservation. Two- and three-dimensional elements are developed which avoid these problems.
Conjugate Compressible Fluid Flow and Heat Transfer in Ducts
NASA Technical Reports Server (NTRS)
Cross, M. F.
2011-01-01
A computational approach to modeling transient, compressible fluid flow with heat transfer in long, narrow ducts is presented. The primary application of the model is for analyzing fluid flow and heat transfer in solid propellant rocket motor nozzle joints during motor start-up, but the approach is relevant to a wide range of analyses involving rapid pressurization and filling of ducts. Fluid flow is modeled through solution of the spatially one-dimensional, transient Euler equations. Source terms are included in the governing equations to account for the effects of wall friction and heat transfer. The equation solver is fully-implicit, thus providing greater flexibility than an explicit solver. This approach allows for resolution of pressure wave effects on the flow as well as for fast calculation of the steady-state solution when a quasi-steady approach is sufficient. Solution of the one-dimensional Euler equations with source terms significantly reduces computational run times compared to general purpose computational fluid dynamics packages solving the Navier-Stokes equations with resolved boundary layers. In addition, conjugate heat transfer is more readily implemented using the approach described in this paper than with most general purpose computational fluid dynamics packages. The compressible flow code has been integrated with a transient heat transfer solver to analyze heat transfer between the fluid and surrounding structure. Conjugate fluid flow and heat transfer solutions are presented. The author is unaware of any previous work available in the open literature which uses the same approach described in this paper.
NASA Technical Reports Server (NTRS)
Zang, Thomas A.; Mathelin, Lionel; Hussaini, M. Yousuff; Bataille, Francoise
2003-01-01
This paper describes a fully spectral, Polynomial Chaos method for the propagation of uncertainty in numerical simulations of compressible, turbulent flow, as well as a novel stochastic collocation algorithm for the same application. The stochastic collocation method is key to the efficient use of stochastic methods on problems with complex nonlinearities, such as those associated with the turbulence model equations in compressible flow and for CFD schemes requiring solution of a Riemann problem. Both methods are applied to compressible flow in a quasi-one-dimensional nozzle. The stochastic collocation method is roughly an order of magnitude faster than the fully Galerkin Polynomial Chaos method on the inviscid problem.
Compressible flow at high pressure with linear equation of state
NASA Astrophysics Data System (ADS)
Sirignano, William A.
2018-05-01
Compressible flow varies from ideal-gas behavior at high pressures where molecular interactions become important. Density is described through a cubic equation of state while enthalpy and sound speed are functions of both temperature and pressure, based on two parameters, A and B, related to intermolecular attraction and repulsion, respectively. Assuming small variations from ideal-gas behavior, a closed-form solution is obtained that is valid over a wide range of conditions. An expansion in these molecular-interaction parameters simplifies relations for flow variables, elucidating the role of molecular repulsion and attraction in variations from ideal-gas behavior. Real-gas modifications in density, enthalpy, and sound speed for a given pressure and temperature lead to variations in many basic compressible flow configurations. Sometimes, the variations can be substantial in quantitative or qualitative terms. The new approach is applied to choked-nozzle flow, isentropic flow, nonlinear-wave propagation, and flow across a shock wave, all for the real gas. Modifications are obtained for allowable mass-flow through a choked nozzle, nozzle thrust, sonic wave speed, Riemann invariants, Prandtl's shock relation, and the Rankine-Hugoniot relations. Forced acoustic oscillations can show substantial augmentation of pressure amplitudes when real-gas effects are taken into account. Shocks at higher temperatures and pressures can have larger pressure jumps with real-gas effects. Weak shocks decay to zero strength at sonic speed. The proposed framework can rely on any cubic equation of state and be applied to multicomponent flows or to more-complex flow configurations.
Directional Acoustic Wave Manipulation by a Porpoise via Multiphase Forehead Structure
NASA Astrophysics Data System (ADS)
Zhang, Yu; Song, Zhongchang; Wang, Xianyan; Cao, Wenwu; Au, Whitlow W. L.
2017-12-01
Porpoises are small-toothed whales, and they can produce directional acoustic waves to detect and track prey with high resolution and a wide field of view. Their sound-source sizes are rather small in comparison with the wavelength so that beam control should be difficult according to textbook sonar theories. Here, we demonstrate that the multiphase material structure in a porpoise's forehead is the key to manipulating the directional acoustic field. Computed tomography (CT) derives the multiphase (bone-air-tissue) complex, tissue experiments obtain the density and sound-velocity multiphase gradient distributions, and acoustic fields and beam formation are numerically simulated. The results suggest the control of wave propagations and sound-beam formations is realized by cooperation of the whole forehead's tissues and structures. The melon size significantly impacts the side lobes of the beam and slightly influences the main beams, while the orientation of the vestibular sac mainly adjusts the main beams. By compressing the forehead complex, the sound beam can be expanded for near view. The porpoise's biosonar allows effective wave manipulations for its omnidirectional sound source, which can help the future development of miniaturized biomimetic projectors in underwater sonar, medical ultrasonography, and other ultrasonic imaging applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klimachkov, D. A., E-mail: klimchakovdmitry@gmail.com; Petrosyan, A. S., E-mail: apetrosy@iki.rssi.ru
2016-09-15
Shallow water magnetohydrodynamic (MHD) theory describing incompressible flows of plasma is generalized to the case of compressible flows. A system of MHD equations is obtained that describes the flow of a thin layer of compressible rotating plasma in a gravitational field in the shallow water approximation. The system of quasilinear hyperbolic equations obtained admits a complete simple wave analysis and a solution to the initial discontinuity decay problem in the simplest version of nonrotating flows. In the new equations, sound waves are filtered out, and the dependence of density on pressure on large scales is taken into account that describesmore » static compressibility phenomena. In the equations obtained, the mass conservation law is formulated for a variable that nontrivially depends on the shape of the lower boundary, the characteristic vertical scale of the flow, and the scale of heights at which the variation of density becomes significant. A simple wave theory is developed for the system of equations obtained. All self-similar discontinuous solutions and all continuous centered self-similar solutions of the system are obtained. The initial discontinuity decay problem is solved explicitly for compressible MHD equations in the shallow water approximation. It is shown that there exist five different configurations that provide a solution to the initial discontinuity decay problem. For each configuration, conditions are found that are necessary and sufficient for its implementation. Differences between incompressible and compressible cases are analyzed. In spite of the formal similarity between the solutions in the classical case of MHD flows of an incompressible and compressible fluids, the nonlinear dynamics described by the solutions are essentially different due to the difference in the expressions for the squared propagation velocity of weak perturbations. In addition, the solutions obtained describe new physical phenomena related to the dependence
Ensemble Averaged Probability Density Function (APDF) for Compressible Turbulent Reacting Flows
NASA Technical Reports Server (NTRS)
Shih, Tsan-Hsing; Liu, Nan-Suey
2012-01-01
In this paper, we present a concept of the averaged probability density function (APDF) for studying compressible turbulent reacting flows. The APDF is defined as an ensemble average of the fine grained probability density function (FG-PDF) with a mass density weighting. It can be used to exactly deduce the mass density weighted, ensemble averaged turbulent mean variables. The transport equation for APDF can be derived in two ways. One is the traditional way that starts from the transport equation of FG-PDF, in which the compressible Navier- Stokes equations are embedded. The resulting transport equation of APDF is then in a traditional form that contains conditional means of all terms from the right hand side of the Navier-Stokes equations except for the chemical reaction term. These conditional means are new unknown quantities that need to be modeled. Another way of deriving the transport equation of APDF is to start directly from the ensemble averaged Navier-Stokes equations. The resulting transport equation of APDF derived from this approach appears in a closed form without any need for additional modeling. The methodology of ensemble averaging presented in this paper can be extended to other averaging procedures: for example, the Reynolds time averaging for statistically steady flow and the Reynolds spatial averaging for statistically homogeneous flow. It can also be extended to a time or spatial filtering procedure to construct the filtered density function (FDF) for the large eddy simulation (LES) of compressible turbulent reacting flows.
Embedded function methods for compressible high speed turbulent flow
NASA Technical Reports Server (NTRS)
Walker, J. D. A.
1989-01-01
Fundamental issues relating to compressible turbulent flow are addressed. The focus has been on developing methods and testing concepts for attached flows rather than trying to force a conventional law of the wall into a zone of backflow. Although the dynamics of the near-wall flow in an attached turbulent boundary layer are relatively well documented, the dynamical features of a zone of reversed turbulent flow are not, nor are they well understood. Incompressibility introduces effects and issues that have been dealt with only marginally in the literature, therefore, the present work has been focussed on attached high-speed flows. The wall function method has been extended up through the supersonic to hypersonic speeds. Algorithms have been successfully introduced into the code that calculates the flow all the way to the wall, and testing is being carried out for progressively more complex flow situations.
The validity of multiphase DNS initialized on the basis of single--point statistics
NASA Astrophysics Data System (ADS)
Subramaniam, Shankar
1999-11-01
A study of the point--process statistical representation of a spray reveals that single--point statistical information contained in the droplet distribution function (ddf) is related to a sequence of single surrogate--droplet pdf's, which are in general different from the physical single--droplet pdf's. The results of this study have important consequences for the initialization and evolution of direct numerical simulations (DNS) of multiphase flows, which are usually initialized on the basis of single--point statistics such as the average number density in physical space. If multiphase DNS are initialized in this way, this implies that even the initial representation contains certain implicit assumptions concerning the complete ensemble of realizations, which are invalid for general multiphase flows. Also the evolution of a DNS initialized in this manner is shown to be valid only if an as yet unproven commutation hypothesis holds true. Therefore, it is questionable to what extent DNS that are initialized in this manner constitute a direct simulation of the physical droplets.
Lift and drag in three-dimensional steady viscous and compressible flow
NASA Astrophysics Data System (ADS)
Liu, L. Q.; Wu, J. Z.; Su, W. D.; Kang, L. L.
2017-11-01
In a recent paper, Liu, Zhu, and Wu ["Lift and drag in two-dimensional steady viscous and compressible flow," J. Fluid Mech. 784, 304-341 (2015)] present a force theory for a body in a two-dimensional, viscous, compressible, and steady flow. In this companion paper, we do the same for three-dimensional flows. Using the fundamental solution of the linearized Navier-Stokes equations, we improve the force formula for incompressible flows originally derived by Goldstein in 1931 and summarized by Milne-Thomson in 1968, both being far from complete, to its perfect final form, which is further proved to be universally true from subsonic to supersonic flows. We call this result the unified force theorem, which states that the forces are always determined by the vector circulation Γϕ of longitudinal velocity and the scalar inflow Qψ of transverse velocity. Since this theorem is not directly observable either experimentally or computationally, a testable version is also derived, which, however, holds only in the linear far field. We name this version the testable unified force formula. After that, a general principle to increase the lift-drag ratio is proposed.
NASA Astrophysics Data System (ADS)
Hua, Jinsong; Rudshaug, Magne; Droste, Christian; Jorgensen, Robert; Giskeodegard, Nils-Haavard
2018-06-01
A computational fluid dynamics based multiphase magnetohydrodynamic (MHD) flow model for simulating the melt flow and bath-metal interface deformation in realistic aluminum reduction cells is presented. The model accounts for the complex physics of the MHD problem in aluminum reduction cells by coupling two immiscible fluids, electromagnetic field, Lorentz force, flow turbulence, and complex cell geometry with large length scale. Especially, the deformation of bath-metal interface is tracked directly in the simulation, and the condition of constant anode-cathode distance (ACD) is maintained by moving anode bottom dynamically with the deforming bath-metal interface. The metal pad deformation and melt flow predicted by the current model are compared to the predictions using a simplified model where the bath-metal interface is assumed flat. The effects of the induced electric current due to fluid flow and the magnetic field due to the interior cell current on the metal pad deformation and melt flow are investigated. The presented model extends the conventional simplified box model by including detailed cell geometry such as the ledge profile and all channels (side, central, and cross-channels). The simulations show the model sensitivity to different side ledge profiles and the cross-channel width by comparing the predicted melt flow and metal pad heaving. In addition, the model dependencies upon the reduction cell operation conditions such as ACD, current distribution on cathode surface and open/closed channel top, are discussed.
Unstructured LES of Reacting Multiphase Flows in Realistic Gas Turbine Combustors
NASA Technical Reports Server (NTRS)
Ham, Frank; Apte, Sourabh; Iaccarino, Gianluca; Wu, Xiao-Hua; Herrmann, Marcus; Constantinescu, George; Mahesh, Krishnan; Moin, Parviz
2003-01-01
As part of the Accelerated Strategic Computing Initiative (ASCI) program, an accurate and robust simulation tool is being developed to perform high-fidelity LES studies of multiphase, multiscale turbulent reacting flows in aircraft gas turbine combustor configurations using hybrid unstructured grids. In the combustor, pressurized gas from the upstream compressor is reacted with atomized liquid fuel to produce the combustion products that drive the downstream turbine. The Large Eddy Simulation (LES) approach is used to simulate the combustor because of its demonstrated superiority over RANS in predicting turbulent mixing, which is central to combustion. This paper summarizes the accomplishments of the combustor group over the past year, concentrating mainly on the two major milestones achieved this year: 1) Large scale simulation: A major rewrite and redesign of the flagship unstructured LES code has allowed the group to perform large eddy simulations of the complete combustor geometry (all 18 injectors) with over 100 million control volumes; 2) Multi-physics simulation in complex geometry: The first multi-physics simulations including fuel spray breakup, coalescence, evaporation, and combustion are now being performed in a single periodic sector (1/18th) of an actual Pratt & Whitney combustor geometry.
Ortiz, Marcos German; Boucher, Timothy J.
1998-01-01
A system for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.
Ortiz, M.G.; Boucher, T.J.
1998-10-27
A system is described for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.
Compressible bubbles in Stokes flow
NASA Astrophysics Data System (ADS)
Crowdy, Darren G.
2003-02-01
The problem of a two-dimensional inviscid compressible bubble evolving in Stokes flow is considered. By generalizing the work of Tanveer & Vasconcelos (1995) it is shown that for certain classes of initial condition the quasi-steady free boundary problem for the bubble shape evolution is reducible to a finite set of coupled nonlinear ordinary differential equations, the form of which depends on the equation of state governing the relationship between the bubble pressure and its area. Recent numerical calculations by Pozrikidis (2001) using boundary integral methods are retrieved and extended. If the ambient pressures are small enough, it is shown that bubbles can expand significantly. It is also shown that a bubble evolving adiabatically is less likely to expand than an isothermal bubble.
NASA Astrophysics Data System (ADS)
Dutta, Sourav; Daripa, Prabir; Fluids Team
2015-11-01
One of the most important methods of chemical enhanced oil recovery (EOR) involves the use of complex flooding schemes comprising of various layers of fluids mixed with suitable amounts of polymer or surfactant or both. The fluid flow is characterized by the spontaneous formation of complex viscous fingering patterns which is considered detrimental to oil recovery. Here we numerically study the physics of such EOR processes using a modern, hybrid method based on a combination of a discontinuous, multiscale finite element formulation and the method of characteristics. We investigate the effect of different types of heterogeneity on the fingering mechanism of these complex multiphase flows and determine the impact on oil recovery. We also study the effect of surfactants on the dynamics of the flow via reduction of capillary forces and increase in relative permeabilities. Supported by the grant NPRP 08-777-1-141 from the Qatar National Research Fund (a member of The Qatar Foundation).
Compression-based integral curve data reuse framework for flow visualization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Fan; Bi, Chongke; Guo, Hanqi
Currently, by default, integral curves are repeatedly re-computed in different flow visualization applications, such as FTLE field computation, source-destination queries, etc., leading to unnecessary resource cost. We present a compression-based data reuse framework for integral curves, to greatly reduce their retrieval cost, especially in a resource-limited environment. In our design, a hierarchical and hybrid compression scheme is proposed to balance three objectives, including high compression ratio, controllable error, and low decompression cost. Specifically, we use and combine digitized curve sparse representation, floating-point data compression, and octree space partitioning to adaptively achieve the objectives. Results have shown that our data reusemore » framework could acquire tens of times acceleration in the resource-limited environment compared to on-the-fly particle tracing, and keep controllable information loss. Moreover, our method could provide fast integral curve retrieval for more complex data, such as unstructured mesh data.« less
NASA Astrophysics Data System (ADS)
Haghani Hassan Abadi, Reza; Fakhari, Abbas; Rahimian, Mohammad Hassan
2018-03-01
In this paper, we propose a multiphase lattice Boltzmann model for numerical simulation of ternary flows at high density and viscosity ratios free from spurious velocities. The proposed scheme, which is based on the phase-field modeling, employs the Cahn-Hilliard theory to track the interfaces among three different fluid components. Several benchmarks, such as the spreading of a liquid lens, binary droplets, and head-on collision of two droplets in binary- and ternary-fluid systems, are conducted to assess the reliability and accuracy of the model. The proposed model can successfully simulate both partial and total spreadings while reducing the parasitic currents to the machine precision.
Progress in turbulence modeling for complex flow fields including effects of compressibility
NASA Technical Reports Server (NTRS)
Wilcox, D. C.; Rubesin, M. W.
1980-01-01
Two second-order-closure turbulence models were devised that are suitable for predicting properties of complex turbulent flow fields in both incompressible and compressible fluids. One model is of the "two-equation" variety in which closure is accomplished by introducing an eddy viscosity which depends on both a turbulent mixing energy and a dissipation rate per unit energy, that is, a specific dissipation rate. The other model is a "Reynolds stress equation" (RSE) formulation in which all components of the Reynolds stress tensor and turbulent heat-flux vector are computed directly and are scaled by the specific dissipation rate. Computations based on these models are compared with measurements for the following flow fields: (a) low speed, high Reynolds number channel flows with plane strain or uniform shear; (b) equilibrium turbulent boundary layers with and without pressure gradients or effects of compressibility; and (c) flow over a convex surface with and without a pressure gradient.
Numerical simulation of a compressible homogeneous, turbulent shear flow. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Feiereisen, W. J.; Reynolds, W. C.; Ferziger, J. H.
1981-01-01
A direct, low Reynolds number, numerical simulation was performed on a homogeneous turbulent shear flow. The full compressible Navier-Stokes equations were used in a simulation on the ILLIAC IV computer with a 64,000 mesh. The flow fields generated by the code are used as an experimental data base, to examine the behavior of the Reynols stresses in this simple, compressible flow. The variation of the structure of the stresses and their dynamic equations as the character of the flow changed is emphasized. The structure of the tress tensor is more heavily dependent on the shear number and less on the fluctuating Mach number. The pressure-strain correlation tensor in the dynamic uations is directly calculated in this simulation. These correlations are decomposed into several parts, as contrasted with the traditional incompressible decomposition into two parts. The performance of existing models for the conventional terms is examined, and a model is proposed for the 'mean fluctuating' part.
NASA Technical Reports Server (NTRS)
Bellan, J.; Lathouwers, D.
2000-01-01
A novel multiphase flow model is presented for describing the pyrolysis of biomass in a 'bubbling' fluidized bed reactor. The mixture of biomass and sand in a gaseous flow is conceptualized as a particulate phase composed of two classes interacting with the carrier gaseous flow. The solid biomass is composed of three initial species: cellulose, hemicellulose and lignin. From each of these initial species, two new solid species originate during pyrolysis: an 'active' species and a char, thus totaling seven solid-biomass species. The gas phase is composed of the original carrier gas (steam), tar and gas; the last two species originate from the volumetric pyrolysis reaction. The conservation equations are derived from the Boltzmann equations through ensemble averaging. Stresses in the gaseous phase are the sum of the Newtonian and Reynolds (turbulent) contributions. The particulate phase stresses are the sum of collisional and Reynolds contributions. Heat transfer between phases, and heat transfer between classes in the particulate phase is modeled, the last resulting from collisions between sand and biomass. Closure of the equations must be performed by modeling the Reynolds stresses for both phases. The results of a simplified version (first step) of the model are presented.
Multiphase flow predictions from carbonate pore space images using extracted network models
NASA Astrophysics Data System (ADS)
Al-Kharusi, Anwar S.; Blunt, Martin J.
2008-06-01
A methodology to extract networks from pore space images is used to make predictions of multiphase transport properties for subsurface carbonate samples. The extraction of the network model is based on the computation of the location and sizes of pores and throats to create a topological representation of the void space of three-dimensional (3-D) rock images, using the concept of maximal balls. In this work, we follow a multistaged workflow. We start with a 2-D thin-section image; convert it statistically into a 3-D representation of the pore space; extract a network model from this image; and finally, simulate primary drainage, waterflooding, and secondary drainage flow processes using a pore-scale simulator. We test this workflow for a reservoir carbonate rock. The network-predicted absolute permeability is similar to the core plug measured value and the value computed on the 3-D void space image using the lattice Boltzmann method. The predicted capillary pressure during primary drainage agrees well with a mercury-air experiment on a core sample, indicating that we have an adequate representation of the rock's pore structure. We adjust the contact angles in the network to match the measured waterflood and secondary drainage capillary pressures. We infer a significant degree of contact angle hysteresis. We then predict relative permeabilities for primary drainage, waterflooding, and secondary drainage that agree well with laboratory measured values. This approach can be used to predict multiphase transport properties when wettability and pore structure vary in a reservoir, where experimental data is scant or missing. There are shortfalls to this approach, however. We compare results from three networks, one of which was derived from a section of the rock containing vugs. Our method fails to predict properties reliably when an unrepresentative image is processed to construct the 3-D network model. This occurs when the image volume is not sufficient to represent the
NASA Astrophysics Data System (ADS)
Saar, Martin O.
2011-11-01
Understanding the fluid dynamics of supercritical carbon dioxide (CO2) in brine- filled porous media is important for predictions of CO2 flow and brine displacement during geologic CO2 sequestration and during geothermal energy capture using sequestered CO2 as the subsurface heat extraction fluid. We investigate multiphase fluid flow in porous media employing particle image velocimetry experiments and lattice-Boltzmann fluid flow simulations at the pore scale. In particular, we are interested in the motion of a drop (representing a CO2 bubble) through an orifice in a plate, representing a simplified porous medium. In addition, we study single-phase/multicomponent reactive transport experimentally by injecting water with dissolved CO2 into rocks/sediments typically considered for CO2 sequestration to investigate how resultant fluid-mineral reactions modify permeability fields. Finally, we investigate numerically subsurface CO2 and heat transport at the geologic formation scale.
Multi-Phase Modeling of Rainbird Water Injection
NASA Technical Reports Server (NTRS)
Vu, Bruce T.; Moss, Nicholas; Sampson, Zoe
2014-01-01
This paper describes the use of a Volume of Fluid (VOF) multiphase model to simulate the water injected from a rainbird nozzle used in the sound suppression system during launch. The simulations help determine the projectile motion for different water flow rates employed at the pad, as it is critical to know if water will splash on the first-stage rocket engine during liftoff.
Grdešič, Peter; Vrečer, Franc; Ilić, Ilija
2016-11-01
Information about flow and compaction properties of hypromellose (HPMC) polymers is essential for the technologists who are facing challenges regarding poor flow and compaction while developing new controlled release matrix tablets. There is a profound lack of studies in this field and none of the published ones deal with the compaction of the newly introduced HPMC grades specifically designed for direct compression (DC). The objective behind this study was the evaluation of flow and compaction properties of six different grades of HPMC substitution type 2208 polymers, including two second generation directly compressible grades from Dow Chemical Company (K100LV, K15M, K4M CR, K4M DC, K100M CR and K100M DC). Flow properties were determined using flow time and Carr index. Compaction properties were quantified using "out-of-die" Heckel and modified Walker models as well as tensile strength profile and elastic recovery. We used statistical approach to analyze the results. Due to larger, rounder and smoother particles both DC grades showed distinctly better flow properties compared to their non-DC counterparts. Overall, K15M showed the best compaction properties, closely followed by K100LV. K100M grades showed superior compaction properties over K4M grades. The new, second generation DC grades had poorer compaction properties, however, they exhibited better flow properties on the other hand. Considering all compaction results, the Heckel model gave better description of compressibility compared to the Walker model, so it may be preferred in case of studying HPMC polymers and other similar materials.
Extension of lattice Boltzmann flux solver for simulation of compressible multi-component flows
NASA Astrophysics Data System (ADS)
Yang, Li-Ming; Shu, Chang; Yang, Wen-Ming; Wang, Yan
2018-05-01
The lattice Boltzmann flux solver (LBFS), which was presented by Shu and his coworkers for solving compressible fluid flow problems, is extended to simulate compressible multi-component flows in this work. To solve the two-phase gas-liquid problems, the model equations with stiffened gas equation of state are adopted. In this model, two additional non-conservative equations are introduced to represent the material interfaces, apart from the classical Euler equations. We first convert the interface equations into the full conservative form by applying the mass equation. After that, we calculate the numerical fluxes of the classical Euler equations by the existing LBFS and the numerical fluxes of the interface equations by the passive scalar approach. Once all the numerical fluxes at the cell interface are obtained, the conservative variables at cell centers can be updated by marching the equations in time and the material interfaces can be identified via the distributions of the additional variables. The numerical accuracy and stability of present scheme are validated by its application to several compressible multi-component fluid flow problems.
KINEMATIC MODELING OF MULTIPHASE SOLUTE TRANSPORT IN THE VADOSE ZONE
The goal of this research was the development of a computationally efficient simulation model for multiphase flow of organic hazardous waste constituents in the shallow soil environment. Such a model is appropriate for investigation of fate and transport of organic chemicals intr...
MODELING MULTIPHASE ORGANIC CHEMICAL TRANSPORT IN SOILS AND GROUND WATER
Subsurface contamination due to immiscible organic liquids is a widespread problem which poses a serious threat to ground-water resources. n order to understand the movement of such materials in the subsurface, a mathematical model was developed for multiphase flow and multicompo...
NASA Astrophysics Data System (ADS)
Andrea, P.; Huber, C.; Bachmann, O.; Chopard, B.
2010-12-01
Multiphase reactive flows occur naturally in various environments in the shallow subsurface, e.g. CO2 injections in saturated reservoirs, exsolved methane flux in shallow sediments and H20-CO2 volatiles in magmatic systems. Because of their multiphase nature together with the nonlinear feedbacks between reactions (dissolution/melting or precipitation) and the flow field at the pore-scale, the study of these dynamical processes remains a great challenge. In this study we focus on the injection of buoyant hot volatiles exsolved from a magmatic intrusion underplating a crystal-rich magma (porous medium). We use some simple theoretical models and a pore-scale multiphase reactive lattice Boltzmann model to investigate how the heat carried by the volatile phase affects the evolution of the porous medium spatially and temporally. We find that when the reaction rate is relatively slow and when the injection rate of volatiles is large (high injection Capillary number), the dissolution of the porous medium can be described by a local Peclet number (ratio of advective to diffusive flux of heat/reactant in the main gas channel). When the injection rate of volatile is reduced, or when the reaction rate is large, the dynamics transition to more complex regimes, where subvertical gas channels are no longer stable and can break into disconnected gas slugs. For the case of the injection of hot volatiles in crystal-rich magmatic systems, we find that the excess enthalpy advected by buoyant volatiles penetrates the porous medium over distances ~r Pe, where r is the average radius of the volatile channel (~pore size). The transport of heat by buoyant gases through a crystal mush is therefore in most cases limited to distances < meters. Our results also suggest that buoyant volatiles can carry chemical species (Li,F, Cl) far into a mush as their corresponding local Peclet number is several orders of magnitude greater than that for heat, owing to their low diffusion coefficients.
NASA Astrophysics Data System (ADS)
Fakhari, Abbas; Li, Yaofa; Bolster, Diogo; Christensen, Kenneth T.
2018-04-01
We implement a phase-field based lattice-Boltzmann (LB) method for numerical simulation of multiphase flows in heterogeneous porous media at pore scales with wettability effects. The present method can handle large density and viscosity ratios, pertinent to many practical problems. As a practical application, we study multiphase flow in a micromodel representative of CO2 invading a water-saturated porous medium at reservoir conditions, both numerically and experimentally. We focus on two flow cases with (i) a crossover from capillary fingering to viscous fingering at a relatively small capillary number, and (ii) viscous fingering at a relatively moderate capillary number. Qualitative and quantitative comparisons are made between numerical results and experimental data for temporal and spatial CO2 saturation profiles, and good agreement is found. In particular, a correlation analysis shows that any differences between simulations and results are comparable to intra-experimental differences from replicate experiments. A key conclusion of this work is that system behavior is highly sensitive to boundary conditions, particularly inlet and outlet ones. We finish with a discussion on small-scale flow features, such as the emergence of strong recirculation zones as well as flow in which the residual phase is trapped, including a close look at the detailed formation of a water cone. Overall, the proposed model yields useful information, such as the spatiotemporal evolution of the CO2 front and instantaneous velocity fields, which are valuable for understanding the mechanisms of CO2 infiltration at the pore scale.
NASA Astrophysics Data System (ADS)
Wu, Yu; Yi, Shi-He; He, Lin; Chen, Zhi; Zhu, Yang-Zhu
2014-11-01
Experimental studies which focus on flow visualization and the velocity field of a supersonic laminar/turbulent flow over a compression ramp were carried out in a Mach 3.0 wind tunnel. Fine flow structures and velocity field structures were obtained via NPLS (nanoparticle-tracer planar laser scattering) and PIV (particle image velocimetry) techniques, time-averaged flow structures were researched, and spatiotemporal evolutions of transient flow structures were analyzed. The flow visualization results indicated that when the ramp angles were 25°, a typical separation occurred in the laminar flow, some typical flow structures such as shock induced by the boundary layer, separation shock, reversed flow and reattachment shock were visible clearly. While a certain extent separation occurred in turbulent flow, the separation region was much smaller. When the ramp angles were 28°, laminar flow separated further, and the separation region expanded evidently, flow structures in the separation region were complex. While a typical separation occurred in turbulent flow, reversed flow structures were significant, flow structures in the separation region were relatively simple. The experimental results of velocity field were corresponding to flow visualization, and the velocity field structures of both compression ramp flows agreed with the flow structures well. There were three layered structures in the U component velocity, and the V component velocity appeared like an oblique “v”. Some differences between these two compression ramp flows can be observed in the velocity profiles of the shear layer and the shearing intensity.
NASA Astrophysics Data System (ADS)
Tirone, Massimiliano
2018-03-01
In this second installment of a series that aims to investigate the dynamic interaction between the composition and abundance of the solid mantle and its melt products, the classic interpretation of fractional melting is extended to account for the dynamic nature of the process. A multiphase numerical flow model is coupled with the program AlphaMELTS, which provides at the moment possibly the most accurate petrological description of melting based on thermodynamic principles. The conceptual idea of this study is based on a description of the melting process taking place along a 1-D vertical ideal column where chemical equilibrium is assumed to apply in two local sub-systems separately on some spatial and temporal scale. The solid mantle belongs to a local sub-system (ss1) that does not interact chemically with the melt reservoir which forms a second sub-system (ss2). The local melt products are transferred in the melt sub-system ss2 where the melt phase eventually can also crystallize into a different solid assemblage and will evolve dynamically. The main difference with the usual interpretation of fractional melting is that melt is not arbitrarily and instantaneously extracted from the mantle, but instead remains a dynamic component of the model, hence the process is named dynamic fractional melting (DFM). Some of the conditions that may affect the DFM model are investigated in this study, in particular the effect of temperature, mantle velocity at the boundary of the mantle column. A comparison is made with the dynamic equilibrium melting (DEM) model discussed in the first installment. The implications of assuming passive flow or active flow are also considered to some extent. Complete data files of most of the DFM simulations, four animations and two new DEM simulations (passive/active flow) are available following the instructions in the supplementary material.
DNS study of speed of sound in two-phase flows with phase change
NASA Astrophysics Data System (ADS)
Fu, Kai; Deng, Xiaolong
2017-11-01
Heat transfer through pipe flow is important for the safety of thermal power plants. Normally it is considered incompressible. However, in some conditions compressibility effects could deteriorate the heat transfer efficiency and even result in pipe rupture, especially when there is obvious phase change, due to the much lower sound speed in liquid-gas mixture flows. Based on the stratified multiphase flow model (Chang and Liou, JCP 2007), we present a new approach to simulate the sound speed in 3-D compressible two-phase dispersed flows, in which each face is divided into gas-gas, gas-liquid, and liquid-liquid parts via reconstruction by volume fraction, and fluxes are calculated correspondingly. Applying it to well-distributed air-water bubbly flows, comparing with the experiment measurements in air water mixture (Karplus, JASA 1957), the effects of adiabaticity, viscosity, and isothermality are examined. Under viscous and isothermal condition, the simulation results match the experimental ones very well, showing the DNS study with current method is an effective way for the sound speed of complex two-phase dispersed flows. Including the two-phase Riemann solver with phase change (Fechter et al., JCP 2017), more complex problems can be numerically studied.
NASA Technical Reports Server (NTRS)
Dahlburg, R. B.; Picone, J. M.
1989-01-01
The results of fully compressible, Fourier collocation, numerical simulations of the Orszag-Tang vortex system are presented. The initial conditions for this system consist of a nonrandom, periodic field in which the magnetic and velocity field contain X points but differ in modal structure along one spatial direction. The velocity field is initially solenoidal, with the total initial pressure field consisting of the superposition of the appropriate incompressible pressure distribution upon a flat pressure field corresponding to the initial, average Mach number of the flow. In these numerical simulations, this initial Mach number is varied from 0.2-0.6. These values correspond to average plasma beta values ranging from 30.0 to 3.3, respectively. It is found that compressible effects develop within one or two Alfven transit times, as manifested in the spectra of compressible quantities such as the mass density and the nonsolenoidal flow field. These effects include (1) a retardation of growth of correlation between the magnetic field and the velocity field, (2) the emergence of compressible small-scale structure such as massive jets, and (3) bifurcation of eddies in the compressible flow field. Differences between the incompressible and compressible results tend to increase with increasing initial average Mach number.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahlburg, R.B.; Picone, J.M.
In this paper the results of fully compressible, Fourier collocation, numerical simulations of the Orszag--Tang vortex system are presented. The initial conditions for this system consist of a nonrandom, periodic field in which the magnetic and velocity field contain X points but differ in modal structure along one spatial direction. The velocity field is initially solenoidal, with the total initial pressure field consisting of the superposition of the appropriate incompressible pressure distribution upon a flat pressure field corresponding to the initial, average Mach number of the flow. In these numerical simulations, this initial Mach number is varied from 0.2--0.6. Thesemore » values correspond to average plasma beta values ranging from 30.0 to 3.3, respectively. It is found that compressible effects develop within one or two Alfven transit times, as manifested in the spectra of compressible quantities such as the mass density and the nonsolenoidal flow field. These effects include (1) a retardation of growth of correlation between the magnetic field and the velocity field, (2) the emergence of compressible small-scale structure such as massive jets, and (3) bifurcation of eddies in the compressible flow field. Differences between the incompressible and compressible results tend to increase with increasing initial average Mach number.« less
Viscous compressible flow direct and inverse computation and illustrations
NASA Technical Reports Server (NTRS)
Yang, T. T.; Ntone, F.
1986-01-01
An algorithm for laminar and turbulent viscous compressible two dimensional flows is presented. For the application of precise boundary conditions over an arbitrary body surface, a body-fitted coordinate system is used in the physical plane. A thin-layer approximation of tne Navier-Stokes equations is introduced to keep the viscous terms relatively simple. The flow field computation is performed in the transformed plane. A factorized, implicit scheme is used to facilitate the computation. Sample calculations, for Couette flow, developing pipe flow, an isolated airflow, two dimensional compressor cascade flow, and segmental compressor blade design are presented. To a certain extent, the effective use of the direct solver depends on the user's skill in setting up the gridwork, the time step size and the choice of the artificial viscosity. The design feature of the algorithm, an iterative scheme to correct geometry for a specified surface pressure distribution, works well for subsonic flows. A more elaborate correction scheme is required in treating transonic flows where local shock waves may be involved.
NASA Astrophysics Data System (ADS)
Matin, Rastin; Hernandez, Anier; Misztal, Marek; Mathiesen, Joachim
2015-04-01
Many hydrodynamic phenomena ranging from flows at micron scale in porous media, large Reynolds numbers flows, non-Newtonian and multiphase flows have been simulated on computers using the lattice Boltzmann (LB) method. By solving the Lattice Boltzmann Equation on unstructured meshes in three dimensions, we have developed methods to efficiently model the fluid flow in real rock samples. We use this model to study the spatio-temporal statistics of the velocity field inside three-dimensional real geometries and investigate its relation to the, in general, anomalous transport of passive tracers for a wide range of Peclet and Reynolds numbers. We extend this model by free-energy based method, which allows us to simulate binary systems with large-density ratios in a thermodynamically consistent way and track the interface explicitly. In this presentation we will present our recent results on both anomalous transport and multiphase segregation.
NASA Astrophysics Data System (ADS)
Fosas de Pando, Miguel; Schmid, Peter J.; Sipp, Denis
2016-11-01
Nonlinear model reduction for large-scale flows is an essential component in many fluid applications such as flow control, optimization, parameter space exploration and statistical analysis. In this article, we generalize the POD-DEIM method, introduced by Chaturantabut & Sorensen [1], to address nonlocal nonlinearities in the equations without loss of performance or efficiency. The nonlinear terms are represented by nested DEIM-approximations using multiple expansion bases based on the Proper Orthogonal Decomposition. These extensions are imperative, for example, for applications of the POD-DEIM method to large-scale compressible flows. The efficient implementation of the presented model-reduction technique follows our earlier work [2] on linearized and adjoint analyses and takes advantage of the modular structure of our compressible flow solver. The efficacy of the nonlinear model-reduction technique is demonstrated to the flow around an airfoil and its acoustic footprint. We could obtain an accurate and robust low-dimensional model that captures the main features of the full flow.
A multi-parametric particle-pairing algorithm for particle tracking in single and multiphase flows
NASA Astrophysics Data System (ADS)
Cardwell, Nicholas D.; Vlachos, Pavlos P.; Thole, Karen A.
2011-10-01
Multiphase flows (MPFs) offer a rich area of fundamental study with many practical applications. Examples of such flows range from the ingestion of foreign particulates in gas turbines to transport of particles within the human body. Experimental investigation of MPFs, however, is challenging, and requires techniques that simultaneously resolve both the carrier and discrete phases present in the flowfield. This paper presents a new multi-parametric particle-pairing algorithm for particle tracking velocimetry (MP3-PTV) in MPFs. MP3-PTV improves upon previous particle tracking algorithms by employing a novel variable pair-matching algorithm which utilizes displacement preconditioning in combination with estimated particle size and intensity to more effectively and accurately match particle pairs between successive images. To improve the method's efficiency, a new particle identification and segmentation routine was also developed. Validation of the new method was initially performed on two artificial data sets: a traditional single-phase flow published by the Visualization Society of Japan (VSJ) and an in-house generated MPF data set having a bi-modal distribution of particles diameters. Metrics of the measurement yield, reliability and overall tracking efficiency were used for method comparison. On the VSJ data set, the newly presented segmentation routine delivered a twofold improvement in identifying particles when compared to other published methods. For the simulated MPF data set, measurement efficiency of the carrier phases improved from 9% to 41% for MP3-PTV as compared to a traditional hybrid PTV. When employed on experimental data of a gas-solid flow, the MP3-PTV effectively identified the two particle populations and reported a vector efficiency and velocity measurement error comparable to measurements for the single-phase flow images. Simultaneous measurement of the dispersed particle and the carrier flowfield velocities allowed for the calculation of
Progress Towards a Cartesian Cut-Cell Method for Viscous Compressible Flow
NASA Technical Reports Server (NTRS)
Berger, Marsha; Aftosmis, Michael J.
2012-01-01
We present preliminary development of an approach for simulating high Reynolds number steady compressible flow in two space dimensions using a Cartesian cut-cell finite volume method. We consider both laminar and turbulent flow with both low and high cell Reynolds numbers near the wall. The approach solves the full Navier-Stokes equations in all cells, and uses a wall model to address the resolution requirements near boundaries and to mitigate mesh irregularities in cut cells. We present a quadratic wall model for low cell Reynolds numbers. At high cell Reynolds numbers, the quadratic is replaced with a newly developed analytic wall model stemming from solution of a limiting form of the Spalart-Allmaras turbulence model which features a forward evaluation for flow velocity and exactly matches characteristics of the SA turbulence model in the field. We develop multigrid operators which attain convergence rates similar to inviscid multigrid. Investigations focus on preliminary verification and validation of the method. Flows over flat plates and compressible airfoils show good agreement with both theoretical results and experimental data. Mesh convergence studies on sub- and transonic airfoil flows show convergence of surface pressures with wall spacings as large as approx.0.1% chord. With the current analytic wall model, one or two additional refinements near the wall are required to obtain mesh converged values of skin friction.
Design and Construction of a Shock Tube Experiment for Multiphase Instability Experiments
NASA Astrophysics Data System (ADS)
Middlebrooks, John; Black, Wolfgang; Avgoustopoulos, Constantine; Allen, Roy; Kathakapa, Raj; Guo, Qiwen; McFarland, Jacob
2016-11-01
Hydrodynamic instabilities are important phenomena that have a wide range of practical applications in engineering and physics. One such instability, the shock driven multiphase instability (SDMI), arises when a shockwave accelerates an interface between two particle-gas mixtures with differing multiphase properties. The SDMI is present in high energy explosives, scramjets, and supernovae. A practical way of studying shock wave driven instabilities is through experimentation in a shock tube laboratory. This poster presentation will cover the design and data acquisition process of the University of Missouri's Fluid Mixing Shock Tube Laboratory. In the shock tube, a pressure generated shockwave is passed through a multiphase interface, creating the SDMI instability. This can be photographed for observation using high speed cameras, lasers, and advance imaging techniques. Important experimental parameters such as internal pressure and temperature, and mass flow rates of gases can be set and recorded by remotely controlled devices. The experimental facility provides the University of Missouri's Fluid Mixing Shock Tube Laboratory with the ability to validate simulated experiments and to conduct further inquiry into the field of shock driven multiphase hydrodynamic instabilities. Advisor.
NASA Technical Reports Server (NTRS)
Chen, C. P.; Wu, S. T.
1992-01-01
The objective of this investigation has been to develop an algorithm (or algorithms) for the improvement of the accuracy and efficiency of the computer fluid dynamics (CFD) models to study the fundamental physics of combustion chamber flows, which are necessary ultimately for the design of propulsion systems such as SSME and STME. During this three year study (May 19, 1978 - May 18, 1992), a unique algorithm was developed for all speed flows. This newly developed algorithm basically consists of two pressure-based algorithms (i.e. PISOC and MFICE). This PISOC is a non-iterative scheme and the FICE is an iterative scheme where PISOC has the characteristic advantages on low and high speed flows and the modified FICE has shown its efficiency and accuracy to compute the flows in the transonic region. A new algorithm is born from a combination of these two algorithms. This newly developed algorithm has general application in both time-accurate and steady state flows, and also was tested extensively for various flow conditions, such as turbulent flows, chemically reacting flows, and multiphase flows.
NASA Astrophysics Data System (ADS)
Grigoriev, I. A.; Wallin, S.; Brethouwer, G.; Johansson, A. V.
2013-10-01
The explicit algebraic Reynolds stress model of Wallin and Johansson [J. Fluid Mech. 403, 89 (2000)] is extended to compressible and variable-density turbulent flows. This is achieved by correctly taking into account the influence of the mean dilatation on the rapid pressure-strain correlation. The resulting model is formally identical to the original model in the limit of constant density. For two-dimensional mean flows the model is analyzed and the physical root of the resulting quartic equation is identified. Using a fixed-point analysis of homogeneously sheared and strained compressible flows, we show that the new model is realizable, unlike the previous model. Application of the model together with a K - ω model to quasi one-dimensional plane nozzle flow, transcending from subsonic to supersonic regime, also demonstrates realizability. Negative "dilatational" production of turbulence kinetic energy competes with positive "incompressible" production, eventually making the total production negative during the spatial evolution of the nozzle flow. Finally, an approach to include the baroclinic effect into the dissipation equation is proposed and an algebraic model for density-velocity correlations is outlined to estimate the corrections associated with density fluctuations. All in all, the new model can become a significant tool for CFD (computational fluid dynamics) of compressible flows.
Effect of lower limb compression on blood flow and performance in elite wheelchair rugby athletes
Vaile, Joanna; Stefanovic, Brad; Askew, Christopher D.
2016-01-01
Objective To investigate the effects of compression socks worn during exercise on performance and physiological responses in elite wheelchair rugby athletes. Design In a non-blinded randomized crossover design, participants completed two exercise trials (4 × 8 min bouts of submaximal exercise, each finishing with a timed maximal sprint) separated by 24 hr, with or without compression socks. Setting National Sports Training Centre, Queensland, Australia. Participants Ten national representative male wheelchair rugby athletes with cervical spinal cord injuries volunteered to participate. Interventions Participants wore medical grade compression socks on both legs during the exercise task (COMP), and during the control trial no compression was worn (CON). Outcome Measures The efficacy of the compression socks was determined by assessments of limb blood flow, core body temperature, heart rate, and ratings of perceived exertion, perceived thermal strain, and physical performance. Results While no significant differences between conditions were observed for maximal sprint time, average lap time was better maintained in COMP compared to CON (P<0.05). Lower limb blood flow increased from pre- to post-exercise by the same magnitude in both conditions (COMP: 2.51 ± 2.34; CON: 2.20 ± 1.85 ml.100 ml.−1min−1), whereas there was a greater increase in upper limb blood flow pre- to post-exercise in COMP (10.77 ± 8.24 ml.100 ml.−1min−1) compared to CON (6.21 ± 5.73 ml.100 ml.−1min−1; P < 0.05). Conclusion These findings indicate that compression socks worn during exercise is an effective intervention for maintaining submaximal performance during wheelchair exercise, and this performance benefit may be associated with an augmentation of upper limb blood flow. PMID:25582434
Skin blood flow with elastic compressive extravehicular activity space suit.
Tanaka, Kunihiko; Gotoh, Taro M; Morita, Hironobu; Hargens, Alan R
2003-10-01
During extravehicular activity (EVA), current space suits are pressurized with 100% oxygen at approximately 222 mmHg. A tight elastic garment, or mechanical counter pressure (MCP) suit that generates pressure by compression, may have several advantages over current space suit technology. In this study, we investigated local microcirculatory effects produced with negative ambient pressure with an MCP sleeve. The MCP glove and sleeve generated pressures similar to the current space suit. MCP remained constant during negative pressure due to unchanged elasticity of the material. Decreased skin capillary blood flow and temperature during MCP compression was counteracted by greater negative pressure or a smaller pressure differential.
Buys, Gerhard M; du Plessis, Lissinda H; Marais, Andries F; Kotze, Awie F; Hamman, Josias H
2013-06-01
Chitosan is a polymer derived from chitin that is widely available at relatively low cost, but due to compression challenges it has limited application for the production of direct compression tablets. The aim of this study was to use certain process and formulation variables to improve manufacturing of tablets containing chitosan as bulking agent. Chitosan particle size and flow properties were determined, which included bulk density, tapped density, compressibility and moisture uptake. The effect of process variables (i.e. compression force, punch depth, percentage compaction in a novel double fill compression process) and formulation variables (i.e. type of glidant, citric acid, pectin, coating with Eudragit S®) on chitosan tablet performance (i.e. mass variation, tensile strength, dissolution) was investigated. Moisture content of the chitosan powder, particle size and the inclusion of glidants had a pronounced effect on its flow ability. Varying the percentage compaction during the first cycle of a double fill compression process produced chitosan tablets with more acceptable tensile strength and dissolution rate properties. The inclusion of citric acid and pectin into the formulation significantly decreased the dissolution rate of isoniazid from the tablets due to gel formation. Direct compression of chitosan powder into tablets can be significantly improved by the investigated process and formulation variables as well as applying a double fill compression process.
NASA Technical Reports Server (NTRS)
Dixon, G. V.; Barringer, S. R.; Gray, C. E.; Leatherman, A. D.
1975-01-01
Computer programs and resulting tabulations are presented of pipeline length-to-diameter ratios as a function of Mach number and pressure ratios for compressible flow. The tabulations are applicable to air, nitrogen, oxygen, and hydrogen for compressible isothermal flow with friction and compressible adiabatic flow with friction. Also included are equations for the determination of weight flow. The tabulations presented cover a wider range of Mach numbers for choked, adiabatic flow than available from commonly used engineering literature. Additional information presented, but which is not available from this literature, is unchoked, adiabatic flow over a wide range of Mach numbers, and choked and unchoked, isothermal flow for a wide range of Mach numbers.
A Hermite-based lattice Boltzmann model with artificial viscosity for compressible viscous flows
NASA Astrophysics Data System (ADS)
Qiu, Ruofan; Chen, Rongqian; Zhu, Chenxiang; You, Yancheng
2018-05-01
A lattice Boltzmann model on Hermite basis for compressible viscous flows is presented in this paper. The model is developed in the framework of double-distribution-function approach, which has adjustable specific-heat ratio and Prandtl number. It contains a density distribution function for the flow field and a total energy distribution function for the temperature field. The equilibrium distribution function is determined by Hermite expansion, and the D3Q27 and D3Q39 three-dimensional (3D) discrete velocity models are used, in which the discrete velocity model can be replaced easily. Moreover, an artificial viscosity is introduced to enhance the model for capturing shock waves. The model is tested through several cases of compressible flows, including 3D supersonic viscous flows with boundary layer. The effect of artificial viscosity is estimated. Besides, D3Q27 and D3Q39 models are further compared in the present platform.
Supercomputer implementation of finite element algorithms for high speed compressible flows
NASA Technical Reports Server (NTRS)
Thornton, E. A.; Ramakrishnan, R.
1986-01-01
Prediction of compressible flow phenomena using the finite element method is of recent origin and considerable interest. Two shock capturing finite element formulations for high speed compressible flows are described. A Taylor-Galerkin formulation uses a Taylor series expansion in time coupled with a Galerkin weighted residual statement. The Taylor-Galerkin algorithms use explicit artificial dissipation, and the performance of three dissipation models are compared. A Petrov-Galerkin algorithm has as its basis the concepts of streamline upwinding. Vectorization strategies are developed to implement the finite element formulations on the NASA Langley VPS-32. The vectorization scheme results in finite element programs that use vectors of length of the order of the number of nodes or elements. The use of the vectorization procedure speeds up processing rates by over two orders of magnitude. The Taylor-Galerkin and Petrov-Galerkin algorithms are evaluated for 2D inviscid flows on criteria such as solution accuracy, shock resolution, computational speed and storage requirements. The convergence rates for both algorithms are enhanced by local time-stepping schemes. Extension of the vectorization procedure for predicting 2D viscous and 3D inviscid flows are demonstrated. Conclusions are drawn regarding the applicability of the finite element procedures for realistic problems that require hundreds of thousands of nodes.
NASA Astrophysics Data System (ADS)
Bagchi, Prosenjit
2016-11-01
In this talk, two problems in multiphase biological flows will be discussed. The first is the direct numerical simulation of whole blood and drug particulates in microvascular networks. Blood in microcirculation behaves as a dense suspension of heterogeneous cells. The erythrocytes are extremely deformable, while inactivated platelets and leukocytes are nearly rigid. A significant progress has been made in recent years in modeling blood as a dense cellular suspension. However, many of these studies considered the blood flow in simple geometry, e.g., straight tubes of uniform cross-section. In contrast, the architecture of a microvascular network is very complex with bifurcating, merging and winding vessels, posing a further challenge to numerical modeling. We have developed an immersed-boundary-based method that can consider blood cell flow in physiologically realistic and complex microvascular network. In addition to addressing many physiological issues related to network hemodynamics, this tool can be used to optimize the transport properties of drug particulates for effective organ-specific delivery. Our second problem is pseudopod-driven motility as often observed in metastatic cancer cells and other amoeboid cells. We have developed a multiscale hydrodynamic model to simulate such motility. We study the effect of cell stiffness on motility as the former has been considered as a biomarker for metastatic potential. Funded by the National Science Foundation.
Filming the invisible - time-resolved visualization of compressible flows
NASA Astrophysics Data System (ADS)
Kleine, H.
2010-04-01
Essentially all processes in gasdynamics are invisible to the naked eye as they occur in a transparent medium. The task to observe them is further complicated by the fact that most of these processes are also transient, often with characteristic times that are considerably below the threshold of human perception. Both difficulties can be overcome by combining visualization methods that reveal changes in the transparent medium, and high-speed photography techniques that “stop” the motion of the flow. The traditional approach is to reconstruct a transient process from a series of single images, each taken in a different experiment at a different instant. This approach, which is still widely used today, can only be expected to give reliable results when the process is reproducible. Truly time-resolved visualization, which yields a sequence of flow images in a single experiment, has been attempted for more than a century, but many of the developed camera systems were characterized by a high level of complexity and limited quality of the results. Recent advances in digital high-speed photography have changed this situation and have provided the tools to investigate, with relative ease and in sufficient detail, the true development of a transient flow with characteristic time scales down to one microsecond. This paper discusses the potential and the limitations one encounters when using density-sensitive visualization techniques in time-resolved mode. Several examples illustrate how this approach can reveal and explain a number of previously undetected phenomena in a variety of highly transient compressible flows. It is demonstrated that time-resolved visualization offers numerous advantages which normally outweigh its shortcomings, mainly the often-encountered loss in resolution. Apart from the capability to track the location and/or shape of flow features in space and time, adequate time-resolved visualization allows one to observe the development of deliberately
Quasi-one-dimensional compressible flow across face seals and narrow slots. 1: Analysis
NASA Technical Reports Server (NTRS)
Zuk, J.; Ludwig, L. P.; Johnson, R. L.
1972-01-01
An analysis is presented for compressible fluid flow across shaft face seals and narrow slots. The analysis includes fluid inertia, viscous friction, and entrance losses. Subsonic and choked flow conditions can be predicted and analyzed. The model is valid for both laminar and turbulent flows. Results agree with experiment and with solutions which are more limited in applicability. Results show that a parallel film can have a positive film stiffness under choked flow conditions.
NASA Astrophysics Data System (ADS)
Geiger, S.; Driesner, T.; Matthai, S.; Heinrich, C.
2002-12-01
Realistic modelling of multi-phase fluid flow, energy and component transport in magmatic-hydrothermal systems is very challenging because hydrological properties of fluids and rocks vary over many orders of magnitude and the geometric complexities of such systems. Furthermore, density dependent component transport and transient permeability variations due to P-T changes and fluid-rock interactions introduce additional difficulties. As a result, the governing equations for the hydrodynamics, energy and component transport, and thermodynamics in magmatic hydrothermal systems are highly non-linear and strongly coupled. Essential requirements of a numerical formulation for such a system are: (1) a treatment of the hydrodynamics that can accurately resolve complex geological structures and represent the highly variable fluid velocities herein, (2) a realistic thermodynamic representation of the fluid properties including the wide P-T-X range of liquid+vapour coexistence for the highly saline fluids, and (3) an accurate handling of the highly contrasting transport properties of the two fluids. We are combining higher order finite-element (FE) methods with total variation diminishing finite volume (TVDFV) methods to model the hydrodynamics and energy and component transport of magmatic hydrothermal systems. Combined FE and TVDFV methods are mass and shock preserving, yield great geometric flexibility in 2D and 3D [2]. Furthermore, efficient matrix solvers can be employed to model fluid flow in geologically realistic structures [5]. The governing equations are linearized by operator-splitting and solved sequentially using a Picard iteration scheme. We chose the system water-NaCl as a realistic proxy for natural fluids occurring in magmatic-hydrothermal systems. An in-depth evaluation of the available experimental and theoretical data led to a consistent and accurate set of formulations for the PVTXH relations that are valid from 0 to 800 C, 0 to 500 MPa, and 0 to 1 XNa
Microstructure Evolution and Flow Stress Model of a 20Mn5 Hollow Steel Ingot during Hot Compression.
Liu, Min; Ma, Qing-Xian; Luo, Jian-Bin
2018-03-21
20Mn5 steel is widely used in the manufacture of heavy hydro-generator shaft due to its good performance of strength, toughness and wear resistance. However, the hot deformation and recrystallization behaviors of 20Mn5 steel compressed under high temperature were not studied. In this study, the hot compression experiments under temperatures of 850-1200 °C and strain rates of 0.01/s-1/s are conducted using Gleeble thermal and mechanical simulation machine. And the flow stress curves and microstructure after hot compression are obtained. Effects of temperature and strain rate on microstructure are analyzed. Based on the classical stress-dislocation relation and the kinetics of dynamic recrystallization, a two-stage constitutive model is developed to predict the flow stress of 20Mn5 steel. Comparisons between experimental flow stress and predicted flow stress show that the predicted flow stress values are in good agreement with the experimental flow stress values, which indicates that the proposed constitutive model is reliable and can be used for numerical simulation of hot forging of 20Mn5 hollow steel ingot.
Attachment-Line Heating in a Compressible Flow
NASA Astrophysics Data System (ADS)
Reed, Helen; Saric, William
2011-11-01
The attachment-line boundary layer on a swept wing can be subject to either an instability or contamination by wing-root turbulence. A model of the attachment-line boundary layer is first developed including compressibility and wall heating in a Falkner-Skan-Cooke class of 3-D boundary layers with Hartree parameter of 1.0. For cases otherwise subcritical to either contamination or instability, the destabilizing effect of leading-edge heating under a variety of sweep angles and flight conditions is demonstrated. The results correlate with the attachment-line Reynolds number. Because the required heating levels are reasonable and achievable to trip the flow over the wing to turbulent, one possible application of this work is in the establishing of a baseline turbulent flow (on demand) for the calibration of a laminar-flow-control health monitoring system. *Portion based on work under Framework Agreement between Airbus Americas and NIA, and opinions, findings, conclusions do not necessarily reflect views of Airbus or NIA. Support from AFOSR/NASA National Center for Hypersonic Research in Laminar-Turbulent Transition through Grant FA9550-09-1-0341 gratefully acknowledged.
Multiphase modeling of geologic carbon sequestration in saline aquifers.
Bandilla, Karl W; Celia, Michael A; Birkholzer, Jens T; Cihan, Abdullah; Leister, Evan C
2015-01-01
Geologic carbon sequestration (GCS) is being considered as a climate change mitigation option in many future energy scenarios. Mathematical modeling is routinely used to predict subsurface CO2 and resident brine migration for the design of injection operations, to demonstrate the permanence of CO2 storage, and to show that other subsurface resources will not be degraded. Many processes impact the migration of CO2 and brine, including multiphase flow dynamics, geochemistry, and geomechanics, along with the spatial distribution of parameters such as porosity and permeability. In this article, we review a set of multiphase modeling approaches with different levels of conceptual complexity that have been used to model GCS. Model complexity ranges from coupled multiprocess models to simplified vertical equilibrium (VE) models and macroscopic invasion percolation models. The goal of this article is to give a framework of conceptual model complexity, and to show the types of modeling approaches that have been used to address specific GCS questions. Application of the modeling approaches is shown using five ongoing or proposed CO2 injection sites. For the selected sites, the majority of GCS models follow a simplified multiphase approach, especially for questions related to injection and local-scale heterogeneity. Coupled multiprocess models are only applied in one case where geomechanics have a strong impact on the flow. Owing to their computational efficiency, VE models tend to be applied at large scales. A macroscopic invasion percolation approach was used to predict the CO2 migration at one site to examine details of CO2 migration under the caprock. © 2015, National Ground Water Association.
Acceleration methods for multi-physics compressible flow
NASA Astrophysics Data System (ADS)
Peles, Oren; Turkel, Eli
2018-04-01
In this work we investigate the Runge-Kutta (RK)/Implicit smoother scheme as a convergence accelerator for complex multi-physics flow problems including turbulent, reactive and also two-phase flows. The flows considered are subsonic, transonic and supersonic flows in complex geometries, and also can be either steady or unsteady flows. All of these problems are considered to be a very stiff. We then introduce an acceleration method for the compressible Navier-Stokes equations. We start with the multigrid method for pure subsonic flow, including reactive flows. We then add the Rossow-Swanson-Turkel RK/Implicit smoother that enables performing all these complex flow simulations with a reasonable CFL number. We next discuss the RK/Implicit smoother for time dependent problem and also for low Mach numbers. The preconditioner includes an intrinsic low Mach number treatment inside the smoother operator. We also develop a modified Roe scheme with a corresponding flux Jacobian matrix. We then give the extension of the method for real gas and reactive flow. Reactive flows are governed by a system of inhomogeneous Navier-Stokes equations with very stiff source terms. The extension of the RK/Implicit smoother requires an approximation of the source term Jacobian. The properties of the Jacobian are very important for the stability of the method. We discuss what the chemical physics theory of chemical kinetics tells about the mathematical properties of the Jacobian matrix. We focus on the implication of the Le-Chatelier's principle on the sign of the diagonal entries of the Jacobian. We present the implementation of the method for turbulent flow. We use a two RANS turbulent model - one equation model - Spalart-Allmaras and a two-equation model - k-ω SST model. The last extension is for two-phase flows with a gas as a main phase and Eulerian representation of a dispersed particles phase (EDP). We present some examples for such flow computations inside a ballistic evaluation
Study of compressible flow through a rectangular-to-semiannular transition duct
NASA Technical Reports Server (NTRS)
Foster, Jeffry; Okiishi, Theodore H.; Wendt, Bruce J.; Reichert, Bruce A.
1995-01-01
Detailed flow field measurements are presented for compressible flow through a diffusing rectangular-to-semiannular transition duct. Comparisons are made with published computational results for flow through the duct. Three-dimensional velocity vectors and total pressures were measured at the exit plane of the diffuser model. The inlet flow was also measured. These measurements are made using calibrated five-hole probes. Surface oil flow visualization and surface static pressure data were also taken. The study was conducted with an inlet Mach number of 0.786. The diffuser Reynolds based on the inlet centerline velocity and the exit diameter of the diffuser was 3,200,000. Comparison of the measured data with previously published computational results are made. Data demonstrating the ability of vortex generators to reduce flow separation and circumferential distortion is also presented.
On the linear stability of compressible plane Couette flow
NASA Technical Reports Server (NTRS)
Duck, Peter W.; Erlebacher, Gordon; Hussaini, M. Yousuff
1991-01-01
The linear stability of compressible plane Couette flow is investigated. The correct and proper basic velocity and temperature distributions are perturbed by a small amplitude normal mode disturbance. The full small amplitude disturbance equations are solved numerically at finite Reynolds numbers, and the inviscid limit of these equations is then investigated in some detail. It is found that instability can occur, although the stability characteristics of the flow are quite different from unbounded flows. The effects of viscosity are also calculated, asymptotically, and shown to have a stabilizing role in all the cases investigated. Exceptional regimes to the problem occur when the wavespeed of the disturbances approaches the velocity of either of the walls, and these regimes are also analyzed in some detail. Finally, the effect of imposing radiation-type boundary conditions on the upper (moving) wall (in place of impermeability) is investigated, and shown to yield results common to both bounded and unbounded flows.
Letter: Transient interaction between plasma jet and supersonic compression ramp flow
NASA Astrophysics Data System (ADS)
Huang, He-Xia; Tan, Hui-Jun; Sun, Shu; Zhang, Yu-Chao; Cheng, Lin
2018-04-01
The rapid flow evolution between a plasma jet and a 20° compression ramp flow is captured by a high-speed schlieren system at Mach 2.0. Several interesting flow phenomena are observed for the first time. The pulsed jet, which generates strong perturbations, forces the crossflow boundary layer to separate and forms a forward moving shock. A typical shock-on-shock interaction occurs when the precursor shock intersects with the original shock. The interaction is initially regular, and then it transforms into an irregular one with a Mach stem connecting the precursor shock and original ramp shock.
On solving the compressible Navier-Stokes equations for unsteady flows at very low Mach numbers
NASA Technical Reports Server (NTRS)
Pletcher, R. H.; Chen, K.-H.
1993-01-01
The properties of a preconditioned, coupled, strongly implicit finite difference scheme for solving the compressible Navier-Stokes equations in primitive variables are investigated for two unsteady flows at low speeds, namely the impulsively started driven cavity and the startup of pipe flow. For the shear-driven cavity flow, the computational effort was observed to be nearly independent of Mach number, especially at the low end of the range considered. This Mach number independence was also observed for steady pipe flow calculations; however, rather different conclusions were drawn for the unsteady calculations. In the pressure-driven pipe startup problem, the compressibility of the fluid began to significantly influence the physics of the flow development at quite low Mach numbers. The present scheme was observed to produce the expected characteristics of completely incompressible flow when the Mach number was set at very low values. Good agreement with incompressible results available in the literature was observed.
Flow design and simulation of a gas compression system for hydrogen fusion energy production
NASA Astrophysics Data System (ADS)
Avital, E. J.; Salvatore, E.; Munjiza, A.; Suponitsky, V.; Plant, D.; Laberge, M.
2017-08-01
An innovative gas compression system is proposed and computationally researched to achieve a short time response as needed in engineering applications such as hydrogen fusion energy reactors and high speed hammers. The system consists of a reservoir containing high pressure gas connected to a straight tube which in turn is connected to a spherical duct, where at the sphere’s centre plasma resides in the case of a fusion reactor. Diaphragm located inside the straight tube separates the reservoir’s high pressure gas from the rest of the plenum. Once the diaphragm is breached the high pressure gas enters the plenum to drive pistons located on the inner wall of the spherical duct that will eventually end compressing the plasma. Quasi-1D and axisymmetric flow formulations are used to design and analyse the flow dynamics. A spike is designed for the interface between the straight tube and the spherical duct to provide a smooth geometry transition for the flow. Flow simulations show high supersonic flow hitting the end of the spherical duct, generating a return shock wave propagating upstream and raising the pressure above the reservoir pressure as in the hammer wave problem, potentially giving temporary pressure boost to the pistons. Good agreement is revealed between the two flow formulations pointing to the usefulness of the quasi-1D formulation as a rapid solver. Nevertheless, a mild time delay in the axisymmetric flow simulation occurred due to moderate two-dimensionality effects. The compression system is settled down in a few milliseconds for a spherical duct of 0.8 m diameter using Helium gas and a uniform duct cross-section area. Various system geometries are analysed using instantaneous and time history flow plots.
NASA Technical Reports Server (NTRS)
Strong, Stuart L.; Meade, Andrew J., Jr.
1992-01-01
Preliminary results are presented of a finite element/finite difference method (semidiscrete Galerkin method) used to calculate compressible boundary layer flow about airfoils, in which the group finite element scheme is applied to the Dorodnitsyn formulation of the boundary layer equations. The semidiscrete Galerkin (SDG) method promises to be fast, accurate and computationally efficient. The SDG method can also be applied to any smoothly connected airfoil shape without modification and possesses the potential capability of calculating boundary layer solutions beyond flow separation. Results are presented for low speed laminar flow past a circular cylinder and past a NACA 0012 airfoil at zero angle of attack at a Mach number of 0.5. Also shown are results for compressible flow past a flat plate for a Mach number range of 0 to 10 and results for incompressible turbulent flow past a flat plate. All numerical solutions assume an attached boundary layer.
NASA Technical Reports Server (NTRS)
Walchner, O
1939-01-01
Errors arising from yawed flow were also determined up to 20 degrees angle of attack. In axial flow, the Prandtl pitot tube begins at w/a approx. = 0.8 to give an incorrect static pressure reading, while it records the tank pressure correctly, as anticipated, up to sonic velocity. Owing to the compressibility of the air, the Prandtl pitot tube manifests compression shocks when the air speed approaches velocity of sound. This affects the pressure reading of the instrument. Because of the increasing importance of high speed in aviation, this compressibility effect is investigated in detail.
NASA Astrophysics Data System (ADS)
Sakamoto, Yasuhide; Nishiwaki, Junko; Hara, Junko; Kawabe, Yoshishige; Sugai, Yuichi; Komai, Takeshi
In late years, soil contamination due to mineral oil in vacant lots of oil factory and oil field has become obvious. Measure for soil contamina tion and risk assessment are neces sary for sustainable development of industrial activity. Especially, in addition to contaminated sites, various exposure paths for human body such as well water, soil and farm crop are supposed. So it is very important to comprehend the transport phenomena of contaminated material under the environments of soil and ground water. In this study, mineral oil as c ontaminated material consisting of mu lti-component such as aliphatic and aromatic series was modeled. Then numerical mode l for transport phenomena in surface soil and aquifer was constructed. On the basis of modeling for mineral oil, our numerical model consists of three-phase (oil, water and gas) forty three-component. This numerical model becomes base program for risk assessment system on soil contamination due to mineral oil. Using this numerical model, we carried out some numerical simulation for a laboratory-scale experiment on oil-water multi-phase flow. Relative permeability that dominate flow behavior in multi-phase condition was formulated and the validity of the numerical model developed in this study was considered.
Pseudo-compressibility methods for the incompressible flow equations
NASA Technical Reports Server (NTRS)
Turkel, Eli; Arnone, A.
1993-01-01
Preconditioning methods to accelerate convergence to a steady state for the incompressible fluid dynamics equations are considered. The analysis relies on the inviscid equations. The preconditioning consists of a matrix multiplying the time derivatives. Thus the steady state of the preconditioned system is the same as the steady state of the original system. The method is compared to other types of pseudo-compressibility. For finite difference methods preconditioning can change and improve the steady state solutions. An application to viscous flow around a cascade with a non-periodic mesh is presented.
Two-dimensional compressible flow in centrifugal compressors with straight blades
NASA Technical Reports Server (NTRS)
Stanitz, John D; Ellis, Gaylord O
1950-01-01
Six numerical examples are presented for steady, two-dimensional, compressible, nonviscous flow in centrifugal compressors with thin straight blades, the center lines of which generate the surface of a right circular cone when rotated about the axis of the compressor. A seventh example is presented for incompressible flow. The solutions were obtained in a region of the compressors, including the impeller tip, that was considered to be unaffected by the diffuser vanes or by the impeller-inlet configuration. Each solution applies to radial and mixed flow compressors with various cone angles but with the same angle between blades on the conic flow surface. The solution also apply to radial and mixed flow turbines with the rotation and the flow direction reversed. The effects of variations in the following parameters were investigated: (1) flow rate, (2) impeller-tip speed, (3) variation of passage height with radius, and (4) angle between blades on conic flow surface. The numerical results are presented in plots of the streamlines and constant Mach number lines. Correlation equations are developed whereby the flow conditions in any impeller with straight blades can be determined (in the region investigated by this analysis) for all operating conditions.
NASA Technical Reports Server (NTRS)
Frankl, F.; Voishel, V.
1943-01-01
In the present report an investigation is made on a flat plate in a two-dimensional compressible flow of the effect of compressibility and heating on the turbulent frictional drag coefficient in the boundary layer of an airfoil or wing radiator. The analysis is based on the Prandtl-Karman theory of the turbulent boundary later and the Stodola-Crocco, theorem on the linear relation between the total energy of the flow and its velocity. Formulas are obtained for the velocity distribution and the frictional drag law in a turbulent boundary later with the compressibility effect and heat transfer taken into account. It is found that with increase of compressibility and temperature at full retardation of the flow (the temperature when the velocity of the flow at a given point is reduced to zero in case of an adiabatic process in the gas) at a constant R (sub x), the frictional drag coefficient C (sub f) decreased, both of these factors acting in the same sense.
Well-posed continuum equations for granular flow with compressibility and μ(I)-rheology
NASA Astrophysics Data System (ADS)
Barker, T.; Schaeffer, D. G.; Shearer, M.; Gray, J. M. N. T.
2017-05-01
Continuum modelling of granular flow has been plagued with the issue of ill-posed dynamic equations for a long time. Equations for incompressible, two-dimensional flow based on the Coulomb friction law are ill-posed regardless of the deformation, whereas the rate-dependent μ(I)-rheology is ill-posed when the non-dimensional inertial number I is too high or too low. Here, incorporating ideas from critical-state soil mechanics, we derive conditions for well-posedness of partial differential equations that combine compressibility with I-dependent rheology. When the I-dependence comes from a specific friction coefficient μ(I), our results show that, with compressibility, the equations are well-posed for all deformation rates provided that μ(I) satisfies certain minimal, physically natural, inequalities.
Well-posed continuum equations for granular flow with compressibility and μ(I)-rheology
Schaeffer, D. G.; Shearer, M.; Gray, J. M. N. T.
2017-01-01
Continuum modelling of granular flow has been plagued with the issue of ill-posed dynamic equations for a long time. Equations for incompressible, two-dimensional flow based on the Coulomb friction law are ill-posed regardless of the deformation, whereas the rate-dependent μ(I)-rheology is ill-posed when the non-dimensional inertial number I is too high or too low. Here, incorporating ideas from critical-state soil mechanics, we derive conditions for well-posedness of partial differential equations that combine compressibility with I-dependent rheology. When the I-dependence comes from a specific friction coefficient μ(I), our results show that, with compressibility, the equations are well-posed for all deformation rates provided that μ(I) satisfies certain minimal, physically natural, inequalities. PMID:28588402
Well-posed continuum equations for granular flow with compressibility and μ(I)-rheology.
Barker, T; Schaeffer, D G; Shearer, M; Gray, J M N T
2017-05-01
Continuum modelling of granular flow has been plagued with the issue of ill-posed dynamic equations for a long time. Equations for incompressible, two-dimensional flow based on the Coulomb friction law are ill-posed regardless of the deformation, whereas the rate-dependent μ ( I )-rheology is ill-posed when the non-dimensional inertial number I is too high or too low. Here, incorporating ideas from critical-state soil mechanics, we derive conditions for well-posedness of partial differential equations that combine compressibility with I -dependent rheology. When the I -dependence comes from a specific friction coefficient μ ( I ), our results show that, with compressibility, the equations are well-posed for all deformation rates provided that μ ( I ) satisfies certain minimal, physically natural, inequalities.
Microstructure Evolution and Flow Stress Model of a 20Mn5 Hollow Steel Ingot during Hot Compression
Liu, Min; Ma, Qing-Xian; Luo, Jian-Bin
2018-01-01
20Mn5 steel is widely used in the manufacture of heavy hydro-generator shaft due to its good performance of strength, toughness and wear resistance. However, the hot deformation and recrystallization behaviors of 20Mn5 steel compressed under high temperature were not studied. In this study, the hot compression experiments under temperatures of 850–1200 °C and strain rates of 0.01/s–1/s are conducted using Gleeble thermal and mechanical simulation machine. And the flow stress curves and microstructure after hot compression are obtained. Effects of temperature and strain rate on microstructure are analyzed. Based on the classical stress-dislocation relation and the kinetics of dynamic recrystallization, a two-stage constitutive model is developed to predict the flow stress of 20Mn5 steel. Comparisons between experimental flow stress and predicted flow stress show that the predicted flow stress values are in good agreement with the experimental flow stress values, which indicates that the proposed constitutive model is reliable and can be used for numerical simulation of hot forging of 20Mn5 hollow steel ingot. PMID:29561826
Black hole feedback in a multiphase interstellar medium
NASA Astrophysics Data System (ADS)
Bourne, Martin A.; Nayakshin, Sergei; Hobbs, Alexander
2014-07-01
Ultrafast outflows (UFOs) from supermassive black holes (SMBHs) are thought to regulate the growth of SMBHs and host galaxies, resulting in a number of observational correlations. We present high-resolution numerical simulations of the impact of a thermalized UFO on the ambient gas in the inner part of the host galaxy. Our results depend strongly on whether the gas is homogeneous or clumpy. In the former case all of the ambient gas is driven outward rapidly as expected based on commonly used energy budget arguments, while in the latter the flows of mass and energy de-couple. Carrying most of the energy, the shocked UFO escapes from the bulge via paths of least resistance, taking with it only the low-density phase of the host. Most of the mass is however in the high-density phase, and is affected by the UFO much less strongly, and may even continue to flow inwards. We suggest that the UFO energy leakage through the pores in the multiphase interstellar medium (ISM) may explain why observed SMBHs are so massive despite their overwhelmingly large energy production rates. The multiphase ISM effects reported here are probably under-resolved in cosmological simulations but may be included in prescriptions for active galactic nuclei feedback in future simulations and in semi-analytical models.
NASA Astrophysics Data System (ADS)
Fourtakas, G.; Rogers, B. D.
2016-06-01
A two-phase numerical model using Smoothed Particle Hydrodynamics (SPH) is applied to two-phase liquid-sediments flows. The absence of a mesh in SPH is ideal for interfacial and highly non-linear flows with changing fragmentation of the interface, mixing and resuspension. The rheology of sediment induced under rapid flows undergoes several states which are only partially described by previous research in SPH. This paper attempts to bridge the gap between the geotechnics, non-Newtonian and Newtonian flows by proposing a model that combines the yielding, shear and suspension layer which are needed to predict accurately the global erosion phenomena, from a hydrodynamics prospective. The numerical SPH scheme is based on the explicit treatment of both phases using Newtonian and the non-Newtonian Bingham-type Herschel-Bulkley-Papanastasiou constitutive model. This is supplemented by the Drucker-Prager yield criterion to predict the onset of yielding of the sediment surface and a concentration suspension model. The multi-phase model has been compared with experimental and 2-D reference numerical models for scour following a dry-bed dam break yielding satisfactory results and improvements over well-known SPH multi-phase models. With 3-D simulations requiring a large number of particles, the code is accelerated with a graphics processing unit (GPU) in the open-source DualSPHysics code. The implementation and optimisation of the code achieved a speed up of x58 over an optimised single thread serial code. A 3-D dam break over a non-cohesive erodible bed simulation with over 4 million particles yields close agreement with experimental scour and water surface profiles.
Quasi-one-dimensional compressible flow across face seals and narrow slots. 2: Computer program
NASA Technical Reports Server (NTRS)
Zuk, J.; Smith, P. J.
1972-01-01
A computer program is presented for compressible fluid flow with friction across face seals and through narrow slots. The computer program carries out a quasi-one-dimensional flow analysis which is valid for laminar and turbulent flows under both subsonic and choked flow conditions for parallel surfaces. The program is written in FORTRAN IV. The input and output variables are in either the International System of Units (SI) or the U.S. customary system.
Multiphase transport in polymer electrolyte membrane fuel cells
NASA Astrophysics Data System (ADS)
Gauthier, Eric D.
Polymer electrolyte membrane fuel cells (PEMFCs) enable efficient conversion of fuels to electricity. They have enormous potential due to the high energy density of the fuels they utilize (hydrogen or alcohols). Power density is a major limitation to wide-scale introduction of PEMFCs. Power density in hydrogen fuel cells is limited by accumulation of water in what is termed fuel cell `flooding.' Flooding may occur in either the gas diffusion layer (GDL) or within the flow channels of the bipolar plate. These components comprise the electrodes of the fuel cell and balance transport of reactants/products with electrical conductivity. This thesis explores the role of electrode materials in the fuel cell and examines the fundamental connection between material properties and multiphase transport processes. Water is generated at the cathode catalyst layer. As liquid water accumulates it will utilize the largest pores in the GDL to go from the catalyst layer to the flow channels. Water collects to large pores via lateral transport at the interface between the GDL and catalyst layer. We have shown that water may be collected in these large pores from several centimeters away, suggesting that we could engineer the GDL to control flooding with careful placement and distribution of large flow-directing pores. Once liquid water is in the flow channels it forms slugs that block gas flow. The slugs are pushed along the channel by a pressure gradient that is dependent on the material wettability. The permeable nature of the GDL also plays a major role in slug growth and allowing bypass of gas between adjacent channels. Direct methanol fuel cells (DMFCs) have analogous multiphase flow issues where carbon dioxide bubbles accumulate, `blinding' regions of the fuel cell. This problem is fundamentally similar to water management in hydrogen fuel cells but with a gas/liquid phase inversion. Gas bubbles move laterally through the porous GDL and emerge to form large bubbles within the
A real-time interferometer technique for compressible flow research
NASA Technical Reports Server (NTRS)
Bachalo, W. D.; Houser, M. J.
1984-01-01
Strengths and shortcomings in the application of interferometric techniques to transonic flow fields are examined and an improved method is elaborated. Such applications have demonstrated the value of interferometry in obtaining data for compressible flow research. With holographic techniques, interferometry may be applied in large scale facilities without the use of expensive optics or elaborate vibration isolation equipment. Results obtained using holographic interferometry and other methods demonstrate that reliable qualitative and quantitative data can be acquired. Nevertheless, the conventional method can be difficult to set up and apply, and it cannot produce real-time data. A new interferometry technique is investigated that promises to be easier to apply and can provide real-time information. This single-beam technique has the necessary insensitivity to vibration for large scale wind tunnel operations. Capabilities of the method and preliminary tests on some laboratory scale flow fluids are described.
Hingerl, Ferdinand F.; Yang, Feifei; Pini, Ronny; ...
2016-02-02
In this paper we present the results of an extensive multiscale characterization of the flow properties and structural and capillary heterogeneities of the Heletz sandstone. We performed petrographic, porosity and capillary pressure measurements on several subsamples. We quantified mm-scale heterogeneity in saturation distributions in a rock core during multi-phase flow using conventional X-ray CT scanning. Core-flooding experiments were conducted under reservoirs conditions (9 MPa, 50 °C) to obtain primary drainage and secondary imbibition relative permeabilities and residual trapping was analyzed and quantified. We provide parameters for relative permeability, capillary pressure and trapping models for further modeling studies. A synchrotron-based microtomographymore » study complements our cm- to mm-scale investigation by providing links between the micromorphology and mm-scale saturation heterogeneities.« less
Quantitative holographic interferometry applied to combustion and compressible flow research
NASA Astrophysics Data System (ADS)
Bryanston-Cross, Peter J.; Towers, D. P.
1993-03-01
The application of holographic interferometry to phase object analysis is described. Emphasis has been given to a method of extracting quantitative information automatically from the interferometric fringe data. To achieve this a carrier frequency has been added to the holographic data. This has made it possible, firstly to form a phase map using a fast Fourier transform (FFT) algorithm. Then to `solve,' or unwrap, this image to give a contiguous density map using a minimum weight spanning tree (MST) noise immune algorithm, known as fringe analysis (FRAN). Applications of this work to a burner flame and a compressible flow are presented. In both cases the spatial frequency of the fringes exceed the resolvable limit of conventional digital framestores. Therefore, a flatbed scanner with a resolution of 3200 X 2400 pixels has been used to produce very high resolution digital images from photographs. This approach has allowed the processing of data despite the presence of caustics, generated by strong thermal gradients at the edge of the combustion field. A similar example is presented from the analysis of a compressible transonic flow in the shock wave and trailing edge regions.
Predicting the stability of a compressible periodic parallel jet flow
NASA Technical Reports Server (NTRS)
Miles, Jeffrey H.
1996-01-01
It is known that mixing enhancement in compressible free shear layer flows with high convective Mach numbers is difficult. One design strategy to get around this is to use multiple nozzles. Extrapolating this design concept in a one dimensional manner, one arrives at an array of parallel rectangular nozzles where the smaller dimension is omega and the longer dimension, b, is taken to be infinite. In this paper, the feasibility of predicting the stability of this type of compressible periodic parallel jet flow is discussed. The problem is treated using Floquet-Bloch theory. Numerical solutions to this eigenvalue problem are presented. For the case presented, the interjet spacing, s, was selected so that s/omega =2.23. Typical plots of the eigenvalue and stability curves are presented. Results obtained for a range of convective Mach numbers from 3 to 5 show growth rates omega(sub i)=kc(sub i)/2 range from 0.25 to 0.29. These results indicate that coherent two-dimensional structures can occur without difficulty in multiple parallel periodic jet nozzles and that shear layer mixing should occur with this type of nozzle design.
An interface capturing scheme for modeling atomization in compressible flows
NASA Astrophysics Data System (ADS)
Garrick, Daniel P.; Hagen, Wyatt A.; Regele, Jonathan D.
2017-09-01
The study of atomization in supersonic flow is critical to ensuring reliable ignition of scramjet combustors under startup conditions. Numerical methods incorporating surface tension effects have largely focused on the incompressible regime as most atomization applications occur at low Mach numbers. Simulating surface tension effects in compressible flow requires robust numerical methods that can handle discontinuities caused by both shocks and material interfaces with high density ratios. In this work, a shock and interface capturing scheme is developed that uses the Harten-Lax-van Leer-Contact (HLLC) Riemann solver while a Tangent of Hyperbola for INterface Capturing (THINC) interface reconstruction scheme retains the fluid immiscibility condition in the volume fraction and phasic densities in the context of the five equation model. The approach includes the effects of compressibility, surface tension, and molecular viscosity. One and two-dimensional benchmark problems demonstrate the desirable interface sharpening and conservation properties of the approach. Simulations of secondary atomization of a cylindrical water column after its interaction with a shockwave show good qualitative agreement with experimentally observed behavior. Three-dimensional examples of primary atomization of a liquid jet in a Mach 2 crossflow demonstrate the robustness of the method.
Liang, H; Shi, B C; Guo, Z L; Chai, Z H
2014-05-01
In this paper, a phase-field-based multiple-relaxation-time lattice Boltzmann (LB) model is proposed for incompressible multiphase flow systems. In this model, one distribution function is used to solve the Chan-Hilliard equation and the other is adopted to solve the Navier-Stokes equations. Unlike previous phase-field-based LB models, a proper source term is incorporated in the interfacial evolution equation such that the Chan-Hilliard equation can be derived exactly and also a pressure distribution is designed to recover the correct hydrodynamic equations. Furthermore, the pressure and velocity fields can be calculated explicitly. A series of numerical tests, including Zalesak's disk rotation, a single vortex, a deformation field, and a static droplet, have been performed to test the accuracy and stability of the present model. The results show that, compared with the previous models, the present model is more stable and achieves an overall improvement in the accuracy of the capturing interface. In addition, compared to the single-relaxation-time LB model, the present model can effectively reduce the spurious velocity and fluctuation of the kinetic energy. Finally, as an application, the Rayleigh-Taylor instability at high Reynolds numbers is investigated.
Local Limit Phenomena, Flow Compression, and Fuel Cracking Effects in High-Speed Turbulent Flames
2015-06-01
e.g. local extinction and re- ignition , interactions between flow compression and fast-reaction induced dilatation (reaction compression ), and to...time as a function of initial temperature in constant-pressure auto - ignition , and (b) the S-curves of perfectly stirred reactors (PSRs), for n...mechanism. The reduction covered auto - ignition and perfectly stirred reactors for equivalence ratio range of 0.5~1.5, initial temperature higher than
Akhgari, Abbas; Sadeghi, Hasti; Dabbagh, Mohammad Ali
2014-08-01
The aim of this study was to improve flowability and compressibility characteristics of starch to use as a suitable excipient in direct compression tabletting. Quasi-emulsion solvent diffusion was used as a crystal modification method. Corn starch was dissolved in hydrochloric acid at 80°C and then ethanol as a non-solvent was added with lowering temperature until the formation of a precipitate of modified starch. Flow parameters, particle size and thermal behavior of the treated powders were compared with the native starch. Finally, the 1:1 mixture of naproxen and each excipient was tabletted, and hardness and friability of different tablets were evaluated. Larger and well shaped agglomerates were formed which showed different thermal behavior. Treated starch exhibited suitable flow properties and tablets made by the treated powder had relatively high hardness. It was found that recrystallization of corn starch by quasi emulsion solvent diffusion method could improve its flowability and compressibility characteristics.
Applications of Taylor-Galerkin finite element method to compressible internal flow problems
NASA Technical Reports Server (NTRS)
Sohn, Jeong L.; Kim, Yongmo; Chung, T. J.
1989-01-01
A two-step Taylor-Galerkin finite element method with Lapidus' artificial viscosity scheme is applied to several test cases for internal compressible inviscid flow problems. Investigations for the effect of supersonic/subsonic inlet and outlet boundary conditions on computational results are particularly emphasized.
High speed inviscid compressible flow by the finite element method
NASA Technical Reports Server (NTRS)
Zienkiewicz, O. C.; Loehner, R.; Morgan, K.
1984-01-01
The finite element method and an explicit time stepping algorithm which is based on Taylor-Galerkin schemes with an appropriate artificial viscosity is combined with an automatic mesh refinement process which is designed to produce accurate steady state solutions to problems of inviscid compressible flow in two dimensions. The results of two test problems are included which demonstrate the excellent performance characteristics of the proposed procedures.
Pore scale study of multiphase multicomponent reactive transport during CO2 dissolution trapping
NASA Astrophysics Data System (ADS)
Chen, Li; Wang, Mengyi; Kang, Qinjun; Tao, Wenquan
2018-06-01
Solubility trapping is crucial for permanent CO2 sequestration in deep saline aquifers. For the first time, a pore-scale numerical method is developed to investigate coupled scCO2-water two-phase flow, multicomponent (CO2(aq), H+, HCO3-, CO32- and OH-) mass transport, heterogeneous interfacial dissolution reaction, and homogeneous dissociation reactions. Pore-scale details of evolutions of multiphase distributions and concentration fields are presented and discussed. Time evolutions of several variables including averaged CO2(aq) concentration, scCO2 saturation, and pH value are analyzed. Specific interfacial length, an important variable which cannot be determined but is required by continuum models, is investigated in detail. Mass transport coefficient or efficient dissolution rate is also evaluated. The pore-scale results show strong non-equilibrium characteristics during solubility trapping due to non-uniform distributions of multiphase as well as slow mass transport process. Complicated coupling mechanisms between multiphase flow, mass transport and chemical reactions are also revealed. Finally, effects of wettability are also studied. The pore-scale studies provide deep understanding of non-linear non-equilibrium multiple physicochemical processes during CO2 solubility trapping processes, and also allow to quantitatively predict some important empirical relationships, such as saturation-interfacial surface area, for continuum models.
Convex Relaxation of OPF in Multiphase Radial Networks with Wye and Delta Connections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Changhong; Dall-Anese, Emiliano; Low, Steven
2017-08-01
This panel presentation focuses on multiphase radial distribution networks with wye and delta connections, and proposes a semidefinite relaxation of the AC optimal power flow (OPF) problem. Two multiphase power flow models are developed to facilitate the integration of delta-connected loads or generation resources in the OPF problem. The first model is referred to as the extended branch flow model (EBFM). The second model leverages a linear relationship between phase-to-ground power injections and delta connections that holds under a balanced voltage approximation (BVA). Based on these models, pertinent OPF problems are formulated and relaxed to semidefinite programs (SDPs). Numerical studiesmore » on IEEE test feeders show that the proposed SDP relaxations can be solved efficiently by a generic optimization solver. Numerical evidence also indicates that solving the resultant SDP under BVA is faster than under EBFM. Moreover, both SDP solutions are numerically exact with respect to voltages and branch flows. It is further shown that the SDP solution under BVA has a small optimality gap, and the BVA model is accurate in the sense that it reproduces actual system voltages.« less
Grid Convergence of High Order Methods for Multiscale Complex Unsteady Viscous Compressible Flows
NASA Technical Reports Server (NTRS)
Sjoegreen, B.; Yee, H. C.
2001-01-01
Grid convergence of several high order methods for the computation of rapidly developing complex unsteady viscous compressible flows with a wide range of physical scales is studied. The recently developed adaptive numerical dissipation control high order methods referred to as the ACM and wavelet filter schemes are compared with a fifth-order weighted ENO (WENO) scheme. The two 2-D compressible full Navier-Stokes models considered do not possess known analytical and experimental data. Fine grid solutions from a standard second-order TVD scheme and a MUSCL scheme with limiters are used as reference solutions. The first model is a 2-D viscous analogue of a shock tube problem which involves complex shock/shear/boundary-layer interactions. The second model is a supersonic reactive flow concerning fuel breakup. The fuel mixing involves circular hydrogen bubbles in air interacting with a planar moving shock wave. Both models contain fine scale structures and are stiff in the sense that even though the unsteadiness of the flows are rapidly developing, extreme grid refinement and time step restrictions are needed to resolve all the flow scales as well as the chemical reaction scales.
Pre-compression volume on flow ripple reduction of a piston pump
NASA Astrophysics Data System (ADS)
Xu, Bing; Song, Yuechao; Yang, Huayong
2013-11-01
Axial piston pump with pre-compression volume(PCV) has lower flow ripple in large scale of operating condition than the traditional one. However, there is lack of precise simulation model of the axial piston pump with PCV, so the parameters of PCV are difficult to be determined. A finite element simulation model for piston pump with PCV is built by considering the piston movement, the fluid characteristic(including fluid compressibility and viscosity) and the leakage flow rate. Then a test of the pump flow ripple called the secondary source method is implemented to validate the simulation model. Thirdly, by comparing results among the simulation results, test results and results from other publications at the same operating condition, the simulation model is validated and used in optimizing the axial piston pump with PCV. According to the pump flow ripples obtained by the simulation model with different PCV parameters, the flow ripple is the smallest when the PCV angle is 13°, the PCV volume is 1.3×10-4 m3 at such operating condition that the pump suction pressure is 2 MPa, the pump delivery pressure 15 MPa, the pump speed 1 000 r/min, the swash plate angle 13°. At the same time, the flow ripple can be reduced when the pump suction pressure is 2 MPa, the pump delivery pressure is 5 MPa,15 MPa, 22 MPa, pump speed is 400 r/min, 1 000 r/min, 1 500 r/min, the swash plate angle is 11°, 13°, 15° and 17°, respectively. The finite element simulation model proposed provides a method for optimizing the PCV structure and guiding for designing a quieter axial piston pump.
Progress Towards a Cartesian Cut-Cell Method for Viscous Compressible Flow
NASA Technical Reports Server (NTRS)
Berger, Marsha; Aftosmis, Michael J.
2011-01-01
The proposed paper reports advances in developing a method for high Reynolds number compressible viscous flow simulations using a Cartesian cut-cell method with embedded boundaries. This preliminary work focuses on accuracy of the discretization near solid wall boundaries. A model problem is used to investigate the accuracy of various difference stencils for second derivatives and to guide development of the discretization of the viscous terms in the Navier-Stokes equations. Near walls, quadratic reconstruction in the wall-normal direction is used to mitigate mesh irregularity and yields smooth skin friction distributions along the body. Multigrid performance is demonstrated using second-order coarse grid operators combined with second-order restriction and prolongation operators. Preliminary verification and validation for the method is demonstrated using flat-plate and airfoil examples at compressible Mach numbers. Simulations of flow on laminar and turbulent flat plates show skin friction and velocity profiles compared with those from boundary-layer theory. Airfoil simulations are performed at laminar and turbulent Reynolds numbers with results compared to both other simulations and experimental data
Multi-phase models for water and thermal management of proton exchange membrane fuel cell: A review
NASA Astrophysics Data System (ADS)
Zhang, Guobin; Jiao, Kui
2018-07-01
The 3D (three-dimensional) multi-phase CFD (computational fluid dynamics) model is widely utilized in optimizing water and thermal management of PEM (proton exchange membrane) fuel cell. However, a satisfactory 3D multi-phase CFD model which is able to simulate the detailed gas and liquid two-phase flow in channels and reflect its effect on performance precisely is still not developed due to the coupling difficulties and computation amount. Meanwhile, the agglomerate model of CL (catalyst layer) should also be added in 3D CFD model so as to better reflect the concentration loss and optimize CL structure in macroscopic scale. Besides, the effect of thermal management is perhaps underestimated in current 3D multi-phase CFD simulations due to the lack of coolant channel in computation domain and constant temperature boundary condition. Therefore, the 3D CFD simulations in cell and stack levels with convection boundary condition are suggested to simulate the water and thermal management more accurately. Nevertheless, with the rapid development of PEM fuel cell, current 3D CFD simulations are far from practical demand, especially at high current density and low to zero humidity and for the novel designs developed recently, such as: metal foam flow field, 3D fine mesh flow field, anode circulation etc.
Scalar/Vector potential formulation for compressible viscous unsteady flows
NASA Technical Reports Server (NTRS)
Morino, L.
1985-01-01
A scalar/vector potential formulation for unsteady viscous compressible flows is presented. The scalar/vector potential formulation is based on the classical Helmholtz decomposition of any vector field into the sum of an irrotational and a solenoidal field. The formulation is derived from fundamental principles of mechanics and thermodynamics. The governing equations for the scalar potential and vector potential are obtained, without restrictive assumptions on either the equation of state or the constitutive relations or the stress tensor and the heat flux vector.
Iterative spectral methods and spectral solutions to compressible flows
NASA Technical Reports Server (NTRS)
Hussaini, M. Y.; Zang, T. A.
1982-01-01
A spectral multigrid scheme is described which can solve pseudospectral discretizations of self-adjoint elliptic problems in O(N log N) operations. An iterative technique for efficiently implementing semi-implicit time-stepping for pseudospectral discretizations of Navier-Stokes equations is discussed. This approach can handle variable coefficient terms in an effective manner. Pseudospectral solutions of compressible flow problems are presented. These include one dimensional problems and two dimensional Euler solutions. Results are given both for shock-capturing approaches and for shock-fitting ones.
Continuum approaches for describing solid-gas and solid-liquid flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diamond, P.; Harvey, J.; Levine, H.
Two-phase continuum models have been used to describe the multiphase flow properties of solid-gas and solid-liquid mixtures. The approach is limited in that it requires many fitting functions and parameters to be determined empirically, and it does not provide natural explanations for some of the qualitative behavior of solid-fluid flow. In this report, we explore a more recent single-phase continuum model proposed by Jenkins and Savage to describe granular flow. Jenkins and McTigue have proposed a modified model to describe the flow of dense suspensions, and hence, many of our results can be straight-forwardly extended to this flow regime asmore » well. The solid-fluid mixture is treated as a homogeneous, compressible fluid in which the particle fluctuations about the mean flow are described in terms of an effective temperature. The particle collisions are treated as inelastic. After an introduction in which we briefly comment on the present status of the field, we describe the details of the single-phase continuum model and analyze the microscopic and macroscopic flow conditions required for the approach to be valid. We then derive numerous qualitative predictions which can be empirically verified in small-scale experiments: The flow profiles are computed for simple boundary conditions, plane Couette flow and channel flow. Segregaion effects when there are two (or more) particle size are considered. The acoustic dispersion relation is derived and shown to predict that granular flow is supersonic. We point out that the analysis of flow instabilities is complicated by the finite compressibility of the solid-fluid mixture. For example, the large compressibility leads to interchange (Rayleigh-Taylor instabilities) in addition to the usual angular momentum interchange in standard (cylindrical) Couette flow. We conclude by describing some of the advantages and limitations of experimental techniques that might be used to test predictions for solid-fluid flow. 19 refs.« less
NASA Technical Reports Server (NTRS)
Roberts, Thomas W.; Sidilkover, David; Thomas, J. L.
2000-01-01
The second-order factorizable discretization of the compressible Euler equations developed by Sidilkover is extended to conservation form on general curvilinear body-fitted grids. The discrete equations are solved by symmetric collective Gauss-Seidel relaxation and FAS multigrid. Solutions for flow in a channel with Mach numbers ranging from 0.0001 to a supercritical Mach number are shown, demonstrating uniform convergence rates and no loss of accuracy in the incompressible limit. A solution for the flow around the leading edge of a semi-infinite parabolic body demonstrates that the scheme maintains rapid convergence for a flow containing a stagnation point.
Optimal frequency-response sensitivity of compressible flow over roughness elements
NASA Astrophysics Data System (ADS)
Fosas de Pando, Miguel; Schmid, Peter J.
2017-04-01
Compressible flow over a flat plate with two localised and well-separated roughness elements is analysed by global frequency-response analysis. This analysis reveals a sustained feedback loop consisting of a convectively unstable shear-layer instability, triggered at the upstream roughness, and an upstream-propagating acoustic wave, originating at the downstream roughness and regenerating the shear-layer instability at the upstream protrusion. A typical multi-peaked frequency response is recovered from the numerical simulations. In addition, the optimal forcing and response clearly extract the components of this feedback loop and isolate flow regions of pronounced sensitivity and amplification. An efficient parametric-sensitivity framework is introduced and applied to the reference case which shows that first-order increases in Reynolds number and roughness height act destabilising on the flow, while changes in Mach number or roughness separation cause corresponding shifts in the peak frequencies. This information is gained with negligible effort beyond the reference case and can easily be applied to more complex flows.
NASA Astrophysics Data System (ADS)
Torrealba, V.; Karpyn, Z.; Yoon, H.; Hart, D. B.; Klise, K. A.
2013-12-01
The pore-scale dynamics that govern multiphase flow under variable stress conditions are not well understood. This lack of fundamental understanding limits our ability to quantitatively predict multiphase flow and fluid distributions in natural geologic systems. In this research, we focus on pore-scale, single and multiphase flow properties that impact displacement mechanisms and residual trapping of non-wetting phase under varying stress conditions. X-ray micro-tomography is used to image pore structures and distribution of wetting and non-wetting fluids in water-wet synthetic granular packs, under dynamic load. Micro-tomography images are also used to determine structural features such as medial axis, surface area, and pore body and throat distribution; while the corresponding transport properties are determined from Lattice-Boltzmann simulations performed on lattice replicas of the imaged specimens. Results are used to investigate how inter-granular deformation mechanisms affect fluid displacement and residual trapping at the pore-scale. This will improve our understanding of the dynamic interaction of mechanical deformation and fluid flow during enhanced oil recovery and geologic CO2 sequestration. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Technical Reports Server (NTRS)
Carter, J. E.
1972-01-01
Numerical solutions have been obtained for the supersonic, laminar flow over a two-dimensional compression corner. These solutions were obtained as steady-state solutions to the unsteady Navier-Stokes equations using the finite difference method of Brailovskaya, which has second-order accuracy in the spatial coordinates. Good agreement was obtained between the computed results and wall pressure distributions measured experimentally for Mach numbers of 4 and 6.06, and respective Reynolds numbers, based on free-stream conditions and the distance from the leading edge to the corner. In those calculations, as well as in others, sufficient resolution was obtained to show the streamline pattern in the separation bubble. Upstream boundary conditions to the compression corner flow were provided by numerically solving the unsteady Navier-Stokes equations for the flat plate flow field, beginning at the leading edge. The compression corner flow field was enclosed by a computational boundary with the unknown boundary conditions supplied by extrapolation from internally computed points.
Micro-Ct Imaging of Multi-Phase Flow in Carbonates and Sandstones
NASA Astrophysics Data System (ADS)
Andrew, M. G.; Bijeljic, B.; Blunt, M. J.
2013-12-01
One of the most important mechanisms that limits the escape of CO2 when injected into the subsurface for the purposes of carbon storage is capillary trapping, where CO2 is stranded as pore-scale droplets (ganglia). Prospective storage sites are aquifers or reservoirs that tend to be at conditions where CO2 will reside as a super-critical phase. In order to fully describe physical mechanisms characterising multi-phase flow during and post CO2 injection, experiments need to be conducted at these elevated aquifer/reservoir conditions - this poses a considerable experimental challenge. A novel experimental apparatus has been developed which uses μCT scanning for the non-invasive imaging of the distribution of CO2 in the pore space of rock with resolutions of 7μm at temperatures and pressures representative of the conditions present in prospective saline aquifer CO2 storage sites. The fluids are kept in chemical equilibrium with one-another and with the rock into which they are injected. This is done to prevent the dissolution of the CO2 in the brine to form carbonic acid, which can then react with the rock, particularly carbonates. By eliminating reaction we study the fundamental mechanisms of capillary trapping for an unchanging pore structure. In this study we present a suite of results from three carbonate and two sandstone rock types, showing that, for both cases the CO2 acts as the non-wetting phase and significant quantities of CO2 is trapped. The carbonate examined represent a wide variety of pore topologies with one rock with a very well connected, high porosity pore space (Mt Gambier), one with a lower porosity, poorly connected pore space (Estaillades) and one with a cemented bead pack type pore space (Ketton). Both sandstones (Doddington and Bentheimer) were high permeability granular quartzites. CO2 was injected into each rock, followed by brine injection. After brine injection the entire length of the rock core was scanned, processed and segmented into
A modified Dodge algorithm for the parabolized Navier-Stokes equations and compressible duct flows
NASA Technical Reports Server (NTRS)
Cooke, C. H.; Dwoyer, D. M.
1983-01-01
A revised version of Dodge's split-velocity method for numerical calculation of compressible duct flow has been developed. The revision incorporates balancing of massflow rates on each marching step in order to maintain front-to-back continuity during the calculation. Qualitative agreement with analytical predictions and experimental results has been obtained for some flows with well-known solutions.
A finite element solver for 3-D compressible viscous flows
NASA Technical Reports Server (NTRS)
Reddy, K. C.; Reddy, J. N.; Nayani, S.
1990-01-01
Computation of the flow field inside a space shuttle main engine (SSME) requires the application of state of the art computational fluid dynamic (CFD) technology. Several computer codes are under development to solve 3-D flow through the hot gas manifold. Some algorithms were designed to solve the unsteady compressible Navier-Stokes equations, either by implicit or explicit factorization methods, using several hundred or thousands of time steps to reach a steady state solution. A new iterative algorithm is being developed for the solution of the implicit finite element equations without assembling global matrices. It is an efficient iteration scheme based on a modified nonlinear Gauss-Seidel iteration with symmetric sweeps. The algorithm is analyzed for a model equation and is shown to be unconditionally stable. Results from a series of test problems are presented. The finite element code was tested for couette flow, which is flow under a pressure gradient between two parallel plates in relative motion. Another problem that was solved is viscous laminar flow over a flat plate. The general 3-D finite element code was used to compute the flow in an axisymmetric turnaround duct at low Mach numbers.
NASA Astrophysics Data System (ADS)
Jacobs, C. T.; Collins, G. S.; Piggott, M. D.; Kramer, S. C.; Wilson, C. R. G.
2013-02-01
Small-scale experiments of volcanic ash particle settling in water have demonstrated that ash particles can either settle slowly and individually, or rapidly and collectively as a gravitationally unstable ash-laden plume. This has important implications for the emplacement of tephra deposits on the seabed. Numerical modelling has the potential to extend the results of laboratory experiments to larger scales and explore the conditions under which plumes may form and persist, but many existing models are computationally restricted by the fixed mesh approaches that they employ. In contrast, this paper presents a new multiphase flow model that uses an adaptive unstructured mesh approach. As a simulation progresses, the mesh is optimized to focus numerical resolution in areas important to the dynamics and decrease it where it is not needed, thereby potentially reducing computational requirements. Model verification is performed using the method of manufactured solutions, which shows the correct solution convergence rates. Model validation and application considers 2-D simulations of plume formation in a water tank which replicate published laboratory experiments. The numerically predicted settling velocities for both individual particles and plumes, as well as instability behaviour, agree well with experimental data and observations. Plume settling is clearly hindered by the presence of a salinity gradient, and its influence must therefore be taken into account when considering particles in bodies of saline water. Furthermore, individual particles settle in the laminar flow regime while plume settling is shown (by plume Reynolds numbers greater than unity) to be in the turbulent flow regime, which has a significant impact on entrainment and settling rates. Mesh adaptivity maintains solution accuracy while providing a substantial reduction in computational requirements when compared to the same simulation performed using a fixed mesh, highlighting the benefits of an
The transmission of sound in nonuniform ducts. [carrying steady, compressible flow
NASA Technical Reports Server (NTRS)
Eversman, W.
1975-01-01
The method of weighted residuals in the form of a modified Galerkin method with boundary residuals was developed for the study of the transmission of sound in nonuniform ducts carrying a steady, compressible flow. In this development, the steady flow was modeled as essentially one dimensional but with a kinematic modification to force tangency of the flow at the duct walls. Three forms of the computational scheme were developed using for basis functions (1) the no-flow uniform duct modes, (2) positive running uniform duct modes, with flow, and (3) positive and negative running uniform duct modes, with flow. The formulation using the no-flow modes was the most highly developed, and has advantages primarily due to relative computational simplicity. Results using the three methods are shown to converge to known solutions for several special cases, and the most significant check case is against low frequency, one dimensional results over the complete subsonic Mach number range. Development of the method is continuing, with emphasis on assessing the relative accuracy and efficiency of the three implementations.
NASA Astrophysics Data System (ADS)
Keshet, Uri; Naor, Yossi
2016-10-01
Compressible flows around blunt objects have diverse applications, but current analytic treatments are inaccurate and limited to narrow parameter regimes. We show that the gas-dynamic flow in front of an axisymmetric blunt body is accurately derived analytically using a low order expansion of the perpendicular gradients in terms of the parallel velocity. This reproduces both subsonic and supersonic flows measured and simulated for a sphere, including the transonic regime and the bow shock properties. Some astrophysical implications are outlined, in particular for planets in the solar wind and for clumps and bubbles in the intergalactic medium. The bow shock standoff distance normalized by the obstacle curvature is ∼ 2/(3g) in the strong shock limit, where g is the compression ratio. For a subsonic Mach number M approaching unity, the thickness δ of an initially weak, draped magnetic layer is a few times larger than in the incompressible limit, with amplification ∼ (1+1.3{M}2.6)/(3δ ).
A GPU-accelerated implicit meshless method for compressible flows
NASA Astrophysics Data System (ADS)
Zhang, Jia-Le; Ma, Zhi-Hua; Chen, Hong-Quan; Cao, Cheng
2018-05-01
This paper develops a recently proposed GPU based two-dimensional explicit meshless method (Ma et al., 2014) by devising and implementing an efficient parallel LU-SGS implicit algorithm to further improve the computational efficiency. The capability of the original 2D meshless code is extended to deal with 3D complex compressible flow problems. To resolve the inherent data dependency of the standard LU-SGS method, which causes thread-racing conditions destabilizing numerical computation, a generic rainbow coloring method is presented and applied to organize the computational points into different groups by painting neighboring points with different colors. The original LU-SGS method is modified and parallelized accordingly to perform calculations in a color-by-color manner. The CUDA Fortran programming model is employed to develop the key kernel functions to apply boundary conditions, calculate time steps, evaluate residuals as well as advance and update the solution in the temporal space. A series of two- and three-dimensional test cases including compressible flows over single- and multi-element airfoils and a M6 wing are carried out to verify the developed code. The obtained solutions agree well with experimental data and other computational results reported in the literature. Detailed analysis on the performance of the developed code reveals that the developed CPU based implicit meshless method is at least four to eight times faster than its explicit counterpart. The computational efficiency of the implicit method could be further improved by ten to fifteen times on the GPU.
NASA Technical Reports Server (NTRS)
Garrick, I. E.; Kaplan, Carl
1944-01-01
The differential equation of Chaplygin's jet problem is utilized to give a systematic development of particular solutions of the hodograph flow equations, which extends the treatment of Chaplygin into the supersonic range and completes the set of particular solutions. The particular solutions serve to place on a reasonable basis the use of velocity correction formulas for the comparison of incompressible and compressible flows. It is shown that the geometric-mean type of velocity correction formula introduced in part I has significance as an over-all type of approximation in the subsonic range. A brief review of general conditions limiting the potential flow of an adiabatic compressible fluid is given and application is made to the particular solutions, yielding conditions for the existence of singular loci in the supersonic range. The combining of particular solutions in accordance with prescribed boundary flow conditions is not treated in the present paper.
Two-dimensional subsonic compressible flow past elliptic cylinders
NASA Technical Reports Server (NTRS)
Kaplan, Carl
1938-01-01
The method of Poggi is used to calculate, for perfect fluids, the effect of compressibility upon the flow on the surface of an elliptic cylinder at zero angle of attack and with no circulation. The result is expressed in a closed form and represents a rigorous determination of the velocity of the fluid at the surface of the obstacle insofar as the second approximation is concerned. Comparison is made with Hooker's treatment of the same problem according to the method of Janzen and Rayleight and it is found that, for thick elliptic cylinders, the two methods agree very well. The labor of computation is considerably reduced by the present solution.
NASA Astrophysics Data System (ADS)
Zhang, Xueling; Zhu, Weiyao; Cai, Qiang; Shi, Yutao; Wu, Xuehong; Jin, Tingxiang; Yang, Lianzhi; Song, Hongqing
2018-06-01
Although nano- and micro-scale phenomena for fluid flows are ubiquitous in tight oil reservoirs or in nano- or micro-sized channels, the mechanisms behind them remain unclear. In this study, we consider the wall-liquid interaction to investigate the flow mechanisms behind a compressible liquid flow in nano- or micro-sized circular tubes. We assume that the liquid is attracted by the wall surface primarily by the Lifshitz-van der Waals (LW) force, whereas electrostatic forces are negligible. The long-range LW force is thus introduced into the Navier-Stokes equations. The nonlinear equations of motion are decoupled by using the hydrodynamic vorticity-stream functions, from which an approximate analytical perturbation solution is obtained. The proposed model considers the LW force and liquid compressibility to obtain the velocity and pressure fields, which are consistent with experimentally observed micro-size effects. A smaller tube radius implies smaller dimensionless velocity, and when the tube radius decreases to a certain radius Rm, a fluid no longer flows, where Rm is the lower limit of the movable-fluid radius. The radius Rm is calculated, and the results are consistent with previous experimental results. These results reveal that micro-size effects are caused by liquid compressibility and wall-liquid interactions, such as the LW force, for a liquid flowing in nano- or micro-sized channels or pores. The attractive LW force enhances the flow's radial resistance, and the liquid compressibility transmits the radial resistance to the streaming direction via volume deformation, thereby decreasing the streaming velocity.
Pore scale study of multiphase multicomponent reactive transport during CO 2 dissolution trapping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Li; Wang, Mengyi; Kang, Qinjun
Solubility trapping is crucial for permanent CO 2 sequestration in deep saline aquifers. For the first time, a pore-scale numerical method is developed to investigate coupled scCO 2-water two-phase flow, multicomponent (CO 2(aq), H +, HCO 3 –, CO 3 2 – and OH –) mass transport, heterogeneous interfacial dissolution reaction, and homogeneous dissociation reactions. Pore-scale details of evolutions of multiphase distributions and concentration fields are presented and discussed. Time evolutions of several variables including averaged CO 2(aq) concentration, scCO 2 saturation, and pH value are analyzed. Specific interfacial length, an important variable which cannot be determined but is requiredmore » by continuum models, is investigated in detail. Mass transport coefficient or efficient dissolution rate is also evaluated. The pore-scale results show strong non-equilibrium characteristics during solubility trapping due to non-uniform distributions of multiphase as well as slow mass transport process. Complicated coupling mechanisms between multiphase flow, mass transport and chemical reactions are also revealed. Lastly, effects of wettability are also studied. The pore-scale studies provide deep understanding of non-linear non-equilibrium multiple physicochemical processes during CO 2 solubility trapping processes, and also allow to quantitatively predict some important empirical relationships, such as saturation-interfacial surface area, for continuum models.« less
Pore scale study of multiphase multicomponent reactive transport during CO 2 dissolution trapping
Chen, Li; Wang, Mengyi; Kang, Qinjun; ...
2018-04-26
Solubility trapping is crucial for permanent CO 2 sequestration in deep saline aquifers. For the first time, a pore-scale numerical method is developed to investigate coupled scCO 2-water two-phase flow, multicomponent (CO 2(aq), H +, HCO 3 –, CO 3 2 – and OH –) mass transport, heterogeneous interfacial dissolution reaction, and homogeneous dissociation reactions. Pore-scale details of evolutions of multiphase distributions and concentration fields are presented and discussed. Time evolutions of several variables including averaged CO 2(aq) concentration, scCO 2 saturation, and pH value are analyzed. Specific interfacial length, an important variable which cannot be determined but is requiredmore » by continuum models, is investigated in detail. Mass transport coefficient or efficient dissolution rate is also evaluated. The pore-scale results show strong non-equilibrium characteristics during solubility trapping due to non-uniform distributions of multiphase as well as slow mass transport process. Complicated coupling mechanisms between multiphase flow, mass transport and chemical reactions are also revealed. Lastly, effects of wettability are also studied. The pore-scale studies provide deep understanding of non-linear non-equilibrium multiple physicochemical processes during CO 2 solubility trapping processes, and also allow to quantitatively predict some important empirical relationships, such as saturation-interfacial surface area, for continuum models.« less
A Multiphase Flow in the Antroduodenal Portion of the Gastrointestinal Tract: A Mathematical Model
Trusov, P. V.
2016-01-01
A group of authors has developed a multilevel mathematical model that focuses on functional disorders in a human body associated with various chemical, physical, social, and other factors. At this point, the researchers have come up with structure, basic definitions and concepts of a mathematical model at the “macrolevel” that allow describing processes in a human body as a whole. Currently we are working at the “mesolevel” of organs and systems. Due to complexity of the tasks, this paper deals with only one meso-fragment of a digestive system model. It describes some aspects related to modeling multiphase flow in the antroduodenal portion of the gastrointestinal tract. Biochemical reactions, dissolution of food particles, and motor, secretory, and absorbing functions of the tract are taken into consideration. The paper outlines some results concerning influence of secretory function disorders on food dissolution rate and tract contents acidity. The effect which food density has on inflow of food masses from a stomach to a bowel is analyzed. We assume that the future development of the model will include digestive enzymes and related reactions of lipolysis, proteolysis, and carbohydrates breakdown. PMID:27413393
Sub-grid drag models for horizontal cylinder arrays immersed in gas-particle multiphase flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkar, Avik; Sun, Xin; Sundaresan, Sankaran
2013-09-08
Immersed cylindrical tube arrays often are used as heat exchangers in gas-particle fluidized beds. In multiphase computational fluid dynamics (CFD) simulations of large fluidized beds, explicit resolution of small cylinders is computationally infeasible. Instead, the cylinder array may be viewed as an effective porous medium in coarse-grid simulations. The cylinders' influence on the suspension as a whole, manifested as an effective drag force, and on the relative motion between gas and particles, manifested as a correction to the gas-particle drag, must be modeled via suitable sub-grid constitutive relationships. In this work, highly resolved unit-cell simulations of flow around an arraymore » of horizontal cylinders, arranged in a staggered configuration, are filtered to construct sub-grid, or `filtered', drag models, which can be implemented in coarse-grid simulations. The force on the suspension exerted by the cylinders is comprised of, as expected, a buoyancy contribution, and a kinetic component analogous to fluid drag on a single cylinder. Furthermore, the introduction of tubes also is found to enhance segregation at the scale of the cylinder size, which, in turn, leads to a reduction in the filtered gas-particle drag.« less
NASA Technical Reports Server (NTRS)
Hess, J. L.; Mack, D. P.; Stockman, N. O.
1979-01-01
A panel method is used to calculate incompressible flow about arbitrary three-dimensional inlets with or without centerbodies for four fundamental flow conditions: unit onset flows parallel to each of the coordinate axes plus static operation. The computing time is scarcely longer than for a single solution. A linear superposition of these solutions quite rigorously gives incompressible flow about the inlet for any angle of attack, angle of yaw, and mass flow rate. Compressibility is accounted for by applying a well-proven correction to the incompressible flow. Since the computing times for the combination and the compressibility correction are small, flows at a large number of inlet operating conditions are obtained rather cheaply. Geometric input is aided by an automatic generating program. A number of graphical output features are provided to aid the user, including surface streamline tracing and automatic generation of curves of curves of constant pressure, Mach number, and flow inclination at selected inlet cross sections. The inlet method and use of the program are described. Illustrative results are presented.
A numerical method for shock driven multiphase flow with evaporating particles
NASA Astrophysics Data System (ADS)
Dahal, Jeevan; McFarland, Jacob A.
2017-09-01
A numerical method for predicting the interaction of active, phase changing particles in a shock driven flow is presented in this paper. The Particle-in-Cell (PIC) technique was used to couple particles in a Lagrangian coordinate system with a fluid in an Eulerian coordinate system. The Piecewise Parabolic Method (PPM) hydrodynamics solver was used for solving the conservation equations and was modified with mass, momentum, and energy source terms from the particle phase. The method was implemented in the open source hydrodynamics software FLASH, developed at the University of Chicago. A simple validation of the methods is accomplished by comparing velocity and temperature histories from a single particle simulation with the analytical solution. Furthermore, simple single particle parcel simulations were run at two different sizes to study the effect of particle size on vorticity deposition in a shock-driven multiphase instability. Large particles were found to have lower enstrophy production at early times and higher enstrophy dissipation at late times due to the advection of the particle vorticity source term through the carrier gas. A 2D shock-driven instability of a circular perturbation is studied in simulations and compared to previous experimental data as further validation of the numerical methods. The effect of the particle size distribution and particle evaporation is examined further for this case. The results show that larger particles reduce the vorticity deposition, while particle evaporation increases it. It is also shown that for a distribution of particles sizes the vorticity deposition is decreased compared to single particle size case at the mean diameter.
A Semi-implicit Method for Time Accurate Simulation of Compressible Flow
NASA Astrophysics Data System (ADS)
Wall, Clifton; Pierce, Charles D.; Moin, Parviz
2001-11-01
A semi-implicit method for time accurate simulation of compressible flow is presented. The method avoids the acoustic CFL limitation, allowing a time step restricted only by the convective velocity. Centered discretization in both time and space allows the method to achieve zero artificial attenuation of acoustic waves. The method is an extension of the standard low Mach number pressure correction method to the compressible Navier-Stokes equations, and the main feature of the method is the solution of a Helmholtz type pressure correction equation similar to that of Demirdžić et al. (Int. J. Num. Meth. Fluids, Vol. 16, pp. 1029-1050, 1993). The method is attractive for simulation of acoustic combustion instabilities in practical combustors. In these flows, the Mach number is low; therefore the time step allowed by the convective CFL limitation is significantly larger than that allowed by the acoustic CFL limitation, resulting in significant efficiency gains. Also, the method's property of zero artificial attenuation of acoustic waves is important for accurate simulation of the interaction between acoustic waves and the combustion process. The method has been implemented in a large eddy simulation code, and results from several test cases will be presented.
A mechanistic model of heat transfer for gas-liquid flow in vertical wellbore annuli.
Yin, Bang-Tang; Li, Xiang-Fang; Liu, Gang
2018-01-01
The most prominent aspect of multiphase flow is the variation in the physical distribution of the phases in the flow conduit known as the flow pattern. Several different flow patterns can exist under different flow conditions which have significant effects on liquid holdup, pressure gradient and heat transfer. Gas-liquid two-phase flow in an annulus can be found in a variety of practical situations. In high rate oil and gas production, it may be beneficial to flow fluids vertically through the annulus configuration between well tubing and casing. The flow patterns in annuli are different from pipe flow. There are both casing and tubing liquid films in slug flow and annular flow in the annulus. Multiphase heat transfer depends on the hydrodynamic behavior of the flow. There are very limited research results that can be found in the open literature for multiphase heat transfer in wellbore annuli. A mechanistic model of multiphase heat transfer is developed for different flow patterns of upward gas-liquid flow in vertical annuli. The required local flow parameters are predicted by use of the hydraulic model of steady-state multiphase flow in wellbore annuli recently developed by Yin et al. The modified heat-transfer model for single gas or liquid flow is verified by comparison with Manabe's experimental results. For different flow patterns, it is compared with modified unified Zhang et al. model based on representative diameters.
Diffuse-Interface Capturing Methods for Compressible Two-Phase Flows
NASA Astrophysics Data System (ADS)
Saurel, Richard; Pantano, Carlos
2018-01-01
Simulation of compressible flows became a routine activity with the appearance of shock-/contact-capturing methods. These methods can determine all waves, particularly discontinuous ones. However, additional difficulties may appear in two-phase and multimaterial flows due to the abrupt variation of thermodynamic properties across the interfacial region, with discontinuous thermodynamical representations at the interfaces. To overcome this difficulty, researchers have developed augmented systems of governing equations to extend the capturing strategy. These extended systems, reviewed here, are termed diffuse-interface models, because they are designed to compute flow variables correctly in numerically diffused zones surrounding interfaces. In particular, they facilitate coupling the dynamics on both sides of the (diffuse) interfaces and tend to the proper pure fluid-governing equations far from the interfaces. This strategy has become efficient for contact interfaces separating fluids that are governed by different equations of state, in the presence or absence of capillary effects, and with phase change. More sophisticated materials than fluids (e.g., elastic-plastic materials) have been considered as well.
NASA Astrophysics Data System (ADS)
Bie, Qunyi; Cui, Haibo; Wang, Qiru; Yao, Zheng-An
2017-10-01
The Cauchy problem for the compressible flow of nematic liquid crystals in the framework of critical spaces is considered. We first establish the existence and uniqueness of global solutions provided that the initial data are close to some equilibrium states. This result improves the work by Hu and Wu (SIAM J Math Anal 45(5):2678-2699, 2013) through relaxing the regularity requirement of the initial data in terms of the director field. Based on the global existence, we then consider the incompressible limit problem for ill prepared initial data. We prove that as the Mach number tends to zero, the global solution to the compressible flow of liquid crystals converges to the solution to the corresponding incompressible model in some function spaces. Moreover, the accurate converge rates are obtained.
Oscillatory Excitation of Unsteady Compressible Flows over Airfoils at Flight Reynolds Numbers
NASA Technical Reports Server (NTRS)
Seifert, Avi; Pack, LaTunia G.
1999-01-01
An experimental investigation, aimed at delaying flow separation due to the occurrence of a shock-wave-boundary-layer interaction, is reported. The experiment was performed using a NACA 0012 airfoil and a NACA 0015 airfoil at high Reynolds number incompressible and compressible flow conditions. The effects of Mach and Reynolds numbers were identified, using the capabilities of the cryogenic-pressurized facility to maintain one parameter fixed and change the other. Significant Reynolds number effects were identified in the baseline compressible flow conditions even at Reynolds number of 10 and 20 million. The main objectives of the experiment were to study the effects of periodic excitation on airfoil drag-divergence and to alleviate the severe unsteadiness associated with shock-induced separation (known as "buffeting"). Zero-mass-flux oscillatory blowing was introduced through a downstream directed slot located at 10% chord on the upper surface of the NACA 0015 airfoil. The effective frequencies generated 2-4 vortices over the separated region, regardless of the Mach number. Even though the excitation was introduced upstream of the shock-wave, due to experimental limitations, it had pronounced effects downstream of it. Wake deficit (associated with drag) and unsteadiness (associated with buffeting) were significantly reduced. The spectral content of the wake pressure fluctuations indicates of steadier flow throughout the frequency range when excitation was applied. This is especially important at low frequencies which are more likely to interact with the airframe.
A conservative staggered-grid Chebyshev multidomain method for compressible flows
NASA Technical Reports Server (NTRS)
Kopriva, David A.; Kolias, John H.
1995-01-01
We present a new multidomain spectral collocation method that uses staggered grids for the solution of compressible flow problems. The solution unknowns are defined at the nodes of a Gauss quadrature rule. The fluxes are evaluated at the nodes of a Gauss-Lobatto rule. The method is conservative, free-stream preserving, and exponentially accurate. A significant advantage of the method is that subdomain corners are not included in the approximation, making solutions in complex geometries easier to compute.
Finite element computation of compressible flows with the SUPG formulation
NASA Technical Reports Server (NTRS)
Le Beau, G. J.; Tezduyar, T. E.
1991-01-01
Finite element computation of compressible Euler equations is presented in the context of the streamline-upwind/Petrov-Galerkin (SUPG) formulation. The SUPG formulation, which is based on adding stabilizing terms to the Galerkin formulation, is further supplemented with a shock capturing operator which addresses the difficulty in maintaining a satisfactory solution near discontinuities in the solution field. The shock capturing operator, which has been derived from work done in entropy variables for a similar operator, is shown to lead to an appropriate level of additional stabilization near shocks, without resulting in excessive numerical diffusion. An implicit treatment of the impermeable wall boundary condition is also presented. This treatment of the no-penetration condition offers increased stability for large Courant numbers, and accelerated convergence of the computations for both implicit and explicit applications. Several examples are presented to demonstrate the ability of this method to solve the equations governing compressible fluid flow.
The compression and expansion waves of the forward and backward flows: an in-vitro arterial model.
Feng, J; Khir, A W
2008-05-01
Although the propagation of arterial waves of forward flows has been studied before, that of backward flows has not been thoroughly investigated. The aim of this research is to investigate the propagation of the compression and expansion waves of backward flows in terms of wave speed and dissipation, in flexible tubes. The aim is also to compare the propagation of these waves with those of forward flows. A piston pump generated a flow waveform in the shape of approximately half-sinusoid, in flexible tubes (12 mm and 16 mm diameter). The pump produced flow in either the forward or the backward direction by moving the piston forward, in a 'pushing action' or backward, in a 'pulling action', using a graphite brushes d.c. motor. Pressure and flow were measured at intervals of 5 cm along each tube and wave speed was determined using the PU-loop method. The simultaneous measurements of diameter were also taken at the same position of the pressure and flow in the 16 mm tube. Wave intensity analysis was used to determine the magnitude of the pressure and velocity waveforms and wave intensity in the forward and backward directions. Under the same initial experimental conditions, wave speed was higher during the pulling action (backward flow) than during the pushing action (forward flow). The amplitudes of pressure and velocity in the pulling action were significantly higher than those in the pushing action. The tube diameter was approximately 20 per cent smaller in the pulling action than in the pushing action in the 16 mm tube. The compression and expansion waves resulting from the pushing and pulling actions dissipated exponentially along the travelling distance, and their dissipation was greater in the smaller than in the larger tubes. Local wave speed in flexible tubes is flow direction- and wave nature-dependent and is greater with expansion than with compression waves. Wave dissipation has an inverse relationship with the vessel diameter, and dissipation of the
Simple numerical method for predicting steady compressible flows
NASA Technical Reports Server (NTRS)
Vonlavante, Ernst; Nelson, N. Duane
1986-01-01
A numerical method for solving the isenthalpic form of the governing equations for compressible viscous and inviscid flows was developed. The method was based on the concept of flux vector splitting in its implicit form. The method was tested on several demanding inviscid and viscous configurations. Two different forms of the implicit operator were investigated. The time marching to steady state was accelerated by the implementation of the multigrid procedure. Its various forms very effectively increased the rate of convergence of the present scheme. High quality steady state results were obtained in most of the test cases; these required only short computational times due to the relative efficiency of the basic method.
NASA Astrophysics Data System (ADS)
Dartevelle, S.
2006-12-01
Large-scale volcanic eruptions are inherently hazardous events, hence cannot be described by detailed and accurate in situ measurements; hence, volcanic explosive phenomenology is inadequately constrained in terms of initial and inflow conditions. Consequently, little to no real-time data exist to Verify and Validate computer codes developed to model these geophysical events as a whole. However, code Verification and Validation remains a necessary step, particularly when volcanologists use numerical data for mitigation of volcanic hazards as more often performed nowadays. The Verification and Validation (V&V) process formally assesses the level of 'credibility' of numerical results produced within a range of specific applications. The first step, Verification, is 'the process of determining that a model implementation accurately represents the conceptual description of the model', which requires either exact analytical solutions or highly accurate simplified experimental data. The second step, Validation, is 'the process of determining the degree to which a model is an accurate representation of the real world', which requires complex experimental data of the 'real world' physics. The Verification step is rather simple to formally achieve, while, in the 'real world' explosive volcanism context, the second step, Validation, is about impossible. Hence, instead of validating computer code against the whole large-scale unconstrained volcanic phenomenology, we rather suggest to focus on the key physics which control these volcanic clouds, viz., momentum-driven supersonic jets and multiphase turbulence. We propose to compare numerical results against a set of simple but well-constrained analog experiments, which uniquely and unambiguously represent these two key-phenomenology separately. Herewith, we use GMFIX (Geophysical Multiphase Flow with Interphase eXchange, v1.62), a set of multiphase- CFD FORTRAN codes, which have been recently redeveloped to meet the strict
Modeling Subgrid Scale Droplet Deposition in Multiphase-CFD
NASA Astrophysics Data System (ADS)
Agostinelli, Giulia; Baglietto, Emilio
2017-11-01
The development of first-principle-based constitutive equations for the Eulerian-Eulerian CFD modeling of annular flow is a major priority to extend the applicability of multiphase CFD (M-CFD) across all two-phase flow regimes. Two key mechanisms need to be incorporated in the M-CFD framework, the entrainment of droplets from the liquid film, and their deposition. Here we focus first on the aspect of deposition leveraging a separate effects approach. Current two-field methods in M-CFD do not include appropriate local closures to describe the deposition of droplets in annular flow conditions. As many integral correlations for deposition have been proposed for lumped parameters methods applications, few attempts exist in literature to extend their applicability to CFD simulations. The integral nature of the approach limits its applicability to fully developed flow conditions, without geometrical or flow variations, therefore negating the scope of CFD application. A new approach is proposed here that leverages local quantities to predict the subgrid-scale deposition rate. The methodology is first tested into a three-field approach CFD model.
Method and apparatus for measuring the mass flow rate of a fluid
Evans, Robert P.; Wilkins, S. Curtis; Goodrich, Lorenzo D.; Blotter, Jonathan D.
2002-01-01
A non invasive method and apparatus is provided to measure the mass flow rate of a multi-phase fluid. An accelerometer is attached to a pipe carrying a multi-phase fluid. Flow related measurements in pipes are sensitive to random velocity fluctuations whose magnitude is proportional to the mean mass flow rate. An analysis of the signal produced by the accelerometer shows a relationship between the mass flow of a fluid and the noise component of the signal of an accelerometer. The noise signal, as defined by the standard deviation of the accelerometer signal allows the method and apparatus of the present invention to non-intrusively measure the mass flow rate of a multi-phase fluid.
Laser driven supersonic flow over a compressible foam surface on the Nike lasera)
NASA Astrophysics Data System (ADS)
Harding, E. C.; Drake, R. P.; Aglitskiy, Y.; Plewa, T.; Velikovich, A. L.; Gillespie, R. S.; Weaver, J. L.; Visco, A.; Grosskopf, M. J.; Ditmar, J. R.
2010-05-01
A laser driven millimeter-scale target was used to generate a supersonic shear layer in an attempt to create a Kelvin-Helmholtz (KH) unstable interface in a high-energy-density (HED) plasma. The KH instability is a fundamental fluid instability that remains unexplored in HED plasmas, which are relevant to the inertial confinement fusion and astrophysical environments. In the experiment presented here the Nike laser [S. P. Obenschain et al., Phys. Plasmas 3, 2098 (1996)] was used to create and drive Al plasma over a rippled foam surface. In response to the supersonic Al flow (Mach=2.6±1.1) shocks should form in the Al flow near the perturbations. The experimental data were used to infer the existence and location of these shocks. In addition, the interface perturbations show growth that has possible contributions from both KH and Richtmyer-Meshkov instabilities. Since compressible shear layers exhibit smaller growth, it is important to use the KH growth rate derived from the compressible dispersion relation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chuan Lu; CHI Zhang; Hai Hanag
2014-04-01
Successful geological storage and sequestration of carbon dioxide (CO2) require efficient monitoring of the migration of CO2 plume during and after large-scale injection in order to verify the containment of the injected CO2 within the target formation and to evaluate potential leakage risk. Field studies have shown that surface and cross-borehole electrical resistivity tomography (ERT) can be a useful tool in imaging and characterizing solute transport in heterogeneous subsurface. In this synthetic study, we have coupled a 3-D multiphase flow model with a parallel 3-D time-lapse ERT inversion code to explore the feasibility of using time-lapse ERT for simultaneously monitoringmore » the migration of CO2 plume in deep saline formation and potential brine intrusion into shallow fresh water aquifer. Direct comparisons of the inverted CO2 plumes resulting from ERT with multiphase flow simulation results indicate the ERT could be used to delineate the migration of CO2 plume. Detailed comparisons on the locations, sizes and shapes of CO2 plume and intruded brine plumes suggest that ERT inversion tends to underestimate the area review of the CO2 plume, but overestimate the thickness and total volume of the CO2 plume. The total volume of intruded brine plumes is overestimated as well. However, all discrepancies remain within reasonable ranges. Our study suggests that time-lapse ERT is a useful monitoring tool in characterizing the movement of injected CO2 into deep saline aquifer and detecting potential brine intrusion under large-scale field injection conditions.« less
A Vortex Particle-Mesh method for subsonic compressible flows
NASA Astrophysics Data System (ADS)
Parmentier, Philippe; Winckelmans, Grégoire; Chatelain, Philippe
2018-02-01
This paper presents the implementation and validation of a remeshed Vortex Particle-Mesh (VPM) method capable of simulating complex compressible and viscous flows. It is supplemented with a radiation boundary condition in order for the method to accommodate the radiating quantities of the flow. The efficiency of the methodology relies on the use of an underlying grid; it allows the use of a FFT-based Poisson solver to calculate the velocity field, and the use of high-order isotropic finite differences to evaluate the non-advective terms in the Lagrangian form of the conservation equations. The Möhring analogy is then also used to further obtain the far-field sound produced by two co-rotating Gaussian vortices. It is demonstrated that the method is in excellent quantitative agreement with reference results that were obtained using a high-order Eulerian method and using a high-order remeshed Vortex Particle (VP) method.
Some Effects of Compressibility on the Flow Through Fans and Turbines
1945-08-01
conditions, or the velocity diagram, for the cascade of airfoils representing a fan or a turbine - blade arrangement (fig. 1). The conservation laws...Compressibility on the Flow Through Fans and Turbines AUTHOR(S); Perl. W.j Epstein, H.T. ORIGINATING AGENCY: Aircraft Engine Research Lab., Cleveland, O... turbine blading . It appears, however, that use of a suitable polytropic exponent n?^7 allows direct application in many cases.) Substitution of
NASA Technical Reports Server (NTRS)
Om, Deepak; Childs, Morris E.
1987-01-01
An experimental study is described in which detailed wall pressure measurements have been obtained for compressible three-dimensional unseparated boundary layer flow in annular diffusers with and without normal shock waves. Detailed mean flow-field data were also obtained for the diffuser flow without a shock wave. Two diffuser flows with shock waves were investigated. In one case, the normal shock existed over the complete annulus whereas in the second case, the shock existed over a part of the annulus. The data obtained can be used to validate computational codes for predicting such flow fields. The details of the flow field without the shock wave show flow reversal in the circumferential direction on both inner and outer surfaces. However, there is a lag in the flow reversal between the inner nad the outer surfaces. This is an interesting feature of this flow and should be a good test for the computational codes.
Davis, Mark T; Potter, Catherine B; Walker, Gavin M
2018-06-10
Downstream processing aspects of a stable form of amorphous itraconazole exhibiting enhanced dissolution properties were studied. Preparation of this ternary amorphous solid dispersion by either spray drying or hot melt extrusion led to significantly different powder processing properties. Particle size and morphology was analysed using scanning electron microscopy. Flow, compression, blending and dissolution were studied using rheometry, compaction simulation and a dissolution kit. The spray dried material exhibited poorer flow and reduced sensitivity to aeration relative to the milled extrudate. Good agreement was observed between differing forms of flow measurement, such as Flow Function, Relative flow function, Flow rate index, Aeration rate, the Hausner ratio and the Carr index. The stability index indicated that both powders were stable with respect to agglomeration, de-agglomeration and attrition. Tablet ability and compressibility studies showed that spray dried material could be compressed into stronger compacts than extruded material. Blending of the powders with low moisture, freely-flowing excipients was shown to influence both flow and compression. Porosity studies revealed that blending could influence the mechanism of densification in extrudate and blended extrudate formulations. Following blending, the powders were compressed into four 500 mg tablets, each containing a 100 mg dose of amorphous itraconazole. Dissolution studies revealed that the spray dried material released drug faster and more completely and that blending excipients could further influence the dissolution rate. Copyright © 2018 Elsevier B.V. All rights reserved.
Numerical Modeling of Multiphase Fluid Flow in Ore-Forming Hydrothermal Systems
NASA Astrophysics Data System (ADS)
Weis, P.; Driesner, T.; Coumou, D.; Heinrich, C. A.
2007-12-01
Two coexisting fluid phases - a variably saline liquid and a vapor phase - are ubiquitous in ore-forming and other hydrothermal systems. Understanding the dynamics of phase separation and the distinct physical and chemical evolution of the two fluids probably plays a key role in generating different ore deposit types, e.g. porphyry type, high and low sulfidation Cu-Mo-Au deposits. To this end, processes within hydrothermal systems have been studied with a refined numerical model describing fluid flow in transient porous media (CSP~5.0). The model is formulated on a mass, energy and momentum conserving finite-element-finite-volume (FEFV) scheme and is capable of simulating multiphase flow of NaCl-H20 fluids. Fluid properties are computed from an improved equation of state (SOWAT~2.0). It covers conditions with temperatures of up to 1000 degrees~C, pressures of up to 500 MPa, and fluid salinities of 0~to 100%~NaCl. In particular, the new set-up allows for a more accurate description of fluid phase separation during boiling of hydrothermal fluids into a vapor and a brine phase. The geometric flexibility of the FEFV-meshes allows for investigations of a large variety of geological settings, ranging from ore-forming processes in magmatic hydrothermal system to the dynamics of black smokers at mid-ocean ridges. Simulations demonstrated that hydrothermal convection patterns above cooling plutons are primarily controlled by the system-scale permeability structure. In porphyry systems, high fluid pressures develop in a stock rising from the magma chamber which can lead to rock failure and, eventually, an increase in permeability due to hydrofracturing. Comparisons of the thermal evolution as inferred from modeling studies with data from fluid inclusion studies of the Pb-Zn deposits of Madan, Bulgaria are in a strikingly good agreement. This indicates that cross-comparisons of field observations, analytical data and numerical simulations will become a powerful tool towards a
Interactive computer graphics applications for compressible aerodynamics
NASA Technical Reports Server (NTRS)
Benson, Thomas J.
1994-01-01
Three computer applications have been developed to solve inviscid compressible fluids problems using interactive computer graphics. The first application is a compressible flow calculator which solves for isentropic flow, normal shocks, and oblique shocks or centered expansions produced by two dimensional ramps. The second application couples the solutions generated by the first application to a more graphical presentation of the results to produce a desk top simulator of three compressible flow problems: 1) flow past a single compression ramp; 2) flow past two ramps in series; and 3) flow past two opposed ramps. The third application extends the results of the second to produce a design tool which solves for the flow through supersonic external or mixed compression inlets. The applications were originally developed to run on SGI or IBM workstations running GL graphics. They are currently being extended to solve additional types of flow problems and modified to operate on any X-based workstation.
NASA Technical Reports Server (NTRS)
Kendall, R. M.; Bonnett, W. S.; Nardo, C. T.; Abbett, M. J.
1975-01-01
A three-dimensional boundary-layer code was developed for particular application to realistic hypersonic aircraft. It is very general and can be applied to a wide variety of boundary-layer flows. Laminar, transitional, and fully turbulent flows of compressible, reacting gases are efficiently calculated by use of the code. A body-oriented orthogonal coordinate system is used for the calculation and the user has complete freedom in specifying the coordinate system within the restrictions that one coordinate must be normal to the surface and the three coordinates must be mutually orthogonal.
KIVA-hpFE. Predictive turbulent reactive and multiphase flow in engines - An Overview
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carrington, David Bradley
2016-05-23
Research and development of KIVA-hpFE for turbulent reactive and multiphase flow particularly as related to engine modeling program has relevance to National energy security and climate change. Climate change is a source problem, and energy national security is consumption of petroleum products problem. Accurately predicting engine processes leads to, lower greenhouse gas (GHG) emission, where engines in the transportation sector currently account for 26% of the U.S. GHG emissions. Less dependence on petroleum products leads to greater energy security. By Environmental Protection Agency standards, some vehicles are now reaching 42 to the 50 mpg mark. These are conventional gasoline engines.more » Continued investment and research into new technical innovations, the potential exists to save more than 4 million barrels of oil per day or approximately $200 to $400 million per day. This would be a significant decrease in emission and use of petroleum and a very large economic stimulus too! It is estimated with further advancements in combustion, the current emissions can be reduced up to 40%. Enabling better understanding of fuel injection and fuel-air mixing, thermodynamic combustion losses, and combustion/emission formation processes enhances our ability to help solve both problems. To provide adequate capability for accurately simulating these processes, minimize time and labor for development of engine technology, are the goals of our KIVA development program.« less
Lagrangian transported MDF methods for compressible high speed flows
NASA Astrophysics Data System (ADS)
Gerlinger, Peter
2017-06-01
This paper deals with the application of thermochemical Lagrangian MDF (mass density function) methods for compressible sub- and supersonic RANS (Reynolds Averaged Navier-Stokes) simulations. A new approach to treat molecular transport is presented. This technique on the one hand ensures numerical stability of the particle solver in laminar regions of the flow field (e.g. in the viscous sublayer) and on the other hand takes differential diffusion into account. It is shown in a detailed analysis, that the new method correctly predicts first and second-order moments on the basis of conventional modeling approaches. Moreover, a number of challenges for MDF particle methods in high speed flows is discussed, e.g. high cell aspect ratio grids close to solid walls, wall heat transfer, shock resolution, and problems from statistical noise which may cause artificial shock systems in supersonic flows. A Mach 2 supersonic mixing channel with multiple shock reflection and a model rocket combustor simulation demonstrate the eligibility of this technique to practical applications. Both test cases are simulated successfully for the first time with a hybrid finite-volume (FV)/Lagrangian particle solver (PS).
Modelling compressible dense and dilute two-phase flows
NASA Astrophysics Data System (ADS)
Saurel, Richard; Chinnayya, Ashwin; Carmouze, Quentin
2017-06-01
Many two-phase flow situations, from engineering science to astrophysics, deal with transition from dense (high concentration of the condensed phase) to dilute concentration (low concentration of the same phase), covering the entire range of volume fractions. Some models are now well accepted at the two limits, but none are able to cover accurately the entire range, in particular regarding waves propagation. In the present work, an alternative to the Baer and Nunziato (BN) model [Baer, M. R. and Nunziato, J. W., "A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials," Int. J. Multiphase Flow 12(6), 861 (1986)], initially designed for dense flows, is built. The corresponding model is hyperbolic and thermodynamically consistent. Contrarily to the BN model that involves 6 wave speeds, the new formulation involves 4 waves only, in agreement with the Marble model [Marble, F. E., "Dynamics of a gas containing small solid particles," Combustion and Propulsion (5th AGARD Colloquium) (Pergamon Press, 1963), Vol. 175] based on pressureless Euler equations for the dispersed phase, a well-accepted model for low particle volume concentrations. In the new model, the presence of pressure in the momentum equation of the particles and consideration of volume fractions in the two phases render the model valid for large particle concentrations. A symmetric version of the new model is derived as well for liquids containing gas bubbles. This model version involves 4 characteristic wave speeds as well, but with different velocities. Last, the two sub-models with 4 waves are combined in a unique formulation, valid for the full range of volume fractions. It involves the same 6 wave speeds as the BN model, but at a given point of space, 4 waves only emerge, depending on the local volume fractions. The non-linear pressure waves propagate only in the phase with dominant volume fraction. The new model is tested numerically on various
NASA Technical Reports Server (NTRS)
Stack, John
1935-01-01
Simultaneous air-flow photographs and pressure-distribution measurements have been made of the NACA 4412 airfoil at high speeds in order to determine the physical nature of the compressibility burble. The flow photographs were obtained by the Schlieren method and the pressures were simultaneously measured for 54 stations on the 5-inch-chord wing by means of a multiple-tube photographic manometer. Pressure-measurement results and typical Schlieren photographs are presented. The general nature of the phenomenon called the "compressibility burble" is shown by these experiments. The source of the increased drag is the compression shock that occurs, the excess drag being due to the conversion of a considerable amount of the air-stream kinetic energy into heat at the compression shock.
Multiphase flow modeling of a crude-oil spill site with a bimodal permeability distribution
Dillard, Leslie A.; Essaid, Hedeff I.; Herkelrath, William N.
1997-01-01
Fluid saturation, particle-size distribution, and porosity measurements were obtained from 269 core samples collected from six boreholes along a 90-m transect at a subregion of a crude-oil spill site, the north pool, near Bemidji, Minnesota. The oil saturation data, collected 11 years after the spill, showed an irregularly shaped oil body that appeared to be affected by sediment spatial variability. The particle-size distribution data were used to estimate the permeability (k) and retention curves for each sample. An additional 344 k estimates were obtained from samples previously collected at the north pool. The 613 k estimates were distributed bimodal lognormally with the two population distributions corresponding to the two predominant lithologies: a coarse glacial outwash deposit and fine-grained interbedded lenses. A two-step geostatistical approach was used to generate a conditioned realization of k representing the bimodal heterogeneity. A cross-sectional multiphase flow model was used to simulate the flow of oil and water in the presence of air along the north pool transect for an 11-year period. The inclusion of a representation of the bimodal aquifer heterogeneity was crucial for reproduction of general features of the observed oil body. If the bimodal heterogeneity was characterized, hysteresis did not have to be incorporated into the model because a hysteretic effect was produced by the sediment spatial variability. By revising the relative permeability functional relation, an improved reproduction of the observed oil saturation distribution was achieved. The inclusion of water table fluctuations in the model did not significantly affect the simulated oil saturation distribution.
CFD of mixing of multi-phase flow in a bioreactor using population balance model.
Sarkar, Jayati; Shekhawat, Lalita Kanwar; Loomba, Varun; Rathore, Anurag S
2016-05-01
Mixing in bioreactors is known to be crucial for achieving efficient mass and heat transfer, both of which thereby impact not only growth of cells but also product quality. In a typical bioreactor, the rate of transport of oxygen from air is the limiting factor. While higher impeller speeds can enhance mixing, they can also cause severe cell damage. Hence, it is crucial to understand the hydrodynamics in a bioreactor to achieve optimal performance. This article presents a novel approach involving use of computational fluid dynamics (CFD) to model the hydrodynamics of an aerated stirred bioreactor for production of a monoclonal antibody therapeutic via mammalian cell culture. This is achieved by estimating the volume averaged mass transfer coefficient (kL a) under varying conditions of the process parameters. The process parameters that have been examined include the impeller rotational speed and the flow rate of the incoming gas through the sparger inlet. To undermine the two-phase flow and turbulence, an Eulerian-Eulerian multiphase model and k-ε turbulence model have been used, respectively. These have further been coupled with population balance model to incorporate the various interphase interactions that lead to coalescence and breakage of bubbles. We have successfully demonstrated the utility of CFD as a tool to predict size distribution of bubbles as a function of process parameters and an efficient approach for obtaining optimized mixing conditions in the reactor. The proposed approach is significantly time and resource efficient when compared to the hit and trial, all experimental approach that is presently used. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:613-628, 2016. © 2016 American Institute of Chemical Engineers.
Ill-posedness of Dynamic Equations of Compressible Granular Flow
NASA Astrophysics Data System (ADS)
Shearer, Michael; Gray, Nico
2017-11-01
We introduce models for 2-dimensional time-dependent compressible flow of granular materials and suspensions, based on the rheology of Pouliquen and Forterre. The models include density dependence through a constitutive equation in which the density or volume fraction of solid particles with material density ρ* is taken as a function of an inertial number I: ρ = ρ * Φ(I), in which Φ(I) is a decreasing function of I. This modelling has different implications from models relying on critical state soil mechanics, in which ρ is treated as a variable in the equations, contributing to a flow rule. The analysis of the system of equations builds on recent work of Barker et al in the incompressible case. The main result is the identification of a criterion for well-posedness of the equations. We additionally analyze a modification that applies to suspensions, for which the rheology takes a different form and the inertial number reflects the role of the fluid viscosity.
NASA Astrophysics Data System (ADS)
Yuan, H. Z.; Wang, Y.; Shu, C.
2017-12-01
This paper presents an adaptive mesh refinement-multiphase lattice Boltzmann flux solver (AMR-MLBFS) for effective simulation of complex binary fluid flows at large density ratios. In this method, an AMR algorithm is proposed by introducing a simple indicator on the root block for grid refinement and two possible statuses for each block. Unlike available block-structured AMR methods, which refine their mesh by spawning or removing four child blocks simultaneously, the present method is able to refine its mesh locally by spawning or removing one to four child blocks independently when the refinement indicator is triggered. As a result, the AMR mesh used in this work can be more focused on the flow region near the phase interface and its size is further reduced. In each block of mesh, the recently proposed MLBFS is applied for the solution of the flow field and the level-set method is used for capturing the fluid interface. As compared with existing AMR-lattice Boltzmann models, the present method avoids both spatial and temporal interpolations of density distribution functions so that converged solutions on different AMR meshes and uniform grids can be obtained. The proposed method has been successfully validated by simulating a static bubble immersed in another fluid, a falling droplet, instabilities of two-layered fluids, a bubble rising in a box, and a droplet splashing on a thin film with large density ratios and high Reynolds numbers. Good agreement with the theoretical solution, the uniform-grid result, and/or the published data has been achieved. Numerical results also show its effectiveness in saving computational time and virtual memory as compared with computations on uniform meshes.
Prediction of mean flow data for adiabatic 2-D compressible turbulent boundary layers
NASA Astrophysics Data System (ADS)
Motallebi, Fariborz
1995-02-01
This report presents a method for the prediction of mean flow data (i.e. , skin friction, velocity profile, and shape parameter) for adiabatic two-dimensional compressible turbulent boundary layers at zero pressure gradient. The transformed law of the wall, law of the wake, the van Driest model for the complete inner region, and a correlation between the Reynolds number based on the boundary layer integral length scale (Re(sub Delta*)) and the Reynolds number based on the boundary layer momentum thickness (Re(sub theta)) were used to predict the mean flow quantities. The results for skin friction coefficient show good agreement with a number of existing theories including those of van Driest and Huang et al. Comparison with a large number of experimental data suggests that at least for transonic and supersonic flows, the velocity profile as described by van Driest and Coles is Reynolds number dependent and should not be presumed universal. Extra information or perhaps a better physical approach to the formulation of the mean structure of compressible turbulent boundary layers, even in zero pressure gradient and adiabatic condition, is required in order to achieve complete (physical and mathematical) convergence when it is applied in any prediction methods.
Fuel Spray and Flame Formation in a Compression-Ignition Engine Employing Air Flow
NASA Technical Reports Server (NTRS)
Rothrock, A M; Waldron, C D
1937-01-01
The effects of air flow on fuel spray and flame formation in a high-speed compression-ignition engine have been investigated by means of the NACA combustion apparatus. The process was studied by examining high-speed motion pictures taken at the rate of 2,200 frames a second. The combustion chamber was of the flat-disk type used in previous experiments with this apparatus. The air flow was produced by a rectangular displacer mounted on top of the engine piston. Three fuel-injection nozzles were tested: a 0.020-inch single-orifice nozzle, a 6-orifice nozzle, and a slit nozzle. The air velocity within the combustion chamber was estimated to reach a value of 425 feet a second. The results show that in no case was the form of the fuel spray completely destroyed by the air jet although in some cases the direction of the spray was changed and the spray envelope was carried away by the moving air. The distribution of the fuel in the combustion chamber of a compression-ignition engine can be regulated to some extent by the design of the combustion chamber, by the design of the fuel-injection nozzle, and by the use of air flow.
Study of compressible turbulent flows in supersonic environment by large-eddy simulation
NASA Astrophysics Data System (ADS)
Genin, Franklin
The numerical resolution of turbulent flows in high-speed environment is of fundamental importance but remains a very challenging problem. First, the capture of strong discontinuities, typical of high-speed flows, requires the use of shock-capturing schemes, which are not adapted to the resolution of turbulent structures due to their intrinsic dissipation. On the other hand, low-dissipation schemes are unable to resolve shock fronts and other sharp gradients without creating high amplitude numerical oscillations. Second, the nature of turbulence in high-speed flows differs from its incompressible behavior, and, in the context of Large-Eddy Simulation, the subgrid closure must be adapted to the modeling of compressibility effects and shock waves on turbulent flows. The developments described in this thesis are two-fold. First, a state of the art closure approach for LES is extended to model subgrid turbulence in compressible flows. The energy transfers due to compressible turbulence and the diffusion of turbulent kinetic energy by pressure fluctuations are assessed and integrated in the Localized Dynamic ksgs model. Second, a hybrid numerical scheme is developed for the resolution of the LES equations and of the model transport equation, which combines a central scheme for turbulent resolutions to a shock-capturing method. A smoothness parameter is defined and used to switch from the base smooth solver to the upwind scheme in regions of discontinuities. It is shown that the developed hybrid methodology permits a capture of shock/turbulence interactions in direct simulations that agrees well with other reference simulations, and that the LES methodology effectively reproduces the turbulence evolution and physical phenomena involved in the interaction. This numerical approach is then employed to study a problem of practical importance in high-speed mixing. The interaction of two shock waves with a high-speed turbulent shear layer as a mixing augmentation technique is
NASA Astrophysics Data System (ADS)
Talbot, C.; McClure, J. E.; Armstrong, R. T.; Mostaghimi, P.; Hu, Y.; Miller, C. T.
2017-12-01
Microscale simulation of multiphase flow in realistic, highly-resolved porous medium systems of a sufficient size to support macroscale evaluation is computationally demanding. Such approaches can, however, reveal the dynamic, steady, and equilibrium states of a system. We evaluate methods to utilize dynamic data to reduce the cost associated with modeling a steady or equilibrium state. We construct data-driven models using extensions to dynamic mode decomposition (DMD) and its connections to Koopman Operator Theory. DMD and its variants comprise a class of equation-free methods for dimensionality reduction of time-dependent nonlinear dynamical systems. DMD furnishes an explicit reduced representation of system states in terms of spatiotemporally varying modes with time-dependent oscillation frequencies and amplitudes. We use DMD to predict the steady and equilibrium macroscale state of a realistic two-fluid porous medium system imaged using micro-computed tomography (µCT) and simulated using the lattice Boltzmann method (LBM). We apply Koopman DMD to direct numerical simulation data resulting from simulations of multiphase fluid flow through a 1440x1440x4320 section of a full 1600x1600x5280 realization of imaged sandstone. We determine a representative set of system observables via dimensionality reduction techniques including linear and kernel principal component analysis. We demonstrate how this subset of macroscale quantities furnishes a representation of the time-evolution of the system in terms of dynamic modes, and discuss the selection of a subset of DMD modes yielding the optimal reduced model, as well as the time-dependence of the error in the predicted equilibrium value of each macroscale quantity. Finally, we describe how the above procedure, modified to incorporate methods from compressed sensing and random projection techniques, may be used in an online fashion to facilitate adaptive time-stepping and parsimonious storage of system states over time.
Development of iterative techniques for the solution of unsteady compressible viscous flows
NASA Technical Reports Server (NTRS)
Hixon, Duane; Sankar, L. N.
1993-01-01
During the past two decades, there has been significant progress in the field of numerical simulation of unsteady compressible viscous flows. At present, a variety of solution techniques exist such as the transonic small disturbance analyses (TSD), transonic full potential equation-based methods, unsteady Euler solvers, and unsteady Navier-Stokes solvers. These advances have been made possible by developments in three areas: (1) improved numerical algorithms; (2) automation of body-fitted grid generation schemes; and (3) advanced computer architectures with vector processing and massively parallel processing features. In this work, the GMRES scheme has been considered as a candidate for acceleration of a Newton iteration time marching scheme for unsteady 2-D and 3-D compressible viscous flow calculation; from preliminary calculations, this will provide up to a 65 percent reduction in the computer time requirements over the existing class of explicit and implicit time marching schemes. The proposed method has ben tested on structured grids, but is flexible enough for extension to unstructured grids. The described scheme has been tested only on the current generation of vector processor architecture of the Cray Y/MP class, but should be suitable for adaptation to massively parallel machines.
Large eddy simulation of cavitating flows
NASA Astrophysics Data System (ADS)
Gnanaskandan, Aswin; Mahesh, Krishnan
2014-11-01
Large eddy simulation on unstructured grids is used to study hydrodynamic cavitation. The multiphase medium is represented using a homogeneous equilibrium model that assumes thermal equilibrium between the liquid and the vapor phase. Surface tension effects are ignored and the governing equations are the compressible Navier Stokes equations for the liquid/vapor mixture along with a transport equation for the vapor mass fraction. A characteristic-based filtering scheme is developed to handle shocks and material discontinuities in non-ideal gases and mixtures. A TVD filter is applied as a corrector step in a predictor-corrector approach with the predictor scheme being non-dissipative and symmetric. The method is validated for canonical one dimensional flows and leading edge cavitation over a hydrofoil, and applied to study sheet to cloud cavitation over a wedge. This work is supported by the Office of Naval Research.
Temperature measurement in a compressible flow field using laser-induced iodine fluorescence
NASA Technical Reports Server (NTRS)
Fletcher, D. G.; Mcdaniel, J. C.
1987-01-01
The thermometric capability of a two-line fluorescence technique using iodine seed molecules in air is investigated analytically and verified experimentally in a known steady compressible flow field. Temperatures ranging from 165 to 295 K were measured in the flowfield using two iodine transitions accessed with a 30-GHz dye-laser scan near 543 nm. The effect of pressure broadening on temperature measurement is evaluated.
A study of the compressible flow through a diffusing S-duct
NASA Technical Reports Server (NTRS)
Wellborn, Steven R.; Okiishi, Theodore H.; Reichert, Bruce A.
1993-01-01
Benchmark aerodynamic data are presented for compressible flow through a representative S-duct configuration. A numerical prediction of the S-duct flow field, obtained from a subsonic parabolized Navier-Stokes algorithm, is also shown. The experimental and numerical results are compared. Measurements of the three-dimensional velocity field, total pressures, and static pressures were obtained at five cross-sectional planes. Aerodynamic data were gathered with calibrated pneumatic probes. Surface static pressure and surface flow visualization data were also acquired. All reported tests were conducted with an inlet centerline Mach number of 0.6. The Reynolds number, based on the inlet centerline velocity and duct inlet diameter, was 2.6 x 10(exp 6). Thin inlet turbulent boundary layers existed. The collected data should be beneficial to aircraft inlet designers and the measurements are suitable for the validation of computational codes. The results show that a region of streamwise flow separation occurred within the duct. Details about the separated flow region, including mechanisms which drive this complicated flow phenomenon, are discussed. Results also indicate that the duct curvature induces strong pressure driven secondary flows. The cross flows evolve into counter-rotating vortices. These vortices convect low momentum fluid of the boundary layer toward the center of the duct, degrading both the uniformity and magnitude of the total pressure profile.
On the effect of boundary layer growth on the stability of compressible flows
NASA Technical Reports Server (NTRS)
El-Hady, N. M.
1981-01-01
The method of multiple scales is used to describe a formally correct method based on the nonparallel linear stability theory, that examines the two and three dimensional stability of compressible boundary layer flows. The method is applied to the supersonic flat plate layer at Mach number 4.5. The theoretical growth rates are in good agreement with experimental results. The method is also applied to the infinite-span swept wing transonic boundary layer with suction to evaluate the effect of the nonparallel flow on the development of crossflow disturbances.
Assessment and application of Reynolds stress closure models to high-speed compressible flows
NASA Technical Reports Server (NTRS)
Gatski, T. B.; Sarkar, S.; Speziale, C. G.; Balakrishnan, L.; Abid, R.; Anderson, E. C.
1990-01-01
The paper presents results from the development of higher order closure models for the phenomological modeling of high-speed compressible flows. The work presented includes the introduction of an improved pressure-strain correlationi model applicable in both the low- and high-speed regime as well as modifications to the isotropic dissipation rate to account for dilatational effects. Finally, the question of stiffness commonly associated with the solution of two-equation and Reynolds stress transport equations in wall-bounded flows is examined and ways of relaxing these restrictions are discussed.
Multiphase magnetic systems: Measurement and simulation
NASA Astrophysics Data System (ADS)
Cao, Yue; Ahmadzadeh, Mostafa; Xu, Ke; Dodrill, Brad; McCloy, John S.
2018-01-01
Multiphase magnetic systems are common in nature and are increasingly being recognized in technical applications. One characterization method which has shown great promise for determining separate and collective effects of multiphase magnetic systems is first order reversal curves (FORCs). Several examples are given of FORC patterns which provide distinguishing evidence of multiple phases. In parallel, a visualization method for understanding multiphase magnetic interaction is given, which allocates Preisach magnetic elements as an input "Preisach hysteron distribution pattern" to enable simulation of different "wasp-waisted" magnetic behaviors. These simulated systems allow reproduction of different major hysteresis loops and FORC patterns of real systems and parameterized theoretical systems. The experimental FORC measurements and FORC diagrams of four commercially obtained magnetic materials, particularly those sold as nanopowders, show that these materials are often not phase pure. They exhibit complex hysteresis behaviors that are not predictable based on relative phase fraction obtained by characterization methods such as diffraction. These multiphase materials, consisting of various fractions of BaFe12O19, ɛ-Fe2O3, and γ-Fe2O3, are discussed.
Hybrid dynamic radioactive particle tracking (RPT) calibration technique for multiphase flow systems
NASA Astrophysics Data System (ADS)
Khane, Vaibhav; Al-Dahhan, Muthanna H.
2017-04-01
The radioactive particle tracking (RPT) technique has been utilized to measure three-dimensional hydrodynamic parameters for multiphase flow systems. An analytical solution to the inverse problem of the RPT technique, i.e. finding the instantaneous tracer positions based upon instantaneous counts received in the detectors, is not possible. Therefore, a calibration to obtain a counts-distance map is needed. There are major shortcomings in the conventional RPT calibration method due to which it has limited applicability in practical applications. In this work, the design and development of a novel dynamic RPT calibration technique are carried out to overcome the shortcomings of the conventional RPT calibration method. The dynamic RPT calibration technique has been implemented around a test reactor with 1foot in diameter and 1 foot in height using Cobalt-60 as an isotopes tracer particle. Two sets of experiments have been carried out to test the capability of novel dynamic RPT calibration. In the first set of experiments, a manual calibration apparatus has been used to hold a tracer particle at known static locations. In the second set of experiments, the tracer particle was moved vertically downwards along a straight line path in a controlled manner. The obtained reconstruction results about the tracer particle position were compared with the actual known position and the reconstruction errors were estimated. The obtained results revealed that the dynamic RPT calibration technique is capable of identifying tracer particle positions with a reconstruction error between 1 to 5.9 mm for the conditions studied which could be improved depending on various factors outlined here.
Simplified contaminant source depletion models as analogs of multiphase simulators
NASA Astrophysics Data System (ADS)
Basu, Nandita B.; Fure, Adrian D.; Jawitz, James W.
2008-04-01
Four simplified dense non-aqueous phase liquid (DNAPL) source depletion models recently introduced in the literature are evaluated for the prediction of long-term effects of source depletion under natural gradient flow. These models are simple in form (a power function equation is an example) but are shown here to serve as mathematical analogs to complex multiphase flow and transport simulators. The spill and subsequent dissolution of DNAPLs was simulated in domains having different hydrologic characteristics (variance of the log conductivity field = 0.2, 1 and 3) using the multiphase flow and transport simulator UTCHEM. The dissolution profiles were fitted using four analytical models: the equilibrium streamtube model (ESM), the advection dispersion model (ADM), the power law model (PLM) and the Damkohler number model (DaM). All four models, though very different in their conceptualization, include two basic parameters that describe the mean DNAPL mass and the joint variability in the velocity and DNAPL distributions. The variability parameter was observed to be strongly correlated with the variance of the log conductivity field in the ESM and ADM but weakly correlated in the PLM and DaM. The DaM also includes a third parameter that describes the effect of rate-limited dissolution, but here this parameter was held constant as the numerical simulations were found to be insensitive to local-scale mass transfer. All four models were able to emulate the characteristics of the dissolution profiles generated from the complex numerical simulator, but the one-parameter PLM fits were the poorest, especially for the low heterogeneity case.
Simplified contaminant source depletion models as analogs of multiphase simulators.
Basu, Nandita B; Fure, Adrian D; Jawitz, James W
2008-04-28
Four simplified dense non-aqueous phase liquid (DNAPL) source depletion models recently introduced in the literature are evaluated for the prediction of long-term effects of source depletion under natural gradient flow. These models are simple in form (a power function equation is an example) but are shown here to serve as mathematical analogs to complex multiphase flow and transport simulators. The spill and subsequent dissolution of DNAPLs was simulated in domains having different hydrologic characteristics (variance of the log conductivity field=0.2, 1 and 3) using the multiphase flow and transport simulator UTCHEM. The dissolution profiles were fitted using four analytical models: the equilibrium streamtube model (ESM), the advection dispersion model (ADM), the power law model (PLM) and the Damkohler number model (DaM). All four models, though very different in their conceptualization, include two basic parameters that describe the mean DNAPL mass and the joint variability in the velocity and DNAPL distributions. The variability parameter was observed to be strongly correlated with the variance of the log conductivity field in the ESM and ADM but weakly correlated in the PLM and DaM. The DaM also includes a third parameter that describes the effect of rate-limited dissolution, but here this parameter was held constant as the numerical simulations were found to be insensitive to local-scale mass transfer. All four models were able to emulate the characteristics of the dissolution profiles generated from the complex numerical simulator, but the one-parameter PLM fits were the poorest, especially for the low heterogeneity case.
Multiphase Flow: The Gravity of the Situation
NASA Technical Reports Server (NTRS)
Hewitt, Geoffrey F.
1996-01-01
A brief survey is presented of flow patterns in two-phase, gas-liquid flows at normal and microgravity, the differences between them being explored. It seems that the flow patterns in zero gravity are in general much simpler than those in normal gravity with only three main regimes (namely bubbly, slug and annular flows) being observed. Each of these three regimes is then reviewed, with particular reference to identification of areas of study where investigation of flows at microgravity might not only be interesting in themselves, but also throw light on mechanisms at normal earth gravity. In bubbly flow, the main area of interest seems to be that of bubble coalescence. In slug flow, the extension of simple displacement experiments to the zero gravity case would appear to be a useful option, supplemented by computational fluid dynamics (CFD) studies. For annular flow, the most interesting area appears to be the study of the mechanisms of disturbance waves; it should be possible to extend the region of investigation of the onset and behavior of these waves to much low gas velocities where measurements are clearly much easier.
PEVC-FMDF for Large Eddy Simulation of Compressible Turbulent Flows
NASA Astrophysics Data System (ADS)
Nouri Gheimassi, Arash; Nik, Mehdi; Givi, Peyman; Livescu, Daniel; Pope, Stephen
2017-11-01
The filtered density function (FDF) closure is extended to a ``self-contained'' format to include the subgrid scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint ``pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF).'' In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via a set of stochastic differential equation (SDE) for each of the transport variables. This yields a self-contained SGS closure. For demonstration, LES is conducted of a turbulent shear flow with transport of a passive scalar. The consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.
Flow Curve Analysis of 17-4 PH Stainless Steel under Hot Compression Test
NASA Astrophysics Data System (ADS)
Mirzadeh, Hamed; Najafizadeh, Abbas; Moazeny, Mohammad
2009-12-01
The hot compression behavior of a 17-4 PH stainless steel (AISI 630) has been investigated at temperatures of 950 °C to 1150 °C and strain rates of 10-3 to 10 s-1. Glass powder in the Rastegaev reservoirs of the specimen was used as a lubricant material. A step-by-step procedure for data analysis in the hot compression test was given. The work hardening rate analysis was performed to reveal if dynamic recrystallization (DRX) occurred. Many samples exhibited typical DRX stress-strain curves with a single peak stress followed by a gradual fall toward the steady-state stress. At low Zener-Hollomon ( Z) parameter, this material showed a new DRX flow behavior, which was called multiple transient steady state (MTSS). At high Z, as a result of adiabatic deformation heating, a drop in flow stress was observed. The general constitutive equations were used to determine the hot working constants of this material. Moreover, after a critical discussion, the deformation activation energy of 17-4 PH stainless steel was determined as 337 kJ/mol.
NASA Technical Reports Server (NTRS)
Liu, J.; Tiwari, Surendra N.
1994-01-01
The two-dimensional spatially elliptic Navier-Stokes equations have been used to investigate the radiative interactions in chemically reacting compressible flows of premixed hydrogen and air in an expanding nozzle. The radiative heat transfer term in the energy equation is simulated using the Monte Carlo method (MCM). The nongray model employed is based on the statistical narrow band model with an exponential-tailed inverse intensity distribution. The spectral correlation has been considered in the Monte Carlo formulations. Results obtained demonstrate that the effect of radiation on the flow field is minimal but its effect on the wall heat transfer is significant. Extensive parametric studies are conducted to investigate the effects of equivalence ratio, wall temperature, inlet flow temperature, and the nozzle size on the radiative and conductive wall fluxes.
TOUGH3: A new efficient version of the TOUGH suite of multiphase flow and transport simulators
NASA Astrophysics Data System (ADS)
Jung, Yoojin; Pau, George Shu Heng; Finsterle, Stefan; Pollyea, Ryan M.
2017-11-01
The TOUGH suite of nonisothermal multiphase flow and transport simulators has been updated by various developers over many years to address a vast range of challenging subsurface problems. The increasing complexity of the simulated processes as well as the growing size of model domains that need to be handled call for an improvement in the simulator's computational robustness and efficiency. Moreover, modifications have been frequently introduced independently, resulting in multiple versions of TOUGH that (1) led to inconsistencies in feature implementation and usage, (2) made code maintenance and development inefficient, and (3) caused confusion to users and developers. TOUGH3-a new base version of TOUGH-addresses these issues. It consolidates both the serial (TOUGH2 V2.1) and parallel (TOUGH2-MP V2.0) implementations, enabling simulations to be performed on desktop computers and supercomputers using a single code. New PETSc parallel linear solvers are added to the existing serial solvers of TOUGH2 and the Aztec solver used in TOUGH2-MP. The PETSc solvers generally perform better than the Aztec solvers in parallel and the internal TOUGH3 linear solver in serial. TOUGH3 also incorporates many new features, addresses bugs, and improves the flexibility of data handling. Due to the improved capabilities and usability, TOUGH3 is more robust and efficient for solving tough and computationally demanding problems in diverse scientific and practical applications related to subsurface flow modeling.
Self-Similar Compressible Free Vortices
NASA Technical Reports Server (NTRS)
vonEllenrieder, Karl
1998-01-01
Lie group methods are used to find both exact and numerical similarity solutions for compressible perturbations to all incompressible, two-dimensional, axisymmetric vortex reference flow. The reference flow vorticity satisfies an eigenvalue problem for which the solutions are a set of two-dimensional, self-similar, incompressible vortices. These solutions are augmented by deriving a conserved quantity for each eigenvalue, and identifying a Lie group which leaves the reference flow equations invariant. The partial differential equations governing the compressible perturbations to these reference flows are also invariant under the action of the same group. The similarity variables found with this group are used to determine the decay rates of the velocities and thermodynamic variables in the self-similar flows, and to reduce the governing partial differential equations to a set of ordinary differential equations. The ODE's are solved analytically and numerically for a Taylor vortex reference flow, and numerically for an Oseen vortex reference flow. The solutions are used to examine the dependencies of the temperature, density, entropy, dissipation and radial velocity on the Prandtl number. Also, experimental data on compressible free vortex flow are compared to the analytical results, the evolution of vortices from initial states which are not self-similar is discussed, and the energy transfer in a slightly-compressible vortex is considered.
Compressible turbulent channel flow with impedance boundary conditions
NASA Astrophysics Data System (ADS)
Scalo, Carlo; Bodart, Julien; Lele, Sanjiva K.
2015-03-01
We have performed large-eddy simulations of isothermal-wall compressible turbulent channel flow with linear acoustic impedance boundary conditions (IBCs) for the wall-normal velocity component and no-slip conditions for the tangential velocity components. Three bulk Mach numbers, Mb = 0.05, 0.2, 0.5, with a fixed bulk Reynolds number, Reb = 6900, have been investigated. For each Mb, nine different combinations of IBC settings were tested, in addition to a reference case with impermeable walls, resulting in a total of 30 simulations. The adopted numerical coupling strategy allows for a spatially and temporally consistent imposition of physically realizable IBCs in a fully explicit compressible Navier-Stokes solver. The IBCs are formulated in the time domain according to Fung and Ju ["Time-domain impedance boundary conditions for computational acoustics and aeroacoustics," Int. J. Comput. Fluid Dyn. 18(6), 503-511 (2004)]. The impedance adopted is a three-parameter damped Helmholtz oscillator with resonant angular frequency, ωr, tuned to the characteristic time scale of the large energy-containing eddies. The tuning condition, which reads ωr = 2πMb (normalized with the speed of sound and channel half-width), reduces the IBCs' free parameters to two: the damping ratio, ζ, and the resistance, R, which have been varied independently with values, ζ = 0.5, 0.7, 0.9, and R = 0.01, 0.10, 1.00, for each Mb. The application of the tuned IBCs results in a drag increase up to 300% for Mb = 0.5 and R = 0.01. It is shown that for tuned IBCs, the resistance, R, acts as the inverse of the wall-permeability and that varying the damping ratio, ζ, has a secondary effect on the flow response. Typical buffer-layer turbulent structures are completely suppressed by the application of tuned IBCs. A new resonance buffer layer is established characterized by large spanwise-coherent Kelvin-Helmholtz rollers, with a well-defined streamwise wavelength λx, traveling downstream with
Multiphasic On/Off Pheromone Signalling in Moths as Neural Correlates of a Search Strategy
Martinez, Dominique; Chaffiol, Antoine; Voges, Nicole; Gu, Yuqiao; Anton, Sylvia; Rospars, Jean-Pierre; Lucas, Philippe
2013-01-01
Insects and robots searching for odour sources in turbulent plumes face the same problem: the random nature of mixing causes fluctuations and intermittency in perception. Pheromone-tracking male moths appear to deal with discontinuous flows of information by surging upwind, upon sensing a pheromone patch, and casting crosswind, upon losing the plume. Using a combination of neurophysiological recordings, computational modelling and experiments with a cyborg, we propose a neuronal mechanism that promotes a behavioural switch between surge and casting. We show how multiphasic On/Off pheromone-sensitive neurons may guide action selection based on signalling presence or loss of the pheromone. A Hodgkin-Huxley-type neuron model with a small-conductance calcium-activated potassium (SK) channel reproduces physiological On/Off responses. Using this model as a command neuron and the antennae of tethered moths as pheromone sensors, we demonstrate the efficiency of multiphasic patterning in driving a robotic searcher toward the source. Taken together, our results suggest that multiphasic On/Off responses may mediate olfactory navigation and that SK channels may account for these responses. PMID:23613816
Multiphasic on/off pheromone signalling in moths as neural correlates of a search strategy.
Martinez, Dominique; Chaffiol, Antoine; Voges, Nicole; Gu, Yuqiao; Anton, Sylvia; Rospars, Jean-Pierre; Lucas, Philippe
2013-01-01
Insects and robots searching for odour sources in turbulent plumes face the same problem: the random nature of mixing causes fluctuations and intermittency in perception. Pheromone-tracking male moths appear to deal with discontinuous flows of information by surging upwind, upon sensing a pheromone patch, and casting crosswind, upon losing the plume. Using a combination of neurophysiological recordings, computational modelling and experiments with a cyborg, we propose a neuronal mechanism that promotes a behavioural switch between surge and casting. We show how multiphasic On/Off pheromone-sensitive neurons may guide action selection based on signalling presence or loss of the pheromone. A Hodgkin-Huxley-type neuron model with a small-conductance calcium-activated potassium (SK) channel reproduces physiological On/Off responses. Using this model as a command neuron and the antennae of tethered moths as pheromone sensors, we demonstrate the efficiency of multiphasic patterning in driving a robotic searcher toward the source. Taken together, our results suggest that multiphasic On/Off responses may mediate olfactory navigation and that SK channels may account for these responses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berry, R. A.
In the literature, the abundance of pipe network junction models, as well as inclusion of dissipative losses between connected pipes with loss coefficients, has been treated using the incompressible flow assumption of constant density. This approach is fundamentally, physically wrong for compressible flow with density change. This report introduces a mathematical modeling approach for general junctions in piping network systems for which the transient flows are compressible and single-phase. The junction could be as simple as a 1-pipe input and 1-pipe output with differing pipe cross-sectional areas for which a dissipative loss is necessary, or it could include an activemore » component, between an inlet pipe and an outlet pipe, such as a pump or turbine. In this report, discussion will be limited to the former. A more general branching junction connecting an arbitrary number of pipes with transient, 1-D compressible single-phase flows is also presented. These models will be developed in a manner consistent with the use of a general equation of state like, for example, the recent Spline-Based Table Look-up method [1] for incorporating the IAPWS-95 formulation [2] to give accurate and efficient calculations for properties for water and steam with RELAP-7 [3].« less
Near Continuum Velocity and Temperature Coupled Compressible Boundary Layer Flow over a Flat Plate
NASA Astrophysics Data System (ADS)
He, Xin; Cai, Chunpei
2017-04-01
The problem of a compressible gas flows over a flat plate with the velocity-slip and temperature-jump boundary conditions are being studied. The standard single- shooting method is applied to obtain the exact solutions for velocity and temperature profiles when the momentum and energy equations are weakly coupled. A double-shooting method is applied if these two equations are closely coupled. If the temperature affects the velocity directly, more significant velocity slip happens at locations closer to the plate's leading edge, and inflections on the velocity profiles appear, indicating flows may become unstable. As a consequence, the temperature-jump and velocity-slip boundary conditions may trigger earlier flow transitions from a laminar to a turbulent flow state.
NASA Astrophysics Data System (ADS)
Crochet, M. W.; Gonthier, K. A.
2013-12-01
Systems of hyperbolic partial differential equations are frequently used to model the flow of multiphase mixtures. These equations often contain sources, referred to as nozzling terms, that cannot be posed in divergence form, and have proven to be particularly challenging in the development of finite-volume methods. Upwind schemes have recently shown promise in properly resolving the steady wave solution of the associated multiphase Riemann problem. However, these methods require a full characteristic decomposition of the system eigenstructure, which may be either unavailable or computationally expensive. Central schemes, such as the Kurganov-Tadmor (KT) family of methods, require minimal characteristic information, which makes them easily applicable to systems with an arbitrary number of phases. However, the proper implementation of nozzling terms in these schemes has been mathematically ambiguous. The primary objectives of this work are twofold: first, an extension of the KT family of schemes is proposed that formally accounts for the nonconservative nozzling sources. This modification results in a semidiscrete form that retains the simplicity of its predecessor and introduces little additional computational expense. Second, this modified method is applied to multiple, but equivalent, forms of the multiphase equations to perform a numerical study by solving several one-dimensional test problems. Both ideal and Mie-Grüneisen equations of state are used, with the results compared to an analytical solution. This study demonstrates that the magnitudes of the resulting numerical errors are sensitive to the form of the equations considered, and suggests an optimal form to minimize these errors. Finally, a separate modification of the wave propagation speeds used in the KT family is also suggested that can reduce the extent of numerical diffusion in multiphase flows.
Shock Driven Multiphase Instabilities in Scramjet Applications
NASA Astrophysics Data System (ADS)
McFarland, Jacob
2016-11-01
Shock driven multiphase instabilities (SDMI) arise in many applications from dust production in supernovae to ejecta distribution in explosions. At the limit of small, fast reacting particles the instability evolves similar to the Richtmyer-Meshkov (RM) instability. However, as additional particle effects such as lag, phase change, and collisions become significant the required parameter space becomes much larger and the instability deviates significantly from the RM instability. In scramjet engines the SDMI arises during a cold start where liquid fuel droplets are injected and processed by shock and expansion waves. In this case the particle evaporation and mixing is important to starting and sustaining combustion, but the particles are large and slow to react, creating significant multiphase effects. This talk will examine multiphase mixing in scramjet relevant conditions in 3D multiphase hydrodynamic simulations using the FLASH code from the University of Chicago FLASH center.
NASA Astrophysics Data System (ADS)
McCourt, Michael; Sharma, Prateek; Quataert, Eliot; Parrish, Ian J.
2012-02-01
We study the interplay among cooling, heating, conduction and magnetic fields in gravitationally stratified plasmas using simplified, plane-parallel numerical simulations. Since the physical heating mechanism remains uncertain in massive haloes such as groups or clusters, we adopt a simple, phenomenological prescription which enforces global thermal equilibrium and prevents a cooling flow. The plasma remains susceptible to local thermal instability, however, and cooling drives an inward flow of material. For physically plausible heating mechanisms in clusters, the thermal stability of the plasma is independent of its convective stability. We find that the ratio of the cooling time-scale to the dynamical time-scale tcool/tff controls the non-linear evolution and saturation of the thermal instability: when tcool/tff≲ 1, the plasma develops extended multiphase structure, whereas when tcool/tff≳ 1 it does not. (In a companion paper, we show that the criterion for thermal instability in a more realistic, spherical potential is somewhat less stringent, tcool/tff≲ 10.) When thermal conduction is anisotropic with respect to the magnetic field, the criterion for multiphase gas is essentially independent of the thermal conductivity of the plasma. Our criterion for local thermal instability to produce multiphase structure is an extension of the cold versus hot accretion modes in galaxy formation that applies at all radii in hot haloes, not just to the virial shock. We show that this criterion is consistent with data on multiphase gas in galaxy groups and clusters; in addition, when tcool/tff≳ 1, the net cooling rate to low temperatures and the mass flux to small radii are suppressed enough relative to models without heating to be qualitatively consistent with star formation rates and X-ray line emission in groups and clusters.
Application of multiphase modelling for vortex occurrence in vertical pump intake - a review
NASA Astrophysics Data System (ADS)
Samsudin, M. L.; Munisamy, K. M.; Thangaraju, S. K.
2015-09-01
Vortex formation within pump intake is one of common problems faced for power plant cooling water system. This phenomenon, categorised as surface and sub-surface vortices, can lead to several operational problems and increased maintenance costs. Physical model study was recommended from published guidelines but proved to be time and resource consuming. Hence, the use of Computational Fluid Dynamics (CFD) is an attractive alternative in managing the problem. At the early stage, flow analysis was conducted using single phase simulation and found to find good agreement with the observation from physical model study. With the development of computers, multiphase simulation found further enhancement in obtaining accurate results for representing air entrainment and sub-surface vortices which were earlier not well predicted from the single phase simulation. The purpose of this paper is to describe the application of multiphase modelling with CFD analysis for investigating vortex formation for a vertically inverted pump intake. In applying multiphase modelling, there ought to be a balance between the acceptable usage for computational time and resources and the degree of accuracy and realism in the results as expected from the analysis.
Numerical Investigation of Vortex Generator Flow Control for External-Compression Supersonic Inlets
NASA Astrophysics Data System (ADS)
Baydar, Ezgihan
Vortex generators (VGs) within external-compression supersonic inlets for Mach 1.6 were investigated to determine their ability to increase total pressure recovery and reduce total pressure distortion. Ramp and vane-type VGs were studied. The geometric factors of interest included height, length, spacing, angle-of-incidence, and positions upstream and downstream of the inlet terminal shock. The flow through the inlet was simulated numerically through the solution of the steady-state, Reynolds-averaged Navier-Stokes equations on multi-block, structured grids using the Wind-US flow solver. The inlet performance was characterized by the inlet total pressure recovery and the radial and circumferential total pressure distortion indices at the engine face. Previous research of downstream VGs in the low-boom supersonic inlet demonstrated improvement in radial distortion up to 24% while my work on external-compression supersonic inlets improved radial distortion up to 86%, which is significant. The design of experiments and statistical analysis methods were applied to quantify the effect of the geometric factors of VGs and search for optimal VG arrays. From the analysis, VG angle-of-incidence and VG height were the most influential factors in increasing total pressure recovery and reducing distortion. The study on the two-dimensional external-compression inlet determined which passive flow control devices, such as counter-rotating vanes or ramps, reduce high distortion levels and improve the health of the boundary layer, relative to the baseline. Downstream vanes demonstrate up to 21% improvement in boundary layer health and 86% improvement in radial distortion. Upstream vanes demonstrated up to 3% improvement in boundary layer health and 9% improvement in radial distortion. Ramps showed no improvement in boundary layer health and radial distortion. Micro-VGs were preferred for their reduced viscous drag and improvement in total pressure recovery at the AIP. Although
NASA Astrophysics Data System (ADS)
Zubeldia, Elizabeth H.; Fourtakas, Georgios; Rogers, Benedict D.; Farias, Márcio M.
2018-07-01
A two-phase numerical model using Smoothed Particle Hydrodynamics (SPH) is developed to model the scouring of two-phase liquid-sediments flows with large deformation. The rheology of sediment scouring due to flows with slow kinematics and high shear forces presents a challenge in terms of spurious numerical fluctuations. This paper bridges the gap between the non-Newtonian and Newtonian flows by proposing a model that combines the yielding, shear and suspension layer mechanics which are needed to predict accurately the local erosion phenomena. A critical bed-mobility condition based on the Shields criterion is imposed to the particles located at the sediment surface. Thus, the onset of the erosion process is independent on the pressure field and eliminates the numerical problem of pressure dependant erosion at the interface. This is combined with the Drucker-Prager yield criterion to predict the onset of yielding of the sediment surface and a concentration suspension model. The multi-phase model has been implemented in the open-source DualSPHysics code accelerated with a graphics processing unit (GPU). The multi-phase model has been compared with 2-D reference numerical models and new experimental data for scour with convergent results. Numerical results for a dry-bed dam break over an erodible bed shows improved agreement with experimental scour and water surface profiles compared to well-known SPH multi-phase models.
The stability of a trailing-line vortex in compressible flow
NASA Technical Reports Server (NTRS)
Stott, Jillian A. K.; Duck, Peter W.
1992-01-01
We consider the inviscid stability of the Batchelor (1964) vortex in a compressible flow. The problem is tackled numerically and also asymptotically, in the limit of large (aximuthal and streamwise) wavenumbers, together with large Mach numbers. The nature of the solution passes through different regimes as the Mach number increases, relative to the wavenumbers. At very high wavenumbers and Mach numbers, the mode which is present in the incompressible case ceases to be unstable, while new 'center mode' forms, whose stability characteristics, are determined primarily by conditions close to the vortex axis. We find that generally the flow becomes less unstable as the Mach number increases, and that the regime of instability appears generally confined to disturbances in a direction counter to the direction of the rotation of the swirl of the vortex. Throughout the paper, comparison is made between our numerical results and results obtained from the various asymptotic theories.
Numerical simulation of the compressible Orszag-Tang vortex 2. Supersonic flow
NASA Technical Reports Server (NTRS)
Picone, J. M.; Dahlburg, Russell B.
1990-01-01
The numerical investigation of the Orszag-Tang vortex system in compressible magnetofluids will consider initial conditions with embedded supersonic regions. The simulations have initial average Mach numbers 1.0 and 1.5 and beta 10/3 with Lundquist numbers 50, 100, or 200. The behavior of the system differs significantly from that found previously for the incompressible and subsonic analogs. Shocks form at the downstream boundaries of the embedded supersonic regions outside the central magnetic X-point and produce strong local current sheets which dissipate appreciable magnetic energy. Reconnection at the central X-point, which dominates the incompressible and subsonic systems, peaks later and has a smaller impact as M increases from 0.6 to 1.5. Similarly, correlation between the momentum and magnetic field begins significant growth later than in subsonic and incompressible flows. The shocks bound large compression regions, which dominate the wavenumber spectra of autocorrelations in mass density, velocity, and magnetic field.
Nanoparticle Additives for Multiphase Systems: Synthesis, Formulation and Characterization
2012-01-01
ADDITIVES FOR MULTIPHASE SYSTEMS: SYNTHESIS , FORMULATION AND CHARACTERIZATION Vinod Kanniah University of Kentucky, vinodkanniah@gmail.com This Doctoral...UKnowledge@lsv.uky.edu. Recommended Citation Kanniah, Vinod, "NANOPARTICLE ADDITIVES FOR MULTIPHASE SYSTEMS: SYNTHESIS , FORMULATION AND CHARACTERIZATION...00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Nanoparticle Additives for Multiphase Systems: Synthesis , Formulation and Characterization 5a
Evaluating the performance of the two-phase flow solver interFoam
NASA Astrophysics Data System (ADS)
Deshpande, Suraj S.; Anumolu, Lakshman; Trujillo, Mario F.
2012-01-01
The performance of the open source multiphase flow solver, interFoam, is evaluated in this work. The solver is based on a modified volume of fluid (VoF) approach, which incorporates an interfacial compression flux term to mitigate the effects of numerical smearing of the interface. It forms a part of the C + + libraries and utilities of OpenFOAM and is gaining popularity in the multiphase flow research community. However, to the best of our knowledge, the evaluation of this solver is confined to the validation tests of specific interest to the users of the code and the extent of its applicability to a wide range of multiphase flow situations remains to be explored. In this work, we have performed a thorough investigation of the solver performance using a variety of verification and validation test cases, which include (i) verification tests for pure advection (kinematics), (ii) dynamics in the high Weber number limit and (iii) dynamics of surface tension-dominated flows. With respect to (i), the kinematics tests show that the performance of interFoam is generally comparable with the recent algebraic VoF algorithms; however, it is noticeably worse than the geometric reconstruction schemes. For (ii), the simulations of inertia-dominated flows with large density ratios {\\sim }\\mathscr {O}(10^3) yielded excellent agreement with analytical and experimental results. In regime (iii), where surface tension is important, consistency of pressure-surface tension formulation and accuracy of curvature are important, as established by Francois et al (2006 J. Comput. Phys. 213 141-73). Several verification tests were performed along these lines and the main findings are: (a) the algorithm of interFoam ensures a consistent formulation of pressure and surface tension; (b) the curvatures computed by the solver converge to a value slightly (10%) different from the analytical value and a scope for improvement exists in this respect. To reduce the disruptive effects of spurious
Interfacial Area Development in Two-Phase Fluid Flow: Transient vs. Quasi-Static Flow Conditions
NASA Astrophysics Data System (ADS)
Meisenheimer, D. E.; Wildenschild, D.
2017-12-01
Fluid-fluid interfaces are important in multiphase flow systems in the environment (e.g. groundwater remediation, geologic CO2 sequestration) and industry (e.g. air stripping, fuel cells). Interfacial area controls mass transfer, and therefore reaction efficiency, between the different phases in these systems but they also influence fluid flow processes. There is a need to better understand this relationship between interfacial area and fluid flow processes so that more robust theories and models can be built for engineers and policy makers to improve the efficacy of many multiphase flow systems important to society. Two-phase flow experiments were performed in glass bead packs under transient and quasi-static flow conditions. Specific interfacial area was calculated from 3D images of the porous media obtained using the fast x-ray microtomography capability at the Advanced Photon Source. We present data suggesting a direct relationship between the transient nature of the fluid-flow experiment (fewer equilibrium points) and increased specific interfacial area. The effect of flow condition on Euler characteristic (a representative measure of fluid topology) will also be presented.
NASA Technical Reports Server (NTRS)
Hartfield, Roy J., Jr.; Hollo, Steven D.; Mcdaniel, James C.
1992-01-01
A unified laser-induced fluorescence technique for conducting planar measurements of temperature, pressure and velocity in nonreacting, highly compressible flows has been developed, validated and demonstrated. Planar fluorescence from iodine, seeded into air, was induced by an argon-ion laser and collected using a liquid-nitrogen cooled CCD camera. In the measurement technique, temperature is determined from the fluorescence induced with the laser operated broad band. Pressure and velocity are determined from the shape and position of the fluorescence excitation spectrum which is measured with the laser operated narrow band. The measurement approach described herein provides a means of obtaining accurate, spatially-complete maps of the primary flow field parameters in a wide variety of cold supersonic and transonic flows.
Observation of dual-mode, Kelvin-Helmholtz instability vortex merger in a compressible flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, W. C.; Malamud, Guy; Shimony, A.
Here, we report the first observations of Kelvin-Helmholtz vortices evolving from well-characterized, dual-mode initial conditions in a steady, supersonic flow. The results provide the first measurements of the instability's vortex merger rate and supplement data on the inhibition of the instability's growth rate in a compressible flow. These experimental data were obtained by sustaining a shockwave over a foam-plastic interface with a precision-machined seed perturbation. This technique produced a strong shear layer between two plasmas at high-energy-density conditions. The system was diagnosed using x-ray radiography and was well-reproduced using hydrodynamic simulations. Experimental measurements imply that we observed the anticipated vortexmore » merger rate and growth inhibition for supersonic shear flow.« less
Observation of dual-mode, Kelvin-Helmholtz instability vortex merger in a compressible flow
Wan, W. C.; Malamud, Guy; Shimony, A.; ...
2017-04-25
Here, we report the first observations of Kelvin-Helmholtz vortices evolving from well-characterized, dual-mode initial conditions in a steady, supersonic flow. The results provide the first measurements of the instability's vortex merger rate and supplement data on the inhibition of the instability's growth rate in a compressible flow. These experimental data were obtained by sustaining a shockwave over a foam-plastic interface with a precision-machined seed perturbation. This technique produced a strong shear layer between two plasmas at high-energy-density conditions. The system was diagnosed using x-ray radiography and was well-reproduced using hydrodynamic simulations. Experimental measurements imply that we observed the anticipated vortexmore » merger rate and growth inhibition for supersonic shear flow.« less
Three-dimensional numerical simulation for plastic injection-compression molding
NASA Astrophysics Data System (ADS)
Zhang, Yun; Yu, Wenjie; Liang, Junjie; Lang, Jianlin; Li, Dequn
2018-03-01
Compared with conventional injection molding, injection-compression molding can mold optical parts with higher precision and lower flow residual stress. However, the melt flow process in a closed cavity becomes more complex because of the moving cavity boundary during compression and the nonlinear problems caused by non-Newtonian polymer melt. In this study, a 3D simulation method was developed for injection-compression molding. In this method, arbitrary Lagrangian- Eulerian was introduced to model the moving-boundary flow problem in the compression stage. The non-Newtonian characteristics and compressibility of the polymer melt were considered. The melt flow and pressure distribution in the cavity were investigated by using the proposed simulation method and compared with those of injection molding. Results reveal that the fountain flow effect becomes significant when the cavity thickness increases during compression. The back flow also plays an important role in the flow pattern and redistribution of cavity pressure. The discrepancy in pressures at different points along the flow path is complicated rather than monotonically decreased in injection molding.
NASA Astrophysics Data System (ADS)
Yang, L. M.; Shu, C.; Wang, Y.; Sun, Y.
2016-08-01
The sphere function-based gas kinetic scheme (GKS), which was presented by Shu and his coworkers [23] for simulation of inviscid compressible flows, is extended to simulate 3D viscous incompressible and compressible flows in this work. Firstly, we use certain discrete points to represent the spherical surface in the phase velocity space. Then, integrals along the spherical surface for conservation forms of moments, which are needed to recover 3D Navier-Stokes equations, are approximated by integral quadrature. The basic requirement is that these conservation forms of moments can be exactly satisfied by weighted summation of distribution functions at discrete points. It was found that the integral quadrature by eight discrete points on the spherical surface, which forms the D3Q8 discrete velocity model, can exactly match the integral. In this way, the conservative variables and numerical fluxes can be computed by weighted summation of distribution functions at eight discrete points. That is, the application of complicated formulations resultant from integrals can be replaced by a simple solution process. Several numerical examples including laminar flat plate boundary layer, 3D lid-driven cavity flow, steady flow through a 90° bending square duct, transonic flow around DPW-W1 wing and supersonic flow around NACA0012 airfoil are chosen to validate the proposed scheme. Numerical results demonstrate that the present scheme can provide reasonable numerical results for 3D viscous flows.
Thermofluidic compression effects to achieve combustion in a low-compression scramjet engine
NASA Astrophysics Data System (ADS)
Moura, A. F.; Wheatley, V.; Jahn, I.
2018-07-01
The compression provided by a scramjet inlet is an important parameter in its design. It must be low enough to limit thermal and structural loads and stagnation pressure losses, but high enough to provide the conditions favourable for combustion. Inlets are typically designed to achieve sufficient compression without accounting for the fluidic, and subsequently thermal, compression provided by the fuel injection, which can enable robust combustion in a low-compression engine. This is investigated using Reynolds-averaged Navier-Stokes numerical simulations of a simplified scramjet engine designed to have insufficient compression to auto-ignite fuel in the absence of thermofluidic compression. The engine was designed with a wide rectangular combustor and a single centrally located injector, in order to reduce three-dimensional effects of the walls on the fuel plume. By varying the injected mass flow rate of hydrogen fuel (equivalence ratios of 0.22, 0.17, and 0.13), it is demonstrated that higher equivalence ratios lead to earlier ignition and more rapid combustion, even though mean conditions in the combustor change by no more than 5% for pressure and 3% for temperature with higher equivalence ratio. By supplementing the lower equivalence ratio with helium to achieve a higher mass flow rate, it is confirmed that these benefits are primarily due to the local compression provided by the extra injected mass. Investigation of the conditions around the fuel plume indicated two connected mechanisms. The higher mass flow rate for higher equivalence ratios generated a stronger injector bow shock that compresses the free-stream gas, increasing OH radical production and promoting ignition. This was observed both in the higher equivalence ratio case and in the case with helium. This earlier ignition led to increased temperature and pressure downstream and, consequently, stronger combustion. The heat release from combustion provided thermal compression in the combustor, further
Thermofluidic compression effects to achieve combustion in a low-compression scramjet engine
NASA Astrophysics Data System (ADS)
Moura, A. F.; Wheatley, V.; Jahn, I.
2017-12-01
The compression provided by a scramjet inlet is an important parameter in its design. It must be low enough to limit thermal and structural loads and stagnation pressure losses, but high enough to provide the conditions favourable for combustion. Inlets are typically designed to achieve sufficient compression without accounting for the fluidic, and subsequently thermal, compression provided by the fuel injection, which can enable robust combustion in a low-compression engine. This is investigated using Reynolds-averaged Navier-Stokes numerical simulations of a simplified scramjet engine designed to have insufficient compression to auto-ignite fuel in the absence of thermofluidic compression. The engine was designed with a wide rectangular combustor and a single centrally located injector, in order to reduce three-dimensional effects of the walls on the fuel plume. By varying the injected mass flow rate of hydrogen fuel (equivalence ratios of 0.22, 0.17, and 0.13), it is demonstrated that higher equivalence ratios lead to earlier ignition and more rapid combustion, even though mean conditions in the combustor change by no more than 5% for pressure and 3% for temperature with higher equivalence ratio. By supplementing the lower equivalence ratio with helium to achieve a higher mass flow rate, it is confirmed that these benefits are primarily due to the local compression provided by the extra injected mass. Investigation of the conditions around the fuel plume indicated two connected mechanisms. The higher mass flow rate for higher equivalence ratios generated a stronger injector bow shock that compresses the free-stream gas, increasing OH radical production and promoting ignition. This was observed both in the higher equivalence ratio case and in the case with helium. This earlier ignition led to increased temperature and pressure downstream and, consequently, stronger combustion. The heat release from combustion provided thermal compression in the combustor, further
Integrated acoustic phase separator and multiphase fluid composition monitoring apparatus and method
Sinha, Dipen N.
2016-01-12
An apparatus and method for down hole gas separation from the multiphase fluid flowing in a wellbore or a pipe, for determining the quantities of the individual components of the liquid and the flow rate of the liquid, and for remixing the component parts of the fluid after which the gas volume may be measured, without affecting the flow stream, are described. Acoustic radiation force is employed to separate gas from the liquid, thereby permitting measurements to be separately made for these two components; the liquid (oil/water) composition is determined from ultrasonic resonances; and the gas volume is determined from capacitance measurements. Since the fluid flows around and through the component parts of the apparatus, there is little pressure difference, and no protection is required from high pressure differentials.
Integrated acoustic phase separator and multiphase fluid composition monitoring apparatus and method
Sinha, Dipen N
2014-02-04
An apparatus and method for down hole gas separation from the multiphase fluid flowing in a wellbore or a pipe, for determining the quantities of the individual components of the liquid and the flow rate of the liquid, and for remixing the component parts of the fluid after which the gas volume may be measured, without affecting the flow stream, are described. Acoustic radiation force is employed to separate gas from the liquid, thereby permitting measurements to be separately made for these two components; the liquid (oil/water) composition is determined from ultrasonic resonances; and the gas volume is determined from capacitance measurements. Since the fluid flows around and through the component parts of the apparatus, there is little pressure difference, and no protection is required from high pressure differentials.
Simulation of 3-D viscous compressible flow in multistage turbomachinery by finite element methods
NASA Astrophysics Data System (ADS)
Sleiman, Mohamad
1999-11-01
The flow in a multistage turbomachinery blade row is compressible, viscous, and unsteady. Complex flow features such as boundary layers, wake migration from upstream blade rows, shocks, tip leakage jets, and vortices interact together as the flow convects through the stages. These interactions contribute significantly to the aerodynamic losses of the system and degrade the performance of the machine. The unsteadiness also leads to blade vibration and a shortening of its life. It is therefore difficult to optimize the design of a blade row, whether aerodynamically or structurally, in isolation, without accounting for the effects of the upstream and downstream rows. The effects of axial spacing, blade count, clocking (relative position of follow-up rotors with respect to wakes shed by upstream ones), and levels of unsteadiness may have a significance on performance and durability. In this Thesis, finite element formulations for the simulation of multistage turbomachinery are presented in terms of the Reynolds-averaged Navier-Stokes equations for three-dimensional steady or unsteady, viscous, compressible, turbulent flows. Three methodologies are presented and compared. First, a steady multistage analysis using a a-mixing- plane model has been implemented and has been validated against engine data. For axial machines, it has been found that the mixing plane simulation methods match very well the experimental data. However, the results for a centrifugal stage, consisting of an impeller followed by a vane diffuser of equal pitch, show flagrant inconsistency with engine performance data, indicating that the mixing plane method has been found to be inappropriate for centrifugal machines. Following these findings, a more complete unsteady multistage model has been devised for a configuration with equal number of rotor and stator blades (equal pitches). Non-matching grids are used at the rotor-stator interface and an implicit interpolation procedure devised to ensure
NASA Astrophysics Data System (ADS)
Bergslien, Elisa; Fountain, John; Giese, Rossman
2004-05-01
Epoxy models have been used as analogs for fractured rock surfaces in many laboratory investigations of multiphase flow processes. However, there is no agreement on how well or poorly such an analog replicates the surface chemistry of geologic materials, nor is there a satisfactory analysis of the surface properties of epoxy. This paper addresses the issue of accurately characterizing the surface chemistry of a typical epoxy used in laboratory multiphase flow studies and comparing that surface to a polystyrene surface and a radio frequency glow discharge treated polystyrene surface. Surface properties were determined using direct contact angle measurements of polar and apolar liquids on flat test samples. The epoxy was determined to have surface properties as follows: γ = 62.3, γLW = 39, γAB = 23.3, γ⊕ = 0, and γ? = 23.3 mJ/m2, where γ is the total surface tension of the solid, γLW is the Lifshitz-van der Waals (LW) surface tension component, γAB is the Lewis acid base (AB) surface tension component, γ? is the electron-donor (negative) parameter, and γ⊕ is the electron-acceptor (positive) parameter. Values of γ? < 27.9 mJ/m2 indicate a hydrophobic surface, which means that epoxy is not a good analog for most geologic materials. This study also explores the use of radio frequency glow discharge plasma to add hydroxyl functionality to polymer surfaces producing a material with alterable surface properties and the same optical and casting properties as epoxy. Using this method, the degree of alteration of the surface chemistry of polymer fracture models can be controlled, allowing the creation of models with a variety of different wettabilities. The resultant models were found to be durable, long lasting, and a potentially very useful alternative to the more typical epoxy models.
Canonical fluid thermodynamics. [variational principles of stability for compressible adiabatic flow
NASA Technical Reports Server (NTRS)
Schmid, L. A.
1974-01-01
The space-time integral of the thermodynamic pressure plays in a certain sense the role of the thermodynamic potential for compressible adiabatic flow. The stability criterion can be converted into a variational minimum principle by requiring the molar free-enthalpy and temperature to be generalized velocities. In the fluid context, the definition of proper-time differentiation involves the fluid velocity expressed in terms of three particle identity parameters. The pressure function is then converted into a functional which is the Lagrangian density of the variational principle. Being also a minimum principle, the variational principle provides a means for comparing the relative stability of different flows. For boundary conditions with a high degree of symmetry, as in the case of a uniformly expanding spherical gas box, the most stable flow is a rectilinear flow for which the world-trajectory of each particle is a straight line. Since the behavior of the interior of a freely expanding cosmic cloud may be expected to be similar to that of the fluid in the spherical box of gas, this suggests that the cosmic principle is a consequence of the laws of thermodynamics, rather than just an ad hoc postulate.
An exact closed form solution for constant area compressible flow with friction and heat transfer
NASA Technical Reports Server (NTRS)
Sturas, J. I.
1971-01-01
The well-known differential equation for the one-dimensional flow of a compressible fluid with heat transfer and wall friction has no known solution in closed form for the general case. This report presents a closed form solution for the special case of constant heat flux per unit length and constant specific heat. The solution was obtained by choosing the square of a dimensionless flow parameter as one of the independent variables to describe the flow. From this exact solution, an approximate simplified form is derived that is applicable for predicting subsonic flow performance characteristics for many types of constant area passages in internal flow. The data included in this report are considered sufficiently accurate for use as a guide in analyzing and designing internal gas flow systems.
Li, J. C.; Diamond, P. H.
2017-03-23
Here, negative compressibility ITG turbulence in a linear plasma device (CSDX) can induce a negative viscosity increment. However, even with this negative increment, we show that the total axial viscosity remains positive definite, i.e. no intrinsic axial flow can be generated by pure ITG turbulence in a straight magnetic field. This differs from the case of electron drift wave (EDW) turbulence, where the total viscosity can turn negative, at least transiently. When the flow gradient is steepened by any drive mechanism, so that the parallel shear flow instability (PSFI) exceeds the ITG drive, the flow profile saturates at a level close to the value above which PSFI becomes dominant. This saturated flow gradient exceeds the PSFI linear threshold, and grows withmore » $$\
The Voronoi Implicit Interface Method for computing multiphase physics
Saye, Robert I.; Sethian, James A.
2011-01-01
We introduce a numerical framework, the Voronoi Implicit Interface Method for tracking multiple interacting and evolving regions (phases) whose motion is determined by complex physics (fluids, mechanics, elasticity, etc.), intricate jump conditions, internal constraints, and boundary conditions. The method works in two and three dimensions, handles tens of thousands of interfaces and separate phases, and easily and automatically handles multiple junctions, triple points, and quadruple points in two dimensions, as well as triple lines, etc., in higher dimensions. Topological changes occur naturally, with no surgery required. The method is first-order accurate at junction points/lines, and of arbitrarily high-order accuracy away from such degeneracies. The method uses a single function to describe all phases simultaneously, represented on a fixed Eulerian mesh. We test the method’s accuracy through convergence tests, and demonstrate its applications to geometric flows, accurate prediction of von Neumann’s law for multiphase curvature flow, and robustness under complex fluid flow with surface tension and large shearing forces. PMID:22106269
The Voronoi Implicit Interface Method for computing multiphase physics.
Saye, Robert I; Sethian, James A
2011-12-06
We introduce a numerical framework, the Voronoi Implicit Interface Method for tracking multiple interacting and evolving regions (phases) whose motion is determined by complex physics (fluids, mechanics, elasticity, etc.), intricate jump conditions, internal constraints, and boundary conditions. The method works in two and three dimensions, handles tens of thousands of interfaces and separate phases, and easily and automatically handles multiple junctions, triple points, and quadruple points in two dimensions, as well as triple lines, etc., in higher dimensions. Topological changes occur naturally, with no surgery required. The method is first-order accurate at junction points/lines, and of arbitrarily high-order accuracy away from such degeneracies. The method uses a single function to describe all phases simultaneously, represented on a fixed Eulerian mesh. We test the method's accuracy through convergence tests, and demonstrate its applications to geometric flows, accurate prediction of von Neumann's law for multiphase curvature flow, and robustness under complex fluid flow with surface tension and large shearing forces.
Calculation of Compressible Flows past Aerodynamic Shapes by Use of the Streamline Curvature
NASA Technical Reports Server (NTRS)
Perl, W
1947-01-01
A simple approximate method is given for the calculation of isentropic irrotational flows past symmetrical airfoils, including mixed subsonic-supersonic flows. The method is based on the choice of suitable values for the streamline curvature in the flow field and the subsequent integration of the equations of motion. The method yields limiting solutions for potential flow. The effect of circulation is considered. A comparison of derived velocity distributions with existing results that are based on calculation to the third order in the thickness ratio indicated satisfactory agreement. The results are also presented in the form of a set of compressibility correction rules that lie between the Prandtl-Glauert rule and the von Karman-Tsien rule (approximately). The different rules correspond to different values of the local shape parameter square root sign YC sub a, in which Y is the ordinate and C sub a is the curvature at a point on an airfoil. Bodies of revolution, completely supersonic flows, and the significance of the limiting solutions for potential flow are also briefly discussed.
A Cartesian grid approach with hierarchical refinement for compressible flows
NASA Technical Reports Server (NTRS)
Quirk, James J.
1994-01-01
Many numerical studies of flows that involve complex geometries are limited by the difficulties in generating suitable grids. We present a Cartesian boundary scheme for two-dimensional, compressible flows that is unfettered by the need to generate a computational grid and so it may be used, routinely, even for the most awkward of geometries. In essence, an arbitrary-shaped body is allowed to blank out some region of a background Cartesian mesh and the resultant cut-cells are singled out for special treatment. This is done within a finite-volume framework and so, in principle, any explicit flux-based integration scheme can take advantage of this method for enforcing solid boundary conditions. For best effect, the present Cartesian boundary scheme has been combined with a sophisticated, local mesh refinement scheme, and a number of examples are shown in order to demonstrate the efficacy of the combined algorithm for simulations of shock interaction phenomena.
Central Upwind Scheme for a Compressible Two-Phase Flow Model
Ahmed, Munshoor; Saleem, M. Rehan; Zia, Saqib; Qamar, Shamsul
2015-01-01
In this article, a compressible two-phase reduced five-equation flow model is numerically investigated. The model is non-conservative and the governing equations consist of two equations describing the conservation of mass, one for overall momentum and one for total energy. The fifth equation is the energy equation for one of the two phases and it includes source term on the right-hand side which represents the energy exchange between two fluids in the form of mechanical and thermodynamical work. For the numerical approximation of the model a high resolution central upwind scheme is implemented. This is a non-oscillatory upwind biased finite volume scheme which does not require a Riemann solver at each time step. Few numerical case studies of two-phase flows are presented. For validation and comparison, the same model is also solved by using kinetic flux-vector splitting (KFVS) and staggered central schemes. It was found that central upwind scheme produces comparable results to the KFVS scheme. PMID:26039242
Central upwind scheme for a compressible two-phase flow model.
Ahmed, Munshoor; Saleem, M Rehan; Zia, Saqib; Qamar, Shamsul
2015-01-01
In this article, a compressible two-phase reduced five-equation flow model is numerically investigated. The model is non-conservative and the governing equations consist of two equations describing the conservation of mass, one for overall momentum and one for total energy. The fifth equation is the energy equation for one of the two phases and it includes source term on the right-hand side which represents the energy exchange between two fluids in the form of mechanical and thermodynamical work. For the numerical approximation of the model a high resolution central upwind scheme is implemented. This is a non-oscillatory upwind biased finite volume scheme which does not require a Riemann solver at each time step. Few numerical case studies of two-phase flows are presented. For validation and comparison, the same model is also solved by using kinetic flux-vector splitting (KFVS) and staggered central schemes. It was found that central upwind scheme produces comparable results to the KFVS scheme.
Flow-through compression cell for small-angle and ultra-small-angle neutron scattering measurements
NASA Astrophysics Data System (ADS)
Hjelm, Rex P.; Taylor, Mark A.; Frash, Luke P.; Hawley, Marilyn E.; Ding, Mei; Xu, Hongwu; Barker, John; Olds, Daniel; Heath, Jason; Dewers, Thomas
2018-05-01
In situ measurements of geological materials under compression and with hydrostatic fluid pressure are important in understanding their behavior under field conditions, which in turn provides critical information for application-driven research. In particular, understanding the role of nano- to micro-scale porosity in the subsurface liquid and gas flow is critical for the high-fidelity characterization of the transport and more efficient extraction of the associated energy resources. In other applications, where parts are produced by the consolidation of powders by compression, the resulting porosity and crystallite orientation (texture) may affect its in-use characteristics. Small-angle neutron scattering (SANS) and ultra SANS are ideal probes for characterization of these porous structures over the nano to micro length scales. Here we show the design, realization, and performance of a novel neutron scattering sample environment, a specially designed compression cell, which provides compressive stress and hydrostatic pressures with effective stress up to 60 MPa, using the neutron beam to probe the effects of stress vectors parallel to the neutron beam. We demonstrate that the neutron optics is suitable for the experimental objectives and that the system is highly stable to the stress and pressure conditions of the measurements.
Multiphase flow in geometrically simple fracture intersections
Basagaoglu, H.; Meakin, P.; Green, C.T.; Mathew, M.; ,
2006-01-01
A two-dimensional lattice Boltzmann (LB) model with fluid-fluid and solid-fluid interaction potentials was used to study gravity-driven flow in geometrically simple fracture intersections. Simulated scenarios included fluid dripping from a fracture aperture, two-phase flow through intersecting fractures and thin-film flow on smooth and undulating solid surfaces. Qualitative comparisons with recently published experimental findings indicate that for these scenarios the LB model captured the underlying physics reasonably well.
Computational study of the shock driven instability of a multiphase particle-gas system
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
This paper considers the interaction of a shock wave with a multiphase particle-gas system which creates an instability somewhat similar to the Richtmyer-Meshkov instability but with a larger parameter space. Because this parameter space is large, we only present an introductory survey of the effects of many of these parameters. We highlight the effects of particle-gas coupling, incident shock strength, particle size, effective system density differences, and multiple particle relaxation time effects. We focus on dilute flows with mass loading up to 40% and do not attempt to cover all parametric combinations. Instead, we vary one parameter at a timemore » leaving additional parametric combinations for future work. The simulations are run with the Ares code, developed at Lawrence Livermore National Laboratory, which uses a multiphase particulate transport method to model two-way momentum and energy coupling. A brief validation of these models is presented and coupling effects are explored. It is shown that even for small particles, on the order of 1μm, multi-phase coupling effects are important and diminish the circulation deposition on the interface by up to 25%. These coupling effects are shown to create large temperature deviations from the dusty gas approximation, up to 20% greater, especially at higher shock strengths. It is also found that for a multiphase instability, the vortex sheet deposited at the interface separates into two sheets. In conclusion, depending on the particle and particle-gas Atwood numbers, the instability may be suppressed or enhanced by the interactions of these two vortex sheets.« less
Computational study of the shock driven instability of a multiphase particle-gas system
None, None
2016-02-01
This paper considers the interaction of a shock wave with a multiphase particle-gas system which creates an instability somewhat similar to the Richtmyer-Meshkov instability but with a larger parameter space. Because this parameter space is large, we only present an introductory survey of the effects of many of these parameters. We highlight the effects of particle-gas coupling, incident shock strength, particle size, effective system density differences, and multiple particle relaxation time effects. We focus on dilute flows with mass loading up to 40% and do not attempt to cover all parametric combinations. Instead, we vary one parameter at a timemore » leaving additional parametric combinations for future work. The simulations are run with the Ares code, developed at Lawrence Livermore National Laboratory, which uses a multiphase particulate transport method to model two-way momentum and energy coupling. A brief validation of these models is presented and coupling effects are explored. It is shown that even for small particles, on the order of 1μm, multi-phase coupling effects are important and diminish the circulation deposition on the interface by up to 25%. These coupling effects are shown to create large temperature deviations from the dusty gas approximation, up to 20% greater, especially at higher shock strengths. It is also found that for a multiphase instability, the vortex sheet deposited at the interface separates into two sheets. In conclusion, depending on the particle and particle-gas Atwood numbers, the instability may be suppressed or enhanced by the interactions of these two vortex sheets.« less
Computational study of the shock driven instability of a multiphase particle-gas system
NASA Astrophysics Data System (ADS)
McFarland, Jacob A.; Black, Wolfgang J.; Dahal, Jeevan; Morgan, Brandon E.
2016-02-01
This paper considers the interaction of a shock wave with a multiphase particle-gas system which creates an instability similar in some ways to the Richtmyer-Meshkov instability but with a larger parameter space. As this parameter space is large, we only present an introductory survey of the effects of many of these parameters. We highlight the effects of particle-gas coupling, incident shock strength, particle size, effective system density differences, and multiple particle relaxation time effects. We focus on dilute flows with mass loading up to 40% and do not attempt to cover all parametric combinations. Instead, we vary one parameter at a time leaving additional parametric combinations for future work. The simulations are run with the Ares code, developed at Lawrence Livermore National Laboratory, which uses a multiphase particulate transport method to model two-way momentum and energy coupling. A brief validation of these models is presented and coupling effects are explored. It is shown that even for small particles, on the order of 1 μm, multi-phase coupling effects are important and diminish the circulation deposition on the interface by up to 25%. These coupling effects are shown to create large temperature deviations from the dusty gas approximation, up to 20% greater, especially at higher shock strengths. It is also found that for a multiphase instability, the vortex sheet deposited at the interface separates into two sheets. Depending on the particle and particle-gas Atwood numbers, the instability may be suppressed or enhanced by the interactions of these two vortex sheets.
A near-wall two-equation model for compressible turbulent flows
NASA Technical Reports Server (NTRS)
Zhang, H. S.; So, R. M. C.; Speziale, C. G.; Lai, Y. G.
1991-01-01
A near-wall two-equation turbulence model of the K - epsilon type is developed for the description of high-speed compressible flows. The Favre-averaged equations of motion are solved in conjunction with modeled transport equations for the turbulent kinetic energy and solenoidal dissipation wherein a variable density extension of the asymptotically consistent near-wall model of So and co-workers is supplemented with new dilatational models. The resulting compressible two-equation model is tested in the supersonic flat plate boundary layer - with an adiabatic wall and with wall cooling - for Mach numbers as large as 10. Direct comparisons of the predictions of the new model with raw experimental data and with results from the K - omega model indicate that it performs well for a wide range of Mach numbers. The surprising finding is that the Morkovin hypothesis, where turbulent dilatational terms are neglected, works well at high Mach numbers, provided that the near wall model is asymptotically consistent. Instances where the model predictions deviate from the experiments appear to be attributable to the assumption of constant turbulent Prandtl number - a deficiency that will be addressed in a future paper.
A modified Dodge algorithm for the parabolized Navier-Stokes equation and compressible duct flows
NASA Technical Reports Server (NTRS)
Cooke, C. H.
1981-01-01
A revised version of Dodge's split-velocity method for numerical calculation of compressible duct flow was developed. The revision incorporates balancing of mass flow rates on each marching step in order to maintain front-to-back continuity during the calculation. The (checkerboard) zebra algorithm is applied to solution of the three dimensional continuity equation in conservative form. A second-order A-stable linear multistep method is employed in effecting a marching solution of the parabolized momentum equations. A checkerboard iteration is used to solve the resulting implicit nonlinear systems of finite-difference equations which govern stepwise transition. Qualitive agreement with analytical predictions and experimental results was obtained for some flows with well-known solutions.
A compressible solution of the Navier-Stokes equations for turbulent flow about an airfoil
NASA Technical Reports Server (NTRS)
Shamroth, S. J.; Gibeling, H. J.
1979-01-01
A compressible time dependent solution of the Navier-Stokes equations including a transition turbulence model is obtained for the isolated airfoil flow field problem. The equations are solved by a consistently split linearized block implicit scheme. A nonorthogonal body-fitted coordinate system is used which has maximum resolution near the airfoil surface and in the region of the airfoil leading edge. The transition turbulence model is based upon the turbulence kinetic energy equation and predicts regions of laminar, transitional, and turbulent flow. Mean flow field and turbulence field results are presented for an NACA 0012 airfoil at zero and nonzero incidence angles of Reynolds number up to one million and low subsonic Mach numbers.
Integrated LTCC pressure/flow/temperature multisensor for compressed air diagnostics.
Fournier, Yannick; Maeder, Thomas; Boutinard-Rouelle, Grégoire; Barras, Aurélie; Craquelin, Nicolas; Ryser, Peter
2010-01-01
We present a multisensor designed for industrial compressed air diagnostics and combining the measurement of pressure, flow, and temperature, integrated with the corresponding signal conditioning electronics in a single low-temperature co-fired ceramic (LTCC) package. The developed sensor may be soldered onto an integrated electro-fluidic platform by using standard surface mount device (SMD) technology, e.g., as a standard electronic component would be on a printed circuit board, obviating the need for both wires and tubes and thus paving the road towards low-cost integrated electro-fluidic systems. Several performance aspects of this device are presented and discussed, together with electronics design issues.
Integrated LTCC Pressure/Flow/Temperature Multisensor for Compressed Air Diagnostics†
Fournier, Yannick; Maeder, Thomas; Boutinard-Rouelle, Grégoire; Barras, Aurélie; Craquelin, Nicolas; Ryser, Peter
2010-01-01
We present a multisensor designed for industrial compressed air diagnostics and combining the measurement of pressure, flow, and temperature, integrated with the corresponding signal conditioning electronics in a single low-temperature co-fired ceramic (LTCC) package. The developed sensor may be soldered onto an integrated electro-fluidic platform by using standard surface mount device (SMD) technology, e.g., as a standard electronic component would be on a printed circuit board, obviating the need for both wires and tubes and thus paving the road towards low-cost integrated electro-fluidic systems. Several performance aspects of this device are presented and discussed, together with electronics design issues. PMID:22163518
Compressible-Incompressible Two-Phase Flows with Phase Transition: Model Problem
NASA Astrophysics Data System (ADS)
Watanabe, Keiichi
2017-12-01
We study the compressible and incompressible two-phase flows separated by a sharp interface with a phase transition and a surface tension. In particular, we consider the problem in R^N , and the Navier-Stokes-Korteweg equations is used in the upper domain and the Navier-Stokes equations is used in the lower domain. We prove the existence of R -bounded solution operator families for a resolvent problem arising from its model problem. According to Göts and Shibata (Asymptot Anal 90(3-4):207-236, 2014), the regularity of ρ _+ is W^1_q in space, but to solve the kinetic equation: u_Γ \\cdot n_t = [[ρ u
NASA Technical Reports Server (NTRS)
Zuk, J.; Smith, P. J.
1974-01-01
A computer program is presented for compressible fluid flow with friction and area change. The program carries out a quasi-one-dimensional flow analysis which is valid for laminar and turbulent flows under both subsonic and choked flow conditions. The program was written to be applied to gas film seals. The area-change analysis should prove useful for choked flow conditions with small mean thickness, as well as for face seals where radial area change is significant. The program is written in FORTRAN 4.
NASA Technical Reports Server (NTRS)
Anderson, O. L.
1974-01-01
A finite-difference procedure for computing the turbulent, swirling, compressible flow in axisymmetric ducts is described. Arbitrary distributions of heat and mass transfer at the boundaries can be treated, and the effects of struts, inlet guide vanes, and flow straightening vanes can be calculated. The calculation procedure is programmed in FORTRAN 4 and has operated successfully on the UNIVAC 1108, IBM 360, and CDC 6600 computers. The analysis which forms the basis of the procedure, a detailed description of the computer program, and the input/output formats are presented. The results of sample calculations performed with the computer program are compared with experimental data.
NASA Astrophysics Data System (ADS)
De Lucia, Marco; Kempka, Thomas; Afanasyev, Andrey; Melnik, Oleg; Kühn, Michael
2016-04-01
Coupled reactive transport simulations, especially in heterogeneous settings considering multiphase flow, are extremely time consuming and suffer from significant numerical issues compared to purely hydrodynamic simulations. This represents a major hurdle in the assessment of geological subsurface utilization, since it constrains the practical application of reactive transport modelling to coarse spatial discretization or oversimplified geological settings. In order to overcome such limitations, De Lucia et al. [1] developed and validated a one-way coupling approach between geochemistry and hydrodynamics, which is particularly well suited for CO2 storage simulations, while being of general validity. In the present study, the models used for the validation of the one-way coupling approach introduced by De Lucia et al. (2015), and originally performed with the TOUGHREACT simulator, are transferred to and benchmarked against the multiphase reservoir simulator MUFITS [2]. The geological model is loosely inspired by an existing CO2 storage site. Its grid comprises 2,950 elements enclosed in a single layer, but reflecting a realistic three-dimensional anticline geometry. For the purpose of this comparison, homogeneous and heterogeneous scenarios in terms of porosity and permeability were investigated. In both cases, the results of the MUFITS simulator are in excellent agreement with those produced with the fully-coupled TOUGHREACT simulator, while profiting from significantly higher computational performance. This study demonstrates how a computationally efficient simulator such as MUFITS can be successfully included in a coupled process simulation framework, and also suggests ameliorations and specific strategies for the coupling of chemical processes with hydrodynamics and heat transport, aiming at tackling geoscientific problems beyond the storage of CO2. References [1] De Lucia, M., Kempka, T., and Kühn, M. A coupling alternative to reactive transport simulations
Characterization of Flow Dynamics and Reduced-Order Description of Experimental Two-Phase Pipe Flow
NASA Astrophysics Data System (ADS)
Viggiano, Bianca; SkjæRaasen, Olaf; Tutkun, Murat; Cal, Raul Bayoan
2017-11-01
Multiphase pipe flow is investigated using proper orthogonal decomposition for tomographic X-ray data, where holdup, cross sectional phase distributions and phase interface characteristics are obtained. Instantaneous phase fractions of dispersed flow and slug flow are analyzed and a reduced order dynamical description is generated. The dispersed flow displays coherent structures in the first few modes near the horizontal center of the pipe, representing the liquid-liquid interface location while the slug flow case shows coherent structures that correspond to the cyclical formation and breakup of the slug in the first 10 modes. The reconstruction of the fields indicate that main features are observed in the low order dynamical descriptions utilizing less than 1 % of the full order model. POD temporal coefficients a1, a2 and a3 show interdependence for the slug flow case. The coefficients also describe the phase fraction holdup as a function of time for both dispersed and slug flow. These flows are highly applicable to petroleum transport pipelines, hydroelectric power and heat exchanger tubes to name a few. The mathematical representations obtained via proper orthogonal decomposition will deepen the understanding of fundamental multiphase flow characteristics.
Unstructured Finite Elements and Dynamic Meshing for Explicit Phase Tracking in Multiphase Problems
NASA Astrophysics Data System (ADS)
Chandra, Anirban; Yang, Fan; Zhang, Yu; Shams, Ehsan; Sahni, Onkar; Oberai, Assad; Shephard, Mark
2017-11-01
Multi-phase processes involving phase change at interfaces, such as evaporation of a liquid or combustion of a solid, represent an interesting class of problems with varied applications. Large density ratio across phases, discontinuous fields at the interface and rapidly evolving geometries are some of the inherent challenges which influence the numerical modeling of multi-phase phase change problems. In this work, a mathematically consistent and robust computational approach to address these issues is presented. We use stabilized finite element methods on mixed topology unstructured grids for solving the compressible Navier-Stokes equations. Appropriate jump conditions derived from conservations laws across the interface are handled by using discontinuous interpolations, while the continuity of temperature and tangential velocity is enforced using a penalty parameter. The arbitrary Lagrangian-Eulerian (ALE) technique is utilized to explicitly track the interface motion. Mesh at the interface is constrained to move with the interface while elsewhere it is moved using the linear elasticity analogy. Repositioning is applied to the layered mesh that maintains its structure and normal resolution. In addition, mesh modification is used to preserve the quality of the volumetric mesh. This work is supported by the U.S. Army Grants W911NF1410301 and W911NF16C0117.
NASA Technical Reports Server (NTRS)
Towne, C. E.; Hoffman, J. D.
1982-01-01
A new streamwise marching procedure was developed and coded for compressible viscous subsonic flow in planar or axisymmetric ducts with or without centerbodies. The continuity, streamwise momentum, cross-flow momentum, and energy equations are written in generalized orthogonal curvilinear coordinates. To allow the use of a marching procedure, second derivatives in the streamwise momentum equation are written as the sum of a known two dimensional imposed pressure field and an unknown one dimensional viscous correction. For turbulent flow, the Reynolds stress and heat flux terms are modeled using two-layer eddy viscosity turbulence models.
Friction of Compression-ignition Engines
NASA Technical Reports Server (NTRS)
Moore, Charles S; Collins, John H , Jr
1936-01-01
The cost in mean effective pressure of generating air flow in the combustion chambers of single-cylinder compression-ignition engines was determined for the prechamber and the displaced-piston types of combustion chamber. For each type a wide range of air-flow quantities, speeds, and boost pressures was investigated. Supplementary tests were made to determine the effect of lubricating-oil temperature, cooling-water temperature, and compression ratio on the friction mean effective pressure of the single-cylinder test engine. Friction curves are included for two 9-cylinder, radial, compression-ignition aircraft engines. The results indicate that generating the optimum forced air flow increased the motoring losses approximately 5 pounds per square inch mean effective pressure regardless of chamber type or engine speed. With a given type of chamber, the rate of increase in friction mean effective pressure with engine speed is independent of the air-flow speed. The effect of boost pressure on the friction cannot be predicted because the friction was decreased, unchanged, or increased depending on the combustion-chamber type and design details. High compression ratio accounts for approximately 5 pounds per square inch mean effective pressure of the friction of these single-cylinder compression-ignition engines. The single-cylinder test engines used in this investigation had a much higher friction mean effective pressure than conventional aircraft engines or than the 9-cylinder, radial, compression-ignition engines tested so that performance should be compared on an indicated basis.
Toluene laser-induced fluorescence imaging of compressible flows in an expansion tube
NASA Astrophysics Data System (ADS)
Miller, V. A.; Gamba, M.; Mungal, M. G.; Hanson, R. K.; Mohri, K.; Schulz, C.
2011-11-01
Laser-induced fluorescence (LIF) imaging using toluene as a tracer molecule has been developed for high-speed, low-to-moderate enthalpy conditions in the Stanford 6-inch Expansion Tube. The approach is demonstrated on three canonical compressible flow configurations: (i) supersonic flow over a 20° wedge, (ii) around a cylinder, and (iii) a supersonic boundary layer. Under constant-pressure conditions, toluene LIF offers unique sensitivity to temperature and can therefore be used as an accurate thermometry diagnostic for supersonic flows; on the other hand, for variable-pressure flow fields (e.g., flow around a blunt body), toluene LIF imaging is demonstrated to be an effective flow visualization tool. The three configurations selected demonstrate the diagnostic in these two capacities. For all configurations considered in the study, toluene (0.6% by volume) is seeded into a nitrogen freestream at a Mach number ~ 2.2, T ~ 500K, and p ~ 1.5 bar. A frequency-quadrupled pulsed Nd:YAG laser is used to excite the tracer, and the resulting fluorescence is captured by an ICCD camera. Synthetic fluorescence signals from CFD solutions of each case have been computed and compare favorably to measured signals. Sponsored by DoE PSAAP at Stanford University.
Compressible instability of rapidly expanding spherical material interfaces
NASA Astrophysics Data System (ADS)
Mankbadi, Mina Reda
The focus herein is on the instability of a material interface formed during an abrupt release of concentrated energy as in detonative combustion, explosive dispersals, and inertial-confinement fusion. These applications are modeled as a spherical shock-tube in which high-pressure gas initially contained in a small spherical shell is suddenly released. A forward-moving shock and an inward-moving secondary shock are formed, and between them a material interface develops that separates high-density fluid from the low-density one. The wrinkling of this interface controls mixing and energy release. The interface's stability is studied with and without the inclusion of metalized particulates. A numerical scheme is developed to discretize the full nonlinear equations of the base flow, and the 3D linearized perturbed flow equations. Linearization is followed by spherical harmonic decomposition of the disturbances, thereby reducing the 3D computational domain to one-dimensional radial domain. The 3D physical nature of the disturbances is maintained throughout the procedure. An extended Roe-Pike scheme coupled with a WENO scheme is developed to capture the discontinuities and accurately predict the disturbances. In Chapter 2, the contact interface's stability is analyzed in the inviscid single-phase. The disturbances grow exponentially and the growth rate is insensitive to the radial initial-disturbance profile. For wave numbers less than 100, the results are in accordance with previous theories but clarify that compressibility reduces the growth rate. Unlike the classical RTI, the growth rate reaches saturation at high wavenumbers. The parametric studies show that for specific ratios of initial pressure and temperature, the instability can be eliminated altogether. Chapter 3 discusses the full effects of viscosity and thermal diffusivity. Although Prandtl number effects are minimal, viscous effects dampen the high-wave numbers. For a given Reynolds number there is a peak
Grain transport mechanics in shallow flow
USDA-ARS?s Scientific Manuscript database
A physical model based on continuum multiphase flow is described to represent saltating transport of grains in shallow overland flows. The two-phase continuum flow of water and sediment considers coupled St.Venant type equations. The interactive cumulative effect of grains is incorporated by a dispe...
Multiphase flow modeling in centrifugal partition chromatography.
Adelmann, S; Schwienheer, C; Schembecker, G
2011-09-09
The separation efficiency in Centrifugal Partition Chromatography (CPC) depends on selection of a suitable biphasic solvent system (distribution ratio, selectivity factor, sample solubility) and is influenced by hydrodynamics in the chambers. Especially the stationary phase retention, the interfacial area for mass transfer and the flow pattern (backmixing) are important parameters. Their relationship with physical properties, operating parameters and chamber geometry is not completely understood and predictions are hardly possible. Experimental flow visualization is expensive and two-dimensional only. Therefore we simulated the flow pattern using a volume-of-fluid (VOF) method, which was implemented in OpenFOAM®. For the three-dimensional simulation of a rotating FCPC®-chamber, gravitational centrifugal and Coriolis forces were added to the conservation equation. For experimental validation the flow pattern of different solvent systems was visualized with an optical measurement system. The amount of mobile phase in a chamber was calculated from gray scale values of videos recorded by an image processing routine in ImageJ®. To visualize the flow of the stationary phase polyethylene particles were used to perform a qualitative particle image velocimetry (PIV) analysis. We found a good agreement between flow patterns and velocity profiles of experiments and simulations. By using the model we found that increasing the chamber depth leads to higher specific interfacial area. Additionally a circular flow in the stationary phase was identified that lowers the interfacial area because it pushes the jet of mobile phase to the chamber wall. The Coriolis force alone gives the impulse for this behavior. As a result the model is easier to handle than experiments and allows 3D prediction of hydrodynamics in the chamber. Additionally it can be used for optimizing geometry and operating parameters for given physical properties of solvent systems. Copyright © 2011 Elsevier B
NASA Technical Reports Server (NTRS)
Albers, J. A.; Gregg, J. L.
1974-01-01
A finite-difference program is described for calculating the viscous compressible boundary layer flow over either planar or axisymmetric surfaces. The flow may be initially laminar and progress through a transitional zone to fully turbulent flow, or it may remain laminar, depending on the imposed boundary conditions, laws of viscosity, and numerical solution of the momentum and energy equations. The flow may also be forced into a turbulent flow at a chosen spot by the data input. The input may contain the factors of arbitrary Reynolds number, free-stream Mach number, free-stream turbulence, wall heating or cooling, longitudinal wall curvature, wall suction or blowing, and wall roughness. The solution may start from an initial Falkner-Skan similarity profile, an approximate equilibrium turbulent profile, or an initial arbitrary input profile.
NASA Technical Reports Server (NTRS)
Cooke, C. H.; Blanchard, D. K.
1975-01-01
A finite element algorithm for solution of fluid flow problems characterized by the two-dimensional compressible Navier-Stokes equations was developed. The program is intended for viscous compressible high speed flow; hence, primitive variables are utilized. The physical solution was approximated by trial functions which at a fixed time are piecewise cubic on triangular elements. The Galerkin technique was employed to determine the finite-element model equations. A leapfrog time integration is used for marching asymptotically from initial to steady state, with iterated integrals evaluated by numerical quadratures. The nonsymmetric linear systems of equations governing time transition from step-to-step are solved using a rather economical block iterative triangular decomposition scheme. The concept was applied to the numerical computation of a free shear flow. Numerical results of the finite-element method are in excellent agreement with those obtained from a finite difference solution of the same problem.
NASA Technical Reports Server (NTRS)
Lee, Jeffrey M.
1999-01-01
This study establishes a consistent set of differential equations for use in describing the steady secondary flows generated by periodic compression and expansion of an ideal gas in pulse tubes. Also considered is heat transfer between the gas and the tube wall of finite thickness. A small-amplitude series expansion solution in the inverse Strouhal number is proposed for the two-dimensional axisymmetric mass, momentum and energy equations. The anelastic approach applies when shock and acoustic energies are small compared with the energy needed to compress and expand the gas. An analytic solution to the ordered series is obtained in the strong temperature limit where the zeroth-order temperature is constant. The solution shows steady velocities increase linearly for small Valensi number and can be of order I for large Valensi number. A conversion of steady work flow to heat flow occurs whenever temperature, velocity or phase angle gradients are present. Steady enthalpy flow is reduced by heat transfer and is scaled by the Prandtl times Valensi numbers. Particle velocities from a smoke-wire experiment were compared with predictions for the basic and orifice pulse tube configurations. The theory accurately predicted the observed steady streaming.
Low-pressure sequential compression of lower limbs enhances forearm skin blood flow.
Amah, Guy; Voicu, Sebastian; Bonnin, Philippe; Kubis, Nathalie
2016-12-01
We investigated whether forearm skin blood flow could be improved when a multilayer pulsatile inflatable suit was applied at a low pressure to the lower limbs and abdomen. We hypothesized that a non-invasive purely mechanical stimulation of the lower limbs could induce remote forearm blood flow modifications. The pulsatile suit induced a sequential compartmentalized low compression (65 mmHg), which was synchronized with each diastole of the cardiac cycle with each phase evolving centripetally (lower limbs to abdomen). Modifications of the forearm skin blood flow were continuously recorded by laser Doppler flowmetry (LDF) at baseline and during the pulsatile suit application. Endothelium-dependent and endothelium-independent vasodilations of the forearm skin microcirculation were measured by LDF in response to a local transdermal iontophoretic application of acetylcholine (ACh-test) and to hyperthermia (hyperT- test). Twenty-four healthy volunteers, 12 men and 12 women (43±14 years) were included in the study. LDF responses increased 1) under pulsatile suit (97±106%, p.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Zhang, G.; Lu, P.; Hu, B.; Zhu, C.
2017-12-01
The extent of CO2 mineralization after CO2 injection into deep saline aquifers is a result of the complex coupling of multiphase fluid flow, mass transport, and brine-mineral reactions. The effects of dissolution rate laws and groundwater flow on the long-term fate of CO2 have been seriously overlooked. To investigate these effects, we conducted multiphase (CO2 and brine) coupled reactive transport modeling of CO2 storage in two sandy formations (Utsira Sand, Norway1,2 and Mt. Simon formation, USA 3) using ToughReact and simulated a series of scenarios. The results indicated that: (1) Different dissolution rate laws for feldspars can significantly affect the amount of CO2 mineralization. Increased feldspar dissolution will promote CO2 mineral trapping through the coupling between feldspar dissolution and carbonate mineral precipitation at raised pH. The predicted amount of CO2 mineral trapping when using the principle of detailed balancing-based rate law for feldspar dissolution is about twice as much as that when using sigmoidal rate laws in the literature. (2) Mineral trapping is twice as much when regional groundwater flow is taken into consideration in long-term simulations (e.g., 10,000 years) whereas most modeling studies neglected the regional groundwater flow back and effectively simulated a batch reactor process. Under the influence of regional groundwater flow, the fresh brine from upstream continuously dissolves CO2 at the tail of CO2 plume, generating a large acidified area where large amount of CO2 mineralization takes place. The upstream replenishment of groundwater results in ˜22% mineral trapping at year 10,000, compared to ˜4% when this effect is ignored. Refs: 1Zhang, G., Lu, P., Wei, X., Zhu, C. (2016). Impacts of Mineral Reaction Kinetics and Regional Groundwater Flow on Long-Term CO2 Fate at Sleipner. Energy & Fuels, 30(5), 4159-4180. 2Zhu, C., Zhang, G., Lu, P., Meng, L., Ji, X. (2015). Benchmark modeling of the Sleipner CO2 plume
Expansion of a compressible gas bubble in Stokes flow
NASA Astrophysics Data System (ADS)
Pozrikidis, C.
2001-09-01
The flow-induced deformation of an inviscid bubble occupied by a compressible gas and suspended in an ambient viscous liquid is considered at low Reynolds numbers with particular reference to the pressure developing inside the bubble. Ambient fluid motion alters the bubble pressure with respect to that established in the quiescent state, and requires the bubble to expand or contract according to an assumed equation of state. When changes in the bubble volume are prohibited by a global constraint on the total volume of the flow, the ambient pressure is modified while the bubble pressure remains constant during the deformation. A numerical method is developed for evaluating the pressure inside a two-dimensional bubble in an ambient Stokes flow on the basis of the normal component of the interfacial force balance involving the capillary pressure, the normal viscous stress, and the pressure at the free surface on the side of the liquid; the last is computed by evaluating a strongly singular integral. Dynamical simulations of bubble deformation are performed using the boundary integral method properly implemented to remove the multiplicity of solutions due to the a priori unknown rate of expansion, and three particular problems are discussed in detail: the shrinkage of a bubble at a specified rate, the deformation of a bubble subject to simple shear flow, and the deformation of a bubble subject to a purely elongational flow. In the case of shrinkage, it is found that the surface tension plays a critical role in determining the behaviour of the bubble pressure near the critical time when the bubble disappears. In the case of shear or elongational flow, it is found that the bubble contracts during an initial period of deformation from the circular shape, and then it expands to obtain a stationary shape whose area is higher than that assumed in the quiescent state. Expansion may destabilize the bubble by raising the capillary number above the critical threshold under which
A modified dodge algorithm for the parabolized Navier-Stokes equations and compressible duct flows
NASA Technical Reports Server (NTRS)
Cooke, C. H.
1981-01-01
A revised version of a split-velocity method for numerical calculation of compressible duct flow was developed. The revision incorporates balancing of mass flow rates on each marching step in order to maintain front-to-back continuity during the calculation. The (checkerboard) zebra algorithm is applied to solution of the three-dimensional continuity equation in conservative form. A second-order A-stable linear multistep method is employed in effecting a marching solution of the parabolized momentum equations. A checkerboard successive overrelaxation iteration is used to solve the resulting implicit nonlinear systems of finite-difference equations which govern stepwise transition.
Generating a Multiphase Equation of State with Swarm Intelligence
NASA Astrophysics Data System (ADS)
Cox, Geoffrey
2017-06-01
Hydrocode calculations require knowledge of the variation of pressure of a material with density and temperature, which is given by the equation of state. An accurate model needs to account for discontinuities in energy, density and properties of a material across a phase boundary. When generating a multiphase equation of state the modeller attempts to balance the agreement between the available data for compression, expansion and phase boundary location. However, this can prove difficult because minor adjustments in the equation of state for a single phase can have a large impact on the overall phase diagram. Recently, Cox and Christie described a method for combining statistical-mechanics-based condensed matter physics models with a stochastic analysis technique called particle swarm optimisation. The models produced show good agreement with experiment over a wide range of pressure-temperature space. This talk details the general implementation of this technique, shows example results, and describes the types of analysis that can be performed with this method.
On the theory of oscillating airfoils of finite span in subsonic compressible flow
NASA Technical Reports Server (NTRS)
Reissner, Eric
1950-01-01
The problem of oscillating lifting surface of finite span in subsonic compressible flow is reduced to an integral equation. The kernel of the integral equation is approximated by a simpler expression, on the basis of the assumption of sufficiently large aspect ratio. With this approximation the double integral occurring in the formulation of the problem is reduced to two single integrals, one of which is taken over the chord and the other over the span of the lifting surface. On the basis of this reduction the three-dimensional problem appears separated into two two-dimensional problems, one of them being effectively the problem of two-dimensional flow and the other being the problem of spanwise circulation distribution. Earlier results concerning the oscillating lifting surface of finite span in incompressible flow are contained in the present more general results.
A modified Dodge algorithm for the parabolized Navier-Stokes equations and compressible duct flows
NASA Technical Reports Server (NTRS)
Cooke, C. H.; Dwoyer, D. M.
1983-01-01
A revised version of Dodge's split-velocity method for numerical calculation of compressible duct flow was developed. The revision incorporates balancing of mass flow rates on each marching step in order to maintain front-to-back continuity during the calculation. The (checkerboard) zebra algorithm is applied to solution of the three dimensional continuity equation in conservative form. A second-order A-stable linear multistep method is employed in effecting a marching solution of the parabolized momentum equations. A checkerboard iteration is used to solve the resulting implicit nonlinear systems of finite-difference equations which govern stepwise transition. Qualitative agreement with analytical predictions and experimental results was obtained for some flows with well-known solutions. Previously announced in STAR as N82-16363
Turbulent Compressible Convection with Rotation. 2; Mean Flows and Differential Rotation
NASA Technical Reports Server (NTRS)
Brummell, Nicholas H.; Hurlburt, Neal E.; Toomre, Juri
1998-01-01
The effects of rotation on turbulent, compressible convection within stellar envelopes are studied through three-dimensional numerical simulations conducted within a local f-plane model. This work seeks to understand the types of differential rotation that can be established in convective envelopes of stars like the Sun, for which recent helioseismic observations suggest an angular velocity profile with depth and latitude at variance with many theoretical predictions. This paper analyzes the mechanisms that are responsible for the mean (horizontally averaged) zonal and meridional flows that are produced by convection influenced by Coriolis forces. The compressible convection is considered for a range of Rayleigh, Taylor, and Prandtl (and thus Rossby) numbers encompassing both laminar and turbulent flow conditions under weak and strong rotational constraints. When the nonlinearities are moderate, the effects of rotation on the resulting laminar cellular convection leads to distinctive tilts of the cell boundaries away from the vertical. These yield correlations between vertical and horizontal motions that generate Reynolds stresses that can drive mean flows, interpretable as differential rotation and meridional circulations. Under more vigorous forcing, the resulting turbulent convection involves complicated and contorted fluid particle trajectories, with few clear correlations between vertical and horizontal motions, punctuated by an evolving and intricate downflow network that can extend over much of the depth of the layer. Within such networks are some coherent structures of vortical downflow that tend to align with the rotation axis. These yield a novel turbulent alignment mechanism, distinct from the laminar tilting of cellular boundaries, that can provide the principal correlated motions and thus Reynolds stresses and subsequently mean flows. The emergence of such coherent structures that can persist amidst more random motions is a characteristic of turbulence