Sample records for compression applications enhanced

  1. A Novel ECG Data Compression Method Using Adaptive Fourier Decomposition With Security Guarantee in e-Health Applications.

    PubMed

    Ma, JiaLi; Zhang, TanTan; Dong, MingChui

    2015-05-01

    This paper presents a novel electrocardiogram (ECG) compression method for e-health applications by adapting an adaptive Fourier decomposition (AFD) algorithm hybridized with a symbol substitution (SS) technique. The compression consists of two stages: first stage AFD executes efficient lossy compression with high fidelity; second stage SS performs lossless compression enhancement and built-in data encryption, which is pivotal for e-health. Validated with 48 ECG records from MIT-BIH arrhythmia benchmark database, the proposed method achieves averaged compression ratio (CR) of 17.6-44.5 and percentage root mean square difference (PRD) of 0.8-2.0% with a highly linear and robust PRD-CR relationship, pushing forward the compression performance to an unexploited region. As such, this paper provides an attractive candidate of ECG compression method for pervasive e-health applications.

  2. Highly Compressible Carbon Sponge Supercapacitor Electrode with Enhanced Performance by Growing Nickel-Cobalt Sulfide Nanosheets.

    PubMed

    Liang, Xu; Nie, Kaiwen; Ding, Xian; Dang, Liqin; Sun, Jie; Shi, Feng; Xu, Hua; Jiang, Ruibin; He, Xuexia; Liu, Zonghuai; Lei, Zhibin

    2018-03-28

    The development of compressible supercapacitor highly relies on the innovative design of electrode materials with both superior compression property and high capacitive performance. This work reports a highly compressible supercapacitor electrode which is prepared by growing electroactive NiCo 2 S 4 (NCS) nanosheets on the compressible carbon sponge (CS). The strong adhesion of the metallic conductive NCS nanosheets to the highly porous carbon scaffolds enable the CS-NCS composite electrode to exhibit an enhanced conductivity and ideal structural integrity during repeated compression-release cycles. Accordingly, the CS-NCS composite electrode delivers a specific capacitance of 1093 F g -1 at 0.5 A g -1 and remarkable rate performance with 91% capacitance retention in the range of 0.5-20 A g -1 . Capacitance performance under the strain of 60% shows that the incorporation of NCS nanosheets in CS scaffolds leads to over five times enhancement in gravimetric capacitance and 17 times enhancement in volumetric capacitance. These performances enable the CS-NCS composite to be one of the promising candidates for potential applications in compressible electrochemical energy storage devices.

  3. On the combined gradient-stochastic plasticity model: Application to Mo-micropillar compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konstantinidis, A. A., E-mail: akonsta@civil.auth.gr; Zhang, X., E-mail: zhangxu26@126.com; Aifantis, E. C., E-mail: mom@mom.gen.auth.gr

    2015-02-17

    A formulation for addressing heterogeneous material deformation is proposed. It is based on the use of a stochasticity-enhanced gradient plasticity model implemented through a cellular automaton. The specific application is on Mo-micropillar compression, for which the irregularities of the strain bursts observed have been experimentally measured and theoretically interpreted through Tsallis' q-statistics.

  4. Compressive strain induced enhancement in thermoelectric-power-factor in monolayer MoS2 nanosheet

    NASA Astrophysics Data System (ADS)

    Dimple; Jena, Nityasagar; De Sarkar, Abir

    2017-06-01

    Strain and temperature induced tunability in the thermoelectric properties in monolayer MoS2 (ML-MoS2) has been demonstrated using density functional theory coupled to semi-classical Boltzmann transport theory. Compressive strain, in general and uniaxial compressive strain (along the zig-zag direction), in particular, is found to be most effective in enhancing the thermoelectric power factor, owing to the higher electronic mobility and its sensitivity to lattice compression along this direction. Variation in the Seebeck coefficient and electronic band gap with strain is found to follow the Goldsmid-Sharp relation. n-type doping is found to raise the relaxation time-scaled thermoelectric power factor higher than p-type doping and this divide widens with increasing temperature. The relaxation time-scaled thermoelectric power factor in optimally n-doped ML-MoS2 is found to undergo maximal enhancement under the application of 3% uniaxial compressive strain along the zig-zag direction, when both the (direct) electronic band gap and the Seebeck coefficient reach their maximum, while the electron mobility drops down drastically from 73.08 to 44.15 cm2 V-1 s-1. Such strain sensitive thermoelectric responses in ML-MoS2 could open doorways for a variety of applications in emerging areas in 2D-thermoelectrics, such as on-chip thermoelectric power generation and waste thermal energy harvesting.

  5. Enhancement of orientation gradients during simple shear deformation by application of simple compression

    NASA Astrophysics Data System (ADS)

    Jahedi, Mohammad; Ardeljan, Milan; Beyerlein, Irene J.; Paydar, Mohammad Hossein; Knezevic, Marko

    2015-06-01

    We use a multi-scale, polycrystal plasticity micromechanics model to study the development of orientation gradients within crystals deforming by slip. At the largest scale, the model is a full-field crystal plasticity finite element model with explicit 3D grain structures created by DREAM.3D, and at the finest scale, at each integration point, slip is governed by a dislocation density based hardening law. For deformed polycrystals, the model predicts intra-granular misorientation distributions that follow well the scaling law seen experimentally by Hughes et al., Acta Mater. 45(1), 105-112 (1997), independent of strain level and deformation mode. We reveal that the application of a simple compression step prior to simple shearing significantly enhances the development of intra-granular misorientations compared to simple shearing alone for the same amount of total strain. We rationalize that the changes in crystallographic orientation and shape evolution when going from simple compression to simple shearing increase the local heterogeneity in slip, leading to the boost in intra-granular misorientation development. In addition, the analysis finds that simple compression introduces additional crystal orientations that are prone to developing intra-granular misorientations, which also help to increase intra-granular misorientations. Many metal working techniques for refining grain sizes involve a preliminary or concurrent application of compression with severe simple shearing. Our finding reveals that a pre-compression deformation step can, in fact, serve as another processing variable for improving the rate of grain refinement during the simple shearing of polycrystalline metals.

  6. Enhancement of a dynamic porous model considering compression-release hysteresis behavior: application to graphite

    NASA Astrophysics Data System (ADS)

    Jodar, B.; Seisson, G.; Hébert, D.; Bertron, I.; Boustie, M.; Berthe, L.

    2016-08-01

    Because of their shock wave attenuation properties, porous materials and foams are increasingly used for various applications such as graphite in the aerospace industry and polyurethane (PU) foams in biomedical engineering. For these two materials, the absence of residual compaction after compression and release cycles limits the efficiency of the usual numerical dynamic porous models such as P-α and POREQST. In this paper, we suggest a simple enhancement of the latter in order to take into account the compression-release hysteresis behavior experimentally observed for the considered materials. The new model, named H-POREQST, was implemented into a Lagrangian hydrocode and tested for simulating plate impact experiments at moderate pressure onto a commercial grade of porous graphite (EDM3). It proved to be in far better agreement with experimental data than the original model which encourages us to pursue numerical tests and developments.

  7. Boron Nitride Coated Carbon Nanotube Arrays with Enhanced Compressive Mechanical Property

    NASA Astrophysics Data System (ADS)

    Jing, Lin; Tay, Roland Yingjie; Li, Hongling; Tsang, Siu Hon; Tan, Dunlin; Zhang, Bowei; Tok, Alfred Iing Yoong; Teo, Edwin Hang Tong

    Vertically aligned carbon nanotube (CNT) array is one of the most promising energy dissipating materials due to its excellent temperature invariant mechanical property. However, the CNT arrays with desirable recoverability after compression is still a challenge. Here, we report on the mechanical enhancement of the CNT arrays reinforced by coating with boron nitride (BN) layers. These BN coated CNT (BN/CNT) arrays exhibit excellent compressive strength and recoverability as compared to those of the as-prepared CNT arrays which totally collapsed after compression. In addition, the BN coating also provides better resistance to oxidation due to its intrinsic thermal stability. This work presented here opens a new pathway towards tuning mechanical behavior of any arbitrary CNT arrays for promising potential such as damper, vibration isolator and shock absorber applications.

  8. Hybrid matrix fiber composites

    DOEpatents

    Deteresa, Steven J.; Lyon, Richard E.; Groves, Scott E.

    2003-07-15

    Hybrid matrix fiber composites having enhanced compressive performance as well as enhanced stiffness, toughness and durability suitable for compression-critical applications. The methods for producing the fiber composites using matrix hybridization. The hybrid matrix fiber composites include two chemically or physically bonded matrix materials, whereas the first matrix materials are used to impregnate multi-filament fibers formed into ribbons and the second matrix material is placed around and between the fiber ribbons that are impregnated with the first matrix material and both matrix materials are cured and solidified.

  9. Graphene/Polyaniline Aerogel with Superelasticity and High Capacitance as Highly Compression-Tolerant Supercapacitor Electrode

    NASA Astrophysics Data System (ADS)

    Lv, Peng; Tang, Xun; Zheng, Ruilin; Ma, Xiaobo; Yu, Kehan; Wei, Wei

    2017-12-01

    Superelastic graphene aerogel with ultra-high compressibility shows promising potential for compression-tolerant supercapacitor electrode. However, its specific capacitance is too low to meet the practical application. Herein, we deposited polyaniline (PANI) into the superelastic graphene aerogel to improve the capacitance while maintaining the superelasticity. Graphene/PANI aerogel with optimized PANI mass content of 63 wt% shows the improved specific capacitance of 713 F g-1 in the three-electrode system. And the graphene/PANI aerogel presents a high recoverable compressive strain of 90% due to the strong interaction between PANI and graphene. The all-solid-state supercapacitors were assembled to demonstrate the compression-tolerant ability of graphene/PANI electrodes. The gravimetric capacitance of graphene/PANI electrodes reaches 424 F g-1 and retains 96% even at 90% compressive strain. And a volumetric capacitance of 65.5 F cm-3 is achieved, which is much higher than that of other compressible composite electrodes. Furthermore, several compressible supercapacitors can be integrated and connected in series to enhance the overall output voltage, suggesting the potential to meet the practical application.

  10. Graphene/Polyaniline Aerogel with Superelasticity and High Capacitance as Highly Compression-Tolerant Supercapacitor Electrode.

    PubMed

    Lv, Peng; Tang, Xun; Zheng, Ruilin; Ma, Xiaobo; Yu, Kehan; Wei, Wei

    2017-12-19

    Superelastic graphene aerogel with ultra-high compressibility shows promising potential for compression-tolerant supercapacitor electrode. However, its specific capacitance is too low to meet the practical application. Herein, we deposited polyaniline (PANI) into the superelastic graphene aerogel to improve the capacitance while maintaining the superelasticity. Graphene/PANI aerogel with optimized PANI mass content of 63 wt% shows the improved specific capacitance of 713 F g -1 in the three-electrode system. And the graphene/PANI aerogel presents a high recoverable compressive strain of 90% due to the strong interaction between PANI and graphene. The all-solid-state supercapacitors were assembled to demonstrate the compression-tolerant ability of graphene/PANI electrodes. The gravimetric capacitance of graphene/PANI electrodes reaches 424 F g -1 and retains 96% even at 90% compressive strain. And a volumetric capacitance of 65.5 F cm -3 is achieved, which is much higher than that of other compressible composite electrodes. Furthermore, several compressible supercapacitors can be integrated and connected in series to enhance the overall output voltage, suggesting the potential to meet the practical application.

  11. Method of producing a hybrid matrix fiber composite

    DOEpatents

    Deteresa, Steven J [Livermore, CA; Lyon, Richard E [Absecon, NJ; Groves, Scott E [Brentwood, CA

    2006-03-28

    Hybrid matrix fiber composites having enhanced compressive performance as well as enhanced stiffness, toughness and durability suitable for compression-critical applications. The methods for producing the fiber composites using matrix hybridization. The hybrid matrix fiber composites comprised of two chemically or physically bonded matrix materials, whereas the first matrix materials are used to impregnate multi-filament fibers formed into ribbons and the second matrix material is placed around and between the fiber ribbons that are impregnated with the first matrix material and both matrix materials are cured and solidified.

  12. Image quality enhancement in low-light-level ghost imaging using modified compressive sensing method

    NASA Astrophysics Data System (ADS)

    Shi, Xiaohui; Huang, Xianwei; Nan, Suqin; Li, Hengxing; Bai, Yanfeng; Fu, Xiquan

    2018-04-01

    Detector noise has a significantly negative impact on ghost imaging at low light levels, especially for existing recovery algorithm. Based on the characteristics of the additive detector noise, a method named modified compressive sensing ghost imaging is proposed to reduce the background imposed by the randomly distributed detector noise at signal path. Experimental results show that, with an appropriate choice of threshold value, modified compressive sensing ghost imaging algorithm can dramatically enhance the contrast-to-noise ratio of the object reconstruction significantly compared with traditional ghost imaging and compressive sensing ghost imaging methods. The relationship between the contrast-to-noise ratio of the reconstruction image and the intensity ratio (namely, the average signal intensity to average noise intensity ratio) for the three reconstruction algorithms are also discussed. This noise suppression imaging technique will have great applications in remote-sensing and security areas.

  13. Halftoning processing on a JPEG-compressed image

    NASA Astrophysics Data System (ADS)

    Sibade, Cedric; Barizien, Stephane; Akil, Mohamed; Perroton, Laurent

    2003-12-01

    Digital image processing algorithms are usually designed for the raw format, that is on an uncompressed representation of the image. Therefore prior to transforming or processing a compressed format, decompression is applied; then, the result of the processing application is finally re-compressed for further transfer or storage. The change of data representation is resource-consuming in terms of computation, time and memory usage. In the wide format printing industry, this problem becomes an important issue: e.g. a 1 m2 input color image, scanned at 600 dpi exceeds 1.6 GB in its raw representation. However, some image processing algorithms can be performed in the compressed-domain, by applying an equivalent operation on the compressed format. This paper is presenting an innovative application of the halftoning processing operation by screening, to be applied on JPEG-compressed image. This compressed-domain transform is performed by computing the threshold operation of the screening algorithm in the DCT domain. This algorithm is illustrated by examples for different halftone masks. A pre-sharpening operation, applied on a JPEG-compressed low quality image is also described; it allows to de-noise and to enhance the contours of this image.

  14. Task-oriented lossy compression of magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Anderson, Mark C.; Atkins, M. Stella; Vaisey, Jacques

    1996-04-01

    A new task-oriented image quality metric is used to quantify the effects of distortion introduced into magnetic resonance images by lossy compression. This metric measures the similarity between a radiologist's manual segmentation of pathological features in the original images and the automated segmentations performed on the original and compressed images. The images are compressed using a general wavelet-based lossy image compression technique, embedded zerotree coding, and segmented using a three-dimensional stochastic model-based tissue segmentation algorithm. The performance of the compression system is then enhanced by compressing different regions of the image volume at different bit rates, guided by prior knowledge about the location of important anatomical regions in the image. Application of the new system to magnetic resonance images is shown to produce compression results superior to the conventional methods, both subjectively and with respect to the segmentation similarity metric.

  15. Integrating dynamic and distributed compressive sensing techniques to enhance image quality of the compressive line sensing system for unmanned aerial vehicles application

    NASA Astrophysics Data System (ADS)

    Ouyang, Bing; Hou, Weilin; Caimi, Frank M.; Dalgleish, Fraser R.; Vuorenkoski, Anni K.; Gong, Cuiling

    2017-07-01

    The compressive line sensing imaging system adopts distributed compressive sensing (CS) to acquire data and reconstruct images. Dynamic CS uses Bayesian inference to capture the correlated nature of the adjacent lines. An image reconstruction technique that incorporates dynamic CS in the distributed CS framework was developed to improve the quality of reconstructed images. The effectiveness of the technique was validated using experimental data acquired in an underwater imaging test facility. Results that demonstrate contrast and resolution improvements will be presented. The improved efficiency is desirable for unmanned aerial vehicles conducting long-duration missions.

  16. Strength Enhancement and Application Development of Carbon Foam for Thermal Management Systems

    DTIC Science & Technology

    2004-01-01

    STRENGTH ENHANCEMENT AND APPLICATION DEVELOPMENT OF CARBON FOAM FOR THERMAL MANAGEMENT SYSTEMS Mr. Christopher Duston Ceramic Composites, Inc ...inherent weakness and friability of the carbon foams. Ceramic Composites Inc . has demonstrated the ability to increase the compressive strength by 2½ times...250%.iv In Thermal Protection Systems (TPS) there are two approaches under consideration for utilizing carbon foams. Allcomp Inc.v, Materials and

  17. Ultra-Flexibility and Unusual Electronic, Magnetic and Chemical Properties of Waved Graphenes and Nanoribbons

    PubMed Central

    Pan, Hui; Chen, Bin

    2014-01-01

    Two-dimensional materials have attracted increasing attention because of their particular properties and potential applications in next-generation nanodevices. In this work, we investigate the physical and chemical properties of waved graphenes/nanoribbons based on first-principles calculations. We show that waved graphenes are compressible up to a strain of 50% and ultra-flexible because of the vanishing in-plane stiffness. The conductivity of waved graphenes is reduced due to charge decoupling under high compression. Our analysis of pyramidalization angles predicts that the chemistry of waved graphenes can be easily controlled by modulating local curvatures. We further demonstrate that band gaps of armchair waved graphene nanoribbons decrease with the increase of compression if they are asymmetrical in geometry, while increase if symmetrical. For waved zigzag nanoribbons, their anti-ferromagnetic states are strongly enhanced by increasing compression. The versatile functions of waved graphenes enable their applications in multi-functional nanodevices and sensors. PMID:24569444

  18. Review on Applications of NanoFluids used in Vapour Compression Refrigeration System for Cop Enhancement

    NASA Astrophysics Data System (ADS)

    Veera Raghavalu, K.; Govindha Rasu, N.

    2018-03-01

    The present research paper focuses on the use of Nano additive refrigerants in vapor compression refrigeration system (VCRS) because of their amazing development during Thermo Physical along with heat transfer potential to improve the coefficient of performance (COP) and reliability of refrigeration system. Furthermore, challenges and future instructions of performance enhancement of VCRS using Nano additive refrigerants were presented. Lubricant oil is essential in the entire vapour compression refrigeration systems, mostly for the efficient function of the compressor. But, some assign of the oil is entire the cycle oil circulates with the refrigerant. Presently, an assortment of investigation is going on in the field of the Nano-particles like metals, oxides, carbon Nano-tubes or carbides. Nano-lubricants are unique type of Nano-fluids which are varieties of Nano-particles, lubricants and have a wide variety in the fields of refrigeration systems. This paper, has been done on the application of Nano-particles balanced in lubricating oils of refrigerating systems are reviewed. The aim of this investigation is to study and find which type of lubricant oil works better with Nano-particles in the area of refrigeration. From the review of literature, it has been observed that Nano-particles mixed with mineral oil gives enhanced results than polyolester (POE) oil.

  19. Fast and robust wavelet-based dynamic range compression and contrast enhancement model with color restoration

    NASA Astrophysics Data System (ADS)

    Unaldi, Numan; Asari, Vijayan K.; Rahman, Zia-ur

    2009-05-01

    Recently we proposed a wavelet-based dynamic range compression algorithm to improve the visual quality of digital images captured from high dynamic range scenes with non-uniform lighting conditions. The fast image enhancement algorithm that provides dynamic range compression, while preserving the local contrast and tonal rendition, is also a good candidate for real time video processing applications. Although the colors of the enhanced images produced by the proposed algorithm are consistent with the colors of the original image, the proposed algorithm fails to produce color constant results for some "pathological" scenes that have very strong spectral characteristics in a single band. The linear color restoration process is the main reason for this drawback. Hence, a different approach is required for the final color restoration process. In this paper the latest version of the proposed algorithm, which deals with this issue is presented. The results obtained by applying the algorithm to numerous natural images show strong robustness and high image quality.

  20. Beam steering performance of compressed Luneburg lens based on transformation optics

    NASA Astrophysics Data System (ADS)

    Gao, Ju; Wang, Cong; Zhang, Kuang; Hao, Yang; Wu, Qun

    2018-06-01

    In this paper, two types of compressed Luneburg lenses based on transformation optics are investigated and simulated using two different sources, namely, waveguides and dipoles, which represent plane and spherical wave sources, respectively. We determined that the largest beam steering angle and the related feed point are intrinsic characteristics of a certain type of compressed Luneburg lens, and that the optimized distance between the feed and lens, gain enhancement, and side-lobe suppression are related to the type of source. Based on our results, we anticipate that these lenses will prove useful in various future antenna applications.

  1. Heat pump evaluation for Space Station ATCS evolution

    NASA Technical Reports Server (NTRS)

    Ames, Brian E.; Petete, Patricia A.

    1991-01-01

    A preliminary feasibility assessment of the application of a vapor compression heat pump to the Active Thermal Control System (ATCS) of SSF is presented. This paper focuses on the methodology of raising the surface temperature of the radiators for improved heat rejection. Some of the effects of the vapor compression cycle on SSF examined include heat pump integration into ATCS, constraints on the heat pump operating parameters, and heat pump performance enhancements.

  2. Digital mammography, cancer screening: Factors important for image compression

    NASA Technical Reports Server (NTRS)

    Clarke, Laurence P.; Blaine, G. James; Doi, Kunio; Yaffe, Martin J.; Shtern, Faina; Brown, G. Stephen; Winfield, Daniel L.; Kallergi, Maria

    1993-01-01

    The use of digital mammography for breast cancer screening poses several novel problems such as development of digital sensors, computer assisted diagnosis (CAD) methods for image noise suppression, enhancement, and pattern recognition, compression algorithms for image storage, transmission, and remote diagnosis. X-ray digital mammography using novel direct digital detection schemes or film digitizers results in large data sets and, therefore, image compression methods will play a significant role in the image processing and analysis by CAD techniques. In view of the extensive compression required, the relative merit of 'virtually lossless' versus lossy methods should be determined. A brief overview is presented here of the developments of digital sensors, CAD, and compression methods currently proposed and tested for mammography. The objective of the NCI/NASA Working Group on Digital Mammography is to stimulate the interest of the image processing and compression scientific community for this medical application and identify possible dual use technologies within the NASA centers.

  3. Substantial optical dielectric enhancement by volume compression in LiAsSe 2

    DOE PAGES

    Zheng, Fan; Brehm, John A.; Young, Steve M.; ...

    2016-05-15

    Based on first-principles calculations, we predict a substantial increase in the optical dielectric function of LiAsSemore » $$_2$$ under pressure. We find that the optical dielectric constant is enhanced threefold under volume compression. This enhancement is mainly due to the dimerization strength reduction of the one-dimensional (1D) As--Se chains in LiAsSe$$_2$$, which significantly alters the wavefunction phase mismatch between two neighboring chains and changes the transition intensity. By developing a tight-binding model of the interacting 1D chains, the essential features of the low-energy electronic structure of LiAsSe$$_2$$ are captured. In conclusion, our findings are important for understanding the fundamental physics of LiAsSe$$_2$$ and provide a feasible way to enhance the material optical response that can be applied to light harvesting for energy applications.« less

  4. Enhanced acoustic sensing through wave compression and pressure amplification in anisotropic metamaterials.

    PubMed

    Chen, Yongyao; Liu, Haijun; Reilly, Michael; Bae, Hyungdae; Yu, Miao

    2014-10-15

    Acoustic sensors play an important role in many areas, such as homeland security, navigation, communication, health care and industry. However, the fundamental pressure detection limit hinders the performance of current acoustic sensing technologies. Here, through analytical, numerical and experimental studies, we show that anisotropic acoustic metamaterials can be designed to have strong wave compression effect that renders direct amplification of pressure fields in metamaterials. This enables a sensing mechanism that can help overcome the detection limit of conventional acoustic sensing systems. We further demonstrate a metamaterial-enhanced acoustic sensing system that achieves more than 20 dB signal-to-noise enhancement (over an order of magnitude enhancement in detection limit). With this system, weak acoustic pulse signals overwhelmed by the noise are successfully recovered. This work opens up new vistas for the development of metamaterial-based acoustic sensors with improved performance and functionalities that are highly desirable for many applications.

  5. Solar-powered compression-enhanced ejector air conditioner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokolov, M.; Hershgal, D.

    1993-09-01

    This article is an extension of an earlier investigation into the possibility of adaptation of the ejector refrigeration cycle to solar air-conditioning. In a previous work the ejector cycle has been proven a viable option only for a limited number of cases. These include systems with combined (heating, cooling, and hot water supply) loads where means for obtaining low condensing temperature are available. The purpose of this work is to extend the applicability of such systems by enhancing their efficiency and thereby improving their economical attractiveness. This is done by introducing the compression enhanced ejector system in which mechanical (rathermore » than thermal) energy is used to boost the pressure of the secondary stream into the ejector, Such a boost improves the performance of the whole system. Similar to the conventional ejector, the compression-enhanced ejector system utilizes practically the same hardware for solar heating during the winter and for solar cooling during the summer. Thus, it is capable of providing a year-round space air-conditioning. Optimization of the best combination in which the solar and refrigeration systems combine through the vapor generator working temperature is also presented.« less

  6. Efficient image acquisition design for a cancer detection system

    NASA Astrophysics Data System (ADS)

    Nguyen, Dung; Roehrig, Hans; Borders, Marisa H.; Fitzpatrick, Kimberly A.; Roveda, Janet

    2013-09-01

    Modern imaging modalities, such as Computed Tomography (CT), Digital Breast Tomosynthesis (DBT) or Magnetic Resonance Tomography (MRT) are able to acquire volumetric images with an isotropic resolution in micrometer (um) or millimeter (mm) range. When used in interactive telemedicine applications, these raw images need a huge storage unit, thereby necessitating the use of high bandwidth data communication link. To reduce the cost of transmission and enable archiving, especially for medical applications, image compression is performed. Recent advances in compression algorithms have resulted in a vast array of data compression techniques, but because of the characteristics of these images, there are challenges to overcome to transmit these images efficiently. In addition, the recent studies raise the low dose mammography risk on high risk patient. Our preliminary studies indicate that by bringing the compression before the analog-to-digital conversion (ADC) stage is more efficient than other compression techniques after the ADC. The linearity characteristic of the compressed sensing and ability to perform the digital signal processing (DSP) during data conversion open up a new area of research regarding the roles of sparsity in medical image registration, medical image analysis (for example, automatic image processing algorithm to efficiently extract the relevant information for the clinician), further Xray dose reduction for mammography, and contrast enhancement.

  7. Training-free compressed sensing for wireless neural recording using analysis model and group weighted {{\\ell}_{1}} -minimization

    NASA Astrophysics Data System (ADS)

    Sun, Biao; Zhao, Wenfeng; Zhu, Xinshan

    2017-06-01

    Objective. Data compression is crucial for resource-constrained wireless neural recording applications with limited data bandwidth, and compressed sensing (CS) theory has successfully demonstrated its potential in neural recording applications. In this paper, an analytical, training-free CS recovery method, termed group weighted analysis {{\\ell}1} -minimization (GWALM), is proposed for wireless neural recording. Approach. The GWALM method consists of three parts: (1) the analysis model is adopted to enforce sparsity of the neural signals, therefore overcoming the drawbacks of conventional synthesis models and enhancing the recovery performance. (2) A multi-fractional-order difference matrix is constructed as the analysis operator, thus avoiding the dictionary learning procedure and reducing the need for previously acquired data and computational complexities. (3) By exploiting the statistical properties of the analysis coefficients, a group weighting approach is developed to enhance the performance of analysis {{\\ell}1} -minimization. Main results. Experimental results on synthetic and real datasets reveal that the proposed approach outperforms state-of-the-art CS-based methods in terms of both spike recovery quality and classification accuracy. Significance. Energy and area efficiency of the GWALM make it an ideal candidate for resource-constrained, large scale wireless neural recording applications. The training-free feature of the GWALM further improves its robustness to spike shape variation, thus making it more practical for long term wireless neural recording.

  8. Training-free compressed sensing for wireless neural recording using analysis model and group weighted [Formula: see text]-minimization.

    PubMed

    Sun, Biao; Zhao, Wenfeng; Zhu, Xinshan

    2017-06-01

    Data compression is crucial for resource-constrained wireless neural recording applications with limited data bandwidth, and compressed sensing (CS) theory has successfully demonstrated its potential in neural recording applications. In this paper, an analytical, training-free CS recovery method, termed group weighted analysis [Formula: see text]-minimization (GWALM), is proposed for wireless neural recording. The GWALM method consists of three parts: (1) the analysis model is adopted to enforce sparsity of the neural signals, therefore overcoming the drawbacks of conventional synthesis models and enhancing the recovery performance. (2) A multi-fractional-order difference matrix is constructed as the analysis operator, thus avoiding the dictionary learning procedure and reducing the need for previously acquired data and computational complexities. (3) By exploiting the statistical properties of the analysis coefficients, a group weighting approach is developed to enhance the performance of analysis [Formula: see text]-minimization. Experimental results on synthetic and real datasets reveal that the proposed approach outperforms state-of-the-art CS-based methods in terms of both spike recovery quality and classification accuracy. Energy and area efficiency of the GWALM make it an ideal candidate for resource-constrained, large scale wireless neural recording applications. The training-free feature of the GWALM further improves its robustness to spike shape variation, thus making it more practical for long term wireless neural recording.

  9. Image processing in forensic pathology.

    PubMed

    Oliver, W R

    1998-03-01

    Image processing applications in forensic pathology are becoming increasingly important. This article introduces basic concepts in image processing as applied to problems in forensic pathology in a non-mathematical context. Discussions of contrast enhancement, digital encoding, compression, deblurring, and other topics are presented.

  10. Transform-Based Channel-Data Compression to Improve the Performance of a Real-Time GPU-Based Software Beamformer.

    PubMed

    Lok, U-Wai; Li, Pai-Chi

    2016-03-01

    Graphics processing unit (GPU)-based software beamforming has advantages over hardware-based beamforming of easier programmability and a faster design cycle, since complicated imaging algorithms can be efficiently programmed and modified. However, the need for a high data rate when transferring ultrasound radio-frequency (RF) data from the hardware front end to the software back end limits the real-time performance. Data compression methods can be applied to the hardware front end to mitigate the data transfer issue. Nevertheless, most decompression processes cannot be performed efficiently on a GPU, thus becoming another bottleneck of the real-time imaging. Moreover, lossless (or nearly lossless) compression is desirable to avoid image quality degradation. In a previous study, we proposed a real-time lossless compression-decompression algorithm and demonstrated that it can reduce the overall processing time because the reduction in data transfer time is greater than the computation time required for compression/decompression. This paper analyzes the lossless compression method in order to understand the factors limiting the compression efficiency. Based on the analytical results, a nearly lossless compression is proposed to further enhance the compression efficiency. The proposed method comprises a transformation coding method involving modified lossless compression that aims at suppressing amplitude data. The simulation results indicate that the compression ratio (CR) of the proposed approach can be enhanced from nearly 1.8 to 2.5, thus allowing a higher data acquisition rate at the front end. The spatial and contrast resolutions with and without compression were almost identical, and the process of decompressing the data of a single frame on a GPU took only several milliseconds. Moreover, the proposed method has been implemented in a 64-channel system that we built in-house to demonstrate the feasibility of the proposed algorithm in a real system. It was found that channel data from a 64-channel system can be transferred using the standard USB 3.0 interface in most practical imaging applications.

  11. System considerations for efficient communication and storage of MSTI image data

    NASA Technical Reports Server (NTRS)

    Rice, Robert F.

    1994-01-01

    The Ballistic Missile Defense Organization has been developing the capability to evaluate one or more high-rate sensor/hardware combinations by incorporating them as payloads on a series of Miniature Seeker Technology Insertion (MSTI) flights. This publication represents the final report of a 1993 study to analyze the potential impact f data compression and of related communication system technologies on post-MSTI 3 flights. Lossless compression is considered alone and in conjunction with various spatial editing modes. Additionally, JPEG and Fractal algorithms are examined in order to bound the potential gains from the use of lossy compression. but lossless compression is clearly shown to better fit the goals of the MSTI investigations. Lossless compression factors of between 2:1 and 6:1 would provide significant benefits to both on-board mass memory and the downlink. for on-board mass memory, the savings could range from $5 million to $9 million. Such benefits should be possible by direct application of recently developed NASA VLSI microcircuits. It is shown that further downlink enhancements of 2:1 to 3:1 should be feasible thorough use of practical modifications to the existing modulation system and incorporation of Reed-Solomon channel coding. The latter enhancement could also be achieved by applying recently developed VLSI microcircuits.

  12. Clinical trials needed to evaluate compression therapy in breast cancer related lymphedema (BCRL). Proposals from an expert group.

    PubMed

    Partsch, H; Stout, N; Forner-Cordero, I; Flour, M; Moffatt, C; Szuba, A; Milic, D; Szolnoky, G; Brorson, H; Abel, M; Schuren, J; Schingale, F; Vignes, S; Piller, N; Döller, W

    2010-10-01

    A mainstay of lymphedema management involves the use of compression therapy. Compression therapy application is variable at different levels of disease severity. Evidence is scant to direct clinicians in best practice regarding compression therapy use. Further, compression clinical trials are fragmented and poorly extrapolable to the greater population. An ideal construct for conducting clinical trials in regards to compression therapy will promote parallel global initiatives based on a standard research agenda. The purpose of this article is to review current evidence in practice regarding compression therapy for BCRL management and based on this evidence, offer an expert consensus recommendation for a research agenda and prescriptive trials. Recommendations herein focus solely on compression interventions. This document represents the proceedings of a session organized by the International Compression Club (ICC) in June 2009 in Ponzano (Veneto, Italy). The purpose of the meeting was to enable a group of experts to discuss the existing evidence for compression treatment in breast cancer related lymphedema (BCRL) concentrating on areas where randomized controlled trials (RCTs) are lacking. The current body of research suggests efficacy of compression interventions in the treatment and management of lymphedema. However, studies to date have failed to adequately address various forms of compression therapy and their optimal application in BCRL. We offer recommendations for standardized compression research trials for prophylaxis of arm lymphedema and for the management of chronic BCRL. Suggestions are also made regarding; inclusion and exclusion criteria, measurement methodology and additional variables of interest for researchers to capture. This document should inform future research trials in compression therapy and serve as a guide to clinical researchers, industry researchers and lymphologists regarding the strengths, weaknesses and shortcomings of the current literature. By providing this construct for research trials, the authors aim to support evidence-based therapy interventions, promote a cohesive, standardized and informative body of literature to enhance clinical outcomes, improve the quality of future research trials, inform industry innovation and guide policy related to BCRL.

  13. Advanced technologies impact on compressor design and development: A perspective

    NASA Technical Reports Server (NTRS)

    Ball, Calvin L.

    1989-01-01

    A historical perspective of the impact of advanced technologies on compression system design and development for aircraft gas turbine applications is presented. A bright view of the future is projected in which further advancements in compression system technologies will be made. These advancements will have a significant impact on the ability to meet the ever-more-demanding requirements being imposed on the propulsion system for advanced aircraft. Examples are presented of advanced compression system concepts now being studied. The status and potential impact of transitioning from an empirically derived design system to a computationally oriented system are highlighted. A current NASA Lewis Research Center program to enhance this transitioning is described.

  14. Effect of resistance training with vibration and compression on the formation of muscle and bone.

    PubMed

    Zinner, Christoph; Baessler, Bettina; Weiss, Kilian; Ruf, Jasmine; Michels, Guido; Holmberg, Hans-Christer; Sperlich, Billy

    2017-12-01

    In this study we investigated the effects of resistance training with vibration in combination with leg compression to restrict blood flow on strength, muscle oxygenation, muscle mass, and bone formation. Twelve participants were tested before and after 12 weeks of resistance training with application of vibration (VIBRA; 1-2 mm, 30 Hz) to both legs and compression (∼35 mm Hg, VIBRA+COMP) to only 1 leg. VIBRA+COMP and VIBRA improved 1 repetition maximum (1-RM), increased the number of repetitions preceding muscle exhaustion, enhanced cortical bone mass, and lowered the mass and fat fraction in the thigh, with no changes in total muscle mass. The mass of cancellous bone decreased to a similar extent after VIBRA and VIBRA+COMP. Resistance training with VIBRA+COMP and VIBRA improved 1-RM, increased the number of repetitions preceding muscular exhaustion, and enhanced formation of cortical bone, with no alteration of muscle mass. Muscle Nerve 56: 1137-1142, 2017. © 2017 Wiley Periodicals, Inc.

  15. Histomorphometric study and three-dimensional reconstruction of the osteocyte lacuno-canalicular network one hour after applying tensile and compressive forces.

    PubMed

    Bozal, Carola B; Sánchez, Luciana M; Mandalunis, Patricia M; Ubios, Ángela M

    2013-01-01

    The occurrence of very early morphological changes in the osteocyte lacuno-canalicular network following application of tensile and/or compressive forces remains unknown to date. Thus, the aim of this study was to perform a morphological and morphometric evaluation of the changes in the three-dimensional structure of the lacuno-canalicular network and the osteocyte network of alveolar bone that take place very early after applying tensile and compressive forces in vivo, conducting static histomorphometry on bright-field microscopy and confocal laser scanning microscopy images. Our results showed that both the tensile and compressive forces induced early changes in osteocytes and their lacunae, which manifested as an increase in lacunar volume and changes in lacunar shape and orientation. An increase in canalicular width and a decrease in the width and an increase in the length of cytoplasmic processes were also observed. The morphological changes in the lacuno-canalicular and osteocyte networks that occur in vivo very early after application of tensile and compressive forces would be an indication of an increase in permeability within the system. Thus, both compressive and tensile forces would cause fluid displacement very soon after being applied; the latter would in turn rapidly activate alveolar bone osteocytes, enhancing transmission of the signals to the entire osteocyte network and the effector cells located at the bone surface. Copyright © 2013 S. Karger AG, Basel.

  16. Efficient transmission of compressed data for remote volume visualization.

    PubMed

    Krishnan, Karthik; Marcellin, Michael W; Bilgin, Ali; Nadar, Mariappan S

    2006-09-01

    One of the goals of telemedicine is to enable remote visualization and browsing of medical volumes. There is a need to employ scalable compression schemes and efficient client-server models to obtain interactivity and an enhanced viewing experience. First, we present a scheme that uses JPEG2000 and JPIP (JPEG2000 Interactive Protocol) to transmit data in a multi-resolution and progressive fashion. The server exploits the spatial locality offered by the wavelet transform and packet indexing information to transmit, in so far as possible, compressed volume data relevant to the clients query. Once the client identifies its volume of interest (VOI), the volume is refined progressively within the VOI from an initial lossy to a final lossless representation. Contextual background information can also be made available having quality fading away from the VOI. Second, we present a prioritization that enables the client to progressively visualize scene content from a compressed file. In our specific example, the client is able to make requests to progressively receive data corresponding to any tissue type. The server is now capable of reordering the same compressed data file on the fly to serve data packets prioritized as per the client's request. Lastly, we describe the effect of compression parameters on compression ratio, decoding times and interactivity. We also present suggestions for optimizing JPEG2000 for remote volume visualization and volume browsing applications. The resulting system is ideally suited for client-server applications with the server maintaining the compressed volume data, to be browsed by a client with a low bandwidth constraint.

  17. Comparative Study Of Image Enhancement Algorithms For Digital And Film Mammography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delgado-Gonzalez, A.; Sanmiguel, R. E.

    2008-08-11

    Here we discuss the application of edge enhancement algorithms on images obtained with a Mammography System which has a Selenium Detector and on the other hand, on images obtained from digitized film mammography. Comparative analysis of such images includes the study of technical aspects of image acquisition, storage, compression and display. A protocol for a local database has been created as a result of this study.

  18. Application of neural networks to group technology

    NASA Astrophysics Data System (ADS)

    Caudell, Thomas P.; Smith, Scott D. G.; Johnson, G. C.; Wunsch, Donald C., II

    1991-08-01

    Adaptive resonance theory (ART) neural networks are being developed for application to the industrial engineering problem of group technology--the reuse of engineering designs. Two- and three-dimensional representations of engineering designs are input to ART-1 neural networks to produce groups or families of similar parts. These representations, in their basic form, amount to bit maps of the part, and can become very large when the part is represented in high resolution. This paper describes an enhancement to an algorithmic form of ART-1 that allows it to operate directly on compressed input representations and to generate compressed memory templates. The performance of this compressed algorithm is compared to that of the regular algorithm on real engineering designs and a significant savings in memory storage as well as a speed up in execution is observed. In additions, a `neural database'' system under development is described. This system demonstrates the feasibility of training an ART-1 network to first cluster designs into families, and then to recall the family when presented a similar design. This application is of large practical value to industry, making it possible to avoid duplication of design efforts.

  19. Compressed-domain video indexing techniques using DCT and motion vector information in MPEG video

    NASA Astrophysics Data System (ADS)

    Kobla, Vikrant; Doermann, David S.; Lin, King-Ip; Faloutsos, Christos

    1997-01-01

    Development of various multimedia applications hinges on the availability of fast and efficient storage, browsing, indexing, and retrieval techniques. Given that video is typically stored efficiently in a compressed format, if we can analyze the compressed representation directly, we can avoid the costly overhead of decompressing and operating at the pixel level. Compressed domain parsing of video has been presented in earlier work where a video clip is divided into shots, subshots, and scenes. In this paper, we describe key frame selection, feature extraction, and indexing and retrieval techniques that are directly applicable to MPEG compressed video. We develop a frame-type independent representation of the various types of frames present in an MPEG video in which al frames can be considered equivalent. Features are derived from the available DCT, macroblock, and motion vector information and mapped to a low-dimensional space where they can be accessed with standard database techniques. The spatial information is used as primary index while the temporal information is used to enhance the robustness of the system during the retrieval process. The techniques presented enable fast archiving, indexing, and retrieval of video. Our operational prototype typically takes a fraction of a second to retrieve similar video scenes from our database, with over 95% success.

  20. High-harmonic generation in ZnO driven by self-compressed mid-infrared pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gholam-Mirzaei, Shima; Beetar, John E.; Chacon, Alexis

    Progress in attosecond science has relied on advancements in few-cycle pulse generation technology and its application to high-order harmonic generation. Traditionally, self-phase modulation in bulk solids has been used for the compression of moderate-energy pulses, additionally exhibiting favorable dispersion properties for mid-infrared (mid-IR) pulses. For this study, we use the anomalous dispersion of Y 3Al 5O 12 (YAG) to self-compress many-cycle pulses from a 50 kHz mid-IR OPA down to produce sub-three-cycle 10 μJ pulses and further use them to generate high-order harmonics in a ZnO crystal. In agreement with theoretical predictions, we observe a boost in the harmonic yieldmore » by a factor of two, and spectral broadening of above-gap harmonics, compared to longer driving pulses. The enhanced yield results from an increase in the intensity for the self-compressed pulses.« less

  1. High-harmonic generation in ZnO driven by self-compressed mid-infrared pulses

    DOE PAGES

    Gholam-Mirzaei, Shima; Beetar, John E.; Chacon, Alexis; ...

    2018-02-20

    Progress in attosecond science has relied on advancements in few-cycle pulse generation technology and its application to high-order harmonic generation. Traditionally, self-phase modulation in bulk solids has been used for the compression of moderate-energy pulses, additionally exhibiting favorable dispersion properties for mid-infrared (mid-IR) pulses. For this study, we use the anomalous dispersion of Y 3Al 5O 12 (YAG) to self-compress many-cycle pulses from a 50 kHz mid-IR OPA down to produce sub-three-cycle 10 μJ pulses and further use them to generate high-order harmonics in a ZnO crystal. In agreement with theoretical predictions, we observe a boost in the harmonic yieldmore » by a factor of two, and spectral broadening of above-gap harmonics, compared to longer driving pulses. The enhanced yield results from an increase in the intensity for the self-compressed pulses.« less

  2. Identification of potential biophysical and molecular signalling mechanisms underlying hyaluronic acid enhancement of cartilage formation

    PubMed Central

    Responte, Donald J.; Natoli, Roman M.; Athanasiou, Kyriacos A.

    2012-01-01

    This study determined the effects of exogenous hyaluronic acid (HA) on the biomechanical and biochemical properties of self-assembled bovine chondrocytes, and investigated biophysical and genetic mechanisms underlying these effects. The effects of HA commencement time, concentration, application duration and molecular weight were examined using histology, biomechanics and biochemistry. Additionally, the effects of HA application on sulphated glycosaminoglycan (GAG) retention were assessed. To investigate the influence of HA on gene expression, microarray analysis was conducted. HA treatment of developing neocartilage increased compressive stiffness onefold and increased sulphated GAG content by 35 per cent. These effects were dependent on HA molecular weight, concentration and application commencement time. Additionally, applying HA increased sulphated GAG retention within self-assembled neotissue. HA administration also upregulated 503 genes, including multiple genes associated with TGF-β1 signalling. Increased sulphated GAG retention indicated that HA could enhance compressive stiffness by increasing the osmotic pressure that negatively charged GAGs create. The gene expression data demonstrate that HA treatment differentially regulates genes related to TGF-β1 signalling, revealing a potential mechanism for altering matrix composition. These results illustrate the potential use of HA to improve cartilage regeneration efforts and better understand cartilage development. PMID:22809846

  3. Enhancing Light Emission of ZnO-Nanofilm/Si-Micropillar Heterostructure Arrays by Piezo-Phototronic Effect.

    PubMed

    Li, Xiaoyi; Chen, Mengxiao; Yu, Ruomeng; Zhang, Taiping; Song, Dongsheng; Liang, Renrong; Zhang, Qinglin; Cheng, Shaobo; Dong, Lin; Pan, Anlian; Wang, Zhong Lin; Zhu, Jing; Pan, Caofeng

    2015-06-22

    n-ZnO nanofilm/p-Si micropillar heterostructure light-emitting diode (LED) arrays for white light emissions are achieved and the light emission intensity of LED array is enhanced by 120% under -0.05% compressive strains. These results indicate a promising approach to fabricate Si-based light-emitting components with high performances enhanced by piezo-phototronic effect, with potential applications in touchpad technology, personalized signatures, smart skin, and silicon-based photonic integrated circuits. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A Supercompressible, Elastic, and Bendable Carbon Aerogel with Ultrasensitive Detection Limits for Compression Strain, Pressure, and Bending Angle.

    PubMed

    Zhuo, Hao; Hu, Yijie; Tong, Xing; Chen, Zehong; Zhong, Linxin; Lai, Haihong; Liu, Linxiang; Jing, Shuangshuang; Liu, Qingzhong; Liu, Chuanfu; Peng, Xinwen; Sun, Runcang

    2018-05-01

    Ultralight and compressible carbon materials have promising applications in strain and pressure detection. However, it is still difficult to prepare carbon materials with supercompressibility, elasticity, stable strain-electrical signal response, and ultrasensitive detection limits, due to the challenge in structural regulation. Herein, a new strategy to prepare a reduced graphene oxide (rGO)-based lamellar carbon aerogels with unexpected and integrated performances by designing wave-shape rGO layers and enhancing the interaction among the rGO layers is demonstrated. Addition of cellulose nanocrystalline and low-molecular-weight carbon precursors enhances the interaction among rGO layers and thus produces an ultralight, flexible, and superstable structure. The as-prepared carbon aerogel displays a supercompressibility (undergoing an extreme strain of 99%) and elasticity (100% height retention after 10 000 cycles at a strain of 30%), as well as stable strain-current response (at least 10 000 cycles). Particularly, the carbon aerogel is ultrasensitive for detecting tiny change in strain (0.012%) and pressure (0.25 Pa), which are the lowest detection limits for compressible carbon materials reported in the literature. Moreover, the carbon aerogel exhibits excellent bendable performance and can detect an ultralow bending angle of 0.052°. Additionally, the carbon aerogel also demonstrates its promising application as wearable devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Enhancing sparsity of Hermite polynomial expansions by iterative rotations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiu; Lei, Huan; Baker, Nathan A.

    2016-02-01

    Compressive sensing has become a powerful addition to uncertainty quantification in recent years. This paper identifies new bases for random variables through linear mappings such that the representation of the quantity of interest is more sparse with new basis functions associated with the new random variables. This sparsity increases both the efficiency and accuracy of the compressive sensing-based uncertainty quantification method. Specifically, we consider rotation- based linear mappings which are determined iteratively for Hermite polynomial expansions. We demonstrate the effectiveness of the new method with applications in solving stochastic partial differential equations and high-dimensional (O(100)) problems.

  6. Process and application of shock compression by nanosecond pulses of frequency-doubled Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Sano, Yuji; Kimura, Motohiko; Mukai, Naruhiko; Yoda, Masaki; Obata, Minoru; Ogisu, Tatsuki

    2000-02-01

    The authors have developed a new process of laser-induced shock compression to introduce a residual compressive stress on material surface, which is effective for prevention of stress corrosion cracking (SCC) and enhancement of fatigue strength of metal materials. The process developed is unique and beneficial. It requires no pre-conditioning for the surface, whereas the conventional process requires that the so-called sacrificial layer is made to protect the surface from damage. The new process can be freely applied to water- immersed components, since it uses water-penetrable green light of a frequency-doubled Nd:YAG laser. The process developed has the potential to open up new high-power laser applications in manufacturing and maintenance technologies. The laser-induced shock compression process (LSP) can be used to improve a residual stress field from tensile to compressive. In order to understand the physics and optimize the process, the propagation of a shock wave generated by the impulse of laser irradiation and the dynamic response of the material were analyzed by time-dependent elasto-plastic calculations with a finite element program using laser-induced plasma pressure as an external load. The analysis shows that a permanent strain and a residual compressive stress remain after the passage of the shock wave with amplitude exceeding the yield strength of the material. A practical system materializing the LSP was designed, manufactured, and tested to confirm the applicability to core components of light water reactors (LWRs). The system accesses the target component and remotely irradiates laser pulses to the heat affected zone (HAZ) along weld lines. Various functional tests were conducted using a full-scale mockup facility, in which remote maintenance work in a reactor vessel could be simulated. The results showed that the system remotely accessed the target weld lines and successfully introduced a residual compressive stress. After sufficient training for operational personnel, the system was applied to the core shroud of an existing nuclear power plant.

  7. 3D video coding: an overview of present and upcoming standards

    NASA Astrophysics Data System (ADS)

    Merkle, Philipp; Müller, Karsten; Wiegand, Thomas

    2010-07-01

    An overview of existing and upcoming 3D video coding standards is given. Various different 3D video formats are available, each with individual pros and cons. The 3D video formats can be separated into two classes: video-only formats (such as stereo and multiview video) and depth-enhanced formats (such as video plus depth and multiview video plus depth). Since all these formats exist of at least two video sequences and possibly additional depth data, efficient compression is essential for the success of 3D video applications and technologies. For the video-only formats the H.264 family of coding standards already provides efficient and widely established compression algorithms: H.264/AVC simulcast, H.264/AVC stereo SEI message, and H.264/MVC. For the depth-enhanced formats standardized coding algorithms are currently being developed. New and specially adapted coding approaches are necessary, as the depth or disparity information included in these formats has significantly different characteristics than video and is not displayed directly, but used for rendering. Motivated by evolving market needs, MPEG has started an activity to develop a generic 3D video standard within the 3DVC ad-hoc group. Key features of the standard are efficient and flexible compression of depth-enhanced 3D video representations and decoupling of content creation and display requirements.

  8. Highly compressible reduced graphene oxide/polypyrrole/MnO2 aerogel electrodes meeting the requirement of limiting space

    NASA Astrophysics Data System (ADS)

    Lv, Peng; Tang, Xun; Yuan, Jiajiao; Ji, Chenglong

    2017-11-01

    Highly compressible electrodes are in high demand in volume-restricted energy storage devices. Superelastic reduced graphene oxide (rGO) aerogel with attractive characteristics are proposed as the promising skeleton for compressible electrodes. Herein, a ternary aerogel was prepared by successively electrodepositing polypyrrole (PPy) and MnO2 into the superelastic rGO aerogel. In the rGO/PPy/MnO2 aerogel, rGO aerogel provides the continuously conductive network; MnO2 is mainly responsible for pseudo reactions; the middle PPy layer not only reduces the interface resistance between rGO and MnO2, but also further enhanced the mechanical strength of rGO backbone. The synergistic effect of the three components leads to excellent performances including high specific capacitance, reversible compressibility, and extreme durability. The gravimetric capacitance of the compressible rGO/PPy/MnO2 aerogel electrodes reaches 366 F g-1 and can retain 95.3% even under 95% compressive strain. And a volumetric capacitance of 138 F cm-3 is achieved, which is much higher than that of other rGO-based compressible electrodes. This volumetric capacitance value can be preserved by 85% after 3500 charge/discharge cycles with various compression conditions. This work will pave the way for advanced applications in the area of compressible energy-storage devices meeting the requirement of limiting space.

  9. Efficacy of gradual pressure-decline compressing stockings in Asian patients with lower leg varicose veins: analysis by general measurements and magnetic resonance image.

    PubMed

    Leung, T K; Lin, J M; Chu, C L; Wu, Y S; Chao, Y J

    2012-12-01

    Most applications of gradual pressure-decline compressing stockings (GPDCS) are used in the United States and Western European countries, with over a decade of clinical experiments. Up to know, there is no standard establishment of gradual pressure-decline compressing stockings for Asian patients with venous insufficiency and varicose vein formations. We collected data on volunteer candidates of varicose vein for general measurements and assessments and magnetic resonance imaging (MRI) by non-contrast enhanced MRV techniques, and for post processing data analysis. Clinical use of GPCDS provide a mild to moderate improvement in the varicose vein conditions of patients with deep venous insufficiency by improving their deep vein circulation, by general measurements; recording major symptoms and complaint; comfort and stretching/flexibility to the candidates after using GPDCS; and area changes/flow velocity changes/available hemoglobin changes in deep veins monitored by MRI. The benefits and data collected in these results may help in developing compression stockings standards in Taiwanese and Asian countries, and to establishing criterias for product sizes, compression levels, and related parameters.

  10. Evaluation of a method for enhancing interaural level differences at low frequencies.

    PubMed

    Moore, Brian C J; Kolarik, Andrew; Stone, Michael A; Lee, Young-Woo

    2016-10-01

    A method (called binaural enhancement) for enhancing interaural level differences at low frequencies, based on estimates of interaural time differences, was developed and evaluated. Five conditions were compared, all using simulated hearing-aid processing: (1) Linear amplification with frequency-response shaping; (2) binaural enhancement combined with linear amplification and frequency-response shaping; (3) slow-acting four-channel amplitude compression with independent compression at the two ears (AGC4CH); (4) binaural enhancement combined with four-channel compression (BE-AGC4CH); and (5) four-channel compression but with the compression gains synchronized across ears. Ten hearing-impaired listeners were tested, and gains and compression ratios for each listener were set to match targets prescribed by the CAM2 fitting method. Stimuli were presented via headphones, using virtualization methods to simulate listening in a moderately reverberant room. The intelligibility of speech at ±60° azimuth in the presence of competing speech on the opposite side of the head at ±60° azimuth was not affected by the binaural enhancement processing. Sound localization was significantly better for condition BE-AGC4CH than for condition AGC4CH for a sentence, but not for broadband noise, lowpass noise, or lowpass amplitude-modulated noise. The results suggest that the binaural enhancement processing can improve localization for sounds with distinct envelope fluctuations.

  11. Rate-distortion analysis of directional wavelets.

    PubMed

    Maleki, Arian; Rajaei, Boshra; Pourreza, Hamid Reza

    2012-02-01

    The inefficiency of separable wavelets in representing smooth edges has led to a great interest in the study of new 2-D transformations. The most popular criterion for analyzing these transformations is the approximation power. Transformations with near-optimal approximation power are useful in many applications such as denoising and enhancement. However, they are not necessarily good for compression. Therefore, most of the nearly optimal transformations such as curvelets and contourlets have not found any application in image compression yet. One of the most promising schemes for image compression is the elegant idea of directional wavelets (DIWs). While these algorithms outperform the state-of-the-art image coders in practice, our theoretical understanding of them is very limited. In this paper, we adopt the notion of rate-distortion and calculate the performance of the DIW on a class of edge-like images. Our theoretical analysis shows that if the edges are not "sharp," the DIW will compress them more efficiently than the separable wavelets. It also demonstrates the inefficiency of the quadtree partitioning that is often used with the DIW. To solve this issue, we propose a new partitioning scheme called megaquad partitioning. Our simulation results on real-world images confirm the benefits of the proposed partitioning algorithm, promised by our theoretical analysis. © 2011 IEEE

  12. Foam relaxation in fractures and narrow channels

    NASA Astrophysics Data System (ADS)

    Lai, Ching-Yao; Rallabandi, Bhargav; Perazzo, Antonio; Stone, Howard A.

    2017-11-01

    Various applications, from foam manufacturing to hydraulic fracturing with foams, involve pressure-driven flow of foams in narrow channels. We report a combined experimental and theoretical study of this problem accounting for the compressible nature of the foam. In particular, in our experiments the foam is initially compressed in one channel and then upon flow into a second channel the compressed foam relaxes as it moves. A plug flow is observed in the tube and the pressure at the entrance of the tube is higher than the exit. We measure the volume collected at the exit of the tube, V, as a function of injection flow rate, tube length and diameter. Two scaling behaviors for V as a function of time are observed depending on whether foam compression is important or not. Our work may relate to foam fracturing, which saves water usage in hydraulic fracturing, more efficient enhanced oil recovery via foam injection, and various materials manufacturing processes involving pressure-driven flow foams.

  13. A Novel Range Compression Algorithm for Resolution Enhancement in GNSS-SARs.

    PubMed

    Zheng, Yu; Yang, Yang; Chen, Wu

    2017-06-25

    In this paper, a novel range compression algorithm for enhancing range resolutions of a passive Global Navigation Satellite System-based Synthetic Aperture Radar (GNSS-SAR) is proposed. In the proposed algorithm, within each azimuth bin, firstly range compression is carried out by correlating a reflected GNSS intermediate frequency (IF) signal with a synchronized direct GNSS base-band signal in the range domain. Thereafter, spectrum equalization is applied to the compressed results for suppressing side lobes to obtain a final range-compressed signal. Both theoretical analysis and simulation results have demonstrated that significant range resolution improvement in GNSS-SAR images can be achieved by the proposed range compression algorithm, compared to the conventional range compression algorithm.

  14. Application of nonlinear pulse shaping of femtosecond pulse generation in a fiber amplifier at 500 MHz repetition rate

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Luo, Daping; Wang, Chao; Zhu, Zhiwei; Li, Wenxue

    2018-03-01

    We numerically and experimentally demonstrate that a nonlinear pulse shaping technique based on pre-chirping management in a short gain fiber can be exploited to improve the quality of a compressed pulse. With prior tuning of the pulse chirp, the amplified pulse express different nonlinear propagating processes. A spectrum with s flat top and more smooth wings, showing a similariton feature, generates with the optimal initial pulse chirp, and the shortest pulses with minimal pulse pedestals are obtained. Experimental results show the ability of nonlinear pulse shaping to enhance the quality of compressed pulses, as theoretically expected.

  15. A Novel Range Compression Algorithm for Resolution Enhancement in GNSS-SARs

    PubMed Central

    Zheng, Yu; Yang, Yang; Chen, Wu

    2017-01-01

    In this paper, a novel range compression algorithm for enhancing range resolutions of a passive Global Navigation Satellite System-based Synthetic Aperture Radar (GNSS-SAR) is proposed. In the proposed algorithm, within each azimuth bin, firstly range compression is carried out by correlating a reflected GNSS intermediate frequency (IF) signal with a synchronized direct GNSS base-band signal in the range domain. Thereafter, spectrum equalization is applied to the compressed results for suppressing side lobes to obtain a final range-compressed signal. Both theoretical analysis and simulation results have demonstrated that significant range resolution improvement in GNSS-SAR images can be achieved by the proposed range compression algorithm, compared to the conventional range compression algorithm. PMID:28672830

  16. Clinical utility of wavelet compression for resolution-enhanced chest radiography

    NASA Astrophysics Data System (ADS)

    Andriole, Katherine P.; Hovanes, Michael E.; Rowberg, Alan H.

    2000-05-01

    This study evaluates the usefulness of wavelet compression for resolution-enhanced storage phosphor chest radiographs in the detection of subtle interstitial disease, pneumothorax and other abnormalities. A wavelet compression technique, MrSIDTM (LizardTech, Inc., Seattle, WA), is implemented which compresses the images from their original 2,000 by 2,000 (2K) matrix size, and then decompresses the image data for display at optimal resolution by matching the spatial frequency characteristics of image objects using a 4,000- square matrix. The 2K-matrix computed radiography (CR) chest images are magnified to a 4K-matrix using wavelet series expansion. The magnified images are compared with the original uncompressed 2K radiographs and with two-times magnification of the original images. Preliminary results show radiologist preference for MrSIDTM wavelet-based magnification over magnification of original data, and suggest that the compressed/decompressed images may provide an enhancement to the original. Data collection for clinical trials of 100 chest radiographs including subtle interstitial abnormalities and/or subtle pneumothoraces and normal cases, are in progress. Three experienced thoracic radiologists will view images side-by- side on calibrated softcopy workstations under controlled viewing conditions, and rank order preference tests will be performed. This technique combines image compression with image enhancement, and suggests that compressed/decompressed images can actually improve the originals.

  17. Comparative study on twinning characteristics during two post-weld compression paths and their effects on joint enhancement.

    PubMed

    Liu, Zhe; Xin, Renlong; Li, Dongrong; Sun, Liyun; Liu, Qing

    2016-12-23

    Friction stir welding (FSW) has promising application potential in Mg alloys. However, the texture distribution in stir zone (SZ) is usually complicated for Mg alloys, which deterioriates the joint performance. In this study, the texture distribution in SZ was tailored by applying two kinds of post-weld compression deformation along normal direction (ND) or welding direction (WD) of the FSWed AZ31 Mg alloy plates. The twinning behavior and texture change in the various regions of SZ were then evaluated by electron back scatter diffraction (EBSD) characterization. The effect of texture change on the joint performance was discussed in terms of Schmid factors (SFs) for basal slip and extension twinning. The results showed that profuse extension twins were formed through the whole SZ for the sample subjected to compression along ND, whereas they were observed mainly in SZ-side for the sample compressed along WD. Most of the twins were present in the forms of twin bands or chains. The directions of the twin bands or chains were related to the habit plane traces of selected twin variants. The ND post-weld compression had better strengthening effects on the joints compared to the WD compression, and the underline mechanism was discussed.

  18. Comparative study on twinning characteristics during two post-weld compression paths and their effects on joint enhancement

    PubMed Central

    Liu, Zhe; Xin, Renlong; Li, Dongrong; Sun, Liyun; Liu, Qing

    2016-01-01

    Friction stir welding (FSW) has promising application potential in Mg alloys. However, the texture distribution in stir zone (SZ) is usually complicated for Mg alloys, which deterioriates the joint performance. In this study, the texture distribution in SZ was tailored by applying two kinds of post-weld compression deformation along normal direction (ND) or welding direction (WD) of the FSWed AZ31 Mg alloy plates. The twinning behavior and texture change in the various regions of SZ were then evaluated by electron back scatter diffraction (EBSD) characterization. The effect of texture change on the joint performance was discussed in terms of Schmid factors (SFs) for basal slip and extension twinning. The results showed that profuse extension twins were formed through the whole SZ for the sample subjected to compression along ND, whereas they were observed mainly in SZ-side for the sample compressed along WD. Most of the twins were present in the forms of twin bands or chains. The directions of the twin bands or chains were related to the habit plane traces of selected twin variants. The ND post-weld compression had better strengthening effects on the joints compared to the WD compression, and the underline mechanism was discussed. PMID:28008982

  19. ElGamal cryptosystem with embedded compression-crypto technique

    NASA Astrophysics Data System (ADS)

    Mandangan, Arif; Yin, Lee Souk; Hung, Chang Ee; Hussin, Che Haziqah Che

    2014-12-01

    Key distribution problem in symmetric cryptography has been solved by the emergence of asymmetric cryptosystem. Due to its mathematical complexity, computation efficiency becomes a major problem in the real life application of asymmetric cryptosystem. This scenario encourage various researches regarding the enhancement of computation efficiency of asymmetric cryptosystems. ElGamal cryptosystem is one of the most established asymmetric cryptosystem. By using proper parameters, ElGamal cryptosystem is able to provide a good level of information security. On the other hand, Compression-Crypto technique is a technique used to reduce the number of plaintext to be encrypted from k∈ Z+, k > 2 plaintext become only 2 plaintext. Instead of encrypting k plaintext, we only need to encrypt these 2 plaintext. In this paper, we embed the Compression-Crypto technique into the ElGamal cryptosystem. To show that the embedded ElGamal cryptosystem works, we provide proofs on the decryption processes to recover the encrypted plaintext.

  20. Equation of state for shock compression of distended solids

    NASA Astrophysics Data System (ADS)

    Grady, Dennis; Fenton, Gregg; Vogler, Tracy

    2014-05-01

    Shock Hugoniot data for full-density and porous compounds of boron carbide, silicon dioxide, tantalum pentoxide, uranium dioxide and playa alluvium are investigated for the purpose of equation-of-state representation of intense shock compression. Complications of multivalued Hugoniot behavior characteristic of highly distended solids are addressed through the application of enthalpy-based equations of state of the form originally proposed by Rice and Walsh in the late 1950's. Additive measures of cold and thermal pressure intrinsic to the Mie-Gruneisen EOS framework is replaced by isobaric additive functions of the cold and thermal specific volume components in the enthalpy-based formulation. Additionally, experimental evidence reveals enhancement of shock-induced phase transformation on the Hugoniot with increasing levels of initial distension for silicon dioxide, uranium dioxide and possibly boron carbide. Methods for addressing this experimentally observed feature of the shock compression are incorporated into the EOS model.

  1. Research on assessment and improvement method of remote sensing image reconstruction

    NASA Astrophysics Data System (ADS)

    Sun, Li; Hua, Nian; Yu, Yanbo; Zhao, Zhanping

    2018-01-01

    Remote sensing image quality assessment and improvement is an important part of image processing. Generally, the use of compressive sampling theory in remote sensing imaging system can compress images while sampling which can improve efficiency. A method of two-dimensional principal component analysis (2DPCA) is proposed to reconstruct the remote sensing image to improve the quality of the compressed image in this paper, which contain the useful information of image and can restrain the noise. Then, remote sensing image quality influence factors are analyzed, and the evaluation parameters for quantitative evaluation are introduced. On this basis, the quality of the reconstructed images is evaluated and the different factors influence on the reconstruction is analyzed, providing meaningful referential data for enhancing the quality of remote sensing images. The experiment results show that evaluation results fit human visual feature, and the method proposed have good application value in the field of remote sensing image processing.

  2. Applications of surface acoustic and shallow bulk acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Campbell, Colin K.

    1989-10-01

    Surface acoustic wave (SAW) device coverage includes delay lines and filters operating at selected frequencies in the range from about 10 MHz to 11 GHz; modeling with single-crystal piezoelectrics and layered structures; resonators and low-loss filters; comb filters and multiplexers; antenna duplexers; harmonic devices; chirp filters for pulse compression; coding with fixed and programmable transversal filters; Barker and quadraphase coding; adaptive filters; acoustic and acoustoelectric convolvers and correlators for radar, spread spectrum, and packet radio; acoustooptic processors for Bragg modulation and spectrum analysis; real-time Fourier-transform and cepstrum processors for radar and sonar; compressive receivers; Nyquist filters for microwave digital radio; clock-recovery filters for fiber communications; fixed-, tunable-, and multimode oscillators and frequency synthesizers; acoustic charge transport; and other SAW devices for signal processing on gallium arsenide. Shallow bulk acoustic wave device applications include gigahertz delay lines, surface-transverse-wave resonators employing energy-trapping gratings, and oscillators with enhanced performance and capability.

  3. Interactive computer graphics applications for compressible aerodynamics

    NASA Technical Reports Server (NTRS)

    Benson, Thomas J.

    1994-01-01

    Three computer applications have been developed to solve inviscid compressible fluids problems using interactive computer graphics. The first application is a compressible flow calculator which solves for isentropic flow, normal shocks, and oblique shocks or centered expansions produced by two dimensional ramps. The second application couples the solutions generated by the first application to a more graphical presentation of the results to produce a desk top simulator of three compressible flow problems: 1) flow past a single compression ramp; 2) flow past two ramps in series; and 3) flow past two opposed ramps. The third application extends the results of the second to produce a design tool which solves for the flow through supersonic external or mixed compression inlets. The applications were originally developed to run on SGI or IBM workstations running GL graphics. They are currently being extended to solve additional types of flow problems and modified to operate on any X-based workstation.

  4. Laser-pulse compression in a collisional plasma under weak-relativistic ponderomotive nonlinearity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Mamta; Gupta, D. N., E-mail: dngupta@physics.du.ac.in

    We present theory and numerical analysis which demonstrate laser-pulse compression in a collisional plasma under the weak-relativistic ponderomotive nonlinearity. Plasma equilibrium density is modified due to the ohmic heating of electrons, the collisions, and the weak relativistic-ponderomotive force during the interaction of a laser pulse with plasmas. First, within one-dimensional analysis, the longitudinal self-compression mechanism is discussed. Three-dimensional analysis (spatiotemporal) of laser pulse propagation is also investigated by coupling the self-compression with the self-focusing. In the regime in which the laser becomes self-focused due to the weak relativistic-ponderomotive nonlinearity, we provide results for enhanced pulse compression. The results show thatmore » the matched interplay between self-focusing and self-compression can improve significantly the temporal profile of the compressed pulse. Enhanced pulse compression can be achieved by optimizing and selecting the parameters such as collision frequency, ion-temperature, and laser intensity.« less

  5. Pre-chirp managed nonlinear amplification in fibers delivering 100  W, 60  fs pulses.

    PubMed

    Liu, Wei; Schimpf, Damian N; Eidam, Tino; Limpert, Jens; Tünnermann, Andreas; Kärtner, Franz X; Chang, Guoqing

    2015-01-15

    We demonstrate a pre-chirp managed Yb-doped fiber laser system that outputs 75 MHz, 130 W spectrally broadened pulses, which are compressed by a diffraction-grating pair to 60 fs with average powers as high as 100 W. Fine tuning the pulse chirp prior to amplification leads to high-quality compressed pulses. Detailed experiments and numerical simulation reveal that the optimum pre-chirp group-delay dispersion increases from negative to positive with increasing output power for rod-type high-power fiber amplifiers. The resulting laser parameters are suitable for extreme nonlinear optics applications such as frequency conversion in femtosecond enhancement cavities.

  6. Doped Tricalcium Phosphate Scaffolds by Thermal Decomposition of Naphthalene: Mechanical Properties and In vivo Osteogenesis in a Rabbit Femur Model

    PubMed Central

    Ke, Dongxu; Dernell, William; Bandyopadhyay, Amit; Bose, Susmita

    2015-01-01

    Tricalcium phosphate (TCP) is a bioceramic that is widely used in orthopedic and dental applications. TCP structures show excellent biocompatibility as well as biodegradability. In this study, porous β-TCP scaffolds were prepared by thermal decomposition of naphthalene. Scaffolds with 57.64 ± 3.54 % density and a maximum pore size around 100 μm were fabricated via removing 30% naphthalene at 1150°C. The compressive strength for these scaffolds was 32.85 ± 1.41 MPa. Furthermore, by mixing 1 wt % SrO and 0.5 wt % SiO2, pore interconnectivity improved, but the compressive strength decreased to 22.40 ± 2.70 MPa. However, after addition of polycaprolactone (PCL) coating layers, the compressive strength of doped scaffolds increased to 29.57 ± 3.77 MPa. Porous scaffolds were implanted in rabbit femur defects to evaluate their biological property. The addition of dopants triggered osteoinduction by enhancing osteoid formation, osteocalcin expression and bone regeneration, especially at the interface of the scaffold and host bone. This study showed processing flexibility to make interconnected porous scaffolds with different pore size and volume fraction porosity with high compressive mechanical strength and better bioactivity. Results show that SrO/SiO2 doped porous TCP scaffolds have excellent potential to be used in bone tissue engineering applications. PMID:25504889

  7. Enhancement tuning and control for high dynamic range images in multi-scale locally adaptive contrast enhancement algorithms

    NASA Astrophysics Data System (ADS)

    Cvetkovic, Sascha D.; Schirris, Johan; de With, Peter H. N.

    2009-01-01

    For real-time imaging in surveillance applications, visibility of details is of primary importance to ensure customer confidence. If we display High Dynamic-Range (HDR) scenes whose contrast spans four or more orders of magnitude on a conventional monitor without additional processing, results are unacceptable. Compression of the dynamic range is therefore a compulsory part of any high-end video processing chain because standard monitors are inherently Low- Dynamic Range (LDR) devices with maximally two orders of display dynamic range. In real-time camera processing, many complex scenes are improved with local contrast enhancements, bringing details to the best possible visibility. In this paper, we show how a multi-scale high-frequency enhancement scheme, in which gain is a non-linear function of the detail energy, can be used for the dynamic range compression of HDR real-time video camera signals. We also show the connection of our enhancement scheme to the processing way of the Human Visual System (HVS). Our algorithm simultaneously controls perceived sharpness, ringing ("halo") artifacts (contrast) and noise, resulting in a good balance between visibility of details and non-disturbance of artifacts. The overall quality enhancement, suitable for both HDR and LDR scenes, is based on a careful selection of the filter types for the multi-band decomposition and a detailed analysis of the signal per frequency band.

  8. Sensitivity Analysis in RIPless Compressed Sensing

    DTIC Science & Technology

    2014-10-01

    SECURITY CLASSIFICATION OF: The compressive sensing framework finds a wide range of applications in signal processing and analysis. Within this...Analysis of Compressive Sensing Solutions Report Title The compressive sensing framework finds a wide range of applications in signal processing and...compressed sensing. More specifically, we show that in a noiseless and RIP-less setting [11], the recovery process of a compressed sensing framework is

  9. Wave Mode Discrimination of Coded Ultrasonic Guided Waves Using Two-Dimensional Compressed Pulse Analysis.

    PubMed

    Malo, Sergio; Fateri, Sina; Livadas, Makis; Mares, Cristinel; Gan, Tat-Hean

    2017-07-01

    Ultrasonic guided waves testing is a technique successfully used in many industrial scenarios worldwide. For many complex applications, the dispersive nature and multimode behavior of the technique still poses a challenge for correct defect detection capabilities. In order to improve the performance of the guided waves, a 2-D compressed pulse analysis is presented in this paper. This novel technique combines the use of pulse compression and dispersion compensation in order to improve the signal-to-noise ratio (SNR) and temporal-spatial resolution of the signals. The ability of the technique to discriminate different wave modes is also highlighted. In addition, an iterative algorithm is developed to identify the wave modes of interest using adaptive peak detection to enable automatic wave mode discrimination. The employed algorithm is developed in order to pave the way for further in situ applications. The performance of Barker-coded and chirp waveforms is studied in a multimodal scenario where longitudinal and flexural wave packets are superposed. The technique is tested in both synthetic and experimental conditions. The enhancements in SNR and temporal resolution are quantified as well as their ability to accurately calculate the propagation distance for different wave modes.

  10. A review of nanoclay applications in the pervious concrete pavement

    NASA Astrophysics Data System (ADS)

    Shakrani, Shahrul Azwan; Ayob, Afizah; Rahim, Mohd Asri Ab

    2017-09-01

    In recent years, the use of nanoclay has received various interests in order to enhance the properties of construction materials which can also be eligible for pavement technology and engineering application. This review paper summarizes the effect of nanoclay as cement replacement and additive to the performance of pervious concrete pavement. The addition of nanoclay to pervious concrete has demonstrated improvements in strength properties such as compressive and flexural strength, durability such as freeze-thaw and chloride penetration resistance, shrinkage, and denser microstructure but at the same time reduced the porosity, permeability and water absorption properties. This enhancement is due to the roles of nanoclay as nanoreinforcements, nanofillers, nucleation site, and reactive pozzolans in order to promote hydration and improve material properties.

  11. Tablet compression tooling - Impact of punch face edge modification.

    PubMed

    Anbalagan, Parthiban; Heng, Paul Wan Sia; Liew, Celine Valeria

    2017-05-30

    The influence of punch face edge geometry modification on tablet compression and the properties of the resultant tablets produced on a rotary press were investigated. The results revealed that tablets produced from the punches with radius edge face geometry consistently displayed better physical quality; higher tensile strength and lower capping tendency. Modification of the angled edge of the bevel face to the curved edge of the radius face, enabled deeper punch penetration in the die cavity during the compression cycle, bringing about greater compact densification. Improved die fill packing increased interparticulate bond formation and helped to dissipate destructive elasticity within the compact, consequently reduced tablet expansion during the decompression phase. The positive impact of punch face edge modification was also more noticeable at a higher turret speed. The application of the precompression force along with dwell time extension amplified the tableting performance of radius edge punch face design to a greater extent when compared to bevel edge punch face design. This could be attributed to the enhanced packing efficiency at both precompression and main compression stages. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Wavelet compression of multichannel ECG data by enhanced set partitioning in hierarchical trees algorithm.

    PubMed

    Sharifahmadian, Ershad

    2006-01-01

    The set partitioning in hierarchical trees (SPIHT) algorithm is very effective and computationally simple technique for image and signal compression. Here the author modified the algorithm which provides even better performance than the SPIHT algorithm. The enhanced set partitioning in hierarchical trees (ESPIHT) algorithm has performance faster than the SPIHT algorithm. In addition, the proposed algorithm reduces the number of bits in a bit stream which is stored or transmitted. I applied it to compression of multichannel ECG data. Also, I presented a specific procedure based on the modified algorithm for more efficient compression of multichannel ECG data. This method employed on selected records from the MIT-BIH arrhythmia database. According to experiments, the proposed method attained the significant results regarding compression of multichannel ECG data. Furthermore, in order to compress one signal which is stored for a long time, the proposed multichannel compression method can be utilized efficiently.

  13. Influence of Annealing on Microstructure and Mechanical Properties of Refractory CoCrMoNbTi0.4 High-Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Mina; Zhou, Xianglin; Zhu, Wuzhi; Li, Jinghao

    2018-04-01

    A novel refractory CoCrMoNbTi0.4 high-entropy alloy (HEA) was prepared via vacuum arc melting. After annealing treatment at different temperatures, the microstructure evolution, phase stability, and mechanical properties of the alloy were investigated. The alloy was composed of two primary body-centered cubic structures (BCC1 and BCC2) and a small amount of (Co, Cr)2Nb-type Laves phase under different annealing conditions. The microhardness and compressive strength of the heat-treated alloy was significantly enhanced by the solid-solution strengthening of the BCC phase matrix and newborn Laves phase. Especially, the alloy annealed at 1473 K (1200 °C) achieved the maximum hardness and compressive strength values of 959 ± 2 HV0.5 and 1790 MPa, respectively, owing to the enhanced volume fraction of the dispersed Laves phase. In particular, the HEAs exhibited promising high-temperature mechanical performance, when heated to an elevated temperature of 1473 K (1200 °C), with a compressive fracture strength higher than 580 MPa without fracture at a strain of more than 20 pct. This study suggests that the present refractory HEAs have immense potential for engineering applications as a new class of high-temperature structural materials.

  14. Simultaneous enhancement of magnetic and mechanical properties in Ni-Mn-Sn alloy by Fe doping

    PubMed Central

    Tan, Changlong; Tai, Zhipeng; Zhang, Kun; Tian, Xiaohua; Cai, Wei

    2017-01-01

    Both magnetic-field-induced reverse martensitic transformation (MFIRMT) and mechanical properties are crucial for application of Ni-Mn-Sn magnetic shape memory alloys. Here, we demonstrate that substitution of Fe for Ni can simultaneously enhance the MFIRMT and mechanical properties of Ni-Mn-Sn, which are advantageous for its applications. The austenite in Ni44Fe6Mn39Sn11 shows the typical ferromagnetic magnetization with the highest saturation magnetization of 69 emu/g at 223 K. The result shows that an appropriate amount of Fe substitution can really enhance the ferromagnetism of Ni50Mn39Sn11 alloy in austenite, which directly leads to the enhancement of MFIRMT. Meanwhile, the mechanical property significantly improves with Fe doping. When there is 4 at.% Fe added, the compressive and maximum strain reach the maximum value (approximately 725.4 MPa and 9.3%). Furthermore, using first-principles calculations, we clarify the origin of Fe doping on martensitic transformation and magnetic properties. PMID:28230152

  15. Tissue engineering of cartilage using a mechanobioreactor exerting simultaneous mechanical shear and compression to simulate the rolling action of articular joints.

    PubMed

    Shahin, Kifah; Doran, Pauline M

    2012-04-01

    The effect of dynamic mechanical shear and compression on the synthesis of human tissue-engineered cartilage was investigated using a mechanobioreactor capable of simulating the rolling action of articular joints in a mixed fluid environment. Human chondrocytes seeded into polyglycolic acid (PGA) mesh or PGA-alginate scaffolds were precultured in shaking T-flasks or recirculation perfusion bioreactors for 2.5 or 4 weeks prior to mechanical stimulation in the mechanobioreactor. Constructs were subjected to intermittent unconfined shear and compressive loading at a frequency of 0.05 Hz using a peak-to-peak compressive strain amplitude of 2.2% superimposed on a static axial compressive strain of 6.5%. The mechanical treatment was carried out for up to 2.5 weeks using a loading regime of 10 min duration each day with the direction of the shear forces reversed after 5 min and release of all loading at the end of the daily treatment period. Compared with shaking T-flasks and mechanobioreactor control cultures without loading, mechanical treatment improved the amount and quality of cartilage produced. On a per cell basis, synthesis of both major structural components of cartilage, glycosaminoglycan (GAG) and collagen type II, was enhanced substantially by up to 5.3- and 10-fold, respectively, depending on the scaffold type and seeding cell density. Levels of collagen type II as a percentage of total collagen were also increased after mechanical treatment by up to 3.4-fold in PGA constructs. Mechanical treatment had a less pronounced effect on the composition of constructs precultured in perfusion bioreactors compared with perfusion culture controls. This work demonstrates that the quality of tissue-engineered cartilage can be enhanced significantly by application of simultaneous dynamic mechanical shear and compression, with the greatest benefits evident for synthesis of collagen type II. Copyright © 2011 Wiley Periodicals, Inc.

  16. Indexing and retrieval of MPEG compressed video

    NASA Astrophysics Data System (ADS)

    Kobla, Vikrant; Doermann, David S.

    1998-04-01

    To keep pace with the increased popularity of digital video as an archival medium, the development of techniques for fast and efficient analysis of ideo streams is essential. In particular, solutions to the problems of storing, indexing, browsing, and retrieving video data from large multimedia databases are necessary to a low access to these collections. Given that video is often stored efficiently in a compressed format, the costly overhead of decompression can be reduced by analyzing the compressed representation directly. In earlier work, we presented compressed domain parsing techniques which identified shots, subshots, and scenes. In this article, we present efficient key frame selection, feature extraction, indexing, and retrieval techniques that are directly applicable to MPEG compressed video. We develop a frame type independent representation which normalizes spatial and temporal features including frame type, frame size, macroblock encoding, and motion compensation vectors. Features for indexing are derived directly from this representation and mapped to a low- dimensional space where they can be accessed using standard database techniques. Spatial information is used as primary index into the database and temporal information is used to rank retrieved clips and enhance the robustness of the system. The techniques presented enable efficient indexing, querying, and retrieval of compressed video as demonstrated by our system which typically takes a fraction of a second to retrieve similar video scenes from a database, with over 95 percent recall.

  17. Hemodynamic Deterioration in Lateral Compression Pelvic Fracture After Prehospital Pelvic Circumferential Compression Device Application.

    PubMed

    Garner, Alan A; Hsu, Jeremy; McShane, Anne; Sroor, Adam

    Increased fracture displacement has previously been described with the application of pelvic circumferential compression devices (PCCDs) in patients with lateral compression-type pelvic fracture. We describe the first reported case of hemodynamic deterioration temporally associated with the prehospital application of a PCCD in a patient with a complex acetabular fracture with medial displacement of the femoral head. Active hemorrhage from a site adjacent to the acetabular fracture was subsequently demonstrated on angiography. Caution in the application of PCCDs to patients with lateral compression-type fractures is warranted. Copyright © 2017 Air Medical Journal Associates. All rights reserved.

  18. Modeling seismic stimulation: Enhanced non-aqueous fluid extraction from saturated porous media under pore-pressure pulsing at low frequencies

    NASA Astrophysics Data System (ADS)

    Lo, Wei-Cheng; Sposito, Garrison; Huang, Yu-Han

    2012-03-01

    Seismic stimulation, the application of low-frequency stress-pulsing to the boundary of a porous medium containing water and a non-aqueous fluid to enhance the removal of the latter, shows great promise for both contaminated groundwater remediation and enhanced oil recovery, but theory to elucidate the underlying mechanisms lag significantly behind the progress achieved in experimental research. We address this conceptual lacuna by formulating a boundary-value problem to describe pore-pressure pulsing at seismic frequencies that is based on the continuum theory of poroelasticity for an elastic porous medium permeated by two immiscible fluids. An exact analytical solution is presented that is applied numerically using elasticity parameters and hydraulic data relevant to recent proof-of-principle laboratory experiments investigating the stimulation-induced mobilization of trichloroethene (TCE) in water flowing through a compressed sand core. The numerical results indicated that significant stimulation-induced increases of the TCE concentration in effluent can be expected from pore-pressure pulsing in the frequency range of 25-100 Hz, which is in good agreement with what was observed in the laboratory experiments. Sensitivity analysis of our numerical results revealed that the TCE concentration in the effluent increases with the porous medium framework compressibility and the pulsing pressure. Increasing compressibility also leads to an optimal stimulation response at lower frequencies, whereas changing the pulsing pressure does not affect the optimal stimulation frequency. Within the context of our model, the dominant physical cause for enhancement of non-aqueous fluid mobility by seismic stimulation is the dilatory motion of the porous medium in which the solid and fluid phases undergo opposite displacements, resulting in stress-induced changes of the pore volume.

  19. Self-diffusion in compressively strained Ge

    NASA Astrophysics Data System (ADS)

    Kawamura, Yoko; Uematsu, Masashi; Hoshi, Yusuke; Sawano, Kentarou; Myronov, Maksym; Shiraki, Yasuhiro; Haller, Eugene E.; Itoh, Kohei M.

    2011-08-01

    Under a compressive biaxial strain of ˜ 0.71%, Ge self-diffusion has been measured using an isotopically controlled Ge single-crystal layer grown on a relaxed Si0.2Ge0.8 virtual substrate. The self-diffusivity is enhanced by the compressive strain and its behavior is fully consistent with a theoretical prediction of a generalized activation volume model of a simple vacancy mediated diffusion, reported by Aziz et al. [Phys. Rev. B 73, 054101 (2006)]. The activation volume of (-0.65±0.21) times the Ge atomic volume quantitatively describes the observed enhancement due to the compressive biaxial strain very well.

  20. Enhanced Pulse Compression in Nonlinear Fiber by a WDM Optical Pulse

    NASA Technical Reports Server (NTRS)

    Yeh, C.; Bergman, L.

    1997-01-01

    A new way to compress an optical pulse in a single-mode fiber is presented in this paper. By the use of the cross phase modulation (CPM) effect caused by the nonlinearity of the optical fiber, a shepherd pulse propagating on a different wavelength beam in a wavelength division multiplexed (WDM) single-mode fiber system can be used to enhance the pulse compression of a co-propagating primary pulse.

  1. Low-latency situational awareness for UxV platforms

    NASA Astrophysics Data System (ADS)

    Berends, David C.

    2012-06-01

    Providing high quality, low latency video from unmanned vehicles through bandwidth-limited communications channels remains a formidable challenge for modern vision system designers. SRI has developed a number of enabling technologies to address this, including the use of SWaP-optimized Systems-on-a-Chip which provide Multispectral Fusion and Contrast Enhancement as well as H.264 video compression. Further, the use of salience-based image prefiltering prior to image compression greatly reduces output video bandwidth by selectively blurring non-important scene regions. Combined with our customization of the VLC open source video viewer for low latency video decoding, SRI developed a prototype high performance, high quality vision system for UxV application in support of very demanding system latency requirements and user CONOPS.

  2. Three-dimensional density and compressible magnetic structure in solar wind turbulence

    NASA Astrophysics Data System (ADS)

    Roberts, Owen W.; Narita, Yasuhito; Escoubet, C.-Philippe

    2018-03-01

    The three-dimensional structure of both compressible and incompressible components of turbulence is investigated at proton characteristic scales in the solar wind. Measurements of the three-dimensional structure are typically difficult, since the majority of measurements are performed by a single spacecraft. However, the Cluster mission consisting of four spacecraft in a tetrahedral formation allows for a fully three-dimensional investigation of turbulence. Incompressible turbulence is investigated by using the three vector components of the magnetic field. Meanwhile compressible turbulence is investigated by considering the magnitude of the magnetic field as a proxy for the compressible fluctuations and electron density data deduced from spacecraft potential. Application of the multi-point signal resonator technique to intervals of fast and slow wind shows that both compressible and incompressible turbulence are anisotropic with respect to the mean magnetic field direction P⟂ ≫ P∥ and are sensitive to the value of the plasma beta (β; ratio of thermal to magnetic pressure) and the wind type. Moreover, the incompressible fluctuations of the fast and slow solar wind are revealed to be different with enhancements along the background magnetic field direction present in the fast wind intervals. The differences in the fast and slow wind and the implications for the presence of different wave modes in the plasma are discussed.

  3. Electric-field-induced structural changes in multilayer piezoelectric actuators during electrical and mechanical loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esteves, Giovanni; Fancher, Chris M.; Röhrig, Sören

    The effects of electrical and mechanical loading on the behavior of domains and phases in Multilayer Piezoelectric Actuators (MAs) is studied using in situ high-energy X-ray diffraction (XRD) and macroscopic property measurements. Rietveld refinement is carried out on measured diffraction patterns using a two-phase tetragonal (P4mm) and rhombohedral (R3m) model. Applying an electric field promotes the rhombohedral phase, while increasing compressive uniaxial pre-stress prior to electric field application favors the tetragonal phase. The competition between electrical and mechanical energy leads to a maximal difference between electric-field-induced phase fractions at 70 MPa pre-stress. Additionally, the available volume fraction of non-180° domainmore » reorientation that can be accessed during electric field application increases with compressive pre-stress up to 70 MPa. The origin for enhanced strain and polarization with applied pre-stress is attributed to a combination of enhanced non-180° domain reorientation and electric-field-induced phase transitions. The suppression of both the electric-field-induced phase transitions and domain reorientation at high pre-stresses (>70 MPa) is attributed to a large mechanical energy barrier, and alludes to the competition of the electrical and mechanical energy within the MA during applied stimuli.« less

  4. Electric-field-induced structural changes in multilayer piezoelectric actuators during electrical and mechanical loading

    DOE PAGES

    Esteves, Giovanni; Fancher, Chris M.; Röhrig, Sören; ...

    2017-04-08

    The effects of electrical and mechanical loading on the behavior of domains and phases in Multilayer Piezoelectric Actuators (MAs) is studied using in situ high-energy X-ray diffraction (XRD) and macroscopic property measurements. Rietveld refinement is carried out on measured diffraction patterns using a two-phase tetragonal (P4mm) and rhombohedral (R3m) model. Applying an electric field promotes the rhombohedral phase, while increasing compressive uniaxial pre-stress prior to electric field application favors the tetragonal phase. The competition between electrical and mechanical energy leads to a maximal difference between electric-field-induced phase fractions at 70 MPa pre-stress. Additionally, the available volume fraction of non-180° domainmore » reorientation that can be accessed during electric field application increases with compressive pre-stress up to 70 MPa. The origin for enhanced strain and polarization with applied pre-stress is attributed to a combination of enhanced non-180° domain reorientation and electric-field-induced phase transitions. The suppression of both the electric-field-induced phase transitions and domain reorientation at high pre-stresses (>70 MPa) is attributed to a large mechanical energy barrier, and alludes to the competition of the electrical and mechanical energy within the MA during applied stimuli.« less

  5. Exploiting negative Poisson's ratio to design 3D-printed composites with enhanced mechanical properties

    DOE PAGES

    Li, Tiantian; Chen, Yanyu; Hu, Xiaoyi; ...

    2018-02-03

    Auxetic materials exhibiting a negative Poisson's ratio are shown to have better indentation resistance, impact shielding capability, and enhanced toughness. Here, we report a class of high-performance composites in which auxetic lattice structures are used as the reinforcements and the nearly incompressible soft material is employed as the matrix. This coupled geometry and material design concept is enabled by the state-of-the-art additive manufacturing technique. Guided by experimental tests and finite element analyses, we systematically study the compressive behavior of the 3D printed auxetics reinforced composites and achieve a significant enhancement of their stiffness and energy absorption. This improved mechanical performancemore » is due to the negative Poisson's ratio effect of the auxetic reinforcements, which makes the matrix in a state of biaxial compression and hence provides additional support. This mechanism is further supported by the investigation of the effect of auxetic degree on the stiffness and energy absorption capability. The findings reported here pave the way for developing a new class of auxetic composites that significantly expand their design space and possible applications through a combination of rational design and 3D printing.« less

  6. Pressure-induced structural and electronic transitions, metallization, and enhanced visible-light responsiveness in layered rhenium disulphide

    NASA Astrophysics Data System (ADS)

    Wang, Pei; Wang, Yonggang; Qu, Jingyu; Zhu, Qiang; Yang, Wenge; Zhu, Jinlong; Wang, Liping; Zhang, Weiwei; He, Duanwei; Zhao, Yusheng

    2018-06-01

    Triclinic rhenium disulphide (Re S2 ) is a promising candidate for postsilicon electronics because of its unique optic-electronic properties. The electrical and optical properties of Re S2 under high pressure, however, remain unclear. Here we present a joint experimental and theoretical study on the structure, electronic, and vibrational properties, and visible-light responses of Re S2 up to 50 GPa. There is a direct-to-indirect band-gap transition in 1 T -Re S2 under low-pressure regime up to 5 GPa. Upon further compression, 1 T -Re S2 undergoes a structural transition to distorted-1 T' phase at 7.7 GPa, followed by the isostructural metallization at 38.5 GPa. Both in situ Raman spectrum and electronic structure analysis reveal that interlayer sulfur-sulfur interaction is greatly enhanced during compression, leading to the remarkable modifications on the electronic properties observed in our subsequent experimental measurements, such as band-gap closure and enhanced photoresponsiveness. This study demonstrates the critical role of pressure in tuning materials properties and the potential usage of layered Re S2 for pressure-responsive optoelectronic applications.

  7. Exploiting negative Poisson's ratio to design 3D-printed composites with enhanced mechanical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tiantian; Chen, Yanyu; Hu, Xiaoyi

    Auxetic materials exhibiting a negative Poisson's ratio are shown to have better indentation resistance, impact shielding capability, and enhanced toughness. Here, we report a class of high-performance composites in which auxetic lattice structures are used as the reinforcements and the nearly incompressible soft material is employed as the matrix. This coupled geometry and material design concept is enabled by the state-of-the-art additive manufacturing technique. Guided by experimental tests and finite element analyses, we systematically study the compressive behavior of the 3D printed auxetics reinforced composites and achieve a significant enhancement of their stiffness and energy absorption. This improved mechanical performancemore » is due to the negative Poisson's ratio effect of the auxetic reinforcements, which makes the matrix in a state of biaxial compression and hence provides additional support. This mechanism is further supported by the investigation of the effect of auxetic degree on the stiffness and energy absorption capability. The findings reported here pave the way for developing a new class of auxetic composites that significantly expand their design space and possible applications through a combination of rational design and 3D printing.« less

  8. Uses of software in digital image analysis: a forensic report

    NASA Astrophysics Data System (ADS)

    Sharma, Mukesh; Jha, Shailendra

    2010-02-01

    Forensic image analysis is required an expertise to interpret the content of an image or the image itself in legal matters. Major sub-disciplines of forensic image analysis with law enforcement applications include photo-grammetry, photographic comparison, content analysis and image authentication. It has wide applications in forensic science range from documenting crime scenes to enhancing faint or indistinct patterns such as partial fingerprints. The process of forensic image analysis can involve several different tasks, regardless of the type of image analysis performed. Through this paper authors have tried to explain these tasks, which are described in to three categories: Image Compression, Image Enhancement & Restoration and Measurement Extraction. With the help of examples like signature comparison, counterfeit currency comparison and foot-wear sole impression using the software Canvas and Corel Draw.

  9. Ultrastrong ductile and stable high-entropy alloys at small scales.

    PubMed

    Zou, Yu; Ma, Huan; Spolenak, Ralph

    2015-07-10

    Refractory high-entropy alloys (HEAs) are a class of emerging multi-component alloys, showing superior mechanical properties at elevated temperatures and being technologically interesting. However, they are generally brittle at room temperature, fail by cracking at low compressive strains and suffer from limited formability. Here we report a strategy for the fabrication of refractory HEA thin films and small-sized pillars that consist of strongly textured, columnar and nanometre-sized grains. Such HEA pillars exhibit extraordinarily high yield strengths of ∼ 10 GPa--among the highest reported strengths in micro-/nano-pillar compression and one order of magnitude higher than that of its bulk form--and their ductility is considerably improved (compressive plastic strains over 30%). Additionally, we demonstrate that such HEA films show substantially enhanced stability for high-temperature, long-duration conditions (at 1,100 °C for 3 days). Small-scale HEAs combining these properties represent a new class of materials in small-dimension devices potentially for high-stress and high-temperature applications.

  10. Multigrid Acceleration of Time-Accurate DNS of Compressible Turbulent Flow

    NASA Technical Reports Server (NTRS)

    Broeze, Jan; Geurts, Bernard; Kuerten, Hans; Streng, Martin

    1996-01-01

    An efficient scheme for the direct numerical simulation of 3D transitional and developed turbulent flow is presented. Explicit and implicit time integration schemes for the compressible Navier-Stokes equations are compared. The nonlinear system resulting from the implicit time discretization is solved with an iterative method and accelerated by the application of a multigrid technique. Since we use central spatial discretizations and no artificial dissipation is added to the equations, the smoothing method is less effective than in the more traditional use of multigrid in steady-state calculations. Therefore, a special prolongation method is needed in order to obtain an effective multigrid method. This simulation scheme was studied in detail for compressible flow over a flat plate. In the laminar regime and in the first stages of turbulent flow the implicit method provides a speed-up of a factor 2 relative to the explicit method on a relatively coarse grid. At increased resolution this speed-up is enhanced correspondingly.

  11. Raman study of radiation-damaged zircon under hydrostatic compression

    NASA Astrophysics Data System (ADS)

    Nasdala, Lutz; Miletich, Ronald; Ruschel, Katja; Váczi, Tamás

    2008-12-01

    Pressure-induced changes of Raman band parameters of four natural, gem-quality zircon samples with different degrees of self-irradiation damage, and synthetic ZrSiO4 without radiation damage, have been studied under hydrostatic compression in a diamond anvil cell up to ~10 GPa. Radiation-damaged zircon shows similar up-shifts of internal SiO4 stretching modes at elevated pressures as non-damaged ZrSiO4. Only minor changes of band-widths were observed in all cases. This makes it possible to estimate the degree of radiation damage from the width of the ν3(SiO4) band of zircon inclusions in situ, almost independent from potential “fossilized pressures” or compressive strain acting on the inclusions. An application is the non-destructive analysis of gemstones such as corundum or spinel: broadened Raman bands are a reliable indicator of self-irradiation damage in zircon inclusions, whose presence allows one to exclude artificial color enhancement by high-temperature treatment of the specimen.

  12. Effect of warm compress application on tissue temperature in healthy dogs.

    PubMed

    Millard, Ralph P; Towle-Millard, Heather A; Rankin, David C; Roush, James K

    2013-03-01

    To measure the effect of warm compress application on tissue temperature in healthy dogs. 10 healthy mixed-breed dogs. Dogs were sedated with hydromorphone (0.1 mg/kg, IV) and diazepam (0.25 mg/kg, IV). Three 24-gauge thermocouple needles were inserted to a depth of 0.5 cm (superficial), 1.0 cm (middle), and 1.5 cm (deep) into a shaved, lumbar, epaxial region to measure tissue temperature. Warm (47°C) compresses were applied with gravity dependence for periods of 5, 10, and 20 minutes. Tissue temperature was recorded before compress application and at intervals for up to 80 minutes after application. Control data were collected while dogs received identical sedation but with no warm compress. Mean temperature associated with 5 minutes of heat application at the superficial, middle, and deep depths was significantly increased, compared with the control temperature. Application for 10 minutes significantly increased the temperature at all depths, compared with 5 minutes of application. Mean temperature associated with 20 minutes of application was not different at the superficial or middle depths, compared with 10 minutes of application. Temperature at the deep depth associated with 10 minutes of application was significantly higher, compared with 20 minutes of application, but all temperature increases at this depth were minimal. Results suggested that application of a warm compress should be performed for 10 minutes. Changes in temperature at a tissue depth of 1.5 cm were minimal or not detected. The optimal compress temperature to achieve therapeutic benefits was not determined.

  13. Two Phase Technology Development Initiatives

    NASA Technical Reports Server (NTRS)

    Didion, Jeffrey R.

    1999-01-01

    Three promising thermal technology development initiatives, vapor compression thermal control system, electronics cooling, and electrohydrodynamics applications are outlined herein. These technologies will provide thermal engineers with additional tools to meet the thermal challenges presented by increased power densities and reduced architectural options that will be available in future spacecraft. Goddard Space Flight Center and the University of Maryland are fabricating and testing a 'proto- flight' vapor compression based thermal control system for the Ultra Long Duration Balloon (ULDB) Program. The vapor compression system will be capable of transporting approximately 400 W of heat while providing a temperature lift of 60C. The system is constructed of 'commercial off-the-shelf' hardware that is modified to meet the unique environmental requirements of the ULDB. A demonstration flight is planned for 1999 or early 2000. Goddard Space Flight Center has embarked upon a multi-discipline effort to address a number of design issues regarding spacecraft electronics. The program addressed the high priority design issues concerning the total mass of standard spacecraft electronics enclosures and the impact of design changes on thermal performance. This presentation reviews the pertinent results of the Lightweight Electronics Enclosure Program. Electronics cooling is a growing challenge to thermal engineers due to increasing power densities and spacecraft architecture. The space-flight qualification program and preliminary results of thermal performance tests of copper-water heat pipes are presented. Electrohydrodynamics (EHD) is an emerging technology that uses the secondary forces that result from the application of an electric field to a flowing fluid to enhance heat transfer and manage fluid flow. A brief review of current EHD capabilities regarding heat transfer enhancement of commercial heat exchangers and capillary pumped loops is presented. Goddard Space Flight Center research efforts applying this technique to fluid management and fluid pumping are discussed.

  14. Quality of reconstruction of compressed off-axis digital holograms by frequency filtering and wavelets.

    PubMed

    Cheremkhin, Pavel A; Kurbatova, Ekaterina A

    2018-01-01

    Compression of digital holograms can significantly help with the storage of objects and data in 2D and 3D form, its transmission, and its reconstruction. Compression of standard images by methods based on wavelets allows high compression ratios (up to 20-50 times) with minimum losses of quality. In the case of digital holograms, application of wavelets directly does not allow high values of compression to be obtained. However, additional preprocessing and postprocessing can afford significant compression of holograms and the acceptable quality of reconstructed images. In this paper application of wavelet transforms for compression of off-axis digital holograms are considered. The combined technique based on zero- and twin-order elimination, wavelet compression of the amplitude and phase components of the obtained Fourier spectrum, and further additional compression of wavelet coefficients by thresholding and quantization is considered. Numerical experiments on reconstruction of images from the compressed holograms are performed. The comparative analysis of applicability of various wavelets and methods of additional compression of wavelet coefficients is performed. Optimum parameters of compression of holograms by the methods can be estimated. Sizes of holographic information were decreased up to 190 times.

  15. Energy-efficient sensing in wireless sensor networks using compressed sensing.

    PubMed

    Razzaque, Mohammad Abdur; Dobson, Simon

    2014-02-12

    Sensing of the application environment is the main purpose of a wireless sensor network. Most existing energy management strategies and compression techniques assume that the sensing operation consumes significantly less energy than radio transmission and reception. This assumption does not hold in a number of practical applications. Sensing energy consumption in these applications may be comparable to, or even greater than, that of the radio. In this work, we support this claim by a quantitative analysis of the main operational energy costs of popular sensors, radios and sensor motes. In light of the importance of sensing level energy costs, especially for power hungry sensors, we consider compressed sensing and distributed compressed sensing as potential approaches to provide energy efficient sensing in wireless sensor networks. Numerical experiments investigating the effectiveness of compressed sensing and distributed compressed sensing using real datasets show their potential for efficient utilization of sensing and overall energy costs in wireless sensor networks. It is shown that, for some applications, compressed sensing and distributed compressed sensing can provide greater energy efficiency than transform coding and model-based adaptive sensing in wireless sensor networks.

  16. Stabilization of weak ferromagnetism by strong magnetic response to epitaxial strain in multiferroic BiFeO 3

    DOE PAGES

    Cooper, Valentino R.; Lee, Jun Hee; Krogel, Jaron T.; ...

    2015-08-06

    Multiferroic BiFeO 3 exhibits excellent magnetoelectric coupling critical for magnetic information processing with minimal power consumption. Thus, the degenerate nature of the easy spin axis in the (111) plane presents roadblocks for real world applications. Here, we explore the stabilization and switchability of the weak ferromagnetic moments under applied epitaxial strain using a combination of first-principles calculations and group-theoretic analyses. We demonstrate that the antiferromagnetic moment vector can be stabilized along unique crystallographic directions ([110] and [-110]) under compressive and tensile strains. A direct coupling between the anisotropic antiferrodistortive rotations and Dzyaloshinskii-Moria interactions drives the stabilization of weak ferromagnetism. Furthermore,more » energetically competing C- and G-type magnetic orderings are observed at high compressive strains, suggesting that it may be possible to switch the weak ferromagnetism on and off under application of strain. These findings emphasize the importance of strain and antiferrodistortive rotations as routes to enhancing induced weak ferromagnetism in multiferroic oxides.« less

  17. Low-pressure sequential compression of lower limbs enhances forearm skin blood flow.

    PubMed

    Amah, Guy; Voicu, Sebastian; Bonnin, Philippe; Kubis, Nathalie

    2016-12-01

    We investigated whether forearm skin blood flow could be improved when a multilayer pulsatile inflatable suit was applied at a low pressure to the lower limbs and abdomen. We hypothesized that a non-invasive purely mechanical stimulation of the lower limbs could induce remote forearm blood flow modifications. The pulsatile suit induced a sequential compartmentalized low compression (65 mmHg), which was synchronized with each diastole of the cardiac cycle with each phase evolving centripetally (lower limbs to abdomen). Modifications of the forearm skin blood flow were continuously recorded by laser Doppler flowmetry (LDF) at baseline and during the pulsatile suit application. Endothelium-dependent and endothelium-independent vasodilations of the forearm skin microcirculation were measured by LDF in response to a local transdermal iontophoretic application of acetylcholine (ACh-test) and to hyperthermia (hyperT- test). Twenty-four healthy volunteers, 12 men and 12 women (43±14 years) were included in the study. LDF responses increased 1) under pulsatile suit (97±106%, p.

  18. Effect of stiffness characteristics on the response of composite grid-stiffened structures

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Rehfield, Lawrence W.

    1991-01-01

    A study of the effect of stiffness discontinuities and structural parameters on the response of continuous-filament grid-stiffened flat panels is presented. The buckling load degradation due to manufacturing-introduced stiffener discontinuities associated with a filament cut-and-add approach at the stiffener intersections is investigated. The degradation of buckling resistance in isogrid flat panels subjected to uni-axial compression and combined axial compression and shear loading conditions and induced damage is quantified using FEM. The combined loading case is the most critical one. Nonsolid stiffener cross sections, such as a foam-filled blade or hat with a 0-deg dominant cap, result in grid-stiffened structures that are structurally very efficient for wing and fuselage applications. The results of a study of the ability of grid-stiffened structural concepts to enhance the effective Poisson's ratio of a panel are presented. Grid-stiffened concepts create a highly effective Poisson's ratio, which can produce large camber deformations for certain elastic tailoring applications.

  19. Chitin and Chitosan as Direct Compression Excipients in Pharmaceutical Applications

    PubMed Central

    Badwan, Adnan A.; Rashid, Iyad; Al Omari, Mahmoud M.H.; Darras, Fouad H.

    2015-01-01

    Despite the numerous uses of chitin and chitosan as new functional materials of high potential in various fields, they are still behind several directly compressible excipients already dominating pharmaceutical applications. There are, however, new attempts to exploit chitin and chitosan in co-processing techniques that provide a product with potential to act as a direct compression (DC) excipient. This review outlines the compression properties of chitin and chitosan in the context of DC pharmaceutical applications. PMID:25810109

  20. A contourlet transform based algorithm for real-time video encoding

    NASA Astrophysics Data System (ADS)

    Katsigiannis, Stamos; Papaioannou, Georgios; Maroulis, Dimitris

    2012-06-01

    In recent years, real-time video communication over the internet has been widely utilized for applications like video conferencing. Streaming live video over heterogeneous IP networks, including wireless networks, requires video coding algorithms that can support various levels of quality in order to adapt to the network end-to-end bandwidth and transmitter/receiver resources. In this work, a scalable video coding and compression algorithm based on the Contourlet Transform is proposed. The algorithm allows for multiple levels of detail, without re-encoding the video frames, by just dropping the encoded information referring to higher resolution than needed. Compression is achieved by means of lossy and lossless methods, as well as variable bit rate encoding schemes. Furthermore, due to the transformation utilized, it does not suffer from blocking artifacts that occur with many widely adopted compression algorithms. Another highly advantageous characteristic of the algorithm is the suppression of noise induced by low-quality sensors usually encountered in web-cameras, due to the manipulation of the transform coefficients at the compression stage. The proposed algorithm is designed to introduce minimal coding delay, thus achieving real-time performance. Performance is enhanced by utilizing the vast computational capabilities of modern GPUs, providing satisfactory encoding and decoding times at relatively low cost. These characteristics make this method suitable for applications like video-conferencing that demand real-time performance, along with the highest visual quality possible for each user. Through the presented performance and quality evaluation of the algorithm, experimental results show that the proposed algorithm achieves better or comparable visual quality relative to other compression and encoding methods tested, while maintaining a satisfactory compression ratio. Especially at low bitrates, it provides more human-eye friendly images compared to algorithms utilizing block-based coding, like the MPEG family, as it introduces fuzziness and blurring instead of artificial block artifacts.

  1. Formation of silver nanoparticle at phospholipid template using Langmuir-Blodgett technique and its Surface-enhanced Raman Spectroscopy application

    NASA Astrophysics Data System (ADS)

    Mahato, M.; Sarkar, R.; Pal, P.; Talapatra, G. B.

    2015-10-01

    The biosynthesis of metal nanoparticle and their suitable assembly has recently gained tremendous interest for its application in biomedical arena such as substrates for surface-enhanced Raman scattering and others. In this article, an easy, low-cost, fast, bio-friendly and toxic-reducing agent free protocol has been described for the preparation of silver nanoparticle film using biocompatible 1,2-dipalmitoyl-sn-glycero-3-phosphocholine phospholipid Langmuir monolayer template. Interactions, docking and attachment of silver ions to the above-mentioned phospholipid monolayer have been studied by surface pressure-area isotherm and compressibility analysis at the air-water interface. We have deposited the Langmuir-Blodgett monolayer/multilayer containing silver nanoparticle onto glass/SiO2/quartz substrates. The formation of phospholipid-silver nanoparticle complex in Langmuir-Blodgett film has been characterized by field emission-scanning electron microscopy and high-resolution tunneling electron microscopy images. We have applied this deposited film as a substrate for surface-enhanced Raman scattering application using rhodamine 123 to understand the existence of the surface plasmon activity of silver nanoparticle.

  2. Compression mechanisms in the plasma focus pinch

    NASA Astrophysics Data System (ADS)

    Lee, S.; Saw, S. H.; Ali, Jalil

    2017-03-01

    The compression of the plasma focus pinch is a dynamic process, governed by the electrodynamics of pinch elongation and opposed by the negative rate of change of current dI/dt associated with the current dip. The compressibility of the plasma is influenced by the thermodynamics primarily the specific heat ratio; with greater compressibility as the specific heat ratio γ reduces with increasing degree of freedom f of the plasma ensemble due to ionization energy for the higher Z (atomic number) gases. The most drastic compression occurs when the emitted radiation of a high-Z plasma dominates the dynamics leading in extreme cases to radiative collapse which is terminated only when the compressed density is sufficiently high for the inevitable self-absorption of radiation to occur. We discuss the central pinch equation which contains the basic electrodynamic terms with built-in thermodynamic factors and a dQ/dt term; with Q made up of a Joule heat component and absorption-corrected radiative terms. Deuterium is considered as a thermodynamic reference (fully ionized perfect gas with f = 3) as well as a zero-radiation reference (bremsstrahlung only; with radiation power negligible compared with electrodynamic power). Higher Z gases are then considered and regimes of thermodynamic enhancement of compression are systematically identified as are regimes of radiation-enhancement. The code which incorporates all these effects is used to compute pinch radius ratios in various gases as a measure of compression. Systematic numerical experiments reveal increasing severity in radiation-enhancement of compressions as atomic number increases. The work progresses towards a scaling law for radiative collapse and a generalized specific heat ratio incorporating radiation.

  3. Compression of surface myoelectric signals using MP3 encoding.

    PubMed

    Chan, Adrian D C

    2011-01-01

    The potential of MP3 compression of surface myoelectric signals is explored in this paper. MP3 compression is a perceptual-based encoder scheme, used traditionally to compress audio signals. The ubiquity of MP3 compression (e.g., portable consumer electronics and internet applications) makes it an attractive option for remote monitoring and telemedicine applications. The effects of muscle site and contraction type are examined at different MP3 encoding bitrates. Results demonstrate that MP3 compression is sensitive to the myoelectric signal bandwidth, with larger signal distortion associated with myoelectric signals that have higher bandwidths. Compared to other myoelectric signal compression techniques reported previously (embedded zero-tree wavelet compression and adaptive differential pulse code modulation), MP3 compression demonstrates superior performance (i.e., lower percent residual differences for the same compression ratios).

  4. Combining image-processing and image compression schemes

    NASA Technical Reports Server (NTRS)

    Greenspan, H.; Lee, M.-C.

    1995-01-01

    An investigation into the combining of image-processing schemes, specifically an image enhancement scheme, with existing compression schemes is discussed. Results are presented on the pyramid coding scheme, the subband coding scheme, and progressive transmission. Encouraging results are demonstrated for the combination of image enhancement and pyramid image coding schemes, especially at low bit rates. Adding the enhancement scheme to progressive image transmission allows enhanced visual perception at low resolutions. In addition, further progressing of the transmitted images, such as edge detection schemes, can gain from the added image resolution via the enhancement.

  5. Hierarchical Data Formats (HDF) Update

    NASA Technical Reports Server (NTRS)

    Pourmal, Elena

    2017-01-01

    In this presentation, we will talk about the latest releases of HDF4 and HDF5 software and tools, new features available in HDF5, and roadmap for the HDF software. We will also solicit feedback from the users of HDF data and HDF application developers on new features and new tools. The talk will cover: Difference between 1.8 and 1.10 releases and how and when to move to the latest release Features of the recent HDF5 1.8.19, 1.10.1 and HDF 4.2.13 Overview of HDF View 3.0 and other enhancements to tools Supported compilers and systems Open discussion of new requirements and wish list of the HDF features Compression library for interoperability with h5py and Pandas and better floating-point data compression.

  6. Method for enhancing the solubility of dopants in silicon

    DOEpatents

    Sadigh, Babak; Lenosky, Thomas J.; De La Rubia, Tomas Diaz

    2003-09-30

    A method for enhancing the equilibrium solid solubility of dopants in silicon, germanium and silicon-germanium alloys. The method involves subjecting silicon-based substrate to biaxial or compression strain. It has been determined that boron solubility was largely enhanced (more than 100%) by a compressive bi-axial strain, based on a size-mismatch theory since the boron atoms are smaller than the silicon atoms. It has been found that the large enhancement or mixing properties of dopants in silicon and germanium substrates is primarily governed by their, and to second order by their size-mismatch with the substrate. Further, it has been determined that the dopant solubility enhancement with strain is most effective when the charge and the size-mismatch of the impurity favor the same type of strain. Thus, the solid solubility of small p-type (e.g., boron) as well as large n-type (e.g., arsenic) dopants can be raised most dramatically by appropriate bi-axial (compressive) strain, and that solubility of a large p-type dopant (e.g, indium) in silicon will be raised due to size-mismatch with silicon, which favors tensile strain, while its negative charge prefers compressive strain, and thus the two effects counteract each other.

  7. A Posteriori Restoration of Block Transform-Compressed Data

    NASA Technical Reports Server (NTRS)

    Brown, R.; Boden, A. F.

    1995-01-01

    The Galileo spacecraft will use lossy data compression for the transmission of its science imagery over the low-bandwidth communication system. The technique chosen for image compression is a block transform technique based on the Integer Cosine Transform, a derivative of the JPEG image compression standard. Considered here are two known a posteriori enhancement techniques, which are adapted.

  8. An improved contrast enhancement algorithm for infrared images based on adaptive double plateaus histogram equalization

    NASA Astrophysics Data System (ADS)

    Li, Shuo; Jin, Weiqi; Li, Li; Li, Yiyang

    2018-05-01

    Infrared thermal images can reflect the thermal-radiation distribution of a particular scene. However, the contrast of the infrared images is usually low. Hence, it is generally necessary to enhance the contrast of infrared images in advance to facilitate subsequent recognition and analysis. Based on the adaptive double plateaus histogram equalization, this paper presents an improved contrast enhancement algorithm for infrared thermal images. In the proposed algorithm, the normalized coefficient of variation of the histogram, which characterizes the level of contrast enhancement, is introduced as feedback information to adjust the upper and lower plateau thresholds. The experiments on actual infrared images show that compared to the three typical contrast-enhancement algorithms, the proposed algorithm has better scene adaptability and yields better contrast-enhancement results for infrared images with more dark areas or a higher dynamic range. Hence, it has high application value in contrast enhancement, dynamic range compression, and digital detail enhancement for infrared thermal images.

  9. Transform coding for space applications

    NASA Technical Reports Server (NTRS)

    Glover, Daniel

    1993-01-01

    Data compression coding requirements for aerospace applications differ somewhat from the compression requirements for entertainment systems. On the one hand, entertainment applications are bit rate driven with the goal of getting the best quality possible with a given bandwidth. Science applications are quality driven with the goal of getting the lowest bit rate for a given level of reconstruction quality. In the past, the required quality level has been nothing less than perfect allowing only the use of lossless compression methods (if that). With the advent of better, faster, cheaper missions, an opportunity has arisen for lossy data compression methods to find a use in science applications as requirements for perfect quality reconstruction runs into cost constraints. This paper presents a review of the data compression problem from the space application perspective. Transform coding techniques are described and some simple, integer transforms are presented. The application of these transforms to space-based data compression problems is discussed. Integer transforms have an advantage over conventional transforms in computational complexity. Space applications are different from broadcast or entertainment in that it is desirable to have a simple encoder (in space) and tolerate a more complicated decoder (on the ground) rather than vice versa. Energy compaction with new transforms are compared with the Walsh-Hadamard (WHT), Discrete Cosine (DCT), and Integer Cosine (ICT) transforms.

  10. Enhancement of DRPE performance with a novel scheme based on new RAC: Principle, security analysis and FPGA implementation

    NASA Astrophysics Data System (ADS)

    Neji, N.; Jridi, M.; Alfalou, A.; Masmoudi, N.

    2016-02-01

    The double random phase encryption (DRPE) method is a well-known all-optical architecture which has many advantages especially in terms of encryption efficiency. However, the method presents some vulnerabilities against attacks and requires a large quantity of information to encode the complex output plane. In this paper, we present an innovative hybrid technique to enhance the performance of DRPE method in terms of compression and encryption. An optimized simultaneous compression and encryption method is applied simultaneously on the real and imaginary components of the DRPE output plane. The compression and encryption technique consists in using an innovative randomized arithmetic coder (RAC) that can well compress the DRPE output planes and at the same time enhance the encryption. The RAC is obtained by an appropriate selection of some conditions in the binary arithmetic coding (BAC) process and by using a pseudo-random number to encrypt the corresponding outputs. The proposed technique has the capabilities to process video content and to be standard compliant with modern video coding standards such as H264 and HEVC. Simulations demonstrate that the proposed crypto-compression system has presented the drawbacks of the DRPE method. The cryptographic properties of DRPE have been enhanced while a compression rate of one-sixth can be achieved. FPGA implementation results show the high performance of the proposed method in terms of maximum operating frequency, hardware occupation, and dynamic power consumption.

  11. Shock-adiabatic to quasi-isentropic compression of warm dense helium up to 150 GPa

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Chen, Q. F.; Gu, Y. J.; Li, J. T.; Li, Z. G.; Li, C. J.; Chen, Z. Y.

    2017-06-01

    Multiple reverberation compression can achieve higher pressure, higher temperature, but lower entropy. It is available to provide an important validation for the elaborate and wider planetary models and simulate the inertial confinement fusion capsule implosion process. In the work, we have developed the thermodynamic and optical properties of helium from shock-adiabatic to quasi-isentropic compression by means of a multiple reverberation technique. By this technique, the initial dense gaseous helium was compressed to high pressure and high temperature and entered the warm dense matter (WDM) region. The experimental equation of state (EOS) of WDM helium in the pressure-density-temperature (P-ρ -T) range of 1 -150 GPa , 0.1 -1.1 g c m-3 , and 4600-24 000 K were measured. The optical radiations emanating from the WDM helium were recorded, and the particle velocity profiles detecting from the sample/window interface were obtained successfully up to 10 times compression. The optical radiation results imply that dense He has become rather opaque after the 2nd compression with a density of about 0.3 g c m-3 and a temperature of about 1 eV. The opaque states of helium under multiple compression were analyzed by the particle velocity measurements. The multiple compression technique could efficiently enhanced the density and the compressibility, and our multiple compression ratios (ηi=ρi/ρ0,i =1 -10 ) of helium are greatly improved from 3.5 to 43 based on initial precompressed density (ρ0) . For the relative compression ratio (ηi'=ρi/ρi -1) , it increases with pressure in the lower density regime and reversely decreases in the higher density regime, and a turning point occurs at the 3rd and 4th compression states under the different loading conditions. This nonmonotonic evolution of the compression is controlled by two factors, where the excitation of internal degrees of freedom results in the increasing compressibility and the repulsive interactions between the particles results in the decreasing compressibility at the onset of electron excitation and ionization. In the P-ρ -T contour with the experiments and the calculations, our multiple compression states from insulating to semiconducting fluid (from transparent to opaque fluid) are illustrated. Our results give an elaborate validation of EOS models and have applications for planetary and stellar opaque atmospheres.

  12. A hybrid data compression approach for online backup service

    NASA Astrophysics Data System (ADS)

    Wang, Hua; Zhou, Ke; Qin, MingKang

    2009-08-01

    With the popularity of Saas (Software as a service), backup service has becoming a hot topic of storage application. Due to the numerous backup users, how to reduce the massive data load is a key problem for system designer. Data compression provides a good solution. Traditional data compression application used to adopt a single method, which has limitations in some respects. For example data stream compression can only realize intra-file compression, de-duplication is used to eliminate inter-file redundant data, compression efficiency cannot meet the need of backup service software. This paper proposes a novel hybrid compression approach, which includes two levels: global compression and block compression. The former can eliminate redundant inter-file copies across different users, the latter adopts data stream compression technology to realize intra-file de-duplication. Several compressing algorithms were adopted to measure the compression ratio and CPU time. Adaptability using different algorithm in certain situation is also analyzed. The performance analysis shows that great improvement is made through the hybrid compression policy.

  13. A High Performance Image Data Compression Technique for Space Applications

    NASA Technical Reports Server (NTRS)

    Yeh, Pen-Shu; Venbrux, Jack

    2003-01-01

    A highly performing image data compression technique is currently being developed for space science applications under the requirement of high-speed and pushbroom scanning. The technique is also applicable to frame based imaging data. The algorithm combines a two-dimensional transform with a bitplane encoding; this results in an embedded bit string with exact desirable compression rate specified by the user. The compression scheme performs well on a suite of test images acquired from spacecraft instruments. It can also be applied to three-dimensional data cube resulting from hyper-spectral imaging instrument. Flight qualifiable hardware implementations are in development. The implementation is being designed to compress data in excess of 20 Msampledsec and support quantization from 2 to 16 bits. This paper presents the algorithm, its applications and status of development.

  14. Monitoring compaction and compressibility changes in offshore chalk reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dean, G.; Hardy, R.; Eltvik, P.

    1994-03-01

    Some of the North Sea's largest and most important oil fields are in chalk reservoirs. In these fields, it is important to measure reservoir compaction and compressibility because compaction can result in platform subsidence. Also, compaction drive is a main drive mechanism in these fields, so an accurate reserves estimate cannot be made without first measuring compressibility. Estimating compaction and reserves is difficult because compressibility changes throughout field life. Installing of accurate, permanent downhole pressure gauges on offshore chalk fields makes it possible to use a new method to monitor compressibility -- measurement of reservoir pressure changes caused by themore » tide. This tidal-monitoring technique is an in-situ method that can greatly increase compressibility information. It can be used to estimate compressibility and to measure compressibility variation over time. This paper concentrates on application of the tidal-monitoring technique to North Sea chalk reservoirs. However, the method is applicable for any tidal offshore area and can be applied whenever necessary to monitor in-situ rock compressibility. One such application would be if platform subsidence was expected.« less

  15. Dipteran wing motor-inspired flapping flight versatility and effectiveness enhancement

    PubMed Central

    Harne, R. L.; Wang, K. W.

    2015-01-01

    Insects are a prime source of inspiration towards the development of small-scale, engineered, flapping wing flight systems. To help interpret the possible energy transformation strategies observed in Diptera as inspiration for mechanical flapping flight systems, we revisit the perspective of the dipteran wing motor as a bistable click mechanism and take a new, and more flexible, outlook to the architectural composition previously considered. Using a representative structural model alongside biological insights and cues from nonlinear dynamics, our analyses and experimental results reveal that a flight mechanism able to adjust motor axial support stiffness and compression characteristics may dramatically modulate the amplitude range and type of wing stroke dynamics achievable. This corresponds to significantly more versatile aerodynamic force generation without otherwise changing flapping frequency or driving force amplitude. Whether monostable or bistable, the axial stiffness is key to enhance compressed motor load bearing ability and aerodynamic efficiency, particularly compared with uncompressed linear motors. These findings provide new foundation to guide future development of bioinspired, flapping wing mechanisms for micro air vehicle applications, and may be used to provide insight to the dipteran muscle-to-wing interface. PMID:25608517

  16. Experiments on the enhancement of compressible mixing via streamwise vorticity. II - Vortex strength assessment and seed particle dynamics

    NASA Technical Reports Server (NTRS)

    Naughton, J. W.; Cattafesta, L. N.; Settles, G. S.

    1993-01-01

    The effect of streamwise vorticity on compressible axisymmetric mixing layers is examined using vortex strength assessment and seed particle dynamics analysis. Experimental results indicate that the particles faithfully represent the dynamics of the turbulent swirling flow. A comparison of the previously determined mixing layer growth rates with the present vortex strength data reveals that the increase of turbulent mixing up to 60 percent scales with the degree of swirl. The mixing enhancement appears to be independent of the compressibility level of the mixing layer.

  17. A Comprehensive Optimization Strategy for Real-time Spatial Feature Sharing and Visual Analytics in Cyberinfrastructure

    NASA Astrophysics Data System (ADS)

    Li, W.; Shao, H.

    2017-12-01

    For geospatial cyberinfrastructure enabled web services, the ability of rapidly transmitting and sharing spatial data over the Internet plays a critical role to meet the demands of real-time change detection, response and decision-making. Especially for the vector datasets which serve as irreplaceable and concrete material in data-driven geospatial applications, their rich geometry and property information facilitates the development of interactive, efficient and intelligent data analysis and visualization applications. However, the big-data issues of vector datasets have hindered their wide adoption in web services. In this research, we propose a comprehensive optimization strategy to enhance the performance of vector data transmitting and processing. This strategy combines: 1) pre- and on-the-fly generalization, which automatically determines proper simplification level through the introduction of appropriate distance tolerance (ADT) to meet various visualization requirements, and at the same time speed up simplification efficiency; 2) a progressive attribute transmission method to reduce data size and therefore the service response time; 3) compressed data transmission and dynamic adoption of a compression method to maximize the service efficiency under different computing and network environments. A cyberinfrastructure web portal was developed for implementing the proposed technologies. After applying our optimization strategies, substantial performance enhancement is achieved. We expect this work to widen the use of web service providing vector data to support real-time spatial feature sharing, visual analytics and decision-making.

  18. Fabrication and Mechanical Characterization of Hydrogel Infused Network Silk Scaffolds

    PubMed Central

    Kundanati, Lakshminath; Singh, Saket K.; Mandal, Biman B.; Murthy, Tejas G.; Gundiah, Namrata; Pugno, Nicola M.

    2016-01-01

    Development and characterization of porous scaffolds for tissue engineering and regenerative medicine is of great importance. In recent times, silk scaffolds were developed and successfully tested in tissue engineering and drug release applications. We developed a novel composite scaffold by mechanical infusion of silk hydrogel matrix into a highly porous network silk scaffold. The mechanical behaviour of these scaffolds was thoroughly examined for their possible use in load bearing applications. Firstly, unconfined compression experiments show that the denser composite scaffolds displayed significant enhancement in the elastic modulus as compared to either of the components. This effect was examined and further explained with the help of foam mechanics principles. Secondly, results from confined compression experiments that resemble loading of cartilage in confinement, showed nonlinear material responses for all scaffolds. Finally, the confined creep experiments were performed to calculate the hydraulic permeability of the scaffolds using soil mechanics principles. Our results show that composite scaffolds with some modifications can be a potential candidate for use of cartilage like applications. We hope such approaches help in developing novel scaffolds for tissue engineering by providing an understanding of the mechanics and can further be used to develop graded scaffolds by targeted infusion in specific regions. PMID:27681725

  19. Auxetic Mechanical Metamaterials to Enhance Sensitivity of Stretchable Strain Sensors.

    PubMed

    Jiang, Ying; Liu, Zhiyuan; Matsuhisa, Naoji; Qi, Dianpeng; Leow, Wan Ru; Yang, Hui; Yu, Jiancan; Chen, Geng; Liu, Yaqing; Wan, Changjin; Liu, Zhuangjian; Chen, Xiaodong

    2018-03-01

    Stretchable strain sensors play a pivotal role in wearable devices, soft robotics, and Internet-of-Things, yet these viable applications, which require subtle strain detection under various strain, are often limited by low sensitivity. This inadequate sensitivity stems from the Poisson effect in conventional strain sensors, where stretched elastomer substrates expand in the longitudinal direction but compress transversely. In stretchable strain sensors, expansion separates the active materials and contributes to the sensitivity, while Poisson compression squeezes active materials together, and thus intrinsically limits the sensitivity. Alternatively, auxetic mechanical metamaterials undergo 2D expansion in both directions, due to their negative structural Poisson's ratio. Herein, it is demonstrated that such auxetic metamaterials can be incorporated into stretchable strain sensors to significantly enhance the sensitivity. Compared to conventional sensors, the sensitivity is greatly elevated with a 24-fold improvement. This sensitivity enhancement is due to the synergistic effect of reduced structural Poisson's ratio and strain concentration. Furthermore, microcracks are elongated as an underlying mechanism, verified by both experiments and numerical simulations. This strategy of employing auxetic metamaterials can be further applied to other stretchable strain sensors with different constituent materials. Moreover, it paves the way for utilizing mechanical metamaterials into a broader library of stretchable electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Acid-resistant calcium silicate-based composite implants with high-strength as load-bearing bone graft substitutes and fracture fixation devices.

    PubMed

    Wei, Chung-Kai; Ding, Shinn-Jyh

    2016-09-01

    To achieve the excellent mechanical properties of biodegradable materials used for cortical bone graft substitutes and fracture fixation devices remains a challenge. To this end, the biomimetic calcium silicate/gelatin/chitosan oligosaccharide composite implants were developed, with an aim of achieving high strength, controlled degradation, and superior osteogenic activity. The work focused on the effect of gelatin on mechanical properties of the composites under four different kinds of mechanical stresses including compression, tensile, bending, and impact. The evaluation of in vitro degradability and fatigue at two simulated body fluid (SBF) of pH 7.4 and 5.0 was also performed, in which the pH 5.0 condition simulated clinical conditions caused by bacterial induced local metabolic acidosis or tissue inflammation. In addition, human mesenchymal stem cells (hMSCs) were sued to examine osteogenic activity. Experimental results showed that the appropriate amount of gelatin positively contributed to failure enhancement in compressive and impact modes. The 10wt% gelatin-containing composite exhibits the maximum value of the compressive strength (166.1MPa), which is within the reported compressive strength for cortical bone. The stability of the bone implants was apparently affected by the in vitro fatigue, but not by the initial pH environments (7.4 or 5.0). The gelatin not only greatly enhanced the degradation of the composite when soaked in the dynamic SBF solution, but effectively promoted attachment, proliferation, differentiation, and formation of mineralization of hMSCs. The 10wt%-gelatin composite with high initial strength may be a potential implant candidate for cortical bone repair and fracture fixation applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Simultaneous compression and encryption of closely resembling images: application to video sequences and polarimetric images.

    PubMed

    Aldossari, M; Alfalou, A; Brosseau, C

    2014-09-22

    This study presents and validates an optimized method of simultaneous compression and encryption designed to process images with close spectra. This approach is well adapted to the compression and encryption of images of a time-varying scene but also to static polarimetric images. We use the recently developed spectral fusion method [Opt. Lett.35, 1914-1916 (2010)] to deal with the close resemblance of the images. The spectral plane (containing the information to send and/or to store) is decomposed in several independent areas which are assigned according a specific way. In addition, each spectrum is shifted in order to minimize their overlap. The dual purpose of these operations is to optimize the spectral plane allowing us to keep the low- and high-frequency information (compression) and to introduce an additional noise for reconstructing the images (encryption). Our results show that not only can the control of the spectral plane enhance the number of spectra to be merged, but also that a compromise between the compression rate and the quality of the reconstructed images can be tuned. We use a root-mean-square (RMS) optimization criterion to treat compression. Image encryption is realized at different security levels. Firstly, we add a specific encryption level which is related to the different areas of the spectral plane, and then, we make use of several random phase keys. An in-depth analysis at the spectral fusion methodology is done in order to find a good trade-off between the compression rate and the quality of the reconstructed images. Our new proposal spectral shift allows us to minimize the image overlap. We further analyze the influence of the spectral shift on the reconstructed image quality and compression rate. The performance of the multiple-image optical compression and encryption method is verified by analyzing several video sequences and polarimetric images.

  2. Applications of pressure-sensitive dielectric elastomer sensors

    NASA Astrophysics Data System (ADS)

    Böse, Holger; Ocak, Deniz; Ehrlich, Johannes

    2016-04-01

    Dielectric elastomer sensors for the measurement of compression loads with high sensitivity are described. The basic design of the sensors exhibits two profiled surfaces between which an elastomer film is confined. All components of the sensor were prepared with silicone whose stiffness can be varied in a wide range. Depending on details of the sensor design, various effects contribute to the enhancement of the capacitance. The intermediate elastomer film is stretched upon compression and electrode layers on the elastomer profiles and in the elastomer film approach each other. Different designs of the pressure sensor give rise to very different sensor characteristics in terms of the dependence of electric capacitance on compression force. Due to their inherent flexibility, the pressure sensors can be used on compliant substrates such as seats or beds or on the human body. This gives rise to numerous possible applications. The contribution describes also some examples of possible sensor applications. A glove was equipped with various sensors positioned at the finger tips. When grabbing an object with the glove, the sensors can detect the gripping forces of the individual fingers with high sensitivity. In a demonstrator of the glove equipped with seven sensors, the capacitances representing the gripping forces are recorded on a display. In another application example, a lower limb prosthesis was equipped with a pressure sensor to detect the load on the remaining part of the leg and the load is displayed in terms of the measured capacitance. The benefit of such sensors is to detect an eventual overload in order to prevent possible pressure sores. A third example introduces a seat load sensor system based on four extended pressure sensor mats. The sensor system detects the load distribution of a person on the seat. The examples emphasize the high performance of the new pressure sensor technology.

  3. Wavelet-based compression of pathological images for telemedicine applications

    NASA Astrophysics Data System (ADS)

    Chen, Chang W.; Jiang, Jianfei; Zheng, Zhiyong; Wu, Xue G.; Yu, Lun

    2000-05-01

    In this paper, we present the performance evaluation of wavelet-based coding techniques as applied to the compression of pathological images for application in an Internet-based telemedicine system. We first study how well suited the wavelet-based coding is as it applies to the compression of pathological images, since these images often contain fine textures that are often critical to the diagnosis of potential diseases. We compare the wavelet-based compression with the DCT-based JPEG compression in the DICOM standard for medical imaging applications. Both objective and subjective measures have been studied in the evaluation of compression performance. These studies are performed in close collaboration with expert pathologists who have conducted the evaluation of the compressed pathological images and communication engineers and information scientists who designed the proposed telemedicine system. These performance evaluations have shown that the wavelet-based coding is suitable for the compression of various pathological images and can be integrated well with the Internet-based telemedicine systems. A prototype of the proposed telemedicine system has been developed in which the wavelet-based coding is adopted for the compression to achieve bandwidth efficient transmission and therefore speed up the communications between the remote terminal and the central server of the telemedicine system.

  4. McrEngine: A Scalable Checkpointing System Using Data-Aware Aggregation and Compression

    DOE PAGES

    Islam, Tanzima Zerin; Mohror, Kathryn; Bagchi, Saurabh; ...

    2013-01-01

    High performance computing (HPC) systems use checkpoint-restart to tolerate failures. Typically, applications store their states in checkpoints on a parallel file system (PFS). As applications scale up, checkpoint-restart incurs high overheads due to contention for PFS resources. The high overheads force large-scale applications to reduce checkpoint frequency, which means more compute time is lost in the event of failure. We alleviate this problem through a scalable checkpoint-restart system, mcrEngine. McrEngine aggregates checkpoints from multiple application processes with knowledge of the data semantics available through widely-used I/O libraries, e.g., HDF5 and netCDF, and compresses them. Our novel scheme improves compressibility ofmore » checkpoints up to 115% over simple concatenation and compression. Our evaluation with large-scale application checkpoints show that mcrEngine reduces checkpointing overhead by up to 87% and restart overhead by up to 62% over a baseline with no aggregation or compression.« less

  5. The research and realization of multi-platform real-time message-oriented middleware in large-scale air traffic control system

    NASA Astrophysics Data System (ADS)

    Liang, Haijun; Ren, Jialong; Song, Tao

    2017-05-01

    Operating requirement of air traffic control system, the multi-platform real-time message-oriented middleware was studied and realized, which is composed of CDCC and CDCS. The former provides application process interface, while the latter realizes data synchronism of CDCC and data exchange. MQM, as one important part of it, provides message queue management and, encrypt and compress data during transmitting procedure. The practical system application verifies that the middleware can simplify the development of air traffic control system, enhance its stability, improve its systematic function and make it convenient for maintenance and reuse.

  6. Compressed sensing and the reconstruction of ultrafast 2D NMR data: Principles and biomolecular applications.

    PubMed

    Shrot, Yoav; Frydman, Lucio

    2011-04-01

    A topic of active investigation in 2D NMR relates to the minimum number of scans required for acquiring this kind of spectra, particularly when these are dictated by sampling rather than by sensitivity considerations. Reductions in this minimum number of scans have been achieved by departing from the regular sampling used to monitor the indirect domain, and relying instead on non-uniform sampling and iterative reconstruction algorithms. Alternatively, so-called "ultrafast" methods can compress the minimum number of scans involved in 2D NMR all the way to a minimum number of one, by spatially encoding the indirect domain information and subsequently recovering it via oscillating field gradients. Given ultrafast NMR's simultaneous recording of the indirect- and direct-domain data, this experiment couples the spectral constraints of these orthogonal domains - often calling for the use of strong acquisition gradients and large filter widths to fulfill the desired bandwidth and resolution demands along all spectral dimensions. This study discusses a way to alleviate these demands, and thereby enhance the method's performance and applicability, by combining spatial encoding with iterative reconstruction approaches. Examples of these new principles are given based on the compressed-sensed reconstruction of biomolecular 2D HSQC ultrafast NMR data, an approach that we show enables a decrease of the gradient strengths demanded in this type of experiments by up to 80%. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Ultra-porous titanium oxide scaffold with high compressive strength

    PubMed Central

    Tiainen, Hanna; Lyngstadaas, S. Petter; Ellingsen, Jan Eirik

    2010-01-01

    Highly porous and well interconnected titanium dioxide (TiO2) scaffolds with compressive strength above 2.5 MPa were fabricated without compromising the desired pore architectural characteristics, such as high porosity, appropriate pore size, surface-to-volume ratio, and interconnectivity. Processing parameters and pore architectural characteristics were investigated in order to identify the key processing steps and morphological properties that contributed to the enhanced strength of the scaffolds. Cleaning of the TiO2 raw powder removed phosphates but introduced sodium into the powder, which was suggested to decrease the slurry stability. Strong correlation was found between compressive strength and both replication times and solid content in the ceramic slurry. Increase in the solid content resulted in more favourable sponge loading, which was achieved due to the more suitable rheological properties of the ceramic slurry. Repeated replication process induced only negligible changes in the pore architectural parameters indicating a reduced flaw size in the scaffold struts. The fabricated TiO2 scaffolds show great promise as load-bearing bone scaffolds for applications where moderate mechanical support is required. PMID:20711636

  8. Man-made vitreous fiber produced from incinerator ash using the thermal plasma technique and application as reinforcement in concrete.

    PubMed

    Yang, Sheng-Fu; Wang, To-Mai; Lee, Wen-Cheng; Sun, Kin-Seng; Tzeng, Chin-Ching

    2010-10-15

    This study proposes using thermal plasma technology to treat municipal solid waste incinerator ashes. A feasible fiberization method was developed and applied to produce man-made vitreous fiber (MMVF) from plasma vitrified slag. MMVF were obtained through directly blending the oxide melt stream with high velocity compressed air. The basic technological characteristics of MMVF, including morphology, diameter, shot content, length and chemical resistance, are described in this work. Laboratory experiments were conducted on the fiber-reinforced concrete. The effects of fibrous content on compressive strength and flexural strength are presented. The experimental results showed the proper additive of MMVF in concrete can enhance its mechanical properties. MMVF products produced from incinerator ashes treated with the thermal plasma technique have great potential for reinforcement in concrete. 2010 Elsevier B.V. All rights reserved.

  9. Demonstration of Isothermal Compressed Air Energy Storage to Support Renewable Energy Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bollinger, Benjamin

    This project develops and demonstrates a megawatt (MW)-scale Energy Storage System that employs compressed air as the storage medium. An isothermal compressed air energy storage (ICAES TM) system rated for 1 MW or more will be demonstrated in a full-scale prototype unit. Breakthrough cost-effectiveness will be achieved through the use of proprietary methods for isothermal gas cycling and staged gas expansion implemented using industrially mature, readily-available components.The ICAES approach uses an electrically driven mechanical system to raise air to high pressure for storage in low-cost pressure vessels, pipeline, or lined-rock cavern (LRC). This air is later expanded through the samemore » mechanical system to drive the electric motor as a generator. The approach incorporates two key efficiency-enhancing innovations: (1) isothermal (constant temperature) gas cycling, which is achieved by mixing liquid with air (via spray or foam) to exchange heat with air undergoing compression or expansion; and (2) a novel, staged gas-expansion scheme that allows the drivetrain to operate at constant power while still allowing the stored gas to work over its entire pressure range. The ICAES system will be scalable, non-toxic, and cost-effective, making it suitable for firming renewables and for other grid applications.« less

  10. Enhanced collective focusing of intense neutralized ion beam pulses in the presence of weak solenoidal magnetic fields

    DOE PAGES

    Dorf, Mikhail A.; Davidson, Ronald C.; Kaganovich, Igor D.; ...

    2012-05-31

    In this study, the design of ion drivers for warm dense matter and high energy density physics applications and heavy ion fusion involves transverse focusing and longitudinal compression of intense ion beams to a small spot size on the target. To facilitate the process, the compression occurs in a long drift section filled with a dense background plasma, which neutralizes the intense beam self-fields. Typically, the ion bunch charge is better neutralized than its current, and as a result a net self-pinching (magnetic) force is produced. The self-pinching effect is of particular practical importance, and is used in various ionmore » driver designs in order to control the transverse beam envelope. In the present work we demonstrate that this radial self-focusing force can be significantly enhanced if a weak (B~100 G) solenoidal magnetic field is applied inside the neutralized drift section, thus allowing for substantially improved transport. It is shown that in contrast to magnetic self-pinching, the enhanced collective self-focusing has a radial electric field component and occurs as a result of the overcompensation of the beam charge by plasmaelectrons, whereas the beam current becomes well-neutralized. As the beam leaves the neutralizing drift section, additional transverse focusing can be applied. For instance, in the neutralized drift compression experiments (NDCX) a strong (several Tesla) final focus solenoid is used for this purpose. In the present analysis we propose that the tight final focus in the NDCX experiments may possibly be achieved by using a much weaker (few hundred Gauss) magnetic lens, provided the ion beam carries an equal amount of co-moving neutralizing electrons from the preceding drift section into the lens. In this case the enhanced focusing is provided by the collective electrondynamics strongly affected by a weak applied magnetic field.« less

  11. Effect of cold compress application on tissue temperature in healthy dogs.

    PubMed

    Millard, Ralph P; Towle-Millard, Heather A; Rankin, David C; Roush, James K

    2013-03-01

    To measure the effect of cold compress application on tissue temperature in healthy dogs. 10 healthy mixed-breed dogs. Dogs were sedated with hydromorphone (0.1 mg/kg, IV) and diazepam (0.25 mg/kg, IV). Three 24-gauge thermocouple needles were inserted to a depth of 0.5 (superficial), 1.0 (middle), and 1.5 (deep) cm into a shaved, lumbar, epaxial region to measure tissue temperature. Cold (-16.8°C) compresses were applied with gravity dependence for periods of 5, 10, and 20 minutes. Tissue temperature was recorded before compress application and at intervals for up to 80 minutes after application. Control data were collected while dogs received identical sedation but with no cold compress. Mean temperature associated with 5 minutes of application at the superficial depth was significantly decreased, compared with control temperatures. Application for 10 and 20 minutes significantly reduced the temperature at all depths, compared with controls and 5 minutes of application. Twenty minutes of application significantly decreased temperature at only the middle depth, compared with 10 minutes of application. With this method of cold treatment, increasing application time from 10 to 20 minutes caused a further significant temperature change at only the middle tissue depth; however, for maximal cooling, the minimum time of application should be 20 minutes. Possible changes in tissue temperature and adverse effects of application > 20 minutes require further evaluation.

  12. Enhancing the Ignition, Hardness and Compressive Response of Magnesium by Reinforcing with Hollow Glass Microballoons

    PubMed Central

    Gupta, Manoj

    2017-01-01

    Magnesium (Mg)/glass microballoons (GMB) metal matrix syntactic foams (1.47–1.67 g/cc) were synthesized using a disintegrated melt deposition (DMD) processing route. Such syntactic foams are of great interest to the scientific community as potential candidate materials for the ever-changing demands in automotive, aerospace, and marine sectors. The synthesized composites were evaluated for their microstructural, thermal, and compressive properties. Results showed that microhardness and the dimensional stability of pure Mg increased with increasing GMB content. The ignition response of these foams was enhanced by ~22 °C with a 25 wt % GMB addition to the Mg matrix. The authors of this work propose a new parameter, ignition factor, to quantify the superior ignition performance that the developed Mg foams exhibit. The room temperature compressive strengths of pure Mg increased with the addition of GMB particles, with Mg-25 wt % GMB exhibiting the maximum compressive yield strength (CYS) of 161 MPa and an ultimate compressive strength (UCS) of 232 MPa for a GMB addition of 5 wt % in Mg. A maximum failure strain of 37.7% was realized in Mg-25 wt % GMB foam. The addition of GMB particles significantly enhanced the energy absorption by ~200% prior to compressive failure for highest filler loading, as compared to pure Mg. Finally, microstructural changes in Mg owing to the presence of hollow GMB particles were elaborately discussed. PMID:28841189

  13. Enhancing the Ignition, Hardness and Compressive Response of Magnesium by Reinforcing with Hollow Glass Microballoons.

    PubMed

    Manakari, Vyasaraj; Parande, Gururaj; Doddamani, Mrityunjay; Gupta, Manoj

    2017-08-25

    Magnesium (Mg)/glass microballoons (GMB) metal matrix syntactic foams (1.47-1.67 g/cc) were synthesized using a disintegrated melt deposition (DMD) processing route. Such syntactic foams are of great interest to the scientific community as potential candidate materials for the ever-changing demands in automotive, aerospace, and marine sectors. The synthesized composites were evaluated for their microstructural, thermal, and compressive properties. Results showed that microhardness and the dimensional stability of pure Mg increased with increasing GMB content. The ignition response of these foams was enhanced by ~22 °C with a 25 wt % GMB addition to the Mg matrix. The authors of this work propose a new parameter, ignition factor, to quantify the superior ignition performance that the developed Mg foams exhibit. The room temperature compressive strengths of pure Mg increased with the addition of GMB particles, with Mg-25 wt % GMB exhibiting the maximum compressive yield strength (CYS) of 161 MPa and an ultimate compressive strength (UCS) of 232 MPa for a GMB addition of 5 wt % in Mg. A maximum failure strain of 37.7% was realized in Mg-25 wt % GMB foam. The addition of GMB particles significantly enhanced the energy absorption by ~200% prior to compressive failure for highest filler loading, as compared to pure Mg. Finally, microstructural changes in Mg owing to the presence of hollow GMB particles were elaborately discussed.

  14. Noncontacting Laser Inspection System for Dimensional Profiling of Space Application Thermal Barriers

    NASA Technical Reports Server (NTRS)

    Taylor, Shawn C.

    2011-01-01

    A noncontacting, two-dimensional (2-D) laser inspection system has been designed and implemented to dimensionally profile thermal barriers being developed for space vehicle applications. In a vehicle as-installed state, thermal barriers are commonly compressed between load sensitive thermal protection system (TPS) panels to prevent hot gas ingestion through the panel interface during flight. Loads required to compress the thermal barriers are functions of their construction, as well as their dimensional characteristics relative to the gaps in which they are installed. Excessive loads during a mission could damage surrounding TPS panels and have catastrophic consequences. As such, accurate dimensional profiling of thermal barriers prior to use is important. Due to the compliant nature of the thermal barriers, traditional contact measurement techniques (e.g., calipers and micrometers) are subjective and introduce significant error and variability into collected dimensional data. Implementation of a laser inspection system significantly enhanced the method by which thermal barriers are dimensionally profiled, and improved the accuracy and repeatability of collected data. A statistical design of experiments study comparing laser inspection and manual caliper measurement techniques verified these findings.

  15. Bioinspired Catecholic Primers for Rigid and Ductile Dental Resin Composites.

    PubMed

    Shin, Eeseul; Ju, Sung Won; An, Larry; Ahn, Eungjin; Ahn, Jin-Soo; Kim, Byeong-Su; Ahn, B Kollbe

    2018-01-17

    In the construction of dental restorative polymer composite materials, surface priming on mineral fillers is essential to improve the mechanical performance of the composites. Here we present bioinspired catechol-functionalized primers for a tougher dental resin composite containing glass fillers. The catecholic primers with different polymerizable end groups were designed and then coated on glass surfaces using a simple drop-casting or dip-coating process. The surface binding ability and possible cross-linking (coupling or chemical bridging between the glass substrate and the dental resin) of the catecholic bifunctional primers were evaluated using atomic force microscopy, contact angle measurements, and the knife shear bonding test and compared to a state-of-the-art silane-based coupling agent. Various mechanical tests including shrinkage and compression tests of the dental resin composites were also conducted. Compression tests of the composites containing the catecholic primed fillers exhibited enhanced mechanical properties, owing to the bidentate hydrogen bonding of catechol moieties to the oxide mineral surface. Furthermore, the superior biocompatibility of the primed surface was confirmed via cell attachment assay, thus providing applicability of catecholic primers for practical dental and biomedical applications.

  16. A sparsity-based simplification method for segmentation of spectral-domain optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Meiniel, William; Gan, Yu; Olivo-Marin, Jean-Christophe; Angelini, Elsa

    2017-08-01

    Optical coherence tomography (OCT) has emerged as a promising image modality to characterize biological tissues. With axio-lateral resolutions at the micron-level, OCT images provide detailed morphological information and enable applications such as optical biopsy and virtual histology for clinical needs. Image enhancement is typically required for morphological segmentation, to improve boundary localization, rather than enrich detailed tissue information. We propose to formulate image enhancement as an image simplification task such that tissue layers are smoothed while contours are enhanced. For this purpose, we exploit a Total Variation sparsity-based image reconstruction, inspired by the Compressed Sensing (CS) theory, but specialized for images with structures arranged in layers. We demonstrate the potential of our approach on OCT human heart and retinal images for layers segmentation. We also compare our image enhancement capabilities to the state-of-the-art denoising techniques.

  17. A Comparison of the Multiscale Retinex With Other Image Enhancement Techniques

    NASA Technical Reports Server (NTRS)

    Rahman, Zia-Ur; Woodell, Glenn A.; Jobson, Daniel J.

    1997-01-01

    The multiscale retinex with color restoration (MSRCR) has shown itself to be a very versatile automatic image enhancement algorithm that simultaneously provides dynamic range compression, color constancy, and color rendition. A number of algorithms exist that provide one or more of these features, but not all. In this paper we compare the performance of the MSRCR with techniques that are widely used for image enhancement. Specifically, we compare the MSRCR with color adjustment methods such as gamma correction and gain/offset application, histogram modification techniques such as histogram equalization and manual histogram adjustment, and other more powerful techniques such as homomorphic filtering and 'burning and dodging'. The comparison is carried out by testing the suite of image enhancement methods on a set of diverse images. We find that though some of these techniques work well for some of these images, only the MSRCR performs universally well on the test set.

  18. Enhanced densification under shock compression in porous silicon

    NASA Astrophysics Data System (ADS)

    Lane, J. Matthew D.; Thompson, Aidan P.; Vogler, Tracy J.

    2014-10-01

    Under shock compression, most porous materials exhibit lower densities for a given pressure than that of a full-dense sample of the same material. However, some porous materials exhibit an anomalous, or enhanced, densification under shock compression. We demonstrate a molecular mechanism that drives this behavior. We also present evidence from atomistic simulation that silicon belongs to this anomalous class of materials. Atomistic simulations indicate that local shear strain in the neighborhood of collapsing pores nucleates a local solid-solid phase transformation even when bulk pressures are below the thermodynamic phase transformation pressure. This metastable, local, and partial, solid-solid phase transformation, which accounts for the enhanced densification in silicon, is driven by the local stress state near the void, not equilibrium thermodynamics. This mechanism may also explain the phenomenon in other covalently bonded materials.

  19. Enhanced Performance of Streamline-Traced External-Compression Supersonic Inlets

    NASA Technical Reports Server (NTRS)

    Slater, John W.

    2015-01-01

    A computational design study was conducted to enhance the aerodynamic performance of streamline-traced, external-compression inlets for Mach 1.6. Compared to traditional external-compression, two-dimensional and axisymmetric inlets, streamline-traced inlets promise reduced cowl wave drag and sonic boom, but at the expense of reduced total pressure recovery and increased total pressure distortion. The current study explored a new parent flowfield for the streamline tracing and several variations of inlet design factors, including the axial displacement and angle of the subsonic cowl lip, the vertical placement of the engine axis, and the use of porous bleed in the subsonic diffuser. The performance was enhanced over that of an earlier streamline-traced inlet such as to increase the total pressure recovery and reduce total pressure distortion.

  20. A theoretical insight into H accumulation and bubble formation by applying isotropic strain on the W-H system under a fusion environment

    NASA Astrophysics Data System (ADS)

    Han, Quan-Fu; Liu, Yue-Lin; Zhang, Ying; Ding, Fang; Lu, Guang-Hong

    2018-04-01

    The solubility and bubble formation of hydrogen (H) in tungsten (W) are crucial factors for the application of W as a plasma-facing component under a fusion environment, but the data and mechanism are presently scattered, indicating some important factors might be neglected. High-energy neutron-irradiated W inevitably causes a local strain, which may change the solubility of H in W. Here, we performed first-principles calculations to predict the H solution behaviors under isotropic strain combined with temperature effect in W and found that the H solubility in interstitial lattice can be promoted/impeded by isotropic tensile/compressive strain over the temperature range 300-1800 K. The calculated H solubility presents good agreement with the experiment. Together, our previous results of anisotropic strain, except for isotropic compression, both isotropic tension and anisotropic tension/compression enhance H solution so as to reveal an important physical implication for H accumulation and bubble formation in W: strain can enhance H solubility, resulting in the preliminary nucleation of H bubble that further causes the local strain of W lattice around H bubble, which in turn improves the H solubility at the strained region that promotes continuous growth of the H bubble via a chain-reaction effect in W. This result can also interpret the H bubble formation even if no radiation damage is produced in W exposed to low-energy H plasma.

  1. An electromagnetic compressive force by cell exciter stimulates chondrogenic differentiation of bone marrow-derived mesenchymal stem cells.

    PubMed

    Park, Sang-Hyug; Sim, Woo Young; Park, Sin Wook; Yang, Sang Sik; Choi, Byung Hyune; Park, So Ra; Park, Kwideok; Min, Byoung-Hyun

    2006-11-01

    In this study, we present a biological micro-electromechanical system and its application to the chondrogenic differentiation of rabbit bone marrow-derived mesenchymal stem cells (MSCs). Actuated by an electromagnetic force, the micro cell exciter was designed to deliver a cyclic compressive load (CCL) with various magnitudes. Two major parts in the system are an actuator and a cartridge-type chamber. The former has a permanent magnet and coil, and the latter is equipped with 7 sample dishes and 7 metal caps. Mixed with a 2.4% alginate solution, the alginate/MSC layers were positioned in the sample dishes; the caps contained chondrogenic defined medium without transforming growth factor-beta (TGF-beta). Once powered, the actuator coil-derived electromagnetic force pulled the metal caps down, compressing the samples. The cyclic load was given at 1-Hz frequency for 10 min twice a day. Samples in the dishes without a cap served as a control. The samples were analyzed at 3, 5, and 7 days after stimulation for cell viability, biochemical assays, histologic features, immunohistochemistry, and gene expression of the chondrogenic markers. Applied to the alginate/MSC layer, the CCL system enhanced the synthesis of cartilage-specific matrix proteins and the chondrogenic markers, such as aggrecan, type II collagen, and Sox9. We found that the micromechanically exerted CCL by the cell exciter was very effective in enhancing the chondrogenic differentiation of MSCs, even without using exogenous TGF-beta.

  2. Enhanced Switchable Ferroelectric Photovoltaic Effects in Hexagonal Ferrite Thin Films via Strain Engineering.

    PubMed

    Han, Hyeon; Kim, Donghoon; Chu, Kanghyun; Park, Jucheol; Nam, Sang Yeol; Heo, Seungyang; Yang, Chan-Ho; Jang, Hyun Myung

    2018-01-17

    Ferroelectric photovoltaics (FPVs) are being extensively investigated by virtue of switchable photovoltaic responses and anomalously high photovoltages of ∼10 4 V. However, FPVs suffer from extremely low photocurrents due to their wide band gaps (E g ). Here, we present a promising FPV based on hexagonal YbFeO 3 (h-YbFO) thin-film heterostructure by exploiting its narrow E g . More importantly, we demonstrate enhanced FPV effects by suitably exploiting the substrate-induced film strain in these h-YbFO-based photovoltaics. A compressive-strained h-YbFO/Pt/MgO heterojunction device shows ∼3 times enhanced photovoltaic efficiency than that of a tensile-strained h-YbFO/Pt/Al 2 O 3 device. We have shown that the enhanced photovoltaic efficiency mainly stems from the enhanced photon absorption over a wide range of the photon energy, coupled with the enhanced polarization under a compressive strain. Density functional theory studies indicate that the compressive strain reduces E g substantially and enhances the strength of d-d transitions. This study will set a new standard for determining substrates toward thin-film photovoltaics and optoelectronic devices.

  3. High speed fluorescence imaging with compressed ultrafast photography

    NASA Astrophysics Data System (ADS)

    Thompson, J. V.; Mason, J. D.; Beier, H. T.; Bixler, J. N.

    2017-02-01

    Fluorescent lifetime imaging is an optical technique that facilitates imaging molecular interactions and cellular functions. Because the excited lifetime of a fluorophore is sensitive to its local microenvironment,1, 2 measurement of fluorescent lifetimes can be used to accurately detect regional changes in temperature, pH, and ion concentration. However, typical state of the art fluorescent lifetime methods are severely limited when it comes to acquisition time (on the order of seconds to minutes) and video rate imaging. Here we show that compressed ultrafast photography (CUP) can be used in conjunction with fluorescent lifetime imaging to overcome these acquisition rate limitations. Frame rates up to one hundred billion frames per second have been demonstrated with compressed ultrafast photography using a streak camera.3 These rates are achieved by encoding time in the spatial direction with a pseudo-random binary pattern. The time domain information is then reconstructed using a compressed sensing algorithm, resulting in a cube of data (x,y,t) for each readout image. Thus, application of compressed ultrafast photography will allow us to acquire an entire fluorescent lifetime image with a single laser pulse. Using a streak camera with a high-speed CMOS camera, acquisition rates of 100 frames per second can be achieved, which will significantly enhance our ability to quantitatively measure complex biological events with high spatial and temporal resolution. In particular, we will demonstrate the ability of this technique to do single-shot fluorescent lifetime imaging of cells and microspheres.

  4. Comparison of chest compression quality between the modified chest compression method with the use of smartphone application and the standardized traditional chest compression method during CPR.

    PubMed

    Park, Sang-Sub

    2014-01-01

    The purpose of this study is to grasp difference in quality of chest compression accuracy between the modified chest compression method with the use of smartphone application and the standardized traditional chest compression method. Participants were progressed 64 people except 6 absentees among 70 people who agreed to participation with completing the CPR curriculum. In the classification of group in participants, the modified chest compression method was called as smartphone group (33 people). The standardized chest compression method was called as traditional group (31 people). The common equipments in both groups were used Manikin for practice and Manikin for evaluation. In the meantime, the smartphone group for application was utilized Android and iOS Operating System (OS) of 2 smartphone products (G, i). The measurement period was conducted from September 25th to 26th, 2012. Data analysis was used SPSS WIN 12.0 program. As a result of research, the proper compression depth (mm) was shown the proper compression depth (p< 0.01) in traditional group (53.77 mm) compared to smartphone group (48.35 mm). Even the proper chest compression (%) was formed suitably (p< 0.05) in traditional group (73.96%) more than smartphone group (60.51%). As for the awareness of chest compression accuracy, the traditional group (3.83 points) had the higher awareness of chest compression accuracy (p< 0.001) than the smartphone group (2.32 points). In the questionnaire that was additionally carried out 1 question only in smartphone group, the modified chest compression method with the use of smartphone had the high negative reason in rescuer for occurrence of hand back pain (48.5%) and unstable posture (21.2%).

  5. Competitive Parallel Processing For Compression Of Data

    NASA Technical Reports Server (NTRS)

    Diner, Daniel B.; Fender, Antony R. H.

    1990-01-01

    Momentarily-best compression algorithm selected. Proposed competitive-parallel-processing system compresses data for transmission in channel of limited band-width. Likely application for compression lies in high-resolution, stereoscopic color-television broadcasting. Data from information-rich source like color-television camera compressed by several processors, each operating with different algorithm. Referee processor selects momentarily-best compressed output.

  6. Interventions to enhance patient compliance with leg ulcer treatment: a review of the literature.

    PubMed

    Van Hecke, Ann; Grypdonck, Maria; Defloor, Tom

    2008-01-01

    Non-compliance with compression therapy and with leg exercises and leg elevation is a common problem, often reported in patients with venous leg ulceration. Studies on compliance-enhancing interventions and the effectiveness of these interventions in patients with venous leg ulceration were reviewed. MEDLINE, Cochrane, Embase and CINAHL were explored up to April 2005. Reference lists, wound care journals and conference proceedings were searched. Experts and manufacturers of compression systems were contacted. Studies were eligible if they included patients with venous or mixed leg ulcers and reported patient compliance outcome. Twenty studies were included. Most studies describe patient compliance as the extent to which the compression system was worn and/or the extent to which treatment regimen was followed. Self-reporting was the most commonly used method of compliance assessment. There are indications that class III stockings for patients with venous ulcers enhance compliance compared with short stretch compression bandages. No real evidence is found that intermittent pneumatic compression systems improved compliance. There is no well-documented evidence that healthcare system interventions increase compliance. Educational programmes combining cognitive, behavioural and affective components were shown to have a positive effect on leg elevation, but not on compliance with compression therapy. The included studies have a lack of consistency in defining the standard and operationalization of compliance. Patient compliance plays an ancillary role in research. No study has been able to offer an acceptable and well-documented solution to the non-compliance problem. Research might focus on the development of comprehensive compliance-enhancing strategies. A stronger commitment of healthcare providers and society is needed to make progress in this area. The scope of nursing must be expanded to also include the problems experienced by patients with leg ulcers and the improvement of patient compliance.

  7. Data compression using Chebyshev transform

    NASA Technical Reports Server (NTRS)

    Cheng, Andrew F. (Inventor); Hawkins, III, S. Edward (Inventor); Nguyen, Lillian (Inventor); Monaco, Christopher A. (Inventor); Seagrave, Gordon G. (Inventor)

    2007-01-01

    The present invention is a method, system, and computer program product for implementation of a capable, general purpose compression algorithm that can be engaged on the fly. This invention has particular practical application with time-series data, and more particularly, time-series data obtained form a spacecraft, or similar situations where cost, size and/or power limitations are prevalent, although it is not limited to such applications. It is also particularly applicable to the compression of serial data streams and works in one, two, or three dimensions. The original input data is approximated by Chebyshev polynomials, achieving very high compression ratios on serial data streams with minimal loss of scientific information.

  8. Compressed Sensing for Body MRI

    PubMed Central

    Feng, Li; Benkert, Thomas; Block, Kai Tobias; Sodickson, Daniel K; Otazo, Ricardo; Chandarana, Hersh

    2016-01-01

    The introduction of compressed sensing for increasing imaging speed in MRI has raised significant interest among researchers and clinicians, and has initiated a large body of research across multiple clinical applications over the last decade. Compressed sensing aims to reconstruct unaliased images from fewer measurements than that are traditionally required in MRI by exploiting image compressibility or sparsity. Moreover, appropriate combinations of compressed sensing with previously introduced fast imaging approaches, such as parallel imaging, have demonstrated further improved performance. The advent of compressed sensing marks the prelude to a new era of rapid MRI, where the focus of data acquisition has changed from sampling based on the nominal number of voxels and/or frames to sampling based on the desired information content. This paper presents a brief overview of the application of compressed sensing techniques in body MRI, where imaging speed is crucial due to the presence of respiratory motion along with stringent constraints on spatial and temporal resolution. The first section provides an overview of the basic compressed sensing methodology, including the notion of sparsity, incoherence, and non-linear reconstruction. The second section reviews state-of-the-art compressed sensing techniques that have been demonstrated for various clinical body MRI applications. In the final section, the paper discusses current challenges and future opportunities. PMID:27981664

  9. Mechanism for amorphization of boron carbide under complex stress conditions

    NASA Astrophysics Data System (ADS)

    Li, Jun; Xu, Shuang; Liu, Lisheng; Wang, Zhen; Zhang, Jinyong; Liu, Qiwen

    2018-05-01

    As an excellent material, the application of boron carbide (B4C) is limited by pressure-induced amorphization. To understand the mechanism for amorphization in B4C, first-principles methods based on density functional theory were employed to investigate the mechanical behaviors and the deformation process in B4C under complex stress conditions with six different biaxial perpendicular compression directions. The angle (θ) between one of the loading directions and the [0 0 0 1] c-axis ranged from 0° to 75° with every 15° interval. We found that the maximum stress at θ = 30° is 124.5 GPa, which is the lowest among six biaxial compressions. Simulation results show that the mechanism for amorphization in B4C under complex stress conditions is complicated. We take the θ = 30° biaxial compression as an example to explain the complicated deformation process. In the elastic deformation region, sudden bending of three-atom chains occurs and results in a stress fluctuation. Then the formation of new B–B bonds between the three-atom chains and the icosahedra leads to the first stress drop. After that, the B–C bonds in the chains are broken, resulting in the second stress drop. In this process, the icosahedra are partially destroyed. The stress increases continuously and then drops at the critical failure strain. Finally, the fully destruction of icosahedra leads to amorphization in B4C. However, under other five biaxial compressions, the B–C bonds in three-atom chains are not fractured before structural failure. Understanding the deformation mechanism for amorphization of B4C in real applications is prime important for proposing how to resist amorphization and enhance the toughness of B4C.

  10. Lossless compression of VLSI layout image data.

    PubMed

    Dai, Vito; Zakhor, Avideh

    2006-09-01

    We present a novel lossless compression algorithm called Context Copy Combinatorial Code (C4), which integrates the advantages of two very disparate compression techniques: context-based modeling and Lempel-Ziv (LZ) style copying. While the algorithm can be applied to many lossless compression applications, such as document image compression, our primary target application has been lossless compression of integrated circuit layout image data. These images contain a heterogeneous mix of data: dense repetitive data better suited to LZ-style coding, and less dense structured data, better suited to context-based encoding. As part of C4, we have developed a novel binary entropy coding technique called combinatorial coding which is simultaneously as efficient as arithmetic coding, and as fast as Huffman coding. Compression results show C4 outperforms JBIG, ZIP, BZIP2, and two-dimensional LZ, and achieves lossless compression ratios greater than 22 for binary layout image data, and greater than 14 for gray-pixel image data.

  11. Resource efficient data compression algorithms for demanding, WSN based biomedical applications.

    PubMed

    Antonopoulos, Christos P; Voros, Nikolaos S

    2016-02-01

    During the last few years, medical research areas of critical importance such as Epilepsy monitoring and study, increasingly utilize wireless sensor network technologies in order to achieve better understanding and significant breakthroughs. However, the limited memory and communication bandwidth offered by WSN platforms comprise a significant shortcoming to such demanding application scenarios. Although, data compression can mitigate such deficiencies there is a lack of objective and comprehensive evaluation of relative approaches and even more on specialized approaches targeting specific demanding applications. The research work presented in this paper focuses on implementing and offering an in-depth experimental study regarding prominent, already existing as well as novel proposed compression algorithms. All algorithms have been implemented in a common Matlab framework. A major contribution of this paper, that differentiates it from similar research efforts, is the employment of real world Electroencephalography (EEG) and Electrocardiography (ECG) datasets comprising the two most demanding Epilepsy modalities. Emphasis is put on WSN applications, thus the respective metrics focus on compression rate and execution latency for the selected datasets. The evaluation results reveal significant performance and behavioral characteristics of the algorithms related to their complexity and the relative negative effect on compression latency as opposed to the increased compression rate. It is noted that the proposed schemes managed to offer considerable advantage especially aiming to achieve the optimum tradeoff between compression rate-latency. Specifically, proposed algorithm managed to combine highly completive level of compression while ensuring minimum latency thus exhibiting real-time capabilities. Additionally, one of the proposed schemes is compared against state-of-the-art general-purpose compression algorithms also exhibiting considerable advantages as far as the compression rate is concerned. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. The effects of dynamic compression on the development of cartilage grafts engineered using bone marrow and infrapatellar fat pad derived stem cells.

    PubMed

    Luo, Lu; Thorpe, Stephen D; Buckley, Conor T; Kelly, Daniel J

    2015-09-21

    Bioreactors that subject cell seeded scaffolds or hydrogels to biophysical stimulation have been used to improve the functionality of tissue engineered cartilage and to explore how such constructs might respond to the application of joint specific mechanical loading. Whether a particular cell type responds appropriately to physiological levels of biophysical stimulation could be considered a key determinant of its suitability for cartilage tissue engineering applications. The objective of this study was to determine the effects of dynamic compression on chondrogenesis of stem cells isolated from different tissue sources. Porcine bone marrow (BM) and infrapatellar fat pad (FP) derived stem cells were encapsulated in agarose hydrogels and cultured in a chondrogenic medium in free swelling (FS) conditions for 21 d, after which samples were subjected to dynamic compression (DC) of 10% strain (1 Hz, 1 h d(-1)) for a further 21 d. Both BM derived stem cells (BMSCs) and FP derived stem cells (FPSCs) were capable of generating cartilaginous tissues with near native levels of sulfated glycosaminoglycan (sGAG) content, although the spatial development of the engineered grafts strongly depended on the stem cell source. The mechanical properties of cartilage grafts generated from both stem cell sources also approached that observed in skeletally immature animals. Depending on the stem cell source and the donor, the application of DC either enhanced or had no significant effect on the functional development of cartilaginous grafts engineered using either BMSCs or FPSCs. BMSC seeded constructs subjected to DC stained less intensely for collagen type I. Furthermore, histological and micro-computed tomography analysis showed mineral deposition within BMSC seeded constructs was suppressed by the application of DC. Therefore, while the application of DC in vitro may only lead to modest improvements in the mechanical functionality of cartilaginous grafts, it may play an important role in the development of phenotypically stable constructs.

  13. Electromagnetic ion cyclotron waves stimulated by modest magnetospheric compressions

    NASA Technical Reports Server (NTRS)

    Anderson, B. J.; Hamilton, D. C.

    1993-01-01

    AMPTE/CCE magnetic field and particle data are used to test the suggestion that increased hot proton temperature anisotropy resulting from convection during magnetospheric compression is responsible for the enhancement in Pc 1 emission via generation of electromagnetic ion cyclotron (EMIC) waves in the dayside outer equatorial magnetosphere. The relative increase in magnetic field is used to gauge the strength of the compression, and an image dipole model is used to estimate the motion of the plasma during compression. Proton data are used to analyze the evolution of the proton distribution and the corresponding changes in EMIC wave activity expected during the compression. It is suggested that enhancements in dynamic pressure pump the energetic proton distributions in the outer magnetosphere, driving EMIC waves. Waves are expected to be generated most readily close to the magnetopause, and transient pressure pulses may be associated with bursts of EMIC waves, which would be observed on the ground in association with ionospheric transient signatures.

  14. Spin quenching assisted by a strongly anisotropic compression behavior in MnP

    NASA Astrophysics Data System (ADS)

    Han, Fei; Wang, Di; Wang, Yonggang; Li, Nana; Bao, Jin-Ke; Li, Bing; Botana, Antia S.; Xiao, Yuming; Chow, Paul; Chung, Duck Young; Chen, Jiuhua; Wan, Xiangang; Kanatzidis, Mercouri G.; Yang, Wenge; Mao, Ho-Kwang

    2018-02-01

    We studied the crystal structure and spin state of MnP under high pressure with synchrotron x-ray diffraction and x-ray emission spectroscopy (XES). MnP has an exceedingly strong anisotropy in compressibility, with the primary compressible direction along the b axis of the Pnma structure. XES reveals a pressure-driven quenching of the spin state in MnP. First-principles calculations suggest that the strongly anisotropic compression behavior significantly enhances the dispersion of the Mn d-orbitals and the splitting of the d-orbital levels compared to the hypothetical isotropic compression behavior. Thus, we propose spin quenching results mainly from the significant enhancement of the itinerancy of d electrons and partly from spin rearrangement occurring in the split d-orbital levels near the Fermi level. This explains the fast suppression of magnetic ordering in MnP under high pressure. The spin quenching lags behind the occurrence of superconductivity at ˜8 GPa implying that spin fluctuations govern the electron pairing for superconductivity.

  15. Spin quenching assisted by a strongly anisotropic compression behavior in MnP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Fei; Wang, Di; Wang, Yonggang

    We studied the crystal structure and spin state of MnP under high pressure with synchrotron X-ray diffraction and X-ray emission spectroscopy. MnP has an exceedingly strong anisotropy in compressibility, with the primary compressible direction along the b axis of the Pnma structure. X-ray emission spectroscopy reveals a pressure-driven quenching of the spin state in MnP. First-principles calculations suggest that the strongly anisotropic compression behavior significantly enhances the dispersion of the Mn d-orbitals and the splitting of the d-orbital levels compared to the hypothetical isotropic compression behavior. Thus, we propose spin quenching results mainly from the significant enhancement of the itinerancymore » of d electrons and partly from spin rearrangement occurring in the split d-orbital levels near the Fermi level. This explains the fast suppression of magnetic ordering in MnP under high pressure. The spin quenching lags behind the occurrence of superconductivity at ~8 GPa implying that spin fluctuations govern the electron pairing for superconductivity.« less

  16. Identification of a Suitable 3D Printing Material for Mimicking Brittle and Hard Rocks and Its Brittleness Enhancements

    NASA Astrophysics Data System (ADS)

    Zhou, T.; Zhu, J. B.

    2018-03-01

    Three-dimensional printing (3DP) is a computer-controlled additive manufacturing technique which is able to repeatedly and accurately fabricate objects with complicated geometry and internal structures. After 30 years of fast development, 3DP has become a mainstream manufacturing process in various fields. This study focuses on identifying the most suitable 3DP material from five targeted available 3DP materials, i.e. ceramics, gypsum, PMMA (poly(methyl methacrylate)), SR20 (acrylic copolymer) and resin (Accura® 60), to simulate brittle and hard rocks. Firstly, uniaxial compression tests were performed to determine the mechanical properties and failure patterns of the 3DP samples fabricated by those five materials. Experimental results indicate that among current 3DP techniques, the resin produced via stereolithography (SLA) is the most suitable 3DP material for mimicking brittle and hard rocks, although its brittleness needs to be improved. Subsequently, three methods including freezing, incorporation of internal macro-crack and addition of micro-defects were adopted to enhance the brittleness of the 3DP resin, followed by uniaxial compression tests on the treated samples. Experimental results reveal that 3DP resin samples with the suggested treatments exhibited brittle properties and behaved similarly to natural rocks. Finally, some prospective improvements which can be used to facilitate the application of 3DP techniques to rock mechanics were also discussed. The findings of this paper could contribute to promoting the application of 3DP technique in rock mechanics.

  17. Free-breathing volumetric fat/water separation by combining radial sampling, compressed sensing, and parallel imaging.

    PubMed

    Benkert, Thomas; Feng, Li; Sodickson, Daniel K; Chandarana, Hersh; Block, Kai Tobias

    2017-08-01

    Conventional fat/water separation techniques require that patients hold breath during abdominal acquisitions, which often fails and limits the achievable spatial resolution and anatomic coverage. This work presents a novel approach for free-breathing volumetric fat/water separation. Multiecho data are acquired using a motion-robust radial stack-of-stars three-dimensional GRE sequence with bipolar readout. To obtain fat/water maps, a model-based reconstruction is used that accounts for the off-resonant blurring of fat and integrates both compressed sensing and parallel imaging. The approach additionally enables generation of respiration-resolved fat/water maps by detecting motion from k-space data and reconstructing different respiration states. Furthermore, an extension is described for dynamic contrast-enhanced fat-water-separated measurements. Uniform and robust fat/water separation is demonstrated in several clinical applications, including free-breathing noncontrast abdominal examination of adults and a pediatric subject with both motion-averaged and motion-resolved reconstructions, as well as in a noncontrast breast exam. Furthermore, dynamic contrast-enhanced fat/water imaging with high temporal resolution is demonstrated in the abdomen and breast. The described framework provides a viable approach for motion-robust fat/water separation and promises particular value for clinical applications that are currently limited by the breath-holding capacity or cooperation of patients. Magn Reson Med 78:565-576, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  18. Fabrication of hydrophobic compressed oil palm trunk surface by sol-gel process

    NASA Astrophysics Data System (ADS)

    Muzakir, Syafiqah; Salim, Nurjannah; Huda Abu Bakar, Nurul; Roslan, Rasidi; Sin, Lim Wan; Hashim, Rokiah

    2018-04-01

    Improvement of the robustness of hydrophobic surfaces is crucial to achieving commercial applications of these surfaces in such various areas as self-cleaning, water repellency and corrosion resistance. Compressed oil palm trunk (OPT) panel is one of potential product which can be used as panelling and indoor furniture application. By adding hydrophobic properties to compressed oil palm trunk panel might increase the application of compressed oil palm trunk especially for outdoor application. In this study, fabrication is using the sol-gel technique. Sol-gel was prepared by adding ethanol with Hexadecyl Trimethyl Ammonium Bromide (CTAB) solution with Tetraethyl Orthosilicate (TEOS) with surface modification of chlorotrimethylsilane (CTMS). The surface with hydrophobic coating was undergone surface analysis with contact angle machine with the aid of software SCA 20 and the determined of the morphology of surface with scanning electron microscope (SEM). The produced compressed oil palm trunk surfaces exhibited promising hydrophobic properties with a contact angle of 104° and the relatively better mechanical robustness.

  19. Dipteran wing motor-inspired flapping flight versatility and effectiveness enhancement.

    PubMed

    Harne, R L; Wang, K W

    2015-03-06

    Insects are a prime source of inspiration towards the development of small-scale, engineered, flapping wing flight systems. To help interpret the possible energy transformation strategies observed in Diptera as inspiration for mechanical flapping flight systems, we revisit the perspective of the dipteran wing motor as a bistable click mechanism and take a new, and more flexible, outlook to the architectural composition previously considered. Using a representative structural model alongside biological insights and cues from nonlinear dynamics, our analyses and experimental results reveal that a flight mechanism able to adjust motor axial support stiffness and compression characteristics may dramatically modulate the amplitude range and type of wing stroke dynamics achievable. This corresponds to significantly more versatile aerodynamic force generation without otherwise changing flapping frequency or driving force amplitude. Whether monostable or bistable, the axial stiffness is key to enhance compressed motor load bearing ability and aerodynamic efficiency, particularly compared with uncompressed linear motors. These findings provide new foundation to guide future development of bioinspired, flapping wing mechanisms for micro air vehicle applications, and may be used to provide insight to the dipteran muscle-to-wing interface. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  20. Knowing the dense plasma focus - The coming of age (of the PF) with broad-ranging scaling laws

    NASA Astrophysics Data System (ADS)

    Saw, S. H.; Lee, S.

    2017-03-01

    The dense plasma focus is blessed not only with copious multi-radiations ranging from electron and ion beams, x-rays both soft and hard, fusion neutrons D-D and D-T but also with the property of enhanced compression from radiative collapse leading to HED (high energy density) states. The Lee code has been used in extensive systematic numerical experiments tied to reality through fitting with measured current waveforms and verified through comparison of measured and computed yields and measurements of multi-radiation. The studies have led to establishment of scaling laws with respect to storage energy, discharge current and pinch currents for fusion neutrons, characteristic soft x-rays, all-line radiation and ion beams. These are summarized here together with a first-time presentation of a scaling law of radiatively enhanced compression as a function of atomic number of operational gas. This paper emphasizes that such a broad range of scaling laws signals the coming of age of the DPF and presents a reference platform for planning the many potential applications such as in advanced SXR lithography, materials synthesizing and testing, medical isotopes, imaging and energy and high energy density (HED).

  1. Investigation on wind energy-compressed air power system.

    PubMed

    Jia, Guang-Zheng; Wang, Xuan-Yin; Wu, Gen-Mao

    2004-03-01

    Wind energy is a pollution free and renewable resource widely distributed over China. Aimed at protecting the environment and enlarging application of wind energy, a new approach to application of wind energy by using compressed air power to some extent instead of electricity put forward. This includes: explaining the working principles and characteristics of the wind energy-compressed air power system; discussing the compatibility of wind energy and compressor capacity; presenting the theoretical model and computational simulation of the system. The obtained compressor capacity vs wind power relationship in certain wind velocity range can be helpful in the designing of the wind power-compressed air system. Results of investigations on the application of high-pressure compressed air for pressure reduction led to conclusion that pressure reduction with expander is better than the throttle regulator in energy saving.

  2. Absorption Kinetics of Subcutaneously Administered Ceftazidime in Hypoperfused Guinea Pigs.

    PubMed

    Ebihara, Tsuyoshi; Oshima, Shinji; Okita, Mitsuyoshi; Shiina, Sayumi; Negishi, Akio; Ohara, Kousuke; Ohshima, Shigeru; Iwasaki, Hiroyuki; Yoneyama, Akira; Kitazumi, Eiji; Kobayashi, Daisuke

    2015-12-01

    Pneumonia is the most common cause of death in patients with severe motor and intellectual disabilities (SMID), and intravenous ceftazidime (CAZ) is a widely used treatment for such infections. However, intravenous administration in patients with SMID may be difficult because of insufficient vascular development. The aim of our study was to determine the feasibility of subcutaneous drug administration by mentholated warm compresses (WMCs) as an alternative delivery method for ceftazidime in patients with SMID. CAZ was subcutaneously administered to the abdominal region of naphazoline-treated hypoperfused guinea pigs, which were used as a hemodynamic model of patients with SMID. MWCs or warm compresses (WCs) were applied to the injection site to increase blood flow. We calculated the cumulative CAZ absorption over time by using the deconvolution method. Application of MWCs or WCs increased blood flow at the administration site and increased CAZ plasma levels. Application of MWCs or WCs after subcutaneous CAZ injection led to higher CAZ plasma levels than the mutant prevention concentration for a longer period than was observed for CAZ administration without the application of MWCs or WCs. The application of MWCs or WCs enhanced subcutaneous CAZ absorption by increasing blood flow. MWCs and WCs are considered to be safe and routine methods to induce defecation after surgery on the digestive system; thus, the combination of these methods and subcutaneous CAZ administration is a potential method for treating pneumonia in patients with SMID.

  3. Image compression/decompression based on mathematical transform, reduction/expansion, and image sharpening

    DOEpatents

    Fu, Chi-Yung; Petrich, Loren I.

    1997-01-01

    An image represented in a first image array of pixels is first decimated in two dimensions before being compressed by a predefined compression algorithm such as JPEG. Another possible predefined compression algorithm can involve a wavelet technique. The compressed, reduced image is then transmitted over the limited bandwidth transmission medium, and the transmitted image is decompressed using an algorithm which is an inverse of the predefined compression algorithm (such as reverse JPEG). The decompressed, reduced image is then interpolated back to its original array size. Edges (contours) in the image are then sharpened to enhance the perceptual quality of the reconstructed image. Specific sharpening techniques are described.

  4. Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station

    Science.gov Websites

    containers (only pertains to dispersing equipment) - 3-foot setback Setbacks are applicable to a 7,000 psi , Safe Handling of Compressed Gases in Containers (Compressed Gas Association, 2006) 4.1 Transportation Storage Containers for Compressed Gases (Compressed Gas Association, 2005) 5.3.2 Nonliquid Compressed

  5. Turbulence in Compressible Flows

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Lecture notes for the AGARD Fluid Dynamics Panel (FDP) Special Course on 'Turbulence in Compressible Flows' have been assembled in this report. The following topics were covered: Compressible Turbulent Boundary Layers, Compressible Turbulent Free Shear Layers, Turbulent Combustion, DNS/LES and RANS Simulations of Compressible Turbulent Flows, and Case Studies of Applications of Turbulence Models in Aerospace.

  6. Efficient Decoding of Compressed Data.

    ERIC Educational Resources Information Center

    Bassiouni, Mostafa A.; Mukherjee, Amar

    1995-01-01

    Discusses the problem of enhancing the speed of Huffman decoding of compressed data. Topics addressed include the Huffman decoding tree; multibit decoding; binary string mapping problems; and algorithms for solving mapping problems. (22 references) (LRW)

  7. Enhanced Performance of Streamline-Traced External-Compression Supersonic Inlets

    NASA Technical Reports Server (NTRS)

    Slater, John W.

    2015-01-01

    A computational design study was conducted to enhance the aerodynamic performance of streamline-traced, external-compression inlets for Mach 1.6. The current study explored a new parent flowfield for the streamline tracing and several variations of inlet design factors, including the axial displacement and angle of the subsonic cowl lip, the vertical placement of the engine axis, and the use of porous bleed in the subsonic diffuser. The performance was enhanced over that of an earlier streamline-traced inlet such as to increase the total pressure recovery and reduce total pressure distortion

  8. Hund's Induced Fermi-Liquid Instabilities and Enhanced Quasiparticle Interactions.

    PubMed

    De' Medici, Luca

    2017-04-21

    Hund's coupling is shown to generally favor, in a doped half-filled Mott insulator, an increase in the compressibility culminating in a Fermi-liquid instability towards phase separation. The largest effect is found near the frontier between an ordinary and an orbitally decoupled ("Hund's") metal. The increased compressibility implies an enhancement of quasiparticle scattering, thus favoring other possible symmetry breakings. This physics is shown to happen in simulations of the 122 Fe-based superconductors, possibly implying the relevance of this mechanism in the enhancement of the critical temperature for superconductivity.

  9. Hot-compress: A new postdeposition treatment for ZnO-based flexible dye-sensitized solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haque Choudhury, Mohammad Shamimul, E-mail: shamimul129@gmail.com; Department of Electrical and Electronic Engineering, International Islamic University Chittagong, b154/a, College Road, Chittagong 4203; Kishi, Naoki

    2016-08-15

    Highlights: • A new postdeposition treatment named hot-compress is introduced. • Hot-compression gives homogeneous compact layer ZnO photoanode. • I-V and EIS analysis data confirms the efficacy of this method. • Charge transport resistance was reduced by the application of hot-compression. - Abstract: This article introduces a new postdeposition treatment named hot-compress for flexible zinc oxide–base dye-sensitized solar cells. This postdeposition treatment includes the application of compression pressure at an elevated temperature. The optimum compression pressure of 130 Ma at an optimum compression temperature of 70 °C heating gives better photovoltaic performance compared to the conventional cells. The aptness ofmore » this method was confirmed by investigating scanning electron microscopy image, X-ray diffraction, current-voltage and electrochemical impedance spectroscopy analysis of the prepared cells. Proper heating during compression lowers the charge transport resistance, longer the electron lifetime of the device. As a result, the overall power conversion efficiency of the device was improved about 45% compared to the conventional room temperature compressed cell.« less

  10. Applications of data compression techniques in modal analysis for on-orbit system identification

    NASA Technical Reports Server (NTRS)

    Carlin, Robert A.; Saggio, Frank; Garcia, Ephrahim

    1992-01-01

    Data compression techniques have been investigated for use with modal analysis applications. A redundancy-reduction algorithm was used to compress frequency response functions (FRFs) in order to reduce the amount of disk space necessary to store the data and/or save time in processing it. Tests were performed for both single- and multiple-degree-of-freedom (SDOF and MDOF, respectively) systems, with varying amounts of noise. Analysis was done on both the compressed and uncompressed FRFs using an SDOF Nyquist curve fit as well as the Eigensystem Realization Algorithm. Significant savings were realized with minimal errors incurred by the compression process.

  11. Study of the potential for improving the economics of hydrogen liquefaction through the use of centrifugal compressors and the addition of a heavy water plant

    NASA Technical Reports Server (NTRS)

    Baker, C. R.

    1977-01-01

    An approach to the liquefaction of hydrogen was developed which permits the application of standard centrifugal compressors in place of reciprocating machines. A second fluid, such as propane, is added to the hydrogen prior to compression to form a mixture having a molecular weight much greater than that of hydrogen alone, so that a standard centrifugal compressor can be used. After compression, the mixture is cooled to cryogenic temperature levels where the propane condenses out of the mixture and is separated as a liquid. Since a small amount of deuterium is produced during hydrogen liquefaction, the potential of recovering deuterium and selling it as a co-product was investigated. Deuterium, in the form of heavy water, can be used in certain nuclear reactors as a neutron moderator to reduce the neutron velocity and enhance the probability of neutron collision with uranium nucleii.

  12. Factors Affecting Bacterial Inactivation during High Hydrostatic Pressure Processing of Foods: A Review.

    PubMed

    Syed, Qamar-Abbas; Buffa, Martin; Guamis, Buenaventura; Saldo, Jordi

    2016-01-01

    Although, the High Hydrostatic Pressure (HHP) technology has been gaining gradual popularity in food industry since last two decades, intensive research is needed to explore the missing information. Bacterial inactivation in food by using HHP applications can be enhanced by getting deeper insights of the process. Some of these aspects have been already studied in detail (like pressure, time, and temperature, etc.), while some others still need to be investigated in more details (like pH, rates of compression, and decompression, etc.). Selection of process parameters is mainly dependent on type of matrix and target bacteria. This intensive review provides comprehensive information about the variety of aspects that can determine the bacterial inactivation potential of HHP process indicating the fields of future research on this subject including pH shifts of the pressure treated samples and critical limits of compression and decompression rates to accelerate the process efficacy.

  13. Enhancing Ultimate Compressive Strength of Notch Embedded Steel Cylinders Using Overwrap CFRP Patch

    NASA Astrophysics Data System (ADS)

    Kabir, Mohammad Z.; Nazari, Alireza

    2012-06-01

    In this study, the application of Fiber Reinforced Polymer (FRP) patch for strengthening of the damaged area in thin walled steel cylinders under compression loading was investigated. In this direction, some experimental tests were carried out on the selected notch induced specimens with unique diameter-to-thickness ratio (D/t). The obtained results were compared to the intact cylinder in order to find out the reduction effect of notch on the buckling load of cylinders. Following that, the notched specimens were treated using externally FRP by wrapping around the notched area and the stability strength of the retrofitted specimens was measured experimentally. The investigation was also carried out in numerical analysis using FEM in order to develop the proposed technique for determination of optimum FRP configurations and also better understanding of the experimental observations considering the nonlinear behavior and failure modes for composite member.

  14. Compressive Video Recovery Using Block Match Multi-Frame Motion Estimation Based on Single Pixel Cameras

    PubMed Central

    Bi, Sheng; Zeng, Xiao; Tang, Xin; Qin, Shujia; Lai, King Wai Chiu

    2016-01-01

    Compressive sensing (CS) theory has opened up new paths for the development of signal processing applications. Based on this theory, a novel single pixel camera architecture has been introduced to overcome the current limitations and challenges of traditional focal plane arrays. However, video quality based on this method is limited by existing acquisition and recovery methods, and the method also suffers from being time-consuming. In this paper, a multi-frame motion estimation algorithm is proposed in CS video to enhance the video quality. The proposed algorithm uses multiple frames to implement motion estimation. Experimental results show that using multi-frame motion estimation can improve the quality of recovered videos. To further reduce the motion estimation time, a block match algorithm is used to process motion estimation. Experiments demonstrate that using the block match algorithm can reduce motion estimation time by 30%. PMID:26950127

  15. Improvement of fatigue resistance for multilayer lead zirconate titanate (PZT)-based ceramic actuators by external mechanical loads

    NASA Astrophysics Data System (ADS)

    Yang, Gang; Yue, Zhenxing; Ji, Ye; Chu, Xiangcheng; Li, Longtu

    2008-12-01

    The influence of external compressive loads, applied along a direction perpendicular to polarization, on fatigue behaviors of multilayer lead zirconate titanate (PZT)-based ceramic actuators was investigated. Under no external mechanical load, a normal fatigue behavior was observed, demonstrating that both switching polarization (Pswitching) and remnant polarization (Pr) progressively decreased with increasing switching cycles due to domain pinning by charge point defects. However, an anomalous enhancement in both switching and remnant polarizations was observed upon application of the external compressive loads. After 5×106 cycles of polarization switching, Pswitching and Pr increase by about 13% and 6% at 40 MPa, respectively, while Pswitching and Pr increase by about 11% and 21% at 60 MPa, respectively. The improvement of fatigue resistance can be attributed to non-180° domain switching and suppression of microcracking, triggered by external mechanical loads.

  16. Modeling Encapsulated Microbubble Dynamics at High Pressure Amplitudes

    NASA Astrophysics Data System (ADS)

    Heyse, Jan F.; Bose, Sanjeeb; Iaccarino, Gianluca

    2017-11-01

    Encapsulated microbubbles are commonly used in ultrasound contrast imaging and are of growing interest in therapeutic applications where local cavitation creates temporary perforations in cell membranes allowing for enhanced drug delivery. Clinically used microbubbles are encapsulated by a shell commonly consisting of protein, polymer, or phospholipid; the response of these bubbles to externally imposed ultrasound waves is sensitive to the compressibility of the encapsulating shell. Existing models approximate the shell compressibility via an effective surface tension (Marmottant et al. 2005). We present simulations of microbubbles subjected to high amplitude ultrasound waves (on the order of 106 Pa) and compare the results with the experimental measurements of Helfield et al. (2016). Analysis of critical points (corresponding to maximum and minimum expansion) in the governing Rayleigh-Plesset equation is used to make estimates of the parameters used to characterize the effective surface tension of the encapsulating shell. Stanford Graduate Fellowship.

  17. Adsorbed Natural Gas Storage in Optimized High Surface Area Microporous Carbon

    NASA Astrophysics Data System (ADS)

    Romanos, Jimmy; Rash, Tyler; Nordwald, Erik; Shocklee, Joshua Shawn; Wexler, Carlos; Pfeifer, Peter

    2011-03-01

    Adsorbed natural gas (ANG) is an attractive alternative technology to compressed natural gas (CNG) or liquefied natural gas (LNG) for the efficient storage of natural gas, in particular for vehicular applications. In adsorbants engineered to have pores of a few molecular diameters, a strong van der Walls force allows reversible physisorption of methane at low pressures and room temperature. Activated carbons were optimized for storage by varying KOH:C ratio and activation temperature. We also consider the effect of mechanical compression of powders to further enhance the volumetric storage capacity. We will present standard porous material characterization (BET surface area and pore-size distribution from subcritical N2 adsorption) and methane isotherms up to 250 bar at 293K. At sufficiently high pressure, specific surface area, methane binding energy and film density can be extracted from supercritical methane adsorption isotherms. Research supported by the California Energy Commission (500-08-022).

  18. Fabrication and characterization of highly porous barium titanate based scaffold coated by Gel/HA nanocomposite with high piezoelectric coefficient for bone tissue engineering applications.

    PubMed

    Ehterami, Arian; Kazemi, Mansure; Nazari, Bahareh; Saraeian, Payam; Azami, Mahmoud

    2018-03-01

    It is well established that the piezoelectric effect plays an important physiological role in bone growth, remodeling and fracture healing. Barium titanate, as a well-known piezoelectric ceramic, is especially an attractive material as a scaffold for bone tissue engineering applications. In this regard, we tried to fabricate a highly porous barium titanate based scaffolds by foam replication method and polarize them by applying an external electric field. In order to enhance the mechanical and biological properties, polarized/non-polarized scaffolds were coated with gelatin and nanostructured HA and characterized for their morphologies, porosities, piezoelectric and mechanical properties. The results showed that the compressive strength and piezoelectric coefficient of porous scaffolds increased with the increase of sintering temperature. After being coated with Gel/HA nanocomposite, the interconnected porous structure and pore size of the scaffolds almost remain unchanged while the Gel/nHA-coated scaffolds exhibited enhanced compressive strength and elastic modulus compared with the uncoated samples. Also, the effect of polarizing and coating of optimal scaffolds on adhesion, viability, and proliferation of the MG63 osteoblast-like cell line was evaluated by scanning electron microscope (SEM) and MTT assay. The cell culture experiments revealed that developed scaffolds had good biocompatibility and cells were able to adhere, proliferate and migrate into pores of the scaffolds. Furthermore, cell density was significantly higher in the coated scaffolds at all tested time-points. These results indicated that highly porous barium titanate scaffolds coated with Gel/HA nanocomposite has great potential in tissue engineering applications for bone tissue repair and regeneration. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Beam dynamics performances and applications of a low-energy electron-beam magnetic bunch compressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prokop, C. R.; Piot, P.; Carlsten, B. E.

    2013-08-01

    Many front-end applications of electron linear accelerators rely on the production of temporally compressed bunches. The shortening of electron bunches is often realized with magnetic bunch compressors located in high-energy sections of accelerators. Magnetic compression is subject to collective effects including space charge and self interaction via coherent synchrotron radiation. In this paper we explore the application of magnetic compression to low-energy (~40MeV), high-charge (nC) electron bunches with low normalized transverse emittances (<5@mm).

  20. Ultrasonic data compression via parameter estimation.

    PubMed

    Cardoso, Guilherme; Saniie, Jafar

    2005-02-01

    Ultrasonic imaging in medical and industrial applications often requires a large amount of data collection. Consequently, it is desirable to use data compression techniques to reduce data and to facilitate the analysis and remote access of ultrasonic information. The precise data representation is paramount to the accurate analysis of the shape, size, and orientation of ultrasonic reflectors, as well as to the determination of the properties of the propagation path. In this study, a successive parameter estimation algorithm based on a modified version of the continuous wavelet transform (CWT) to compress and denoise ultrasonic signals is presented. It has been shown analytically that the CWT (i.e., time x frequency representation) yields an exact solution for the time-of-arrival and a biased solution for the center frequency. Consequently, a modified CWT (MCWT) based on the Gabor-Helstrom transform is introduced as a means to exactly estimate both time-of-arrival and center frequency of ultrasonic echoes. Furthermore, the MCWT also has been used to generate a phase x bandwidth representation of the ultrasonic echo. This representation allows the exact estimation of the phase and the bandwidth. The performance of this algorithm for data compression and signal analysis is studied using simulated and experimental ultrasonic signals. The successive parameter estimation algorithm achieves a data compression ratio of (1-5N/J), where J is the number of samples and N is the number of echoes in the signal. For a signal with 10 echoes and 2048 samples, a compression ratio of 96% is achieved with a signal-to-noise ratio (SNR) improvement above 20 dB. Furthermore, this algorithm performs robustly, yields accurate echo estimation, and results in SNR enhancements ranging from 10 to 60 dB for composite signals having SNR as low as -10 dB.

  1. Physical insights of cavity confinement enhancing effect in laser-induced breakdown spectroscopy.

    PubMed

    Fu, Yangting; Hou, Zongyu; Wang, Zhe

    2016-02-08

    Using cavity confinement to enhance the plasma emission has been proved to be an effective way in LIBS technique while no direct visual evidence has been made to illustrate the physical mechanism of this enhancing effect. In this work, both laser-induced plasma plume images and shockwave images were obtained and synchronized for both flat surface case and rectangular cavity case. Phenomena of shockwave reflection, plasma compression by the reflected shockwave and merge of the reflected shockwave into plasma were observed. Plasma emission intensities recorded by ICCD in both cases were compared and the enhancement effect in the cavity case was identified in the comparison. The enhancement effect could be explained as reflected shockwave "compressing" effect, that is, the reflected shockwave would compress the plasma and result in a more condensed plasma core area with higher plasma temperature. Reflected shockwave also possibly contributed to plasma core position stabilization, which indicated the potential of better plasma signal reproducibility for the cavity case. Both plasma emission enhancement and plasma core position stabilization only exist within a certain temporal window, which indicates that the delay time of spectra acquisition is essential while using cavity confinement as a way to improve LIBS performance.

  2. Micromechanics of compression failures in open hole composite laminates

    NASA Technical Reports Server (NTRS)

    Guynn, E. Gail; Bradley, Walter L.

    1987-01-01

    The high strength-to-weight ratio of composite materials is ideally suited for aerospace applications where they already are used in commercial and military aircraft secondary structures and will soon be used for heavily loaded primary structures. One area impeding the widespread application of composites is their inherent weakness in compressive strength when compared to the tensile properties of the same material. Furthermore, these airframe designs typically contain many bolted or riveted joints, as well as electrical and hydraulic control lines. These applications produce areas of stress concentration, and thus, further complicate the compression failure problem. Open hole compression failures which represent a typical failure mode for composite materials are addressed.

  3. Iris Recognition: The Consequences of Image Compression

    NASA Astrophysics Data System (ADS)

    Ives, Robert W.; Bishop, Daniel A.; Du, Yingzi; Belcher, Craig

    2010-12-01

    Iris recognition for human identification is one of the most accurate biometrics, and its employment is expanding globally. The use of portable iris systems, particularly in law enforcement applications, is growing. In many of these applications, the portable device may be required to transmit an iris image or template over a narrow-bandwidth communication channel. Typically, a full resolution image (e.g., VGA) is desired to ensure sufficient pixels across the iris to be confident of accurate recognition results. To minimize the time to transmit a large amount of data over a narrow-bandwidth communication channel, image compression can be used to reduce the file size of the iris image. In other applications, such as the Registered Traveler program, an entire iris image is stored on a smart card, but only 4 kB is allowed for the iris image. For this type of application, image compression is also the solution. This paper investigates the effects of image compression on recognition system performance using a commercial version of the Daugman iris2pi algorithm along with JPEG-2000 compression, and links these to image quality. Using the ICE 2005 iris database, we find that even in the face of significant compression, recognition performance is minimally affected.

  4. High-temperature Mechanical Properties and Microstructure of ZrTiHfNbMox (x=0.5, 1.0, 1.5) Refractory High Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Chen, Y. W.; Li, Y. K.; Cheng, X. W.; Wu, C.; Cheng, B.

    2018-05-01

    Refractory high entropy alloys (RHEAs), with excellent properties at high temperature, have several applications. In this work, the ZrTiHfNbMox (x=0.5, 1.0, 1.5) alloys were prepared by arc melting. All these alloys form body centered cubic (BCC) structure without other intermediate phases. The Mo element contributes to the strength of alloys at high temperature, but too much of Mo decreases the plasticity severely and enhances the strength. The ZrTiHfNbMo alloy, whose compressive stress is 1099 MPa at 800° C, is a promising material for high-temperature applications.

  5. Visual Communications and Image Processing

    NASA Astrophysics Data System (ADS)

    Hsing, T. Russell

    1987-07-01

    This special issue of Optical Engineering is concerned with visual communications and image processing. The increase in communication of visual information over the past several decades has resulted in many new image processing and visual communication systems being put into service. The growth of this field has been rapid in both commercial and military applications. The objective of this special issue is to intermix advent technology in visual communications and image processing with ideas generated from industry, universities, and users through both invited and contributed papers. The 15 papers of this issue are organized into four different categories: image compression and transmission, image enhancement, image analysis and pattern recognition, and image processing in medical applications.

  6. EBLAST: an efficient high-compression image transformation 3. application to Internet image and video transmission

    NASA Astrophysics Data System (ADS)

    Schmalz, Mark S.; Ritter, Gerhard X.; Caimi, Frank M.

    2001-12-01

    A wide variety of digital image compression transforms developed for still imaging and broadcast video transmission are unsuitable for Internet video applications due to insufficient compression ratio, poor reconstruction fidelity, or excessive computational requirements. Examples include hierarchical transforms that require all, or large portion of, a source image to reside in memory at one time, transforms that induce significant locking effect at operationally salient compression ratios, and algorithms that require large amounts of floating-point computation. The latter constraint holds especially for video compression by small mobile imaging devices for transmission to, and compression on, platforms such as palmtop computers or personal digital assistants (PDAs). As Internet video requirements for frame rate and resolution increase to produce more detailed, less discontinuous motion sequences, a new class of compression transforms will be needed, especially for small memory models and displays such as those found on PDAs. In this, the third series of papers, we discuss the EBLAST compression transform and its application to Internet communication. Leading transforms for compression of Internet video and still imagery are reviewed and analyzed, including GIF, JPEG, AWIC (wavelet-based), wavelet packets, and SPIHT, whose performance is compared with EBLAST. Performance analysis criteria include time and space complexity and quality of the decompressed image. The latter is determined by rate-distortion data obtained from a database of realistic test images. Discussion also includes issues such as robustness of the compressed format to channel noise. EBLAST has been shown to perform superiorly to JPEG and, unlike current wavelet compression transforms, supports fast implementation on embedded processors with small memory models.

  7. Determine the Compressive Strength of Calcium Silicate Bricks by Combined Nondestructive Method

    PubMed Central

    2014-01-01

    The paper deals with the application of combined nondestructive method for assessment of compressive strength of calcium silicate bricks. In this case, it is a combination of the rebound hammer method and ultrasonic pulse method. Calibration relationships for determining compressive strength of calcium silicate bricks obtained from nondestructive parameter testing for the combined method as well as for the L-type Schmidt rebound hammer and ultrasonic pulse method are quoted here. Calibration relationships are known for their close correlation and are applicable in practice. The highest correlation between parameters from nondestructive measurement and predicted compressive strength is obtained using the SonReb combined nondestructive method. Combined nondestructive SonReb method was proved applicable for determination of compressive strength of calcium silicate bricks at checking tests in a production plant and for evaluation of bricks built in existing masonry structures. PMID:25276864

  8. Squeezing of Ion Populations and Peaks in Traveling Wave Ion Mobility Separations and Structures for Lossless Ion Manipulations using Compression Ratio Ion Mobility Programming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garimella, Venkata BS; Hamid, Ahmed M.; Deng, Liulin

    In this work, we report an approach for spatial and temporal gas phase ion population manipulation, and demonstrate its application for the collapse of the ion distributions in ion mobility (IM) separations into tighter packets providing higher sensitivity measurements in conjunction with mass spectrometry (MS). We do this for ions moving from a conventionally traveling wave (TW)-driven region to a region where the TW is intermittently halted or ‘stuttered’. This approach causes the ion packets spanning a number of TW-created traveling traps (TT) to be redistributed into fewer TT, resulting in spatial compression. The degree of spatial compression is controllablemore » and determined by the ratio of stationary time of the TW in the second region to its moving time. This compression ratio ion mobility programming (CRIMP) approach has been implemented using Structures for Lossless Ion Manipulations (SLIM) in conjunction with MS. CRIMP with the SLIM-MS platform is shown to provide increased peak intensities, reduced peak widths, and improved S/N ratios with MS detection. CRIMP also provides a foundation for extremely long path length and multi-pass IM separations in SLIM providing greatly enhanced IM resolution by reducing the detrimental effects of diffusional peak broadening due to increasing peak widths.« less

  9. Improvement of gas hydrate preservation by increasing compression pressure to simple hydrates of methane, ethane, and propane

    NASA Astrophysics Data System (ADS)

    Kida, Masato; Jin, Yusuke; Watanabe, Mizuho; Murayama, Tetsuro; Nagao, Jiro

    2017-09-01

    In this report, we describe the dissociation behavior of gas hydrate grains pressed at 1 and 6 MPa. Certain simple gas hydrates in powder form show anomalous preservation phenomenon under their thermodynamic unstable condition. Investigation of simple hydrates of methane, ethane, and propane reveals that high pressure applied to the gas hydrate particles enhances their preservation effects. Application of high pressure increases the dissociation temperature of methane hydrate and has a restrictive effect against the dissociation of ethane and propane hydrate grains. These improvements of gas hydrate preservation by increasing pressure to the initial gas hydrate particles imply that appropriate pressure applied to gas hydrate particles enhances gas hydrate preservation effects.

  10. Low Complexity Compression and Speed Enhancement for Optical Scanning Holography

    PubMed Central

    Tsang, P. W. M.; Poon, T.-C.; Liu, J.-P.; Kim, T.; Kim, Y. S.

    2016-01-01

    In this paper we report a low complexity compression method that is suitable for compact optical scanning holography (OSH) systems with different optical settings. Our proposed method can be divided into 2 major parts. First, an automatic decision maker is applied to select the rows of holographic pixels to be scanned. This process enhances the speed of acquiring a hologram, and also lowers the data rate. Second, each row of down-sampled pixels is converted into a one-bit representation with delta modulation (DM). Existing DM-based hologram compression techniques suffers from the disadvantage that a core parameter, commonly known as the step size, has to be determined in advance. However, the correct value of the step size for compressing each row of hologram is dependent on the dynamic range of the pixels, which could deviate significantly with the object scene, as well as OSH systems with different opical settings. We have overcome this problem by incorporating a dynamic step-size adjustment scheme. The proposed method is applied in the compression of holograms that are acquired with 2 different OSH systems, demonstrating a compression ratio of over two orders of magnitude, while preserving favorable fidelity on the reconstructed images. PMID:27708410

  11. StirMark Benchmark: audio watermarking attacks based on lossy compression

    NASA Astrophysics Data System (ADS)

    Steinebach, Martin; Lang, Andreas; Dittmann, Jana

    2002-04-01

    StirMark Benchmark is a well-known evaluation tool for watermarking robustness. Additional attacks are added to it continuously. To enable application based evaluation, in our paper we address attacks against audio watermarks based on lossy audio compression algorithms to be included in the test environment. We discuss the effect of different lossy compression algorithms like MPEG-2 audio Layer 3, Ogg or VQF on a selection of audio test data. Our focus is on changes regarding the basic characteristics of the audio data like spectrum or average power and on removal of embedded watermarks. Furthermore we compare results of different watermarking algorithms and show that lossy compression is still a challenge for most of them. There are two strategies for adding evaluation of robustness against lossy compression to StirMark Benchmark: (a) use of existing free compression algorithms (b) implementation of a generic lossy compression simulation. We discuss how such a model can be implemented based on the results of our tests. This method is less complex, as no real psycho acoustic model has to be applied. Our model can be used for audio watermarking evaluation of numerous application fields. As an example, we describe its importance for e-commerce applications with watermarking security.

  12. A Lower Bound on Adiabatic Heating of Compressed Turbulence for Simulation and Model Validation

    DOE PAGES

    Davidovits, Seth; Fisch, Nathaniel J.

    2017-03-31

    The energy in turbulent flow can be amplied by compression, when the compression occurs on a timescale shorter than the turbulent dissipation time. This mechanism may play a part in sustaining turbulence in various astrophysical systems, including molecular clouds. The amount of turbulent amplification depends on the net effect of the compressive forcing and turbulent dissipation. By giving an argument for a bound on this dissipation, we give a lower bound for the scaling of the turbulent velocity with compression ratio in compressed turbulence. That is, turbulence undergoing compression will be enhanced at least as much as the bound givenmore » here, subject to a set of caveats that will be outlined. Used as a validation check, this lower bound suggests that some models of compressing astrophysical turbulence are too dissipative. As a result, the technique used highlights the relationship between compressed turbulence and decaying turbulence.« less

  13. 75 FR 81519 - Confirmation, Portfolio Reconciliation, and Portfolio Compression Requirements for Swap Dealers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-28

    ... systemic risk, portfolio reconciliation should be a proactive process that delivers a consolidated view of... achieved by portfolio compression, in turn, may lessen systemic risk and enhance the overall stability of...

  14. Enhanced densification under shock compression in porous silicon

    DOE PAGES

    Lane, J. Matthew; Thompson, Aidan Patrick; Vogler, Tracy

    2014-10-27

    Under shock compression, most porous materials exhibit lower densities for a given pressure than that of a full-dense sample of the same material. However, some porous materials exhibit an anomalous, or enhanced, densification under shock compression. The mechanism driving this behavior was not completely determined. We present evidence from atomistic simulation that pure silicon belongs to this anomalous class of materials and demonstrate the associated mechanisms responsible for the effect in porous silicon. Atomistic response indicates that local shear strain in the neighborhood of collapsing pores catalyzes a local solid-solid phase transformation even when bulk pressures are below the thermodynamicmore » phase transformation pressure. This metastable, local, and partial, solid-solid phase transformation, which accounts for the enhanced densification in silicon, is driven by the local stress state near the void, not equilibrium thermodynamics. This mechanism may also explain the phenomenon in other covalently bonded materials.« less

  15. Valorisation of blueberry waste and use of compression to manufacture sustainable starch films with enhanced properties.

    PubMed

    Luchese, Cláudia Leites; Uranga, Jone; Spada, Jordana Corralo; Tessaro, Isabel Cristina; de la Caba, Koro

    2018-08-01

    Blueberry waste from juice processing was valorised to develop starch films by compression moulding. The compression process resulted in hydrophobic films with water contact angles even higher than 100° for the films prepared with the highest blueberry waste content. Additionally, the film solubility was reduced by the incorporation of blueberry waste, regardless of the solution pH. These films also exhibited good barrier properties against UV light due to the aromatic compounds present in the blueberry waste. Furthermore, films showed a homogenous surface, although some pores appeared in the cross-section for the films with the highest blueberry waste content. Results highlighted the use of thermo-mechanical processes such as compression to manufacture sustainable films with enhanced properties through waste valorisation by the techniques actually employed at industrial scale. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Image compression/decompression based on mathematical transform, reduction/expansion, and image sharpening

    DOEpatents

    Fu, C.Y.; Petrich, L.I.

    1997-12-30

    An image represented in a first image array of pixels is first decimated in two dimensions before being compressed by a predefined compression algorithm such as JPEG. Another possible predefined compression algorithm can involve a wavelet technique. The compressed, reduced image is then transmitted over the limited bandwidth transmission medium, and the transmitted image is decompressed using an algorithm which is an inverse of the predefined compression algorithm (such as reverse JPEG). The decompressed, reduced image is then interpolated back to its original array size. Edges (contours) in the image are then sharpened to enhance the perceptual quality of the reconstructed image. Specific sharpening techniques are described. 22 figs.

  17. Joint image encryption and compression scheme based on IWT and SPIHT

    NASA Astrophysics Data System (ADS)

    Zhang, Miao; Tong, Xiaojun

    2017-03-01

    A joint lossless image encryption and compression scheme based on integer wavelet transform (IWT) and set partitioning in hierarchical trees (SPIHT) is proposed to achieve lossless image encryption and compression simultaneously. Making use of the properties of IWT and SPIHT, encryption and compression are combined. Moreover, the proposed secure set partitioning in hierarchical trees (SSPIHT) via the addition of encryption in the SPIHT coding process has no effect on compression performance. A hyper-chaotic system, nonlinear inverse operation, Secure Hash Algorithm-256(SHA-256), and plaintext-based keystream are all used to enhance the security. The test results indicate that the proposed methods have high security and good lossless compression performance.

  18. Application of content-based image compression to telepathology

    NASA Astrophysics Data System (ADS)

    Varga, Margaret J.; Ducksbury, Paul G.; Callagy, Grace

    2002-05-01

    Telepathology is a means of practicing pathology at a distance, viewing images on a computer display rather than directly through a microscope. Without compression, images take too long to transmit to a remote location and are very expensive to store for future examination. However, to date the use of compressed images in pathology remains controversial. This is because commercial image compression algorithms such as JPEG achieve data compression without knowledge of the diagnostic content. Often images are lossily compressed at the expense of corrupting informative content. None of the currently available lossy compression techniques are concerned with what information has been preserved and what data has been discarded. Their sole objective is to compress and transmit the images as fast as possible. By contrast, this paper presents a novel image compression technique, which exploits knowledge of the slide diagnostic content. This 'content based' approach combines visually lossless and lossy compression techniques, judiciously applying each in the appropriate context across an image so as to maintain 'diagnostic' information while still maximising the possible compression. Standard compression algorithms, e.g. wavelets, can still be used, but their use in a context sensitive manner can offer high compression ratios and preservation of diagnostically important information. When compared with lossless compression the novel content-based approach can potentially provide the same degree of information with a smaller amount of data. When compared with lossy compression it can provide more information for a given amount of compression. The precise gain in the compression performance depends on the application (e.g. database archive or second opinion consultation) and the diagnostic content of the images.

  19. High strength yttria-reinforced HA scaffolds fabricated via honeycomb ceramic extrusion.

    PubMed

    Elbadawi, M; Shbeh, M

    2018-01-01

    The present study investigated the effects of hydroxyapatite (HA) reinforced with yttria on porous scaffolds fabricated via honeycomb ceramic extrusion. Yttria was selected as it has been demonstrated to toughen other ceramics. Moreover, yttria has been surmised to suppress dehydroxylation in HA, a characteristic that prefigures decomposition thereof during sintering into mechanically weaker phases. However, the compressive strength of yttria-reinforced hydroxyapatite (Y-HA) porous scaffolds has hitherto not been reported. Y-HA was synthesised by calcining a commercially available HA with 10wt% yttria at 1000°C. Y-HA was then fabricated into porous scaffolds using an in-house honeycomb extruder, and subsequently sintered at 1200 and 1250°C. The results were compared to the uncalcined as-received commercial powder (AR-HA) and calcined pure HA powder at 1000°C (C-HA). It was discovered that calcination alone caused marked improvements to the stoichiometry, thermal stability, porosity and compressive strength of scaffolds. The improvements were ascribed to the calcined powders with less susceptibility to both agglomeration and enhanced densification. Still, differences were observed between C-HA and Y-HA at 1250°C. The compressive strength increased from 105.9 to 127.3MPa, a larger microporosity was descried and the HA matrix in Y-HA was more stoichiometric. The latter was confirmed by XRD and EDS analyses. Therefore, it was concluded that the reinforcing of hydroxyapatite with yttria improved the compressive strength and suppressed dehydroxylation of porous HA scaffolds. In addition, the compressive strength achieved demonstrated great potential for load-bearing application. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Combined Industry, Space and Earth Science Data Compression Workshop

    NASA Technical Reports Server (NTRS)

    Kiely, Aaron B. (Editor); Renner, Robert L. (Editor)

    1996-01-01

    The sixth annual Space and Earth Science Data Compression Workshop and the third annual Data Compression Industry Workshop were held as a single combined workshop. The workshop was held April 4, 1996 in Snowbird, Utah in conjunction with the 1996 IEEE Data Compression Conference, which was held at the same location March 31 - April 3, 1996. The Space and Earth Science Data Compression sessions seek to explore opportunities for data compression to enhance the collection, analysis, and retrieval of space and earth science data. Of particular interest is data compression research that is integrated into, or has the potential to be integrated into, a particular space or earth science data information system. Preference is given to data compression research that takes into account the scien- tist's data requirements, and the constraints imposed by the data collection, transmission, distribution and archival systems.

  1. Temperature-sensitive release of prostaglandin E₂ and diminished energy requirements in synovial tissue with postoperative cryotherapy: a prospective randomized study after knee arthroscopy.

    PubMed

    Stålman, Anders; Berglund, Lukas; Dungnerc, Elisabeth; Arner, Peter; Felländer-Tsai, Li

    2011-11-02

    Local external cooling of the surgical field after joint surgery is intended to enhance recovery and to facilitate the use of outpatient surgery by reducing pain and improving mobility. We hypothesized that the effects of postoperative cooling and compression after knee arthroscopy would be reflected in changes in the concentrations of metabolic and inflammatory markers in the synovial membrane. Forty otherwise healthy patients who were to undergo knee arthroscopy were included in the study, and half were randomized to receive postoperative cooling and compression. Microdialysis of the synovial membrane was performed postoperatively, and the concentrations of prostaglandin E₂ (PGE₂), glucose, lactate, glycerol, and glutamate as well as the ethanol exchange ratio (which indicates blood flow) were measured. The temperature of the knee was monitored, and postoperative pain was assessed by the patient with use of a visual analog scale, a numeric rating scale, and the need for rescue medication. Application of the cooling and compression device after knee arthroscopy significantly lowered the temperature in the operatively treated knee (as measured on the skin, within the joint capsule, and intra-articularly). The cooling and compression appeared to decrease inflammation, as indicated by a temperature-sensitive decrease in the PGE₂ concentration. The hypothermia also decreased the metabolic rate of the synovial tissue and thus decreased energy requirements, as shown by the stability of the lactate concentration over time despite the decreased blood flow that was indicated by the increasing ethanol exchange ratio. No effect of the compression and cooling on postoperative pain was detected. Local cryotherapy and compression after knee arthroscopy significantly lowered the temperature in the knee postoperatively, and the synovial PGE₂ concentration was correlated with the temperature. Since PGE₂ is a marker of pain and inflammation, the postoperative local cooling and compression appeared to have a positive anti-inflammatory effect.

  2. A protocol for monitoring soft tissue motion under compression garments during drop landings.

    PubMed

    Mills, Chris; Scurr, Joanna; Wood, Louise

    2011-06-03

    This study used a single-subject design to establish a valid and reliable protocol for monitoring soft tissue motion under compression garments during drop landings. One male participant performed six 40 cm drop landings onto a force platform, in three compression conditions (none, medium high). Five reflective markers placed on the thigh under the compression garment and five over the garment were filmed using two cameras (1000 Hz). Following manual digitisation, marker coordinates were reconstructed and their resultant displacements and maximum change in separation distance between skin and garment markers were calculated. To determine reliability of marker application, 35 markers were attached to the thigh over the high compression garment and filmed. Markers were then removed and re-applied on three occasions; marker separation and distance to thigh centre of gravity were calculated. Results showed similar ground reaction forces during landing trials. Significant reductions in the maximum change in separation distance between markers from no compression to high compression landings were reported. Typical errors in marker movement under and over the garment were 0.1mm in medium and high compression landings. Re-application of markers showed mean typical errors of 1mm in marker separation and <3mm relative to thigh centre of gravity. This paper presents a novel protocol that demonstrates sufficient sensitivity to detect reductions in soft tissue motion during landings in high compression garments compared to no compression. Additionally, markers placed under or over the garment demonstrate low variance in movement, and the protocol reports good reliability in marker re-application. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Curvelet-based compressive sensing for InSAR raw data

    NASA Astrophysics Data System (ADS)

    Costa, Marcello G.; da Silva Pinho, Marcelo; Fernandes, David

    2015-10-01

    The aim of this work is to evaluate the compression performance of SAR raw data for interferometry applications collected by airborne from BRADAR (Brazilian SAR System operating in X and P bands) using the new approach based on compressive sensing (CS) to achieve an effective recovery with a good phase preserving. For this framework is desirable a real-time capability, where the collected data can be compressed to reduce onboard storage and bandwidth required for transmission. In the CS theory, a sparse unknown signals can be recovered from a small number of random or pseudo-random measurements by sparsity-promoting nonlinear recovery algorithms. Therefore, the original signal can be significantly reduced. To achieve the sparse representation of SAR signal, was done a curvelet transform. The curvelets constitute a directional frame, which allows an optimal sparse representation of objects with discontinuities along smooth curves as observed in raw data and provides an advanced denoising optimization. For the tests were made available a scene of 8192 x 2048 samples in range and azimuth in X-band with 2 m of resolution. The sparse representation was compressed using low dimension measurements matrices in each curvelet subband. Thus, an iterative CS reconstruction method based on IST (iterative soft/shrinkage threshold) was adjusted to recover the curvelets coefficients and then the original signal. To evaluate the compression performance were computed the compression ratio (CR), signal to noise ratio (SNR), and because the interferometry applications require more reconstruction accuracy the phase parameters like the standard deviation of the phase (PSD) and the mean phase error (MPE) were also computed. Moreover, in the image domain, a single-look complex image was generated to evaluate the compression effects. All results were computed in terms of sparsity analysis to provides an efficient compression and quality recovering appropriated for inSAR applications, therefore, providing a feasibility for compressive sensing application.

  4. 49 CFR 393.68 - Compressed natural gas fuel containers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Compressed natural gas fuel containers. 393.68... AND ACCESSORIES NECESSARY FOR SAFE OPERATION Fuel Systems § 393.68 Compressed natural gas fuel containers. (a) Applicability. The rules in this section apply to compressed natural gas (CNG) fuel...

  5. 49 CFR 393.68 - Compressed natural gas fuel containers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false Compressed natural gas fuel containers. 393.68... AND ACCESSORIES NECESSARY FOR SAFE OPERATION Fuel Systems § 393.68 Compressed natural gas fuel containers. (a) Applicability. The rules in this section apply to compressed natural gas (CNG) fuel...

  6. The effect of an external mechanical compression on in vivo optical properties of human skin

    NASA Astrophysics Data System (ADS)

    Nakhaeva, I. A.; Mohammed, M. R.; Zyuryukina, O. A.; Sinichkin, Yu. P.

    2014-09-01

    We have studied the influence of an external mechanical compression on diffuse reflection spectra of skin tissue under in vivo conditions. An analysis of these spectra based on the diffusion approximation of the radiation transfer theory has allowed us to find that the application of the external compression weakens absorbing and scattering properties of skin tissue. After the removal of the compression, the recovery time of the skin tissue (on the order of 1 h) considerably exceeds the stabilization time of its parameters after application of external mechanical compression (several minutes). In this case, at the initial moment of time after the removal of the compression, the fullness of blood vessels and the degree of oxygenation of blood hemoglobin in the skin tissue increase considerably compared to normal skin.

  7. Information-Adaptive Image Encoding and Restoration

    NASA Technical Reports Server (NTRS)

    Park, Stephen K.; Rahman, Zia-ur

    1998-01-01

    The multiscale retinex with color restoration (MSRCR) has shown itself to be a very versatile automatic image enhancement algorithm that simultaneously provides dynamic range compression, color constancy, and color rendition. A number of algorithms exist that provide one or more of these features, but not all. In this paper we compare the performance of the MSRCR with techniques that are widely used for image enhancement. Specifically, we compare the MSRCR with color adjustment methods such as gamma correction and gain/offset application, histogram modification techniques such as histogram equalization and manual histogram adjustment, and other more powerful techniques such as homomorphic filtering and 'burning and dodging'. The comparison is carried out by testing the suite of image enhancement methods on a set of diverse images. We find that though some of these techniques work well for some of these images, only the MSRCR performs universally well oil the test set.

  8. Biochemical process of ureolysis-based microbial CaCO3 precipitation and its application in self-healing concrete.

    PubMed

    Xu, Jing; Wang, Xianzhi; Wang, Binbin

    2018-04-01

    Urea hydrolysis has already been considered as the most effective pathway for microbially induced CaCO 3 precipitation (MICP). The present work first studied the combination of several key factors including initial pH, temperature, and dosage of urea, which contribute to the biochemical process of MICP. Under an amiable condition of pH and temperature, the dosage of urea has a significant impact on the rate of urea degradation and CaCO 3 precipitation. A bacteria-based self-healing system was developed by loading healing agents on ceramsite carriers. The self-healing efficiency was evaluated by visual inspection on crack closure, compressive strength regain, and capillary water absorption. A preferable healing effectiveness was obtained when the bacteria and organic nutrients were co-immobilized in carriers. Image analysis showed that cracks up to 273 μm could be healed with a crack closure ratio of 86% in 28 days. The compressive strength regain increased 24% and the water absorption coefficient decreased 27% compared to the reference. The findings indicated a promising application of ureolysis-based MICP in restoring the mechanical properties and enhancing the durability of concrete.

  9. Design of a digital compression technique for shuttle television

    NASA Technical Reports Server (NTRS)

    Habibi, A.; Fultz, G.

    1976-01-01

    The determination of the performance and hardware complexity of data compression algorithms applicable to color television signals, were studied to assess the feasibility of digital compression techniques for shuttle communications applications. For return link communications, it is shown that a nonadaptive two dimensional DPCM technique compresses the bandwidth of field-sequential color TV to about 13 MBPS and requires less than 60 watts of secondary power. For forward link communications, a facsimile coding technique is recommended which provides high resolution slow scan television on a 144 KBPS channel. The onboard decoder requires about 19 watts of secondary power.

  10. Enhancement of Satellite Image Compression Using a Hybrid (DWT-DCT) Algorithm

    NASA Astrophysics Data System (ADS)

    Shihab, Halah Saadoon; Shafie, Suhaidi; Ramli, Abdul Rahman; Ahmad, Fauzan

    2017-12-01

    Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) image compression techniques have been utilized in most of the earth observation satellites launched during the last few decades. However, these techniques have some issues that should be addressed. The DWT method has proven to be more efficient than DCT for several reasons. Nevertheless, the DCT can be exploited to improve the high-resolution satellite image compression when combined with the DWT technique. Hence, a proposed hybrid (DWT-DCT) method was developed and implemented in the current work, simulating an image compression system on-board on a small remote sensing satellite, with the aim of achieving a higher compression ratio to decrease the onboard data storage and the downlink bandwidth, while avoiding further complex levels of DWT. This method also succeeded in maintaining the reconstructed satellite image quality through replacing the standard forward DWT thresholding and quantization processes with an alternative process that employed the zero-padding technique, which also helped to reduce the processing time of DWT compression. The DCT, DWT and the proposed hybrid methods were implemented individually, for comparison, on three LANDSAT 8 images, using the MATLAB software package. A comparison was also made between the proposed method and three other previously published hybrid methods. The evaluation of all the objective and subjective results indicated the feasibility of using the proposed hybrid (DWT-DCT) method to enhance the image compression process on-board satellites.

  11. Performance enhancement of various real-time image processing techniques via speculative execution

    NASA Astrophysics Data System (ADS)

    Younis, Mohamed F.; Sinha, Purnendu; Marlowe, Thomas J.; Stoyenko, Alexander D.

    1996-03-01

    In real-time image processing, an application must satisfy a set of timing constraints while ensuring the semantic correctness of the system. Because of the natural structure of digital data, pure data and task parallelism have been used extensively in real-time image processing to accelerate the handling time of image data. These types of parallelism are based on splitting the execution load performed by a single processor across multiple nodes. However, execution of all parallel threads is mandatory for correctness of the algorithm. On the other hand, speculative execution is an optimistic execution of part(s) of the program based on assumptions on program control flow or variable values. Rollback may be required if the assumptions turn out to be invalid. Speculative execution can enhance average, and sometimes worst-case, execution time. In this paper, we target various image processing techniques to investigate applicability of speculative execution. We identify opportunities for safe and profitable speculative execution in image compression, edge detection, morphological filters, and blob recognition.

  12. LOW-VELOCITY COMPRESSIBLE FLOW THEORY

    EPA Science Inventory

    The widespread application of incompressible flow theory dominates low-velocity fluid dynamics, virtually preventing research into compressible low-velocity flow dynamics. Yet, compressible solutions to simple and well-defined flow problems and a series of contradictions in incom...

  13. 40 CFR 94.1 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.1 Applicability. (a) Except as noted in paragraphs (b) and (c) of...

  14. Permeability hysterisis of limestone during isotropic compression.

    PubMed

    Selvadurai, A P S; Głowacki, A

    2008-01-01

    The evolution of permeability hysterisis in Indiana Limestone during application of isotropic confining pressures up to 60 MPa was measured by conducting one-dimensional constant flow rate tests. These tests were carried out either during monotonic application of the confining pressure or during loading-partial unloading cycles. Irreversible permeability changes occurred during both monotonic and repeated incremental compression of the limestone. Mathematical relationships are developed for describing the evolution of path-dependent permeability during isotropic compression.

  15. Compressive stress system for a gas turbine engine

    DOEpatents

    Hogberg, Nicholas Alvin

    2015-03-24

    The present application provides a compressive stress system for a gas turbine engine. The compressive stress system may include a first bucket attached to a rotor, a second bucket attached to the rotor, the first and the second buckets defining a shank pocket therebetween, and a compressive stress spring positioned within the shank pocket.

  16. Application of the SeDeM Diagram and a new mathematical equation in the design of direct compression tablet formulation.

    PubMed

    Suñé-Negre, Josep M; Pérez-Lozano, Pilar; Miñarro, Montserrat; Roig, Manel; Fuster, Roser; Hernández, Carmen; Ruhí, Ramon; García-Montoya, Encarna; Ticó, Josep R

    2008-08-01

    Application of the new SeDeM Method is proposed for the study of the galenic properties of excipients in terms of the applicability of direct-compression technology. Through experimental studies of the parameters of the SeDeM Method and their subsequent mathematical treatment and graphical expression (SeDeM Diagram), six different DC diluents were analysed to determine whether they were suitable for direct compression (DC). Based on the properties of these diluents, a mathematical equation was established to identify the best DC diluent and the optimum amount to be used when defining a suitable formula for direct compression, depending on the SeDeM properties of the active pharmaceutical ingredient (API) to be used. The results obtained confirm that the SeDeM Method is an appropriate system, effective tool for determining a viable formulation for tablets prepared by direct compression, and can thus be used as the basis for the relevant pharmaceutical development.

  17. Ferromagnetism induced by point defect in Janus monolayer MoSSe regulated by strain engineering

    NASA Astrophysics Data System (ADS)

    Meng, Ming; Li, Tinghui; Li, Shaofeng; Liu, Kuili

    2018-03-01

    The formation and regulation of magnetism dependent on introduced defects in the Janus MoSSe monolayer has attracted much attention because of its potential application in spintronics. Here, we present a theoretical study of defect formation in the MoSSe monolayer and its introduced magnetism under external strain. The tensile deformation induced by external strain not only leads to decreases in defect formation energy, but also enhances magnetic characteristics. However, as compressed deformation increases, the magnetism in the structure induced by Se or S defects remains unchanged because this microstructural deformation adequately spin polarizes unpaired electrons of neighboring Mo atoms. Our results suggest the use of point defect and strain engineering in the Janus MoSSe monolayer for spintronics applications.

  18. Application of Compressive Sensing to Gravitational Microlensing Data and Implications for Miniaturized Space Observatories

    NASA Technical Reports Server (NTRS)

    Korde-Patel, Asmita (Inventor); Barry, Richard K.; Mohsenin, Tinoosh

    2016-01-01

    Compressive Sensing is a technique for simultaneous acquisition and compression of data that is sparse or can be made sparse in some domain. It is currently under intense development and has been profitably employed for industrial and medical applications. We here describe the use of this technique for the processing of astronomical data. We outline the procedure as applied to exoplanet gravitational microlensing and analyze measurement results and uncertainty values. We describe implications for on-spacecraft data processing for space observatories. Our findings suggest that application of these techniques may yield significant, enabling benefits especially for power and volume-limited space applications such as miniaturized or micro-constellation satellites.

  19. Fixed-Rate Compressed Floating-Point Arrays.

    PubMed

    Lindstrom, Peter

    2014-12-01

    Current compression schemes for floating-point data commonly take fixed-precision values and compress them to a variable-length bit stream, complicating memory management and random access. We present a fixed-rate, near-lossless compression scheme that maps small blocks of 4(d) values in d dimensions to a fixed, user-specified number of bits per block, thereby allowing read and write random access to compressed floating-point data at block granularity. Our approach is inspired by fixed-rate texture compression methods widely adopted in graphics hardware, but has been tailored to the high dynamic range and precision demands of scientific applications. Our compressor is based on a new, lifted, orthogonal block transform and embedded coding, allowing each per-block bit stream to be truncated at any point if desired, thus facilitating bit rate selection using a single compression scheme. To avoid compression or decompression upon every data access, we employ a software write-back cache of uncompressed blocks. Our compressor has been designed with computational simplicity and speed in mind to allow for the possibility of a hardware implementation, and uses only a small number of fixed-point arithmetic operations per compressed value. We demonstrate the viability and benefits of lossy compression in several applications, including visualization, quantitative data analysis, and numerical simulation.

  20. Stress-controlled thermoelectric module for energy harvesting and its application for the significant enhancement of the power factor of Bi2Te3-based thermoelectrics

    NASA Astrophysics Data System (ADS)

    Korobeinikov, Igor V.; Morozova, Natalia V.; Lukyanova, Lidia N.; Usov, Oleg A.; Kulbachinskii, Vladimir A.; Shchennikov, Vladimir V.; Ovsyannikov, Sergey V.

    2018-01-01

    We propose a model of a thermoelectric module in which the performance parameters can be controlled by applied tuneable stress. This model includes a miniature high-pressure anvil-type cell and a specially designed thermoelectric module that is compressed between two opposite anvils. High thermally conductive high-pressure anvils that can be made, for instance, of sintered technical diamonds with enhanced thermal conductivity, would enable efficient heat absorption or rejection from a thermoelectric module. Using a high-pressure cell as a prototype of a stress-controlled thermoelectric converter, we investigated the effect of applied high pressure on the power factors of several single-crystalline thermoelectrics, including binary p-type Bi2Te3, and multi-component (Bi,Sb)2Te3 and Bi2(Te,Se,S)3 solid solutions. We found that a moderate applied pressure of a few GPa significantly enhances the power factors of some of these thermoelectrics. Thus, they might be more efficiently utilized in stress-controlled thermoelectric modules. In the example of one of these thermoelectrics crystallizing in the same rhombohedral structure, we examined the crystal lattice stability under moderate high pressures. We uncovered an abnormal compression of the rhombohedral lattice of (Bi0.25,Sb0.75)2Te3 along the c-axis in a hexagonal unit cell, and detected two phase transitions to the C2/m and C2/c monoclinic structures above 9.5 and 18 GPa, respectively.

  1. Alternative Fuels Data Center: Fleet Application for Refuse Collection

    Science.gov Websites

    CNG - Compressed Natural Gas 1 Electric 1 Hybrid - CNG 1 Hybrid - LNG 1 Hydraulic hybrid 9 LNG - Liquified Natural Gas icon for refuse collection vehicle application Autocar ACMD-Xpert Hybrid - CNG Hybrid - Compressed Natural Gas LNG - Liquified Natural Gas icon for refuse collection vehicle application BYD All

  2. Multi-axis dose accumulation of noninvasive image-guided breast brachytherapy through biomechanical modeling of tissue deformation using the finite element method

    PubMed Central

    Ghadyani, Hamid R.; Bastien, Adam D.; Lutz, Nicholas N.; Hepel, Jaroslaw T.

    2015-01-01

    Purpose Noninvasive image-guided breast brachytherapy delivers conformal HDR 192Ir brachytherapy treatments with the breast compressed, and treated in the cranial-caudal and medial-lateral directions. This technique subjects breast tissue to extreme deformations not observed for other disease sites. Given that, commercially-available software for deformable image registration cannot accurately co-register image sets obtained in these two states, a finite element analysis based on a biomechanical model was developed to deform dose distributions for each compression circumstance for dose summation. Material and methods The model assumed the breast was under planar stress with values of 30 kPa for Young's modulus and 0.3 for Poisson's ratio. Dose distributions from round and skin-dose optimized applicators in cranial-caudal and medial-lateral compressions were deformed using 0.1 cm planar resolution. Dose distributions, skin doses, and dose-volume histograms were generated. Results were examined as a function of breast thickness, applicator size, target size, and offset distance from the center. Results Over the range of examined thicknesses, target size increased several millimeters as compression thickness decreased. This trend increased with increasing offset distances. Applicator size minimally affected target coverage, until applicator size was less than the compressed target size. In all cases, with an applicator larger or equal to the compressed target size, > 90% of the target covered by > 90% of the prescription dose. In all cases, dose coverage became less uniform as offset distance increased and average dose increased. This effect was more pronounced for smaller target–applicator combinations. Conclusions The model exhibited skin dose trends that matched MC-generated benchmarking results within 2% and clinical observations over a similar range of breast thicknesses and target sizes. The model provided quantitative insight on dosimetric treatment variables over a range of clinical circumstances. These findings highlight the need for careful target localization and accurate identification of compression thickness and target offset. PMID:25829938

  3. Caffeine may enhance orthodontic tooth movement through increasing osteoclastogenesis induced by periodontal ligament cells under compression.

    PubMed

    Yi, Jianru; Yan, Boxi; Li, Meile; Wang, Yu; Zheng, Wei; Li, Yu; Zhao, Zhihe

    2016-04-01

    Caffeine is the kernel component of coffee and has multiple effects on bone metabolism. Here we aimed to investigate the effects of caffeine intake on orthodontic tooth movement (OTM). (1) In the in vivo study, two groups comprising 15 randomly assigned rats each underwent orthodontic treatment. One group ingested caffeine at 25mg/kg body weight per day and the other, plain water. After 3 weeks, the degree of tooth movement and effect on the periodontium were assessed. (2) In the in vitro study, we established a model mimicking the essential bioprocess of OTM, which contained a periodontal ligament tissue model (PDLtm), and a co-culture system of osteoblasts (OBs) and osteoclast precursors (pre-OCs). After being subjected to static compressive force with or without caffeine administration, the conditioned media from the PDLtm were used for the OB/pre-OC co-cultures to induce osteoclastogenesis. (1) In vivo, the caffeine group displayed a significantly greater rate of tooth movement than the control. The alveolar bone mineral density and bone volume fraction were similar between the two groups; however, immunohistochemical staining showed that the caffeine group had significantly more TRAP(+) osteoclasts and higher RANKL expression in the compressed periodontium. (2) In vitro, caffeine at 0.01mM significantly enhanced the compression-induced expression of RANKL and COX-2, as well as prostaglandin E2 production in the PDLtm. Furthermore, the "caffeine+compression"-conditioned media induced significantly more TRAP(+) OC formation when compared with compression alone. Daily intake of caffeine, at least at some specific dosage, may enhance OTM through increasing osteoclastogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Imaging industry expectations for compressed sensing in MRI

    NASA Astrophysics Data System (ADS)

    King, Kevin F.; Kanwischer, Adriana; Peters, Rob

    2015-09-01

    Compressed sensing requires compressible data, incoherent acquisition and a nonlinear reconstruction algorithm to force creation of a compressible image consistent with the acquired data. MRI images are compressible using various transforms (commonly total variation or wavelets). Incoherent acquisition of MRI data by appropriate selection of pseudo-random or non-Cartesian locations in k-space is straightforward. Increasingly, commercial scanners are sold with enough computing power to enable iterative reconstruction in reasonable times. Therefore integration of compressed sensing into commercial MRI products and clinical practice is beginning. MRI frequently requires the tradeoff of spatial resolution, temporal resolution and volume of spatial coverage to obtain reasonable scan times. Compressed sensing improves scan efficiency and reduces the need for this tradeoff. Benefits to the user will include shorter scans, greater patient comfort, better image quality, more contrast types per patient slot, the enabling of previously impractical applications, and higher throughput. Challenges to vendors include deciding which applications to prioritize, guaranteeing diagnostic image quality, maintaining acceptable usability and workflow, and acquisition and reconstruction algorithm details. Application choice depends on which customer needs the vendor wants to address. The changing healthcare environment is putting cost and productivity pressure on healthcare providers. The improved scan efficiency of compressed sensing can help alleviate some of this pressure. Image quality is strongly influenced by image compressibility and acceleration factor, which must be appropriately limited. Usability and workflow concerns include reconstruction time and user interface friendliness and response. Reconstruction times are limited to about one minute for acceptable workflow. The user interface should be designed to optimize workflow and minimize additional customer training. Algorithm concerns include the decision of which algorithms to implement as well as the problem of optimal setting of adjustable parameters. It will take imaging vendors several years to work through these challenges and provide solutions for a wide range of applications.

  5. Finite-element modeling of compression and gravity on a population of breast phantoms for multimodality imaging simulation.

    PubMed

    Sturgeon, Gregory M; Kiarashi, Nooshin; Lo, Joseph Y; Samei, E; Segars, W P

    2016-05-01

    The authors are developing a series of computational breast phantoms based on breast CT data for imaging research. In this work, the authors develop a program that will allow a user to alter the phantoms to simulate the effect of gravity and compression of the breast (craniocaudal or mediolateral oblique) making the phantoms applicable to multimodality imaging. This application utilizes a template finite-element (FE) breast model that can be applied to their presegmented voxelized breast phantoms. The FE model is automatically fit to the geometry of a given breast phantom, and the material properties of each element are set based on the segmented voxels contained within the element. The loading and boundary conditions, which include gravity, are then assigned based on a user-defined position and compression. The effect of applying these loads to the breast is computed using a multistage contact analysis in FEBio, a freely available and well-validated FE software package specifically designed for biomedical applications. The resulting deformation of the breast is then applied to a boundary mesh representation of the phantom that can be used for simulating medical images. An efficient script performs the above actions seamlessly. The user only needs to specify which voxelized breast phantom to use, the compressed thickness, and orientation of the breast. The authors utilized their FE application to simulate compressed states of the breast indicative of mammography and tomosynthesis. Gravity and compression were simulated on example phantoms and used to generate mammograms in the craniocaudal or mediolateral oblique views. The simulated mammograms show a high degree of realism illustrating the utility of the FE method in simulating imaging data of repositioned and compressed breasts. The breast phantoms and the compression software can become a useful resource to the breast imaging research community. These phantoms can then be used to evaluate and compare imaging modalities that involve different positioning and compression of the breast.

  6. Analysis and testing of axial compression in imperfect slender truss struts

    NASA Technical Reports Server (NTRS)

    Lake, Mark S.; Georgiadis, Nicholas

    1990-01-01

    The axial compression of imperfect slender struts for large space structures is addressed. The load-shortening behavior of struts with initially imperfect shapes and eccentric compressive end loading is analyzed using linear beam-column theory and results are compared with geometrically nonlinear solutions to determine the applicability of linear analysis. A set of developmental aluminum clad graphite/epoxy struts sized for application to the Space Station Freedom truss are measured to determine their initial imperfection magnitude, load eccentricity, and cross sectional area and moment of inertia. Load-shortening curves are determined from axial compression tests of these specimens and are correlated with theoretical curves generated using linear analysis.

  7. Distributed Relaxation Multigrid and Defect Correction Applied to the Compressible Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Thomas, J. L.; Diskin, B.; Brandt, A.

    1999-01-01

    The distributed-relaxation multigrid and defect- correction methods are applied to the two- dimensional compressible Navier-Stokes equations. The formulation is intended for high Reynolds number applications and several applications are made at a laminar Reynolds number of 10,000. A staggered- grid arrangement of variables is used; the coupled pressure and internal energy equations are solved together with multigrid, requiring a block 2x2 matrix solution. Textbook multigrid efficiencies are attained for incompressible and slightly compressible simulations of the boundary layer on a flat plate. Textbook efficiencies are obtained for compressible simulations up to Mach numbers of 0.7 for a viscous wake simulation.

  8. A generalized Benford's law for JPEG coefficients and its applications in image forensics

    NASA Astrophysics Data System (ADS)

    Fu, Dongdong; Shi, Yun Q.; Su, Wei

    2007-02-01

    In this paper, a novel statistical model based on Benford's law for the probability distributions of the first digits of the block-DCT and quantized JPEG coefficients is presented. A parametric logarithmic law, i.e., the generalized Benford's law, is formulated. Furthermore, some potential applications of this model in image forensics are discussed in this paper, which include the detection of JPEG compression for images in bitmap format, the estimation of JPEG compression Qfactor for JPEG compressed bitmap image, and the detection of double compressed JPEG image. The results of our extensive experiments demonstrate the effectiveness of the proposed statistical model.

  9. New image compression scheme for digital angiocardiography application

    NASA Astrophysics Data System (ADS)

    Anastassopoulos, George C.; Lymberopoulos, Dimitris C.; Kotsopoulos, Stavros A.; Kokkinakis, George C.

    1993-06-01

    The present paper deals with the development and evaluation of a new compression scheme, for angiocardiography images. This scheme provides considerable compression of the medical data file, through two different stages. The first stage obliterates the redundancy inside a single frame domain since the second stage obliterates the redundancy among the sequential frames. Within these stages the employed data compression ratio can be easily adjusted according to the needs of the angiocardiography applications, where still or moving (in slow or full motion) images are hauled. The developed scheme has been tailored on the real needs of the diagnosis oriented conferencing-teleworking processes, where Unified Image Viewing facilities are required.

  10. A Real-Time High Performance Data Compression Technique For Space Applications

    NASA Technical Reports Server (NTRS)

    Yeh, Pen-Shu; Venbrux, Jack; Bhatia, Prakash; Miller, Warner H.

    2000-01-01

    A high performance lossy data compression technique is currently being developed for space science applications under the requirement of high-speed push-broom scanning. The technique is also error-resilient in that error propagation is contained within a few scan lines. The algorithm is based on block-transform combined with bit-plane encoding; this combination results in an embedded bit string with exactly the desirable compression rate. The lossy coder is described. The compression scheme performs well on a suite of test images typical of images from spacecraft instruments. Hardware implementations are in development; a functional chip set is expected by the end of 2001.

  11. Applications of wavelet-based compression to multidimensional Earth science data

    NASA Technical Reports Server (NTRS)

    Bradley, Jonathan N.; Brislawn, Christopher M.

    1993-01-01

    A data compression algorithm involving vector quantization (VQ) and the discrete wavelet transform (DWT) is applied to two different types of multidimensional digital earth-science data. The algorithms (WVQ) is optimized for each particular application through an optimization procedure that assigns VQ parameters to the wavelet transform subbands subject to constraints on compression ratio and encoding complexity. Preliminary results of compressing global ocean model data generated on a Thinking Machines CM-200 supercomputer are presented. The WVQ scheme is used in both a predictive and nonpredictive mode. Parameters generated by the optimization algorithm are reported, as are signal-to-noise (SNR) measurements of actual quantized data. The problem of extrapolating hydrodynamic variables across the continental landmasses in order to compute the DWT on a rectangular grid is discussed. Results are also presented for compressing Landsat TM 7-band data using the WVQ scheme. The formulation of the optimization problem is presented along with SNR measurements of actual quantized data. Postprocessing applications are considered in which the seven spectral bands are clustered into 256 clusters using a k-means algorithm and analyzed using the Los Alamos multispectral data analysis program, SPECTRUM, both before and after being compressed using the WVQ program.

  12. Enhancing the Efficiency of Silicon-Based Solar Cells by the Piezo-Phototronic Effect.

    PubMed

    Zhu, Laipan; Wang, Longfei; Pan, Caofeng; Chen, Libo; Xue, Fei; Chen, Baodong; Yang, Leijing; Su, Li; Wang, Zhong Lin

    2017-02-28

    Although there are numerous approaches for fabricating solar cells, the silicon-based photovoltaics are still the most widely used in industry and around the world. A small increase in the efficiency of silicon-based solar cells has a huge economic impact and practical importance. We fabricate a silicon-based nanoheterostructure (p + -Si/p-Si/n + -Si (and n-Si)/n-ZnO nanowire (NW) array) photovoltaic device and demonstrate the enhanced device performance through significantly enhanced light absorption by NW array and effective charge carrier separation by the piezo-phototronic effect. The strain-induced piezoelectric polarization charges created at n-doped Si-ZnO interfaces can effectively modulate the corresponding band structure and electron gas trapped in the n + -Si/n-ZnO NW nanoheterostructure and thus enhance the transport process of local charge carriers. The efficiency of the solar cell was improved from 8.97% to 9.51% by simply applying a static compress strain. This study indicates that the piezo-phototronic effect can enhance the performance of a large-scale silicon-based solar cell, with great potential for industrial applications.

  13. Nonlinear pulse compression in pulse-inversion fundamental imaging.

    PubMed

    Cheng, Yun-Chien; Shen, Che-Chou; Li, Pai-Chi

    2007-04-01

    Coded excitation can be applied in ultrasound contrast agent imaging to enhance the signal-to-noise ratio with minimal destruction of the microbubbles. Although the axial resolution is usually compromised by the requirement for a long coded transmit waveforms, this can be restored by using a compression filter to compress the received echo. However, nonlinear responses from microbubbles may cause difficulties in pulse compression and result in severe range side-lobe artifacts, particularly in pulse-inversion-based (PI) fundamental imaging. The efficacy of pulse compression in nonlinear contrast imaging was evaluated by investigating several factors relevant to PI fundamental generation using both in-vitro experiments and simulations. The results indicate that the acoustic pressure and the bubble size can alter the nonlinear characteristics of microbubbles and change the performance of the compression filter. When nonlinear responses from contrast agents are enhanced by using a higher acoustic pressure or when more microbubbles are near the resonance size of the transmit frequency, higher range side lobes are produced in both linear imaging and PI fundamental imaging. On the other hand, contrast detection in PI fundamental imaging significantly depends on the magnitude of the nonlinear responses of the bubbles and thus the resultant contrast-to-tissue ratio (CTR) still increases with acoustic pressure and the nonlinear resonance of microbubbles. It should be noted, however, that the CTR in PI fundamental imaging after compression is consistently lower than that before compression due to obvious side-lobe artifacts. Therefore, the use of coded excitation is not beneficial in PI fundamental contrast detection.

  14. Fast and predictable video compression in software design and implementation of an H.261 codec

    NASA Astrophysics Data System (ADS)

    Geske, Dagmar; Hess, Robert

    1998-09-01

    The use of software codecs for video compression becomes commonplace in several videoconferencing applications. In order to reduce conflicts with other applications used at the same time, mechanisms for resource reservation on endsystems need to determine an upper bound for computing time used by the codec. This leads to the demand for predictable execution times of compression/decompression. Since compression schemes as H.261 inherently depend on the motion contained in the video, an adaptive admission control is required. This paper presents a data driven approach based on dynamical reduction of the number of processed macroblocks in peak situations. Besides the absolute speed is a point of interest. The question, whether and how software compression of high quality video is feasible on today's desktop computers, is examined.

  15. Compressed Speech: Potential Application for Air Force Technical Training. Final Report, August 73-November 73.

    ERIC Educational Resources Information Center

    Dailey, K. Anne

    Time-compressed speech (also called compressed speech, speeded speech, or accelerated speech) is an extension of the normal recording procedure for reproducing the spoken word. Compressed speech can be used to achieve dramatic reductions in listening time without significant loss in comprehension. The implications of such temporal reductions in…

  16. Current Status and Prospects for Microbubbles in Ultrasound Theranostics

    PubMed Central

    Martin, K. Heath

    2013-01-01

    Encapsulated microbubbles have been developed over the past two decades to provide both improvements in imaging as well as new therapeutic applications. Microbubble contrast agents are used currently for clinical imaging where increased sensitivity to blood flow is required, such as echocardiography. These compressible spheres oscillate in an acoustic field, producing nonlinear responses which can be uniquely distinguished from surrounding tissue, resulting in substantial enhancements in imaging signal-to-noise ratio. Furthermore, with sufficient acoustic energy the oscillation of microbubbles can mediate localized biological effects in tissue including the enhancement of membrane permeability or increased thermal energy deposition. Structurally, microbubbles are comprised of two principal components – an encapsulating shell and an inner gas core. This configuration enables microbubbles to be loaded with drugs or genes for additional therapeutic effect. Application of sufficient ultrasound energy can release this payload, resulting in site-specific delivery. Extensive pre-clinical studies illustrate that combining microbubbles and ultrasound can result in enhanced drug delivery or gene expression at spatially selective sites. Thus, microbbubles can be used for imaging, for therapy, or for both simultaneously. In this sense, microbubbles combined with acoustics may be one of the most universal theranostic tools. PMID:23504911

  17. Bringing light into the dark: effects of compression clothing on performance and recovery.

    PubMed

    Born, Dennis-Peter; Sperlich, Billy; Holmberg, Hans-Christer

    2013-01-01

    To assess original research addressing the effect of the application of compression clothing on sport performance and recovery after exercise, a computer-based literature research was performed in July 2011 using the electronic databases PubMed, MEDLINE, SPORTDiscus, and Web of Science. Studies examining the effect of compression clothing on endurance, strength and power, motor control, and physiological, psychological, and biomechanical parameters during or after exercise were included, and means and measures of variability of the outcome measures were recorded to estimate the effect size (Hedges g) and associated 95% confidence intervals for comparisons of experimental (compression) and control trials (noncompression). The characteristics of the compression clothing, participants, and study design were also extracted. The original research from peer-reviewed journals was examined using the Physiotherapy Evidence Database (PEDro) Scale. Results indicated small effect sizes for the application of compression clothing during exercise for short-duration sprints (10-60 m), vertical-jump height, extending time to exhaustion (such as running at VO2max or during incremental tests), and time-trial performance (3-60 min). When compression clothing was applied for recovery purposes after exercise, small to moderate effect sizes were observed in recovery of maximal strength and power, especially vertical-jump exercise; reductions in muscle swelling and perceived muscle pain; blood lactate removal; and increases in body temperature. These results suggest that the application of compression clothing may assist athletic performance and recovery in given situations with consideration of the effects magnitude and practical relevance.

  18. Doped tricalcium phosphate bone tissue engineering scaffolds using sucrose as template and microwave sintering: enhancement of mechanical and biological properties.

    PubMed

    Ke, Dongxu; Bose, Susmita

    2017-09-01

    β-tricalcium phosphate (β-TCP) is a widely used biocompatible ceramic in orthopedic and dental applications. However, its osteoinductivity and mechanical properties still require improvements. In this study, porous β-TCP and MgO/ZnO-TCP scaffolds were prepared by the thermal decomposition of sucrose. Crack-free cylindrical scaffolds could only be prepared with the addition of MgO and ZnO due to their stabilization effects. Porous MgO/ZnO-TCP scaffolds with a density of 61.39±0.66%, an estimated pore size of 200μm and a compressive strength of 24.96±3.07MPa were prepared by using 25wt% sucrose after conventional sintering at 1250°C. Microwave sintering further increased the compressive strength to 37.94±6.70MPa, but it decreased the open interconnected porosity to 8.74±1.38%. In addition, the incorporation of polycaprolactone (PCL) increased 22.36±3.22% of toughness while maintaining its compressive strength at 25.45±2.21MPa. Human osteoblast cell line was seeded on scaffolds to evaluate the effects of MgO/ZnO and PCL on the biological property of β-TCP in vitro. Both MgO/ZnO and PCL improved osteoinductivity of β-TCP. PCL also decreased osteoblastic apoptosis due to its particular surface chemistry. This novel porous MgO/ZnO-TCP scaffold with PCL shows improved mechanical and biological properties, which has great potential in bone tissue engineering applications. Copyright © 2017. Published by Elsevier B.V.

  19. Chitosan-poly(lactide-co-glycolide) microsphere-based scaffolds for bone tissue engineering: in vitro degradation and in vivo bone regeneration studies.

    PubMed

    Jiang, Tao; Nukavarapu, Syam P; Deng, Meng; Jabbarzadeh, Ehsan; Kofron, Michelle D; Doty, Stephen B; Abdel-Fattah, Wafa I; Laurencin, Cato T

    2010-09-01

    Natural polymer chitosan and synthetic polymer poly(lactide-co-glycolide) (PLAGA) have been investigated for a variety of tissue engineering applications. We have previously reported the fabrication and in vitro evaluation of a novel chitosan/PLAGA sintered microsphere scaffold for load-bearing bone tissue engineering applications. In this study, the in vitro degradation characteristics of the chitosan/PLAGA scaffold and the in vivo bone formation capacity of the chitosan/PLAGA-based scaffolds in a rabbit ulnar critical-sized-defect model were investigated. The chitosan/PLAGA scaffold showed slower degradation than the PLAGA scaffold in vitro. Although chitosan/PLAGA scaffold showed a gradual decrease in compressive properties during the 12-week degradation period, the compressive strength and compressive modulus remained in the range of human trabecular bone. Chitosan/PLAGA-based scaffolds were able to guide bone formation in a rabbit ulnar critical-sized-defect model. Microcomputed tomography analysis demonstrated that successful bridging of the critical-sized defect on the sides both adjacent to and away from the radius occurred using chitosan/PLAGA-based scaffolds. Immobilization of heparin and recombinant human bone morphogenetic protein-2 on the chitosan/PLAGA scaffold surface promoted early bone formation as evidenced by complete bridging of the defect along the radius and significantly enhanced mechanical properties when compared to the chitosan/PLAGA scaffold. Furthermore, histological analysis suggested that chitosan/PLAGA-based scaffolds supported normal bone formation via intramembranous formation. 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Flexible and Lightweight Pressure Sensor Based on Carbon Nanotube/Thermoplastic Polyurethane-Aligned Conductive Foam with Superior Compressibility and Stability.

    PubMed

    Huang, Wenju; Dai, Kun; Zhai, Yue; Liu, Hu; Zhan, Pengfei; Gao, Jiachen; Zheng, Guoqiang; Liu, Chuntai; Shen, Changyu

    2017-12-06

    Flexible and lightweight carbon nanotube (CNT)/thermoplastic polyurethane (TPU) conductive foam with a novel aligned porous structure was fabricated. The density of the aligned porous material was as low as 0.123 g·cm -3 . Homogeneous dispersion of CNTs was achieved through the skeleton of the foam, and an ultralow percolation threshold of 0.0023 vol % was obtained. Compared with the disordered foam, mechanical properties of the aligned foam were enhanced and the piezoresistive stability of the flexible foam was improved significantly. The compression strength of the aligned TPU foam increases by 30.7% at the strain of 50%, and the stress of the aligned foam is 22 times that of the disordered foam at the strain of 90%. Importantly, the resistance variation of the aligned foam shows a fascinating linear characteristic under the applied strain until 77%, which would benefit the application of the foam as a desired pressure sensor. During multiple cyclic compression-release measurements, the aligned conductive CNT/TPU foam represents excellent reversibility and reproducibility in terms of resistance. This nice capability benefits from the aligned porous structure composed of ladderlike cells along the orientation direction. Simultaneously, the human motion detections, such as walk, jump, squat, etc. were demonstrated by using our flexible pressure sensor. Because of the lightweight, flexibility, high compressibility, excellent reversibility, and reproducibility of the conductive aligned foam, the present study is capable of providing new insights into the fabrication of a high-performance pressure sensor.

  1. Reinforcement of Dental Methacrylate with Glass Fiber after Heated Silane Application

    PubMed Central

    Fonseca, Rodrigo Borges; de Paula, Marcella Silva; Favarão, Isabella Negro; Kasuya, Amanda Vessoni Barbosa; de Almeida, Letícia Nunes; Mendes, Gustavo Adolfo Martins; Carlo, Hugo Lemes

    2014-01-01

    This study evaluated the influence of silane heat treatment and glass fiber fabrication type, industrially treated (I) or pure (P), on flexural and compressive strength of methacrylate resin bars (BISGMA/TEGDMA, 50/50%). Six groups (n = 10) were created: I-sil: I/silanated; P-sil: P-silanated; I-sil/heat: I/silanated heated to 100°; P-sil/heat: P/silanated heated to 100°; (I: I/not silanated; and P: P/not silanated. Specimens were prepared for flexural strength (10 × 2 × 1 mm) and for compressive strength 9.5 × 5.5 × 3 mm) and tested at 0.5 mm/min. Statistical analysis demonstrated the following for flexural strength (P < 0.05): I-sil: 155.89 ± 45.27BC; P-sil: 155.89 ± 45.27BC; I-sil/heat: 130.20 ± 22.11C; P-sil/heat: 169.86 ± 50.29AB; I: 131.87 ± 15.86C. For compressive strength, the following are demonstrated: I-sil: 1367.25 ± 188.77ab; P-sil: 867.61 ± 102.76d; I-sil/heat: 1162.98 ± 222.07c; P-sil/heat: 1499.35 ± 339.06a; and I: 1245.78 ± 211.16bc. Due to the impossibility of incorporating the stipulated amount of fiber, P group was excluded. Glass fiber treatment with heated silane enhanced flexural and compressive strength of a reinforced dental methacrylate. PMID:24967361

  2. The application of compressed sensing to long-term acoustic emission-based structural health monitoring

    NASA Astrophysics Data System (ADS)

    Cattaneo, Alessandro; Park, Gyuhae; Farrar, Charles; Mascareñas, David

    2012-04-01

    The acoustic emission (AE) phenomena generated by a rapid release in the internal stress of a material represent a promising technique for structural health monitoring (SHM) applications. AE events typically result in a discrete number of short-time, transient signals. The challenge associated with capturing these events using classical techniques is that very high sampling rates must be used over extended periods of time. The result is that a very large amount of data is collected to capture a phenomenon that rarely occurs. Furthermore, the high energy consumption associated with the required high sampling rates makes the implementation of high-endurance, low-power, embedded AE sensor nodes difficult to achieve. The relatively rare occurrence of AE events over long time scales implies that these measurements are inherently sparse in the spike domain. The sparse nature of AE measurements makes them an attractive candidate for the application of compressed sampling techniques. Collecting compressed measurements of sparse AE signals will relax the requirements on the sampling rate and memory demands. The focus of this work is to investigate the suitability of compressed sensing techniques for AE-based SHM. The work explores estimating AE signal statistics in the compressed domain for low-power classification applications. In the event compressed classification finds an event of interest, ι1 norm minimization will be used to reconstruct the measurement for further analysis. The impact of structured noise on compressive measurements is specifically addressed. The suitability of a particular algorithm, called Justice Pursuit, to increase robustness to a small amount of arbitrary measurement corruption is investigated.

  3. Electroencephalographic compression based on modulated filter banks and wavelet transform.

    PubMed

    Bazán-Prieto, Carlos; Cárdenas-Barrera, Julián; Blanco-Velasco, Manuel; Cruz-Roldán, Fernando

    2011-01-01

    Due to the large volume of information generated in an electroencephalographic (EEG) study, compression is needed for storage, processing or transmission for analysis. In this paper we evaluate and compare two lossy compression techniques applied to EEG signals. It compares the performance of compression schemes with decomposition by filter banks or wavelet Packets transformation, seeking the best value for compression, best quality and more efficient real time implementation. Due to specific properties of EEG signals, we propose a quantization stage adapted to the dynamic range of each band, looking for higher quality. The results show that the compressor with filter bank performs better than transform methods. Quantization adapted to the dynamic range significantly enhances the quality.

  4. Compression force sensing regulates integrin αIIbβ3 adhesive function on diabetic platelets.

    PubMed

    Ju, Lining; McFadyen, James D; Al-Daher, Saheb; Alwis, Imala; Chen, Yunfeng; Tønnesen, Lotte L; Maiocchi, Sophie; Coulter, Brianna; Calkin, Anna C; Felner, Eric I; Cohen, Neale; Yuan, Yuping; Schoenwaelder, Simone M; Cooper, Mark E; Zhu, Cheng; Jackson, Shaun P

    2018-03-14

    Diabetes is associated with an exaggerated platelet thrombotic response at sites of vascular injury. Biomechanical forces regulate platelet activation, although the impact of diabetes on this process remains ill-defined. Using a biomembrane force probe (BFP), we demonstrate that compressive force activates integrin α IIb β 3 on discoid diabetic platelets, increasing its association rate with immobilized fibrinogen. This compressive force-induced integrin activation is calcium and PI 3-kinase dependent, resulting in enhanced integrin affinity maturation and exaggerated shear-dependent platelet adhesion. Analysis of discoid platelet aggregation in the mesenteric circulation of mice confirmed that diabetes leads to a marked enhancement in the formation and stability of discoid platelet aggregates, via a mechanism that is not inhibited by therapeutic doses of aspirin and clopidogrel, but is eliminated by PI 3-kinase inhibition. These studies demonstrate the existence of a compression force sensing mechanism linked to α IIb β 3 adhesive function that leads to a distinct prothrombotic phenotype in diabetes.

  5. Complex adaptation-based LDR image rendering for 3D image reconstruction

    NASA Astrophysics Data System (ADS)

    Lee, Sung-Hak; Kwon, Hyuk-Ju; Sohng, Kyu-Ik

    2014-07-01

    A low-dynamic tone-compression technique is developed for realistic image rendering that can make three-dimensional (3D) images similar to realistic scenes by overcoming brightness dimming in the 3D display mode. The 3D surround provides varying conditions for image quality, illuminant adaptation, contrast, gamma, color, sharpness, and so on. In general, gain/offset adjustment, gamma compensation, and histogram equalization have performed well in contrast compression; however, as a result of signal saturation and clipping effects, image details are removed and information is lost on bright and dark areas. Thus, an enhanced image mapping technique is proposed based on space-varying image compression. The performance of contrast compression is enhanced with complex adaptation in a 3D viewing surround combining global and local adaptation. Evaluating local image rendering in view of tone and color expression, noise reduction, and edge compensation confirms that the proposed 3D image-mapping model can compensate for the loss of image quality in the 3D mode.

  6. The development of a performance-enhancing additive for vapor-compression heat pumps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grzyll, L.R.; Scaringe, R.P.; Gottschlich, J.M.

    1997-12-31

    This paper describes the testing results of a vapor-compression heat pump operating with HFC-134a refrigerant and a performance-enhancing additive. Preliminary bench-top testing of this additive, when added to polyolester (POE) lubricant and HFC-134a refrigerant, showed surprising enhancements to system COP. To further investigate this finding, the authors designed and fabricated a vapor-compression heat pump test stand for the 3--5 ton range. The authors investigated the effect of different concentrations of this additive on various system performance parameters such as cooling capacity, compressor power requirement, pressure ratio, compressor pressure difference, compressor isentropic efficiency, refrigerant flow rate, and heat exchanger performance. Themore » authors investigated various heat source and heat sink conditions to simulate air-conditioning and heat pump operating conditions. To investigate the effect of this additive on compressor lubrication and life, the authors performed compressor life tests (with scroll and reciprocating compressors), and had lubrication wear tests performed with various concentrations of the additive in the POE lubricant.« less

  7. [The compression and storage of enhanced external counterpulsation waveform based on DICOM standard].

    PubMed

    Hu, Ding; Xie, Shuqun; Yu, Donglan; Zheng, Zhensheng; Wang, Kuijian

    2010-04-01

    The development of external counterpulsation (ECP) local area network system and extensible markup language (XML)-based remote ECP medical information system conformable to digital imaging and communications in medicine (DICOM) standard has been improving the digital interchangeablity and sharability of ECP data. However, the therapy process of ECP is a continuous and longtime supervision which builds a mass of waveform data. In order to reduce the storage space and improve the transmission efficiency, the waveform data with the normative format of ECP data files have to be compressed. In this article, we introduced the compression arithmetic of template matching and improved quick fitting of linear approximation distance thresholding (LADT) in combimation with the characters of enhanced external counterpulsation (EECP) waveform signal. The DICOM standard is used as the storage and transmission standard to make our system compatible with hospital information system. According to the rules of transfer syntaxes, we defined private transfer syntax for one-dimensional compressed waveform data and stored EECP data into a DICOM file. Testing result indicates that the compressed and normative data can be correctly transmitted and displayed between EECP workstations in our EECP laboratory.

  8. Optimal wavelets for biomedical signal compression.

    PubMed

    Nielsen, Mogens; Kamavuako, Ernest Nlandu; Andersen, Michael Midtgaard; Lucas, Marie-Françoise; Farina, Dario

    2006-07-01

    Signal compression is gaining importance in biomedical engineering due to the potential applications in telemedicine. In this work, we propose a novel scheme of signal compression based on signal-dependent wavelets. To adapt the mother wavelet to the signal for the purpose of compression, it is necessary to define (1) a family of wavelets that depend on a set of parameters and (2) a quality criterion for wavelet selection (i.e., wavelet parameter optimization). We propose the use of an unconstrained parameterization of the wavelet for wavelet optimization. A natural performance criterion for compression is the minimization of the signal distortion rate given the desired compression rate. For coding the wavelet coefficients, we adopted the embedded zerotree wavelet coding algorithm, although any coding scheme may be used with the proposed wavelet optimization. As a representative example of application, the coding/encoding scheme was applied to surface electromyographic signals recorded from ten subjects. The distortion rate strongly depended on the mother wavelet (for example, for 50% compression rate, optimal wavelet, mean+/-SD, 5.46+/-1.01%; worst wavelet 12.76+/-2.73%). Thus, optimization significantly improved performance with respect to previous approaches based on classic wavelets. The algorithm can be applied to any signal type since the optimal wavelet is selected on a signal-by-signal basis. Examples of application to ECG and EEG signals are also reported.

  9. A mesoporous silica composite scaffold: Cell behaviors, biomineralization and mechanical properties

    NASA Astrophysics Data System (ADS)

    Xu, Yong; Gao, Dan; Feng, Pei; Gao, Chengde; Peng, Shuping; Ma, HaoTian; Yang, Sheng; Shuai, Cijun

    2017-11-01

    Mesoporous structure is beneficial to cellular response due to the large specific surface area and high pore volume. In this study, mesoporous silica (SBA15) was incorporated into poly-L-lactic acid (PLLA) to construct composite scaffold by selective laser sintering. The results showed that SBA15 facilitated cells proliferation, which was mainly attributed to its unique intrinsic mesoporous structure and the released bioactive silicon. Moreover, the hydrolyzate of soluble mesoporous silica can adsorb ions to form nucleation sites that promote biomineralization, leading to improve biological activity of the composite scaffold. In addition, the compressive strength, compressive modulus and Vickers hardness of the scaffold were increased by 47.6%, 35.5% and 29.53% respectively with 1.5 wt.% SBA15. It was found that the particle enhancement of uniform distributed SBA15 accounted for the mechanic reinforcement of the composite scaffold. It indicated that the PLLA-SBA15 composite scaffold had potential applications in bone tissue engineering.

  10. Altering the concentration of silica tunes the functional properties of collagen-silica composite scaffolds to suit various clinical requirements.

    PubMed

    Perumal, Sathiamurthi; Ramadass, Satiesh Kumar; Gopinath, Arun; Madhan, Balaraman; Shanmugam, Ganesh; Rajadas, Jayakumar; Mandal, Asit Baran

    2015-12-01

    The success of a tissue engineering scaffold depends on a fine balance being achieved between the physicochemical and biological properties. This study attempts to understand the influence of silica concentration on the functional properties of collagen-silica (CS) composite scaffolds for soft tissue engineering applications. Increasing the ratio of silica to collagen (0.25, 0.5, 0.75, 1.0, 1.25, 1.5 and 2.0 w/w) gave a marked advantage in terms of improving the water uptake and compressive modulus of the CS scaffolds, while also enhancing the biological stability and the turnover time. With increase in silica concentration the water uptake and compressive modulus increased concurrently, whereas it was not so for surface porous architecture and biocompatibility which are crucial for cell adhesion and infiltration. Silica:collagen ratio of ≤1 exhibits favourable surface biocompatibility, and any further increase in silica concentration has a detrimental effect. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Experimental study of a DMD based compressive line sensing imaging system in the turbulence environment

    NASA Astrophysics Data System (ADS)

    Ouyang, Bing; Hou, Weilin; Gong, Cuiling; Caimi, Frank M.; Dalgleish, Fraser R.; Vuorenkoski, Anni K.

    2016-05-01

    The Compressive Line Sensing (CLS) active imaging system has been demonstrated to be effective in scattering mediums, such as turbid coastal water through simulations and test tank experiments. Since turbulence is encountered in many atmospheric and underwater surveillance applications, a new CLS imaging prototype was developed to investigate the effectiveness of the CLS concept in a turbulence environment. Compared with earlier optical bench top prototype, the new system is significantly more robust and compact. A series of experiments were conducted at the Naval Research Lab's optical turbulence test facility with the imaging path subjected to various turbulence intensities. In addition to validating the system design, we obtained some unexpected exciting results - in the strong turbulence environment, the time-averaged measurements using the new CLS imaging prototype improved both SNR and resolution of the reconstructed images. We will discuss the implications of the new findings, the challenges of acquiring data through strong turbulence environment, and future enhancements.

  12. Thermal Conductivity of Eutectic Nitrates and Nitrates/Expanded Graphite Composite as Phase Change Materials.

    PubMed

    Xiao, Xin; Zhang, Peng; Meng, Zhao-Nan; Li, Ming

    2015-04-01

    Nitrates and eutectic nitrate mixtures are considered as potential phase change materials (PCMs) for the middle-temperature-range solar energy storage applications. But the extensive utilization is restricted by the poor thermal conductivity and thermal stability. In the present study, sodium nitrate-potassium nitrate eutectic mixture was used as the base PCM, and expanded graphite (EG) was added to the mixture so as to improve the thermal conductivities. The elaboration method consists of a physically mixing of salt powders with or without EG, and the composite PCMs were cold-compressed to form shape-stabilized PCMs at room temperature. The thermal conductivities of the composite PCMs fabricated by cold-compression were investigated at different temperatures by the steady state method. The results showed that the addition of EG significantly enhanced the thermal conductivities. The thermal conductivities of pure nitrates and nitrates/EG composite PCMs in solid state showed the behavior of temperature dependant, and they slightly decreased with the increase of the temperature.

  13. Characterization of new functionalized calcium carbonate-polycaprolactone composite material for application in geometry-constrained drug release formulation development.

    PubMed

    Wagner-Hattler, Leonie; Schoelkopf, Joachim; Huwyler, Jörg; Puchkov, Maxim

    2017-10-01

    A new mineral-polymer composite (FCC-PCL) performance was assessed to produce complex geometries to aid in development of controlled release tablet formulations. The mechanical characteristics of a developed material such as compactibility, compressibility and elastoplastic deformation were measured. The results and comparative analysis versus other common excipients suggest efficient formation of a complex, stable and impermeable geometries for constrained drug release modifications under compression. The performance of the proposed composite material has been tested by compacting it into a geometrically altered tablet (Tablet-In-Cup, TIC) and the drug release was compared to commercially available product. The TIC device exhibited a uniform surface, showed high physical stability, and showed absence of friability. FCC-PCL composite had good binding properties and good compactibility. It was possible to reveal an enhanced plasticity characteristic of a new material which was not present in the individual components. The presented FCC-PCL composite mixture has the potential to become a successful tool to formulate controlled-release dosage solid forms.

  14. Efficient Optical Energy Harvesting in Self-Accelerating Beams

    PubMed Central

    Bongiovanni, Domenico; Hu, Yi; Wetzel, Benjamin; Robles, Raul A.; Mendoza González, Gregorio; Marti-Panameño, Erwin A.; Chen, Zhigang; Morandotti, Roberto

    2015-01-01

    We report the experimental observation of energetically confined self-accelerating optical beams propagating along various convex trajectories. We show that, under an appropriate transverse compression of their spatial spectra, these self-accelerating beams can exhibit a dramatic enhancement of their peak intensity and a significant decrease of their transverse expansion, yet retaining both the expected acceleration profile and the intrinsic self-healing properties. We found our experimental results to be in excellent agreement with the numerical simulations. We expect further applications in such contexts where power budget and optimal spatial confinement can be important limiting factors. PMID:26299360

  15. Mechanical and physical behavior of newly developed functionally graded materials and composites of stainless steel 316L with calcium silicate and hydroxyapatite.

    PubMed

    Ataollahi Oshkour, Azim; Pramanik, Sumit; Mehrali, Mehdi; Yau, Yat Huang; Tarlochan, Faris; Abu Osman, Noor Azuan

    2015-09-01

    This study aimed to investigate the structural, physical and mechanical behavior of composites and functionally graded materials (FGMs) made of stainless steel (SS-316L)/hydroxyapatite (HA) and SS-316L/calcium silicate (CS) employing powder metallurgical solid state sintering. The structural analysis using X-ray diffraction showed that the sintering at high temperature led to the reaction between compounds of the SS-316L and HA, while SS-316L and CS remained intact during the sintering process in composites of SS-316L/CS. A dimensional expansion was found in the composites made of 40 and 50 wt% HA. The minimum shrinkage was emerged in 50 wt% CS composite, while the maximum shrinkage was revealed in samples with pure SS-316L, HA and CS. Compressive mechanical properties of SS-316L/HA decreased sharply with increasing of HA content up to 20 wt% and gradually with CS content up to 50 wt% for SS-316L/CS composites. The mechanical properties of the FGM of SS-316L/HA dropped with increase in temperature, while it was improved for the FGM of SS-316L/CS with temperature enhancement. It has been found that the FGMs emerged a better compressive mechanical properties compared to both the composite systems. Therefore, the SS-316L/CS composites and their FGMs have superior compressive mechanical properties to the SS-316L/HA composites and their FGMs and also the newly developed FGMs of SS-316L/CS with improved mechanical and enhanced gradation in physical and structural properties can potentially be utilized in the components with load-bearing application. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Selective contribution of each hamstring muscle to anterior cruciate ligament protection and tibiofemoral joint stability in leg-extension exercise: a simulation study.

    PubMed

    Biscarini, Andrea; Botti, Fabio Massimo; Pettorossi, Vito Enrico

    2013-09-01

    A biomechanical model was developed to simulate the selective effect of the co-contraction force provided by each hamstring muscle on the shear and compressive tibiofemoral joint reaction forces, during open kinetic-chain knee-extension exercises. This model accounts for instantaneous values of knee flexion angle [Formula: see text], angular velocity and acceleration, and for changes in magnitude, orientation, and application point of external resistance. The tibiofemoral shear force (TFSF) largely determines the tensile force on anterior cruciate ligament (ACL) and posterior cruciate ligament (PCL). Biceps femoris is the most effective hamstring muscle in decreasing the ACL-loading TFSF developed by quadriceps contractions for [Formula: see text]. In this range, the semimembranosus generates the dominant tibiofemoral compressive force, which enhances joint stability, opposes anterior/posterior tibial translations, and protects cruciate ligaments. The semitendinosus force provides the greatest decreasing gradient of ACL-loading TFSF for [Formula: see text], and the greatest increasing gradient of tibiofemoral compressive force for [Formula: see text]. However, semitendinosus efficacy is strongly limited by its small physiological section. Hamstring muscles behave as a unique muscle in enhancing the PCL-loading TFSF produced by quadriceps contractions for [Formula: see text]. The levels of hamstrings co-activation that suppress the ACL-loading TFSF considerably shift when the knee angular acceleration is changed while maintaining the same level of knee extensor torque by a concurrent adjustment in the magnitude of external resistance. The knowledge of the specific role and the optimal activation level of each hamstring muscle in ACL protection and tibiofemoral stability are fundamental for planning safe and effective rehabilitative knee-extension exercises.

  17. Enhanced M1/M2 macrophage ratio promotes orthodontic root resorption.

    PubMed

    He, D; Kou, X; Luo, Q; Yang, R; Liu, D; Wang, X; Song, Y; Cao, H; Zeng, M; Gan, Y; Zhou, Y

    2015-01-01

    Mechanical force-induced orthodontic root resorption is a major clinical challenge in orthodontic treatment. Macrophages play an important role in orthodontic root resorption, but the underlying mechanism remains unclear. In this study, we examined the mechanism by which the ratio of M1 to M2 macrophage polarization affects root resorption during orthodontic tooth movement. Root resorption occurred when nickel-titanium coil springs were applied on the upper first molars of rats for 3 to 14 d. Positively stained odontoclasts or osteoclasts with tartrate-resistant acid phosphatase were found in resorption areas. Meanwhile, M1-like macrophages positive for CD68 and inducible nitric oxide synthase (iNOS) persistently accumulated on the compression side of periodontal tissues. In addition, the expressions of the M1 activator interferon-γ and the M1-associated pro-inflammatory cytokine tumor necrosis factor (TNF)-α were upregulated on the compression side of periodontal tissues. When the coil springs were removed at the 14th day after orthodontic force application, root resorption was partially rescued. The number of CD68(+)CD163(+) M2-like macrophages gradually increased on the compression side of periodontal tissues. The levels of M2 activator interleukin (IL)-4 and the M2-associated anti-inflammatory cytokine IL-10 also increased. Systemic injection of the TNF-α inhibitor etanercept or IL-4 attenuated the severity of root resorption and decreased the ratio of M1 to M2 macrophages. These data imply that the balance between M1 and M2 macrophages affects orthodontic root resorption. Root resorption was aggravated by an enhanced M1/M2 ratio but was partially rescued by a reduced M1/M2 ratio. © International & American Associations for Dental Research 2014.

  18. Enhancing Post-Expansion Chondrogenic Potential of Costochondral Cells in Self-Assembled Neocartilage

    PubMed Central

    Murphy, Meghan K.; Huey, Daniel J.; Reimer, Andrew J.; Hu, Jerry C.; Athanasiou, Kyriacos A.

    2013-01-01

    The insufficient healing capacity of articular cartilage necessitates mechanically functional biologic tissue replacements. Using cells to form biomimetic cartilage implants is met with the challenges of cell scarcity and donor site morbidity, requiring expanded cells that possess the ability to generate robust neocartilage. To address this, this study assesses the effects of expansion medium supplementation (bFGF, TFP, FBS) and self-assembled construct seeding density (2, 3, 4 million cells/5 mm dia. construct) on the ability of costochondral cells to generate biochemically and biomechanically robust neocartilage. Results show TFP (1 ng/mL TGF-β1, 5 ng/mL bFGF, 10 ng/mL PDGF) supplementation of serum-free chondrogenic expansion medium enhances the post-expansion chondrogenic potential of costochondral cells, evidenced by increased glycosaminoglycan content, decreased type I/II collagen ratio, and enhanced compressive properties. Low density (2 million cells/construct) enhances matrix synthesis and tensile and compressive mechanical properties. Combined, TFP and Low density interact to further enhance construct properties. That is, with TFP, Low density increases type II collagen content by over 100%, tensile stiffness by over 300%, and compressive moduli by over 140%, compared with High density. In conclusion, the interaction of TFP and Low density seeding enhances construct material properties, allowing for a mechanically functional, biomimetic cartilage to be formed using clinically relevant costochondral cells. PMID:23437288

  19. Image segmentation by iterative parallel region growing with application to data compression and image analysis

    NASA Technical Reports Server (NTRS)

    Tilton, James C.

    1988-01-01

    Image segmentation can be a key step in data compression and image analysis. However, the segmentation results produced by most previous approaches to region growing are suspect because they depend on the order in which portions of the image are processed. An iterative parallel segmentation algorithm avoids this problem by performing globally best merges first. Such a segmentation approach, and two implementations of the approach on NASA's Massively Parallel Processor (MPP) are described. Application of the segmentation approach to data compression and image analysis is then described, and results of such application are given for a LANDSAT Thematic Mapper image.

  20. The Effects of the Compressed Workweek: A Review of the Evidence.

    ERIC Educational Resources Information Center

    Dawkins, Peter; Tulsi, Narmon

    1990-01-01

    A literature review showed substantial growth in the use of compressed work weeks. Employees benefited from increased leisure but suffered from increased fatigue and work disruption. Organizations might experience enhanced morale and less absenteeism as well as work coordination and communication problems. (SK)

  1. Memo WX7-14-1359, Subject: PBX 9502 Creep Data, Compression and Tension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Darla G.

    2014-02-06

    This is a summary of the constant-load, constant-temperature mechanical creep data that has been collected on PBX 9502 in tension and compression over the last 5+ years. This work was primarily funded by the Enhanced Surveillance Campaign (C-8).

  2. 46 CFR 153.1 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS General § 153.1 Applicability. This part applies to the... bulk liquid, liquefied gas, or compressed gas cargo that is not— (1) Listed in Table 1 of this part; (2...

  3. 46 CFR 153.1 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS General § 153.1 Applicability. This part applies to the... bulk liquid, liquefied gas, or compressed gas cargo that is not— (1) Listed in Table 1 of this part; (2...

  4. 46 CFR 153.1 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS General § 153.1 Applicability. This part applies to the... bulk liquid, liquefied gas, or compressed gas cargo that is not— (1) Listed in Table 1 of this part; (2...

  5. 46 CFR 153.1 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS General § 153.1 Applicability. This part applies to the... bulk liquid, liquefied gas, or compressed gas cargo that is not— (1) Listed in Table 1 of this part; (2...

  6. Efficient audio signal processing for embedded systems

    NASA Astrophysics Data System (ADS)

    Chiu, Leung Kin

    As mobile platforms continue to pack on more computational power, electronics manufacturers start to differentiate their products by enhancing the audio features. However, consumers also demand smaller devices that could operate for longer time, hence imposing design constraints. In this research, we investigate two design strategies that would allow us to efficiently process audio signals on embedded systems such as mobile phones and portable electronics. In the first strategy, we exploit properties of the human auditory system to process audio signals. We designed a sound enhancement algorithm to make piezoelectric loudspeakers sound ”richer" and "fuller." Piezoelectric speakers have a small form factor but exhibit poor response in the low-frequency region. In the algorithm, we combine psychoacoustic bass extension and dynamic range compression to improve the perceived bass coming out from the tiny speakers. We also developed an audio energy reduction algorithm for loudspeaker power management. The perceptually transparent algorithm extends the battery life of mobile devices and prevents thermal damage in speakers. This method is similar to audio compression algorithms, which encode audio signals in such a ways that the compression artifacts are not easily perceivable. Instead of reducing the storage space, however, we suppress the audio contents that are below the hearing threshold, therefore reducing the signal energy. In the second strategy, we use low-power analog circuits to process the signal before digitizing it. We designed an analog front-end for sound detection and implemented it on a field programmable analog array (FPAA). The system is an example of an analog-to-information converter. The sound classifier front-end can be used in a wide range of applications because programmable floating-gate transistors are employed to store classifier weights. Moreover, we incorporated a feature selection algorithm to simplify the analog front-end. A machine learning algorithm AdaBoost is used to select the most relevant features for a particular sound detection application. In this classifier architecture, we combine simple "base" analog classifiers to form a strong one. We also designed the circuits to implement the AdaBoost-based analog classifier.

  7. A biological compression model and its applications.

    PubMed

    Cao, Minh Duc; Dix, Trevor I; Allison, Lloyd

    2011-01-01

    A biological compression model, expert model, is presented which is superior to existing compression algorithms in both compression performance and speed. The model is able to compress whole eukaryotic genomes. Most importantly, the model provides a framework for knowledge discovery from biological data. It can be used for repeat element discovery, sequence alignment and phylogenetic analysis. We demonstrate that the model can handle statistically biased sequences and distantly related sequences where conventional knowledge discovery tools often fail.

  8. Learning random networks for compression of still and moving images

    NASA Technical Reports Server (NTRS)

    Gelenbe, Erol; Sungur, Mert; Cramer, Christopher

    1994-01-01

    Image compression for both still and moving images is an extremely important area of investigation, with numerous applications to videoconferencing, interactive education, home entertainment, and potential applications to earth observations, medical imaging, digital libraries, and many other areas. We describe work on a neural network methodology to compress/decompress still and moving images. We use the 'point-process' type neural network model which is closer to biophysical reality than standard models, and yet is mathematically much more tractable. We currently achieve compression ratios of the order of 120:1 for moving grey-level images, based on a combination of motion detection and compression. The observed signal-to-noise ratio varies from values above 25 to more than 35. The method is computationally fast so that compression and decompression can be carried out in real-time. It uses the adaptive capabilities of a set of neural networks so as to select varying compression ratios in real-time as a function of quality achieved. It also uses a motion detector which will avoid retransmitting portions of the image which have varied little from the previous frame. Further improvements can be achieved by using on-line learning during compression, and by appropriate compensation of nonlinearities in the compression/decompression scheme. We expect to go well beyond the 250:1 compression level for color images with good quality levels.

  9. Hypersonic separated flows about "tick" configurations with sensitivity to model design

    NASA Astrophysics Data System (ADS)

    Moss, J. N.; O'Byrne, S.; Gai, S. L.

    2014-12-01

    This paper presents computational results obtained by applying the direct simulation Monte Carlo (DSMC) method for hypersonic nonequilibrium flow about "tick-shaped" model configurations. These test models produces a complex flow where the nonequilibrium and rarefied aspects of the flow are initially enhanced as the flow passes over an expansion surface, and then the flow encounters a compression surface that can induce flow separation. The resulting flow is such that meaningful numerical simulations must have the capability to account for a significant range of rarefaction effects; hence the application of the DSMC method in the current study as the flow spans several flow regimes, including transitional, slip, and continuum. The current focus is to examine the sensitivity of both the model surface response (heating, friction and pressure) and flowfield structure to assumptions regarding surface boundary conditions and more extensively the impact of model design as influenced by leading edge configuration as well as the geometrical features of the expansion and compression surfaces. Numerical results indicate a strong sensitivity to both the extent of the leading edge sharpness and the magnitude of the leading edge bevel angle. Also, the length of the expansion surface for a fixed compression surface has a significant impact on the extent of separated flow.

  10. Supercomputer implementation of finite element algorithms for high speed compressible flows

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.; Ramakrishnan, R.

    1986-01-01

    Prediction of compressible flow phenomena using the finite element method is of recent origin and considerable interest. Two shock capturing finite element formulations for high speed compressible flows are described. A Taylor-Galerkin formulation uses a Taylor series expansion in time coupled with a Galerkin weighted residual statement. The Taylor-Galerkin algorithms use explicit artificial dissipation, and the performance of three dissipation models are compared. A Petrov-Galerkin algorithm has as its basis the concepts of streamline upwinding. Vectorization strategies are developed to implement the finite element formulations on the NASA Langley VPS-32. The vectorization scheme results in finite element programs that use vectors of length of the order of the number of nodes or elements. The use of the vectorization procedure speeds up processing rates by over two orders of magnitude. The Taylor-Galerkin and Petrov-Galerkin algorithms are evaluated for 2D inviscid flows on criteria such as solution accuracy, shock resolution, computational speed and storage requirements. The convergence rates for both algorithms are enhanced by local time-stepping schemes. Extension of the vectorization procedure for predicting 2D viscous and 3D inviscid flows are demonstrated. Conclusions are drawn regarding the applicability of the finite element procedures for realistic problems that require hundreds of thousands of nodes.

  11. Hypersonic Separated Flows About "Tick" Configurations With Sensitivity to Model Design

    NASA Technical Reports Server (NTRS)

    Moss, J. N.; O'Byrne, S.; Gai, S. L.

    2014-01-01

    This paper presents computational results obtained by applying the direct simulation Monte Carlo (DSMC) method for hypersonic nonequilibrium flow about "tick-shaped" model configurations. These test models produces a complex flow where the nonequilibrium and rarefied aspects of the flow are initially enhanced as the flow passes over an expansion surface, and then the flow encounters a compression surface that can induce flow separation. The resulting flow is such that meaningful numerical simulations must have the capability to account for a significant range of rarefaction effects; hence the application of the DSMC method in the current study as the flow spans several flow regimes, including transitional, slip, and continuum. The current focus is to examine the sensitivity of both the model surface response (heating, friction and pressure) and flowfield structure to assumptions regarding surface boundary conditions and more extensively the impact of model design as influenced by leading edge configuration as well as the geometrical features of the expansion and compression surfaces. Numerical results indicate a strong sensitivity to both the extent of the leading edge sharpness and the magnitude of the leading edge bevel angle. Also, the length of the expansion surface for a fixed compression surface has a significant impact on the extent of separated flow.

  12. Preparation of a Strong Gelatin-Short Linear Glucan Nanocomposite Hydrogel by an in Situ Self-Assembly Process.

    PubMed

    Ge, Shengju; Li, Man; Ji, Na; Liu, Jing; Mul, Hongyan; Xiong, Liu; Sun, Qingjie

    2018-01-10

    Gelatin hydrogels exhibit excellent biocompatibility, nonimmunogenicity, and biodegradability, but they have limited applications in the food and medical industries because of their poor mechanical properties. Herein, we first developed an in situ self-assembly process for the preparation of gelatin-short linear glucan (SLG) nanocomposite hydrogels with enhanced mechanical strength. The microstructure, dynamic viscoelasticity, compression behavior, and thermal characteristics of the gelatin-SLG nanocomposite hydrogels were determined using scanning electron microscopy (SEM), dynamic rheological experiments, compression tests, and texture profile analysis tests. The SEM images revealed that nanoparticles were formed by the in situ self-assembly of SLG in the gelatin matrix and that the size of these nanoparticles ranged between 200 and 600 nm. The pores of the nanocomposite hydrogels were smaller than those of the pure gelatin hydrogels. Transmission electron microscopy images and X-ray diffraction further confirmed the presence of SLG nanoparticles with spherical shapes and B-type structures. Compared with pure gelatin hydrogels, the nanocomposite hydrogels exhibited improved mechanical behavior. Notably, the hardness and maximum values of the compressive stress of gelatin-SLG nanocomposites containing 5% SLG increased by about 2-fold and 3-fold, respectively, compared to the corresponding values of pure gelatin hydrogels.

  13. Tunable magnetic coupling in Mn-doped monolayer MoS2 under lattice strain

    NASA Astrophysics Data System (ADS)

    Miao, Yaping; Huang, Yuhong; Bao, Hongwei; Xu, Kewei; Ma, Fei; Chu, Paul K.

    2018-05-01

    First-principles calculations are conducted to study the electronic and magnetic states of Mn-doped monolayer MoS2 under lattice strain. Mn-doped MoS2 exhibits half-metallic and ferromagnetic (FM) characteristics in which the majority spin channel exhibits metallic features but there is a bandgap in the minority spin channel. The FM state and the total magnetic moment of 1 µ B are always maintained for the larger supercells of monolayer MoS2 with only one doped Mn, no matter under tensile or compressive strain. Furthermore, the FM state will be enhanced by the tensile strain if two Mo atoms are substituted by Mn atoms in the monolayer MoS2. The magnetic moment increases up to 0.50 µ B per unit cell at a tensile strain of 7%. However, the Mn-doped MoS2 changes to metallic and antiferromagnetic under compressive strain. The spin polarization of Mn 3d orbitals disappears gradually with increasing compressive strain, and the superexchange interaction between Mn atoms increases gradually. The results suggest that the electronic and magnetic properties of Mn-doped monolayer MoS2 can be effectively modulated by strain engineering providing insight into application to electronic and spintronic devices.

  14. Comparative data compression techniques and multi-compression results

    NASA Astrophysics Data System (ADS)

    Hasan, M. R.; Ibrahimy, M. I.; Motakabber, S. M. A.; Ferdaus, M. M.; Khan, M. N. H.

    2013-12-01

    Data compression is very necessary in business data processing, because of the cost savings that it offers and the large volume of data manipulated in many business applications. It is a method or system for transmitting a digital image (i.e., an array of pixels) from a digital data source to a digital data receiver. More the size of the data be smaller, it provides better transmission speed and saves time. In this communication, we always want to transmit data efficiently and noise freely. This paper will provide some compression techniques for lossless text type data compression and comparative result of multiple and single compression, that will help to find out better compression output and to develop compression algorithms.

  15. An improved Huffman coding with encryption for Radio Data System (RDS) for smart transportation

    NASA Astrophysics Data System (ADS)

    Wu, C. H.; Tseng, Kuo-Kun; Ng, C. K.; Ho, G. T. S.; Zeng, Fu-Fu; Tse, Y. K.

    2018-02-01

    As the development of Radio Data System (RDS) technology and its applications are getting more and more attention and promotion, people concern their personal privacy and communication efficiency, and therefore compression and encryption technologies are being more important for transferring RDS data. Unlike most of the current approaches which contain two stages, compression and encryption, we proposed a new algorithm called Swapped Huffman Table (SHT) based on Huffman algorithm to realise compression and encryption in a single process. In this paper, a good performance for both compression and encryption is obtained and a possible application of RDS with the proposed algorithm in smart transportation is illustrated.

  16. The New CCSDS Image Compression Recommendation

    NASA Technical Reports Server (NTRS)

    Yeh, Pen-Shu; Armbruster, Philippe; Kiely, Aaron; Masschelein, Bart; Moury, Gilles; Schaefer, Christoph

    2005-01-01

    The Consultative Committee for Space Data Systems (CCSDS) data compression working group has recently adopted a recommendation for image data compression, with a final release expected in 2005. The algorithm adopted in the recommendation consists of a two-dimensional discrete wavelet transform of the image, followed by progressive bit-plane coding of the transformed data. The algorithm can provide both lossless and lossy compression, and allows a user to directly control the compressed data volume or the fidelity with which the wavelet-transformed data can be reconstructed. The algorithm is suitable for both frame-based image data and scan-based sensor data, and has applications for near-Earth and deep-space missions. The standard will be accompanied by free software sources on a future web site. An Application-Specific Integrated Circuit (ASIC) implementation of the compressor is currently under development. This paper describes the compression algorithm along with the requirements that drove the selection of the algorithm. Performance results and comparisons with other compressors are given for a test set of space images.

  17. Study on data compression algorithm and its implementation in portable electronic device for Internet of Things applications

    NASA Astrophysics Data System (ADS)

    Asilah Khairi, Nor; Bahari Jambek, Asral

    2017-11-01

    An Internet of Things (IoT) device is usually powered by a small battery, which does not last long. As a result, saving energy in IoT devices has become an important issue when it comes to this subject. Since power consumption is the primary cause of radio communication, some researchers have proposed several compression algorithms with the purpose of overcoming this particular problem. Several data compression algorithms from previous reference papers are discussed in this paper. The description of the compression algorithm in the reference papers was collected and summarized in a table form. From the analysis, MAS compression algorithm was selected as a project prototype due to its high potential for meeting the project requirements. Besides that, it also produced better performance regarding energy-saving, better memory usage, and data transmission efficiency. This method is also suitable to be implemented in WSN. MAS compression algorithm will be prototyped and applied in portable electronic devices for Internet of Things applications.

  18. 40 CFR 1042.1 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of “compression-ignition” in § 1042.901. (2) Marine gas turbine engines. (3) Other marine internal... engines powered by natural gas or other gaseous fuels with maximum engine power at or above 250 kW. Note... EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Overview and Applicability...

  19. 40 CFR 1042.1 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of “compression-ignition” in § 1042.901. (2) Marine gas turbine engines. (3) Other marine internal... engines powered by natural gas or other gaseous fuels with maximum engine power at or above 250 kW. Note... EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Overview and Applicability...

  20. 40 CFR 1042.1 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of “compression-ignition” in § 1042.901. (2) Marine gas turbine engines. (3) Other marine internal... engines powered by natural gas or other gaseous fuels with maximum engine power at or above 250 kW. Note... EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Overview and Applicability...

  1. 40 CFR 1042.1 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of “compression-ignition” in § 1042.901. (2) Marine gas turbine engines. (3) Other marine internal... engines powered by natural gas or other gaseous fuels with maximum engine power at or above 250 kW. Note... EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Overview and Applicability...

  2. 40 CFR 1042.1 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of “compression-ignition” in § 1042.901. (2) Marine gas turbine engines. (3) Other marine internal... engines powered by natural gas or other gaseous fuels with maximum engine power at or above 250 kW. Note... EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Overview and Applicability...

  3. Improved Techniques for Video Compression and Communication

    ERIC Educational Resources Information Center

    Chen, Haoming

    2016-01-01

    Video compression and communication has been an important field over the past decades and critical for many applications, e.g., video on demand, video-conferencing, and remote education. In many applications, providing low-delay and error-resilient video transmission and increasing the coding efficiency are two major challenges. Low-delay and…

  4. Fast and accurate face recognition based on image compression

    NASA Astrophysics Data System (ADS)

    Zheng, Yufeng; Blasch, Erik

    2017-05-01

    Image compression is desired for many image-related applications especially for network-based applications with bandwidth and storage constraints. The face recognition community typical reports concentrate on the maximal compression rate that would not decrease the recognition accuracy. In general, the wavelet-based face recognition methods such as EBGM (elastic bunch graph matching) and FPB (face pattern byte) are of high performance but run slowly due to their high computation demands. The PCA (Principal Component Analysis) and LDA (Linear Discriminant Analysis) algorithms run fast but perform poorly in face recognition. In this paper, we propose a novel face recognition method based on standard image compression algorithm, which is termed as compression-based (CPB) face recognition. First, all gallery images are compressed by the selected compression algorithm. Second, a mixed image is formed with the probe and gallery images and then compressed. Third, a composite compression ratio (CCR) is computed with three compression ratios calculated from: probe, gallery and mixed images. Finally, the CCR values are compared and the largest CCR corresponds to the matched face. The time cost of each face matching is about the time of compressing the mixed face image. We tested the proposed CPB method on the "ASUMSS face database" (visible and thermal images) from 105 subjects. The face recognition accuracy with visible images is 94.76% when using JPEG compression. On the same face dataset, the accuracy of FPB algorithm was reported as 91.43%. The JPEG-compressionbased (JPEG-CPB) face recognition is standard and fast, which may be integrated into a real-time imaging device.

  5. Engine Valve Actuation For Combustion Enhancement

    DOEpatents

    Reitz, Rolf Deneys; Rutland, Christopher J.; Jhavar, Rahul

    2004-05-18

    A combustion chamber valve, such as an intake valve or an exhaust valve, is briefly opened during the compression and/or power strokes of a 4-stroke combustion cycle in an internal combustion engine (in particular, a diesel or CI engine). The brief opening may (1) enhance mixing withing the combustion chamber, allowing more complete oxidation of particulates to decrease engine emissions; and/or may (2) delay ignition until a more desirable time, potentially allowing a means of timing ignition in otherwise difficult-to-control conditions, e.g., in HCCI (Homogeneous Charge Compression Ignition) conditions.

  6. Engine valve actuation for combustion enhancement

    DOEpatents

    Reitz, Rolf Deneys [Madison, WI; Rutland, Christopher J [Madison, WI; Jhavar, Rahul [Madison, WI

    2008-03-04

    A combustion chamber valve, such as an intake valve or an exhaust valve, is briefly opened during the compression and/or power strokes of a 4-strokes combustion cycle in an internal combustion engine (in particular, a diesel or CI engine). The brief opening may (1) enhance mixing withing the combustion chamber, allowing more complete oxidation of particulates to decrease engine emissions; and/or may (2) delay ignition until a more desirable time, potentially allowing a means of timing ignition in otherwise difficult-to-control conditions, e.g., in HCCI (Homogeneous Charge Compression Ignition) conditions.

  7. Elastomeric Cellular Structure Enhanced by Compressible Liquid Filler

    NASA Astrophysics Data System (ADS)

    Sun, Yueting; Xu, Xiaoqing; Xu, Chengliang; Qiao, Yu; Li, Yibing

    2016-05-01

    Elastomeric cellular structures provide a promising solution for energy absorption. Their flexible and resilient nature is particularly relevant to protection of human bodies. Herein we develop an elastomeric cellular structure filled with nanoporous material functionalized (NMF) liquid. Due to the nanoscale infiltration in NMF liquid and its interaction with cell walls, the cellular structure has a much enhanced mechanical performance, in terms of loading capacity and energy absorption density. Moreover, it is validated that the structure is highly compressible and self-restoring. Its hyper-viscoelastic characteristics are elucidated.

  8. An image compression survey and algorithm switching based on scene activity

    NASA Technical Reports Server (NTRS)

    Hart, M. M.

    1985-01-01

    Data compression techniques are presented. A description of these techniques is provided along with a performance evaluation. The complexity of the hardware resulting from their implementation is also addressed. The compression effect on channel distortion and the applicability of these algorithms to real-time processing are presented. Also included is a proposed new direction for an adaptive compression technique for real-time processing.

  9. Psychophysical Comparisons in Image Compression Algorithms.

    DTIC Science & Technology

    1999-03-01

    Leister, M., "Lossy Lempel - Ziv Algorithm for Large Alphabet Sources and Applications to Image Compression ," IEEE Proceedings, v.I, pp. 225-228, September...1623-1642, September 1990. Sanford, M.A., An Analysis of Data Compression Algorithms used in the Transmission of Imagery, Master’s Thesis, Naval...NAVAL POSTGRADUATE SCHOOL Monterey, California THESIS PSYCHOPHYSICAL COMPARISONS IN IMAGE COMPRESSION ALGORITHMS by % Christopher J. Bodine • March

  10. Data Compression With Application to Geo-Location

    DTIC Science & Technology

    2010-08-01

    wireless sensor network requires the estimation of time-difference-of-arrival (TDOA) parameters using data collected by a set of spatially separated sensors. Compressing the data that is shared among the sensors can provide tremendous savings in terms of the energy and transmission latency. Traditional MSE and perceptual based data compression schemes fail to accurately capture the effects of compression on the TDOA estimation task; therefore, it is necessary to investigate compression algorithms suitable for TDOA parameter estimation. This thesis explores the

  11. Chaos-Based Simultaneous Compression and Encryption for Hadoop.

    PubMed

    Usama, Muhammad; Zakaria, Nordin

    2017-01-01

    Data compression and encryption are key components of commonly deployed platforms such as Hadoop. Numerous data compression and encryption tools are presently available on such platforms and the tools are characteristically applied in sequence, i.e., compression followed by encryption or encryption followed by compression. This paper focuses on the open-source Hadoop framework and proposes a data storage method that efficiently couples data compression with encryption. A simultaneous compression and encryption scheme is introduced that addresses an important implementation issue of source coding based on Tent Map and Piece-wise Linear Chaotic Map (PWLM), which is the infinite precision of real numbers that result from their long products. The approach proposed here solves the implementation issue by removing fractional components that are generated by the long products of real numbers. Moreover, it incorporates a stealth key that performs a cyclic shift in PWLM without compromising compression capabilities. In addition, the proposed approach implements a masking pseudorandom keystream that enhances encryption quality. The proposed algorithm demonstrated a congruent fit within the Hadoop framework, providing robust encryption security and compression.

  12. Chaos-Based Simultaneous Compression and Encryption for Hadoop

    PubMed Central

    Zakaria, Nordin

    2017-01-01

    Data compression and encryption are key components of commonly deployed platforms such as Hadoop. Numerous data compression and encryption tools are presently available on such platforms and the tools are characteristically applied in sequence, i.e., compression followed by encryption or encryption followed by compression. This paper focuses on the open-source Hadoop framework and proposes a data storage method that efficiently couples data compression with encryption. A simultaneous compression and encryption scheme is introduced that addresses an important implementation issue of source coding based on Tent Map and Piece-wise Linear Chaotic Map (PWLM), which is the infinite precision of real numbers that result from their long products. The approach proposed here solves the implementation issue by removing fractional components that are generated by the long products of real numbers. Moreover, it incorporates a stealth key that performs a cyclic shift in PWLM without compromising compression capabilities. In addition, the proposed approach implements a masking pseudorandom keystream that enhances encryption quality. The proposed algorithm demonstrated a congruent fit within the Hadoop framework, providing robust encryption security and compression. PMID:28072850

  13. 29 CFR 1910.169 - Air receivers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 5 2013-07-01 2013-07-01 false Air receivers. 1910.169 Section 1910.169 Labor Regulations... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Compressed Gas and Compressed Air Equipment § 1910.169 Air receivers. (a) General requirements—(1) Application. This section applies to compressed air receivers, and other...

  14. 29 CFR 1910.169 - Air receivers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 5 2012-07-01 2012-07-01 false Air receivers. 1910.169 Section 1910.169 Labor Regulations... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Compressed Gas and Compressed Air Equipment § 1910.169 Air receivers. (a) General requirements—(1) Application. This section applies to compressed air receivers, and other...

  15. 29 CFR 1910.169 - Air receivers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 5 2014-07-01 2014-07-01 false Air receivers. 1910.169 Section 1910.169 Labor Regulations... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Compressed Gas and Compressed Air Equipment § 1910.169 Air receivers. (a) General requirements—(1) Application. This section applies to compressed air receivers, and other...

  16. 29 CFR 1910.169 - Air receivers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 5 2011-07-01 2011-07-01 false Air receivers. 1910.169 Section 1910.169 Labor Regulations... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Compressed Gas and Compressed Air Equipment § 1910.169 Air receivers. (a) General requirements—(1) Application. This section applies to compressed air receivers, and other...

  17. 29 CFR 1910.169 - Air receivers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Air receivers. 1910.169 Section 1910.169 Labor Regulations... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Compressed Gas and Compressed Air Equipment § 1910.169 Air receivers. (a) General requirements—(1) Application. This section applies to compressed air receivers, and other...

  18. Effect of compressibility on the hypervelocity penetration

    NASA Astrophysics Data System (ADS)

    Song, W. J.; Chen, X. W.; Chen, P.

    2018-02-01

    We further consider the effect of rod strength by employing the compressible penetration model to study the effect of compressibility on hypervelocity penetration. Meanwhile, we define different instances of penetration efficiency in various modified models and compare these penetration efficiencies to identify the effects of different factors in the compressible model. To systematically discuss the effect of compressibility in different metallic rod-target combinations, we construct three cases, i.e., the penetrations by the more compressible rod into the less compressible target, rod into the analogously compressible target, and the less compressible rod into the more compressible target. The effects of volumetric strain, internal energy, and strength on the penetration efficiency are analyzed simultaneously. It indicates that the compressibility of the rod and target increases the pressure at the rod/target interface. The more compressible rod/target has larger volumetric strain and higher internal energy. Both the larger volumetric strain and higher strength enhance the penetration or anti-penetration ability. On the other hand, the higher internal energy weakens the penetration or anti-penetration ability. The two trends conflict, but the volumetric strain dominates in the variation of the penetration efficiency, which would not approach the hydrodynamic limit if the rod and target are not analogously compressible. However, if the compressibility of the rod and target is analogous, it has little effect on the penetration efficiency.

  19. Report from the 2013 meeting of the International Compression Club on advances and challenges of compression therapy.

    PubMed

    Delos Reyes, Arthur P; Partsch, Hugo; Mosti, Giovanni; Obi, Andrea; Lurie, Fedor

    2014-10-01

    The International Compression Club, a collaboration of medical experts and industry representatives, was founded in 2005 to develop consensus reports and recommendations regarding the use of compression therapy in the treatment of acute and chronic vascular disease. During the recent meeting of the International Compression Club, member presentations were focused on the clinical application of intermittent pneumatic compression in different disease scenarios as well as on the use of inelastic and short stretch compression therapy. In addition, several new compression devices and systems were introduced by industry representatives. This article summarizes the presentations and subsequent discussions and provides a description of the new compression therapies presented. Copyright © 2014 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  20. Better Pictures in a Snap

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Retinex Imaging Processing, winner of NASA's 1999 Space Act Award, is commercially available through TruView Imaging Company. With this technology, amateur photographers use their personal computers to improve the brightness, scene contrast, detail, and overall sharpness of images with increased ease. The process was originally developed for remote sensing of the Earth by researchers at Langley Research Center and Science and Technology Corporation (STC). It automatically enhances a digital image in terms of dynamic range compression, color independence from the spectral distribution of the scene illuminant, and color/lightness rendition. As a result, the enhanced digital image is much closer to the scene perceived by the human visual system, under all kinds and levels of lighting variations. TruView believes there are other applications for the software in medical imaging, forensics, security, recognizance, mining, assembly, and other industrial areas.

  1. Exchange bias induced by the fully strained La{sub 2/3}Ca{sub 1/3}MnO{sub 3} dead layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Q. Y.; College of Electronic Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210046; Wu, X. S., E-mail: xswu@nju.edu.cn

    A pure compressively strained La{sub 2/3}Ca{sub 1/3}MnO{sub 3} (LCMO) dead layer grown on (001)-oriented LaAlO{sub 3} substrate can show all the rich phenomenon of large bias field shift, coercive field enhancement, and high blocking temperature. The obtained exchange bias field (∼350 Oe) and the enhanced coercivity of about 1160 Oe at 5 K under 500 Oe cooling field are superior to that have been reported in LCMO-based ferromagnetic/antiferromagnetic superlattices or nanoscale systems. Our results clearly demonstrate that the inhomogeneous magnetic dead layer of LCMO can induce a strong exchange bias effect, which may be exploited as a very simple structure for spin-valve device application.

  2. Enhanced gelation of chitosan/β-sodium glycerophosphate thermosensitive hydrogel with sodium bicarbonate and biocompatibility evaluated.

    PubMed

    Deng, Aipeng; Kang, Xi; Zhang, Jing; Yang, Yang; Yang, Shulin

    2017-09-01

    The application of chitosan/β-sodium glycerophosphate (β-GP) thermosensitive hydrogel has been limited by the relatively slow gelation, weak mechanical resistance and poor cytocompatibility. In this study, sodium hydrogen carbonate (NaHCO 3 ) was applied with β-GP as gel agents to produce high-strength hydrogel. The hydrogels prepared with high NaHCO 3 concentration or more gel agents showed shorter gelation time, better thermostability, drastically enhanced resistance in compression. Meanwhile, the hydrogels presented obvious porous structures and excellent biocompatibility to HUVEC and NIH 3T3 cultured in vitro with higher NaHCO 3 concentration and moderate concentration of β-GP. Overall, appropriate concentration of β-GP combined with NaHCO 3 can be a good gel regent to improve properties of chitosan thermosensitive hydrogels. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Calcium sensitivity of residual force enhancement in rabbit skinned fibers.

    PubMed

    Joumaa, V; Herzog, W

    2014-08-15

    Isometric force after active stretch of muscles is higher than the purely isometric force at the corresponding length. This property is termed residual force enhancement. Active force in skeletal muscle depends on calcium attachment characteristics to the regulatory proteins. Passive force has been shown to influence calcium attachment characteristics, specifically the sarcomere length dependence of calcium sensitivity. Since one of the mechanisms proposed to explain residual force enhancement is the increase in passive force that results from engagement of titin upon activation and stretch, our aim was to test if calcium sensitivity of residual force enhancement was different from that of its corresponding purely isometric contraction and if such a difference was related to the molecular spring titin. Force-pCa curves were established in rabbit psoas skinned fibers for reference and residual force-enhanced states at a sarcomere length of 3.0 μm 1) in a titin-intact condition, 2) after treatment with trypsin to partially eliminate titin, and 3) after treatment with trypsin and osmotic compression with dextran T-500 to decrease the lattice spacing in the absence of titin. The force-pCa curves of residual force enhancement were shifted to the left compared with their corresponding controls in titin-intact fibers, indicating increased calcium sensitivity. No difference in calcium sensitivity was observed between reference and residual force-enhanced contractions in trypsin-treated and osmotically compressed trypsin-treated fibers. Furthermore, calcium sensitivity after osmotic compression was lower than that observed for residual force enhancement in titin-intact skinned fibers. These results suggest that titin-based passive force regulates the increase in calcium sensitivity of residual force enhancement by a mechanism other than reduction of the myofilament lattice spacing. Copyright © 2014 the American Physiological Society.

  4. Video Compression

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Optivision developed two PC-compatible boards and associated software under a Goddard Space Flight Center Small Business Innovation Research grant for NASA applications in areas such as telerobotics, telesciences and spaceborne experimentation. From this technology, the company used its own funds to develop commercial products, the OPTIVideo MPEG Encoder and Decoder, which are used for realtime video compression and decompression. They are used in commercial applications including interactive video databases and video transmission. The encoder converts video source material to a compressed digital form that can be stored or transmitted, and the decoder decompresses bit streams to provide high quality playback.

  5. Recce imagery compression options

    NASA Astrophysics Data System (ADS)

    Healy, Donald J.

    1995-09-01

    The errors introduced into reconstructed RECCE imagery by ATARS DPCM compression are compared to those introduced by the more modern DCT-based JPEG compression algorithm. For storage applications in which uncompressed sensor data is available JPEG provides better mean-square-error performance while also providing more flexibility in the selection of compressed data rates. When ATARS DPCM compression has already been performed, lossless encoding techniques may be applied to the DPCM deltas to achieve further compression without introducing additional errors. The abilities of several lossless compression algorithms including Huffman, Lempel-Ziv, Lempel-Ziv-Welch, and Rice encoding to provide this additional compression of ATARS DPCM deltas are compared. It is shown that the amount of noise in the original imagery significantly affects these comparisons.

  6. Passive continuous positive airway pressure ventilation during cardiopulmonary resuscitation: a randomized cross-over manikin simulation study.

    PubMed

    Winkler, Bernd E; Muellenbach, Ralf M; Wurmb, Thomas; Struck, Manuel F; Roewer, Norbert; Kranke, Peter

    2017-02-01

    While controlled ventilation is most frequently used during cardiopulmonary resuscitation (CPR), the application of continuous positive airway pressure (CPAP) and passive ventilation of the lung synchronously with chest compressions and decompressions might represent a promising alternative approach. One benefit of CPAP during CPR is the reduction of peak airway pressures and therefore a potential enhancement in haemodynamics. We therefore evaluated the tidal volumes and airway pressures achieved during CPAP-CPR. During CPR with the LUCAS™ 2 compression device, a manikin model was passively ventilated at CPAP levels of 5, 10, 20 and 30 hPa with the Boussignac tracheal tube and the ventilators Evita ® V500, Medumat ® Transport, Oxylator ® EMX, Oxylog ® 2000, Oxylog ® 3000, Primus ® and Servo ® -i as well as the Wenoll ® diver rescue system. Tidal volumes and airway pressures during CPAP-CPR were recorded and analyzed. Tidal volumes during CPAP-CPR were higher than during compression-only CPR without positive airway pressure. The passively generated tidal volumes increased with increasing CPAP levels and were significantly influenced by the ventilators used. During ventilation at 20 hPa CPAP via a tracheal tube, the mean tidal volumes ranged from 125 ml (Medumat ® ) to 309 ml (Wenoll ® ) and the peak airway pressures from 23 hPa (Primus ® ) to 49 hPa (Oxylog ® 3000). Transport ventilators generated lower tidal volumes than intensive care ventilators or closed-circuit systems. Peak airway pressures during CPAP-CPR were lower than those during controlled ventilation CPR reported in literature. High peak airway pressures are known to limit the applicability of ventilation via facemask or via supraglottic airway devices and may adversely affect haemodynamics. Hence, the application of ventilators generating high tidal volumes with low peak airway pressures appears desirable during CPAP-CPR. The limited CPAP-CPR capabilities of transport ventilators in our study might be prerequisite for future developments of transport ventilators.

  7. Survey of Compressed Video Applications: Higher Education, K-12, and the Private Sector, 1993.

    ERIC Educational Resources Information Center

    Cochenour, John; And Others

    This paper presents the results of three surveys about live, two-way interactive video (compressed video) and discusses some possible trends in its use, applications, and technological development. Surveys are an Association for Educational Communications and Technology (AECT) survey that has not been completed; one from the "International…

  8. The stability of the compression cover of box beams stiffened by posts

    NASA Technical Reports Server (NTRS)

    Seide, Paul; Barrett, Paul F

    1951-01-01

    An investigation is made of the buckling of the compression cover of post-stiffened box beams subjected to end moments. Charts are presented for the determination of the minimum post axial stiffnesses and the corresponding compressive buckling loads required for the compression cover to buckle with nodes through the posts. Application of the charts to design and analysis and the limitations of their use are discussed.

  9. Application of Compressive Sensing to Gravitational Microlensing Experiments

    NASA Technical Reports Server (NTRS)

    Korde-Patel, Asmita; Barry, Richard K.; Mohsenin, Tinoosh

    2016-01-01

    Compressive Sensing is an emerging technology for data compression and simultaneous data acquisition. This is an enabling technique for significant reduction in data bandwidth, and transmission power and hence, can greatly benefit spaceflight instruments. We apply this process to detect exoplanets via gravitational microlensing. We experiment with various impact parameters that describe microlensing curves to determine the effectiveness and uncertainty caused by Compressive Sensing. Finally, we describe implications for spaceflight missions.

  10. Development of potential novel cushioning agents for the compaction of coated multi-particulates by co-processing micronized lactose with polymers.

    PubMed

    Lin, Xiao; Chyi, Chin Wun; Ruan, Ke-feng; Feng, Yi; Heng, Paul Wan Sia

    2011-10-01

    This work aimed to explore the potential of lactose as novel cushioning agents with suitable physicomechanical properties by micronization and co-spray drying with polymers for protecting coated multi-particulates from rupture when they are compressed into tablets. Several commercially available lactose grades, micronized lactose (ML) produced by jet milling, spray-dried ML (SML), and polymer-co-processed SMLs, were evaluated for their material characteristics and tableting properties. Hydroxypropylcellulose (HPC), hydroxypropylmethylcellulose (HPMC), and polyvinylpyrrolidone (PVP) at three different levels were evaluated as co-processed polymers for spray drying. Sugar multi-particulates layered with chlorpheniramine maleate followed by an ethylcellulose coat were tableted using various lactose types as fillers. Drug release from compacted multi-particulate tablets was used to evaluate the cushioning effect of the fillers. The results showed that the cushioning effect of lactose principally depended on its particle size. Micronization can effectively enhance the protective action of lactose. Although spray drying led to a small reduction in the cushioning effect of ML, it significantly improved the physicomechanical properties of ML. Co-spray drying with suitable polymers improved both the cushioning effect and the physicomechanical properties of SML to a certain degree. Among the three polymers studied, HPC was the most effective in terms of enhancing the cushioning effect of SML. This was achieved by reducing yield pressure, and enhancing compressibility and compactibility. The combination of micronization and co-spray drying with polymers is a promising method with which new applications for lactose can be developed. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Discontinuity minimization for omnidirectional video projections

    NASA Astrophysics Data System (ADS)

    Alshina, Elena; Zakharchenko, Vladyslav

    2017-09-01

    Advances in display technologies both for head mounted devices and television panels demand resolution increase beyond 4K for source signal in virtual reality video streaming applications. This poses a problem of content delivery trough a bandwidth limited distribution networks. Considering a fact that source signal covers entire surrounding space investigation reviled that compression efficiency may fluctuate 40% in average depending on origin selection at the conversion stage from 3D space to 2D projection. Based on these knowledge the origin selection algorithm for video compression applications has been proposed. Using discontinuity entropy minimization function projection origin rotation may be defined to provide optimal compression results. Outcome of this research may be applied across various video compression solutions for omnidirectional content.

  12. Combining Vector Quantization and Histogram Equalization.

    ERIC Educational Resources Information Center

    Cosman, Pamela C.; And Others

    1992-01-01

    Discussion of contrast enhancement techniques focuses on the use of histogram equalization with a data compression technique, i.e., tree-structured vector quantization. The enhancement technique of intensity windowing is described, and the use of enhancement techniques for medical images is explained, including adaptive histogram equalization.…

  13. Displaying radiologic images on personal computers: image storage and compression--Part 2.

    PubMed

    Gillespy, T; Rowberg, A H

    1994-02-01

    This is part 2 of our article on image storage and compression, the third article of our series for radiologists and imaging scientists on displaying, manipulating, and analyzing radiologic images on personal computers. Image compression is classified as lossless (nondestructive) or lossy (destructive). Common lossless compression algorithms include variable-length bit codes (Huffman codes and variants), dictionary-based compression (Lempel-Ziv variants), and arithmetic coding. Huffman codes and the Lempel-Ziv-Welch (LZW) algorithm are commonly used for image compression. All of these compression methods are enhanced if the image has been transformed into a differential image based on a differential pulse-code modulation (DPCM) algorithm. The LZW compression after the DPCM image transformation performed the best on our example images, and performed almost as well as the best of the three commercial compression programs tested. Lossy compression techniques are capable of much higher data compression, but reduced image quality and compression artifacts may be noticeable. Lossy compression is comprised of three steps: transformation, quantization, and coding. Two commonly used transformation methods are the discrete cosine transformation and discrete wavelet transformation. In both methods, most of the image information is contained in a relatively few of the transformation coefficients. The quantization step reduces many of the lower order coefficients to 0, which greatly improves the efficiency of the coding (compression) step. In fractal-based image compression, image patterns are stored as equations that can be reconstructed at different levels of resolution.

  14. Conjoint Processing of Time-Compressed Narration in Multimedia Instruction: The Effects on Recall, but Not Recognition

    ERIC Educational Resources Information Center

    Ritzhaupt, Albert D.; Barron, Ann E.; Kealy, William A.

    2011-01-01

    Although previous research shows verbal recall of time-compressed narration is significantly enhanced when it is accompanied by a representational adjunct picture (Ritzhaupt & Barron, 2008), the reason for this increased performance remains unclear. One explanation, explored in the current study, is based on the Conjoint Retention Hypothesis…

  15. Corneal Staining and Hot Black Tea Compresses.

    PubMed

    Achiron, Asaf; Birger, Yael; Karmona, Lily; Avizemer, Haggay; Bartov, Elisha; Rahamim, Yocheved; Burgansky-Eliash, Zvia

    2017-03-01

    Warm compresses are widely touted as an effective treatment for ocular surface disorders. Black tea compresses are a common household remedy, although there is no evidence in the medical literature proving their effect and their use may lead to harmful side effects. To describe a case in which the application of black tea to an eye with a corneal epithelial defect led to anterior stromal discoloration; evaluate the prevalence of hot tea compress use; and analyze, in vitro, the discoloring effect of tea compresses on a model of a porcine eye. We assessed the prevalence of hot tea compresses in our community and explored the effect of warm tea compresses on the cornea when the corneal epithelium's integrity is disrupted. An in vitro experiment in which warm compresses were applied to 18 fresh porcine eyes was performed. In half the eyes a corneal epithelial defect was created and in the other half the epithelium was intact. Both groups were divided into subgroups of three eyes each and treated experimentally with warm black tea compresses, pure water, or chamomile tea compresses. We also performed a study in patients with a history of tea compress use. Brown discoloration of the anterior stroma appeared only in the porcine corneas that had an epithelial defect and were treated with black tea compresses. No other eyes from any group showed discoloration. Of the patients included in our survey, approximately 50% had applied some sort of tea ingredient as a solid compressor or as the hot liquid. An intact corneal epithelium serves as an effective barrier against tea-stain discoloration. Only when this layer is disrupted does the damage occur. Therefore, direct application of black tea (Camellia sinensis) to a cornea with an epithelial defect should be avoided.

  16. Compressed Sensing for Resolution Enhancement of Hyperpolarized 13C Flyback 3D-MRSI

    PubMed Central

    Hu, Simon; Lustig, Michael; Chen, Albert P.; Crane, Jason; Kerr, Adam; Kelley, Douglas A.C.; Hurd, Ralph; Kurhanewicz, John; Nelson, Sarah J.; Pauly, John M.; Vigneron, Daniel B.

    2008-01-01

    High polarization of nuclear spins in liquid state through dynamic nuclear polarization has enabled the direct monitoring of 13C metabolites in vivo at very high signal to noise, allowing for rapid assessment of tissue metabolism. The abundant SNR afforded by this hyperpolarization technique makes high resolution 13C 3D-MRSI feasible. However, the number of phase encodes that can be fit into the short acquisition time for hyperpolarized imaging limits spatial coverage and resolution. To take advantage of the high SNR available from hyperpolarization, we have applied compressed sensing to achieve a factor of 2 enhancement in spatial resolution without increasing acquisition time or decreasing coverage. In this paper, the design and testing of compressed sensing suited for a flyback 13C 3D-MRSI sequence are presented. The key to this design was the undersampling of spectral k-space using a novel blipped scheme, thus taking advantage of the considerable sparsity in typical hyperpolarized 13C spectra. Phantom tests validated the accuracy of the compressed sensing approach and initial mouse experiments demonstrated in vivo feasibility. PMID:18367420

  17. Enhanced energy harvesting in commercial ferroelectric materials

    NASA Astrophysics Data System (ADS)

    Patel, Satyanarayan; Chauhan, Aditya; Vaish, Rahul

    2014-04-01

    Ferroelectric materials are used in a number of applications ranging from simple sensors and actuators to ferroelectric random access memories (FRAMs), transducers, health monitoring system and microelectronics. The multiphysical coupling ability possessed by these materials has been established to be useful for energy harvesting applications. However, conventional energy harvesting techniques employing ferroelectric materials possess low energy density. This has prevented the successful commercialization of ferroelectric based energy harvesting systems. In this context, the present study aims at proposing a novel approach for enhanced energy harvesting using commercially available ferroelectric materials. This technique was simulated to be used for two commercially available piezoelectric materials namely PKI-552 and APCI-840, soft and hard lead-zirconate-titanate (PZT) pervoskite ceramics, respectively. It was observed that a maximum energy density of 348 kJm-3cycle-1 can be obtained for cycle parameters of (0-1 ton compressive stress and 1-25 kV.cm-1 electric field) using APCI-840. The reported energy density is several hundred times larger than the maximum energy density reported in the literature for vibration harvesting systems.

  18. Detection and Tracking of Moving Targets Behind Cluttered Environments Using Compressive Sensing

    NASA Astrophysics Data System (ADS)

    Dang, Vinh Quang

    Detection and tracking of moving targets (target's motion, vibration, etc.) in cluttered environments have been receiving much attention in numerous applications, such as disaster search-and-rescue, law enforcement, urban warfare, etc. One of the popular techniques is the use of stepped frequency continuous wave radar due to its low cost and complexity. However, the stepped frequency radar suffers from long data acquisition time. This dissertation focuses on detection and tracking of moving targets and vibration rates of stationary targets behind cluttered medium such as wall using stepped frequency radar enhanced by compressive sensing. The application of compressive sensing enables the reconstruction of the target space using fewer random frequencies, which decreases the acquisition time. Hardware-accelerated parallelization on GPU is investigated for the Orthogonal Matching Pursuit reconstruction algorithm. For simulation purpose, two hybrid methods have been developed to calculate the scattered fields from the targets through the wall approaching the antenna system, and to convert the incoming fields into voltage signals at terminals of the receive antenna. The first method is developed based on the plane wave spectrum approach for calculating the scattered fields of targets behind the wall. The method uses Fast Multiple Method (FMM) to calculate scattered fields on a particular source plane, decomposes them into plane wave components, and propagates the plane wave spectrum through the wall by integrating wall transmission coefficients before constructing the fields on a desired observation plane. The second method allows one to calculate the complex output voltage at terminals of a receiving antenna which fully takes into account the antenna effects. This method adopts the concept of complex antenna factor in Electromagnetic Compatibility (EMC) community for its calculation.

  19. Design of a video capsule endoscopy system with low-power ASIC for monitoring gastrointestinal tract.

    PubMed

    Liu, Gang; Yan, Guozheng; Zhu, Bingquan; Lu, Li

    2016-11-01

    In recent years, wireless capsule endoscopy (WCE) has been a state-of-the-art tool to examine disorders of the human gastrointestinal tract painlessly. However, system miniaturization, enhancement of the image-data transfer rate and power consumption reduction for the capsule are still key challenges. In this paper, a video capsule endoscopy system with a low-power controlling and processing application-specific integrated circuit (ASIC) is designed and fabricated. In the design, these challenges are resolved by employing a microimage sensor, a novel radio frequency transmitter with an on-off keying modulation rate of 20 Mbps, and an ASIC structure that includes a clock management module, a power-efficient image compression module and a power management unit. An ASIC-based prototype capsule, which measures Φ11 mm × 25 mm, has been developed here. Test results show that the designed ASIC consumes much less power than most of the other WCE systems and that its total power consumption per frame is the least. The image compression module can realize high near-lossless compression rate (3.69) and high image quality (46.2 dB). The proposed system supports multi-spectral imaging, including white light imaging and autofluorescence imaging, at a maximum frame rate of 24 fps and with a resolution of 400 × 400. Tests and in vivo trials in pigs have proved the feasibility of the entire system, but further improvements in capsule control and compression performance inside the ASIC are needed in the future.

  20. Dynamic quality of service model for improving performance of multimedia real-time transmission in industrial networks.

    PubMed

    Gopalakrishnan, Ravichandran C; Karunakaran, Manivannan

    2014-01-01

    Nowadays, quality of service (QoS) is very popular in various research areas like distributed systems, multimedia real-time applications and networking. The requirements of these systems are to satisfy reliability, uptime, security constraints and throughput as well as application specific requirements. The real-time multimedia applications are commonly distributed over the network and meet various time constraints across networks without creating any intervention over control flows. In particular, video compressors make variable bit-rate streams that mismatch the constant-bit-rate channels typically provided by classical real-time protocols, severely reducing the efficiency of network utilization. Thus, it is necessary to enlarge the communication bandwidth to transfer the compressed multimedia streams using Flexible Time Triggered- Enhanced Switched Ethernet (FTT-ESE) protocol. FTT-ESE provides automation to calculate the compression level and change the bandwidth of the stream. This paper focuses on low-latency multimedia transmission over Ethernet with dynamic quality-of-service (QoS) management. This proposed framework deals with a dynamic QoS for multimedia transmission over Ethernet with FTT-ESE protocol. This paper also presents distinct QoS metrics based both on the image quality and network features. Some experiments with recorded and live video streams show the advantages of the proposed framework. To validate the solution we have designed and implemented a simulator based on the Matlab/Simulink, which is a tool to evaluate different network architecture using Simulink blocks.

  1. Compressibility of 304 Stainless Steel Powder Metallurgy Materials Reinforced with 304 Short Stainless Steel Fibers

    PubMed Central

    Yao, Bibo; Zhou, Zhaoyao; Duan, Liuyang; Xiao, Zhiyu

    2016-01-01

    Powder metallurgy (P/M) technique is usually used for manufacturing porous metal materials. However, some P/M materials are limitedly used in engineering for their performance deficiency. A novel 304 stainless steel P/M material was produced by a solid-state sintering of 304 stainless steel powders and 304 short stainless steel fibers, which were alternately laid in layers according to mass ratio. In this paper, the compressive properties of the P/M materials were characterized by a series of uniaxial compression tests. The effects of fiber content, compaction pressure and high temperature nitriding on compressive properties were investigated. The results indicated that, without nitriding, the samples changed from cuboid to cydariform without damage in the process of compression. The compressive stress was enhanced with increasing fiber content ranging from 0 to 8 wt.%. For compaction pressure from 55 to 75 MPa, greater compaction pressure improved compressive stress. Moreover, high temperature nitriding was able to significantly improve the yield stress, but collapse failure eventually occurred. PMID:28773285

  2. Compressibility of 304 Stainless Steel Powder Metallurgy Materials Reinforced with 304 Short Stainless Steel Fibers.

    PubMed

    Yao, Bibo; Zhou, Zhaoyao; Duan, Liuyang; Xiao, Zhiyu

    2016-03-04

    Powder metallurgy (P/M) technique is usually used for manufacturing porous metal materials. However, some P/M materials are limitedly used in engineering for their performance deficiency. A novel 304 stainless steel P/M material was produced by a solid-state sintering of 304 stainless steel powders and 304 short stainless steel fibers, which were alternately laid in layers according to mass ratio. In this paper, the compressive properties of the P/M materials were characterized by a series of uniaxial compression tests. The effects of fiber content, compaction pressure and high temperature nitriding on compressive properties were investigated. The results indicated that, without nitriding, the samples changed from cuboid to cydariform without damage in the process of compression. The compressive stress was enhanced with increasing fiber content ranging from 0 to 8 wt.%. For compaction pressure from 55 to 75 MPa, greater compaction pressure improved compressive stress. Moreover, high temperature nitriding was able to significantly improve the yield stress, but collapse failure eventually occurred.

  3. Pressure prediction model for compression garment design.

    PubMed

    Leung, W Y; Yuen, D W; Ng, Sun Pui; Shi, S Q

    2010-01-01

    Based on the application of Laplace's law to compression garments, an equation for predicting garment pressure, incorporating the body circumference, the cross-sectional area of fabric, applied strain (as a function of reduction factor), and its corresponding Young's modulus, is developed. Design procedures are presented to predict garment pressure using the aforementioned parameters for clinical applications. Compression garments have been widely used in treating burning scars. Fabricating a compression garment with a required pressure is important in the healing process. A systematic and scientific design method can enable the occupational therapist and compression garments' manufacturer to custom-make a compression garment with a specific pressure. The objectives of this study are 1) to develop a pressure prediction model incorporating different design factors to estimate the pressure exerted by the compression garments before fabrication; and 2) to propose more design procedures in clinical applications. Three kinds of fabrics cut at different bias angles were tested under uniaxial tension, as were samples made in a double-layered structure. Sets of nonlinear force-extension data were obtained for calculating the predicted pressure. Using the value at 0° bias angle as reference, the Young's modulus can vary by as much as 29% for fabric type P11117, 43% for fabric type PN2170, and even 360% for fabric type AP85120 at a reduction factor of 20%. When comparing the predicted pressure calculated from the single-layered and double-layered fabrics, the double-layered construction provides a larger range of target pressure at a particular strain. The anisotropic and nonlinear behaviors of the fabrics have thus been determined. Compression garments can be methodically designed by the proposed analytical pressure prediction model.

  4. Effect of Compression Garments on the Development of Delayed-Onset Muscle Soreness: A Multimodal Approach Using Contrast-Enhanced Ultrasound and Acoustic Radiation Force Impulse Elastography.

    PubMed

    Heiss, Rafael; Kellermann, Marion; Swoboda, Bernd; Grim, Casper; Lutter, Christoph; May, Matthias S; Wuest, Wolfgang; Uder, Michael; Nagel, Armin M; Hotfiel, Thilo

    2018-06-12

    Study Design Controlled laboratory study with repeated measures. Background Delayed-onset muscle soreness (DOMS) is one of the most common reasons for impaired muscle performance in sports. However, little consensus exists regarding which treatments may be most effective and the underlying mechanisms are poorly understood. Objectives To investigate the influence of compression garments on the development of DOMS, focusing on changes in muscle perfusion and muscle stiffness. Methods Muscle perfusion and stiffness, calf circumference, muscle soreness, passive ankle dorsiflexion, and creatine kinase levels were assessed on participants before (baseline) a DOMS-inducing eccentric calf exercise intervention and 60 h later (follow-up). After DOMS induction, a sports compression garment (18-21 mmHg) was worn on one randomized calf until follow-up. The contralateral calf served as an internal control. Muscle perfusion was assessed using contrast-enhanced ultrasound (peak enhancement [PE] and wash-in area under the curve [WiAUC]), while muscle stiffness was assessed using acoustic radiation force impulse (shear wave velocities [SWV]). An MRI scan of both lower legs was also performed during the follow-up testing session to characterize the extent of exercise-induced muscle damage. Comparisons were made between limbs and over time. Results SWV values of the medial gastrocnemius showed a significant interaction between time and limb (p=0.006) with the non-compressed muscle demonstrating lower muscle stiffness values at follow-up compared to baseline or the compressed muscle. No significant differences in soleus muscle stiffness were noted between limb or over time, as was the case for muscle perfusion metrics (PE and WiAUC) for the medial gastrocnemius and soleus muscles. Further, compression had no significant effect on passive ankle dorsiflexion, muscle soreness, calf circumference, or injury severity per MRI. Conclusion Continuous wearing of compression garments during the inflammation phase of DOMS may play an important role in regulating muscle stiffness; however, they have no significant effects on intramuscular perfusion or other common clinical assessments. J Orthop Sports Phys Ther, Epub 12 Jun 2018. doi:10.2519/jospt.2018.8038.

  5. The Influence of Compression Stocking on Jumping Performance of Athlete

    NASA Astrophysics Data System (ADS)

    Salleh, M. N.; Lazim, H. M.; Lamsali, H.; Salleh, A. F.

    2018-05-01

    Evidence of compression stocking effectiveness are mixed, with some researchers suggests that the stocking can enhance performance while others dispute the finding. One of the factors that are thought to cause the mixed results is level of pressure used in their studies. This research had organized a test on fourteen athletes. Their body was scanned and a customized compression stocking which can exert pressure correspond to the intended one was developed. An experiment was conducted to measure the effect of wearing compression stocking on jumping performance. The results show mixed outcomes. For the female athlete, there is a significant difference between wearing and not wearing compression stocking (p<0.05) on knee power. However, there is no significant difference for male athletes whether wearing or not.

  6. Mechanical characterization of Al-2024 reinforced with fly ash and E-glass by stir casting method

    NASA Astrophysics Data System (ADS)

    Ramesh, B. T.; Swamy, R. P.; Vinayak, Koppad

    2018-04-01

    The properties of MMCs enhance their handling in automotive and various applications for the reason that of encouraging properties of high stiffness and high strength, low density, high electrical and thermal conductivity, corrosion resistance, improved wear resistance etc. Metal Matrix Composites are a vital family of materials designed at achieving an improved combination of properties. Our paper deals through to fabricate Hybrid Composite by heating Al 2024 in furnace at a temperature of around 4000 C. E-Glass fiber & Fly ash will be added to the molten metal with changing weight fractions and stirred strongly. Then the ensuing composition will poured into the mould to obtain hybrid composite casting. Aluminium alloy (2024) is the matrix metal used in the present investigation. Fly ash and e-glass are used as the reinforced materials to produce the composite by stir casting. Fly ash is selected because of it is less expensive and low density reinforcement available in great quantities as solid disposal from thermal power plants. The Test specimen is prepared as per ASTM standards size by machining operations to conduct Tensile, Compression, Hardness, and wear test. The test specimens are furnished for tensile, compression strength and wear as per ASTM standard E8, E9 and G99 respectively using Universal Testing Machine and pin on disk machine. It is seen that the fabricated MMC obtained has got enhanced mechanical strength.

  7. PEG modulated release of etanidazole from implantable PLGA/PDLA discs.

    PubMed

    Wang, Fangjing; Lee, Timothy; Wang, Chi-Hwa

    2002-09-01

    In this work, etanidazole (one type of hypoxic radiosensitizer) is encapsulated into spray dried poly(D),L-lactide-co-glycolide) (PLGA) microspheres and then compressed into discs for controlled release applications. Etanidazole is characterized by intracellular glutathione depletion and glutathione transferases inhibition, thereby enhancing sensitivity to radiation. It is also cytotoxic to tumor cells and can chemosensitize some alkylating agents by activating their tumor cell killing capabilities. We observed the release characteristics of etanidazole in the dosage forms of microspheres and discs, subjected to different preparation conditions. The release characteristics, morphology changes, particle size, and encapsulation efficiency of microspheres are also investigated. The release rate of etanidazole from implantable discs (13 mm in diameter, 1 mm in thickness, fabricated by a press) is much lower than microspheres due to the reduced specific surface. After the initial burst of 1% release for the first day, the cumulative release within the first week is less than 2% until a secondary burst of release (caused by polymer degradation) occurs after one month. Some key preparation conditions such as drug loadings, disc thickness and diameter, and compression pressure can affect the initial burst of etanidazole from the discs. However, none of them can significantly make the release more uniform. In contrast, the incorporation of polyethylene glycol (PEG) can greatly enhance the release rate of discs and also reduces the secondary burst effect, thereby achieving a sustained release for about 2 months.

  8. Stress evolution of Ge nanocrystals in dielectric matrices.

    PubMed

    Bahariqushchi, Rahim; Raciti, Rosario; Kasapoğlu, Ahmet Emre; Gür, Emre; Sezen, Meltem; Kalay, Eren; Mirabella, Salvatore; Aydinli, A

    2018-05-04

    Germanium nanocrystals (Ge NCs) embedded in single and multilayer silicon oxide and silicon nitride matrices have been synthesized using plasma enhanced chemical vapor deposition followed by conventional furnace annealing or rapid thermal processing in N 2 ambient. Compositions of the films were determined by Rutherford backscattering spectrometry and x-ray photoelectron spectroscopy. The formation of NCs under suitable process conditions was observed with high resolution transmission electron microscope micrographs and Raman spectroscopy. Stress measurements were done using Raman shifts of the Ge optical phonon line at 300.7 cm -1 . The effect of the embedding matrix and annealing methods on Ge NC formation were investigated. In addition to Ge NCs in single layer samples, the stress on Ge NCs in multilayer samples was also analyzed. Multilayers of Ge NCs in a silicon nitride matrix separated by dielectric buffer layers to control the size and density of NCs were fabricated. Multilayers consisted of SiN y :Ge ultrathin films sandwiched between either SiO 2 or Si 3 N 4 by the proper choice of buffer material. We demonstrated that it is possible to tune the stress state of Ge NCs from compressive to tensile, a desirable property for optoelectronic applications. We also observed that there is a correlation between the stress and the crystallization threshold in which the compressive stress enhances the crystallization, while the tensile stress suppresses the process.

  9. Stress evolution of Ge nanocrystals in dielectric matrices

    NASA Astrophysics Data System (ADS)

    Bahariqushchi, Rahim; Raciti, Rosario; Emre Kasapoğlu, Ahmet; Gür, Emre; Sezen, Meltem; Kalay, Eren; Mirabella, Salvatore; Aydinli, A.

    2018-05-01

    Germanium nanocrystals (Ge NCs) embedded in single and multilayer silicon oxide and silicon nitride matrices have been synthesized using plasma enhanced chemical vapor deposition followed by conventional furnace annealing or rapid thermal processing in N2 ambient. Compositions of the films were determined by Rutherford backscattering spectrometry and x-ray photoelectron spectroscopy. The formation of NCs under suitable process conditions was observed with high resolution transmission electron microscope micrographs and Raman spectroscopy. Stress measurements were done using Raman shifts of the Ge optical phonon line at 300.7 cm-1. The effect of the embedding matrix and annealing methods on Ge NC formation were investigated. In addition to Ge NCs in single layer samples, the stress on Ge NCs in multilayer samples was also analyzed. Multilayers of Ge NCs in a silicon nitride matrix separated by dielectric buffer layers to control the size and density of NCs were fabricated. Multilayers consisted of SiN y :Ge ultrathin films sandwiched between either SiO2 or Si3N4 by the proper choice of buffer material. We demonstrated that it is possible to tune the stress state of Ge NCs from compressive to tensile, a desirable property for optoelectronic applications. We also observed that there is a correlation between the stress and the crystallization threshold in which the compressive stress enhances the crystallization, while the tensile stress suppresses the process.

  10. Motion-compensated compressed sensing for dynamic contrast-enhanced MRI using regional spatiotemporal sparsity and region tracking: Block LOw-rank Sparsity with Motion-guidance (BLOSM)

    PubMed Central

    Chen, Xiao; Salerno, Michael; Yang, Yang; Epstein, Frederick H.

    2014-01-01

    Purpose Dynamic contrast-enhanced MRI of the heart is well-suited for acceleration with compressed sensing (CS) due to its spatiotemporal sparsity; however, respiratory motion can degrade sparsity and lead to image artifacts. We sought to develop a motion-compensated CS method for this application. Methods A new method, Block LOw-rank Sparsity with Motion-guidance (BLOSM), was developed to accelerate first-pass cardiac MRI, even in the presence of respiratory motion. This method divides the images into regions, tracks the regions through time, and applies matrix low-rank sparsity to the tracked regions. BLOSM was evaluated using computer simulations and first-pass cardiac datasets from human subjects. Using rate-4 acceleration, BLOSM was compared to other CS methods such as k-t SLR that employs matrix low-rank sparsity applied to the whole image dataset, with and without motion tracking, and to k-t FOCUSS with motion estimation and compensation that employs spatial and temporal-frequency sparsity. Results BLOSM was qualitatively shown to reduce respiratory artifact compared to other methods. Quantitatively, using root mean squared error and the structural similarity index, BLOSM was superior to other methods. Conclusion BLOSM, which exploits regional low rank structure and uses region tracking for motion compensation, provides improved image quality for CS-accelerated first-pass cardiac MRI. PMID:24243528

  11. Chronic Nerve Compression Accelerates the Progression of Diabetic Peripheral Neuropathy in a Rat Model: A Study of Gene Expression Profiling.

    PubMed

    Tu, Yiji; Chen, Zenggan; Hu, Junda; Ding, Zuoyou; Lineaweaver, William C; Dellon, A Lee; Zhang, Feng

    2018-04-25

     This article investigates the role of chronic nerve compression in the progression of diabetic peripheral neuropathy (DPN) by gene expression profiling.  Chronic nerve compression was created in streptozotocin (STZ)-induced diabetic rats by wrapping a silicone tube around the sciatic nerve (SCN). Neurological deficits were evaluated using pain threshold test, motor nerve conduction velocity (MNCV), and histopathologic examination. Differentially expressed genes (DGEs) and metabolic processes associated with chronic nerve compression were analyzed.  Significant changes in withdrawal threshold and MNCV were observed in diabetic rats 6 weeks after diabetes induction, and in DPN rats 4 weeks after diabetes induction. Histopathologic examination of the SCN in DPN rats presented typical changes of myelin degeneration in DPN. Function analyses of DEGs demonstrated that biological processes related to inflammatory response, extracellular matrix component, and synaptic transmission were upregulated after diabetes induction, and chronic nerve compression further enhanced those changes. While processes related to lipid and glucose metabolism, response to insulin, and apoptosis regulation were inhibited after diabetes induction, chronic nerve compression further enhanced these inhibitions.  Our study suggests that additional silicone tube wrapping on the SCN of rat with diabetes closely mimics the course and pathologic findings of human DPN. Further studies are needed to verify the effectiveness of this rat model of DPN and elucidate the roles of the individual genes in the progression of DPN. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  12. Radiometric resolution enhancement by lossy compression as compared to truncation followed by lossless compression

    NASA Technical Reports Server (NTRS)

    Tilton, James C.; Manohar, Mareboyana

    1994-01-01

    Recent advances in imaging technology make it possible to obtain imagery data of the Earth at high spatial, spectral and radiometric resolutions from Earth orbiting satellites. The rate at which the data is collected from these satellites can far exceed the channel capacity of the data downlink. Reducing the data rate to within the channel capacity can often require painful trade-offs in which certain scientific returns are sacrificed for the sake of others. In this paper we model the radiometric version of this form of lossy compression by dropping a specified number of least significant bits from each data pixel and compressing the remaining bits using an appropriate lossless compression technique. We call this approach 'truncation followed by lossless compression' or TLLC. We compare the TLLC approach with applying a lossy compression technique to the data for reducing the data rate to the channel capacity, and demonstrate that each of three different lossy compression techniques (JPEG/DCT, VQ and Model-Based VQ) give a better effective radiometric resolution than TLLC for a given channel rate.

  13. Loaded delay lines for future RF pulse compression systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, R.M.; Wilson, P.B.; Kroll, N.M.

    1995-05-01

    The peak power delivered by the klystrons in the NLCRA (Next Linear Collider Test Accelerator) now under construction at SLAC is enhanced by a factor of four in a SLED-II type of R.F. pulse compression system (pulse width compression ratio of six). To achieve the desired output pulse duration of 250 ns, a delay line constructed from a 36 m length of circular waveguide is used. Future colliders, however, will require even higher peak power and larger compression factors, which favors a more efficient binary pulse compression approach. Binary pulse compression, however, requires a line whose delay time is approximatelymore » proportional to the compression factor. To reduce the length of these lines to manageable proportions, periodically loaded delay lines are being analyzed using a generalized scattering matrix approach. One issue under study is the possibility of propagating two TE{sub o} modes, one with a high group velocity and one with a group velocity of the order 0.05c, for use in a single-line binary pulse compression system. Particular attention is paid to time domain pulse degradation and to Ohmic losses.« less

  14. A new display stream compression standard under development in VESA

    NASA Astrophysics Data System (ADS)

    Jacobson, Natan; Thirumalai, Vijayaraghavan; Joshi, Rajan; Goel, James

    2017-09-01

    The Advanced Display Stream Compression (ADSC) codec project is in development in response to a call for technologies from the Video Electronics Standards Association (VESA). This codec targets visually lossless compression of display streams at a high compression rate (typically 6 bits/pixel) for mobile/VR/HDR applications. Functionality of the ADSC codec is described in this paper, and subjective trials results are provided using the ISO 29170-2 testing protocol.

  15. Application of Compressive Sensing to Gravitational Microlensing Experiments

    NASA Astrophysics Data System (ADS)

    Korde-Patel, Asmita; Barry, Richard K.; Mohsenin, Tinoosh

    2017-06-01

    Compressive Sensing is an emerging technology for data compression and simultaneous data acquisition. This is an enabling technique for significant reduction in data bandwidth, and transmission power and hence, can greatly benefit space-flight instruments. We apply this process to detect exoplanets via gravitational microlensing. We experiment with various impact parameters that describe microlensing curves to determine the effectiveness and uncertainty caused by Compressive Sensing. Finally, we describe implications for space-flight missions.

  16. Binary video codec for data reduction in wireless visual sensor networks

    NASA Astrophysics Data System (ADS)

    Khursheed, Khursheed; Ahmad, Naeem; Imran, Muhammad; O'Nils, Mattias

    2013-02-01

    Wireless Visual Sensor Networks (WVSN) is formed by deploying many Visual Sensor Nodes (VSNs) in the field. Typical applications of WVSN include environmental monitoring, health care, industrial process monitoring, stadium/airports monitoring for security reasons and many more. The energy budget in the outdoor applications of WVSN is limited to the batteries and the frequent replacement of batteries is usually not desirable. So the processing as well as the communication energy consumption of the VSN needs to be optimized in such a way that the network remains functional for longer duration. The images captured by VSN contain huge amount of data and require efficient computational resources for processing the images and wide communication bandwidth for the transmission of the results. Image processing algorithms must be designed and developed in such a way that they are computationally less complex and must provide high compression rate. For some applications of WVSN, the captured images can be segmented into bi-level images and hence bi-level image coding methods will efficiently reduce the information amount in these segmented images. But the compression rate of the bi-level image coding methods is limited by the underlined compression algorithm. Hence there is a need for designing other intelligent and efficient algorithms which are computationally less complex and provide better compression rate than that of bi-level image coding methods. Change coding is one such algorithm which is computationally less complex (require only exclusive OR operations) and provide better compression efficiency compared to image coding but it is effective for applications having slight changes between adjacent frames of the video. The detection and coding of the Region of Interest (ROIs) in the change frame efficiently reduce the information amount in the change frame. But, if the number of objects in the change frames is higher than a certain level then the compression efficiency of both the change coding and ROI coding becomes worse than that of image coding. This paper explores the compression efficiency of the Binary Video Codec (BVC) for the data reduction in WVSN. We proposed to implement all the three compression techniques i.e. image coding, change coding and ROI coding at the VSN and then select the smallest bit stream among the results of the three compression techniques. In this way the compression performance of the BVC will never become worse than that of image coding. We concluded that the compression efficiency of BVC is always better than that of change coding and is always better than or equal that of ROI coding and image coding.

  17. Dynamic properties of quantum dot distributed feedback lasers

    NASA Astrophysics Data System (ADS)

    Su, Hui

    Semiconductor quantum dots (QDs) are nano-structures with three-dimensional spatial confinement of electrons and holes, representing the ultimate case of the application of the size quantization concept to semiconductor hetero-structures. The knowledge about the dynamic properties of QD semiconductor diode lasers is essential to improve the device performance and understand the physics of the QDs. In this dissertation, the dynamic properties of QD distributed feedback lasers (DFBs) are studied. The response function of QD DFBs under external modulation is characterized and the gain compression with photon density is identified to be the limiting factor of the modulation bandwidth. The enhancement of the gain compression by the gain saturation with the carrier density in QDs is analyzed for the first time with suggestions to improve the high speed performance of the devices by increasing the maximum gain of the QD medium. The linewidth of the QD DFBs are found to be more than one order of magnitude narrower than that of conventional quantum well (QW) DFBs at comparable output powers. The figure of merit for the narrow linewidth is identified by the comparison between different semiconductor materials, including bulk, QWs and QDs. Linewidth rebroadening and the effects of gain offset are also investigated. The effects of external feedback on the QD DFBs are compared to QW DFBs. Higher external feedback resistance is found in QD DFBs with an 8-dB improvement in terms of the coherence collapse of the devices and 20-dB improvement in terms of the degradation of the signal-to-noise ratio under 2.5 Gbps modulation. This result enables the isolator-free operation of the QD DFBs in real communication systems based on the IEEE 802.3ae Ethernet standard. Finally, the chirp of QD DFBs is studied by time-resolved-chirp measurements. The wavelength chirping of the QD DFBs under 2.5 Gbps modulation is characterized. The above-threshold behavior of the linewidth enhancement factor in QDs is studied, in contrast to the below-threshold ones in most of the published data to-date. The strong dependence of the linewidth enhancement factor on the photon density is explained by the enhancement of gain compression by the gain saturation with the carrier density, which is related to the inhomogeneous broadening and spectral hole burning in QDs.

  18. Using Compression Isotherms of Phospholipid Monolayers to Explore Critical Phenomena: A Biophysical Chemistry Experiment

    ERIC Educational Resources Information Center

    Gragson, Derek E.; Beaman, Dan; Porter, Rhiannon

    2008-01-01

    Two experiments are described in which students explore phase transitions and critical phenomena by obtaining compression isotherms of phospholipid monolayers using a Langmuir trough. Through relatively simple analysis of their data students gain a better understanding of compression isotherms, the application of the Clapeyron equation, the…

  19. 75 FR 45195 - Office of Hazardous Materials Safety; Notice of Applications for Modification of Special Permit

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-02

    ... compressed oxygen without rigid outer packaging when no other means of transportation exist. 14860-M Alaska... authorizing the transportation in commerce of compressed oxygen without rigid outer packaging when no other... transportation in commerce of compressed oxygen without rigid outer packaging when no other means of...

  20. Adaptive Encoding for Numerical Data Compression.

    ERIC Educational Resources Information Center

    Yokoo, Hidetoshi

    1994-01-01

    Discusses the adaptive compression of computer files of numerical data whose statistical properties are not given in advance. A new lossless coding method for this purpose, which utilizes Adelson-Velskii and Landis (AVL) trees, is proposed. The method is effective to any word length. Its application to the lossless compression of gray-scale images…

  1. Compression for radiological images

    NASA Astrophysics Data System (ADS)

    Wilson, Dennis L.

    1992-07-01

    The viewing of radiological images has peculiarities that must be taken into account in the design of a compression technique. The images may be manipulated on a workstation to change the contrast, to change the center of the brightness levels that are viewed, and even to invert the images. Because of the possible consequences of losing information in a medical application, bit preserving compression is used for the images used for diagnosis. However, for archiving the images may be compressed to 10 of their original size. A compression technique based on the Discrete Cosine Transform (DCT) takes the viewing factors into account by compressing the changes in the local brightness levels. The compression technique is a variation of the CCITT JPEG compression that suppresses the blocking of the DCT except in areas of very high contrast.

  2. Fast and efficient compression of floating-point data.

    PubMed

    Lindstrom, Peter; Isenburg, Martin

    2006-01-01

    Large scale scientific simulation codes typically run on a cluster of CPUs that write/read time steps to/from a single file system. As data sets are constantly growing in size, this increasingly leads to I/O bottlenecks. When the rate at which data is produced exceeds the available I/O bandwidth, the simulation stalls and the CPUs are idle. Data compression can alleviate this problem by using some CPU cycles to reduce the amount of data needed to be transfered. Most compression schemes, however, are designed to operate offline and seek to maximize compression, not throughput. Furthermore, they often require quantizing floating-point values onto a uniform integer grid, which disqualifies their use in applications where exact values must be retained. We propose a simple scheme for lossless, online compression of floating-point data that transparently integrates into the I/O of many applications. A plug-in scheme for data-dependent prediction makes our scheme applicable to a wide variety of data used in visualization, such as unstructured meshes, point sets, images, and voxel grids. We achieve state-of-the-art compression rates and speeds, the latter in part due to an improved entropy coder. We demonstrate that this significantly accelerates I/O throughput in real simulation runs. Unlike previous schemes, our method also adapts well to variable-precision floating-point and integer data.

  3. Breaking of rod-shaped model material during compression

    NASA Astrophysics Data System (ADS)

    Lukas, Kulaviak; Vera, Penkavova; Marek, Ruzicka; Miroslav, Puncochar; Petr, Zamostny; Zdenek, Grof; Frantisek, Stepanek; Marek, Schongut; Jaromir, Havlica

    2017-06-01

    The breakage of a model anisometric dry granular material caused by uniaxial compression was studied. The bed of uniform rod-like pasta particles (8 mm long, aspect ratio 1:8) was compressed (Gamlen Tablet Press) and their size distribution was measured after each run (Dynamic Image Analysing). The compression dynamics was recorded and the effect of several parameters was tested (rate of compression, volume of granular bed, pressure magnitude and mode of application). Besides the experiments, numerical modelling of the compressed breakable material was performed as well, employing the DEM approach (Discrete Element Method). The comparison between the data and the model looks promising.

  4. Fingerprint recognition of wavelet-based compressed images by neuro-fuzzy clustering

    NASA Astrophysics Data System (ADS)

    Liu, Ti C.; Mitra, Sunanda

    1996-06-01

    Image compression plays a crucial role in many important and diverse applications requiring efficient storage and transmission. This work mainly focuses on a wavelet transform (WT) based compression of fingerprint images and the subsequent classification of the reconstructed images. The algorithm developed involves multiresolution wavelet decomposition, uniform scalar quantization, entropy and run- length encoder/decoder and K-means clustering of the invariant moments as fingerprint features. The performance of the WT-based compression algorithm has been compared with JPEG current image compression standard. Simulation results show that WT outperforms JPEG in high compression ratio region and the reconstructed fingerprint image yields proper classification.

  5. State-of-the-art Magnetic Resonance Imaging in Vascular Thoracic Outlet Syndrome.

    PubMed

    Aghayev, Ayaz; Rybicki, Frank J

    2015-05-01

    Vascular thoracic outlet syndrome is caused by compression of subclavian/axillary vessels during their passage from the thoracic cavity to the axilla. Early diagnosis and treatment is important to prevent debilitating outcomes of vascular thoracic outlet syndrome. Contrast-enhanced three-dimensional (3D) magnetic resonance angiography (MRA) with equilibrium phase using provocative arm positioning is the optimal examination to determine presence, degree of vascular compression, and complications of vascular thoracic outlet syndrome. This article reviews thoracic outlet anatomy, disorders of the vascular component, and typical imaging findings by contrast-enhanced 3D MRA. Published by Elsevier Inc.

  6. Effect of Pre-Strain on the Fatigue Behavior of Extruded AZ31 Alloys

    NASA Astrophysics Data System (ADS)

    Wu, Yanjun

    2017-09-01

    An attempt is made to rationalize the effect of pre-strain history on fatigue behaviors of AZ31 magnesium alloy. Axial fatigue tests were conducted in the extruded and pre-compressioned AZ31 alloy under low cycle total strain control fatigue conditions. The pre-strain process influences the plastic deformation mechanism activated during fatigue deformation, especially during tensile loading, by enhancing the activity of detwinning mechanism. The low-cycle fatigue lifetime of extruded AZ31 alloy can be enhanced by the pre-compression process. And the hysteresis energy was successfully used to predict the low-cycle fatigue lifetime.

  7. A Preliminary Evaluation of Lyophilized Gelatin Sponges, Enhanced with Platelet-Rich Plasma, Hydroxyapatite and Chitin Whiskers for Bone Regeneration

    PubMed Central

    Rodriguez, Isaac A.; Sell, Scott A.; McCool, Jennifer M.; Saxena, Gunjan; Spence, Andrew J.; Bowlin, Gary L.

    2013-01-01

    The purpose of this study was to perform a number of preliminary in vitro evaluations on an array of modified gelatin gel sponge scaffolds for use in a bone graft application. The gelatin gels were modified through the addition of a number of components which each possess unique properties conducive to the creation and regeneration of bone: a preparation rich in growth factors (PRGF, a bioactive, lyophilized form of platelet-rich plasma), hydroxyapatite, and chitin whiskers. Platelet-rich plasma therapy is an emerging practice that has proven effective in a number of clinical applications, including enhancing bone repair through improved deposition of new bony matrix and angiogenesis. As such, the inclusion of PRGF in our gelatin scaffolds was intended to significantly enhance scaffold bioactivity, while the addition of hydroxyapatite and chitin whiskers were anticipated to increase scaffold strength. Additionally, the gelatin sponges, which readily dissolve in aqueous solutions, were subjected to 1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC) cross-linking, either during or post-gelation, to control their rate of degradation. Scaffolds were evaluated in vitro with respect to compressive strength, mass loss/degradation, protein release, and cellular interaction, with results demonstrating the potential of the gelatin gel sponge scaffold for use in the regeneration of bone. PMID:24709699

  8. Formulation Development of Spherical Crystal Agglomerates of Itraconazole for Preparation of Directly Compressible Tablets with Enhanced Bioavailability.

    PubMed

    Fadke, Janki; Desai, Jagruti; Thakkar, Hetal

    2015-12-01

    The objective of the present work was to formulate tablet dosage form of itraconazole with enhanced bioavailability. Spherical crystal agglomerates (SCA) of itraconazole prepared by quasi emulsification solvent diffusion method using Soluplus and polyethylene glycol 4000 (PEG 4000) showed increased solubility (540 μg/ml) in 0.1 N hydrochloric acid as compared to pure drug (12 μg/ml). A Fourier transform infrared (FTIR) study indicated compatibility of drug with the excipients. The developed SCA were spherical with smooth surface having an average size of 412 μm. The significantly improved micromeritic properties compared to the plain drug suggested its suitability for direct compression. The antifungal activity of itraconazole was retained in the SCA form as evidenced from the results of the disc diffusion method. The optimized SCA formulation could be easily compressed into tablet with desirable characteristics of hardness (5 kg/cm(2)) and disintegration time (6.3 min). The in vitro dissolution studies showed significant difference in the dissolution profiles of pure drug (21%) and SCA formulation (85%) which was even greater than that of marketed preparation (75%). In vivo pharmacokinetic showed significant enhancement in C max and AUC0-t with relative bioavailability of 225%. The SCA formulation seems to be promising for enhancement of oral bioavailability of itraconazole.

  9. Video image processing

    NASA Technical Reports Server (NTRS)

    Murray, N. D.

    1985-01-01

    Current technology projections indicate a lack of availability of special purpose computing for Space Station applications. Potential functions for video image special purpose processing are being investigated, such as smoothing, enhancement, restoration and filtering, data compression, feature extraction, object detection and identification, pixel interpolation/extrapolation, spectral estimation and factorization, and vision synthesis. Also, architectural approaches are being identified and a conceptual design generated. Computationally simple algorithms will be research and their image/vision effectiveness determined. Suitable algorithms will be implimented into an overall architectural approach that will provide image/vision processing at video rates that are flexible, selectable, and programmable. Information is given in the form of charts, diagrams and outlines.

  10. Interface bonding of shotcrete reinforced brick masonry assemblages, volume 1

    NASA Astrophysics Data System (ADS)

    Robinson, D. W.; Kahn, L. F.

    1982-09-01

    Nine 9 sq ft. shotcrete reinforced brick masonry assemblages and one 9 sq ft brick masonry control specimen were tested under a single reversed cycle diagonal compression load similar to the ASTM E519-74 testing procedures. The interface surface conditions, between the brick and shotcrete were varied. The surfaces of the single sythe of old brick were either dry, wet, or epoxy coated before application of the 3-inch reinforced shotcrete layer. Ultimate load capacities of the specimens were similar, however, specimens with epoxy-enhanced interfaces were the most ductile; the dry brick specimens showed interface bond failure immediately after the ultimate inplane load was attained.

  11. BEM for wave equation with boundary in arbitrary motion and applications to compressible potential aerodynamics of airplanes and helicopters

    NASA Technical Reports Server (NTRS)

    Morino, Luigi; Bharadvaj, Bala K.; Freedman, Marvin I.; Tseng, Kadin

    1988-01-01

    The wave equation for an object in arbitrary motion is investigated analytically using a BEM approach, and practical applications to potential flows of compressible fluids around aircraft wings and helicopter rotors are considered. The treatment accounts for arbitrary combined rotational and translational motion of the reference frame and for the wake motion. The numerical implementation as a computer algorithm is demonstrated on problems with prescribed and free wakes, the former in compressible flows and the latter for incompressible flows; results are presented graphically and briefly characterized.

  12. An Assessment of Artificial Compressibility and Pressure Projection Methods for Incompressible Flow Simulations

    NASA Technical Reports Server (NTRS)

    Kwak, Dochan; Kiris, C.; Smith, Charles A. (Technical Monitor)

    1998-01-01

    Performance of the two commonly used numerical procedures, one based on artificial compressibility method and the other pressure projection method, are compared. These formulations are selected primarily because they are designed for three-dimensional applications. The computational procedures are compared by obtaining steady state solutions of a wake vortex and unsteady solutions of a curved duct flow. For steady computations, artificial compressibility was very efficient in terms of computing time and robustness. For an unsteady flow which requires small physical time step, pressure projection method was found to be computationally more efficient than an artificial compressibility method. This comparison is intended to give some basis for selecting a method or a flow solution code for large three-dimensional applications where computing resources become a critical issue.

  13. Compressive sensing in medical imaging

    PubMed Central

    Graff, Christian G.; Sidky, Emil Y.

    2015-01-01

    The promise of compressive sensing, exploitation of compressibility to achieve high quality image reconstructions with less data, has attracted a great deal of attention in the medical imaging community. At the Compressed Sensing Incubator meeting held in April 2014 at OSA Headquarters in Washington, DC, presentations were given summarizing some of the research efforts ongoing in compressive sensing for x-ray computed tomography and magnetic resonance imaging systems. This article provides an expanded version of these presentations. Sparsity-exploiting reconstruction algorithms that have gained popularity in the medical imaging community are studied, and examples of clinical applications that could benefit from compressive sensing ideas are provided. The current and potential future impact of compressive sensing on the medical imaging field is discussed. PMID:25968400

  14. Lightweight and Compostable Fiberboard for the Military

    DTIC Science & Technology

    2012-08-01

    individual sheets with compression molding methods. The second approach examined different biodegradable coatings for paper formation which enhanced wet...strength properties of paper based products. The third approach identified effective coated corrugated alternatives that exhibited comparable...fiberboard containers to different environmental conditions. Analysis of variance of compression data as a function of moisture, insert design and paper

  15. A block-based JPEG-LS compression technique with lossless region of interest

    NASA Astrophysics Data System (ADS)

    Deng, Lihua; Huang, Zhenghua; Yao, Shoukui

    2018-03-01

    JPEG-LS lossless compression algorithm is used in many specialized applications that emphasize on the attainment of high fidelity for its lower complexity and better compression ratios than the lossless JPEG standard. But it cannot prevent error diffusion because of the context dependence of the algorithm, and have low compression rate when compared to lossy compression. In this paper, we firstly divide the image into two parts: ROI regions and non-ROI regions. Then we adopt a block-based image compression technique to decrease the range of error diffusion. We provide JPEG-LS lossless compression for the image blocks which include the whole or part region of interest (ROI) and JPEG-LS near lossless compression for the image blocks which are included in the non-ROI (unimportant) regions. Finally, a set of experiments are designed to assess the effectiveness of the proposed compression method.

  16. SUPG Finite Element Simulations of Compressible Flows

    NASA Technical Reports Server (NTRS)

    Kirk, Brnjamin, S.

    2006-01-01

    The Streamline-Upwind Petrov-Galerkin (SUPG) finite element simulations of compressible flows is presented. The topics include: 1) Introduction; 2) SUPG Galerkin Finite Element Methods; 3) Applications; and 4) Bibliography.

  17. Internal combustion engine for natural gas compressor operation

    DOEpatents

    Hagen, Christopher; Babbitt, Guy

    2016-12-27

    This application concerns systems and methods for compressing natural gas with an internal combustion engine. In a representative embodiment, a method is featured which includes placing a first cylinder of an internal combustion engine in a compressor mode, and compressing a gas within the first cylinder, using the cylinder as a reciprocating compressor. In some embodiments a compression check valve system is used to regulate pressure and flow within cylinders of the engine during a compression process.

  18. Negative-pressure-induced enhancement in a freestanding ferroelectric

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Wylie-van Eerd, Ben; Sluka, Tomas; Sandu, Cosmin; Cantoni, Marco; Wei, Xian-Kui; Kvasov, Alexander; McGilly, Leo John; Gemeiner, Pascale; Dkhil, Brahim; Tagantsev, Alexander; Trodahl, Joe; Setter, Nava

    2015-10-01

    Ferroelectrics are widespread in technology, being used in electronics and communications, medical diagnostics and industrial automation. However, extension of their operational temperature range and useful properties is desired. Recent developments have exploited ultrathin epitaxial films on lattice-mismatched substrates, imposing tensile or compressive biaxial strain, to enhance ferroelectric properties. Much larger hydrostatic compression can be achieved by diamond anvil cells, but hydrostatic tensile stress is regarded as unachievable. Theory and ab initio treatments predict enhanced properties for perovskite ferroelectrics under hydrostatic tensile stress. Here we report negative-pressure-driven enhancement of the tetragonality, Curie temperature and spontaneous polarization in freestanding PbTiO3 nanowires, driven by stress that develops during transformation of the material from a lower-density crystal structure to the perovskite phase. This study suggests a simple route to obtain negative pressure in other materials, potentially extending their exploitable properties beyond their present levels.

  19. Impact of initial pulse shape on the nonlinear spectral compression in optical fibre

    NASA Astrophysics Data System (ADS)

    Boscolo, Sonia; Chaussard, Frederic; Andresen, Esben; Rigneault, Hervé; Finot, Christophe

    2018-02-01

    We theoretically study the effects of the temporal intensity profile of the initial pulse on the nonlinear propagation spectral compression process arising from nonlinear propagation in an optical fibre. Various linearly chirped input pulse profiles are considered, and their dynamics is explained with the aid of time-frequency representations. While initially parabolic-shaped pulses show enhanced spectral compression compared to Gaussian pulses, no significant spectral narrowing occurs when initially super-Gaussian pulses are used. Triangular pulses lead to a spectral interference phenomenon similar to the Fresnel bi-prism experiment.

  20. High pressure phase transitions and compressibilities of Er2Zr2O7 and Ho2Zr2O7

    NASA Astrophysics Data System (ADS)

    Zhang, F. X.; Lang, M.; Becker, U.; Ewing, R. C.; Lian, J.

    2008-01-01

    Phase stability and compressibility of rare earth zirconates with the defect-fluorite structure were investigated by in situ synchrotron x-ray diffraction. A sluggish defect-fluorite to a cotunnitelike phase transformation occurred at pressures of ˜22 and ˜30GPa for Er2Zr2O7 and Ho2Zr2O7, respectively. Enhanced compressibility was found for the high pressure phase as a result of increasing cation coordination number and cation-anion bond length.

  1. Space and Earth Science Data Compression Workshop

    NASA Technical Reports Server (NTRS)

    Tilton, James C. (Editor)

    1991-01-01

    The workshop explored opportunities for data compression to enhance the collection and analysis of space and Earth science data. The focus was on scientists' data requirements, as well as constraints imposed by the data collection, transmission, distribution, and archival systems. The workshop consisted of several invited papers; two described information systems for space and Earth science data, four depicted analysis scenarios for extracting information of scientific interest from data collected by Earth orbiting and deep space platforms, and a final one was a general tutorial on image data compression.

  2. Knee joint passive stiffness and moment in sagittal and frontal planes markedly increase with compression.

    PubMed

    Marouane, H; Shirazi-Adl, A; Adouni, M

    2015-01-01

    Knee joints are subject to large compression forces in daily activities. Due to artefact moments and instability under large compression loads, biomechanical studies impose additional constraints to circumvent the compression position-dependency in response. To quantify the effect of compression on passive knee moment resistance and stiffness, two validated finite element models of the tibiofemoral (TF) joint, one refined with depth-dependent fibril-reinforced cartilage and the other less refined with homogeneous isotropic cartilage, are used. The unconstrained TF joint response in sagittal and frontal planes is investigated at different flexion angles (0°, 15°, 30° and 45°) up to 1800 N compression preloads. The compression is applied at a novel joint mechanical balance point (MBP) identified as a point at which the compression does not cause any coupled rotations in sagittal and frontal planes. The MBP of the unconstrained joint is located at the lateral plateau in small compressions and shifts medially towards the inter-compartmental area at larger compression forces. The compression force substantially increases the joint moment-bearing capacities and instantaneous angular rigidities in both frontal and sagittal planes. The varus-valgus laxities diminish with compression preloads despite concomitant substantial reductions in collateral ligament forces. While the angular rigidity would enhance the joint stability, the augmented passive moment resistance under compression preloads plays a role in supporting external moments and should as such be considered in the knee joint musculoskeletal models.

  3. Synthesis and Characterization of Novel Epoxy Geopolymer Hybrid Composites

    PubMed Central

    Roviello, Giuseppina; Ricciotti, Laura; Ferone, Claudio; Colangelo, Francesco; Cioffi, Raffaele; Tarallo, Oreste

    2013-01-01

    The preparation and the characterization of novel geopolymer-based hybrid composites are reported. These materials have been prepared through an innovative synthetic approach, based on a co-reticulation in mild conditions of commercial epoxy based organic resins and a metakaolin-based geopolymer inorganic matrix. This synthetic strategy allows the obtainment of a homogeneous dispersion of the organic particles in the inorganic matrix, up to 25% in weight of the resin. The materials obtained present significantly enhanced compressive strengths and toughness with respect to the neat geopolymer, suggesting their wide utilization for structural applications. A preliminary characterization of the porous materials obtained by removing the organic phase from the hybrid composites by means of heat treatments is also reported. Possible applications of these materials in the field of water purification, filtration, or as lightweight insulating materials are envisaged. PMID:28788310

  4. Evaluation of High Temperature Knitted Spring Tubes for Structural Seal Applications

    NASA Technical Reports Server (NTRS)

    Taylor, Shawn C.; DeMange, Jeffrey J.; Dunlap, Patrick H., Jr.; Steinetz, Bruce M.

    2004-01-01

    Control surface seals are crucial to current and future space vehicles, as they are used to seal the gaps surrounding body flaps, elevons, and other actuated exterior surfaces. During reentry, leakage of high temperature gases through these gaps could damage underlying lower temperature structures such as rudder drive motors and mechanical actuators, resulting in impaired vehicle control. To be effective, control surface seals must shield lower temperature structures from heat transfer by maintaining sufficient resiliency to remain in contact with opposing sealing surfaces through multiple compression cycles. The current seal exhibits significant loss of resiliency after a few compression cycles at elevated temperatures (i.e., 1900 F) and therefore would be inadequate for advanced space vehicles. This seal utilizes a knitted Inconel X-750 spring tube as its primary resilient element. As part of a larger effort to enhance seal resiliency, researchers at the NASA Glenn Research Center performed high temperature compression testing (up to 2000 F) on candidate spring tube designs employing material substitutions and modified geometries. These tests demonstrated significant improvements in spring tube resiliency (5.5x better at 1750 F) through direct substitution of heat treated Rene 41 alloy in the baseline knit design. The impact of geometry modification was minor within the range of parameters tested, however trends did suggest that moderate resiliency improvements could be obtained by optimizing the current spring tube geometry.

  5. Amplitude-modulated ultrasound radiation force combined with phase-sensitive optical coherence tomography for shear wave elastography

    NASA Astrophysics Data System (ADS)

    Nguyen, Thu-Mai; Song, Shaozhen; Arnal, Bastien; Wong, Emily Y.; Shen, Tueng T.; Wang, Ruikang K.; O'Donnell, Matthew

    2015-03-01

    Tissue stiffness can be measured from the propagation speed of shear waves. Acoustic radiation force (ARF) can generate shear waves by focusing ultrasound in tissue for ~100 μs. Safety considerations and electronics abilities limit ultrasound pressures. We previously presented shear wave elastography combining ARF and phase-sensitive optical coherence tomography (PhS-OCT) [1]. Here, we use amplitude-modulated ARF to enhance shear wave signal-to-noise ratio (SNR) at low pressures. Experiments were performed on tissue-mimicking phantoms. ARF was applied using a single-element transducer, driven by a 7.5 MHz, 3-ms, sine wave modulated in amplitude by a linear-swept frequency (1 to 7 kHz). Pressures between 1 to 3 MPa were tested. Displacements were tracked using PhS-OCT and numerically compressed using pulse compression methods detailed in previous work [2]. SNR was compared to that of 200-μs bursts. Stiffness maps were reconstructed using time-of-flight computations. 200-μs bursts give barely detectable displacements at 1 MPa (3.7 dB SNR). Pulse compression gives 36.2 dB at 1.5 MPa. In all cases with detectable displacements, shear wave speeds were determined in 5%-gelatin and 10%-gelatin phantoms and compared to literature values. Applicability to ocular tissues (cornea, intraocular lens) is under investigation.

  6. Distributed Compressive Sensing vs. Dynamic Compressive Sensing: Improving the Compressive Line Sensing Imaging System through Their Integration

    DTIC Science & Technology

    2015-01-01

    streak tube imaging Lidar [15]. Nevertheless, instead of one- dimensional (1D) fan beam, a laser source modulates the digital micromirror device DMD and...Trans. Inform. Theory, vol. 52, pp. 1289-1306, 2006. [10] D. Dudley, W. Duncan and J. Slaughter, "Emerging Digital Micromirror Device (DMD) Applications

  7. Palladium–platinum core-shell icosahedra with substantially enhanced activity and durability towards oxygen reduction

    DOE PAGES

    Wang, Xue; Choi, Sang-Il; Roling, Luke T.; ...

    2015-07-02

    Conformal deposition of platinum as ultrathin shells on facet-controlled palladium nanocrystals offers a great opportunity to enhance the catalytic performance while reducing its loading. Here we report such a system based on palladium icosahedra. Owing to lateral confinement imposed by twin boundaries and thus vertical relaxation only, the platinum overlayers evolve into a corrugated structure under compressive strain. For the core-shell nanocrystals with an average of 2.7 platinum overlayers, their specific and platinum mass activities towards oxygen reduction are enhanced by eight- and sevenfold, respectively, relative to a commercial catalyst. Density functional theory calculations indicate that the enhancement can bemore » attributed to the weakened binding of hydroxyl to the compressed platinum surface supported on palladium. After 10,000 testing cycles, the mass activity of the core-shell nanocrystals is still four times higher than the commercial catalyst. Ultimately, these results demonstrate an effective approach to the development of electrocatalysts with greatly enhanced activity and durability.« less

  8. Enhancing Thermal Conductive Performance of Vertically Aligned Carbon Nanotube Array Composite by Pre-Annealing Treatment.

    PubMed

    Wang, Miao; Chen, Hong-Yuan; Xing, Ya-Juan; Wei, Han-Xing; Li, Qiang; Chen, Ming-Hai; Li, Qing-Wen; Xuan, Yi-Min

    2015-04-01

    Vertically aligned carbon nanotube (VACNT) array/polymer composite has already been recognized as a promising candidate for advanced thermal pad in thermal management of high-power electronic devices. However, the thermal conductive performance of this composite was limited by the quality of CNTs arrays. In this study, pre-annealing treatment was used to purify CNT arrays and improve thermal conductive performance of VACNT arrays/silicone composite. The thermal conductivity of the composite was enhanced by 34.52% and the thermal interface resistance was also reduced by 65.94% at a pre-annealing temperature of 490 °C for 5 min. The annealing process could remove some amorphous carbon and open the tips of CNTs. As a result, the interfacial compatibility in composite between carbon nanotube and polymer matrix was improved. The cyclic compression and tension performance of VACNT/S160 composite was investigated for further application.

  9. Enhanced adhesion of bioinspired nanopatterned elastomers via colloidal surface assembly

    PubMed Central

    Akerboom, Sabine; Appel, Jeroen; Labonte, David; Federle, Walter; Sprakel, Joris; Kamperman, Marleen

    2015-01-01

    We describe a scalable method to fabricate nanopatterned bioinspired dry adhesives using colloidal lithography. Close-packed monolayers of polystyrene particles were formed at the air/water interface, on which polydimethylsiloxane (PDMS) was applied. The order of the colloidal monolayer and the immersion depth of the particles were tuned by altering the pH and ionic strength of the water. Initially, PDMS completely wetted the air/water interface outside the monolayer, thereby compressing the monolayer as in a Langmuir trough; further application of PDMS subsequently covered the colloidal monolayers. PDMS curing and particle extraction resulted in elastomers patterned with nanodimples. Adhesion and friction of these nanopatterned surfaces with varying dimple depth were studied using a spherical probe as a counter-surface. Compared with smooth surfaces, adhesion of nanopatterned surfaces was enhanced, which is attributed to an energy-dissipating mechanism during pull-off. All nanopatterned surfaces showed a significant decrease in friction compared with smooth surfaces. PMID:25392404

  10. Application of wavelet packet transform to compressing Raman spectra data

    NASA Astrophysics Data System (ADS)

    Chen, Chen; Peng, Fei; Cheng, Qinghua; Xu, Dahai

    2008-12-01

    Abstract The Wavelet transform has been established with the Fourier transform as a data-processing method in analytical fields. The main fields of application are related to de-noising, compression, variable reduction, and signal suppression. Raman spectroscopy (RS) is characterized by the frequency excursion that can show the information of molecule. Every substance has its own feature Raman spectroscopy, which can analyze the structure, components, concentrations and some other properties of samples easily. RS is a powerful analytical tool for detection and identification. There are many databases of RS. But the data of Raman spectrum needs large space to storing and long time to searching. In this paper, Wavelet packet is chosen to compress Raman spectra data of some benzene series. The obtained results show that the energy retained is as high as 99.9% after compression, while the percentage for number of zeros is 87.50%. It was concluded that the Wavelet packet has significance in compressing the RS data.

  11. Compressive Properties of Metal Matrix Syntactic Foams in Free and Constrained Compression

    NASA Astrophysics Data System (ADS)

    Orbulov, Imre Norbert; Májlinger, Kornél

    2014-06-01

    Metal matrix syntactic foam (MMSF) blocks were produced by an inert gas-assisted pressure infiltration technique. MMSFs are advanced hollow sphere reinforced-composite materials having promising application in the fields of aviation, transport, and automotive engineering, as well as in civil engineering. The produced blocks were investigated in free and constrained compression modes, and besides the characteristic mechanical properties, their deformation mechanisms and failure modes were studied. In the tests, the chemical composition of the matrix material, the size of the reinforcing ceramic hollow spheres, the applied heat treatment, and the compression mode were considered as investigation parameters. The monitored mechanical properties were the compressive strength, the fracture strain, the structural stiffness, the fracture energy, and the overall absorbed energy. These characteristics were strongly influenced by the test parameters. By the proper selection of the matrix and the reinforcement and by proper design, the mechanical properties of the MMSFs can be effectively tailored for specific and given applications.

  12. Visually Lossless Data Compression for Real-Time Frame/Pushbroom Space Science Imagers

    NASA Technical Reports Server (NTRS)

    Yeh, Pen-Shu; Venbrux, Jack; Bhatia, Prakash; Miller, Warner H.

    2000-01-01

    A visually lossless data compression technique is currently being developed for space science applications under the requirement of high-speed push-broom scanning. The technique is also applicable to frame based imaging and is error-resilient in that error propagation is contained within a few scan lines. The algorithm is based on a block transform of a hybrid of modulated lapped transform (MLT) and discrete cosine transform (DCT), or a 2-dimensional lapped transform, followed by bit-plane encoding; this combination results in an embedded bit string with exactly the desirable compression rate as desired by the user. The approach requires no unique table to maximize its performance. The compression scheme performs well on a suite of test images typical of images from spacecraft instruments. Flight qualified hardware implementations are in development; a functional chip set is expected by the end of 2001. The chip set is being designed to compress data in excess of 20 Msamples/sec and support quantizations from 2 to 16 bits.

  13. Dynamical complexity of short and noisy time series. Compression-Complexity vs. Shannon entropy

    NASA Astrophysics Data System (ADS)

    Nagaraj, Nithin; Balasubramanian, Karthi

    2017-07-01

    Shannon entropy has been extensively used for characterizing complexity of time series arising from chaotic dynamical systems and stochastic processes such as Markov chains. However, for short and noisy time series, Shannon entropy performs poorly. Complexity measures which are based on lossless compression algorithms are a good substitute in such scenarios. We evaluate the performance of two such Compression-Complexity Measures namely Lempel-Ziv complexity (LZ) and Effort-To-Compress (ETC) on short time series from chaotic dynamical systems in the presence of noise. Both LZ and ETC outperform Shannon entropy (H) in accurately characterizing the dynamical complexity of such systems. For very short binary sequences (which arise in neuroscience applications), ETC has higher number of distinct complexity values than LZ and H, thus enabling a finer resolution. For two-state ergodic Markov chains, we empirically show that ETC converges to a steady state value faster than LZ. Compression-Complexity measures are promising for applications which involve short and noisy time series.

  14. An Evaluation of High Temperature Airframe Seals for Advanced Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    DeMange, Jeffrey J.; Dunlap, Patrick H.; Steinetz, Bruce M.; Drlik, Gary J.

    2007-01-01

    High temperature seals are required for advanced hypersonic airframe applications. In this study, both spring tube thermal barriers and innovative wafer seal systems were evaluated under relevant hypersonic test conditions (temperatures, pressures, etc.) via high temperature compression testing and room temperature flow assessments. Thermal barriers composed of a Rene 41 spring tube filled with Saffil insulation and overbraided with a Nextel 312 sheath showed acceptable performance at 1500 F in both short term and longer term compression testing. Nextel 440 thermal barriers with Rene 41 spring tubes and Saffil insulation demonstrated good compression performance up to 1750 F. A silicon nitride wafer seal/compression spring system displayed excellent load performance at temperatures as high as 2200 F and exhibited room temperature leakage values that were only 1/3 those for the spring tube rope seals. For all seal candidates evaluated, no significant degradation in leakage resistance was noted after high temperature compression testing. In addition to these tests, a superalloy seal suitable for dynamic seal applications was optimized through finite element techniques.

  15. The 1994 Space and Earth Science Data Compression Workshop

    NASA Technical Reports Server (NTRS)

    Tilton, James C. (Editor)

    1994-01-01

    This document is the proceedings from the fourth annual 'Space and Earth Science Data Compression Workshop,' which was held on April 2, 1994, at the University of Utah in Salt Lake City, Utah. This workshop was held in cooperation with the 1994 Data Compression Conference, which was held at Snowbird, Utah, March 29-31 1994. The Workshop explored opportunities for data compression to enhance the collection and analysis of space and Earth science data. It consisted of 13 papers presented in 4 sessions. The papers focus on data compression research that is integrated into, or has the potential to be integrated into, a particular space and/or Earth science data information system. Presenters were encouraged to take into account the scientist's data requirements, and the constraints imposed by the data collection, transmission, distribution, and archival system.

  16. High-pressure structural, elastic, and thermodynamic properties of zircon-type HoPO 4 and TmPO 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomis, O.; Lavina, B.; Rodríguez-Hernández, P.

    2017-01-20

    Zircon-type holmium phosphate (HoPO 4) and thulium phosphate (TmPO 4) have been studied by single-crystal x-ray diffraction and ab initio calculations. We report on the influence of pressure on the crystal structure, and on the elastic and thermodynamic properties. The equation of state for both compounds is accurately determined. We have also obtained information on the polyhedral compressibility which is used to explain the anisotropic axial compressibility and the bulk compressibility. Both compounds are ductile and more resistive to volume compression than to shear deformation at all pressures. Furthermore, the elastic anisotropy is enhanced upon compression. Finally, the calculations indicatemore » that the possible causes that make the zircon structure unstable are mechanical instabilities and the softening of a silent B 1u mode.« less

  17. Data compression in remote sensing applications

    NASA Technical Reports Server (NTRS)

    Sayood, Khalid

    1992-01-01

    A survey of current data compression techniques which are being used to reduce the amount of data in remote sensing applications is provided. The survey aspect is far from complete, reflecting the substantial activity in this area. The purpose of the survey is more to exemplify the different approaches being taken rather than to provide an exhaustive list of the various proposed approaches.

  18. A High-Performance Lossless Compression Scheme for EEG Signals Using Wavelet Transform and Neural Network Predictors

    PubMed Central

    Sriraam, N.

    2012-01-01

    Developments of new classes of efficient compression algorithms, software systems, and hardware for data intensive applications in today's digital health care systems provide timely and meaningful solutions in response to exponentially growing patient information data complexity and associated analysis requirements. Of the different 1D medical signals, electroencephalography (EEG) data is of great importance to the neurologist for detecting brain-related disorders. The volume of digitized EEG data generated and preserved for future reference exceeds the capacity of recent developments in digital storage and communication media and hence there is a need for an efficient compression system. This paper presents a new and efficient high performance lossless EEG compression using wavelet transform and neural network predictors. The coefficients generated from the EEG signal by integer wavelet transform are used to train the neural network predictors. The error residues are further encoded using a combinational entropy encoder, Lempel-Ziv-arithmetic encoder. Also a new context-based error modeling is also investigated to improve the compression efficiency. A compression ratio of 2.99 (with compression efficiency of 67%) is achieved with the proposed scheme with less encoding time thereby providing diagnostic reliability for lossless transmission as well as recovery of EEG signals for telemedicine applications. PMID:22489238

  19. A high-performance lossless compression scheme for EEG signals using wavelet transform and neural network predictors.

    PubMed

    Sriraam, N

    2012-01-01

    Developments of new classes of efficient compression algorithms, software systems, and hardware for data intensive applications in today's digital health care systems provide timely and meaningful solutions in response to exponentially growing patient information data complexity and associated analysis requirements. Of the different 1D medical signals, electroencephalography (EEG) data is of great importance to the neurologist for detecting brain-related disorders. The volume of digitized EEG data generated and preserved for future reference exceeds the capacity of recent developments in digital storage and communication media and hence there is a need for an efficient compression system. This paper presents a new and efficient high performance lossless EEG compression using wavelet transform and neural network predictors. The coefficients generated from the EEG signal by integer wavelet transform are used to train the neural network predictors. The error residues are further encoded using a combinational entropy encoder, Lempel-Ziv-arithmetic encoder. Also a new context-based error modeling is also investigated to improve the compression efficiency. A compression ratio of 2.99 (with compression efficiency of 67%) is achieved with the proposed scheme with less encoding time thereby providing diagnostic reliability for lossless transmission as well as recovery of EEG signals for telemedicine applications.

  20. Characterization of multiaxial warp knit composites

    NASA Technical Reports Server (NTRS)

    Dexter, H. Benson; Hasko, Gregory H.; Cano, Roberto J.

    1991-01-01

    The objectives were to characterize the mechanical behavior and damage tolerance of two multiaxial warp knit fabrics to determine the acceptability of these fabrics for high performance composite applications. The tests performed included compression, tension, open hole compression, compression after impact and compression-compression fatigue. Tests were performed on as-fabricated fabrics and on multi-layer fabrics that were stitched together with either carbon or Kevlar stitching yarn. Results of processing studies for vacuum impregnation with Hercules 3501-6 epoxy resin and pressure impregnation with Dow Tactix 138/H41 epoxy resin and British Petroleum BP E905L epoxy resin are presented.

  1. The Pixon Method for Data Compression Image Classification, and Image Reconstruction

    NASA Technical Reports Server (NTRS)

    Puetter, Richard; Yahil, Amos

    2002-01-01

    As initially proposed, this program had three goals: (1) continue to develop the highly successful Pixon method for image reconstruction and support other scientist in implementing this technique for their applications; (2) develop image compression techniques based on the Pixon method; and (3) develop artificial intelligence algorithms for image classification based on the Pixon approach for simplifying neural networks. Subsequent to proposal review the scope of the program was greatly reduced and it was decided to investigate the ability of the Pixon method to provide superior restorations of images compressed with standard image compression schemes, specifically JPEG-compressed images.

  2. Development of a refrigeration system for lunar surface and spacecraft applications

    NASA Technical Reports Server (NTRS)

    Copeland, R. J.

    1976-01-01

    An evaluation of refrigeration devices suitable for potential lunar surface and spacecraft applications was performed. The following conclusions were reached: (1) the vapor compression system is the best overall refrigeration system for lunar surface and spacecraft applications and the single phase radiator system is generally preferred for earth orbit applications, (2) the vapor compression cycle may have some application for simultaneous heating and cooling, (3) a Stirling cycle refrigerator was selected for the manned cabin of the space shuttle, and (4) significant increases in payload heat rejection can be obtained by a kit vapor compression refrigerator added to the shuttle R-21 loop. The following recommendations were made: (1) a Stirling cycle refrigerator may be used for food freezer and biomedical sample storage, (2) the best system for a food freezer/experiments compartment for an earth orbit space station has not been determined, (3) a deployed radiator system can be designed for large heat loads in earth orbit.

  3. Hyperspectral data compression using a Wiener filter predictor

    NASA Astrophysics Data System (ADS)

    Villeneuve, Pierre V.; Beaven, Scott G.; Stocker, Alan D.

    2013-09-01

    The application of compression to hyperspectral image data is a significant technical challenge. A primary bottleneck in disseminating data products to the tactical user community is the limited communication bandwidth between the airborne sensor and the ground station receiver. This report summarizes the newly-developed "Z-Chrome" algorithm for lossless compression of hyperspectral image data. A Wiener filter prediction framework is used as a basis for modeling new image bands from already-encoded bands. The resulting residual errors are then compressed using available state-of-the-art lossless image compression functions. Compression performance is demonstrated using a large number of test data collected over a wide variety of scene content from six different airborne and spaceborne sensors .

  4. An equivalent-time-lines model for municipal solid waste based on its compression characteristics.

    PubMed

    Gao, Wu; Bian, Xuecheng; Xu, Wenjie; Chen, Yunmin

    2017-10-01

    Municipal solid waste (MSW) demonstrates a noticeable time-dependent stress-strain behavior, which contributes greatly to the settlement of landfills and therefore influences both the storage capacity of landfills and the integrity of internal structures. The long-term compression tests for MSW under different biodegradation conditions were analyzed. It showed that the primary compression can affect the secondary compression due to the biodegradation and mechanical creep. Based on the time-lines model for clays and the compression characteristics of MSW, relationships between MSW's viscous strain rate and equivalent time were established, and then the viscous strain functions of MSW under different biodegradation conditions were deduced, and an equivalent-time-lines model for MSW settlement for two biodegradation conditions was developed, including the Type I model for the enhanced biodegradation condition and the Type II model for the normal biodegradation condition. The simulated compression results of laboratory and field compression tests under different biodegradation conditions were consistent with the measured data, which showed the reliability of both types of the equivalent-time-lines model for MSW. In addition, investigations of the long-term settlement of landfills from the literature indicated that the Type I model is suitable for predicting settlement in MSW landfills with a distinct biodegradation progress of MSW, a high content of organics in MSW, a short fill age or under an enhanced biodegradation environment; while the Type II model is good at predicting settlement in MSW landfills with a distinct progress of mechanical creep compression, a low content of organics in MSW, a long fill age or under a normal biodegradation condition. Furthermore, relationships between model parameters and the fill age of landfills were summarized. Finally, the similarities and differences between the equivalent-time-lines model for MSW and the stress-biodegradation model for MSW were discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Further Investigations of High Temperature Knitted Spring Tubes for Advanced Control Surface Seal Applications

    NASA Technical Reports Server (NTRS)

    Taylor, Shawn C.; DeMange, Jeffrey J.; Dunlap, Patrick H., Jr.; Steinetz, Bruce M.

    2006-01-01

    Knitted metallic spring tubes are the structural backbones that provide resiliency in control surface seals for use on current and future reusable space launch vehicles. Control surface seals fill the space between movable control surfaces such as body flaps, rudders and elevons, and the static body structures to which they are attached. These seals must remain in continuous contact with opposing surfaces to prevent the ingestion of damaging hot gases encountered during atmospheric re-entry. The Inconel X-750 (Special Metals Corporation) spring tube utilized in the baseline control surface seal shows significant resiliency loss when compressed at temperatures as low as 1200 F. High temperature compression testing and microstructural analysis show that creep is the dominant deformation mechanism leading to permanent set and resiliency loss in tested spring tube samples. Additional evaluation using a structured design of experiments approach shows that spring tube performance, primarily high temperature resiliency, can be enhanced through material substitution of Rene 41 (Allvac) alloy (for the baseline Inconel X-750 material) when coupled with specialized thermal processing.

  6. Visual information processing II; Proceedings of the Meeting, Orlando, FL, Apr. 14-16, 1993

    NASA Technical Reports Server (NTRS)

    Huck, Friedrich O. (Editor); Juday, Richard D. (Editor)

    1993-01-01

    Various papers on visual information processing are presented. Individual topics addressed include: aliasing as noise, satellite image processing using a hammering neural network, edge-detetion method using visual perception, adaptive vector median filters, design of a reading test for low-vision image warping, spatial transformation architectures, automatic image-enhancement method, redundancy reduction in image coding, lossless gray-scale image compression by predictive GDF, information efficiency in visual communication, optimizing JPEG quantization matrices for different applications, use of forward error correction to maintain image fidelity, effect of peanoscanning on image compression. Also discussed are: computer vision for autonomous robotics in space, optical processor for zero-crossing edge detection, fractal-based image edge detection, simulation of the neon spreading effect by bandpass filtering, wavelet transform (WT) on parallel SIMD architectures, nonseparable 2D wavelet image representation, adaptive image halftoning based on WT, wavelet analysis of global warming, use of the WT for signal detection, perfect reconstruction two-channel rational filter banks, N-wavelet coding for pattern classification, simulation of image of natural objects, number-theoretic coding for iconic systems.

  7. Effect of inorganic/organic ratio and chemical coupling on the performance of porous silica/chitosan hybrid scaffolds.

    PubMed

    Wang, Daming; Liu, Wei; Feng, Qian; Dong, Chaoqun; Liu, Qisong; Duan, Li; Huang, Jianghong; Zhu, Weimin; Li, Zemeng; Xiong, Jianyi; Liang, Yujie; Chen, Jielin; Sun, Rong; Bian, Liming; Wang, Daping

    2017-01-01

    Inorganic/organic hybrid scaffolds have great potential for tissue engineering applications due to controllable mechanical properties and tailorable biodegradation. Here, silica/chitosan hybrid scaffolds were fabricated through the sol-gel method with a freeze drying process. 3-Glycidoxypropyl trimethoxysilane (GPTMS) and tetraethylorthosilicate (TEOS) were used as the covalent inorganic/organic coupling agent and the separate inorganic source, respectively. Hybrid scaffolds with various inorganic/organic weight ratios (I/Os) and molar ratios of chitosan and GPTMS (GCs) were examined and compared in this study. FTIR showed that higher GPTMS content resulted in the increased covalent cross-linking of the chitosan and the silica network in hybrids. Compression testing indicated that increasing the GPTMS content greatly improved the compressive strength of scaffold. LIVE/DEAD assay showed that enhanced cytocompatibility was obtained as the silica content increased. Therefore, the results confirmed that the two parameters I/O and GC can largely influence the scaffold performance, which can be used to tailor the hybrid properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. A simulation tool to study high-frequency chest compression energy transfer mechanisms and waveforms for pulmonary disease applications.

    PubMed

    O'Clock, George D; Lee, Yong Wan; Lee, Jongwon; Warwick, Warren J

    2010-07-01

    High-frequency chest compression (HFCC) can be used as a therapeutic intervention to assist in the transport and clearance of mucus and enhance water secretion for cystic fibrosis patients. An HFCC pump-vest and half chest-lung simulation, with 23 lung generations, has been developed using inertance, compliance, viscous friction relationships, and Newton's second law. The simulation has proven to be useful in studying the effects of parameter variations and nonlinear effects on HFCC system performance and pulmonary system response. The simulation also reveals HFCC waveform structure and intensity changes in various segments of the pulmonary system. The HFCC system simulation results agree with measurements, indicating that the HFCC energy transport mechanism involves a mechanically induced pulsation or vibration waveform with average velocities in the lung that are dependent upon small air displacements over large areas associated with the vest-chest interface. In combination with information from lung physiology, autopsies and a variety of other lung modeling efforts, the results of the simulation can reveal a number of therapeutic implications.

  9. Novel Approach in the Use of Plasma Spray: Preparation of Bulk Titanium for Bone Augmentations

    PubMed Central

    Fousova, Michaela; Vojtech, Dalibor; Jablonska, Eva; Fojt, Jaroslav; Lipov, Jan

    2017-01-01

    Thermal plasma spray is a common, well-established technology used in various application fields. Nevertheless, in our work, this technology was employed in a completely new way; for the preparation of bulk titanium. The aim was to produce titanium with properties similar to human bone to be used for bone augmentations. Titanium rods sprayed on a thin substrate wire exerted a porosity of about 15%, which yielded a significant decrease of Young′s modulus to the bone range and provided rugged topography for enhanced biological fixation. For the first verification of the suitability of the selected approach, tests of the mechanical properties in terms of compression, bending, and impact were carried out, the surface was characterized, and its compatibility with bone cells was studied. While preserving a high enough compressive strength of 628 MPa, the elastic modulus reached 11.6 GPa, thus preventing a stress-shielding effect, a generally known problem of implantable metals. U-2 OS and Saos-2 cells derived from bone osteosarcoma grown on the plasma-sprayed surface showed good viability. PMID:28837101

  10. Two Regimes of Bandgap Red Shift and Partial Ambient Retention in Pressure-Treated Two-Dimensional Perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Gang; Kong, Lingping; Guo, Peijun

    The discovery of elevated environmental stability in two-dimensional (2D) Ruddlesden–Popper hybrid perovskites represents a significant advance in low-cost, high-efficiency light absorbers. In comparison to 3D counterparts, 2D perovskites of organo-lead-halides exhibit wider, quantum-confined optical bandgaps that reduce the wavelength range of light absorption. Here, we characterize the structural and optical properties of 2D hybrid perovskites as a function of hydrostatic pressure. We observe bandgap narrowing with pressure of 633 meV that is partially retained following pressure release due to an atomic reconfiguration mechanism. We identify two distinct regimes of compression dominated by the softer organic and less compressible inorganic sublattices.more » Our findings, which also include PL enhancement, correlate well with density functional theory calculations and establish structure–property relationships at the atomic scale. These concepts can be expanded into other hybrid perovskites and suggest that pressure/strain processing could offer a new route to improved materials-by-design in applications.« less

  11. Comparative performance between compressed and uncompressed airborne imagery

    NASA Astrophysics Data System (ADS)

    Phan, Chung; Rupp, Ronald; Agarwal, Sanjeev; Trang, Anh; Nair, Sumesh

    2008-04-01

    The US Army's RDECOM CERDEC Night Vision and Electronic Sensors Directorate (NVESD), Countermine Division is evaluating the compressibility of airborne multi-spectral imagery for mine and minefield detection application. Of particular interest is to assess the highest image data compression rate that can be afforded without the loss of image quality for war fighters in the loop and performance of near real time mine detection algorithm. The JPEG-2000 compression standard is used to perform data compression. Both lossless and lossy compressions are considered. A multi-spectral anomaly detector such as RX (Reed & Xiaoli), which is widely used as a core algorithm baseline in airborne mine and minefield detection on different mine types, minefields, and terrains to identify potential individual targets, is used to compare the mine detection performance. This paper presents the compression scheme and compares detection performance results between compressed and uncompressed imagery for various level of compressions. The compression efficiency is evaluated and its dependence upon different backgrounds and other factors are documented and presented using multi-spectral data.

  12. The analysis and modelling of dilatational terms in compressible turbulence

    NASA Technical Reports Server (NTRS)

    Sarkar, S.; Erlebacher, G.; Hussaini, M. Y.; Kreiss, H. O.

    1991-01-01

    It is shown that the dilatational terms that need to be modeled in compressible turbulence include not only the pressure-dilatation term but also another term - the compressible dissipation. The nature of these dilatational terms in homogeneous turbulence is explored by asymptotic analysis of the compressible Navier-Stokes equations. A non-dimensional parameter which characterizes some compressible effects in moderate Mach number, homogeneous turbulence is identified. Direct numerical simulations (DNS) of isotropic, compressible turbulence are performed, and their results are found to be in agreement with the theoretical analysis. A model for the compressible dissipation is proposed; the model is based on the asymptotic analysis and the direct numerical simulations. This model is calibrated with reference to the DNS results regarding the influence of compressibility on the decay rate of isotropic turbulence. An application of the proposed model to the compressible mixing layer has shown that the model is able to predict the dramatically reduced growth rate of the compressible mixing layer.

  13. The analysis and modeling of dilatational terms in compressible turbulence

    NASA Technical Reports Server (NTRS)

    Sarkar, S.; Erlebacher, G.; Hussaini, M. Y.; Kreiss, H. O.

    1989-01-01

    It is shown that the dilatational terms that need to be modeled in compressible turbulence include not only the pressure-dilatation term but also another term - the compressible dissipation. The nature of these dilatational terms in homogeneous turbulence is explored by asymptotic analysis of the compressible Navier-Stokes equations. A non-dimensional parameter which characterizes some compressible effects in moderate Mach number, homogeneous turbulence is identified. Direct numerical simulations (DNS) of isotropic, compressible turbulence are performed, and their results are found to be in agreement with the theoretical analysis. A model for the compressible dissipation is proposed; the model is based on the asymptotic analysis and the direct numerical simulations. This model is calibrated with reference to the DNS results regarding the influence of compressibility on the decay rate of isotropic turbulence. An application of the proposed model to the compressible mixing layer has shown that the model is able to predict the dramatically reduced growth rate of the compressible mixing layer.

  14. Lower-upper-threshold correlation for underwater range-gated imaging self-adaptive enhancement.

    PubMed

    Sun, Liang; Wang, Xinwei; Liu, Xiaoquan; Ren, Pengdao; Lei, Pingshun; He, Jun; Fan, Songtao; Zhou, Yan; Liu, Yuliang

    2016-10-10

    In underwater range-gated imaging (URGI), enhancement of low-brightness and low-contrast images is critical for human observation. Traditional histogram equalizations over-enhance images, with the result of details being lost. To compress over-enhancement, a lower-upper-threshold correlation method is proposed for underwater range-gated imaging self-adaptive enhancement based on double-plateau histogram equalization. The lower threshold determines image details and compresses over-enhancement. It is correlated with the upper threshold. First, the upper threshold is updated by searching for the local maximum in real time, and then the lower threshold is calculated by the upper threshold and the number of nonzero units selected from a filtered histogram. With this method, the backgrounds of underwater images are constrained with enhanced details. Finally, the proof experiments are performed. Peak signal-to-noise-ratio, variance, contrast, and human visual properties are used to evaluate the objective quality of the global and regions of interest images. The evaluation results demonstrate that the proposed method adaptively selects the proper upper and lower thresholds under different conditions. The proposed method contributes to URGI with effective image enhancement for human eyes.

  15. Recirculating rotary gas compressor

    DOEpatents

    Weinbrecht, John F.

    1992-01-01

    A positive displacement, recirculating Roots-type rotary gas compressor which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits (24 and 26) which return compressed discharge gas to the compressor housing (14), where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers (10 and 12) and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor.

  16. Laser pulse shape design for laser-indirect-driven quasi-isentropic compression experiments

    NASA Astrophysics Data System (ADS)

    Xue, Quanxi; Jiang, Shaoen; Wang, Zhebin; Wang, Feng; Zhao, Xueqing; Ding, Yongkun

    2018-02-01

    Laser pulse shape design is a key work in the design of indirect-laser-driven experiments, especially for long pulse laser driven quasi-isentropic compression experiments. A method for designing such a laser pulse shape is given here. What's more, application experiments were performed, and the results of a typical shot are presented. At last of this article, the details of the application of the method are discussed, such as the equation parameter choice, radiation ablation pressure expression, and approximations in the method. The application shows that the method can provide reliable descriptions of the energy distribution in a hohlraum target; thus, it can be used in the design of long-pulse laser driven quasi-isentropic compression experiments and even other indirect-laser-driven experiments.

  17. Recirculating rotary gas compressor

    DOEpatents

    Weinbrecht, J.F.

    1992-02-25

    A positive displacement, recirculating Roots-type rotary gas compressor is described which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits which return compressed discharge gas to the compressor housing, where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor. 12 figs.

  18. Sport socks do not enhance calf muscle pump function but inelastic wraps do.

    PubMed

    Partsch, H; Mosti, G

    2014-12-01

    Aim of the study was to measure the effect of elastic and inelastic compression on calf muscle pump function in healthy male athletes. This was an experimental study which included 21 healthy male athletes. The ejection fraction (EF) of the venous calf pump was measured comparing the effects of a variety of compression materials: 1) sport compression stockings; 2) light zinc paste bandages; 3) sport compression stockings with additional Velcro® wraps over the calf. The influence of sport stocking and wraps on the venous calibre at the largest calf circumference in the lying and standing position was investigated using MRI. Inelastic compression exerting a median pressure in the standing position of 37.5 mmHg (zinc paste) and 48 mmHg (loosely applied straps over a sport stocking) achieved a significant increase of EF up to 100%. Sport stockings alone with a standing pressure of 19-24 mmHg did not show a significant change of EF. MRI demonstrated some venous narrowing in the lying but not in the standing position. By wrapping inelastic straps over the stocking an emptying of the veins in the lying and a considerable narrowing in the standing position could be observed. Venous calf pump function in athletes is not influenced by elastic sport stockings, but inelastic wraps either alone or applied over sport stockings lead to a significant enhancement.

  19. The Effect of a Third Generation Hemostatic Dressing in a Subclavian Artery and Vein Transection Porcine Model

    DTIC Science & Technology

    2014-04-01

    The MSD is comprised of a syringe applicator filled with compressed chitosan coated sponges which are delivered into the wound at the site of the...transmitted effectively to the deep subclavian vessels to stop hemorrhage. As a result of their non-compressible nature and paucity of effective field...followed by three minutes of compression to the packed dressing. The mini- sponge dressing (MSD) is a novel product that utilizes compressed, chitosan

  20. GPU-accelerated algorithms for compressed signals recovery with application to astronomical imagery deblurring

    NASA Astrophysics Data System (ADS)

    Fiandrotti, Attilio; Fosson, Sophie M.; Ravazzi, Chiara; Magli, Enrico

    2018-04-01

    Compressive sensing promises to enable bandwidth-efficient on-board compression of astronomical data by lifting the encoding complexity from the source to the receiver. The signal is recovered off-line, exploiting GPUs parallel computation capabilities to speedup the reconstruction process. However, inherent GPU hardware constraints limit the size of the recoverable signal and the speedup practically achievable. In this work, we design parallel algorithms that exploit the properties of circulant matrices for efficient GPU-accelerated sparse signals recovery. Our approach reduces the memory requirements, allowing us to recover very large signals with limited memory. In addition, it achieves a tenfold signal recovery speedup thanks to ad-hoc parallelization of matrix-vector multiplications and matrix inversions. Finally, we practically demonstrate our algorithms in a typical application of circulant matrices: deblurring a sparse astronomical image in the compressed domain.

  1. Fast and Adaptive Lossless On-Board Hyperspectral Data Compression System for Space Applications

    NASA Technical Reports Server (NTRS)

    Aranki, Nazeeh; Bakhshi, Alireza; Keymeulen, Didier; Klimesh, Matthew

    2009-01-01

    Efficient on-board lossless hyperspectral data compression reduces the data volume necessary to meet NASA and DoD limited downlink capabilities. The techniques also improves signature extraction, object recognition and feature classification capabilities by providing exact reconstructed data on constrained downlink resources. At JPL a novel, adaptive and predictive technique for lossless compression of hyperspectral data was recently developed. This technique uses an adaptive filtering method and achieves a combination of low complexity and compression effectiveness that far exceeds state-of-the-art techniques currently in use. The JPL-developed 'Fast Lossless' algorithm requires no training data or other specific information about the nature of the spectral bands for a fixed instrument dynamic range. It is of low computational complexity and thus well-suited for implementation in hardware, which makes it practical for flight implementations of pushbroom instruments. A prototype of the compressor (and decompressor) of the algorithm is available in software, but this implementation may not meet speed and real-time requirements of some space applications. Hardware acceleration provides performance improvements of 10x-100x vs. the software implementation (about 1M samples/sec on a Pentium IV machine). This paper describes a hardware implementation of the JPL-developed 'Fast Lossless' compression algorithm on a Field Programmable Gate Array (FPGA). The FPGA implementation targets the current state of the art FPGAs (Xilinx Virtex IV and V families) and compresses one sample every clock cycle to provide a fast and practical real-time solution for Space applications.

  2. Magnetized Plasma Compression for Fusion Energy

    NASA Astrophysics Data System (ADS)

    Degnan, James; Grabowski, Christopher; Domonkos, Matthew; Amdahl, David

    2013-10-01

    Magnetized Plasma Compression (MPC) uses magnetic inhibition of thermal conduction and enhancement of charge particle product capture to greatly reduce the temporal and spatial compression required relative to un-magnetized inertial fusion (IFE)--to microseconds, centimeters vs nanoseconds, sub-millimeter. MPC greatly reduces the required confinement time relative to MFE--to microseconds vs minutes. Proof of principle can be demonstrated or refuted using high current pulsed power driven compression of magnetized plasmas using magnetic pressure driven implosions of metal shells, known as imploding liners. This can be done at a cost of a few tens of millions of dollars. If demonstrated, it becomes worthwhile to develop repetitive implosion drivers. One approach is to use arrays of heavy ion beams for energy production, though with much less temporal and spatial compression than that envisioned for un-magnetized IFE, with larger compression targets, and with much less ambitious compression ratios. A less expensive, repetitive pulsed power driver, if feasible, would require engineering development for transient, rapidly replaceable transmission lines such as envisioned by Sandia National Laboratories. Supported by DOE-OFES.

  3. Effects of compression and individual variability on face recognition performance

    NASA Astrophysics Data System (ADS)

    McGarry, Delia P.; Arndt, Craig M.; McCabe, Steven A.; D'Amato, Donald P.

    2004-08-01

    The Enhanced Border Security and Visa Entry Reform Act of 2002 requires that the Visa Waiver Program be available only to countries that have a program to issue to their nationals machine-readable passports incorporating biometric identifiers complying with applicable standards established by the International Civil Aviation Organization (ICAO). In June 2002, the New Technologies Working Group of ICAO unanimously endorsed the use of face recognition (FR) as the globally interoperable biometric for machine-assisted identity confirmation with machine-readable travel documents (MRTDs), although Member States may elect to use fingerprint and/or iris recognition as additional biometric technologies. The means and formats are still being developed through which biometric information might be stored in the constrained space of integrated circuit chips embedded within travel documents. Such information will be stored in an open, yet unalterable and very compact format, probably as digitally signed and efficiently compressed images. The objective of this research is to characterize the many factors that affect FR system performance with respect to the legislated mandates concerning FR. A photograph acquisition environment and a commercial face recognition system have been installed at Mitretek, and over 1,400 images have been collected of volunteers. The image database and FR system are being used to analyze the effects of lossy image compression, individual differences, such as eyeglasses and facial hair, and the acquisition environment on FR system performance. Images are compressed by varying ratios using JPEG2000 to determine the trade-off points between recognition accuracy and compression ratio. The various acquisition factors that contribute to differences in FR system performance among individuals are also being measured. The results of this study will be used to refine and test efficient face image interchange standards that ensure highly accurate recognition, both for automated FR systems and human inspectors. Working within the M1-Biometrics Technical Committee of the InterNational Committee for Information Technology Standards (INCITS) organization, a standard face image format will be tested and submitted to organizations such as ICAO.

  4. Preparation of flexible TiO2 photoelectrodes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Li, Wen-Ren; Wang, Hsiu-Hsuan; Lin, Chia-Feng; Su, Chaochin

    2014-09-01

    Dye-sensitized solar cells (DSSCs) based on nanocrystalline TiO2 photoelectrodes on indium tin oxide (ITO) coated polymer substrates have drawn great attention due to its lightweight, flexibility and advantages in commercial applications. However, the thermal instability of polymer substrates limits the process temperature to below 150 °C. In order to assure high and firm interparticle connection between TiO2 nanocrystals (TiO2-NC) and polymer substrates, the post-treatment of flexible TiO2 photoelectrodes (F-TiO2-PE) by mechanical compression was employed. In this work, Degussa P25 TiO2-NC was mixed with tert-butyl alcohol and DI-water to form TiO2 paste. F-TiO2-PE was then prepared by coating the TiO2 paste onto ITO coated polyethylene terephthalate (PET) substrate using doctor blade followed by low temperature sintering at 120 °C for 2 hours. To study the effect of mechanical compression, we applied 50 and 100 kg/cm2 pressure on TiO2/PET to complete the fabrication of F-TiO2-PE. The surface morphology of F-TiO2-PE was characterized using scanning electron microscopy. The resultant F-TiO2-PE sample exhibited a smooth, crack-free structure indicating the great improvement in the interparticle connection of TiO2-NC. Increase of compression pressure could lead to the increase of DSSC photoconversion efficiency. The best photoconversion efficiency of 4.19 % (open circuit voltage (Voc) = 0.79 V, short-circuit photocurrent density (Jsc) = 7.75 mA/cm2, fill factor (FF) = 0.68) was obtained for the F-TiO2-PE device, which showed great enhancement compared with the F-TiO2-PE cell without compression treatment. The effect of compression in DSSC performance was vindicated by the electrochemical impedance spectroscopy measurement.

  5. Compressive and Flexural Tests on Adobe Samples Reinforced with Wire Mesh

    NASA Astrophysics Data System (ADS)

    Jokhio, G. A.; Al-Tawil, Y. M. Y.; Syed Mohsin, S. M.; Gul, Y.; Ramli, N. I.

    2018-03-01

    Adobe is an economical, naturally available, and environment friendly construction material that offers excellent thermal and sound insulations as well as indoor air quality. It is important to understand and enhance the mechanical properties of this material, where a high degree of variation is reported in the literature owing to lack of research and standardization in this field. The present paper focuses first on the understanding of mechanical behaviour of adobe subjected to compressive stresses as well as flexure and then on enhancing the same with the help of steel wire mesh as reinforcement. A total of 22 samples were tested out of which, 12 cube samples were tested for compressive strength, whereas 10 beams samples were tested for modulus of rupture. Half of the samples in each category were control samples i.e. without wire mesh reinforcement, whereas the remaining half were reinforced with a single layer of wire mesh per sample. It has been found that the compressive strength of adobe increases by about 43% after adding a single layer of wire mesh reinforcement. The flexural response of adobe has also shown improvement with the addition of wire mesh reinforcement.

  6. Clinical assessment of heart chamber size and valve motion during cardiopulmonary resuscitation by two-dimensional echocardiography.

    PubMed

    Rich, S; Wix, H L; Shapiro, E P

    1981-09-01

    It has been generally accepted that enhanced blood flow during closed-chest CPR is generated from compression of the heart between the sternum and the spine. To visualize the heart during closed-chest massage, we performed two-dimensional echocardiography (2DE) during resuscitation efforts in four patients who had cardiac arrest. 2DE analysis showed that (1) the LV internal dimensions did not change appreciably with chest compression; (2) the mitral and aortic valves were open simultaneously during the compression phase; (3) blood flow into the right heart, as evidenced by saline bubble contrast, occurred during the relaxation phase; and (4) compression of the right ventricle and LA occurred in varying amounts in all patients. We conclude that stroke volume from the heart during CPR does not result from compression of the LV. Rather, CPR-induced improved cardiocirculatory dynamics appear to be principally the result of changes in intrathoracic pressure created by sternal compression.

  7. Compressive sensing scalp EEG signals: implementations and practical performance.

    PubMed

    Abdulghani, Amir M; Casson, Alexander J; Rodriguez-Villegas, Esther

    2012-11-01

    Highly miniaturised, wearable computing and communication systems allow unobtrusive, convenient and long term monitoring of a range of physiological parameters. For long term operation from the physically smallest batteries, the average power consumption of a wearable device must be very low. It is well known that the overall power consumption of these devices can be reduced by the inclusion of low power consumption, real-time compression of the raw physiological data in the wearable device itself. Compressive sensing is a new paradigm for providing data compression: it has shown significant promise in fields such as MRI; and is potentially suitable for use in wearable computing systems as the compression process required in the wearable device has a low computational complexity. However, the practical performance very much depends on the characteristics of the signal being sensed. As such the utility of the technique cannot be extrapolated from one application to another. Long term electroencephalography (EEG) is a fundamental tool for the investigation of neurological disorders and is increasingly used in many non-medical applications, such as brain-computer interfaces. This article investigates in detail the practical performance of different implementations of the compressive sensing theory when applied to scalp EEG signals.

  8. Electromotive force in strongly compressible magnetohydrodynamic turbulence

    NASA Astrophysics Data System (ADS)

    Yokoi, N.

    2017-12-01

    Variable density fluid turbulence is ubiquitous in geo-fluids, not to mention in astrophysics. Depending on the source of density variation, variable density fluid turbulence may be divided into two categories: the weak compressible (entropy mode) turbulence for slow flow and the strong compressible (acoustic mode) turbulence for fast flow. In the strong compressible turbulence, the pressure fluctuation induces a strong density fluctuation ρ ', which is represented by the density variance <ρ'2> (<·> denotes the ensemble average). The turbulent effect on the large-scale magnetic-field B induction is represented by the turbulent electromotive force (EMF) (u': velocity fluctuation, b': magnetic-field fluctuation). In the usual treatment in the dynamo theory, the expression for the EMF has been obtained in the framework of incompressible or weak compressible turbulence, where only the variation of the mean density <ρ>, if any, is taken into account. We see from the equation of the density fluctuation ρ', the density variance <ρ'2> is generated by the large mean density variation ∂<ρ> coupled with the turbulent mass flux <ρ'u'>. This means that in the region where the mean density steeply changes, the density variance effect becomes relevant for the magnetic field evolution. This situation is typically the case for phenomena associated with shocks and compositional discontinuities. With the aid of the analytical theory of inhomogeneous compressible magnetohydrodynamic (MHD) turbulence, the expression for the turbulent electromotive force is investigated. It is shown that, among others, an obliqueness (misalignment) between the mean density gradient ∂<ρ> and the mean magnetic field B may contribute to the EMF as ≈χ B×∂<ρ> with the turbulent transport coefficient χ proportional to the density variance (χ <ρ'2>). This density variance effect is expected to strongly affect the EMF near the interface, and changes the transport properties of turbulence. In the case of an interface under the MHD slow shock, the magnetic reconnection rate may be enhanced by this effect. Physical origin of this effect is discussed in some possible geophysical applications.

  9. Filling-driven Mott transition in SU(N ) Hubbard models

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Sup B.; von Delft, Jan; Weichselbaum, Andreas

    2018-04-01

    We study the filling-driven Mott transition involving the metallic and paramagnetic insulating phases in SU (N ) Fermi-Hubbard models, using the dynamical mean-field theory and the numerical renormalization group as its impurity solver. The compressibility shows a striking temperature dependence: near the critical end-point temperature, it is strongly enhanced in the metallic phase close to the insulating phase. We demonstrate that this compressibility enhancement is associated with the thermal suppression of the quasiparticle peak in the local spectral functions. We also explain that the asymmetric shape of the quasiparticle peak originates from the asymmetry in the dynamics of the generalized doublons and holons.

  10. Application of PDF methods to compressible turbulent flows

    NASA Astrophysics Data System (ADS)

    Delarue, B. J.; Pope, S. B.

    1997-09-01

    A particle method applying the probability density function (PDF) approach to turbulent compressible flows is presented. The method is applied to several turbulent flows, including the compressible mixing layer, and good agreement is obtained with experimental data. The PDF equation is solved using a Lagrangian/Monte Carlo method. To accurately account for the effects of compressibility on the flow, the velocity PDF formulation is extended to include thermodynamic variables such as the pressure and the internal energy. The mean pressure, the determination of which has been the object of active research over the last few years, is obtained directly from the particle properties. It is therefore not necessary to link the PDF solver with a finite-volume type solver. The stochastic differential equations (SDE) which model the evolution of particle properties are based on existing second-order closures for compressible turbulence, limited in application to low turbulent Mach number flows. Tests are conducted in decaying isotropic turbulence to compare the performances of the PDF method with the Reynolds-stress closures from which it is derived, and in homogeneous shear flows, at which stage comparison with direct numerical simulation (DNS) data is conducted. The model is then applied to the plane compressible mixing layer, reproducing the well-known decrease in the spreading rate with increasing compressibility. It must be emphasized that the goal of this paper is not as much to assess the performance of models of compressibility effects, as it is to present an innovative and consistent PDF formulation designed for turbulent inhomogeneous compressible flows, with the aim of extending it further to deal with supersonic reacting flows.

  11. Morphing Compression Garments for Space Medicine and Extravehicular Activity Using Active Materials.

    PubMed

    Holschuh, Bradley T; Newman, Dava J

    2016-02-01

    Compression garments tend to be difficult to don/doff, due to their intentional function of squeezing the wearer. This is especially true for compression garments used for space medicine and for extravehicular activity (EVA). We present an innovative solution to this problem by integrating shape changing materials-NiTi shape memory alloy (SMA) coil actuators formed into modular, 3D-printed cartridges-into compression garments to produce garments capable of constricting on command. A parameterized, 2-spring analytic counterpressure model based on 12 garment and material inputs was developed to inform garment design. A methodology was developed for producing novel SMA cartridge systems to enable active compression garment construction. Five active compression sleeve prototypes were manufactured and tested: each sleeve was placed on a rigid cylindrical object and counterpressure was measured as a function of spatial location and time before, during, and after the application of a step voltage input. Controllable active counterpressures were measured up to 34.3 kPa, exceeding the requirement for EVA life support (29.6 kPa). Prototypes which incorporated fabrics with linear properties closely matched analytic model predictions (4.1%/-10.5% error in passive/active pressure predictions); prototypes using nonlinear fabrics did not match model predictions (errors >100%). Pressure non-uniformities were observed due to friction and the rigid SMA cartridge structure. To our knowledge this is the first demonstration of controllable compression technology incorporating active materials, a novel contribution to the field of compression garment design. This technology could lead to easy-to-don compression garments with widespread space and terrestrial applications.

  12. Chapter 22: Compressed Air Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurnik, Charles W; Benton, Nathanael; Burns, Patrick

    Compressed-air systems are used widely throughout industry for many operations, including pneumatic tools, packaging and automation equipment, conveyors, and other industrial process operations. Compressed-air systems are defined as a group of subsystems composed of air compressors, air treatment equipment, controls, piping, pneumatic tools, pneumatically powered machinery, and process applications using compressed air. A compressed-air system has three primary functional subsystems: supply, distribution, and demand. Air compressors are the primary energy consumers in a compressed-air system and are the primary focus of this protocol. The two compressed-air energy efficiency measures specifically addressed in this protocol are: High-efficiency/variable speed drive (VSD) compressormore » replacing modulating, load/unload, or constant-speed compressor; and Compressed-air leak survey and repairs. This protocol provides direction on how to reliably verify savings from these two measures using a consistent approach for each.« less

  13. A reduced-order model-based study on the effect of intermittent pneumatic compression of limbs on the cardiovascular system.

    PubMed

    Maffiodo, Daniela; De Nisco, Giuseppe; Gallo, Diego; Audenino, Alberto; Morbiducci, Umberto; Ferraresi, Carlo

    2016-04-01

    This work investigates the effect that the application of intermittent pneumatic compression to lower limbs has on the cardiovascular system. Intermittent pneumatic compression can be applied to subjects with reduced or null mobility and can be useful for therapeutic purposes in sports recovery, deep vein thrombosis prevention and lymphedema drainage. However, intermittent pneumatic compression performance and the effectiveness are often difficult to predict. This study presents a reduced-order numerical model of the interaction between the cardiovascular system and the intermittent pneumatic compression device. The effect that different intermittent pneumatic compression operating conditions have on the overall circulation is investigated. Our findings confirm (1) that an overall positive effect on hemodynamics can be obtained by properly applying the intermittent pneumatic compression device and (2) that using intermittent pneumatic compression for cardiocirculatory recovery is feasible in subjects affected by lower limb disease. © IMechE 2016.

  14. Pneumatic microfluidic cell compression device for high-throughput study of chondrocyte mechanobiology.

    PubMed

    Lee, Donghee; Erickson, Alek; You, Taesun; Dudley, Andrew T; Ryu, Sangjin

    2018-06-13

    Hyaline cartilage is a specialized type of connective tissue that lines many moveable joints (articular cartilage) and contributes to bone growth (growth plate cartilage). Hyaline cartilage is composed of a single cell type, the chondrocyte, which produces a unique hydrated matrix to resist compressive stress. Although compressive stress has profound effects on transcriptional networks and matrix biosynthesis in chondrocytes, mechanistic relationships between strain, signal transduction, cell metabolism, and matrix production remain superficial. Here, we describe development and validation of a polydimethylsiloxane (PDMS)-based pneumatic microfluidic cell compression device which generates multiple compression conditions in a single platform. The device contained an array of PDMS balloons of different sizes which were actuated by pressurized air, and the balloons compressed chondrocytes cells in alginate hydrogel constructs. Our characterization and testing of the device showed that the developed platform could compress chondrocytes with various magnitudes simultaneously with negligible effect on cell viability. Also, the device is compatible with live cell imaging to probe early effects of compressive stress, and it can be rapidly dismantled to facilitate molecular studies of compressive stress on transcriptional networks. Therefore, the proposed device will enhance the productivity of chondrocyte mechanobiology studies, and it can be applied to study mechanobiology of other cell types.

  15. Surface decoration of polyimide fiber with carbon nanotubes and its application for mechanical enhancement of phosphoric acid-based geopolymers

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Han, Enlin; Wang, Xiaodong; Wu, Dezhen

    2017-09-01

    A new methodology to decorate the surface of polyimide (PI) fiber with carbon nanotubes (CNTs) has been developed in this study. This surface decoration was carried out through a surface alkali treatment, a carboxylation modification, surface functionalization with acyl chloride groups and then with amino groups, and a surface graft of CNTs onto PI fiber. Fourier-transform infrared and X-ray photoelectron spectroscopic characterizations confirmed that CNTs were chemically grafted onto the surface of PI fiber, and scanning electron microscopic observation demonstrated the fiber surface was uniformly and densely covered with CNTs. The surface energy and wettability of PI fiber were improved in the presence of CNTs on the fiber surface, which made a contribution to enhance the interfacial adhesion of PI fiber with other inorganic matrices when used as a reinforcing fiber. The application of CNTs-decorated PI fiber for the reinforcement of phosphoric acid-based geopolymers was investigated, and the results indicated that the geopolymeric composites gained a noticeable reinforcement. Compared to unreinforced geopolymer, the geopolymeric composites achieved a remarkable increase in compressive strength by 120% and in flexural strength by 283%. Fractography investigation demonstrated that the interaction adhesion between the fibers and matrix was enhanced due to the surface decoration of PI fiber with CNTs, which contributed to an improvement in fracture-energy dissipation by fiber pullout and fiber debonding from the matrix. As a result, a significant reinforcement effect on geopolymeric composites was achieved through a fiber-bridging mechanism. This study provided an effective methodology to improve the interracial bonding force for PI fiber and also proves a highly efficient application of CNTs-decorated PI fiber for the mechanical enhancement of geopolymeric composites.

  16. Compressive Force Spectroscopy: From Living Cells to Single Proteins.

    PubMed

    Wang, Jiabin; Liu, Meijun; Shen, Yi; Sun, Jielin; Shao, Zhifeng; Czajkowsky, Daniel Mark

    2018-03-23

    One of the most successful applications of atomic force microscopy (AFM) in biology involves monitoring the effect of force on single biological molecules, often referred to as force spectroscopy. Such studies generally entail the application of pulling forces of different magnitudes and velocities upon individual molecules to resolve individualistic unfolding/separation pathways and the quantification of the force-dependent rate constants. However, a less recognized variation of this method, the application of compressive force, actually pre-dates many of these "tensile" force spectroscopic studies. Further, beyond being limited to the study of single molecules, these compressive force spectroscopic investigations have spanned samples as large as living cells to smaller, multi-molecular complexes such as viruses down to single protein molecules. Correspondingly, these studies have enabled the detailed characterization of individual cell states, subtle differences between seemingly identical viral structures, as well as the quantification of rate constants of functionally important, structural transitions in single proteins. Here, we briefly review some of the recent achievements that have been obtained with compressive force spectroscopy using AFM and highlight exciting areas of its future development.

  17. Ultrasound Shear Wave Simulation of Breast Tumor Using Nonlinear Tissue Elasticity

    PubMed Central

    Park, Dae Woo

    2016-01-01

    Shear wave elasticity imaging (SWEI) can assess the elasticity of tissues, but the shear modulus estimated in SWEI is often less sensitive to a subtle change of the stiffness that produces only small mechanical contrast to the background tissues. Because most soft tissues exhibit mechanical nonlinearity that differs in tissue types, mechanical contrast can be enhanced if the tissues are compressed. In this study, a finite element- (FE-) based simulation was performed for a breast tissue model, which consists of a circular (D: 10 mm, hard) tumor and surrounding tissue (soft). The SWEI was performed with 0% to 30% compression of the breast tissue model. The shear modulus of the tumor exhibited noticeably high nonlinearity compared to soft background tissue above 10% overall applied compression. As a result, the elastic modulus contrast of the tumor to the surrounding tissue was increased from 0.46 at 0% compression to 1.45 at 30% compression. PMID:27293476

  18. An effective and efficient compression algorithm for ECG signals with irregular periods.

    PubMed

    Chou, Hsiao-Hsuan; Chen, Ying-Jui; Shiau, Yu-Chien; Kuo, Te-Son

    2006-06-01

    This paper presents an effective and efficient preprocessing algorithm for two-dimensional (2-D) electrocardiogram (ECG) compression to better compress irregular ECG signals by exploiting their inter- and intra-beat correlations. To better reveal the correlation structure, we first convert the ECG signal into a proper 2-D representation, or image. This involves a few steps including QRS detection and alignment, period sorting, and length equalization. The resulting 2-D ECG representation is then ready to be compressed by an appropriate image compression algorithm. We choose the state-of-the-art JPEG2000 for its high efficiency and flexibility. In this way, the proposed algorithm is shown to outperform some existing arts in the literature by simultaneously achieving high compression ratio (CR), low percent root mean squared difference (PRD), low maximum error (MaxErr), and low standard derivation of errors (StdErr). In particular, because the proposed period sorting method rearranges the detected heartbeats into a smoother image that is easier to compress, this algorithm is insensitive to irregular ECG periods. Thus either the irregular ECG signals or the QRS false-detection cases can be better compressed. This is a significant improvement over existing 2-D ECG compression methods. Moreover, this algorithm is not tied exclusively to JPEG2000. It can also be combined with other 2-D preprocessing methods or appropriate codecs to enhance the compression performance in irregular ECG cases.

  19. Ordered quasi-two-dimensional structure of nanoparticles in semiflexible ring polymer brushes under compression

    NASA Astrophysics Data System (ADS)

    Hua, Yunfeng; Deng, Zhenyu; Jiang, Yangwei; Zhang, Linxi

    2017-06-01

    Molecular dynamics simulations of a coarse-grained bead-spring model of ring polymer brushes under compression are presented. Flexible polymer brushes are always disordered during compression, whereas semiflexible polymer brushes tend to be ordered under sufficiently strong compression. Further, the polymer monomer density of the semiflexible polymer brush is very high near the brush surface, inducing a peak value of the free energy near the surface. Therefore, when nanoparticles are compressed in semiflexible ring polymer brushes, they tend to exhibit a closely packed single-layer structure between the brush surface and the impenetrable wall, and a quasi-two-dimensional ordered structure near the brush surface is formed under strong compression. These findings provide a new approach to designing responsive applications.

  20. Reinforced Portland cement porous scaffolds for load-bearing bone tissue engineering applications.

    PubMed

    Higuita-Castro, Natalia; Gallego-Perez, Daniel; Pelaez-Vargas, Alejandro; García Quiroz, Felipe; Posada, Olga M; López, Luis E; Sarassa, Carlos A; Agudelo-Florez, Piedad; Monteiro, Fernando J; Litsky, Alan S; Hansford, Derek J

    2012-02-01

    Modified Portland cement porous scaffolds with suitable characteristics for load-bearing bone tissue engineering applications were manufactured by combining the particulate leaching and foaming methods. Non-crosslinked polydimethylsiloxane was evaluated as a potential reinforcing material. The scaffolds presented average porosities between 70 and 80% with mean pore sizes ranging from 300 μm up to 5.0 mm. Non-reinforced scaffolds presented compressive strengths and elastic modulus values of 2.6 and 245 MPa, respectively, whereas reinforced scaffolds exhibited 4.2 and 443 MPa, respectively, an increase of ∼62 and 80%. Portland cement scaffolds supported human osteoblast-like cell adhesion, spreading, and propagation (t = 1-28 days). Cell metabolism and alkaline phosphatase activity were found to be enhanced at longer culture intervals (t ≥ 14 days). These results suggest the possibility of obtaining strong and biocompatible scaffolds for bone repair applications from inexpensive, yet technologically advanced materials such as Portland cement. Copyright © 2011 Wiley Periodicals, Inc.

  1. Adjustable lossless image compression based on a natural splitting of an image into drawing, shading, and fine-grained components

    NASA Technical Reports Server (NTRS)

    Novik, Dmitry A.; Tilton, James C.

    1993-01-01

    The compression, or efficient coding, of single band or multispectral still images is becoming an increasingly important topic. While lossy compression approaches can produce reconstructions that are visually close to the original, many scientific and engineering applications require exact (lossless) reconstructions. However, the most popular and efficient lossless compression techniques do not fully exploit the two-dimensional structural links existing in the image data. We describe here a general approach to lossless data compression that effectively exploits two-dimensional structural links of any length. After describing in detail two main variants on this scheme, we discuss experimental results.

  2. NASA Tech Briefs, June 2012

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Topics covered include: iGlobe Interactive Visualization and Analysis of Spatial Data; Broad-Bandwidth FPGA-Based Digital Polyphase Spectrometer; Small Aircraft Data Distribution System; Earth Science Datacasting v2.0; Algorithm for Compressing Time-Series Data; Onboard Science and Applications Algorithm for Hyperspectral Data Reduction; Sampling Technique for Robust Odorant Detection Based on MIT RealNose Data; Security Data Warehouse Application; Integrated Laser Characterization, Data Acquisition, and Command and Control Test System; Radiation-Hard SpaceWire/Gigabit Ethernet-Compatible Transponder; Hardware Implementation of Lossless Adaptive Compression of Data From a Hyperspectral Imager; High-Voltage, Low-Power BNC Feedthrough Terminator; SpaceCube Mini; Dichroic Filter for Separating W-Band and Ka-Band; Active Mirror Predictive and Requirement Verification Software (AMP-ReVS); Navigation/Prop Software Suite; Personal Computer Transport Analysis Program; Pressure Ratio to Thermal Environments; Probabilistic Fatigue Damage Program (FATIG); ASCENT Program; JPL Genesis and Rapid Intensification Processes (GRIP) Portal; Data::Downloader; Fault Tolerance Middleware for a Multi-Core System; DspaceOgreTerrain 3D Terrain Visualization Tool; Trick Simulation Environment 07; Geometric Reasoning for Automated Planning; Water Detection Based on Color Variation; Single-Layer, All-Metal Patch Antenna Element with Wide Bandwidth; Scanning Laser Infrared Molecular Spectrometer (SLIMS); Next-Generation Microshutter Arrays for Large-Format Imaging and Spectroscopy; Detection of Carbon Monoxide Using Polymer-Composite Films with a Porphyrin-Functionalized Polypyrrole; Enhanced-Adhesion Multiwalled Carbon Nanotubes on Titanium Substrates for Stray Light Control; Three-Dimensional Porous Particles Composed of Curved, Two-Dimensional, Nano-Sized Layers for Li-Ion Batteries 23 Ultra-Lightweight; and Ultra-Lightweight Nanocomposite Foams and Sandwich Structures for Space Structure Applications.

  3. Statistical modeling of compressible turbulence - Shock-wave/turbulence interactions and buoyancy effects

    NASA Astrophysics Data System (ADS)

    Yoshizawa, Akira

    1991-12-01

    A mass-weighted mean compressible turbulence model is presented with the aid of the results from a two-scale DIA. This model aims at dealing with two typical aspects in compressible flows: the interaction of a shock wave with turbulence in high-speed flows and strong buoyancy effects in thermally-driven flows as in stellar convection and conflagration. The former is taken into account through the effect of turbulent dilatation that is related to the density fluctuation and leads to the enhanced kinetic-energy dissipation. The latter is incorporated through the interaction between the gravitational and density-fluctuation effects.

  4. Case Studies of Fatigue Life Improvement Using Low Plasticity Burnishing in Gas Turbine Engine Applications

    NASA Technical Reports Server (NTRS)

    Prevey, Paul S.; Shepard, Michael; Ravindranath, Ravi A.; Gabb, Timothy

    2003-01-01

    Surface enhancement technologies such as shot peening, laser shock peening (LSP), and low plasticity burnishing (LPB) can provide substantial fatigue life improvement. However, to be effective, the compressive residual stresses that increase fatigue strength must be retained in service. For successful integration into turbine design, the process must be affordable and compatible with the manufacturing environment. LPB provides thermally stable compression of comparable magnitude and even greater depth than other methods, and can be performed in conventional machine shop environments on CNC machine tools. LPB provides a means to extend the fatigue lives of both new and legacy aircraft engines and ground-based turbines. Improving fatigue performance by introducing deep stable layers of compressive residual stress avoids the generally cost prohibitive alternative of modifying either material or design. The X-ray diffraction based background studies of thermal and mechanical stability of surface enhancement techniques are briefly reviewed, demonstrating the importance of minimizing cold work. The LPB process, tooling, and control systems are described. An overview of current research programs conducted for engine OEMs and the military to apply LPB to a variety of engine and aging aircraft components are presented. Fatigue performance and residual stress data developed to date for several case studies are presented including: * The effect of LPB on the fatigue performance of the nickel based super alloy IN718, showing fatigue benefit of thermal stability at engine temperatures. * An order of magnitude improvement in damage tolerance of LPB processed Ti-6-4 fan blade leading edges. * Elimination of the fretting fatigue debit for Ti-6-4 with prior LPB. * Corrosion fatigue mitigation with LPB in Carpenter 450 steel. *Damage tolerance improvement in 17-4PH steel. Where appropriate, the performance of LPB is compared to conventional shot peening after exposure to engine operating temperatures.

  5. Relative Suffix Trees.

    PubMed

    Farruggia, Andrea; Gagie, Travis; Navarro, Gonzalo; Puglisi, Simon J; Sirén, Jouni

    2018-05-01

    Suffix trees are one of the most versatile data structures in stringology, with many applications in bioinformatics. Their main drawback is their size, which can be tens of times larger than the input sequence. Much effort has been put into reducing the space usage, leading ultimately to compressed suffix trees. These compressed data structures can efficiently simulate the suffix tree, while using space proportional to a compressed representation of the sequence. In this work, we take a new approach to compressed suffix trees for repetitive sequence collections, such as collections of individual genomes. We compress the suffix trees of individual sequences relative to the suffix tree of a reference sequence. These relative data structures provide competitive time/space trade-offs, being almost as small as the smallest compressed suffix trees for repetitive collections, and competitive in time with the largest and fastest compressed suffix trees.

  6. Relative Suffix Trees

    PubMed Central

    Farruggia, Andrea; Gagie, Travis; Navarro, Gonzalo; Puglisi, Simon J; Sirén, Jouni

    2018-01-01

    Abstract Suffix trees are one of the most versatile data structures in stringology, with many applications in bioinformatics. Their main drawback is their size, which can be tens of times larger than the input sequence. Much effort has been put into reducing the space usage, leading ultimately to compressed suffix trees. These compressed data structures can efficiently simulate the suffix tree, while using space proportional to a compressed representation of the sequence. In this work, we take a new approach to compressed suffix trees for repetitive sequence collections, such as collections of individual genomes. We compress the suffix trees of individual sequences relative to the suffix tree of a reference sequence. These relative data structures provide competitive time/space trade-offs, being almost as small as the smallest compressed suffix trees for repetitive collections, and competitive in time with the largest and fastest compressed suffix trees. PMID:29795706

  7. FINAL REPORT: Room Temperature Hydrogen Storage in Nano-Confined Liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VAJO, JOHN

    2014-06-12

    DOE continues to seek solid-state hydrogen storage materials with hydrogen densities of ≥6 wt% and ≥50 g/L that can deliver hydrogen and be recharged at room temperature and moderate pressures enabling widespread use in transportation applications. Meanwhile, development including vehicle engineering and delivery infrastructure continues for compressed-gas hydrogen storage systems. Although compressed gas storage avoids the materials-based issues associated with solid-state storage, achieving acceptable volumetric densities has been a persistent challenge. This project examined the possibility of developing storage materials that would be compatible with compressed gas storage technology based on enhanced hydrogen solubility in nano-confined liquid solvents. These materialsmore » would store hydrogen in molecular form eliminating many limitations of current solid-state materials while increasing the volumetric capacity of compressed hydrogen storage vessels. Experimental methods were developed to study hydrogen solubility in nano-confined liquids. These methods included 1) fabrication of composites comprised of volatile liquid solvents for hydrogen confined within the nano-sized pore volume of nanoporous scaffolds and 2) measuring the hydrogen uptake capacity of these composites without altering the composite composition. The hydrogen storage capacities of these nano-confined solvent/scaffold composites were compared with bulk solvents and with empty scaffolds. The solvents and scaffolds were varied to optimize the enhancement in hydrogen solubility that accompanies confinement of the solvent. In addition, computational simulations were performed to study the molecular-scale structure of liquid solvent when confined within an atomically realistic nano-sized pore of a model scaffold. Confined solvent was compared with similar simulations of bulk solvent. The results from the simulations were used to formulate a mechanism for the enhanced solubility and to guide the experiments. Overall, the combined experimental measurements and simulations indicate that hydrogen storage based on enhanced solubility in nano-confined liquids is unlikely to meet the storage densities required for practical use. Only low gravimetric capacities of < 0.5 wt% were achieved. More importantly, solvent filled scaffolds had lower volumetric capacities than corresponding empty scaffolds. Nevertheless, several of the composites measured did show significant (>~ 5x) enhanced hydrogen solubility relative to bulk solvent solubility, when the hydrogen capacity was attributed only to dissolution in the confined solvent. However, when the hydrogen capacity was compared to an empty scaffold that is known to store hydrogen by surface adsorption on the scaffold walls, including the solvent always reduced the hydrogen capacity. For the best composites, this reduction relative to an empty scaffold was ~30%; for the worst it was ~90%. The highest capacities were obtained with the largest solvent molecules and with scaffolds containing 3- dimensionally confined pore geometries. The simulations suggested that the capacity of the composites originated from hydrogen adsorption on the scaffold pore walls at sites not occupied by solvent molecules. Although liquid solvent filled the pores, not all of the adsorption sites on the pore walls were occupied due to restricted motion of the solvent molecules within the confined pore space.« less

  8. Preparation, characterization, and scale-up of ketoconazole with enhanced dissolution and bioavailability.

    PubMed

    Elder, Edmund J; Evans, Jonathan C; Scherzer, Brian D; Hitt, James E; Kupperblatt, Gary B; Saghir, Shakil A; Markham, Dan A

    2007-07-01

    Many new molecular entities targeted for pharmaceutical applications face serious development challenges because of poor water solubility. Although particle engineering technologies such as controlled precipitation have been shown to enhance aqueous dissolution and bioavailability of poorly water soluble active pharmaceutical ingredients, the data available are the results of laboratory-scale experiments. These technologies must be evaluated at larger scale to ensure that the property enhancement is scalable and that the modified drugs can be processed on conventional equipment. In experiments using ketoconazole as the model drug, the controlled precipitation process was shown to produce kg-scale modified drug powder with enhanced dissolution comparable to that of lab-scale powder. Ketoconazole was demonstrated to be stable throughout the controlled precipitation process, with a residual methanol level below the ICH limit. The modified crystalline powder can be formulated, and then compressed using conventional high-speed tableting equipment, and the resulting tablets showed bioavailability more than double that of commercial tablets. When appropriately protected from moisture, both the modified powder and tablets prepared from the modified powder showed no change in dissolution performance for at least 6 months following storage at accelerated conditions and for at least 18 months following storage at room temperature.

  9. Tissue-engineered articular cartilage exhibits tension-compression nonlinearity reminiscent of the native cartilage.

    PubMed

    Kelly, Terri-Ann N; Roach, Brendan L; Weidner, Zachary D; Mackenzie-Smith, Charles R; O'Connell, Grace D; Lima, Eric G; Stoker, Aaron M; Cook, James L; Ateshian, Gerard A; Hung, Clark T

    2013-07-26

    The tensile modulus of articular cartilage is much larger than its compressive modulus. This tension-compression nonlinearity enhances interstitial fluid pressurization and decreases the frictional coefficient. The current set of studies examines the tensile and compressive properties of cylindrical chondrocyte-seeded agarose constructs over different developmental stages through a novel method that combines osmotic loading, video microscopy, and uniaxial unconfined compression testing. This method was previously used to examine tension-compression nonlinearity in native cartilage. Engineered cartilage, cultured under free-swelling (FS) or dynamically loaded (DL) conditions, was tested in unconfined compression in hypertonic and hypotonic salt solutions. The apparent equilibrium modulus decreased with increasing salt concentration, indicating that increasing the bath solution osmolarity shielded the fixed charges within the tissue, shifting the measured moduli along the tension-compression curve and revealing the intrinsic properties of the tissue. With this method, we were able to measure the tensile (401±83kPa for FS and 678±473kPa for DL) and compressive (161±33kPa for FS and 348±203kPa for DL) moduli of the same engineered cartilage specimens. These moduli are comparable to values obtained from traditional methods, validating this technique for measuring the tensile and compressive properties of hydrogel-based constructs. This study shows that engineered cartilage exhibits tension-compression nonlinearity reminiscent of the native tissue, and that dynamic deformational loading can yield significantly higher tensile properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Fabrication, pore structure and compressive behavior of anisotropic porous titanium for human trabecular bone implant applications.

    PubMed

    Li, Fuping; Li, Jinshan; Xu, Guangsheng; Liu, Gejun; Kou, Hongchao; Zhou, Lian

    2015-06-01

    Porous titanium with average pore size of 100-650 μm and porosity of 30-70% was fabricated by diffusion bonding of titanium meshes. Pore structure was characterized by Micro-CT scan and SEM. Compressive behavior of porous titanium in the out-of-plane direction was studied. The effect of porosity and pore size on the compressive properties was also discussed based on the deformation mode. The results reveal that the fabrication process can control the porosity precisely. The average pore size of porous titanium can be tailored by adjusting the pore size of titanium meshes. The fabricated porous titanium possesses an anisotropic structure with square pores in the in-plane direction and elongated pores in the out-of-plane direction. The compressive Young's modulus and yield stress are in the range of 1-7.5 GPa and 10-110 MPa, respectively. The dominant compressive deformation mode is buckling of mesh wires, but some uncoordinated buckling is present in porous titanium with lower porosity. Relationship between compressive properties and porosity conforms well to the Gibson-Ashby model. The effect of pore size on compressive properties is fundamentally ascribed to the aspect ratio of titanium meshes. Porous titanium with 60-70% porosity has potential for trabecular bone implant applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Compressed Natural Gas Safety in Transit Operations

    DOT National Transportation Integrated Search

    1995-09-14

    This report examines the safety issues relating to the use of Compressed Natural Gas (CNG) in transit service. The safety issues were determined by on-site surveys performed by Battelle of Columbus, Ohio and Science Applications International Corpora...

  12. Pulse Power Applications of Flux Compression Generators

    DTIC Science & Technology

    1981-06-01

    Characteristics are presented for two different types of explosive driven flux compression generators and a megavolt pulse transformer. Status reports are given for rail gun and plasma focus programs for which the generators serve as power sources.

  13. Bayesian sparse channel estimation

    NASA Astrophysics Data System (ADS)

    Chen, Chulong; Zoltowski, Michael D.

    2012-05-01

    In Orthogonal Frequency Division Multiplexing (OFDM) systems, the technique used to estimate and track the time-varying multipath channel is critical to ensure reliable, high data rate communications. It is recognized that wireless channels often exhibit a sparse structure, especially for wideband and ultra-wideband systems. In order to exploit this sparse structure to reduce the number of pilot tones and increase the channel estimation quality, the application of compressed sensing to channel estimation is proposed. In this article, to make the compressed channel estimation more feasible for practical applications, it is investigated from a perspective of Bayesian learning. Under the Bayesian learning framework, the large-scale compressed sensing problem, as well as large time delay for the estimation of the doubly selective channel over multiple consecutive OFDM symbols, can be avoided. Simulation studies show a significant improvement in channel estimation MSE and less computing time compared to the conventional compressed channel estimation techniques.

  14. Application of Porous Polydimethylsiloxane (PDMS) in oil absorption

    NASA Astrophysics Data System (ADS)

    Norfatriah, Abdullah; Syamaizar, Ahmad Sabli Ahmad; Samah Zuruzi, Abu

    2018-04-01

    Porous polydimethysiloxane (PDMS) displays both hydrophobic and oleophilic behaviour which makes it a suitable material to absorb oil in an aqueous stream. Furthermore, its elastomeric nature means that porous PDMS can be a reusable sorbent for oil. For such application, porous PDMS has to (i) absorb oil from aqueous stream quickly and (ii) discharge oil rapidly when compressed. In this study, porous polydimethylsiloxane (PDMS) has been fabricated using sugar templating method. The ability of porous PDMS to absorb olive, sunflower and vegetable oils with and without vibration was investigated. Small amplitude vibration was found to accelerate the oil uptake process and accelerates the absorption of olive and vegetable oil by 2.5 and 3 times, respectively. Compressive stress-strain curves over compression rates between 2 and 100 mm per min are similar and indicate mechanical property of porous PDMS does not vary significantly and can be rapidly compressed.

  15. Induction of engineered residual stresses fields and enhancement of fatigue life of high reliability metallic components by laser shock processing

    NASA Astrophysics Data System (ADS)

    Ocaña, J. L.; Porro, J. A.; Díaz, M.; Ruiz de Lara, L.; Correa, C.; Gil-Santos, A.; Peral, D.

    2013-02-01

    Laser shock processing (LSP) is being increasingly applied as an effective technology for the improvement of metallic materials mechanical and surface properties in different types of components as a means of enhancement of their corrosion and fatigue life behavior. As reported in previous contributions by the authors, a main effect resulting from the application of the LSP technique consists on the generation of relatively deep compression residual stresses field into metallic alloy pieces allowing an improved mechanical behaviour, explicitly the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Additional results accomplished by the authors in the line of practical development of the LSP technique at an experimental level (aiming its integral assessment from an interrelated theoretical and experimental point of view) are presented in this paper. Concretely, follow-on experimental results on the residual stress profiles and associated surface properties modification successfully reached in typical materials (especially Al and Ti alloys characteristic of high reliability components in the aerospace, nuclear and biomedical sectors) under different LSP irradiation conditions are presented along with a practical correlated analysis on the protective character of the residual stress profiles obtained under different irradiation strategies. Additional remarks on the improved character of the LSP technique over the traditional "shot peening" technique in what concerns depth of induced compressive residual stresses fields are also made through the paper.

  16. In vitro characterization of MG-63 osteoblast-like cells cultured on organic-inorganic lyophilized gelatin sponges for early bone healing.

    PubMed

    Rodriguez, Isaac A; Saxena, Gunjan; Hixon, Katherine R; Sell, Scott A; Bowlin, Gary L

    2016-08-01

    The development of three-dimensional porous scaffolds with enhanced osteogenic and angiogenic potential would be beneficial for inducing early-stage bone regeneration. Previous studies have demonstrated the advantages of mineralized and nonmineralized acellular 1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC) cross-linked gelatin sponges enhanced with preparations rich in growth factors, hydroxyapatite, and chitin whiskers. In this study, those same scaffolds were mineralized and dynamically seeded with MG-63 cells. Cell proliferation, protein/cytokine secretion, and compressive mechanical properties of scaffolds were evaluated. It was found that mineralization and the addition of growth factors increased cell proliferation compared to gelatin controls. Cells on all scaffolds responded in an appropriate bone regenerative fashion as shown through osteocalcin secretion and little to no secretion of bone resorbing markers. However, compressive mechanical properties of cellularized scaffolds were not significantly different from acellular scaffolds. The combined results of increased cellular attachment, infiltration, and bone regenerative protein/cytokine secretion on scaffolds support the need for the addition of a bone-like mineral surface. Cellularized scaffolds containing growth factors reported similar advantages and mechanical values in the range of native tissues present in the early stages of bone healing. These results suggest that the developed composite sponges exhibited cellular responses and mechanical properties appropriate for promoting early bone healing in various applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2011-2019, 2016. © 2016 Wiley Periodicals, Inc.

  17. Dynamics of dark hollow Gaussian laser pulses in relativistic plasma.

    PubMed

    Sharma, A; Misra, S; Mishra, S K; Kourakis, I

    2013-06-01

    Optical beams with null central intensity have potential applications in the field of atom optics. The spatial and temporal evolution of a central shadow dark hollow Gaussian (DHG) relativistic laser pulse propagating in a plasma is studied in this article for first principles. A nonlinear Schrodinger-type equation is obtained for the beam spot profile and then solved numerically to investigate the pulse propagation characteristics. As series of numerical simulations are employed to trace the profile of the focused and compressed DHG laser pulse as it propagates through the plasma. The theoretical and simulation results predict that higher-order DHG pulses show smaller divergence as they propagate and, thus, lead to enhanced energy transport.

  18. Dynamics of dark hollow Gaussian laser pulses in relativistic plasma

    NASA Astrophysics Data System (ADS)

    Sharma, A.; Misra, S.; Mishra, S. K.; Kourakis, I.

    2013-06-01

    Optical beams with null central intensity have potential applications in the field of atom optics. The spatial and temporal evolution of a central shadow dark hollow Gaussian (DHG) relativistic laser pulse propagating in a plasma is studied in this article for first principles. A nonlinear Schrodinger-type equation is obtained for the beam spot profile and then solved numerically to investigate the pulse propagation characteristics. As series of numerical simulations are employed to trace the profile of the focused and compressed DHG laser pulse as it propagates through the plasma. The theoretical and simulation results predict that higher-order DHG pulses show smaller divergence as they propagate and, thus, lead to enhanced energy transport.

  19. Pressure induced superconductivity in very lightly doped LaFeAsO0.975F0.025

    NASA Astrophysics Data System (ADS)

    Miyoshi, K.; Otsuka, K.; Shiota, A.; Shimojo, Y.; Motoyama, G.; Fujiwara, K.; Kitagawa, H.; Nishigori, S.

    2018-05-01

    We have investigated whether or not superconductivity is induced by the application of pressure in very lightly F-doped LaFeAsO1-xFx , which shows spin density wave (SDW) state at ambient pressure, through the measurements of DC magnetization and electrical resistivity under pressure using pulse current sintered (PCS) high density polycrystalline specimens. It has been confirmed that the specimens with x = 0.025 shows superconductivity with Tcdia ∼ 15 K under pressure above ∼ 1.3 GPa. The pressure induced superconductivity can be explained by the lattice compression along c-axis, which enhances the electron doping from LaO layers to FeAs layers.

  20. Cyclodextrins as excipients in tablet formulations.

    PubMed

    Conceição, Jaime; Adeoye, Oluwatomide; Cabral-Marques, Helena Maria; Lobo, José Manuel Sousa

    2018-04-22

    This paper aims to provide a critical review of cyclodextrins as excipients in tablet formulations, highlighting: (i) the principal pharmaceutical applications of cyclodextrins; (ii) the most relevant technological aspects in pharmaceutical formulation development; and (iii) the actual regulatory status of cyclodextrins. Moreover, several illustrative examples are presented. Cyclodextrins can be used as complexing excipients in tablet formulations for low-dose drugs. By contrast, for medium-dose drugs and/or when the complexation efficiency is low, the methods to enhance the complexation efficiency play a key part in reducing the cyclodextrin quantity. In addition, these compounds are used as fillers, disintegrants, binders and multifunctional direct compression excipients of the tablets. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Stiffening of short small-size circular composite steel–concrete columns with shear connectors

    PubMed Central

    Younes, Sherif M.; Ramadan, Hazem M.; Mourad, Sherif A.

    2015-01-01

    An experimental program was conducted to investigate the effect of shear connectors’ distribution and method of load application on load–displacement relationship and behavior of thin-walled short concrete-filled steel tube (CFT) columns when subjected to axial load. The study focused on the compressive strength of the CFT columns and the efficiency of the shear stud in distribution of the load between the concrete core and steel tube. The study showed that the use of shear connectors enhanced slightly the axial capacity of CFT columns. It is also shown that shear connectors have a great effect on load distribution between the concrete and steel tubes. PMID:27222757

  2. The structure of supersonic jet flow and its radiated sound

    NASA Technical Reports Server (NTRS)

    Mankbadi, Reda R.; Hayder, M. E.; Povinelli, Louis A.

    1993-01-01

    Large-eddy simulation of a supersonic jet is presented with emphasis on capturing the unsteady features of the flow pertinent to sound emission. A high-accuracy numerical scheme is used to solve the filtered, unsteady, compressible Navier-Stokes equations while modelling the subgrid-scale turbulence. For random inflow disturbance, the wave-like feature of the large-scale structure is demonstrated. The large-scale structure was then enhanced by imposing harmonic disturbances to the inflow. The limitation of using the full Navier-Stokes equation to calculate the far-field sound is discussed. Application of Lighthill's acoustic analogy is given with the objective of highlighting the difficulties that arise from the non-compactness of the source term.

  3. Approximation for discrete Fourier transform and application in study of three-dimensional interacting electron gas.

    PubMed

    Yan, Xin-Zhong

    2011-07-01

    The discrete Fourier transform is approximated by summing over part of the terms with corresponding weights. The approximation reduces significantly the requirement for computer memory storage and enhances the numerical computation efficiency with several orders without losing accuracy. As an example, we apply the algorithm to study the three-dimensional interacting electron gas under the renormalized-ring-diagram approximation where the Green's function needs to be self-consistently solved. We present the results for the chemical potential, compressibility, free energy, entropy, and specific heat of the system. The ground-state energy obtained by the present calculation is compared with the existing results of Monte Carlo simulation and random-phase approximation.

  4. A Miniaturized QEPAS Trace Gas Sensor with a 3D-Printed Acoustic Detection Module.

    PubMed

    Yang, Xiaotao; Xiao, Youhong; Ma, Yufei; He, Ying; Tittel, Frank K

    2017-07-31

    A 3D printing technique was introduced to a quartz-enhanced photoacoustic spectroscopy (QEPAS) sensor and is reported for the first time. The acoustic detection module (ADM) was designed and fabricated using the 3D printing technique and the ADM volume was compressed significantly. Furthermore, a small grin lens was used for laser focusing and facilitated the beam adjustment in the 3D-printed ADM. A quartz tuning fork (QTF) with a low resonance frequency of 30.72 kHz was used as the acoustic wave transducer and acetylene (C₂H₂) was chosen as the analyte. The reported miniaturized QEPAS trace gas sensor is useful in actual sensor applications.

  5. Numerical solution of Euler's equation by perturbed functionals

    NASA Technical Reports Server (NTRS)

    Dey, S. K.

    1985-01-01

    A perturbed functional iteration has been developed to solve nonlinear systems. It adds at each iteration level, unique perturbation parameters to nonlinear Gauss-Seidel iterates which enhances its convergence properties. As convergence is approached these parameters are damped out. Local linearization along the diagonal has been used to compute these parameters. The method requires no computation of Jacobian or factorization of matrices. Analysis of convergence depends on properties of certain contraction-type mappings, known as D-mappings. In this article, application of this method to solve an implicit finite difference approximation of Euler's equation is studied. Some representative results for the well known shock tube problem and compressible flows in a nozzle are given.

  6. The mathematical theory of signal processing and compression-designs

    NASA Astrophysics Data System (ADS)

    Feria, Erlan H.

    2006-05-01

    The mathematical theory of signal processing, named processor coding, will be shown to inherently arise as the computational time dual of Shannon's mathematical theory of communication which is also known as source coding. Source coding is concerned with signal source memory space compression while processor coding deals with signal processor computational time compression. Their combination is named compression-designs and referred as Conde in short. A compelling and pedagogically appealing diagram will be discussed highlighting Conde's remarkable successful application to real-world knowledge-aided (KA) airborne moving target indicator (AMTI) radar.

  7. Compression testing of thick-section composite materials

    NASA Astrophysics Data System (ADS)

    Camponeschi, Eugene T., Jr.

    A compression test fixture suitable for testing of composites up to 1 inch in thickness has been developed with a view to the characterization of the effects of constituents, fiber orientation, and thickness, on the compressive response of composites for naval applications. The in-plane moduli, compression strength, failure mechanisms, and both in-plane and through-thickness Poisson's ratios are shown to be independent of material thickness. The predominant failure mechanisms for both materials, namely kink bands and delaminations, are identical to those reported for composite one-tenth the thickness of those presently tested.

  8. Edge-preserving image compression for magnetic-resonance images using dynamic associative neural networks (DANN)-based neural networks

    NASA Astrophysics Data System (ADS)

    Wan, Tat C.; Kabuka, Mansur R.

    1994-05-01

    With the tremendous growth in imaging applications and the development of filmless radiology, the need for compression techniques that can achieve high compression ratios with user specified distortion rates becomes necessary. Boundaries and edges in the tissue structures are vital for detection of lesions and tumors, which in turn requires the preservation of edges in the image. The proposed edge preserving image compressor (EPIC) combines lossless compression of edges with neural network compression techniques based on dynamic associative neural networks (DANN), to provide high compression ratios with user specified distortion rates in an adaptive compression system well-suited to parallel implementations. Improvements to DANN-based training through the use of a variance classifier for controlling a bank of neural networks speed convergence and allow the use of higher compression ratios for `simple' patterns. The adaptation and generalization capabilities inherent in EPIC also facilitate progressive transmission of images through varying the number of quantization levels used to represent compressed patterns. Average compression ratios of 7.51:1 with an averaged average mean squared error of 0.0147 were achieved.

  9. Novel Data Reduction Based on Statistical Similarity

    DOE PAGES

    Lee, Dongeun; Sim, Alex; Choi, Jaesik; ...

    2016-07-18

    Applications such as scientific simulations and power grid monitoring are generating so much data quickly that compression is essential to reduce storage requirement or transmission capacity. To achieve better compression, one is often willing to discard some repeated information. These lossy compression methods are primarily designed to minimize the Euclidean distance between the original data and the compressed data. But this measure of distance severely limits either reconstruction quality or compression performance. In this paper, we propose a new class of compression method by redefining the distance measure with a statistical concept known as exchangeability. This approach reduces the storagemore » requirement and captures essential features, while reducing the storage requirement. In this paper, we report our design and implementation of such a compression method named IDEALEM. To demonstrate its effectiveness, we apply it on a set of power grid monitoring data, and show that it can reduce the volume of data much more than the best known compression method while maintaining the quality of the compressed data. Finally, in these tests, IDEALEM captures extraordinary events in the data, while its compression ratios can far exceed 100.« less

  10. Enhanced Proton Conductivity in Y-Doped BaZrO3 via Strain Engineering.

    PubMed

    Fluri, Aline; Marcolongo, Aris; Roddatis, Vladimir; Wokaun, Alexander; Pergolesi, Daniele; Marzari, Nicola; Lippert, Thomas

    2017-12-01

    The effects of stress-induced lattice distortions (strain) on the conductivity of Y-doped BaZrO 3 , a high-temperature proton conductor with key technological applications for sustainable electrochemical energy conversion, are studied. Highly ordered epitaxial thin films are grown in different strain states while monitoring the stress generation and evolution in situ. Enhanced proton conductivity due to lower activation energies is discovered under controlled conditions of tensile strain. In particular, a twofold increased conductivity is measured at 200 °C along a 0.7% tensile strained lattice. This is at variance with conclusions coming from force-field simulations or the static calculations of diffusion barriers. Here, extensive first-principles molecular dynamic simulations of proton diffusivity in the proton-trapping regime are therefore performed and found to agree with the experiments. The simulations highlight that compressive strain confines protons in planes parallel to the substrate, while tensile strain boosts diffusivity in the perpendicular direction, with the net result that the overall conductivity is enhanced. It is indeed the presence of the dopant and the proton-trapping effect that makes tensile strain favorable for proton conduction.

  11. Experimental investigation of the ecological hybrid refrigeration cycle

    NASA Astrophysics Data System (ADS)

    Cyklis, Piotr; Kantor, Ryszard; Ryncarz, Tomasz; Górski, Bogusław; Duda, Roman

    2014-09-01

    The requirements for environmentally friendly refrigerants promote application of CO2 and water as working fluids. However there are two problems related to that, namely high temperature limit for CO2 in condenser due to the low critical temperature, and low temperature limit for water being the result of high triple point temperature. This can be avoided by application of the hybrid adsorption-compression system, where water is the working fluid in the adsorption high temperature cycle used to cool down the CO2 compression cycle condenser. The adsorption process is powered with a low temperature renewable heat source as solar collectors or other waste heat source. The refrigeration system integrating adsorption and compression system has been designed and constructed in the Laboratory of Thermodynamics and Thermal Machine Measurements of Cracow University of Technology. The heat source for adsorption system consists of 16 tube tulbular collectors. The CO2 compression low temperature cycle is based on two parallel compressors with frequency inverter. Energy efficiency and TEWI of this hybrid system is quite promising in comparison with the compression only systems.

  12. Initial research on recycled tyre bales for road infrastructure applications

    NASA Astrophysics Data System (ADS)

    Duda, Aleksander; Sobala, Dariusz

    2017-12-01

    The paper reviews selected surveys carried out within the R&D project, co-financed with the European Regional Development Fund, called "ReUse - Innovative Recycling Materials, Enhancing the Sustainability of Bridge Facilities" (Innotech No. K3 / IN3 / 38/228116 / NCBiR / 15). The aim of the project and conducted research is to develop and implement innovative, cheap and environmentally-friendly recycled construction material in the form of tyre bales made from compressed used car tyres. This material is likely to be applied in civil engineering, especially in transport infrastructure, geotechnical and hydraulic engineering. New material is cheap and has unique properties such as low weight, high water permeability, high vibration and noise-damping capacity, low pressure coefficient values and other parameters that technically and economically allow it to replace natural aggregates. The extensive practical application of new material will facilitate the replacement of waste management methods with the environmentally friendly ones.

  13. Mechanical properties of natural chitosan/hydroxyapatite/magnetite nanocomposites for tissue engineering applications.

    PubMed

    Heidari, Fatemeh; Razavi, Mehdi; E Bahrololoom, Mohammad; Bazargan-Lari, Reza; Vashaee, Daryoosh; Kotturi, Hari; Tayebi, Lobat

    2016-08-01

    Chitosan (CS), hydroxyapatite (HA), and magnetite (Fe3O4) have been broadly employed for bone treatment applications. Having a hybrid biomaterial composed of the aforementioned constituents not only accumulates the useful characteristics of each component, but also provides outstanding composite properties. In the present research, mechanical properties of pure CS, CS/HA, CS/HA/magnetite, and CS/magnetite were evaluated by the measurements of bending strength, elastic modulus, compressive strength and hardness values. Moreover, the morphology of the bending fracture surfaces were characterized using a scanning electron microscope (SEM) and an image analyzer. Studies were also conducted to examine the biological response of the human Mesenchymal Stem Cells (hMSCs) on different composites. We conclude that, although all of these composites possess in-vitro biocompatibility, adding hydroxyapatite and magnetite to the chitosan matrix can noticeably enhance the mechanical properties of the pure chitosan. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Bacillus megaterium mediated mineralization of calcium carbonate as biogenic surface treatment of green building materials.

    PubMed

    Dhami, Navdeep Kaur; Reddy, M Sudhakara; Mukherjee, Abhijit

    2013-12-01

    Microbially induced calcium carbonate precipitation is a biomineralization process that has various applications in remediation and restoration of range of building materials. In the present study, calcifying bacteria, Bacillus megaterium SS3 isolated from calcareous soil was applied as biosealant to enhance the durability of low energy, green building materials (soil-cement blocks). This bacterial isolate produced high amounts of urease, carbonic anhydrase, extra polymeric substances and biofilm. The calcium carbonate polymorphs produced by B. megaterium SS3 were analyzed by scanning electron microscopy, confocal laser scanning microscopy, X-ray diffraction and Fourier transmission infra red spectroscopy. These results suggested that calcite is the most predominant carbonate formed by this bacteria followed by vaterite. Application of B. megaterium SS3 as biogenic surface treatment led to 40 % decrease in water absorption, 31 % decrease in porosity and 18 % increase in compressive strength of low energy building materials. From the present investigation, it is clear that surface treatment of building materials by B. megaterium SS3 is very effective and eco friendly way of biodeposition of coherent carbonates that enhances the durability of building materials.

  15. Progressive friction mobilization and enhanced Janssen's screening in confined granular rafts

    NASA Astrophysics Data System (ADS)

    Saavedra V., Oscar; Elettro, Hervé; Melo, Francisco

    2018-04-01

    Confined two-dimensional assemblies of floating particles, known as granular rafts, are prone to develop a highly nonlinear response under compression. Here we investigate the transition to the friction-dominated jammed state and map the gradual development of the internal stress profile with flexible pressure sensors distributed along the raft surface. Surprisingly, we observe that the surface stress screening builds up much more slowly than previously thought and that the typical screening distance later dramatically decreases. We explain this behavior in terms of progressive friction mobilization, where the full amplitude of the frictional forces is only reached after a macroscopic local displacement. At further stages of compression, rafts of large length-to-width aspect ratio experience much stronger screenings than the full mobilization limit described by the Janssen's model. We solve this paradox using a simple mathematical analysis and show that such enhanced screening can be attributed to a localized compaction front, essentially shielding the far field from compressive stresses.

  16. A study on role of triiodothyronine (T3) hormone on the improvement of articular cartilage surface architecture.

    PubMed

    Jia, Pei-Tong; Zhang, Xing-Lin; Zuo, Hai-Ning; Lu, Xing; Gai, Peng-Zhou

    2017-10-02

    The present study was aimed to investigate the effect of triiodothyronine (T3) on the improvement of articular cartilage surface architecture at in vitro level. The T3 hormone was applied to neo-tissues in the range of 50, 100, 150 and 200ng/ml for 5 weeks. At the end of the treatment, biochemical and histological evaluation was carried out in the neo-tissues. T3 hormone application significantly increased the collagen production in neo-cartilage tissues. The properties of tensile and compressive were significantly increased compared to the controls. However, T3 hormone application also induced hypertrophy. At the higher dose concentration of T3 hormone application, tensile and compressive properties were tremendously increased 4.3 and 4.6 fold respectively. Taking all these data together, it suggested that the T3 hormone application could be a potential agent to increase the functional properties such tensile and compressive in neo-tissues. Copyright © 2017 Elsevier GmbH. All rights reserved.

  17. Application of the Analogy Between Water Flow with a Free Surface and Two-dimensional Compressible Gas Flow

    NASA Technical Reports Server (NTRS)

    Orlin, W James; Lindner, Norman J; Bitterly, Jack G

    1947-01-01

    The theory of hydraulic analogy, that is, the analogy between water flow with a free surface and two-dimensional compressible gas flow and the limitations and conditions of the analogy are discussed. A test run was made using the hydraulic analogy as applied to the flow about circular cylinders at various diameters at subsonic velocities extending to the super critical range. The apparatus and techniques used in this application are described and criticized. Reasonably satisfactory agreement of pressure distributions and flow fields existed between water and airflow about corresponding bodies. This agreement indicated the possibility of extending experimental compressibility research by new methods.

  18. Application of the Analogy Between Water Flow with a Free Surface and Two-Dimensional Compressible Gas Flow

    NASA Technical Reports Server (NTRS)

    Orlin, W James; Lindner, Norman J; Butterly, Jack G

    1947-01-01

    The theory of the hydraulic analogy -- that is, the analogy between water flow with a free surface and two-dimensional compressible gas flow -- and the limitations and conditions of the analogy are discussed. A test was run using the hydraulic analogy as applied to the flow about circular cylinders of various diameters at subsonic velocities extending into the supercritical range. The apparatus and techniques used in this application are described and criticized. Reasonably satisfactory agreement of pressure distributions and flow fields existed between water and air flow about corresponding bodies. This agreement indicated the possibility of extending experimental compressibility research by new methods.

  19. Predicting the compressibility behaviour of tire shred samples for landfill applications.

    PubMed

    Warith, M A; Rao, Sudhakar M

    2006-01-01

    Tire shreds have been used as an alternative to crushed stones (gravel) as drainage media in landfill leachate collection systems. The highly compressible nature of tire shreds (25-47% axial strain on vertical stress applications of 20-700 kPa) may reduce the thickness of the tire shred drainage layer to less than 300 mm (minimum design requirement) during the life of the municipal solid waste landfill. There hence exists a need to predict axial strains of tire shred samples in response to vertical stress applications so that the initial thickness of the tire shred drainage layer can be corrected for compression. The present study performs one-dimensional compressibility tests on four tire shred samples and compares the results with stress/strain curves from other studies. The stress/strain curves are developed into charts for choosing the correct initial thickness of tire shred layers that maintain the minimum thickness of 300 mm throughout the life of the landfill. The charts are developed for a range of vertical stresses based on the design height of municipal waste cell and bulk unit weight of municipal waste. Experimental results also showed that despite experiencing large axial strains, the average permeability of the tire shred sample consistently remained two to three orders of magnitude higher than the design performance criterion of 0.01cm/s for landfill drainage layers. Laboratory experiments, however, need to verify whether long-term chemical and bio-chemical reactions between landfill leachate and the tire shred layer will deteriorate their mechanical functions (hydraulic conductivity, compressibility, strength) beyond permissible limits for geotechnical applications.

  20. Parallel design patterns for a low-power, software-defined compressed video encoder

    NASA Astrophysics Data System (ADS)

    Bruns, Michael W.; Hunt, Martin A.; Prasad, Durga; Gunupudi, Nageswara R.; Sonachalam, Sekar

    2011-06-01

    Video compression algorithms such as H.264 offer much potential for parallel processing that is not always exploited by the technology of a particular implementation. Consumer mobile encoding devices often achieve real-time performance and low power consumption through parallel processing in Application Specific Integrated Circuit (ASIC) technology, but many other applications require a software-defined encoder. High quality compression features needed for some applications such as 10-bit sample depth or 4:2:2 chroma format often go beyond the capability of a typical consumer electronics device. An application may also need to efficiently combine compression with other functions such as noise reduction, image stabilization, real time clocks, GPS data, mission/ESD/user data or software-defined radio in a low power, field upgradable implementation. Low power, software-defined encoders may be implemented using a massively parallel memory-network processor array with 100 or more cores and distributed memory. The large number of processor elements allow the silicon device to operate more efficiently than conventional DSP or CPU technology. A dataflow programming methodology may be used to express all of the encoding processes including motion compensation, transform and quantization, and entropy coding. This is a declarative programming model in which the parallelism of the compression algorithm is expressed as a hierarchical graph of tasks with message communication. Data parallel and task parallel design patterns are supported without the need for explicit global synchronization control. An example is described of an H.264 encoder developed for a commercially available, massively parallel memorynetwork processor device.

  1. Evaluation of Braided Stiffener Concepts for Transport Aircraft Wing Structure Applications

    NASA Technical Reports Server (NTRS)

    Deaton, Jerry W.; Dexter, H. Benson (Editor); Markus, Alan; Rohwer, Kim

    1995-01-01

    Braided composite materials have potential for application in aircraft structures. Stiffeners, wing spars, floor beams, and fuselage frames are examples where braided composites could find application if cost effective processing and damage requirements are met. Braiding is an automated process for obtaining near-net shape preforms for fabrication of components for structural applications. Previous test results on braided composite materials obtained at NASA Langley indicate that damage tolerance requirements can be met for some applications. In addition, the braiding industry is taking steps to increase the material through-put to be more competitive with other preform fabrication processes. Data are presented on the compressive behavior of three braided stiffener preform fabric constructions as determined from individual stiffener crippling test and three stiffener wide panel tests. Stiffener and panel fabrication are described and compression data presented for specimens tested with and without impact damage. In addition, data are also presented on the compressive behavior of the stitched stiffener preform construction currently being used by McDonnell Douglas Aerospace in the NASA ACT wing development program.

  2. Compression and R-wave detection of ECG/VCG data

    NASA Technical Reports Server (NTRS)

    Hayden, W. L.; Conover, M. F.; Bennett, W. P.

    1972-01-01

    Application of information theory to eliminate redundant part of electrocardiogram or vectorcardiogram is described. Operation of medical equipment to obtain three dimensional study of patient is discussed. Use of fast Fourier transform to accomplish data compression is explained.

  3. The Space and Earth Science Data Compression Workshop

    NASA Technical Reports Server (NTRS)

    Tilton, James C. (Editor)

    1993-01-01

    This document is the proceedings from a Space and Earth Science Data Compression Workshop, which was held on March 27, 1992, at the Snowbird Conference Center in Snowbird, Utah. This workshop was held in conjunction with the 1992 Data Compression Conference (DCC '92), which was held at the same location, March 24-26, 1992. The workshop explored opportunities for data compression to enhance the collection and analysis of space and Earth science data. The workshop consisted of eleven papers presented in four sessions. These papers describe research that is integrated into, or has the potential of being integrated into, a particular space and/or Earth science data information system. Presenters were encouraged to take into account the scientists's data requirements, and the constraints imposed by the data collection, transmission, distribution, and archival system.

  4. Energy Savings Potential and RD&D Opportunities for Non-Vapor-Compression HVAC Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    While vapor-compression technologies have served heating, ventilation, and air-conditioning (HVAC) needs very effectively, and have been the dominant HVAC technology for close to 100 years, the conventional refrigerants used in vapor-compression equipment contribute to global climate change when released to the atmosphere. This Building Technologies Office report: --Identifies alternatives to vapor-compression technology in residential and commercial HVAC applications --Characterizes these technologies based on their technical energy savings potential, development status, non-energy benefits, and other factors affecting end-user acceptance and their ability to compete with conventional vapor-compression systems --Makes specific research, development, and deployment (RD&D) recommendations to support further development ofmore » these technologies, should DOE choose to support non-vapor-compression technology further.« less

  5. Oblivious image watermarking combined with JPEG compression

    NASA Astrophysics Data System (ADS)

    Chen, Qing; Maitre, Henri; Pesquet-Popescu, Beatrice

    2003-06-01

    For most data hiding applications, the main source of concern is the effect of lossy compression on hidden information. The objective of watermarking is fundamentally in conflict with lossy compression. The latter attempts to remove all irrelevant and redundant information from a signal, while the former uses the irrelevant information to mask the presence of hidden data. Compression on a watermarked image can significantly affect the retrieval of the watermark. Past investigations of this problem have heavily relied on simulation. It is desirable not only to measure the effect of compression on embedded watermark, but also to control the embedding process to survive lossy compression. In this paper, we focus on oblivious watermarking by assuming that the watermarked image inevitably undergoes JPEG compression prior to watermark extraction. We propose an image-adaptive watermarking scheme where the watermarking algorithm and the JPEG compression standard are jointly considered. Watermark embedding takes into consideration the JPEG compression quality factor and exploits an HVS model to adaptively attain a proper trade-off among transparency, hiding data rate, and robustness to JPEG compression. The scheme estimates the image-dependent payload under JPEG compression to achieve the watermarking bit allocation in a determinate way, while maintaining consistent watermark retrieval performance.

  6. Optimization of Error-Bounded Lossy Compression for Hard-to-Compress HPC Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di, Sheng; Cappello, Franck

    Since today’s scientific applications are producing vast amounts of data, compressing them before storage/transmission is critical. Results of existing compressors show two types of HPC data sets: highly compressible and hard to compress. In this work, we carefully design and optimize the error-bounded lossy compression for hard-tocompress scientific data. We propose an optimized algorithm that can adaptively partition the HPC data into best-fit consecutive segments each having mutually close data values, such that the compression condition can be optimized. Another significant contribution is the optimization of shifting offset such that the XOR-leading-zero length between two consecutive unpredictable data points canmore » be maximized. We finally devise an adaptive method to select the best-fit compressor at runtime for maximizing the compression factor. We evaluate our solution using 13 benchmarks based on real-world scientific problems, and we compare it with 9 other state-of-the-art compressors. Experiments show that our compressor can always guarantee the compression errors within the user-specified error bounds. Most importantly, our optimization can improve the compression factor effectively, by up to 49% for hard-tocompress data sets with similar compression/decompression time cost.« less

  7. Compression-recovery model of absorptive glass mat (AGM) separator guided by X-ray micro-computed tomography analysis

    NASA Astrophysics Data System (ADS)

    Kameswara Rao, P. V.; Rawal, Amit; Kumar, Vijay; Rajput, Krishn Gopal

    2017-10-01

    Absorptive glass mat (AGM) separators play a key role in enhancing the cycle life of the valve regulated lead acid (VRLA) batteries by maintaining the elastic characteristics under a defined level of compression force with the plates of the electrodes. Inevitably, there are inherent challenges to maintain the required level of compression characteristics of AGM separators during the charge and discharge of the battery. Herein, we report a three-dimensional (3D) analytical model for predicting the compression-recovery behavior of AGM separators by formulating a direct relationship with the constituent fiber and structural parameters. The analytical model of compression-recovery behavior of AGM separators has successfully included the fiber slippage criterion and internal friction losses. The presented work uses, for the first time, 3D data of fiber orientation from X-ray micro-computed tomography, for predicting the compression-recovery behavior of AGM separators. A comparison has been made between the theoretical and experimental results of compression-recovery behavior of AGM samples with defined fiber orientation characteristics. In general, the theory agreed reasonably well with the experimental results of AGM samples in both dry and wet states. Through theoretical modeling, fiber volume fraction was established as one of the key structural parameters that modulates the compression hysteresis of an AGM separator.

  8. Application discussion of source coding standard in voyage data recorder

    NASA Astrophysics Data System (ADS)

    Zong, Yonggang; Zhao, Xiandong

    2018-04-01

    This paper analyzes the disadvantages of the audio and video compression coding technology used by Voyage Data Recorder, and combines the improvement of performance of audio and video acquisition equipment. The thinking of improving the audio and video compression coding technology of the voyage data recorder is proposed, and the feasibility of adopting the new compression coding technology is analyzed from economy and technology two aspects.

  9. Compact Encoding of Robot-Generated 3D Maps for Efficient Wireless Transmission

    DTIC Science & Technology

    2003-01-01

    Lempel - Ziv -Welch (LZW) and Ziv - Lempel (LZ77) respectively. Image based compression can also be based on dic- tionaries... compression of the data , without actually displaying a 3D model, printing statistical results for comparison of the different algorithms . 1http... compression algorithms , and wavelet algorithms tuned to the specific nature of the raw laser data . For most such applications, the usage of lossless

  10. Performance of data-compression codes in channels with errors. Final report, October 1986-January 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-10-01

    Huffman codes, comma-free codes, and block codes with shift indicators are important candidate-message compression codes for improving the efficiency of communications systems. This study was undertaken to determine if these codes could be used to increase the thruput of the fixed very-low-frequency (FVLF) communication system. This applications involves the use of compression codes in a channel with errors.

  11. Formulation and evaluation of controlled release antibiotic biodegradable implants for post operative site delivery.

    PubMed

    Mathur, Vijay; Mudnaik, Rajesh; Barde, Laxmikant; Roy, Arghya; Shivhare, Umesh; Bhusari, Kishore

    2010-03-01

    Biodegradable implants of ciprofloxacin hydrochloride for post operative site delivery were prepared using glyceryl monostearate and different concentrations of polyethylene glycol (PEG 6000), glycerol and Tween 80 as erosion enhancers by compression and molding technique. Formulations were subjected to in vitro drug release by the USP dissolution method, while promising formulations were subjected to in vitro drug release by the agar gel method and also to stability studies. It was observed that glyceryl monostearate formed hydrophobic matrix and delayed the drug delivery. Antibiotic release profile was controlled by using different combinations of erosion enhancers. The formulation prepared by the compression method showed more delayed release compared to formulations prepared by the molding method.

  12. A Bunch Compression Method for Free Electron Lasers that Avoids Parasitic Compressions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benson, Stephen V.; Douglas, David R.; Tennant, Christopher D.

    2015-09-01

    Virtually all existing high energy (>few MeV) linac-driven FELs compress the electron bunch length though the use of off-crest acceleration on the rising side of the RF waveform followed by transport through a magnetic chicane. This approach has at least three flaws: 1) it is difficult to correct aberrations--particularly RF curvature, 2) rising side acceleration exacerbates space charge-induced distortion of the longitudinal phase space, and 3) all achromatic "negative compaction" compressors create parasitic compression during the final compression process, increasing the CSR-induced emittance growth. One can avoid these deficiencies by using acceleration on the falling side of the RF waveformmore » and a compressor with M 56>0. This approach offers multiple advantages: 1) It is readily achieved in beam lines supporting simple schemes for aberration compensation, 2) Longitudinal space charge (LSC)-induced phase space distortion tends, on the falling side of the RF waveform, to enhance the chirp, and 3) Compressors with M 56>0 can be configured to avoid spurious over-compression. We will discuss this bunch compression scheme in detail and give results of a successful beam test in April 2012 using the JLab UV Demo FEL« less

  13. Image compression evaluation for digital cinema: the case of Star Wars: Episode II

    NASA Astrophysics Data System (ADS)

    Schnuelle, David L.

    2003-05-01

    A program of evaluation of compression algorithms proposed for use in a digital cinema application is described and the results presented in general form. The work was intended to aid in the selection of a compression system to be used for the digital cinema release of Star Wars: Episode II, in May 2002. An additional goal was to provide feedback to the algorithm proponents on what parameters and performance levels the feature film industry is looking for in digital cinema compression. The primary conclusion of the test program is that any of the current digital cinema compression proponents will work for digital cinema distribution to today's theaters.

  14. Component optimization of dairy manure vermicompost, straw, and peat in seedling compressed substrates using simplex-centroid design.

    PubMed

    Yang, Longyuan; Cao, Hongliang; Yuan, Qiaoxia; Luoa, Shuai; Liu, Zhigang

    2018-03-01

    Vermicomposting is a promising method to disposal dairy manures, and the dairy manure vermicompost (DMV) to replace expensive peat is of high value in the application of seedling compressed substrates. In this research, three main components: DMV, straw, and peat, are conducted in the compressed substrates, and the effect of individual components and the corresponding optimal ratio for the seedling production are significant. To address these issues, the simplex-centroid experimental mixture design is employed, and the cucumber seedling experiment is conducted to evaluate the compressed substrates. Results demonstrated that the mechanical strength and physicochemical properties of compressed substrates for cucumber seedling can be well satisfied with suitable mixture ratio of the components. Moreover, DMV, straw, and peat) could be determined at 0.5917:0.1608:0.2475 when the weight coefficients of the three parameters (shoot length, root dry weight, and aboveground dry weight) were 1:1:1. For different purpose, the optimum ratio can be little changed on the basis of different weight coefficients. Compressed substrate is lump and has certain mechanical strength, produced by application of mechanical pressure to the seedling substrates. It will not harm seedlings when bedding out the seedlings, since the compressed substrate and seedling are bedded out together. However, there is no one using the vermicompost and agricultural waste components of compressed substrate for vegetable seedling production before. Thus, it is important to understand the effect of individual components to seedling production, and to determine the optimal ratio of components.

  15. Compressed learning and its applications to subcellular localization.

    PubMed

    Zheng, Zhong-Long; Guo, Li; Jia, Jiong; Xie, Chen-Mao; Zeng, Wen-Cai; Yang, Jie

    2011-09-01

    One of the main challenges faced by biological applications is to predict protein subcellular localization in automatic fashion accurately. To achieve this in these applications, a wide variety of machine learning methods have been proposed in recent years. Most of them focus on finding the optimal classification scheme and less of them take the simplifying the complexity of biological systems into account. Traditionally, such bio-data are analyzed by first performing a feature selection before classification. Motivated by CS (Compressed Sensing) theory, we propose the methodology which performs compressed learning with a sparseness criterion such that feature selection and dimension reduction are merged into one analysis. The proposed methodology decreases the complexity of biological system, while increases protein subcellular localization accuracy. Experimental results are quite encouraging, indicating that the aforementioned sparse methods are quite promising in dealing with complicated biological problems, such as predicting the subcellular localization of Gram-negative bacterial proteins.

  16. First Digit Law and Its Application to Digital Forensics

    NASA Astrophysics Data System (ADS)

    Shi, Yun Q.

    Digital data forensics, which gathers evidence of data composition, origin, and history, is crucial in our digital world. Although this new research field is still in its infancy stage, it has started to attract increasing attention from the multimedia-security research community. This lecture addresses the first digit law and its applications to digital forensics. First, the Benford and generalized Benford laws, referred to as first digit law, are introduced. Then, the application of first digit law to detection of JPEG compression history for a given BMP image and detection of double JPEG compressions are presented. Finally, applying first digit law to detection of double MPEG video compressions is discussed. It is expected that the first digit law may play an active role in other task of digital forensics. The lesson learned is that statistical models play an important role in digital forensics and for a specific forensic task different models may provide different performance.

  17. In situ X-Ray Diffraction of Shock-Compressed Fused Silica

    NASA Astrophysics Data System (ADS)

    Tracy, Sally June; Turneaure, Stefan J.; Duffy, Thomas S.

    2018-03-01

    Because of its widespread applications in materials science and geophysics, SiO2 has been extensively examined under shock compression. Both quartz and fused silica transform through a so-called "mixed-phase region" to a dense, low compressibility high-pressure phase. For decades, the nature of this phase has been a subject of debate. Proposed structures include crystalline stishovite, another high-pressure crystalline phase, or a dense amorphous phase. Here we use plate-impact experiments and pulsed synchrotron x-ray diffraction to examine the structure of fused silica shock compressed to 63 GPa. In contrast to recent laser-driven compression experiments, we find that fused silica adopts a dense amorphous structure at 34 GPa and below. When compressed above 34 GPa, fused silica transforms to untextured polycrystalline stishovite. Our results can explain previously ambiguous features of the shock-compression behavior of fused silica and are consistent with recent molecular dynamics simulations. Stishovite grain sizes are estimated to be ˜5 - 30 nm for compression over a few hundred nanosecond time scale.

  18. Assessment of Growth Factor Treatment on Fibrochondrocyte and Chondrocyte Co-Cultures for TMJ Fibrocartilage Engineering

    PubMed Central

    Kalpakci, Kerem N.; Kim, Eric J.; Athanasiou, Kyriacos A.

    2011-01-01

    Treatments for patients suffering from severe temporomandibular joint (TMJ) dysfunction are limited, motivating the development of strategies for tissue regeneration. In this study, co-cultures of fibrochondrocytes (FC) and articular chondrocytes (AC) were seeded in agarose wells, and supplemented with growth factors, to engineer tissue with biomechanical properties and ECM composition similar to native TMJ fibrocartilage. In the first phase, growth factors were applied alone and in combination, in the presence or absence of serum, while in the second phase, the best overall treatment was applied at intermittent dosing. Continuous treatment of AC/FC co-cultures with TGF-β1 in serum-free medium resulted in constructs with GAG/WW (12.2%), instantaneous compressive moduli (790 kPa), relaxed compressive moduli (120 kPa), and Young’s moduli (1.87 MPa) that overlap with native TMJ disc values. Among co-culture groups, TGF-β1 treatment increased collagen deposition ~20%, compressive stiffness ~130%, and Young’s modulus ~170% relative to no growth factor controls. Serum supplementation, though generally detrimental to functional properties, was identified as a powerful mediator of FC construct morphology. Finally, both intermittent and continuous TGF-β1 treatment showed positive effects, though continuous treatment resulted in greater enhancement of construct functional properties. This work proposes a strategy for regeneration of TMJ fibrocartilage and its future application will be realized through translation of these findings to clinically viable cell sources. PMID:21185408

  19. Wound management with compression therapy and topical hemoglobin solution in a patient with Budd-Chiari Syndrome.

    PubMed

    Babadagi-Hardt, Zeynep; Engels, Peter; Kanya, Susanne

    2014-03-31

    Although the underlying primary cause of chronic wounds may vary, a common etiology of this is a hypoxic or ischemic status of the affected tissue of the lower extremities. In particular, for rare diseases associated with disturbed blood flow a correlation between cause and effect is often diagnosed inappropriately. As a consequence, chronic wounds may develop and persist for years. We present a case of a patient with chronic venous insufficiency due to an occlusion of the inferior caval vein. Initially, a Budd-Chiari syndrome was diagnosed which is a thrombotic obstruction of the hepatic venous outflow. In addition, the patient developed an obstruction of the inferior caval vein and subsequently a chronic venous insufficiency. As a consequence, chronic leg ulcers developed with a history of more than 7 years. Various wound care approaches were performed without success in wound closure. Finally, a combination of compression therapy and topical application of a hemoglobin solution successfully led to fast and persistent wound closure. Chronic ulcers of the lower limb such as venous leg ulcers, even for patients with rare disorders like Budd-Chiari syndrome, are associated with oxygen supply disturbances resulting in a hypoxic status of the affected tissue. Therefore, an adequate oxygen supply to chronic wounds plays a pivotal role in successful wound healing. Compression therapy in combination with enhancement of the local oxygen supply by topically applied hemoglobin showed marked improvement of wound healing in the presented patient.

  20. Morphological and mechanical characterization of composite bone cement containing polymethylmethacrylate matrix functionalized with trimethoxysilyl and bioactive glass.

    PubMed

    Puska, Mervi; Moritz, Niko; Aho, Allan J; Vallittu, Pekka K

    2016-06-01

    Medical polymers of biostable nature (e.g. polymethylmetacrylate, PMMA) are widely used in various clinical applications. In this study, novel PMMA-based composite bone cement was prepared. Bioactive glass (BAG) particulate filler (30wt%) was added to enhance potentially the integration of bone to the cement. The polymer matrix was functionalized with trimethoxysilyl to achieve an interfacial bond between the matrix and the fillers of BAG. The amount of trimethoxysilyl in the monomer system varied from 0 to 75wt%. The effects of dry and wet (simulated body fluid, SBF at +37°C for 5 weeks) conditions were investigated. In total, 20 groups of specimens were prepared. The specimens were subjected to a destructive mechanical test in compression. Scanning electron microscopy (SEM) and micro-computed tomography (micro-CT) were used to study the surface and the three-dimensional morphology of the specimens. The results of the study indicated that the addition of trimethoxysilyl groups led to the formation of a hybrid polymer matrix which, in lower amounts (<10wt% of total weight), did not significantly affect the compression properties. However, when the specimens stored in dry and wet conditions were compared, the water sorption increased the compression strength (~5-10MPa per test group). At the same time, the water sorption also caused an evident porous structure formation for the specimens containing BAG and siloxane formation in the hybrid polymer matrix. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Dynamic Range Enhancement of High-Speed Electrical Signal Data via Non-Linear Compression

    NASA Technical Reports Server (NTRS)

    Laun, Matthew C. (Inventor)

    2016-01-01

    Systems and methods for high-speed compression of dynamic electrical signal waveforms to extend the measuring capabilities of conventional measuring devices such as oscilloscopes and high-speed data acquisition systems are discussed. Transfer function components and algorithmic transfer functions can be used to accurately measure signals that are within the frequency bandwidth but beyond the voltage range and voltage resolution capabilities of the measuring device.

  2. Foamed concrete containing rice husk ash as sand replacement: an experimental study on compressive strength

    NASA Astrophysics Data System (ADS)

    Rum, R. H. M.; Jaini, Z. M.; Boon, K. H.; Khairaddin, S. A. A.; Rahman, N. A.

    2017-11-01

    This study presents the utilization of rice husk ash (RHA) as sand replacement in foamed concrete. The study focuses on the effect of RHA on the compressive strength of foamed concrete. RHA contains high pozzolanic material that reacts with cementitious to enhance the strength and durability of foamed concrete. RHA also acts as filler causing the foamed concrete to become denser while retaining its unique low density. A total 243 cube specimens was prepared for the compression test. Two sets of mix design were employed at water-cement (W/C) ratio of 0.55, 0.60 and cement-sand ratio of 0.50, 0.33. The results revealed that the presence of RHA as sand replacement resulted in an increase in the compressive strength of foamed concrete. Moreover, 30% to 40% RHA was the optimum content level, contributing to the compressive strength of 18.1 MPa to 22.4 MPa. The W/C ratio and superplasticiser dosage play small roles in improving workability. In contrast, density governs the compressive strength of foamed concrete.

  3. Midportion achilles tendon microcirculation after intermittent combined cryotherapy and compression compared with cryotherapy alone: a randomized trial.

    PubMed

    Knobloch, Karsten; Grasemann, Ruth; Spies, Marcus; Vogt, Peter M

    2008-11-01

    The effect of combined cryotherapy/compression versus cryotherapy alone on the Achilles tendon is undetermined. Standardized combined cryotherapy/compression changes in midportion Achilles tendon microcirculation are superior to those with cryotherapy during intermittent application. Controlled laboratory study. Sixty volunteers were randomized for either combined cryotherapy/compression (Cryo/Cuff, DJO Inc, Vista, California: n = 30; 32 +/- 11 years) or cryotherapy alone (KoldBlue, TLP Industries, Kent, United Kingdom: n = 30; 33 +/- 12 years) with intermittent 3 x 10-minute application. Midportion Achilles tendon microcirculation was determined (O2C, LEA Medizintechnik, Giessen, Germany). Both Cryo/Cuff and KoldBlue significantly reduced superficial and deep capillary tendon blood flow within the first minute of application (43 +/- 46 arbitrary units [AU] vs 10 +/- 19 AU and 42 +/- 46 AU vs 12 +/- 10 AU; P = .0001) without a significant difference throughout all 3 applications. However, during recovery, superficial and deep capillary blood flow was reestablished significantly faster using Cryo/Cuff (P = .023). Tendon oxygen saturation was reduced in both groups significantly (3 minutes Cryo/Cuff: 36% +/- 20% vs 16% +/- 15%; KoldBlue: 42% +/- 19% vs 28% +/- 20%; P < .05) with significantly stronger effects using Cryo/Cuff (P = .014). Cryo/Cuff led to significantly higher tendon oxygenation (Cryo/Cuff: 62% +/- 28% vs baseline 36% +/- 20%; P = .0001) in superficial and deep tissue (Cryo/Cuff: 73% +/- 14% vs baseline 65% +/- 17%; P = .0001) compared with KoldBlue during all recoveries. Postcapillary venous filling pressures were significantly reduced in both groups during application; however, Cryo/Cuff led to significantly, but marginally, lower pressures (Cryo/Cuff: 41 +/- 7 AU vs baseline 51 +/- 13 AU; P = .0001 and KoldBlue: 46 +/- 7 AU vs baseline 56 +/- 11 AU; P = .026 for Cryo/Cuff vs KoldBlue). Increased tendon oxygenation is achieved as tendon preconditioning by combined cryotherapy and compression with significantly increased tendon oxygen saturation during recovery in contrast to cryotherapy alone. Both regimens lead to a significant amelioration of tendinous venous outflow. Combined cryotherapy and compression is superior to cryotherapy alone regarding the Achilles tendon microcirculation. Further studies in tendinopathy and tendon rehabilitation are warranted to elucidate its value regarding functional issues.

  4. Using Internet Audio to Enhance Online Accessibility

    ERIC Educational Resources Information Center

    Schwartz, Linda Matula

    2004-01-01

    Accessibility to online education programs is an important factor that requires continued research, improvement, and regulation. Particularly valuable in the enhancement of online accessibility is the Voice-over Internet Protocol (VOIP) medium. VOIP compresses analog voice data and converts it into digital packets for transmission over the…

  5. Compressible and Recyclable Monolithic g-C3N4/Melamine Sponge: A Facile Ultrasonic-Coating Approach and Enhanced Visible-Light Photocatalytic Activity.

    PubMed

    Yang, Ye; Zhang, Qian; Zhang, Ruiyang; Ran, Tao; Wan, Wenchao; Zhou, Ying

    2018-01-01

    Powdery photocatalysts seriously restrict their practical application due to the difficult recycle and low photocatalytic activity. In this work, a monolithic g-C 3 N 4 /melamine sponge (g-C 3 N 4 /MS) was successfully fabricated by a cost-effective ultrasonic-coating route, which is easy to achieve the uniform dispersion and firm loading of g-C 3 N 4 on MS skeleton. The monolithic g-C 3 N 4 /MS entirely inherits the porous structure of MS and results in a larger specific surface area (SSA) than its powdery counterpart. Benefit from this monolithic structure, g-C 3 N 4 /MS gains more exposed active sites, enhanced visible-light absorption and separation of photogenerated carriers, thus achieving noticeable photocatalytic activity on nitric oxide (NO) removal and CO 2 reduction. Specifically, NO removal ratio is as high as 78.6% which is 4.5 times higher than that of the powdery g-C 3 N 4 , and yield rate of CO and CH 4 attains 7.48 and 3.93 μmol g -1 h -1 . Importantly, the features of low-density, high porosity, good elasticity, and firmness, not only endow g-C 3 N 4 /MS with flexibility in various environmental applications, but also make it easy to recycle and stable for long-time application. Our work provides a feasible approach to fabricate novel monolithic photocatalysts with large-scale production and application.

  6. Compressible and Recyclable Monolithic g-C3N4/Melamine Sponge: A Facile Ultrasonic-Coating Approach and Enhanced Visible-Light Photocatalytic Activity

    PubMed Central

    Yang, Ye; Zhang, Qian; Zhang, Ruiyang; Ran, Tao; Wan, Wenchao; Zhou, Ying

    2018-01-01

    Powdery photocatalysts seriously restrict their practical application due to the difficult recycle and low photocatalytic activity. In this work, a monolithic g-C3N4/melamine sponge (g-C3N4/MS) was successfully fabricated by a cost-effective ultrasonic-coating route, which is easy to achieve the uniform dispersion and firm loading of g-C3N4 on MS skeleton. The monolithic g-C3N4/MS entirely inherits the porous structure of MS and results in a larger specific surface area (SSA) than its powdery counterpart. Benefit from this monolithic structure, g-C3N4/MS gains more exposed active sites, enhanced visible-light absorption and separation of photogenerated carriers, thus achieving noticeable photocatalytic activity on nitric oxide (NO) removal and CO2 reduction. Specifically, NO removal ratio is as high as 78.6% which is 4.5 times higher than that of the powdery g-C3N4, and yield rate of CO and CH4 attains 7.48 and 3.93 μmol g−1 h−1. Importantly, the features of low-density, high porosity, good elasticity, and firmness, not only endow g-C3N4/MS with flexibility in various environmental applications, but also make it easy to recycle and stable for long-time application. Our work provides a feasible approach to fabricate novel monolithic photocatalysts with large-scale production and application.

  7. Rapidly sintering of interconnected porous Ti-HA biocomposite with high strength and enhanced bioactivity.

    PubMed

    Zhang, L; He, Z Y; Zhang, Y Q; Jiang, Y H; Zhou, R

    2016-10-01

    In this work, interconnected porous Ti-HA biocomposites with enhanced bioactivity, high porosity and compressive strength were prepared by spark plasma sintering (SPS) and space holder method. Pore characteristics, mechanical properties, corrosion behaviors and in vitro bioactivity of the porous Ti-HA were investigated. Results showed that porous Ti-HA with 5-30wt% HA contents possessed not only low elastic modulus of 8.2-15.8GPa (close to that of human bone) but also high compressive strength (86-388MPa). Although the HA partially decomposed and formed secondary phases, the sintered porous Ti-HA can still be good bioactivity. The homogeneity and the thickness of apatite layer increased significantly with the increase of HA. But with the thickness of apatite layer increased, micro-cracks appeared on the surface of porous Ti-30%HA. A model was built to discuss the current distribution and sintering mechanism of HA on Ti matrix during SPS process. It indicated that the excessive addition of HA would deteriorate the sintering quality, thus decreasing the mechanical properties and corrosion resistance. However, the combination of interconnected pore characteristics, low elastic modulus, high compressive strength and enhanced bioactivity might make porous Ti-HA biocomposites prepared by SPS a promising candidate for hard tissue implants. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Influence of rate of force application during compression on tablet capping.

    PubMed

    Sarkar, Srimanta; Ooi, Shing Ming; Liew, Celine Valeria; Heng, Paul Wan Sia

    2015-04-01

    Root cause and possible processing remediation of tablet capping were investigated using a specially designed tablet press with an air compensator installed above the precompression roll to limit compression force and allow extended dwell time in the precompression event. Using acetaminophen-starch (77.9:22.1) as a model formulation, tablets were prepared by various combinations of precompression and main compression forces, set precompression thickness, and turret speed. The rate of force application (RFA) was the main factor contributing to the tablet mechanical strength and capping. When target force above the force required for strong interparticulate bond formation, the resultant high RFA contributed to more pronounced air entrapment, uneven force distribution, and consequently, stratified densification in compact together with high viscoelastic recovery. These factors collectively had contributed to the tablet capping. As extended dwell time assisted particle rearrangement and air escape, a denser and more homogenous packing in the die could be achieved. This occurred during the extended dwell time when a low precompression force was applied, followed by application of main compression force for strong interparticulate bond formation that was the most beneficial option to solve capping problem. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  9. Flow, packing and compaction properties of novel coprocessed multifunctional directly compressible excipients prepared from tapioca starch and mannitol.

    PubMed

    Adeoye, Oluwatomide; Alebiowu, Gbenga

    2014-12-01

    Novel multifunctional excipients were prepared by coprocessing tapioca starch with mannitol using two methods viz; co-grinding and co-fusion. The flow, packing and compaction properties of the native and novel excipients were evaluated by using density, Hausner's ratio, angle of repose, the maximum volume reduction, consolidation index, the rate of consolidation, angle of internal friction, morphological properties, Heckel analysis, tensile strength and dilution potential as evaluation parameters. The study revealed that the method of coprocessing, particle size and particle shape influenced the properties of the resulting novel excipients. Co-grinding was less effective than co-fusion in the preparation of excipients with enhanced properties. The study concluded that coprocessing tapioca starch and mannitol will enhance the flow, packing and compaction properties of the novel excipient and that the co-fusion method of coprocessing would produce novel excipients with enhanced direct compression potential compared to the co-grinding method.

  10. Structural efficiencies of various aluminum, titanium, and steel alloys at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Heimerl, George J; Hughes, Philip J

    1953-01-01

    Efficient temperature ranges are indicated for two high-strength aluminum alloys, two titanium alloys, and three steels for some short-time compression-loading applications at elevated temperatures. Only the effects of constant temperatures and short exposure to temperature are considered, and creep is assumed not to be a factor. The structural efficiency analysis is based upon preliminary results of short-time elevated-temperature compressive stress-strain tests of the materials. The analysis covers strength under uniaxial compression, elastic stiffness, column buckling, and the buckling of long plates in compression or in shear.

  11. Survived ileocecal blowout from compressed air.

    PubMed

    Weber, Marco; Kolbus, Frank; Dressler, Jan; Lessig, Rüdiger

    2011-03-01

    Industrial accidents with compressed air entering the gastro-intestinal tract often run fatally. The pressures usually over-exceed those used by medical applications such as colonoscopy and lead to vast injuries of the intestines with high mortality. The case described in this report is of a 26-year-old man who was harmed by compressed air that entered through the anus. He survived because of fast emergency operation. This case underlines necessity of explicit instruction considering hazards handling compressed air devices to maintain safety at work. Further, our observations support the hypothesis that the mucosa is the most elastic layer of the intestine wall.

  12. Performance of a Discrete Wavelet Transform for Compressing Plasma Count Data and its Application to the Fast Plasma Investigation on NASA's Magnetospheric Multiscale Mission

    NASA Technical Reports Server (NTRS)

    Barrie, Alexander C.; Yeh, Penshu; Dorelli, John C.; Clark, George B.; Paterson, William R.; Adrian, Mark L.; Holland, Matthew P.; Lobell, James V.; Simpson, David G.; Pollock, Craig J.; hide

    2015-01-01

    Plasma measurements in space are becoming increasingly faster, higher resolution, and distributed over multiple instruments. As raw data generation rates can exceed available data transfer bandwidth, data compression is becoming a critical design component. Data compression has been a staple of imaging instruments for years, but only recently have plasma measurement designers become interested in high performance data compression. Missions will often use a simple lossless compression technique yielding compression ratios of approximately 2:1, however future missions may require compression ratios upwards of 10:1. This study aims to explore how a Discrete Wavelet Transform combined with a Bit Plane Encoder (DWT/BPE), implemented via a CCSDS standard, can be used effectively to compress count information common to plasma measurements to high compression ratios while maintaining little or no compression error. The compression ASIC used for the Fast Plasma Investigation (FPI) on board the Magnetospheric Multiscale mission (MMS) is used for this study. Plasma count data from multiple sources is examined: resampled data from previous missions, randomly generated data from distribution functions, and simulations of expected regimes. These are run through the compression routines with various parameters to yield the greatest possible compression ratio while maintaining little or no error, the latter indicates that fully lossless compression is obtained. Finally, recommendations are made for future missions as to what can be achieved when compressing plasma count data and how best to do so.

  13. A new technique for the diagnosis of acute appendicitis: abdominal CT with compression to the right lower quadrant.

    PubMed

    Kılınçer, Abidin; Akpınar, Erhan; Erbil, Bülent; Ünal, Emre; Karaosmanoğlu, Ali Devrim; Kaynaroğlu, Volkan; Akata, Deniz; Özmen, Mustafa

    2017-08-01

    To determine the diagnostic accuracy of abdominal CT with compression to the right lower quadrant (RLQ) in adults with acute appendicitis. 168 patients (age range, 18-78 years) were included who underwent contrast-enhanced CT for suspected appendicitis performed either using compression to the RLQ (n = 71) or a standard protocol (n = 97). Outer diameter of the appendix, appendiceal wall thickening, luminal content and associated findings were evaluated in each patient. Kruskal-Wallis, Fisher's and Pearson's chi-squared tests were used for statistical analysis. There was no significant difference in the mean outer diameter (MOD) between compression CT scans (10.6 ± 1.9 mm) and standard protocol (11.2 ± 2.3 mm) in patients with acute appendicitis (P = 1). MOD was significantly lower in the compression group (5.2 ± 0.8 mm) compared to the standard protocol (6.5 ± 1.1 mm) (P < 0.01) in patients without appendicitis. A cut-off value of 6.75 mm for the outer diameter of the appendix was found to be 100% sensitive in the diagnosis of acute appendicitis for both groups. The specificity was higher for compression CT technique (67.7 vs. 94.9%). Normal appendix diameter was significantly smaller in the compression-CT group compared to standard-CT group, increasing diagnostic accuracy of abdominal compression CT. • Normal appendix diameter is significantly smaller in compression CT. • Compression could force contrast material to flow through the appendiceal lumen. • Compression CT may be a CT counterpart of graded compression US.

  14. Improved Method Being Developed for Surface Enhancement of Metallic Materials

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Telesman, Jack; Kantzos, Peter T.

    2001-01-01

    Surface enhancement methods induce a layer of beneficial residual compressive stress to improve the impact (FOD) resistance and fatigue life of metallic materials. A traditional method of surface enhancement often used is shot peening, in which small steel spheres are repeatedly impinged on metallic surfaces. Shot peening is inexpensive and widely used, but the plastic deformation of 20 to 40 percent imparted by the impacts can be harmful. This plastic deformation can damage the microstructure, severely limiting the ductility and durability of the material near the surface. It has also been shown to promote accelerated relaxation of the beneficial compressive residual stresses at elevated temperatures. Low-plasticity burnishing (LPB) is being developed as an improved method for the surface enhancement of metallic materials. LPB is being investigated as a rapid, inexpensive surface enhancement method under NASA Small Business Innovation Research contracts NAS3-98034 and NAS3-99116, with supporting characterization work at NASA. Previously, roller burnishing had been employed to refine surface finish. This concept was adopted and then optimized as a means of producing a layer of compressive stress of high magnitude and depth, with minimal plastic deformation (ref. 1). A simplified diagram of the developed process is given in the following figure. A single pass of a smooth, free-rolling spherical ball under a normal force deforms the surface of the material in tension, creating a compressive layer of residual stress. The ball is supported in a fluid with sufficient pressure to lift the ball off the surface of the retaining spherical socket. The ball is only in mechanical contact with the surface of the material being burnished and is free to roll on the surface. This apparatus is designed to be mounted in the conventional lathes and vertical mills currently used to machine parts. The process has been successfully applied to nickel-base superalloys by a team from the NASA Glenn Research Center, Lambda Research, and METCUT Research, as supported by the NASA Small Business Innovation Research Phase I and II programs, the Ultra Safe program, and the Ultra- Efficient Engine Technology (UEET) Program.

  15. 4800 B/S speech compression techniques for mobile satellite systems

    NASA Technical Reports Server (NTRS)

    Townes, S. A.; Barnwell, T. P., III; Rose, R. C.; Gersho, A.; Davidson, G.

    1986-01-01

    This paper will discuss three 4800 bps digital speech compression techniques currently being investigated for application in the mobile satellite service. These three techniques, vector adaptive predictive coding, vector excitation coding, and the self excited vocoder, are the most promising among a number of techniques being developed to possibly provide near-toll-quality speech compression while still keeping the bit-rate low enough for a power and bandwidth limited satellite service.

  16. National Information Systems Security Conference (19th) held in Baltimore, Maryland on October 22-25, 1996. Volume 1

    DTIC Science & Technology

    1996-10-25

    been demonstrated that steganography is ineffective 195 when images are stored using this compression algorithm [2]. Difficulty in designing a general...Despite the relative ease of employing steganography to covertly transport data in an uncompressed 24-bit image , lossy compression algorithms based on... image , the security threat that steganography poses cannot be completely eliminated by application of a transform-based lossy compression algorithm

  17. Influence of Spectral Transfer Processes in Compressible Low Frequency Plasma Turbulence on Scattering and Refraction of Electromagnetic Signals

    DTIC Science & Technology

    2015-01-01

    AFRL-RY-WP-TR-2014-0230 INFLUENCE OF SPECTRAL TRANSFER PROCESSES IN COMPRESSIBLE LOW FREQUENCY PLASMA TURBULENCE ON SCATTERING AND...INFLUENCE OF SPECTRAL TRANSFER PROCESSES IN COMPRESSIBLE LOW FREQUENCY PLASMA TURBULENCE ON SCATTERING AND REFRACTION OF ELECTROMAGNETIC SIGNALS 5a...research is to analyze influence of plasma turbulence on hypersonic sensor systems and NGOTHR applications and to meet the Air Force’s ever-increasing

  18. Investigation of a High Voltage, High Frequency Power Conditioning System for Use with Flux Compression Generators

    DTIC Science & Technology

    2007-06-01

    missouri.edu Abstract The University of Missouri-Columbia is developing a compact pulsed power system to condition the high current signal from a...flux compression generator (FCG) to the high voltage, high frequency signal required for many pulsed power applications. The system consists of a...non-magnetic core, spiral-wound transformer, series exploding wire fuse, and an oscillating mesoband source. The flux compression generator is being

  19. 29 CFR 1910.101 - Compressed gases (general requirements).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (general requirements). (a) Inspection of compressed gas cylinders. Each employer shall determine that... by visual inspection. Visual and other inspections shall be conducted as prescribed in the Hazardous... those regulations are not applicable, visual and other inspections shall be conducted in accordance with...

  20. 29 CFR 1910.101 - Compressed gases (general requirements).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (general requirements). (a) Inspection of compressed gas cylinders. Each employer shall determine that... by visual inspection. Visual and other inspections shall be conducted as prescribed in the Hazardous... those regulations are not applicable, visual and other inspections shall be conducted in accordance with...

Top