Sample records for compression heat pump

  1. Heat pump evaluation for Space Station ATCS evolution

    NASA Technical Reports Server (NTRS)

    Ames, Brian E.; Petete, Patricia A.

    1991-01-01

    A preliminary feasibility assessment of the application of a vapor compression heat pump to the Active Thermal Control System (ATCS) of SSF is presented. This paper focuses on the methodology of raising the surface temperature of the radiators for improved heat rejection. Some of the effects of the vapor compression cycle on SSF examined include heat pump integration into ATCS, constraints on the heat pump operating parameters, and heat pump performance enhancements.

  2. Operation characteristic of a heat pump of mechanical vapor recompression propelled by fans and its performance analysis applied to waste-water treatment

    NASA Astrophysics Data System (ADS)

    Weike, Pang; Wenju, Lin; Qilin, Pan; Wenye, Lin; Qunte, Dai; Luwei, Yang; Zhentao, Zhang

    2014-01-01

    In this paper, a set of heat pump (called as Mechanical Vapor Recompression, MVR) propelled by a centrifugal fan is tested and it shows some special characteristic when it works together with a falling film evaporator. Firstly, an analysis of the fan's suction and discharge parameters at stable state, such as its pressure and temperature, indicates that a phenomenon of wet compression is probably to appear during vapor compression. As a result, superheat after saturated vapor is compressed is eliminated, which reduces discharge temperature of the system. It is because drops boil away and absorb the super heat into their latent heat during vapor compression. Meanwhile, drops in the suction vapor add to the compressed vapor, which increase the given heat of the MVR heat pump. Next, assistant electric heat could adjust and keep steady of the operating pressure and temperature of an MVR heat pump. With the evaporation temperature up to be high, heat balance is broken and supplement heat needs to increase. Thirdly, the performance of an MVR heat pump is affect by the balance of falling film and evaporation that has an effect on heat transfer. Then, two parameters standing for the performance are measured as it runs in practical condition. The two important parameters are consumptive electricity power and productive water capacity. According to theoretical work in ideal condition by calculation and fan's input power by measure as running, adiabatic efficiency (ηad) of a centrifugal fan is calculated when it is applied in a heat pump of MVR. Following, based on ηad, practical SMER and COP of an MVR heat pump are discovered to be correlative with it. Finally, in dependence on productive water in theory and in practice, displacement efficiency (ηv) of centrifugal fans is obtained when compressing vapor, and so provide some references of matching a fan for an MVR heat pump. On the other hand, it is helpful to research and develop MVR heat pumps, and also to check electricity power consumption while operating practically in light of electric motor efficiency (ηe) and ηad.

  3. DEVELOPMENT OF COLD CLIMATE HEAT PUMP USING TWO-STAGE COMPRESSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Bo; Rice, C Keith; Abdelaziz, Omar

    2015-01-01

    This paper uses a well-regarded, hardware based heat pump system model to investigate a two-stage economizing cycle for cold climate heat pump applications. The two-stage compression cycle has two variable-speed compressors. The high stage compressor was modelled using a compressor map, and the low stage compressor was experimentally studied using calorimeter testing. A single-stage heat pump system was modelled as the baseline. The system performance predictions are compared between the two-stage and single-stage systems. Special considerations for designing a cold climate heat pump are addressed at both the system and component levels.

  4. Development of a hybrid chemical/mechanical heat pump

    NASA Technical Reports Server (NTRS)

    Grzyll, Lawrence R.; Silvestri, John J.; Scaringe, Robert P.

    1991-01-01

    The authors present the current development status of a hybrid chemical/mechanical heat pump for low-lift applications. The heat pump provides electronics cooling by evaporating a pure refrigerant from an absorbent/refrigerant mixture in a generator/cold plate. The current development focused on evaluation of absorbent/refrigerant pairs, corrosion testing, pump and compressor design, and electronic cold plate design. Two cycle configurations were considered. The first configuration utilized a standard mechanical compressor and pump. The second cycle configuration investigated pumps and compressors with non-moving parts. An innovative generator/cold plate design is also presented. The development to date shows that this cycle has about the same performance as standard vapor compression heat pumps with standard refrigerants but may have some performance and reliability advantages over vapor compression heat pumps.

  5. Lunar Base Heat Pump

    NASA Technical Reports Server (NTRS)

    Walker, D.; Fischbach, D.; Tetreault, R.

    1996-01-01

    The objective of this project was to investigate the feasibility of constructing a heat pump suitable for use as a heat rejection device in applications such as a lunar base. In this situation, direct heat rejection through the use of radiators is not possible at a temperature suitable for lde support systems. Initial analysis of a heat pump of this type called for a temperature lift of approximately 378 deg. K, which is considerably higher than is commonly called for in HVAC and refrigeration applications where heat pumps are most often employed. Also because of the variation of the rejection temperature (from 100 to 381 deg. K), extreme flexibility in the configuration and operation of the heat pump is required. A three-stage compression cycle using a refrigerant such as CFC-11 or HCFC-123 was formulated with operation possible with one, two or three stages of compression. Also, to meet the redundancy requirements, compression was divided up over multiple compressors in each stage. A control scheme was devised that allowed these multiple compressors to be operated as required so that the heat pump could perform with variable heat loads and rejection conditions. A prototype heat pump was designed and constructed to investigate the key elements of the high-lift heat pump concept. Control software was written and implemented in the prototype to allow fully automatic operation. The heat pump was capable of operation over a wide range of rejection temperatures and cooling loads, while maintaining cooling water temperature well within the required specification of 40 deg. C +/- 1.7 deg. C. This performance was verified through testing.

  6. The development of a performance-enhancing additive for vapor-compression heat pumps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grzyll, L.R.; Scaringe, R.P.; Gottschlich, J.M.

    1997-12-31

    This paper describes the testing results of a vapor-compression heat pump operating with HFC-134a refrigerant and a performance-enhancing additive. Preliminary bench-top testing of this additive, when added to polyolester (POE) lubricant and HFC-134a refrigerant, showed surprising enhancements to system COP. To further investigate this finding, the authors designed and fabricated a vapor-compression heat pump test stand for the 3--5 ton range. The authors investigated the effect of different concentrations of this additive on various system performance parameters such as cooling capacity, compressor power requirement, pressure ratio, compressor pressure difference, compressor isentropic efficiency, refrigerant flow rate, and heat exchanger performance. Themore » authors investigated various heat source and heat sink conditions to simulate air-conditioning and heat pump operating conditions. To investigate the effect of this additive on compressor lubrication and life, the authors performed compressor life tests (with scroll and reciprocating compressors), and had lubrication wear tests performed with various concentrations of the additive in the POE lubricant.« less

  7. Computational Simulation of a Water-Cooled Heat Pump

    NASA Technical Reports Server (NTRS)

    Bozarth, Duane

    2008-01-01

    A Fortran-language computer program for simulating the operation of a water-cooled vapor-compression heat pump in any orientation with respect to gravity has been developed by modifying a prior general-purpose heat-pump design code used at Oak Ridge National Laboratory (ORNL).

  8. Vapor-Compression Heat Pumps for Operation Aboard Spacecraft

    NASA Technical Reports Server (NTRS)

    Ruemmele, Warren; Ungar, Eugene; Cornwell, John

    2006-01-01

    Vapor-compression heat pumps (including both refrigerators and heat pumps) of a proposed type would be capable of operating in microgravity and would be safe to use in enclosed environments like those of spacecraft. The designs of these pumps would incorporate modifications of, and additions to, vapor-compression cycles of heat pumps now used in normal Earth gravitation, in order to ensure efficiency and reliability during all phases of operation, including startup, shutdown, nominal continuous operation, and peak operation. Features of such a design might include any or all of the following: (1) Configuring the compressor, condenser, evaporator, valves, capillary tubes (if any), and controls to function in microgravitation; (2) Selection of a working fluid that satisfies thermodynamic requirements and is safe to use in a closed crew compartment; (3) Incorporation of a solenoid valve and/or a check valve to prevent influx of liquid to the compressor upon startup (such influx could damage the compressor); (4) Use of a diode heat pipe between the cold volume and the evaporator to limit the influx of liquid to the compressor upon startup; and (5) Use of a heated block to vaporize any liquid that arrives at the compressor inlet.

  9. Vapor Compression and Thermoelectric Heat Pump Heat Exchangers for a Condensate Distillation System: Design and Experiment

    NASA Technical Reports Server (NTRS)

    Erickson, Lisa R.; Ungar, Eugene K.

    2013-01-01

    Maximizing the reuse of wastewater while minimizing the use of consumables is critical in long duration space exploration. One of the more promising methods of reclaiming urine is the distillation/condensation process used in the cascade distillation system (CDS). This system accepts a mixture of urine and toxic stabilizing agents, heats it to vaporize the water and condenses and cools the resulting water vapor. The CDS wastewater flow requires heating and its condensate flow requires cooling. Performing the heating and cooling processes separately requires two separate units, each of which would require large amounts of electrical power. By heating the wastewater and cooling the condensate in a single heat pump unit, mass, volume, and power efficiencies can be obtained. The present work describes and compares two competing heat pump methodologies that meet the needs of the CDS: 1) a series of mini compressor vapor compression cycles and 2) a thermoelectric heat exchanger. In the paper, the system level requirements are outlined, the designs of the two heat pumps are described in detail, and the results of heat pump performance tests are provided. A summary is provided of the heat pump mass, volume and power trades and a selection recommendation is made.

  10. Improvement of pump tubes for gas guns and shock tube drivers

    NASA Technical Reports Server (NTRS)

    Bogdanoff, D. W.

    1990-01-01

    In a pump tube, a gas is mechanically compressed, producing very high pressures and sound speeds. The intensely heated gas produced in such a tube can be used to drive light gas guns and shock tubes. Three concepts are presented that have the potential to allow substantial reductions in the size and mass of the pump tube to be achieved. The first concept involves the use of one or more diaphragms in the pump tube, thus replacing a single compression process by multiple, successive compressions. The second concept involves a radical reduction in the length-to-diameter ratio of the pump tube and the pump tube piston. The third concept involves shock heating of the working gas by high explosives in a cyclindrical geometry reusable device. Preliminary design analyses are performed on all three concepts and they appear to be quite feasible. Reductions in the length and mass of the pump tube by factors up to about 11 and about 7, respectively, are predicted, relative to a benchmark conventional pump tube.

  11. Combined refrigeration system with a liquid pre-cooling heat exchanger

    DOEpatents

    Gaul, Christopher J.

    2003-07-01

    A compressor-pump unit for use in a vapor-compression refrigeration system is provided. The compressor-pump unit comprises a driving device including a rotatable shaft. A compressor is coupled with a first portion of the shaft for compressing gaseous refrigerant within the vapor-compression refrigeration system. A liquid pump is coupled with a second portion of the shaft for receiving liquid refrigerant having a first pressure and for discharging the received liquid refrigerant at a second pressure with the second pressure being higher than the first pressure by a predetermined amount such that the discharged liquid refrigerant is subcooled. A pre-cooling circuit is connected to the liquid pump with the pre-cooling circuit being exposed to the gaseous refrigerant whereby the gaseous refrigerant absorbs heat from the liquid refrigerant, prior to the liquid refrigerant entering the liquid pump.

  12. Vapor Compression and Thermoelectric Heat Pumps for a Cascade Distillation Subsystem: Design and Experiment

    NASA Technical Reports Server (NTRS)

    Erickson, Lisa R.; Ungar, Eugene K.

    2012-01-01

    Humans on a spacecraft require significant amounts of water for drinking, food, hydration, and hygiene. Maximizing the reuse of wastewater while minimizing the use of consumables is critical for long duration space exploration. One of the more promising consumable-free methods of reclaiming wastewater is the distillation/condensation process used in the Cascade Distillation Subsystem (CDS). The CDS heats wastewater to the point of vaporization then condenses and cools the resulting water vapor. The CDS wastewater flow requires heating for evaporation and the product water flow requires cooling for condensation. Performing the heating and cooling processes separately would require two separate units, each of which would demand large amounts of electrical power. Mass, volume, and power efficiencies can be obtained by heating the wastewater and cooling the condensate in a single heat pump unit. The present work describes and compares two competing heat pump methodologies that meet the needs of the CDS: 1) a series of mini compressor vapor compression cycles and 2) a thermoelectric heat exchanger. In the paper, the CDS system level requirements are outlined, the designs of the two heat pumps are described in detail, and the results of heat pump analysis and performance tests are provided. The mass, volume, and power requirement for each heat pump option is compared and the advantages and disadvantages of each system are listed.

  13. Malone-brayton cycle engine/heat pump

    NASA Astrophysics Data System (ADS)

    Gilmour, Thomas A.

    1994-07-01

    A machine, such as a heat pump, and having an all liquid heat exchange fluid, operates over a more nearly ideal thermodynamic cycle by adjustment of the proportionality of the volumetric capacities of a compressor and an expander to approximate the proportionality of the densities of the liquid heat exchange fluid at the chosen working pressures. Preferred forms of a unit including both the compressor and the expander on a common shaft employs difference in axial lengths of rotary pumps of the gear or vane type to achieve the adjustment of volumetric capacity. Adjustment of the heat pump system for differing heat sink conditions preferably employs variable compression ratio pumps.

  14. Nonazeotropic Heat Pump

    NASA Technical Reports Server (NTRS)

    Ealker, David H.; Deming, Glenn

    1991-01-01

    Heat pump collects heat from water circulating in heat-rejection loop, raises temperature of collected heat, and transfers collected heat to water in separate pipe. Includes sealed motor/compressor with cooling coils, evaporator, and condenser, all mounted in outer housing. Gradients of temperature in evaporator and condenser increase heat-transfer efficiency of vapor-compression cycle. Intended to recover relatively-low-temperature waste heat and use it to make hot water.

  15. Heat pump employing optimal refrigerant compressor for low pressure ratio applications

    DOEpatents

    Ecker, Amir L.

    1982-01-01

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler for circulating the fluid in heat exchange relationship with a refrigerant fluid; two refrigerant heat exchangers; one for effecting the heat exchange with the fluid and a second refrigerant-heat exchange fluid heat exchanger for effecting a low pressure ratio of compression of the refrigerant; a rotary compressor for compressing the refrigerant with low power consumption at the low pressure ratio; at least one throttling valve connecting at the inlet side of heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit serially connecting the above elements; refrigerant in the circuit; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant.

  16. Effectiveness of a heat exchanger in a heat pump clothes dryer

    NASA Astrophysics Data System (ADS)

    Nasution, A. H.; Sembiring, P. G.; Ambarita, H.

    2018-02-01

    This paper deals with study on a heat pump clothes dryer coupled with a heat exchanger. The objective is to explore the effects of the heat exchanger on the performance of the heat pump dryer. The heat pump dryer consists of a vapor compression cycle and integrated with a drying room with volume 1 m3. The power of compressor is 800 Watt and the refrigerant of the cycle is R22. The heat exchanger is a flat plate type with dimensions of 400 mm × 400 mm × 400 mm. The results show the present of the heat exchanger increase the performance of the heat pump dryer. In the present experiment the COP, TP and SMER increase 15.11%, 4.81% and 58.62%, respectively. This is because the heat exchanger provides a better drying condition in the drying room with higher temperature and lower relative humidity in comparison with heat pump dryer without heat exchanger. The effectiveness of the heat exchanger is also high, it is above 50%. It is suggested to install a heat exchanger in a heat pump dryer.

  17. The Low Temperature Chamber Testing of the Compression Ignition Engine and System of the Armoured Personnel Carrier (APC) M113A1.

    DTIC Science & Technology

    1981-06-01

    shutdown. Before start up the hot oil would be pumped ( auxillary pump) back through the engine on the high pressure side of the engine’ s oil pump. This...insulation heating was applied. Temperature plots Figure 14* to Figure 16* show the battery cooling curves for auxillary heating when 37mm of medium

  18. Absorption Heat Pump Cycles

    NASA Astrophysics Data System (ADS)

    Kunugi, Yoshifumi; Kashiwagi, Takao

    Various advanced absorption cycles are studied, developed and invented. In this paper, their cycles are classified and arranged using the three categories: effect, stage and loop, then an outline of the cycles are explained on the Duehring diagram. Their cycles include high COP cycles for refrigerations and heat pumps, high temperature lift cycles for heat transformer, absorption-compression hybrid cycles and heat pump transformer cycle. The highest COPi is attained by the seven effect cycle. In addition, the cycles for low temperature are invented and explained. Furthermore the power generation • refrigeration cycles are illustrated.

  19. Champagne Heat Pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    2004-01-01

    The term champagne heat pump denotes a developmental heat pump that exploits a cycle of absorption and desorption of carbon dioxide in an alcohol or other organic liquid. Whereas most heat pumps in common use in the United States are energized by mechanical compression, the champagne heat pump is energized by heating. The concept of heat pumps based on other absorption cycles energized by heat has been understood for years, but some of these heat pumps are outlawed in many areas because of the potential hazards posed by leakage of working fluids. For example, in the case of the water/ammonia cycle, there are potential hazards of toxicity and flammability. The organic-liquid/carbon dioxide absorption/desorption cycle of the champagne heat pump is similar to the water/ammonia cycle, but carbon dioxide is nontoxic and environmentally benign, and one can choose an alcohol or other organic liquid that is also relatively nontoxic and environmentally benign. Two candidate nonalcohol organic liquids are isobutyl acetate and amyl acetate. Although alcohols and many other organic liquids are flammable, they present little or no flammability hazard in the champagne heat pump because only the nonflammable carbon dioxide component of the refrigerant mixture is circulated to the evaporator and condenser heat exchangers, which are the only components of the heat pump in direct contact with air in habitable spaces.

  20. Performance of a hybrid chemical/mechanical heat pump

    NASA Technical Reports Server (NTRS)

    Silvestri, John J.; Scaringe, Robert P.; Grzyll, Lawrence R.

    1990-01-01

    The authors present the design and preliminary results of the performance of a hybrid chemical/mechanical, low-lift (20 C) heat pump. Studies have indicated that this heat pump has several advantages over the traditional single fluid vapor compression (reverse Rankine) heat pump. Included in these benefits are: 1) increased COPc due to the approximation of the cycle to the Lorenz cycle and due to the availability of the heat of solution, along with the heat of vaporization, to provide cooling; and 2) ease of variation in system cooling capacity by changing the fluid composition. The system performance is predicted for a variety of refrigerant-absorbent pairs. Cooling capacity is determined for systems operating with ammonia as the refrigerant and lithium nitrate and sodium thiocyanate as the absorbents and also with water as the refrigerant and magnesium chloride, potassium hydroxide, lithium bromide, sodium hydroxide, and sulfuric acid as the absorbents. Early indications have shown that the systems operating with water as the refrigerant operate at 2-4 times the capacity of the ammonia-refrigerant-based systems. Using existing working fluids in the proposed innovative design, a coefficient-of-performance improvement of 21 percent is possible when compared to the best vapor compression systems analyzed.

  1. Steam ejector as an industrial heat pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnold, H.G.; Huntley, W.R.; Perez-Blanco, H.

    1982-01-01

    The steam ejector is analyzed for use in industrial heat recovery applications and compared to mechanical compressor heat pumps. An estimated ejector performance was analyzed using methods based on conservation of mass, momentum, and energy; using steam properties to account for continuity; and using appropriate efficiencies for the nozzle and diffuse performance within the ejector. A potential heat pump application at a paper plant in which waste water was available in a hot well downstream of the paper machine was used to describe use of the stream ejector. Both mechanical compression and jet ejector heat pumps were evaluated for recompressionmore » of flashed steam from the hot well. It is noted that another possible application of vapor recompression heat pumps is the recovery of waste heat from large facilities such as the gaseous diffusion plants. The economics of recovering waste heat in similar applications is analyzed. (MCW)« less

  2. Fuel savings with conventional hot water space heating systems by incorporating a natural gas powered heat pump. Preliminary project: Development of heat pump technology

    NASA Astrophysics Data System (ADS)

    Vanheyden, L.; Evertz, E.

    1980-12-01

    Compression type air/water heat pumps were developed for domestic heating systems rated at 20 to 150 kW. The heat pump is driven either by a reciprocating piston or rotary piston engine modified to operate on natural gas. Particular features of natural gas engines as prime movers, such as waste heat recovery and variable speed, are stressed. Two systems suitable for heat pump operation were selected from among five different mass produced car engines and were modified to incorporate reciprocating piston compressor pairs. The refrigerants used are R 12 and R 22. Test rig data transferred to field conditions show that the fuel consumption of conventional boilers can be reduced by 50% and more by the installation of engine driven heat pumps. Pilot heat pumps based on a 1,600 cc reciprocating piston engine were built for heating four two-family houses. Pilot pump operation confirms test rig findings. The service life of rotary piston and reciprocating piston engines was investigated. The tests reveal characteristic curves for reciprocating piston engines and include exhaust composition measurements.

  3. Mold Heating and Cooling Pump Package Operator Interface Controls Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Josh A. Salmond

    2009-08-07

    The modernization of the Mold Heating and Cooling Pump Package Operator Interface (MHC PP OI) consisted of upgrading the antiquated single board computer with a proprietary operating system to off-the-shelf hardware and off-the-shelf software with customizable software options. The pump package is the machine interface between a central heating and cooling system that pumps heat transfer fluid through an injection or compression mold base on a local plastic molding machine. The operator interface provides the intelligent means of controlling this pumping process. Strict temperature control of a mold allows the production of high quality parts with tight tolerances and lowmore » residual stresses. The products fabricated are used on multiple programs.« less

  4. Lunar base heat pump, phase 1

    NASA Technical Reports Server (NTRS)

    Goldman, Jeffrey H.; Harvey, A.; Lovell, T.; Walker, David H.

    1994-01-01

    This report describes the Phase 1 process and analysis used to select a refrigerant and thermodynamic cycle as the basis of a vapor compression heat pump requiring a high temperature lift, then to perform a preliminary design to implement the selected concept, including major component selection. Use of a vapor compression heat pump versus other types was based on prior work performed for the Electric Power Research Institute. A high lift heat pump is needed to enable a thermal control system to remove heat down to 275 K from a habitable volume when the external thermal environment is severe. For example, a long-term lunar base habitat will reject heat from a space radiator to a 325 K environment. The first step in the selection process was to perform an optimization trade study, quantifying the effect of radiator operating temperature and heat pump efficiency on total system mass; then, select the radiator operating temperature corresponding to the lowest system mass. Total system mass included radiators, all heat pump components, and the power supply system. The study showed that lunar night operation, with no temperature lift, dictated the radiator size. To operate otherwise would require a high mass penalty to store power. With the defined radiation surface, and heat pump performances assumed to be from 40 percent to 60 percent of the Carnot ideal, the optimum heat rejection temperature ranged from 387 K to 377 K, as a function of heat pump performance. Refrigerant and thermodynamic cycles were then selected to best meet the previously determined design conditions. The system was then adapted as a ground-based prototype lifting temperature to 360 K (versus 385 K for flight unit) and using readily available commercial-grade components. Over 40 refrigerants, separated into wet and dry compression behavioral types, were considered in the selection process. Refrigerants were initially screened for acceptable critical temperature. The acceptable refrigerants were analyzed in ideal single and two-stage thermodynamic cycles. Top candidates were analyzed assuming realistic component limits and system pressure drops, and were evaluated for other considerations such as safety, environmental impact, and commercial availability. A maximum coefficient of performance (COP) of 56 percent of the Carnot ideal was achievable for a three-stage CFC-11 cycle operating under the flight conditions above. The program was completed by defining a control scheme and by researching and selecting the major components, compressor and heat exchangers, that could be used to implement the thermodynamic cycle selected. Special attention was paid to using similar technologies for the SIRF and flight heat pumps resulting in the commercially available equivalent of the flight unit. A package concept was generated for the components selected and mass and volume estimated.

  5. Impact of Charge Degradation on the Life Cycle Climate Performance of a Residential Air-Conditioning System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beshr, Mohamed; Aute, Vikrant; Abdelaziz, Omar

    2014-01-01

    Vapor compression systems continuously leak a small fraction of their refrigerant charge to the environment, whether during operation or servicing. As a result of the slow leak rate occurring during operation, the refrigerant charge decreases until the system is serviced and recharged. This charge degradation, after a certain limit, begins to have a detrimental effect on system capacity, energy consumption, and coefficient of performance (COP). This paper presents a literature review and a summary of previous experimental work on the effect of undercharging or charge degradation of different vapor compression systems, especially those without a receiver. These systems include residentialmore » air conditioning and heat pump systems utilizing different components and refrigerants, and water chiller systems. Most of these studies show similar trends for the effect of charge degradation on system performance. However, it is found that although much experimental work exists on the effect of charge degradation on system performance, no correlation or comparison between charge degradation and system performance yet exists. Thus, based on the literature review, three different correlations that characterize the effect of charge on system capacity and energy consumption are developed for different systems as follows: one for air-conditioning systems, one for vapor compression water-to-water chiller systems, and one for heat pumps. These correlations can be implemented in vapor compression cycle simulation tools to obtain a better prediction of the system performance throughout its lifetime. In this paper, these correlations are implemented in an open source tool for life cycle climate performance (LCCP) based design of vapor compression systems. The LCCP of a residential air-source heat pump is evaluated using the tool and the effect of charge degradation on the results is studied. The heat pump is simulated using a validated component-based vapor compression system model and the LCCP results obtained using the three charge degradation correlations are compared.« less

  6. Acoustical heat pumping engine

    DOEpatents

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1983-08-16

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium.

  7. Acoustical heat pumping engine

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1983-08-16

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium. 2 figs.

  8. Vapor compression heat pump system field tests at the TECH complex

    NASA Astrophysics Data System (ADS)

    Baxter, V. D.

    1985-07-01

    The Tennessee Energy Conservation In Housing (TECH) complex has been utilized since 1977 as a field test site for several novel and conventional heat pump systems for space conditioning and water heating. Systems tested include the Annual Cycle Energy System (ACES), solar assisted heat pumps (SAHP) both parallel and series, two conventional air-to-air heat pumps, an air-to-air heat pump with desuperheater water heater, and horizontal coil and multiple shallow vertical coil ground-coupled heat pumps (GCHP). A direct comparison of the measured annual performance of the test systems was not possible. However, a cursory examination revealed that the ACES had the best performance. However, its high cost makes it unlikely that it will achieve widespread use. Costs for the SAHP systems are similar to those of the ACES but their performance is not as good. Integration of water heating and space conditioning functions with a desuperheater yielded significant efficiency improvement at modest cost. The GCHP systems performed much better for heating than for cooling and may well be the most efficient alternative for residences in cold climates.

  9. Vapor compression heat pump system field tests at the tech complex

    NASA Astrophysics Data System (ADS)

    Baxter, Van D.

    1985-11-01

    The Tennessee Energy Conservation In Housing (TECH) complex has been utilized since 1977 as a field test site for several novel and conventional heat pump systems for space conditioning and water heating. Systems tested include the Annual Cycle Energy System (ACES), solar assisted heat pumps (SAHP) both parallel and series, two conventional air-to-air heat pumps, an air-to-air heat pump with desuperheater water heater, and horizontal coil and multiple shallow vertical coil ground-coupled heat pumps (GCHP). A direct comparison of the measured annual performance of the test systems was not possible. However, a cursory examination revealed that the ACES had the best performance, however, its high cost makes it unlikely that it will achieve wide-spread use. Costs for the SAHP systems are similar to those of the ACES but their performance is not as good. Integration of water heating and space conditioning functions with a desuperheater yielded significant efficiency improvement at modest cost. The GCHP systems performed much better for heating than for cooling and may well be the most efficient alternative for residences in cold climates.

  10. New and future heat pump technologies

    NASA Astrophysics Data System (ADS)

    Creswick, F. A.

    It is not possible to say for sure what future heat pumps will look like, but there are some interesting possibilities. In the next five years, we are likely to see US heat pumps with two kinds of innovations: capacity modulation and charge control. Capacity modulation will be accomplished by variable-speed compressor motors. The objective of charge control is to keep the refrigerant charge in the system where it belongs for best performance; there are probably many ways to accomplish this. Charge control will improve efficiency and durability; capacity modulation will further improve efficiency and comfort. The Stirling cycle heat pump has several interesting advantages, but it is farther out in time. At present, we don't know how to make it as efficient as the conventional vapor-compression heat pump. Electric utility people should be aware that major advances are being made in gas-fired heat pumps which could provide strong competition in the future. However, even a gas-fired heat pump has a substantial auxiliary electric power requirement. The resources needed to develop advanced heat pumps are substantial and foreign competition will be intense. It will be important for utilities, manufacturers, and the federal government to work in close cooperation.

  11. Preliminary design package for solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Summarized preliminary design information on activities associated with the development, delivery and support of solar heating and cooling systems is given. These systems are for single family dwellings and commercial applications. The heating/cooling system use a reversible vapor compression heat pump that is driven in the cooling mode by a Rankine power loop, and in the heating mode by a variable speed electric motor. The heating/cooling systems differ from the heating-only systems in the arrangement of the heat pump subsystem and the addition of a cooling tower to provide the heat sink for cooling mode operation.

  12. Air Conditioning with Magnetic Refrigeration : An Efficient, Green Compact Cooling System Using Magnetic Refrigeration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-09-01

    BEETIT Project: Astronautics is developing an air conditioning system that relies on magnetic fields. Typical air conditioners use vapor compression to cool air. Vapor compression uses a liquid refrigerant to circulate within the air conditioner, absorb the heat, and pump the heat out into the external environment. Astronautics’ design uses a novel property of certain materials, called “magnetocaloric materials”, to achieve the same result as liquid refrigerants. These magnetocaloric materials essentially heat up when placed within a magnetic field and cool down when removed, effectively pumping heat out from a cooler to warmer environment. In addition, magnetic refrigeration uses nomore » ozone-depleting gases and is safer to use than conventional air conditioners which are prone to leaks.« less

  13. Multiple source heat pump

    DOEpatents

    Ecker, Amir L.

    1983-01-01

    A heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating a fluid in heat exchange relationship with a refrigerant fluid, at least three refrigerant heat exchangers, one for effecting heat exchange with the fluid, a second for effecting heat exchange with a heat exchange fluid, and a third for effecting heat exchange with ambient air; a compressor for compressing the refrigerant; at least one throttling valve connected at the inlet side of a heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circuit and pump for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and directional flow of refrigerant therethrough for selecting a particular mode of operation. Also disclosed are a variety of embodiments, modes of operation, and schematics therefor.

  14. Seasonal performance for Heat pump with vertical ground heat exchanger in Riga

    NASA Astrophysics Data System (ADS)

    Jaundālders, S.; Stanka, P.; Rusovs, D.

    2017-10-01

    Experimental measurements of Seasonal Coefficient of Performance (SCOP) for heating of 160 m2 household in Riga were conducted for operation of brine-water heat pump with vertical ground heat exchangers (GHE). Data regarding heat and electrical power consumption were recorded during three-year period from 2013 to 2016. Vapor compression heat pump has heat energy output of 8 kW. GHE consists of three boreholes. Each borehole is 60 m deep. Data regarding brine temperature for borehole input and output were presented and discussed. As far as house had floor heating, there were presented data about COP for B0/W35 and its dependence from room and outdoor temperature during heating season. Empirical equation was created. Average heat energy consumption during one year for heating was 72 kWh/m2 measured by heat meter. Detected primary energy consumption (electrical energy from grid) was 21 kWh/m2 which resulted in SCOP=3.8. These data were compared with SCOP for air-to-water heat pump in Latvia and available configuration software for heat pumps operation. Good agreement between calculated performance and reported experimental data were founded.

  15. Investigation of lunar base thermal control system options

    NASA Technical Reports Server (NTRS)

    Ewart, Michael K.

    1993-01-01

    Long duration human exploration missions to the Moon will require active thermal control systems which have not previously been used in space. The two technologies which are most promising for long term lunar base thermal control are heat pumps and radiator shades. Recent trade-off studies at the Johnson Space Center have focused development efforts on the most promising heat pump and radiator shade technologies. Since these technologies are in the early stages of development and many parameters used in the study are not well defined, a parametric study was done to test the sensitivity to each assumption. The primary comparison factor in these studies was the total mass system, with power requirements included in the form of a mass penalty for power. Heat pump technologies considered were thermally driven heat pumps such as metal hydride, complex compound, absorption and zeolite. Also considered were electrically driven Stirling and vapor compression heat pumps. Radiator shade concepts considered included step shaped, V-shaped and parabolic (or catenary) shades and ground covers. A further trade study compared the masses of heat pump and radiator shade systems.

  16. The efficiency of the heat pump water heater, during DHW tapping cycle

    NASA Astrophysics Data System (ADS)

    Gużda, Arkadiusz; Szmolke, Norbert

    2017-10-01

    This paper discusses one of the most effective systems for domestic hot water (DHW) production based on air-source heat pump with an integrated tank. The operating principle of the heat pump is described in detail. Moreover, there is an account of experimental set-up and results of the measurements. In the experimental part, measurements were conducted with the aim of determining the energy parameters and measures of the economic efficiency related to the presented solution. The measurements that were conducted are based on the tapping cycle that is similar to the recommended one in EN-16147 standard. The efficiency of the air source heat pump during the duration of the experiment was 2.43. In the end of paper, authors conducted a simplified ecological analysis in order to determine the influence of operation of air-source heat pump with integrated tank on the environment. Moreover the compression with the different source of energy (gas boiler with closed combustion chamber and boiler fired by the coal) was conducted. The heat pump is the ecological friendly source of the energy.

  17. Gas turbine cooling system

    DOEpatents

    Bancalari, Eduardo E.

    2001-01-01

    A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).

  18. Commercial Refrigeration: Heat Transfer Optimization and Energy Reduction, Measurement and Verification of a Liquid Refrigerant Pump System Retrofit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaul, Chris; Sheppy, Michael

    This study describes the test results of a Refrigerant Pump System integrated into a commercial supermarket direct expansion (DX) vapor compression refrigeration system. The Liquid Refrigerant Pump System retrofit (patent-pending; application number 13/964,198) was introduced to NREL in August 2014 by CTA Architects Engineers.

  19. Modeling and design of a high efficiency hybrid heat pump clothes dryer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TeGrotenhuis, Ward; Butterfield, Andrew; Caldwell, Dustin

    Computational modeling is used to design a hybrid heat pump clothes dryer capable of saving 50% of the energy used by residential clothes dryers with comparable drying times. The model represents the various stages of a drying cycle from warm-up through constant drying rate and falling drying rate phases and finishing with a cooldown phase. The model is fit to data acquired from a U.S. commercial standard vented electric dryer, and when a hybrid heat pump system is added, the energy factor increases from 3.0 lbs/kWh to 5.7-6.0 lbs/kWh, depending on the increase in blower motor power. The hybrid heatmore » pump system is designed from off-the-shelf components and includes a recuperative heat exchanger, an electric element, and an R-134a vapor compression heat pump. Parametric studies of element power and heating element use show a trade-off between energy savings and cycle time. Results show a step-change in energy savings from heat pump dryers currently marketed in the U.S. based on performance represented by Enery Star from standardized DOE testing.« less

  20. The Contribution of Compressional Magnetic Pumping to the Energization of the Earth's Outer Electron Radiation Belt During High-Speed Stream-Driven Storms

    NASA Astrophysics Data System (ADS)

    Borovsky, Joseph E.; Horne, Richard B.; Meredith, Nigel P.

    2017-12-01

    Compressional magnetic pumping is an interaction between cyclic magnetic compressions and pitch angle scattering with the scattering acting as a catalyst to allow the cyclic compressions to energize particles. Compressional magnetic pumping of the outer electron radiation belt at geosynchronous orbit in the dayside magnetosphere is analyzed by means of computer simulations, wherein solar wind compressions of the dayside magnetosphere energize electrons with electron pitch angle scattering by chorus waves and by electromagnetic ion cyclotron (EMIC) waves. The magnetic pumping is found to produce a weak bulk heating of the electron radiation belt, and it also produces an energetic tail on the electron energy distribution. The amount of energization depends on the robustness of the solar wind compressions and on the amplitude of the chorus and/or EMIC waves. Chorus-catalyzed pumping is better at energizing medium-energy (50-200 keV) electrons than it is at energizing higher-energy electrons; at high energies (500 keV-2 MeV) EMIC-catalyzed pumping is a stronger energizer. The magnetic pumping simulation results are compared with energy diffusion calculations for chorus waves in the dayside magnetosphere; in general, compressional magnetic pumping is found to be weaker at accelerating electrons than is chorus-driven energy diffusion. In circumstances when solar wind compressions are robust and when EMIC waves are present in the dayside magnetosphere without the presence of chorus, EMIC-catalyzed magnetic pumping could be the dominant energization mechanism in the dayside magnetosphere, but at such times loss cone losses will be strong.

  1. Industrial energy systems and assessment opportunities

    NASA Astrophysics Data System (ADS)

    Barringer, Frank Leonard, III

    Industrial energy assessments are performed primarily to increase energy system efficiency and reduce energy costs in industrial facilities. The most common energy systems are lighting, compressed air, steam, process heating, HVAC, pumping, and fan systems, and these systems are described in this document. ASME has produced energy assessment standards for four energy systems, and these systems include compressed air, steam, process heating, and pumping systems. ASHRAE has produced an energy assessment standard for HVAC systems. Software tools for energy systems were developed for the DOE, and there are software tools for almost all of the most common energy systems. The software tools are AIRMaster+ and LogTool for compressed air systems, SSAT and 3E Plus for steam systems, PHAST and 3E Plus for process heating systems, eQUEST for HVAC systems, PSAT for pumping systems, and FSAT for fan systems. The recommended assessment procedures described in this thesis are used to set up an energy assessment for an industrial facility, collect energy system data, and analyze the energy system data. The assessment recommendations (ARs) are opportunities to increase efficiency and reduce energy consumption for energy systems. A set of recommended assessment procedures and recommended assessment opportunities are presented for each of the most common energy systems. There are many assessment opportunities for industrial facilities, and this thesis describes forty-three ARs for the seven different energy systems. There are seven ARs for lighting systems, ten ARs for compressed air systems, eight ARs for boiler and steam systems, four ARs for process heating systems, six ARs for HVAC systems, and four ARs for both pumping and fan systems. Based on a history of past assessments, average potential energy savings and typical implementation costs are shared in this thesis for most ARs. Implementing these ARs will increase efficiency and reduce energy consumption for energy systems in industrial facilities. This thesis does not explain all energy saving ARs that are available, but does describe the most common ARs.

  2. Status of not-in-kind refrigeration technologies for household space conditioning, water heating and food refrigeration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bansal, Pradeep; Vineyard, Edward Allan; Abdelaziz, Omar

    This paper presents a review of the next generation not-in-kind technologies to replace conventional vapor compression refrigeration technology for household applications. Such technologies are sought to provide energy savings or other environmental benefits for space conditioning, water heating and refrigeration for domestic use. These alternative technologies include: thermoacoustic refrigeration, thermoelectric refrigeration, thermotunneling, magnetic refrigeration, Stirling cycle refrigeration, pulse tube refrigeration, Malone cycle refrigeration, absorption refrigeration, adsorption refrigeration, and compressor driven metal hydride heat pumps. Furthermore, heat pump water heating and integrated heat pump systems are also discussed due to their significant energy saving potential for water heating and space conditioningmore » in households. The paper provides a snapshot of the future R&D needs for each of the technologies along with the associated barriers. Both thermoelectric and magnetic technologies look relatively attractive due to recent developments in the materials and prototypes being manufactured.« less

  3. Double-sided electromagnetic pump with controllable normal force for rapid solidification of liquid metals

    DOEpatents

    Kuznetsov, Stephen B.

    1987-01-01

    A system for casting liquid metals is provided with an electromagnetic pump which includes a pair of primary blocks each having a polyphase winding and being positioned to form a gap through which a movable conductive heat sink passes. A solidifying liquid metal sheet is deposited on the heat sink and the heat sink and sheet are held in compression by forces produced as a result of current flow through the polyphase windings. Shaded-pole interaction between the primary windings, heat sink and solidifying strip produce transverse forces which act to center the strip on the heat sink.

  4. Double-sided electromagnetic pump with controllable normal force for rapid solidification of liquid metals

    DOEpatents

    Kuznetsov, S.B.

    1987-01-13

    A system for casting liquid metals is provided with an electromagnetic pump which includes a pair of primary blocks each having a polyphase winding and being positioned to form a gap through which a movable conductive heat sink passes. A solidifying liquid metal sheet is deposited on the heat sink and the heat sink and sheet are held in compression by forces produced as a result of current flow through the polyphase windings. Shaded-pole interaction between the primary windings, heat sink and solidifying strip produce transverse forces which act to center the strip on the heat sink. 5 figs.

  5. Heat-pump cool storage in a clathrate of freon

    NASA Astrophysics Data System (ADS)

    Tomlinson, J. J.

    Presented are the analytical description and assessment of a unique heat pump/storage system in which the conventional evaporator of the vapor compression cycle is replaced by a highly efficient direct contract crystallizer. The thermal storage technique requires the formation of a refrigerant gas hydrate (a clathrate) and exploits an enthalpy of reaction comparable to the heat of fusion of ice. Additional system operational benefits include cool storage at the favorable temperatures of 4 to 7 C (40 to 45 F), and highly efficient heat transfer ates afforded by he direct contact mechanism. In addition, the experimental approach underway at ORNL to study such a system is discussed.

  6. Hybrid Vapor Compression Ejector Cycle: Presentation to IAPG Mechanical Working Group

    DTIC Science & Technology

    2011-08-01

    Compression Ejector Cycle: Presentation to IAPG Mechanical Working Group Parmesh Verma and Tom Radcliff, United Technologies Research Center UNCLASSIFIED... Ejector Cycle Presentation to IAPG Mechanical Working Group 5a. CONTRACT NUMBER W909MY-10-C-0005 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...hybrid vapor compression ejector heat pump cycle developed under an American Recovery and Reinvestment Act funded contract is provided. 15. SUBJECT

  7. Dual source heat pump

    DOEpatents

    Ecker, Amir L.; Pietsch, Joseph A.

    1982-01-01

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

  8. Operation of a cascade air conditioning system with two-phase loop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Yinshan; Wang, Jinliang; Zhao, Futao

    A method of operating a heat transfer system includes starting operation of a first heat transfer fluid vapor/compression circulation loop including a fluid pumping mechanism, a heat exchanger for rejecting thermal energy from a first heat transfer fluid, and a heat absorption side of an internal heat exchanger. A first conduit in a closed fluid circulation loop circulates the first heat transfer fluid therethrough. Operation of a second two-phase heat transfer fluid circulation loop is started after starting operation of the first heat transfer fluid circulation loop. The second heat transfer fluid circulation loop transfers heat to the first heatmore » transfer fluid circulation loop through the internal heat exchanger and includes a heat rejection side of the internal heat exchanger, a liquid pump, and a heat exchanger evaporator. A second conduit in a closed fluid circulation loop circulates a second heat transfer fluid therethrough.« less

  9. Fluid channeling system

    NASA Technical Reports Server (NTRS)

    Davis, Donald Y. (Inventor); Hitch, Bradley D. (Inventor)

    1994-01-01

    A fluid channeling system includes a fluid ejector, a heat exchanger, and a fluid pump disposed in series flow communication The ejector includes a primary inlet for receiving a primary fluid, and a secondary inlet for receiving a secondary fluid which is mixed with the primary fluid and discharged therefrom as ejector discharge. Heat is removed from the ejector discharge in the heat exchanger, and the heat exchanger discharge is compressed in the fluid pump and channeled to the ejector secondary inlet as the secondary fluid In an exemplary embodiment, the temperature of the primary fluid is greater than the maximum operating temperature of a fluid motor powering the fluid pump using a portion of the ejector discharge, with the secondary fluid being mixed with the primary fluid so that the ejector discharge temperature is equal to about the maximum operating temperature of the fluid motor.

  10. Comfortable, high-efficiency heat pump with desiccant-coated, water-sorbing heat exchangers.

    PubMed

    Tu, Y D; Wang, R Z; Ge, T S; Zheng, X

    2017-01-12

    Comfortable, efficient, and affordable heating, ventilation, and air conditioning systems in buildings are highly desirable due to the demands of energy efficiency and environmental friendliness. Traditional vapor-compression air conditioners exhibit a lower coefficient of performance (COP) (typically 2.8-3.8) owing to the cooling-based dehumidification methods that handle both sensible and latent loads together. Temperature- and humidity-independent control or desiccant systems have been proposed to overcome these challenges; however, the COP of current desiccant systems is quite small and additional heat sources are usually needed. Here, we report on a desiccant-enhanced, direct expansion heat pump based on a water-sorbing heat exchanger with a desiccant coating that exhibits an ultrahigh COP value of more than 7 without sacrificing any comfort or compactness. The pump's efficiency is doubled compared to that of pumps currently used in conventional room air conditioners, which is a revolutionary HVAC breakthrough. Our proposed water-sorbing heat exchanger can independently handle sensible and latent loads at the same time. The desiccants adsorb moisture almost isothermally and can be regenerated by condensation heat. This new approach opens up the possibility of achieving ultrahigh efficiency for a broad range of temperature- and humidity-control applications.

  11. Microgravity heat pump for space station thermal management.

    PubMed

    Domitrovic, R E; Chen, F C; Mei, V C; Spezia, A L

    2003-01-01

    A highly efficient recuperative vapor compression heat pump was developed and tested for its ability to operate independent of orientation with respect to gravity while maximizing temperature lift. The objective of such a heat pump is to increase the temperature of, and thus reduce the size of, the radiative heat rejection panels on spacecrafts such as the International Space Station. Heat pump operation under microgravity was approximated by gravitational-independent experiments. Test evaluations include functionality, efficiency, and temperature lift. Commercially available components were used to minimize costs of new hardware development. Testing was completed on two heat pump design iterations--LBU-I and LBU--II, for a variety of operating conditions under the variation of several system parameters, including: orientation, evaporator water inlet temperature (EWIT), condenser water inlet temperature (CWIT), and compressor speed. The LBU-I system employed an ac motor, belt-driven scroll compressor, and tube-in-tube heat exchangers. The LBU-II system used a direct-drive AC motor compressor assembly and plate heat exchangers. The LBU-II system in general outperformed the LBU-I system on all accounts. Results are presented for all systems, showing particular attention to those states that perform with a COP of 4.5 +/- 10% and can maintain a temperature lift of 55 degrees F (30.6 degrees C) +/- 10%. A calculation of potential radiator area reduction shows that points with maximum temperature lift give the greatest potential for reduction, and that area reduction is a function of heat pump efficiency and a stronger function of temperature lift.

  12. 1 Hz fast-heating fusion driver HAMA pumped by a 10 J green diode-pumped solid-state laser

    NASA Astrophysics Data System (ADS)

    Mori, Y.; Sekine, T.; Komeda, O.; Nakayama, S.; Ishii, K.; Hanayama, R.; Fujita, K.; Okihara, S.; Satoh, N.; Kurita, T.; Kawashima, T.; Kan, H.; Nakamura, N.; Kondo, T.; Fujine, M.; Azuma, H.; Hioki, T.; Kakeno, M.; Motohiro, T.; Nishimura, Y.; Sunahara, A.; Sentoku, Y.; Kitagawa, Y.

    2013-07-01

    A Ti : sapphire laser HAMA pumped by a diode-pumped solid-state laser (DPSSL) is developed to enable a high-repetitive inertial confinement fusion (ICF) experiment to be conducted. To demonstrate a counter-irradiation fast-heating fusion scheme, a 3.8 J, 0.4 ns amplified chirped pulse is divided into four beams: two counter-irradiate a target with intensities of 6 × 1013 W cm-2, and the remaining two are pulse-compressed to 110 fs for heating the imploded target with intensities of 2 × 1017 W cm-2. HAMA contributed to the first demonstration by showing that a 10 J class DPSSL is adaptable to ICF experiments and succeeded in DD neutron generation in the repetition mode. Based on HAMA, we can design and develop an integrated repetitive ICF experiment machine by including target injection and tracking.

  13. Miniature reciprocating heat pumps and engines

    NASA Technical Reports Server (NTRS)

    Thiesen, Jack H. (Inventor); Mohling, Robert A. (Inventor); Willen, Gary S. (Inventor)

    2003-01-01

    The present invention discloses a miniature thermodynamic device that can be constructed using standard micro-fabrication techniques. The device can be used to provide cooling, generate power, compress gases, pump fluids and reduce pressure below ambient (operate as a vacuum pump). Embodiments of the invention relating to the production of a cooling effect and the generation of electrical power, change the thermodynamic state of the system by extracting energy from a pressurized fluid. Energy extraction is attained using an expansion process, which is as nearly isentropic as possible for the appropriately chosen fluid. An isentropic expansion occurs when a compressed gas does work to expand, and in the disclosed embodiments, the gas does work by overcoming either an electrostatic or a magnetic force.

  14. A regenerative elastocaloric heat pump

    NASA Astrophysics Data System (ADS)

    Tušek, Jaka; Engelbrecht, Kurt; Eriksen, Dan; Dall'Olio, Stefano; Tušek, Janez; Pryds, Nini

    2016-10-01

    A large fraction of global energy use is for refrigeration and air-conditioning, which could be decarbonized if efficient renewable energy technologies could be found. Vapour-compression technology remains the most widely used system to move heat up the temperature scale after more than 100 years; however, caloric-based technologies (those using the magnetocaloric, electrocaloric, barocaloric or elastocaloric effect) have recently shown a significant potential as alternatives to replace this technology due to high efficiency and the use of green solid-state refrigerants. Here, we report a regenerative elastocaloric heat pump that exhibits a temperature span of 15.3 K on the water side with a corresponding specific heating power up to 800 W kg-1 and maximum COP (coefficient-of-performance) values of up to 7. The efficiency and specific heating power of this device exceeds those of other devices based on caloric effects. These results open up the possibility of using the elastocaloric effect in various cooling and heat-pumping applications.

  15. Heat pump with freeze-up prevention

    DOEpatents

    Ecker, Amir L.

    1981-01-01

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid prevents freeze up of the second heat exchanger by keeping the temperature above the dew point; and, optionally, provides heat for efficient operation.

  16. Heating of the solar chromosphere by ionization pumping

    NASA Technical Reports Server (NTRS)

    Lindsey, C. A.

    1981-01-01

    A new theory is proposed to explain the heating of the solar chromosphere, and possibly the corona, by the dissipation of hydrodynamic compression waves. The basis of the dissipative mechanism, here referred to as ionization pumping, is hysteresis caused by irreversible relaxation of the chromospheric medium to ionization equilibrium following pressure perturbations. In the middle chromosphere, where hydrogen is partially ionized, it is shown that ionization pumping will cause strong dissipation of waves whose periods are 200s or less. This could cause heating of the chromosphere sufficient to compensate for the radiative losses. The mechanism retains a high efficiency for waves of arbitrarily small amplitude and, thus, can be more efficient than shock dissipation for small perturbations in pressure. The formation of shocks therefore is not required for the dissipation of waves whose periods are several minutes or less.

  17. Performance Optimization of Irreversible Air Heat Pumps Considering Size Effect

    NASA Astrophysics Data System (ADS)

    Bi, Yuehong; Chen, Lingen; Ding, Zemin; Sun, Fengrui

    2018-06-01

    Considering the size of an irreversible air heat pump (AHP), heating load density (HLD) is taken as thermodynamic optimization objective by using finite-time thermodynamics. Based on an irreversible AHP with infinite reservoir thermal-capacitance rate model, the expression of HLD of AHP is put forward. The HLD optimization processes are studied analytically and numerically, which consist of two aspects: (1) to choose pressure ratio; (2) to distribute heat-exchanger inventory. Heat reservoir temperatures, heat transfer performance of heat exchangers as well as irreversibility during compression and expansion processes are important factors influencing on the performance of an irreversible AHP, which are characterized with temperature ratio, heat exchanger inventory as well as isentropic efficiencies, respectively. Those impacts of parameters on the maximum HLD are thoroughly studied. The research results show that HLD optimization can make the size of the AHP system smaller and improve the compactness of system.

  18. Electricity storage using a thermal storage scheme

    NASA Astrophysics Data System (ADS)

    White, Alexander

    2015-01-01

    The increasing use of renewable energy technologies for electricity generation, many of which have an unpredictably intermittent nature, will inevitably lead to a greater demand for large-scale electricity storage schemes. For example, the expanding fraction of electricity produced by wind turbines will require either backup or storage capacity to cover extended periods of wind lull. This paper describes a recently proposed storage scheme, referred to here as Pumped Thermal Storage (PTS), and which is based on "sensible heat" storage in large thermal reservoirs. During the charging phase, the system effectively operates as a high temperature-ratio heat pump, extracting heat from a cold reservoir and delivering heat to a hot one. In the discharge phase the processes are reversed and it operates as a heat engine. The round-trip efficiency is limited only by process irreversibilities (as opposed to Second Law limitations on the coefficient of performance and the thermal efficiency of the heat pump and heat engine respectively). PTS is currently being developed in both France and England. In both cases, the schemes operate on the Joule-Brayton (gas turbine) cycle, using argon as the working fluid. However, the French scheme proposes the use of turbomachinery for compression and expansion, whereas for that being developed in England reciprocating devices are proposed. The current paper focuses on the impact of the various process irreversibilities on the thermodynamic round-trip efficiency of the scheme. Consideration is given to compression and expansion losses and pressure losses (in pipe-work, valves and thermal reservoirs); heat transfer related irreversibility in the thermal reservoirs is discussed but not included in the analysis. Results are presented demonstrating how the various loss parameters and operating conditions influence the overall performance.

  19. Ways to Increase Launch Velocities of 2-Stage Gas Guns

    NASA Technical Reports Server (NTRS)

    Bogdanoff, David W.; Cambier, Jean-Luc; Arnold, James O. (Technical Monitor)

    1994-01-01

    The amount of space debris is rapidly increasing and the debris is distributed over a wide variety of orbits. Satellites, manned space vehicles and space stations will have to pay increasing attention to the dangers of impacts with space debris. Various armoring techniques (i.e., double or triple layer armor) will have to tested extensively to determine the most effective armor per unit weight. Intersecting near-earth orbits can lead to impact velocities up to 15 km/sec. Conventional two-stage light gas guns can launch intact, controlled-shape projectiles with a density of 1.2 gm/cc and length- to-diameter ratios of 0.5-1.0 at velocities up to 8-9 km/sec. Higher velocities (10-11 km/sec) can be obtained' for very light projectiles. The higher launch velocities tend to be very severe on the high pressure coupling and barrel of the gun and lead to short component lifetimes. Clearly, the ability to raise the launch velocity of a gun (for reasonably massive projectile shapes) from 8-9 km/sec to 11-13 km/sec (or higher), without reduction of component lifetimes, would have significant benefits. This would allow much better simulation of the higher velocity debris impacts as well as better simulation of high speed re-entry into planetary atmospheres. Several techniques for increasing the launcher muzzle velocity above 8-9 km/sec have been studied using CFD simulations and appear to offer the potential for significant gains. The first technique is to use multiple compressions, instead of a single compression, in the pump tube of the light gas gun. In a sense, this is a kind of pre-heating of the gas in the pump tube; other types of pre-heating have yielded disappointing results in the past. The dynamics of the multiple compression pump tube is very different, however, from the earlier techniques, where the pump tube was typically heated ohmically before the gun 2 cycle was started. In this paper, we present CFD calculations that show that significant increases in muzzle velocity can be obtained with multiple compressions in the pump tube. With a conventional two-stage gun, an important limitation to obtaining higher velocities is friction and heat transfer to the barrel, which typically has a length- to- diameter ratio of 200-400. These viscous losses greatly reduce the effectiveness of the regions of the barrel far removed from the second stage breech. We have studied computationally the effect of adding an additional breech (or breeches) along the barrel to reduce these viscous losses. Velocity increases from 6.5 to 7.2 km/sec have been obtained using the main breech and one additional breech. In these results, both breeches were operated with hydrogen, heated electrothermally. We have also studied a gun geometry where the main breech is operated in the conventional manner, using piston compression. The additional breech is operated either with electrothermal heating or heating by using a high explosive charge in a novel geometry. The latter option provides very effective compression, heating and acceleration of the hydrogen working gas and is fully reusable. Calculations are presented which show that very substantial increases in muzzle velocity can be obtained this way, without overstressing the projectile or the 'gun. The third technique studied is to add a section of ram accelerator tube after the barrel to further accelerate the projectile. The ram accelerator used here is not the conventional premixed gas ram accelerator, but a new technique using high explosive as the energy source and pure hydrogen as the working gas in a geometry which can be made fully reusable. Preliminary results with this new rain accelerator geometry were presented and showed that stable ram accelerator drive can be established. Herein, detailed calculations axe presented which show that substantial velocity increases can be obtained using this ram accelerator technique in tandem with a conventional light gas gun.

  20. Comfortable, high-efficiency heat pump with desiccant-coated, water-sorbing heat exchangers

    NASA Astrophysics Data System (ADS)

    Tu, Y. D.; Wang, R. Z.; Ge, T. S.; Zheng, X.

    2017-01-01

    Comfortable, efficient, and affordable heating, ventilation, and air conditioning systems in buildings are highly desirable due to the demands of energy efficiency and environmental friendliness. Traditional vapor-compression air conditioners exhibit a lower coefficient of performance (COP) (typically 2.8-3.8) owing to the cooling-based dehumidification methods that handle both sensible and latent loads together. Temperature- and humidity-independent control or desiccant systems have been proposed to overcome these challenges; however, the COP of current desiccant systems is quite small and additional heat sources are usually needed. Here, we report on a desiccant-enhanced, direct expansion heat pump based on a water-sorbing heat exchanger with a desiccant coating that exhibits an ultrahigh COP value of more than 7 without sacrificing any comfort or compactness. The pump’s efficiency is doubled compared to that of pumps currently used in conventional room air conditioners, which is a revolutionary HVAC breakthrough. Our proposed water-sorbing heat exchanger can independently handle sensible and latent loads at the same time. The desiccants adsorb moisture almost isothermally and can be regenerated by condensation heat. This new approach opens up the possibility of achieving ultrahigh efficiency for a broad range of temperature- and humidity-control applications.

  1. GEO2D - Two-Dimensional Computer Model of a Ground Source Heat Pump System

    DOE Data Explorer

    James Menart

    2013-06-07

    This file contains a zipped file that contains many files required to run GEO2D. GEO2D is a computer code for simulating ground source heat pump (GSHP) systems in two-dimensions. GEO2D performs a detailed finite difference simulation of the heat transfer occurring within the working fluid, the tube wall, the grout, and the ground. Both horizontal and vertical wells can be simulated with this program, but it should be noted that the vertical wall is modeled as a single tube. This program also models the heat pump in conjunction with the heat transfer occurring. GEO2D simulates the heat pump and ground loop as a system. Many results are produced by GEO2D as a function of time and position, such as heat transfer rates, temperatures and heat pump performance. On top of this information from an economic comparison between the geothermal system simulated and a comparable air heat pump systems or a comparable gas, oil or propane heating systems with a vapor compression air conditioner. The version of GEO2D in the attached file has been coupled to the DOE heating and cooling load software called ENERGYPLUS. This is a great convenience for the user because heating and cooling loads are an input to GEO2D. GEO2D is a user friendly program that uses a graphical user interface for inputs and outputs. These make entering data simple and they produce many plotted results that are easy to understand. In order to run GEO2D access to MATLAB is required. If this program is not available on your computer you can download the program MCRInstaller.exe, the 64 bit version, from the MATLAB website or from this geothermal depository. This is a free download which will enable you to run GEO2D..

  2. Microscale Regenerative Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.; Stelter, Stephan; Stelter, Manfred

    2006-01-01

    The device described herein is designed primarily for use as a regenerative heat exchanger in a miniature Stirling engine or Stirling-cycle heat pump. A regenerative heat exchanger (sometimes called, simply, a "regenerator" in the Stirling-engine art) is basically a thermal capacitor: Its role in the Stirling cycle is to alternately accept heat from, then deliver heat to, an oscillating flow of a working fluid between compression and expansion volumes, without introducing an excessive pressure drop. These volumes are at different temperatures, and conduction of heat between these volumes is undesirable because it reduces the energy-conversion efficiency of the Stirling cycle.

  3. Improving Process Heating System Performance v3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-04-11

    Improving Process Heating System Performance: A Sourcebook for Industry is a development of the U.S. Department of Energy (DOE) Advanced Manufacturing Office (AMO) and the Industrial Heating Equipment Association (IHEA). The AMO and IHEA undertook this project as part of an series of sourcebook publications developed by AMO on energy-consuming industrial systems, and opportunities to improve performance. Other topics in this series include compressed air systems, pumping systems, fan systems, steam systems, and motors and drives

  4. Development of a Gravity-Insensitive Heat Pump for Lunar Applications

    NASA Technical Reports Server (NTRS)

    Cole, Gregory S.; Scaringe, Robert P.; Grzyll, Lawrence R.; Ewert, Michael K.

    2006-01-01

    Mainstream Engineering Corporation is developing a gravity-insensitive system that will allow a vapor-compression-cycle heat pump to be used in both microgravity (10(exp -6)g) and lunar (10(exp -6)g) environments. System capacity is 5 kW to 15 kW at design refrigerant operating conditions of 4.44 C and 60 C evaporating and condensing temperatures, respectively. The current program, performed for NASA Johnson Space Center (JSC) and presented in this paper, includes compressor performance analysis, detailed system design, and thermal analysis. Future efforts, including prototype fabrication, integration of a solar power source and controls, ground-testing, and flight-testing support, are also discussed.

  5. Design of a CO2 Twin Rotary Compressor for a Heat Pump Water Heater

    NASA Astrophysics Data System (ADS)

    Ahn, Jong Min; Kim, Woo Young; Kim, Hyun Jin; Cho, Sung Oug; Seo, Jong Cheun

    2010-06-01

    For a CO2 heat pump water heater, one-stage twin rotary compressor has been designed. As a design tool, computer simulation program for the compressor performance has been made. Validation of the simulation program has been carried out for a bench model compressor in a compressor calorimeter. Cooling capacity and the compressor input power were reasonably well compared between the simulation and the calorimeter test. Good agreement on P-V diagram between the simulation and the test was also obtained. With this validated compressor simulation program, parametric study has been performed to arrive at optimum dimensions for the compression chamber.

  6. Rotary Vapor Compression Cycle Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kariya, Arthur; Staats, Wayne; Koplow, Jeffrey P.

    While there are several heat pump technologies such thermoelectric, adsorption and magnetocaloric cycles, the oldest and most widely used is the vapor compression cycle (VCC). Currently, thermoelectric cycles have not yet achieved efficiencies nor cooling capacities comparable to VCCs. Adsorption cycles offer the benefit of using low-quality heat as the energy input, but are significantly more complex and expensive and are therefore limited to certain niche applications. Magnetocaloric cycles are still in the research phase. Consequently, improvements made for VCCs will likely have the most immediate and encompassing impact. The objective of this work is to develop an alternative VCCmore » topology to reduce the above inefficiencies.« less

  7. Femtosecond Nonlinearities in Indium Gallium Arsenic Phosphide Diode Lasers

    NASA Astrophysics Data System (ADS)

    Hall, Katherine Lavin

    Semiconductor optical amplifiers are receiving increasing attention for possible applications to broadband optical communication and switching systems. In this thesis we report the results of an extensive experimental study of the ultrafast gain and refractive index nonlinearities in 1.5 μm InGaAsP laser diode amplifiers. The temporal resolution afforded by the femtosecond optical pulses used in these experiments allows us to study carrier interactions with other carriers as well as carrier interactions with the lattice. The 100-200 fs optical pulses used in the pump -probe experiments are generated by an Additive Pulse Modelocked color center laser. The measured group velocity dispersion in the diodes ranged from -0.6 to -0.95 mu m^{-1 }. Differences in the group velocity for TE - and TM-polarized pulses suggested that cross-polarized pump-probe pulses walk off from each other in the diode. This walk-off can diminish the time resolution of some experiments. A novel heterodyne pump-probe technique was developed to distinguish collinear, copolarized, pump and probe pulses that were nominally at the same wavelength. Comparing cross-polarized and copolarized pump-probe results yielded new information about the physical mechanisms responsible for nonlinear gain in the diodes. We observed a gain compression across the entire bandwidth of the diode, associated with carrier heating. The hot carrier distribution cooled back to the lattice temperature with a 0.6 to 1.0 ps time constant, depending on the device structure. In addition, we observed a 0.1 to 0.25 ps delay in onset of carrier heating. Large gain compression due to two photon absorption was also observed. A small portion of the nonlinear gain is attributed to spectral hole burning. Pulsewidth-dependent output saturation energies were explained by a rate equation model that included the effect of carrier heating. Measurements of pump-induced probe phase changes revealed index nonlinearities due to delayed carrier heating and an instantaneous electronic, or virtual process. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617 -253-5668; Fax 617-253-1690.).

  8. Comfortable, high-efficiency heat pump with desiccant-coated, water-sorbing heat exchangers

    PubMed Central

    Tu, Y. D.; Wang, R. Z.; Ge, T. S.; Zheng, X.

    2017-01-01

    Comfortable, efficient, and affordable heating, ventilation, and air conditioning systems in buildings are highly desirable due to the demands of energy efficiency and environmental friendliness. Traditional vapor-compression air conditioners exhibit a lower coefficient of performance (COP) (typically 2.8–3.8) owing to the cooling-based dehumidification methods that handle both sensible and latent loads together. Temperature- and humidity-independent control or desiccant systems have been proposed to overcome these challenges; however, the COP of current desiccant systems is quite small and additional heat sources are usually needed. Here, we report on a desiccant-enhanced, direct expansion heat pump based on a water-sorbing heat exchanger with a desiccant coating that exhibits an ultrahigh COP value of more than 7 without sacrificing any comfort or compactness. The pump’s efficiency is doubled compared to that of pumps currently used in conventional room air conditioners, which is a revolutionary HVAC breakthrough. Our proposed water-sorbing heat exchanger can independently handle sensible and latent loads at the same time. The desiccants adsorb moisture almost isothermally and can be regenerated by condensation heat. This new approach opens up the possibility of achieving ultrahigh efficiency for a broad range of temperature- and humidity-control applications. PMID:28079171

  9. Energy Systems Training Programs and Certifications Survey White Paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, Daryl; Nimbalkar, Sachin U.; Wenning, Thomas J.

    2017-02-01

    Compressed air system, industrial refrigeration system, chilled water system, pump system, fan system, steam system, process heating system, and combined heat and power system are the major industrial energy systems. By helping enhance knowledge and skills of workforce, training and certification programs on these systems are essential to improve energy efficiency of manufacturing facilities. A literature survey of currently available training and certification programs on these systems was conducted.

  10. Two Phase Technology Development Initiatives

    NASA Technical Reports Server (NTRS)

    Didion, Jeffrey R.

    1999-01-01

    Three promising thermal technology development initiatives, vapor compression thermal control system, electronics cooling, and electrohydrodynamics applications are outlined herein. These technologies will provide thermal engineers with additional tools to meet the thermal challenges presented by increased power densities and reduced architectural options that will be available in future spacecraft. Goddard Space Flight Center and the University of Maryland are fabricating and testing a 'proto- flight' vapor compression based thermal control system for the Ultra Long Duration Balloon (ULDB) Program. The vapor compression system will be capable of transporting approximately 400 W of heat while providing a temperature lift of 60C. The system is constructed of 'commercial off-the-shelf' hardware that is modified to meet the unique environmental requirements of the ULDB. A demonstration flight is planned for 1999 or early 2000. Goddard Space Flight Center has embarked upon a multi-discipline effort to address a number of design issues regarding spacecraft electronics. The program addressed the high priority design issues concerning the total mass of standard spacecraft electronics enclosures and the impact of design changes on thermal performance. This presentation reviews the pertinent results of the Lightweight Electronics Enclosure Program. Electronics cooling is a growing challenge to thermal engineers due to increasing power densities and spacecraft architecture. The space-flight qualification program and preliminary results of thermal performance tests of copper-water heat pipes are presented. Electrohydrodynamics (EHD) is an emerging technology that uses the secondary forces that result from the application of an electric field to a flowing fluid to enhance heat transfer and manage fluid flow. A brief review of current EHD capabilities regarding heat transfer enhancement of commercial heat exchangers and capillary pumped loops is presented. Goddard Space Flight Center research efforts applying this technique to fluid management and fluid pumping are discussed.

  11. Integrated exhaust gas recirculation and charge cooling system

    DOEpatents

    Wu, Ko-Jen

    2013-12-10

    An intake system for an internal combustion engine comprises an exhaust driven turbocharger configured to deliver compressed intake charge, comprising exhaust gas from the exhaust system and ambient air, through an intake charge conduit and to cylinders of the internal combustion engine. An intake charge cooler is in fluid communication with the intake charge conduit. A cooling system, independent of the cooling system for the internal combustion engine, is in fluid communication with the intake charge cooler through a cooling system conduit. A coolant pump delivers a low temperature cooling medium from the cooling system to and through the intake charge cooler for the transfer of heat from the compressed intake charge thereto. A low temperature cooler receives the heated cooling medium through the cooling system conduit for the transfer or heat therefrom.

  12. Method of reducing chlorofluorocarbon refrigerant emissons to the atmosphere

    DOEpatents

    DeVault, Robert C.; Fairchild, Phillip D.; Biermann, Wendell J.

    1990-01-01

    A method is disclosed for reducing chloroflurocarbon (CFC) refrigerant emissions during removal or transfer or refrigerants from a vapor compression cooling system or heat pump which comprises contacting the refrigerant with a suitable sorbent material. The sorbent material allows for the storage and retention or the chlorofluorocarbon in non-gaseous form so that it does not tend to escape to the atmosphere where it would cause harm by contributing to ozone depletion. In other aspects of the invention, contacting of CFC refrigerants with sorbent material allows for purification and recycling of used refrigerant, and a device containing stored sorbent material can be employed in the detection of refrigerant leakage in a cooling system or heat pump.

  13. Solar-powered turbocompressor heat pump system

    DOEpatents

    Landerman, A.M.; Biancardi, F.R.; Melikian, G.; Meader, M.D.; Kepler, C.E.; Anderson, T.J.; Sitler, J.W.

    1982-08-12

    The turbocompressor comprises a power turbine and a compressor turbine having respective rotors and on a common shaft, rotatably supported by bearings. A first working fluid is supplied by a power loop and is expanded in the turbine. A second working fluid is compressed in the turbine and is circulated in a heat pump loop. A lubricant is mixed with the second working fluid but is excluded from the first working fluid. The bearings are cooled and lubricated by a system which circulates the second working fluid and the intermixed lubricant through the bearings. Such system includes a pump, a thermostatic expansion valve for expanding the working fluid into the space between the bearings, and a return conduit system for withdrawing the expanded working fluid after it passes through the bearings and for returning the working fluid to the evaporator. A shaft seal excludes the lubricant from the power turbine. The power loop includes a float operable by liquid working fluid in the condenser for controlling a recirculation valve so as to maintain a minimum liquid level in the condenser, while causing a feed pump to pump most of the working fluid into the vapor generator. The heat pump compressor loop includes a float in the condenser for operating and expansion valve to maintain a minimum liquid working fluid level in the condenser while causing most of the working fluid to be expanded into the evaporator.

  14. Novel concepts for the compression of large volumes of carbon dioxide-phase III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, J. Jeffrey; Allison, Timothy C.; Evans, Neal D.

    In the effort to reduce the release of CO 2 greenhouse gases to the atmosphere, sequestration of CO 2 from Integrated Gasification Combined Cycle (IGCC) and Oxy-Fuel power plants is being pursued. This approach, however, requires significant compression power to boost the pressure to typical pipeline levels. The penalty can be as high as 8-12% on a typical IGCC plant. The goal of this research is to reduce this penalty through novel compression concepts and integration with existing IGCC processes. The primary objective of the study of novel CO 2 compression concepts is to reliably boost the pressure of COmore » 2 to pipeline pressures with the minimal amount of energy required. Fundamental thermodynamics were studied to explore pressure rise in both liquid and gaseous states. For gaseous compression, the project investigated novel methods to compress CO 2 while removing the heat of compression internal to the compressor. The highpressure ratio, due to the delivery pressure of the CO 2 for enhanced oil recovery, results in significant heat of compression. Since less energy is required to boost the pressure of a cooler gas stream, both upstream and inter-stage cooling is desirable. While isothermal compression has been utilized in some services, it has not been optimized for the IGCC environment. Phase I of this project determined the optimum compressor configuration and developed technology concepts for internal heat removal. Other compression options using liquefied CO 2 and cryogenic pumping were explored as well. Preliminary analysis indicated up to a 35% reduction in power is possible with the new concepts being considered. In the Phase II program, two experimental test rigs were developed to investigate the two concepts further. A new pump loop facility was constructed to qualify a cryogenic turbopump for use on liquid CO 2 . Also, an internally cooled compressor diaphragm was developed and tested in a closed loop compressor facility using CO 2 . Both test programs successfully demonstrated good performance and mechanical behavior. In Phase III, a pilot compression plant consisting of a multi-stage centrifugal compressor with cooled diaphragm technology has been designed, constructed, and tested. Comparative testing of adiabatic and cooled tests at equivalent inlet conditions shows that the cooled diaphragms reduce power consumption by 3-8% when the compressor is operated as a back-to-back unit and by up to 9% when operated as a straight-though compressor with no intercooler. The power savings, heat exchanger effectiveness, and temperature drops for the cooled diaphragm were all slightly higher than predicted values but showed the same trends.« less

  15. Analysis of geothermal temperatures for heat pumps application in Paraná (Brasil)

    NASA Astrophysics Data System (ADS)

    Santos, Alexandre F.; de Souza, Heraldo J. L.; Cantao, Mauricio P.; Gaspar, Pedro D.

    2016-11-01

    Geothermal heat pumps are broadly used in developed countries but scarcely in Brazil, in part because there is a lack of Brazilian soil temperature data. The aims of this work are: to present soil temperature measurements and to compare geothermal heat pump system performances with conventional air conditioning systems. Geothermal temperature measurement results are shown for ten Paraná State cities, representing different soil and climate conditions. The measurements were made yearlong with calibrated equipment and digital data acquisition system in different measuring stations. Geothermal and ambient temperature data were used for simulations of the coeficient of performance (COP), by means of a working fluid pressure-enthalpy diagram based software for vapor-compression cycle. It was verified that geothermal temperature measured between January 13 to October 13, 2013, varied from 16 to 24 °C, while room temperature has varied between 2 and 35 °C. Average COP values for conventional system were 3.7 (cooling mode) and 5.0 kW/kW (heating mode), corresponding to 5.9 and 7.9 kW/kW for geothermal system. Hence it was verified an average eficiency gain of 59%with geothermal system utilization in comparison with conventional system.

  16. An isentropic compression-heated Ludweig tube transient wind tunnel

    NASA Technical Reports Server (NTRS)

    Magari, Patrick J.; Lagraff, John E.

    1991-01-01

    Theoretical development and experimental results show that the Ludweig tube with isentropic heating (LICH) transient wind tunnel described is a viable means of producing flow conditions that are suitable for a variety of experimental investigations. A complete analysis of the wave dynamics of the pump tube compression process is presented. The LICH tube operating conditions are very steady and run times are greater than those of other types of transient facilities such as shock tubes and gas tunnels. This facility is well suited for producing flow conditions that are dynamically similar to those found in a gas turbine, i.e., transonic Mach number, gas-to-wall temperature ratios of about 1.5, and Reynolds numbers greater than 10 to the 6th.

  17. Development and validation of quasi-steady-state heat pump water heater model having stratified water tank and wrapped-tank condenser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Bo; Nawaz, Kashif; Baxter, Van D.

    Heat pump water heater systems (HPWH) introduce new challenges for design and modeling tools, because they require vapor compression system balanced with a water storage tank. In addition, a wrapped-tank condenser coil has strong coupling with a stratified water tank, which leads HPWH simulation to a transient process. To tackle these challenges and deliver an effective, hardware-based HPWH equipment design tool, a quasi-steady-state HPWH model was developed based on the DOE/ORNL Heat Pump Design Model (HPDM). Two new component models were added via this study. One is a one-dimensional stratified water tank model, an improvement to the open-source EnergyPlus watermore » tank model, by introducing a calibration factor to account for bulk mixing effect due to water draws, circulations, etc. The other is a wrapped-tank condenser coil model, using a segment-to-segment modeling approach. In conclusion, the HPWH system model was validated against available experimental data. After that, the model was used for parametric simulations to determine the effects of various design factors.« less

  18. Development and validation of quasi-steady-state heat pump water heater model having stratified water tank and wrapped-tank condenser

    DOE PAGES

    Shen, Bo; Nawaz, Kashif; Baxter, Van D.; ...

    2017-10-31

    Heat pump water heater systems (HPWH) introduce new challenges for design and modeling tools, because they require vapor compression system balanced with a water storage tank. In addition, a wrapped-tank condenser coil has strong coupling with a stratified water tank, which leads HPWH simulation to a transient process. To tackle these challenges and deliver an effective, hardware-based HPWH equipment design tool, a quasi-steady-state HPWH model was developed based on the DOE/ORNL Heat Pump Design Model (HPDM). Two new component models were added via this study. One is a one-dimensional stratified water tank model, an improvement to the open-source EnergyPlus watermore » tank model, by introducing a calibration factor to account for bulk mixing effect due to water draws, circulations, etc. The other is a wrapped-tank condenser coil model, using a segment-to-segment modeling approach. In conclusion, the HPWH system model was validated against available experimental data. After that, the model was used for parametric simulations to determine the effects of various design factors.« less

  19. Experimental evaluation and thermodynamic system modeling of thermoelectric heat pump clothes dryer

    DOE PAGES

    Patel, Viral K.; Gluesenkamp, Kyle R.; Goodman, Dakota; ...

    2018-02-28

    Electric clothes dryers consume about 6% of US residential electricity consumption. Using a solid-state technology without refrigerant, thermoelectric (TE) heat pump dryers have the potential to be more efficient than units based on electric resistance and less expensive than units based on vapor compression. This study presents a steady state TE dryer model, and validates the model against results from an experimental prototype. The system model is composed of a TE heat pump element model coupled with a psychrometric dryer sub-model. Experimental results had energy factors (EFs) of up to 2.95 kg of dry cloth per kWh (6.51 lb c/kWh),more » with a dry time of 159 min. A faster dry time of 96 min was also achieved at an EF of 2.54 kg c/kWh (5.60 lb c/kWh). The model was able to replicate the experimental results within 5% of EF and 5% of dry time values. Finally, the results are used to identify important parameters that affect dryer performance, such as relative humidity of air leaving the drum.« less

  20. Experimental evaluation and thermodynamic system modeling of thermoelectric heat pump clothes dryer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Viral K.; Gluesenkamp, Kyle R.; Goodman, Dakota

    Electric clothes dryers consume about 6% of US residential electricity consumption. Using a solid-state technology without refrigerant, thermoelectric (TE) heat pump dryers have the potential to be more efficient than units based on electric resistance and less expensive than units based on vapor compression. This study presents a steady state TE dryer model, and validates the model against results from an experimental prototype. The system model is composed of a TE heat pump element model coupled with a psychrometric dryer sub-model. Experimental results had energy factors (EFs) of up to 2.95 kg of dry cloth per kWh (6.51 lb c/kWh),more » with a dry time of 159 min. A faster dry time of 96 min was also achieved at an EF of 2.54 kg c/kWh (5.60 lb c/kWh). The model was able to replicate the experimental results within 5% of EF and 5% of dry time values. Finally, the results are used to identify important parameters that affect dryer performance, such as relative humidity of air leaving the drum.« less

  1. Intrinsically irreversible heat engine

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-01-01

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

  2. Intrinsically irreversible heat engine

    DOEpatents

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1984-01-01

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. the second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

  3. Intrinsically irreversible heat engine

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-12-25

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat. 11 figs.

  4. Thermal Analysis of of Near-Isothermal Compressed Gas Energy Storage System

    DOE PAGES

    Odukomaiya, Adewale; Abu-Heiba, Ahmad; Gluesenkamp, Kyle R.; ...

    2016-01-01

    In this paper, alternative system configurations for a novel Ground-Level Integrated Diverse Energy Storage (GLIDES) system, which can store energy via input of electricity and heat and deliver dispatchable electricity, is presented. The proposed system is low-cost and hybridizes compressed air and pumped hydro storage approaches that will allow for the off-peak storage of intermittent renewable energy for use during peak times. This study reveals that implementing direct-contact low grade heat exchange via sprayed falling droplets to cool the gas during charging (compression) and warm the gas during discharging (expansion) can be achieved through a secondary recirculating loop of liquid.more » This study shows that if the recirculating liquid loop is pre-conditioned with waste-heat prior to spraying during gas expansion and considering all the round trip conversion losses from standard 120 V 60 HZ electricity input and output with utilization of low grade heat at 90 C the alternative system design leads to a 16% boost in round trip efficiency of the electricity storage to elec = 82% with an energy density of ED = 3.59 MJ/m3.« less

  5. Development of a Variable-Speed Residential Air-Source Integrated Heat Pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, C Keith; Shen, Bo; Munk, Jeffrey D

    2014-01-01

    A residential air-source integrated heat pump (AS-IHP) is under development in partnership with a U.S. manufacturer. A nominal 10.6 kW (3-ton) cooling capacity variable-speed unit, the system provides both space conditioning and water heating. This multi-functional unit can provide domestic water heating (DWH) in either full condensing (FC) (dedicated water heating or simultaneous space cooling and water heating) or desuperheating (DS) operation modes. Laboratory test data were used to calibrate a vapor-compression simulation model for each mode of operation. The model was used to optimize the internal control options for efficiency while maintaining acceptable comfort conditions and refrigerant-side pressures andmore » temperatures within allowable operating envelopes. Annual simulations were performed with the AS-IHP installed in a well-insulated house in five U.S. climate zones. The AS-IHP is predicted to use 45 to 60% less energy than a DOE minimum efficiency baseline system while meeting total annual space conditioning and water heating loads. Water heating energy use is lowered by 60 to 75% in cold to warmer climates, respectively. Plans are to field test the unit in Knoxville, TN.« less

  6. Magnetic pumping of the solar wind

    NASA Astrophysics Data System (ADS)

    Egedal, Jan; Lichko, Emily; Daughton, William

    2015-11-01

    The transport of matter and radiation in the solar wind and terrestrial magnetosphere is a complicated problem involving competing processes of charged particles interacting with electric and magnetic fields. Given the rapid expansion of the solar wind, it would be expected that superthermal electrons originating in the corona would cool rapidly as a function of distance to the Sun. However, this is not observed, and various models have been proposed as candidates for heating the solar wind. In the compressional pumping mechanism explored by Fisk and Gloeckler particles are accelerated by random compressions by the interplanetary wave turbulence. This theory explores diffusion due to spatial non-uniformities and provides a mechanism for redistributing particle. For investigation of a related but different heating mechanism, magnetic pumping, in our work we include diffusion of anisotropic features that develops in velocity space. The mechanism allows energy to be transferred to the particles directly from the turbulence. Guided by kinetic simulations a theory is derived for magnetic pumping. At the heart of this work is a generalization of the Parker Equation to capture the role of the pressure anisotropy during the pumping process. Supported by NASA grant NNX15AJ73G.

  7. Heat cascading regenerative sorption heat pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1995-01-01

    A simple heat cascading regenerative sorption heat pump process with rejected or waste heat from a higher temperature chemisorption circuit (HTCC) powering a lower temperature physisorption circuit (LTPC) which provides a 30% total improvement over simple regenerative physisorption compression heat pumps when ammonia is both the chemisorbate and physisorbate, and a total improvement of 50% or more for LTPC having two pressure stages. The HTCC contains ammonia and a chemisorbent therefor contained in a plurality of canisters, a condenser-evaporator-radiator system, and a heater, operatively connected together. The LTPC contains ammonia and a physisorbent therefor contained in a plurality of compressors, a condenser-evaporator-radiator system, operatively connected together. A closed heat transfer circuit (CHTC) is provided which contains a flowing heat transfer liquid (FHTL) in thermal communication with each canister and each compressor for cascading heat from the HTCC to the LTPC. Heat is regenerated within the LTPC by transferring heat from one compressor to another. In one embodiment the regeneration is performed by another CHTC containing another FHTL in thermal communication with each compressor. In another embodiment the HTCC powers a lower temperature ammonia water absorption circuit (LTAWAC) which contains a generator-absorber system containing the absorbent, and a condenser-evaporator-radiator system, operatively connected together. The absorbent is water or an absorbent aqueous solution. A CHTC is provided which contains a FHTL in thermal communication with the generator for cascading heat from the HTCC to the LTAWAC. Heat is regenerated within the LTAWAC by transferring heat from the generator to the absorber. The chemical composition of the chemisorbent is different than the chemical composition of the physisorbent, and the absorbent. The chemical composition of the FHTL is different than the chemisorbent, the physisorbent, the absorbent, and ammonia.

  8. Thermodynamic performance of multi-stage gradational lead screw vacuum pump

    NASA Astrophysics Data System (ADS)

    Zhao, Fan; Zhang, Shiwei; Sun, Kun; Zhang, Zhijun

    2018-02-01

    As a kind of dry mechanical vacuum pump, the twin-screw vacuum pump has an outstanding pumping performance during operation, widely used in the semiconductor industry. Compared with the constant lead screw (CLS) vacuum pump, the gradational lead screw (GLS) vacuum pump is more popularly applied in recent years. Nevertheless, not many comparative studies on the thermodynamic performance of GLS vacuum pump can be found in the literature. Our study focuses on one type of GLS vacuum pump, the multi-stage gradational lead screw (MGLS) vacuum pump, gives a detailed description of its construction and illustrates it with the drawing. Based on the structural analysis, the thermodynamic procedure is divided into four distinctive processes, including sucking process, transferring (compressing) process, backlashing process and exhausting process. The internal mechanism of each process is qualitatively illustrated and the mathematical expressions of seven thermodynamic parameters are given under the ideal situation. The performance curves of MGLS vacuum pump are plotted by MATLAB software and compared with those of the CLS vacuum pump in the same case. The results can well explain why the MGLS vacuum pump has more favorable pumping performance than the CLS vacuum pump in saving energy, reducing noise and heat dissipation.

  9. Heat Pump Clothes Dryer Model Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Bo

    A heat pump clothes dryer (HPCD) is an innovative appliance that uses a vapor compression system to dry clothes. Air circulates in a closed loop through the drum, so no vent is required. The condenser heats air to evaporate moisture out of the clothes, and the evaporator condenses water out of the air stream. As a result, the HPCD can achieve 50% energy savings compared to a conventional electric resistance dryer. We developed a physics-based, quasi-steady-state HPCD system model with detailed heat exchanger and compressor models. In a novel approach, we applied a heat and mass transfer effectiveness model tomore » simulate the drying process of the clothes load in the drum. The system model is able to simulate the inherently transient HPCD drying process, to size components, and to reveal trends in key variables (e.g. compressor discharge temperature, power consumption, required drying time, etc.) The system model was calibrated using experimental data on a prototype HPCD. In the paper, the modeling method is introduced, and the model predictions are compared with experimental data measured on a prototype HPCD.« less

  10. Refrigeration system having standing wave compressor

    DOEpatents

    Lucas, Timothy S.

    1992-01-01

    A compression-evaporation refrigeration system, wherein gaseous compression of the refrigerant is provided by a standing wave compressor. The standing wave compressor is modified so as to provide a separate subcooling system for the refrigerant, so that efficiency losses due to flashing are reduced. Subcooling occurs when heat exchange is provided between the refrigerant and a heat pumping surface, which is exposed to the standing acoustic wave within the standing wave compressor. A variable capacity and variable discharge pressure for the standing wave compressor is provided. A control circuit simultaneously varies the capacity and discharge pressure in response to changing operating conditions, thereby maintaining the minimum discharge pressure needed for condensation to occur at any time. Thus, the power consumption of the standing wave compressor is reduced and system efficiency is improved.

  11. CFD simulation of a dry scroll vacuum pump with clearances, solid heating and thermal deformation

    NASA Astrophysics Data System (ADS)

    Spille-Kohoff, A.; Hesse, J.; Andres, R.; Hetze, F.

    2017-08-01

    Although dry scroll vacuum pumps (DSPV) are essential devices in many different industrial processes, the CFD simulation of such pumps is not widely used and often restricted to simplified cases due to its complexity: The working principle with a fixed and an orbiting scroll leads to working chambers that are changing in time and are connected through moving small radial and axial clearances in the range of 10 to 100 μm. Due to the low densities and low mass flow rates in vacuum pumps, it is important to include heat transfer towards and inside the solid components. Solid heating is very slow compared to the scroll revolution speed and the gas behaviour, thus a special workflow is necessary to reach the working conditions in reasonable simulation times. The resulting solid temperature is then used to compute the thermal deformation, which usually results in gap size changes that influence leakage flows. In this paper, setup steps and results for the simulation of a DSVP are shown and compared to theoretical and experimental results. The time-varying working chambers are meshed with TwinMesh, a hexahedral meshing programme for positive displacement machines. The CFD simulation with ANSYS CFX accounts for gas flow with compressibility and turbulence effects, conjugate heat transfer between gas and solids, and leakage flows through the clearances. Time-resolved results for torques, chamber pressure, mass flow, and heat flow between gas and solids are shown, as well as time- and space-resolved results for pressure, velocity, and temperature for different operating conditions of the DSVP.

  12. Thermal Technology Development Activities at the Goddard Space Flight Center - 2001

    NASA Technical Reports Server (NTRS)

    Butler, Dan

    2002-01-01

    This presentation provides an overview of thermal technology development activities carried out at NASA's Goddard Space Flight Center during 2001. Specific topics covered include: two-phase systems (heat pipes, capillary pumped loops, vapor compression systems and phase change materials), variable emittance systems, advanced coatings, high conductivity materials and electrohydrodynamic (EHD) thermal coatings. The application of these activities to specific space missions is also discussed.

  13. Development of a Residential Ground-Source Integrated Heat Pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, C Keith; Baxter, Van D; Hern, Shawn

    2013-01-01

    A residential-size ground-source integrated heat pump (GSIHP) system has been developed and is currently being field tested. The system is a nominal 2-ton (7 kW) cooling capacity, variable-speed unit, which is multi-functional, e.g. space cooling, space heating, dedicated water heating, and simultaneous space cooling and water heating. High-efficiency brushless permanent-magnet (BPM) motors are used for the compressor, indoor blower, and pumps to obtain the highest component performance and system control flexibility. Laboratory test data were used to calibrate a vapor-compression simulation model (HPDM) for each of the four primary modes of operation. The model was used to optimize the internalmore » control options and to simulate the selected internal control strategies, such as controlling to a constant air supply temperature in the space heating mode and a fixed water temperature rise in water heating modes. Equipment performance maps were generated for each operation mode as functions of all independent variables for use in TRNSYS annual energy simulations. These were performed for the GSIHP installed in a well-insulated 2600 ft2(242 m2) house and connected to a vertical ground loop heat exchanger(GLHE). We selected a 13 SEER (3.8 CSPF )/7.7 HSPF (2.3 HSPF, W/W) ASHP unit with 0.90 Energy Factor (EF) resistance water heater as the baseline for energy savings comparisons. The annual energy simulations were conducted over five US climate zones. In addition, appropriate ground loop sizes were determined for each location to meet 10-year minimum and maximum design entering water temperatures (EWTs) to the equipment. The prototype GSIHP system was predicted to use 52 to 59% less energy than the baseline system while meeting total annual space conditioning and water heating loads.« less

  14. Low energy consumption method for separating gaseous mixtures and in particular for medium purity oxygen production

    DOEpatents

    Jujasz, Albert J.; Burkhart, James A.; Greenberg, Ralph

    1988-01-01

    A method for the separation of gaseous mixtures such as air and for producing medium purity oxygen, comprising compressing the gaseous mixture in a first compressor to about 3.9-4.1 atmospheres pressure, passing said compressed gaseous mixture in heat exchange relationship with sub-ambient temperature gaseous nitrogen, dividing the cooled, pressurized gaseous mixture into first and second streams, introducing the first stream into the high pressure chamber of a double rectification column, separating the gaseous mixture in the rectification column into a liquid oxygen-enriched stream and a gaseous nitrogen stream and supplying the gaseous nitrogen stream for cooling the compressed gaseous mixture, removing the liquid oxygen-enriched stream from the low pressure chamber of the rectification column and pumping the liquid, oxygen-enriched steam to a predetermined pressure, cooling the second stream, condensing the cooled second stream and evaporating the oxygen-enriched stream in an evaporator-condenser, delivering the condensed second stream to the high pressure chamber of the rectification column, and heating the oxygen-enriched stream and blending the oxygen-enriched stream with a compressed blend-air stream to the desired oxygen concentration.

  15. Efficiency Enhancement of Chiller and Heat Pump Using Natural Working Fluids with Two-phase Flow Ejector

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Choiku; Hattori, Kazuhiro; Jeong, Jongsoo; Saito, Kiyoshi; Kawai, Sunao

    An ejector can transform the expansion energy of the driving flow into the pressure build-up energy of the suction flow. Therefore, by utilizing the ejector instead of the expansion valve for the vapor compression cycle, the performance of the cycle can be greatly improved. Until now, the performance of the vapor compression cycle with the ejector has not been examined sufficiently. Therefore, this paper constructs the simulation model of the vapor compression cycle with the ejector and investigates the performance of that cycle by the simulation. Working fluids are ammonia and CO2. As a result, in case of the ejector efficiency 90%, COP of the vapor compression cycle using ammonia with the ejector is 5% higher than that of the conventional cycle and COP using CO2 with the ejector is 22% higher than that of the conventional cycle.

  16. Hydrogen Fueling Station Using Thermal Compression: a techno-economic analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kriha, Kenneth; Petitpas, Guillaume; Melchionda, Michael

    The goal of this project was to demonstrate the technical and economic feasibility of using thermal compression to create the hydrogen pressure necessary to operate vehicle hydrogen fueling stations. The concept of utilizing the exergy within liquid hydrogen to build pressure rather than mechanical components such as compressors or cryogenic liquid pumps has several advantages. In theory, the compressor-less hydrogen station will have lower operating and maintenance costs because the compressors found in conventional stations require large amounts of electricity to run and are prone to mechanical breakdowns. The thermal compression station also utilizes some of the energy used tomore » liquefy the hydrogen as work to build pressure, this is energy that in conventional stations is lost as heat to the environment.« less

  17. Recirculating rotary gas compressor

    DOEpatents

    Weinbrecht, John F.

    1992-01-01

    A positive displacement, recirculating Roots-type rotary gas compressor which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits (24 and 26) which return compressed discharge gas to the compressor housing (14), where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers (10 and 12) and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor.

  18. Recirculating rotary gas compressor

    DOEpatents

    Weinbrecht, J.F.

    1992-02-25

    A positive displacement, recirculating Roots-type rotary gas compressor is described which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits which return compressed discharge gas to the compressor housing, where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor. 12 figs.

  19. Efficiency enhancement for natural gas liquefaction with CO2 capture and sequestration through cycles innovation and process optimization

    NASA Astrophysics Data System (ADS)

    Alabdulkarem, Abdullah

    Liquefied natural gas (LNG) plants are energy intensive. As a result, the power plants operating these LNG plants emit high amounts of CO2 . To mitigate global warming that is caused by the increase in atmospheric CO2, CO2 capture and sequestration (CCS) using amine absorption is proposed. However, the major challenge of implementing this CCS system is the associated power requirement, increasing power consumption by about 15--25%. Therefore, the main scope of this work is to tackle this challenge by minimizing CCS power consumption as well as that of the entire LNG plant though system integration and rigorous optimization. The power consumption of the LNG plant was reduced through improving the process of liquefaction itself. In this work, a genetic algorithm (GA) was used to optimize a propane pre-cooled mixed-refrigerant (C3-MR) LNG plant modeled using HYSYS software. An optimization platform coupling Matlab with HYSYS was developed. New refrigerant mixtures were found, with savings in power consumption as high as 13%. LNG plants optimization with variable natural gas feed compositions was addressed and the solution was proposed through applying robust optimization techniques, resulting in a robust refrigerant which can liquefy a range of natural gas feeds. The second approach for reducing the power consumption is through process integration and waste heat utilization in the integrated CCS system. Four waste heat sources and six potential uses were uncovered and evaluated using HYSYS software. The developed models were verified against experimental data from the literature with good agreement. Net available power enhancement in one of the proposed CCS configuration is 16% more than the conventional CCS configuration. To reduce the CO2 pressurization power into a well for enhanced oil recovery (EOR) applications, five CO2 pressurization methods were explored. New CO2 liquefaction cycles were developed and modeled using HYSYS software. One of the developed liquefaction cycles using NH3 as a refrigerant resulted in 5% less power consumption than the conventional multi-stage compression cycle. Finally, a new concept of providing the CO2 regeneration heat is proposed. The proposed concept is using a heat pump to provide the regeneration heat as well as process heat and CO2 liquefaction heat. Seven configurations of heat pumps integrated with CCS were developed. One of the heat pumps consumes 24% less power than the conventional system or 59% less total equivalent power demand than the conventional system with steam extraction and CO2 compression.

  20. Pressure charged airlift pump

    DOEpatents

    Campbell, Gene K.

    1983-01-01

    A pumping system is described for pumping fluids, such as water with entrained mud and small rocks, out of underground cavities such as drilled wells, which can effectively remove fluids down to a level very close to the bottom of the cavity and which can operate solely by compressed air pumped down through the cavity. The system utilizes a subassembly having a pair of parallel conduit sections (44, 46) adapted to be connected onto the bottom of a drill string utilized for drilling the cavity, the drill string also having a pair of coaxially extending conduits. The subassembly includes an upper portion which has means for connection onto the drill string and terminates the first conduit of the drill string in a plenum (55). A compressed air-driven pump (62) is suspended from the upper portion. The pump sucks fluids from the bottom of the cavity and discharges them into the second conduit. Compressed air pumped down through the first conduit (46) to the plenum powers the compressed air-driven pump and aerates the fluid in the second conduit to lift it to the earth's surface.

  1. Pulse compression in a synchronously pumped optical parametric oscillator from group-velocity mismatch.

    PubMed

    Khaydarov, J D; Andrews, J H; Singer, K D

    1994-06-01

    We report on experimental intracavity compression of generated pulses (down to one quarter of the pumppulse duration) in a widely tunable synchronously pumped picosecond optical parametric oscillator. This pulse compression takes place when the optical parametric oscillator is well above threshold and is due to the pronounced group-velocity mismatch of the pump and oscillating waves in the nonlinear crystal.

  2. Measure Guideline: Heat Pump Water Heaters in New and Existing Homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shapiro, C.; Puttagunta, S.; Owens, D.

    2012-02-01

    This Building America Measure Guideline is intended for builders, contractors, homeowners, and policy-makers. This document is intended to explore the issues surrounding heat pump water heaters (HPWHs) to ensure that homeowners and contractors have the tools needed to appropriately and efficiently install HPWHs. Heat pump water heaters (HPWHs) promise to significantly reduce energy consumption for domestic hot water (DHW) over standard electric resistance water heaters (ERWHs). While ERWHs perform with energy factors (EFs) around 0.9, new HPWHs boast EFs upwards of 2.0. High energy factors in HPWHs are achieved by combining a vapor compression system, which extracts heat from themore » surrounding air at high efficiencies, with electric resistance element(s), which are better suited to meet large hot water demands. Swapping ERWHs with HPWHs could result in roughly 50% reduction in water heating energy consumption for 35.6% of all U.S. households. This Building America Measure Guideline is intended for builders, contractors, homeowners, and policy-makers. While HPWHs promise to significantly reduce energy use for DHW, proper installation, selection, and maintenance of HPWHs is required to ensure high operating efficiency and reliability. This document is intended to explore the issues surrounding HPWHs to ensure that homeowners and contractors have the tools needed to appropriately and efficiently install HPWHs. Section 1 of this guideline provides a brief description of HPWHs and their operation. Section 2 highlights the cost and energy savings of HPWHs as well as the variables that affect HPWH performance, reliability, and efficiency. Section 3 gives guidelines for proper installation and maintenance of HPWHs, selection criteria for locating HPWHs, and highlights of important differences between ERWH and HPWH installations. Throughout this document, CARB has included results from the evaluation of 14 heat pump water heaters (including three recently released HPWH products) installed in existing homes in the northeast region of the United States.« less

  3. High Average Power Laser Gain Medium With Low Optical Distortion Using A Transverse Flowing Liquid Host

    DOEpatents

    Comaskey, Brian J.; Ault, Earl R.; Kuklo, Thomas C.

    2005-07-05

    A high average power, low optical distortion laser gain media is based on a flowing liquid media. A diode laser pumping device with tailored irradiance excites the laser active atom, ion or molecule within the liquid media. A laser active component of the liquid media exhibits energy storage times longer than or comparable to the thermal optical response time of the liquid. A circulation system that provides a closed loop for mixing and circulating the lasing liquid into and out of the optical cavity includes a pump, a diffuser, and a heat exchanger. A liquid flow gain cell includes flow straighteners and flow channel compression.

  4. Pulse compression and prepulse suppression apparatus

    DOEpatents

    Dane, Clifford B.; Hackel, Lloyd A.; George, Edward V.; Miller, John L.; Krupke, William F.

    1993-01-01

    A pulse compression and prepulse suppression apparatus (10) for time compressing the output of a laser (14). A pump pulse (46) is separated from a seed pulse (48) by a first polarized beam splitter (20) according to the orientation of a half wave plate (18). The seed pulse (48) is directed into an SBS oscillator (44) by two plane mirrors (22, 26) and a corner mirror (24), the corner mirror (24) being movable to adjust timing. The pump pulse (46) is directed into an SBS amplifier 34 wherein SBS occurs. The seed pulse (48), having been propagated from the SBS oscillator (44), is then directed through the SBS amplifier (34) wherein it sweeps the energy of the pump pulse (46) out of the SBS amplifier (34) and is simultaneously compressed, and the time compressed pump pulse (46) is emitted as a pulse output (52). A second polarized beam splitter (38) directs any undepleted pump pulse 58 away from the SBS oscillator (44).

  5. Pulse compression and prepulse suppression apparatus

    DOEpatents

    Dane, C.B.; Hackel, L.A.; George, E.V.; Miller, J.L.; Krupke, W.F.

    1993-11-09

    A pulse compression and prepulse suppression apparatus (10) for time compressing the output of a laser (14). A pump pulse (46) is separated from a seed pulse (48) by a first polarized beam splitter (20) according to the orientation of a half wave plate (18). The seed pulse (48) is directed into an SBS oscillator (44) by two plane mirrors (22, 26) and a corner mirror (24), the corner mirror (24) being movable to adjust timing. The pump pulse (46) is directed into an SBS amplifier 34 wherein SBS occurs. The seed pulse (48), having been propagated from the SBS oscillator (44), is then directed through the SBS amplifier (34) wherein it sweeps the energy of the pump pulse (46) out of the SBS amplifier (34) and is simultaneously compressed, and the time compressed pump pulse (46) is emitted as a pulse output (52). A second polarized beam splitter (38) directs any undepleted pump pulse 58 away from the SBS oscillator (44).

  6. Active Thermal Control System Development for Exploration

    NASA Technical Reports Server (NTRS)

    Westheimer, David

    2007-01-01

    All space vehicles or habitats require thermal management to maintain a safe and operational environment for both crew and hardware. Active Thermal Control Systems (ATCS) perform the functions of acquiring heat from both crew and hardware within a vehicle, transporting that heat throughout the vehicle, and finally rejecting that energy into space. Almost all of the energy used in a space vehicle eventually turns into heat, which must be rejected in order to maintain an energy balance and temperature control of the vehicle. For crewed vehicles, Active Thermal Control Systems are pumped fluid loops that are made up of components designed to perform these functions. NASA has been actively developing technologies that will enable future missions or will provide significant improvements over the state of the art technologies. These technologies have are targeted for application on the Crew Exploration Vehicle (CEV), or Orion, and a Lunar Surface Access Module (LSAM). The technologies that have been selected and are currently under development include: fluids that enable single loop ATCS architectures, a gravity insensitive vapor compression cycle heat pump, a sublimator with reduced sensitivity to feedwater contamination, an evaporative heat sink that can operate in multiple ambient pressure environments, a compact spray evaporator, and lightweight radiators that take advantage of carbon composites and advanced optical coatings.

  7. Thermal Control System Development to Support the Crew Exploration Vehicle and Lunar Surface Access Module

    NASA Technical Reports Server (NTRS)

    Anderson, Molly; Westheimer, David

    2006-01-01

    All space vehicles or habitats require thermal management to maintain a safe and operational environment for both crew and hardware. Active Thermal Control Systems (ATCS) perform the functions of acquiring heat from both crew and hardware within a vehicle, transporting that heat throughout the vehicle, and finally rejecting that energy into space. Almost all of the energy used in a space vehicle eventually turns into heat, which must be rejected in order to maintain an energy balance and temperature control of the vehicle. For crewed vehicles, Active Thermal Control Systems are pumped fluid loops that are made up of components designed to perform these functions. NASA has recently evaluated all of the agency s technology development work and identified key areas that must be addressed to aid in the successful development of a Crew Exploration Vehicle (CEV) and a Lunar Surface Access Module (LSAM). The technologies that have been selected and are currently under development include: fluids that enable single loop ATCS architectures, a gravity insensitive vapor compression cycle heat pump, a sublimator with reduced sensitivity to feedwater contamination, an evaporative heat sink that can operate in multiple ambient pressure environments, a compact spray evaporator, and lightweight radiators that take advantage of carbon composites and advanced optical coatings.

  8. CFD simulation of a screw compressor including leakage flows and rotor heating

    NASA Astrophysics Data System (ADS)

    Spille-Kohoff, Andreas, Dr.; Hesse, Jan; El Shorbagy, Ahmed

    2015-08-01

    Computational Fluid Dynamics (CFD) simulations have promising potential to become an important part in the development process of positive displacement (PD) machines. CFD delivers deep insights into the flow and thermodynamic behaviour of PD machines. However, the numerical simulation of such machines is more complex compared to dynamic pumps like turbines or fans. The fluid transport in size-changing chambers with very small clearances between the rotors, and between rotors and casing, demands complex meshes that change with each time step. Additionally, the losses due to leakage flows and the heat transfer to the rotors need high-quality meshes so that automatic remeshing is almost impossible. In this paper, setup steps and results for the simulation of a dry screw compressor are shown. The rotating parts are meshed with TwinMesh, a special hexahedral meshing program for gear pumps, gerotors, lobe pumps and screw compressors. In particular, these meshes include axial and radial clearances between housing and rotors, and beside the fluid volume the rotor solids are also meshed. The CFD simulation accounts for gas flow with compressibility and turbulence effects, heat transfer between gas and rotors, and leakage flows through the clearances. We show time- resolved results for torques, forces, interlobe pressure, mass flow, and heat flow between gas and rotors, as well as time- and space-resolved results for pressure, velocity, temperature etc. for different discharge ports and working points of the screw compressor. These results are also used as thermal loads for deformation simulations of the rotors.

  9. Shock compression and flash-heating of molecular adsorbates on the picosecond time scale

    NASA Astrophysics Data System (ADS)

    Berg, Christopher Michael

    An ultrafast nonlinear coherent laser spectroscopy termed broadband multiplex vibrational sum-frequency generation (SFG) with nonresonant suppression was employed to monitor vibrational transitions of molecular adsorbates on metallic substrates during laser-driven shock compression and flash-heating. Adsorbates were in the form of well-ordered self-assembled monolayers (SAMs) and included molecular explosive simulants, such as nitroaromatics, and long chain-length alkanethiols. Based on reflectance measurements of the metallic substrates, femtosecond flash-heating pulses were capable of producing large-amplitude temperature jumps with DeltaT = 500 K. Laser-driven shock compression of SAMs produced pressures up to 2 GPa, where 1 GPa ≈ 1 x 104 atm. Shock pressures were estimated via comparison with frequency shifts observed in the monolayer vibrational transitions during hydrostatic pressure measurements in a SiC anvil cell. Molecular dynamics during flash-heating and shock loading were probed with vibrational SFG spectroscopy with picosecond temporal resolution and sub-nanometer spatial resolution. Flash-heating studies of 4-nitrobenzenethiolate (NBT) on Au provided insight into effects from hot-electron excitation of the molecular adsorbates at early pump-probe delay times. At longer delay times, effects from the excitation of SAM lattice modes and lower-energy NBT vibrations were shown. In addition, flash-heating studies of alkanethiolates demonstrated chain disordering behaviors as well as interface thermal conductances across the Au-SAM junction, which was of specific interest within the context of molecular electronics. Shock compression studies of molecular explosive simulants, such as 4-nitrobenzoate (NBA), demonstrated the proficiency of this technique to observe shock-induced molecular dynamics, in this case orientational dynamics, on the picosecond time scale. Results validated the utilization of these refined shock loading techniques to probe the shock initiation or first bond-breaking reactions in molecular explosives such as delta-HMX: a necessary study for the development of safer and more effective energetic materials.

  10. Geothermal Heat Pump Basics | NREL

    Science.gov Websites

    a free source of hot water. Geothermal heat pumps use much less energy than conventional heating resources: Geothermal Heat Pumps U.S. Department of Energy's Office of Energy Efficiency and Renewable Heat Pump Basics Geothermal Heat Pump Basics Geothermal heat pumps take advantage of the nearly

  11. Dual-Pump CARS Development and Application to Supersonic Combustion

    NASA Technical Reports Server (NTRS)

    Magnotti, Gaetano; Cutler, Andrew D.

    2012-01-01

    A dual-pump Coherent Anti-Stokes Raman Spectroscopy (CARS) instrument has been developed to obtain simultaneous measurements of temperature and absolute mole fractions of N2, O2 and H2 in supersonic combustion and generate databases for validation and development of CFD codes. Issues that compromised previous attempts, such as beam steering and high irradiance perturbation effects, have been alleviated or avoided. Improvements in instrument precision and accuracy have been achieved. An axis-symmetric supersonic combusting coaxial jet facility has been developed to provide a simple, yet suitable flow to CFD modelers. Approximately one million dual-pump CARS single shots have been collected in the supersonic jet for varying values of flight and exit Mach numbers at several locations. Data have been acquired with a H2 co-flow (combustion case) or a N2 co-flow (mixing case). Results are presented and the effects of the compressibility and of the heat release are discussed.

  12. Capillary-Condenser-Pumped Heat-Transfer Loop

    NASA Technical Reports Server (NTRS)

    Silverstein, Calvin C.

    1989-01-01

    Heat being transferred supplies operating power. Capillary-condenser-pumped heat-transfer loop similar to heat pipe and to capillary-evaporator-pumped heat-transfer loop in that heat-transfer fluid pumped by evaporation and condensation of fluid at heat source and sink, respectively. Capillary condenser pump combined with capillary evaporator pump to form heat exchanger circulating heat-transfer fluids in both loops. Transport of heat more nearly isothermal. Thermal stress in loop reduced, and less external surface area needed in condenser section for rejection of heat to heat sink.

  13. JPL Advanced Thermal Control Technology Roadmap - 2008

    NASA Technical Reports Server (NTRS)

    Birur, Gaj

    2008-01-01

    This slide presentation reviews the status of thermal control technology at JPL and NASA.It shows the active spacecraft that are in vairous positions in the solar syatem, and beyond the solar system and the future missions that are under development. It then describes the challenges that the past missions posed with the thermal control systems. The various solutions that were implemented duirng the decades prior to 1990 are outlined. A review of hte thermal challenges of the future misions is also included. The exploration plan for Mars is then reviewed. The thermal challenges of the Mars Rovers are then outlined. Also the challenges of systems that would be able to be used in to explore Venus, and Titan are described. The future space telescope missions will also need thermal control technological advances. Included is a review of the thermal requirements for manned missions to the Moon. Both Active and passive technologies that have been used and will be used are reviewed. Those that are described are Mechanically Pumped Fluid Loops (MPFL), Loop Heat Pipes, an M3 Passive Cooler, Heat Siwtch for Space and Mars surface applications, phase change material (PCM) technology, a Gas Gap Actuateor using ZrNiH(x), the Planck Sorption Cooler (PCS), vapor compression -- Hybrid two phase loops, advanced pumps for two phase cooling loops, and heat pumps that are lightweight and energy efficient.

  14. Two-stage optical parametric chirped-pulse amplifier using sub-nanosecond pump pulse generated by stimulated Brillouin scattering compression

    NASA Astrophysics Data System (ADS)

    Ogino, Jumpei; Miyamoto, Sho; Matsuyama, Takahiro; Sueda, Keiichi; Yoshida, Hidetsugu; Tsubakimoto, Koji; Miyanaga, Noriaki

    2014-12-01

    We demonstrate optical parametric chirped-pulse amplification (OPCPA) based on two-beam pumping, using sub-nanosecond pulses generated by stimulated Brillouin scattering compression. Seed pulse energy, duration, and center wavelength were 5 nJ, 220 ps, and ˜1065 nm, respectively. The 532 nm pulse from a Q-switched Nd:YAG laser was compressed to ˜400 ps in heavy fluorocarbon FC-40 liquid. Stacking of two time-delayed pump pulses reduced the amplifier gain fluctuation. Using a walk-off-compensated two-stage OPCPA at a pump energy of 34 mJ, a total gain of 1.6 × 105 was obtained, yielding an output energy of 0.8 mJ. The amplified chirped pulse was compressed to 97 fs.

  15. Cascade Reverse Osmosis Air Conditioning System: Cascade Reverse Osmosis and the Absorption Osmosis Cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    BEETIT Project: Battelle is developing a new air conditioning system that uses a cascade reverse osmosis (RO)-based absorption cycle. Analyses show that this new cycle can be as much as 60% more efficient than vapor compression, which is used in 90% of air conditioners. Traditional vapor-compression systems use polluting liquids for a cooling effect. Absorption cycles use benign refrigerants such as water, which is absorbed in a salt solution and pumped as liquid—replacing compression of vapor. The refrigerant is subsequently separated from absorbing salt using heat for re-use in the cooling cycle. Battelle is replacing thermal separation of refrigerant withmore » a more efficient reverse osmosis process. Research has shown that the cycle is possible, but further investment will be needed to reduce the number of cascade reverse osmosis stages and therefore cost.« less

  16. Performance Analysis of Stirling Engine-Driven Vapor Compression Heat Pump System

    NASA Astrophysics Data System (ADS)

    Kagawa, Noboru

    Stirling engine-driven vapor compression systems have many unique advantages including higher thermal efficiencies, preferable exhaust gas characteristics, multi-fuel usage, and low noise and vibration which can play an important role in alleviating environmental and energy problems. This paper introduces a design method for the systems based on reliable mathematical methods for Stirling and Rankin cycles using reliable thermophysical information for refrigerants. The model deals with a combination of a kinematic Stirling engine and a scroll compressor. Some experimental coefficients are used to formulate the model. The obtained results show the performance behavior in detail. The measured performance of the actual system coincides with the calculated results. Furthermore, the calculated results clarify the performance using alternative refrigerants for R-22.

  17. Frost Growth CFD Model of an Integrated Active Desiccant Rooftop Unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geoghegan, Patrick J; Petrov, Andrei Y; Vineyard, Edward Allan

    2008-01-01

    A frost growth model is incorporated into a Computational Fluid Dynamics (CFD) simulation of a heat pump by means of a user-defined function in FLUENT, a commercial CFD code. The transient model is applied to the outdoor section of an Integrated Active Desiccant Rooftop (IADR) unit in heating mode. IADR is a hybrid vapor compression and active desiccant unit capable of handling 100% outdoor air (dedicated outdoor air system) or as a total conditioning system, handling both outdoor air and space cooling or heating loads. The predicted increase in flow resistance and loss in heat transfer capacity due to frostmore » build-up are compared to experimental pressure drop readings and thermal imaging. The purpose of this work is to develop a CFD model that is capable of predicting frost growth, an invaluable tool in evaluating the effectiveness of defrost-on-demand cycles.« less

  18. Ground Source Heat Pumps vs. Conventional HVAC: A Comparison of Economic and Environmental Costs

    DTIC Science & Technology

    2009-03-26

    of systems are surface water heat pumps (SWHPs), ground water heat pumps (GWHPs), and ground coupled heat pumps ( GCHPs ) (Kavanaugh & Rafferty, 1997...Kavanaugh & Rafferty, 1997). Ground Coupled Heat Pumps (Closed-Loop Ground Source Heat Pumps) GCHPs , otherwise known as closed-loop GSHPs, are the...Significant confusion has arisen through the use of GCHP and closed-loop GSHP terminology. Closed-loop GSHP is the preferred nomenclature for this

  19. Energy-efficient miniature-scale heat pumping based on shape memory alloys

    NASA Astrophysics Data System (ADS)

    Ossmer, Hinnerk; Wendler, Frank; Gueltig, Marcel; Lambrecht, Franziska; Miyazaki, Shuichi; Kohl, Manfred

    2016-08-01

    Cooling and thermal management comprise a major part of global energy consumption. The by far most widespread cooling technology today is vapor compression, reaching rather high efficiencies, but promoting global warming due to the use of environmentally harmful refrigerants. For widespread emerging applications using microelectronics and micro-electro-mechanical systems, thermoelectrics is the most advanced technology, which however hardly reaches coefficients of performance (COP) above 2.0. Here, we introduce a new approach for energy-efficient heat pumping using the elastocaloric effect in shape memory alloys. This development is mainly targeted at applications on miniature scales, while larger scales are envisioned by massive parallelization. Base materials are cold-rolled textured Ti49.1Ni50.5Fe0.4 foils of 30 μm thickness showing an adiabatic temperature change of +20/-16 K upon superelastic loading/unloading. Different demonstrator layouts consisting of mechanically coupled bridge structures with large surface-to-volume ratios are developed allowing for control by a single actuator as well as work recovery. Heat transfer times are in the order of 1 s, being orders of magnitude faster than for bulk geometries. Thus, first demonstrators achieve values of specific heating and cooling power of 4.5 and 2.9 W g-1, respectively. A maximum temperature difference of 9.4 K between heat source and sink is reached within 2 min. Corresponding COP on the device level are 4.9 (heating) and 3.1 (cooling).

  20. Edwards nXDS15iC Vacuum Scroll Pump Pressure Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sessions, H.; Morgan, G. A.

    2013-07-17

    The SRNL High Pressure Laboratory performed testing on an Edwards Model nXDS15iC Vacuum Scroll Pump on July 10th and 11th of 2013 at 723-A. This testing was done in an attempt to obtain initial compression ratio information for the nXDS15iC pump, with compression ratio defined as discharge pressure of the pump divided by suction pressure. Pressure burst testing was also done on the pump to determine its design pressure for pressure safety reasons. The Edwards nXDS15iC pump is being evaluated by SRNL for use part of the SHINE project being executed by SRNL.

  1. Experimental investigation on predictive models for motive flow calculation through ejectors for transcritical CO2 heat pumps

    NASA Astrophysics Data System (ADS)

    Boccardi, G.; Lillo, G.; Mastrullo, R.; Mauro, A. W.; Saraceno, L.; Pieve, M.; Trinchieri, R.

    2017-11-01

    Nowadays, air conditioning systems, especially those used in residential and office buildings, contribute largely to the energy consumptions and to the direct and indirect emissions of greenhouse gases. Carbon dioxide (CO2) is an interesting option to replace traditional HFCs in vapor compression systems, due to its environmentally friendly characteristics: zero ODP and extremely low GWP. In the case of heat pumps, the use of ejection systems for the expansion phase can contribute to recovery a fraction of the mechanical energy otherwise dissipated as friction, bringing to significant benefits in terms of performance. Currently, at the laboratory DTE-PCU-SPCT of the research center ENEA (Casaccia) in cooperation with the Industrial Engineering Department of Federico II University of Naples, a project is in progress, in order to evaluate experimentally the effect of several ejectors geometries on the global performance of a CO2 heat pump working with a transcritical cycle. As a part of this project, measurements of the motive flow mass flow rate have been carried out, in transcritical CO2 conditions. The ejector sizing is a crucial point for the balancing of components and the correct operation of the CO2 heat pump and therefore the availability of reliable calculation methods for the motive flowrate would be useful. This paper presents the results obtained by a comparison between the new experimental data and the predictions of some predictive semi-empirical correlations available in the open literature for transcritical CO2 conditions. Their predictions are analyzed as a function of the main physical parameters of the process to assess their reliability compared to the experimental data. Based on these indications and of the available experimental data, a new semi-empirical correlations and a calculation method based on the hypothesis of isentropic and choked two-phase flow are presented.

  2. Analysis & Tools to Spur Increased Deployment of “Waste Heat” Rejection/Recycling Hybrid Ground-source Heat Pump Systems in Hot, Arid or Semiarid Climates Like Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masada, Glenn; Moon, Tess

    2013-09-01

    This project team analyzed supplemental heat rejection/recovery (SHR) devices or systems that could be used in hybrid ground source heat pump (HGHP) systems located in arid or semi-arid regions in southwestern U.S. Identification of effective SHR solutions would enhance the deployment of ground source heat pumps (GHP) in these regions. In a parallel effort, the team developed integrated GHP models that coupled the building load, heat pump, and ground loop subsystems and which could be applied to residential and commercial office buildings. Then GHP and HGHP performances could be compared in terms of operational performance and life-cycle costs. Several potentialmore » SHR devices were analyzed by applying two strategies: 1) to remove heat directly from the water in the ground loop before it enters the ground and 2) to remove heat in the refrigerant loop of the vapor compression cycle (VCC) of the heat pump so less heat is transferred to the water loop at the condenser of the VCC. Cooling towers, adsorption coolers, and thermoelectric liquid coolers were included in strategy 1, and expanded desuperheaters, thermosyphons, and an optimized VCC were included in strategy 2. Of all SHR devices analyzed, only the cooling tower provided a cost-effective performance enhancement. For the integrated GHP model, the project team selected the building load model HAMBASE and its powerful computational Simulink/MatLab platform, empirical performance map models of the heat pumps based upon manufacturers’ performance data, and a ground loop model developed by Oklahoma State University and rewritten for this project in Simulink/MatLab. The design process used GLHEPRO, also from Oklahoma State University, to size the borehole fields. The building load and ground loop models were compared with simulations from eQuest, ASHRAE 140-2008 standards, EnergyPlus, and GLHEPRO and were found to predict those subsystems’ performance well. The integrated GHP model was applied to a 195m 2 (2100ft 2) residential building and a 4,982m 2 (53,628ft 2) three-story commercial office building, and it ran 10-15 year simulations. The integrated GHP model and its Simulink platform provided residential data, ranging from seconds to years, and commercial office building data, ranging from minutes to years. A cooling tower model was coupled to the base case integrated GHP model for the residential building and the resulting HGHP system provided a cost-effective solution for the Austin, TX location. Simulations for both the residential and commercial building models were run with varying degrees of SHR (device/system not identified) and the results were found to significantly decrease installation costs, increase heat pump efficiency (lower entering water temperature), and prolong the lifetime of the borehole field. Lifetime cycle costs were estimated from the simulation results. Sensitivity studies on system operating performance and lifetime costs were performed on design parameters, such as construction materials, borehole length, borehole configuration and spacing, grout conductivity, and effects of SHR. While some of the results are intuitive, these studies provided quantitative estimates of improved performance and cost. One of the most important results of this sensitivity study is that overall system performance is very sensitive to these design parameters and that modeling and simulation are essential tools to design cost-effective systems.« less

  3. Hydraulics of Fuel-Injection Pumps for Compression-ignition Engines

    NASA Technical Reports Server (NTRS)

    Rothrock, A M

    1932-01-01

    Formulas are derived for computing the instantaneous pressures delivered by a fuel pump. The first derivation considers the compressibility of the fuel and the second, the compressibility, elasticity, and inertia of the fuel. The second derivation follows that given by Sass; it is shown to be the more accurate of the two. Additional formulas are given for determining the resistance losses in the injection tube. Experimental data are presented in support of the analyses. The report is concluded with an application of the theory to the design of fuel pump injection systems for which sample calculations are included.

  4. Heat-Powered Pump for Liquid Metals

    NASA Technical Reports Server (NTRS)

    Campana, R. J.

    1986-01-01

    Proposed thermoelectromagnetic pump for liquid metal powered by waste heat; needs no battery, generator, or other external energy source. Pump turns part of heat in liquid metal into pumping energy. In combination with primary pump or on its own, thermoelectric pump circulates coolant between reactor and radiator. As long as there is decay heat to be removed, unit performs function.

  5. Development of a Self-contained Heat Rejection Module (SHRM), phase 1

    NASA Technical Reports Server (NTRS)

    Fleming, M. L.

    1976-01-01

    The laboratory prototype test hardware and testing of the Self-Contained Heat Rejection Module are discussed. The purpose of the test was to provide operational and design experience for application to a flight prototype design. It also provided test evaluation of several of the actual components which were to be used in the flight prototype hardware. Several changes were made in the flight prototype design due to these tests including simpler line routing, relocation of remote operated valves to a position upstream of the expansion valves, and shock mounting of the compressor. The concept of heat rejection control by compressor speed reduction was verified and the liquid receiver, accumulator, remote control valves, oil separator and power source were demonstrated as acceptable. A procedure for mode changes between pumped fluid and vapor compression was developed.

  6. Towards pump-probe experiments of defect dynamics with short ion beam pulses

    NASA Astrophysics Data System (ADS)

    Schenkel, T.; Lidia, S. M.; Weis, C. D.; Waldron, W. L.; Schwartz, J.; Minor, A. M.; Hosemann, P.; Kwan, J. W.

    2013-11-01

    A novel, induction type linear accelerator, the Neutralized Drift Compression eXperiment (NDCX-II), is currently being commissioned at Berkeley Lab. This accelerator is designed to deliver intense (up to 3 × 1011 ions/pulse), 0.6 to ∼600 ns duration pulses of 0.05-1.2 MeV lithium ions at a rate of about 2 pulses per minute onto 1-10 mm scale target areas. When focused to mm-diameter spots, the beam is predicted to volumetrically heat micrometer thick foils to temperatures of ∼30,000 °K. At lower beam power densities, the short excitation pulse with tunable intensity and time profile enables pump-probe type studies of defect dynamics in a broad range of materials. We briefly describe the accelerator concept and design, present results from beam pulse shaping experiments and discuss examples of pump-probe type studies of defect dynamics following irradiation of materials with intense, short ion beam pulses from NDCX-II.

  7. Heat Pump Drying of Fruits and Vegetables: Principles and Potentials for Sub-Saharan Africa

    PubMed Central

    Fayose, Folasayo; Huan, Zhongjie

    2016-01-01

    Heat pump technology has been used for heating, ventilation, and air-conditioning in domestic and industrial sectors in most developed countries of the world including South Africa. However, heat pump drying (HPD) of fruits and vegetables has been largely unexploited in South Africa and by extension to the sub-Saharan African region. Although studies on heat pump drying started in South Africa several years ago, not much progress has been recorded to date. Many potential users view heat pump drying technology as fragile, slow, and high capital intensive when compared with conventional dryer. This paper tried to divulge the principles and potentials of heat pump drying technology and the conditions for its optimum use. Also, various methods of quantifying performances during heat pump drying as well as the quality of the dried products are highlighted. Necessary factors for maximizing the capacity and efficiency of a heat pump dryer were identified. Finally, the erroneous view that heat pump drying is not feasible economically in sub-Saharan Africa was clarified. PMID:26904668

  8. Research of waste heat energy efficiency for absorption heat pump recycling thermal power plant circulating water

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Zhang, Yu; Zhou, Liansheng; E, Zhijun; Wang, Kun; Wang, Ziyue; Li, Guohao; Qu, Bin

    2018-02-01

    The waste heat energy efficiency for absorption heat pump recycling thermal power plant circulating water has been analyzed. After the operation of heat pump, the influences on power generation and heat generation of unit were taken into account. In the light of the characteristics of heat pump in different operation stages, the energy efficiency of heat pump was evaluated comprehensively on both sides of benefits belonging to electricity and benefits belonging to heat, which adopted the method of contrast test. Thus, the reference of energy efficiency for same type projects was provided.

  9. Inelastic X-ray Scattering Measurements of Ionization in Warm, Dense Matter

    NASA Astrophysics Data System (ADS)

    Davis, Paul F.

    In this work we demonstrate spectrally resolved x-ray scattering from electron-plasma waves in shock-compressed deuterium and proton-heated matter. Because the spectral signature of inelastic x-ray scattering is strongly dependent on the free electron density of the system, it is used to infer ionization in dynamically heated samples. Using 2-6 ns, 500 J laser pulses from LLNL's Janus laser, we shocked liquid deuterium to pressures approaching 50 GPa, reaching compressions of 4 times liquid density. A second laser produced intense 2 keV x-rays. By collecting and spectrally dispersing forward scattered photons at 45°, the onset of ionization was detected at compressions of about 3 times in the form of plasmon oscillations. Backscattered x-rays bolstered this observation by measuring the free electron distribution through Compton scattering. Comparison with simulations shows very close agreement between the pressure dependence of ionization and molecular dissociation in dynamically compressed deuterium. In a second set of experiments, a 10 ps, 200 J Titan laser pulse was split into two beams. One created a stream of MeV protons to heat samples of boron and boron-nitride and the other pumped 4.5 keV K-alpha radiation in a titanium foil to probe the hot target. We observed scattered x-rays 300 ps after heating, noting a strong difference in average ionization between the two target materials at temperatures of 16 eV and very similar mass densities. Comparison with electron structure calculations suggests that this difference is due to a persistence of long-range ion structure in BN resulting in high-temperature band structure. These results underscore the importance of understanding the complex electron structure of materials even at electron-volt temperatures and gigapascal pressures. Our results provide new data to guide the theoretical modeling of warm, dense matter important to understanding giant planets and inertial fusion targets.

  10. Gas-heat-pump development

    NASA Astrophysics Data System (ADS)

    Creswick, F. A.

    Incentives for the development of gas heat pumps are discussed. Technical progress made on several promising technologies was reviewed. The status of development of gas-engine-driven heat pumps, the absorption cycle for the near- and long-term gas heat pump systems, the Stirling engine, the small Rankine-cycle engines, and gas-turbine-driven heat pump systems were briefly reviewed. Progress in the US, Japan, and Europe is noted.

  11. Preprototype vapor compression distillation subsystem. [recovering potable water from wastewater

    NASA Technical Reports Server (NTRS)

    Ellis, G. S.; Wynveen, R. A.; Schubert, F. H.

    1979-01-01

    A three-person capacity preprototype vapor compression distillation subsystem for recovering potable water from wastewater aboard spacecraft was designed, assembled, and tested. The major components of the subsystem are: (1) a distillation unit which includes a compressor, centrifuge, central shaft, and outer shell; (2) a purge pump; (3) a liquids pump; (4) a post-treat cartridge; (5) a recycle/filter tank; (6) an evaporator high liquid level sensor; and (7) the product water conductivity monitor. A computer based control monitor instrumentation carries out operating mode change sequences, monitors and displays subsystem parameters, maintains intramode controls, and stores and displays fault detection information. The mechanical hardware occupies 0.467 m3, requires 171 W of electrical power, and has a dry weight of 143 kg. The subsystem recovers potable water at a rate of 1.59 kg/hr, which is equivalent to a duty cycle of approximately 30% for a crew of three. The product water has no foul taste or odor. Continued development of the subsystem is recommended for reclaiming water for human consumption as well as for flash evaporator heat rejection, urinal flushing, washing, and other on-board water requirements.

  12. Comparison of ground-coupled solar-heat-pump systems to conventional systems for residential heating, cooling and water heating

    NASA Astrophysics Data System (ADS)

    Choi, M. K.; Morehouse, J. H.; Hughes, P. J.

    1981-07-01

    An analysis is performed of ground-coupled stand-alone and series configured solar-assisted liquid-to-air heat pump systems for residences. The year-round thermal performance of these systems for space heating, space cooling, and water heating is determined by simulation and compared against non-ground-coupled solar heat pump systems as well as conventional heating and cooling systems in three geographic locations: Washington, DC; Fort Worth, Texas; and Madison, Wisconsin. The results indicate that without tax credits a combined solar/ground-coupled heat pump system for space heating and cooling is not cost competitive with conventional systems. Its thermal performance is considerably better than non-ground-coupled solar heat pumps in Fort Worth. Though the ground-coupled stand-alone heat pump provides 51 percent of the heating and cooling load with non-purchased energy in Fort Worth, its thermal performance in Washington and Madison is poor.

  13. Rotary magnetic heat pump

    DOEpatents

    Kirol, Lance D.

    1988-01-01

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation.

  14. Rotary magnetic heat pump

    DOEpatents

    Kirol, L.D.

    1987-02-11

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

  15. Development of Carbon Dioxide Hermitic Compressor

    NASA Astrophysics Data System (ADS)

    Imai, Satoshi; Oda, Atsushi; Ebara, Toshiyuki

    Because of global environmental problems, the existing refrigerants are to be replaced with natural refrigerants. CO2 is one of the natural refrigerants and environmentally safe, inflammable and non-toxic refrigerant. Therefore high efficiency compressor that can operate with natural refrigerants, especially CO2, needs to be developed. We developed a prototype CO2 hermetic compressor, which is able to use in carbon dioxide refrigerating systems for practical use. The compressor has two rolling pistons, and it leads to low vibrations, low noise. In additions, two-stage compression with two cylinders is adopted, because pressure difference is too large to compress in one stage. And inner pressure of the shell case is intermediate pressure to minimize gas leakage between compressing rooms and inner space of shell case. Intermediate pressure design enabled to make the compressor smaller in size and lighter in weight. As a result, the compressor achieved high efficiency and high reliability by these technology. We plan to study heat pump water heater, cup vending machine and various applications with CO2 compressor.

  16. Development of a nonazeotropic heat pump for crew hygiene water heating

    NASA Technical Reports Server (NTRS)

    Walker, David H.; Deming, Glenn I.

    1991-01-01

    A heat pump system is currently under development to produce hot water for crew hygiene on future manned space missions. The heat pump uses waste heat sources and a nonazeotropic working fluid in a highly efficient cycle. The potential benefits include a reduction in peak power draw from 2 to 5 kW for electric cartridge heaters to just more than 100 W for the heat pump. As part of the heat pump development project, a unique high efficiency compressor was developed to maintain lubrication in a zero-gravity environment.

  17. IEA HPT ANNEX 41 – Cold climate heat pumps: US country report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groll, Eckhard A.; Baxter, Van D.

    In 2012 the International Energy Agency (IEA) Heat Pump Programme (now the Heat Pump Technologies (HPT) program) established Annex 41 to investigate technology solutions to improve performance of heat pumps for cold climates. Four IEA HPT member countries are participating in the Annex – Austria, Canada, Japan, and the United States (U.S.). The principal focus of Annex 41 is on electrically driven air-source heat pumps (ASHP) since that system type has the lowest installation cost of all heat pump alternatives. They also have the most significant performance challenges given their inherent efficiency and capacity issues at cold outdoor temperatures. Availabilitymore » of ASHPs with improved low ambient performance would help bring about a much stronger heat pump market presence in cold areas, which today rely predominantly on fossil fuel furnace heating systems.« less

  18. Thermal and economic assessment of ground-coupled storage for residential solar heat pump systems

    NASA Astrophysics Data System (ADS)

    Choi, M. K.; Morehouse, J. H.

    1980-11-01

    This study performed an analysis of ground-coupled stand-alone and series configured solar-assisted liquid-to-air heat pump systems for residences. The year-round thermal performance of these systems for space heating, space cooling, and water heating were determined by simulation and compared against non-ground-coupled solar heat pump systems as well as conventional heating and cooling systems in three geographic locations: Washington, D.C., Fort Worth, Tex., and Madison, Wis. The results indicate that without tax credits a combined solar/ground-coupled heat pump system for space heating and cooling is not cost competitive with conventional systems. Its thermal performance is considerably better than non-ground-coupled solar heat pumps in Forth Worth. Though the ground-coupled stand-alone heat pump provides 51% of the heating and cooling load with non-purchased energy in Forth Worth, its thermal performance in Washington and Madison is poor.

  19. Energy saving analysis on mine-water source heat pump in a residential district of Henan province, central China

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Duan, Huanlin; Chen, Aidong

    2018-02-01

    In this paper, the mine-water source heat pump system is proposed in residential buildings of a mining community. The coefficient of performance (COP) and the efficiency of exergy are analyzed. The results show that the COP and exergy efficiency of the mine-water source heat pump are improved, the exergy efficiency of mine-water source heat pump is more than 10% higher than that of the air source heat pump.The electric power conservation measure of “peak load shifting” is also emphasized in this article. It shows that itis a very considerable cost in the electric saving by adopting the trough period electricity to produce hot water. Due to the proper temperature of mine water, the mine-watersource heat pump unit is more efficient and stable in performance, which further shows the advantage of mine-water source heat pump in energy saving and environmental protection. It provides reference to the design of similar heat pump system as well.

  20. Refrigerant charge management in a heat pump water heater

    DOEpatents

    Chen, Jie; Hampton, Justin W.

    2014-06-24

    Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, methods of managing refrigerant charge, and methods for heating and cooling a space and heating water. Various embodiments deliver refrigerant gas to a heat exchanger that is not needed for transferring heat, drive liquid refrigerant out of that heat exchanger, isolate that heat exchanger against additional refrigerant flowing into it, and operate the heat pump while the heat exchanger is isolated. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled or adjusted by controlling how much liquid refrigerant is driven from the heat exchanger, by letting refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and segments of refrigerant conduit can be interconnected with various components.

  1. Heat generation and hemolysis at the shaft seal in centrifugal blood pumps.

    PubMed

    Araki, K; Taenaka, Y; Wakisaka, Y; Masuzawa, T; Tatsumi, E; Nakatani, T; Baba, Y; Yagura, A; Eya, K; Toda, K

    1995-01-01

    The heat and hemolysis around a shaft seal were investigated. Materials were original pumps (Nikkiso HMS-15:N-original, and 3M Delphin:D-original), vane-removed pumps (Nvane(-), Dvane(-)), and a small chamber with a shaft coiled by nichrome wire (mock pump). The original pumps were driven at 500 mmHg and 5 L/min, and vane-removed pumps were driven at the same rotation number. An electrical powers of 0, 0.5, 2, and 10 W was supplied to the mock pumps. In vitro hemolytic testing showed that hemolytic indices were 0.027 g/100 L in N-original, 0.013 in Nvane(-), 0.061 in D-original, and 0.012 in Dvane(-). Measurement of heat with a thermally insulated water chamber showed total heat within the pump of 8.62 and 10.85 W, and heat at the shaft seal of 0.87 and 0.62 W in the Nikkiso and Delphin pumps, respectively. Hemolysis and heat generation of mock pumps remained low. The results indicate that the heat generated around the shaft seal was minimal. Hemolysis at the shaft-seal was considerable but not major. Local heat did not affect hemolysis. It was concluded that the shaft-seal affected hemolysis, not by local heat but friction itself.

  2. A capital cost comparison of commercial ground-source heat pump systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rafferty, K.

    1994-06-01

    The purpose of the report is to compare capital costs associated with the three designs of ground source heat pumps. Specifically, the costs considered are those associated with the heat source/heat sink or ground source portion of the system. In order to standardize the heat rejection over the three designs, it was assumed that the heat pump loop would operate at a temperature range of 85{degree} (to the heat pumps) to 95{degree} (from the heat pumps) under peak conditions. The assumption of constant loop temperature conditions for all three permits an apples-to-apples comparison of the alternatives.

  3. Cooling system for high speed aircraft

    NASA Technical Reports Server (NTRS)

    Lawing, P. L.; Pagel, L. L. (Inventor)

    1981-01-01

    The system eliminates the necessity of shielding an aircraft airframe constructed of material such as aluminum. Cooling is accomplished by passing a coolant through the aircraft airframe, the coolant acting as a carrier to remove heat from the airframe. The coolant is circulated through a heat pump and a heat exchanger which together extract essentially all of the added heat from the coolant. The heat is transferred to the aircraft fuel system via the heat exchanger and the heat pump. The heat extracted from the coolant is utilized to power the heat pump. The heat pump has associated therewith power turbine mechanism which is also driven by the extracted heat. The power turbines are utilized to drive various aircraft subsystems, the compressor of the heat pump, and provide engine cooling.

  4. An energy and cost analysis of residential heat pumps in northern climates

    NASA Astrophysics Data System (ADS)

    Martin, J. K.; Oneal, D. L.

    1980-04-01

    Lack of natural gas and high oil prices, combined with the large energy costs of electric resistance heat have forced renewed attention to the heat pump in colder climates. The diversity in heating energy use and cost effectiveness of forty-one currently retailed heat pumps in three northern cities, Boston, Denver, and Minneapolis, were examined. Heat pump heating energy use and annualized life cycle costs were compared with other forms of space heating equipment in those same cities.

  5. Exploring Mbar shock conditions and isochorically heated aluminum at the Matter in Extreme Conditions end station of the Linac Coherent Light Source

    DOE PAGES

    Doppner, T.; LePape, S.; Ma, T.; ...

    2014-08-11

    Recent experiments performed at the Matter in Extreme Conditions end station of the Linac Coherent Light Source (LCLS) have demonstrated the first spectrally resolved measurements of plasmons from isochorically heated aluminum. The experiments have been performed using a seeded 8-keV x-ray laser beam as a pump and probe to both volumetrically heat and scatterx-rays from aluminum. Collective x-ray Thomson scattering spectra show a well-resolved plasmon feature that is down-shifted in energy by 19 eV. In addition, Mbar shock pressures from laser-compressed aluminum foils using velocity interferometer system for any reflector have been measured. Furthermore, the combination of experiments fully demonstratesmore » the possibility to perform warm dense matter studies at the LCLS with unprecedented accuracy and precision.« less

  6. Heat pumps in the PESAG supply district

    NASA Astrophysics Data System (ADS)

    Osterhus, A.

    1980-04-01

    The paper examines the feasibility of using large scale heat pumps in the PESAG (Paderborner Elektrizitaetswerk und Strassenbahn AG) power supply district. It is shown that due to favorable geological factors in the district which allow the tapping of ground water, the market share for heat pumps will increase steadily. Topics discussed include: calculation of electricity consumption, operating experiences with heat pumps in one- and two-family houses, heat pumps in multifamily houses, and industrially used systems.

  7. Preliminary design of a supercritical CO2 wind tunnel

    NASA Astrophysics Data System (ADS)

    Re, B.; Rurale, A.; Spinelli, A.; Guardone, A.

    2017-03-01

    The preliminary design of a test-rig for non-ideal compressible-fluid flows of carbon dioxide is presented. The test-rig is conceived to investigate supersonic flows that are relevant to the study of non-ideal compressible-fluid flows in the close proximity of the critical point and of the liquid-vapor saturation curve, to the investigation of drop nucleation in compressors operating with supercritical carbon dioxide and and to the study of flow conditions similar to those encountered in turbines for Organic Rankine Cycle applications. Three different configurations are presented and examined: a batch-operating test-rig, a closed-loop Brayton cycle and a closed-loop Rankine cycle. The latter is preferred for its versatility and for economic reasons. A preliminary design of the main components is reported, including the heat exchangers, the chiller, the pumps and the test section.

  8. 24 CFR 3280.702 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (in the case of a heat pump) heating system which includes the refrigerant pump (compressor) and the external heat exchanger. Air conditioning evaporator section means a heat exchanger used to cool or (in the case of a heat pump) heat air for use in comfort cooling (or heating) the living space. Air...

  9. 24 CFR 3280.702 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (in the case of a heat pump) heating system which includes the refrigerant pump (compressor) and the external heat exchanger. Air conditioning evaporator section means a heat exchanger used to cool or (in the case of a heat pump) heat air for use in comfort cooling (or heating) the living space. Air...

  10. APPLICATIONS OF LASERS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Laser system based on a commercial microwave oscillator with time compression of a microwave pump pulse

    NASA Astrophysics Data System (ADS)

    Arteev, M. S.; Vaulin, V. A.; Slinko, V. N.; Chumerin, P. Yu; Yushkov, Yu G.

    1992-06-01

    An analysis is made of the possibility of using a commercial microsecond microwave oscillator, supplemented by a device for time compression of microwave pulses, in pumping of industrial lasers with a high efficiency of conversion of the pump source energy into laser radiation. The results are reported of preliminary experiments on the commissioning of an excimer XeCl laser.

  11. Ultra-high speed vacuum pump system with first stage turbofan and second stage turbomolecular pump

    DOEpatents

    Jostlein, Hans

    2006-04-04

    An ultra-high speed vacuum pump evacuation system includes a first stage ultra-high speed turbofan and a second stage conventional turbomolecular pump. The turbofan is either connected in series to a chamber to be evacuated, or is optionally disposed entirely within the chamber. The turbofan employs large diameter rotor blades operating at high linear blade velocity to impart an ultra-high pumping speed to a fluid. The second stage turbomolecular pump is fluidly connected downstream from the first stage turbofan. In operation, the first stage turbofan operates in a pre-existing vacuum, with the fluid asserting only small axial forces upon the rotor blades. The turbofan imparts a velocity to fluid particles towards an outlet at a high volume rate, but moderate compression ratio. The second stage conventional turbomolecular pump then compresses the fluid to pressures for evacuation by a roughing pump.

  12. Process Options for Nominal 2-K Helium Refrigeration System Designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter Knudsen, Venkatarao Ganni

    Nominal 2-K helium refrigeration systems are frequently used for superconducting radio frequency and magnet string technologies used in accelerators. This paper examines the trade-offs and approximate performance of four basic types of processes used for the refrigeration of these technologies; direct vacuum pumping on a helium bath, direct vacuum pumping using full or partial refrigeration recovery, cold compression, and hybrid compression (i.e., a blend of cold and warm sub-atmospheric compression).

  13. Pre-compression volume on flow ripple reduction of a piston pump

    NASA Astrophysics Data System (ADS)

    Xu, Bing; Song, Yuechao; Yang, Huayong

    2013-11-01

    Axial piston pump with pre-compression volume(PCV) has lower flow ripple in large scale of operating condition than the traditional one. However, there is lack of precise simulation model of the axial piston pump with PCV, so the parameters of PCV are difficult to be determined. A finite element simulation model for piston pump with PCV is built by considering the piston movement, the fluid characteristic(including fluid compressibility and viscosity) and the leakage flow rate. Then a test of the pump flow ripple called the secondary source method is implemented to validate the simulation model. Thirdly, by comparing results among the simulation results, test results and results from other publications at the same operating condition, the simulation model is validated and used in optimizing the axial piston pump with PCV. According to the pump flow ripples obtained by the simulation model with different PCV parameters, the flow ripple is the smallest when the PCV angle is 13°, the PCV volume is 1.3×10-4 m3 at such operating condition that the pump suction pressure is 2 MPa, the pump delivery pressure 15 MPa, the pump speed 1 000 r/min, the swash plate angle 13°. At the same time, the flow ripple can be reduced when the pump suction pressure is 2 MPa, the pump delivery pressure is 5 MPa,15 MPa, 22 MPa, pump speed is 400 r/min, 1 000 r/min, 1 500 r/min, the swash plate angle is 11°, 13°, 15° and 17°, respectively. The finite element simulation model proposed provides a method for optimizing the PCV structure and guiding for designing a quieter axial piston pump.

  14. The influence of heat sink temperature on the seasonal efficiency of shallow geothermal heat pumps

    NASA Astrophysics Data System (ADS)

    Pełka, Grzegorz; Luboń, Wojciech; Sowiżdżał, Anna; Malik, Daniel

    2017-11-01

    Geothermal heat pumps, also known as ground source heat pumps (GSHP), are the most efficient heating and cooling technology utilized nowadays. In the AGH-UST Educational and Research Laboratory of Renewable Energy Sources and Energy Saving in Miękinia, shallow geothermal heat is utilized for heating. In the article, the seasonal efficiency of two geothermal heat pump systems are described during the 2014/2015 heating season, defined as the period between 1st October 2014 and 30th April 2015. The first system has 10.9 kW heating capacity (according to European Standard EN 14511 B0W35) and extracts heat from three vertical geothermal loops at a depth of 80m each. During the heating season, tests warmed up the buffer to 40°C. The second system has a 17.03 kW heating capacity and extracts heat from three vertical geothermal loops at a depth of 100 m each, and the temperature of the buffer was 50°C. During the entire heating season, the water temperatures of the buffers was constant. Seasonal performance factors were calculated, defined as the quotient of heat delivered by a heat pump to the system and the sum of electricity consumed by the compressor, source pump, sink pump and controller of heat pumps. The measurements and calculations give the following results: - The first system was supplied with 13 857 kWh/a of heat and consumed 3 388 kWh/a electricity. The SPF was 4.09 and the average temperature of outlet water from heat pump was 40.8°C, and the average temperature of brine flows into the evaporator was 3.7 °C; - The second system was supplied with 12 545 kWh/a of heat and consumed 3 874 kWh/a electricity. The SPF was 3.24 and the average temperature of outlet water from heat pump was 51.6°C, and the average temperature of brine flows into the evaporator was 5.3°C. To summarize, the data shown above presents the real SPF of the two systems. It will be significant in helping to predict the SPF of objects which will be equipped with ground source heat pumps.

  15. 77 FR 8178 - Test Procedures for Central Air Conditioners and Heat Pumps: Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-14

    ... distribution of those central air conditioning systems and heat pump systems manufactured after January 1, 2010... system central air conditioners and heat pumps be tested using ``the evaporator coil that is likely to... issued two guidance documents surrounding testing central air conditioner and heat pump systems utilizing...

  16. 24 CFR 3280.702 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... means that portion of a refrigerated air cooling or (in the case of a heat pump) heating system which includes the refrigerant pump (compressor) and the external heat exchanger. Air conditioning evaporator section means a heat exchanger used to cool or (in the case of a heat pump) heat air for use in comfort...

  17. Dual-Pump CARS Development and Application to Supersonic Combustion

    NASA Astrophysics Data System (ADS)

    Magnotti, Gaetano

    Successful design of hypersonic air-breathing engines requires new computational fluid dynamics (CFD) models for turbulence and turbulence-chemistry interaction in supersonic combustion. Unfortunately, not enough data are available to the modelers to develop and validate their codes, due to difficulties in taking measurements in such a harsh environment. Dual-pump coherent anti-Stokes Raman spectroscopy (CARS) is a non-intrusive, non-linear, laser-based technique that provides temporally and spatially resolved measurements of temperature and absolute mole fractions of N2, O2 and H2 in H2-air flames. A dual-pump CARS instrument has been developed to obtain measurements in supersonic combustion and generate databases for the CFD community. Issues that compromised previous attempts, such as beam steering and high irradiance perturbation effects, have been alleviated or avoided. Improvements in instrument precision and accuracy have been achieved. An axis-symmetric supersonic combusting coaxial jet facility has been developed to provide a simple, yet suitable flow to CFD modelers. The facility provides a central jet of hot "vitiated air" simulating the hot air entering the engine of a hypersonic vehicle flying at Mach numbers between 5 and 7. Three different silicon carbide nozzles, with exit Mach number 1, 1.6 and 2, are used to provide flows with the effects of varying compressibility. H2 co-flow is available in order to generate a supersonic combusting free jet. Dual-pump CARS measurements have been obtained for varying values of flight and exit Mach numbers at several locations. Approximately one million Dual-pump CARS single shots have been collected in the supersonic jet for varying values of flight and exit Mach numbers at several locations. Data have been acquired with a H2 co-flow (combustion case) or a N 2 co-flow (mixing case). Results are presented and the effects of the compressibility and of the heat release are discussed.

  18. Measured Performance of a Low Temperature Air Source Heat Pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R.K. Johnson

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor “boosted heat pump” technology. The Low Temperature Heat Pump system operates with four increasing levels of capacity (heat output) as the outdoor temperature drops.

  19. River Gardens Intermediate-Care Facility water-to-air heating and air-conditioning demonstration project. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, R.C.

    An integrated system of heat pumps is used to reject heat into or extract heat from circulating water from a shallow well adjacent to the river to demonstrate the efficiency and fuel cost savings of water-to-air heat pumps, without the expense of drilling a deep well. Water is returned unpolluted to the Guadalupe River and is circulated through a five-building complex at River Gardens Intermediate Care Facility for the Mentally Retarded in New Braunfels, Texas. The water is used as a heat source or sink for 122 heat pumps providing space heating and cooling, and for refrigeration and freezer units.more » The system was not installed as designed, which resulted in water pumping loads being higher than the original design. Electrical consumption for pumping water represented 36 to 37% of system electrical consumption. Without the water pumping load, the water-to-air system was an average of 25% more efficient in heating than a comparable air-to-air unit with resistance heating. With water pumping load included, the installed system averaged 17% less efficient in cooling and 19% more efficient in heating than the comparable unit.« less

  20. A simulation-based study on different control strategies for variable speed pump in distributed ground source heat pump systems

    DOE PAGES

    Liu, Xiaobing; Zheng, O'Neill; Niu, Fuxin

    2016-01-01

    Most commercial ground source heat pump systems (GSHP) in the United States are in a distributed configuration. These systems circulate water or an anti-freeze solution through multiple heat pump units via a central pumping system, which usually uses variable speed pump(s). Variable speed pumps have potential to significantly reduce pumping energy use; however, the energy savings in reality could be far away from its potential due to improper pumping system design and controls. In this paper, a simplified hydronic pumping system was simulated with the dynamic Modelica models to evaluate three different pumping control strategies. This includes two conventional controlmore » strategies, which are to maintain a constant differential pressure across either the supply and return mains, or at the most hydraulically remote heat pump; and an innovative control strategy, which adjusts system flow rate based on the demand of each heat pump. The simulation results indicate that a significant overflow occurs at part load conditions when the variable speed pump is controlled to main a constant differential pressure across the supply and return mains of the piping system. On the other hand, an underflow occurs at part load conditions when the variable speed pump is controlled to maintain a constant differential pressure across the furthest heat pump. The flow-demand-based control can provide needed flow rate to each heat pump at any given time, and with less pumping energy use than the two conventional controls. Finally, a typical distributed GSHP system was studied to evaluate the energy saving potential of applying the flow-demand-based pumping control strategy. This case study shows that the annual pumping energy consumption can be reduced by 62% using the flow-demand-based control compared with that using the conventional pressure-based control to maintain a constant differential pressure a cross the supply and return mains.« less

  1. Solar Assisted Ground Source Heat Pump Performance in Nearly Zero Energy Building in Baltic Countries

    NASA Astrophysics Data System (ADS)

    Januševičius, Karolis; Streckienė, Giedrė

    2013-12-01

    In near zero energy buildings (NZEB) built in Baltic countries, heat production systems meet the challenge of large share domestic hot water demand and high required heating capacity. Due to passive solar design, cooling demand in residential buildings also needs an assessment and solution. Heat pump systems are a widespread solution to reduce energy use. A combination of heat pump and solar thermal collectors helps to meet standard requirements and increases the share of renewable energy use in total energy balance of country. The presented paper describes a simulation study of solar assisted heat pump systems carried out in TRNSYS. The purpose of this simulation was to investigate how the performance of a solar assisted heat pump combination varies in near zero energy building. Results of three systems were compared to autonomous (independent) systems simulated performance. Different solar assisted heat pump design solutions with serial and parallel solar thermal collector connections to the heat pump loop were modelled and a passive cooling possibility was assessed. Simulations were performed for three Baltic countries: Lithuania, Latvia and Estonia.

  2. Magnetic heat pump flow director

    NASA Technical Reports Server (NTRS)

    Howard, Frank S. (Inventor)

    1995-01-01

    A fluid flow director is disclosed. The director comprises a handle body and combed-teeth extending from one side of the body. The body can be formed of a clear plastic such as acrylic. The director can be used with heat exchangers such as a magnetic heat pump and can minimize the undesired mixing of fluid flows. The types of heat exchangers can encompass both heat pumps and refrigerators. The director can adjust the fluid flow of liquid or gas along desired flow directions. A method of applying the flow director within a magnetic heat pump application is also disclosed where the comb-teeth portions of the director are inserted into the fluid flow paths of the heat pump.

  3. Development and application of soil coupled heat pump

    NASA Astrophysics Data System (ADS)

    Liu, Lu

    2017-05-01

    Soil coupled heat pump technology is a new clean heating mode, is the world's most energy efficient heating one of the ways. And because of the use of renewable geothermal resources with high heating performance so more and more people's attention. Although the use of soil-coupled heat pumps has been in use for more than 50 years (the first application in the United States), the market penetration of this technology is still in its infancy. This paper will focus on the development, characteristics and application of the coupled heat pump.

  4. Device for quickly sensing the amount of O2 in a combustion product gas

    NASA Technical Reports Server (NTRS)

    Singh, Jag J. (Inventor); Davis, William T. (Inventor); Puster, Richard L. (Inventor)

    1990-01-01

    A sensing device comprising an O2 sensor, a pump, a compressor, and a heater is provided to quickly sense the amount of O2 in a combustion product gas. A sample of the combustion product gas is compressed to a pressure slightly above one atmosphere by the compressor. Next, the heater heats the sample between 800 C and 900 C. Next, the pump causes the sample to be flushed against the electrode located in O2 sensor 6000 to 10,000 times per second. Reference air at approximately one atmosphere is provided to the electrode of O2 sensor. Accordingly, the O2 sensor produces a voltage which is proportional to the amount of oxygen in the combustion product gas. This voltage may be used to control the amount of O2 entering into the combustion chamber which produces the combustion product gas.

  5. Comparative analysis of heat pump and biomass boiler for small detached house heating

    NASA Astrophysics Data System (ADS)

    Olkowski, Tomasz; Lipiński, Seweryn; Olędzka, Aneta

    2017-10-01

    The purpose of the work is to answer the question - which of the two selected heat sources is more economically beneficial for small detached house: heat pump or biomass boiler fuelled with wood-pellets? The comparative analysis of these sources was carried out to discuss the issue. First, cost of both, equipment and operation of selected heat systems were analysed. Additionally, CO2 emission levels associated with these heat systems were determined. The comparative analysis of the costs of both considered heat systems showed that equipment cost of heat pump system is considerably bigger than the cost of biomass boiler system. The comparison of annual operation costs showed that heat pump operation cost is slightly lower than operation cost of biomass boiler. The analysis of above results shows that lower operation cost of heat pump in comparison with biomass boiler cost lets qualify heat pump as more economically justified only after 38 years of work. For both analysed devices, CO2 emission levels were determined. The considerations take into account the fact that heat pump consumes electricity. It is mostly generated through combustion of coal in Poland. The results show that in Poland biomass boiler can be described as not only more economically justified system but also as considerably more ecological.

  6. Magnetic Heat Pump Containing Flow Diverters

    NASA Technical Reports Server (NTRS)

    Howard, Frank S.

    1995-01-01

    Proposed magnetic heat pump contains flow diverters for suppression of undesired flows. If left unchecked, undesired flows mix substantial amounts of partially heated and partially cooled portions of working fluid, effectively causing leakage of heat from heated side to cooled side. By reducing leakage of heat, flow diverters increase energy efficiency of magnetic heat pump, potentially offering efficiency greater than compressor-driven refrigerator.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelaziz, Omar; Qu, Ming; Sun, Xiao-Guang

    Separate sensible and latent cooling systems offer superior energy efficiency performance compared to conventional vapor compression air conditioning systems. In this paper we describe an innovative non-vapor compression system that uses electrochemical compressor (ECC) to pump hydrogen between 2-metal hydride reservoirs to provide the sensible cooling effect. The heat rejected during this process is used to regenerate the ionic liquid (IL) used for desiccant dehumidification. The overall system design is illustrated. The Xergy version 4C electrochemical compressor, while not designed as a high pressure system, develops in excess of 2 MPa (300 psia) and pressure ratios > 30. The projectedmore » base efficiency improvement of the electrochemical compressor is expected to be ~ 20% with higher efficiency when in low capacity mode due to being throttleable to lower capacity with improved efficiency. The IL was tailored to maximize the absorption/desorption rate of water vapor at moderate regeneration temperature. This IL, namely, [EMIm].OAc, is a hydrophilic IL with a working concentration range of 28.98% when operating between 25 75 C. The ECC metal hydride system is expected to show superior performance to typical vapor compression systems. As such, the combined efficiency gains from the use of ECC and separate and sensible cooling would offer significant potential savings to existing vapor compression cooling technology. A high efficiency Window Air Conditioner system is described based on this novel configuration. The system s schematic is provided. Models compared well with actual operating data obtained by running the prototype system. Finally, a model of an LiCl desiccant system in conjunction with the ECC-based metal hydride heat exchangers is provided.« less

  8. Gas Fride Heat Pumps : The Present and Future

    NASA Astrophysics Data System (ADS)

    Kurosawa, Shigekichi; Ogura, Masao

    In japan techniques for saving energy is an important goal since energy resources such as oil and nuclear power are limited. Recently gas fired absorption heat pumps and gas engine driven heat pumps have been installed in facilifies such as hotels, swimming pools and offices.
    In this article recent techniques, applications and future aspects for gas fired heat pumps are explained.

  9. Heat transfer in an evaporation-condensation system in simulated weightlessness conditions

    NASA Astrophysics Data System (ADS)

    Bologa, M. K.; Grosu, F. P.; Kozhevnikov, I. V.; Motorin, O. V.; Polikarpov, A. A.

    2017-10-01

    The process of heat transfer in an evaporation-condensation system (ECS) at circulation of dielectric liquid in a closed thermoelectrohydrodynamic (TEHD) loop consisting of an evaporator, a condenser and electrohydrodynamic (EHD) pump for pumping of heat carrier, is considered. Previously, the authors studied the dependence of heat transfer on the angle of rotation of TEHD loop in a vertical plane. The report contains the results of studies of heat transfer at electrohydrodynamic pumping of the heat carrier (8% solution of acetone in Freon 113) in the condenser area by means of EHD pump of “cone-cone” type. All elements of the ECS are arranged in a horizontal plane and the heat transfer from the heater to the condenser without EHD pumping is impossible. A pulsating heat carrier flow mode, depending on the heat input and the voltage applied to the pump, takes place at EHD pumping. As the input power is decreasing the frequency of the coolant pulsations as well as the departure diameter and number of vapour bubbles are also decreasing. At some critical heat input the pulsations disappear and the transition from turbulent mode to the laminar one takes place causing the decrease of the heat transfer coefficient. The increase of the pumping flow rate by raising the voltage applied to the EHD pump, results in a partial suppression of boiling. The maximum intensification of heat transfer is reached at pulsation frequency of 1.25 Hz. The maximum heat flow from the heater was 4.2·104 W/m2. Graphical representation and the physical interpretation of the results, which reflect the essence of the process, are given.

  10. Energy storage by compressed air. [using windpowered pumps

    NASA Technical Reports Server (NTRS)

    Szego, G. C.

    1973-01-01

    The feasibility of windpower energy storage by compressed air is considered. The system is comprised of a compressor, a motor, and a pump turbine to store air in caverns or aquifiers. It is proposed that storage of several days worth of compressed air up to 650 pounds per square inch can be used to push the aquifier up closer to the container dome and thus initiate piston action by simply compressing air more and more. More energy can be put into it by pressure increase or pushing back the water in the aquifier. This storage system concept has reheat flexibility and lowest cost effectiveness.

  11. 7 CFR 1721.104 - Eligible purposes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... measures: (i) Caulking; (ii) Weather-stripping; (iii) Heat pump systems (including water source heat pumps); (iv) Heat pumps, water heaters, and central heating or central air conditioning system replacements or modifications, which reduce energy consumption; (v) Ceiling insulation; (vi) Wall insulation; (vii) Floor...

  12. 7 CFR 1721.104 - Eligible purposes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... measures: (i) Caulking; (ii) Weather-stripping; (iii) Heat pump systems (including water source heat pumps); (iv) Heat pumps, water heaters, and central heating or central air conditioning system replacements or modifications, which reduce energy consumption; (v) Ceiling insulation; (vi) Wall insulation; (vii) Floor...

  13. 7 CFR 1721.104 - Eligible purposes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... measures: (i) Caulking; (ii) Weather-stripping; (iii) Heat pump systems (including water source heat pumps); (iv) Heat pumps, water heaters, and central heating or central air conditioning system replacements or modifications, which reduce energy consumption; (v) Ceiling insulation; (vi) Wall insulation; (vii) Floor...

  14. 7 CFR 1721.104 - Eligible purposes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... measures: (i) Caulking; (ii) Weather-stripping; (iii) Heat pump systems (including water source heat pumps); (iv) Heat pumps, water heaters, and central heating or central air conditioning system replacements or modifications, which reduce energy consumption; (v) Ceiling insulation; (vi) Wall insulation; (vii) Floor...

  15. 7 CFR 1721.104 - Eligible purposes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... measures: (i) Caulking; (ii) Weather-stripping; (iii) Heat pump systems (including water source heat pumps); (iv) Heat pumps, water heaters, and central heating or central air conditioning system replacements or modifications, which reduce energy consumption; (v) Ceiling insulation; (vi) Wall insulation; (vii) Floor...

  16. Modeling of a Two-Phase Jet Pump with Phase Change, Shocks and Temperature-Dependent Properties

    NASA Technical Reports Server (NTRS)

    Sherif, S. A.

    1998-01-01

    One of the primary motivations behind this work is the attempt to understand the physics of a two-phase jet pump which constitutes part of a flow boiling test facility at NASA-Marshall. The flow boiling apparatus is intended to provide data necessary to design highly efficient two-phase thermal control systems for aerospace applications. The facility will also be capable of testing alternative refrigerants and evaluate their performance using various heat exchangers with enhanced surfaces. The test facility is also intended for use in evaluating single-phase performance of systems currently using CFC refrigerants. Literature dealing with jet pumps is abundant and covers a very wide array of application areas. Example application areas include vacuum pumps which are used in the food industry, power station work, and the chemical industry; ejector systems which have applications in the aircraft industry as cabin ventilators and for purposes of jet thrust augmentation; jet pumps which are used in the oil industry for oil well pumping; and steam-jet ejector refrigeration, to just name a few. Examples of work relevant to this investigation includes those of Fairuzov and Bredikhin (1995). While past researchers have been able to model the two-phase flow jet pump using the one-dimensional assumption with no shock waves and no phase change, there is no research known to the author apart from that of Anand (1992) who was able to account for condensation shocks. Thus, one of the objectives of this work is to model the dynamics of fluid interaction between a two-phase primary fluid and a subcooled liquid secondary fluid which is being injected employing atomizing spray injectors. The model developed accounts for phase transformations due to expansion, compression, and mixing. It also accounts for shock waves developing in the different parts of the jet pump as well as temperature and pressure dependencies of the fluid properties for both the primary two-phase mixture and the secondary subcooled liquid. The research effort on which this document partly reports described a relatively simple model capable of describing the performance of a two-phase flow jet pump. The model is based on the isentropic homogeneous expansion/compression hypothesis and is capable of fully incorporating the effects of shocks in both the mixing chamber and the throat/diffuser parts of the pump. The physical system chosen is identical to that experimentally tested by Fairuzov and Bredikhin (1995) and should therefore be relatively easy to validate.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaobing; Zheng, O'Neill; Niu, Fuxin

    Most commercial ground source heat pump systems (GSHP) in the United States are in a distributed configuration. These systems circulate water or an anti-freeze solution through multiple heat pump units via a central pumping system, which usually uses variable speed pump(s). Variable speed pumps have potential to significantly reduce pumping energy use; however, the energy savings in reality could be far away from its potential due to improper pumping system design and controls. In this paper, a simplified hydronic pumping system was simulated with the dynamic Modelica models to evaluate three different pumping control strategies. This includes two conventional controlmore » strategies, which are to maintain a constant differential pressure across either the supply and return mains, or at the most hydraulically remote heat pump; and an innovative control strategy, which adjusts system flow rate based on the demand of each heat pump. The simulation results indicate that a significant overflow occurs at part load conditions when the variable speed pump is controlled to main a constant differential pressure across the supply and return mains of the piping system. On the other hand, an underflow occurs at part load conditions when the variable speed pump is controlled to maintain a constant differential pressure across the furthest heat pump. The flow-demand-based control can provide needed flow rate to each heat pump at any given time, and with less pumping energy use than the two conventional controls. Finally, a typical distributed GSHP system was studied to evaluate the energy saving potential of applying the flow-demand-based pumping control strategy. This case study shows that the annual pumping energy consumption can be reduced by 62% using the flow-demand-based control compared with that using the conventional pressure-based control to maintain a constant differential pressure a cross the supply and return mains.« less

  18. 46 CFR 153.333 - Cargo pump discharge pressure gauge.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo pump discharge pressure gauge. 153.333 Section 153... SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Pumprooms § 153.333 Cargo pump discharge pressure gauge. Each cargo pump within a pump-room must...

  19. 46 CFR 153.333 - Cargo pump discharge pressure gauge.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Cargo pump discharge pressure gauge. 153.333 Section 153... SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Pumprooms § 153.333 Cargo pump discharge pressure gauge. Each cargo pump within a pump-room must...

  20. 46 CFR 153.333 - Cargo pump discharge pressure gauge.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Cargo pump discharge pressure gauge. 153.333 Section 153... SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Pumprooms § 153.333 Cargo pump discharge pressure gauge. Each cargo pump within a pump-room must...

  1. 46 CFR 153.333 - Cargo pump discharge pressure gauge.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Cargo pump discharge pressure gauge. 153.333 Section 153... SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Pumprooms § 153.333 Cargo pump discharge pressure gauge. Each cargo pump within a pump-room must...

  2. 46 CFR 153.333 - Cargo pump discharge pressure gauge.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Cargo pump discharge pressure gauge. 153.333 Section 153... SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Pumprooms § 153.333 Cargo pump discharge pressure gauge. Each cargo pump within a pump-room must...

  3. Lunar base heat pump

    NASA Technical Reports Server (NTRS)

    Goldman, Jeffrey H.; Tetreault, R.; Fischbach, D.; Walker, D.

    1994-01-01

    A heat pump is a device which elevates the temperature of a heat flow by a means of an energy input. By doing this, the heat pump can cause heat to transfer faster from a warm region to a cool region, or it can cause heat to flow from a cool region to a warmer region. The second case is the one which finds vast commercial applications such as air conditioning, heating, and refrigeration. Aerospace applications of heat pumps include both cases. The NASA Johnson Space Center is currently developing a Life Support Systems Integration Facility (LSSIF, previously SIRF) to provide system-level integration, operational test experience, and performance data that will enable NASA to develop flight-certified hardware for future planetary missions. A high lift heat pump is a significant part of the TCS hardware development associated with the LSSIF. The high lift heat pump program discussed here is being performed in three phases. In Phase 1, the objective is to develop heat pump concepts for a lunar base, a lunar lander, and for a ground development unit for the SIRF. In Phase 2, the design of the SIRF ground test unit is being performed, including identification and evaluation of safety and reliability issues. In Phase 3, the SIRF unit will be manufactured, tested, and delivered to the NASA Johnson Space Center.

  4. Method to produce American Thoracic Society flow-time waveforms using a mechanical pump.

    PubMed

    Hankinson, J L; Reynolds, J S; Das, M K; Viola, J O

    1997-03-01

    The American Thoracic Society (ATS) recently adopted a new set of 26 standard flow-time waveforms for use in testing both diagnostic and monitoring devices. Some of these waveforms have a higher frequency content than present in the ATS-24 standard volume-time waveforms, which, when produced by a mechanical pump, may result in a pump flow output that is less than the desired flow due to gas compression losses within the pump. To investigate the effects of gas compression, a mechanical pump was used to generate the necessary flows to test mini-Wright and Assess peak expiratory flow (PEF) meters. Flow output from the pump was measured by two different independent methods, a pneumotachometer and a method based on piston displacement and pressure measured within the pump. Measuring output flow based on piston displacement and pressure has been validated using a pneumotachometer and mini-Wright PEF meter, and found to accurately measure pump output. This method introduces less resistance (lower back-pressure) and dead space volume than using a pneumotachometer in series with the meter under test. Pump output flow was found to be lower than the desired flow both with the mini-Wright and Assess meters (for waveform No. 26, PEFs 7.1 and 10.9% lower, respectively). To compensate for losses due to gas compression, we have developed a method of deriving new input waveforms, which, when used to drive a commercially available mechanical pump, accurately and reliably produces the 26 ATS flow-time waveforms, even those with the fastest rise-times.

  5. A regional comparison of solar, heat pump, and solar-heat pump systems

    NASA Astrophysics Data System (ADS)

    Manton, B. E.; Mitchell, J. W.

    1982-08-01

    A comparative study of the thermal and economic performance of the parallel and series solar heat pump systems, stand alone solar and stand alone heat pump systems for residential space and domestic hot water heating for the U.S. using FCHART 4.0 is presented. Results show that the parallel solar heat pump system yields the greatest energy savings in the south. Very low cost collectors (50-150 dollars/sq m) are required for a series solar heat pump system in order for it to compete economically with the better of the parallel or solar systems. Conventional oil or gas furnaces need to have a seasonal efficiency of at least 70-85% in order to save as much primary energy as the best primary system in the northeast. In addition, the implications of these results for current or proposed federal tax credit measures are discussed.

  6. Frostless heat pump having thermal expansion valves

    DOEpatents

    Chen, Fang C [Knoxville, TN; Mei, Viung C [Oak Ridge, TN

    2002-10-22

    A heat pump system having an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant and further having a compressor, an interior heat exchanger, an exterior heat exchanger, a heat pump reversing valve, an accumulator, a thermal expansion valve having a remote sensing bulb disposed in heat transferable contact with the refrigerant piping section between said accumulator and said reversing valve, an outdoor temperature sensor, and a first means for heating said remote sensing bulb in response to said outdoor temperature sensor thereby opening said thermal expansion valve to raise suction pressure in order to mitigate defrosting of said exterior heat exchanger wherein said heat pump continues to operate in a heating mode.

  7. Ground-Source Integrated Heat Pump for Near-Zero Energy Houses: Technology Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, Richard W; Rice, C Keith; Baxter, Van D

    2007-09-01

    The energy service needs of a net-zero-energy house (ZEH) include space heating and cooling, water heating, ventilation, dehumidification, and humidification, depending on the requirements of the specific location. These requirements differ in significant ways from those of current housing. For instance, the most recent DOE buildings energy data (DOE/BED 2007) indicate that on average {approx}43% of residential buildings primary energy use is for space heating and cooling, vs. {approx}12% for water heating (about a 3.6:1 ratio). In contrast, for the particular prototype ZEH structures used in the analyses in this report, that ratio ranges from about 0.3:1 to 1.6:1 dependingmore » on location. The high-performance envelope of a ZEH results in much lower space heating and cooling loads relative to current housing and also makes the house sufficiently air-tight to require mechanical ventilation for indoor air quality. These envelope characteristics mean that the space conditioning load will be closer in size to the water heating load, which depends on occupant behavior and thus is not expected to drop by any significant amount because of an improved envelope. In some locations such as the Gulf Coast area, additional dehumidification will almost certainly be required during the shoulder and cooling seasons. In locales with heavy space heating needs, supplemental humidification may be needed because of health concerns or may be desired for improved occupant comfort. The U.S. Department of Energy (DOE) has determined that achieving their ZEH goal will require energy service equipment that can meet these needs while using 50% less energy than current equipment. One promising approach to meeting this requirement is through an integrated heat pump (IHP) - a single system based on heat pumping technology. The energy benefits of an IHP stem from the ability to utilize otherwise wasted energy; for example, heat rejected by the space cooling operation can be used for water heating. With the greater energy savings the cost of the more energy efficient components required for the IHP can be recovered more quickly than if they were applied to individual pieces of equipment to meet each individual energy service need. An IHP can be designed to use either outdoor air or geothermal resources (e.g., ground, ground water, surface water) as the environmental energy source/sink. Based on a scoping study of a wide variety of possible approaches to meeting the energy service needs for a ZEH, DOE selected the IHP concept as the most promising and has supported research directed toward the development of both air- and ground-source versions. This report describes the ground-source IHP (GS-IHP) design and includes the lessons learned and best practices revealed by the research and development (R&D) effort throughout. Salient features of the GS-IHP include a variable-speed rotary compressor incorporating a brushless direct current permanent magnet motor which provides all refrigerant compression, a variable-speed fan for the indoor section, a multiple-speed ground coil circuit pump, and a single-speed pump for water heating operation. Laboratory IHP testing has thus far used R-22 because of the availability of the needed components that use this refrigerant. It is expected that HFC R-410A will be used for any products arising from the IHP concept. Data for a variable-speed compressor that uses R-410A has been incorporated into the DOE/ORNL Mark VI Heat Pump Design Model (HPDM). HPDM was then linked to TRNSYS, a time-series-dependent simulation model capable of determining the energy use of building cooling and heating equipment as applied to a defined house on a sub-hourly basis. This provided a highly flexible design analysis capability for advanced heat pump equipment; however, the program also took a relatively long time to run. This approach was used with the initial prototype design reported in Murphy et al. (2007a) and in the business case analysis of Baxter (2007).« less

  8. Modeling the Performance of Water-Zeolite 13X Adsorption Heat Pump

    NASA Astrophysics Data System (ADS)

    Kowalska, Kinga; Ambrożek, Bogdan

    2017-12-01

    The dynamic performance of cylindrical double-tube adsorption heat pump is numerically analysed using a non-equilibrium model, which takes into account both heat and mass transfer processes. The model includes conservation equations for: heat transfer in heating/cooling fluids, heat transfer in the metal tube, and heat and mass transfer in the adsorbent. The mathematical model is numerically solved using the method of lines. Numerical simulations are performed for the system water-zeolite 13X, chosen as the working pair. The effect of the evaporator and condenser temperatures on the adsorption and desorption kinetics is examined. The results of the numerical investigation show that both of these parameters have a significant effect on the adsorption heat pump performance. Based on computer simulation results, the values of the coefficients of performance for heating and cooling are calculated. The results show that adsorption heat pumps have relatively low efficiency compared to other heat pumps. The value of the coefficient of performance for heating is higher than for cooling

  9. Blood warming, pump heating and haemolysis in low-flow extracorporeal life support; an in vitro study using freshly donated human blood.

    PubMed

    Kusters, R W J; Simons, A P; Lancé, M D; Ganushchak, Y M; Bekers, O; Weerwind, P W

    2017-01-01

    Low-flow extracorporeal life support can be used for cardiopulmonary support of paediatric and neonatal patients and is also emerging as a therapy for patients suffering from exacerbation of chronic obstructive pulmonary disease. However, pump heating and haemolysis have proven to negatively affect the system and outcome. This in vitro study aimed at gaining insight into blood warming, pump heating and haemolysis related to the performance of a new low-flow centrifugal pump. Pump performance in the 400-1,500 ml/min flow range was modulated using small-sized dual-lumen catheters and freshly donated human blood. Measurements included plasma free haemoglobin, blood temperature, pump speed, pump pressure, blood flow and thermographic imaging. Blood warming (ΔT max =0.5°C) had no relationship with pump performance or haemolysis (R 2 max =0.05). Pump performance-related parameters revealed no relevant relationships with haemolysis (R 2 max =0.36). Thermography showed no relevant heat zones in the pump (T max =36°C). Concerning blood warming, pump heating and haemolysis, we deem the centrifugal pump applicable for low-flow extracorporeal circulation.

  10. Influence of different heating types on the pumping performance of a bubble pump

    NASA Astrophysics Data System (ADS)

    Bierling, Bernd; Schmid, Fabian; Spindler, Klaus

    2017-11-01

    This study presents an experimental investigation of the influence of different heating types on the pumping performance of a bubble pump. A test rig was set up at the Institute of Thermodynamics and Thermal Engineering (ITW), University of Stuttgart. The vertical lift tube is made of copper with an inner diameter of 8 mm and a length of 1.91 m. The working fluid is demineralized water. The test rig offers the possibility to vary the supplied heat flow (0 W - 750 W), the resulting supplied heat flux and the location of the heating. Investigations were carried out using spot heating, partial-length heating and full-length heating. A Coriolis mass flowmeter was successfully implemented which measures the vapor mass flow rate continuously. The improvement of the vapor mass flow rate measurement by using the continuous measurement method compared to a discontinuous one is discussed. Furthermore, the influence of an unstable inlet temperature of the working fluid entering the lift tube on the pumping performance is investigated. The focus of this publication lies on the build-up of the test rig with the measurement setup and the analysis of the pumping performance for the three heating types. The measurement results show a big influence of the heating type on the pumping performance. The lower the relative length of the heating, the higher is the pumping ratio which is defined as the lifted liquid mass flow rate in relation to the generated vapor mass flow rate.

  11. Vibrational pumping and heating under SERS conditions: fact or myth?

    PubMed

    Le Ru, E C; Etchegoin, P G

    2006-01-01

    We address in this paper the long debated issue of the possibility of vibrational pumping under Surface Enhanced Raman Scattering (SERS) conditions, both theoretically and experimentally. We revisit with simple theoretical models the mechanisms of vibrational pumping and its relation to heating. This presentation provides a clear classification of the various regimes of heating/pumping, from simple global laser heating to selective pumping of a single vibrational mode. We also propose the possibility of extreme pumping driven by stimulated phonon emission, and we introduce and apply a new experimental technique to study these effects in SERS. Our method relies on correlations between Raman peak parameters, and cross-correlation for two Raman peaks. We find strong evidence for local and dynamical heating, but no convincing evidence for selective pumping under our specific experimental SERS conditions.

  12. Thermal control systems for low-temperature heat rejection on a lunar base

    NASA Technical Reports Server (NTRS)

    Sridhar, K. R.; Gottmann, Matthias

    1992-01-01

    In this report, Rankine-cycle heat pumps and absorption heat pumps (ammonia-water and lithium bromide-water) have been analyzed and optimized for a lunar base cooling load of 100 kW. For the Rankine cycle, a search of several commonly used commercial refrigerants provided R11 and R717 as possible working fluids. Hence, the Rankine-cycle analysis has been performed for both R11 and R717. Two different configurations were considered for the system--one in which the heat pump is directly connected to the rejection loop and another in which a heat exchanger connects the heat pump to the rejection loop. For a marginal increase in mass, the decoupling of the rejection loop and the radiator from the heat pump provides greater reliability of the system and better control. Hence, the decoupled system is the configuration of choice. The optimal TCS mass for a 100 kW cooling load at 270 K was 5940 kg at a radiator temperature of 362 K. R11 was the working fluid in the heat pump, and R717 was the transport fluid in the rejection loop. Two TCS's based on an absorption-cycle heat pump were considered, one with an ammonia-water mixture and the other with a lithium bromide-water mixture as the working fluid. A complete cycle analysis was performed for these systems. The system components were approximated as heat exchangers with no internal pressure drop for the mass estimate. This simple approach underpredicts the mass of the systems, but is a good 'optimistic' first approximation to the TCS mass in the absence of reliable component mass data. The mass estimates of the two systems reveal that, in spite of this optimistic estimate, the absorption heat pumps are not competitive with the Rankine-cycle heat pumps. Future work at the systems level will involve similar analyses for the Brayton- and Stirling-cycle heat pumps. The analyses will also consider the operation of the pump under partial-load conditions. On the component level, a capillary evaporator will be designed, built, and tested in order to investigate its suitability in lunar base TCS and microgravity two-phase applications.

  13. Assessment of solar-assisted gas-fired heat pump systems

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.

    1981-01-01

    As a possible application for the Goldstone Energy Project, the performance of a 10 ton heat pump unit using a hybrid solar gas energy source was evaluated in an effort to optimize the solar collector size. The heat pump system is designed to provide all the cooling and/or heating requirements of a selected office building. The system performance is to be augmented in the heating mode by utilizing the waste heat from the power cycle. A simplified system analysis is described to assess and compute interrrelationships of the engine, heat pump, and solar and building performance parameters, and to optimize the solar concentrator/building area ratio for a minimum total system cost. In addition, four alternative heating cooling systems, commonly used for building comfort, are described; their costs are compared, and are found to be less competitive with the gas solar heat pump system at the projected solar equipment costs.

  14. Mathematical model development and simulation of heat pump fruit dryer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achariyaviriya, S.; Soponronnarit, S.; Terdyothin, A.

    2000-01-01

    A mathematical model of a heat pump fruit dryer was developed to study the performance of heat pump dryers. Using the moisture content of papaya glace drying, the refrigerant temperature at the evaporator and condenser and the performance, was verified. It was found that the simulated results using closed loop heat pump dryer were close to the experimental results. The criteria for evaluating the performance were specific moisture extraction rate and drying rate. The results showed that ambient conditions affected significantly on the performance of the open loop dryer and the partially closed loop dryer. Also, the fraction of evaporatormore » bypass air affected markedly the performance of all heat pump dryers. In addition, it was found that specific air flow rate and drying air temperature affected significantly the performance of all heat pump dryers.« less

  15. Heat pump associations, alliances, and allies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Associations, Alliances, and Allies, a seminar and workshop sponsored by the Electric Power Research Institute, was held in Memphis, Tennessee, April 10--11, 1991. The focus of the meeting was relationships forged between electric utilities and trade allies that sell residential heat pumps. one hundred and seven representatives of electric utilities, dealer/contractors, manufacturers, and consultants attended. Electric utility trade ally programs run the gamut from coop advertising to heat pump association to elaborate technician training programs. All utility participants recognize the important programs, since it is the trade ally who sells, installs, and services heat pumps, while it is the electricmore » utility who gets blamed if the heat pumps fail to operate properly or are inefficient. Heat pumps are efficient and effective, but their efficiency and effectiveness depends critically upon the quality of installation and maintenance. A utility can thus help to ensure satisfied customers and can also help to achieve its own load shape objectives by working closely with its trade allies, the dealers, contractors, manufacturers, and distributors. Attendees spent the morning sessions of the two day meeting in plenary sessions, hearing about utility and dealer heat pump programs and issues. Afternoon roundtable discussions provided structured forums to discuss: Advertising; Heat pump association startup and operation; Rebates and incentives; Technician training school and centers; Installation inspection and dealer qualification; and Heat pump association training. These proceedings report on the papers presented in the morning plenary sessions and summarize the main points discussed in the afternoon workshops.« less

  16. Development of a nonazeotropic heat pump for crew hygiene water heating

    NASA Technical Reports Server (NTRS)

    Walker, David H.; Deming, Glenn I.

    1991-01-01

    A Phase 2 SBIR Program funded by the NASA Marshall Space Flight Center to develop a Nonazeotropic Heat Pump is described. The heat pump system which was designed, fabricated, and tested in the Foster-Miller laboratory, is capable of providing crew hygiene water heating for future manned missions. The heat pump utilizes a nonazeotropic refrigerant mixture which, in this application, provides a significant Coefficient of Performance improvement over a single-constituent working fluid. In order to take full advantage of the refrigerant mixture, compact tube-in-tube heat exchangers were designed. A high efficiency scroll compressor with a proprietary lubrication system was developed to meet the requirements of operation in zero-gravity. The prototype heat pump system consumes less than 200W of power compared to the alternative of electric cartridge heaters which would require 2 to 5 kW.

  17. Sport socks do not enhance calf muscle pump function but inelastic wraps do.

    PubMed

    Partsch, H; Mosti, G

    2014-12-01

    Aim of the study was to measure the effect of elastic and inelastic compression on calf muscle pump function in healthy male athletes. This was an experimental study which included 21 healthy male athletes. The ejection fraction (EF) of the venous calf pump was measured comparing the effects of a variety of compression materials: 1) sport compression stockings; 2) light zinc paste bandages; 3) sport compression stockings with additional Velcro® wraps over the calf. The influence of sport stocking and wraps on the venous calibre at the largest calf circumference in the lying and standing position was investigated using MRI. Inelastic compression exerting a median pressure in the standing position of 37.5 mmHg (zinc paste) and 48 mmHg (loosely applied straps over a sport stocking) achieved a significant increase of EF up to 100%. Sport stockings alone with a standing pressure of 19-24 mmHg did not show a significant change of EF. MRI demonstrated some venous narrowing in the lying but not in the standing position. By wrapping inelastic straps over the stocking an emptying of the veins in the lying and a considerable narrowing in the standing position could be observed. Venous calf pump function in athletes is not influenced by elastic sport stockings, but inelastic wraps either alone or applied over sport stockings lead to a significant enhancement.

  18. Energy recovery during expansion of compressed gas using power plant low-quality heat sources

    DOEpatents

    Ochs, Thomas L [Albany, OR; O'Connor, William K [Lebanon, OR

    2006-03-07

    A method of recovering energy from a cool compressed gas, compressed liquid, vapor, or supercritical fluid is disclosed which includes incrementally expanding the compressed gas, compressed liquid, vapor, or supercritical fluid through a plurality of expansion engines and heating the gas, vapor, compressed liquid, or supercritical fluid entering at least one of the expansion engines with a low quality heat source. Expansion engines such as turbines and multiple expansions with heating are disclosed.

  19. A portable pressure pump for microfluidic lab-on-a-chip systems using a porous polydimethylsiloxane (PDMS) sponge.

    PubMed

    Cha, Kyoung Je; Kim, Dong Sung

    2011-10-01

    In this paper, we propose a novel portable and disposable pressure pump using a porous polydimethylsiloxane (PDMS) sponge and demonstrate its application to a microfluidic lab-on-a-chip. The porous PDMS sponge was simply fabricated by a sugar leaching technique based on capillary suction of pre-cured PDMS into lumps of sugar, thereby enabling us to achieve the porous PDMS sponge composed of interconnected micropores. To indicate the characteristics of the porous PDMS sponge and pump, we measured the average porosities of them whose values were 0.64 and 0.34, respectively. A stress-strain relationship of the fabricated portable pressure pump represented a linear behavior in the compressive strain range of 0 to 20%. Within this range, a pumping volume of the pressure pump could be linearly controlled by the compressed strain. Finally, the fabricated porous PDMS pump was successfully demonstrated as a portable pressure pump for a disposable microfluidic lab-on-a-chip for efficient detection of agglutination. The proposed portable pressure pump can be potentially applicable to various disposable microfluidic lab-on-a-chip systems.

  20. Residential Photovoltaic/Thermal Energy System

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K.

    1987-01-01

    Proposed system supplies house with both heat and electricity. Pair of reports describes concept for self-sufficient heating, cooling, and power-generating system for house. Panels on walls of house provide hot water, space heating, and heat to charge heat-storage system, and generate electricity for circulation pumps and fans. Roof panels generate electricity for household, operate heat pump for summer cooling, and provide supplementary winter heating via heat pump, using solar-cell cooling-fluid loop. Wall and roof panels used independently.

  1. Adaptable Single Active Loop Thermal Control System (TCS) for Future Space Missions

    NASA Technical Reports Server (NTRS)

    Mudawar, Issam; Lee, Seunghyun; Hasan, Mohammad

    2015-01-01

    This presentation will examine the development of a thermal control system (TCS) for future space missions utilizing a single active cooling loop. The system architecture enables the TCS to be reconfigured during the various mission phases to respond, not only to varying heat load, but to heat rejection temperature as well. The system will consist of an accumulator, pump, cold plates (evaporators), condenser radiator, and compressor, in addition to control, bypass and throttling valves. For cold environments, the heat will be rejected by radiation, during which the compressor will be bypassed, reducing the system to a simple pumped loop that, depending on heat load, can operate in either a single-phase liquid mode or two-phase mode. For warmer environments, the pump will be bypassed, enabling the TCS to operate as a heat pump. This presentation will focus on recent findings concerning two-phase flow regimes, pressure drop, and heat transfer coefficient trends in the cabin and avionics micro-channel heat exchangers when using the heat pump mode. Also discussed will be practical implications of using micro-channel evaporators for the heat pump.

  2. Heat pump study: Tricks of the trade that can pump up efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, V.

    Two years ago, many homeowners in an area near Auburn, California were unhappy with their heat pumps. The local utility, Pacific Gas Electric (PG E), received unusually large numbers of complaints from them of high electricity bills and poor system operation. PG E wanted to know whether correctable mechanical problems were to blame. It hired John Proctor, then of Building Resources Management Corp., to design and implement a study to address the heat pump customers' complaints. The Pacific Gas Electric Heat Pump Efficiency and Super Weatherization Pilot Project was the result. The first objective of the Pilot Project was tomore » identify the major problems and their prevalence in the existing residential heat pump installations. The second was to design a correction strategy that would cost PG E $400 or less per site. Participating homeowners would also share some of the costs. Project goals were improved homeowner comfort and satisfaction, increased energy efficiency of mechanical systems, and 10-20% space heating energy savings. By improving system operations, the project wished to increase customer acceptance of heat pumps in general.« less

  3. 16 CFR 305.12 - Labeling for central air conditioners, heat pumps, and furnaces.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... pumps, and furnaces. (a) Layout. All energy labels for central air conditioners, heat pumps, and... the end of this part illustrating the basic layout. All positioning, spacing, type sizes, and line... calculated for heating Region IV for the standardized design heating requirement nearest the capacity...

  4. 16 CFR 305.12 - Labeling for central air conditioners, heat pumps, and furnaces.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... pumps, and furnaces. (a) Layout. All energy labels for central air conditioners, heat pumps, and... the end of this part illustrating the basic layout. All positioning, spacing, type sizes, and line... calculated for heating Region IV for the standardized design heating requirement nearest the capacity...

  5. 16 CFR 305.12 - Labeling for central air conditioners, heat pumps, and furnaces.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... pumps, and furnaces. (a) Layout. All energy labels for central air conditioners, heat pumps, and... end of this part illustrating the basic layout. All positioning, spacing, type sizes, and line widths... calculated for heating Region IV for the standardized design heating requirement nearest the capacity...

  6. 16 CFR 305.12 - Labeling for central air conditioners, heat pumps, and furnaces.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... pumps, and furnaces. (a) Layout. All energy labels for central air conditioners, heat pumps, and... the end of this part illustrating the basic layout. All positioning, spacing, type sizes, and line... calculated for heating Region IV for the standardized design heating requirement nearest the capacity...

  7. Compressing Spin-Polarized 3He With a Modified Diaphragm Pump

    PubMed Central

    Gentile, T. R.; Rich, D. R.; Thompson, A. K.; Snow, W. M.; Jones, G. L.

    2001-01-01

    Nuclear spin-polarized 3He gas at pressures on the order of 100 kPa (1 bar) are required for several applications, such as neutron spin filters and magnetic resonance imaging. The metastability-exchange optical pumping (MEOP) method for polarizing 3He gas can rapidly produce highly polarized gas, but the best results are obtained at much lower pressure (~0.1 kPa). We describe a compact compression apparatus for polarized gas that is based on a modified commercial diaphragm pump. The gas is polarized by MEOP at a typical pressure of 0.25 kPa (2.5 mbar), and compressed into a storage cell at a typical pressure of 100 kPa. In the storage cell, we have obtained 20 % to 35 % 3He polarization using pure 3He gas and 35 % to 50 % 3He polarization using 3He-4He mixtures. By maintaining the storage cell at liquid nitrogen temperature during compression, the density has been increased by a factor of four. PMID:27500044

  8. Solar-powered Rankine heat pump for heating and cooling

    NASA Technical Reports Server (NTRS)

    Rousseau, J.

    1978-01-01

    The design, operation and performance of a familyy of solar heating and cooling systems are discussed. The systems feature a reversible heat pump operating with R-11 as the working fluid and using a motor-driven centrifugal compressor. In the cooling mode, solar energy provides the heat source for a Rankine power loop. The system is operational with heat source temperatures ranging from 155 to 220 F; the estimated coefficient of performance is 0.7. In the heating mode, the vapor-cycle heat pump processes solar energy collected at low temperatures (40 to 80 F). The speed of the compressor can be adjusted so that the heat pump capacity matches the load, allowing a seasonal coefficient of performance of about 8 to be attained.

  9. Refrigerant charge management in a heat pump water heater

    DOEpatents

    Chen, Jie; Hampton, Justin W.

    2016-07-05

    Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, and methods of managing refrigerant charge. Various embodiments remove idle refrigerant from a heat exchanger that is not needed for transferring heat by opening a refrigerant recovery valve and delivering the idle refrigerant from the heat exchanger to an inlet port on the compressor. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled by controlling how much refrigerant is drawn from the heat exchanger, by letting some refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and various components can be interconnected with refrigerant conduit. Some embodiments deliver refrigerant gas to the heat exchanger and drive liquid refrigerant out prior to isolating the heat exchanger.

  10. Convergent strand array liquid pumping system

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr. (Inventor)

    1989-01-01

    A surface-tension liquid pumping system is provided by one or more arrays of converging solid monofilament fibers or metal wires (strands) spaced apart at an input end to gather liquid, and gathered close together at the opposite end where menisci forms between wetted strands to force liquid in the direction of convergence of the strands. The liquid pumping system is independent of gravity. It is illustrated as being used in a heat pump having a heating box to vaporize the liquid and a condensing chamber. Condensed liquid is returned by the pumping system to the heating box where it is again vaporized. A vapor tube carries the vapor to the condensing chamber. In that way, a closed system pumps heat from the heating box to the evaporating chamber and from there radiated to the atmosphere.

  11. Experimental investigation on water quality standard of Yangtze River water source heat pump.

    PubMed

    Qin, Zenghu; Tong, Mingwei; Kun, Lin

    2012-01-01

    Due to the surface water in the upper reaches of Yangtze River in China containing large amounts of silt and algae, high content of microorganisms and suspended solids, the water in Yangtze River cannot be used for cooling a heat pump directly. In this paper, the possibility of using Yangtze River, which goes through Chongqing, a city in southwest China, as a heat source-sink was investigated. Water temperature and quality of the Yangtze River in the Chongqing area were analyzed and the performance of water source heat pump units in different sediment concentrations, turbidity and algae material conditions were tested experimentally, and the water quality standards, in particular surface water conditions, in the Yangtze River region that adapt to energy-efficient heat pumps were also proposed. The experimental results show that the coefficient of performance heat pump falls by 3.73% to the greatest extent, and the fouling resistance of cooling water in the heat exchanger increases up to 25.6% in different water conditions. When the sediment concentration and the turbidity in the river water are no more than 100 g/m3 and 50 NTU respectively, the performance of the heat pump is better, which can be used as a suitable river water quality standard for river water source heat pumps.

  12. Recovery Act: Cedarville School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumps and Ground Source Water Loops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarrell, Mark

    Cedarville School District retrofitted the heating and cooling systems in three campus areas (High School, Middle School, and Upper Elementary School) with geothermal heat pumps and ground source water loops, as a demonstration project for the effective implementation of geothermal heat pump systems and other energy efficiency and air quality improvements.

  13. Regenerative Hydride Heat Pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    1992-01-01

    Hydride heat pump features regenerative heating and single circulation loop. Counterflow heat exchangers accommodate different temperatures of FeTi and LaNi4.7Al0.3 subloops. Heating scheme increases efficiency.

  14. Geothermal heat pumps for heating and cooling

    NASA Astrophysics Data System (ADS)

    Garg, Suresh C.

    1994-03-01

    Naval Facilities Engineering Service Center (NFESC) has been tasked by Naval Shore Facilities Energy Office to evaluate the NAS Patuxent River ground-source heat pump (GHP) installation. A large part of a building's energy consumption consists of heating and air conditioning for occupant comfort. The space heating requirements are normally met by fossil-fuel-fired equipment or electric resistance heating. Cooling is provided by either air conditioners or heat pumps, both using electricity as an energy source.

  15. Augmentation of Performance of a Monogroove Heat Pipe with Electrohydrodynamic Conduction Pumping

    NASA Astrophysics Data System (ADS)

    Jeong, S. I.; Seyed-Yagoobi, J.

    2002-11-01

    The electrohydrodynamic (EHD) phenomena involve the interaction of electric fields and flow fields in a dielectric fluid medium. There are three types of EHD pumps; induction, ion-drag, and conduction. EHD conduction pump is a new concept which has been explored only recently. Net pumping is achieved by properly utilizing the heterocharge layers present in the vicinity of the electrodes. Several innovative electrode designs have been investigated. This paper presents an electrode design that generates pressure heads on the order of 600 Pa per one electrode pair at 20 kV with less than 0.08 W of electric power. The working fluid is the Refrigerant R-123. An EHD conduction pump consisting of six pairs of electrodes is installed in the liquid line of a mono-grove heat pipe. The heat transport capacity of the heat pipe is measured in the absence and presence of the EHD conduction pump. Significant enhancements in the heat transport capacity of the heat pipe is achieved with the EHD conduction pump operating. Furthermore, the EHD conduction pump provides immediate recovery from the dry-out condition. The EHD conduction pump has many advantages, especially in the micro-gravity environment. It is simple in design, non-mechanical, and lightweight. It provides a rapid control of heat transfer in single-phase and two-phase flows. The electric power consumption is minimal with the very low acoustic noise level.

  16. ENERGY STAR Certified Geothermal Heat Pumps

    EPA Pesticide Factsheets

    Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Geothermal Heat Pumps that are effective as of January 1, 2012. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/index.cfm?c=geo_heat.pr_crit_geo_heat_pumps

  17. Materials considerations in the design of a metal-hydride heat pump for an advanced extravehicular mobility unit

    NASA Technical Reports Server (NTRS)

    Liebert, B. E.

    1986-01-01

    A metal-hydride heat pump (HHP) has been proposed to provide an advanced regenerable nonventing thermal sink for the liquid-cooled garment worn during an extravehicular activity (EVA). The conceptual design indicates that there is a potential for significant advantages over the one presently being used by shuttle crew personnel as well as those that have been proposed for future use with the space station. Compared to other heat pump designs, a HHP offers the potential for extended use with no electrical power requirements during the EVA. In addition, a reliable, compact design is possible due to the absence of moving parts other than high-reliability check valves. Because there are many subtleties in the properties of metal hydrides for heat pump applications, it is essential that a prototype hydride heat pump be constructed with the selected materials before a committment is made for the final design. Particular care must be given to the evaporator heat exchanger worn by the astronaut since the performance of hydride heat pumps is generally heat transfer limited.

  18. Regenerative adsorbent heat pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative adsorbent heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system and at least a portion of the heat of adsorption. A series of at least four compressors containing an adsorbent is provided. A large amount of heat is transferred from compressor to compressor so that heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  19. The impact of the weather conditions on the cooling performance of the heat pump driven by an internal natural gas combustion engine

    NASA Astrophysics Data System (ADS)

    Janovcová, Martina; Jandačka, Jozef; Malcho, Milan

    2015-05-01

    Market with sources of heat and cold offers unlimited choice of different power these devices, design technology, efficiency and price categories. New progressive technologies are constantly discovering, about which is still little information, which include heat pumps powered by a combustion engine running on natural gas. A few pieces of these installations are in Slovakia, but no studies about their work and effectiveness under real conditions. This article deals with experimental measurements of gas heat pump efficiency in cooling mode. Since the gas heat pump works only in system air - water, air is the primary low - energy source, it is necessary to monitor the impact of the climate conditions for the gas heat pump performance.

  20. 21 CFR 878.4780 - Powered suction pump.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Powered suction pump. 878.4780 Section 878.4780...) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4780 Powered suction pump. (a) Identification. A powered suction pump is a portable, AC-powered or compressed air-powered device intended to be...

  1. Subsurface Thermal Energy Storage for Improved Heating and Air Conditioning Efficiency

    DTIC Science & Technology

    2016-11-21

    This project involved a field demonstration of subsurface thermal energy storage for improving the geothermal heat pump air conditioning efficiency... geothermal heat pump systems, undesirable heating of the ground may occur. This demonstration was performed at the MCAS, Beaufort, SC, where several...buildings with geothermal heat pump systems were exhibiting excessively high ground loop temperatures. These buildings were retrofitted with dry fluid

  2. Weight Optimization of Active Thermal Management Using a Novel Heat Pump

    NASA Technical Reports Server (NTRS)

    Lear, William E.; Sherif, S. A.

    2004-01-01

    Efficient lightweight power generation and thermal management are two important aspects for space applications. Weight is added to the space platforms due to the inherent weight of the onboard power generation equipment and the additional weight of the required thermal management systems. Thermal management of spacecraft relies on rejection of heat via radiation, a process that can result in large radiator mass, depending upon the heat rejection temperature. For some missions, it is advantageous to incorporate an active thermal management system, allowing the heat rejection temperature to be greater than the load temperature. This allows a reduction of radiator mass at the expense of additional system complexity. A particular type of active thermal management system is based on a thermodynamic cycle, developed by the authors, called the Solar Integrated Thermal Management and Power (SITMAP) cycle. This system has been a focus of the authors research program in the recent past (see Fig. 1). One implementation of the system requires no moving parts, which decreases the vibration level and enhances reliability. Compression of the refrigerant working fluid is accomplished in this scheme via an ejector.

  3. Push pull microfluidics on a multi-level 3D CD.

    PubMed

    Thio, Tzer Hwai Gilbert; Ibrahim, Fatimah; Al-Faqheri, Wisam; Moebius, Jacob; Khalid, Noor Sakinah; Soin, Norhayati; Kahar, Maria Kahar Bador Abdul; Madou, Marc

    2013-08-21

    A technique known as thermo-pneumatic (TP) pumping is used to pump fluids on a microfluidic compact disc (CD) back towards the CD center against the centrifugal force that pushes liquids from the center to the perimeter of the disc. Trapped air expands in a TP air chamber during heating, and this creates positive pressure on liquids located in chambers connected to that chamber. While the TP air chamber and connecting channels are easy to fabricate in a one-level CD manufacturing technique, this approach provides only one way pumping between two chambers, is real-estate hungry and leads to unnecessary heating of liquids in close proximity to the TP chamber. In this paper, we present a novel TP push and pull pumping method which allows for pumping of liquid in any direction between two connected liquid chambers. To ensure that implementation of TP push and pull pumping also addresses the issue of space and heating challenges, a multi-level 3D CD design is developed, and localized forced convection heating, rather than infra-red (IR) is applied. On a multi-level 3D CD, the TP features are placed on a top level separate from the rest of the microfluidic processes that are implemented on a lower separate level. This approach allows for heat shielding of the microfluidic process level, and efficient usage of space on the CD for centrifugal handling of liquids. The use of localized forced convection heating, rather than infra-red (IR) or laser heating in earlier implementations allows not only for TP pumping of liquids while the CD is spinning but also makes heat insulation for TP pumping and other fluidic functions easier. To aid in future implementations of TP push and pull pumping on a multi-level 3D CD, study on CD surface heating is also presented. In this contribution, we also demonstrate an advanced application of pull pumping through the implementation of valve-less switch pumping.

  4. Push pull microfluidics on a multi-level 3D CD

    PubMed Central

    Thio, Tzer Hwai Gilbert; Ibrahim, Fatimah; Al-Faqheri, Wisam; Moebius, Jacob; Khalid, Noor Sakinah; Soin, Norhayati; Kahar, Maria Kahar Bador Abdul; Madou, Marc

    2013-01-01

    A technique known as thermo-pneumatic (TP) pumping is used to pump fluids on a microfluidic compact disc (CD) back towards the CD center against the centrifugal force that pushes liquids from the center to the perimeter of the disc. Trapped air expands in a TP air chamber during heating, and this creates positive pressure on liquids located in chambers connected to that chamber. While the TP air chamber and connecting channels are easy to fabricate in a one-level CD manufacturing technique, this approach provides only one way pumping between two chambers, is real-estate hungry and leads to unnecessary heating of liquids in close proximity to the TP chamber. In this paper, we present a novel TP push and pull pumping method which allows for pumping of liquid in any direction between two connected liquid chambers. To ensure that implementation of TP push and pull pumping also addresses the issue of space and heating challenges, a multi-level 3D CD design is developed, and localized forced convection heating, rather than infra-red (IR) is applied. On a multi-level 3D CD, the TP features are placed on a top level separate from the rest of the microfluidic processes that are implemented on a lower separate level. This approach allows for heat shielding of the microfluidic process levels, and efficient usage of space on the CD for centrifugal handling of liquids. The use of localized forced convection heating, rather than infra-red (IR) or laser heating in earlier implementations allows not only for TP pumping of liquids while the CD is spinning but also makes heat insulation for TP pumping and other fluidic functions easier. To aid in future implementations of TP push and pull pumping on a multi-level 3D CD, study on CD surface heating is also presented. In this contribution, we also demonstrate an advanced application of pull pumping through the implementation of valve-less switch pumping. PMID:23774994

  5. Control of reactor coolant flow path during reactor decay heat removal

    DOEpatents

    Hunsbedt, Anstein N.

    1988-01-01

    An improved reactor vessel auxiliary cooling system for a sodium cooled nuclear reactor is disclosed. The sodium cooled nuclear reactor is of the type having a reactor vessel liner separating the reactor hot pool on the upstream side of an intermediate heat exchanger and the reactor cold pool on the downstream side of the intermediate heat exchanger. The improvement includes a flow path across the reactor vessel liner flow gap which dissipates core heat across the reactor vessel and containment vessel responsive to a casualty including the loss of normal heat removal paths and associated shutdown of the main coolant liquid sodium pumps. In normal operation, the reactor vessel cold pool is inlet to the suction side of coolant liquid sodium pumps, these pumps being of the electromagnetic variety. The pumps discharge through the core into the reactor hot pool and then through an intermediate heat exchanger where the heat generated in the reactor core is discharged. Upon outlet from the heat exchanger, the sodium is returned to the reactor cold pool. The improvement includes placing a jet pump across the reactor vessel liner flow gap, pumping a small flow of liquid sodium from the lower pressure cold pool into the hot pool. The jet pump has a small high pressure driving stream diverted from the high pressure side of the reactor pumps. During normal operation, the jet pumps supplement the normal reactor pressure differential from the lower pressure cold pool to the hot pool. Upon the occurrence of a casualty involving loss of coolant pump pressure, and immediate cooling circuit is established by the back flow of sodium through the jet pumps from the reactor vessel hot pool to the reactor vessel cold pool. The cooling circuit includes flow into the reactor vessel liner flow gap immediate the reactor vessel wall and containment vessel where optimum and immediate discharge of residual reactor heat occurs.

  6. Jet pump assisted arterial heat pipe

    NASA Technical Reports Server (NTRS)

    Bienert, W. B.; Ducao, A. S.; Trimmer, D. S.

    1978-01-01

    This paper discusses the concept of an arterial heat pipe with a capillary driven jet pump. The jet pump generates a suction which pumps vapor and noncondensible gas from the artery. The suction also forces liquid into the artery and maintains it in a primed condition. A theoretical model was developed which predicts the existence of two stable ranges. Up to a certain tilt the artery will prime by itself once a heat load is applied to the heat pipe. At higher tilts, the jet pump can maintain the artery in a primed condition but self-priming is not possible. A prototype heat pipe was tested which self-primed up to a tilt of 1.9 cm, with a heat load of 500 watts. The heat pipe continued to prime reliably when operated as a VCHP, i.e., after a large amount of noncondensible gas was introduced.

  7. Development of a jet pump-assisted arterial heat pipe

    NASA Technical Reports Server (NTRS)

    Bienert, W. B.; Ducao, A. S.; Trimmer, D. S.

    1977-01-01

    The development of a jet pump assisted arterial heat pipe is described. The concept utilizes a built-in capillary driven jet pump to remove vapor and gas from the artery and to prime it. The continuous pumping action also prevents depriming during operation of the heat pipe. The concept is applicable to fixed conductance and gas loaded variable conductance heat pipes. A theoretical model for the jet pump assisted arterial heat pipe is presented. The model was used to design a prototype for laboratory demonstration. The 1.2 m long heat pipe was designed to transport 500 watts and to prime at an adverse elevation of up to 1.3 cm. The test results were in good agreement with the theoretical predictions. The heat pipe carried as much as 540 watts and was able to prime up to 1.9 cm. Introduction of a considerable amount of noncondensible gas had no adverse effect on the priming capability.

  8. Experimental analysis of direct-expansion ground-coupled heat pump systems

    NASA Astrophysics Data System (ADS)

    Mei, V. C.; Baxter, V. D.

    1991-09-01

    Direct-expansion ground-coil-coupled (DXGC) heat pump systems have certain energy efficiency advantages over conventional ground-coupled heat pump (GCHP) systems. Principal among these advantages are that the secondary heat transfer fluid heat exchanger and circulating pump are eliminated. While the DXGC concept can produce higher efficiencies, it also produces more system design and environmental problems (e.g., compressor starting, oil return, possible ground pollution, and more refrigerant charging). Furthermore, general design guidelines for DXGC systems are not well documented. A two-pronged approach was adopted for this study: (1) a literature survey, and (2) a laboratory study of a DXGC heat pump system with R-22 as the refrigerant, for both heating and cooling mode tests done in parallel and series tube connections. The results of each task are described in this paper. A set of general design guidelines was derived from the test results and is also presented.

  9. Natural Gas Engine-Driven Heat Pump Demonstration at DoD Installations: Performance and Reliability Summary

    DTIC Science & Technology

    2009-06-09

    ER D C/ CE R L TR -0 9 -1 0 Natural Gas Engine-Driven Heat Pump Demonstration at DoD Installations Performance and Reliability Summary...L ab or at or y Approved for public release; distribution is unlimited. ERDC/CERL TR-09-10 June 2009 Natural Gas Engine-Driven Heat Pump ...CERL TR-09-10 ii Abstract: Results of field testing natural gas engine-driven heat pumps (GHP) at six southwestern U.S. Department of Defense (DoD

  10. 10 CFR 431.96 - Uniform test method for the measurement of energy efficiency of small, large, and very large...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., packaged terminal air conditioners, and packaged terminal heat pumps. 431.96 Section 431.96 Energy... EQUIPMENT Commercial Air Conditioners and Heat Pumps Test Procedures § 431.96 Uniform test method for the... heating equipment, packaged terminal air conditioners, and packaged terminal heat pumps. (a) Scope. This...

  11. Dynamic Performance of a Residential Air-to-Air Heat Pump.

    ERIC Educational Resources Information Center

    Kelly, George E.; Bean, John

    This publication is a study of the dynamic performance of a 5-ton air-to-air heat pump in a residence in Washington, D.C. The effect of part-load operation on the heat pump's cooling and heating coefficients of performance was determined. Discrepancies between measured performance and manufacturer-supplied performance data were found when the unit…

  12. 10 CFR 431.96 - Uniform test method for the measurement of energy efficiency of small, large, and very large...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., packaged terminal air conditioners, and packaged terminal heat pumps. 431.96 Section 431.96 Energy... EQUIPMENT Commercial Air Conditioners and Heat Pumps Test Procedures § 431.96 Uniform test method for the... heating equipment, packaged terminal air conditioners, and packaged terminal heat pumps. (a) Scope. This...

  13. An assessment of efficient water heating options for an all-electric single family residence in a mixed-humid climate.

    PubMed

    Balke, Elizabeth C; Healy, William M; Ullah, Tania

    2016-12-01

    An evaluation of a variety of efficient water heating strategies for an all-electric single family home located in a mixed-humid climate is conducted using numerical modeling. The strategies considered include various combinations of solar thermal, heat pump, and electric resistance water heaters. The numerical model used in the study is first validated against a year of field data obtained on a dual-tank system with a solar thermal preheat tank feeding a heat pump water heater that serves as a backup. Modeling results show that this configuration is the most efficient of the systems studied over the course of a year, with a system coefficient of performance (COP sys ) of 2.87. The heat pump water heater alone results in a COP sys of 1.9, while the baseline resistance water heater has a COP sys of 0.95. Impacts on space conditioning are also investigated by considering the extra energy consumption required of the air source heat pump to remove or add heat from the conditioned space by the water heating system. A modified COP sys that incorporates the heat pump energy consumption shows a significant drop in efficiency for the dual tank configuration since the heat pump water heater draws the most heat from the space in the heating season while the high temperatures in the solar storage tank during the cooling season result in an added heat load to the space. Despite this degradation in the COP sys , the combination of the solar thermal preheat tank and the heat pump water heater is the most efficient option even when considering the impacts on space conditioning.

  14. An assessment of efficient water heating options for an all-electric single family residence in a mixed-humid climate

    PubMed Central

    Balke, Elizabeth C.; Healy, William M.; Ullah, Tania

    2016-01-01

    An evaluation of a variety of efficient water heating strategies for an all-electric single family home located in a mixed-humid climate is conducted using numerical modeling. The strategies considered include various combinations of solar thermal, heat pump, and electric resistance water heaters. The numerical model used in the study is first validated against a year of field data obtained on a dual-tank system with a solar thermal preheat tank feeding a heat pump water heater that serves as a backup. Modeling results show that this configuration is the most efficient of the systems studied over the course of a year, with a system coefficient of performance (COPsys) of 2.87. The heat pump water heater alone results in a COPsys of 1.9, while the baseline resistance water heater has a COPsys of 0.95. Impacts on space conditioning are also investigated by considering the extra energy consumption required of the air source heat pump to remove or add heat from the conditioned space by the water heating system. A modified COPsys that incorporates the heat pump energy consumption shows a significant drop in efficiency for the dual tank configuration since the heat pump water heater draws the most heat from the space in the heating season while the high temperatures in the solar storage tank during the cooling season result in an added heat load to the space. Despite this degradation in the COPsys, the combination of the solar thermal preheat tank and the heat pump water heater is the most efficient option even when considering the impacts on space conditioning. PMID:27990058

  15. Thermodynamic and economic analysis of heat pumps for energy recovery in industrial processes

    NASA Astrophysics Data System (ADS)

    Urdaneta-B, A. H.; Schmidt, P. S.

    1980-09-01

    A computer code has been developed for analyzing the thermodynamic performance, cost and economic return for heat pump applications in industrial heat recovery. Starting with basic defining characteristics of the waste heat stream and the desired heat sink, the algorithm first evaluates the potential for conventional heat recovery with heat exchangers, and if applicable, sizes the exchanger. A heat pump system is then designed to process the residual heating and cooling requirements of the streams. In configuring the heat pump, the program searches a number of parameters, including condenser temperature, evaporator temperature, and condenser and evaporator approaches. All system components are sized for each set of parameters, and economic return is estimated and compared with system economics for conventional processing of the heated and cooled streams (i.e., with process heaters and coolers). Two case studies are evaluated, one in a food processing application and the other in an oil refinery unit.

  16. General Equation Set Solver for Compressible and Incompressible Turbomachinery Flows

    NASA Technical Reports Server (NTRS)

    Sondak, Douglas L.; Dorney, Daniel J.

    2002-01-01

    Turbomachines for propulsion applications operate with many different working fluids and flow conditions. The flow may be incompressible, such as in the liquid hydrogen pump in a rocket engine, or supersonic, such as in the turbine which may drive the hydrogen pump. Separate codes have traditionally been used for incompressible and compressible flow solvers. The General Equation Set (GES) method can be used to solve both incompressible and compressible flows, and it is not restricted to perfect gases, as are many compressible-flow turbomachinery solvers. An unsteady GES turbomachinery flow solver has been developed and applied to both air and water flows through turbines. It has been shown to be an excellent alternative to maintaining two separate codes.

  17. Pumped two-phase heat transfer loop

    NASA Technical Reports Server (NTRS)

    Edelstein, Fred

    1988-01-01

    A pumped loop two-phase heat transfer system, operating at a nearly constant temperature throughout, includes several independently operating grooved capillary heat exchanger plates supplied with working fluid through independent flow modulation valves connected to a liquid supply line, a vapor line for collecting vapor from the heat exchangers, a condenser between the vapor and the liquid lines, and a fluid circulating pump between the condenser and the heat exchangers.

  18. Pumped two-phase heat transfer loop

    NASA Technical Reports Server (NTRS)

    Edelstein, Fred (Inventor)

    1987-01-01

    A pumped loop two-phase heat transfer system, operating at a nearly constant temperature throughout, includes a plurality of independently operating grooved capillary heat exchanger plates supplied with working fluid through independent flow modulation valves connected to a liquid supply line, a vapor line for collecting vapor from the heat exchangers, a condenser between the vapor and the liquid lines, and a fluid circulating pump between the condenser and the heat exchangers.

  19. Field Investigation of an Air-Source Cold Climate Heat Pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Bo; Abdelaziz, Omar; Rice, C Keith

    In the U.S., there are approximately 2.6 million dwellings that use electricity for heating in cold and very cold regions with an annual energy consumption of 0.16 quads (0.17 EJ). A high performance cold climate heat pump (CCHP) would result in significant savings over current technologies (greater than 60% compared to electric resistance heating). We developed an air-source cold climate heat pump, which uses tandem compressors, with a single compressor rated for the building design cooling load, and running two compressors to provide, at -13 F (-25 C), 75% of rated heating capacity. The tandem compressors were optimized for heatingmore » operation and are able to tolerate discharge temperatures up to 280 F (138 C). A field investigation was conducted in the winter of 2015, in an occupied home in Ohio, USA. During the heating season, the seasonal COP was measured at 3.16, and the heat pump was able to operate down to -13 F (-25 C) and eliminate resistance heat use. The heat pump maintained an acceptable comfort level throughout the heating season. In comparison to a previous single-speed heat pump in the home, the CCHP demonstrated more than 40% energy savings in the peak heating load month. This paper illustrates the measured field performance, including compressor run time, frost/defrosting operations, distributions of building heating load and capacity delivery, comfort level, field measured COPs, etc.« less

  20. Performance analysis on a large scale borehole ground source heat pump in Tianjin cultural centre

    NASA Astrophysics Data System (ADS)

    Yin, Baoquan; Wu, Xiaoting

    2018-02-01

    In this paper, the temperature distribution of the geothermal field for the vertical borehole ground-coupled heat pump was tested and analysed. Besides the borehole ground-coupled heat pump, the system composed of the ice storage, heat supply network and cooling tower. According to the operation data for nearly three years, the temperature constant zone is in the ground depth of 40m -120m with a temperature gradient of about 3.0°C/100m. The temperature of the soil dropped significantly in the heating season, increased significantly in the cooling season, and reinstated in the transitional season. With the energy balance design of the heating and cooling and the existence of the soil thermal inertia, the soil temperature stayed in a relative stable range and the ground source heat pump system was operated with a relative high efficiency. The geothermal source heat pump was shown to be applicable for large scale utilization.

  1. Determination of Ground Heat Exchangers Temperature Field in Geothermal Heat Pumps

    NASA Astrophysics Data System (ADS)

    Zhurmilova, I.; Shtym, A.

    2017-11-01

    For the heating and cooling supply of buildings and constructions geothermal heat pumps using low-potential ground energy are applied by means of ground exchangers. The process of heat transfer in a system of ground exchangers is a phenomenon of complex heat transfer. The paper presents a mathematical modeling of heat exchange processes, the temperature fields are built which are necessary for the determination of the ground array that ensures an adequate supply of low potential energy excluding the freezing of soil around the pipes in the ground heat exchangers and guaranteeing a reliable operation of geothermal heat pumps.

  2. Heat pump concepts for nZEB Technology developments, design tools and testing of heat pump systems for nZEB in the USA: Country report IEA HPT Annex 40 Task 2, Task 3 and Task 4 of the USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, Van D.; Payne, W. Vance; Ling, Jiazhen

    The IEA HPT Annex 40 "Heat pump concepts for Nearly Zero Energy Buildings" deals with the application of heat pumps as a core component of the HVAC system for Nearly or Net Zero energy buildings (nZEB). This report covers Task 2 on the system comparison and optimisation and Task 3 dedicated to the development of adapted technologies for nZEB and field monitoring results of heat pump systems in nZEB. In the US team three institutions are involved and have worked on the following projects: The Oak Ridge National Laboratory (ORNL) will summarize development activities through the field demonstration stage formore » several integrated heat pump (IHP) systems electric ground-source (GS-IHP) and air-source (AS-IHP) versions and an engine driven AS-IHP version. The first commercial GS-IHP product was just introduced to the market in December 2012. This work is a contribution to Task 3 of the Annex. The University of Maryland will contribute a software development project to Task 2 of the Annex. The software ThermCom evaluates occupied space thermal comfort conditions accounting for all radiative and convective heat transfer effects as well as local air properties. The National Institute of Standards and Technology (NIST) is working on a field study effort on the NIST Net Zero Energy Residential Test Facility (NZERTF). This residential building was constructed on the NIST campus and officially opened in summer 2013. During the first year, between July 2013 and June 2014, baseline performance of the NZERTF was monitored under a simulated occupancy protocol. The house was equipped with an air-to-air heat pump which included a dedicated dehumidification operating mode. Outdoor conditions, internal loads and modes of heat pump operation were monitored. Field study results with respect to heat pump operation will be reported and recommendations on heat pump optimization for a net zero energy building will be provided. This work is a contribution to Task 3 of the Annex.« less

  3. Two simple models of classical heat pumps.

    PubMed

    Marathe, Rahul; Jayannavar, A M; Dhar, Abhishek

    2007-03-01

    Motivated by recent studies of models of particle and heat quantum pumps, we study similar simple classical models and examine the possibility of heat pumping. Unlike many of the usual ratchet models of molecular engines, the models we study do not have particle transport. We consider a two-spin system and a coupled oscillator system which exchange heat with multiple heat reservoirs and which are acted upon by periodic forces. The simplicity of our models allows accurate numerical and exact solutions and unambiguous interpretation of results. We demonstrate that while both our models seem to be built on similar principles, one is able to function as a heat pump (or engine) while the other is not.

  4. Nano-electro-mechanical pump: Giant pumping of water in carbon nanotubes

    PubMed Central

    Farimani, Amir Barati; Heiranian, Mohammad; Aluru, Narayana R.

    2016-01-01

    A fully controllable nano-electro-mechanical device that can pump fluids at nanoscale is proposed. Using molecular dynamics simulations, we show that an applied electric field to an ion@C60 inside a water-filled carbon nanotube can pump water with excellent efficiency. The key physical mechanism governing the fluid pumping is the conversion of electrical energy into hydrodynamic flow with efficiencies as high as 64%. Our results show that water can be compressed up to 7% higher than its bulk value by applying electric fields. High flux of water (up to 13,000 molecules/ns) is obtained by the electro-mechanical, piston-cylinder-like moving mechanism of the ion@C60 in the CNT. This large flux results from the piston-like mechanism, compressibility of water (increase in density of water due to molecular ordering), orienting dipole along the electric field and efficient electrical to mechanical energy conversion. Our findings can pave the way towards efficient energy conversion, pumping of fluids at nanoscale, and drug delivery. PMID:27193507

  5. Nano-electro-mechanical pump: Giant pumping of water in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Farimani, Amir Barati; Heiranian, Mohammad; Aluru, Narayana R.

    2016-05-01

    A fully controllable nano-electro-mechanical device that can pump fluids at nanoscale is proposed. Using molecular dynamics simulations, we show that an applied electric field to an ion@C60 inside a water-filled carbon nanotube can pump water with excellent efficiency. The key physical mechanism governing the fluid pumping is the conversion of electrical energy into hydrodynamic flow with efficiencies as high as 64%. Our results show that water can be compressed up to 7% higher than its bulk value by applying electric fields. High flux of water (up to 13,000 molecules/ns) is obtained by the electro-mechanical, piston-cylinder-like moving mechanism of the ion@C60 in the CNT. This large flux results from the piston-like mechanism, compressibility of water (increase in density of water due to molecular ordering), orienting dipole along the electric field and efficient electrical to mechanical energy conversion. Our findings can pave the way towards efficient energy conversion, pumping of fluids at nanoscale, and drug delivery.

  6. Nano-electro-mechanical pump: Giant pumping of water in carbon nanotubes.

    PubMed

    Farimani, Amir Barati; Heiranian, Mohammad; Aluru, Narayana R

    2016-05-19

    A fully controllable nano-electro-mechanical device that can pump fluids at nanoscale is proposed. Using molecular dynamics simulations, we show that an applied electric field to an ion@C60 inside a water-filled carbon nanotube can pump water with excellent efficiency. The key physical mechanism governing the fluid pumping is the conversion of electrical energy into hydrodynamic flow with efficiencies as high as 64%. Our results show that water can be compressed up to 7% higher than its bulk value by applying electric fields. High flux of water (up to 13,000 molecules/ns) is obtained by the electro-mechanical, piston-cylinder-like moving mechanism of the ion@C60 in the CNT. This large flux results from the piston-like mechanism, compressibility of water (increase in density of water due to molecular ordering), orienting dipole along the electric field and efficient electrical to mechanical energy conversion. Our findings can pave the way towards efficient energy conversion, pumping of fluids at nanoscale, and drug delivery.

  7. 10 CFR 431.95 - Materials incorporated by reference.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... INDUSTRIAL EQUIPMENT Commercial Air Conditioners and Heat Pumps Test Procedures § 431.95 Materials... Packaged Terminal Air-Conditioners and Heat Pumps,” published September 2004 (AHRI 310/380-2004), IBR... Single Package Vertical Air-Conditioners and Heat Pumps,” dated 2003, (AHRI 390-2003), IBR approved for...

  8. 10 CFR 431.95 - Materials incorporated by reference.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... INDUSTRIAL EQUIPMENT Commercial Air Conditioners and Heat Pumps Test Procedures § 431.95 Materials... Packaged Terminal Air-Conditioners and Heat Pumps,” published September 2004 (AHRI 310/380-2004), IBR... Single Package Vertical Air-Conditioners and Heat Pumps,” dated 2003, (AHRI 390-2003), IBR approved for...

  9. Hydride heat pump with heat regenerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative hydride heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system. A series of at least four canisters containing a lower temperature performing hydride and a series of at least four canisters containing a higher temperature performing hydride is provided. Each canister contains a heat conductive passageway through which a heat transfer fluid is circulated so that sensible heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  10. Ground-water heat pumps: An examination of hydrogeologic, environmental, legal, and economic factors affecting their use. Volume 1: Main text, appendices A, B, and C

    NASA Astrophysics Data System (ADS)

    Armitage, D. M.; Bacon, D. J.; Massey-Norton, J. T.; Miller, J. M.

    1980-11-01

    Groundwater is attractive as a potential low temperature energy source in residential space conditioning applications. When used in conjunction with a heat pump, ground water can serve as both a heat source and a heat sink. Major hydrogeologic aspects that affect system use include groundwater temperature and availability at shallow depths as these factors influence operational efficiency. Ground water quality is considered as it affects the performance and life expectancy of the water side heat exchanger. Environmental impacts related to groundwater heat pump system use are most influenced by water use and disposal methods. In general, recharge to the subsurface is recommended. Legal restrictions on system use are often stricter at the municipal and county levels than at state and federal levels. Computer simulations indicate that under a variety of climatologic conditions, groundwater heat pumps use less energy than conventional heating and cooling equipment. Life cycle cost comparisons with conventional equipment depend on alternative system choices and well cost options included in the groundwater heat pump system.

  11. Advanced Active Thermal Control Systems Architecture Study

    NASA Technical Reports Server (NTRS)

    Hanford, Anthony J.; Ewert, Michael K.

    1996-01-01

    The Johnson Space Center (JSC) initiated a dynamic study to determine possible improvements available through advanced technologies (not used on previous or current human vehicles), identify promising development initiatives for advanced active thermal control systems (ATCS's), and help prioritize funding and personnel distribution among many research projects by providing a common basis to compare several diverse technologies. Some technologies included were two-phase thermal control systems, light-weight radiators, phase-change thermal storage, rotary fluid coupler, and heat pumps. JSC designed the study to estimate potential benefits from these various proposed and under-development thermal control technologies for five possible human missions early in the next century. The study compared all the technologies to a baseline mission using mass as a basis. Each baseline mission assumed an internal thermal control system; an external thermal control system; and aluminum, flow-through radiators. Solar vapor compression heat pumps and light-weight radiators showed the greatest promise as general advanced thermal technologies which can be applied across a range of missions. This initial study identified several other promising ATCS technologies which offer mass savings and other savings compared to traditional thermal control systems. Because the study format compares various architectures with a commonly defined baseline, it is versatile and expandable, and is expected to be updated as needed.

  12. Heat pump having improved defrost system

    DOEpatents

    Chen, Fang C.; Mei, Viung C.; Murphy, Richard W.

    1998-01-01

    A heat pump system includes, in an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant: a compressor; an interior heat exchanger; an exterior heat exchanger; an accumulator; and means for heating the accumulator in order to defrost the exterior heat exchanger.

  13. Heat pump having improved defrost system

    DOEpatents

    Chen, F.C.; Mei, V.C.; Murphy, R.W.

    1998-12-08

    A heat pump system includes, in an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant: a compressor; an interior heat exchanger; an exterior heat exchanger; an accumulator; and means for heating the accumulator in order to defrost the exterior heat exchanger. 2 figs.

  14. Corrosion protection of steel in ammonia/water heat pumps

    DOEpatents

    Mansfeld, Florian B.; Sun, Zhaoli

    2003-10-14

    Corrosion of steel surfaces in a heat pump is inhibited by adding a rare earth metal salt to the heat pump's ammonia/water working fluid. In preferred embodiments, the rare earth metal salt includes cerium, and the steel surfaces are cerated to enhance the corrosion-inhibiting effects.

  15. 10 CFR 431.95 - Materials incorporated by reference.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... INDUSTRIAL EQUIPMENT Commercial Air Conditioners and Heat Pumps Test Procedures § 431.95 Materials...) published in 2004, “Standard for Packaged Terminal Air-Conditioners and Heat Pumps,” IBR approved for § 431... for Commercial Air Conditioners and Heat Pumps,” Docket No. EE-RM/TP-99-460, 1000 Independence Avenue...

  16. Augmented thermal bus

    NASA Technical Reports Server (NTRS)

    Schrage, Dean S. (Inventor)

    1993-01-01

    The present invention is directed to an augmented thermal bus. In the present design a plurity of thermo-electric heat pumps are used to couple a source plate to a sink plate. Each heat pump is individually controlled by a model based controller. The controller coordinates the heat pump to maintain isothermality in the source.

  17. Augmented Thermal Bus

    NASA Technical Reports Server (NTRS)

    Schrage, Dean S. (Inventor)

    1996-01-01

    The present invention is directed to an augmented thermal bus. In the present design a plurality of thermo-electric heat pumps are used to couple a source plate to a sink plate. Each heat pump is individually controlled by a model based controller. The controller coordinates the heat pumps to maintain isothermality in the source.

  18. Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump

    DOEpatents

    Phillips, Benjamin A.; Zawacki, Thomas S.; Marsala, Joseph

    1994-11-29

    Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use the working solution of the absorption system for the heat transfer medium.

  19. Design and evaluation of a primary/secondary pumping system for a heat pump assisted solar thermal loop

    NASA Astrophysics Data System (ADS)

    Krockenberger, Kyle G.

    A heat pump assisted solar thermal system was designed, commissioned, tested and analyzed over a period of two years. The unique system uses solar energy whenever it is available, but switches to heat pump mode at night or whenever there is a lack of solar energy. The solar thermal energy is added by a variety of flat plat solar collectors and an evacuated tube heat pipe solar collector. The working medium in the entire system is a 50% mixture of propylene glycol and water for freeze protection. During the design and evaluation the primary / secondary pumping system was the focus of the evaluation. Testing within this research focused on the operation modes, pump stability, and system efficiency. It was found that the system was in full operation, the pumps were stable and that the efficiency factor of the system was 1.95.

  20. A Preliminary Study of Fuel Injection and Compression Ignition as Applied to an Aircraft Engine Cylinder

    NASA Technical Reports Server (NTRS)

    Gardiner, Arthur W

    1927-01-01

    This report summarizes some results obtained with a single cylinder test engine at the Langley Field Laboratory during a preliminary investigation of the problem of applying fuel injection and compression ignition to aircraft engines. For this work a standard Liberty Engine cylinder was fitted with a high compression, 11.4 : 1 compression ratio, piston, and equipped with an airless injection system, including a primary fuel pump, an injection pump, and an automatic injection valve. The results obtained during this investigation have indicated the possibility of applying airless injection and compression ignition to a cylinder of this size, 8-inch bore by 7-inch stroke, when operating at engine speeds as high as 1,850 R. P. M. A minimum specific fuel consumption with diesel engine fuel oil of 0.30 pound per I. HP. Hour was obtained when developing about 16 B. HP. At 1,730 R. P. M.

  1. Temporal Behavior of the Pump Pulses, Residual Pump Pulses, and THz Pulses for D2O Gas Pumped by a TEA CO2 Laser

    NASA Astrophysics Data System (ADS)

    Geng, Lijie; Zhang, Zhifeng; Zhai, Yusheng; Su, Yuling; Zhou, Fanghua; Qu, Yanchen; Zhao, Weijiang

    2016-08-01

    Temporal behavior of the pump pulses, residual pump pulses, and THz pulses for optically pumped D2O gas molecules was investigated by using a tunable TEA CO2 laser as the pumping source. The pulse profiles of pump laser pulses, residual pump pulses, and the THz output pulses were measured, simultaneously, at several different gas pressures. For THz pulse, the pulse delay between the THz pulse and the pump pulse was observed and the delay time was observed to increase from 40 to 70 ns with an increase in gas pressure from 500 to 1700 Pa. Both THz pulse broadening and compression were observed, and the pulse broadening effect transformed to the compression effect with increasing the gas pressure. For the residual pump pulse, the full width at half maximum (FWHM) of the main pulse decreased with increasing gas pressure, and the main pulse disappeared at high gas pressures. The secondary pulses were observed at high gas pressure, and the time intervals of about 518 and 435 ns were observed between the THz output pulse and the secondary residual pump pulse at the pressure of 1400 Pa and 1700 Pa, from which the vibrational relaxation time constants of about 5.45 and 5.55 μs Torr were obtained.

  2. Absorption heat pump system

    DOEpatents

    Grossman, G.

    1982-06-16

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  3. Absorption heat pump system

    DOEpatents

    Grossman, Gershon

    1984-01-01

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  4. Transient Analysis of a Magnetic Heat Pump

    NASA Technical Reports Server (NTRS)

    Schroeder, E. A.

    1985-01-01

    An experimental heat pump that uses a rare earth element as the refrigerant is modeled using NASTRAN. The refrigerant is a ferromagnetic metal whose temperature rises when a magnetic field is applied and falls when the magnetic field is removed. The heat pump is used as a refrigerator to remove heat from a reservoir and discharge it through a heat exchanger. In the NASTRAN model the components modeled are represented by one-dimensional ROD elements. Heat flow in the solids and fluid are analyzed. The problem is mildly nonlinear since the heat capacity of the refrigerant is temperature-dependent. One simulation run consists of a series of transient analyses, each representing one stroke of the heat pump. An auxiliary program was written that uses the results of one NASTRAN analysis to generate data for the next NASTRAN analysis.

  5. Hemolysis and heat generation in six different types of centrifugal blood pumps.

    PubMed

    Araki, K; Taenaka, Y; Masuzawa, T; Tatsumi, E; Wakisaka, Y; Watari, M; Nakatani, T; Akagi, H; Baba, Y; Anai, H

    1995-09-01

    What the most causative factor affecting hemolysis is still controversial. To resolve this problem, we investigated the relationship between hemolysis and heat generation in six types of centrifugal blood pumps (Bio-Pump, Delphin, Capiox, Nikkiso, Isoflow, and Toyobo). The analyzed parameters were index of hemolysis in fresh goat blood, pumping performance, and heat generation in a thermally isolated mock circuit. These parameters were analyzed at a flow rate of 5 L/min by changing the pressure head (100 mm Hg and 500 mm Hg). At 500 mm Hg of pressure head, the Bio-Pump needed the highest rotation number and showed the highest hemolytic rate and heat generation. The index of hemolysis is well correlated to heat generation (r2 = 0.721). Heat may originate from the motor by conduction, hydraulic energy loss, and mechanical friction between the shaft and seal. We strongly suspect that hemolysis was caused by a factor such as mechanical friction which generates heat locally.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cirrito, A.J.

    Combustion jet pumps ingest waste heat gases from power plant engines and boilers to boost their pressure for the ultimate low temperature utilization of the captured heat for heating homes, full-year hot houses, sterilization purposes, recreational hot water, absorption refrigeration and the like. Jet pump energy is sustained from the incineration of solids, liquids and gases and vapors or simply from burning fuels. This is the energy needed to transport the reaction products to the point of heat utilization and to optimize the heat transfer to that point. Sequent jet pumps raise and preserve energy levels. Crypto-steady and special jetmore » pumps increase pumping efficiency. The distribution conduit accepts fluidized solids, liquids, gases and vapors in multiphase flow. Temperature modulation and flow augmentation takes place by water injection. Macro solids such as dried sewage waste are removed by cyclone separation. Micro particles remain entrained and pass out with waste condensate just beyond each point of final heat utilization to recharge the water table. The non-condensible gases separated at this point are treated for pollution control. Further, jet pump reactions are controlled to yield fuel gas as necessary to power jet pumps or other use. In all these effects introduced sequentially, the available energy necessary to provide the flow energy, for the continuously distributed heating medium, is first extracted from fuel and fuel-like additions to the stream. As all energy, any way, finally converts to heat, which in this case is retained or recaptured in the flow, the captured heat is practically 90% available at the point of low temperature utilization. The jet pump for coal gasification is also disclosed as are examples of coal gasification and hydrogen production.« less

  7. Impact on Water Heater Performance of Heating Methods that Promote Tank Temperature Stratification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gluesenkamp, Kyle R; BushPE, John D

    2016-01-01

    During heating of a water heater tank, the vertical temperature stratification of the water can be increased or decreased, depending on the method of heating. Methods that increase stratification during heating include (1) removing cold water from the tank bottom, heating it, and re-introducing it to the tank top at relatively low flow rate, (2) using a heat exchanger wrapped around the tank, through which heating fluid (with finite specific heat) flows from top to bottom, and (3) using an immersed heat element that is relatively high in the tank. Using such methods allows for improved heat pump water heatermore » (HPWH) cycle efficiencies when the heat pump can take advantage of the lower temperatures that exist lower in the tank, and accommodate the resulting glide. Transcritical cycles are especially well-suited to capitalize on this opportunity, and other HPWH configurations (that have been proposed elsewhere) may benefit as well. This work provides several stratification categories of heat pump water heater tank configurations relevant to their stratification potential. To illustrate key differences among categories, it also compiles available experimental data for (a) single pass pumped flow, (b) multi-pass pumped flow, and (c) top-down wrapped tank with transcritical refrigerant.« less

  8. Generalized Fluid System Simulation Program, Version 6.0

    NASA Technical Reports Server (NTRS)

    Majumdar, A. K.; LeClair, A. C.; Moore, R.; Schallhorn, P. A.

    2016-01-01

    The Generalized Fluid System Simulation Program (GFSSP) is a general purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors, and external body forces such as gravity and centrifugal. The thermofluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the 'point, drag, and click' method; the users can also run their models and post-process the results in the same environment. Two thermodynamic property programs (GASP/WASP and GASPAK) provide required thermodynamic and thermophysical properties for 36 fluids: helium, methane, neon, nitrogen, carbon monoxide, oxygen, argon, carbon dioxide, fluorine, hydrogen, parahydrogen, water, kerosene (RP-1), isobutene, butane, deuterium, ethane, ethylene, hydrogen sulfide, krypton, propane, xenon, R-11, R-12, R-22, R-32, R-123, R-124, R-125, R-134A, R-152A, nitrogen trifluoride, ammonia, hydrogen peroxide, and air. The program also provides the options of using any incompressible fluid with constant density and viscosity or ideal gas. The users can also supply property tables for fluids that are not in the library. Twenty-four different resistance/source options are provided for modeling momentum sources or sinks in the branches. These options include pipe flow, flow through a restriction, noncircular duct, pipe flow with entrance and/or exit losses, thin sharp orifice, thick orifice, square edge reduction, square edge expansion, rotating annular duct, rotating radial duct, labyrinth seal, parallel plates, common fittings and valves, pump characteristics, pump power, valve with a given loss coefficient, Joule-Thompson device, control valve, heat exchanger core, parallel tube, and compressible orifice. The program has the provision of including additional resistance options through User Subroutines. GFSSP employs a finite volume formulation of mass, momentum, and energy conservation equations in conjunction with the thermodynamic equations of state for real fluids as well as energy conservation equations for the solid. The system of equations describing the fluid network is solved by a hybrid numerical method that is a combination of the Newton-Raphson and successive substitution methods. The application and verification of the code has been demonstrated through 30 example problems.

  9. 46 CFR 153.285 - Valving for cargo pump manifolds.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Valving for cargo pump manifolds. 153.285 Section 153... SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Piping Systems and Cargo Handling Equipment § 153.285 Valving for cargo pump manifolds. (a) When cargo...

  10. Performance Analysis of a CO2 Heat Pump Water Heating System Under a Daily Change in a Simulated Demand

    NASA Astrophysics Data System (ADS)

    Yokoyama, Ryohei; Kohno, Yasuhiro; Wakui, Tetsuya; Takemura, Kazuhisa

    Air-to-water heat pumps using CO2 as a refrigerant have been developed. In addition, water heating systems each of which combines a CO2 heat pump with a hot water storage tank have been commercialized and widespread. They are expected to contribute to energy saving in residential hot water supply. It has become more and more important to enhance the system performance. In this paper, the performance of a CO2 heat pump water heating system is analyzed under a daily change in a simulated hot water demand by numerical simulation. A static model of a CO2 heat pump and a dynamic model of a storage tank result in a set of differential algebraic equations, and it is solved numerically by a hierarchical combination of Runge-Kutta and Newton-Raphson methods. Daily changes in the temperature distributions in the storage tank and the system performance criteria such as volumes of stored and unused hot water, coefficient of performance, and storage and system efficiencies are clarified under a series of daily hot water demands during a month.

  11. Heat pump water heater and method of making the same

    DOEpatents

    Mei, Viung C.; Tomlinson, John J.; Chen, Fang C.

    2001-01-01

    An improved heat pump water heater wherein the condenser assembly of the heat pump is inserted into the water tank through an existing opening in the top of the tank, the assembly comprising a tube-in-a-tube construction with an elongated cylindrical outer body heat exchanger having a closed bottom with the superheated refrigerant that exits the compressor of the heat pump entering the top of the outer body. As the refrigerant condenses along the interior surface of the outer body, the heat from the refrigerant is transferred to the water through the outer body. The refrigerant then enters the bottom of an inner body coaxially disposed within the outer body and exits the top of the inner body into the refrigerant conduit leading into the expansion device of the heat pump. The outer body, in a second embodiment of the invention, acts not only as a heat exchanger but also as the sacrificial anode in the water tank by being constructed of a metal which is more likely to corrode than the metal of the tank.

  12. GEO3D - Three-Dimensional Computer Model of a Ground Source Heat Pump System

    DOE Data Explorer

    James Menart

    2013-06-07

    This file is the setup file for the computer program GEO3D. GEO3D is a computer program written by Jim Menart to simulate vertical wells in conjunction with a heat pump for ground source heat pump (GSHP) systems. This is a very detailed three-dimensional computer model. This program produces detailed heat transfer and temperature field information for a vertical GSHP system.

  13. ATES/heat pump simulations performed with ATESSS code

    NASA Astrophysics Data System (ADS)

    Vail, L. W.

    1989-01-01

    Modifications to the Aquifer Thermal Energy Storage System Simulator (ATESSS) allow simulation of aquifer thermal energy storage (ATES)/heat pump systems. The heat pump algorithm requires a coefficient of performance (COP) relationship of the form: COP = COP sub base + alpha (T sub ref minus T sub base). Initial applications of the modified ATES code to synthetic building load data for two sizes of buildings in two U.S. cities showed insignificant performance advantage of a series ATES heat pump system over a conventional groundwater heat pump system. The addition of algorithms for a cooling tower and solar array improved performance slightly. Small values of alpha in the COP relationship are the principal reason for the limited improvement in system performance. Future studies at Pacific Northwest Laboratory (PNL) are planned to investigate methods to increase system performance using alternative system configurations and operations scenarios.

  14. Ground coupled solar heat pumps: analysis of four options

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, J.W.

    Heat pump systems which utilize both solar energy and energy withdrawn from the ground are analyzed using a simplified procedure which optimizes the solar storage temperature on a monthly basis. Four ways of introducing collected solar energy to the system are optimized and compared. These include use of actively collected thermal input to the heat pump; use of collected solar energy to heat the load directly (two different ways); and use of a passive option to reduce the effective heating load.

  15. Evaluating the heat pump alternative for heating enclosed wastewater treatment facilities in cold regions

    NASA Astrophysics Data System (ADS)

    Martel, C. J.; Phetteplace, G. E.

    1982-05-01

    This report presents a five-step procedure for evaluating the technical and economic feasibility of using heat pumps to recover heat from treatment plant effluent. The procedure is meant to be used at the facility planning level by engineers who are unfamiliar with this technology. An example of the use of the procedure and general design information are provided. Also, the report reviews the operational experience with heat pumps at wastewater plants located in Fairbanks, Alaska, Madison, Wisconsin, and Wilton, Maine.

  16. Kinking and Torsion Can Significantly Improve the Efficiency of Valveless Pumping in Periodically Compressed Tubular Conduits. Implications for Understanding of the Form-Function Relationship of Embryonic Heart Tubes.

    PubMed

    Hiermeier, Florian; Männer, Jörg

    2017-11-19

    Valveless pumping phenomena (peristalsis, Liebau-effect) can generate unidirectional fluid flow in periodically compressed tubular conduits. Early embryonic hearts are tubular conduits acting as valveless pumps. It is unclear whether such hearts work as peristaltic or Liebau-effect pumps. During the initial phase of its pumping activity, the originally straight embryonic heart is subjected to deforming forces that produce bending, twisting, kinking, and coiling. This deformation process is called cardiac looping. Its function is traditionally seen as generating a configuration needed for establishment of correct alignments of pulmonary and systemic flow pathways in the mature heart of lung-breathing vertebrates. This idea conflicts with the fact that cardiac looping occurs in all vertebrates, including gill-breathing fishes. We speculate that looping morphogenesis may improve the efficiency of valveless pumping. To test the physical plausibility of this hypothesis, we analyzed the pumping performance of a Liebau-effect pump in straight and looped (kinked) configurations. Compared to the straight configuration, the looped configuration significantly improved the pumping performance of our pump. This shows that looping can improve the efficiency of valveless pumping driven by the Liebau-effect. Further studies are needed to clarify whether this finding may have implications for understanding of the form-function relationship of embryonic hearts.

  17. Kinking and Torsion Can Significantly Improve the Efficiency of Valveless Pumping in Periodically Compressed Tubular Conduits. Implications for Understanding of the Form-Function Relationship of Embryonic Heart Tubes

    PubMed Central

    Hiermeier, Florian; Männer, Jörg

    2017-01-01

    Valveless pumping phenomena (peristalsis, Liebau-effect) can generate unidirectional fluid flow in periodically compressed tubular conduits. Early embryonic hearts are tubular conduits acting as valveless pumps. It is unclear whether such hearts work as peristaltic or Liebau-effect pumps. During the initial phase of its pumping activity, the originally straight embryonic heart is subjected to deforming forces that produce bending, twisting, kinking, and coiling. This deformation process is called cardiac looping. Its function is traditionally seen as generating a configuration needed for establishment of correct alignments of pulmonary and systemic flow pathways in the mature heart of lung-breathing vertebrates. This idea conflicts with the fact that cardiac looping occurs in all vertebrates, including gill-breathing fishes. We speculate that looping morphogenesis may improve the efficiency of valveless pumping. To test the physical plausibility of this hypothesis, we analyzed the pumping performance of a Liebau-effect pump in straight and looped (kinked) configurations. Compared to the straight configuration, the looped configuration significantly improved the pumping performance of our pump. This shows that looping can improve the efficiency of valveless pumping driven by the Liebau-effect. Further studies are needed to clarify whether this finding may have implications for understanding of the form-function relationship of embryonic hearts. PMID:29367548

  18. Evaluation of Future Fuels in a High Pressure Common Rail System - Part 1 Cummins XPI

    DTIC Science & Technology

    2012-10-01

    compressed against the underside of the pump head to maintain contact with the pump camshaft. The underside of the pump head is shown in Figure 5...Figure 5. High Pressure Pump Head Unclassified 8 The two barrel retainers located on the underside of the pump head hold the ceramic plungers...which develop the high pressures within the pump. The plungers are driven into the barrels by the tappets as the shaft turns. They are forced back out

  19. Thermal-powered reciprocating pump

    NASA Technical Reports Server (NTRS)

    Sabelman, E. E.

    1972-01-01

    Waste heat from radioisotope thermal generators in spacecraft is transported to keep instruments warm by two-cylinder reciprocating pump powered by energy from warm heat exchange fluid. Each cylinder has thermally nonconductive piston, heat exchange coil, and heat sink surface.

  20. Analysis of the performance and space-conditioning impacts of dedicated heat-pump water heaters

    NASA Astrophysics Data System (ADS)

    Morrison, L.; Swisher, J.

    1980-12-01

    The operation of a newly marketed dedicated heat pump water heater (HPWH) which utilizes an air to water heat pump, costs about $1000 installed, and obtains a coefficient of performance (COP) of about 2.0 in laboratory and field tests, is a space conditioning benefit if an air conditioning load exists and a penalty if a space heating load exists. A simulation was developed to model the thermal performance of a residence with resistance baseboard heat, air conditioning, and either heat pump or resistance water heating. The building characteristics were adapted (Madison, Wisconsin; Washington, DC; and Ft. Worth, Texas) and the system was simulated for a year with typical weather data. For each city, HPWH COPs are calculated monthly and yearly. The water heating and space conditioning energy requirements of HPWH operation are compared with those of resistance water heater operation to determine the relative performance ratio of the HPWH.

  1. Impact of Seasonal Heat Accumulation on Operation of Geothermal Heat Pump System with Vertical Ground Heat Exchanger

    NASA Astrophysics Data System (ADS)

    Timofeev, D. V.; Malyavina, E. G.

    2017-11-01

    The subject of the investigation was to find out the influence of heat pump operation in summer on its function in winter. For this purpose a mathematical model of a ground coupled heat pump system has been developed and programmed. The mathematical model of a system ground heat exchanger uses the finite difference method to describe the heat transfer in soil and the analytical method to specify the heat transfer in the U-tubes heat exchanger. The thermal diffusivity by the heat transfer in the soil changes during gradual freezing of the pore moisture and thus slows soil freezing. The mathematical model of a heat pump includes the description of a scroll compressor and the simplified descriptions of the evaporator and condenser. The analysis showed that heating during the cold season and cooling in the warm season affect the average heat transfer medium temperature in the soil loop in the winter season. It has been also showed that the degree of this effect depends on the clay content in the soil.

  2. The mechanical design of a vapor compressor for a heat pump to be used in space

    NASA Technical Reports Server (NTRS)

    Berner, F.; Oesch, H.; Goetz, K.; Savage, C. J.

    1982-01-01

    A heat pump developed for use in Spacelab as a stand-alone refrigeration unit as well as within a fluid loop system is discussed. It will provide an active thermal control for payloads. Specifications for the heat pump were established: (1) heat removal rates at the source; (2) heat source temperatures from room temperature; (3) heat-sink fluid temperatures at condenser inlet; and (4) minimum power consumption. A reversed Carnot cycle heat pump using Freon 12 as working fluid incorporating a one-cylinder reciprocating compressor was selected. The maximum crankshaft speed was fixed relatively high at 100 rpm. The specified cooling rates then made it necessary to select a cylinder volume of 10 cu cm, which was obtained with a bore of 40 mm and a stroke of 8 mm.

  3. Investigation of an ejector heat pump by analytical methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, C.T.

    1984-07-01

    Using existing theories of ejector design, the optimum geometry of a high-efficiency ejector - including mixing section cross-sectional area, mass flow entrainment rate, ejector efficiency, and overall COP - for a heat pump cycle was determined. A parametric study was performed to evaluate the COP values for different operating conditions. A sensitivity study determined th effects of nozzle efficiency and diffuser efficiency on the overall ejector heat pump COP. The off-design study estimated the COP for an ejector heat pump operating at off-design conditions. Refrigerants 11, 113, and 114 are three of the halocarbons which best satisfy the criteria formore » an ejector heat pump system. The estimated COPs were 0.3 for the cooling mode and 1.3 for the heating mode at standard operating conditions: a boiler temperature of 93.3/sup 0/C (200/sup 0/F), a condenser temperature of 43.3/sup 0/C (110/sup 0/F), and an evaporator temperature of 10/sup 0/C (50/sup 0/F). Based on the same operating conditions, an optimum ejector geometry was estimated for each of the refrigerants R-11 and R-113. Since the COP values for heating obtained in this analysis are greater than unity, the performance of an ejector heat pump operating in the heating mode should be competitive with that of oil- or gas-fired furnaces or electrical resistance heaters.« less

  4. Analysis of the efficiency of a hybrid foil tunnel heating system

    NASA Astrophysics Data System (ADS)

    Kurpaska, Sławomir; Pedryc, Norbert

    2017-10-01

    The paper analyzes the efficiency of the hybrid system used to heat the foil tunnel. The tested system was built on the basis of heat gain in a cascade manner. The first step is to heat the water in the storage tank using the solar collectors. The second stage is the use of a heat pump (HP) in order to heat the diaphragm exchangers. The lower HP heat source is a cascade first stage buffer. In the storage tank, diaphragm exchangers used for solar collectors and heat pumps are installed. The research was carried out at a research station located in the University of Agriculture in Cracow. The aim was to perform an analysis of the efficiency of a hybrid system for the heating of a foil tunnel in the months from May to September. The efficiency of the entire hybrid system was calculated as the relation of the effect obtained in reference to the electrical power used to drive the heat pump components (compressor drive, circulation pump), circulation pumps and fans installed in the diaphragm heaters. The resulting effect was the amount of heat supplied to the interior of the object as a result of the internal air being forced through the diaphragm exchangers.

  5. Testing of a heat pump clothes dryer. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McFadden, D.; Dieckmann, J.; Mallory, D.

    1995-05-01

    The integration of a heat pump heat source into a clothes dryer has been investigated by several U.S. and foreign appliance developers and manufacturers but no commercial or residential heat pump clothes dryers are currently available in North America. The objectives of this effort were to: (1) Evaluate a heat pump dryer prototype relative to residential dryer performance tests. (2) Quantify the product limitations. (3) Suggest design changes that would reduce the impact of the limitations or that have a positive impact on the benefits. (4) Position the product relative to utility DSM/IRP opportunities (e.g., reduced connected load, or energymore » conservation). (5) Develop preliminary cost data The program evaluated the performance of a prototype closed-cycle heat pump clothes dryer designed and built by the Nyle Corporation. The prototype design goals were: (1) Drying times equivalent to a conventional electric clothes dryer. (2) 60% reduction in energy consumption. (3) Effective lint removal (to prevent coil fouling). (4) Cool-down mode performance similar to conventional dryer. (5) 20 lb load capacity. (6) Low temperature dry for reduced clothes wrinkle. Test results indicated that the closed-cycle heat pump met some of the above mentioned goals but it fell short with respect to energy savings and dry time. Performance improvement recommendations were developed for the closed-cycle dryer approach. In addition, the closed-cycle design potential was compared to an open-cycle heat pump dryer configuration.« less

  6. The Operating Principle of a Fully Solid State Active Magnetic Regenerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelaziz, Omar

    As an alternative refrigeration technology, magnetocaloric refrigeration has the potential to be safer, quieter, more efficient, and more environmentally friendly than the conventional vapor compression refrigeration technology. Most of the reported active magnetic regenerator (AMR) systems that operate based on the magnetocaloric effect use heat transfer fluid to exchange heat, which results in complicated mechanical subsystems and components such as rotating valves and hydraulic pumps. This paper presents an operating principle of a fully solid state AMR, in which an alternative mechanism for heat transfer between the AMR and the heat source/sink is proposed. The operating principle of the fullymore » solid state AMR is based on moving rods/sheets (e.g. copper, brass, iron or aluminum), which are employed to replace the heat transfer fluid. Such fully solid state AMR would provide a significantly higher heat transfer rate than a conventional AMR because the conductivity of moving solid rods/plates is high and it enables the increase in the machine operating frequency hence the cooling capacity. The details of operating principle are presented and discussed here. One of the key enabling features for this technology is the contact between the moving rods/sheets and magnetocaloric material, and heat exchange mechanism at the heat source/sink. This paper provides an overview of the design for a fully solid state magnetocaloric refrigeration system along with guidelines for their optimal design.« less

  7. Measured Performance of a Low Temperature Air Source Heat Pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, R. K.

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor 'boosted heat pump' technology. The Low Temperature Heat Pumpsystem operates with four increasing levels of capacity (heat output) as the outdoor temperature drops. The system was shown to select capacity correctly, supplying the appropriate amount of heat to the house across the full range of outdoor temperatures. The system'smore » Coefficient of Performance (Seasonal COP, or SCOP) over two entire winters was calculated, based on measured data, to be 3.29over the first winter and 2.68 over the second winter. A second seasonal efficiency calculation by a different method yielded a SCOP of 2.78 for the first winter and 2.83 for the second winter. This second seasonal efficiency calculation was determined by comparing measured heat pump energy use to the in situ energy use with resistance heat alone. This method is the ratio of the slopes of thedaily energy use load lines.« less

  8. Testing of refrigerant mixtures in residential heat pumps. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Judge, J.F.; Radermacher, R.

    1995-08-01

    To contribute to finding the proper substitute for R-22, a test facility was designed and built to measure the steady state and cyclic performance of two air-to-air heat pumps of 2 & 3 refrigeration-ton (RT) capacity. The performance of heat pumps is evaluated based on ASHRAE Standard 116-1983 {open_quotes}Method of Testing for Seasonal Efficiency of Unitary Air-conditioners and Heat Pumps{close_quotes} (47). This standard includes six steady-state tests; three cooling tests (A, B, and C) and three heating tests (High Temperature (47S), Frost Accumulation (35F), and Low Temperature (17L)). The standard also includes two cyclic tests; a cyclic cooling test (D)more » and a cyclic heating test (47C). The results of these tests are used to evaluate the seasonal performance of a heat pump. In the work presented here, two heat pumps (test units) are used. Test unit 1 is a 2 RT split heat pump system using a reciprocating compressor, a short tube, and a thermostatic expansion valve. Test unit 2 is a 3 RT split heat pump system using a scroll compressor and two thermostatic expansion valves. This study investigates four different possibilities for replacing R-22 with R-32/125/134a (30/10/60 wt.%) (Mixture 1) or R-32/125/134a (23/25/52 wt.%) (Mixture 2). The first and simplest scenario is the retrofit with no hardware modifications. The second possibility investigated is altering the refrigerant path to attain a near-counterflow configuration in the indoor coil for the heating mode. The third and most complex possibility is the soft optimization which consists of maximizing the COPs of R-22 and Mixture 2 in the heating and cooling modes by optimizing refrigerant charge and expansion devices. The fourth option investigated is the suction-line heat exchange (SLHX). In unit 1, the first, second, and third scenarios are investigated and in unit 2, the first, second, and fourth scenarios are investigated.« less

  9. Vapor compression distillation module

    NASA Technical Reports Server (NTRS)

    Nuccio, P. P.

    1975-01-01

    A Vapor Compression Distillation (VCD) module was developed and evaluated as part of a Space Station Prototype (SSP) environmental control and life support system. The VCD module includes the waste tankage, pumps, post-treatment cells, automatic controls and fault detection instrumentation. Development problems were encountered with two components: the liquid pumps, and the waste tank and quantity gauge. Peristaltic pumps were selected instead of gear pumps, and a sub-program of materials and design optimization was undertaken leading to a projected life greater than 10,000 hours of continuous operation. A bladder tank was designed and built to contain the waste liquids and deliver it to the processor. A detrimental pressure pattern imposed upon the bladder by a force-operated quantity gauge was corrected by rearranging the force application, and design goals were achieved. System testing has demonstrated that all performance goals have been fulfilled.

  10. Application of a compressible flow solver and barotropic cavitation model for the evaluation of the suction head in a low specific speed centrifugal pump impeller channel

    NASA Astrophysics Data System (ADS)

    Limbach, P.; Müller, T.; Skoda, R.

    2015-12-01

    Commonly, for the simulation of cavitation in centrifugal pumps incompressible flow solvers with VOF kind cavitation models are applied. Since the source/sink terms of the void fraction transport equation are based on simplified bubble dynamics, empirical parameters may need to be adjusted to the particular pump operating point. In the present study a barotropic cavitation model, which is based solely on thermodynamic fluid properties and does not include any empirical parameters, is applied on a single flow channel of a pump impeller in combination with a time-explicit viscous compressible flow solver. The suction head curves (head drop) are compared to the results of an incompressible implicit standard industrial CFD tool and are predicted qualitatively correct by the barotropic model.

  11. Variable delivery, fixed displacement pump

    DOEpatents

    Sommars, Mark F.

    2001-01-01

    A variable delivery, fixed displacement pump comprises a plurality of pistons reciprocated within corresponding cylinders in a cylinder block. The pistons are reciprocated by rotation of a fixed angle swash plate connected to the pistons. The pistons and cylinders cooperate to define a plurality of fluid compression chambers each have a delivery outlet. A vent port is provided from each fluid compression chamber to vent fluid therefrom during at least a portion of the reciprocal stroke of the piston. Each piston and cylinder combination cooperates to close the associated vent port during another portion of the reciprocal stroke so that fluid is then pumped through the associated delivery outlet. The delivery rate of the pump is varied by adjusting the axial position of the swash plate relative to the cylinder block, which varies the duration of the piston stroke during which the vent port is closed.

  12. Capillary pumped loop body heat exchanger

    NASA Technical Reports Server (NTRS)

    Swanson, Theodore D. (Inventor); Wren, deceased, Paul (Inventor)

    1998-01-01

    A capillary pumped loop for transferring heat from one body part to another body part, the capillary pumped loop comprising a capillary evaporator for vaporizing a liquid refrigerant by absorbing heat from a warm body part, a condenser for turning a vaporized refrigerant into a liquid by transferring heat from the vaporized liquid to a cool body part, a first tube section connecting an output port of the capillary evaporator to an input of the condenser, and a second tube section connecting an output of the condenser to an input port of the capillary evaporator. A wick may be provided within the condenser. A pump may be provided between the second tube section and the input port of the capillary evaporator. Additionally, an esternal heat source or heat sink may be utilized.

  13. 10 CFR 431.96 - Uniform test method for the measurement of energy efficiency of commercial air conditioners and...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... efficiency of commercial air conditioners and heat pumps. 431.96 Section 431.96 Energy DEPARTMENT OF ENERGY... Air Conditioners and Heat Pumps Test Procedures § 431.96 Uniform test method for the measurement of energy efficiency of commercial air conditioners and heat pumps. (a) Scope. This section contains test...

  14. 10 CFR 431.96 - Uniform test method for the measurement of energy efficiency of commercial air conditioners and...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... efficiency of commercial air conditioners and heat pumps. 431.96 Section 431.96 Energy DEPARTMENT OF ENERGY... Air Conditioners and Heat Pumps Test Procedures § 431.96 Uniform test method for the measurement of energy efficiency of commercial air conditioners and heat pumps. (a) Scope. This section contains test...

  15. 16 CFR Appendix D5 to Part 305 - Water Heaters-Heat Pump

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Water Heaters-Heat Pump D5 Appendix D5 to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS... LABELING RULEâ) Pt. 305, App. D5 Appendix D5 to Part 305—Water Heaters—Heat Pump Range Information Capacity...

  16. 16 CFR Appendix D5 to Part 305 - Water Heaters-Heat Pump

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Water Heaters-Heat Pump D5 Appendix D5 to... CONCERNING DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER... Appendix D5 to Part 305—Water Heaters—Heat Pump Range Information CAPACITY FIRST HOUR RATING Range of...

  17. 16 CFR Appendix D5 to Part 305 - Water Heaters-Heat Pump

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Water Heaters-Heat Pump D5 Appendix D5 to... CONCERNING DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER... Appendix D5 to Part 305—Water Heaters—Heat Pump Range Information CAPACITY FIRST HOUR RATING Range of...

  18. Recovery Act: Tennessee Energy Efficient Schools Initiative Ground Source Heat Pump Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Townsend, Terry; Slusher, Scott

    The Tennessee Energy Efficient Schools Initiative (EESI) Hybrid-Water Source Heat Pump (HY-GSHP) Program sought to provide installation costs and operation costs for different Hybrid water source heat pump systems’ configurations so that other State of Tennessee School Districts will have a resource for comparison purposes if considering a geothermal system.

  19. Thermomechanical piston pump development

    NASA Technical Reports Server (NTRS)

    Sabelman, E. E.

    1971-01-01

    A thermally powered reciprocating pump has been devised to replace or augment an electric pump for the transport of temperature-control fluid on the Thermoelectric Outer Planet Spacecraft (TOPS). The thermally powered pump operates cyclically by extracting heat energy from the fluid by means of a vapor-pressure expansion system and by using the heat to perform the mechanical work of pumping. A feasibility test unit has been constructed to provide an output of 7 cu in during a 10- to 100-second cycle. It operates with a fluid input temperature of 200 to 300 F and a heat sink temperature of 0 to 30 F.

  20. Heat pipe with embedded wick structure

    DOEpatents

    Adkins, Douglas Ray; Shen, David S.; Tuck, Melanie R.; Palmer, David W.; Grafe, V. Gerald

    1998-01-01

    A heat pipe has an embedded wick structure that maximizes capillary pumping capability. Heat from attached devices such as integrated circuits evaporates working fluid in the heat pipe. The vapor cools and condenses on a heat dissipation surface. The condensate collects in the wick structure, where capillary pumping returns the fluid to high heat areas.

  1. Heat pipe with embedded wick structure

    DOEpatents

    Adkins, D.R.; Shen, D.S.; Tuck, M.R.; Palmer, D.W.; Grafe, V.G.

    1998-06-23

    A heat pipe has an embedded wick structure that maximizes capillary pumping capability. Heat from attached devices such as integrated circuits evaporates working fluid in the heat pipe. The vapor cools and condenses on a heat dissipation surface. The condensate collects in the wick structure, where capillary pumping returns the fluid to high heat areas. 7 figs.

  2. Heat pipe with embedded wick structure

    DOEpatents

    Adkins, Douglas Ray; Shen, David S.; Tuck, Melanie R.; Palmer, David W.; Grafe, V. Gerald

    1999-01-01

    A heat pipe has an embedded wick structure that maximizes capillary pumping capability. Heat from attached devices such as integrated circuits evaporates working fluid in the heat pipe. The vapor cools and condenses on a heat dissipation surface. The condensate collects in the wick structure, where capillary pumping returns the fluid to high heat areas.

  3. Influence of nonlinear detuning at plasma wavebreaking threshold on backward Raman compression of non-relativistic laser pulses

    NASA Astrophysics Data System (ADS)

    Balakin, A. A.; Fraiman, G. M.; Jia, Q.; Fisch, N. J.

    2018-06-01

    Taking into account the nonlinear dispersion of the plasma wave, the fluid equations for the three-wave (Raman) interaction in plasmas are derived. It is found that, in some parameter regimes, the nonlinear detuning resulting from the plasma wave dispersion during Raman compression limits the plasma wave amplitude to noticeably below the generally recognized wavebreaking threshold. Particle-in-cell simulations confirm the theoretical estimates. For weakly nonlinear dispersion, the detuning effect can be counteracted by pump chirping or, equivalently, by upshifting slightly the pump frequency, so that the frequency-upshifted pump interacts with the seed at the point where the plasma wave enters the nonlinear stage.

  4. Experimental investigation of piston heat transfer under conventional diesel and reactivity-controlled compression ignition combustion regimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Splitter, Derek A; Hendricks, Terry Lee; Ghandhi, Jaal B

    2014-01-01

    The piston of a heavy-duty single-cylinder research engine was instrumented with 11 fast-response surface thermocouples, and a commercial wireless telemetry system was used to transmit the signals from the moving piston. The raw thermocouple data were processed using an inverse heat conduction method that included Tikhonov regularization to recover transient heat flux. By applying symmetry, the data were compiled to provide time-resolved spatial maps of the piston heat flux and surface temperature. A detailed comparison was made between conventional diesel combustion and reactivity-controlled compression ignition combustion operations at matched conditions of load, speed, boost pressure, and combustion phasing. The integratedmore » piston heat transfer was found to be 24% lower, and the mean surface temperature was 25 C lower for reactivity-controlled compression ignition operation as compared to conventional diesel combustion, in spite of the higher peak heat release rate. Lower integrated piston heat transfer for reactivity-controlled compression ignition was found over all the operating conditions tested. The results showed that increasing speed decreased the integrated heat transfer for conventional diesel combustion and reactivity-controlled compression ignition. The effect of the start of injection timing was found to strongly influence conventional diesel combustion heat flux, but had a negligible effect on reactivity-controlled compression ignition heat flux, even in the limit of near top dead center high-reactivity fuel injection timings. These results suggest that the role of the high-reactivity fuel injection does not significantly affect the thermal environment even though it is important for controlling the ignition timing and heat release rate shape. The integrated heat transfer and the dynamic surface heat flux were found to be insensitive to changes in boost pressure for both conventional diesel combustion and reactivity-controlled compression ignition. However, for reactivity-controlled compression ignition, the mean surface temperature increased with changes in boost suggesting that equivalence ratio affects steady-state heat transfer.« less

  5. Solar energy system performance evaluation report for Solaron-Duffield, Duffield, Virginia

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Solaron Duffield Solar Energy System was designed to provide 51 percent of the space heating, and 49 percent of the domestic hot water (DHW) to a two story 1940 square foot area residence using air as the transport medium. The system consists of a 429 square foot collector array, a 265 cubic foot rock thermal storage bin, heat exchangers, an 80 gallon DHW preheat tank, pumps, blowers, controls, air ducting and associated plumbing. A air-to-liquid heat pump coupled with a 1,000gallon water storage tank provides for auxiliary space heating and can also be used for space cooling. A 52 gallon electric DHW tank using the solar preheated water provides domestic hot water to the residence. The solar system, which became operational July 1979, has the following modes of operation: First Stage: (1) collector to storage and DHW; (2)collector to space heating; (3) storage to load. Second Stage: (4) heat pump auxiliary direct; (5) auxiliary heat from heat pump storage. Third Stage: (6) electrical resistance (strip) heat.

  6. Simulation of the thermal performance of a hybrid solar-assisted ground-source heat pump system in a school building

    NASA Astrophysics Data System (ADS)

    Androulakis, N. D.; Armen, K. G.; Bozis, D. A.; Papakostas, K. T.

    2018-04-01

    A hybrid solar-assisted ground-source heat pump (SAGSHP) system was designed, in the frame of an energy upgrade study, to serve as a heating system in a school building in Greece. The main scope of this study was to examine techniques to reduce the capacity of the heating equipment and to keep the primary energy consumption low. Simulations of the thermal performance of both the building and of five different heating system configurations were performed by using the TRNSYS software. The results are presented in this work and show that the hybrid SAGSHP system displays the lower primary energy consumption among the systems examined. A conventional ground-source heat pump system has the same primary energy consumption, while the heat pump's capacity is double and the ground heat exchanger 2.5 times longer. This work also highlights the contribution of simulation tools to the design of complex heating systems with renewable energy sources.

  7. Solar energy system performance evaluation report for Solaron-Duffield, Duffield, Virginia

    NASA Astrophysics Data System (ADS)

    1980-07-01

    The Solaron Duffield Solar Energy System was designed to provide 51 percent of the space heating, and 49 percent of the domestic hot water (DHW) to a two story 1940 square foot area residence using air as the transport medium. The system consists of a 429 square foot collector array, a 265 cubic foot rock thermal storage bin, heat exchangers, an 80 gallon DHW preheat tank, pumps, blowers, controls, air ducting and associated plumbing. A air-to-liquid heat pump coupled with a 1,000gallon water storage tank provides for auxiliary space heating and can also be used for space cooling. A 52 gallon electric DHW tank using the solar preheated water provides domestic hot water to the residence. The solar system, which became operational July 1979, has the following modes of operation: First Stage: (1) collector to storage and DHW; (2)collector to space heating; (3) storage to load. Second Stage: (4) heat pump auxiliary direct; (5) auxiliary heat from heat pump storage. Third Stage: (6) electrical resistance (strip) heat.

  8. Hybrid Geothermal Heat Pumps for Cooling Telecommunications Data Centers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckers, Koenraad J; Zurmuhl, David P.; Lukawski, Maciej Z.

    The technical and economic performance of geothermal heat pump (GHP) systems supplying year-round cooling to representative small data centers with cooling loads less than 500 kWth were analyzed and compared to air-source heat pumps (ASHPs). A numerical model was developed in TRNSYS software to simulate the operation of air-source and geothermal heat pumps with and without supplementary air cooled heat exchangers - dry coolers (DCs). The model was validated using data measured at an experimental geothermal system installed in Ithaca, NY, USA. The coefficient of performance (COP) and cooling capacity of the GHPs were calculated over a 20-year lifetime andmore » compared to the performance of ASHPs. The total cost of ownership (TCO) of each of the cooling systems was calculated to assess its economic performance. Both the length of the geothermal borehole heat exchangers (BHEs) and the dry cooler temperature set point were optimized to minimize the TCO of the geothermal systems. Lastly, a preliminary analysis of the performance of geothermal heat pumps for cooling dominated systems was performed for other locations including Dallas, TX, Sacramento, CA, and Minneapolis, MN.« less

  9. Hourly simulation of a Ground-Coupled Heat Pump system

    NASA Astrophysics Data System (ADS)

    Naldi, C.; Zanchini, E.

    2017-01-01

    In this paper, we present a MATLAB code for the hourly simulation of a whole Ground-Coupled Heat Pump (GCHP) system, based on the g-functions previously obtained by Zanchini and Lazzari. The code applies both to on-off heat pumps and to inverter-driven ones. It is employed to analyse the effects of the inverter and of the total length of the Borehole Heat Exchanger (BHE) field on the mean seasonal COP (SCOP) and on the mean seasonal EER (SEER) of a GCHP system designed for a residential house with 6 apartments in Bologna, North-Center Italy, with dominant heating loads. A BHE field with 3 in line boreholes is considered, with length of each BHE either 75 m or 105 m. The results show that the increase of the BHE length yields a SCOP enhancement of about 7%, while the SEER remains nearly unchanged. The replacement of the on-off heat pump by an inverter-driven one yields a SCOP enhancement of about 30% and a SEER enhancement of about 50%. The results demonstrate the importance of employing inverter-driven heat pumps for GCHP systems.

  10. 46 CFR 153.336 - Special cargo pump or pumproom requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Special cargo pump or pumproom requirements. 153.336... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Pumprooms § 153.336 Special cargo pump or pumproom requirements. (a) When Table 1 refers to...

  11. Evaluation of a Prototype Hybrid Vacuum Pump to Provide Vacuum-Assisted Suspension for Above-Knee Prostheses

    PubMed Central

    Major, Matthew J.; Caldwell, Ryan; Fatone, Stefania

    2015-01-01

    Vacuum-assisted suspension (VAS) of prosthetic sockets utilizes a pump to evacuate air from between the prosthetic liner and socket, and are available as mechanical or electric systems. This technical note describes a hybrid pump that benefits from the advantages of mechanical and electric systems, and evaluates a prototype as proof-of-concept. Cyclical bench testing of the hybrid pump mechanical system was performed using a materials testing system to assess the relationship between compression cycles and vacuum pressure. Phase 1 in vivo testing of the hybrid pump was performed by an able-bodied individual using prosthesis simulator boots walking on a treadmill, and phase 2 involved an above-knee prosthesis user walking with the hybrid pump and a commercial electric pump for comparison. Bench testing of 300 compression cycles produced a maximum vacuum of 24 in-Hg. In vivo testing demonstrated that the hybrid pump continued to pull vacuum during walking, and as opposed to the commercial electric pump, did not require reactivation of the electric system during phase 2 testing. The novelty of the hybrid pump is that while the electric system provides rapid, initial vacuum suspension, the mechanical system provides continuous air evacuation while walking to maintain suspension without reactivation of the electric system, thereby allowing battery power to be reserved for monitoring vacuum levels. PMID:27462383

  12. Development and Validation of a Gas-Fired Residential Heat Pump Water Heater - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael Garrabrant; Roger Stout; Paul Glanville

    2013-01-21

    For gas-fired residential water heating, the U.S. and Canada is predominantly supplied by minimum efficiency storage water heaters with Energy Factors (EF) in the range of 0.59 to 0.62. Higher efficiency and higher cost ($700 - $2,000) options serve about 15% of the market, but still have EFs below 1.0, ranging from 0.65 to 0.95. To develop a new class of water heating products that exceeds the traditional limit of thermal efficiency, the project team designed and demonstrated a packaged water heater driven by a gas-fired ammonia-water absorption heat pump. This gas-fired heat pump water heater can achieve EFs ofmore » 1.3 or higher, at a consumer cost of $2,000 or less. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, the Gas Technology Institute (GTI), and Georgia Tech, the cross-functional team completed research and development tasks including cycle modeling, breadboard evaluation of two cycles and two heat exchanger classes, heat pump/storage tank integration, compact solution pump development, combustion system specification, and evaluation of packaged prototype GHPWHs. The heat pump system extracts low grade heat from the ambient air and produces high grade heat suitable for heating water in a storage tank for domestic use. Product features that include conventional installation practices, standard footprint and reasonable economic payback, position the technology to gain significant market penetration, resulting in a large reduction of energy use and greenhouse gas emissions from domestic hot water production.« less

  13. Replacing Resistance Heating with Mini-Split Heat Pumps, Sharon, Connecticut (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Mini-split heat pumps can provide space heating and cooling in many climates and are relatively affordable. These and other features make them potentially suitable for retrofitting into multifamily buildings in cold climates to replace electric resistance heating or other outmoded heating systems. This report investigates the suitability of mini-split heat pumps for multifamily retrofits. Various technical and regulatory barriers are discussed and modeling was performed to compare long-term costs of substituting mini-splits for a variety of other heating and cooling options. A number of utility programs have retrofit mini-splits in both single family and multifamily residences. Two such multifamily programsmore » are discussed in detail.« less

  14. Compression for the management of venous leg ulcers: which material do we have?

    PubMed

    Partsch, Hugo

    2014-05-01

    Compression therapy is the most important basic treatment modality in venous leg ulcers. The review focusses on the materials which are used: 1. Compression bandages, 2. Compression stockings, 3. Self-adjustable Velcro-devices, 4. Compression pumps, 5. Hybrid devices. Compression bandages, usually applied by trained staff, provide a wide spectrum of materials with different elastic properties. To make bandaging easier, safer and more effective, most modern bandages combine different material components. Self-management of venous ulcers has become feasible by introducing double compression stockings ("ulcer kits") and self-adjustable Velcro devices. Compression pumps can be used as adjunctive measures, especially for patients with restricted mobility. The combination of sustained and intermittent compression ("hybrid device") is a promising new tool. The interface pressure corresponding to the dosage of compression therapy determines the hemodynamic efficacy of each device. In order to reduce ambulatory venous hypertension compression pressures of more than 50 mm Hg in the upright position are desirable. At the same time pressure should be lower in the resting position in order to be tolerated. This prerequisite may be fulfilled by using inelastic, short stretch material including multicomponent bandages and cohesive surfaces, all characterized by high stiffness. Such materials do not give way when calf muscles contract during walking which leads to high peaks of interface pressure ("massaging effect"). © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  15. Thermal control systems for low-temperature heat rejection on a lunar base

    NASA Technical Reports Server (NTRS)

    Sridhar, K. R.; Gottmann, Matthias; Nanjundan, Ashok

    1993-01-01

    One of the important issues in the design of a lunar base is the thermal control system (TCS) used to reject low-temperature heat from the base. The TCS ensures that the base and the components inside are maintained within an acceptable temperature range. The temperature of the lunar surface peaks at 400 K during the 336-hour lunar day. Under these circumstances, direct dissipation of waste heat from the lunar base using passive radiators would be impractical. Thermal control systems based on thermal storage, shaded radiators, and heat pumps have been proposed. Based on proven technology, innovation, realistic complexity, reliability, and near-term applicability, a heat pump-based TCS was selected as a candidate for early missions. In this report, Rankine-cycle heat pumps and absorption heat pumps (ammonia water and lithium bromide-water) have been analyzed and optimized for a lunar base cooling load of 100 kW.

  16. Analysis of the performance and space conditioning impacts of dedicated heat pump water heaters

    NASA Astrophysics Data System (ADS)

    Morrison, L.; Swisher, J.

    The development and testing of the newly-marketed dedicated heat pump water heater (HPWH) are described. This system utilizes an air-to-water heat pump, costs about $1,000 installed, and obtains a coefficient of performance (COP) of about 2.0 in laboratory and field tests. To investigate HPWH performance and space conditioning impacts, a simulation was developed to mode the thermal performance of a residence with resistance baseboard heat, air conditioning, and either heat pump or resistance water heating. The building characteristics are adapted for three U.S. geographical areas (Madison, Wisconsin; Washington, D.C.; and Ft. Worth, Texas), and the system is simulated for a year with typical weather data. The thermal network includes both a house node and a basement node so that the water heating equipment can be simulated in an unconditioned basement in Northern cities and in a conditioned first-floor utility room in Southern cities.

  17. Modeling Pumped Thermal Energy Storage with Waste Heat Harvesting

    NASA Astrophysics Data System (ADS)

    Abarr, Miles L. Lindsey

    This work introduces a new concept for a utility scale combined energy storage and generation system. The proposed design utilizes a pumped thermal energy storage (PTES) system, which also utilizes waste heat leaving a natural gas peaker plant. This system creates a low cost utility-scale energy storage system by leveraging this dual-functionality. This dissertation first presents a review of previous work in PTES as well as the details of the proposed integrated bottoming and energy storage system. A time-domain system model was developed in Mathworks R2016a Simscape and Simulink software to analyze this system. Validation of both the fluid state model and the thermal energy storage model are provided. The experimental results showed the average error in cumulative fluid energy between simulation and measurement was +/- 0.3% per hour. Comparison to a Finite Element Analysis (FEA) model showed <1% error for bottoming mode heat transfer. The system model was used to conduct sensitivity analysis, baseline performance, and levelized cost of energy of a recently proposed Pumped Thermal Energy Storage and Bottoming System (Bot-PTES) that uses ammonia as the working fluid. This analysis focused on the effects of hot thermal storage utilization, system pressure, and evaporator/condenser size on the system performance. This work presents the estimated performance for a proposed baseline Bot-PTES. Results of this analysis showed that all selected parameters had significant effects on efficiency, with the evaporator/condenser size having the largest effect over the selected ranges. Results for the baseline case showed stand-alone energy storage efficiencies between 51 and 66% for varying power levels and charge states, and a stand-alone bottoming efficiency of 24%. The resulting efficiencies for this case were low compared to competing technologies; however, the dual-functionality of the Bot-PTES enables it to have higher capacity factor, leading to 91-197/MWh levelized cost of energy compared to 262-284/MWh for batteries and $172-254/MWh for Compressed Air Energy Storage.

  18. Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump

    DOEpatents

    Phillips, Benjamin A.; Zawacki, Thomas S.

    1996-12-03

    Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use the working solution of the absorption system for the heat transfer medium. A combination of weak and rich liquor working solution is used as the heat transfer medium.

  19. Simulation and evaluation of latent heat thermal energy storage

    NASA Technical Reports Server (NTRS)

    Sigmon, T. W.

    1980-01-01

    The relative value of thermal energy storage (TES) for heat pump storage (heating and cooling) as a function of storage temperature, mode of storage (hotside or coldside), geographic locations, and utility time of use rate structures were derived. Computer models used to simulate the performance of a number of TES/heat pump configurations are described. The models are based on existing performance data of heat pump components, available building thermal load computational procedures, and generalized TES subsystem design. Life cycle costs computed for each site, configuration, and rate structure are discussed.

  20. Waste-Heat-Driven Cooling Using Complex Compound Sorbents

    NASA Technical Reports Server (NTRS)

    Rocketfeller, Uwe; Kirol, Lance; Khalili, Kaveh

    2004-01-01

    Improved complex-compound sorption pumps are undergoing development for use as prime movers in heat-pump systems for cooling and dehumidification of habitats for humans on the Moon and for residential and commercial cooling on Earth. Among the advantages of sorption heat-pump systems are that they contain no moving parts except for check valves and they can be driven by heat from diverse sources: examples include waste heat from generation of electric power, solar heat, or heat from combustion of natural gas. The use of complex compound sorbents in cooling cycles is not new in itself: Marketing of residential refrigerators using SrCl2 was attempted in the 1920s and 30s and was abandoned because heat- and mass-transfer rates of the sorbents were too low. Addressing the issue that gave rise to the prior abandonment of complex compound sorption heat pumps, the primary accomplishment of the present development program thus far has been the characterization of many candidate sorption media, leading to large increases in achievable heat- and mass-transfer rates. In particular, two complex compounds (called "CC260-1260" and "CC260-2000") were found to be capable of functioning over the temperature range of interest for the lunar-habitat application and to offer heat- and mass-transfer rates and a temperature-lift capability adequate for that application. Regarding the temperature range: A heat pump based on either of these compounds is capable of providing a 95-K lift from a habitable temperature to a heat-rejection (radiator) temperature when driven by waste heat at an input temperature .500 K. Regarding the heat- and mass-transfer rates or, more precisely, the power densities made possible by these rates: Power densities observed in tests were 0.3 kilowatt of cooling per kilogram of sorbent and 2 kilowatts of heating per kilogram of sorbent. A prototype 1-kilowatt heat pump based on CC260-2000 has been built and demonstrated to function successfully.

  1. Short-pulse, compressed ion beams at the Neutralized Drift Compression Experiment

    DOE PAGES

    Seidl, P. A.; Barnard, J. J.; Davidson, R. C.; ...

    2016-05-01

    We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment (NDCX-II) at Lawrence Berkeley National Laboratory, with 1-mm beam spot size within 2.5 ns full-width at half maximum. The ion kinetic energy is 1.2 MeV. To enable the short pulse duration and mm-scale focal spot radius, the beam is neutralized in a 1.5-meter-long drift compression section following the last accelerator cell. A short-focal-length solenoid focuses the beam in the presence of the volumetric plasma that is near the target. In the accelerator, the line-charge density increases due to the velocity ramp imparted onmore » the beam bunch. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including select topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Below the transition to melting, the short beam pulses offer an opportunity to study the multi-scale dynamics of radiation-induced damage in materials with pump-probe experiments, and to stabilize novel metastable phases of materials when short-pulse heating is followed by rapid quenching. First experiments used a lithium ion source; a new plasma-based helium ion source shows much greater charge delivered to the target.« less

  2. 10 CFR 431.107 - Uniform test method for the measurement of energy efficiency of commercial heat pump water...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Uniform test method for the measurement of energy efficiency of commercial heat pump water heaters. [Reserved] 431.107 Section 431.107 Energy DEPARTMENT OF....107 Uniform test method for the measurement of energy efficiency of commercial heat pump water heaters...

  3. 10 CFR 431.107 - Uniform test method for the measurement of energy efficiency of commercial heat pump water...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Uniform test method for the measurement of energy efficiency of commercial heat pump water heaters. [Reserved] 431.107 Section 431.107 Energy DEPARTMENT OF....107 Uniform test method for the measurement of energy efficiency of commercial heat pump water heaters...

  4. 10 CFR 431.107 - Uniform test method for the measurement of energy efficiency of commercial heat pump water...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Uniform test method for the measurement of energy efficiency of commercial heat pump water heaters. [Reserved] 431.107 Section 431.107 Energy DEPARTMENT OF....107 Uniform test method for the measurement of energy efficiency of commercial heat pump water heaters...

  5. 76 FR 50204 - Decision and Order Granting a Waiver to Fujitsu General Limited From the Department of Energy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-12

    ... Refrigerant Flow (VRF) multi-split commercial heat pump models specified in Fujitsu's petition for waiver. As... to test and rate these AIRSTAGE V-II VRF multi-split commercial heat pumps. DATES: This Decision and...) Standard 1230-2010, ``Performance Rating of VRF Multi-Split Air-Conditioning and Heat Pump Equipment'' to...

  6. Heat Pumps With Direct Expansion Solar Collectors

    NASA Astrophysics Data System (ADS)

    Ito, Sadasuke

    In this paper, the studies of heat pump systems using solar collectors as the evaporators, which have been done so far by reserchers, are reviwed. Usually, a solar collector without any cover is preferable to one with ac over because of the necessity of absorbing heat from the ambient air when the intensity of the solar energy on the collector is not enough. The performance of the collector depends on its area and the intensity of the convective heat transfer on the surface. Fins are fixed on the backside of the collector-surface or on the tube in which the refrigerant flows in order to increase the convective heat transfer. For the purpose of using a heat pump efficiently throughout year, a compressor with variable capacity is applied. The solar assisted heat pump can be used for air conditioning at night during the summer. Only a few groups of people have studied cooling by using solar assisted heat pump systems. In Japan, a kind of system for hot water supply has been produced commercially in a company and a kind of system for air conditioning has been installed in buildings commercially by another company.

  7. Thermal management of high power space based systems

    NASA Technical Reports Server (NTRS)

    Hwangbo, H.; Mcever, W. S.

    1985-01-01

    Conventional techniques of using a portion of the spacecraft skin for radiation of waste heat will be inadequate for high powered payloads (50 to 100 kWe) due to the lack of sufficient area. A Shuttle type system using a pumped single phase fluid loop could be scaled up to higher power but this type of system would require excessive pump power and weight. A pumped two-phase heat transfer loop has a much lower pumping requirement due to the higher latent heat of vaporization of the fluid in comparison to the sensible heat it can absorb through a temperature change. Concepts for an evaporator and a condenser for a pumped two-phase system are described. The condenser uses capillary grooves and a separate pumped condensate return line to achieve high heat transfer coefficients and stable operation due to the separation of the vapor and liquid flows. The cold plate evaporator uses wicks to contain the liquid and transport it to the heated surface. It can also function as a condenser for warming components. Control concepts for the cold plate are discussed. Concepts for deployment or erection of large space radiators are also considered.

  8. Performance analysis of solar-assisted chemical heat-pump dryer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fadhel, M.I.; Faculty of Engineering and Technology, Multimedia University, Jalan Ayer Keroh Lama, 75450, Melaka; Sopian, K.

    2010-11-15

    A solar-assisted chemical heat-pump dryer has been designed, fabricated and tested. The performance of the system has been studied under the meteorological conditions of Malaysia. The system consists of four main components: solar collector (evacuated tubes type), storage tank, solid-gas chemical heat pump unit and dryer chamber. A solid-gas chemical heat pump unit consists of reactor, condenser and evaporator. The reaction used in this study (CaCl2-NH{sub 3}). A simulation has been developed, and the predicted results are compared with those obtained from experiments. The maximum efficiency for evacuated tubes solar collector of 80% has been predicted against the maximum experimentmore » of 74%. The maximum values of solar fraction from the simulation and experiment are 0.795 and 0.713, respectively, whereas the coefficient of performance of chemical heat pump (COP{sup h}) maximum values 2.2 and 2 are obtained from simulation and experiments, respectively. The results show that any reduction of energy at condenser as a result of the decrease in solar radiation will decrease the coefficient of performance of chemical heat pump as well as decrease the efficiency of drying. (author)« less

  9. Operational Performance Characterization of a Heat Pump System Utilizing Recycled Water as Heat Sink and Heat Source in a Cool and Dry Climate

    DOE PAGES

    Im, Piljae; Liu, Xiaobing; Henderson, Hugh

    2018-01-16

    The wastewater leaving from homes and businesses contains abundant low-grade energy, which can be utilized through heat pump technology to heat and cool buildings. Although the energy in the wastewater has been successfully utilized to condition buildings in other countries, it is barely utilized in the United States, until recently. In 2013, the Denver Museum of Nature & Science at Denver, the United States implemented a unique heat pump system that utilizes recycled wastewater from a municipal water system to cool and heat its 13,000 m 2 new addition. This recycled water heat pump (RWHP) system uses seven 105 kWmore » (cooling capacity) modular water-to-water heat pumps (WWHPs). Each WWHP uses R-410A refrigerant, has two compressors, and can independently provide either 52 °C hot water (HW) or 7 °C chilled water (CHW) to the building. This paper presents performance characterization results of this RWHP system based on the measured data from December 2014 through August 2015. The annual energy consumption of the RWHP system was also calculated and compared with that of a baseline Heating, Ventilation, and Air Conditioning (HVAC) system which meets the minimum energy efficiencies that are allowed by American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) 90.1-2013. The performance analysis results indicate that recycled water temperatures were favorable for effective operation of heat pumps. As a result, on an annual basis, the RWHP system avoided 50% of source energy consumption (resulting from reduction in natural gas consumption although electricity consumption was increased slightly), reduced CO 2 emissions by 41%, and saved 34% in energy costs as compared with the baseline system.« less

  10. Operational Performance Characterization of a Heat Pump System Utilizing Recycled Water as Heat Sink and Heat Source in a Cool and Dry Climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Im, Piljae; Liu, Xiaobing; Henderson, Hugh

    The wastewater leaving from homes and businesses contains abundant low-grade energy, which can be utilized through heat pump technology to heat and cool buildings. Although the energy in the wastewater has been successfully utilized to condition buildings in other countries, it is barely utilized in the United States, until recently. In 2013, the Denver Museum of Nature & Science at Denver, the United States implemented a unique heat pump system that utilizes recycled wastewater from a municipal water system to cool and heat its 13,000 m 2 new addition. This recycled water heat pump (RWHP) system uses seven 105 kWmore » (cooling capacity) modular water-to-water heat pumps (WWHPs). Each WWHP uses R-410A refrigerant, has two compressors, and can independently provide either 52 °C hot water (HW) or 7 °C chilled water (CHW) to the building. This paper presents performance characterization results of this RWHP system based on the measured data from December 2014 through August 2015. The annual energy consumption of the RWHP system was also calculated and compared with that of a baseline Heating, Ventilation, and Air Conditioning (HVAC) system which meets the minimum energy efficiencies that are allowed by American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) 90.1-2013. The performance analysis results indicate that recycled water temperatures were favorable for effective operation of heat pumps. As a result, on an annual basis, the RWHP system avoided 50% of source energy consumption (resulting from reduction in natural gas consumption although electricity consumption was increased slightly), reduced CO 2 emissions by 41%, and saved 34% in energy costs as compared with the baseline system.« less

  11. Nuclear propulsion apparatus with alternate reactor segments

    DOEpatents

    Szekely, Thomas

    1979-04-03

    1. Nuclear propulsion apparatus comprising: A. means for compressing incoming air; B. nuclear fission reactor means for heating said air; C. means for expanding a portion of the heated air to drive said compressing means; D. said nuclear fission reactor means being divided into a plurality of radially extending segments; E. means for directing a portion of the compressed air for heating through alternate segments of said reactor means and another portion of the compressed air for heating through the remaining segments of said reactor means; and F. means for further expanding the heated air from said drive means and the remaining heated air from said reactor means through nozzle means to effect reactive thrust on said apparatus.

  12. Acoustic cooling engine

    DOEpatents

    Hofler, Thomas J.; Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1988-01-01

    An acoustic cooling engine with improved thermal performance and reduced internal losses comprises a compressible fluid contained in a resonant pressure vessel. The fluid has a substantial thermal expansion coefficient and is capable of supporting an acoustic standing wave. A thermodynamic element has first and second ends and is located in the resonant pressure vessel in thermal communication with the fluid. The thermal response of the thermodynamic element to the acoustic standing wave pumps heat from the second end to the first end. The thermodynamic element permits substantial flow of the fluid through the thermodynamic element. An acoustic driver cyclically drives the fluid with an acoustic standing wave. The driver is at a location of maximum acoustic impedance in the resonant pressure vessel and proximate the first end of the thermodynamic element. A hot heat exchanger is adjacent to and in thermal communication with the first end of the thermodynamic element. The hot heat exchanger conducts heat from the first end to portions of the resonant pressure vessel proximate the hot heat exchanger. The hot heat exchanger permits substantial flow of the fluid through the hot heat exchanger. The resonant pressure vessel can include a housing less than one quarter wavelength in length coupled to a reservoir. The housing can include a reduced diameter portion communicating with the reservoir. The frequency of the acoustic driver can be continuously controlled so as to maintain resonance.

  13. Energy dashboard for real-time evaluation of a heat pump assisted solar thermal system

    NASA Astrophysics Data System (ADS)

    Lotz, David Allen

    The emergence of net-zero energy buildings, buildings that generate at least as much energy as they consume, has lead to greater use of renewable energy sources such as solar thermal energy. One example is a heat pump assisted solar thermal system, which uses solar thermal collectors with an electrical heat pump backup to supply space heating and domestic hot water. The complexity of such a system can be somewhat problematic for monitoring and maintaining a high level of performance. Therefore, an energy dashboard was developed to provide comprehensive and user friendly performance metrics for a solar heat pump system. Once developed, the energy dashboard was tested over a two-week period in order to determine the functionality of the dashboard program as well as the performance of the heating system itself. The results showed the importance of a user friendly display and how each metric could be used to better maintain and evaluate an energy system. In particular, Energy Factor (EF), which is the ratio of output energy (collected energy) to input energy (consumed energy), was a key metric for summarizing the performance of the heating system. Furthermore, the average EF of the solar heat pump system was 2.29, indicating an efficiency significantly higher than traditional electrical heating systems.

  14. European Regional Climate Zone Modeling of a Commercial Absorption Heat Pump Hot Water Heater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Vishaldeep; Shen, Bo; Keinath, Chris

    2017-01-01

    High efficiency gas-burning hot water heating takes advantage of a condensing heat exchanger to deliver improved combustion efficiency over a standard non-condensing configuration. The water heating is always lower than the gas heating value. In contrast, Gas Absorption Heat Pump (GAHP) hot water heating combines the efficiency of gas burning with the performance increase from a heat pump to offer significant gas energy savings. An ammonia-water system also has the advantage of zero Ozone Depletion Potential and low Global Warming Potential. In comparison with air source electric heat pumps, the absorption system can maintain higher coefficients of performance in coldermore » climates. In this work, a GAHP commercial water heating system was compared to a condensing gas storage system for a range of locations and climate zones across Europe. The thermodynamic performance map of a single effect ammonia-water absorption system was used in a building energy modeling software that could also incorporate the changing ambient air temperature and water mains temperature for a specific location, as well as a full-service restaurant water draw pattern.« less

  15. A Conceptual Design Study on the Application of Liquid Metal Heat Transfer Technology to the Solar Thermal Power Plant

    NASA Technical Reports Server (NTRS)

    Zimmerman, W. F.; Robertson, C. S.; Ehde, C. L.; Divakaruni, S. M.; Stacy, L. E.

    1979-01-01

    Alkali metal heat transfer technology was used in the development of conceptual designs for the transport and storage of sensible and latent heat thermal energy in distributed concentrator, solar Stirling power conversion systems at a power level of 15 kWe per unit. Both liquid metal pumped loop and heat pipe thermal transport were considered; system configurations included: (1) an integrated, focal mounted sodium heat pipe solar receiver (HPSR) with latent heat thermal energy storage; (2) a liquid sodium pumped loop with the latent heat storage, Stirling engine-generator, pump and valves located on the back side of the concentrator; and (3) similar pumped loops serving several concentrators with more centralized power conversion and storage. The focus mounted HPSR was most efficient, lightest and lowest in estimated cost. Design confirmation testing indicated satisfactory performance at all angles of inclination of the primary heat pipes to be used in the solar receiver.

  16. Are Ducted Mini-Splits Worth It?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winkler, Jonathan M; Maguire, Jeffrey B; Metzger, Cheryn E.

    Ducted mini-split heat pumps are gaining popularity in some regions of the country due to their energy-efficient specifications and their ability to be hidden from sight. Although product and install costs are typically higher than the ductless mini-split heat pumps, this technology is well worth the premium for some homeowners who do not like to see an indoor unit in their living area. Due to the interest in this technology by local utilities and homeowners, the Bonneville Power Administration (BPA) has funded the Pacific Northwest National Laboratory (PNNL) and the National Renewable Energy Laboratory (NREL) to develop capabilities within themore » Building Energy Optimization (BEopt) tool to model ducted mini-split heat pumps. After the fundamental capabilities were added, energy-use results could be compared to other technologies that were already in BEopt, such as zonal electric resistance heat, central air source heat pumps, and ductless mini-split heat pumps. Each of these technologies was then compared using five prototype configurations in three different BPA heating zones to determine how the ducted mini-split technology would perform under different scenarios. The result of this project was a set of EnergyPlus models representing the various prototype configurations in each climate zone. Overall, the ducted mini-split heat pumps saved about 33-60% compared to zonal electric resistance heat (with window AC systems modeled in the summer). The results also showed that the ducted mini-split systems used about 4% more energy than the ductless mini-split systems, which saved about 37-64% compared to electric zonal heat (depending on the prototype and climate).« less

  17. Research of working pulsation in closed angle based on rotating-sleeve distributing-flow system

    NASA Astrophysics Data System (ADS)

    Zhang, Yanjun; Zhang, Hongxin; Zhao, Qinghai; Jiang, Xiaotian; Cheng, Qianchang

    2017-08-01

    In order to reduce negative effects including hydraulic impact, noise and mechanical vibration, compression and expansion of piston pump in closed volume are used to optimize the angle between valve port and chamber. In addition, the mathematical model about pressurization and depressurization in pump chamber are analyzed based on distributing-flow characteristic, and it is necessary to use simulation software Fluent to simulate the distributing-flow fluid model so as to select the most suitable closed angle. As a result, when compression angle is 3°, the angle is closest to theoretical analysis and has the minimum influence on flow and pump pressure characteristic. Meanwhile, cavitation phenomenon appears in pump chamber in different closed angle on different degrees. Besides the flow pulsation is increasingly smaller with increasing expansion angle. Thus when expansion angle is 2°, the angle is more suitable for distributing-flow system.

  18. Combination ring cavity and backward Raman waveguide amplifier

    DOEpatents

    Kurnit, Norman A.

    1983-01-01

    A combination regenerative ring and backward Raman waveguide amplifier and a combination regenerative ring oscillator and backward Raman waveguide amplifier which produce Raman amplification, pulse compression, and efficient energy extraction from the CO.sub.2 laser pump signal for conversion into a Stokes radiation signal. The ring cavity configuration allows the CO.sub.2 laser pump signal and Stokes signal to copropagate through the Raman waveguide amplifier. The backward Raman waveguide amplifier configuration extracts a major portion of the remaining energy from the CO.sub.2 laser pump signal for conversion to Stokes radiation. Additionally, the backward Raman amplifier configuration produces a Stokes radiation signal which has a high intensity and a short duration. Adjustment of the position of overlap of the Stokes signal and the CO.sub.2 laser pump signal in the backward Raman waveguide amplifiers alters the amount of pulse compression which can be achieved.

  19. Actively suspended counter-rotating machine

    NASA Technical Reports Server (NTRS)

    Studer, Philip A. (Inventor)

    1983-01-01

    A counter-rotating machine, such as a positive displacement pump having a pair of meshed, non-contacting helical screws (10,12), subjects its rotating members to axial and radial thrust forces when used for such purposes as compression of liquid or gaseous phase fluids while transporting them through a pump cavity (11,13). Each helical screw (10,12) has a shaft (17,17') which is actively suspended at opposite ends (11a,11b) of the pump cavity by a servo-controlled magnetic bearing assembly (19) and a servo-controlled rotary drive motor (20). Both bearing assemblies and drive motors are mounted on the outside of the pump cavity (11,13). Opto-electric angular position sensors (250) provide synchronization between radial orientation of the drive motors. The bearing assemblies and drive motors conjugately provide axial stabilization and radial centering of the helical screws during volumetric compression of aspirated liquid or gaseous phase fluids.

  20. Mini-Split Heat Pumps Multifamily Retrofit Feasibility Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dentz, Jordan; Podorson, David; Varshney, Kapil

    Mini-split heat pumps can provide space heating and cooling in many climates and are relatively affordable. These and other features make them potentially suitable for retrofitting into multifamily buildings in cold climates to replace electric resistance heating or other outmoded heating systems. This report investigates the suitability of mini-split heat pumps for multifamily retrofits. Various technical and regulatory barriers are discussed and modeling was performed to compare long-term costs of substituting mini-splits for a variety of other heating and cooling options. A number of utility programs have retrofit mini-splits in both single family and multifamily residences. Two such multifamily programsmore » are discussed in detail.« less

  1. Mini-Split Heat Pumps Multifamily Retrofit Feasibility Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dentz, J.; Podorson, D.; Varshney, K.

    2014-05-01

    Mini-split heat pumps can provide space heating and cooling in many climates and are relatively affordable. These and other features make them potentially suitable for retrofitting into multifamily buildings in cold climates to replace electric resistance heating or other outmoded heating systems. This report investigates the suitability of mini-split heat pumps for multifamily retrofits. Various technical and regulatory barriers are discussed and modeling was performed to compare long-term costs of substituting mini-splits for a variety of other heating and cooling options. A number of utility programs have retrofit mini-splits in both single family and multifamily residences. Two such multifamily programsmore » are discussed in detail.« less

  2. ETR HEAT EXCHANGER BUILDING, TRA644. FLOOR PLAN AND SECTIONS. PUMP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR HEAT EXCHANGER BUILDING, TRA-644. FLOOR PLAN AND SECTIONS. PUMP CUBICLES WITH PUMP MOTORS OUTSIDE CUBICLES. HEAT EXCHANGER EQUIPMENT. COOLANT PIPE TUNNEL ENTERS FROM REACTOR BUILDING. KAISER ETR-5582-MTR-644-A-3, 2/1956. INL INDEX NO. 532-0644-00-486-101294, REV. 6. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  3. Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump

    DOEpatents

    Phillips, B.A.; Zawacki, T.S.

    1998-07-21

    Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use, as the heat transfer medium, the working fluid of the absorption system taken from the generator at a location where the working fluid has a rich liquor concentration. 5 figs.

  4. Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump

    DOEpatents

    Phillips, Benjamin A.; Zawacki, Thomas S.

    1998-07-21

    Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use, as the heat transfer medium, the working fluid of the absorption system taken from the generator at a location where the working fluid has a rich liquor concentration.

  5. Operation and maintenance of the Sol-Dance Building solar system. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaultney, J.R.

    1980-07-29

    A 16,400 square foot general office facility has its primary heating provided by a flat plate solar system using hydronic storage and water-to-air transfer coils for distribution. Backup heat is provided by 10 individually controlled air source heat pumps ranging from 3 tons to 5 tons in capacity. These heat pumps also contain electric resistive elements for use during extremely low ambient temperatures. Cooling is also provided by the heat pumps. Each of the two buildings contains a separate domestic hot water system. Primary heat is provided by a closed loop solar unit with electric elements providing backup heat. Amore » 10,000 gallon black steel water tank provides heat storage.« less

  6. Impact of compressibility on heat transport characteristics of large terrestrial planets

    NASA Astrophysics Data System (ADS)

    Čížková, Hana; van den Berg, Arie; Jacobs, Michel

    2017-07-01

    We present heat transport characteristics for mantle convection in large terrestrial exoplanets (M ⩽ 8M⊕) . Our thermal convection model is based on a truncated anelastic liquid approximation (TALA) for compressible fluids and takes into account a selfconsistent thermodynamic description of material properties derived from mineral physics based on a multi-Einstein vibrational approach. We compare heat transport characteristics in compressible models with those obtained with incompressible models based on the classical- and extended Boussinesq approximation (BA and EBA respectively). Our scaling analysis shows that heat flux scales with effective dissipation number as Nu ∼Dieff-0.71 and with Rayleigh number as Nu ∼Raeff0.27. The surface heat flux of the BA models strongly overestimates the values from the corresponding compressible models, whereas the EBA models systematically underestimate the heat flux by ∼10%-15% with respect to a corresponding compressible case. Compressible models are also systematically warmer than the EBA models. Compressibility effects are therefore important for mantle dynamic processes, especially for large rocky exoplanets and consequently also for formation of planetary atmospheres, through outgassing, and the existence of a magnetic field, through thermal coupling of mantle and core dynamic systems.

  7. Economic feasibility study of residential and commercial heating using existing water supply systems. Final report June 1, 1979 - August 15, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pitts, Donald R.; Looper, Marshall G.

    1979-08-15

    A study of the use of a low-to-moderate temperature hydrothermal resource for space heating a 140-home residential community has been undertake. The approach centers on use of the existing culinary/potable water supply system to supply heated water to the homes, the culinary water being heated at a single pumping station and then distributed throughout the community through uninsulated, buried water mains. The heated potable water is pumped through individual house water-to-air heat exchangers using sealed, magnetic-drive house pumps and returned to the street distribution lines. These house heat exchangers are either add-on, wall mounted, convective heating units or coils addedmore » to existing forced air heating systems.« less

  8. Mathematical Modeling of Loop Heat Pipes with Multiple Capillary Pumps and Multiple Condensers. Part 1; Stead State Stimulations

    NASA Technical Reports Server (NTRS)

    Hoang, Triem T.; OConnell, Tamara; Ku, Jentung

    2004-01-01

    Loop Heat Pipes (LHPs) have proven themselves as reliable and robust heat transport devices for spacecraft thermal control systems. So far, the LHPs in earth-orbit satellites perform very well as expected. Conventional LHPs usually consist of a single capillary pump for heat acquisition and a single condenser for heat rejection. Multiple pump/multiple condenser LHPs have shown to function very well in ground testing. Nevertheless, the test results of a dual pump/condenser LHP also revealed that the dual LHP behaved in a complicated manner due to the interaction between the pumps and condensers. Thus it is redundant to say that more research is needed before they are ready for 0-g deployment. One research area that perhaps compels immediate attention is the analytical modeling of LHPs, particularly the transient phenomena. Modeling a single pump/single condenser LHP is difficult enough. Only a handful of computer codes are available for both steady state and transient simulations of conventional LHPs. No previous effort was made to develop an analytical model (or even a complete theory) to predict the operational behavior of the multiple pump/multiple condenser LHP systems. The current research project offered a basic theory of the multiple pump/multiple condenser LHP operation. From it, a computer code was developed to predict the LHP saturation temperature in accordance with the system operating and environmental conditions.

  9. Thermal lens elimination by gradient-reduced zone coupling of optical beams

    DOEpatents

    Page, Ralph H.; Beach, Raymond J.

    2000-01-01

    A thermal gradient-reduced-zone laser includes a laser medium and an optically transparent plate with an index of refraction that is less than the index of refraction of the laser medium. The pump face of the laser medium is bonded to a surface of the optically transparent member. Pump light is directed through the transparent plate to optically pump the solid state laser medium. Heat conduction is mainly through the surface of the laser medium where the heat is introduced by the pump light. Heat flows in a direction opposite to that of the pump light because the side of the laser medium that is opposite to that of the pump face is not in thermal contact with a conductor and thus there is no heat flux (and hence, no temperature gradient), thus producing a thermal gradient-reduced zone. A laser cavity is formed around the laser medium such that laser light oscillating within the laser cavity reflects by total-internal-reflection from the interface between the pump face and the optically transparent plate and enters and exits through a thermal gradient-reduced zone.

  10. Energy 101: Geothermal Heat Pumps

    ScienceCinema

    None

    2018-02-13

    An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together.

  11. Ground-Source Heat Pumps | Climate Neutral Research Campuses | NREL

    Science.gov Websites

    cooling requirements and heating loads. GSHPs take advantage of moderate soil temperatures available year Are ground-source heat pumps right for your campus? Are soil conditions suitable? Are heating and consider the following before undertaking an assessment or GSHP installation. Suitable Soil Conditions The

  12. Multi-Function Gas Fired Heat Pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abu-Heiba, Ahmad; Vineyard, Edward Allan

    2015-11-01

    The aim of this project was to design a residential fuel fired heat pump and further improve efficiency in collaboration with an industry partner – Southwest Gas, the developer of the Nextaire commercial rooftop fuel-fired heat pump. Work started in late 2010. After extensive search for suitable engines, one manufactured by Marathon was selected. Several prototypes were designed and built over the following four years. Design changes were focused on lowering the cost of components and the cost of manufacturing. The design evolved to a final one that yielded the lowest cost. The final design also incorporates noise and vibrationmore » reduction measures that were verified to be effective through a customer survey. ETL certification is currently (as of November 2015) underway. Southwest Gas is currently in talks with GTI to reach an agreement through which GTI will assess the commercial viability and potential of the heat pump. Southwest Gas is searching for investors to manufacture the heat pump and introduce it to the market.« less

  13. Parametric sensitivity study for solar-assisted heat-pump systems

    NASA Astrophysics Data System (ADS)

    White, N. M.; Morehouse, J. H.

    1981-07-01

    The engineering and economic parameters affecting life-cycle costs for solar-assisted heat pump systems are investigted. The change in energy usage resulting from each engineering parameter varied was developed from computer simulations, and is compared with results from a stand-alone heat pump system. Three geographical locations are considered: Washington, DC, Fort Worth, TX, and Madison, WI. Results indicate that most engineering changes to the systems studied do not provide significant energy savings. The most promising parameters to ary are the solar collector parameters tau (-) and U/sub L/ the heat pump capacity at design point, and the minimum utilizable evaporator temperature. Costs associated with each change are estimated, and life-cycle costs computed for both engineering parameters and economic variations in interest rate, discount rate, tax credits, fuel unit costs and fuel inflation rates. Results indicate that none of the feasibile engineering changes for the system configuration studied will make these systems economically competitive with the stand-alone heat pump without a considerable tax credit.

  14. The Design and Testing of the LSSIF Advanced Thermal Control System

    NASA Technical Reports Server (NTRS)

    Henson, Robert A.; Keller, John R.

    1995-01-01

    The Life Support Systems Integration Facility (LSSIF) provides a platform to design and evaluate advanced manned space systems at NASA Johnson Space Center (JSC). The LSSIF Early Human Testing Initiative requires the integration of such subsystems to enable human occupancy of the 6 meter chamber for a 90 day closed volume test. The Advanced Thermal Control System (TCS) is an important component of the integrated system by supplying coolant to the subsystems within the chamber, such as the Air Revitalization System. The TCS incorporates an advanced high efficiency, heat pump to reject waste heat from the chamber to an external sink or 'lift' temperature that emulates a Lunar environment. The heat pump is the High Lift Heat Pump, developed by Foster-Miller, Inc., and is the main test article of the TCS. The heat pump prototype utilizes a non-CFC refrigerant in a design where the thermal requirements exceed existing terrestrial technology. These operating requirements provide a unique opportunity to design and test an advanced integrated thermal system and the associated controls. The design, control, and systems integration of the heat pump and the TCS also have terrestrial technology application. This paper addresses the design of the TCS and the heat pump, along with the control scheme to fully test the heat pump. Design approaches utilized in the LSSIF TCS are promoted for implementation in terrestrial thermal systems. The results of the preliminary thermal and fluid analyses used to develop the control of the thermal systems will also be discussed. The paper includes objectives for the 90 day human test and the test setup. Finally, conclusions will be drawn and recommendations for Earth design application are submitted.

  15. Regulation of thermogenesis in plants: the interaction of alternative oxidase and plant uncoupling mitochondrial protein.

    PubMed

    Zhu, Yan; Lu, Jianfei; Wang, Jing; Chen, Fu; Leng, Feifan; Li, Hongyu

    2011-01-01

    Thermogenesis is a process of heat production in living organisms. It is rare in plants, but it does occur in some species of angiosperm. The heat is generated via plant mitochondrial respiration. As possible involvement in thermogenesis of mitochondrial factors, alternative oxidases (AOXs) and plant uncoupling mitochondrial proteins (PUMPs) have been well studied. AOXs and PUMPs are ubiquitously present in the inner membrane of plant mitochondria. They serve as two major energy dissipation systems that balance mitochondrial respiration and uncoupled phosphorylation by dissipating the H+ redox energy and proton electrochemical gradient (ΔμH+) as heat, respectively. AOXs and PUMPs exert similar physiological functions during homeothermic heat production in thermogenic plants. AOXs have five isoforms, while PUMPs have six. Both AOXs and PUMPs are encoded by small nuclear multigene families. Multiple isoforms are expressed in different tissues or organs. Extensive studies have been done in the area of thermogenesis in higher plants. In this review, we focus on the involvement and regulation of AOXs and PUMPs in thermogenesis.

  16. Heat driven pulse pump

    NASA Technical Reports Server (NTRS)

    Benner, Steve M (Inventor); Martins, Mario S. (Inventor)

    2000-01-01

    A heat driven pulse pump includes a chamber having an inlet port, an outlet port, two check valves, a wick, and a heater. The chamber may include a plurality of grooves inside wall of the chamber. When heated within the chamber, a liquid to be pumped vaporizes and creates pressure head that expels the liquid through the outlet port. As liquid separating means, the wick, disposed within the chamber, is to allow, when saturated with the liquid, the passage of only liquid being forced by the pressure head in the chamber, preventing the vapor from exiting from the chamber through the outlet port. A plurality of grooves along the inside surface wall of the chamber can sustain the liquid, which is amount enough to produce vapor for the pressure head in the chamber. With only two simple moving parts, two check valves, the heat driven pulse pump can effectively function over the long lifetimes without maintenance or replacement. For continuous flow of the liquid to be pumped a plurality of pumps may be connected in parallel.

  17. 49 CFR Appendix A to Part 180 - Internal Self-closing Stop Valve Emergency Closure Test for Liquefied Compressed Gases

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Test for Liquefied Compressed Gases A Appendix A to Part 180 Transportation Other Regulations Relating... Compressed Gases 1. In performing this test, all internal self-closing stop valves must be opened. Each.... 2. On pump-actuated pressure differential internal valves, the three-way toggle valve handle or its...

  18. Effect of Compression Devices on Preventing Deep Vein Thrombosis Among Adult Trauma Patients: A Systematic Review.

    PubMed

    Ibrahim, Mona; Ahmed, Azza; Mohamed, Warda Yousef; El-Sayed Abu Abduo, Somaya

    2015-01-01

    Trauma is the leading cause of death in Americans up to 44 years old each year. Deep vein thrombosis (DVT) is a significant condition occurring in trauma, and prophylaxis is essential to the appropriate management of trauma patients. The incidence of DVT varies in trauma patients, depending on patients' risk factors, modality of prophylaxis, and methods of detection. However, compression devices and arteriovenous (A-V) foot pumps prophylaxis are recommended in trauma patients, but the efficacy and optimal use of it is not well documented in the literature. The aim of this study was to review the literature on the effect of compression devices in preventing DVT among adult trauma patients. We searched through PubMed, CINAHL, and Cochrane Central Register of Controlled Trials for eligible studies published from 1990 until June 2014. Reviewers identified all randomized controlled trials that satisfied the study criteria, and the quality of included studies was assessed by Cochrane risk of bias tool. Five randomized controlled trials were included with a total of 1072 patients. Sequential compression devices significantly reduced the incidence of DVT in trauma patients. Also, foot pumps were more effective in reducing incidence of DVT compared with sequential compression devices. Sequential compression devices and foot pumps reduced the incidence of DVT in trauma patients. However, the evidence is limited to a small sample size and did not take into account other confounding variables that may affect the incidence of DVT in trauma patients. Future randomized controlled trials with larger probability samples to investigate the optimal use of mechanical prophylaxis in trauma patients are needed.

  19. Municipal water-based heat pump heating and/or cooling systems: Findings and recommendations. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bloomquist, R.G.; Wegman, S.

    1998-04-01

    The purpose of the present work was to determine if existing heat pump systems based on municipal water systems meet existing water quality standards, to analyze water that has passed through a heat pump or heat exchanger to determine if corrosion products can be detected, to determine residual chlorine levels in municipal waters on the inlet as well as the outlet side of such installations, to analyses for bacterial contaminants and/or regrowth due to the presence of a heat pump or heat exchanger, to develop and suggest criteria for system design and construction, to provide recommendations and specifications for materialmore » and fluid selection, and to develop model rules and regulations for the installation, operation, and monitoring of new and existing systems. In addition, the Washington State University (WSU) has evaluated availability of computer models that would allow for water system mapping, water quality modeling and system operation.« less

  20. The New S-RAM Air Variable Compressor/Expander for Heat Pump and Waste Heat to Power Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dehoff, Ryan R; Jestings, Lee; Conde, Ricardo

    S-RAM Dynamics (S-RAM) has designed an innovative heat pump system targeted for commercial and industrial applications. This new heat pump system is more efficient than anything currently on the market and utilizes air as the refrigerant instead of hydrofluorocarbon (HFC) refrigerants, leading to lower operating costs, minimal environmental costs or concerns, and lower maintenance costs. The heat pumps will be manufactured in the United States. This project was aimed at determining the feasibility of utilizing additive manufacturing to make the heat exchanger device for the new heat pump system. ORNL and S-RAM Dynamics collaborated on determining the prototype performance andmore » subsequently printing of the prototype using additive manufacturing. Complex heat exchanger designs were fabricated using the Arcam electron beam melting (EBM) powder bed technology using Ti-6Al-4V material. An ultrasonic welding system was utilized in order to remove the powder from the small openings of the heat exchanger. The majority of powder in the small chambers was removed, however, the amount of powder remaining in the heat exchanger was a function of geometry. Therefore, only certain geometries of heat exchangers could be fabricated. SRAM Dynamics evaluated a preliminary heat exchanger design. Although the results of the additive manufacturing of the heat exchanger were not optimum, a less complex geometry was demonstrated. A sleeve valve was used as a demonstration piece, as engine designs from S-RAM Dynamics require the engine to have a very high density. Preliminary designs of this geometry were successfully fabricated using the EBM technology.« less

  1. Post-evaluation of a ground source heat pump system for residential space heating in Shanghai China

    NASA Astrophysics Data System (ADS)

    Lei, Y.; Tan, H. W.; Wang, L. Z.

    2017-11-01

    Residents of Southern China are increasingly concerned about the space heating in winter. The chief aim of the present work is to find a cost-effective way for residential space heating in Shanghai, one of the biggest city in south China. Economic and energy efficiency of three residential space heating ways, including ground source heat pump (GSHP), air source heat pump (ASHP) and wall-hung gas boiler (WHGB), are assessed based on Long-term measured data. The results show that the heat consumption of the building is 120 kWh/m2/y during the heating season, and the seasonal energy efficiency ratio (SEER) of the GSHP, ASHP and WHGB systems are 3.27, 2.30, 0.88 respectively. Compared to ASHP and WHGB, energy savings of GSHP during the heating season are 6.2 kgce/(m2.y) and 2.2 kgce/(m2.y), and the payback period of GSHP are 13.3 and 7.6 years respectively. The sensitivity analysis of various factors that affect the payback period is carried out, and the results suggest that SEER is the most critical factor affecting the feasibility of ground source heat pump application, followed by building load factor and energy price factor. These findings of the research have led the author to the conclusion that ground source heat pump for residential space heating in Shanghai is a good alternative, which can achieve significant energy saving benefits, and a good system design and operation management are key factors that can shorten the payback period.

  2. A prototype heat pipe heat exchanger for the capillary pumped loop flight experiment

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Yun, Seokgeun; Kroliczek, Edward J.

    1992-01-01

    A Capillary Pumped Two-Phase Heat Transport Loop (CAPL) Flight Experiment, currently planned for 1993, will provide microgravity verification of the prototype capillary pumped loop (CPL) thermal control system for EOS. CAPL employs a heat pipe heat exchanger (HPHX) to couple the condenser section of the CPL to the radiator assembly. A prototype HPHX consisting of a heat exchanger (HX), a header heat pipe (HHP), a spreader heat pipe (SHP), and a flow regulator has been designed and tested. The HX transmits heat from the CPL condenser to the HHP, while the HHP and SHP transport heat to the radiator assembly. The flow regulator controls flow distribution among multiple parallel HPHX's. Test results indicated that the prototype HPHX could transport up to 800 watts with an overall heat transfer coefficient of more than 6000 watts/sq m-deg C. Flow regulation among parallel HPHX's was also demonstrated.

  3. Thermal Analysis of Hybrid Thermal Control System and Experimental Investigation of Flow Boiling in Micro-channel Heat Exchangers

    NASA Astrophysics Data System (ADS)

    Lee, Seunghyun

    Future manned space endeavors will require a new class of vehicles, capable of conducting different types of missions and enduring varying gravitational and temperature environments. Thermal management will play a vital role in these new vehicles, and is complicated by the need to tackle both low and high heat sink temperatures. The present study assesses the feasibility of hybrid thermal control system by thermodynamic analysis and investigates the heat transfer mechanisms in two large micro-channel heat exchangers in vapor compression mode and two-phase mode. Unlike prior published two-phase micro-channel studies that concern mostly miniature heat sinks, this study addresses transport characteristics of a heat sink containing large length-to-diameter ratio, up to 609.6 to 1,micro-channels. In the thermodynamic analysis, four different operational modes are considered: single-phase, two-phase, basic heat pump and heat pump with liquid-side, suction-side heat exchanger. A thermodynamic trade study is conducted for six different working fluids to assess important performance parameters including mass flow rate of the working fluid, maximum pressure, radiator area, compressor/pump work, and coefficient of performance (COP). R134a is determined to be most suitable based on its ability to provide a balanced compromise between reducing flow rate and maintaining low system pressure, and a moderate coefficient of performance (COP); this fluid is also both nontoxic and nonflammable, and features zero ozone depletion potential (ODP) and low global warming potential (GWP). It is shown how specific mission stages dictate which mode of operation is most suitable, and this information is used to size the radiator for the H-TCS. The experimental flow boiling investigation consists of exploring the steady-state and the transient two-phase heat transfer characteristics of two large micro-channel heat exchangers that serve as evaporators in the vapor compression loop using R134a as refrigerant. Both heat exchangers feature parallel micro-channels with identical 1x1-mm2 cross-sections. The evaporators are connected in series, with the smaller 152.4-mm long heat exchanger situated upstream of the larger 609.6-mm long heat exchanger. In the steady-state characteristics part, it is shown low qualities are associated with slug flow and dominated by nucleate boiling, and high qualities with annular flow and convective boiling. Important transition points between the different heat transfer regimes are identified as (1) intermittent dryout, resulting from vapor blanket formation in liquid slugs and/or partial dryout in the liquid film surrounding elongated bubbles, (2) incipient dryout, resulting from dry patch formation in the annular film, and (3) complete dryout, following which the wall has to rely entirely on the mild cooling provided by droplets deposited from the vapor core. In the transient characteristics part, heat transfer measurement and high speed video are used to investigate variations of heat transfer coefficient with quality for different mass velocities and heat fluxes, as well as transient fluid flow and heat transfer behavior. An important transient phenomenon that influences both fluid flow and heat transfer is a liquid wave composed of remnants of liquid slugs from the slug flow regime. The liquid wave serves to replenish dry wall patches in the slug flow regime and to a lesser extent the annular regime. Unlike small heat sinks employed in the electronics industry, TCS heat sinks are characterized by large length-to-diameter ratio, for which limited information is presently available. The large length-to-diameter ratio of 609.6 is especially instrumental to capturing detailed axial variations of flow pattern and corresponding variations in local heat transfer coefficient. High-speed video analysis of the inlet plenum shows appreciable vapor backflow under certain operating conditions, which is also reflected in periodic oscillations in the measured pressure drop. In fact, the backflow frequency captured by video matches closely the frequency obtained from Fourier analysis of the pressure drop signal. It is shown the periodic oscillations and vapor backflow are responsible for initiating intermittent dryout and appreciable drop in local heat transfer coefficient in the downstream regions of the channels. A parametric study of oscillation frequency shows a dependence on four dimensionless parameters that account for amount of vapor generation, subcooling, and upstream liquid length, in addition to Weber number. A new correlation for oscillation frequency is constructed that captures the frequency variations relative to these individual parameters. (Abstract shortened by ProQuest.).

  4. Modeling of Compressible Flow with Friction and Heat Transfer Using the Generalized Fluid System Simulation Program (GFSSP)

    NASA Technical Reports Server (NTRS)

    Bandyopadhyay, Alak; Majumdar, Alok

    2007-01-01

    The present paper describes the verification and validation of a quasi one-dimensional pressure based finite volume algorithm, implemented in Generalized Fluid System Simulation Program (GFSSP), for predicting compressible flow with friction, heat transfer and area change. The numerical predictions were compared with two classical solutions of compressible flow, i.e. Fanno and Rayleigh flow. Fanno flow provides an analytical solution of compressible flow in a long slender pipe where incoming subsonic flow can be choked due to friction. On the other hand, Raleigh flow provides analytical solution of frictionless compressible flow with heat transfer where incoming subsonic flow can be choked at the outlet boundary with heat addition to the control volume. Nonuniform grid distribution improves the accuracy of numerical prediction. A benchmark numerical solution of compressible flow in a converging-diverging nozzle with friction and heat transfer has been developed to verify GFSSP's numerical predictions. The numerical predictions compare favorably in all cases.

  5. An analytical study of hybrid ejector/internal combustion engine-driven heat pumps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, R.W.

    1988-01-01

    Because ejectors can combine high reliability with low maintenance cost in a package requiring little capital investment, they may provide attractive heat pumping capability in situations where the importance of their inefficiencies is minimized. One such concept, a hybrid system in which an ejector driven by engine reject heat is used to increase the performance of an internal combustion engine-driven heat pump, was analyzed by modifying an existing ejector heat pump model and combining it with generic compressor and internal combustion engine models. Under the model assumptions for nominal cooling mode conditions, the results showed that hybrid systems could providemore » substantial performance augmentation/emdash/up to 17/percent/ increase in system coefficient of performance for a parallel arrangement of an enhanced ejector with the engine-driven compressor. 4 refs., 4 figs., 4 tabs.« less

  6. Solar hot water system installed at Day's Inn Motel, Dallas, Texas (Valley View)

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar system was designed to provide 65 percent of the total domestic hot water (DHW) demand. A liquid (water) flat plate collector (1,000 square feet) system automatically drains into the 1,000 gallon steel storage tank when the solar pump is not running. Heat is transferred from the DHW tanks through a shell and tube heat exchanger. A circulating pump between the DHW tanks and heat exchanger enables solar heated water to help make up standby losses. All pumps are controlled by differential temperature controllers.

  7. Solar hot water system installed at Days Inn Motel, Jacksonville, Florida

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar system was designed to provide 65 percent of the hot water demand. Water in the liquid flat plate collector (900 square feet) system automatically drains into the 1000 gallon lined and vented steel storage tank when the pump is not running. Heat is transferred from storage to Domestic Hot Water (DHW) tanks through a tube and shell heat exchanger. A circulating pump between the DHW tanks and heat exchanger enables solar heated water to help make up DHW standby losses. All pumps are controlled by differential temperature.

  8. A Theoretical and Experimental Analysis of Post-Compression Water Injection in a Rolls-Royce M250 Gas Turbine Engine

    DTIC Science & Technology

    2015-05-18

    Figure 14: Pump and motor mounting assembly Solenoid valves Water Heater Ball Valves Spray nozzles Compressor Discharge Scroll Pump ...configuration schematic ........................................................................ 31 Figure 14: Pump and motor mounting assembly...Tubes (1 each side) Compressor Discharge Scroll 11 compared to the same engine cycle without the gas generator turbine stage. A temperature

  9. OSCILLATORY PUMP

    DOEpatents

    Underwood, N.

    1958-09-23

    This patent relates to a pump suitable fur pumping highly corrosive gases wherein no lubricant is needed in the pumping chamber thus eliminating possible contamination sources. The chamber contains a gas inlet and outlet in each side, with a paddle like piston suspended by a sylphon seal between these pcrts. An external arrangement causes the paddle to oscillate rapidly between the ports, alternately compressing and exhausting the gas trapped on each side of the paddle. Since the paddle does nnt touch the chamber sides at any point, no lubricant is required. This pump is useful for pumping large quantities of uranium hexafluorine.

  10. Optimizing the performance of a solar liquid piston pump

    NASA Astrophysics Data System (ADS)

    Murphy, C. L.

    Utilization of solar energy for pumping water for irrigation or storage is discussed. Oscillations of a Freon 113 liquid column are generated in a working tube when a continuous flow of hot water, and cooling water, are supplied to heated and cooling coils located in the tube. The oscillations are converted into a pump (SLPP) model exhibited self starting, stable operation over a wide range of conditions, provides the inlet hot water heat source and inlet cooling water heat sink are above and below the critical values for stalling at a given pump head. The operation of the SLPP model, is primarily affected by the heating coil position within the working tube, and the geometries of the inlet and outlet water tubes.

  11. High specific surface area aerogel cryoadsorber for vacuum pumping applications

    DOEpatents

    Hill, Randal M.; Fought, Eric R.; Biltoft, Peter J.

    2000-01-01

    A cryogenic pumping system is provided, comprising a vacuum environment, an aerogel sorbent formed from a carbon aerogel disposed within the vacuum environment, and cooling means for cooling the aerogel sorbent sufficiently to adsorb molecules from the vacuum environment onto the aerogel sorbent. Embodiments of the invention include a liquid refrigerant cryosorption pump, a compressed helium cryogenic pump, a cryopanel and a Meissner coil, each of which uses carbon aerogel as a sorbent material.

  12. Residential Variable-Capacity Heat Pumps Sized to Heating Loads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munk, Jeffrey D.; Jackson, Roderick K.; Odukomaiya, Adewale

    2014-01-01

    Variable capacity heat pumps are an emerging technology offering significant energy savings potential and improved efficiency. With conventional single-speed systems, it is important to appropriately size heat pumps for the cooling load as over-sizing would result in cycling and insufficient latent capacity required for humidity control. These appropriately sized systems are often under-sized for the heating load and require inefficient supplemental electric resistance heat to meet the heating demand. Variable capacity heat pumps address these shortcomings by providing an opportunity to intentionally size systems for the dominant heating season load without adverse effects of cycling or insufficient dehumidification in themore » cooling season. This intentionally-sized system could result in significant energy savings in the heating season, as the need for inefficient supplemental electric resistance heat is drastically reduced. This is a continuation of a study evaluating the energy consumption of variable capacity heat pumps installed in two unoccupied research homes in Farragut, a suburb of Knoxville, Tennessee. In this particular study, space conditioning systems are intentionally sized for the heating season loads to provide an opportunity to understand and evaluate the impact this would have on electric resistance heat use and dehumidification. The results and conclusions drawn through this research are valid and specific for portions of the Southeastern and Midwestern United States falling in the mixed-humid climate zone. While other regions in the U.S. do not experience this type of climate, this work provides a basis for, and can help understand the implications of other climate zones on residential space conditioning energy consumption. The data presented here will provide a framework for fine tuning residential building EnergyPlus models that are being developed.« less

  13. A new technique for pumping hydrogen gas

    USGS Publications Warehouse

    Friedman, I.; Hardcastle, K.

    1970-01-01

    A system for pumping hydrogen gas without isotopic fractionation has been developed. The pump contains uranium metal, which when heated to about 80??C reacts with hydrogen to form UH3. The UH3 is heated to above 500??C to decompose the hydride and regenerate the hydrogen. ?? 1970.

  14. Conceptual design study of geothermal district heating of a thirty-house subdivision in Elko, Nevada, using existing water-distribution systems, Phase III. Final technical report, October 1, 1979-September 30, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pitts, D.R.

    1980-09-30

    A conceptual design study for district heating of a 30-home subdivision located near the southeast extremity of the city of Elko, Nevada is presented. While a specific residential community was used in the study, the overall approach and methodologies are believed to be generally applicable for a large number of communities where low temperature geothermal fluid is available. The proposed district heating system utilizes moderate temperature, clean domestic water and existing community culinary water supply lines. The culinary water supply is heated by a moderate temperature geothermal source using a single heat exchanger at entry to the subdivision. The heatedmore » culinary water is then pumped to the houses in the community where energy is extracted by means of a water supplied heat pump. The use of heat pumps at the individual houses allows economic heating to result from supply of relatively cool water to the community, and this precludes the necessity of supplying objectionably hot water for normal household consumption use. Each heat pump unit is isolated from the consumptive water flow such that contamination of the water supply is avoided. The community water delivery system is modified to allow recirculation within the community, and very little rework of existing water lines is required. The entire system coefficient of performance (COP) for a typical year of heating is 3.36, exclusive of well pumping energy.« less

  15. Diesel-fired self-pumping water heater

    NASA Astrophysics Data System (ADS)

    Gertsmann, Joseph

    1994-07-01

    The object of this project was to study the feasibility of pumping and heating water by sustained oscillatory vaporization and condensation in a fired heat exchanger. Portable field liquid fueled water heaters would facilitate heating water for sanitation, personal hygiene, food service, laundry, equipment maintenance, and decontamination presently available only from larger, less portable, motorized pumping units. The technical tasks consisted of: development of an analytical model, operation of proof-of-principal prototypes, and determination of the thermal and mechanical relationships to evaluate operating range and control characteristics. Four successive pump models were analyzed and tested. The final analytical model gave reasonable agreement with the experimental results, indicating that the actual pumping effect was an order of magnitude lower than originally anticipated. It was concluded that a thermally-activated self pumping water heater based on the proposed principle is not feasible.

  16. A sequential compression mechanical pump to prevent hypotension during elective cesarean section under spinal anesthesia.

    PubMed

    Sujata, N; Arora, D; Panigrahi, B P; Hanjoora, V M

    2012-04-01

    Spinal anesthesia is a standard technique for cesarean section but can cause hypotension which may be related to venous pooling secondary to progesterone-induced decreases in vascular tone. This study investigated the use of a sequential compression mechanical pump with thigh-high sleeves with compression cycles timed to venous refilling. We hypothesized that this would recruit pooled venous blood from the lower limbs, maintain the central blood volume and thus decrease the incidence of hypotension. One hundred parturients scheduled for elective cesarean section under spinal anesthesia were recruited and randomly assigned to use of either a mechanical pump (Group M) or control (Group C). A standardized protocol for co-hydration and anesthesia was followed. Hypotension, defined as a decrease in systolic blood pressure by >20% from baseline, was treated with 6-mg boluses of intravenous ephedrine. The incidence of hypotension was defined as the primary outcome. Median ephedrine requirement was taken as a measure of the severity of hypotension. Hypotension occurred in 12 of 47 (25.5%) patients in Group M compared to 27 of 45 (60%) in Group C (P=0.001). The median [range] ephedrine dose was greater in Group C (12 [0-24]mg) compared to Group M (0 [0-12]mg) (P<0.001). There was no difference between groups in the time to onset of hypotension. The use of a sequential compression mechanical pump that detects venous refilling and cycles accordingly, reduced the incidence and severity of hypotension after spinal anesthesia for cesarean section. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Waste Heat Approximation for Understanding Dynamic Compression in Nature and Experiments

    NASA Astrophysics Data System (ADS)

    Jeanloz, R.

    2015-12-01

    Energy dissipated during dynamic compression quantifies the residual heat left in a planet due to impact and accretion, as well as the deviation of a loading path from an ideal isentrope. Waste heat ignores the difference between the pressure-volume isentrope and Hugoniot in approximating the dissipated energy as the area between the Rayleigh line and Hugoniot (assumed given by a linear dependence of shock velocity on particle velocity). Strength and phase transformations are ignored: justifiably, when considering sufficiently high dynamic pressures and reversible transformations. Waste heat mis-estimates the dissipated energy by less than 10-20 percent for volume compressions under 30-60 percent. Specific waste heat (energy per mass) reaches 0.2-0.3 c02 at impact velocities 2-4 times the zero-pressure bulk sound velocity (c0), its maximum possible value being 0.5 c02. As larger impact velocities are implied for typical orbital velocities of Earth-like planets, and c02 ≈ 2-30 MJ/kg for rock, the specific waste heat due to accretion corresponds to temperature rises of about 3-15 x 103 K for rock: melting accompanies accretion even with only 20-30 percent waste heat retained. Impact sterilization is similarly quantified in terms of waste heat relative to the energy required to vaporize H2O (impact velocity of 7-8 km/s, or 4.5-5 c0, is sufficient). Waste heat also clarifies the relationship between shock, multi-shock and ramp loading experiments, as well as the effect of (static) pre-compression. Breaking a shock into 2 steps significantly reduces the dissipated energy, with minimum waste heat achieved for two equal volume compressions in succession. Breaking a shock into as few as 4 steps reduces the waste heat to within a few percent of zero, documenting how multi-shock loading approaches an isentrope. Pre-compression, being less dissipative than an initial shock to the same strain, further reduces waste heat. Multi-shock (i.e., high strain-rate) loading of pre-compressed samples may thus offer the closest approach to an isentrope, and therefore the most extreme compression at which matter can be studied at the "warm" temperatures of planetary interiors.

  18. Performance Analysis of Air-to-Water Heat Pump in Latvian Climate Conditions

    NASA Astrophysics Data System (ADS)

    Kazjonovs, Janis; Sipkevics, Andrejs; Jakovics, Andris; Dancigs, Andris; Bajare, Diana; Dancigs, Leonards

    2014-12-01

    Strategy of the European Union in efficient energy usage demands to have a higher proportion of renewable energy in the energy market. Since heat pumps are considered to be one of the most efficient heating and cooling systems, they will play an important role in the energy consumption reduction in buildings aimed to meet the target of nearly zero energy buildings set out in the EU Directive 2010/31/EU. Unfortunately, the declared heat pump Coefficient of Performance (COP) corresponds to a certain outdoor temperature (+7 °C), therefore different climate conditions, building characteristics and settings result in different COP values during the year. The aim of this research is to investigate the Seasonal Performance factor (SPF) values of air-to-water heat pump which better characterize the effectiveness of heat pump in a longer selected period of time, especially during the winter season, in different types of residential buildings in Latvian climate conditions. Latvia has four pronounced seasons of near-equal length. Winter starts in mid-December and lasts until mid-March. Latvia is characterized by cold, maritime climate (duration of the average heating period being 203 days, the average outdoor air temperature during the heating period being 0.0 °C, the coldest five-day average temperature being -20.7 °C, the average annual air temperature being +6.2 °C, the daily average relative humidity being 79 %). The first part of this research consists of operational air-towater heat pump energy performance monitoring in different residential buildings during the winter season. The second part of the research takes place under natural conditions in an experimental construction stand which is located in an urban environment in Riga, Latvia. The inner area of this test stand, where air-to-water heat pump performance is analyzed, is 9 m2. The ceiling height is 3 m, all external wall constructions (U = 0.16 W/(m2K)) have ventilated facades. To calculate SPF, the experimental stand is equipped with sensors which provide measurements for electricity consumption and gained heat energy.

  19. Absorption heat pump for space applications

    NASA Technical Reports Server (NTRS)

    Nguyen, Tuan; Simon, William E.; Warrier, Gopinath R.; Woramontri, Woranun

    1993-01-01

    In the first part, the performance of the Absorption Heat Pump (AHP) with water-sulfuric acid and water-magnesium chloride as two new refrigerant-absorbent fluid pairs was investigated. A model was proposed for the analysis of the new working pairs in a heat pump system, subject to different temperature lifts. Computer codes were developed to calculate the Coefficient of Performance (COP) of the system with the thermodynamic properties of the working fluids obtained from the literature. The study shows the potential of water-sulfuric acid as a satisfactory replacement for water-lithium bromide in the targeted temperature range. The performance of the AHP using water-magnesium chloride as refrigerant-absorbent pair does not compare well with those obtained using water-lithium bromide. The second part concentrated on the design and testing of a simple ElectroHydrodynamic (EHD) Pump. A theoretical design model based on continuum electromechanics was analyzed to predict the performance characteristics of the EHD pump to circulate the fluid in the absorption heat pump. A numerical method of solving the governing equations was established to predict the velocity profile, pressure - flow rate relationship and efficiency of the pump. The predicted operational characteristics of the EHD pump is comparable to that of turbomachinery hardware; however, the overall efficiency of the electromagnetic pump is much lower. An experimental investigation to verify the numerical results was conducted. The pressure - flow rate performance characteristics and overall efficiency of the pump obtained experimentally agree well with the theoretical model.

  20. Cold Climate and Retrofit Applications for Air-to-Air Heat Pumps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, Van D

    2015-01-01

    Air source heat pumps (ASHP) including air-to-air ASHPs are easily applied to buildings almost anywhere for new construction as well as retrofits or renovations. They are widespread in milder climate regions but their use in cold regions is hampered due to low heating efficiency and capacity at cold outdoor temperatures. Retrofitting air-to-air ASHPs to existing buildings is relatively easy if the building already has an air distribution system. For buildings without such systems alternative approaches are necessary. Examples are ductless, minisplit heat pumps or central heat pumps coupled to small diameter, high velocity (SDHV) air distribution systems. This article presentsmore » two subjects: 1) a summary of R&D investigations aimed at improving the cold weather performance of ASHPs, and 2) a brief discussion of building retrofit options using air-to-air ASHP systems.« less

  1. Low-temperature thermal control for a lunar base

    NASA Technical Reports Server (NTRS)

    Swanson, Theodore D.; Radermacher, Reinhard; Costello, Frederick A.; Moore, James S., Jr.; Mengers, David R.

    1990-01-01

    The generic problem of rejecting low- to moderate-temperature heat from space facilities located in a hot thermal sink environment is studied, and the example of a lunar base located near the equator is described. The effective thermal sink temperature is often above or near nominal room temperature. A three heat pump assisted thermal bus concept appears to be the most viable as they are the least sensitive to environmental conditions. Weight estimates are also developed for each of the five thermal control concepts studied: (1) 149kg/kW for a central thermal loop with unitary heat pumps; (2) 133 kg/kW for a conventional bus connected to large, central heat pumps at the radiator; (3) 134 kg/kW for a central, dual loop heat pump concept; (4) 95 kg/kW for the selective field-of-view radiator; and (5) 126 kg/kW for the regolith concept.

  2. Modelling and experimental performance analysis of solar-assisted ground source heat pump system

    NASA Astrophysics Data System (ADS)

    Esen, Hikmet; Esen, Mehmet; Ozsolak, Onur

    2017-01-01

    In this study, slinky (the slinky-loop configuration is also known as the coiled loop or spiral loop of flexible plastic pipe)type ground heat exchanger (GHE) was established for a solar-assisted ground source heat pump system. System modelling is performed with the data obtained from the experiment. Artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) are used in modelling. The slinky pipes have been laid horizontally and vertically in a ditch. The system coefficient of performance (COPsys) and the heat pump coefficient of performance (COPhp) have been calculated as 2.88 and 3.55, respectively, at horizontal slinky-type GHE, while COPsys and COPhp were calculated as 2.34 and 2.91, respectively, at vertical slinky-type GHE. The obtained results showed that the ANFIS is more successful than that of ANN for forecasting performance of a solar ground source heat pump system.

  3. Thermal Analysis of the PediaFlow pediatric ventricular assist device.

    PubMed

    Gardiner, Jeffrey M; Wu, Jingchun; Noh, Myounggyu D; Antaki, James F; Snyder, Trevor A; Paden, David B; Paden, Brad E

    2007-01-01

    Accurate modeling of heat dissipation in pediatric intracorporeal devices is crucial in avoiding tissue and blood thermotrauma. Thermal models of new Maglev ventricular assist device (VAD) concepts for the PediaFlow VAD are developed by incorporating empirical heat transfer equations with thermal finite element analysis (FEA). The models assume three main sources of waste heat generation: copper motor windings, active magnetic thrust bearing windings, and eddy currents generated within the titanium housing due to the two-pole motor. Waste heat leaves the pump by convection into blood passing through the pump and conduction through surrounding tissue. Coefficients of convection are calculated and assigned locally along fluid path surfaces of the three-dimensional pump housing model. FEA thermal analysis yields a three-dimensional temperature distribution for each of the three candidate pump models. Thermal impedances from the motor and thrust bearing windings to tissue and blood contacting surfaces are estimated based on maximum temperature rise at respective surfaces. A new updated model for the chosen pump topology is created incorporating computational fluid dynamics with empirical fluid and heat transfer equations. This model represents the final geometry of the first generation prototype, incorporates eddy current heating, and has 60 discrete convection regions. Thermal analysis is performed at nominal and maximum flow rates, and temperature distributions are plotted. Results suggest that the pump will not exceed a temperature rise of 2 degrees C during normal operation.

  4. Review of Orbital Propellant Transfer Techniques and the Feasibility of a Thermal Bootstrap Propellant Transfer Concepts

    NASA Technical Reports Server (NTRS)

    Yoshikawa, H. H.; Madison, I. B.

    1971-01-01

    This study was performed in support of the NASA Task B-2 Study Plan for Space Basing. The nature of space-based operations implies that orbital transfer of propellant is a prime consideration. The intent of this report is (1) to report on the findings and recommendations of existing literature on space-based propellant transfer techniques, and (2) to determine possible alternatives to the recommended methods. The reviewed literature recommends, in general, the use of conventional liquid transfer techniques (i.e., pumping) in conjunction with an artificially induced gravitational field. An alternate concept that was studied, the Thermal Bootstrap Transfer Process, is based on the compression of a two-phase fluid with subsequent condensation to a liquid (vapor compression/condensation). This concept utilizes the intrinsic energy capacities of the tanks and propellant by exploiting temperature differentials and available energy differences. The results indicate the thermodynamic feasibility of the Thermal Bootstrap Transfer Process for a specific range of tank sizes, temperatures, fill-factors and receiver tank heat transfer coefficients.

  5. Solar assisted heat pump for a swine nursery barn

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Havard, P.L.

    1981-01-01

    The raising of hogs in Canada and Northern United States may require heating year round in the nursery area of the operation. The use of a solar assisted heat pump system can lead to substantial energy savings. The heat system and the computer simulation output for a demonstration project built in this area are summarized.

  6. 19. Heat Pump, view to the southwest. This system provides ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Heat Pump, view to the southwest. This system provides ventilation air heating and cooling throughout the powerhouse. - Washington Water Power Clark Fork River Noxon Rapids Hydroelectric Development, Powerhouse, South bank of Clark Fork River at Noxon Rapids, Noxon, Sanders County, MT

  7. A pumped, two-phase flow heat transport system for orbiting instrument payloads

    NASA Technical Reports Server (NTRS)

    Fowle, A. A.

    1981-01-01

    A pumped two-phase (heat absorption/heat rejection) thermal transport system for orbiting instrument payloads is investigated. The thermofluid characteristics necessary for the system design are discussed. A preliminary design with a series arrangement of four instrument heat stations and six radiators in a single loop is described in detail, and the total mass is estimated to be 134 kg, with the radiators, instrument heat stations, and fluid reservoir accounting for approximately 86, 24, and 12 kg, respectively. The evaluation of preliminary test results shows that the system has potential advantages; however, further research is necessary in the areas of one-g and zero-g heat transfer coefficients/fluid regimes, fluid by-pass temperature control, and reliability of small pumps.

  8. Diaphragm Stirling engine heat-actuated heat pump development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, R.A.; Swenson, P.

    1981-01-01

    The objective of this program is to develop and demonstrate the performance of a diaphragm Stirling engine heat-actuated heat pump power module. The power module, consisting of a free displacer, resonant Stirling engine, hydraulic transmission, and resonant Rankine refrigerant (F-22) compressor, embodies several innovative concepts in free-piston Stirling engine heat pump design that will advance the state of the art of this technology. Progress is reported in three areas of the program. First, a compressor/engine matching analysis and a stability analysis have shown that the power module, which is representative of a two-degree-of-freedom resonant system, will operate stably over themore » full range of heat pump conditions. Second, a compressor design has evolved that has met criteria for performance and cost; and third, tests employing a hydraulic simulator test rig has shown that the transmission losses are less than had been predicted, and that properly designed and fabricated diaphragms can attain long life.« less

  9. The heat-compression technique for the conversion of platelet-rich fibrin preparation to a barrier membrane with a reduced rate of biodegradation.

    PubMed

    Kawase, Tomoyuki; Kamiya, Mana; Kobayashi, Mito; Tanaka, Takaaki; Okuda, Kazuhiro; Wolff, Larry F; Yoshie, Hiromasa

    2015-05-01

    Platelet-rich fibrin (PRF) was developed as an advanced form of platelet-rich plasma to eliminate xenofactors, such as bovine thrombin, and it is mainly used as a source of growth factor for tissue regeneration. Furthermore, although a minor application, PRF in a compressed membrane-like form has also been used as a substitute for commercially available barrier membranes in guided-tissue regeneration (GTR) treatment. However, the PRF membrane is resorbed within 2 weeks or less at implantation sites; therefore, it can barely maintain sufficient space for bone regeneration. In this study, we developed and optimized a heat-compression technique and tested the feasibility of the resulting PRF membrane. Freshly prepared human PRF was first compressed with dry gauze and subsequently with a hot iron. Biodegradability was microscopically examined in vitro by treatment with plasmin at 37°C or in vivo by subcutaneous implantation in nude mice. Compared with the control gauze-compressed PRF, the heat-compressed PRF appeared plasmin-resistant and remained stable for longer than 10 days in vitro. Additionally, in animal implantation studies, the heat-compressed PRF was observed at least for 3 weeks postimplantation in vivo whereas the control PRF was completely resorbed within 2 weeks. Therefore, these findings suggest that the heat-compression technique reduces the rate of biodegradation of the PRF membrane without sacrificing its biocompatibility and that the heat-compressed PRF membrane easily could be prepared at chair-side and applied as a barrier membrane in the GTR treatment. © 2014 Wiley Periodicals, Inc.

  10. A Shocking New Pump

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Hydro Dynamics, Inc. received a technical helping hand from NASA that made their Hydrosonic Pump (HPump) a reality. Marshall engineers resolved a bearing problem in the rotor of the pump and recommended new bearings, housings and mounting hardware as a solution. The resulting HPump is able to heat liquids with greater energy efficiency using shock waves to generate heat.

  11. Heat pumping in nanomechanical systems.

    PubMed

    Chamon, Claudio; Mucciolo, Eduardo R; Arrachea, Liliana; Capaz, Rodrigo B

    2011-04-01

    We propose using a phonon pumping mechanism to transfer heat from a cold to a hot body using a propagating modulation of the medium connecting the two bodies. This phonon pump can cool nanomechanical systems without the need for active feedback. We compute the lowest temperature that this refrigerator can achieve. © 2011 American Physical Society

  12. Solar hot water system installed at Days Inn Motel, Dallas, Texas (Forrest Lane)

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar system was designed to provide 65 percent of the total Domestic Hot Water (DHW) demand. The liquid flat plate (water) collector (1,000 square feet) system automatically drains into the 1,000 gallon steel storage tank located in the mechanical room when the pump is not running. Heat is transferred from the storage tank to DHW tanks through a tube and shell heat exchanger. A circulating pump between the DHW tanks and the heat exchanger enables solar heated water to help make DHW tank standby losses. All pumps are controlled by differential temperature.

  13. Electrokinetic high pressure hydraulic system

    DOEpatents

    Paul, Phillip H.; Rakestraw, David J.

    2000-01-01

    A compact high pressure hydraulic pump having no moving mechanical parts for converting electric potential to hydraulic force. The electrokinetic pump, which can generate hydraulic pressures greater than 2500 psi, can be employed to compress a fluid, either liquid or gas, and manipulate fluid flow. The pump is particularly useful for capillary-base systems. By combining the electrokinetic pump with a housing having chambers separated by a flexible member, fluid flow, including high pressure fluids, is controlled by the application of an electric potential, that can vary with time.

  14. Multistage quantum absorption heat pumps.

    PubMed

    Correa, Luis A

    2014-04-01

    It is well known that heat pumps, while being all limited by the same basic thermodynamic laws, may find realization on systems as "small" and "quantum" as a three-level maser. In order to quantitatively assess how the performance of these devices scales with their size, we design generalized N-dimensional ideal heat pumps by merging N-2 elementary three-level stages. We set them to operate in the absorption chiller mode between given hot and cold baths and study their maximum achievable cooling power and the corresponding efficiency as a function of N. While the efficiency at maximum power is roughly size-independent, the power itself slightly increases with the dimension, quickly saturating to a constant. Thus, interestingly, scaling up autonomous quantum heat pumps does not render a significant enhancement beyond the optimal double-stage configuration.

  15. Heat pumps could inject life into solar energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, P.

    1977-07-14

    Prospects for the use of solar energy in Great Britain are discussed. The only economically feasible solar system is considered to be a solar assisted heat pump. One of the factors included in an economic assessment of the solar system include the degree to which the house is insulated. Government incentives were suggested to increase solar consumerism. Detailed calculations showed that solar collectors on small British houses were currently uneconomical. The most promising market for solar collectors is outside the domestic market. The lack of standardization of solar collectors also is a hindrance to public acceptance of solar. Heat pumpsmore » with a coefficient of performance of 3:1 and giving a heat output of 3 kW for every 1 kW of electricity are considered economically feasible. Wind powered heat pumps are considered. Estimates of future heat pump use are as high as 30% of the domestic heating market. The US is considered technically more advanced than Britain for many types of solar applications. Technology of solar cells in the United States as opposed to Britain is also discussed.« less

  16. Effects of heating durations on normal concrete residual properties: compressive strength and mass loss

    NASA Astrophysics Data System (ADS)

    Nazri, Fadzli Mohamed; Shahidan, Shahiron; Khaida Baharuddin, Nur; Beddu, Salmia; Hisyam Abu Bakar, Badorul

    2017-11-01

    This study investigates the effects of high temperature with five different heating durations on residual properties of 30 MPa normal concrete. Concrete cubes were being heated up to 600°C for 30, 60, 90, 120 and 150 minutes. The temperature will keep constant for 30, 60, 90, 120 and 150 minutes. The standard temperature-time curve ISO 834 is referred to. After heating the specimen were left to cool in the furnace and removed. After cooling down to ambient temperature, the residual mass and residual compressive strength were observed. The obtained result shows that, the compressive strength of concrete decrease as the heating duration increases. This heating duration influence, might affects the loss of free water present and decomposition of hydration products in concrete. As the heating duration increases, the amount of water evaporated also increases led to loss in concrete mass. Conclusively, the percentage of mass and compressive strength loss increased as the heating duration increased.

  17. Effect of blade-surface-roughness on the pumping performance of a turbomolecular pump

    NASA Astrophysics Data System (ADS)

    Sawada, T.; Yabuki, M.; Sugiyama, W.; Watanabe, M.

    2005-11-01

    Turbomolecular pumps (TMPs) are widely used in the semiconductor and other thin film industries. Some semiconductor processes form corrosive gases such as HCl or HF as byproducts. The elements of a TMP are sometimes coated with ceramic (SiO2) film for the purpose of preventing corrosion of the TMP. The blades coated with SiO2 have relatively rough surfaces. The effect of the surface roughness of the blades on the pumping performance has been studied experimentally and theoretically. Experimental results for TMPs with two rotor disks and one stator disk show that the TMP coated with SiO2 film gives about 11% to 13% higher maximum-compression ratio than the noncoated TMP when the blade speed ratio is 0.47. The theory based on the conic peak/dimple-surface-roughness model that has been proposed by the authors explains the change in the compression ratio with the surface roughness shown in the experiment.

  18. Self-Regulating Water-Separator System for Fuel Cells

    NASA Technical Reports Server (NTRS)

    Vasquez, Arturo; McCurdy, Kerri; Bradley, Karla F.

    2007-01-01

    proposed system would perform multiple coordinated functions in regulating the pressure of the oxidant gas (usually, pure oxygen) flowing to a fuelcell stack and in removing excess product water that is generated in the normal fuel-cell operation. The system could function in the presence or absence of gravitation, and in any orientation in a gravitational field. Unlike some prior systems for removing product water, the proposed system would not depend on hydrophobicity or hydrophilicity of surfaces that are subject to fouling and, consequently, to gradual deterioration in performance. Also unlike some prior systems, the proposed system would not include actively controlled electric motors for pumping; instead, motive power for separation and pumping away of product water would be derived primarily from the oxidant flow and perhaps secondarily from the fuel flow. The net effect of these and other features would be to make the proposed system more reliable and safer, relative to the prior systems. The proposed system (see figure) would include a pressure regulator and sensor in the oxidant supply just upstream from an ejector reactant pump. The pressure of the oxidant supply would depend on the consumption flow. In one of two control subsystems, the pressure of oxidant flowing from the supply to the ejector would be sensed and used to control the speed of a set of a reciprocating constant-displacement pump so that the volumetric flow of nominally incompressible water away from the system would slightly exceed the rate at which water was produced by the fuel cell(s). The two-phase (gas/liquid water) outlet stream from the fuel cell(s) would enter the water separator, a turbinelike centrifugal separator machine driven primarily by the oxidant gas stream. A second control subsystem would utilize feedback derived from the compressibility of the outlet stream: As the separator was emptied of liquid water, the compressibility of the pumped stream would increase. The compressibility would be sensed, and an increase in compressibility beyond a preset point (signifying a decrease in water content below an optimum low level) would cause the outflow from the reciprocating pump to be diverted back to the separator to recycle some water.

  19. Thermosyphon coil arrangement for heat pump outdoor unit

    DOEpatents

    Draper, R.

    1984-05-22

    For a heat pump, the outdoor unit is provided with a coil and a refrigerant flow arrangement there for which is such that in the heating mode of operation of the heat pump they operate in a thermosyphon fashion. The coil has a feed portion and an exit portion leading to a separator drum from which liquid refrigerant is returned through downcomer line for recirculation to the feed portion. The coil is tilted upwardly from entry to exit by the angle alpha to enhance the clearance of the two phases of refrigerant from each other in the heating mode of operation. There is no thermosyphon function in the cooling mode of operation. 9 figs.

  20. Thermosyphon coil arrangement for heat pump outdoor unit

    DOEpatents

    Draper, Robert

    1984-01-01

    For a heat pump, the outdoor unit is provided with a coil and a refrigerant flow arrangement therefor which is such that in the heating mode of operation of the heat pump they operate in a thermosyphon fashion. The coil 32 has a feed portion 30 and an exit portion 34 leading to a separator drum 36 from which liquid refrigerant is returned through downcomer line 42 for recirculation to the feed portion. The coil is tilted upwardly from entry to exit by the angle alpha to enhance the clearance of the two phases of refrigerant from each other in the heating mode of operation. There is no thermosyphon function in the cooling mode of operation.

  1. Three-wave interaction solitons in optical parametric amplification.

    PubMed

    Ibragimov, E; Struthers, A A; Kaup, D J; Khaydarov, J D; Singer, K D

    1999-05-01

    This paper applies three-wave interaction (TWI)-soliton theory to optical parametric amplification when the signal, idler, and pump wave can all contain TWI solitons. We use an analogy between two different velocity regimes to compare the theory with output from an experimental synchronously pumped optical parametric amplifier. The theory explains the observed inability to compress the intermediate group-velocity wave and 20-fold pulse compression in this experiment. The theory and supporting numerics show that one can effectively control the shape and energy of the optical pulses by shifting the TWI solitons in the pulses.

  2. Heating Augmentation Due to Compression Pad Cavities on the Project Orion CEV Heat Shield

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.

    2009-01-01

    An experimental study has been conducted to assess the effects of compression pad cavities on the aeroheating environment of the Project Orion CEV heat-shield. Testing was conducted in Mach 6 and Mach 10 perfect-gas wind tunnels to obtain heating measurements in and around the compression pads cavities using global phosphor thermography. Data were obtained over a wide range of Reynolds numbers that produced laminar, transitional, and turbulent flow within and downstream of the cavities. The effects of cavity dimensions on boundary-layer transition and heating augmentation levels were studied. Correlations were developed for transition onset and for the average cavity-heating augmentation.

  3. Compression Pad Cavity Heating Augmentation on Orion Heat Shield

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.

    2011-01-01

    An experimental study has been conducted to assess the effects of compression pad cavities on the aeroheating environment of the Project Orion Crew Exploration Vehicle heat shield. Testing was conducted in Mach 6 and 10 perfect-gas wind tunnels to obtain heating measurements in and around the compression pads cavities using global phosphor thermography. Data were obtained over a wide range of Reynolds numbers that produced laminar, transitional, and turbulent flow within and downstream of the cavities. The effects of cavity dimensions on boundary-layer transition and heating augmentation levels were studied. Correlations were developed for transition onset and for the average cavity-heating augmentation.

  4. International Energy Agency's Heat Pump Centre (IEA-HPC) Annual National Team Working Group Meeting

    NASA Astrophysics Data System (ADS)

    Broders, M. A.

    1992-09-01

    The traveler, serving as Delegate from the United States Advanced Heat Pump National Team, participated in the activities of the fourth IEA-HPC National Team Working Group meeting. Highlights of this meeting included review and discussion of 1992 IEA-HPC activities and accomplishments, introduction of the Switzerland National Team, and development of the 1993 IEA-HPC work program. The traveler also gave a formal presentation about the Development and Activities of the IEA Advanced Heat Pump U.S. National Team.

  5. Ultra high vacuum pumping system and high sensitivity helium leak detector

    DOEpatents

    Myneni, Ganapati Rao

    1997-01-01

    An improved helium leak detection method and apparatus are disclosed which increase the leak detection sensitivity to 10.sup.-13 atm cc s.sup.-1. The leak detection sensitivity is improved over conventional leak detectors by completely eliminating the use of o-rings, equipping the system with oil-free pumping systems, and by introducing measured flows of nitrogen at the entrances of both the turbo pump and backing pump to keep the system free of helium background. The addition of dry nitrogen flows to the system reduces backstreaming of atmospheric helium through the pumping system as a result of the limited compression ratios of the pumps for helium.

  6. Geothermal energy control system and method

    DOEpatents

    Matthews, Hugh B.

    1976-01-01

    A geothermal energy transfer and utilization system makes use of thermal energy stored in hot solute-bearing well water to generate super-heated steam from an injected flow of clean water; the super-heated steam is then used for operating a turbine-driven pump at the well bottom for pumping the hot solute-bearing water at high pressure and in liquid state to the earth's surface, where it is used by transfer of its heat to a closed-loop boiler-turbine-alternator combination for the generation of electrical or other power. Residual concentrated solute-bearing water is pumped back into the earth. The clean cooled water is regenerated at the surface-located system and is returned to the deep well pumping system also for lubrication of a novel bearing arrangement supporting the turbine-driven pump system.

  7. Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition.

    PubMed

    Kodama, R; Norreys, P A; Mima, K; Dangor, A E; Evans, R G; Fujita, H; Kitagawa, Y; Krushelnick, K; Miyakoshi, T; Miyanaga, N; Norimatsu, T; Rose, S J; Shozaki, T; Shigemori, K; Sunahara, A; Tampo, M; Tanaka, K A; Toyama, Y; Yamanaka, T; Zepf, M

    2001-08-23

    Modern high-power lasers can generate extreme states of matter that are relevant to astrophysics, equation-of-state studies and fusion energy research. Laser-driven implosions of spherical polymer shells have, for example, achieved an increase in density of 1,000 times relative to the solid state. These densities are large enough to enable controlled fusion, but to achieve energy gain a small volume of compressed fuel (known as the 'spark') must be heated to temperatures of about 108 K (corresponding to thermal energies in excess of 10 keV). In the conventional approach to controlled fusion, the spark is both produced and heated by accurately timed shock waves, but this process requires both precise implosion symmetry and a very large drive energy. In principle, these requirements can be significantly relaxed by performing the compression and fast heating separately; however, this 'fast ignitor' approach also suffers drawbacks, such as propagation losses and deflection of the ultra-intense laser pulse by the plasma surrounding the compressed fuel. Here we employ a new compression geometry that eliminates these problems; we combine production of compressed matter in a laser-driven implosion with picosecond-fast heating by a laser pulse timed to coincide with the peak compression. Our approach therefore permits efficient compression and heating to be carried out simultaneously, providing a route to efficient fusion energy production.

  8. Generation of 360 ps laser pulse with 3 J energy by stimulated Brillouin scattering with a nonfocusing scheme.

    PubMed

    Zhu, Xuehua; Wang, Yulei; Lu, Zhiwei; Zhang, Hengkang

    2015-09-07

    A new technique for generating high energy sub-400 picosecond laser pulses is presented in this paper. The temporally super-Gaussian-shaped laser pulses are used as light source. When the forward pump is reflected by the rear window of SBS cell, the frequency component that fulfills Brillouin frequency shift in its sideband spectrum works as a seed and excites SBS, which results in efficient compression of the incident pump pulse. First the pulse compression characteristics of 20th-order super-Gaussian temporally shaped pulses with 5 ns duration are analyzed theoretically. Then experiment is carried out with a narrow-band high power Nd:glass laser system at the double-frequency and wavelength of 527 nm which delivers 5 ns super-Gaussian temporally shaped pulses with single pulse energy over 10 J. FC-40 is used as the active SBS medium for its brief phonon lifetime and high power capacity. In the experiment, the results agree well with the numerical calculations. With pump energy of 5.36J, the compression of pulse duration from 5 ns to 360 ps is obtained. The output energy is 3.02 J and the peak-power is magnified 8.3 times. Moreover, the compressed pulse shows a high stability because it is initiated by the feedback of rear window rather than the thermal noise distributing inside the medium. This technique of generating high energy hundred picosecond laser pulses has simple structure and is easy to operate, and it also can be scaled to higher energy pulse compression in the future. Meanwhile, it should also be taken into consideration that in such a nonfocusing scheme, the noise-initiated SBS would increase the distortion on the wavefront of Stokes beam to some extent, and the pump energy should be controlled below the threshold of noise-initiated SBS.

  9. Spacecraft radiators for advanced mission requirements

    NASA Technical Reports Server (NTRS)

    Leach, J. W.

    1980-01-01

    Design requirements for spacecraft heat rejection systems are identified, and their impact on the construction of conventional pumped fluid and hybrid heat pipe/pumped fluid radiators is evaluated. Heat rejection systems to improve the performance or reduce the cost of the spacecraft are proposed. Heat rejection requirements which are large compared to those of existing systems and mission durations which are relatively long, are discussed.

  10. 76 FR 11438 - Energy Conservation Program for Consumer Products: Decision and Order Granting a Waiver to Daikin...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-02

    ... Altherma system, which consists of an air-to-water heat pump that provides hydronic heating and cooling as... Altherma system consists of an air-to-water heat pump that provides hydronic space heating and cooling as well as domestic hot water functions. It operates either as a split system with the compressor unit...

  11. Scaling of an Optically Pumped Mid-Infrared Rubidium Laser

    DTIC Science & Technology

    2015-03-26

    v AFIT-ENP-MS-15-M-104 Abstract An optically pumped mid-infrared rubidium (Rb) pulsed laser has been demonstrated in a heat pipe ... Heat Pipe Assembly ........................................................................................12 Figure 3.3. Rb Number Density vs. Heat ...the first experiments that used a heat pipe as the gain cell. This experiment would influence the work of Sharma (Sharma, 1981:210). 9 Krupke

  12. The heat supply system for a self-contained dwelling house on the basis of a heat pump and wind power installation

    NASA Astrophysics Data System (ADS)

    Chemekov, V. V.; Kharchenko, V. V.

    2013-03-01

    Matters concerned with setting up environmentally clean supply of heat to dwelling houses in the resort zone of the Russian Black Sea coast on the basis of air-water type heat pumps powered from wind power installations are discussed. The investigations were carried out as applied to the system supplying heat for an individual dwelling house with an area of around 300 m2 situated in the Tuapse city. The design heat load of the building's heating system is around 8.3 kW. The Viessmann Vitocal 300 AW pump is chosen as the main source of heat supply, and a 4-kW electric heater built into a storage tank is chosen as a standby source. The selected wind power installation (the EuroWind 10 unit) has a power capacity of 13 kWe.

  13. 10 CFR 431.91 - Purpose and scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... EQUIPMENT Commercial Air Conditioners and Heat Pumps § 431.91 Purpose and scope. This subpart specifies test procedures and energy conservation standards for certain commercial air conditioners and heat pumps, pursuant...

  14. 10 CFR 431.91 - Purpose and scope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... EQUIPMENT Commercial Air Conditioners and Heat Pumps § 431.91 Purpose and scope. This subpart specifies test procedures and energy conservation standards for certain commercial air conditioners and heat pumps, pursuant...

  15. 10 CFR 431.91 - Purpose and scope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... EQUIPMENT Commercial Air Conditioners and Heat Pumps § 431.91 Purpose and scope. This subpart specifies test procedures and energy conservation standards for certain commercial air conditioners and heat pumps, pursuant...

  16. 10 CFR 431.91 - Purpose and scope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... EQUIPMENT Commercial Air Conditioners and Heat Pumps § 431.91 Purpose and scope. This subpart specifies test procedures and energy conservation standards for certain commercial air conditioners and heat pumps, pursuant...

  17. 10 CFR 431.91 - Purpose and scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... EQUIPMENT Commercial Air Conditioners and Heat Pumps § 431.91 Purpose and scope. This subpart specifies test procedures and energy conservation standards for certain commercial air conditioners and heat pumps, pursuant...

  18. Method and apparatus for determining pressure-induced frequency-shifts in shock-compressed materials

    DOEpatents

    Moore, David S.; Schmidt, Stephen C.

    1985-01-01

    A method and an apparatus for conducting coherent anti-Stokes Raman scattering spectroscopy in shock-compressed materials are disclosed. The apparatus includes a sample vessel having an optically transparent wall and an opposing optically reflective wall. Two coherent laser beams, a pump beam and a broadband Stokes beam, are directed through the window and focused on a portion of the sample. In the preferred embodiment, a projectile is fired from a high-pressure gas gun to impact the outside of the reflective wall, generating a planar shock wave which travels through the sample toward the window. The pump and Stokes beams result in the emission from the shock-compressed sample of a coherent anti-Stokes beam, which is emitted toward the approaching reflective wall of the vessel and reflected back through the window. The anti-Stokes beam is folded into a spectrometer for frequency analysis. The results of such analysis are useful for determining chemical and physical phenomena which occur during the shock-compression of the sample.

  19. Method and apparatus for determining pressure-induced frequency-shifts in shock-compressed materials

    DOEpatents

    Moore, D.S.; Schmidt, S.C.

    1983-12-16

    A method and an apparatus for conducting coherent anti-Stokes Raman scattering spectroscopy in shock-compressed materials are disclosed. The apparatus includes a sample vessel having an optically transparent wall and an opposing optically reflective wall. Two coherent laser beams, a pump beam and a broadband Stokes beam, are directed through the window and focused on a portion of the sample. In the preferred embodiment, a projectile is fired from a high-pressure gas gun to impact the outside of the reflective wall, generating a planar shock wave which travels through the sample toward the window. The pump and Stokes beams result in the emission from the shock-compressed sample of a coherent anti-Stokes beam, which is emitted toward the approaching reflective wall of the vessel and reflected back through the window. The anti-Stokes beam is folded into a spectrometer for frequency analysis. The results of such analysis are useful for determining chemical and physical phenomena which occur during the shock-compression of the sample.

  20. Capillary Pump Loop (CPL) heat pipe development status report

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The capillary pump loop (CPL) was re-introduced as a potential candidate for the management of large heat loads. It is currently being evaluated for application in the thermal management of large space structures. Test efforts were conducted to establish the feasibility of the CPL heat pipe design.

  1. 78 FR 17890 - Energy Efficiency Program for Commercial and Industrial Equipment: Public Meeting and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-25

    ... Document for Packaged Terminal Air Conditioners and Packaged Terminal Heat Pumps AGENCY: Office of Energy... must identify the framework document for packaged terminal air conditioners and packaged terminal heat... packaged terminal air conditioners and packaged terminal heat pumps. 78 FR 12252. The document provided for...

  2. 40 CFR 63.4081 - Am I subject to this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., and electric heat pumps. Specifically excluded are heat transfer coils and large commercial and... high as the rates specified in paragraph (a) of this section. (3) The surface coating of heat transfer...) or by automated means (e.g., transfer through pipes using pumps); and (9) Handling and conveying of...

  3. Sensitivity analysis on the performances of a closed-loop Ground Source Heat Pump

    NASA Astrophysics Data System (ADS)

    Casasso, Alessandro; Sethi, Rajandrea

    2014-05-01

    Ground Source Heat Pumps (GSHP) permit to achieve a significant reduction of greenhouse gas emissions, and the margins for economic saving of this technology are strongly correlated to the long-term sustainability of the exploitation of the heat stored in the soil. The operation of a GSHP over its lifetime should be therefore modelled considering realistic conditions, and a thorough characterization of the physical properties of the soil is essential to avoid large errors of prediction. In this work, a BHE modelling procedure with the finite-element code FEFLOW is presented. Starting from the governing equations of the heat transport in the soil around a GSHP and inside the BHE, the most important parameters are individuated and the adopted program settings are explained. A sensitivity analysis is then carried on both the design parameters of the heat exchanger, in order to understand the margins of improvement of a careful design and installation, and the physical properties of the soil, with the aim of quantifying the uncertainty induced by their variability. The relative importance of each parameter is therefore assessed by comparing the statistical distributions of the fluid temperatures and estimating the energy consumption of the heat pump, and practical conclusions are from these results about the site characterization, the design and the installation of a BHE. References Casasso A., Sethi R., 2014 Efficiency of closed loop geothermal heat pumps: A sensitivity analysis, Renewable Energy 62 (2014), pp. 737-746 Chiasson A.C., Rees S.J., Spitler J.D., 2000, A preliminary assessment of the effects of groundwater flow on closed-loop ground-source heat pump systems, ASHRAE Transactions 106 (2000), pp. 380-393 Delaleux F., Py X., Olives R., Dominguez A., 2012, Enhancement of geothermal borehole heat exchangers performances by improvement of bentonite grouts conductivity, Applied Thermal Engineering 33-34, pp. 92-99 Diao N., Li Q., Fang Z., 2004, Heat transfer in ground heat exchangers with groundwater advection, International Journal of Thermal Sciences 43, pp. 1203-1211 Michopoulos A., Kyriakis N., 2010, The influence of a vertical ground heat exchanger length on the electricity consumption of the heat pumps, Renewable Energy 35 (2010), pp. 1403-1407

  4. Vlasov Simulations of Ionospheric Heating Near Upper Hybrid Resonance

    NASA Astrophysics Data System (ADS)

    Najmi, A. C.; Eliasson, B. E.; Shao, X.; Milikh, G. M.; Papadopoulos, K.

    2014-12-01

    It is well-known that high-frequency (HF) heating of the ionosphere can excite field- aligned density striations (FAS) in the ionospheric plasma. Furthermore, in the neighborhood of various resonances, the pump wave can undergo parametric instabilities to produce a variety of electrostatic and electromagnetic waves. We have used a Vlasov simulation with 1-spatial dimension, 2-velocity dimensions, and 2-components of fields, to study the effects of ionospheric heating when the pump frequency is in the vicinity of the upper hybrid resonance, employing parameters currently available at ionospheric heaters such as HAARP. We have found that by seeding theplasma with a FAS of width ~20% of the simulation domain, ~10% depletion, and by applying a spatially uniform HF dipole pump electric field, the pump wave gives rise to a broad spectrum of density fluctuations as well as to upper hybrid and lower hybrid oscillating electric fields. We also observe collisionless bulk-heating of the electrons that varies non-linearly with the amplitude of the pump field.

  5. A new concept for solar pumped lasers

    NASA Technical Reports Server (NTRS)

    Christiansen, W. H.

    1978-01-01

    A new approach is proposed in which an intermediate body heated by sunlight is used as the pumping source for IR systems, i.e., concentration solar radiation is absorbed and reradiated via an intermediate blackbody. This body is heated by focused sunlight to a high temperature and its heat losses are engineered to be small. The cooled laser tube (or tubes) is placed within the cavity and is pumped by it. The advantage is that the radiation spectrum is like a blackbody at the intermediate temperature and the laser medium selectively absorbs this light. Focusing requirements, heat losses, and absorption bandwidths of laser media are examined, along with energy balance and potential efficiency. The results indicate that for lasers pumped through an IR absorption spectrum, the use of an intermediate blackbody offers substantial and important advantages. The loss in radiative intensity for optical pumping by a lower-temperature body is partly compensated by the increased solid angle of exposure to the radiative environment.

  6. A Superfluid Pulse Tube Refrigerator Without Moving Parts for Sub-Kelvin Cooling

    NASA Technical Reports Server (NTRS)

    Miller, Franklin K.

    2012-01-01

    A report describes a pulse tube refrigerator that uses a mixture of He-3 and superfluid He-4 to cool to temperatures below 300 mK, while rejecting heat at temperatures up to 1.7 K. The refrigerator is driven by a novel thermodynamically reversible pump that is capable of pumping the He-3 He-4 mixture without the need for moving parts. The refrigerator consists of a reversible thermal magnetic pump module, two warm heat exchangers, a recuperative heat exchanger, two cold heat exchangers, two pulse tubes, and an orifice. It is two superfluid pulse tubes that run 180 out of phase. All components of this machine except the reversible thermal pump have been demonstrated at least as proof-of-concept physical models in previous superfluid Stirling cycle machines. The pump consists of two canisters packed with pieces of gadolinium gallium garnet (GGG). The canisters are connected by a superleak (a porous piece of VYCOR glass). A superconducting magnetic coil surrounds each of the canisters.

  7. Zeolite Y Adsorbents with High Vapor Uptake Capacity and Robust Cycling Stability for Potential Applications in Advanced Adsorption Heat Pumps.

    PubMed

    Li, Xiansen; Narayanan, Shankar; Michaelis, Vladimir K; Ong, Ta-Chung; Keeler, Eric G; Kim, Hyunho; McKay, Ian S; Griffin, Robert G; Wang, Evelyn N

    2015-01-01

    Modular and compact adsorption heat pumps (AHPs) promise an energy-efficient alternative to conventional vapor compression based heating, ventilation and air conditioning systems. A key element in the advancement of AHPs is the development of adsorbents with high uptake capacity, fast intracrystalline diffusivity and durable hydrothermal stability. Herein, the ion exchange of NaY zeolites with ingoing Mg 2+ ions is systematically studied to maximize the ion exchange degree (IED) for improved sorption performance. It is found that beyond an ion exchange threshold of 64.1%, deeper ion exchange does not benefit water uptake capacity or characteristic adsorption energy, but does enhance the vapor diffusivity. In addition to using water as an adsorbate, the uptake properties of Mg,Na-Y zeolites were investigated using 20 wt.% MeOH aqueous solution as a novel anti-freeze adsorbate, revealing that the MeOH additive has an insignificant influence on the overall sorption performance. We also demonstrated that the labscale synthetic scalability is robust, and that the tailored zeolites scarcely suffer from hydrothermal stability even after successive 108-fold adsorption/desorption cycles. The samples were analyzed using N 2 sorption, 27 Al/ 29 Si MAS NMR spectroscopy, ICP-AES, dynamic vapor sorption, SEM, Fick's 2 nd law and D-R equation regressions. Among these, close examination of sorption isotherms for H 2 O and N 2 adsorbates allows us to decouple and extract some insightful information underlying the complex water uptake phenomena. This work shows the promising performance of our modified zeolites that can be integrated into various AHP designs for buildings, electronics, and transportation applications.

  8. Jet pump assisted artery

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A procedure for priming an arterial heat pump is reported; the procedure also has a means for maintaining the pump in a primed state. This concept utilizes a capillary driven jet pump to create the necessary suction to fill the artery. Basically, the jet pump consists of a venturi or nozzle-diffuser type constriction in the vapor passage. The throat of this venturi is connected to the artery. Thus vapor, gas, liquid, or a combination of the above is pumped continuously out of the artery. As a result, the artery is always filled with liquid and an adequate supply of working fluid is provided to the evaporator of the heat pipe.

  9. Right pleuropericardial release: a useful technique in off-pump coronary surgery.

    PubMed

    Velissaris, Theodore; Stuklis, Robert G; Hett, David A; Ohri, Sunil K

    2003-06-01

    We describe the use of right pleurotomy combined with right pericardial release during off-pump coronary surgery. The maneuver releases the compression exerted on the right cardiac chambers during cardiac verticalization and improves hemodynamic stability during exposure of the posterior or lateral coronary vessels.

  10. Jet pump-drive system for heat removal

    NASA Technical Reports Server (NTRS)

    French, James R. (Inventor)

    1987-01-01

    The invention does away with the necessity of moving parts such as a check valve in a nuclear reactor cooling system. Instead, a jet pump, in combination with a TEMP, is employed to assure safe cooling of a nuclear reactor after shutdown. A main flow exists for a reactor coolant. A point of withdrawal is provided for a secondary flow. A TEMP, responsive to the heat from said coolant in the secondary flow path, automatically pumps said withdrawn coolant to a higher pressure and thus higher velocity compared to the main flow. The high velocity coolant is applied as a driver flow for the jet pump which has a main flow chamber located in the main flow circulation pump. Upon nuclear shutdown and loss of power for the main reactor pumping system, the TEMP/jet pump combination continues to boost the coolant flow in the direction it is already circulating. During the decay time for the nuclear reactor, the jet pump keeps running until the coolant temperature drops to a lower and safe temperature where the heat is no longer a problem. At this lower temperature, the TEMP/jet pump combination ceases its circulation boosting operation. When the nuclear reactor is restarted and the coolant again exceeds the lower temperature setting, the TEMP/jet pump automatically resumes operation. The TEMP/jet pump combination is thus automatic, self-regulating and provides an emergency pumping system free of moving parts.

  11. Geothermal direct-heat utilization assistance. Quarterly report, January - March 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lienau, P.

    1997-04-01

    This report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the second quarter of FY-97. It describes 176 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment, economics and resources. Research activities are summarized on well pumping in commercial groundwater heat pump systems. A memorandum of understanding between the GHC and EIA is described. Work accomplishments on the Guidebook are discussed. Outreach activities include the publication of a geothermal direct usemore » Bulletin, dissemination of information, geothermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.« less

  12. 24 CFR 201.10 - Loan amounts.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... dealer's cost of purchasing and installing a central air conditioning system or heat pump, if not... cost of purchasing and installing a central air conditioning system or heat pump, if not installed by...

  13. Investigation on thermal environment improvement by waste heat recovery in the underground station in Qingdao metro

    NASA Astrophysics Data System (ADS)

    Liu, Jianwei; Liu, Jiaquan; Wang, Fengyin; Wang, Cuiping

    2018-03-01

    The thermal environment parameters, like the temperature and air velocity, are measured to investigate the heat comfort status of metro staff working area in winter in Qingdao. The temperature is affected obviously by the piston wind from the train and waiting hall in the lower Hall, and the temperature is not satisfied with the least heat comfort temperature of 16 °C. At the same time, the heat produced by the electrical and control equipments is brought by the cooling air to atmosphere for the equipment safety. Utilizing the water-circulating heat pump, it is feasible to transfer the emission heat to the staff working area to improve the thermal environment. Analyzed the feasibility from the technique and economy when using the heat pump, the water-circulating heat pump could be the best way to realize the waste heat recovery and to help the heat comfort of staff working area in winter in the underground metro station in north China.

  14. The Proell Effect: A Macroscopic Maxwell's Demon

    NASA Astrophysics Data System (ADS)

    Rauen, Kenneth M.

    2011-12-01

    Maxwell's Demon is a legitimate challenge to the Second Law of Thermodynamics when the "demon" is executed via the Proell effect. Thermal energy transfer according to the Kinetic Theory of Heat and Statistical Mechanics that takes place over distances greater than the mean free path of a gas circumvents the microscopic randomness that leads to macroscopic irreversibility. No information is required to sort the particles as no sorting occurs; the entire volume of gas undergoes the same transition. The Proell effect achieves quasi-spontaneous thermal separation without sorting by the perturbation of a heterogeneous constant volume system with displacement and regeneration. The classical analysis of the constant volume process, such as found in the Stirling Cycle, is incomplete and therefore incorrect. There are extra energy flows that classical thermo does not recognize. When a working fluid is displaced across a regenerator with a temperature gradient in a constant volume system, complimentary compression and expansion work takes place that transfers energy between the regenerator and the bulk gas volumes of the hot and cold sides of the constant volume system. Heat capacity at constant pressure applies instead of heat capacity at constant volume. The resultant increase in calculated, recyclable energy allows the Carnot Limit to be exceeded in certain cycles. Super-Carnot heat engines and heat pumps have been designed and a US patent has been awarded.

  15. Heat transfer enhancement and pumping power optimization using CuO-water nanofluid through rectangular corrugated pipe

    NASA Astrophysics Data System (ADS)

    Salehin, Musfequs; Ehsan, Mohammad Monjurul; Islam, A. K. M. Sadrul

    2017-06-01

    Heat transfer enhancement by corrugation in fluid domain is a popular method. The rate of improvement is more when it is used highly thermal conductive fluid as heating or cooling medium. In this present study, heat transfer augmentation was investigated numerically by implementing corrugation in the fluid domain and nanofluid as the base fluid in the turbulent forced convection regime. Finite volume method (FVM) was applied to solve the continuity, momentum and energy equations. All the numerical simulations were considered for single phase flow. A rectangle corrugated pipe with 5000 W/m2 constant heat flux subjected to the corrugated wall was considered as the fluid domain. In the range of Reynolds number 15000 to 40000, thermo-physical and hydrodynamic behavior was investigated by using CuO-water nanofluid from 1% to 5% volume fraction as the base fluid through the corrugated fluid domain. Corrugation justification was performed by changing the amplitude of the corrugation and the corrugation wave length for obtaining the increased heat transfer rate with minimum pumping power. For using CuO-water nanofluid, augmentation was also found more in the rectangle corrugated pipe both in heat transfer and pumping power requirement with the increase of Reynolds number and the volume fraction of nanofluid. For the increased pumping power, optimization of pumping power by using nanofluid was also performed for economic finding.

  16. Pump, and earth-testable spacecraft capillary heat transport loop using augmentation pump and check valves

    NASA Technical Reports Server (NTRS)

    Baker, David (Inventor)

    1998-01-01

    A spacecraft includes heat-generating payload equipment, and a heat transport system with a cold plate thermally coupled to the equipment and a capillary-wick evaporator, for evaporating coolant liquid to cool the equipment. The coolant vapor is coupled to a condenser and in a loop back to the evaporator. A heated coolant reservoir is coupled to the loop for pressure control. If the wick is not wetted, heat transfer will not begin or continue. A pair of check valves are coupled in the loop, and the heater is cycled for augmentation pumping of coolant to and from the reservoir. This augmentation pumping, in conjunction with the check valves, wets the wick. The wick liquid storage capacity allows the augmentation pump to provide continuous pulsed liquid flow to assure continuous vapor transport and a continuously operating heat transport system. The check valves are of the ball type to assure maximum reliability. However, any type of check valve can be used, including designs which are preloaded in the closed position. The check valve may use any ball or poppet material which resists corrosion. For optimum performance during testing on Earth, the ball or poppet would have neutral buoyancy or be configured in a closed position when the heat transport system is not operating. The ball may be porous to allow passage of coolant vapor.

  17. Waste Heat Recovery and Recycling in Thermal Separation Processes: Distillation, Multi-Effect Evaporation (MEE) and Crystallization Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emmanuel A. Dada; Chandrakant B. Panchal; Luke K. Achenie

    Evaporation and crystallization are key thermal separation processes for concentrating and purifying inorganic and organic products with energy consumption over 1,000 trillion Btu/yr. This project focused on a challenging task of recovering low-temperature latent heat that can have a paradigm shift in the way thermal process units will be designed and operated to achieve high-energy efficiency and significantly reduce the carbon footprint as well as water footprint. Moreover, this project has evaluated the technical merits of waste-heat powered thermal heat pumps for recovery of latent heat from distillation, multi-effect evaporation (MEE), and crystallization processes and recycling into the process. Themore » Project Team has estimated the potential energy, economics and environmental benefits with the focus on reduction in CO2 emissions that can be realized by 2020, assuming successful development and commercialization of the technology being developed. Specifically, with aggressive industry-wide applications of heat recovery and recycling with absorption heat pumps, energy savings of about 26.7 trillion Btu/yr have been estimated for distillation process. The direct environmental benefits of this project are the reduced emissions of combustible products. The estimated major reduction in environmental pollutants in the distillation processes is in CO2 emission equivalent to 3.5 billion lbs/year. Energy consumption associated with water supply and treatments can vary between 1,900 kWh and 23,700 kWh per million-gallon water depending on sources of natural waters [US DOE, 2006]. Successful implementation of this technology would significantly reduce the demand for cooling-tower waters, and thereby the use and discharge of water treatment chemicals. The Project Team has also identified and characterized working fluid pairs for the moderate-temperature heat pump. For an MEE process, the two promising fluids are LiNO3+KNO3+NANO3 (53:28:19 ) and LiNO3+KNO3+NANO2(53:35:12). And for an H2O2 distillation process, the two promising fluids are Trifluoroethanol (TFE) + Triethylene Glycol Dimethyl ether (DMETEG) and Ammonia+ Water. Thermo-physical properties calculated by Aspen+ are reasonably accurate. Documentation of the installation of pilot-plants or full commercial units were not found in the literature for validating thermo-physical properties in an operating unit. Therefore, it is essential to install a pilot-scale unit to verify thermo-physical properties of working fluid pairs and validate the overall efficiency of the thermal heat pump at temperatures typical of distillation processes. For an HO2 process, the ammonia-water heat pump system is more compact and preferable than the TFE-DMETEG heat pump. The ammonia-water heat pump is therefore recommended for the H2O2 process. Based on the complex nature of the heat recovery system, we anticipated that capital costs could make investments financially unattractive where steam costs are low, especially where co-generation is involved. We believe that the enhanced heat transfer equipment has the potential to significantly improve the performance of TEE crystallizers, independent of the absorption heat-pump recovery system. Where steam costs are high, more detailed design/cost engineering will be required to verify the economic viability of the technology. Due to the long payback period estimated for the TEE open system, further studies on the TEE system are not warranted unless there are significant future improvements to heat pump technology. For the H2O2 distillation cycle heat pump waste heat recovery system, there were no significant process constraints and the estimated 5 years payback period is encouraging. We therefore recommend further developments of application of the thermal heat pump in the H2O2 distillation process with the focus on the technical and economic viability of heat exchangers equipped with the state-of-the-art enhancements. This will require additional funding for a prototype unit to validate enhanced thermal performances of heat transfer equipment, evaluate the fouling characteristics in field testing, and remove the uncertainty factors included in the estimated payback period for the H2O2 distillation system.« less

  18. Reducing Pumping Power in Hydronic Heating and Cooling Systems with Microencapsulated Phase Change Material Slurries

    NASA Astrophysics Data System (ADS)

    Karas, Kristoffer Jason

    Phase change materials (PCMs) are being used increasingly in a variety of thermal transfer and thermal storage applications. This thesis presents the results of a laboratory study into the feasibility of improving the performance of hydronic heating and cooling systems by adding microcapsules filled with a PCM to the water used as heat transport media in these systems. Microencapsulated PCMs (MPCMs) increase the heat carrying capacity of heat transport liquids by absorbing or releasing heat at a constant temperature through a change of phase. Three sequences of tests and their results are presented: 1) Thermal cycling tests conducted to determine the melting temperatures and extent of supercooling associated with the MPCMs tested. 2) Hydronic performance tests in which MPCM slurries were pumped through a fin-and-tube, air-to-liquid heat exchanger and their thermal transfer performance compared against that of ordinary water. 3) Mechanical stability tests in which MPCM slurries were pumped in a continuous loop in order to gauge the extent of rupture due to pumping. It is shown that slurries consisting of water and MPCMs ˜ 14-24 mum in diameter improve thermal performance and offer the potential for power savings in the form of reduced pumping requirements. In addition, it is shown that while slurries of MPCMs 2-5 mum in diameter appear to exhibit better mechanical stability than slurries of larger diameter MPCMs, the smaller MPCMs appear to reduce the thermal performance of air-to-liquid heat exchangers.

  19. Experimental investigation of biomimetic self-pumping and self-adaptive transpiration cooling.

    PubMed

    Jiang, Pei-Xue; Huang, Gan; Zhu, Yinhai; Xu, Ruina; Liao, Zhiyuan; Lu, Taojie

    2017-09-01

    Transpiration cooling is an effective way to protect high heat flux walls. However, the pumps for the transpiration cooling system make the system more complex and increase the load, which is a huge challenge for practical applications. A biomimetic self-pumping transpiration cooling system was developed inspired by the process of trees transpiration that has no pumps. An experimental investigation showed that the water coolant automatically flowed from the water tank to the hot surface with a height difference of 80 mm without any pumps. A self-adaptive transpiration cooling system was then developed based on this mechanism. The system effectively cooled the hot surface with the surface temperature kept to about 373 K when the heating flame temperature was 1639 K and the heat flux was about 0.42 MW m -2 . The cooling efficiency reached 94.5%. The coolant mass flow rate adaptively increased with increasing flame heat flux from 0.24 MW m -2 to 0.42 MW m -2 while the cooled surface temperature stayed around 373 K. Schlieren pictures showed a protective steam layer on the hot surface which blocked the flame heat flux to the hot surface. The protective steam layer thickness also increased with increasing heat flux.

  20. Heat transfer performance characteristics of hybrid nanofluids as coolant in louvered fin automotive radiator

    NASA Astrophysics Data System (ADS)

    Sahoo, Rashmi R.; Sarkar, Jahar

    2017-06-01

    Present study deals with the enhancement of convective heat transfer performance of EG brine based various hybrid nanofluids i.e. Ag, Cu, SiC, CuO and TiO2 in 0-1% volume fraction of Al2O3 nanofluid, as coolants for louvered fin automobile radiator. The effects of nanoparticles combination and operating parameters on thermo physical properties, heat transfer, effectiveness, pumping power and performance index of hybrid nanofluids have been evaluated. Comparison of studied hybrid nanofluids based on radiator size and pumping power has been made as well. Among all studied hybrid nanofluids, 1% Ag hybrid nanofluid (0.5% Ag and 0.5% Al2O3) yields highest effectiveness and heat transfer rate as well as pumping power. However, SiC + Al2O3 dispersed hybrid nanofluid yields maximum performance index and hence this can be recommended for best coolant. For the same radiator size and heat transfer rate, pumping power increases by using Ag hybrid nanofluids leading to increase in engine thermal efficiency and hence reduction in engine fuel consumption. For same coolant flow rate and heat transfer rate, the radiator size reduces and pumping power increases by using Ag hybrid nanofluids leading to reduction in radiator size, weight and cost.

  1. Development of High Efficiency Carbon Dioxide Commercial Heat Pump Water Heater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael PETERSEN; Chad D. BOWERS; Stefan ELBEL

    Although heat pump water heaters are today widely accepted in both Japan and Europe, where energy costs are high and government incentives for their use exist, acceptance of such products in the US has been limited. While this trend is slowly changing with the introduction of heat pump water heaters into the residential market, but acceptance remains low in the commercial sector. The objective of the presented work is the development of a high efficiency R744 heat pump water heater for commercial applications with effective utilization of the cooling capability for air conditioning and/or refrigeration. The ultimate goal is tomore » achieve total system COP of up to 8. This unit will be targeted at commercial use where some cooling load is typically needed year round, such as restaurants, hotels, nursing homes, and hospitals. This paper presents the performance results from the development of four R744 commercial heat pump water heater packages of approximately 35 kW and comparison to a commercially available baseline R134a unit of the same capacity and footprint. In addition, the influences of an internal heat exchanger and an enhanced evaporator on the system performance are described and recommendations are made for further improvements of the R744 system.« less

  2. Evaluation of a large capacity heat pump concept for active cooling of hypersonic aircraft structure

    NASA Technical Reports Server (NTRS)

    Pagel, L. L.; Herring, R. L.

    1978-01-01

    Results of engineering analyses assessing the conceptual feasibility of a large capacity heat pump for enhancing active cooling of hypersonic aircraft structure are presented. A unique heat pump arrangement which permits cooling the structure of a Mach 6 transport to aluminum temperatures without the aid of thermal shielding is described. The selected concept is compatible with the use of conventional refrigerants, with Freon R-11 selected as the preferred refrigerant. Condenser temperatures were limited to levels compatible with the use of conventional refrigerants by incorporating a unique multipass condenser design, which extracts mechanical energy from the hydrogen fuel, prior to each subsequent pass through the condenser. Results show that it is technically feasible to use a large capacity heat pump in lieu of external shielding. Additional analyses are required to optimally apply this concept.

  3. Thermodynamic Analysis of the Use a Chemical Heat Pump to Link a Supercritical Water-Cooled Nuclear Reactor and a Thermochemical Water-Splitting Cycle for Hydrogen Production

    NASA Astrophysics Data System (ADS)

    Granovskii, Mikhail; Dincer, Ibrahim; Rosen, Marc A.; Pioro, Igor

    Increases in the power generation efficiency of nuclear power plants (NPPs) are mainly limited by the permissible temperatures in nuclear reactors and the corresponding temperatures and pressures of the coolants in reactors. Coolant parameters are limited by the corrosion rates of materials and nuclear-reactor safety constraints. The advanced construction materials for the next generation of CANDU reactors, which employ supercritical water (SCW) as a coolant and heat carrier, permit improved “steam” parameters (outlet temperatures up to 625°C and pressures of about 25 MPa). An increase in the temperature of steam allows it to be utilized in thermochemical water splitting cycles to produce hydrogen. These methods are considered by many to be among the most efficient ways to produce hydrogen from water and to have advantages over traditional low-temperature water electrolysis. However, even lower temperature water splitting cycles (Cu-Cl, UT-3, etc.) require an intensive heat supply at temperatures higher than 550-600°C. A sufficient increase in the heat transfer from the nuclear reactor to a thermochemical water splitting cycle, without jeopardizing nuclear reactor safety, might be effectively achieved by application of a heat pump, which increases the temperature of the heat supplied by virtue of a cyclic process driven by mechanical or electrical work. Here, a high-temperature chemical heat pump, which employs the reversible catalytic methane conversion reaction, is proposed. The reaction shift from exothermic to endothermic and back is achieved by a change of the steam concentration in the reaction mixture. This heat pump, coupled with the second steam cycle of a SCW nuclear power generation plant on one side and a thermochemical water splitting cycle on the other, increases the temperature of the “nuclear” heat and, consequently, the intensity of heat transfer into the water splitting cycle. A comparative preliminary thermodynamic analysis is conducted of the combined system comprising a SCW nuclear power generation plant and a chemical heat pump, which provides high-temperature heat to a thermochemical water splitting cycle for hydrogen production. It is concluded that the proposed chemical heat pump permits the utilization efficiency of nuclear energy to be improved by at least 2% without jeopardizing nuclear reactor safety. Based on this analysis, further research appears to be merited on the proposed advanced design of a nuclear power generation plant combined with a chemical heat pump, and implementation in appropriate applications seems worthwhile.

  4. High Efficiency Water Heating Technology Development Final Report, Part II: CO 2 and Absorption-Based Residential Heat Pump Water Heater Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gluesenkamp, Kyle R.; Abdelaziz, Omar; Patel, Viral K.

    2017-05-01

    The two objectives of this project were to 1.demonstrate an affordable path to an ENERGY STAR qualified electric heat pump water heater (HPWH) based on low-global warming potential (GWP) CO 2 refrigerant, and 2.demonstrate an affordable path to a gas-fired absorption-based heat pump water heater with a gas energy factor (EF) greater than 1.0. The first objective has been met, and the project has identified a promising low-cost option capable of meeting the second objective. This report documents the process followed and results obtained in addressing these objectives.

  5. Chemical heat pump and chemical energy storage system

    DOEpatents

    Clark, Edward C.; Huxtable, Douglas D.

    1985-08-06

    A chemical heat pump and storage system employs sulfuric acid and water. In one form, the system includes a generator and condenser, an evaporator and absorber, aqueous acid solution storage and water storage. During a charging cycle, heat is provided to the generator from a heat source to concentrate the acid solution while heat is removed from the condenser to condense the water vapor produced in the generator. Water is then stored in the storage tank. Heat is thus stored in the form of chemical energy in the concentrated acid. The heat removed from the water vapor can be supplied to a heat load of proper temperature or can be rejected. During a discharge cycle, water in the evaporator is supplied with heat to generate water vapor, which is transmitted to the absorber where it is condensed and absorbed into the concentrated acid. Both heats of dilution and condensation of water are removed from the thus diluted acid. During the discharge cycle the system functions as a heat pump in which heat is added to the system at a low temperature and removed from the system at a high temperature. The diluted acid is stored in an acid storage tank or is routed directly to the generator for reconcentration. The generator, condenser, evaporator, and absorber all are operated under pressure conditions specified by the desired temperature levels for a given application. The storage tanks, however, can be maintained at or near ambient pressure conditions. In another form, the heat pump system is employed to provide usable heat from waste process heat by upgrading the temperature of the waste heat.

  6. Hydride heat pump

    DOEpatents

    Cottingham, James G.

    1977-01-01

    Method and apparatus for the use of hydrides to exhaust heat from one temperature source and deliver the thermal energy extracted for use at a higher temperature, thereby acting as a heat pump. For this purpose there are employed a pair of hydridable metal compounds having different characteristics working together in a closed pressure system employing a high temperature source to upgrade the heat supplied from a low temperature source.

  7. Active thermal control systems for lunar and Martian exploration

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K.; Petete, Patricia A.; Dzenitis, John

    1990-01-01

    Several ATCS options including heat pumps, radiator shading devices, and single-phase flow loops were considered. The ATCS chosen for both lunar and Martian habitats consists of a heat pump integral with a nontoxic fluid acquisition and transport loop, and vertically oriented modular reflux-boiler radiators. The heat pump operates only during the lunar day. The lunar and Martian transfer vehicles have an internal single-phase water-acquisition loop and an external two-phase ammonia rejection system with rotating inflatable radiators. The lunar and Martian excursion vehicles incorporate internal single-phase water acquisition, which is connected via heat exchangers to external body-mounted single-phase radiators. A water evaporation system is used for the transfer vehicles during periods of high heating.

  8. A numerical analysis of the effects of conjugate heat transfer, vapor compressibility, and viscous dissipation in heat pipes

    NASA Astrophysics Data System (ADS)

    Faghri, Amir; Chen, Ming-Ming

    1989-10-01

    The effects of conjugate heat transfer, vapor compressibility, and viscous dissipation in heat pipes are discussed. The accuracy of the partially parabolic versus the elliptic presentation of the governing equations is also examined. The results show that the axial wall conduction has a tendency to make the temperature distribution more uniform for heat pipes with large ratios of pipe wall to effective liquid-wick thermal conductivity. The compressible and incompressible models show very close agreement for the total pressure drop, while the local pressure variations along the heat pipe are quite different for these two models when the radial Reynolds number at the interface is high.

  9. Nonlinear model for offline correction of pulmonary waveform generators.

    PubMed

    Reynolds, Jeffrey S; Stemple, Kimberly J; Petsko, Raymond A; Ebeling, Thomas R; Frazer, David G

    2002-12-01

    Pulmonary waveform generators consisting of motor-driven piston pumps are frequently used to test respiratory-function equipment such as spirometers and peak expiratory flow (PEF) meters. Gas compression within these generators can produce significant distortion of the output flow-time profile. A nonlinear model of the generator was developed along with a method to compensate for gas compression when testing pulmonary function equipment. The model and correction procedure were tested on an Assess Full Range PEF meter and a Micro DiaryCard PEF meter. The tests were performed using the 26 American Thoracic Society standard flow-time waveforms as the target flow profiles. Without correction, the pump loaded with the higher resistance Assess meter resulted in ten waveforms having a mean square error (MSE) higher than 0.001 L2/s2. Correction of the pump for these ten waveforms resulted in a mean decrease in MSE of 87.0%. When loaded with the Micro DiaryCard meter, the uncorrected pump outputs included six waveforms with MSE higher than 0.001 L2/s2. Pump corrections for these six waveforms resulted in a mean decrease in MSE of 58.4%.

  10. Heat pump/refrigerator using liquid working fluid

    DOEpatents

    Wheatley, John C.; Paulson, Douglas N.; Allen, Paul C.; Knight, William R.; Warkentin, Paul A.

    1982-01-01

    A heat transfer device is described that can be operated as a heat pump or refrigerator, which utilizes a working fluid that is continuously in a liquid state and which has a high temperature-coefficient of expansion near room temperature, to provide a compact and high efficiency heat transfer device for relatively small temperature differences as are encountered in heating or cooling rooms or the like. The heat transfer device includes a pair of heat exchangers that may be coupled respectively to the outdoor and indoor environments, a regenerator connecting the two heat exchangers, a displacer that can move the liquid working fluid through the heat exchangers via the regenerator, and a means for alternately increasing and decreasing the pressure of the working fluid. The liquid working fluid enables efficient heat transfer in a compact unit, and leads to an explosion-proof smooth and quiet machine characteristic of hydraulics. The device enables efficient heat transfer as the indoor-outdoor temperature difference approaches zero, and enables simple conversion from heat pumping to refrigeration as by merely reversing the direction of a motor that powers the device.

  11. 40 CFR Appendix D to Subpart A of... - Harmonized Tariff Schedule Description of Products That May Contain Controlled Substances in...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Conditioning/Heat Pump Equipment Domestic and commercial air conditioning and refrigeration equipment fall... cooling/heat cycle. 8415.82.00 Other, incorporating a refrigerating unit— Self-contained machines and... refrigerating or freezing equipment, electric or other; heat pumps, other than air conditioning machines of...

  12. 40 CFR Appendix D to Subpart A of... - Harmonized Tariff Schedule Description of Products That May Contain Controlled Substances in...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Conditioning/Heat Pump Equipment Domestic and commercial air conditioning and refrigeration equipment fall... cooling/heat cycle. 8415.82.00 Other, incorporating a refrigerating unit— Self-contained machines and... refrigerating or freezing equipment, electric or other; heat pumps, other than air conditioning machines of...

  13. 40 CFR Appendix D to Subpart A of... - Harmonized Tariff Schedule Description of Products That May Contain Controlled Substances in...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Conditioning/Heat Pump Equipment Domestic and commercial air conditioning and refrigeration equipment fall... cooling/heat cycle. 8415.82.00 Other, incorporating a refrigerating unit— Self-contained machines and... refrigerating or freezing equipment, electric or other; heat pumps, other than air conditioning machines of...

  14. 40 CFR Appendix D to Subpart A of... - Harmonized Tariff Schedule Description of Products That May Contain Controlled Substances in...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Conditioning/Heat Pump Equipment Domestic and commercial air conditioning and refrigeration equipment fall... cooling/heat cycle. 8415.82.00 Other, incorporating a refrigerating unit— Self-contained machines and... refrigerating or freezing equipment, electric or other; heat pumps, other than air conditioning machines of...

  15. 40 CFR Appendix D to Subpart A of... - Harmonized Tariff Schedule Description of Products That May Contain Controlled Substances in...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Conditioning/Heat Pump Equipment Domestic and commercial air conditioning and refrigeration equipment fall... cooling/heat cycle. 8415.82.00 Other, incorporating a refrigerating unit— Self-contained machines and... refrigerating or freezing equipment, electric or other; heat pumps, other than air conditioning machines of...

  16. GLIDES – Efficient Energy Storage from ORNL

    ScienceCinema

    Momen, Ayyoub M.; Abu-Heiba, Ahmad; Odukomaiya, Wale; Akinina, Alla

    2018-06-25

    The research shown in this video features the GLIDES (Ground-Level Integrated Diverse Energy Storage) project, which has been under development at Oak Ridge National Laboratory (ORNL) since 2013. GLIDES can store energy via combined inputs of electricity and heat, and deliver dispatchable electricity. Supported by ORNL’s Laboratory Director’s Research and Development (LDRD) fund, this energy storage system is low-cost, and hybridizes compressed air and pumped-hydro approaches to allow for storage of intermittent renewable energy at high efficiency. A U.S. patent application for this novel energy storage concept has been submitted, and research findings suggest it has the potential to be a flexible, low-cost, scalable, high-efficiency option for energy storage, especially useful in residential and commercial buildings.

  17. Industrial Assessment Centers - Small Manufacturers Reduce Energy & Increase Productivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Since 1976, the Industrial Assessment Centers (IACs), administered by the US Department of Energy, have supported small and medium-sized American manufacturers to reduce energy use and increase their productivity and competitiveness. The 24 IACs, located at premier engineering universities around the country (see below), send faculty and engineering students to local small and medium-sized manufacturers to provide no-cost assessments of energy use, process performance and waste and water flows. Under the direction of experienced professors, IAC engineering students analyze the manufacturer’s facilities, energy bills and energy, waste and water systems, including compressed air, motors/pumps, lighting, process heat and steam. Themore » IACs then follow up with written energy-saving and productivity improvement recommendations, with estimates of related costs and payback periods.« less

  18. GLIDES – Efficient Energy Storage from ORNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Momen, Ayyoub M.; Abu-Heiba, Ahmad; Odukomaiya, Wale

    2016-03-01

    The research shown in this video features the GLIDES (Ground-Level Integrated Diverse Energy Storage) project, which has been under development at Oak Ridge National Laboratory (ORNL) since 2013. GLIDES can store energy via combined inputs of electricity and heat, and deliver dispatchable electricity. Supported by ORNL’s Laboratory Director’s Research and Development (LDRD) fund, this energy storage system is low-cost, and hybridizes compressed air and pumped-hydro approaches to allow for storage of intermittent renewable energy at high efficiency. A U.S. patent application for this novel energy storage concept has been submitted, and research findings suggest it has the potential to bemore » a flexible, low-cost, scalable, high-efficiency option for energy storage, especially useful in residential and commercial buildings.« less

  19. Chemical heat pump

    DOEpatents

    Greiner, Leonard

    1984-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  20. Chemical heat pump

    DOEpatents

    Greiner, Leonard

    1981-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  1. Chemical heat pump

    DOEpatents

    Greiner, Leonard

    1984-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate intallation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  2. Chemical heat pump

    DOEpatents

    Greiner, Leonard

    1984-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to faciliate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  3. Control system for, and a method of, heating an operator station of a work machine

    DOEpatents

    Baker, Thomas M.; Hoff, Brian D.; Akasam, Sivaprasad

    2005-04-05

    There are situations in which an operator remains in an operator station of a work machine when an engine of the work machine is inactive. The present invention includes a control system for, and a method of, heating the operator station when the engine is inactive. A heating system of the work machine includes an electrically-powered coolant pump, a power source, and at least one piece of warmed machinery. An operator heat controller is moveable between a first and a second position, and is operable to connect the electrically-powered coolant pump to the power source when the engine is inactive and the operator heat controller is in the first position. Thus, by deactivating the engine and then moving the operator heat controller to the first position, the operator may supply electrical energy to the electrically-powered coolant pump, which is operably coupled to heat the operator station.

  4. Cooling devices and methods for use with electric submersible pumps

    DOEpatents

    Jankowski, Todd A; Hill, Dallas D

    2014-12-02

    Cooling devices for use with electric submersible pump motors include a refrigerator attached to the end of the electric submersible pump motor with the evaporator heat exchanger accepting all or a portion of the heat load from the motor. The cooling device can be a self-contained bolt-on unit, so that minimal design changes to existing motors are required.

  5. Cooling devices and methods for use with electric submersible pumps

    DOEpatents

    Jankowski, Todd A.; Hill, Dallas D.

    2016-07-19

    Cooling devices for use with electric submersible pump motors include a refrigerator attached to the end of the electric submersible pump motor with the evaporator heat exchanger accepting all or a portion of the heat load from the motor. The cooling device can be a self-contained bolt-on unit, so that minimal design changes to existing motors are required.

  6. Enabling two-phase microfluidic thermal transport systems using a novel thermal-flux degassing and fluid charging approach

    NASA Astrophysics Data System (ADS)

    Singh Dhillon, Navdeep; Pisano, Albert P.

    2014-03-01

    A novel two-port thermal-flux method has been proposed and demonstrated for degassing and charging two-phase microfluidic thermal transport systems with a degassed working fluid. In microscale heat pipes and loop heat pipes (mLHPs), small device volumes and large capillary forces associated with smaller feature sizes render conventional vacuum pump-based degassing methods quite impractical. Instead, we employ a thermally generated pressure differential to purge non-condensable gases from these devices before charging them with a degassed working fluid in a two-step process. Based on the results of preliminary experiments studying the effectiveness and reliability of three different high temperature-compatible device packaging approaches, an optimized compression packaging technique was developed to degas and charge a mLHP device using the thermal-flux method. An induction heating-based noninvasive hermetic sealing approach for permanently sealing the degassed and charged mLHP devices has also been proposed. To demonstrate the efficacy of this approach, induction heating experiments were performed to noninvasively seal 1 mm square silicon fill-hole samples with donut-shaped solder preforms. The results show that the minimum hole sealing induction heating time is heat flux limited and can be estimated using a lumped capacitance thermal model. However, further continued heating of the solder uncovers the hole due to surface tension-induced contact line dynamics of the molten solder. It was found that an optimum mass of the solder preform is required to ensure a wide enough induction-heating time window for successful sealing of a fill-hole.

  7. Variable temperature seat climate control system

    DOEpatents

    Karunasiri, Tissa R.; Gallup, David F.; Noles, David R.; Gregory, Christian T.

    1997-05-06

    A temperature climate control system comprises a variable temperature seat, at least one heat pump, at least one heat pump temperature sensor, and a controller. Each heat pump comprises a number of Peltier thermoelectric modules for temperature conditioning the air in a main heat exchanger and a main exchanger fan for passing the conditioned air from the main exchanger to the variable temperature seat. The Peltier modules and each main fan may be manually adjusted via a control switch or a control signal. Additionally, the temperature climate control system may comprise a number of additional temperature sensors to monitor the temperature of the ambient air surrounding the occupant as well as the temperature of the conditioned air directed to the occupant. The controller is configured to automatically regulate the operation of the Peltier modules and/or each main fan according to a temperature climate control logic designed both to maximize occupant comfort during normal operation, and minimize possible equipment damage, occupant discomfort, or occupant injury in the event of a heat pump malfunction.

  8. Experimental Evaluation of High Performance Integrated Heat Pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, William A; Berry, Robert; Durfee, Neal

    2016-01-01

    Integrated heat pump (IHP) technology provides significant potential for energy savings and comfort improvement for residential buildings. In this study, we evaluate the performance of a high performance IHP that provides space heating, cooling, and water heating services. Experiments were conducted according to the ASHRAE Standard 206-2013 where 24 test conditions were identified in order to evaluate the IHP performance indices based on the airside performance. Empirical curve fits of the unit s compressor maps are used in conjunction with saturated condensing and evaporating refrigerant conditions to deduce the refrigerant mass flowrate, which, in turn was used to evaluate themore » refrigerant side performance as a check on the airside performance. Heat pump (compressor, fans, and controls) and water pump power were measured separately per requirements of Standard 206. The system was charged per the system manufacturer s specifications. System test results are presented for each operating mode. The overall IHP performance metrics are determined from the test results per the Standard 206 calculation procedures.« less

  9. Geothermal Systems for School.

    ERIC Educational Resources Information Center

    Dinse, David H.

    1998-01-01

    Describes an award-winning school heating and cooling system in which two energy-efficient technologies, variable-flow pumping and geothermal heat pumps, were combined. The basic system schematic and annual energy use and cost savings statistics are provided. (GR)

  10. Progress in energy generation for Canadian remote sites

    NASA Astrophysics Data System (ADS)

    Saad, Y.; Younes, R.; Abboudi, S.; Ilinca, A.; Nohra, C.

    2016-07-01

    Many remote areas around the world are isolated, for various reasons, from electricity networks. They are usually supplied with electricity through diesel generators. The cost of operation and transportation of diesel fuel in addition to its price have led to the procurement of a more efficient and environmentally greener method of supply. Various studies have shown that a wind-diesel hybrid system with compressed air storage (WDCAS) seems to be one of the best solutions, and presents itself as an optimal configuration for the electrification of isolated sites. This system allows significant fuel savings to be made because the stored compressed air is used to supercharge the engine. In order to optimize system performance and minimize fuel consumption, installation of a system for recovering and storing the heat of compression (TES) seems necessary. In addition, the use of hydro-pneumatic energy storage systems that use the same machine as the hydraulic pump and turbine allow us to store energy in tight spaces and, if possible, contribute to power generation. The scrupulous study of this technical approach will be the focus of our research which will validate (or not) the use of such a system for the regulation of frequency of electrical networks. In this article we will skim through the main research that recently examined the wind-diesel hybrid system which addressed topics such as adiabatic compression and hydro-pneumatic storage. Instead, we will offer (based on existing studies) a new ACP-WDCAS (wind-diesel hybrid system with adiabatic air compression and storage at constant pressure), which combines these three concepts in one system for the optimization of wind-diesel hybrid system.

  11. Performance of a solar augmented heat pump

    NASA Astrophysics Data System (ADS)

    Bedinger, A. F. G.; Tomlinson, J. J.; Reid, R. L.; Chaffin, D. J.

    Performance of a residential size solar augmented heat pump is reported for the 1979-1980 heating season. The facility located in Knoxville, Tennessee, has a measured heat load coefficient of 339.5 watt/C (644 BTU/hr- F). The solar augmented heat pump system consists of 7.4 cu m of one inch diameter crushed limestone. The heat pump is a nominal 8.8 KW (2 1/2 ton) high efficiency unit. The system includes electric resistance heaters to give the option of adding thermal energy to the pebble bed storage during utility off-peak periods, thus offering considerable load management capability. A 15 KW electric resistance duct heater is used to add thermal energy to the pebble bin as required during off-peak periods. Hourly thermal performance and on site weather data was taken for the period November 1, 1979, to April 13, 1980. Thermal performance data consists of heat flow summations for all modes of the system, pebble bed temperatures, and space temperature. Weather data consists of dry bulb temperature, dew point temperature, total global insolation (in the plane of the collector), and wind speed and direction. An error analysis was performed and the least accurate of the measurements was determined to be the heat flow at 5%. Solar system thermal performance factor was measured to be 8.77. The heat pump thermal performance factor was 1.64. Total system seasonal performance factor was measured to be 1.66. Using a modified version of TRNSYS, the thermal performance of this system was simulated. When simulation results were compared with data collected onsite, the predicted heat flow and power consumption generally were within experimental accuracy.

  12. Dual-stroke heat pump field performance

    NASA Astrophysics Data System (ADS)

    Veyo, S. E.

    1984-11-01

    Two nearly identical proprototype systems, each employing a unique dual-stroke compressor, were built and tested. One was installed in an occupied residence in Jeannette, Pa. It has provided the heating and cooling required from that time to the present. The system has functioned without failure of any prototypical advanced components, although early field experience did suffer from deficiencies in the software for the breadboard micro processor control system. Analysis of field performance data indicates a heating performance factor (HSPF) of 8.13 Stu/Wa, and a cooling energy efficiency (SEER) of 8.35 Scu/Wh. Data indicate that the beat pump is oversized for the test house since the observed lower balance point is 3 F whereas 17 F La optimum. Oversizing coupled with the use of resistance heat ot maintain delivered air temperature warmer than 90 F results in the consumption of more resistance heat than expected, more unit cycling, and therefore lower than expected energy efficiency. Our analysis indicates that with optimal mixing the dual stroke heat pump will yield as HSFF 30% better than a single capacity heat pump representative of high efficiency units in the market place today for the observed weather profile.

  13. Low-Cost Gas Heat Pump for Building Space Heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrabrant, Michael; Keinath, Christopher

    2016-10-11

    Gas-fired residential space heating in the U.S is predominantly supplied by furnaces and boilers. These technologies have been approaching their thermodynamic limit over the past 30 years and improvements for high efficiency units have approached a point of diminishing return. Electric heat pumps are growing in popularity but their heating performance at low ambient temperatures is poor. The development of a low-cost gas absorption heat pump would offer a significant improvement to current furnaces and boilers, and in heating dominated climate zones when compared to electric heat pumps. Gas absorption heat pumps (GAHP) exceed the traditional limit of thermal efficiencymore » encountered by typical furnaces and boilers, and maintain high levels of performance at low ambient temperatures. The project team designed and demonstrated two low-cost packaged prototype GAHP space heating systems during the course of this investigation. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, and the Gas Technology Institute (GTI), the cross-functional team completed research and development tasks including cycle modeling, 8× scaling of a compact solution pump, combustion system development, breadboard evaluation, fabrication of two packaged prototype units, third party testing of the first prototype, and the evaluation of cost and energy savings compared to high and minimum efficiency gas options. Over the course of the project and with the fabrication of two Alpha prototypes it was shown that this technology met or exceeded most of the stated project targets. At ambient temperatures of 47, 35, 17 and -13°F the prototypes achieved gas based coefficients of performance of 1.50, 1.44, 1.37, and 1.17, respectively. Both units operated with parasitic loads well below the 750 watt target with the second Alpha prototype operating 75-100 watts below the first Alpha prototype. Modulation of the units at 4:1 was achieved with the project goal of 2:1 modulation, which will allow for improved load matching. In addition, the energy savings analysis showed that a house in Albany, NY, Chicago, IL and Minneapolis, MN would save roughly 32, 28.5 and 36.5 MBtu annually when compared to a 100% efficient boiler, respectively. The gas absorption heat pump achieves this performance by using high grade heat from the combustion of natural gas in combination with low grade heat extracted from the ambient to produce medium grade heat suitable for space and water heating. Expected product features include conventional outdoor installation practices, 4:1 modulation, and reasonable economic payback. These factors position the technology to gain significant market penetration, resulting in a large reduction of energy use and greenhouse gas emissions for residential space heating.« less

  14. Open-loop heat-recovery dryer

    DOEpatents

    TeGrotenhuis, Ward Evan

    2013-11-05

    A drying apparatus is disclosed that includes a drum and an open-loop airflow pathway originating at an ambient air inlet, passing through the drum, and terminating at an exhaust outlet. A passive heat exchanger is included for passively transferring heat from air flowing from the drum toward the exhaust outlet to air flowing from the ambient air inlet toward the drum. A heat pump is also included for actively transferring heat from air flowing from the passive heat exchanger toward the exhaust outlet to air flowing from the passive heat exchanger toward the drum. A heating element is also included for further heating air flowing from the heat pump toward the drum.

  15. Heat pump system with selective space cooling

    DOEpatents

    Pendergrass, J.C.

    1997-05-13

    A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve. 4 figs.

  16. Heat pump system with selective space cooling

    DOEpatents

    Pendergrass, Joseph C.

    1997-01-01

    A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve.

  17. Design, development and test of a capillary pump loop heat pipe

    NASA Technical Reports Server (NTRS)

    Kroliczek, E. J.; Ku, J.; Ollendorf, S.

    1984-01-01

    The development of a capillary pump loop (CPL) heat pipe, including computer modeling and breadboard testing, is presented. The computer model is a SINDA-type thermal analyzer, combined with a pressure analyzer, which predicts the transients of the CPL heat pipe during operation. The breadboard is an aluminum/ammonia transport system which contains multiple parallel evaporator and condenser zones within a single loop. Test results have demonstrated the practicality and reliability of such a design, including heat load sharing among evaporators, liquid inventory/temperature control feature, and priming under load. Transport capability for this system is 65 KW-M with individual evaporator pumps managing up to 1.7 KW at a heat flux of 15 W/sq cm. The prediction of the computer model for heat transport capabilities is in good agreement with experimental results.

  18. District heating with geothermally heated culinary water supply systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pitts, D.R.; Schmitt, R.C.

    1979-09-01

    An initial feasibility study of using existing culinary water supply systems to provide hot water for space heating and air conditioning to a typical residential community is reported. The Phase I study has centered on methods of using low-to-moderate temperature water for heating purposes including institutional barriers, identification and description of a suitable residential commnity water system, evaluation of thermal losses in both the main distribution system and the street mains within the residential district, estimation of size and cost of the pumping station main heat exchanger, sizing of individual residential heat exchangers, determination of pumping and power requirements duemore » to increased flow through the residential area mains, and pumping and power requirements from the street mains through a typical residence. All results of the engineering study of Phase I are encouraging.« less

  19. Sugar Determination in Foods with a Radially Compressed High Performance Liquid Chromatography Column.

    ERIC Educational Resources Information Center

    Ondrus, Martin G.; And Others

    1983-01-01

    Advocates use of Waters Associates Radial Compression Separation System for high performance liquid chromatography. Discusses instrumentation and reagents, outlining procedure for analyzing various foods and discussing typical student data. Points out potential problems due to impurities and pump seal life. Suggests use of ribose as internal…

  20. Ultra high vacuum pumping system and high sensitivity helium leak detector

    DOEpatents

    Myneni, G.R.

    1997-12-30

    An improved helium leak detection method and apparatus are disclosed which increase the leak detection sensitivity to 10{sup {minus}13} atm cc/s. The leak detection sensitivity is improved over conventional leak detectors by completely eliminating the use of o-rings, equipping the system with oil-free pumping systems, and by introducing measured flows of nitrogen at the entrances of both the turbo pump and backing pump to keep the system free of helium background. The addition of dry nitrogen flows to the system reduces back streaming of atmospheric helium through the pumping system as a result of the limited compression ratios of the pumps for helium. 2 figs.

  1. Heat pump assisted geothermal heating system for Felix Spa, Romania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosca, Marcel; Maghiar, Teodor

    1996-01-24

    The paper presents a pre-feasibility type study of a proposed heat pump assisted geothermal heating system for an average hotel in Felix Spa, Romania. After a brief presentation of the geothermal reservoir, the paper gives the methodology and the results of the technical and economical calculations. The technical and economical viability of the proposed system is discussed in detail in the final part of the paper.

  2. Heat pump assisted geothermal heating system for Felix Spa, Romania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosca, M.; Maghiar, T.

    1996-12-31

    The paper presents a pre-feasibility type study of a proposed heat pump assisted geothermal heating system for an average hotel in Felix Spa, Romania. After a brief presentation of the geothermal reservoir, the paper gives the methodology and the results of the technical and economical calculations. The technical and economical viability of the proposed system is discussed in detail in the final part of the paper.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Bo; Baxter, Van D.; Rice, C. Keith

    For this study, we authored a new air source integrated heat pump (AS-IHP) model in EnergyPlus, and conducted building energy simulations to demonstrate greater than 50% average energy savings, in comparison to a baseline heat pump with electric water heater, over 10 US cities, based on the EnergyPlus quick-service restaurant template building. We also assessed water heating energy saving potentials using ASIHP versus gas heating, and pointed out climate zones where AS-IHPs are promising.

  4. Energy Factor Analysis for Gas Heat Pump Water Heaters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gluesenkamp, Kyle R

    2016-01-01

    Gas heat pump water heaters (HPWHs) can improve water heating efficiency with zero GWP and zero ODP working fluids. The energy factor (EF) of a gas HPWH is sensitive to several factors. In this work, expressions are derived for EF of gas HPWHs, as a function of heat pump cycle COP, tank heat losses, burner efficiency, electrical draw, and effectiveness of supplemental heat exchangers. The expressions are used to investigate the sensitivity of EF to each parameter. EF is evaluated on a site energy basis (as used by the US DOE for rating water heater EF), and a primary energy-basismore » energy factor (PEF) is also defined and included. Typical ranges of values for the six parameters are given. For gas HPWHs, using typical ranges for component performance, EF will be 59 80% of the heat pump cycle thermal COP (for example, a COP of 1.60 may result in an EF of 0.94 1.28). Most of the reduction in COP is due to burner efficiency and tank heat losses. Gas-fired HPWHs are theoretically be capable of an EF of up to 1.7 (PEF of 1.6); while an EF of 1.1 1.3 (PEF of 1.0 1.1) is expected from an early market entry.« less

  5. Hot Topics! Heat Pumps and Geothermal Energy

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2009-01-01

    The recent rapid rises in the cost of energy has significantly increased interest in alternative energy sources. The author discusses the underlying principles of heat pumps and geothermal energy. Related activities for technology education students are included.

  6. The cool seal system: a practical solution to the shaft seal problem and heat related complications with implantable rotary blood pumps.

    PubMed

    Yamazaki, K; Mori, T; Tomioka, J; Litwak, P; Antaki, J F; Tagusari, O; Koyanagi, H; Griffith, B P; Kormos, R L

    1997-01-01

    A critical issue facing the development of an implantable, rotary blood pump is the maintenance of an effective seal at the rotating shaft. Mechanical seals are the most versatile type of seal in wide industrial applications. However, in a rotary blood pump, typical seal life is much shorter than required for chronic support. Seal failure is related to adhesion and aggregation of heat denatured blood proteins that diffuse into the lubricating film between seal faces. Among the blood proteins, fibrinogen plays an important role due to its strong propensity for adhesion and low transition temperature (approximately 50 degrees C). Once exposed to temperature exceeding 50 degrees C, fibrinogen molecules fuse together by multi-attachment between heat denatured D-domains. This quasi-polymerized fibrin increases the frictional heat, which proliferates the process into seal failure. If the temperature of the seal faces is maintained well below 50 degrees C, a mechanical seal would not fail in blood. Based on this "Cool-Seal" concept, we developed a miniature mechanical seal made of highly thermally conductive material (SiC), combined with a recirculating purge system. A large supply of purge fluid is recirculated behind the seal face to augment convective heat transfer to maintain the seal temperature below 40 degrees C. It also cools all heat generating pump parts (motor coil, bearing, seal). The purge consumption has been optimized to virtually nil (< 0.5 cc/day). An ultrafiltration unit integrated in the recirculating purge system continuously purifies and sterilizes the purge fluid for more than 5 months without filter change. The seal system has now been incorporated into our intraventricular axial flow blood pump (IVAP) and newly designed centrifugal pump. Ongoing in vivo evaluation of these systems has demonstrated good seal integrity for more than 160 days. The Cool-Seal system can be applied to any type of rotary blood pump (axial, diagonal, centrifugal, etc.) and offers a practical solution to the shaft seal problem and heat related complications, which currently limit the use of implantable rotary blood pumps.

  7. Wearing graduated compression stockings augments cutaneous vasodilation in heat-stressed resting humans.

    PubMed

    Fujii, Naoto; Nikawa, Toshiya; Tsuji, Bun; Kondo, Narihiko; Kenny, Glen P; Nishiyasu, Takeshi

    2017-05-01

    We investigated whether graduated compression induced by stockings enhances cutaneous vasodilation in passively heated resting humans. Nine habitually active young men were heated at rest using water-perfusable suits, resulting in a 1.0 °C increase in body core temperature. Heating was repeated twice on separate occasions while wearing either (1) stockings that cause graduated compression (pressures of 26.4 ± 5.3, 17.5 ± 4.4, and 6.1 ± 2.0 mmHg at the ankle, calf, and thigh, respectively), or (2) loose-fitting stockings without causing compression (Control). Forearm vascular conductance during heating was evaluated by forearm blood flow (venous occlusion plethysmography) divided by mean arterial pressure to estimate heat-induced cutaneous vasodilation. Body core (esophageal), skin, and mean body temperatures were measured continuously. Compared to the Control, forearm vascular conductance during heating was higher with graduated compression stockings (e.g., 23.2 ± 5.5 vs. 28.6 ± 5.8 units at 45 min into heating, P = 0.001). In line with this, graduated compression stockings resulted in a greater sensitivity (27.5 ± 8.3 vs. 34.0 ± 9.4 units °C -1 , P = 0.02) and peak level (25.5 ± 5.8 vs. 29.7 ± 5.8 units, P = 0.004) of cutaneous vasodilation as evaluated from the relationship between forearm vascular conductance with mean body temperature. In contrast, the mean body temperature threshold for increases in forearm vascular conductance did not differ between the Control and graduated compression stockings (36.5 ± 0.1 vs. 36.5 ± 0.2 °C, P = 0.85). Our results show that graduated compression associated with the use of stockings augments cutaneous vasodilation by modulating sensitivity and peak level of cutaneous vasodilation in relation to mean body temperature. However, the effect of these changes on whole-body heat loss remains unclear.

  8. Radiance limits of ceramic phosphors under high excitation fluxes

    NASA Astrophysics Data System (ADS)

    Lenef, Alan; Kelso, John; Zheng, Yi; Tchoul, Maxim

    2013-09-01

    Ceramic phosphors, excited by high radiance pump sources, offer considerable potential for high radiance conversion. Interestingly, thermodynamic arguments suggest that the radiance of the luminescent spot can even exceed that of the incoming light source. In practice, however, thermal quenching and (non-thermal) optical saturation limit the maximum attainable radiance of the luminescent source. We present experimental data for Ce:YAG and Ce:GdYAG ceramics in which these limits have been investigated. High excitation fluxes are achieved using laser pumping. Optical pumping intensities exceeding 100W/mm2 have been shown to produce only modest efficiency depreciation at low overall pump powers because of the short Ce3+ lifetime, although additional limitations exist. When pump powers are higher, heat-transfer bottlenecks within the ceramic and heat-sink interfaces limit maximum pump intensities. We find that surface temperatures of these laser-pumped ceramics can reach well over 150°C, causing thermal-quenching losses. We also find that in some cases, the loss of quantum efficiency with increasing temperature can cause a thermal run-away effect, resulting in a rapid loss in converted light, possibly over-heating the sample or surrounding structures. While one can still obtain radiances on the order of many W/mm2/sr, temperature quenching effects ultimately limit converted light radiance. Finally, we use the diffusion-approximation radiation transport models and rate equation models to simulate some of these nonlinear optical pumping and heating effects in high-scattering ceramics.

  9. Suggested techniques, equipment, and standards for the testing of hand insecticide-spraying equipment

    PubMed Central

    Hall, Lawrence B.

    1955-01-01

    The new demands placed upon application equipment by the introduction of modern insecticides have revealed the deficiencies of this equipment when required for continuous use on a large scale. If adequate equipment is to be produced, specifications must be based not only on basic materials tests but also on “use” tests, in which the conditions of field use are simulated. The author outlines suggested techniques to be followed and standards to be adopted in testing the performance of compression sprayers and allied equipment, with reference to the following features: compression-sprayer tank fatigue; tank impact; pump resistance to bursting; pump resistance to collapse; pump friction; cut-off valve durability; constant-pressure valves; cut-off valve actuation; hose flexure; hose tension and bursting-pressure; hose friction; gaskets, valve faces, and similar non-metallic parts; nozzle-orifice erosion; and nozzle pattern. ImagesFIG. 1FIG. 14FIG. 20 PMID:14364189

  10. Pulse compression in an electro-optic Q-switched diode-pumped YVO4/Nd:YVO4 laser with a Cr4+:YAG saturable absorber.

    PubMed

    Li, Tao; Zhao, Shengzhi; Zhuo, Zhuang; Yang, Kejian; Li, Guiqiu; Li, Dechun

    2009-04-20

    A diode end-pumped doubly Q-switched YVO4/Nd:YVO4 laser has been realized for the first time to our knowledge by using both an electro-optic (EO) modulator and a Cr4):YAG saturable absorber. A 3.8 ns pulse width is generated by this laser under a pump power of 15 W at 2 kHz, which is obviously compressed in comparison with that of 8.8 ns from a single actively EO Q-switched laser. Under the same conditions, peak power values of 174.7 and 93 kW are also obtained. A coupled equation is given to theoretically analyze the experimental data. The experimental and theoretical results show that the doubly Q-switched laser has the advantages of a shorter pulse width and higher pulse peak power in contrast with a singly Q-switched laser.

  11. Saturated-unsaturated flow to a partially penetrating well with storage in a compressible aquifer

    NASA Astrophysics Data System (ADS)

    Mishra, P. K.; Neuman, S. P.

    2010-12-01

    Mishra and Neuman [2010] developed an analytical solution for flow to a partially penetrating well of zero radius in a compressible unconfined aquifer that allows inferring its saturated and unsaturated hydraulic properties from responses recorded in the saturated and/or the unsaturated zone. We extend their solution to the case of a finite diameter pumping well with storage. Both solutions account for horizontal as well as vertical flows throughout the system. We investigate the effects of storage in the pumping well and delayed piezometer response on drawdowns in the saturated and unsaturated zones as functions of position and time; validate our solution against numerical simulations of drawdown in a synthetic aquifer having unsaturated properties described by the van Genuchten - Mualem constitutive model; and use our solution to analyze drawdown data from a pumping test conducted at the Borden site in Ontario, Canada.

  12. Centrifugal Gas Compression Cycle

    NASA Astrophysics Data System (ADS)

    Fultun, Roy

    2002-11-01

    A centrifuged gas of kinetic, elastic hard spheres compresses isothermally and without flow of heat in a process that reverses free expansion. This theorem follows from stated assumptions via a collection of thought experiments, theorems and other supporting results, and it excludes application of the reversible mechanical adiabatic power law in this context. The existence of an isothermal adiabatic centrifugal compression process makes a three-process cycle possible using a fixed sample of the working gas. The three processes are: adiabatic mechanical expansion and cooling against a piston, isothermal adiabatic centrifugal compression back to the original volume, and isochoric temperature rise back to the original temperature due to an influx of heat. This cycle forms the basis for a Thomson perpetuum mobile that induces a loop of energy flow in an isolated system consisting of a heat bath connectable by a thermal path to the working gas, a mechanical extractor of the gas's internal energy, and a device that uses that mechanical energy and dissipates it as heat back into the heat bath. We present a simple experimental procedure to test the assertion that adiabatic centrifugal compression is isothermal. An energy budget for the cycle provides a criterion for breakeven in the conversion of heat to mechanical energy.

  13. 10 CFR 434.404 - Building service systems and equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... specification. 404.1.2Unfired Storage Tanks. The heat loss of the tank surface area Btu/(h·ft2) shall be based... the potential benefit of using an electric heat pump water heater(s) instead of an electric resistance water heater(s). The analysis shall compare the extra installed costs of the heat pump unit with the...

  14. Solar-power mountain concept

    NASA Technical Reports Server (NTRS)

    Clarke, V. C., Jr.

    1977-01-01

    Solar collectors on mountainside collect thermal energy for mountaintop powerplant. Sloped arrangement reduces heat-transport problem of level ground-based collector field. Heated air rises without mechanical pumps and buoyancy force supplies pumping power without further cost. Precision tracking requirement of power towers eliminated by butted-together Winston-type concentrator troughs. Low-cost native rock is used for heat storage.

  15. ETR HEAT EXCHANGER BUILDING, TRA644. A PRIMARY COOLANT PUMP AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR HEAT EXCHANGER BUILDING, TRA-644. A PRIMARY COOLANT PUMP AND 24-INCH CHECK VALVE ARE MOUNTED IN A SHIELDED CUBICLE. NOTE CONNECTION AT RIGHT THROUGH SHIELD WALL TO PUMP MOTOR ON OTHER SIDE. INL NEGATIVE NO. 56-4177. Jack L. Anderson, Photographer, 12/21/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  16. Air source integrated heat pump simulation model for EnergyPlus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Bo; New, Joshua; Baxter, Van

    An Air Source Integrated Heat Pump (AS-IHP) is an air source, multi-functional spacing conditioning unit with water heating function (WH), which can lead to great energy savings by recovering the condensing waste heat for domestic water heating. This paper summarizes development of the EnergyPlus AS-IHP model, introducing the physics, sub-models, working modes, and control logic. Based on the model, building energy simulations were conducted to demonstrate greater than 50% annual energy savings, in comparison to a baseline heat pump with electric water heater, over 10 US cities, using the EnergyPlus quick-service restaurant template building. We assessed water heating energy savingmore » potentials using AS-IHP versus both gas and electric baseline systems, and pointed out climate zones where AS-IHPs are promising. In addition, a grid integration strategy was investigated to reveal further energy saving and electricity cost reduction potentials, via increasing the water heating set point temperature during off-peak hours and using larger water tanks.« less

  17. Optimization and thermoeconomics research of a large reclaimed water source heat pump system.

    PubMed

    Zhang, Zi-ping; Du, Fang-hui

    2013-01-01

    This work describes a large reclaimed water source heat pump system (RWSHPS) and elaborates on the composition of the system and its design principles. According to the characteristics of the reclaimed water and taking into account the initial investment, the project is divided into two stages: the first stage adopts distributed heat pump heating system and the second adopts the combination of centralized and decentralized systems. We analyze the heating capacity of the RWSHPS, when the phase II project is completed, the system can provide hydronic heating water with the supply and return water temperature of 55°C/15°C and meet the hydronic heating demand of 8 million square meters of residential buildings. We make a thermal economics analysis by using Thermal Economics theory on RWSHPS and gas boiler system, it is known that the RWSHPS has more advantages, compared with the gas boiler heating system; both its thermal efficiency and economic efficiency are relatively high. It provides a reference for future applications of the RWSHPS.

  18. Application of sorption heat pumps for increasing of new power sources efficiency

    NASA Astrophysics Data System (ADS)

    Vasiliev, L.; Filatova, O.; Tsitovich, A.

    2010-07-01

    In the 21st century the way to increase the efficiency of new sources of energy is directly related with extended exploration of renewable energy. This modern tendency ensures the fuel economy needs to be realized with nature protection. The increasing of new power sources efficiency (cogeneration, trigeneration systems, fuel cells, photovoltaic systems) can be performed by application of solid sorption heat pumps, regrigerators, heat and cold accumulators, heat transformers, natural gas and hydrogen storage systems and efficient heat exchangers.

  19. Super energy saver heat pump with dynamic hybrid phase change material

    DOEpatents

    Ally, Moonis Raza [Oak Ridge, TN; Tomlinson, John Jager [Knoxville, TN; Rice, Clifford Keith [Clinton, TN

    2010-07-20

    A heat pump has a refrigerant loop, a compressor in fluid communication with the refrigerant loop, at least one indoor heat exchanger in fluid communication with the refrigerant loop, and at least one outdoor heat exchanger in fluid communication with the refrigerant loop. The at least one outdoor heat exchanger has a phase change material in thermal communication with the refrigerant loop and in fluid communication with an outdoor environment. Other systems, devices, and methods are described.

  20. Continuous cryopump with a device for regenerating the cryosurface

    DOEpatents

    Foster, C.A.

    1988-02-16

    A high throughput continuous cryopump is provided. The cryopump incorporates an improved method for regenerating the cryopumping surface while the pump is in continuous operation. The regeneration of the cryopumping surface does not thermally cycle the pump, and to this end a small chamber connected to a secondary pumping source serves to contain and exhaust frost removed from the cryopumping surface during such regeneration. The frost is exhausted at a rate substantially independent of the speed of the cryopump which enhances the capability of the pump to achieve a high compression ratio and allow the pump to operate continuously while the cryopumping surface is being regenerated. 8 figs.

Top