Chen, Chao; Yu, Li; Tang, Xin; Liu, Mo-Zhen; Sun, Li-Zhong; Liu, Changjian; Zhang, Zhen; Li, Chang-Zhou
2017-10-01
The aim of this study was to compare clinical outcomes of patients with femoral neck fractures treated with the dynamic hip system blade (DHS-BLADE) or cannulated compression screws. Eighty-six patients with femoral neck fractures were treated by closed reduction internal fixation with a DHS-BLADE (n = 42; 18 males and 24 females; mean age: 56.3 years (37-87)) or cannulated compression screws (n = 44; 20 males and 24 females; mean age: 53.8 years (26-83)) between March 2011 and August 2013. The groups were compared with Harris hip score, operation time, surgical blood loss, incision size, hospital stay, and related complications. The average follow-up time was 27 months (range, 24-36 months). There was no significant difference for the operation time, incision size, hospital stay, and Harris hip score between the groups. Also, no statistically significant differences in the rates of nonunion (4.5% vs. 0) and avascular necrosis of the femoral head (9.1% vs. 7.1%) were observed. However, the screw group experienced significantly less surgical blood loss (32.4 ± 24.7 ml) than the blade group (87.2 ± 46.6 ml; P = 0.041). The incidence of femoral neck shortening above 10 mm in the screw group was significantly higher than that in the blade group (15.9% vs. 2.4%, P = 0.031). The blade group had a significantly lower incidence of screw migration than the screw group (4.8% vs. 22.7%, P = 0.016). The DHS-BLADE and cannulated compression screws might be equally effective in terms of postoperative fracture union. However, the DHS-BLADE has advantages over cannulated compression screws for preventing femoral neck shortening, screw migration, and cut-out. Level III, Therapeutic study. Copyright © 2017 Turkish Association of Orthopaedics and Traumatology. Production and hosting by Elsevier B.V. All rights reserved.
... or a special metal plate or rod with screws, called compression screws or nails, put in place. Alternatively, you may ... walking as soon as possible. For this reason, it is very important to stay active and follow ...
Operative treatment of hip fractures in patients receiving hemodialysis.
Tosun, Bilgehan; Atmaca, Halil; Gok, Umit
2010-11-01
Fifteen hips in 13 patients with hip fracture were treated in patients receiving hemodialysis for chronic renal failure. There were four intertrochanteric and 11 femoral neck fractures. 10 of the 11 femoral neck fractures and one of the four intertrochanteric fractures were treated with cemented bipolar hemiarthroplasty. Two intertrochanteric fractures fixed with sliding compression screws. External fixation was used for stabilization in two patients who had femoral neck and intertrochanteric fractures. Two intertrochanteric fractures that were treated with sliding hip screw showed radiological union postoperatively at the 6th month. Of the 11 hemiarthroplasty, four hips developed aseptic loosening (36%). According to Harris hip score grading system, three (37.5%) poor, two (25%) fair, two (25%) good and one (12.5%) case had excellent outcome in the hemiarthroplasty group. The survival of dialysis patients with a hip fracture is markedly reduced. Initial treatment of hemiarthroplasty allows early mobilization and prevents revision surgery.
Lewis, Gregory S; Caroom, Cyrus T; Wee, Hwabok; Jurgensmeier, Darin; Rothermel, Shane D; Bramer, Michelle A; Reid, John Spence
2015-10-01
The biomechanical difficulty in fixation of a Vancouver B1 periprosthetic fracture is purchase of the proximal femoral segment in the presence of the hip stem. Several newer technologies provide the ability to place bicortical locking screws tangential to the hip stem with much longer lengths of screw purchase compared with unicortical screws. This biomechanical study compares the stability of 2 of these newer constructs to previous methods. Thirty composite synthetic femurs were prepared with cemented hip stems. The distal femur segment was osteotomized, and plates were fixed proximally with either (1) cerclage cables, (2) locked unicortical screws, (3) a composite of locked screws and cables, or tangentially directed bicortical locking screws using either (4) a stainless steel locking compression plate system with a Locking Attachment Plate (Synthes) or (5) a titanium alloy Non-Contact Bridging system (Zimmer). Specimens were tested to failure in either axial or torsional quasistatic loading modes (n = 3) after 20 moderate load preconditioning cycles. Stiffness, maximum force, and failure mechanism were determined. Bicortical constructs resisted higher (by an average of at least 27%) maximum forces than the other 3 constructs in torsional loading (P < 0.05). Cables constructs exhibited lower maximum force than all other constructs, in both axial and torsional loading. The bicortical titanium construct was stiffer than the bicortical stainless steel construct in axial loading. Proximal fixation stability is likely improved with the use of bicortical locking screws as compared with traditional unicortical screws and cable techniques. In this study with a limited sample size, we found the addition of cerclage cables to unicortical screws may not offer much improvement in biomechanical stability of unstable B1 fractures.
García-Rey, Eduardo
2017-05-12
Even with good surgical preparation, adequate primary stability of the acetabular component is not always achieved after primary total hip replacement (THR). We hypothesise that adequate bone preparation for appropriate cortical loading would allow us to avoid screw use. A total of 791 uncemented cups were analysed to compare the need for screws to obtain primary fixation in 5 different designs. Arthritic hips with inflammatory arthritis or severe congenital hip disease were excluded. A press-fit technique was first tried in all hips and screws were only used when strictly needed. Radiological acetabular shape and postoperative cup position were assessed in all hips. The mean follow-up was 9.6 (5-15) years. Screws were required in 155 hips (19.6%). We could not detect any difference in the percentage of screw use between designs. We found that female patients (odds ratio [OR] 2.06; 95% confidence interval [CI], 1.41-3.02) and cups with a greater distance to the hip rotation centre on the postoperative radiograph (OR 1.69; 95% CI, 1.17-2.45) had a higher risk for screw use. A greater anteversion of the cup had a lower risk for screw use (OR 0.96; 95% CI, 0.94-0.99). At latest follow-up no hips had needed revision for aseptic loosening. Good intraoperative technique is not enough to avoid screw use since more accurate cup position and reconstruction of the hip rotation centre are required for an adequate interference fit. A press-fit technique can provide similar mid-term results to screw use in hips without severe deformities.
2017-01-01
Summary Background Reoperation rates are high after surgery for hip fractures. We investigated the effect of a sliding hip screw versus cancellous screws on the risk of reoperation and other key outcomes. Methods For this international, multicentre, allocation concealed randomised controlled trial, we enrolled patients aged 50 years or older with a low-energy hip fracture requiring fracture fixation from 81 clinical centres in eight countries. Patients were assigned by minimisation with a centralised computer system to receive a single large-diameter screw with a side-plate (sliding hip screw) or the present standard of care, multiple small-diameter cancellous screws. Surgeons and patients were not blinded but the data analyst, while doing the analyses, remained blinded to treatment groups. The primary outcome was hip reoperation within 24 months after initial surgery to promote fracture healing, relieve pain, treat infection, or improve function. Analyses followed the intention-to-treat principle. This study was registered with ClinicalTrials.gov, number NCT00761813. Findings Between March 3, 2008, and March 31, 2014, we randomly assigned 1108 patients to receive a sliding hip screw (n=557) or cancellous screws (n=551). Reoperations within 24 months did not differ by type of surgical fixation in those included in the primary analysis: 107 (20%) of 542 patients in the sliding hip screw group versus 117 (22%) of 537 patients in the cancellous screws group (hazard ratio [HR] 0.83, 95% CI 0.63–1.09; p=0.18). Avascular necrosis was more common in the sliding hip screw group than in the cancellous screws group (50 patients [9%] vs 28 patients [5%]; HR 1.91, 1.06–3.44; p=0.0319). However, no significant difference was found between the number of medically related adverse events between groups (p=0.82; appendix); these events included pulmonary embolism (two patients [<1%] vs four [1%] patients; p=0.41) and sepsis (seven [1%] vs six [1%]; p=0.79). Interpretation In terms of reoperation rates the sliding hip screw shows no advantage, but some groups of patients (smokers and those with displaced or base of neck fractures) might do better with a sliding hip screw than with cancellous screws. Funding National Institutes of Health, Canadian Institutes of Health Research, Stichting NutsOhra, Netherlands Organisation for Health Research and Development, Physicians’ Services Incorporated. PMID:28262269
Effect of screw fixation on acetabular component alignment change in total hip arthroplasty.
Fujishiro, Takaaki; Hayashi, Shinya; Kanzaki, Noriyuki; Hashimoto, Shingo; Shibanuma, Nao; Kurosaka, Masahiro
2014-06-01
The use of screws can enhance immediate cup fixation, but the influence of screw insertion on cup position has not previously been measured. The purpose of this study was to quantitatively evaluate the effect of intra-operative screw fixation on acetabular component alignment that has been inserted with the use of a navigation system. We used a navigation system to measure cup alignment at the time of press-fit and after screw fixation in 144 hips undergoing total hip arthroplasty. We also compared those findings with factors measured from postoperative radiographs. The mean intra-operative change of cup position was 1.78° for inclination and 1.81° for anteversion. The intra-operative change of anteversion correlated with the number of screws. The intra-operative change of inclination also correlated with medial hip centre. The insertion of screws can induce changes in cup alignment, especially when multiple screws are used or if a more medial hip centre is required for rigid acetabular fixation.
2017-04-15
Reoperation rates are high after surgery for hip fractures. We investigated the effect of a sliding hip screw versus cancellous screws on the risk of reoperation and other key outcomes. For this international, multicentre, allocation concealed randomised controlled trial, we enrolled patients aged 50 years or older with a low-energy hip fracture requiring fracture fixation from 81 clinical centres in eight countries. Patients were assigned by minimisation with a centralised computer system to receive a single large-diameter screw with a side-plate (sliding hip screw) or the present standard of care, multiple small-diameter cancellous screws. Surgeons and patients were not blinded but the data analyst, while doing the analyses, remained blinded to treatment groups. The primary outcome was hip reoperation within 24 months after initial surgery to promote fracture healing, relieve pain, treat infection, or improve function. Analyses followed the intention-to-treat principle. This study was registered with ClinicalTrials.gov, number NCT00761813. Between March 3, 2008, and March 31, 2014, we randomly assigned 1108 patients to receive a sliding hip screw (n=557) or cancellous screws (n=551). Reoperations within 24 months did not differ by type of surgical fixation in those included in the primary analysis: 107 (20%) of 542 patients in the sliding hip screw group versus 117 (22%) of 537 patients in the cancellous screws group (hazard ratio [HR] 0·83, 95% CI 0·63-1·09; p=0·18). Avascular necrosis was more common in the sliding hip screw group than in the cancellous screws group (50 patients [9%] vs 28 patients [5%]; HR 1·91, 1·06-3·44; p=0·0319). However, no significant difference was found between the number of medically related adverse events between groups (p=0·82; appendix); these events included pulmonary embolism (two patients [<1%] vs four [1%] patients; p=0·41) and sepsis (seven [1%] vs six [1%]; p=0·79). In terms of reoperation rates the sliding hip screw shows no advantage, but some groups of patients (smokers and those with displaced or base of neck fractures) might do better with a sliding hip screw than with cancellous screws. National Institutes of Health, Canadian Institutes of Health Research, Stichting NutsOhra, Netherlands Organisation for Health Research and Development, Physicians' Services Incorporated. Copyright © 2017 Elsevier Ltd. All rights reserved.
Griffiths, Jamie T; Taheri, Arash; Day, Robert E; Yates, Piers J
2015-12-01
The aim of this study was to biomechanically evaluate the Locking attachment plate (LAP) construct in comparison to a Cable plate construct, for the fixation of periprosthetic femoral fractures after cemented total hip arthroplasty. Each construct incorporated a locking compression plate with bi-cortical locking screws for distal fixation. In the Cable construct, 2 cables and 2 uni-cortical locking screws were used for proximal fixation. In the LAP construct, the cables were replaced by a LAP with 4 bi-cortical locking screws. The LAP construct was significantly stiffer than the cable construct under axial load with a bone gap (P=0.01). The LAP construct offers better axial stiffness compared to the cable construct in the fixation of comminuted Vancouver B1 proximal femoral fractures. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.
Paulsson, Johnny; Stig, Josefine Corin; Olsson, Ola
2017-08-24
In treatment of unstable trochanteric fractures dynamic hip screw and Medoff sliding plate devices are designed to allow secondary fracture impaction, whereas intramedullary nails aim to maintain fracture alignment. Different treatment protocols are used by two similar Swedish regional emergency care hospitals. Dynamic hip screw is used for fractures considered as stable within the respective treatment protocol, whereas one treatment protocol (Medoff sliding plate/dynamic hip screw) uses biaxial Medoff sliding plate for unstable pertrochanteric fractures and uniaxial Medoff sliding plate for subtrochanteric fractures, the second (intramedullary nail/dynamic hip screw) uses intramedullary nail for subtrochanteric fractures and for pertrochanteric fractures with intertrochanteric comminution or subtrochanteric extension. All orthopedic surgeries are registered in a regional database. All consecutive trochanteric fracture operations during 2011-2012 (n = 856) and subsequent technical reoperations (n = 40) were derived from the database. Reoperations were analysed and classified into the categories adjustment (percutaneous removal of the locking screw of the Medoff sliding plate or the intramedullary nail, followed by fracture healing) or minor, intermediate (reosteosynthesis) or major (hip joint replacement, Girdlestone or persistent nonunion) technical complications. The relative risk of intermediate or major technical complications was 4.2 (1.2-14) times higher in unstable pertrochanteric fractures and 4.6 (1.1-19) times higher in subtrochanteric fractures with treatment protocol: intramedullary nail/dynamic hip screw, compared to treatment protocol: Medoff sliding plate/dynamic hip screw. Overall rates of intermediate and major technical complications in unstable pertrochanteric and subtrochanteric fractures were with biaxial Medoff sliding plate 0.68%, with uniaxial Medoff sliding plate 1.4%, with dynamic hip screw 3.4% and with intramedullary nail 7.2%. The treatment protocol based on use of biaxial Medoff sliding plate for unstable pertrochanteric and uniaxial Medoff sliding plate for subtrochanteric fractures reduced the risk of severe technical complications compared to using the treatment protocol based on dynamic hip screw and intramedullary nail.
Otten, Volker T C; Crnalic, Sead; Röhrl, Stephan M; Nivbrant, Bo; Nilsson, Kjell G
2016-01-01
Screws, pegs and hydroxyapatite-coating are used to enhance the primary stability of uncemented cups. We present a 14-year follow-up of 48 hips randomized to four groups: press-fit only, press-fit plus screws, press-fit plus pegs and hydroxyapatite-coated cups. Radiostereometric migration measurements showed equally good stability regardless cup augmentation. The mean wear rate was high, 0.21 mm/year, with no differences between the groups. Seven hips had radiographical osteolysis but only in hips with augmented cups. Cups without screw-holes compared with cups with screw-holes resulted in better clinical outcome at the 14-year follow-up. Thus, augmentation of uncemented cups with screws, pegs, or hydroxyapatite did not appear to improve the long-term stability compared with press-fit only. Copyright © 2016 Elsevier Inc. All rights reserved.
Griffin, Xavier L; Achten, Juul; Sones, William; Cook, Jonathan; Costa, Matthew L
2018-01-26
Sliding hip screw fixation is well established in the treatment of trochanteric fractures of the hip. The X-Bolt Dynamic Hip Plating System builds on the successful design features of the sliding hip screw but differs in the nature of the fixation in the femoral head. A randomised pilot study suggested that the X-bolt Dynamic Hip Plating System might provide similar health-related quality of life while reducing the risk of revision surgery when compared with the sliding hip screw. This is the protocol for a multicentre randomised trial of sliding hip screw versus X-Bolt Dynamic Hip Plating System for patients 60 years and over treated for a trochanteric fracture of the hip. Multicentre, multisurgeon, parallel, two-arm, randomised controlled trial. Patients aged 60 years and older with a trochanteric hip fracture are potentially eligible. Participants will be randomly allocated on a 1:1 basis to either sliding hip screw or X-Bolt Dynamic Hip Plating System. Otherwise, all care will be in accordance with National Institute for Health and Care Excellence guidance. A minimum of 1128 patients will be recruited to obtain 90% power to detect a 0.075-point difference in EuroQol-5D health-related quality of life at 4 months postrandomisation. Secondary outcomes include mortality, residential status, revision surgery and radiographic measures. The treatment effect will be estimated using a two-sided t-test adjusted for age, gender and cognitive impairment based on an intention-to-treat analysis. National Research Ethics Committee approved this study on 5 February 2016 (16/WM/0001). The study is sponsored by the University of Oxford and funded through an investigator initiated grant by X-Bolt Orthopaedics. A manuscript for a high-impact peer-reviewed journal will be prepared, and the results will be disseminated to patients through local mechanisms at participating centres. ISRCTN92825709. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Yoon, Sun-Jung; Park, Myung-Sik; Matsuda, Dean K; Choi, Yun Ho
2018-06-04
Sciatic nerve injuries following total hip arthroplasty are disabling complications. Although degrees of injury are variable from neuropraxia to neurotmesis, mechanical irritation of sciatic nerve might be occurred by protruding hardware. This case shows endoscopic decompression for protruded acetabular screw irritating sciatic nerve, the techniques described herein may permit broader arthroscopic/endoscopic applications for management of complications after reconstructive hip surgery. An 80-year-old man complained of severe pain and paresthesias following acetabular component revision surgery. Physical findings included right buttock pain with radiating pain to lower extremity. Radiographs and computed tomography imaging showed that the sharp end of protruded screw invaded greater sciatic foramen anterior to posterior and distal to proximal direction at sciatic notch level. A protruding tip of the acetabular screw at the sciatic notch was decompressed by use of techniques gained from experience performing endoscopic sciatic nerve decompression. The pre-operative pain and paresthesias resolved post-operatively after recovering from anesthesia. This case report describes the first documented endoscopic resection of the tip of the acetabular screw irritating sciatic nerve after total hip arthroplasty. If endoscopic resection of an offending acetabular screw can be performed in a safe and minimally invasive manner, one can envision a future expansion of the role of hip arthroscopic surgery in several complications management after total hip arthroplasty.
Park, Jin-Woo; Kim, Kyoung-Tae; Sung, Joo-Kyung; Park, Seong-Hyun; Seong, Ki-Woong; Cho, Dae-Chul
2017-09-01
The purpose of the present study was to compare inter-fragmentary compression pressures after fixation of a simulated type II odontoid fracture with the headless compression Herbert screw and a half threaded cannulated lag screw. We compared inter-fragmentary compression pressures between 40- and 45-mm long 4.5-mm Herbert screws (n=8 and n=9, respectively) and 40- and 45-mm long 4.0-mm cannulated lag screws (n=7 and n=10, respectively) after insertion into rigid polyurethane foam test blocks (Sawbones, Vashon, WA, USA). A washer load cell was placed between the two segments of test blocks to measure the compression force. Because the total length of each foam block was 42 mm, the 40-mm screws were embedded in the cancellous foam, while the 45-mm screws penetrated the denser cortical foam at the bottom. This enabled us to compare inter-fragmentary compression pressures as they are affected by the penetration of the apical dens tip by the screws. The mean compression pressures of the 40- and 45-mm long cannulated lag screws were 50.48±1.20 N and 53.88±1.02 N, respectively, which was not statistically significant (p=0.0551). The mean compression pressures of the 40-mm long Herbert screw was 52.82±2.17 N, and was not statistically significant compared with the 40-mm long cannulated lag screw (p=0.3679). However, 45-mm Herbert screw had significantly higher mean compression pressure (60.68±2.03 N) than both the 45-mm cannulated lag screw and the 40-mm Herbert screw (p=0.0049 and p=0.0246, respectively). Our results showed that inter-fragmentary compression pressures of the Herbert screw were significantly increased when the screw tip penetrated the opposite dens cortical foam. This can support the generally recommended surgical technique that, in order to facilitate maximal reduction of the fracture gap using anterior odontoid screws, it is essential to penetrate the apical dens tip with the screw.
Santoni, Brandon G; Nayak, Aniruddh N; Cooper, Seth A; Smithson, Ian R; Cox, Jacob L; Marberry, Scott T; Sanders, Roy W
2016-04-01
This study compared the stabilizing effect of 2 intertrochanteric (IT) fracture fixation devices in a cadaveric hemi-pelvis biomechanical model. Eleven pairs of cadaveric osteopenic female hemi-pelves with intact hip joint and capsular ligaments were used. An unstable IT fracture (OTA 31-A2) was created in each specimen and stabilized with a single lag screw device (Gamma 3) or an integrated dual screw (IDS) device (InterTAN). The hemi-pelves were inverted, coupled to a biaxial apparatus and subjected to 13.5 k cycles of loading (3 months) using controlled, oscillating pelvic rotation (0-90 degrees) plus cyclic axial femoral loading at a 2:1 body weight (BW) ratio. Femoral head rotation and varus collapse were monitored optoelectonically. For specimens surviving 3 months of loading, additional loading was performed in 0.25 × BW/250 cycle increments to a maximum of 4 × BW or failure. Femoral head rotation with IDS fixation was significantly less than the single lag screw construct after 3 months of simulated loading (P = 0.016). Maximum femoral head rotation at the end of 4 × BW loading was 7× less for the IDS construct (P = 0.006). Varus collapse was significantly less with the IDS construct over the entire loading cycle (P = 0.021). In this worst-case model of an osteopenic, unstable, IT fracture, the IDS construct, likely owing to its larger surface area, noncylindrical profile, and fracture compression, provided significantly greater stability and resistance to femoral head rotation and varus collapse.
Biomechanical evaluation of a new composite bioresorbable screw.
Bailey, C A; Kuiper, J H; Kelly, C P
2006-04-01
A new bioresorbable composite cannulated screw has been developed for small bone fracture fixation. The LG ("Little Grafter") screw is manufactured from Biosteon, which is a composite of poly L-lactic acid and hydroxyapatite. This study aimed to compare interfragmentary compression generated by this new screw with conventional metal screws commonly used in scaphoid fracture fixation. Four small metallic screws were compared with the LG screw, using a bone model produced from rigid polyurethane foam. The screws included the Acutrak, Asnis III, Herbert and Herbert-Whipple screws. The mean maximum compression forces for the LG screw, the Asnis and the Acutrak were comparable (LG 32.3 N, Asnis 32.8 N, Acutrak 38.3 N), whereas those using the Herbert and the Herbert-Whipple screw were significantly lower (Herbert 21.8 N, Herbert-Whipple 19.9 N). The bioresorbable LG screw has been shown to have good compressive properties compared to commonly used small bone fragment compression screws.
A biomechanical evaluation of a cannulated compressive screw for use in fractures of the scaphoid.
Rankin, G; Kuschner, S H; Orlando, C; McKellop, H; Brien, W W; Sherman, R
1991-11-01
The compressive force generated by a 3.5 mm ASIF cannulated cancellous screw with a 5 mm head was compared with that generated by a standard 3.5 mm ASIF screw (6 mm head), a 2.7 mm ASIF screw (5 mm head), and a Herbert screw. The screws were evaluated in the laboratory with the use of a custom-designed load washer (transducer) to the maximum compressive force generated by each screw until failure, either by thread stripping or by head migration into the specimen. Testing was done on paired cadaver scaphoids. To minimize the variability that occurs with human bone, and because of the cost and difficulty of obtaining human tissue specimens, a study was also done on polyurethane foam simulated bones. The 3.5 cannulated screw generated greater compressive forces than the Herbert screw but less compression than the 2.7 mm and 3.5 mm ASIF cortical screws. The 3.5 mm cannulated screw offers more rigid internal fixation for scaphoid fractures than the Herbert screw and gives the added advantage of placement over a guide wire.
Hoffmann, Martin F; Burgers, Travis A; Mason, James J; Williams, Bart O; Sietsema, Debra L; Jones, Clifford B
2014-07-01
In the United States there are more than 230,000 total hip replacements annually, and periprosthetic femoral fractures occur in 0.1-4.5% of those patients. The majority of these fractures occur at the tip of the stem (Vancouver type B1). The purpose of this study was to compare the biomechanically stability and strength of three fixation constructs and identify the most desirable construct. Fifteen medium adult synthetic femurs were implanted with a hip prosthesis and were osteotomized in an oblique plane at the level of the implant tip to simulate a Vancouver type B1 periprosthetic fracture. Fractures were fixed with a non-contact bridging periprosthetic proximal femur plate (Zimmer Inc., Warsaw, IN). Three proximal fixation methods were used: Group 1, bicortical screws; Group 2, unicortical screws and one cerclage cable; and Group 3, three cerclage cables. Distally, all groups had bicortical screws. Biomechanical testing was performed using an axial-torsional testing machine in three different loading modalities (axial compression, lateral bending, and torsional/sagittal bending), next in axial cyclic loading to 10,000 cycles, again in the three loading modalities, and finally to failure in torsional/sagittal bending. Group 1 had significantly greater load to failure and was significantly stiffer in torsional/sagittal bending than Groups 2 and 3. After cyclic loading, Group 2 had significantly greater axial stiffness than Groups 1 and 3. There was no difference between the three groups in lateral bending stiffness. The average energy absorbed during cyclic loading was significantly lower in Group 2 than in Groups 1 and 3. Bicortical screw placement achieved the highest load to failure and the highest torsional/sagittal bending stiffness. Additional unicortical screws improved axial stiffness when using cable fixation. Lateral bending was not influenced by differences in proximal fixation. To treat periprosthetic fractures, bicortical screw placement should be attempted to maximize load to failure and torsional/sagittal bending stiffness. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cost-effectiveness analysis of fixation options for intertrochanteric hip fractures.
Swart, Eric; Makhni, Eric C; Macaulay, William; Rosenwasser, Melvin P; Bozic, Kevin J
2014-10-01
Intertrochanteric hip fractures are a major source of morbidity and financial burden, accounting for 7% of osteoporotic fractures and costing nearly $6 billion annually in the United States. Traditionally, "stable" fracture patterns have been treated with an extramedullary sliding hip screw whereas "unstable" patterns have been treated with the more expensive intramedullary nail. The purpose of this study was to identify parameters to guide cost-effective implant choices with use of decision-analysis techniques to model these common clinical scenarios. An expected-value decision-analysis model was constructed to estimate the total costs and health utility based on the choice of a sliding hip screw or an intramedullary nail for fixation of an intertrochanteric hip fracture. Values for critical parameters, such as fixation failure rate, were derived from the literature. Three scenarios were evaluated: (1) a clearly stable fracture (AO type 31-A1), (2) a clearly unstable fracture (A3), or (3) a fracture with questionable stability (A2). Sensitivity analysis was performed to test the validity of the model. The fixation failure rate and implant cost were the most important factors in determining implant choice. When the incremental cost for the intramedullary nail was set at the median value ($1200), intramedullary nailing had an incremental cost-effectiveness ratio of $50,000/quality-adjusted life year when the incremental failure rate of sliding hip screws was 1.9%. When the incremental failure rate of sliding hip screws was >5.0%, intramedullary nails dominated with lower cost and better health outcomes. The sliding hip screw was always more cost-effective for A1 fractures, and the intramedullary nail always dominated for A3 fractures. As for A2 fractures, the sliding hip screw was cost-effective in 70% of the cases, although this was highly sensitive to the failure rate. Sliding hip screw fixation is likely more cost-effective for stable intertrochanteric fractures (A1) or those with questionable stability (A2), whereas intramedullary nail fixation is more cost-effective for reverse obliquity fractures (A3). These conclusions are highly sensitive to the fixation failure rate, which was the major influence on the model results. Copyright © 2014 by The Journal of Bone and Joint Surgery, Incorporated.
Somberg, Andrew Max; Whiteside, William K; Nilssen, Erik; Murawski, Daniel; Liu, Wei
2016-03-01
Many types of screws, plates, and strut grafts have been utilized for ankle arthrodesis. Biomechanical testing has shown that these constructs can have variable stiffness. More recently, headless compression screws have emerged as an evolving method of achieving compression in various applications but there is limited literature regarding ankle arthrodesis. The aim of this study was to determine the biomechanical stability provided by a second generation fully threaded headless compression screw compared to a standard headed, partially threaded cancellous screw in a cadaveric ankle arthrodesis model. Twenty fresh frozen human cadaver specimens were subjected to simulated ankle arthrodesis with either three standard cancellous-bone screws (InFix 7.3mm) or with three headless compression screws (Acumed Acutrak 2 7.5mm). The specimens were subjected to cyclic loading and unloading at a rate of 1Hz, compression of 525 Newtons (N) and distraction of 20N for a total of 500 cycles using an electromechanical load frame (Instron). The amount of maximum distraction was recorded as well as the amount of motion that occurred through 1, 10, 50, 100, and 500 cycles. No significant difference (p=0.412) was seen in the amount of distraction that occurred across the fusion site for either screw. The average maximum distraction after 500 cycles was 201.9μm for the Acutrak 2 screw and 235.4μm for the InFix screw. No difference was seen throughout each cycle over time for the Acutrak 2 screw (p-value=0.988) or the InFix screw (p-value=0.991). Both the traditional InFix type screw and the second generation Acumed Acutrak headless compression screws provide adequate fixation during ankle arthrodesis under submaximal loads. There is no demonstrable difference between traditional cannulated partially threaded screws and headless compression screws studied in this model. Copyright © 2015 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.
Latt, L Daniel; Glisson, Richard R; Adams, Samuel B; Schuh, Reinhard; Narron, John A; Easley, Mark E
2015-10-01
Transverse tarsal joint arthrodesis is commonly performed in the operative treatment of hindfoot arthritis and acquired flatfoot deformity. While fixation is typically achieved using screws, failure to obtain and maintain joint compression sometimes occurs, potentially leading to nonunion. External fixation is an alternate method of achieving arthrodesis site compression and has the advantage of allowing postoperative compression adjustment when necessary. However, its performance relative to standard screw fixation has not been quantified in this application. We hypothesized that external fixation could provide transverse tarsal joint compression exceeding that possible with screw fixation. Transverse tarsal joint fixation was performed sequentially, first with a circular external fixator and then with compression screws, on 9 fresh-frozen cadaveric legs. The external fixator was attached in abutting rings fixed to the tibia and the hindfoot and a third anterior ring parallel to the hindfoot ring using transverse wires and half-pins in the tibial diaphysis, calcaneus, and metatarsals. Screw fixation comprised two 4.3 mm headless compression screws traversing the talonavicular joint and 1 across the calcaneocuboid joint. Compressive forces generated during incremental fixator foot ring displacement to 20 mm and incremental screw tightening were measured using a custom-fabricated instrumented miniature external fixator spanning the transverse tarsal joint. The maximum compressive force generated by the external fixator averaged 186% of that produced by the screws (range, 104%-391%). Fixator compression surpassed that obtainable with screws at 12 mm of ring displacement and decreased when the tibial ring was detached. No correlation was found between bone density and the compressive force achievable by either fusion method. The compression across the transverse tarsal joint that can be obtained with a circular external fixator including a tibial ring exceeds that which can be obtained with 3 headless compression screws. Screw and external fixator performance did not correlate with bone mineral density. This study supports the use of external fixation as an alternative method of generating compression to help stimulate fusion across the transverse tarsal joints. The findings provide biomechanical evidence to support the use of external fixation as a viable option in transverse tarsal joint fusion cases in which screw fixation has failed or is anticipated to be inadequate due to suboptimal bone quality. © The Author(s) 2015.
[Growth and deformity after in situ fixation of slipped capital femoral epiphysis].
Druschel, C; Placzek, R; Funk, J F
2013-08-01
For mild to moderate slipped capital femoral epiphysis (SCFE) in situ fixation is the current treatment standard. However, concerning the implant selection (screw versus k-wires) as well as the prophylactic stabilisation of the non-affected hip, controversies still exist. The aim of this study was to analyse femoral residual growth and femoral deformities after in situ fixation of SCFE either with k-wires or screws. We conducted a retrospective analysis of the radiographs of adolescents treated for SCFE in our department between 01/2003 and 02/2011. To evaluate femoral growth the articulo-trochanteric distance, centro-trochanteric distance, caput-collum-diaphyseal angle, pin-joint ratio and pin-physis ratio were determined. The femoral deformity was assessed by measuring the sphericity of the femoral head. Degenerative changes were evaluated in the final radiographs. Statistical analysis was performed concerning differences between therapeutically and prophylactically treated hips as well as stabilisations with k-wires and screws. A total of 22 patients (female : male = 14 : 8, mean age girls: 11 ± 1 years, boys: 13 ± 2 years) with 26 slipped capital femoral epiphyses was analysed. K-wires were used for fixation in 4 hips each therapeutically and prophylactically, 22 hips with SCFE and 14 non-affected hips were stabilised with screws. Treatment with screws did not lead to significantly earlier physeal closure than k-wire pinning. Regarding the femoral growth parameters a significant decrease in the articulo-trochanteric distance and CCD angle was detectable in all groups. The pin-joint ratio revealed an adequate residual growth in 58 % of the therapeutically and in 72 % of the prophylactically treated hips without significant difference between k-wires and screws. The pin-physis ratio demonstrated similar values. Regarding the femoral deformity the SCFE hips resulted in a significantly reduced sphericity, which remained unchanged during follow-up. The prophylactic stabilisation did not result in any deterioration of sphericity. The results of this study imply that further growth of the proximal femur after insertion of a sliding screw for in situ stabilisation of mild to moderate slipped capital femoral epiphysis does occur. Furthermore, an increase of deformity during follow-up through screw fixation as compared to pinning was not noticed. Hence, the assumption that screw fixation leads to permanent physeal impairment cannot be confirmed. The consideration of these results may be helpful for implant selection as well as indicating prophylactic surgery for non-affected hips. Georg Thieme Verlag KG Stuttgart · New York.
Tabata, Tomonori; Kaku, Nobuhiro; Hara, Katsutoshi; Tsumura, Hiroshi
2015-04-01
Press-fit and screw fixation are important technical factors to achieve initial stability of a cementless acetabular cup for good clinical results of total hip arthroplasty. However, how these factors affect one another in initial cup fixation remains unclear. Therefore, this study aimed to evaluate the mutual influence between press-fit and screw fixation on initial cup stability. Foam bone was subjected to exact hemispherical-shape machining to diameters of 48, 48.5 and 49 mm. A compressive force was applied to ensure seating of a 48-mm-diameter acetabular cup in the foam bone prior to testing. Screws were inserted in six different conditions and tightened in a radial direction at the same torque strength. Then, the socket was rotated with a twist-testing machine, and the torque value at the start of axial rotation between the socket and the foam bone was measured under each screw condition. The torque values for the 48-mm-diameter reaming were >20 N m higher than those for the 48.5- and 49-mm-diameter reaming in each screw condition, indicating that press-fit fixation is stronger than screw fixation. Meanwhile, torque values for the 48.5- and 49-mm-diameter reaming tended to increase with increasing the number of screws. According to our experiment, press-fit fixation of a cementless acetabular cup achieved rigid stability. Although the supplemental screws increased stability of the implant under good press-fit conditions, they showed little impact on whole-cup stability. In the case of insufficient press-fit fixation, cup stability depends on screw stability and increasing the number of additional screws increases cup stability.
LagLoc - a new surgical technique for locking plate systems.
Triana, Miguel; Gueorguiev, Boyko; Sommer, Christoph; Stoffel, Karl; Agarwal, Yash; Zderic, Ivan; Helfen, Tobias; Krieg, James C; Krause, Fabian; Knobe, Matthias; Richards, R Geoff; Lenz, Mark
2018-06-19
Treatment of oblique and spiral fractures remains challenging. The aim of this study was to introduce and investigate the new LagLoc technique for locked plating with generation of interfragmentary compression, combining the advantages of lag-screw and locking-head-screw techniques. Oblique fracture was simulated in artificial diaphyseal bones, assigned to three groups for plating with a 7-hole locking compression plate. Group I was plated with three locking screws in holes 1, 4 and 7. The central screw crossed the fracture line. In group II the central hole was occupied with a lag screw perpendicular to fracture line. Group III was instrumented applying the LagLoc technique as follows. Hole 4 was predrilled perpendicularly to the plate, followed by overdrilling of the near cortex and insertion of a locking screw whose head was covered by a holding sleeve to prevent temporarily the locking in the plate hole and generate interfragmentary compression. Subsequently, the screw head was released and locked in the plate hole. Holes 1 and 7 were occupied with locking screws. Interfragmentary compression in the fracture gap was measured using pressure sensors. All screws in the three groups were tightened with 4Nm torque. Interfragmentary compression in group I (167 ± 25N) was significantly lower in comparison to groups II (431 ± 21N) and III (379 ± 59N), p≤0.005. The difference in compression between groups II and III remained not significant (p = 0.999). The new LagLoc technique offers an alternative tool to generate interfragmentary compression with the application of locking plates by combining the biomechanical advantages of lag screw and locking screw fixations. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Tan, E S; Mat Jais, I S; Abdul Rahim, S; Tay, S C
2018-01-01
We investigated the effect of an interfragmentary gap on the final compression force using the Acutrak 2 Mini headless compression screw (length 26 mm) (Acumed, Hillsboro, OR, USA). Two blocks of solid rigid polyurethane foam in a custom jig were separated by spacers of varying thickness (1.0, 1.5, 2.0 and 2.5 mm) to simulate an interfragmentary gap. The spacers were removed before full insertion of the screw and the compression force was measured when the screw was buried 2 mm below the surface of the upper block. Gaps of 1.5 mm and 2.0 mm resulted in significantly decreased compression forces, whereas there was no significant decrease in compression force with a gap of 1 mm. An interfragmentary gap of 2.5 mm did not result in any contact between blocks. We conclude that an increased interfragmentary gap leads to decreased compression force with this screw, which may have implications on fracture healing.
A Foundation for Systems Anthropometry.
1980-12-31
List of Tables Table Page 1 Screw Axis Analysis for Hip Motion 12 2 Screw Axis Analysis for Sacroiliac Motion 12 S, 1.0 Introduction The application...Following are two examples: 1) a sample of living subjects seated in a hard-seat and 2) the hip and sacroiliac kinematics of one unembalmed cadaver. In...axes for relative motion at the hip and sacroiliac joints. Each of the three bones was targeted with three pointmarks and an axis system calculated
2014-06-26
Hip fractures are a common type of fragility fracture that afflict 293,000 Americans (over 5,000 per week) and 35,000 Canadians (over 670 per week) annually. Despite the large population impact the optimal fixation technique for low energy femoral neck fractures remains controversial. The primary objective of the FAITH study is to assess the impact of cancellous screw fixation versus sliding hip screws on rates of revision surgery at 24 months in individuals with femoral neck fractures. The secondary objective is to determine the impact on health-related quality of life, functional outcomes, health state utilities, fracture healing, mortality and fracture-related adverse events. FAITH is a multi-centre, multi-national randomized controlled trial utilizing minimization to determine patient allocation. Surgeons in North America, Europe, Australia, and Asia will recruit a total of at least 1,000 patients with low-energy femoral neck fractures. Using central randomization, patients will be allocated to receive surgical treatment with cancellous screws or a sliding hip screw. Patient outcomes will be assessed at one week (baseline), 10 weeks, 6, 12, 18, and 24 months post initial fixation. We will independently adjudicate revision surgery and complications within 24 months of the initial fixation. Outcome analysis will be performed using a Cox proportional hazards model and likelihood ratio test. This study represents major international efforts to definitively resolve the treatment of low-energy femoral neck fractures. This trial will not only change current Orthopaedic practice, but will also set a benchmark for the conduct of future Orthopaedic trials. The FAITH trial is registered at ClinicalTrials.gov (Identifier NCT00761813).
Cachia, Victor V; Culbert, Brad; Warren, Chris; Oka, Richard; Mahar, Andrew
2003-01-01
The purpose of this study was to evaluate the structural and mechanical characteristics of a new and unique titanium cortical-cancellous helical compression anchor with BONE-LOK (Triage Medical, Inc., Irvine, CA) technology for compressive internal fixation of fractures and osteotomies. This device provides fixation through the use of a distal helical anchor and a proximal retentive collar that are united by an axially movable pin (U.S. and international patents issued and pending). The helical compression anchor (2.7-mm diameter) was compared with 3.0-mm diameter titanium cancellous screws (Synthes, Paoli, PA) for pullout strength and compression in 7# and 12# synthetic rigid polyurethane foam (simulated bone matrix), and for 3-point bending stiffness. The following results (mean +/- standard deviation) were obtained: foam block pullout strength in 12# foam: 2.7-mm helical compression anchor 70 +/- 2.0 N and 3.0-mm titanium cancellous screws 37 +/- 11 N; in 7# foam: 2.7-mm helical compression anchor 33 +/- 3 N and 3.0-mm titanium cancellous screws 31 +/- 12 N. Three-point bending stiffness, 2.7-mm helical compression anchor 988 +/- 68 N/mm and 3.0-mm titanium cancellous screws 845 +/- 88 N/mm. Compression strength testing in 12# foam: 2.7-mm helical compression anchor 70.8 +/- 4.8 N and 3.0-mm titanium cancellous screws 23.0 +/- 3.1 N, in 7# foam: 2.7-mm helical compression anchor 42.6 +/- 3.2 N and 3.0-mm titanium cancellous screws 10.4 +/- 0.9 N. Results showed greater pullout strength, 3-point bending stiffness, and compression strength for the 2.7-mm helical compression anchor as compared with the 3.0-mm titanium cancellous screws in these testing models. This difference represents a distinct advantage in the new device that warrants further in vivo testing.
Possible Vascular Injury Due to Screw Eccentricity in Minimally Invasive Total Hip Arthroplasty.
Singh, Nishant Kumar; Rai, Sanjay Kumar; Rastogi, Amit
2017-01-01
Vascular injury during minimally invasive total hip arthroplasty (THA) is uncommon, yet a well-recognized and serious issue. It emerges because of non-visibility of vascular structures proximal to the pelvic bone during reaming, drilling holes, and fixing of screws. Numerous studies have found that screw fixation during cementless THA is beneficial for the initial stability of cup; yet, no anatomical guidelines support angular eccentric screw fixation. In this study, we obtained the pelvic arterial-phase computed tomographic data of thirty eight humans and reconstructed the three-dimensional models of osseous and vessel structures. We performed the surgical simulation to fix these structures with cementless cups and screws with angular eccentricities. The effect of screw eccentricities (angular eccentricities of ±17° and ±34°) on the vascular injury was determined. Measurement between screw and adjoining vessels was performed and analyzed statistically to ascertain a comparative risk study for blood vessels that are not visible during surgery. Authors similarly discussed the significant absence of appreciation of quadrant systems proposed by Wasielewski et al . on eccentric screws. Adjustment of quadrant systems provided by Wasielewski et al . is required for acetabular implants with eccentric holes for fixation of acetabular screws.
Hu, Xin-Jia; Wang, Hua
2017-01-01
The aim of the present study was to investigate the biomechanical effects of varying the length of a limited contact-dynamic compression plate (LC-DCP) and the number and position of screws on middle tibial fractures, and to provide biomechanical evidence regarding minimally invasive plate osteosynthesis (MIPO). For biomechanical testing, 60 tibias from cadavers (age at mortality, 20–40 years) were used to create middle and diagonal fracture models without defects. Tibias were randomly grouped and analyzed by biomechanic and three-dimensional (3D) finite element analysis. The differences among LC-DCPs of different lengths (6-, 10- and 14-hole) with 6 screws, 14-hole LC-DCPs with different numbers of screws (6, 10 and 14), and 14-hole LC-DCPs with 6 screws at different positions with regard to mechanical characteristics, including compressing, torsion and bending, were examined. The 6-hole LC-DCP had greater vertical compression strain compared with the 10- and 14-hole LC-DCPs (P<0.01), and the 14-hole LC-DCP had greater lateral strain than the 6- and 10-hole LC-DCPs (P<0.01). Furthermore, significant differences in torque were observed among the LC-DPs of different lengths (P<0.01). For 14-hole LC-DCPs with different numbers of screws, no significant differences in vertical strain, lateral strain or torque were detected (P>0.05). However, plates with 14 screws had greater vertical strain compared with those fixed with 6 or 10 screws (P<0.01). For 4-hole LC-DCPs with screws at different positions, vertical compression strain values were lowest for plates with screws at positions 1, 4, 7, 8, 11 and 14 (P<0.01). The lateral strain values and vertical strain values for plates with screws at positions 1, 3, 6, 9, 12 and 14 were significantly lower compared with those at the other positions (P<0.01), and torque values were also low. Thus, the 14-hole LC-DCP was the most stable against vertical compression, torsion and bending, and the 6-hole LC-DCP was the least stable. However, the use of 14 screws with a 14-hole LC-DCP provided less stability against bending than did 6 or 10 screws. Furthermore, fixation with distributed screws, in which some screws were close to the fracture line, provided good stability against compression and torsion, while fixation with screws at the ends of the LC-DCP provided poor stability against bending, compressing and torsion. PMID:28781632
Fracture Gap Reduction With Variable-Pitch Headless Screws.
Roebke, Austin J; Roebke, Logan J; Goyal, Kanu S
2018-04-01
Fully threaded, variable-pitch, headless screws are used in many settings in surgery and have been extensively studied in this context, especially in regard to scaphoid fractures. However, it is not well understood how screw parameters such as diameter, length, and pitch variation, as well as technique parameters such as depth of drilling, affect gap closure. Acutrak 2 fully threaded variable-pitch headless screws of various diameters (Standard, Mini, and Micro) and lengths (16-28 mm) were inserted into polyurethane blocks of "normal" and "osteoporotic" bone model densities using a custom jig. Three drilling techniques (drill only through first block, 4 mm into second block, or completely through both blocks) were used. During screw insertion, fluoroscopic images were taken and later analyzed to measure gap reduction. The effect of backing the screw out after compression was evaluated. Drilling at least 4 mm past the fracture site reduces distal fragment push-off compared with drilling only through the proximal fragment. There were no significant differences in gap closure in the normal versus the osteoporotic model. The Micro screw had a smaller gap closure than both the Standard and the Mini screws. After block contact and compression with 2 subsequent full forward turns, backing the screw out by only 1 full turn resulted in gapping between the blocks. Intuitively, fully threaded headless variable-pitch screws can obtain compression between bone fragments only if the initial gap is less than the gap closed. Gap closure may be affected by drilling technique, screw size, and screw length. Fragment compression may be immediately lost if the screw is reversed. We describe characteristics of variable-pitch headless screws that may assist the surgeon in screw choice and method of use. Copyright © 2018 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Lewis, Gregory S.; Caroom, Cyrus T.; Wee, Hwabok; Jurgensmeier, Darin; Rothermel, Shane D.; Bramer, Michelle A.; Reid, J. Spence
2015-01-01
Objectives The biomechanical difficulty in fixation of a Vancouver B1 periprosthetic fracture is purchase of the proximal femoral segment in the presence of the hip stem. Several newer technologies provide the ability to place bicortical locking screws tangential to the hip stem with much longer lengths of screw purchase compared to unicortical screws. This biomechanical study compares the stability of two of these newer constructs to previous methods. Methods Thirty composite synthetic femurs were prepared with cemented hip stems. The distal femur segment was osteotomized, and plates were fixed proximally with either: (1) cerclage cables; (2) locked unicortical screws; (3) a composite of locked screws and cables; or tangentially directed bicortical locking screws using either (4) a stainless steel LCP system with a Locking Attachment Plate (Synthes), or (5) a titanium alloy NCB system (Zimmer). Specimens were tested to failure in either axial or torsional quasi-static loading modes (n = 3) after 20 moderate load pre-conditioning cycles. Stiffness, maximum force, and failure mechanism were determined. Results Bicortical constructs resisted higher (by an average of at least 27%) maximum forces than the other three constructs in torsional loading (p<0.05). Cables constructs exhibited lower maximum force than all other constructs, in both axial and torsional loading. The bicortical titanium construct was stiffer than the bicortical stainless steel construct in axial loading. Conclusions Proximal fixation stability is likely improved with the use of bicortical locking screws as compared to traditional unicortical screws and cable techniques. In this study with a limited sample size, we found the addition of cerclage cables to unicortical screws may not offer much improvement in biomechanical stability of unstable B1 fractures. PMID:26053467
2014-01-01
Background Hip fractures are a common type of fragility fracture that afflict 293,000 Americans (over 5,000 per week) and 35,000 Canadians (over 670 per week) annually. Despite the large population impact the optimal fixation technique for low energy femoral neck fractures remains controversial. The primary objective of the FAITH study is to assess the impact of cancellous screw fixation versus sliding hip screws on rates of revision surgery at 24 months in individuals with femoral neck fractures. The secondary objective is to determine the impact on health-related quality of life, functional outcomes, health state utilities, fracture healing, mortality and fracture-related adverse events. Methods/Design FAITH is a multi-centre, multi-national randomized controlled trial utilizing minimization to determine patient allocation. Surgeons in North America, Europe, Australia, and Asia will recruit a total of at least 1,000 patients with low-energy femoral neck fractures. Using central randomization, patients will be allocated to receive surgical treatment with cancellous screws or a sliding hip screw. Patient outcomes will be assessed at one week (baseline), 10 weeks, 6, 12, 18, and 24 months post initial fixation. We will independently adjudicate revision surgery and complications within 24 months of the initial fixation. Outcome analysis will be performed using a Cox proportional hazards model and likelihood ratio test. Discussion This study represents major international efforts to definitively resolve the treatment of low-energy femoral neck fractures. This trial will not only change current Orthopaedic practice, but will also set a benchmark for the conduct of future Orthopaedic trials. Trial registration The FAITH trial is registered at ClinicalTrials.gov (Identifier NCT00761813). PMID:24965132
Arlt, Stephan; Noser, Hansrudi; Wienke, Andreas; Radetzki, Florian; Hofmann, Gunther Olaf; Mendel, Thomas
2018-05-21
Acetabular fracture surgery is directed toward anatomical reduction and stable fixation to allow for the early functional rehabilitation of an injured hip joint. Recent biomechanical investigations have shown the superiority of using an additional screw in the infraacetabular (IA) region, thereby transfixing the separated columns to strengthen the construct by closing the periacetabular fixation frame. However, the inter-individual existence and variance concerning secure IA screw corridors are poorly understood. This computer-aided 3-D radiomorphometric study examined 124 CT Digital Imaging and Communications in Medicine (DICOM) datasets of intact human pelves (248 acetabula) to visualize the spatial IA corridors as the sum of all intraosseous screw positions. DICOM files were pre-processed using the Amira® 4.2 visualization software. Final corridor computation was accomplished using a custom-made software algorithm. The volumetric measurement data of each corridor were calculated for further statistical analyses. Correlations between the volumetric values and the biometric data were investigated. Furthermore, the influence of hip dysplasia on the IA corridor configuration was analyzed. The IA corridors consistently showed a double-cone shape with the isthmus located at the acetabular fovea. In 97% of male and 91% of female acetabula, a corridor for a 3.5-mm screw could be found. The number of IA corridors was significantly lower in females for screw diameters ≥ 4.5 mm. The mean 3.5-mm screw corridor volume was 16 cm 3 in males and 9.2 cm 3 in female pelves. Corridor volumes were significantly positively correlated with body height and weight and with the diameter of Köhler's teardrop on standard AP pelvic X-rays. No correlation was observed between hip dysplasia and the IA corridor extent. IA corridors are consistently smaller in females. However, 3.5-mm small fragment screws may still be used as the standard implant because sex-specific differences are significant only with screw diameters ≥ 4.5 mm. Congenital hip dysplasia does not affect secure IA screw insertion. The described method allows 3-D shape analyses with highly reliable results. The visualization of secure IA corridors may support the spatial awareness of surgeons. Volumetric data allow the reliable assessment of individual IA corridors using standard AP X-ray views, which aids preoperative planning.
Possible Vascular Injury Due to Screw Eccentricity in Minimally Invasive Total Hip Arthroplasty
Singh, Nishant Kumar; Rai, Sanjay Kumar; Rastogi, Amit
2017-01-01
Background: Vascular injury during minimally invasive total hip arthroplasty (THA) is uncommon, yet a well-recognized and serious issue. It emerges because of non-visibility of vascular structures proximal to the pelvic bone during reaming, drilling holes, and fixing of screws. Numerous studies have found that screw fixation during cementless THA is beneficial for the initial stability of cup; yet, no anatomical guidelines support angular eccentric screw fixation. Materials and Methods: In this study, we obtained the pelvic arterial-phase computed tomographic data of thirty eight humans and reconstructed the three-dimensional models of osseous and vessel structures. We performed the surgical simulation to fix these structures with cementless cups and screws with angular eccentricities. Results: The effect of screw eccentricities (angular eccentricities of ±17° and ±34°) on the vascular injury was determined. Measurement between screw and adjoining vessels was performed and analyzed statistically to ascertain a comparative risk study for blood vessels that are not visible during surgery. Conclusion: Authors similarly discussed the significant absence of appreciation of quadrant systems proposed by Wasielewski et al. on eccentric screws. Adjustment of quadrant systems provided by Wasielewski et al. is required for acetabular implants with eccentric holes for fixation of acetabular screws. PMID:28790474
Cup press fit in uncemented THA depends on sex, acetabular shape, and surgical technique.
García-Rey, Eduardo; García-Cimbrelo, Eduardo; Cruz-Pardos, Ana
2012-11-01
Uncemented press-fit cups provide bone fixation in primary THA, but the use of screws is sometimes necessary to achieve primary stability of the socket. However, it is unclear whether and when screws should be used. We analyzed the factors related to screw use with a press-fit uncemented cup and assessed whether screw use is associated with the same rates of loosening and revision as a press-fit technique. We retrospectively reviewed 248 patients who underwent THA using the same prosthetic design. Eighty-eight hips had screws to achieve primary cup fixation (Group 1), and 189 did not (Group 2). Mean age was 50 years (range, 14-73 years). We analyzed factors related to the patient, acetabular type, and reconstruction of the rotation center of the hip. Minimum followup was 5 years (mean, 8.9 years; range, 5-12 years). We found higher screw use in women, patients with less physical activity, Acetabular Types A or C, and a distance from the center of the prosthetic femoral head to the normal center of rotation of more than 3 mm. There were four revisions in Group 1 and five in Group 2. Eight hips had radiographic loosening in Group 1 and nine in Group 2. Cups with a postoperative abduction angle of more than 50° had a higher risk for loosening. Press fit was achieved less frequently in women and patients with Acetabular Types A or C and less physical activity; a closer distance to the normal center of rotation decreased screw use. Screw use to augment fixation achieved survival similar to that of a press-fit cup. Level II, prognostic study. See Instructions for Authors for a complete description of levels of evidence.
Guan, Mingqiang; Zhou, Guanming; Li, Xue
2018-04-01
To assess the effects of a technique of cup blocking screws combined with impaction bone grafting during total hip arthroplasty (THA) for patients with developmental dysplasia of the hip (DDH). From August 2011 to July 2015, 53 patients (59 hips) with DDH in our hospital were treated with THA using the technique of cup blocking screws combined with impaction particulate bone grafting. These patients were prospectively followed, and the clinical and imaging results were collected. Harris hip score (HHS) was raised from 41.24 before surgery to 91.49 at the latest follow-up (p less than 0.001). Length discrepancy (LLD) was reduced from 28.97 mm before surgery to 6.08 mm after surgery (p less than 0.001). No loosening of the cup was detected at the last follow-up. The differences were insignificant in cup inclination and rate of cup coverage among the 3 groups of Crowe type II, type III, and type IV DDH (p greater than 0.05). The technique of cup blocking screws combined with impaction particulate bone grafting is simple and reliable, and it not only simplifies the attainment of initial stability, but also strengthens the mid-term to long-term stability during THA in DDH.
Egli, R J; Keel, M J B; Cullmann, J L; Bastian, J D
2017-01-01
Acetabular fractures involving predominantly the anterior column associated with a disruption of the quadrilateral surface can be treated with instrumentation implementing the stabilization of the quadrilateral surface. The recently introduced suprapectineal quadrilateral buttress plate is specifically designed to prevent secondary medial subluxation of the femoral head, especially in elderly patients with reduced ability for partial weight bearing. Whereas there are guidelines available for safe screw fixation for the anterior and posterior columns, there might be a concern for intra-articular placement of screws placed through the infrapectineal part of the quadrilateral buttress plate. Within this report we analyzed retrospectively screw placement in 30 plates in postoperative CT scans using algorithms for metal artifact reduction. None of the screws of the buttress plate penetrated the hip joint. We describe the placement, length, and spatial orientation of the screws used for fracture fixation and suggest that the use of intraoperative image intensifiers with a combined inlet-obturator view of 30-45° best projects the screws and the hip joint. Preoperative knowledge of approximate screw placement and information for accurate intraoperative imaging may contribute to safe acetabular fracture fixation and may reduce operating time and limit radiation exposure to the patient and the personnel. This trial is registered with KEK-BE: 266/2014.
Effects of abutment screw coating on implant preload.
Park, Jae-Kyoung; Choi, Jin-Uk; Jeon, Young-Chan; Choi, Kyung-Soo; Jeong, Chang-Mo
2010-08-01
The aim of the present study was to investigate the effects of tungsten carbide carbon (WC/CTa) screw surface coating on abutment screw preload in three implant connection systems in comparison to noncoated titanium alloy (Ta) screws. Preload of WC/CTa abutment screws was compared to noncoated Ta screws in three implant connection systems. The differences in preloads were measured in tightening rotational angle, compression force, initial screw removal torque, and postload screw removal torque after 1 million cyclic loads. Preload loss percent was calculated to determine the efficacy of maintaining the preload of two abutment screw types in relation to implant connection systems. WC/CTa screws provided 10 degrees higher tightening rotational angle than Ta screws in all three connection systems. This difference was statistically significant (p < 0.05). External-hex butt joint implant connections had a higher compression force than the two internal conical implant connections. WC/CTa screws provided a statistically significantly higher compression force than Ta screws in all three implant connections (p < 0.05). Ta screws required statistically higher removal torque than WC/CTa screws in all three implant connections (p < 0.05); however, Ta screws needed statistically lower postload removal torque than WC/CTa screws in all three implant connections (p < 0.05). Ta screws had a statistically higher preload loss percent than WC/CTa screws in all three implant connections (p < 0.05), indicating that WC/CTa screws were superior in maintaining the preload than Ta screws. Within the limits of present study, the following conclusions were made: (1) WC/CTa screws provided higher preload than noncoated Ta screws in all three implant connection systems. (2) The initial removal torque for Ta screws required higher force than WC/CTa screws, whereas postload removal torque for Ta screws was lower than WC/CTa screws. Calculated Ta screw preload loss percent was higher than for WC/CTa screws, suggesting that WC/CTa screws were more effective in maintaining the preload than Ta screws. (3) Internal conical connections were more effective in maintaining the screw preload in cyclic loads than external-hex butt joint connections.
Aicale, Rocco; Maffulli, Nicola
2018-05-02
To ascertain whether the tip-apex distance (TAD), calcar referenced TAD (CalTAD), and the sum of both (TADcalTAD) are predictive measurements of mobilisation of the cephalic screw in patients with trochanteric hip fractures. Between 2014 and 2015, 68 patients (mean age 86 years, 45 females, 23 males) with a trochanteric hip fracture underwent intramedullary nailing. The TAD and CalTAD were measured, and for each parameter, we calculated sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV). There is evidence of a statistically significant association between a TAD and CalTAD greater than 25 mm and a TADcalTAD greater than 50 mm and mobilisation of the cephalic screw. All measurements have similar sensitivity, but the TAD presents the highest specificity (p < 0.01). To avoid the risk of mobilisation of the cephalic screw and possible subsequent failure of the construct, surgeons should strive for a TAD and CalTAD less than 25 mm and a TADcalTAD less than 50 mm when using intramedullary fixation.
Walton, N P; Wynn-Jones, H; Ward, M S; Wimhurst, J A
2005-11-01
The effect of femoral neck-shaft angle and implant type on the accuracy of lag screw placement in extra-capsular proximal femoral fracture fixation was investigated. Radiographs of all extra-capsular proximal femoral fractures seen in one unit over 18 months were reviewed. Of 399 cases, 307 (237 female, 70 male) were included in the study as they had no contra-lateral proximal femoral metal work. Femoral neck-shaft angle (NSA) of the uninjured hip and magnification adjusted tip-apex distance (TAD) of femoral head lag screw were measured. Type of fixation implant was 135 degrees classic hip screw (CHS) (n=144) or 130 degrees intra-medullary hip screw (IMHS) (n=163). Mean contra-lateral NSA was 130.2 degrees (112.9--148 degrees ) and 64 patients (58 female, 6 male) had a NSA <125 degrees . Mean adjusted TAD was 18.7 mm (5.8--43.8mm) and 88.9% of cases had a TAD of less than 25 mm. TAD values were significantly greater using an IMHS if NSA was <125 degrees than if NSA was >125 degrees (p=0.028). This was not the case with the CHS. The use of the 130 degrees -IMHS in patients with a NSA <125 degrees leads to poorer lag screw placement than if NSA >125 degrees and caution is advocated when using this device in such cases.
Method for preventing jamming conditions in a compression device
Williams, Paul M.; Faller, Kenneth M.; Bauer, Edward J.
2002-06-18
A compression device for feeding a waste material to a reactor includes a waste material feed assembly having a hopper, a supply tube and a compression tube. Each of the supply and compression tubes includes feed-inlet and feed-outlet ends. A feed-discharge valve assembly is located between the feed-outlet end of the compression tube and the reactor. A feed auger-screw extends axially in the supply tube between the feed-inlet and feed-outlet ends thereof. A compression auger-screw extends axially in the compression tube between the feed-inlet and feed-outlet ends thereof. The compression tube is sloped downwardly towards the reactor to drain fluid from the waste material to the reactor and is oriented at generally right angle to the supply tube such that the feed-outlet end of the supply tube is adjacent to the feed-inlet end of the compression tube. A programmable logic controller is provided for controlling the rotational speed of the feed and compression auger-screws for selectively varying the compression of the waste material and for overcoming jamming conditions within either the supply tube or the compression tube.
Nyland, Mark A; Lanting, Brent A; Nikolov, Hristo N; Somerville, Lyndsay E; Teeter, Matthew G; Howard, James L
2016-12-01
It is common practice to burr custom holes in revision porous metal cups for screw insertion. The objective of this study was to determine how different hole types affect a surgeon's sense of screw fixation. Porous revision cups were prepared with pre-drilled and custom burred holes. Cups were held in place adjacent to synthetic bone material of varying density. Surgeons inserted screws through the different holes and materials. Surgeon subjective rating, compression, and torque was recorded. The torque achieved was greater ( p = 0.002) for screws through custom holes than pre-fabricated holes in low and medium density material, with no difference for high density. Peak compression was greater ( p = 0.026) through the pre-fabricated holes only in high density material. Use of burred holes affects the torque generated, and may decrease the amount of cup-acetabulum compression achieved.
Kroeber, Markus W; Rovinsky, David; Haskell, Andrew; Heilmann, Moira; Llotz, Jeff; Otsuka, Norman
2002-06-01
This study compared cannulated 4.5-mm bioabsorbable screws made of self-reinforced poly-levolactic acid to cannulated 4.5-mm steel and titanium screws for resistance to shear stress and ability to generate compression in a polyurethane foam model of slipped capital femoral epiphysis fixation. The maximum shear stress resisted by the three screw types was similar (self-reinforced poly-levolactic acid 371 +/- 146 MPa, steel 442 +/- 43 MPa, and titanium 470 +/- 91 MPa). The maximum compression generated by both the self-reinforced poly-levolactic acid screw (68.5 +/- 3.3 N) and the steel screw (63.3 +/- 5.9 N) was greater than that for the titanium screw (3 +/- 1.4 N, P <.05). These data suggest cannulated self-reinforced poly-levolactic acid screws can be used in the treatment of slipped capital femoral epiphysis because of their sufficient biomechanical strength.
Shin, Chang Ho; Hong, Wan Kee; Lee, Doo Jae; Yoo, Won Joon; Choi, In Ho; Cho, Tae-Joon
2017-11-14
The purpose of this study was to evaluate the radiologic outcome of percutaneous medial hemi-epiphysiodesis using a transphyseal screw for the management of caput valgum associated with developmental dysplasia of the hip (DDH). Eighteen hips (18 patients) having caput valgum treated with screw hemi-epiphysiodesis were followed for more than 2 years, and were included in this study. The mean age at the time of the index operation was 8.3 years (range, 4.3 to 10.7 years) and age at the latest follow-up was 12.2 years (range, 9.4 to 16.4 years). The screw in 5 hips was changed into a longer one at postoperative 21.8 months (range, 14 to 29 months) because the proximal femur outgrew the screw. The screws in 11 hips were removed at the mean age of 10.9 years (range, 8.0 to 14.5 years). We retrospectively analyzed the change in various radiologic parameters over time. The mean Hilgenreiner-epiphyseal angle (HEA) of the operated side was 5.1 ± 11.3° preoperatively, and increased to 20.6 ± 11.3° at the latest follow-up (p = 0.001). The mean difference of the HEA between the operated and contralateral sides was 16.9 ± 15.1° preoperatively, which decreased to 2.4 ± 12.4° at the latest follow-up (p = 0.008). The mean articulo-trochanteric distance of the operated side, which was 3.2 ± 5.5 mm longer than that of the contralateral side preoperatively, became 5.6 ± 9.1 mm shorter at the latest follow-up (p = 0.001). The ratio of femoral neck length of the operated side to that of the contralateral side decreased over the follow-up period. Acetabular shape as measured by the Sharp angle and acetabular roof angle and femoral head coverage as measured by lateral center-edge angle did not change significantly by the index operation. The ratio of medial joint space width of the operated side to that of the contralateral side did not change significantly. Screw medial hemi-epiphysiodesis can effectively correct caput valgum associated with DDH. However, this technique remains coxa brevis and does not seem to significantly affect acetabular morphology or reduce subluxation.
Boner, Vanessa; Kuhn, Philipp; Mendel, Thomas; Gisep, Armando
2009-08-01
The use of polymethylmethacrylate (PMMA) bone cement to augment hip screws reduces cut-out risk but is associated with an exothermic reaction. This in vitro investigation evaluated the risk of thermal necrosis when augmenting the implant purchase with PMMA. A pilot study analyzed the effects of different PMMA layer thicknesses on temperatures around an implant. The main study used either 3.0 or 6.0 cc PMMA for hip screw augmentation in human femoral heads. The risk of thermal necrosis was estimated according to critical values reported in literature. Highest temperatures were measured inside the PMMA with a significant drop of average maximum temperatures from the center of the PMMA to the PMMA/bone interface. Risk of thermal necrosis exists with PMMA layer thicknesses greater than 5.0 mm. In the main study, we found no risk of thermal necrosis at the PMMA/bone interface or in the surrounding bone, neither with 3.0 nor 6.0 cc PMMA. The results of the two studies were consistent regarding average peak temperatures related to associated cement layer thicknesses. The results of this in vitro study reduce objections concerning the risk of thermal necrosis when augmenting cancellous bone around hip screws with up to 6.0 cc PMMA.
A comparison of screw insertion torque and pullout strength.
Ricci, William M; Tornetta, Paul; Petteys, Timothy; Gerlach, Darin; Cartner, Jacob; Walker, Zakiyyah; Russell, Thomas A
2010-06-01
Pullout strength of screws is a parameter used to evaluate plate screw fixation strength. However, screw fixation strength may be more closely related to its ability to generate sufficient insertion because stable nonlocked plate-screw fracture fixation requires sufficient compression between plate and bone such that no motion occurs between the plate and bone under physiological loads. Compression is generated by tightening of screws. In osteoporotic cancellous bone, sufficient screw insertion torque may not be generated before screw stripping. The effect of screw thread pitch on generation of maximum insertion torque (MIT) and pullout strength (POS) was investigated in an osteoporotic cancellous bone model and the relationship between MIT and POS was analyzed. Stainless steel screws with constant major (5.0 mm) and minor (2.7 mm) diameters but with varying thread pitches (1, 1.2, 1.5, 1.6, and 1.75 mm) were tested for MIT and POS in a validated osteoporotic surrogate for cancellous bone (density of 160 kg/m(3) [10 lbs/ft(3)]). MIT was measured with a torque-measuring hex driver for screws inserted through a one-third tubular plate. POS was measured after insertion of screws to a depth of 20 mm based on the Standard Specification and Test Methods for Metallic Medical Bone Screws (ASTM F 543-07). Five screws were tested for each failure mode and screw design. The relationship between MIT and compressive force between the plate and bone surrogate was evaluated using pressure-sensitive film. There was a significant difference in mean MIT based on screw pitch (P < 0.0001), whereas POS did not show statistically significant differences among the different screw pitches (P = 0.052). Small screw pitches (1.0 mm and 1.2 mm) had lower MIT and were distinguished from large pitches (1.5 mm, 1.6 mm, and the 1.75 mm) with higher MIT. For POS, only the 1-mm and 1.6-mm pitch screws were found to be different from each other. Linear regression analysis of MIT revealed a moderate correlation to the screw pitch (R(2) = 0.67, P < 0.0001), whereas the analysis of POS suggested no correlation to the screw pitch (R(2) = 0.28, P = 0.006). Pearson correlation analysis indicated no correlation between MIT and POS (P = 0.069, r = -0.37). A linear relationship of increased compression between the plate and bone surrogate was found for increasing screw torque (R(2) = 0.97). These results indicate that the ability of different screw designs to generate high screw insertion torque in a model of osteoporotic cancellous bone is unrelated to their pullout strength. Therefore, extrapolation of results for POS to identify optimal screw design for osteoporotic bone may not be valid. Screw designs that optimize MIT should be sought for fixation in osteoporotic bone.
Compression device for feeding a waste material to a reactor
Williams, Paul M.; Faller, Kenneth M.; Bauer, Edward J.
2001-08-21
A compression device for feeding a waste material to a reactor includes a waste material feed assembly having a hopper, a supply tube and a compression tube. Each of the supply and compression tubes includes feed-inlet and feed-outlet ends. A feed-discharge valve assembly is located between the feed-outlet end of the compression tube and the reactor. A feed auger-screw extends axially in the supply tube between the feed-inlet and feed-outlet ends thereof. A compression auger-screw extends axially in the compression tube between the feed-inlet and feed-outlet ends thereof. The compression tube is sloped downwardly towards the reactor to drain fluid from the waste material to the reactor and is oriented at generally right angle to the supply tube such that the feed-outlet end of the supply tube is adjacent to the feed-inlet end of the compression tube. A programmable logic controller is provided for controlling the rotational speed of the feed and compression auger-screws for selectively varying the compression of the waste material and for overcoming jamming conditions within either the supply tube or the compression tube.
A clinical evaluation of alternative fixation techniques for medial malleolus fractures.
Barnes, Hayley; Cannada, Lisa K; Watson, J Tracy
2014-09-01
Medial malleolus fractures have traditionally been managed using partially threaded screws and/or Kirschner wire fixation. Using these conventional techniques, a non-union rate of as high as 20% has been reported. In addition too many patients complaining of prominent hardware as a source of pain post-fixation. This study was designed to assess the outcomes of medial malleolar fixation using a headless compression screw in terms of union rate, the need for hardware removal, and pain over the hardware site. Saint Louis University and Mercy Medical Center, Level 1 Trauma Centers, St. Louis, MO. After IRB approval, we used billing records to identify all patients with ankle fractures involving the medial malleolus. Medical records and radiographs were reviewed to identify patients with medial malleolar fractures treated with headless compression screw fixation. Our inclusion criteria included follow-up until full weight bearing and a healed fracture. Follow-up clinical records and radiographs were reviewed to determine union, complication rate and perception of pain over the site of medial malleolus fixation. Sixty-four ankles were fixed via headless compression screws and 44 had adequate follow-up for additional evaluation. Seven patients had isolated medial malleolar fractures, 23 patients had bimalleolar fractures, and 14 patients had trimalleolar fractures. One patient (2%) required hardware removal due to cellulitis. One patient (2%) had a delayed union, which healed without additional intervention. Ten patients (23%) reported mild discomfort to palpation over the medial malleolus. The median follow-up was 35 weeks (range: 12-208 weeks). There were no screw removals for painful hardware and no cases of non-union. Headless compression screws provide effective compression of medial malleolus fractures and result in good clinical outcomes. The headless compression screw is a beneficial alternative to the conventional methods of medial malleolus fixation. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Granett, D.
1985-01-01
Steadying screws with fingers unnecessary. Crimp in uncompressed spring wire slightly protrudes from one facet of Allen wrench. Compressed spring retains Allen screw. Tool used with Allen-head screws in cramped spaces with little or no room for fingers to hold fastener while turned by wrench.
Feasibility of detecting orthopaedic screw overtightening using acoustic emission.
Pullin, Rhys; Wright, Bryan J; Kapur, Richard; McCrory, John P; Pearson, Matthew; Evans, Sam L; Crivelli, Davide
2017-03-01
A preliminary study of acoustic emission during orthopaedic screw fixation was performed using polyurethane foam as the bone-simulating material. Three sets of screws, a dynamic hip screw, a small fragment screw and a large fragment screw, were investigated, monitoring acoustic-emission activity during the screw tightening. In some specimens, screws were deliberately overtightened in order to investigate the feasibility of detecting the stripping torque in advance. One set of data was supported by load cell measurements to directly measure the axial load through the screw. Data showed that acoustic emission can give good indications of impending screw stripping; such indications are not available to the surgeon at the current state of the art using traditional torque measuring devices, and current practice relies on the surgeon's experience alone. The results suggest that acoustic emission may have the potential to prevent screw overtightening and bone tissue damage, eliminating one of the commonest sources of human error in such scenarios.
Comparison of the compressive strength of 3 different implant design systems.
Pedroza, Jose E; Torrealba, Ysidora; Elias, Augusto; Psoter, Walter
2007-01-01
The aims of this study were twofold: to compare the static compressive strength at the implant-abutment interface of 3 design systems and to describe the implant abutment connection failure mode. A stainless steel holding device was designed to align the implants at 30 degrees with respect to the y-axis. Sixty-nine specimens were used, 23 for each system. A computer-controlled universal testing machine (MTS 810) applied static compression loading by a unidirectional vertical piston until failure. Specimens were evaluated macroscopically for longitudinal displacement, abutment looseness, and screw and implant fracture. Data were analyzed by analysis of variance (ANOVA). The mean compressive strength for the Unipost system was 392.5 psi (SD +/-40.9), for the Spline system 342.8 psi (SD+/-25.8), and for the Screw-Vent system 269.1 psi (SD+/-30.7). The Unipost implant-abutment connection demonstrated a statistically significant superior mechanical stability (P < or = .009) compared with the Spline implant system. The Spline implant system showed a statistically significant higher compressive strength than the Screw-Vent implant system (P < or =.009). Regarding failure mode, the Unipost system consistently broke at the same site, while the other systems failed at different points of the connection. The Unipost system demonstrated excellent fracture resistance to compressive forces; this resistance may be attributed primarily to the diameter of the abutment screw and the 2.5 mm counter bore, representing the same and a unique piece of the implant. The Unipost implant system demonstrated a statistically significant superior compressive strength value compared with the Spline and Screw-Vent systems, at a 30 degrees angulation.
Sod, Gary A; Riggs, Laura M; Mitchell, Colin F; Hubert, Jeremy D; Martin, George S
2010-01-01
To compare in vitro monotonic biomechanical properties of an axial 3-hole, 4.5 mm narrow dynamic compression plate (DCP) using 5.5 mm cortical screws in conjunction with 2 abaxial transarticular 5.5 mm cortical screws inserted in lag fashion (DCP-TLS) with 3 parallel transarticular 5.5 mm cortical screws inserted in lag fashion (3-TLS) for the equine proximal interphalangeal (PIP) joint arthrodesis. Paired in vitro biomechanical testing of 2 methods of stabilizing cadaveric adult equine forelimb PIP joints. Cadaveric adult equine forelimbs (n=15 pairs). For each forelimb pair, 1 PIP joint was stabilized with an axial 3-hole narrow DCP (4.5 mm) using 5.5 mm cortical screws in conjunction with 2 abaxial transarticular 5.5 mm cortical screws inserted in lag fashion and 1 with 3 parallel transarticular 5.5 mm cortical screws inserted in lag fashion. Five matching pairs of constructs were tested in single cycle to failure under axial compression, 5 construct pairs were tested for cyclic fatigue under axial compression, and 5 construct pairs were tested in single cycle to failure under torsional loading. Mean values for each fixation method were compared using a paired t-test within each group with statistical significance set at P<.05. Mean yield load, yield stiffness, and failure load under axial compression and torsion, single cycle to failure, of the DCP-TLS fixation were significantly greater than those of the 3-TLS fixation. Mean cycles to failure in axial compression of the DCP-TLS fixation was significantly greater than that of the 3-TLS fixation. The DCP-TLS was superior to the 3-TLS in resisting the static overload forces and in resisting cyclic fatigue. The results of this in vitro study may provide information to aid in the selection of a treatment modality for arthrodesis of the equine PIP joint.
Kröber, M W; Rovinsky, D; Lotz, J; Carstens, C; Otsuka, N Y
2002-06-01
Bioabsorbable materials are well suited for fixation of slipped capital femoral epiphysis (SCFE) as they are resorbable, compatible with magnetic resonance imaging, and well tolerated by the pediatric population. We compared cannulated 4.5-mm bioabsorbable screws made of self-reinforced polylevolactic acid (SR-PLLA) to cannulated 4.5-mm steel and titanium screws for their resistance to shear stress and ability to generate compression in a polyurethane foam model of SCFE fixation. The maximum shear stress resisted by the three screw types was similar (SR-PLLA 371 +/- 146, steel 442 +/- 43, titanium 470 +/- 91 MPa, NS). The maximum compression generated by both the SR-PLLA screw (68.5 +/- 3.3 N) and the steel screw (63.3 +/- 5.9 N) was greater than that for the titanium screw (3.0 +/- 1.4 N, p < 0.05). These data suggest that cannulated SR-PLLA screws have sufficient biomechanical strength to be used in the treatment of SCFE.
Khani, Ghulam Mustafa Kaim; Hafeez, Kamran; Bux, Muhammad; Rasheed, Nusrat; Ahmed, Naveed; Anjum, M Perwez
2017-01-01
To present the clinical outcome of patients with neglected femur neck fracture treated with fibular bone graft. During May 2010-February 2013, 15 patients younger than 35 years of age with neglected fracture neck of femur were managed with non-vascularized fibular graft and cannulated screws. Fractures were classified according to Sandhu Classification. Hip function was assessed using Harris hip score. Fifteen patients with mean age of 28.67 years were managed. Mean period of delay from injury to presentation was 3.07 months. Mean follow-up was 18.5 months. Union was achieved in 13 cases. 2 patients developed nonunion with progression of avascular necrosis (AVN). Patients with healed fracture did not show radiological signs of AVN till the past follow-up. Functional status was evaluated at 6 months according to Harris hip score and was poor in 2 patients, fair in 2 patients, good in 6 patients, and excellent in 5 patients. Fibular graft along with two cancellous screws proved to be an effective technique in our cases with neglected femur neck fractures.
Stress analysis of implant-bone fixation at different fracture angle
NASA Astrophysics Data System (ADS)
Izzawati, B.; Daud, R.; Afendi, M.; Majid, MS Abdul; Zain, N. A. M.; Bajuri, Y.
2017-10-01
Internal fixation is a mechanism purposed to maintain and protect the reduction of a fracture. Understanding of the fixation stability is necessary to determine parameters influence the mechanical stability and the risk of implant failure. A static structural analysis on a bone fracture fixation was developed to simulate and analyse the biomechanics of a diaphysis shaft fracture with a compression plate and conventional screws. This study aims to determine a critical area of the implant to be fractured based on different implant material and angle of fracture (i.e. 0°, 30° and 45°). Several factors were shown to influence stability to implant after surgical. The stainless steel, (S. S) and Titanium, (Ti) screws experienced the highest stress at 30° fracture angle. The fracture angle had a most significant effect on the conventional screw as compared to the compression plate. The stress was significantly higher in S.S material as compared to Ti material, with concentrated on the 4th screw for all range of fracture angle. It was also noted that the screws closest to the intense concentration stress areas on the compression plate experienced increasing amounts of stress. The highest was observed at the screw thread-head junction.
Mechanical characteristics of the new BONE-LOK bi-cortical internal fixation device.
Cachia, Victor V; Shumway, Don; Culbert, Brad; Padget, Marty
2003-01-01
The purpose of this study was to evaluate the mechanical characteristics of a new and unique titanium compression anchor with BONE-LOK (Triage Medical, Inc, Irvine, CA) technology for compressive, bi-cortical internal fixation of bone. This device provides fixation through the use of a distal grasping anchor and an adjustable proximal collar that are joined by an axially movable pin and guide wire. The titanium compression anchor, in 2.0-, 2.7-, and 3.5-mm diameters, were compared with cortex screws (Synthes USA, Paoli, PA) of the same diameter and material for pullout strength in 20 lb/cu ft and 30 lb/cu ft solid rigid polyurethane foam; and for compression strength in 20 lb/cu ft foam. Retention strength of the collar was tested independently. The results showed significantly greater pullout strength of the 2.7-mm and 3.5-mm titanium compression anchor as compared with the 2.7-mm and 3.5-mm cortex screws in these test models. Pullout strength of the 2.0-mm titanium compression anchor was not statistically different in comparison with the 2.0-mm cortical screws. Compression strength of the titanium compression anchor was significantly greater than the cortical screws for all diameters tested. These differences represent a distinct advantage with the new device, which warrants further in vivo testing. Collar retention strength testing values were obtained for reference only and have no comparative significance.
Gonsalves, Mishka N; Jankovits, Daniel A; Huber, Michael L; Strom, Adam M; Garcia, Tanya C; Stover, Susan M
2016-09-20
To compare the biomechanical properties of simulated humeral condylar fractures reduced with one of two screw fixation methods: 3.0 mm headless compression screw (HCS) or 3.5 mm cortical bone screw (CBS) placed in lag fashion. Bilateral humeri were collected from nine canine cadavers. Standardized osteotomies were stabilized with 3.0 mm HCS in one limb and 3.5 mm CBS in the contralateral limb. Condylar fragments were loaded to walk, trot, and failure loads while measuring construct properties and condylar fragment motion. The 3.5 mm CBS-stabilized constructs were 36% stiffer than 3.0 mm HCS-stabilized constructs, but differences were not apparent in quality of fracture reduction nor in yield loads, which exceeded expected physiological loads during rehabilitation. Small residual fragment displacements were not different between CBS and HCS screws. Small fragment rotation was not significantly different between screws, but was weakly correlated with moment arm length (R² = 0.25). A CBS screw placed in lag fashion provides stiffer fixation than an HCS screw, although both screws provide similar anatomical reduction and yield strength to condylar fracture fixation in adult canine humeri.
Eu-Jin Cheah, Andre; Behn, Anthony W; Comer, Garet; Yao, Jeffrey
2017-12-01
Surgeons confronted with a long spiral metacarpal fracture may choose to fix it solely with lagged screws. A biomechanical analysis of a metacarpal spiral fracture model was performed to determine whether 3 1.5-mm screws or 2 2.0-mm screws provided more stability during bending and torsional loading. Second and third metacarpals were harvested from 12 matched pairs of fresh-frozen cadaveric hands and spiral fractures were created. One specimen from each matched pair was fixed with 2 2.0-mm lagged screws whereas the other was fixed with 3 1.5-mm lagged screws. Nine pairs underwent combined cyclic cantilever bending and axial compressive loading followed by loading to failure. Nine additional pairs were subjected to cyclic external rotation while under a constant axial compressive load and were subsequently externally rotated to failure under a constant axial compressive load. Paired t tests were used to compare cyclic creep, stiffness, displacement, rotation, and peak load levels. Average failure torque for all specimens was 7.2 ± 1.7 Nm. In cyclic torsional testing, the group with 2 screws exhibited significantly less rotational creep than the one with 3 screws. A single specimen in the group with 2 screws failed before cyclic bending tests were completed. No other significant differences were found between test groups during torsional or bending tests. Both constructs were biomechanically similar except that the construct with 2 screws displayed significantly less loosening during torsional cyclic loading, although the difference was small and may not be clinically meaningful. Because we found no obvious biomechanical advantage to using 3 1.5-mm lagged screws to fix long spiral metacarpal fractures, the time efficiency and decreased implant costs of using 2-2.0 mm lagged screws may be preferred. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Factors Associated With Revision Surgery After Internal Fixation of Hip Fractures.
Sprague, Sheila; Schemitsch, Emil H; Swiontkowski, Marc; Della Rocca, Gregory J; Jeray, Kyle J; Liew, Susan; Slobogean, Gerard P; Bzovsky, Sofia; Heels-Ansdell, Diane; Zhou, Qi; Bhandari, Mohit
2018-05-01
Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (for every 5-point increase) (HR 1.19, 95% CI 1.02-1.39; P = 0.027), displaced fracture (HR 2.16, 95% CI 1.44-3.23; P < 0.001), unacceptable quality of implant placement (HR 2.70, 95% CI 1.59-4.55; P < 0.001), and smokers treated with cancellous screws versus smokers treated with a sliding hip screw (HR 2.94, 95% CI 1.35-6.25; P = 0.006). Additionally, for every 10-year decrease in age, participants experienced an average increased risk of 39% for hardware removal. Results of this study may inform future research by identifying high-risk patients who may be better treated with arthroplasty and may benefit from adjuncts to care (HR 1.39, 95% CI 1.05-1.85; P = 0.020). Prognostic Level II. See Instructions for Authors for a complete description of levels of evidence.
Achievable accuracy of hip screw holding power estimation by insertion torque measurement.
Erani, Paolo; Baleani, Massimiliano
2018-02-01
To ensure stability of proximal femoral fractures, the hip screw must firmly engage into the femoral head. Some studies suggested that screw holding power into trabecular bone could be evaluated, intraoperatively, through measurement of screw insertion torque. However, those studies used synthetic bone, instead of trabecular bone, as host material or they did not evaluate accuracy of predictions. We determined prediction accuracy, also assessing the impact of screw design and host material. We measured, under highly-repeatable experimental conditions, disregarding clinical procedure complexities, insertion torque and pullout strength of four screw designs, both in 120 synthetic and 80 trabecular bone specimens of variable density. For both host materials, we calculated the root-mean-square error and the mean-absolute-percentage error of predictions based on the best fitting model of torque-pullout data, in both single-screw and merged dataset. Predictions based on screw-specific regression models were the most accurate. Host material impacts on prediction accuracy: the replacement of synthetic with trabecular bone decreased both root-mean-square errors, from 0.54 ÷ 0.76 kN to 0.21 ÷ 0.40 kN, and mean-absolute-percentage errors, from 14 ÷ 21% to 10 ÷ 12%. However, holding power predicted on low insertion torque remained inaccurate, with errors up to 40% for torques below 1 Nm. In poor-quality trabecular bone, tissue inhomogeneities likely affect pullout strength and insertion torque to different extents, limiting the predictive power of the latter. This bias decreases when the screw engages good-quality bone. Under this condition, predictions become more accurate although this result must be confirmed by close in-vitro simulation of the clinical procedure. Copyright © 2018 Elsevier Ltd. All rights reserved.
Guimarães, João Antonio Matheus; Martin, Murphy P; da Silva, Flávio Ribeiro; Duarte, Maria Eugenia Leite; Cavalcanti, Amanda Dos Santos; Machado, Jamila Alessandra Perini; Mauffrey, Cyril; Rojas, David
2018-06-08
Percutaneous fixation of the acetabulum is a treatment option for select acetabular fractures. Intra-operative fluoroscopy is required, and despite various described imaging strategies, it is debatable as to which combination of fluoroscopic views provides the most accurate and reliable assessment of screw position. Using five synthetic pelvic models, an experimental setup was created in which the anterior acetabular columns were instrumented with screws in five distinct trajectories. Five fluoroscopic images were obtained of each model (Pelvic Inlet, Obturator Oblique, Iliac Oblique, Obturator Oblique/Outlet, and Iliac Oblique/Outlet). The images were presented to 32 pelvic and acetabular orthopaedic surgeons, who were asked to draw two conclusions regarding screw position: (1) whether the screw was intra-articular and (2) whether the screw was intraosseous in its distal course through the bony corridor. In the assessment of screw position relative to the hip joint, accuracy of surgeon's response ranged from 52% (iliac oblique/outlet) to 88% (obturator oblique), with surgeon confidence in the interpretation ranging from 60% (pelvic inlet) to 93% (obturator oblique) (P < 0.0001). In the assessment of intraosseous position of the screw, accuracy of surgeon's response ranged from 40% (obturator oblique/outlet) to 79% (iliac oblique/outlet), with surgeon confidence in the interpretation ranging from 66% (iliac oblique) to 88% (pelvic inlet) (P < 0.0001). The obturator oblique and obturator oblique/outlet views afforded the most accurate and reliable assessment of penetration into the hip joint, and intraosseous position of the screw was most accurately assessed with pelvic inlet and iliac oblique/outlet views. Clinical Question.
Trochanteric fracture-implant motion during healing - A radiostereometry (RSA) study.
Bojan, Alicja J; Jönsson, Anders; Granhed, Hans; Ekholm, Carl; Kärrholm, Johan
2018-03-01
Cut-out complication remains a major unsolved problem in the treatment of trochanteric hip fractures. A better understanding of the three-dimensional fracture-implant motions is needed to enable further development of clinical strategies and countermeasures. The aim of this clinical study was to characterise and quantify three-dimensional motions between the implant and the bone and between the lag screw and nail of the Gamma nail. Radiostereometry Analysis (RSA) analysis was applied in 20 patients with trochanteric hip fractures treated with an intramedullary nail. The following three-dimensional motions were measured postoperatively, at 1 week, 3, 6 and 12 months: translations of the tip of the lag screw in the femoral head, motions of the lag screw in the nail, femoral head motions relative to the nail and nail movements in the femoral shaft. Cranial migration of the tip of the lag screw dominated over the other two translation components in the femoral head. In all fractures the lag screw slid laterally in the nail and the femoral head moved both laterally and inferiorly towards the nail. All femoral heads translated posteriorly relative to the nail, and rotations occurred in both directions with median values close to zero. The nail tended to retrovert in the femoral shaft. Adverse fracture-implant motions were detected in stable trochanteric hip fractures treated with intramedullary nails with high resolution. Therefore, RSA method can be used to evaluate new implant designs and clinical strategies, which aim to reduce cut-out complications. Future RSA studies should aim at more unstable fractures as these are more likely to fail with cut-out. Copyright © 2018 Elsevier Ltd. All rights reserved.
Removal of a broken trigen intertan intertrochanteric antegrade nail.
Zheng, Xuan-Lin; Park, Young-Chang; Kim, Sungmin; An, Haemosu; Yang, Kyu-Hyun
2017-02-01
Implant breakage is a serious complication after cephalomedullary nailing for unstable intertrochanteric fracture. Failure usually occurs at the lag screw hole in the nail body. On the other hand, lag screw failure is extremely rare and occurs around the nail-lag screw junction. We experienced rare mechanical failure of the Intertan nail, which showed breakage at the lag screw hole and failure of the integrated compression screw underneath the main lag screw. Copyright © 2016 Elsevier Ltd. All rights reserved.
Design, simulation and modelling of auxiliary exoskeleton to improve human gait cycle.
Ashkani, O; Maleki, A; Jamshidi, N
2017-03-01
Exoskeleton is a walking assistance device that improves human gait cycle through providing auxiliary force and transferring physical load to the stronger muscles. This device takes the natural state of organ and follows its natural movement. Exoskeleton functions as an auxiliary device to help those with disabilities in hip and knee such as devotees, elderly farmers and agricultural machinery operators who suffer from knee complications. In this research, an exoskeleton designed with two screw jacks at knee and hip joints. To simulate extension and flexion movements of the leg joints, bearings were used at the end of hip and knee joints. The generated torque and motion angles of these joints obtained as well as the displacement curves of screw jacks in the gait cycle. Then, the human gait cycle was simulated in stance and swing phases and the obtained torque curves were compared. The results indicated that they followed the natural circle of the generated torque in joints with a little difference from each other. The maximum displacement obtained 4 and 6 cm in hip and knee joints jack respectively. The maximum torques in hip and knee joints were generated in foot contact phase. Also the minimum torques in hip and knee joints were generated in toe off and heel off phases respectively.
Leblanc, E; Bellemore, J M; Cheng, T; Little, D G; Birke, O
2017-04-01
Slipped capital femoral epiphysis (SCFE) is a deformity of the proximal femur secondary to widened and unstable physis. In stabilising the slip, gold standard treatments stop growth and involve premature physeal closure, which prevents the remodelling of the acquired deformity and creates a leg length discrepancy that may be significant in younger patients. We measured the impact of placing threaded screws across the proximal femoral physis by measuring the centre-trochanteric distance (CTD) and articulo-trochanteric distance (ATD) in participants with or without prophylactic fixation. We then compared the mechanical performance of static (stainless and titanium cannulated Synthes screws) and potentially growing implants (Synthes SCFE screw and Pega Medical Free Gliding screw) in a validated synthetic bone model. In the review of 30 non-fixed and 60 fixated hips over a mean follow-up of 1.9 years, we have noted a significant difference in pre/post CTD and ATD, as well as the change in CTD and ATD over time. In the biomechanical study, the newer implants allowing growth (Synthes SCFE screw and Pega Medical Free Gliding screw) were both shown to be at least non-inferior. The primary deformity of a SCFE in itself alters hip mechanics. Also, as confirmed in this study, there is a secondary deformity that is created by static fixation and relative trochanteric overgrowth. To help remodel mild deformities and prevent secondary trochanteric overgrowth, growing implants seem to be non-inferior to the more standard means of fixation in static testing.
Pediatric Hip Fractures in California: Results from a Community-Based Hip Fracture Registry.
Prentice, Heather A; Paxton, Elizabeth W; Hunt, Jessica J; Grimsrud, Christopher D; Weiss, Jennifer M
2017-01-01
Hip fracture registries offer an opportunity to identify and to monitor patients with rare conditions and outcomes, including hip fractures in pediatric patients. To report patient demographics and surgical outcomes of pediatric patients treated surgically for hip fractures in a large integrated health care system. Pediatric patients (< 21 years old at the time of fracture) with hip fractures were identified between 2009 and 2012 using our health care system's hip fracture registry. Patient characteristics, type of fracture, surgical treatment, and short-term complications. Among 39 patients identified, 31 (79.5%) were male, and the median age was 15 years old (interquartile range: 11-17 years). Most patients were Hispanic (n = 17, 43.6%) or white (n = 14, 35.9%). There were 8 patients (20.5%) with 15 comorbidities. Delbet Type IV (intertrochanteric) fractures were the most common fracture type (n = 22, 56.4%), and fixation method was equally distributed between intramedullary, screw and sideplate, and screws (n = 12, 30.8% for each). Most surgeries were performed by medium-volume surgeons (n = 22, 56.4%) at medium- and high-volume hospitals (n = 37, 94.9%). Three 90-day readmissions (7.7%), 1 infection (2.6%), 1 malunion (2.6%), and 1 revision (2.6%) were observed in this cohort during the study period. In our series using registry data, hip fractures younger than age 21 years were more common in boys and Hispanic patients. Intertrochanteric fractures (Delbet Type IV) were the most frequently observed type in our community-based hip fracture registry. Short-term complications were infrequent.
Karaarslan, A A; Acar, N
2018-02-01
Rotation instability and locking screws failure are common problems. We aimed to determine optimal torque wrench offering maximum rotational stiffness without locking screw failure. We used 10 conventional compression nails, 10 novel compression nails and 10 interlocking nails with 30 composite femurs. We examined rotation stiffness and fracture site compression value by load cell with 3, 6 and 8 Nm torque wrenches using torsion apparatus with a maximum torque moment of 5 Nm in both directions. Rotational stiffness of composite femur-nail constructs was calculated. Rotational stiffness of composite femur-compression nail constructs compressed by 6 Nm torque wrench was 3.27 ± 1.81 Nm/angle (fracture site compression: 1588 N) and 60% more than that compressed with 3 Nm torque wrench (advised previously) with 2.04 ± 0.81 Nm/angle (inter fragmentary compression: 818 N) (P = 0.000). Rotational stiffness of composite-femur-compression nail constructs compressed by 3 Nm torque wrench was 2.04 ± 0.81 Nm/angle (fracture site compression: 818 N) and 277% more than that of interlocking nail with 0.54 ± 0.08 Nm/angle (fracture site compression: 0 N) (P = 0.000). Rotational stiffness and fracture site compression value produced by 3 Nm torque wrench was not satisfactory. To obtain maximum rotational stiffness and fracture site compression value without locking screw failure, 6 Nm torque wrench in compression nails and 8 Nm torque wrench in novel compression nails should be used.
[APPLICATION OF COMPRESSION MINI-SCREWS IN TREATMENT OF PATIENTS WITH INJURY OF ELBOW JOINT BONES].
Neverov, V A; Egorov, K S
2015-01-01
A case report presents the experience of application of compression pileateless mini-screws (Gerbert's screws) in treatment of intra-articular fractures, which formed the elbow joint (44 cases). There were performed 32 operations concerning fracture of head of radius, 10 operations on the occasion of fractures of distal section of the humerus and 2 operations on the coronoid process. Long-term treatment results were followed-up in 31 patients during more than 6 months. On basis of analysis of treatment results the authors made a conclusion that the application of mini-screws in case of bone fractures, which formed the elbow joint, allowed realization of stable osteosynthesis after anatomic reposition of articular surfaces, obtaining good anatomical and functional result and shortened the terms of patient's treatment.
Biomechanical characteristics of fixation methods for floating pubic symphysis.
Song, Wenhao; Zhou, Dongsheng; He, Yu
2017-03-07
Floating pubic symphysis (FPS) is a relatively rare injury caused by high-energy mechanisms. There are several fixation methods used to treat FPS, including external fixation, subcutaneous fixation, internal fixation, and percutaneous cannulated screw fixation. To choose the appropriate fixation, it is necessary to study the biomechanical performance of these different methods. The goal of this study was to compare the biomechanical characteristics of six methods by finite element analysis. A three-dimensional finite element model of FPS was simulated. Six methods were used in the FPS model, including external fixation (Ext), subcutaneous rod fixation (Sub-rod), subcutaneous plate fixation (Sub-plate), superior pectineal plate fixation (Int-sup), infrapectineal plate fixation (Int-ifa), and cannulated screw fixation (Int-scr). Compressive and rotational loads were then applied in all models. Biomechanical characteristics that were recorded and analyzed included construct stiffness, micromotion of the fracture gaps, von Mises stress, and stress distribution. The construct stiffness of the anterior pelvic ring was decreased dramatically when FPS occurred. Compressive stiffness was restored by the three internal fixation and Sub-rod methods. Unfortunately, rotational stiffness was not restored satisfactorily by the six methods. For micromotion of the fracture gaps, the displacement was reduced significantly by the Int-sup and Int-ifa methods under compression. The internal fixation methods and Sub-plate method performed well under rotation. The maximum von Mises stress of the implants was not large. For the plate-screw system, the maximum von Mises stress occurred over the region of the fracture and plate-screw joints. The maximum von Mises stress appeared on the rod-screw and screw-bone interfaces for the rod-screw system. The present study showed the biomechanical advantages of internal fixation methods for FPS from a finite element view. Superior stabilization of the anterior pelvic ring and fracture gaps was obtained by internal fixation. Subcutaneous fixation had satisfactory outcomes as well. Sub-rod fixation offered good anti-compression, while the Sub-plate fixation provided favorable anti-rotational capacity.
Brand, Stephan; Bauer, Michael; Petri, Maximilian; Schrader, Julian; Maier, Hans J; Krettek, Christian; Hassel, Thomas
2016-07-01
Treatment of periprosthetic femur fractures after total hip arthroplasty remains a major challenge in orthopedic surgery. Recently, a novel surgical technique using intraprosthetic screw fixation has been suggested. The purpose of this study was to evaluate the influence of drilling the femoral hip stem on integrity and strength of the implant. The hypothesis was that intraprosthetic drilling and screw fixation would not cause the load limit of the prosthesis to be exceeded and that deformation would remain within the elastic limit. A sawbone model with a conventional straight hip stem was used and a Vancouver C periprosthetic fracture was created. The fracture was fixed with a nine-hole less invasive stabilization system plate with two screws drilled and inserted through the femoral hip stem. Three different finite element models were created using ANSYS software. The models increased in complexity including joint forces and stress risers from three different dimensions. A variation of drilling positions was analyzed. Due to the complexity of the physiological conditions in the human femur, the most complex finite element model provided the most realistic results. Overall, significant changes in the stresses to the prosthesis caused by the drilling procedure were observed. While the stresses at the site of the bore hole decreased, the load increased in the surrounding stem material. This effect is more pronounced and further the holes were apart, and it was found that increasing the number of holes could counteract this. The maximum load was still found to be in the area of the prosthesis neck. No stresses above the load limit of titanium alloy were detected. All deformations of the prosthesis stem remained in the elastic range. These results may indicate a potential role for intraprosthetic screw fixation in the future treatment of periprosthetic femur fractures. © IMechE 2016.
A miniature Rotary Compressor with a 1:10 compression ratio
NASA Astrophysics Data System (ADS)
Dmitriev, Olly; Tabota, Eugene; Arbon EurIng, Ian; FIMechE, CEng
2015-08-01
Micro compressors have applications in medical devices, robotics and “nanosatellites”. The problem of active cooling for photo detectors in “nano-satellites” becomes more important because the majority of space missions target Earth observation, and passive cooling does not provide the required temperatures to achieve the desired SNR levels. Reciprocating compressors used in cryocoolers cause vibrations. VERT Rotors has built an ultralow-vibration rotary compressor with 40mm-long screws, and our prototype delivered 1:10 compression ratio. This “nano” compressor is a non-conventional conical type consisting of an Inner conical screw rotor revolving inside an Outer screw rotor.
Preliminary Design on Screw Press Model of Palm Oil Extraction Machine
NASA Astrophysics Data System (ADS)
Firdaus, Muhammad; Salleh, S. M.; Nawi, I.; Ngali, Z.; Siswanto, W. A.; Yusup, E. M.
2017-01-01
The concept of the screw press is to compress the fruit bunch between the main screw and travelling cones to extract the palm oil. Visual inspection, model development and simulation of screw press by using Solidworks 2016 and calculation of design properties were performed to support the investigation. The project aims to analyse different design of screw press which improves in reducing maintenance cost and increasing lifespan. The currently existing of screw press can endure between 500 to 900 hours and requires frequent maintenance. Different configurations have been tried in determination of best design properties in screw press. The results specify that screw press with tapered inner shaft has more total lifespan (hours) compared existing screw press. The selection of the screw press with tapered inner shaft can reduce maintenance cost and increase lifespan of the screw press.
Gupta, Sameer; Kukreja, Sunil; Singh, Vivek
2014-04-01
To review the outcome of 60 patients who underwent valgus subtrochanteric osteotomy and its repositioning for un-united and neglected femoral neck fractures. 60 patients (mean age, 35 years) underwent valgus subtrochanteric osteotomy and repositioning of the osteotomy and fixation with a dynamic hip screw and a 135° single-angled barrel plate for closed un-united femoral neck fractures after failed internal fixation (n=27) or neglected (>3 weeks) fractures (n=33). The most common fracture type was transcervical (n=48), followed by subcapital (n=6) and basal (n=6). All patients had displaced femoral neck fractures (Garden types 3 and 4). According to the Pauwel angle, 45 fractures were type 2 (30º-70º) and 15 were type 3 (>70º). Patients were followed up for a mean of 3.5 (range, 2-7.5) years. The mean Pauwel angle of the fracture was corrected from 65° (range, 50°-89°) to 26° (range, 25°-28°). Bone union was achieved in 56 patients after a mean of 3.9 (range, 3-5.5) months. The mean Harris hip score improved from 65 to 87.5. Outcome was excellent in 30 patients, good in 24, and poor in 6. Four of the patients developed avascular necrosis; 2 of whom nonetheless achieved a good outcome. Valgus osteotomy and repositioning and fixation with a dynamic hip screw and a 135° single-angled barrel plate was effective treatment for un-united and neglected femoral neck fractures.
Yang, Jesse Chieh-Szu; Chen, Hsin-Chang; Lai, Yu-Shu; Cheng, Cheng-Kung
2017-01-01
Fixation with a dynamic hip screw (DHS) is one of the most common methods for stabilizing intertrochanteric fractures, except for unstable and reverse oblique fracture types. However, failure is often observed in osteoporotic patients whereby the lag screw effectively 'cuts out' through the weak bone. Novel anti-migration blades have been developed to be used in combination with a lag screw ('Blade Screw') to improve the fixation strength in osteoporotic intertrochanteric fractures. An in-vitro biomechanical study and a retrospective clinical study were performed to evaluate lag screw migration when using the novel Blade Screw and a traditional threaded DHS. The biomechanical study showed both the Blade Screw and DHS displayed excessive migration (≥10 mm) before reaching 20,000 loading cycles in mild osteoporotic bone, but overall migration of the Blade Screw was significantly less (p ≤ 0.03). Among the patients implanted with a Blade Screw in the clinical study, there was no significant variation in screw migration at 3-months follow-up (P = 0.12). However, the patient's implanted with a DHS did display significantly greater migration (P<0.001) than those implanted with the Blade Screw. In conclusion, the Blade Screw stabilizes the bone fragments during dynamic loading so as to provide significantly greater resistance to screw migration in patients with mild osteoporosis.
Jacob, Joshua; Desai, Ankit; Trompeter, Alex
2017-01-01
Currently, approximately half of all hip fractures are extracapsular, with an incidence as high as 50 in 100,000 in some countries. The common classification systems fail to explain the logistics of fracture classification and whether they all behave in the same manner. The Muller AO classification system is a useful platform to delineate stable and unstable fractures. The Dynamic hip screw (DHS) however, has remained the 'gold standard' implant of choice for application in all extracapsular fractures. The DHS relies on the integrity and strength of the lateral femoral wall as well as the postero-medial fragment. An analysis of several studies indicates significant improvements in design and techniques to ensure a better outcome with intramedullary nails. This article reviews the historical trends that helped to evolve the DHS implant as well as discussing if the surgeon should remain content with this implant. We suggest that the gold standard surgical management of extracapsular fractures can, and should, evolve.
Traumatic fracture-dislocation of the hip following rugby tackle: a case report.
Venkatachalam, Santosh; Heidari, Nima; Greer, Tony
2009-12-15
Posterior fracture-dislocation of hip is uncommonly encountered in rugby injuries. We report such a case in an adult while playing rugby. The treating orthopaedician can be caught unaware and injuries in such sports can be potentially misdiagnosed as hip sprains. Immediate reduction of the dislocation was performed in theatres. The fracture was fixed with two lag screws and a neutralization plate. This led to early rehabilitation and speedy recovery with return to sporting activities by 12 months.
Traumatic fracture-dislocation of the hip following rugby tackle: a case report
2009-01-01
Posterior fracture-dislocation of hip is uncommonly encountered in rugby injuries. We report such a case in an adult while playing rugby. The treating orthopaedician can be caught unaware and injuries in such sports can be potentially misdiagnosed as hip sprains. Immediate reduction of the dislocation was performed in theatres. The fracture was fixed with two lag screws and a neutralization plate. This led to early rehabilitation and speedy recovery with return to sporting activities by 12 months. PMID:20003496
Mückley, Thomas; Eichorn, Stephan; Hoffmeier, Konrad; von Oldenburg, Geert; Speitling, Andreas; Hoffmann, Gunther O; Bühren, Volker
2007-02-01
Intramedullary implants are being used with increasing frequency for tibiotalocalcaneal fusion (TTCF). Clinically, the question arises whether intramedullary (IM) nails should have a compression mode to enhance biomechanical stiffness and fusion-site compression. This biomechanical study compared the primary stability of TTCF constructs using compressed and uncompressed retrograde IM nails and a screw technique in a bone model. For each technique, three composite bone models were used. The implants were a Biomet nail (static locking mode and compressed mode), a T2 femoral nail (compressed mode); a prototype IM nail 1 (PT1, compressed mode), a prototype IM nail 2 (PT2, dynamic locking mode and compressed mode), and a three-screw construct. The compressed contact surface of each construct was measured with pressure-sensitive film and expressed as percent of the available fusion-site area. Stiffness was tested in dorsiflexion and plantarflexion (D/P), varus and valgus (V/V), and internal rotation and external rotation (I/E) (20 load cycles per loading mode). Mean contact surfaces were 84.0 +/- 6.0% for the Biomet nail, 84.0 +/- 13.0% for the T2 nail, 70.0 +/- 7.2% for the PTI nail, and 83.5 +/- 5.5% for the compressed PT2 nail. The greatest primary stiffness in D/P was obtained with the compressed PT2, followed by the compressed Biomet nail. The dynamically locked PT2 produced the least primary stiffness. In V/V, PT1 had the (significantly) greatest primary stiffness, followed by the compressed PT2. The statically locked Biomet nail and the dynamically locked PT2 had the least primary stiffness in V/V. In I/E, the compressed PT2 had the greatest primary stiffness, followed by the PT1 and the T2 nails, which did not differ significantly from each other. The dynamically locked PT2 produced the least primary stiffness. The screw construct's contact surface and stiffness were intermediate. The IM nails with compression used for TTCF produced good contact surfaces and primary stiffness. They were significantly superior in these respects to the uncompressed nails and the screw construct. The large contact surfaces and great primary stiffness provided by the IM nails in a bone model may translate into improved union rates in patients who have TTCF.
Boukebous, Baptiste; Guillon, Pascal; Vandenbussche, Eric; Rousseau, Marc Antoine
2018-04-27
Screw-plates disassembly incidence after pertrochanteric fracture (PF) amounts to 1 and 16% among the elderly population. The main occurrence is early cervical screw cut-out. The population at highest risk of disassembly remains difficult to identify. The correlation between femoral offset loss and disassembly occurrence has never been surveyed. A radiological prognosis score for screw plate disassembly was defined to reflect trochanteric impaction (TI); it was based on a femoral offset ratio. Our single-centre retrospective case-control study surveyed patients suffering from Dynamic Hip Screw (DHS, Synthes ® ) disassembly following osteosynthesis of non-pathological osteoporotic PF between 2004 and 2014. All cases were categorised by age and gender and paired to three patients in the control group. The primary endpoint was TI measurement, corresponding to offset loss on the operated hip compared to healthy hip offset and expressed as a percentage. The measurement was done on an immediate postoperative X-ray. The secondary endpoints were tip apex distance (TAD) measurement, Ender and AO classifications, as well as postoperative weight-bearing prescription. Twenty-three cases and 69 controls were surveyed. The case group's average age was 87; 70% of the cases were women. The main disassembly occurrence delay was after 27 days. Average TI was 26% within the patients global group and 12% within the control group (p < 10 -5 ). Over a 21% impaction percentage, disassembly occurrence represents a greater risk: OR = 21.95% CI [5.4-104.3], p < 10 -5 . Ender 3 type fractures were the most frequent indication for surgery within the case group. Average TAD was 20 mm within the case group, and 17 mm within the control group (p = 0.03). The weight-bearing prescription rate was 52% within the control group and 21% within the case group (p = 0.014). 14.5% of the control group had a TI > 21%. Using the offset ratio tool, TI measurement was associated with a greater risk of DHS disassembly when it was higher than 21%. The exclusive use of a DHS device does not seem optimal for a TI > 21%. Weight-bearing may be prescribed for all the patients with a TI < 21%, provided good implant positioning is secured.
Dorsal Plating of Unstable Scaphoid Fractures and Nonunions.
Bain, Gregory I; Turow, Arthur; Phadnis, Joideep
2015-09-01
Achieving stable fixation of displaced acute and chronic nonunited scaphoid fractures continues to be a challenge for the treating surgeon. The threaded compression screw has been the mainstay of treatment of these fractures for the last 3 decades; however, persistent nonunion after screw fixation has prompted development of new techniques. Recent results of volar buttress plating have been promising. We describe a novel technique of dorsal scaphoid plating. In contrast to volar plating, the dorsal plate is biomechanically more favorable as it utilizes the tension side of the scaphoid bone for dynamic compression. Dorsal scaphoid plating provides a more stable construct than the traditional Herbert screw and mitigates the need for vascular or corticocancellous bone grafting in most cases.
Sedighi, Ali; Sales, Jafar Ganjpour; Alavi, Sahar
2012-11-02
Intertrochanteric fractures (ITFs) are the most common type of fractures requiring surgical intervention. They also have the highest surgical mortality among orthopedic operations. Among the many different techniques used for fixation of this type of fracture, use of the Dynamic Hip Screw (DHS) has gained wide acceptance. This current study was designed to assess positive predictive value of tip-to-apex distance (TAD) index in the prognosis of patients treated with DHS. The study was designed according to a descriptive-analytic protocol, made up of 100 cases of ITFs caused by falling, treated in the Shohada Orthopedic Center, Tabriz, Iran. All patients underwent lateral and antero-posterior hip X-ray to measure TAD index. The cohort was followed for three months after DHS placement. Of a total of 100 cases (53 male, 47 female) with a mean age of 76.7 years (range 29-100 years), 43% had grade 4, 29% grade 3, 21% grade 5, 5% grade 2 and 2% grade 6 osteoporosis. The screw position was postero-inferior in 57%, central in 40% and superior in 3% of patients. Minimum and maximum TAD index were 20 and 28 mm, respectively. Mean TAD was 23.5 mm. There were no post-operative complications in 84% of cases. Screw failure was the most common complication in the remaining 16% of patients. The study shows a statistically significant correlation between TAD index and cut-off rate in patients with intertrochanteric fractures of femoral bone treated by DHS. This validates the use of TAD index in determining the prognosis of patients treated by DHS.
Kosmopoulos, Victor; Luedke, Colten; Nana, Arvind D
2015-01-01
A smaller humerus in some patients makes the use of a large fragment fixation plate difficult. Dual small fragment plate constructs have been suggested as an alternative. This study compares the biomechanical performance of three single and one dual plate construct for mid-diaphyseal humeral fracture fixation. Five humeral shaft finite element models (1 intact and 4 fixation) were loaded in torsion, compression, posterior-anterior (PA) bending, and lateral-medial (LM) bending. A comminuted fracture was simulated by a 1-cm gap. Fracture fixation was modelled by: (A) 4.5-mm 9-hole large fragment plate (wide), (B) 4.5-mm 9-hole large fragment plate (narrow), (C) 3.5-mm 9-hole small fragment plate, and (D) one 3.5-mm 9-hole small fragment plate and one 3.5-mm 7-hole small fragment plate. Model A showed the best outcomes in torsion and PA bending, whereas Model D outperformed the others in compression and LM bending. Stress concentrations were located near and around the unused screw holes for each of the single plate models and at the neck of the screws just below the plates for all the models studied. Other than in PA bending, Model D showed the best overall screw-to-screw load sharing characteristics. The results support using a dual small fragment locking plate construct as an alternative in cases where crutch weight-bearing (compression) tolerance may be important and where anatomy limits the size of the humerus bone segment available for large fragment plate fixation.
[Stress test and clinical application of the minimal-invasive dynamic hip screw].
Tong, Song-Lin; Chen, Jian-Lie; Lu, Wen-Jie; Pan, Zhi-Jun; Wang, Yi-Jin
2008-05-01
To recognize the effect of minimal-invasive dynamic hip screw (MIDHS) on the treatment of intertrochanteric fracture of the hip by biomechanical test and preliminary clinical application. Ten artifical made intertrochanteric fractures of femoral specimen from five cadavers were divided into two groups randomly. The fractures in first group were fixed by MIDHS and other group were fixed by dynamic hip (DHS). Biomechanical characteristics of two different devices were compared with the biomechanical character of load-straining, load-displacing, rigidity and strength of femur by statistic analysis. According to the Harris evaluation, healing effect of intertrochanteric fractures was evaluated clinically on the 15 cases. Straining changes of MIDHS were 14% and 11% less than that of DHS on the tensile side and the pressure side respectively; Sinking and horizontal displacement, were 19% and 22% less than that of DHS respectivly. But external and internal stress intensity,axial and bending rigidity were all higher than that of DHS, they were 12%, 11%, 19% and 37%. Maximal destroyed twisting moment (15%) and average twisting rigidity (15%) were both higher than that of DHS, but twisting angle was 18% less. Under the force, of 1 800 N, the open angle of the fracture on transverse section was 2.28 degrees,while the DHS's was 3.60 degrees . The data above were significant differences statistically (P < 0.01). The average Harris score of the 15 cases with intertrochanteric fractures treated by MIDHS was 91, excellent and good rate was 92.7%, without complications of internal fixation failure,postoperative infection and so on. The design of minimal-invasive dynamic hip screw is reasonable and effective against rotating, shearing and varus stress force of the fracture, and it provides possibility of implanting the internal fixation with minimal incision. So it is an ideal internal fixation device for the treatment of intertrochanteric fractures.
Increasing Lift by Releasing Compressed Air on Suction Side of Airfoil
NASA Technical Reports Server (NTRS)
Seewald, F
1927-01-01
The investigation was limited chiefly to the region of high angles of attack since it is only in this region that any considerable change in the character of the flow can be expected from such artificial aids. The slot, through which compressed air was blown, was formed by two pieces of sheet steel connected by screws at intervals of about 5 cm. It was intended to regulate the width of the slot by means of these screws. Much more compressed air was required than was originally supposed, hence all the delivery pipes were much too small. This experiment, therefore, is to be regarded as only a preliminary one.
Cadossi, Matteo; Garcia, Flávio Luís; Sambri, Andrea; Andreoli, Isabella; Dallari, Dante; Pignatti, Giovanni
2017-01-01
Inadequate acetabular bone stock is a major issue in total hip arthroplasty, and several treatment options are available. Stemmed cups have been used in this scenario with variable results. A novel modular polyaxial uncemented iliac screw cup (HERM-BS-Sansone cup-Citieffe s.r.l., Calderara di Reno, Bologna, Italy) has been recently introduced to overcome the drawbacks of stemmed cups. In this retrospective study, we report the results of this cup in patients with large acetabular bone defects at 2- to 7-year follow-up. We evaluated a consecutive series of 121 hips (118 revisions and 3 complex primary arthroplasties) treated with this novel cup at a mean follow-up of 46 months. Kaplan-Meier survival analysis was performed with implant revision for any reason as a primary end point. Further survival analysis was performed excluding septic failures. Clinical outcome was assessed with the Harris Hip Score. There had been 7 reoperations: 1 for aseptic loosening, 5 for deep infection, and 1 for recurrent dislocation. In 5 cases, the cup was removed; estimated survival rate at 5-year follow-up with implant removal for any reason was 95.6% (95% confidence interval = 91-99), and 98.3% (95% CI = 96-100) excluding those failed for infection. Mean Harris Hip Score at latest follow-up was 77 points (range, 44-95; standard deviation = 11.9). The present findings show the short-term efficacy of the iliac screw cup with respect to implant survival. A longer follow-up and a larger number of patients are necessary to confirm the encouraging preliminary results. Copyright © 2016 Elsevier Inc. All rights reserved.
Aiyer, Amiethab; Russell, Nicholas A; Pelletier, Matthew H; Myerson, Mark; Walsh, William R
2016-06-01
Background The optimal fixation method for the first tarsometatarsal arthrodesis remains controversial. This study aimed to develop a reproducible first tarsometatarsal testing model to evaluate the biomechanical performance of different reconstruction techniques. Methods Crossed screws or a claw plate were compared with a single or double shape memory alloy staple configuration in 20 Sawbones models. Constructs were mechanically tested in 4-point bending to 1, 2, and 3 mm of plantar displacement. The joint contact force and area were measured at time zero, and following 1 and 2 mm of bending. Peak load, stiffness, and plantar gapping were determined. Results Both staple configurations induced a significantly greater contact force and area across the arthrodesis than the crossed screw and claw plate constructs at all measurements. The staple constructs completely recovered their plantar gapping following each test. The claw plate generated the least contact force and area at the joint interface and had significantly greater plantar gapping than all other constructs. The crossed screw constructs were significantly stiffer and had significantly less plantar gapping than the other constructs, but this gapping was not recoverable. Conclusions Crossed screw fixation provides a rigid arthrodesis with limited compression and contact footprint across the joint. Shape memory alloy staples afford dynamic fixation with sustained compression across the arthrodesis. A rigid polyurethane foam model provides an anatomically relevant comparison for evaluating the interface between different fixation techniques. Clinical Relevance The dynamic nature of shape memory alloy staples offers the potential to permit early weight bearing and could be a useful adjunctive device to impart compression across an arthrodesis of the first tarsometatarsal joint. Therapeutic, Level V: Bench testing. © 2015 The Author(s).
Biomechanical demands on posterior fusion instrumentation during lordosis restoration procedures.
Kuo, Calvin C; Martin, Audrey; Telles, Connor; Leasure, Jeremi; Iezza, Alex; Ames, Christopher; Kondrashov, Dimitriy
2016-09-01
OBJECTIVE The goal of this study was to investigate the forces placed on posterior fusion instrumentation by 3 commonly used intraoperative techniques to restore lumbar lordosis: 1) cantilever bending; 2) in situ bending; and 3) compression and/or distraction of screws along posterior fusion rods. METHODS Five cadaveric torsos were instrumented with pedicle screws at the L1-5 levels. Specimens underwent each of the 3 lordosis restoration procedures. The pedicle screw pullout force was monitored in real time via strain gauges that were mounted unilaterally at each level. The degree of correction was noted through fluoroscopic imaging. The peak loads experienced on the screws during surgery, total demand on instrumentation, and resting loads after corrective maneuvers were measured. RESULTS A mean overall lordotic correction of 10.9 ± 4.7° was achieved. No statistically significant difference in lordotic correction was observed between restoration procedures. In situ bending imparted the largest loads intraoperatively with an average of 1060 ± 599.9 N, followed by compression/distraction (971 ± 534.1 N) and cantilever bending (705 ± 413.0 N). In situ bending produced the largest total demand and postoperative loads at L-1 (1879 ± 1064.1 and 487 ± 118.8 N, respectively), which were statistically higher than cantilever bending and compression/distraction (786 ± 272.1 and 138 ± 99.2 N, respectively). CONCLUSIONS In situ bending resulted in the highest mechanical demand on posterior lumbar instrumentation, as well as the largest postoperative loads at L-1. These results suggest that the forces generated with in situ bending indicate a greater chance of intraoperative instrumentation failure and postoperative proximal pedicle screw pullout when compared with cantilever bending and/or compression/distraction options. The results are aimed at optimizing correction and fusion strategies in lordosis restoration cases.
Screw fixation versus arthroplasty versus plate fixation for 3-part radial head fractures.
Wu, P H; Shen, L; Chee, Y H
2016-04-01
To compare the outcome following headless compression screw fixation versus radial head arthroplasty versus plate fixation for 3-part Mason types III or IV radial head fracture. Records of 25 men and 16 women aged 21 to 80 (mean, 43.3) years who underwent fixation using 2 to 3 2-mm cannulated headless compression screws (n=16), radial head arthroplasty (n=13), or fixation with a 2-mm Synthes plate (n=12) for 3-part Mason types III or IV radial head and neck fracture were reviewed. Treatment option was decided by the surgeon based on the presence of associated injury, neurovascular deficit, and the Mason classification. Bone union, callus formation, and complications (such as heterotopic ossification, malunion, and nonunion) were assessed by an independent registrar or consultant using radiographs. The Mayo Elbow Performance Score and range of motion were assessed by an independent physiotherapist. The median age of the 3 groups were comparable. Associated injuries were most common in patients with arthroplasty, followed by screw fixation and plate fixation (61.5% vs. 50% vs. 33%, p=0.54). The median time to bone union was shorter after screw fixation than plate fixation (55 vs. 86 days, p=0.05). No patient with screw fixation had nonunion, but 4 patients with plate fixation had nonunion. The 3 groups were comparable in terms of the mean Mayo Elbow Performance Score (p=0.56) and the mean range of motion (p=0.45). The complication rate was highest after plate fixation, followed by screw fixation and arthroplasty (50% vs. 18.8% vs. 15.4%, p=0.048). Excluding 20 patients with associated injuries (8 in screw fixation, 8 in arthroplasty, and 4 in plate fixation), the 3 groups were comparable in terms of the median time to bone union (p=0.109), mean Mayo Elbow Performance Score (p=0.260), mean range of motion (p=0.162), and complication rate (p=0.096). Headless compression screw fixation is a viable option for 3-part radial head fracture. It achieves earlier bone union with fewer complications.
Tsai, Stanley; Bliven, Emily K.; von Rechenberg, Brigitte; Kindt, Philipp; Augat, Peter; Henschel, Julia; Fitzpatrick, Daniel C.; Madey, Steven M.
2017-01-01
Objectives: Active plates dynamize a fracture by elastic suspension of screw holes within the plate. We hypothesized that dynamic stabilization with active plates delivers stronger healing relative to standard compression plating. Methods: Twelve sheep were randomized to receive either a standard compression plate (CP) or an active plate (ACTIVE) for stabilization of an anatomically reduced tibial osteotomy. In the CP group, absolute stabilization was pursued by interfragmentary compression with 6 cortical screws. In the ACTIVE group, dynamic stabilization after bony apposition was achieved with 6 elastically suspended locking screws. Fracture healing was analyzed weekly on radiographs. After sacrifice 9 weeks postsurgery, the torsional strength of healed tibiae and contralateral tibiae was measured. Finally, computed tomography was used to assess fracture patterns and healing modes. Results: Healing in both groups included periosteal callus formation. ACTIVE specimens had almost 6 times more callus area by week 9 (P < 0.001) than CP specimens. ACTIVE specimens recovered on average 64% of their native strength by week 9, and were over twice as strong as CP specimens, which recovered 24% of their native strength (P = 0.008). Microcomputed tomography demonstrated that compression plating induced a combination of primary bone healing and gap healing. Active plating consistently stimulated biological bone healing by periosteal callus formation. Conclusions: Compared with compression plating, dynamic stabilization of simple fractures with active plates delivers significantly stronger healing. PMID:27861456
Jacob, Joshua; Desai, Ankit; Trompeter, Alex
2017-01-01
Currently, approximately half of all hip fractures are extracapsular, with an incidence as high as 50 in 100,000 in some countries. The common classification systems fail to explain the logistics of fracture classification and whether they all behave in the same manner. The Muller AO classification system is a useful platform to delineate stable and unstable fractures. The Dynamic hip screw (DHS) however, has remained the ‘gold standard’ implant of choice for application in all extracapsular fractures. The DHS relies on the integrity and strength of the lateral femoral wall as well as the postero-medial fragment. An analysis of several studies indicates significant improvements in design and techniques to ensure a better outcome with intramedullary nails. This article reviews the historical trends that helped to evolve the DHS implant as well as discussing if the surgeon should remain content with this implant. We suggest that the gold standard surgical management of extracapsular fractures can, and should, evolve. PMID:29290858
Modular femoral component for conversion of previous hip surgery in total hip arthroplasty.
Goldstein, Wayne M; Branson, Jill J
2005-09-01
The conversion of previous hip surgery to total hip arthroplasty creates a durable construct that is anatomically accurate. Most femoral components with either cemented or cementless design have a fixed tapered proximal shape. The proximal femoral anatomy is changed due to previous hip surgery for fixation of an intertrochanteric hip fracture, proximal femoral osteotomy, or a fibular allograft for avascular necrosis. The modular S-ROM (DePuy Orthopaedics Inc., Warsaw, Ind) hip stem accommodates these issues and independently prepares the proximal and distal portion of the femur. In preparation and implantation, the S-ROM hip stem creates less hoop stresses on potentially fragile stress risers from screws and thin bone. The S-ROM hip stem also prepares a previously distorted anatomy by milling through cortical bone that can occlude the femoral medullar canals and recreate proper femoral anteversion and reduces the risk of intraoperative or postoperative periprosthetic fracture due to the flexible titanium-slotted stem. The S-ROM femoral stem is recommended for challenging total hip reconstructions.
CORROSION RESISTANT JACKETED METAL BODY
Brugmann, E.W.
1958-08-26
Jacketed metal bodies of the type used as fuel elements for nuclear reactors, which contain an internal elongated body of fissionable material jacketed in a corrosion resistant metal are described. The ends of the internal bodies are provided with screw threads having a tapered outer end. The jacket material overlaps the ends and extends into the tapered section of the screw threaded opening. Screw caps with a mating tapered section are screwed into the ends of the body to compress the jacket material in the tapered sections to provtde an effective seal against corrosive gases and liquids.
[Technology of cementless hip endoprosthetics].
Ungethüm, M; Blömer, W
1987-06-01
The success achieved with non-cemented hip arthroplasty depends mainly on the stability of the fixation, the quality of the stabilizing bone being just as important as favourable biomechanical conditions. The results of the intensive research and development with respect to the particular features of a non-cemented hip endoprosthesis can be divided into the following basic categories: Biomechanical aspects with special reference to bone related to the design of the prosthesis; material characteristics, such as fatigue strength, tribology, corrosion resistance, and biocompatibility; and development of new materials and coatings to permit direct bonding of implant and bone. With regard to the stem of hip prostheses, the different design parameters of various types are examined to determine their typical design characteristics, such as bearing surface of the collar, geometry of cross section, anatomically adapted shaping, and surface of the implant forming the contact with the bone. The latter can be divided into macroprofiles and macro- and micro-porous coated surfaces. On the other hand, the methods of cementless fixation of acetabular cups can be primarily divided into conical and spherical screw fixation and pegged fixation with additional macroprofiles of porous surfaces. In a separate study of the biomechanical aspects of screwed sockets, the special importance of socket shape and thread geometry are presented with reference to primary stability and long-term fixation of prostheses.
CHAUDHARI, AJIT M. W.; JAMISON, STEVEN T.; MCNALLY, MICHAEL P.; PAN, XUELIANG; SCHMITT, LAURA C.
2014-01-01
Athletes at high risk of groin strains in sports such as hockey and soccer often choose to wear shorts with directional compression to aid in prevention or recovery from hip adductor strains. Large eccentric contractions are known to result in or exacerbate strain injuries, but it is unknown if these shorts have a beneficial effect on hip adductor muscle activity. In this study, surface electromyography of the adductor longus and ground reaction force (GRF) data were obtained simultaneously on 29 healthy individuals without previous history of serious injury while performing unanticipated 45° run-to-cut maneuvers in a laboratory setting wearing shorts with non-directional compression (control, HeatGear, Under Armour, USA) or shorts with directional compression (directional, CoreShort PRO, Under Armour, USA), in random order. Average adductor activity in the stance leg was significantly lower in the directional condition than in the control condition during all parts of stance phase (all p<0.042). From this preliminary analysis, wearing directional compression shorts appears to be associated with reduced stance limb hip adductor activity. Athletes seeking to reduce demand on the hip adductors as they approach full return to activities may benefit from the use of directional compression shorts. PMID:24669858
Chaudhari, Ajit M W; Jamison, Steven T; McNally, Michael P; Pan, Xueliang; Schmitt, Laura C
2014-01-01
Athletes at high risk of groin strains in sports such as hockey and soccer often choose to wear shorts with directional compression to aid in prevention of or recovery from hip adductor strains. Large, eccentric contractions are known to result in or exacerbate strain injuries, but it is unknown if these shorts have a beneficial effect on hip adductor muscle activity. In this study, surface electromyography (EMG) of the adductor longus and ground reaction force (GRF) data were obtained simultaneously on 29 healthy individuals without previous history of serious injury while performing unanticipated 45° run-to-cut manoeuvres in a laboratory setting wearing shorts with non-directional compression (control, HeatGear, Under Armour, USA) or shorts with directional compression (directional, CoreShort PRO, Under Armour, USA), in random order. Average adductor activity in the stance leg was significantly lower in the directional condition than in the control condition during all parts of stance phase (all P < 0.042). From this preliminary analysis, wearing directional compression shorts appears to be associated with reduced stance limb hip adductor activity. Athletes seeking to reduce demand on the hip adductors as they approach full return to activities may benefit from the use of directional compression shorts.
10-year results of the uncemented Allofit press-fit cup in young patients.
Streit, Marcus R; Weiss, Stefan; Andreas, Franziska; Bruckner, Thomas; Walker, Tilman; Kretzer, J Philippe; Ewerbeck, Volker; Merle, Christian
2014-08-01
Uncemented acetabular components in primary total hip arthroplasty (THA) are commonly used today, but few studies have evaluated their survival into the second decade in young and active patients. We report on a minimum 10-year follow-up of an uncemented press-fit acetabular component that is still in clinical use. We examined the clinical and radiographic results of our first 121 consecutive cementless THAs using a cementless, grit-blasted, non-porous, titanium alloy press-fit cup (Allofit; Zimmer Inc., Warsaw, IN) without additional screw fixation in 116 patients. Mean age at surgery was 51 (21-60) years. Mean time of follow-up evaluation was 11 (10-12) years. At final follow-up, 8 patients had died (8 hips), and 1 patient (1 hip) was lost to follow-up. 3 hips in 3 patients had undergone acetabular revision, 2 for deep infection and 1 for aseptic acetabular loosening. There were no impending revisions at the most recent follow-up. We did not detect periacetabular osteolysis or loosening on plain radiographs in those hips that were evaluated radiographically (n = 90; 83% of the hips available at a minimum of 10 years). Kaplan-Meier survival analysis using revision of the acetabular component for any reason (including isolated inlay revisions) as endpoint estimated the 11-year survival rate at 98% (95% CI: 92-99). Uncemented acetabular fixation using the Allofit press-fit cup without additional screws was excellent into early in the second decade in this young and active patient cohort. The rate of complications related to the liner and to osteolysis was low.
Proximal femoral fractures: Principles of management and review of literature.
Mittal, Ravi; Banerjee, Sumit
2012-06-01
The purpose of this study was to review the principles involved in the management of proximal femoral fractures as reported in the literature. A medical literature search in the MEDLINE (PubMed) and Cochrane database was undertaken to review strategies and principles in proximal femoral fracture treatment. Randomized control trials and meta analysis were given preference while case reports/small series were rejected. Early anatomical reduction and surgical fixation remains the best option to reduce the risk of complications like non-union and avascular necrosis in treating fracture neck femurs. Cancellous screws continue to be the preferred treatment for fixation of neck femur fractures in younger population until the benefit of using sliding hip screws is validated by large multicentric studies. In the geriatric age group, early prosthetic replacement brings down the mortality and morbidity associated with neck femur fractures. Sliding hip screw (DHS) is the best available option for stable inter trochanteric fractures. The use of intramedullary nails e.g. PFN is beneficial in treating inter trochanteric fractures with comminution and loss of lateral buttress. Intramedullary implants have been proven to have increased success rates in subtrochanteric fractures and should be preferred over extramedullary plate fixation systems.
Proximal femoral fractures: Principles of management and review of literature
Mittal, Ravi; Banerjee, Sumit
2012-01-01
Purpose The purpose of this study was to review the principles involved in the management of proximal femoral fractures as reported in the literature. Methods: A medical literature search in the MEDLINE (PubMed) and Cochrane database was undertaken to review strategies and principles in proximal femoral fracture treatment. Randomized control trials and meta analysis were given preference while case reports/small series were rejected. Results and conclusions: Early anatomical reduction and surgical fixation remains the best option to reduce the risk of complications like non-union and avascular necrosis in treating fracture neck femurs. Cancellous screws continue to be the preferred treatment for fixation of neck femur fractures in younger population until the benefit of using sliding hip screws is validated by large multicentric studies. In the geriatric age group, early prosthetic replacement brings down the mortality and morbidity associated with neck femur fractures. Sliding hip screw (DHS) is the best available option for stable inter trochanteric fractures. The use of intramedullary nails e.g. PFN is beneficial in treating inter trochanteric fractures with comminution and loss of lateral buttress. Intramedullary implants have been proven to have increased success rates in subtrochanteric fractures and should be preferred over extramedullary plate fixation systems. PMID:25983451
Shah, S; Kim, S Y R; Dubov, A; Schemitsch, E H; Bougherara, H; Zdero, R
2011-09-01
Femoral shaft fractures after total hip arthroplasty (THA) remain a serious problem, since there is no optimal surgical repair method. Virtually all studies that examined surgical repair methods have done so clinically or experimentally. The present study assessed injury patterns computationally by developing three-dimensional (3D) finite element (FE) models that were validated experimentally. The investigation evaluated three different constructs for the fixation of Vancouver B1 periprosthetic femoral shaft fractures following THA. Experimentally, three bone plate repair methods were applied to a synthetic femur with a 5 mm fracture gap near the tip of a total hip implant. Repair methods were identical distal to the fracture gap, but used cables only (construct A), screws only (construct B), or cables plus screws (construct C) proximal to the fracture gap. Specimens were oriented in 15 degrees adduction to simulate the single-legged stance phase of walking, subjected to 1000 N of axial force, and instrumented with strain gauges. Computationally, a linearly elastic and isotropic 3D FE model was developed to mimic experiments. Results showed excellent agreement between experimental and FE strains, yielding a Pearson linearity coefficient, R2, of 0.92 and a slope for the line of best data fit of 1.06. FE-computed axial stiffnesses were 768 N/mm (construct A), 1023 N/mm (construct B), and 1102 N/mm (construct C). FE surfaces stress maps for cortical bone showed Von Mises stresses, excluding peaks, of 0-8 MPa (construct A), 0-15 MPa (construct B), and 0-20 MPa (construct C). Cables absorbed the majority of load, followed by the plates and then the screws. Construct A yielded peak stress at one of the empty holes in the plate. Constructs B and C had similar bone stress patterns, and can achieve optimal fixation.
NASA Technical Reports Server (NTRS)
Perkins, G. S.
1983-01-01
Air lubricated lead screw and nut carefully machined to have closely matched closely fitting threads. Compressed air injected into two plenums encircle nut and flow through orifices to lubricate mating threads. Originally developed to position precisely interferometer retroreflector for airborne measurement of solar infrared radiation, device now has positioning accuracy of 0.25 micron.
Liu, Jia-Ming; Zhang, Yu; Zhou, Yang; Chen, Xuan-Yin; Huang, Shan-Hu; Hua, Zi-Kai; Liu, Zhi-Li
2017-06-01
Posterior reduction and pedicle screw fixation is a widely used procedure for thoracic and lumbar vertebrae fractures. Usually, the pedicle screws would be removed after the fracture healing and screw tunnels would be left. The aim of this study is to evaluate the effect of screw tunnels on the biomechanical stability of the lumbar vertebral body after pedicle screws removal by finite element analysis (FEA). First, the CT values of the screw tunnels wall in the fractured vertebral bodies were measured in patients whose pedicle screws were removed, and they were then compared with the values of vertebral cortical bone. Second, an adult patient was included and the CT images of the lumbar spine were harvested. Three dimensional finite element models of the L1 vertebra with unilateral or bilateral screw tunnels were created based on the CT images. Different compressive loads were vertically acted on the models. The maximum loads which the models sustained and the distribution of the force in the different parts of the models were recorded and compared with each other. The CT values of the tunnels wall and vertebral cortical bone were 387.126±62.342 and 399.204±53.612, which were not statistically different (P=0.149). The models of three dimensional tetrahedral mesh finite element of normal lumbar 1 vertebra were established with good geometric similarity and realistic appearance. After given the compressive loads, the cortical bone was the first one to reach its ultimate stress. The maximum loads which the bilateral screw tunnels model, unilateral screw tunnel model, and normal vertebral model can sustain were 3.97 Mpa, 3.83 Mpa, and 3.78 Mpa, respectively. For the diameter of the screw tunnels, the model with a diameter of 6.5 mm could sustain the largest load. In addition, the stress distributing on the outside of the cortical bone gradually decreased as the thickness of the tunnel wall increased. Based on the FEA, pedicle screw tunnels would not decrease the biomechanical stability and strength of the vertebral body. A large diameter of screw tunnel and thick tunnel wall were helpful for the biomechanical stability of the vertebral body.
Compressive and shear hip joint contact forces are affected by pediatric obesity during walking
Lerner, Zachary F.; Browning, Raymond C.
2016-01-01
Obese children exhibit altered gait mechanics compared to healthy-weight children and have an increased prevalence of hip pain and pathology. This study sought to determine the relationships between body mass and compressive and shear hip joint contact forces during walking. Kinematic and kinetic data were collected during treadmill walking at 1 m•s−1 in 10 obese and 10 healthy-weight 8–12 year-olds. We estimated body composition, segment masses, lower-extremity alignment, and femoral neck angle via radiographic images, created personalized musculoskeletal models in OpenSim, and computed muscle forces and hip joint contact forces. Hip extension at mid-stance was 9° less, on average, in the obese children (p<0.001). Hip abduction, knee flexion, and body-weight normalized peak hip moments were similar between groups. Normalized to body-weight, peak contact forces were similar at the first peak and slightly lower at the second peak between the obese and healthy-weight participants. Total body mass explained a greater proportion of contact force variance compared to lean body mass in the compressive (r2=0.89) and vertical shear (perpendicular to the physis acting superior-to-inferior) (r2=0.84) directions; lean body mass explained a greater proportion in the posterior shear direction (r2=0.54). Stance-average contact forces in the compressive and vertical shear directions increased by 41 N and 48 N, respectively, for every kilogram of body mass. Age explained less than 27% of the hip loading variance. No effect of sex was found. The proportionality between hip loads and body-weight may be implicated in an obese child’s increased risk of hip pain and pathology. PMID:27040390
Compressive and shear hip joint contact forces are affected by pediatric obesity during walking.
Lerner, Zachary F; Browning, Raymond C
2016-06-14
Obese children exhibit altered gait mechanics compared to healthy-weight children and have an increased prevalence of hip pain and pathology. This study sought to determine the relationships between body mass and compressive and shear hip joint contact forces during walking. Kinematic and kinetic data were collected during treadmill walking at 1ms(-1) in 10 obese and 10 healthy-weight 8-12 year-olds. We estimated body composition, segment masses, lower-extremity alignment, and femoral neck angle via radiographic images, created personalized musculoskeletal models in OpenSim, and computed muscle forces and hip joint contact forces. Hip extension at mid-stance was 9° less, on average, in the obese children (p<0.001). Hip abduction, knee flexion, and body-weight normalized peak hip moments were similar between groups. Normalized to body-weight, peak contact forces were similar at the first peak and slightly lower at the second peak between the obese and healthy-weight participants. Total body mass explained a greater proportion of contact force variance compared to lean body mass in the compressive (r(2)=0.89) and vertical shear (perpendicular to the physis acting superior-to-inferior) (r(2)=0.84) directions; lean body mass explained a greater proportion in the posterior shear direction (r(2)=0.54). Stance-average contact forces in the compressive and vertical shear directions increased by 41N and 48N, respectively, for every kilogram of body mass. Age explained less than 27% of the hip loading variance. No effect of sex was found. The proportionality between hip loads and body-weight may be implicated in an obese child׳s increased risk of hip pain and pathology. Published by Elsevier Ltd.
Park, Kyung-Mi; Kim, Suhn-Yeop; Oh, Duck-Won
2010-12-01
The aims of this study were to assess the effect of the pelvic compression belt on the electromyographic (EMG) activities of gluteus medius (GM), quadratus lumborum (QL), and lumbar multifidus (LM) during side-lying hip abduction. Thirty-one volunteers (15 men and 16 women) with no history of pathology volunteered for this study. Subjects were instructed to perform hip abduction in side-lying position with and without applying the pelvic compression belt. The pelvic compression belt was adjusted just below the anterior superior iliac spines with the stabilizing pressure using elastic compression bands. Surface EMG data were collected from the GM, QL, and LM of the dominant limb. Significantly decreased EMG activity in the QL (without the pelvic compression belt, 60.19±23.66% maximal voluntary isometric contraction [MVIC]; with the pelvic compression belt, 51.44±23.00% MVIC) and significantly increased EMG activity in the GM (without the pelvic compression belt, 26.71±12.88% MVIC; with the pelvic compression belt, 35.02±18.28% MVIC) and in the LM (without the pelvic compression belt, 30.28±14.60% MVIC; with the pelvic compression belt, 37.47±18.94% MVIC) were found when the pelvic compression belt was applied (p<0.05). However, there were no significant differences of the EMG activity between male and female subjects. The findings suggest that the pelvic compression belt may be helpful to prevent unwanted substitution movement during side-lying hip abduction, through increasing the GM and LM and decreasing the QL. Copyright © 2010 Elsevier Ltd. All rights reserved.
Kumar, Dharmendra; Jain, Vijay Kumar; Lal, Hitesh; Arya, Rajinder Kumar; Sinha, Skand
2012-12-01
Osteopetrosis is a rare inherited skeletal disorder characterized by increased density. The increased fragility of such dense bone results in a greater incidence of fractures, especially around hip and proximal femur. The surgical treatment of such fractures is difficult due to hard but brittle structure of bone. Herein we report a case of bilateral subtrochanteric fracture in an osteopetrotic patient. It was fixed using a dynamic hip screw with plate.
Emami, Mohamad; Manafi, Alireza; Hashemi, Behrooz; Nemati, Ali; Safari, Saeed
2013-01-01
Background: At present, there is no consensus on an appropriate treatment modality for intertrochanteric fractures in the elderly with background diseases. The aim of the present study was to compare treatment outcomes of intertrochanteric fractures reduced with dynamic hip screws (DHS) and bipolar hemiarthroplasty in elderly patients with background medical conditions. Methods: In this randomized clinical trial, 60 patients with intertrochanteric fractures, who were 45-60 years old, were randomly divided into DHS and bipolar groups. After treatment, the two groups were compared in relation to complications and mortality rates, functional status using the Harris Hip Score (HHS), range of movement and severity of pain using the visual analogue score (VAS). Results: HHS (86±9 vs. 75±7.6), range of flexion (105±11 degrees vs. 90±17 degrees) and external rotation (35±7 degrees vs. 20±7 degrees) were significantly higher in the bipolar group compared to the DHS group (P<0.05). However, there were no significant differences in pain severity between the two groups. Conclusion: Reduction of intertrochanteric fractures in elderly patients with background medical conditions is more effective and less problematic with the bipolar technique compared to DHS and is better tolerated by patients, because this technique is associated with improvements in functional status and hip joint movement range. PMID:25207277
Outcomes of osteoporotic trochanteric fractures treated with cement-augmented dynamic hip screw
Gupta, Rakesh Kumar; Gupta, Vinay; Gupta, Navdeep
2012-01-01
Background: Dynamic hip screw (DHS) has been the standard treatment for stable trochanteric fracture patterns, but complications of lag screw cut out from a superior aspect, due to inadequate bone anchorage, occur frequently in elderly osteoporotic patients. Polymethylmethacrylate (PMMA) has been used as an augmentation tool to facilitate fixation stability in cadaveric femora for biomechanical studies and in pathological fractures. However, there are very few reports on the utilization of PMMA cement to prevent these complications in fresh intertrochanteric fractures. A prospective study was conducted to evaluate the outcome and efficacy of PMMA augmented DHS in elderly osteoporotic patients with intertrochanteric fractures. Materials and Methods: The study included 64 patients (AO type31-A2.1 in eight, A2.2 in 29, A2.3 in 17 patients, and 31-A3.1 in five, A3.2 in three, and A3.3 in two patients) with an average age of 72 years (60 – 94 years) of which 60 were available for final followup. PMMA augmentation of DHS was performed in all cases by injecting PMMA cement into the femoral head with a custommade gun designed by the authors. The clinical outcome was rated as per the Salvati and Wilson scoring system at the time of final followup of one year. Results were graded as excellent (score > 31), good (score 24 – 31), fair (score 16 – 23), and poor (score < 16). Results: Fracture united in all patients and the average time to union was 13.8 weeks (range 12 – 16 weeks). At an average followup of 18 months (range 12 – 24 months), no incidence of varus collapse or superior screw cut out was observed in any of the patients in spite of weightbearing ambulation from the early postoperative period. There was no incidence of avascular necrosis (AVN) or cement penetration into the joint in our series. Most of the patients were able to regain their prefracture mobility status with a mean hip pain score of 8.6. Conclusion: Cement augmentation of DHS appears to be an effective method of preventing osteoporosis related complications of fracture fixation in the trochanteric fractures. The technique used for cement augmentation in the present study is less likely to cause possible complications of cement augmentation like thermal necrosis, cement penetration into the joint, and AVN hip. PMID:23325965
Sod, Gary A; Mitchell, Colin F; Hubert, Jeremy D; Martin, George S; Gill, Marjorie S
2007-12-01
To compare in vitro monotonic biomechanical properties of an equine spoon plate (ESP) with an axial 3-hole, 4.5 mm narrow dynamic compression plate (DCP) using 5.5 mm cortical screws in conjunction with 2 abaxial transarticular 5.5 mm cortical screws (DCP-TLS) inserted in lag fashion for equine proximal interphalangeal (PIP) joint arthrodesis. Paired in vitro biomechanical testing of 2 methods of stabilizing cadaveric adult equine forelimb PIP joints. Cadaveric adult equine forelimbs (n=18 pairs). For each forelimb pair, 1 PIP joint was stabilized with an ESP (8 hole, 4.5 mm) and 1 with an axial 3-hole narrow DCP (4.5 mm) using 5.5 mm cortical screws in conjunction with 2 abaxial transarticular 5.5 mm cortical screws inserted in lag fashion. Six matching pairs of constructs were tested in single cycle to failure under axial compression with load applied under displacement control at a constant rate of 5 cm/s. Six construct pairs were tested for cyclic fatigue under axial compression with cyclic load (0-7.5 kN) applied at 6 Hz; cycles to failure were recorded. Six construct pairs were tested in single cycle to failure under torsional loading applied at a constant displacement rate (0.17 radians/s) until rotation of 0.87 radians occurred. Mean values for each fixation method were compared using a paired t-test within each group with statistical significance set at P<.05. Mean yield load, yield stiffness, and failure load for ESP fixation were significantly greater (for axial compression and torsion) than for DCP-TLS fixation. Mean (+/- SD) values for the ESP and DCP-TLS fixation techniques, respectively, in single cycle to failure under axial compression were: yield load 123.9 +/- 8.96 and 28.5 +/- 3.32 kN; stiffness, 13.11 +/- 0.242 and 2.60 +/- 0.17 kN/cm; and failure load, 144.4 +/- 13.6 and 31.4 +/- 3.8 kN. In single cycle to failure under torsion, mean (+/- SD) values for ESP and DCP-TLS, respectively, were: stiffness 2,022 +/- 26.2 and 107.9 +/- 11.1 N m/rad; and failure load: 256.4 +/- 39.2 and 87.1 +/- 11.5 N m. Mean cycles to failure in axial compression of ESP fixation (622,529 +/- 65,468) was significantly greater than DCP-TLS (95,418 +/- 11,037). ESP was superior to an axial 3-hole narrow DCP with 2 abaxial transarticular screws inserted in lag fashion in resisting static overload forces and cyclic fatigue. In vitro results support further evaluation of ESP for PIP joint arthrodesis in horses. Its specific design may provide increased stability without need for external coaptation support.
Olsen, Michael; Goshulak, Peter; Crookshank, Meghan C; Moktar, Joel; Brazda, Ignace J; Schemitsch, Emil H; Zdero, Radovan
2018-04-03
The goal of this study was to compare a 3-hole vs. a 4-hole sliding hip screw (SHS) in the presence of a retrograde intramedullary (RIM) nail for fixing intertrochanteric and comminuted midshaft femur fractures. Mechanical tests were performed on 10 matched pairs of human cadaveric femurs that were osteotomized and then fixed using a 3-hole SHS vs. the traditional "gold standard" 4-hole SHS in the presence of a RIM nail. Data showed no differences between the 3-hole SHS with RIM nail vs. 4-hole SHS with RIM nail for stiffness (281 +/- 127 vs. 260 +/- 118 N/mm, p=0.76), clinical failure at 10 mm of hip displacement (2014 +/- 363 vs. 2134 +/- 614 N, p=0.52), or ultimate mechanical failure (3476 +/- 776 vs. 3669 +/- 755 N, p=0.12). For this fracture pattern, a 3-hole SHS with RIM nail may be a suitable surgical alternative to the traditional "gold standard" method, since it provides the same biomechanical properties while potentially reducing surgical time, blood loss, and hardware used. Level III biomechanical study.
Kallakunta, Venkata Raman; Tiwari, Roshan; Sarabu, Sandeep; Bandari, Suresh; Repka, Michael A
2018-05-14
The current study's aim is to prepare lipid based sustained release tablets via a twin-screw granulation technique and compare those dosage forms with conventional techniques, namely wet granulation and direct compression. The granules were successfully manufactured in a single-step, continuous twin-screw granulation process with a low proportion of binder (Klucel™ EF, HPC SSL) using Compritol® 888 ATO, Precirol® ATO 5 and Geleol™ as sustained release agents. The granules prepared showed good flow characteristics and compaction properties. DSC and XRD studies were conducted to characterize the granules prepared via a twin-screw granulation method and the results demonstrated the crystalline nature of lipids within the granules. FTIR data indicated that there were no interactions with the formulation components investigated. The formulations developed by all three methods were compressed into tablets with a mechanical strength of 14-16 KP. The tablets formulated were characterized for physicochemical properties, in vitro drug release studies, water uptake and erosion studies. These results showed that the drug was not completely released after 24 h for tablets developed by the wet granulation process using all three lipids. The tablets prepared by the direct compression method demonstrated a burst release within 8 to 10 h from Precirol ATO 5® and Geleol™ formulations compared to Compritol® 888 ATO. However, tablets prepared using twin-screw granulation exhibited sustained release of the drug over 24 h and the water uptake and erosion results were in accordance with dissolution data. Stability data for 45 days at accelerated conditions (40 °C/75% RH) showed similar release profiles with ƒ2 values above 50 for all of the twin screw granulation formulations, indicating the suitability of the process for formulating sustained release tablets. These findings of a single-step, continuous twin-screw granulation process are novel and demonstrate new opportunities for development of sustained release tablets. Copyright © 2017. Published by Elsevier B.V.
[Gluteal compartment syndrome after total hip replacement. A presentation of two cases].
Villalba, J; Solernou, X
2013-01-01
Many postoperative complications have been described after a total hip arthroplasty, with early and acute, as well as late, complications being reported. Two cases of compartment syndrome of the buttock are described following a hybrid total hip arthroplasty (cemented stem and press-fit and screwed acetabulum) performed on 2 patients of 60 and 68 years old, both diagnosed and treated 24-48 hours after the surgery. Both cases had a primary prosthesis with no previous significant pathological findings. This condition is still rare, and few cases have been described at the medical literature. Copyright © 2012 SECOT. Published by Elsevier Espana. All rights reserved.
Actively suspended counter-rotating machine
NASA Technical Reports Server (NTRS)
Studer, Philip A. (Inventor)
1983-01-01
A counter-rotating machine, such as a positive displacement pump having a pair of meshed, non-contacting helical screws (10,12), subjects its rotating members to axial and radial thrust forces when used for such purposes as compression of liquid or gaseous phase fluids while transporting them through a pump cavity (11,13). Each helical screw (10,12) has a shaft (17,17') which is actively suspended at opposite ends (11a,11b) of the pump cavity by a servo-controlled magnetic bearing assembly (19) and a servo-controlled rotary drive motor (20). Both bearing assemblies and drive motors are mounted on the outside of the pump cavity (11,13). Opto-electric angular position sensors (250) provide synchronization between radial orientation of the drive motors. The bearing assemblies and drive motors conjugately provide axial stabilization and radial centering of the helical screws during volumetric compression of aspirated liquid or gaseous phase fluids.
Pujari-Palmer, Michael; Robo, Celine; Persson, Cecilia; Procter, Philip; Engqvist, Håkan
2018-01-01
Disease and injuries that affect the skeletal system may require surgical intervention and internal fixation, i.e. orthopedic plate and screw insertion, to stabilize the injury and facilitate tissue repair. If the surrounding bone quality is poor the screws may migrate, or the bone may fail, resulting in fixation failure. While numerous studies have shown that cement augmentation of the interface between bone and implant can increase screw pull-out force, the physical properties of cement that influence pull-out force have not been investigated. The present study sought to determine how the physical properties of high strength calcium phosphate cements (hsCPCs, specifically dicalcium phosphate) affected the corresponding orthopedic screw pull-out force in urethane foam models of "healthy" and "osteoporotic" synthetic bone (Sawbones). In the simplest model, where only the bond strength between screw thread and cement (without Sawbone) was tested, the correlation between pull-out force and cement compressive strength (R 2 = 0.79) was weaker than correlation with total cement porosity (R 2 = 0.89). In open pore Sawbone that mimics "healthy" cancellous bone density the stronger cements produced higher pull-out force (50-60% increase). High strength, low porosity cements also produced higher pull-out forces (50-190% increase) in "healthy" Sawbones with cortical fixation if the failure strength of the cortical material was similar to, or greater than (a metal shell), actual cortical bone. This result is of particular clinical relevance where fixation with a metal plate implant is indicated, as the nearby metal can simulate a thicker cortical shell, thereby increasing the pull-out force of screws augmented with stronger cements. The improvement in pull-out force was apparent even at low augmentation volumes of 0.5mL (50% increase), which suggest that in clinical situations where augmentation volume is limited the stronger, lower porosity calcium phosphate cement (CPC) may still produce a significant improvement in screw pull-out force. When the correlation strength of all the tested models were compared both cement porosity and compressive strength accurately predicted pull-out force (R 2 =1.00, R 2 =0.808), though prediction accuracy depended upon the strength of the material surrounding the Sawbone. The correlations strength was low for bone with no, or weak, cortical fixation (R 2 =0.56, 0.36). Higher strength and lower porosity CPCs also produced greater pull-out force (1-1.5kN) than commercial CPC (0.2-0.5kN), but lower pull-out force than PMMA (2-3kN). The results of this study suggest that the likelihood of screw fixation failure may be reduced by selecting calcium phosphate cements with lower porosity and higher compressive strength, in patients with healthy bone mineral density and/or sufficient cortical thickness. This is of particular clinical relevance when fixation with metal plates is indicated, or where the augmentation volume is limited. Copyright © 2017 Elsevier Ltd. All rights reserved.
Open Screw Placement in a 1.5 mm LCP Over a Fracture Gap Decreases Fatigue Life
Alwen, Sarah G. J.; Kapatkin, Amy S.; Garcia, Tanya C.; Milgram, Joshua; Stover, Susan M.
2018-01-01
Objective To investigate the influence of plate and screw hole position on the stability of simulated radial fractures stabilized with a 1.5 mm condylar locking compression plate (LCP). Study Design In vitro mechanical testing of paired cadaveric limbs. Sample Population Paired radii (n = 7) stabilized with a 1.5 mm condylar LCP with an open screw hole positioned either proximal to (PG), or over (OG), a simulated small fracture gap. Methods Constructs were cycled in axial compression at a simulated trot load until failure or a maximum of 200,000 cycles. Specimens that sustained 200,000 cycles without failure were then loaded in axial compression in a single cycle to failure. Construct cyclic axial stiffness and gap strain, fatigue life, and residual strength were evaluated and compared between constructs using analysis of variance. Results Of pairs that had a failure during cyclic loading, OG constructs survived fewer cycles (54,700 ± 60,600) than PG (116,800 ± 49,300). OG constructs had significantly lower initial stiffness throughout cyclic loading and higher gap strain range within the first 1,000 cycles than PG constructs. Residual strength variables were not significantly different between constructs, however yield loads occurred at loads only marginally higher than approximated trot loads. Fatigue life decreased with increasing body weight. Conclusion Fracture fixation stability is compromised by an open screw hole directly over a fracture gap compared to the open screw hole being buttressed by bone in the model studied. The 1.5 mm condylar LCP may be insufficient stabilization in dogs with appropriate radial geometry but high body weights. PMID:29876361
Intra-operative measurement of applied forces during anterior scoliosis correction.
Fairhurst, H; Little, J P; Adam, C J
2016-12-01
Spinal instrumentation and fusion for the treatment of scoliosis is primarily a mechanical intervention to correct the deformity and halt further progression. While implant-related complications remain a concern, little is known about the magnitudes of the forces applied to the spine during surgery, which may affect post-surgical outcomes. In this study, the compressive forces applied to each spinal segment during anterior instrumentation were measured in a series of patients with Adolescent Idiopathic Scoliosis. A force transducer was designed and retrofit to a routinely used surgical tool, and compressive forces applied to each segment during surgery were measured for 15 scoliosis patients. Cobb angle correction achieved by each force was measured on intra-operative fluoroscope images. Relative changes in orientation of the screw within the vertebra were also measured to detect intra-operative screw plough. Intra-operative forces were measured for a total of 95 spinal segments. The mean applied compressive force was 540N (SD 230N, range 88N-1019N). There was a clear trend for higher forces to be applied at segments toward the apex of the scoliosis. Fluoroscopic evidence of screw plough was detected at 10 segments (10.5%). The magnitude of forces applied during anterior scoliosis correction vary over a broad range. These forces do reach magnitudes capable of causing intra-operative vertebral body screw plough. Surgeons should be aware there is a risk for tissue overload during correction, however the clinical implications of intra-operative screw plough remain unclear. The dataset presented here is valuable for providing realistic input parameters for in silico surgical simulations. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dirras, G., E-mail: dirras@univ-paris13.fr; Gubicza, J.; Heczel, A.
2015-10-15
The microstructure evolution in body-centered cubic (bcc) Ti{sub 20}Zr{sub 20}Hf{sub 20}Nb{sub 20}Ta{sub 20} high entropy alloy during quasi-static compression test was studied by X-ray line profile analysis (XLPA) and transmission electron microscopy (TEM). The average lattice constant and other important parameters of the microstructure such as the mean crystallite size, the dislocation density and the edge/screw character of dislocations were determined by XLPA. The elastic anisotropy factor required for XLPA procedure was determined by nanoindentation. XLPA shows that the crystallite size decreased while the dislocation density increased with strain during compression, and their values reached about 39 nm and 15more » × 10{sup 14} m{sup −2}, respectively, at a plastic strain of ~ 20%. It was revealed that with increasing strain the dislocation character became more screw. This can be explained by the reduced mobility of screw dislocations compared to edge dislocations in bcc structures. These observations are in line with TEM investigations. The development of dislocation density during compression was related to the yield strength evolution. - Highlights: • Ti{sub 20}Zr{sub 20}Hf{sub 20}Nb{sub 20}Ta{sub 20} high entropy alloy was processed by arc-melting. • The mechanical was evaluated by RT compression test. • The microstructure evolution was studied by XLPA and TEM. • With increasing strain the dislocation character became more screw. • The yield strength was related to the development of the dislocation density.« less
Riedl, Markus; Glisson, Richard R; Matsumoto, Takumi; Hofstaetter, Stefan G; Easley, Mark E
2017-06-01
Subtalar joint arthrodesis is a common operative treatment for symptomatic subtalar arthrosis. Because excessive relative motion between the talus and calcaneus can delay or prohibit fusion, fixation should be optimized, particularly in patients at risk for subtalar arthrodesis nonunion. Tapered, fully-threaded, variable pitch screws are gaining popularity for this application, but the mechanical properties of joints fixed with these screws have not been characterized completely. We quantified the torsion resistance of 2-screw and 3-screw subtalar joint fixation using this type of screw. Ten pairs of cadaveric subtalar joints were prepared for arthrodesis and fixed using Acutrak 2-7.5 screws. One specimen from each pair was fixed with two diverging posterior screws, and the contralateral joint was fixed using two posterior screws and a third screw directed through the anterior calcaneus into the talar neck. Internal and external torsional loads were applied and joint rotation and torsional stiffness were measured at two torque levels. Internal rotation was significantly less in specimens fixed with three screws. No difference was detectable between 2-screw and 3-screw fixation in external rotation or torsional stiffness in either rotation direction. Both 2-screw and 3-screw fixation exhibited torsion resistance surpassing that reported previously for subtalar joints fixed with two diverging conventional lag screws. Performance of the tapered, fully threaded, variable pitch screws exceeded that of conventional lag screws regardless of whether two or three screws were used. Additional resistance to internal rotation afforded by a third screw placed anteriorly may offer some advantage in patients at risk for nonunion. Copyright © 2017. Published by Elsevier Ltd.
Wang, Xiaoyu; Aubin, Carl-Eric; Coleman, John; Rawlinson, Jeremy
2017-05-01
Computer simulations to compare the correction capabilities of different pedicle screws in adolescent idiopathic scoliosis (AIS) instrumentations. To compare the correction and resulting bone-screw forces associated with different pedicle screws in scoliosis instrumentations. Pedicle screw fixation is widely used in surgical instrumentation for spinal deformity treatment. Screw design, correction philosophies, and surgical techniques are constantly evolving to achieve better control of the vertebrae and correction of the spinal deformity. Yet, there remains a lack of biomechanical studies that quantify the effects and advantages of different screw designs in terms of correction kinematics. The correction capabilities of fixed-angle, multiaxial, uniaxial, and saddle axial screws were kinematically analyzed, simulated, and compared. These simulations were based on the screw patterns and correction techniques proposed by 2 experienced surgeons for 2 AIS cases. Additional instrumentations were assessed to compare the correction and resulting bone-screw forces associated with each type of screw. The fixed-angle, uniaxial and saddle axial screws had similar kinematic behavior and performed better than multiaxial screws in the coronal and transverse planes (8% and 30% greater simulated corrections, respectively). Uniaxial and multiaxial screws were less effective than fixed-angle and saddle axial screws in transmitting compression/distraction to the anterior spine because of their sagittal plane mobility between the screw head and shank. Only the saddle axial screws allow vertebra angle in the sagittal plane to be independently adjusted. Pedicle screws of different designs performed differently for deformity corrections or for compensating screw placement variations in different anatomic planes. For a given AIS case, screw types should be determined based on the particular instrumentation objectives, the deformity's stiffness and characteristics so as to make the best of the screw designs.
Engelhardt, P
1979-10-01
Prevention of further detachment is the primary aim in the immediate treatment of beginning juvenile detachment of the femoral head. Screwing of the epiphysis of the head, first introduced by M. E. Mueller (1965), has proved successful. Besides providing immediate mechanical stability, this method, however, results in premature ossification of the joint of the femoral neck. Epiphysiodesis has a particularly unfavourable effect in early childhood, because it inhibits proper growth of the leg and development of the mechanism of the hip joint on account of the shortened femoral neck. Spiking of the epiphysis with Krischner screw wires guarantees safe fixation of the epiphyseal head on the one hand, and sufficient freedom of femoral neck growth on the other. Surgical treatment requires knowledge of the changed hip joint anatomy of the child. Preoperative planning via drawing to determine the length and position of the implantate on the basis of standardised x-ray films, will help to prevent operative failures.
de Abreu, Eduardo Lima; Sena, Caroline Brum; Saldanha Rodrigues Filho, Sergio Antonio
2016-01-01
Objective To analyze the short-term results from treating unstable intertrochanteric fractures with Dynamic Hip Screws (DHS), using a minimally invasive route, focusing on the functional aspects and complication and mortality rates of the method. Methods This was a prospective longitudinal study on 140 patients who underwent fixation of transtrochanteric fractures with the DHS system with a lateral minimally invasive access in the hip, between January and December 2013. The patients were evaluated pre and postoperatively (after six months of follow-up) by means of the Parker and Palmer mobility score. Women comprised 65.7% of the sample, and 54.3% of the fractures were on the right side. The patients’ mean age was 80 years, ranging from 60 to 93 years. Results We observed an overall decrease in the mobility score and an increase in the degree of dependence over the short term. However, we encountered only two deaths in the study sample and there were no cases of infection or nonunion. Conclusion Despite the efficacy of the treatment with DHS, with high rates of fracture consolidation and a low mortality rate, we noted that the patients still showed significant functional limitation at the follow-up six months after the operation. PMID:27069880
Predicting cancellous bone failure during screw insertion.
Reynolds, Karen J; Cleek, Tammy M; Mohtar, Aaron A; Hearn, Trevor C
2013-04-05
Internal fixation of fractures often requires the tightening of bone screws to stabilise fragments. Inadequate application of torque can leave the fracture unstable, while over-tightening results in the stripping of the thread and loss of fixation. The optimal amount of screw torque is specific to each application and in practice is difficult to attain due to the wide variability in bone properties including bone density. The aim of the research presented in this paper is to investigate the relationships between motor torque and screw compression during powered screw insertion, and to evaluate whether the torque during insertion can be used to predict the ultimate failure torque of the bone. A custom test rig was designed and built for bone screw experiments. By inserting cancellous bone screws into synthetic, ovine and human bone specimens, it was established that variations related to bone density could be automatically detected through the effects of the bone on the rotational characteristics of the screw. The torque measured during screw insertion was found to be directly related to bone density and can be used, on its own, as a good predictor of ultimate failure torque of the bone. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Tsai, Liang-Ching; Ko, Yi-An; Hammond, Kyle E; Xerogeanes, John W; Warren, Gordon L; Powers, Christopher M
2017-12-01
Although most ACL injury prevention programmes encourage greater hip and knee flexion during landing, it remains unknown how this technique influences tibiofemoral joint forces. We examined whether a landing strategy utilising greater hip and knee flexion decreases tibiofemoral anterior shear and compression. Twelve healthy women (25.9 ± 3.5 years) performed a drop-jump task before and after a training session (10-15 min) that emphasised greater hip and knee flexion. Peak tibiofemoral anterior shear and compressive forces were calculated using an electromyography (EMG)-driven knee model that incorporated joint kinematics, EMG and participant-specific muscle volumes and patella tendon orientation measured using magnetic resonance imaging (MRI). Participants demonstrated a decrease in peak anterior tibial shear forces (11.1 ± 3.3 vs. 9.6 ± 2.7 N · kg -1 ; P = 0.008) and peak tibiofemoral compressive forces (68.4 ± 7.6 vs. 62.0 ± 5.5 N · kg -1 ; P = 0.015) post-training. The decreased peak anterior tibial shear was accompanied by a decrease in the quadriceps anterior shear force, while the decreased peak compressive force was accompanied by decreased ground reaction force and hamstring forces. Our data provide justification for injury prevention programmes that encourage greater hip and knee flexion during landing to reduce tibiofemoral joint loading.
Toro, Giuseppe; Moretti, Antimo; Toro, Gabriella; Tirelli, Assunta; Calabrò, Giampiero; Toro, Antonio; Iolascon, Giovanni
2017-01-01
A clinical case of a 15-year-old cerebral palsy child with a Sandhu type 2 neglected femoral neck fracture is presented. The patient was treated using cannulated screws and cancellous bone graft augmented with mesenchymal stem cells. At 6 months after the surgery complete fracture healing was observed. To early diagnose this fractures, it is mandatory to perform a comprehensive clinical and radiological evaluation including also a second level imaging. The use of cannulated screws with cancellous bone graft and MSCs is a viable treatment option in these patients.
Fan, Haitao T; Zhang, Renjie J; Shen, Cailiang L; Dong, Fulong L; Li, Yong; Song, Peiwen W; Gong, Chen; Wang, Yijin J
2016-03-01
The biomechanics of pedicle screw fixation combined with trajectory cement augmentation with various filling volumes were measured by pull-out, periodic antibending, and compression fatigue tests. To investigate the biomechanical properties of the pedicle screw fixation combined with trajectory bone cement (polymethylmethacrylate) augmentation in osteoporotic vertebrae and to explore the optimum filling volume of the bone cement. Pedicle screw fixation is considered to be the most effective posterior fixation method. The decrease of the bone mineral density apparently increases the fixation failure risk caused by screw loosening and displacement. Trajectory bone cement augmentation has been confirmed to be an effective method to increase the bone intensity and could markedly increase the stability of the fixation interface. Sixteen elderly cadaveric 1-5 lumbar vertebral specimens were diagnosed with osteoporosis. The left and right vertebral pedicles were alternatively randomized for treatment in all groups, with the contralateral pedicles as control. The study groups included: group A (pedicle screw fixation with full trajectory bone cement augmentation), group B (75% filling), group C (50% filling), and group D (25% filling). Finally, the bone cement leakage and dispersion were assessed and the mechanical testing was conducted. The bone cement was well dispersed around the pedicle screw. The augmented bone intensity, pull-out strength, periodic loading times, and compression fatigue performance were markedly higher than those of the control groups. With the increase in trajectory bone cement, the leakage was also increased (P<0.05). The pull-out strength of the pedicle screw was increased with an increase in bone mineral density and trajectory bone cement. It peaked at 75% filling, with the largest power consumption. The optimal filling volume of the bone cement was 75% of the trajectory volume (about 1.03 mL). The use of excessive bone cement did not increase the fixation intensity but increased the risk of leakage.
Wiendieck, Kurt; Müller, Helge; Buchfelder, Michael; Sommer, Björn
2018-06-01
We investigated mechanical pull-out behavior and tightening torque of a novel dual-core pedicle "6T screw" (6T). The aim of this study was to test if these changes in screw geometry are increasing the strength of the pedicle screw fixation after repeated insertion. Three different types of pedicle screws were inserted in rigid foam blocks. Tightening torque and pull-out strength were measured during two repetitive insertions of a standard 6.5×45-mm conical screw. The third insertion into the pilot hole was performed using either standard 6.5×45-mm or 7.2×45-mm conical screws or the novel 6.5×45-mm (6T) screw. Additionally, we performed a surface analysis to investigate the bone/screw interface. The maximal tightening torque at the third insertion of the novel 6T screw was 194% higher compared to the standard 6.5×45-mm conical screw and 135% higher compared to the standard 7.2×45-mm conical screw. The pull-out strength of the 6T screw showed no significant changes, and surface analysis revealed a compression of the screw-foam interface due to the different internal diameters. The modified geometrical design of the 6T screw seems to have no statistically significant effect on the pull-out strength, although it achieved a higher tightening torque. This might be due to the different pitch angle cutting a new thread into the material and also to the enlarged inner diameter.
Buchowski, Jacob M; Bridwell, Keith H; Lenke, Lawrence G; Good, Christopher R
2009-06-01
Case report. In order to demonstrate the dangers of intrapedicular application of a hemostatic gelatin matrix to decrease blood loss during pedicle screw insertion, we present 2 patients who--as a result of inadvertent extravasation of the matrix into the spinal canal--developed epidural spinal cord compression (ESCC) requiring emergent decompression. Variety of hemostatic agents can control bleeding during pedicle screw insertion. We have often used a hemostatic gelatin matrix to decrease bleeding from cannulated pedicles by injecting the material into the pedicle after manually palpating the pedicle. Medical records and radiographic studies of 2 patients with AIS who underwent surgical treatment of their deformity and developed a neurologic deficit due to extravasation of FloSeal were reviewed. A 15 year-old male underwent T4 to L2 posterior spinal fusion (PSF). During pedicle screw insertion, a change in NMEPs and SSEPs was noted. A wake-up test confirmed bilateral LE paraplegia. Screws were removed and no perforations were noted on manual palpation. MRI showed T7 to T10 ESCC. He underwent a T5 to T10 laminectomy and hemostatic gelatin matrix noted in the canal and was evacuated. He was ambulatory at 2 weeks and by 3 months he had complete recovery. The second patient was a 15 year-old female who underwent T4 to L1 PSF. Following screw insertion, deterioration in NMEPs and SSEPs was noted. Screws were removed and SCM data returned to baseline. Except for 3 screws that had an inferior breach (Left T7 and Bilateral T8), screws were reinserted and remainder of the surgery was uneventful. Postoperative examination was normal initially but 2 days later, she developed left LE numbness/weakness. Implants were removed and MRI showed T4 to T9 ESCC.She underwent a left (concave) T4 to T9 hemilaminectomy. Hemostatic gelatin matrix was noted and was evacuated. Six weeks following surgery, she had a complete neurologic recovery. The use of a hemostatic gelatin matrix to decrease bleeding from cannulated pedicles during pedicle screw insertion can result in inadvertent extravasation into the spinal canal resulting in ESCC even in the absence of an apparent medial pedicle breach. Given the dangers associated with the technique, we recommend that gelatin matrix products be used judiciously during pedicle screw insertion.
Central cooling: compressive chillers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christian, J.E.
1978-03-01
Representative cost and performance data are provided in a concise, useable form for three types of compressive liquid packaged chillers: reciprocating, centrifugal, and screw. The data are represented in graphical form as well as in empirical equations. Reciprocating chillers are available from 2.5 to 240 tons with full-load COPs ranging from 2.85 to 3.87. Centrifugal chillers are available from 80 to 2,000 tons with full load COPs ranging from 4.1 to 4.9. Field-assemblied centrifugal chillers have been installed with capacities up to 10,000 tons. Screw-type chillers are available from 100 to 750 tons with full load COPs ranging from 3.3more » to 4.5.« less
The best location for proximal locking screw for femur interlocking nailing: A biomechanical study
Karaarslan, Ahmet A; Karakaşli, Ahmet; Aycan, Hakan; Çeçen, Berivan; Yildiz, Didem Venüs; Sesli, Erhan
2016-01-01
Background: Proximal locking screw deformation and screw fracture is a frequently seen problem for femur interlocking nailing that affects fracture healing. We realized that there is lack of literature for the right level for the proximal locking screw. We investigated the difference of locking screw bending resistance between the application of screws on different proximal femoral levels. Materials and Methods: We used a total of 80 proximal locking screws for eight groups, 10 screws for each group. Three-point bending tests were performed on four types of screws in two different trochanteric levels (the lesser trochanter and 20 mm proximal). We determined the yield points at three-point bending tests that a permanent deformation started in the locking screws using an axial compression testing machine. Results: The mean yield point value of 5 mm threaded locking screws applied 20 mm proximal of lesser trochanter was 1022 ± 49 (range 986–1057) (mean ± standard deviation, 95% confidence interval). On the other hand, the mean yield point value of the same type of locking screws applied on the lesser trochanteric level was 2089 ± 249 (range 1911–2268). Which means 103% increase of screw resistance between two levels (P = 0.000). In all screw groups, on the lesser trochanter line we determined 98–174% higher than the yield point values of the same type of locking screws in comparison with 20 mm proximal to the lesser trochanter (P = 0.000). Conclusion: According to our findings, there is twice as much difference in locking screw bending resistance between these two application levels. To avoid proximal locking screw deformation, locking screws should be placed in the level of the lesser trochanter in nailing of 1/3 middle and distal femur fractures. PMID:26955183
Coal extrusion in the plastic state
NASA Technical Reports Server (NTRS)
England, C.; Ryason, P. R.
1977-01-01
Continuous feeding of coal in a compressing screw extruder is described as a method of introducing coal into pressurized systems. The method utilizes the property of many bituminous coals of softening at temperatures from 350 to 425 C. Coal is then fed, much in the manner of common thermoplastics, using screw extruders. Data on the viscosity and extruder parameters for extrusion of Illinois No. 6 coal are presented.
Takeba, Jun; Umakoshi, Kensuke; Kikuchi, Satoshi; Matsumoto, Hironori; Annen, Suguru; Moriyama, Naoki; Nakabayashi, Yuki; Sato, Norio; Aibiki, Mayuki
2018-04-01
Screw fixation for unstable pelvic ring fractures is generally performed using the C-arm. However, some studies reported erroneous piercing with screws, nerve injuries, and vessel injuries. Recent studies have reported the efficacy of screw fixations using navigation systems. The purpose of this retrospective study was to investigate the accuracy of screw fixation using the O-arm ® imaging system and StealthStation ® navigation system for unstable pelvic ring fractures. The participants were 10 patients with unstable pelvic ring fractures, who underwent screw fixations using the O-arm StealthStation navigation system (nine cases with iliosacral screw and one case with lateral compression screw). We investigated operation duration, bleeding during operation, the presence of complications during operation, and the presence of cortical bone perforation by the screws based on postoperative CT scan images. We also measured the difference in screw tip positions between intraoperative navigation screen shot images and postoperative CT scan images. The average operation duration was 71 min, average bleeding was 12 ml, and there were no nerve or vessel injuries during the operation. There was no cortical bone perforation by the screws. The average difference between intraoperative navigation images and postoperative CT images was 2.5 ± 0.9 mm, for all 18 screws used in this study. Our results suggest that the O-arm StealthStation navigation system provides accurate screw fixation for unstable pelvic ring fractures.
Viscoelastic stability in a single-screw channel flow
NASA Astrophysics Data System (ADS)
Agbessi, Y.; Bu, L. X.; Béreaux, Y.; Charmeau, J.-Y.
2018-05-01
In this work, we perform a linear stability analysis on pressure and drag flows of an Upper Convected Maxwell viscoelastic fluid. We use the well-recognised method of expanding the disturbances in Chebyschev polynomials and solve the resulting generalized eigenvalues problem with a collocation spectra method. Both the level of elasticity and the back-pressure vary. In a second stage, recent analytic solutions of viscoelastic fluid flows in slowly varying sections [1] are used to extend this stability analysis to flows in a compression or in a diverging section of a single screw channel, for example a wave mixing screw.
Berjano, Pedro; Blanco, Juan Francisco; Rendon, Diego; Villafañe, Jorge Hugo; Pescador, David; Atienza, Carlos Manuel
2015-11-01
To assess, with finite element analysis and an in vitro biomechanical study in cadaver, whether the implementation of an anterior interbody cage made of hedrocel with nitinol shape memory staples in compression increases the stiffness of the stand-alone interbody cage and to compare these constructs' stiffness to other constructs common in clinical practice. A biomechanical study with a finite element analysis and cadaveric testing assessed the stiffness of different fixation modes for the L4-L5 functional spinal unit: intact spine, destabilized spine with discectomy, posterior pedicle-screw fixation, anterior stand-alone interbody cage, anterior interbody cage with bilateral pedicle screws and anterior interbody cage with two shape memory staples in compression. These modalities of vertebral fixation were compared in four loading modes (flexion, extension, lateral bending, and axial rotation). The L4-L5 spinal unit with an anterior interbody cage and two staples was stiffer than the stand-alone cage. The construct stiffness was similar to that of a model of posterior pedicular stabilization. The stiffness was lower than that of the anterior cage plus bilateral pedicle-screw fixation. The use of an anterior interbody implant with shape memory staples in compression may be an alternative to isolated posterior fixation and to anterior isolated implants, with increased stiffness.
Klonz, A; Habermeyer, P
2007-10-01
Arthrodesis of the glenohumeral joint is a difficult intervention that involves a relatively high probability of complications. A stable internal fixation and secure consolidation is required. The operation needs to achieve several conditions: thorough denudation of the cartilage and partial decortication of the subchondral bone; good congruence of the corresponding surfaces; compression of the gap by tension screws and lasting stability. For increased primary stability a neutralizing plate is generally used as well as a compression screw. Up to now, the plate has usually been applied starting from the scapular spine and extending across the acromial corner to the humeral shaft. A wide exposure is needed for this procedure; the plate is difficult to shape during the operation and often causes some discomfort because it protrudes at the acromial corner. We present an alternative position of the plate in the supraspinatus fossa, where we have sited a 4.5 mm LCP locking plate (Synthes). The implant is inserted under the acromion, does not cause any discomfort at the acromial corner, and is far easier to shape. When it is used in association with a transarticular compressive screw, the technique results in a very stable situation, which allows physiotherapy from the first day after surgery onward.
Nikoloski, Andrej N; Osbrough, Anthony L; Yates, Piers J
2013-10-17
Unstable proximal femoral fractures are common and challenging for the orthopaedic surgeon. Often, these are treated with intramedullary nails. The most common mode of failure of any device to treat these fractures is cut-out. The Synthes proximal femoral nail antirotation (PFNA) is unique because it is the only proximal femoral intramedullary nail which employs a helical blade in lieu of a lag screw. The optimal tip-apex distance is 25 mm or less for a dynamic hip screw. The optimal blade tip placement is not known for the PFNA. The aim of this study is to determine if the traditional tip-apex distance rule (<25 mm) applies to the PFNA. A retrospective study of all proximal femoral fractures treated with the PFNA in Western Australian public teaching hospitals between August 2006 and October 2007 was performed. Cases were identified from company and theatre implant use records. Patient demographic data was obtained from hospital records. Fractures were classified according to Arbeitsgemeinschaft für Osteosynthesefragen/Association for the Study of Internal Fixation. Fracture reduction, distal locking type and blade position within the head (tip-apex distance and Cleveland zone) were recorded from the intraoperative and immediate postoperative radiographs. Postoperative radiographs obtained in the routine treatment of patients were studied for review looking primarily for cut-out. Clinical outcomes were measured with the Oxford hip score. One hundred eighty-eight PFNAs were implanted during the study period, with 178 cases included in this study. Ninety-seven patients could be followed up clinically. There were 18 surgical implant-related failures (19%). The single most common mode of failure was cut-out in six cases (6.2%). Three cut-outs (two medial perforation and one varus collapse) occurred with tip-apex distance (TAD) less than 20 mm. There was no cut-out in cases where the TAD was from 20-30 mm. There were three implant-related failures (nail fracture, missed nail and loose locking screw), four implant-related femoral fractures, two non-unions, two delayed unions and one loss of reduction. The PFNA is a suitable fixation device for the treatment of unstable proximal femoral fractures. There were still a relatively large number of cut-outs, and the tip-apex distance in the failures showed a bimodal distribution, not like previously demonstrated with dynamic hip screw. We propose that the helical blade behaves differently to a screw, and placement too close to the subchondral bone may lead to penetration through the head.
Robinson, K. Sue; Anderson, David R.; Gross, Michael; Petrie, David; Leighton, Ross; Stanish, William; Alexander, David; Mitchell, Michael; Mason, William; Flemming, Bruce; Fairhurst-Vaughan, Marlene; Gent, Michael
1998-01-01
Objective To determine whether compression ultrasonography or clinical examination should be considered as screening tests for the diagnosis of deep vein thrombosis (DVT) after total hip or knee arthroplasty in patients receiving warfarin prophylaxis postoperatively. Design A prospective cohort study. Setting A single tertiary care orthopedic centre. Patients One hundred and eleven patients who underwent elective total hip or knee arthroplasty were enrolled. Postoperatively the warfarin dose was adjusted daily to maintain the international normalized ratio between 1.8 and 2.5. Eighty-six patients successfully completed the study protocol. Intervention Before they were discharged from hospital, patients were assessed for DVT by clinical examination, bilateral compression ultrasonography of the proximal venous system and bilateral contrast venography. Results DVT was found in 29 patients (34%; 95% confidence interval [CI] 24% to 45%), and 6 patients (7%; 95% CI 3% to 15%) had proximal DVT. DVT developed in 18 (40%) of 45 patients who underwent total knee arthroplasty and in 11 (27%) of 41 patients who underwent total hip arthroplasty. The sensitivity of compression ultrasonography for the diagnosis of proximal DVT was 83% (95% CI 36% to 99%) and the specificity was 98% (95% CI 91% to 99%). The positive predictive value of compression ultrasonography was 71%. In contrast, clinical examination for DVT had a sensitivity of 11% (95% CI 2% to 28%) and a positive predictive value of 25%. Conclusions DVT is a common complication after total hip or knee arthroplasty. Compression ultrasonography appears to be a relatively accurate noninvasive test for diagnosing postoperative proximal DVT. In contrast, clinical examination is a very insensitive test. Whether routine use of screening compression ultrasonography will reduce the morbidity of venous thromboembolism after joint arthroplasty requires confirmation in a prospective trial involving long-term follow-up of patients. PMID:9793503
Xu, Bowen; Zhang, Qingsong; An, Siqi; Pei, Baorui; Wu, Xiaobo
2017-08-01
To establish the model of compression fracture of acetabular dome, and to measure the contact characteristics of acetabular weight-bearing area of acetabulum after 3 kinds of internal fixation. Sixteen fresh adult half pelvis specimens were randomly divided into 4 groups, 4 specimens each group. Group D was the complete acetabulum (control group), and the remaining 3 groups were prepared acetabular dome compression fracture model. The fractures were fixed with reconstruction plate in group A, antegrade raft screws in group B, and retrograde raft screws in group C. The pressure sensitive films were attached to the femoral head, and the axial compression test was carried out on the inverted single leg standing position. The weight-bearing area, average stress, and peak stress were measured in each group. Under the loading of 500 N, the acetabular weight-bearing area was significantly higher in group D than in other 3 groups ( P <0.05), and the average stress and peak stress were significantly lower than in other 3 groups ( P <0.05). The acetabular weight-bearing area were significantly higher in group B and group C than in group A, and the average stress and peak stress were significantly lower than in group A ( P <0.05). There was no significant difference in the above indexes between group B and group C ( P >0.05). For the compression fracture of the acetabular dome, the contact characteristics of the weight-bearing area can not restore to the normal level, even if the anatomical reduction and rigid internal fixation were performed; compared with the reconstruction plate fixation, antegrade and retrograde raft screws fixations can increase the weight-bearing area, reduce the average stress and peak stress, and reduce the incidence of traumatic arthritis.
Clinical study on the unloading effect of hip bracing on gait in patients with hip osteoarthritis.
Nérot, Agathe; Nicholls, Micah
2017-04-01
Internal hip abduction moment is a major indicator for hip loading. A new hip bracing concept was designed to unload the cartilaginous area in hip osteoarthritis via an abduction and external rotation force intended to alter the weight bearing area and reduce compression through the joint. To assess the effect of a novel brace on hip rotation in the transverse and coronal planes and on the hip abduction moment. Repeated measures. Gait analysis was performed on 14 subjects with unilateral symptomatic hip osteoarthritis. Pain, joint motion, moments and vertical ground reaction force were compared between the braced and the unbraced (control), randomly assigned, conditions. Nine participants felt an immediate reduction in pain while walking with the hip brace. Peak hip abduction moment significantly decreased on the osteoarthritis side ( p = 0.017). Peak hip adduction ( p = 0.004) and internal rotation ( p = 0.0007) angles significantly decreased at stance with the brace. Wearing the brace would appear to reduce the compressive joint reaction force at the femuroacetabular interface as indicated by a reduction in internal hip abduction moment along with immediate pain reduction in nine participants. Further long-term studies are warranted. Clinical relevance The brace rotates the hip in the transverse and coronal planes, possibly resulting in a decrease in load through the diseased area of cartilage. In some patients, an immediate decrease in pain was experienced. The brace offers an alternative solution for hip osteoarthritis patients not ready for a hip replacement.
Napora, Joshua K; Gilmore, Allison; Son-Hing, Jochen P; Grimberg, Dominic C; Thompson, George H; Liu, Raymond W
2018-04-01
Unstable slipped capital femoral epiphysis (SCFE) has an increased incidence of avascular necrosis (AVN). Early identification and surgical intervention for AVN may help preserve the femoral head. We retrospectively reviewed 48 patients (50 hips) with unstable SCFE managed between 2000 and 2014. AVN was diagnosed based on 2 different postoperative protocols. Seventeen patients (17 hips) had a scheduled magnetic resonance imaging (MRI) between 1 and 6 months from initial surgery, and the remaining 31 patients (33 hips) were evaluated by plain radiographs alone. If AVN was diagnosed, we offered core decompression and closed bone graft epiphysiodesis (CBGE) to mitigate its affects. At final follow-up, we assessed progression of AVN using the Steinberg classification. Overall 13 hips (26%) with unstable SCFEs developed AVN. MRI revealed AVN in 7 of 17 hips (41%) at a mean of 2.5 months postoperatively (range, 1.0 to 5.2 mo). Six hips diagnosed by MRI received surgical intervention (4 CBGE, 1 free vascularized fibula graft, and 1 repinning due to screw cutout) at a mean of 4.1 months (range, 1.3 to 7.2 mo) postoperatively. None of the 4 patients treated with CBGE within 2 months postoperatively progressed to stage IVC AVN. The 2 patients treated after 4 months postoperatively both progressed to stage VC AVN.Plain radiographs demonstrated AVN in 6 of 33 hips (18%) at a mean of 6.8 months postoperatively (range, 2.1 to 21.1 mo). One patient diagnosed with stage IVB AVN at 2.4 months had screw cutout and received CBGE at 2.5 months from initial pinning. The remaining 5 were not offered surgical intervention. Five of the 6 radiographically diagnosed AVN, including the 1 treated with CBGE, progressed to stage IVC AVN or greater. Although all patients with positive MRI scans developed radiographic AVN, none of the 4 patients treated with CBGE within 2 months after pinning developed grade IVC or greater AVN. Early MRI detection and CBGE may mitigate the effects of AVN after SCFE. Level III-retrospective comparative study.
Comparing fixation used for calcaneal displacement osteotomies: a look at removal rates and cost.
Lucas, Douglas E; Simpson, G Alex; Philbin, Terrence M
2015-02-01
The calcaneal displacement osteotomy is a procedure frequently used by foot and ankle surgeons for hindfoot angular deformity. Traditional techniques use compression screw fixation that can result in prominent hardware. While the results of the procedure are generally good, a common concern is the development of plantar heel pain related to prominent hardware. The primary purpose of this study is to retrospectively compare clinical outcomes of 2 fixation methods for the osteotomy. Secondarily a cost analysis will compare implant costs to hardware removal costs. Records were reviewed for patients who had undergone a calcaneal displacement osteotomy fixated with either lag screw or a locked lateral compression plate (LLCP). Neuropathy, previous ipsilateral calcaneus surgery, heel pad trauma, or incomplete radiographic follow-up were exclusionary. Thirty-two patients (19.4%) required hardware removal from the screw fixation group compared to 1 (1.6%) of the LLCP group, which is significant (P < .05). Time to radiographic healing was not significantly different (P = .87). The screw fixation group required more follow-up visits over a longer period of time (P < .05). Implant cost was remarkably different with screw fixation costing on average $247.12, compared to the LLCP costing $1175.59. Although the LLCP cost was significantly higher, cost savings were identified when the cost of removal and removal rates were included. This study demonstrates that this device provides adequate stabilization for healing in equivalent time to screw fixation. The LLCP required decreased rates of hardware removal with fewer postoperative visits over a shorter period of time. Significant savings were demonstrated in the LLCP group despite the higher implant cost. Therapeutic, Level III, Retrospective Comparative Study. © 2014 The Author(s).
Konya, Mehmet Nuri; Verim, Özgür
2017-09-29
Proximal femoral fracture rates are increasing due to osteoporosis and traffic accidents. Proximal femoral nails are routinely used in the treatment of these fractures in the proximal femur. To compare various combinations and to determine the ideal proximal lag screw position in pertrochanteric fractures (Arbeitsgemeinschaft für Osteosynthesefragen classification 31-A1) of the femur by using optimized finite element analysis. Biomechanical study. Computed tomography images of patients' right femurs were processed with Mimics. Afterwards a solid femur model was created with SolidWorks 2015 and transferred to ANSYS Workbench 16.0 for response surface optimization analysis which was carried out according to anterior-posterior (-10°
Huang, Xiaowei; Zhi, Zhongzheng; Yu, Baoqing; Chen, Fancheng
2015-11-25
The purpose of this study is to compare the stress and stability of plate-screw fixation and screw fixation in the treatment of Schatzker type IV medial tibial plateau fracture. A three-dimensional (3D) finite element model of the medial tibial plateau fracture (Schatzker type IV fracture) was created. An axial force of 2500 N with a distribution of 60% to the medial compartment was applied to simulate the axial compressive load on an adult knee during single-limb stance. The equivalent von Mises stress, displacement of the model relative to the distal tibia, and displacement of the implants were used as the output measures. The mean stress value of the plate-screw fixation system was 18.78 MPa, which was significantly (P < 0.001) smaller than that of the screw fixation system. The maximal value of displacement (sum) in the plate-screw fixation system was 2.46 mm, which was lower than that in the screw fixation system (3.91 mm). The peak stress value of the triangular fragment in the plate-screw fixation system model was 42.04 MPa, which was higher than that in the screw fixation model (24.18 MPa). But the mean stress of the triangular fractured fragment in the screw fixation model was significantly higher in terms of equivalent von Mises stress (EVMS), x-axis, and z-axis (P < 0.001). This study demonstrated that the load transmission mechanism between plate-screw fixation system and screw fixation system was different and the stability provided by the plate-screw fixation system was superior to the screw fixation system.
Patil, Sunit; Mahon, Andrew; Green, Sarah; McMurtry, Ian; Port, Andrew
2006-06-01
There has been a recent trend towards using a raft of small diameter 3.5mm cortical screws for supporting depressed tibial plateau fractures (Schatzker type III). Our aim was to compare the biomechanical properties of a raft of 3.5 mm cortical screws with that of 6.5 mm cancellous screws in a synthetic bone model. Ten rigid polyurethane foam (sawbone) blocks, with a density simulating osteoporotic bone and ten blocks with a density simulating normal density bone were obtained. A Schatzker type III fracture was created in each block. The fracture fragments were then elevated and supported using two 6.5 mm cancellous screws in ten blocks and four 3.5 mm cortical screws in the remaining. The fractures were loaded using a Lloyd testing machine. The mean force needed to produce a depression of 5 mm was 700.8 N with the four-screw construct and 512.4 N with the two-screw construct in the osteoporotic model. This difference was highly statistically significant (p = 0.009). The mean force required to produce the same depression was 1878.2 N with the two-screw construct and 1938.2 N with the four-screw construct in the non-osteoporotic model. Though the difference was not statistically significant (p = 0.42), an increased fragmentation of the synthetic bone fragments was noticed with the two-screw construct but not with the four-screw construct. A raft of four 3.5 mm cortical screws is biomechanically stronger than two 6.5 mm cancellous screws in resisting axial compression in osteoporotic bone.
Celik, Talip; Mutlu, Ibrahim; Ozkan, Arif; Kisioglu, Yasin
2016-01-01
Background. In this study, the cut-out risk of Dynamic Hip Screw (DHS) was investigated in nine different positions of the lag screw for two fracture types by using Finite Element Analysis (FEA). Methods. Two types of fractures (31-A1.1 and A2.1 in AO classification) were generated in the femur model obtained from Computerized Tomography images. The DHS model was placed into the fractured femur model in nine different positions. Tip-Apex Distances were measured using SolidWorks. In FEA, the force applied to the femoral head was determined according to the maximum value being observed during walking. Results. The highest volume percentage exceeding the yield strength of trabecular bone was obtained in posterior-inferior region in both fracture types. The best placement region for the lag screw was found in the middle of both fracture types. There are compatible results between Tip-Apex Distances and the cut-out risk except for posterior-superior and superior region of 31-A2.1 fracture type. Conclusion. The position of the lag screw affects the risk of cut-out significantly. Also, Tip-Apex Distance is a good predictor of the cut-out risk. All in all, we can supposedly say that the density distribution of the trabecular bone is a more efficient factor compared to the positions of lag screw in the cut-out risk.
[The biomechanics of screws, cerclage wire and cerclage cable].
Schröder, C; Woiczinski, M; Utzschneider, S; Kraxenberger, M; Weber, P; Jansson, V
2013-05-01
In contrast to fracture fixation, when performing an osteotomy the surgeon is able to plan preoperatively. The resulting fixation and compression of the bone fragments are the most important points. A stable osteosynthesis should prevent dislocation of bone fragments and improve bone healing. Beside plates, cerclages can be used for tension band or diaphysis bone fixation. Moreover, cortical or cancellous screws can be used for osteotomy fixation. This work describes biomechanical principles for fixation after an osteotomy with cerclages and cortical or cancellous screws. It also summarizes the materials and geometries used, as well as their influence on the stability of the osteosynthesis.
Effect of Off-Axis Screw Insertion, Insertion Torque, and Plate Contouring on Locked Screw Strength
Gallagher, Bethany; Silva, Matthew J.; Ricci, William M.
2015-01-01
Objectives This study quantifies the effects of insertion torque, off-axis screw angulation, and plate contouring on the strength of locking plate constructs. Methods Groups of locking screws (n = 6–11 screws) were inserted at 50%, 100%, 150%, and 200% of the manufacturer-recommended torque (3.2 Nm) into locking compression plates at various angles: orthogonal (control), 5-degree angle off-axis, and 10-degree angle off-axis. Screws were loaded to failure by a transverse force (parallel to the plate) either in the same (“+”) or opposite direction (“−”) of the initial screw angulation. Separately, locking plates were bent to 5 and 10-degree angles, with the bend apex at a screw hole. Locking screws inserted orthogonally into the apex hole at 100% torque were loaded to failure. Results Orthogonal insertion resulted in the highest average load to failure, 2577 ± 141 N (range, 2413–2778 N), whereas any off-axis insertion significantly weakened constructs (165–1285 N, at 100% torque) (P < 0.05). For “+” loading, torque beyond 100% did not increase strength, but 50% torque reduced screw strength (P < 0.05). Loading in the “−” direction consistently resulted in higher strengths than “+” loading (P < 0.05). Plate contouring of 5-degree angle did not significantly change screw strength compared with straight plates but contouring of 10-degree angle significantly reduced load to failure (P < 0.05). Conclusions To maximize the screw plate interface strength, locking screws should be inserted without cross-threading. The mechanical stability of locked screws is significantly compromised by loose insertion, off-axis insertion, or severe distortion of the locking mechanism. PMID:24343255
Rotor blade construction for circulation control aircraft
NASA Technical Reports Server (NTRS)
Carter, Sr., Donald R. (Inventor); Sedlak, Matthew (Inventor); Krauss, Timothy A. (Inventor)
1986-01-01
A circulation control aircraft rotor blade having a spanwise Coanda surface 16 and a plurality of spanwise extending flexible composite material panels 18 cooperating with the surface to define slots for the discharge of compressed air from within the blade with each panel having first flexure means 60 associated with screw adjustments 36 for establishing a slot opening preload and second flexure means 62 associated with screw adjustments 38 for establishing a slot maximum opening.
Möbius, R; Schleifenbaum, S; Grunert, R; Löffler, S; Werner, M; Prietzel, T; Hammer, N
2016-10-01
The removal of well-fixed acetabular components following THA (total hip arthroplasty) is a difficult operation and could be accompanied by the loss of acetabular bone stock. The optimal method for fixation is still under debate. The aim of this pilot study was to compare the tear-out resistance and failure behavior between osseo-integrated and non-integrated screw cups. Furthermore, we examined whether there are differences in the properties mentioned between screw sockets and cemented polyethylene cups. Tear-out resistance and related mechanical work required for the tear-out of osseo-integrated screw sockets are higher than in non-integrated screw sockets. Ten human coxal bones from six cadavers with osseo-integrated screw sockets (n=4), non-integrated (implanted post-mortem, n=3) screw sockets and cemented polyethylene cups (n=3) were used for tear-out testing. The parameters axial failure load and mechanical work for tear-out were introduced as measures for determining the stability of acetabular components following THA. The osseo-integrated screw sockets yielded slightly higher tear-out resistance (1.61±0.26kN) and related mechanical work compared to the non-integrated screw sockets (1.23±0.39kN, P=0.4). The cemented polyethylene cups yielded the lowest tear-out resistance with a failure load of 1.18±0.24kN. Compared to the screw cups implanted while alive, they also differ on a non-significant level (P=0.1). Osseous failure patterns differed especially for the screw sockets compared to the cemented polyethylene cups. Osseo-integration did not greatly influence the tear-out stability in cementless screw sockets following axial loading. Furthermore, the strength of the bone-implant-interface of cementless screw sockets appears to be similar to cemented polyethylene cups. However, given the high failure load, high mechanical load and because of the related bone failure patterns, removal should not be performed by means of tear-out but rather by osteotomes or other curved cutting devices to preserve the acetabular bone stock. Level III, case-control-study. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Effect of dynamic hip screw on the treatment of femoral neck fracture in the elderly.
Zhao, Wernbo; Liu, Lei; Zhang, Hui; Fang, Yue; Pei, Fuxing; Yang, Tianfu
2014-04-01
To discuss the indications, surgical procedures, and curative effect of dynamic hip screw (DHS) in the treatment of femoral neck fracture in the elderly. A retrospective study was conducted to analyse the clinical data of 42 elderly patients who had been treated for femoral neck fracture with DHS in our department between June 2009 and November 2011. There were 21 males and 21 females with a mean age of 68.5 years (range 60-75 years). According to the Garden Classification, there were 19 cases of type II, 21 cases of type III and 2 cases of type IV fractures. By the Singh Index Classification, there were 3 cases of level 2, 19 cases of level 3 and 20 cases of level 4 fractures. The Harris criterion, complications and function recovery after opera- tion were analysed. The average hospitalization time in 42 patients was 11.2 days (range 7-21 days). All patients were followed up for 12-26 months (mean 18 months). No lung infection, deep venous thrombosis or other complications occurred. Partial backing-out of the screws was found in 2 cases. The internal fixation device was withdrawn after fracture healing. Internal fixation cutting was found in 1 case, and he had a good recovery after total hip arthroplasty. The time for fracture healing ranged from 3-6 months (average 4.5 months). According to Harris criterion, 15 cases were rated as excellent, 24 good, 2 fair and 1 poor. The Harris scale was significantly improved from 30.52±2.71 preoperatively to 86.61±2.53 at 6 months postoperatively (P<0.05). DHS, being minimal invasive, allowing early activity and weight-bearing, is advisable for treatment of elderly patients with femoral neck fracture. In addition, it can avoid complications seen in artificial joint replacement. It is especially suitable for patients with mild osteoporosis.
Qi, Bao-Chang; Ju, Wei-Na; Wang, Tie-Jun; Yu, Tie-Cheng; Zhao, Yi; Sun, Da-Hui
2015-01-01
Cannulated screws (4.0 mm) provide inter-fragmentary compression and stability to fractures. A guide wire is used to define the screw trajectory and hold the fracture fragment while the screw is being inserted. The cannulated shaft typically accommodates a 1.25 mm guide pin. Since the guide pin is very slender and undergoes elastic deformation during insertion, there is a high probability of pin breakage. The authors have devised a new way to place the 4.0 mm cannulated screws in a manner that prevents the intraoperative complication of guide wire breakage. For this technique, predrilling was achieved using a 2.0 mm K-wire which was subsequently replaced with a 1.25 mm guide pin under the protection of sleeve. 4.0 mm cannulated screws were then inserted into a defined trajectory over the guide pin. Using the technique, over 20 patients were managed in our department over a period of two years without any complications. We have observed that patients treated with this method experience short operation time, combined with good clinical outcome and we recommend its use in cases where cannulated screw use is warranted.
Parry, Joshua A; Barrett, Ian; Schoch, Bradley; Yuan, Brandon; Cass, Joseph; Cross, William
2018-04-01
To determine whether fixation of pertrochanteric hip fractures with cephalomedullary nails (CMNs) with a neck-shaft angle (NSA) less than the native NSA affects reduction and lag screw cutout. Retrospective comparative study. Level I trauma center. Patients treated with a CMN for unstable pertrochanteric femur fractures (OTA/AO 31-A2.2 and 31-A2.3) between 2005 and 2014. CMN fixation. NSA reduction and lag screw cutout. Patients fixed with a nail angle less than their native NSA were less likely to have good reductions [17% vs. 60%, 95% confidence interval (CI), -63% to -18%; P = 0.0005], secondary to more varus reductions (41% vs. 10%, 95% CI, 9%-46%; P = 0.01) and more fractures with ≥4 mm of displacement (63% vs. 35%, 95% CI, 3%-49%; P = 0.03). The cutout was not associated with the use of a nail angle less than the native NSA (60% vs. 76%, 95% CI, -56% to 18%; P = 0.5), varus reductions (60% vs. 32%, 95% CI, -13% to 62%; P = 0.3), or poor reductions (20% vs. 17%, 95% CI, -24% to 44%; P = 1.0). The fixation of unstable pertrochanteric hip fractures with a nail angle less than the native NSA was associated with more varus reductions and fracture displacement but did not affect the lag screw cutout. Therapeutic Level III. See Instructions for Authors for a complete description of levels of evidence.
... to restore the height of the vertebrae) Spinal fusion (bones of your spine are joined together so ... osteoporosis Patient Instructions Hip fracture - discharge Preventing falls Images Compression fracture Bone density scan Osteoporosis Osteoporosis Hip ...
Kane, Patrick; Vopat, Bryan; Heard, Wendell; Thakur, Nikhil; Paller, David; Koruprolu, Sarath; Born, Christopher
2014-08-01
Intertrochanteric hip fractures pose a significant challenge for the orthopaedic community as optimal surgical treatment continues to be debated. Currently, varus collapse with lag screw cutout is the most common mode of failure. Multiple factors contribute to cutout. From a surgical technique perspective, a tip apex distance less than 25 mm has been suggested to decrease the risk of cutout. We hypothesized that a low-center lag screw position in the femoral head, with a tip apex distance greater than 25 mm will provide equal, if not superior, biomechanical stability compared with a center-center position with a tip apex distance less than 25 mm in an unstable intertrochanteric hip fracture stabilized with a long cephalomedullary nail. We attempted to examine the biomechanical characteristics of intertrochanteric fractures instrumented with long cephalomedullary nails with two separate lag screw positions, center-center and low-center. Our first research purpose was to examine if there was a difference between the center-center and low-center groups in cycles to failure and failure load. Second, we analyzed if there was a difference in fracture translation between the study groups during loading. Nine matched pairs of femurs were assigned to one of two treatment groups: low-center lag screw position and center-center lag screw position. Cephalomedullary nails were placed and tip apex distance was measured. A standard unstable four-part intertrochanteric fracture was created in all samples. The femurs were loaded dynamically until failure. Cycles to failure and load and displacement data were recorded, and three-dimensional (3-D) motion was recorded using an Optotrak(®) motion tracking system. There were no significant differences between the low-center and center-center treatment groups regarding the mean number of cycles to failure and mean failure load. The 3-D kinematic data showed significantly increased motion in the center-center group compared with the low-center group. At the time of failure, the magnitude of fracture translation was statistically significantly greater in the center-center group (20 ± 2.8 mm) compared with the low-center group (15 ± 3.4 mm; p = 0.004). Additionally, there was statistically significantly increased fracture gap distraction (center-center group, 13 ± 2.8 versus low-center group, 7 ± 4; p < 0.001) and shear fracture gap translation (center-center group, 12 ± 2.3 mm; low-center group, 6 ± 2.7 mm; p < 0.001). Positioning of the lag screw inferior in the head and neck was found to be at least as biomechanically stable as the center-center group although the tip apex distance was greater than 25 mm. Our findings challenge previously accepted principles of optimal lag screw placement.
Morris, Mark S; Zhu, Andy F; Ozer, Kagan; Lawton, Jeffrey N
2018-02-06
To review the incidence of union of patients with proximal pole scaphoid fracture nonunions treated using a 1,2 intercompartmental supraretinacular artery (1,2 ICSRA) vascularized graft and a small compression screw. This is a retrospective case series of 12 patients. Calculations of the size of the proximal pole fragment relative to the total scaphoid were performed using posteroanterior view scaphoid radiographs with the wrist in ulnar deviation and flat on the cassette. Analyses were repeated 3 times per subject, and the average ratio of proximal pole fragment relative to the entire scaphoid was calculated. We reviewed medical records, radiographs, and computed tomography (CT) scans of these 12 patients. The CT scans that were performed after an average of 12 weeks were ultimately used to confirm union of the scaphoid fractures. One patient was unable to have a CT so was excluded from the final calculation. All 11 (100%) scaphoid fractures that were assessed by CT were found to be healed at the 12-week assessment point. The mean proximal pole fragment size was 18% (range, 7%-27%) of the entire scaphoid. The 1,2 ICSRA vascularized graft and compression screw was an effective treatment for patients with proximal pole scaphoid fractures. Therapeutic IV. Copyright © 2018 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Performance Testing of Jefferson Lab 12 GeV Helium Screw Compressors
Knudsen, P.; Ganni, V.; Dixon, K.; ...
2015-08-10
Oil injected screw compressors have essentially superseded all other types of compressors in modern helium refrigeration systems due to their large displacement capacity, reliability, minimal vibration, and capability of handling helium's high heat of compression. At the present state of compressor system designs for helium refrigeration systems, typically two-thirds of the lost input power is due to the compression system. It is important to understand the isothermal and volumetric efficiencies of these machines to help properly design the compression system to match the refrigeration process. It is also important to identify those primary compressor skid exergetic loss mechanisms which maymore » be reduced, thereby offering the possibility of significantly reducing the input power to helium refrigeration processes which are extremely energy intensive. This paper summarizes the results collected during the commissioning of the new compressor system for Jefferson Lab's (JLab's) 12 GeV upgrade. The compressor skid packages were designed by JLab and built to print by industry. They incorporate a number of modifications not typical of helium screw compressor packages and most importantly allow a very wide range of operation so that JLab's patented Floating Pressure Process can be fully utilized. This paper also summarizes key features of the skid design that allow this process and facilitate the maintenance and reliability of these helium compressor systems.« less
Performance Testing of Jefferson Lab 12 GeV Helium Screw Compressors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knudsen, P.; Ganni, V.; Dixon, K.
Oil injected screw compressors have essentially superseded all other types of compressors in modern helium refrigeration systems due to their large displacement capacity, reliability, minimal vibration, and capability of handling helium's high heat of compression. At the present state of compressor system designs for helium refrigeration systems, typically two-thirds of the lost input power is due to the compression system. It is important to understand the isothermal and volumetric efficiencies of these machines to help properly design the compression system to match the refrigeration process. It is also important to identify those primary compressor skid exergetic loss mechanisms which maymore » be reduced, thereby offering the possibility of significantly reducing the input power to helium refrigeration processes which are extremely energy intensive. This paper summarizes the results collected during the commissioning of the new compressor system for Jefferson Lab's (JLab's) 12 GeV upgrade. The compressor skid packages were designed by JLab and built to print by industry. They incorporate a number of modifications not typical of helium screw compressor packages and most importantly allow a very wide range of operation so that JLab's patented Floating Pressure Process can be fully utilized. This paper also summarizes key features of the skid design that allow this process and facilitate the maintenance and reliability of these helium compressor systems.« less
Foundations for computer simulation of a low pressure oil flooded single screw air compressor
NASA Astrophysics Data System (ADS)
Bein, T. W.
1981-12-01
The necessary logic to construct a computer model to predict the performance of an oil flooded, single screw air compressor is developed. The geometric variables and relationships used to describe the general single screw mechanism are developed. The governing equations to describe the processes are developed from their primary relationships. The assumptions used in the development are also defined and justified. The computer model predicts the internal pressure, temperature, and flowrates through the leakage paths throughout the compression cycle of the single screw compressor. The model uses empirical external values as the basis for the internal predictions. The computer values are compared to the empirical values, and conclusions are drawn based on the results. Recommendations are made for future efforts to improve the computer model and to verify some of the conclusions that are drawn.
Locking design affects the jamming of screws in locking plates.
Sandriesser, Sabrina; Rupp, Markus; Greinwald, Markus; Heiss, Christian; Augat, Peter; Alt, Volker
2018-06-01
The seizing of locking screws is a frequently encountered clinical problem during implant removal of locking compression plates (LCP) after completion of fracture healing. The aim of this study was to investigate the effect of two different locking mechanisms on the seizing of locking screws. Specifically, the removal torques before and after cyclic dynamic loading were assessed for screws inserted at the manufacturer-recommended torque or at an increased insertion torque. The seizing of 3.5-mm angular stable screws was assessed as a function of insertion torque for two different locking mechanisms (Thread & Conus and Thread Only). Locking screws (n=10 for each configuration) were inserted either according to the manufacturer-recommended torque or at an increased torque of 150% to simulate an over-insertion of the screw. Half of the screws were removed directly after insertion and the remaining half was removed after a dynamic load protocol of 100,000 cycles. The removal torques of locking screws exceeded the insertion torques for all tested conditions confirming the adequacy of the test setup in mimicking screw seizing in locked plating. Screw seizing was more pronounced for Thread Only design (+37%) compared to Thread & Conus design (+14%; P<0.0001). Cyclic loading of the locking construct consistently resulted in an increased seizing of the locking screws (P<0.0001). Clinical observations from patients treated with the Thread & Conus locking design confirm the biomechanical findings of reduction in seizing effect by using a Thread & Conus design. In conclusion, both over-tightening and cyclic loading are potential causes for screw seizing in locking plate implants. Both effects were found to be less pronounced in the Thread & Conus design as compared to the traditional Thread Only design. © 2018 Elsevier Ltd. All rights reserved.
Weninger, Patrick; Dall'Ara, Enrico; Drobetz, Herwig; Nemec, Wolfgang; Figl, Markus; Redl, Heinz; Hertz, Harald; Zysset, Philippe
2011-01-01
Volar fixed-angle plating is a popular treatment for unstable distal radius fractures. Despite the availability of plating systems for treating distal radius fractures, little is known about the mechanical properties of multidirectional fixed-angle plates. The aim of this study was to compare the primary fixation stability of three possible screw configurations in a distal extra-articular fracture model using a multidirectional fixed-angle plate with metaphyseal cancellous screws distally. Eighteen Sawbones radii (Sawbones, Sweden, model# 1027) were used to simulate an extra-articular distal radius fracture according to AO/OTA 23 A3. Plates were fixed to the shaft with one non-locking screw in the oval hole and two locking screws as recommended by the manufacturer. Three groups (n = 6) were defined by screw configuration in the distal metaphyseal fragment: Group 1: distal row of screws only; Group 2: 2 rows of screws, parallel insertion; Group 3: 2 rows of screws, proximal screws inserted with 30° of inclination. Specimens underwent mechanical testing under axial compression within the elastic range and load controlled between 20 N and 200 N at a rate of 40 N/s. Axial stiffness and type of construct failure were recorded. There was no difference regarding axial stiffness between the three groups. In every specimen, failure of the Sawbone-implant-construct occurred as plastic bending of the volar titanium plate when the dorsal wedge was closed. Considering the limitations of the study, the recommendation to use two rows of screws or to place screws in the proximal metaphyseal row with inclination cannot be supported by our mechanical data.
Venkatadass, K; Avinash, M; Rajasekaran, S
2018-05-01
Bilateral avascular necrosis (AVN) following postictal bilateral fracture neck of the femur is a rare occurrence. Here, we report a case of bilateral AVN of the femoral head following an asynchronous bilateral postictal fracture neck of the femur. A 16-year-old autistic boy presented with left hip pain following an episode of seizures and radiographs showed Delbet type II fracture neck of the left femur. This was treated by closed reduction and cancellous screw fixation and skeletal traction for 6 weeks. At 3 months, follow-up radiograph showed union of the fracture, but he had developed segmental AVN with collapse of the head. At 8 months, the patient presented with pain in the right hip following another episode of seizures and radiograph of the pelvis showed a fresh Delbet type II fracture neck of the right femur with established AVN of the left femoral head. He underwent closed reduction and cancellous screw fixation of the right hip and implant exit of the left hip. At the 6-month follow-up after this surgery, his radiograph of the pelvis showed AVN with collapse and extrusion of the femoral head on the right side as well. Literature review shows an increased risk of fracture neck of the femur among epileptics. The incidence of AVN is maximum in Delbet type I, followed by Delbet type II and type III in that order. Although there are no clear guidelines on the management of post-traumatic AVN of the femoral head, the majority have reported that most of them will eventually develop arthritis and will require total hip replacement at a later date. Upon extensive literature search, no case report of bilateral fracture neck of the femur with bilateral AVN was found and hence this case was reported.
Jeong, Jewon; Kim, Hyun-Joo; Oh, Eunsun; Cha, Jang Gyu; Hwang, Jiyoung; Hong, Seong Sook; Chang, Yun Woo
2018-05-23
The development of dual-energy CT and metal artefact reduction software provides a further chance of reducing metal-related artefacts. However, there have been only a few studies regarding whether MARs practically affect visibility of structures around a metallic hip prosthesis on post-operative CT evaluation. Twenty-seven patients with 42 metallic hip prostheses underwent DECT. The datasets were reconstructed with 70, 90 and 110 keV with and without MARs. The areas were classified into 10 zones according to the reference zone. All the images were reviewed in terms of the severity of the beam-hardening artefacts, differentiation of the bony cortex and trabeculae and visualization of trabecular patterns with a three-point scale. The metallic screw diameter was measured in the acetabulum with 110 keV images. The scores were the worst on 70 keV images without MARs [mean scores:1.84-4.22 (p < 0.001-1.000)]. The structures in zone II were best visualized on 110 keV (p < 0.001-0.011, mean scores: 2.86-5.22). In other zones, there is general similarity in mean scores whether applying MARs or not (p < 0.001-0.920). The mean diameter of the screw was 5.85 mm without MARs and 3.44 mm with MARs (mean reference diameter: 6.48 mm). The 110 keV images without MARs are best for evaluating acetabular zone II. The visibility of the bony structures around the hip prosthesis is similar in the other zones with or without MARs regardless of keV. MARS may not be needed for the evaluation of the metallic hip prosthesis itself at sufficient high-energy levels; however, MARS still has a role in the evaluation of other soft tissues around the prosthesis. © 2018 The Royal Australian and New Zealand College of Radiologists.
New projects developed by COMOTI in gas industry
NASA Astrophysics Data System (ADS)
Nitulescu, Marian; Silivestru, Valentin; Toma, Niculae; Slujitoru, Cristian; Petrescu, Valentin; Leahu, Mihai; Oniga, Ciprian; Ulici, Gheorghe
2015-08-01
The paper aims to present two new projects developed by the Romanian Research and Development Institute for Gas Turbines (COMOTI) in partnership with City University of London and GHH-Rand Germany, in the field of screw compressors/expanders. COMOTI passed, in recent years, from being a GHH-Rand licensed manufacturer for a range of oil-injected screw compressors, of CU type, to a new phase of range diversification, approaching screw compressors with a maximum discharge pressure of 45 bara. So, in cooperation with City University and GHH-Rand we design, manufacture and test, with air, in COMOTI test bench the new type of screw compressor named CHP 220. Also, the cooperation with GHH-Rand has resulted in the design, manufacture and air testing on the test bench, and then gas testing - in a gas compression station - for an electric generator driven by a screw expander. This paper presents how the tests were carried out, the experimental data and the interpretation of results
Vacuum-and-solvent-free fabrication of organic semiconductor layers for field-effect transistors
Matsushima, Toshinori; Sandanayaka, Atula S. D.; Esaki, Yu; Adachi, Chihaya
2015-01-01
We demonstrate that cold and hot isostatic pressing (CIP and HIP) is a novel, alternative method for organic semiconductor layer fabrication, where organic powder is compressed into a layer shape directly on a substrate with 200 MPa pressure. Spatial gaps between powder particles and the other particles, substrates, or electrodes are crushed after CIP and HIP, making it possible to operate organic field-effect transistors (OFETs) containing the compressed powder as the semiconductor. The CIP-compressed powder of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) had a hole mobility of (1.6 ± 0.4) × 10–2 cm2/Vs. HIP of C8-BTBT powder increased the hole mobility to an amorphous silicon-like value (0.22 ± 0.07 cm2/Vs) because of the growth of the C8-BTBT crystallites and the improved continuity between the powder particles. The vacuum and solution processes are not involved in our CIP and HIP techniques, offering a possibility of manufacturing OFETs at low cost. PMID:26416434
Vacuum-and-solvent-free fabrication of organic semiconductor layers for field-effect transistors.
Matsushima, Toshinori; Sandanayaka, Atula S D; Esaki, Yu; Adachi, Chihaya
2015-09-29
We demonstrate that cold and hot isostatic pressing (CIP and HIP) is a novel, alternative method for organic semiconductor layer fabrication, where organic powder is compressed into a layer shape directly on a substrate with 200 MPa pressure. Spatial gaps between powder particles and the other particles, substrates, or electrodes are crushed after CIP and HIP, making it possible to operate organic field-effect transistors (OFETs) containing the compressed powder as the semiconductor. The CIP-compressed powder of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) had a hole mobility of (1.6 ± 0.4) × 10(-2) cm(2)/Vs. HIP of C8-BTBT powder increased the hole mobility to an amorphous silicon-like value (0.22 ± 0.07 cm(2)/Vs) because of the growth of the C8-BTBT crystallites and the improved continuity between the powder particles. The vacuum and solution processes are not involved in our CIP and HIP techniques, offering a possibility of manufacturing OFETs at low cost.
Vacuum-and-solvent-free fabrication of organic semiconductor layers for field-effect transistors
NASA Astrophysics Data System (ADS)
Matsushima, Toshinori; Sandanayaka, Atula S. D.; Esaki, Yu; Adachi, Chihaya
2015-09-01
We demonstrate that cold and hot isostatic pressing (CIP and HIP) is a novel, alternative method for organic semiconductor layer fabrication, where organic powder is compressed into a layer shape directly on a substrate with 200 MPa pressure. Spatial gaps between powder particles and the other particles, substrates, or electrodes are crushed after CIP and HIP, making it possible to operate organic field-effect transistors (OFETs) containing the compressed powder as the semiconductor. The CIP-compressed powder of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) had a hole mobility of (1.6 ± 0.4) × 10-2 cm2/Vs. HIP of C8-BTBT powder increased the hole mobility to an amorphous silicon-like value (0.22 ± 0.07 cm2/Vs) because of the growth of the C8-BTBT crystallites and the improved continuity between the powder particles. The vacuum and solution processes are not involved in our CIP and HIP techniques, offering a possibility of manufacturing OFETs at low cost.
Meier, Robin; Moll, Klaus-Peter; Krumme, Markus; Kleinebudde, Peter
2017-01-01
This study addresses the quantitative influence of 12 different materials (active pharmaceutical ingredients and excipients as surrogate active pharmaceutical ingredients) on the critical quality attributes of twin screw granulated products and subsequently produced tablets. Prestudies demonstrated the significant influence of the chosen model materials (in combination with crospovidone) on the disintegration behavior of the resulting tablets, despite comparable tablet porosities. This study elucidates possible reasons for the varying disintegration behavior by investigating raw material, granule, and tablet properties. An answer could be found in the mechanical properties of the raw materials and the produced granules. Through compressibility studies, the materials could be classified into materials with high compressibility, which deform rather plastically under compression stress, and low compressibility, which display breakages under compression stress. In general, and apart from (pseudo)-polymorphic transformations, brittle materials featured excellent disintegration performance, even at low resulting tablet porosities <8%, whereas plastically deformable materials mostly did not reveal any disintegration. These findings must be considered in the development of simplified formulations with high drug loads, in which the active pharmaceutical ingredient predominantly defines the deformation behavior of the granule. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Yu, Bin-Sheng; Yang, Zhan-Kun; Li, Ze-Min; Zeng, Li-Wen; Wang, Li-Bing; Lu, William Weijia
2011-08-01
An in vitro biomechanical cadaver study. To evaluate the pull-out strength after 5000 cyclic loading among 4 revision techniques for the loosened iliac screw using corticocancellous bone, longer screw, traditional cement augmentation, and boring cement augmentation. Iliac screw loosening is still a clinical problem for lumbo-iliac fusion. Although many revision techniques using corticocancellous bone, larger screw, and polymethylmethacrylate (PMMA) augmentation were applied in repairing pedicle screw loosening, their biomechanical effects on the loosened iliac screw remain undetermined. Eight fresh human cadaver pelvises with the bone mineral density values ranging from 0.83 to 0.97 g/cm were adopted in this study. After testing the primary screw of 7.5 mm diameter and 70 mm length, 4 revision techniques were sequentially established and tested on the same pelvis as follows: corticocancellous bone, longer screw with 100 mm length, traditional PMMA augmentation, and boring PMMA augmentation. The difference of the boring technique from traditional PMMA augmentation is that PMMA was injected into the screw tract through 3 boring holes of outer cortical shell without removing the screw. On an MTS machine, after 5000 cyclic compressive loading of -200∼-500 N to the screw head, axial maximum pull-out strengths of the 5 screws were measured and analyzed. The pull-out strengths of the primary screw and 4 revised screws with corticocancellous bone, longer screw and traditional and boring PMMA augmentation were 1167 N, 361 N, 854 N, 1954 N, and 1820 N, respectively. Although longer screw method obtained significantly higher pull-out strength than corticocancellous bone (P<0.05), the revised screws using these 2 techniques exhibited notably lower pull-out strength than the primary screw and 2 PMMA-augmented screws (P<0.05). Either traditional or boring PMMA screw showed obviously higher pull-out strength than the primary screw (P<0.05); however, no significant difference of pull-out strength was detected between the 2 PMMA screws (P>0.05). Wadding corticocancellous bone and increasing screw length failed to provide sufficient anchoring strength for a loosened iliac screw; however, both traditional and boring PMMA-augmented techniques could effectively increase the fixation strength. On the basis of the viewpoint of minimal invasion, the boring PMMA augmentation may serve as a suitable salvage technique for iliac screw loosening.
Taniguchi, N; Jinno, T; Takada, R; Koga, D; Ando, T; Okawa, A; Haro, H
2018-05-01
The use of screws and the presence of screw holes may cause acetabular osteolysis and implant loosening in cementless total hip arthroplasty (THA) using conventional polyethylene. In contrast, this issue is not fully understood using highly crosslinked polyethylene (HXLPE), particularly in large comparative study. Therefore, we performed a case-control study to assess the influence of screw usage and screw holes on: (1) implant fixation and osteolysis and (2) polyethylene steady-state wear rate, using cases with HXLPE liners followed up for 7-10 years postoperatively. The screw usage and screw holes adversely affect the implant fixation and incidence of wear-related osteolysis in THA with HXLPE. We reviewed 209 primary cementless THAs performed with 26-mm cobalt-chromium heads on HXLPE liners. To compare the effects of the use of screws and the presence of screw holes, the following groups were established: (1) with-screw (n=140); (2) without-screw (n=69); (3) no-hole (n=27) and (4) group in which a cup with screw holes, but no screw was used (n=42). Two adjunct groups (no-hole cups excluded) were established to compare the differences in the two types of HXLPE: (5) remelted group (n=100) and (6) annealed group (n=82). Implant stability and osteolysis were evaluated by plain radiography and computed tomography. The wear rate from 1 year to the final evaluation was measured using plain X-rays and PolyWare Digital software. All cups and stems achieved bony fixation. On CT-scan, no acetabular osteolysis was found, but there were 3 cases with a small area of femoral osteolysis. The mean steady-state wear rate of each group was (1) 0.031±0.022, (2) 0.033±0.035, (3) 0.031±0.024, (4) 0.029±0.018, (5) 0.030±0.018 and (6) 0.034±0.023mm/year, respectively. A comparison of the effects of screw usage or screw holes found no significant between-group differences in the implant stability, prevalence of osteolysis [no acetabular osteolysis and 3/209 at femoral side (1.4%)] and steady-state wear rate. This study suggests that there are no adverse effects on the results of THA with HXLPE from the use of cups with screw holes and the use of screws for cup fixation. Level III retrospective case-control study. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
New method of feeding coal - Continuous extrusion of fully plastic coal
NASA Technical Reports Server (NTRS)
Ryason, P. R.; England, C.
1978-01-01
Continuous feeding of coal in a compressing screw extruder is described as a method of introducing coal into pressurized systems. The method utilizes the property of many bituminous coals of softening at temperatures from 350 to 400 C. Coal is then fed much in the manner of common thermoplastics, using screw extruders. Preliminary results show that coals can be extruded at rates of about 3.3 kg/MJ, similar to those for plastics.
49 CFR 572.75 - Lumbar spine, abdomen, and pelvis assembly and test procedure.
Code of Federal Regulations, 2012 CFR
2012-10-01
... specified in Figure 42. (2) Adjust the dummy by— (i) Tightening the femur ballflange screws at each hip socket joint to 50 inch-pounds torque; (ii) Attaching the pelvis to the seating surface by a bolt D/605... drawing Figure 42. (iv) Tightening the mountings so that the pelvis-lumbar joining surface is horizontal...
49 CFR 572.75 - Lumbar spine, abdomen, and pelvis assembly and test procedure.
Code of Federal Regulations, 2013 CFR
2013-10-01
... specified in Figure 42. (2) Adjust the dummy by— (i) Tightening the femur ballflange screws at each hip socket joint to 50 inch-pounds torque; (ii) Attaching the pelvis to the seating surface by a bolt D/605... drawing Figure 42. (iv) Tightening the mountings so that the pelvis-lumbar joining surface is horizontal...
49 CFR 572.75 - Lumbar spine, abdomen, and pelvis assembly and test procedure.
Code of Federal Regulations, 2010 CFR
2010-10-01
... specified in Figure 42. (2) Adjust the dummy by— (i) Tightening the femur ballflange screws at each hip socket joint to 50 inch-pounds torque; (ii) Attaching the pelvis to the seating surface by a bolt D/605... drawing Figure 42. (iv) Tightening the mountings so that the pelvis-lumbar joining surface is horizontal...
49 CFR 572.75 - Lumbar spine, abdomen, and pelvis assembly and test procedure.
Code of Federal Regulations, 2011 CFR
2011-10-01
... specified in Figure 42. (2) Adjust the dummy by— (i) Tightening the femur ballflange screws at each hip socket joint to 50 inch-pounds torque; (ii) Attaching the pelvis to the seating surface by a bolt D/605... drawing Figure 42. (iv) Tightening the mountings so that the pelvis-lumbar joining surface is horizontal...
49 CFR 572.75 - Lumbar spine, abdomen, and pelvis assembly and test procedure.
Code of Federal Regulations, 2014 CFR
2014-10-01
... specified in Figure 42. (2) Adjust the dummy by— (i) Tightening the femur ballflange screws at each hip socket joint to 50 inch-pounds torque; (ii) Attaching the pelvis to the seating surface by a bolt D/605... drawing Figure 42. (iv) Tightening the mountings so that the pelvis-lumbar joining surface is horizontal...
Kay, Alastair T; Durgam, Sushmitha; Stewart, Matthew; Joslyn, Stephen; Schaeffer, David J; Horn, Gavin; Kesler, Richard; Chew, Peter
2016-11-01
To compare reduction of type III distal phalangeal fractures using 4.5 and 5.5 mm cortical screws placed in lag fashion and an intact hoof capsule model. Cadaveric experimental study. Hooves from 12 adult horses (n=24). Sagittal fractures were created in pairs of distal phalanges after distal interphalangeal joint disarticulation and were reduced with either 4.5 or 5.5 mm cortical screws placed in lag fashion. Contralateral phalanges served as non-reduced controls. Fracture reduction following screw placement was assessed by comparing pre-reduction and post-reduction fracture gap measurements from radiographs using paired t-tests. Effects of incremental loading (0, 135, 270, 540, 800, 1070, and 1335 kg) on fracture gaps in 6 phalanges reduced with 4.5 mm screws and 5 phalanges reduced with 5.5 mm screws were measured from fluoroscopic images and assessed by 2-way ANOVA. Significance was set at P<.05. Type III distal phalanx fractures were reliably created. Only 5.5 mm cortical screws, not 4.5 mm screws, significantly reduced fracture gaps and constrained fracture gap expansion 3 cm distal to the articular surface. Compressive loading closed the fracture gaps at the articular surface in both non-reduced control groups and those reduced with either 5.5 or 4.5 mm screws. The 5.5 mm cortical screws were more effective than 4.5 mm screws in reducing type III distal phalanx fractures and restricting distal fracture gap expansion under load. © Copyright 2016 by The American College of Veterinary Surgeons.
Plantar Plating for the Treatment of Proximal Fifth Metatarsal Fractures in Elite Athletes.
Mitchell, Ronald J; Duplantier, Neil L; Delgado, Domenica A; Lambert, Bradley S; McCulloch, Patrick C; Harris, Joshua D; Varner, Kevin E
2017-05-01
Proximal fifth metatarsal fractures, zones II and III, are commonly treated surgically, especially in elite athletes. Intramedullary screw fixation remains the most used construct despite nonunion and refracture. High tensile forces on the plantar-lateral aspect of the fifth metatarsal are difficult to control, and intramedullary screw fixation depends on ideal screw position, length, and width. The authors present a plantar plating technique with cancellous bone autograft for zones II and III proximal fifth metatarsal fractures. Rotational instability and plantar-lateral gapping are resisted by applying a compression plate to the tension side of the fracture, eliminating causes for failure. [Orthopedics. 2017; 40(3):e563-e566.]. Copyright 2017, SLACK Incorporated.
Use of the S3 Corridor for Iliosacral Fixation in a Dysmorphic Sacrum: A Case Report.
El Dafrawy, Mostafa H; Strike, Sophia A; Osgood, Greg M
2017-01-01
The S1 and S2 corridors are the typical osseous pathways for iliosacral screw fixation of posterior pelvic ring fractures. In dysmorphic sacra, the S1 screw trajectory is often different from that in normal sacra. We present a case of iliosacral screw placement in the third sacral segment for fixation of a complex lateral compression type-3 pelvic fracture in a patient with a dysmorphic sacrum. In patients with dysmorphic sacra and unstable posterior pelvic ring fractures or dislocations, the S3 corridor may be a feasible osseous fixation pathway that can be used in a manner equivalent to the S2 corridor in a normal sacrum.
Christie, J; Howie, C R; Armour, P C
1988-03-01
One hundred and twenty-seven consecutive patients with displaced subcapital fractures of the femoral neck (Garden Grade III or IV) all under 80 years of age and independently mobile, were randomly allocated to fixation with either double divergent pins or a single sliding screw-plate device. The incidence of non-union and infection in the sliding screw-plate group was significantly higher, and we believe that when internal fixation is considered appropriate multiple pinning should be used. Mobility after treatment was disappointing in about half of the patients, and we feel that internal fixation can only be justified in patients who are physiologically well preserved and who maintain a high level of activity.
Colwell, Clifford W
2014-11-01
Venous thromboembolic (VTE) events, either deep vein thromboses (DVT) or pulmonary emboli (PE), are important complications in patients undergoing knee or hip arthroplasty. Symptomatic VTE rates observed in total joint arthroplasty patients using the mobile compression device with home use capability were non-inferior to rates reported for pharmacological prophylaxis, including warfarin, enoxaparin, rivaroxaban, and dabigatran. Major bleeding in total hip arthroplasty was less using the mobile compression device than using low molecular weight heparin. A cost analysis demonstrated a cost savings based on decreased major bleeding. Use of a mobile compression device with or without aspirin for patients undergoing total joint arthroplasty provides a non-inferior risk for developing VTE compared with current pharmacological protocols.
NASA Astrophysics Data System (ADS)
Yao, Jie; Kuang, Guan-Ming; Wong, Duo Wai-Chi; Niu, Wen-Xin; Zhang, Ming; Fan, Yu-Bo
2014-04-01
Postoperative tunnel enlargement has been frequently reported after anterior cruciate ligament (ACL) reconstruction. Interference screw, as a surgical implant in ACL reconstruction, may influence natural loading transmission and contribute to tunnel enlargement. The aims of this study are (1) to quantify the alteration of strain energy den sity (SED) distribution after the anatomic single-bundle ACL reconstruction; and (2) to characterize the influence of screw length and diameter on the degree of the SED alteration. A validated finite element model of human knee joint was used. The screw length ranging from 20 to 30mm with screw diameter ranging from 7 to 9 mm were investigated. In the post-operative knee, the SED increased steeply at the extra-articular tunnel aperture under compressive and complex loadings, whereas the SED decreased beneath the screw shaft and nearby the intra-articular tunnel aperture. Increasing the screw length could lower the SED deprivation in the proximal part of the bone tunnel; whereas increasing either screw length or diameter could aggravate the SED deprivation in the distal part of the bone tunnel. Decreasing the elastic modulus of the screw could lower the bone SED deprivation around the screw. In consideration of both graft stability and SED alteration, a biodegradable interference screw with a long length is recommended, which could provide a beneficial mechanical environment at the distal part of the tunnel, and meanwhile decrease the bone-graft motion and synovial fluid propagation at the proximal part of the tunnel. These findings together with the clinical and histological factors could help to improve surgical outcome, and serve as a preliminary knowledge for the following study of biodegradable interference screw. [Figure not available: see fulltext.
Deen, H Gordon; Birch, Barry D; Wharen, Robert E; Reimer, Ronald
2003-01-01
Lateral mass plating has become the technique of choice for posterior cervical fixation. Although these systems are safe and reliable, they can be difficult to use in patients with abnormal cervical anatomy; screw placement can be compromised by the fixed hole spacing of the plate; screw back-out and other forms of implant failure can occur; and extension across the cervicothoracic junction can be problematic. To report a series of patients undergoing posterior cervical stabilization with a polyaxial screw-rod construct and to investigate whether this new system offers any advantages over existing methods of fixation. A prospective study evaluating clinical and radiographic parameters in a consecutive series of patients treated with this technique. There were 21 patients in the study group. The surgical indication was cervical spondylosis in 14, trauma in 2, postsurgical kyphosis in 2 and 1 case each of congenital cervicothoracic stenosis, C7-T1 pseudarthrosis and basilar invagination with brainstem compression. Clinical indicators included age, gender, neurologic status, surgical indication and number of levels stabilized. Note was made of whether laminectomy and concomitant anterior reconstructive surgery were performed. Radiographic indicators included early postoperative computed tomography (CT) scan to check for screw placement and plain radiographs at subsequent visits. The participants in this study underwent posterior cervical stabilization using lateral mass screw-rod fixation. Clinical and radiographic assessment was carried out immediately after surgery, and 3, 6 and 12 months after surgery. One-year follow-up was obtained in all cases. A total of 212 screws were implanted in 21 patients. Fixation was carried out over an average of 5.5 spinal segments (range, 2 to 11). The system was successfully implanted in all patients despite the presence of coronal and sagittal plane deformities and/or lateral mass abnormalities in the majority of cases. This system allowed for screw placement in the occiput, C1 lateral mass, C2 pars, C3-C7 lateral masses and upper thoracic pedicles. Early postoperative CT scanning confirmed satisfactory screw placement in all cases. Three patients experienced transient single-level radiculopathy, for an incidence of 1.4% per screw placed. Two patients developed wound seromas requiring evacuation. There were no infections or other wound healing problems. There were no examples of cord or vertebral artery injury, cerebrospinal fluid leak, screw malposition or back-out, loss of alignment or implant failure. When compared with plating techniques, screw-rod fixation appeared to offer several advantages. First, unlike plates, rods proved to be amenable to multiplanar contouring, which is often needed for deformities associated with cervical spondylosis. Second, lateral mass screw placement was more precise because it was not constrained by the hole spacing of the plate. Third, screw back-out and other types of implant failure were not seen. Fourth, the screw-rod system was more easily extended to the occiput and across the cervicothoracic junction. Fifth, the screw-rod system permitted the application of compression, distraction and reduction forces within the construct, to a greater extent than plate systems. The incidence of postoperative radiculopathy was similar to that seen with plate systems. These data indicate that posterior cervical stabilization with polyaxial screw-rod fixation is a safe, straightforward technique that appears to offer some advantages over existing methods of fixation. Results appear to be durable at 1-year follow-up. Benefits are more significant with longer constructs, especially those extending to the occiput or crossing the cervicothoracic junction.
Mutlu, Ibrahim; Ozkan, Arif; Kisioglu, Yasin
2016-01-01
Background. In this study, the cut-out risk of Dynamic Hip Screw (DHS) was investigated in nine different positions of the lag screw for two fracture types by using Finite Element Analysis (FEA). Methods. Two types of fractures (31-A1.1 and A2.1 in AO classification) were generated in the femur model obtained from Computerized Tomography images. The DHS model was placed into the fractured femur model in nine different positions. Tip-Apex Distances were measured using SolidWorks. In FEA, the force applied to the femoral head was determined according to the maximum value being observed during walking. Results. The highest volume percentage exceeding the yield strength of trabecular bone was obtained in posterior-inferior region in both fracture types. The best placement region for the lag screw was found in the middle of both fracture types. There are compatible results between Tip-Apex Distances and the cut-out risk except for posterior-superior and superior region of 31-A2.1 fracture type. Conclusion. The position of the lag screw affects the risk of cut-out significantly. Also, Tip-Apex Distance is a good predictor of the cut-out risk. All in all, we can supposedly say that the density distribution of the trabecular bone is a more efficient factor compared to the positions of lag screw in the cut-out risk. PMID:27995133
Yeom, Jin S; Riew, K Daniel; Kang, Sung Shik; Yi, Jemin; Lee, Gun Woo; Yeom, Arim; Chang, Bong-Soon; Lee, Choon-Ki; Kim, Ho-Joong
2015-10-15
Prospective observational cohort study. To compare the outcomes of our new technique, distraction arthrodesis of C1-C2 facet joint with C2 root preservation (Study group), to those of conventional C1-C2 fusion with C2 root transection (Control group) for the management of intractable occipital neuralgia caused by C2 root compression. We are not aware of any report concerning C2 root decompression during C1-C2 fusion. Inclusion criteria were visual analogue scale (VAS) score for occipital neuralgia 7 or more; C2 root compression at the collapsed C1-C2 neural foramen; and follow-up 12 months or more. The Study group underwent surgery with our new technique including (1) C1-C2 facet joint distraction and bone block insertion while preserving the C2 root; and (2) use of C1 posterior arch screws instead of conventional lateral mass screws during C1-C2 segmental screw fixation. The Control group underwent C2 root transection with C1-C2 segmental screw fixation and fusion. We compared the prospectively collected outcomes data. There were 15 patients in the Study group and 8 in the Control group. Although there was no significant difference in the VAS score for the occipital neuralgia between the 2 groups preoperatively (8.2 ± 0.9 vs. 7.9 ± 0.6, P = 0.39), it was significantly lower in the Study group at 1, 3, and 6 months postoperatively (P < 0.01, respectively). At 12 months, it was 0.4 ± 0.6 versus 2.5 ± 2.6 (P = 0.01). There was no significant difference in improvement in the VAS score for neck pain and neck disability index and Japanese Orthopedic Association recovery rate, which are minimally influenced by occipital neuralgia. Our novel technique of distraction arthrodesis with C2 root preservation can be an effective option for the management of intractable occipital neuralgia caused by C2 root compression.
Biomechanical Analysis of an Expandable Lumbar Interbody Spacer.
Soriano-Baron, Hector; Newcomb, Anna G U S; Malhotra, Devika; Palma, Atilio E; Martinez-Del-Campo, Eduardo; Crawford, Neil R; Theodore, Nicholas; Kelly, Brian P; Kaibara, Taro
2018-06-01
Recently developed expandable interbody spacers are widely accepted in spinal surgery; however, the resulting biomechanical effects of their use have not yet been fully studied. We analyzed the biomechanical effects of an expandable polyetheretherketone interbody spacer inserted through a bilateral posterior approach with and without different modalities of posterior augmentation. Biomechanical nondestructive flexibility testing was performed in 7 human cadaveric lumbar (L2-L5) specimens followed by axial compressive loading. Each specimen was tested under 6 conditions: 1) intact, 2) bilateral L3-L4 cortical screw/rod (CSR) alone, 3) WaveD alone, 4) WaveD + CSR, 5) WaveD + bilateral L3-L4 pedicle screw/rod (PSR), and 6) WaveD + CSR/PSR, where CSR/PSR was a hybrid construct comprising bilateral cortical-level L3 and pedicle-level L4 screws interconnected by rods. The range of motion (ROM) with the interbody spacer alone decreased significantly compared with the intact condition during flexion-extension (P = 0.02) but not during lateral bending or axial rotation (P ≥ 0.19). The addition of CSR or PSR to the interbody spacer alone condition significantly decreased the ROM compared with the interbody spacer alone (P ≤ 0.002); and WaveD + CSR, WaveD + PSR, and WaveD + CSR/PSR (hybrid) (P ≥ 0.29) did not differ. The axial compressive stiffness (resistance to change in foraminal height during compressive loading) with the interbody spacer alone did not differ from the intact condition (P = 0.96), whereas WaveD + posterior instrumentation significantly increased compressive stiffness compared with the intact condition and the interbody spacer alone (P ≤ 0.001). The WaveD alone significantly reduced ROM during flexion-extension while maintaining the axial compressive stiffness. CSR, PSR, and CSR/PSR hybrid constructs were all effective in augmenting the expandable interbody spacer system and improving its stability. Copyright © 2018 Elsevier Inc. All rights reserved.
Validity of computed tomography in predicting scaphoid screw prominence: a cadaveric study.
Griffis, Clare E; Olsen, Cara; Nesti, Leon; Gould, C Frank; Frew, Michael; McKay, Patricia
2017-04-01
Studies of hardware protrusion into joint spaces following fracture fixation have been performed to address whether or not there is discrepancy between the actual and radiographic appearance of screw prominence. The purpose of our study was to prove that, with respect to the scaphoid, prominence as visualized on CT scan is real and not a result of metal artifact. Forty-two cadaveric wrists were separated into four allotted groups with 21 control specimens and 21 study specimens. All specimens were radiographically screened to exclude those with inherent carpal abnormalities. Acutrak® headless compression screws were placed into all specimens using an open dorsal approach. Cartilage was removed from screw insertion site at the convex surface of the scaphoid proximal pole. Control specimens had 0 mm screw head prominence. The studied specimens had 1, 2, and 3 mm head prominence measured with a digital caliper. Computed tomography, with direct sagittal acquisition and metal suppression technique, was then performed on all specimens following screw placement. Two staff radiologists blinded to the study groups interpreted the images. Results revealed that only one of 21 control specimens was interpreted as prominent. Comparatively, in the studied groups, 90% were accurately interpreted as prominent. CT provides an accurate assessment of scaphoid screw head prominence. When a screw appears prominent on CT scan, it is likely to be truly prominent without contribution from metallic artifact.
Economics of water injected air screw compressor systems
NASA Astrophysics Data System (ADS)
Venu Madhav, K.; Kovačević, A.
2015-08-01
There is a growing need for compressed air free of entrained oil to be used in industry. In many cases it can be supplied by oil flooded screw compressors with multi stage filtration systems, or by oil free screw compressors. However, if water injected screw compressors can be made to operate reliably, they could be more efficient and therefore cheaper to operate. Unfortunately, to date, such machines have proved to be insufficiently reliable and not cost effective. This paper describes an investigation carried out to determine the current limitations of water injected screw compressor systems and how these could be overcome in the 15-315 kW power range and delivery pressures of 6-10 bar. Modern rotor profiles and approach to sealing and cooling allow reasonably inexpensive air end design. The prototype of the water injected screw compressor air system was built and tested for performance and reliability. The water injected compressor system was compared with the oil injected and oil free compressor systems of the equivalent size including the economic analysis based on the lifecycle costs. Based on the obtained results, it was concluded that water injected screw compressor systems could be designed to deliver clean air free of oil contamination with a better user value proposition than the oil injected or oil free screw compressor systems over the considered range of operations.
Medial malleolar fractures: a biomechanical study of fixation techniques.
Fowler, T Ty; Pugh, Kevin J; Litsky, Alan S; Taylor, Benjamin C; French, Bruce G
2011-08-08
Fracture fixation of the medial malleolus in rotationally unstable ankle fractures typically results in healing with current fixation methods. However, when failure occurs, pullout of the screws from tension, compression, and rotational forces is predictable. We sought to biomechanically test a relatively new technique of bicortical screw fixation for medial malleoli fractures. Also, the AO group recommends tension-band fixation of small avulsion type fractures of the medial malleolus that are unacceptable for screw fixation. A well-documented complication of this technique is prominent symptomatic implants and secondary surgery for implant removal. Replacing stainless steel 18-gauge wire with FiberWire suture could theoretically decrease symptomatic implants. Therefore, a second goal was to biomechanically compare these 2 tension-band constructs. Using a tibial Sawbones model, 2 bicortical screws were compared with 2 unicortical cancellous screws on a servohydraulic test frame in offset axial, transverse, and tension loading. Second, tension-band fixation using stainless steel wire was compared with FiberWire under tensile loads. Bicortical screw fixation was statistically the stiffest construct under tension loading conditions compared to unicortical screw fixation and tension-band techniques with FiberWire or stainless steel wire. In fact, unicortical screw fixation had only 10% of the stiffness as demonstrated in the bicortical technique. In a direct comparison, tension-band fixation using stainless steel wire was statistically stiffer than the FiberWire construct. Copyright 2011, SLACK Incorporated.
Husain, Z S; DeFronzo, D J
2000-01-01
This study assesses the strength of fixating avulsion fractures of the fifth metatarsal base with a 4.0-mm partially threaded cancellous screw crossing two cortices as compared to tension banding. Our data showed statistically significant fixation strength improvement over tension banding for avulsion fractures (p < 0.02) in both polystyrene foam models and fresh, nonpreserved frozen cadaveric samples. In cadavers, the screw fixations were able to withstand more than three times the load sustained by the tension band fixations. The study utilized the Instron 8500 tensiometer to apply physiologic loads to test the constructs until failure. The displacement and load data at failure show the limitations of both fixations. By increasing the load resistance while maintaining compression, the bicortical cancellous screw fixation created greater stability at the avulsion fracture of the fifth metatarsal base as compared to tension band stabilization.
De-pulping and Seed Separation from Tumba ( Citrullus colocynthis) Fruit
NASA Astrophysics Data System (ADS)
Mudgal, Vishvambhar Dayal
2017-09-01
Tumba ( Citrullus colocynthis) contains spongy pulp in which seeds are embedded unevenly. Seeds contain about 26% fats and 13% protein. The process of seed separation is highly time consuming and labour intensive. Two weeks are required to separate its seeds with traditional methods. The developed prototype, for separating tumba seeds, mainly consists of chopper, de-pulping screw, barrel assembly and seed separation unit. The de-pulping screw and barrel assembly was divided in two sections i.e. conveying (feeding zone) and compression sections (de-pulping zone). The performance of developed machine was evaluated at different screw speed in the range of 40-100 rpm. Maximum pulp removal efficiency of 78.1% was achieved with screw speed of 60 rpm. Seed separation from the pulp was carried out by adding different chemicals. Use of sodium hydroxide and potassium hydroxide produced seed separation up to 99%.
Wing-augmentation reduces femoral head cutting out of dynamic hip screw.
Chen, Chih-Yu; Huang, Shu-Wei; Sun, Jui-Sheng; Lin, Shin-Yiing; Yu, Chih-Sheng; Pan, Hsu-Pin; Lin, Ping-Hung; Hsieh, Fan-Chun; Tsuang, Yang-Hwei; Lin, Feng-Huei; Yang, Rong-Sen; Cheng, Cheng-Kung
2017-06-01
The dynamic hip screw (DHS) is commonly used in the treatment of femoral intertrochanteric fracture with high satisfactory results. However, post-operative failure does occur and result in poor prognosis. The most common failure is femoral head varus collapse, followed by lag screw cut-out through the femoral head. In this study, a novel-designed DHS with two supplemental horizontal blades was used to improve the fixation stability. In this study, nine convention DHS and 9 Orthopaedic Device Research Center (ODRC) DHSs were tested in this study. Each implant was fixed into cellular polyurethane rigid foam as a surrogate of osteoporotic femoral head. Under biaxial rocking motion, all constructs were loaded to failure point (12mm axial displacement) or up to 20,000 cycles of 1.45kN peak magnitude were achieved, whichever occurred first. The migration kinematics was continuously monitored and recorded. The final tip-to-apex distance, rotational angle and varus deformation were also recorded. The results showed that the ODRC DHS sustained significantly more loading cycles and exhibited less axial migration in comparison to the conventional DHS. The ODRC DHS showed a significantly smaller bending strain and larger torsional strain compared to the conventional DHS. The changes in tip-to-apex distance (TAD), post-study varus angle, post-study rotational angle of the ODRC DHS were all significantly less than that of the conventional DHS (p < 0.05). We concluded that the ODRC DHS augmented with two horizontal wings would increase the bone-implant interface contact surface, dissipate the load to the screw itself, which improves the migration resistance and increases the anti-rotational implant effect. In conclusion, the proposed ODRC DHS demonstrated significantly better migration resistance and anti-rotational effect in comparison to the conventional DHS construct. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
A rare presentation of haematuria: hip prosthesis in the bladder.
Phan, Yih Chyn; Eli, Nnaemeka; Pillai, Praveen; O'Dair, Jonathan
2018-03-22
An 80-year-old woman presented to our department with visible haematuria and stage II acute kidney injury (AKI). She had stage IIB cervical cancer, for which she received chemotherapy and external beam radiotherapy in 2003. Four years later, she had a left dynamic hip screw for an extracapsular neck of femur fracture following a fall. In 2010, she underwent a right total hip replacement owing to osteoarthritis, and it was subsequently revised in 2012 owing to a right acetabular component failure. In this admission, her AKI improved with intravenous fluid administration and her haematuria settled following catheterisation with a three-way catheter and bladder irrigation with saline. She underwent a flexible cystoscopy which revealed that a part of her right hip prosthesis was in the bladder, having eroded through the right bony pelvis. However, she declined any surgical interventions. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Zachert, Gregor; Rapp, Marion; Eggert, Rebecca; Schulze-Hessing, Maaike; Gros, Nina; Stratmann, Christina; Wendlandt, Robert; Kaiser, Martin M
2015-08-01
For pediatric femoral shaft fractures, elastic stable intramedullary nailing (ESIN) is an accepted method of treatment. But problems regarding stability with shortening or axial deviation are well known in complex fracture types and heavier children. Biomechanical in vitro testing was performed to determine whether two modified osteosyntheses with an additional tension screw fixation or screw fixation alone without nails could significantly improve the stability in comparison to classical ESIN. A total of 24 synthetic adolescent-sized femoral bone models (Sawbones, 4th generation; Vashon, Washington, United States) with an identical spiral fracture (length 100 mm) were used. All grafts underwent retrograde fixation with two C-shaped steel nails (2C). Of the 24, 8 osteosyntheses were supported by one additional tension screw (2C1S) and another 8 by two screws (2S) in which the intramedullary nails were removed before testing. Each configuration underwent biomechanical testing in 4-point bending, external rotation (ER) and internal rotation (IR). Furthermore, the modifications were tested in axial physiological 9 degrees position for shifting and dynamic compression as well as dynamic load. Both screw configurations (2C1S and 2S) demonstrated a significantly higher stability in comparison to the 2C configuration in 4-point bending (anterior-posterior, 0.95 Nm/mm [2C] < 8.41 Nm/mm [2C1S] and 15.12 Nm/mm [2S]; posterior-anterior, 8.55 Nm/mm [2C] < 12.65 Nm/mm [2C1S] and 17.54 Nm/mm [2S]; latero-medial, 1.17 Nm/mm [2C] < 5.53 Nm/mm [2C1S] and 9.15 Nm/mm [2S]; medio-lateral, 1.74 Nm/mm [2C] < 9.69 Nm/mm [2C1S] and 12.20 Nm [2S]; all p < 0.001) and during torsion (ER, 0.61 Nm/degree [2C] < 4.10 Nm/degree [2C1S] and 9.29 Nm/degree [2S]; IR, 0.18 Nm/degree [2C] < 6.17 Nm/degree [2C1S] and 10.61 Nm/degree [2S]; all p < 0.001]. The shifting in compression in 9 degrees position was only slightly influenced. The comparison of 2S versus 2C1S showed more stability for 2S than 2C1S in all testing, except the axial 9 degrees compression tests for shifting. In contrast to the 2C configuration, both modifications (2C1S and 2S) turned out to be stable in dynamic 9 degrees axial compression with a force of 100 up to 1,000 N at 2.5 Hz in 250,000 load cycles. In this in vitro adolescence femur spiral fracture model, the stability of ESIN could be significantly improved by two modifications with additional tension screws. If transferred in clinical practice, these modifications might offer earlier weight bearing and less problems of shortening or axial deviation. Georg Thieme Verlag KG Stuttgart · New York.
Schmierer, Philipp A; Kircher, Patrick R; Hartnack, Sonja; Knell, Sebastian C
2015-10-01
To compare the frequency of complications, including screw loosening and pelvic canal narrowing, associated with dynamic compression plating, locking plating, and double locking plating of ilial fractures in cats. Historical cohort study. The radiographs and medical records of cats with pelvic fractures that were presented between 2004 and 2013 were reviewed. The cases were categorized based on the plate type and number as dynamic compression plate (DCP), single locking plate (LPS) and double locking plates (dLPS). The frequency of screw loosening was compared across categories using a Fisher's exact test. The change in pelvic alignment, described by the change in sacral index (postoperative sacral index-followup sacral index), was compared across plate categories using ANOVA. The frequency of screw loosening for DCP (5/10) was significantly higher than LPS (1/13) and dLPS (0/11) (P = .05, P = .012, respectively). There was no significant difference in the SI change across plate categories. The mean change in sacral index for DCP was -0.11 (95%CI -0.25 to 0.03), for LPS was 0.0007 (95%CI -0.07 to 0.08), and for dLPS was -0.01 (95%CI -0.04 to 0.02). None of the cats showed constipation postoperatively. Screw loosening occurred less often but the change in pelvic canal alignment was not significantly different in ilial fractures repaired with LPS or dLPS compared to ilial fractures repaired with DCP. Locking plating of ilial fractures in cats may offer advantages compared to nonlocking plating. © Copyright 2015 by The American College of Veterinary Surgeons.
The influence of implant-abutment connection on the screw loosening and microleakage.
Tsuruta, Katsuhiro; Ayukawa, Yasunori; Matsuzaki, Tatsuya; Kihara, Masafumi; Koyano, Kiyoshi
2018-04-09
There are some spaces between abutment and implant body which can be a reservoir of toxic substance, and they can penetrate into subgingival space from microgap at the implant-abutment interface. This penetration may cause periimplantitis which is known to be one of the most important factors associated with late failure. In the present study, three kinds of abutment connection system, external parallel connection (EP), internal parallel connection (IP), and internal conical connection (CC), were studied from the viewpoint of microleakage from the gap between the implant and the abutment and in connection with the loosening of abutment screw. We observed dye leakage from abutment screw hole to outside through microgap under the excessive compressive and tensile load and evaluated the anti-leakage characteristics of these connection systems. During the experiment, one abutment screw for EP and two screws for IP, out of seven samples in each group, were fractured. After the 2000 cycles of compressive tensile loadings, removal torque value (RTV) of abutment screw represented no statistical differences among three groups. Standard deviation was largest in the RTV of EP and smallest in that of CC. The results of microleakage of toluidine blue from implant-abutment connection indicated that microleakage generally increased as loading procedure progressed. The amount of microleakage was almost plateau at 2000 cycles in CC, but still increasing in other two groups. The value of microleakage greatly scattered in EP, but the deviation of that in CC is significantly smaller. At 500 cycles of loading, there were no significant differences in the amount of microleakage among the groups, but at 1000, 1500, and 2000 cycles of loading, the amount of microleakage in CC was significantly smaller than that in IP. Throughout the experiment, the amount of microleakage in EP was largest, but no statistical difference was indicated due to the high standard deviation. Within the limitation of the present study, CC was stable even after the loading in the RTV of abutment screw and it prevented microleakage from the microgap between the implant body and the abutment, among the three tested connections.
Bone Repair and Military Readiness
2012-10-25
formation. Orthopedic surgeons have had to adapt surgical techniques to account for issues with cementing total joint prostheses and subsequent total joint ...the silorane composite has the potential to support osseous integration around the cemented total joint implant and may generate less immunogenic wear...factors, and potential for osseointegration/osseoinduction, this material has potential to be used for screw augmentation, total hip/knee joint
Li, Shuang; Chang, Shi-Min; Jin, Yan-Min; Zhang, Ying-Qi; Niu, Wen-Xin; Du, Shou-Chao; Zhang, Li-Zhi; Ma, Hui
2016-06-01
As a predictor of the risk of lag screw cutout, it was recommended that keeping tip-apex distance (TAD)<25mm and placing the screw centrally or inferiorly, but positioning the lag screw too inferiorly in the head would produce TAD>25mm. We aim to simulate various positions of the lag screw in the femoral head and identify whether 25mm is a suitable cut-off value that favours all sizes of femoral heads with intertrochanteric fractures of the hip. Using a general mathematical software, the positions of the screw tip points were simulated. The virtual anterior-posterior and lateral views were then visualised, and the locus of the screw tips was projected into a Cartesian coordinate system according to the TAD and calcar-referenced tip-apex distance (CalTAD) formulas. Each original virtual anterior-posterior and lateral image was zoomed and compiled to match a calculated average image. The screw tip points were recorded, traced and compiled into volumes which could be used to visualise the screw's movements and positioning within the femoral head. The extracted volumes were calculated when 10mm
Ab-Lazid, Rosidah; Perilli, Egon; Ryan, Melissa K; Costi, John J; Reynolds, Karen J
2014-12-01
For cancellous bone screws, the respective roles of the applied insertion torque (TInsert) and of the quality of the host bone (microarchitecture, areal bone mineral density (aBMD)), in contributing to the mechanical holding strength of the bone-screw construct (FPullout), are still unclear. During orthopaedic surgery screws are tightened, typically manually, until adequate compression is attained, depending on surgeons' manual feel. This corresponds to a subjective insertion torque control, and can lead to variable levels of tightening, including screw stripping. The aim of this study, performed on cancellous screws inserted in human femoral heads, was to investigate which, among the measurements of aBMD, bone microarchitecture, and the applied TInsert, has the strongest correlation with FPullout. Forty six femoral heads were obtained, over which microarchitecture and aBMD were evaluated using micro-computed tomography and dual X-ray absorptiometry. Using an automated micro-mechanical test device, a cancellous screw was inserted in the femoral heads at TInsert set to 55% to 99% of the predicted stripping torque beyond screw head contact, after which FPullout was measured. FPullout exhibited strongest correlations with TInsert (R=0.88, p<0.001), followed by structure model index (SMI, R=-0.81, p<0.001), bone volume fraction (BV/TV, R=0.73, p<0.001) and aBMD (R=0.66, p<0.01). Combinations of TInsert with microarchitectural parameters and/or aBMD did not improve the prediction of FPullout. These results indicate that, for cancellous screws, FPullout depends most strongly on the applied TInsert, followed by microarchitecture and aBMD of the host bone. In trabecular bone, screw tightening increases the holding strength of the screw-bone construct. Copyright © 2014 Elsevier Ltd. All rights reserved.
Polarity Control and Growth of Lateral Polarity Structures in AlN
2013-05-10
domains. Transmission electron microscopy shows mixed edge-screw type dislocations with polarity-dependent dislocation bending. Raman 1. REPORT DATE (DD-MM...polarity-dependent dislocation bending. Raman spectroscopy reveals compressively strained Al-polar and relaxed N-polar domains. The near band edge...dislocation bending. Raman spectroscopy reveals compressively strained Al-polar and relaxed N-polar domains. The near band edge luminescence consists of
Dawei, Tian; Na, Liu; Jun, Lei; Wei, Jin; Lin, Cai
2013-02-01
Although there were many different types of fixation techniques for sacroiliac dislocation fracture, the treat remained challenging in posterior pelvic ring injury. The purpose of this study was to evaluate the biomechanical effects of a novel fixation system we designed. 12 human cadavers (L3-pelvic-femora) were used to compare biomechanical stability after reconstruction on the same specimens in four conditions: (1) intact, (2) cable system, (3) plate-pedicle screw system, and (4) cable system and plate-pedicle screw combination system (combination system). Biomechanical testing was performed on a material testing machine for evaluating the stiffness of the pelvic fixation construct in compression and torsion. The cable system and plate-pedicle screw system alone may be insufficient to resist vertical shearing and rotational loads; however the combination system for unstable sacroiliac dislocation fractures provided significantly greater stability than single plate-pedicle or cable fixation system. The novel fixation system for unstable sacroiliac dislocation fractures produced sufficient stability in axial compression and axial rotation test in type C pelvic ring injuries. It may also offer a better solution for sacroiliac dislocation fractures. Copyright © 2012 Elsevier Ltd. All rights reserved.
Mao, Yujiang; Song, Jie; Wei, Jie; Wang, Manyi
2010-01-01
Unrecognized joint penetration (UJP) by screw penetration through the articular surface undetectable on routine anteroposterior (AP) and lateral radiographs can cause serious complications. We have developed a geometric model to analyze UJP, and methods for the prevention of the problem. A Steinmetz Solid (SS) is the overlapping portion between two identical, vertically intersecting cylinders. The AP and lateral radiographs of a femoral head (simplified as a sphere) are projections of two cylinder-shaped images. A screw that appears to be within the femoral head in fact only lies within the cylinder. A screw apparently within the femoral head on both AP and lateral images is only confined to the SS generated by two cylinders, but not necessarily confined to the femoral head itself. We have therefore analyzed UJP using a geometric model based on SS. The geometric basis of UJP lies in the fact that the SS is larger than the sphere (femoral head) with a volume ratio of 4: π. The theoretical risk of UJP for any screw therefore can be as high as 21.5% ((4-π)/4). In reality, screws are always carefully placed to ensure a distance between the screw's tip and the edge of femoral head (tip-to-edge distance, or TED). This TED effectively lowers the risk of UJP by reducing the size of the screw-confining SS. When the SS entirely fits into (internally tangential to) the femoral head, the risk of UJP approaches zero. A TED fulfilling this requirement can be regarded as safe (approximately 0.29 x femoral head radius). With a femoral head diameter of 5 cm, the safe TED is approximately 7 mm.
[The VB system: a new modular osteosynthesis material involving both screws and wires].
Dubert, T; Valenti, P; Dinh, A; Osman, N
2002-01-01
VB is an osteosynthesis system for the stabilisation of small fragments, which combines the benefits of both wires and screws. It is a modular system comprising a threaded pin and a ring. The threaded pin is first positioned. Then a ring is grasped and opened by the progressive angulation of a screwdriver. Still anchored on the screwdriver, the ring slides easily on the pin. It is clamped on the pin by simply removing the screwdriver and the pin is then cut. This modular system includes 1.8 and 1.1 mm pins and different types of rings (threaded or non threaded, with or without collars). The system is easy to handle and can be introduced using an open or percutaneous technique, allowing compression or distraction. Our preliminary series, performed in accordance with National clinical trial protocol (Huriet) consisted of 50 cases in 24 patients (five women and 19 men) with an average age of 48 years, and a follow-up of more than six months. Fourteen cases of fractures (28 implants) were treated as emergencies (two radial heads, one capitellum, one trochlea of the humerus, seven distal radius fractures, one trapezium, two metacarpals) and 12 cases (22 implants) were elective cases: arthrodesis (one trapezo-metacarpal, one intermetacarpal, two interphalangeal, two carpal), non-union (six scaphoids, one phalangeal) and one phalangeal malunion. Hardware removal was performed in 16 cases. No implant failure has been detected. One case, a DIP arthrodesis, had a suspicion of sepsis which led to the removal of the implants at six weeks. The results of this study have convinced us of the merits of the system, which combines the advantages of both wires and screws. The system allows the user to perform either distraction or compression, and to adjust the force by hand. Compared to the fixed amount of compression produced by lag screws, this feature seems to be a real step forward.
Time-elapsed screw insertion with microCT imaging.
Ryan, M K; Mohtar, A A; Cleek, T M; Reynolds, K J
2016-01-25
Time-elapsed analysis of bone is an innovative technique that uses sequential image data to analyze bone mechanics under a given loading regime. This paper presents the development of a novel device capable of performing step-wise screw insertion into excised bone specimens, within the microCT environment, whilst simultaneously recording insertion torque, compression under the screw head and rotation angle. The system is computer controlled and screw insertion is performed in incremental steps of insertion torque. A series of screw insertion tests to failure were performed (n=21) to establish a relationship between the torque at head contact and stripping torque (R(2)=0.89). The test-device was then used to perform step-wise screw insertion, stopping at intervals of 20%, 40%, 60% and 80% between screw head contact and screw stripping. Image data-sets were acquired at each of these time-points as well as at head contact and post-failure. Examination of the image data revealed the trabecular deformation as a result of increased insertion torque was restricted to within 1mm of the outer diameter of the screw thread. Minimal deformation occurred prior to the step between the 80% time-point and post-failure. The device presented has allowed, for the first time, visualization of the micro-mechanical response in the peri-implant bone with increased tightening torque. Further testing on more samples is expected to increase our understanding of the effects of increased tightening torque at the micro-structural level, and the failure mechanisms of trabeculae. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sim, Jae Ang; Lee, Beom Koo; Kwak, Ji Hoon; Moon, Sung Hoon
2009-02-01
We report a case of knee fusion after a failed total knee arthroplasty (TKA) with severe osteolysis including the epicondyle and ipsilateral total hip arthroplasty (THA) with long Wagner revision stem (Sulzer Orthopedics, Baar, Switzerland). The conventional devices for arthrodesis were unavailable in this case because of the long Wagner revision stem and poor bone stock. A connector was made between the long Wagner revision stem and an intramedullary nail (IM nail; Solco, Seoul, Korea). The custom-made connector was coupled with a femoral stem by cylindrical taper fit with additional cement augmentation and an intramedullary nail by screws. Osseous fusion was achieved without pain or instability.
Zhang, Bo; Xie, Qing-yun; Wang, Cai-ru; Liu, Jin-biao; Liao, Dong-fa; Jiang, Kai; Lei, Wei; Pan, Xian-ming
2013-01-01
Background It was reported that expansive pedicle screw (EPS) and polymethylmethacrylate-augmented pedicle screw (PMMA-PS) could be used to increase screw stability in osteoporosis. However, there are no studies comparing the two kinds of screws in vivo. Thus, we aimed to compare biomechanical and interfacial performances of EPS and PMMA-PS in osteoporotic sheep spine. Methodology/Principal Findings After successful induction of osteoporotic sheep, lumbar vertebrae in each sheep were randomly divided into three groups. The conventional pedicle screw (CPS) was inserted directly into vertebrae in CPS group; PMMA was injected prior to insertion of CPS in PMMA-PS group; and the EPS was inserted in EPS group. Sheep were killed and biomechanical tests, micro-CT analysis and histological observation were performed at both 6 and 12 weeks post-operation. At 6-week and 12-week, screw stabilities in EPS and PMMA-PS groups were significantly higher than that in CPS group, but there were no significant differences between EPS and PMMA-PS groups at two study periods. The screw stability in EPS group at 12-week was significantly higher than that at 6-week. The bone trabeculae around the expanding anterior part of EPS were more and denser than that in CPS group at 6-week and 12-week. PMMA was found without any degradation and absorption forming non-biological “screw-PMMA-bone” interface in PMMA-PS group, however, more and more bone trabeculae surrounded anterior part of EPS improving local bone quality and formed biological “screw-bone” interface. Conclusions/Significance EPS can markedly enhance screw stability with a similar effect to the traditional method of screw augmentation with PMMA in initial surgery in osteoporosis. EPS can form better biological interface between screw and bone than PMMA-PS. In addition, EPS have no risk of thermal injury, leakage and compression caused by PMMA. We propose EPS has a great application potential in augmentation of screw stability in osteoporosis in clinic. PMID:24086381
End Restraints for Impact-Energy-Absorbing Tube Specimens
NASA Technical Reports Server (NTRS)
Farley, G. L.; Modlin, J. T.
1985-01-01
Inexpensive device developed that eliminates tipping problem without affecting crushing process. Device consists of soft sponge-rubber insert approximately 0.5 inches (1.3 centimeters) thick, cut to same diameter as internal diameter of tube specimen. Metal washer, slightly smaller than internal diameter of tube, placed on top of rubber insert. Screw passed through washer and rubber insert and threaded into base of test machine. As screw tightened against washer, rubber insert compressed and expands radially. Radial expansion applies pressure against internal wall of tube specimen, which provides sufficient support to tube to prevent tipping.
Pedicle screw anchorage of carbon fiber-reinforced PEEK screws under cyclic loading.
Lindtner, Richard A; Schmid, Rene; Nydegger, Thomas; Konschake, Marko; Schmoelz, Werner
2018-03-01
Pedicle screw loosening is a common and significant complication after posterior spinal instrumentation, particularly in osteoporosis. Radiolucent carbon fiber-reinforced polyetheretherketone (CF/PEEK) pedicle screws have been developed recently to overcome drawbacks of conventional metallic screws, such as metal-induced imaging artifacts and interference with postoperative radiotherapy. Beyond radiolucency, CF/PEEK may also be advantageous over standard titanium in terms of pedicle screw loosening due to its unique material properties. However, screw anchorage and loosening of CF/PEEK pedicle screws have not been evaluated yet. The aim of this biomechanical study therefore was to evaluate whether the use of this alternative nonmetallic pedicle screw material affects screw loosening. The hypotheses tested were that (1) nonmetallic CF/PEEK pedicle screws resist an equal or higher number of load cycles until loosening than standard titanium screws and that (2) PMMA cement augmentation further increases the number of load cycles until loosening of CF/PEEK screws. In the first part of the study, left and right pedicles of ten cadaveric lumbar vertebrae (BMD 70.8 mg/cm 3 ± 14.5) were randomly instrumented with either CF/PEEK or standard titanium pedicle screws. In the second part, left and right pedicles of ten vertebrae (BMD 56.3 mg/cm 3 ± 15.8) were randomly instrumented with either PMMA-augmented or nonaugmented CF/PEEK pedicle screws. Each pedicle screw was subjected to cyclic cranio-caudal loading (initial load ranging from - 50 N to + 50 N) with stepwise increasing compressive loads (5 N every 100 cycles) until loosening or a maximum of 10,000 cycles. Angular screw motion ("screw toggling") within the vertebra was measured with a 3D motion analysis system every 100 cycles and by stress fluoroscopy every 500 cycles. The nonmetallic CF/PEEK pedicle screws resisted a similar number of load cycles until loosening as the contralateral standard titanium screws (3701 ± 1228 vs. 3751 ± 1614 load cycles, p = 0.89). PMMA cement augmentation of CF/PEEK pedicle screws furthermore significantly increased the mean number of load cycles until loosening by 1.63-fold (5100 ± 1933 in augmented vs. 3130 ± 2132 in nonaugmented CF/PEEK screws, p = 0.015). In addition, angular screw motion assessed by stress fluoroscopy was significantly smaller in augmented than in nonaugmented CF/PEEK screws before as well as after failure. Using nonmetallic CF/PEEK instead of standard titanium as pedicle screw material did not affect screw loosening in the chosen test setup, whereas cement augmentation enhanced screw anchorage of CF/PEEK screws. While comparable to titanium screws in terms of screw loosening, radiolucent CF/PEEK pedicle screws offer the significant advantage of not interfering with postoperative imaging and radiotherapy. These slides can be retrieved under Electronic Supplementary Material.
Reduction of metal artifacts: beam hardening and photon starvation effects
NASA Astrophysics Data System (ADS)
Yadava, Girijesh K.; Pal, Debashish; Hsieh, Jiang
2014-03-01
The presence of metal-artifacts in CT imaging can obscure relevant anatomy and interfere with disease diagnosis. The cause and occurrence of metal-artifacts are primarily due to beam hardening, scatter, partial volume and photon starvation; however, the contribution to the artifacts from each of them depends on the type of hardware. A comparison of CT images obtained with different metallic hardware in various applications, along with acquisition and reconstruction parameters, helps understand methods for reducing or overcoming such artifacts. In this work, a metal beam hardening correction (BHC) and a projection-completion based metal artifact reduction (MAR) algorithms were developed, and applied on phantom and clinical CT scans with various metallic implants. Stainless-steel and Titanium were used to model and correct for metal beam hardening effect. In the MAR algorithm, the corrupted projection samples are replaced by the combination of original projections and in-painted data obtained by forward projecting a prior image. The data included spine fixation screws, hip-implants, dental-filling, and body extremity fixations, covering range of clinically used metal implants. Comparison of BHC and MAR on different metallic implants was used to characterize dominant source of the artifacts, and conceivable methods to overcome those. Results of the study indicate that beam hardening could be a dominant source of artifact in many spine and extremity fixations, whereas dental and hip implants could be dominant source of photon starvation. The BHC algorithm could significantly improve image quality in CT scans with metallic screws, whereas MAR algorithm could alleviate artifacts in hip-implants and dentalfillings.
Akhtar, Kashif; Sugand, Kapil; Sperrin, Matthew; Cobb, Justin; Standfield, Nigel; Gupte, Chinmay
2015-01-01
Virtual-reality (VR) simulation in orthopedic training is still in its infancy, and much of the work has been focused on arthroscopy. We evaluated the construct validity of a new VR trauma simulator for performing dynamic hip screw (DHS) fixation of a trochanteric femoral fracture. 30 volunteers were divided into 3 groups according to the number of postgraduate (PG) years and the amount of clinical experience: novice (1-4 PG years; less than 10 DHS procedures); intermediate (5-12 PG years; 10-100 procedures); expert (> 12 PG years; > 100 procedures). Each participant performed a DHS procedure and objective performance metrics were recorded. These data were analyzed with each performance metric taken as the dependent variable in 3 regression models. There were statistically significant differences in performance between groups for (1) number of attempts at guide-wire insertion, (2) total fluoroscopy time, (3) tip-apex distance, (4) probability of screw cutout, and (5) overall simulator score. The intermediate group performed the procedure most quickly, with the lowest fluoroscopy time, the lowest tip-apex distance, the lowest probability of cutout, and the highest simulator score, which correlated with their frequency of exposure to running the trauma lists for hip fracture surgery. This study demonstrates the construct validity of a haptic VR trauma simulator with surgeons undertaking the procedure most frequently performing best on the simulator. VR simulation may be a means of addressing restrictions on working hours and allows trainees to practice technical tasks without putting patients at risk. The VR DHS simulator evaluated in this study may provide valid assessment of technical skill.
Implant abutment deformation during prosthetic cylinder screw tightening: an in vitro study.
Neto, Rafael Tobias Moretti; Moura, Marcio Silva; Souza, Edson Antonio Capello; Rubo, José Henrique
2009-01-01
Nonpassive fit frameworks are believed to lead to implant overload and consequently loss of osseointegration. This is one of the most commonly reported failures of implant prostheses. In an ideal situation of passive fit, when torque is applied to bring the abutment-cylinder interface together some amount of deformation can be expected, and it should be homogeneous along the periphery of the abutment. The aim of this study was to verify the amount of abutment deformation that can be expected when a free-standing cylinder is screwed into place. This could give insight into what should be accepted as passive fit. Strain gauges were bonded to the sides of five standard abutments that had machined palladium-silver cylinders or cobalt-chromium cast cylinders screwed into place. Measurements were taken to verify the deformation at each site. Values of abutment deformation after abutment screw tightening ranged from -127.70 to -590.27 microepsilon. The deformation recorded for palladium-silver prosthetic cylinder tightening ranged from 56.905 to -381.50 microepsilon (mean: 173.298 microepsilon) and from -5.62638 to -383.86 microepsilon (mean: 200.474 microepsilon) for cobalt-chromium cylinders. There was no statistically significant difference among the two groups. Both abutment screw tightening and prosthetic cylinder screw tightening result in abutment deformation, which is compressive most of the time.
"Turn-of-the-Nut" Method Is Not Appropriate for Use in Cancellous Bone.
Ryan, Melissa K; Mohtar, Aaron A; Costi, John J; Reynolds, Karen J
2015-11-01
The level to which bone screws are tightened is determined subjectively by the operating surgeon. It is likely that the tactile feedback that surgeons rely on is based on localized tissue yielding, which may predispose the screw-bone interface to failure. A limited number of studies have investigated the ratio between clinical tightening torque and stripping torque. The purpose of this study was to measure, for the first time, the ratio between yield torque (T yield) and stripping torque (T max) during screw insertion into the cancellous bone and to compare these torques with clinical levels of tightening reported in the literature. Additionally, a rotational limit was investigated as a potential end point for screw insertion in cancellous bone. A 6.5-mm outer diameter commercial cancellous bone screw was inserted into human femoral head specimens (n = 89). Screws were inserted to failure, while recording insertion torque, compression under the screw head, and rotation angle. The median, interquartile ranges, and coefficient of variation were calculated for each of the following parameters: T yield, T max, T yield/T max, slope, T plateau, and rotation angle. The median ratio of T yield/T max and rotation angle was 85.45% and 96.5 degrees, respectively. The coefficient of variation was greatest for the rotation angle compared with the ratio of T yield/T max (0.37 vs. 0.12). The detection of yield may be a more precise method than the rotation angle in cancellous bone; however, bone-screw constructs that exhibit a T yield close to T max may be more susceptible to stripping during insertion. Future work can identify factors that influence the ratio of T yield/T max may help to reduce the incidence of screw stripping.
The jumbo acetabular component for acetabular revision: Curtain Calls and Caveats.
Lachiewicz, P F; Watters, T S
2016-01-01
The 'jumbo' acetabular component is now commonly used in acetabular revision surgery where there is extensive bone loss. It offers high surface contact, permits weight bearing over a large area of the pelvis, the need for bone grafting is reduced and it is usually possible to restore centre of rotation of the hip. Disadvantages of its use include a technique in which bone structure may not be restored, a risk of excessive posterior bone loss during reaming, an obligation to employ screw fixation, limited bone ingrowth with late failure and high hip centre, leading to increased risk of dislocation. Contraindications include unaddressed pelvic dissociation, inability to implant the component with a rim fit, and an inability to achieve screw fixation. Use in acetabulae with < 50% bone stock has also been questioned. Published results have been encouraging in the first decade, with late failures predominantly because of polyethylene wear and aseptic loosening. Dislocation is the most common complication of jumbo acetabular revisions, with an incidence of approximately 10%, and often mandates revision. Based on published results, a hemispherical component with an enhanced porous coating, highly cross-linked polyethylene, and a large femoral head appears to represent the optimum tribology for jumbo acetabular revisions. ©2016 The British Editorial Society of Bone & Joint Surgery.
Thermodynamic performance of multi-stage gradational lead screw vacuum pump
NASA Astrophysics Data System (ADS)
Zhao, Fan; Zhang, Shiwei; Sun, Kun; Zhang, Zhijun
2018-02-01
As a kind of dry mechanical vacuum pump, the twin-screw vacuum pump has an outstanding pumping performance during operation, widely used in the semiconductor industry. Compared with the constant lead screw (CLS) vacuum pump, the gradational lead screw (GLS) vacuum pump is more popularly applied in recent years. Nevertheless, not many comparative studies on the thermodynamic performance of GLS vacuum pump can be found in the literature. Our study focuses on one type of GLS vacuum pump, the multi-stage gradational lead screw (MGLS) vacuum pump, gives a detailed description of its construction and illustrates it with the drawing. Based on the structural analysis, the thermodynamic procedure is divided into four distinctive processes, including sucking process, transferring (compressing) process, backlashing process and exhausting process. The internal mechanism of each process is qualitatively illustrated and the mathematical expressions of seven thermodynamic parameters are given under the ideal situation. The performance curves of MGLS vacuum pump are plotted by MATLAB software and compared with those of the CLS vacuum pump in the same case. The results can well explain why the MGLS vacuum pump has more favorable pumping performance than the CLS vacuum pump in saving energy, reducing noise and heat dissipation.
Numerical Simulation of the Working Process in the Twin Screw Vacuum Pump
NASA Astrophysics Data System (ADS)
Lu, Yang; Fu, Yu; Guo, Bei; Fu, Lijuan; Zhang, Qingqing; Chen, Xiaole
2017-08-01
Twin screw vacuum pumps inherit the advantages of screw machinery, such as high reliability, stable medium conveying, small vibration, simple and compact structures, convenient operation, etc, which have been widely used in petrochemical and air industry. On the basis of previous studies, this study analyzed the geometric features of variable pitch of the twin screw vacuum pump such as the sealing line, the meshing line and the volume between teeth. The mathematical model of numerical simulation of the twin screw vacuum pump was established. The leakage paths of the working volume including the sealing line and the addendum arc were comprehensively considered. The corresponding simplified geometric model of leakage flow was built up for different leak paths and the flow coefficients were calculated. The flow coefficient value range of different leak paths was given. The results showed that the flow coefficient of different leak paths can be taken as constant value for the studied geometry. The analysis of recorded indicator diagrams showed that the increasing rotational speed can dramatically decrease the exhaust pressure and the lower rotational speed can lead to over-compression. The pressure of the isentropic process which was affected by leakage was higher than the theoretical process.
NASA Astrophysics Data System (ADS)
Jung, Duk-Young; Kang, Yu-Bong; Tsutsumi, Sadami; Nakai, Ryusuke; Ikeuchi, Ken; Sekel, Ron
In this study, we simulated a wide cortex separation from a cementless hip prosthesis using the bone resorption remodeling method that is based on the generation of high compressive stress around the distal cortical bone. Thereafter, we estimated the effect on late migration quantities of the hip prosthesis produced by the interface state arising from bone ingrowth. This was accomplished using cortical bone remodeling over a long period of time. Two-dimensional natural hip and implanted hip FEM models were constructed with each of the following interface statements between the bone and prosthesis: (1) non-fixation, (2) proximal 1/3, (3) proximal 2/3 and (4) full-fixation. The fixation interfaces in the fully and partially porous coated regions were rigidly fixed by bony ingrowth. The non-fixation model was constructed as a critical situation, with the fibrous or bony tissue not integrated at all into the implant surface. The daily load history was generated using the three loading cases of a one-legged stance as well as abduction and adduction motions. With the natural hip and one-legged stance, the peak compressive principal stresses were found to be under the criteria value for causing bone resorption, while no implant movement occurred. The migration magnitude of the stem of the proximal 1/3 fixation model with adduction motion was much higher, reaching 6%, 11%and 21%greater than those of the non-fixation, proximal 2/3 fixation and all-fixation models, respectively. The full-fixation model showed the lowest compressive principal stress and implant movement. Thus, we concluded that the late loosening and subsequent movement of the stem in the long term could be estimated with the cortical bone remodeling method based on a high compressive stress at the bone-implant interface. The change caused at the bone-prosthesis interface by bony or fibrous tissue ingrowth constituted the major factor in determining the extent of cortical bone resorption occurring with clinical loosening and subsequent implant movement.
Maier, K-J; Bücking, B; Horst, K; Andruszkow, H; Hildebrand, F; Knobe, M
2017-12-01
In unstable trochanteric fractures, the extramedullary rotationally stable screw-anchor (RoSA) combines the benefits of the load and rotational stability of the blade with the advantages of the screw (pull-out resistance, compression capability) in a single load carrier, and was designed to prevent femoral neck shortening by using an additional locked trochanteric stabilizing plate (TSP). The aim of the current prospective cohort study was the clinical evaluation of the RoSA/TSP system regarding the mechanical re-operation rate and the amount of postoperative femoral neck shortening. From September 2011 to January 2014 80 patients with unstable trochanteric fractures underwent internal extramedullary fixation with the RoSA/TSP (Königsee Implantate GmbH, Allendorf, Germany). Due to fracture stability and after induction of compression, additional long locked antitelescoping screws (AT, n = 1-4) were placed reaching the femoral head. Radiological (femoral neck shortening) and clinical re-examination of patients (n = 61) was performed 6-10 weeks and 6-10 months later. In the 61 re-examined patients (76 %) femoral neck shortening was very low with 2 mm 6-10 months after operation. Re-operations occurred in 8 % (n = 6) and in 4 % (n = 3) as prophylactic surgical intervention. Whereas one-third (4 %) of re-operations occurred due to iatrogenic surgical problems from the first operation two-thirds of patients (8 %) had a re-operation due to delay of bone union (3× nonunion, 3 planned removals of AT-screws to improve healing). The in-hospital mortality was 3 % (n = 2). The fixation of unstable trochanteric femur fractures using the RoSA/TSP in a first clinical setting led to a great primary stability, with significant advantages with regard to limited femoral neck shortening. However, the rigidity of the construct with its consequences regarding bone healing can be challenging for the surgeon. Nevertheless, in some cases of revision it could be beneficial for stability.
Double throat pressure pulsation dampener for oil-free screw compressors
NASA Astrophysics Data System (ADS)
Lucas, Michael J.
2005-09-01
This paper describes a recent invention at Ingersoll-Rand for reducing the pressure pulsations in an oil-free screw compressor. Pressure pulsation is a term used in the air compressor industry to describe the rapid change in pressure with time measured in the downstream piping of the air compressor. The pulsations are due to the rapid opening and closing of the screws as the compressed air is eject from the compressor into the piping system. The pulsations are known to produce excessive noise levels and high levels of vibration in the piping system. Reducing these pulsations is critical to achieving a quiet running compressor. This paper will describe the methodology used to analyze the data and show both computational and experimental results achieved using the pulsation dampener. A patent for this design has been filed with the US patent office.
NASA Technical Reports Server (NTRS)
Buckingham, Edgar
1924-01-01
This report is a description of a method of propelling airplanes by the reaction of jet propulsion. Air is compressed and mixed with fuel in a combustion chamber, where the mixture burns at constant pressure. The combustion products issue through a nozzle, and the reaction of that of the motor-driven air screw. The computations are outlined and the results given by tables and curves. The relative fuel consumption and weight of machinery for the jet, decrease as the flying speed increases; but at 250 miles per hour the jet would still take about four times as much fuel per thrust horsepower-hour as the air screw, and the power plant would be heavier and much more complicated. Propulsion by the reaction of a simple jet can not compete with air screw propulsion at such flying speeds as are now in prospect.
Note: A micro-perfusion system for use during real-time physiological studies under high pressure
NASA Astrophysics Data System (ADS)
Maltas, Jeff; Long, Zac; Huff, Alison; Maloney, Ryan; Ryan, Jordan; Urayama, Paul
2014-10-01
We construct a micro-perfusion system using piston screw pump generators for use during real-time, high-pressure physiological studies. Perfusion is achieved using two generators, with one generator being compressed while the other is retracted, thus maintaining pressurization while producing fluid flow. We demonstrate control over perfusion rates in the 10-μl/s range and the ability to change between fluid reservoirs at up to 50 MPa. We validate the screw-pump approach by monitoring the cyanide-induced response of UV-excited autofluorescence from Saccharomyces cerevisiae under pressurization.
Note: A micro-perfusion system for use during real-time physiological studies under high pressure.
Maltas, Jeff; Long, Zac; Huff, Alison; Maloney, Ryan; Ryan, Jordan; Urayama, Paul
2014-10-01
We construct a micro-perfusion system using piston screw pump generators for use during real-time, high-pressure physiological studies. Perfusion is achieved using two generators, with one generator being compressed while the other is retracted, thus maintaining pressurization while producing fluid flow. We demonstrate control over perfusion rates in the 10-μl/s range and the ability to change between fluid reservoirs at up to 50 MPa. We validate the screw-pump approach by monitoring the cyanide-induced response of UV-excited autofluorescence from Saccharomyces cerevisiae under pressurization.
Spering, C; Lesche, V; Dresing, K
2015-08-01
Anatomical reconstruction and recovery to complete range of function of the upper ankle joint. Therefore, the most stable but least invasive osteosynthesis is required to enable the patient early functional mobilization. Supination and pronation fracture with luxation mechanism of the upper ankle joint with or without rupture of the syndesmosis. Open fracture of the distal fibula including displaced and instable fractures. Severe peripheral arterial occlusive disease; contaminated open fractures (≥ 2nd degree); pediatric fractures with open epiphyseal plate. Supine position with ipsilateral slightly elevated hip and knee. Incision of about 8 cm length along the dorsal edge of the distal fibula. When reaching the lateral malleolus, a slight ventral angulation is necessary. Open reduction through this posterolateral approach. Secure the reposition using an interfragmentary lag screw and anatomically adjusted third tubular plate. Followed by a revision of the syndesmosis and transfixation using a tricortical position screw. Mobilization on day 1 after surgery with reduced weight-bearing when position screw is not applied; when position screw is implanted with ground contact for 6 weeks. Removal of position screw under local anesthesia after 6 weeks and pain-controlled full weight-bearing. Removal of metal after 1.5 years. Open reduction using the third tubular plate and an interfragmentary lag screw through a dorsolateral approach used in 90 % of all Weber B fractures in our clinic. Additional revision of a ruptured syndesmosis performed in 70 % and transfixation through a position screw in 40 %. Persisting instability in the upper ankle joint significantly reduced after surgical treatment compared to a conservative approach. Revisions necessary in 3.7 % of patients and pseudarthrosis diagnosed in 0.9 %. It has been shown that the preoperative x-ray and clinical examination is limited in detecting a ruptured syndesmosis.
Knee joint effusion following ipsilateral hip surgery.
Christodoulou, A G; Givissis, P; Antonarakos, P D; Petsatodis, G E; Hatzokos, I; Pournaras, J D
2010-12-01
To correlate patellar reflex inhibition with sympathetic knee joint effusion. 65 women and 40 men aged 45 to 75 (mean, 65) years underwent hip surgery. The surgery entailed dynamic hip screw fixation using the lateral approach with reflection of the vastus lateralis for pertrochantric fractures (n = 49), and hip hemiarthroplasty or total hip replacement using the Watson-Jones approach (n = 38) or hip hemiarthroplasty using the posterior approach (n = 18) for subcapital femoral fractures (n = 28) or osteoarthritis (n = 28). Knee joint effusion, patellar reflex, and thigh circumference were assessed in both legs before and after surgery (at day 0.5, 2, 7, 14, 30, and 45). Time-sequence plots were used for chronological analysis, and correlation between patellar reflex inhibition and knee joint effusion was tested. In the time-sequence plot, the peak frequency of patellar reflex inhibition (on day 0.5) preceded that of the knee joint effusion and the thigh circumference increase (on day 2). Patellar reflex inhibition correlated positively with the knee joint effusion (r = 0.843, p = 0.035). These 2 factors correlated significantly for all 3 surgical approaches (p < 0.0005). All 3 approaches were associated with patellar reflex inhibition on day 0.5 (p = 0.033) and knee joint effusion on day 2 (p = 0.051). Surgical trauma of the thigh may cause patellar reflex inhibition and subsequently knee joint effusion.
Theoretical investigation of flash vaporisation in a screw expander
NASA Astrophysics Data System (ADS)
Vasuthevan, Hanushan; Brümmer, Andreas
2017-08-01
In the present study flash vaporisation of liquid injection in a twin screw expander for a Trilateral Flash Cycle (TFC) is examined theoretically. The TFC process comprises a pressure increase in the working fluid, followed by heating the liquid close to boiling point. The hot liquid is injected into the working chamber of a screw expander. During this process the pressure of the liquid drops below the saturation pressure, while the temperature of the liquid remains virtually constant. Hence the liquid is superheated and in a metastable state. The liquid jet seeks to achieve a stable state in thermodynamic equilibrium and is therefore partially vaporised. This effect is referred to as flash vaporisation. Accordingly, a two-phase mixture, consisting of vapour and liquid, exists in the working chamber. Thermodynamic simulations were carried out using water as the working fluid for representative screw expander geometry. The simulations presented are performed from two different aspects during the filling process of a screw expander. The first case is the vaporisation of the injected liquid in a state of thermodynamic equilibrium, whereby the two-phase mixture is treated entirely as a compressible and homogeneous gas. The second case considers flashing efficiency. It describes the quantity of flashed vapour and consists of a liquid and vapour domain. Both models are compared and analysed with respect to the operational behaviour of a screw expander.
Mechanical torque measurement for in vivo quantification of bone strength in the proximal femur.
Mueller, Marc Andreas; Hengg, Clemens; Hirschmann, Michael; Schmid, Denise; Sprecher, Christoph; Audigé, Laurent; Suhm, Norbert
2012-10-01
Bone strength determines fracture risk and fixation strength of osteosynthesis implants. In vivo, bone strength is currently measured indirectly by quantifying bone mineral density (BMD) which is however only one determinant of the bone's biomechanical competence besides the bone's macro- and micro-architecture and tissue related parameters. We have developed a measurement principle (DensiProbe™ Hip) for direct, mechanical quantification of bone strength within the proximal femur upon hip fracture fixation. Previous cadaver tests indicated a close correlation between DensiProbe™ Hip measurements, 3D micro-CT analysis and biomechanical indicators of bone strength. The goal of this study was to correlate DensiProbe™ Hip measurements with areal bone mineral density (BMD). Forty-three hip fracture patients were included in this study. Intraoperatively, DensiProbe™ Hip was inserted to the subsequent hip screw tip position within the femoral head. Peak torque to breakaway of local cancellous bone was registered. Thirty-seven patients underwent areal BMD measurements of the contralateral proximal femur. Failure of fixation was assessed radio graphically 6 and 12 weeks postoperatively. Peak torque and femoral neck BMD showed significant correlations (R=0.60, P=0.0001). In regression analysis, areal BMD explained 46% of femoral neck BMD variance in a quadratic relationship. Throughout the 12-week follow-up period, no failure of fixation was observed. DensiProbe™ Hip may capture variations of bone strength beyond areal BMD which are currently difficult to measure in vivo. A multicenter study will clarify if peak torque predicts fixation failure. Copyright © 2012 Elsevier Ltd. All rights reserved.
Influence of hot isostatic pressing on ZrO2-CaO dental ceramics properties.
Gionea, Alin; Andronescu, Ecaterina; Voicu, Georgeta; Bleotu, Coralia; Surdu, Vasile-Adrian
2016-08-30
Different hot isostatic pressing conditions were used to obtain zirconia ceramics, in order to assess the influence of HIP on phase transformation, compressive strength, Young's modulus and density. First, CaO stabilized zirconia powder was synthesized through sol-gel method, using zirconium propoxide, calcium isopropoxide and 2-metoxiethanol as precursors, then HIP treatment was applied to obtain final dense ceramics. Ceramics were morphologically and structurally characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Density measurements, compressive strength and Young's modulus tests were also performed in order to evaluate the effect of HIP treatment. The zirconia powders heat treated at 500°C for 2h showed a pure cubic phase with average particle dimension about 70nm. The samples that were hot isostatic pressed presented a mixture of monoclinic-tetragonal or monoclinic-cubic phases, while for pre-sintered samples, cubic zirconia was the single crystalline form. Final dense ceramics were obtained after HIP treatment, with relative density values higher than 94%. ZrO2-CaO ceramics presented high compressive strength, with values in the range of 500-708.9MPa and elastic behavior with Young's modulus between 1739MPa and 4372MPa. Finally zirconia ceramics were tested for biocompatibility allowing the normal development of MG63 cells in vitro. Copyright © 2015 Elsevier B.V. All rights reserved.
Fixation strength analysis of cup to bone material using finite element simulation
NASA Astrophysics Data System (ADS)
Anwar, Iwan Budiwan; Saputra, Eko; Ismail, Rifky; Jamari, J.; van der Heide, Emile
2016-04-01
Fixation of acetabular cup to bone material is an important initial stability for artificial hip joint. In general, the fixation in cement less-type acetabular cup uses press-fit and screw methods. These methods can be applied alone or together. Based on literature survey, the additional screw inside of cup is effective; however, it has little effect in whole fixation. Therefore, an acetabular cup with good fixation, easy manufacture and easy installation is required. This paper is aiming at evaluating and proposing a new cup fixation design. To prove the strength of the present cup fixation design, the finite element simulation of three dimensional cup with new fixation design was performed. The present cup design was examined with twist axial and radial rotation. Results showed that the proposed cup design was better than the general version.
Estes, Chris; Rhee, Peter; Shrader, M Wade; Csavina, Kristine; Jacofsky, Marc C; Jacofsky, David J
2008-01-01
The purpose of this study was to compare the biomechanical properties of a contoured locking plate instrumented with either an all-locked or hybrid locked/nonlocked screw construct in a proximal metaphyseal fracture of the tibia (AO 41-A3.2). A standardized proximal metaphyseal wedge osteotomy (AO 41-A3.2) was created in five pairs of cadaveric tibia. Each pair was randomly instrumented with either an all-locked or combination locked/nonlocked screw construct using a locked contoured periarticular plate (Peri-Loc periarticular locked plating system, Smith & Nephew, Memphis, TN). Vertical subsidence (irreversible deformation) and deflection (reversible deformation) in each pair were analyzed and compared. Load to failure, defined by complete fracture gap closure, was also determined. There was no statistically significant difference in vertical subsidence (P = 0.19) or deflection (P = 0.19) of the proximal tibia between the all-locked and combination locked/nonlocked screw construct with increasing levels of cyclical axial load from 200 to 1200 N. Failure occurred at a mean value of 2160 N in the locked group and 1760 N in the hybrid group (P = 0.19); the failure mode was plate bending in all specimens. The results indicate that the use of compression screws with locked screws in this particular construct allows a similar amount of irreversible and reversible deformation in response to an axial load when compared to an all-locked screw construct. This suggests that there is no statistically significant difference in the stability in fixation between the two methods, allowing the surgeon the freedom to choose the appropriate screw combination unique to each fracture.
Al-Munajjed, Amir A; Hammer, Joachim; Mayr, Edgar; Nerlich, Michael; Lenich, Andreas
2008-01-01
Proximal femur fractures are of main concern for elderly and especially osteoporotic patients. Despite advanced implant modifications and surgical techniques, serious mechanical complication rates between 4-18% are found in conventional osteosyntheses of proximal femur fractures. Clinical complications such as the rotation of the femoral head and the cut-out phenomenon of the fracture fixation bolt are often diagnosed during post-operative treatments. Therefore, efforts in new intramedulary techniques focus on the load bearing characteristics of the implant by developing new geometries to improve the implant-tissue interface. The objective of this investigation was to analyse the osteosynthesis/femur head interaction of two commonly used osteosyntheses, one with a helical blade and the other one with a screw design under different loading conditions. For the comparative investigation the helical blade of the Proximal Femur Nail Antirotation was investigated versus the screw system of the Dynamic Hip Screw. After implantation in a femoral head the loads for rotational overwinding of the implants were analysed. Pull-out forces with suppressed rotation were investigated with analysis of the influence of the previous overwinding. All investigations were performed on human femoral heads taken of patients with average age of 70.3+/-11.8. The bone mineral densities of the human specimens were detected by QCT-scans (average BMD: 338.9+/- 61.3$\\frac[\\mathit[mg
Liu, Da; Zhang, Yi; Lei, Wei; Wang, Cai-ru; Xie, Qing-yun; Liao, Dong-fa; Jiang, Kai; Zhou, Jin-song; Zhang, Bo; Pan, Xian-ming
2014-04-01
Expansive pedicle screw (EPS) and polymethylmethacrylate-augmented pedicle screw (PMMA-PS) were inserted in sheep vertebrae in vitro and were evaluated by performing biomechanical tests, radiographic examinations and histological observations. The objective of the study was to compare the biomechanical and interfacial performances of EPS and PMMA-PS in sheep lumbar vertebrae in vitro. It is a great challenge for orthopedic surgeons performing transpedicular fixation in the osteoporotic spine. It was reported that either the EPS or PMMA-PS could increase the screw stability. However, there are no studies comparing the 2 kinds of screws especially in primary spinal instrumentation. A total of 60 sheep lumbar vertebrae were randomly divided into 3 groups. A pilot hole was made in advance in all samples using the same method. Thereafter, the conventional pedicle screw (CPS) was inserted directly into the pilot hole in the CPS group; the hole in PMMA-PS group was first filled with polymethylmethacrylate (PMMA; 1.0 mL) and then inserted with CPS; and the EPS was inserted directly into the vertebrae in EPS group. After a period of 24 hours, biomechanical tests were performed to evaluate screw stability, and x-ray examination, micro-computerized tomography analysis, and histologic observation were performed to evaluate the interface between screw and bone. Compared with the stability of CPS, those of EPS and PMMA-PS were significantly enhanced. However, no significant differences were detected between the stabilities of EPS and PMMA-PS. The PMMA surrounding the screw blocked direct contact between bone and screw and formed a "screw-PMMA-bone" interface in the PMMA-PS group. There was a "screw-bone" interface in both CPS and EPS groups. Nevertheless, the expanded anterior part of EPS formed a claw-like structure pressing the surrounding bone trabeculae, which made the local bone tissue more compacted and denser than that in the CPS group. EPS can enhance the screw stability as markedly as the traditional PMMA-PS in primary surgery, and EPS can form a better immediate interface between screw and bone compared with PMMA-PS. EPS also can effectively avoid thermal injury, leakage, and compression caused by PMMA. A great feasibility was proved in this study to perform comparisons between the 2 kinds of pedicle screws in osteoporotic sheep vertebrae in vivo in the further research. In conclusion, we propose that EPS has a great application potential in augmentation of screw stability in the clinic.
Tucker, A; Diamond, O; McDonald, S; Johnston, A; Neil, M; Kealey, D; Archbold, P
2016-10-01
The Variable angle Martin Plate (MP) is designed to offer patient-specific adaption for the treatment of intertrochanteric hip fractures. Its proposed benefits include optimization of lag screw placement, plate shaft congruence and reduced risk of failure. Often its use has been criticized as representing a poor reduction of the fracture. The purpose of this study was to assess for a poorer quality of reduction, and compare functional outcomes and mortality, using a MP to that of a fixed angle Dynamic Hip Screw (DHS) in a matched cohort of patients. A retrospective review of a prospective fracture database system was undertaken between 1st January 2004 to 31st December 2013. MP patients were matched to a cohort of DHS patients. Outcomes measure were a quality of procedure score(QPS), 1-year mortality rates, reoperation rates, and Barthel Index functional outcome. Minimum follow up was 12 months. A total of 77 Martin Plate patients were identified and case matched. The mean pre- and post-op Neck Shaft Angle (NSA) in the MPs was significantly different (132.97±7.78 Vs 126±8.62; p<0.0001). Conversely, the mean pre op DHS NSA and the mean post op NSA was not (p=0.397). Mean Tip-Apex Distance (TAD) was significantly different between groups; MP mean 26.51±9.09mm vs DHS 23.50±8.14mm (p=0.023). The QPS consisted of 4 variables. A significant inverse relationship between QPS and the incidence of construct related complications exists. TAD>25mm, and a change in AP NSA of >5°conveyed the greatest risk of complications. No difference occurred in complications, nor 12-month mortality. No statistical difference was found in the quality of reduction between MP and DHS in this group of matched patients. QPS demonstrated a significant inverse correlation with implant-related complications. No significant difference was noted in the incidence of complications, Barthel Index functional scores, or 12-month mortality between implants. A rationale exists regarding the use of MPs, particularly in patients with varus NSA. However, planning and adequate reduction are essential regardless of implant choice. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hip arthroplasty today and tomorrow.
Amstutz, H C
1987-12-01
Acrylic-fixed total hip and surface replacement arthroplasty have been very effective in affording immediate relief of pain and providing improved function. Complications have been reduced by improvements in design, materials, and especially technique. They are now very low in the elderly, and the stem type acrylic-fixed design remains the procedure of choice. The failure rates in youthful patients and those with bone-stock deficiencies have been high in both THR and surface types, although the latter had the advantage of preserving femoral stock. On the femoral side, the new "macro" femoral designs from Europe and "micro" femoral porous designs have shown promise, but thigh pain, incomplete and difficult to predict bone ingrowth patterns, coupled with removal problems have influenced design and technique changes. Both press-fit stem types and porous surface replacements have produced promising initial results with less potential downside risks. On the acetabular side, both the cementless hemispherical with screw-type adjuvant fixation, or the chamfered cylinder designs, used primarily with the UCLA porous surface replacements, but also with stem-type devices, appear to achieve best short-term results, while the entire variety of screw rings are disappointing. The future will bring further refinements in technique and specific indications for certain types of replacement stem in specific types of bone stock deficiencies. The all ceramic-ceramic and ceramic-polyethylene bearings show promise of reducing wear and, hence, should improve longevity of implant fixation.
Sun, Haolin; Liu, Chun; Liu, Huiling; Bai, Yanjie; Zhang, Zheng; Li, Xuwen; Li, Chunde; Yang, Huilin; Yang, Lei
2017-01-01
Polymethyl methacrylate (PMMA)-augmented cannulated pedicle-screw fixation has been routinely performed for the surgical treatment of lumbar degenerative diseases. Despite its satisfactory clinical outcomes and prevalence, problems and complications associated with high-strength, stiff, and nondegradable PMMA have largely hindered the long-term efficacy and safety of pedicle-screw fixation in osteoporotic patients. To meet the unmet need for better bone cement for cannulated pedicle-screw fixation, a new injectable and biodegradable nanocomposite that was the first of its kind was designed and developed in the present study. The calcium phosphate-based nanocomposite (CPN) exhibited better anti-pullout ability and similar fluidity and dispersing ability compared to clinically used PMMA, and outperformed conventional calcium phosphate cement (CPC) in all types of mechanical properties, injectability, and biodegradability. In term of axial pullout strength, the CPN-augmented cannulated screw reached the highest force of ~120 N, which was higher than that of PMMA (~100 N) and CPC (~95 N). The compressive strength of the CPN (50 MPa) was three times that of CPC, and the injectability of the CPN reached 95%. In vivo tests on rat femur revealed explicit biodegradation of the CPN and subsequent bone ingrowth after 8 weeks. The promising results for the CPN clearly suggest its potential for replacing PMMA in the application of cannulated pedicle-screw fixation and its worth of further study and development for clinical uses. PMID:28490878
Non-symmetric approach to single-screw expander and compressor modeling
NASA Astrophysics Data System (ADS)
Ziviani, Davide; Groll, Eckhard A.; Braun, James E.; Horton, W. Travis; De Paepe, M.; van den Broek, M.
2017-08-01
Single-screw type volumetric machines are employed both as compressors in refrigeration systems and, more recently, as expanders in organic Rankine cycle (ORC) applications. The single-screw machine is characterized by having a central grooved rotor and two mating toothed starwheels that isolate the working chambers. One of the main features of such machine is related to the simultaneous occurrence of the compression or expansion processes on both sides of the main rotor which results in a more balanced loading on the main shaft bearings with respect to twin-screw machines. However, the meshing between starwheels and main rotor is a critical aspect as it heavily affects the volumetric performance of the machine. To allow flow interactions between the two sides of the rotor, a non-symmetric modelling approach has been established to obtain a more comprehensive model of the single-screw machine. The resulting mechanistic model includes in-chamber governing equations, leakage flow models, heat transfer mechanisms, viscous and mechanical losses. Forces and moments balances are used to estimate the loads on the main shaft bearings as well as on the starwheel bearings. An 11 kWe single-screw expander (SSE) adapted from an air compressor operating with R245fa as working fluid is used to validate the model. A total of 60 steady-steady points at four different rotational speeds have been collected to characterize the performance of the machine. The maximum electrical power output and overall isentropic efficiency measured were 7.31 kW and 51.91%, respectively.
[Cement augmentation on the spine : Biomechanical considerations].
Kolb, J P; Weiser, L; Kueny, R A; Huber, G; Rueger, J M; Lehmann, W
2015-09-01
Vertebral compression fractures are the most common osteoporotic fractures. Since the introduction of vertebroplasty and screw augmentation, the management of osteoporotic fractures has changed significantly. The biomechanical characteristics of the risk of adjacent fractures and novel treatment modalities for osteoporotic vertebral fractures, including pure cement augmentation by vertebroplasty, and cement augmentation of screws for posterior instrumentation, are explored. Eighteen human osteoporotic lumbar spines (L1-5) adjacent to vertebral bodies after vertebroplasty were tested in a servo-hydraulic machine. As augmentation compounds we used standard cement and a modified low-strength cement. Different anchoring pedicle screws were tested with and without cement augmentation in another cohort of human specimens with a simple pull-out test and a fatigue test that better reflects physiological conditions. Cement augmentation in the osteoporotic spine leads to greater biomechanical stability. However, change in vertebral stiffness resulted in alterations with the risk of adjacent fractures. By using a less firm cement compound, the risk of adjacent fractures is significantly reduced. Both screw augmentation techniques resulted in a significant increase in the withdrawal force compared with the group without cement. Augmentation using perforated screws showed the highest stability in the fatigue test. The augmentation of cement leads to a significant change in the biomechanical properties. Differences in the stability of adjacent vertebral bodies increase the risk of adjacent fractures, which could be mitigated by a modified cement compound with reduced strength. Screws that were specifically designed for cement application displayed greatest stability in the fatigue test.
Markolf, Keith L; Cheung, Edward; Joshi, Nirav B; Boguszewski, Daniel V; Petrigliano, Frank A; McAllister, David R
2016-06-01
Anterior midtibial stress fractures are an important clinical problem for patients engaged in high-intensity military activities or athletic training activities. When nonoperative treatment has failed, intramedullary (IM) nail and plate fixation are 2 surgical options used to arrest the progression of a fatigue fracture and allow bone healing. A plate will be more effective than an IM nail in preventing the opening of a simulated anterior midtibial stress fracture from tibial bending. Controlled laboratory study. Fresh-frozen human tibias were loaded by applying a pure bending moment in the sagittal plane. Thin transverse saw cuts, 50% and 75% of the depth of the anterior tibial cortex, were created at the midtibia to simulate a fatigue fracture. An extensometer spanning the defect was used to measure the fracture opening displacement (FOD) before and after the application of IM nail and plate fixation constructs. IM nails were tested without locking screws, with a proximal screw only, and with proximal and distal screws. Plates were tested with unlocked bicortical screws (standard compression plate) and locked bicortical screws; both plate constructs were tested with the plate edge placed 1 mm from the anterior tibial crest (anterior location) and 5 mm posterior to the crest. For the 75% saw cut depth, the mean FOD values for all IM nail constructs were 13% to 17% less than those for the saw cut alone; the use of locking screws had no significant effect on the FOD. The mean FOD values for all plate constructs were significantly less than those for all IM nail constructs. The mean FOD values for all plates were 28% to 46% less than those for the saw cut alone. Anterior plate placement significantly decreased mean FOD values for both compression and locked plate constructs, but the mean percentage reductions for locked and unlocked plates were not significantly different from each other for either plate placement. The percentage FOD reductions for all plate constructs and the unlocked IM nail were significantly less with a 50% saw cut depth. Plate fixation was superior to IM nail fixation in limiting the opening of a simulated midtibial stress fracture, and anterior-posterior placement of the plate was an important variable for this construct. Results from these tests can help guide the selection of fixation hardware for patients requiring surgical treatment for a midtibial stress fracture. © 2016 The Author(s).
Baumbach, Sebastian F; Synek, Alexander; Traxler, Hannes; Mutschler, Wolf; Pahr, Dieter; Chevalier, Yan
2015-09-08
Extensor tendon irritation is one of the most common complications following volar locking plate osteosynthesis (VLPO) for distal radius fractures. It is most likely caused by distal screws protruding the dorsal cortex. Shorter distal screws could avoid this, yet the influence of distal screw length on the primary stability in VLPO is unknown. The aim of this study was to compare 75 to 100% distal screw lengths in VLPO. A biomechanical study was conducted on 11 paired fresh-frozen radii. HRpQCT scans were performed to assess bone mineral density (BMD) and bone mineral content (BMC). The specimens were randomized pair-wise into two groups: 100% (group A) and 75% (group B) unicortical distal screw lengths. A validated fracture model for extra-articular distal radius fractures (AO-23 A3) was used. Polyaxial volar locking plates were mounted, and distal screws was inserted using a drill guide block. For group A, the distal screw tips were intended to be flush or just short of the dorsal cortex. In group B, a target screw length of 75% was calculated. The specimens were tested to failure using a displacement-controlled axial compression test. Primary biomechanical stability was assessed by stiffness, elastic limit, and maximum force as well as with residual tilt, which quantified plastic deformation. Nine specimens were tested successfully. BMD and BMC did not differ between the two groups. The mean distal screw length of group A was 21.7 ± 2.6 mm (range: 16 to 26 mm), for group B 16.9 ± 1.9 mm (range: 12 to 20 mm). Distal screws in group B were on average 5.6 ± 0.9 mm (range: 3 to 7 mm) shorter than measured. No significant differences were found for stiffness (706 ± 103 N/mm vs. 660 ± 124 N/mm), elastic limit (177 ± 25 N vs. 167 ± 36 N), maximum force (493 ± 139 N vs. 471 ± 149 N), or residual tilt (7.3° ± 0.7° vs. 7.1° ± 1.3°). The 75% distal screw length in VLPO provides similar primary stability to 100% unicortical screw length. This study, for the first time, provides the biomechanical basis to choose distal screws significantly shorter then measured.
Natural substrate lift-off technique for vertical light-emitting diodes
NASA Astrophysics Data System (ADS)
Lee, Chia-Yu; Lan, Yu-Pin; Tu, Po-Min; Hsu, Shih-Chieh; Lin, Chien-Chung; Kuo, Hao-Chung; Chi, Gou-Chung; Chang, Chun-Yen
2014-04-01
Hexagonal inverted pyramid (HIP) structures and the natural substrate lift-off (NSLO) technique were demonstrated on a GaN-based vertical light-emitting diode (VLED). The HIP structures were formed at the interface between GaN and the sapphire substrate by molten KOH wet etching. The threading dislocation density (TDD) estimated by transmission electron microscopy (TEM) was reduced to 1 × 108 cm-2. Raman spectroscopy indicated that the compressive strain from the bottom GaN/sapphire was effectively released through the HIP structure. With the adoption of the HIP structure and NSLO, the light output power and yield performance of leakage current could be further improved.
Weninger, Patrick; Dall'Ara, Enrico; Leixnering, Martin; Pezzei, Christoph; Hertz, Harald; Drobetz, Herwig; Redl, Heinz; Zysset, Philippe
2010-11-01
Distal radius fractures represent the most common fractures in adult individuals. Volar fixed-angle plating has become a popular modality for treating unstable distal radius fractures. Most of the plates allow insertion of either threaded locking screws or smooth locking pegs. To date, no biomechanical studies compare locking screws and pegs under axial and torsional loading. Ten Sawbones radii were used to simulate an AO/OTA A3 fracture. Volar fixed-angle plates (Aptus Radius 2.5, Medartis, Switzerland) with threaded locking screws (n = 5) or smooth locking pegs (n = 5) were used to fix the distal metaphyseal fragment. Each specimen was tested under axial compression and under torsional load with a servohydraulic testing machine. Qualitative parameters were recorded as well as axial and torsional stiffness, torsion strength, energy absorbed during monotonic loading and energy absorbed in one cycle. Axial stiffness was comparable between both groups (p = 0.818). If smooth pegs were used, a 17% reduction of torsional stiffness (p = 0.017) and a 12% reduction of minimum torque (p = 0.012) were recorded. A 12% reduction of energy absorbed (p = 0.013) during monotonic loading and unloading was recorded if smooth pegs were used. A 34% reduction of energy absorbed in one cycle (p < 0.007) was recorded if threaded screws were used. Sliding of the pegs out of the distal radius metaphyses of the synthetic bones was recorded at a mean torque of 3.80 Nm ± 0.19 Nm. No sliding was recorded if threaded screws were used. According to the results of this study using Sawbones, volar fixed-angle plates with threaded locking screws alone are mechanically superior to volar fixed-angle plates with smooth locking pegs alone under torsional loading.
Windolf, Markus; Klos, Kajetan; Wähnert, Dirk; van der Pol, Bas; Radtke, Roman; Schwieger, Karsten; Jakob, Roland P
2010-05-21
Angle-stable locking plates have improved the surgical management of fractures. However, locking implants are costly and removal can be difficult. The aim of this in vitro study was to evaluate the biomechanical performance of a newly proposed crossed-screw concept ("Fence") utilizing conventional (non-locked) implants in comparison to conventional LC-DCP (limited contact dynamic compression plate) and LCP (locking compression plate) stabilization, in a human cadaveric diaphyseal gap model. In eight pairs of human cadaveric femora, one femur per pair was randomly assigned to receive a Fence construct with either elevated or non-elevated plate, while the contralateral femur received either an LCP or LC-DCP instrumentation. Fracture gap motion and fatigue performance under cyclic loading was evaluated successively in axial compression and in torsion. Results were statistically compared in a pairwise setting. The elevated Fence constructs allowed significantly higher gap motion compared to the LCP instrumentations (axial compression: p
Li, Wei; Zhou, Yi-Xin; Wu, Jian; Xu, Hui; Ji, Song-Jie
2009-02-15
To evaluate the bone refilling in the interface between the trabecular metal (TM) acetabular shell and the bone surface according to consecutive X film measuring after surgery. From July 2006 to July 2007, 35 patients (40 hips) accepted total hip replacement using trabecular metal monoblock acetabular cup system (TM). The cup was made of a ellipse shaped press fit Tantalum shell and high cross-linked PE liner (Longevity) with 28 mm inner diameter. The patients demography was: 16 male (20 hips), 19 female (20 hips), 5 bilateral hip replacements, age from 41 - 71 (mean 53), including 18 avascular necrosis hips, 16 osteoarthritis hips (including those secondary to a dysplasia hip), 4 avascular necrosis hips after femoral neck fracture, 2 Ankylosis Spondylitis. All the 40 total hip replacements used posterior approach, using hemispherical acetabular reamer and 2 mm press fit of final metal shell without screw fixation. The consecutive X film was taken at the end time of surgery and 2, 6, 12, 24 weeks, and 12 months. The clinical results was evaluate according to Harris scoring system, and the standard pelvis AP X film was measured at the interface between metal shell and the acetabular bone surface, witch was divided into five regions (A, B, C, D, E). Totally 32 patients (37 hips) were followed with average 8.7 months (7 - 12 months). The Harris before surgery was 50.5 (32 - 85), promoted to 91.0 (72 - 100), including 29 excellent, 6 good, 2 fair, and the total excellent and good rate was 94.6%. Complications include 4 patients leg length discrepancy from 1 - 2 cm, 3 patients moderate thigh pain and released after conservative therapy. No infection and dislocation was found. Twenty-one patients (23 hips) were found lucent line at the bone-metal interface from 1 - 5 mm, most common in B region and BC boundary than C, D, and CD boundary. All the patients followed was found the lucent line disappeared and refilled with bone at X film 24 weeks after surgery, however, no patients was found osteolysis and cup migration. The trabecular metal has strong capacity of bone conductive and bone inducement.
McCartney, William; MacDonald, Bryan; Ober, Ciprian Andrei; Lostado-Lorza, Rubén; Gómez, Fátima Somovilla
2018-03-20
Finite element analysis was used to compare fixation methods for double pelvic osteotomy (DPO). Using 3D scanning a stereolithography (stl) image was produced of a canine pelvis and this was subsequently refined in computer aided design (CAD). Using the CAD files, the images were imported in MSC Marc software to produce a working finite element (FE) model with 3 dimensional tetrahedral elements with linear shaped functions. The dimensions of a precontoured pelvic osteotomy plate with eight screws and a twisted seven screw straight plate were used to build the 2 fixations implants for the FE models. An equivalent load of 300 N was applied progressively on all FE models in order to facilitate its convergence. The load was applied in a distributed manner on the femur-hip joint contact area in order to simulate the actual behavior of the joint. The aim of the present study was to analyze the difference in stiffness and behavior under loading between a lateral vs ventral plate fixation, with unlocked screws and different gap scenarios, for stabilization of a pelvic osteotomy using finite element analysis. From both configurations the maximum displacement of the ventral plate with 7 screws without gap had a value of 1.988 mm, while in the DPO plate had a maximum displacement of 2.191 mm. The load applied for each of the different configurations studied when a gap of 1° was considered and also when a condition of no gap was considered. The ventral plate was stiffer than the lateral plate when a gap was not present. When the gap was closed in the ventral plate, the stiffness increased until a point that remained constant. Ventral plate fixation can be as or more stiff as lateral plate fixation and provides flexible fixation. This behavior should reduce screw loosening. Using ventral plate fixation is recommended to reduce screw loosening or failure.
Fang, C; Lau, T W; Wong, T M; Lee, H L; Leung, F
2015-03-01
The spiral blade modification of the Dynamic Hip Screw (DHS) was designed for superior biomechanical fixation in the osteoporotic femoral head. Our objective was to compare clinical outcomes and in particular the incidence of loss of fixation. In a series of 197 consecutive patients over the age of 50 years treated with DHS-blades (blades) and 242 patients treated with conventional DHS (screw) for AO/OTA 31.A1 or A2 intertrochanteric fractures were identified from a prospectively compiled database in a level 1 trauma centre. Using propensity score matching, two groups comprising 177 matched patients were compiled and radiological and clinical outcomes compared. In each group there were 66 males and 111 females. Mean age was 83.6 (54 to 100) for the conventional DHS group and 83.8 (52 to 101) for the blade group. Loss of fixation occurred in two blades and 13 DHSs. None of the blades had observable migration while nine DHSs had gross migration within the femoral head before the fracture healed. There were two versus four implant cut-outs respectively and one side plate pull-out in the DHS group. There was no significant difference in mortality and eventual walking ability between the groups. Multiple logistic regression suggested that poor reduction (odds ratio (OR) 11.49, 95% confidence intervals (CI) 1.45 to 90.9, p = 0.021) and fixation by DHS (OR 15.85, 95%CI 2.50 to 100.3, p = 0.003) were independent predictors of loss of fixation. The spiral blade design may decrease the risk of implant migration in the femoral head but does not reduce the incidence of cut-out and reoperation. Reduction of the fracture is of paramount importance since poor reduction was an independent predictor for loss of fixation regardless of the implant being used. Cite this article: Bone Joint J 2015;97-B:398-404. ©2015 The British Editorial Society of Bone & Joint Surgery.
Numerical estimation of deformation energy of selected bulk oilseeds in compression loading
NASA Astrophysics Data System (ADS)
Demirel, C.; Kabutey, A.; Herak, D.; Gurdil, G. A. K.
2017-09-01
This paper aimed at the determination of the deformation energy of some bulk oilseeds or kernels namely oil palm, sunflower, rape and flax in linear pressing applying the trapezoidal rule which is characterized by the area under the force and deformation curve.The bulk samples were measured at the initial pressing height of 60 mm with the vessel diameter of 60 mm where they were compressed under the universal compression machine at a maximum force of 200 kN and speed of 5 mm/min.Based on the compression test, the optimal deformation energy for recovering the oil was observed at a force of 163 kN where there was no seed/kernel cake ejection in comparison to the initial maximum force used particularly for rape and flax bulk oilseeds.This information is needed for analyzing the energy efficiency of the non-linear compression process involving a mechanical screw press or expeller.
Gbara, Ali; Heiland, Max; Schmelzle, Rainer; Blake, Felix
2008-04-01
Following open reduction, internal fixation of fractures of the mandible is predominantly achieved using plates and screws. Today, a multitude of osteosynthesis systems are available on the market. One therapy modality, primarily developed for orthopaedic surgery, is using angular stable osteosynthesis plate systems. The dominating principle of these is the bond between screw and plate following insertion. This principle of an "internal fixateur" results in a more stable fixation of the fragments associated with less compression of the bone surfaces. A new multidirectional osteosynthesis system (TiFix=Smartlock, Hamburg - Germany) was modified to fit the maxillofacial region and compared with four other well established osteosynthesis systems developed by Mondial, Medicon, Synthes, Leibinger-Stryker, one of these (Unilock by Synthes) being also angular stable. The resistance to deformation in varying directions was investigated following fixation in four different materials. The TiFix system proved more resistant to deformation even when mounted with fewer screws than the non-angular stable systems. This system results in greater stability even when fewer screws are used. For the clinician this means smaller access incisions, less soft tissue trauma, better aesthetic results, decreased duration of operation and a reduction of costs.
Deformation Analysis of the Main Components in a Single Screw Compressor
NASA Astrophysics Data System (ADS)
Liu, Feilong; Liao, Xueli; Feng, Quanke; Van Den Broek, Martijn; De Paepe, Michel
2015-08-01
The single screw compressor is used in many fields such as air compression, chemical industry and refrigeration. During operation, different gas pressures and temperatures applied on the components can cause different degrees of deformation, which leads to a difference between the thermally induced clearance and the designed clearance. However, limited research about clearance design is reported. In this paper, a temperature measurement instrument and a convective heat transfer model were described and used to establish the temperature of a single screw air compressor's casing, screw rotor and star wheel. 3-D models of these three main components were built. The gas force deformation, thermal- structure deformation and thermal-force coupling deformation were carried out by using a finite element simulation method. Results show that the clearance between the bottom of the groove and the top of star wheel is reduced by 0.066 mm, the clearance between the side of groove and the star wheel is reduced by 0.015 mm, and the clearance between the cylinder and the rotor is reduced by 0.01 mm. It is suggested that these deformations should be taken into account during the design of these clearances.
Biomechanical testing of locking and nonlocking plates in the canine scapula.
Acquaviva, Anthony E; Miller, Emily I; Eisenmann, David J; Stone, Rick T; Kraus, Karl H
2012-01-01
Locking plates have been shown to offer improved fixation in fractures involving either osteoporotic bone or bone with lesser screw pullout strength, such as thin and flat bones. Fractures of the scapular body are one type of fracture where the screw pullout strength using conventional plate fixation may not be sufficient to overcome physiologic forces. The purpose of this study was to compare the pullout strengths of locking plates to conventional nonlocking plates in the canine scapula. A 2.7 mm string of pearls plate (SOP) and a 2.7 mm limited contact dynamic compression plate (LC-DCP) were applied with similar divergent screws to the supraspinatus fossa of the scapula. Forces perpendicular to the plates were applied and both the loads at failure and modes of failure were recorded. No differences were noted in loads at failure between the two plating systems. Although the modes of failure were not significantly different, the SOP constructs tended to fail more often by bone slicing and coring, whereas the LC-DCP constructs failed primarily by screw stripping. Neither of the plate systems used in this study demonstrated a distinct mechanical advantage. The application and limitations of locking plate systems in various clinical situations require further study.
Kumar, Vijay; Taylor, Michael K; Mehrotra, Amit; Stagner, William C
2013-06-01
Focused beam reflectance measurement (FBRM) was used as a process analytical technology tool to perform inline real-time particle size analysis of a proprietary granulation manufactured using a continuous twin-screw granulation-drying-milling process. A significant relationship between D20, D50, and D80 length-weighted chord length and sieve particle size was observed with a p value of <0.0001 and R(2) of 0.886. A central composite response surface statistical design was used to evaluate the effect of granulator screw speed and Comil® impeller speed on the length-weighted chord length distribution (CLD) and particle size distribution (PSD) determined by FBRM and nested sieve analysis, respectively. The effect of granulator speed and mill speed on bulk density, tapped density, Compressibility Index, and Flowability Index were also investigated. An inline FBRM probe placed below the Comil-generated chord lengths and CLD data at designated times. The collection of the milled samples for sieve analysis and PSD evaluation were coordinated with the timing of the FBRM determinations. Both FBRM and sieve analysis resulted in similar bimodal distributions for all ten manufactured batches studied. Within the experimental space studied, the granulator screw speed (650-850 rpm) and Comil® impeller speed (1,000-2,000 rpm) did not have a significant effect on CLD, PSD, bulk density, tapped density, Compressibility Index, and Flowability Index (p value > 0.05).
NASA Astrophysics Data System (ADS)
Xue, Xiong-Xiong; Feng, Ye-Xin; Liao, Lei; Chen, Qin-Jun; Wang, Dan; Tang, Li-Ming; Chen, Keqiu
2018-03-01
We present a systematical study of atomic structures and electronic properties of various dimension tellurium (Te) with broken intrinsical screw symmetry by applying reasonable strain. It is demonstrated that (i) bulk trigonal Te has degenerate Weyl nodes around the H point near the Fermi energy, and this degeneracy will be broken by introducing the selenium (Se) atom through creating the inner unsymmetrical strain, instead of external shear strain. (ii) 2D structures of tetragonal Te (t-Te) and 1T-MoS2-like Te (1T-Te) show direct and indirect band gap, respectively. Under the uniform biaxial compressive (BC) strain, monolayer of t-Te shows the direct-to-indirect band gap transition, while 1T-Te monolayer has a band gap transition firstly from indirect to direct and then from direct to indirect. Their effective masses of hole and electron can be effectively tuned by BC strain. (iii) One-dimensional (1D) structures of single helix, triangular Te and hexagonal Te nanowires display the obvious quantum confinement effect on the band structure and different sensitivity to the effect of uniaxial compressive strain.
Dayton, Paul; Ferguson, Joe; Hatch, Daniel; Santrock, Robert; Scanlan, Sean; Smith, Bret
2016-01-01
To better understand the mechanical characteristics of biplane locked plating in small bone fixation, the present study compared the stability under cyclic cantilever loading of a 2-plate locked biplane (BPP) construct without interfragmentary compression with that of a single-plate locked construct with an additional interfragmentary screw (SPS) using surrogate bone models simulating Lapidus arthrodesis. In static ultimate plantar bending, the BPP construct failed at significantly greater load than did the SPS construct (556.2 ± 37.1 N versus 241.6 ± 6.3 N, p = .007). For cyclic failure testing in plantar bending at a 180-N starting load, the BPP construct failed at a significantly greater number of cycles (158,322 ± 50,609 versus 13,718 ± 10,471 cycles) and failure load (242.5 ± 25.0 N versus 180.0 ± 0.0 N) than the SPS construct (p = .002). For cyclic failure testing in plantar bending at a 120-N starting load, the results were not significantly different between the BPP and SPS constructs for the number of cycles (207,646 ± 45,253 versus 159,334 ± 69,430) or failure load (205.0 ± 22.4 N versus 185.0 ± 33.5 N; p = .300). For cyclic testing with 90° offset loading (i.e., medial to lateral bending) at a 120-N starting load, all 5 BPP constructs (tension side) and 2 of the 5 SPS constructs reached 250,000 cycles without failure. Overall, the present study found the BPP construct to have superior or equivalent stability in multiplanar orientations of force application in both static and fatigue testing. Thus, the concept of biplane locked plating, using 2 low profile plates and unicortical screw insertion, shows promise in small bone fixation, because it provides consistent stability in multiplanar orientations, making it universally adaptable to many clinical situations. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
A mobile compression device for thrombosis prevention in hip and knee arthroplasty.
Colwell, Clifford W; Froimson, Mark I; Anseth, Scott D; Giori, Nicholas J; Hamilton, William G; Barrack, Robert L; Buehler, Knute C; Mont, Michael A; Padgett, Douglas E; Pulido, Pamela A; Barnes, C Lowery
2014-02-05
Venous thromboembolic events, either deep venous thrombosis or pulmonary embolism, are important complications in patients undergoing knee or hip arthroplasty. The purpose of this study was to evaluate the effectiveness of a mobile compression device (ActiveCare+S.F.T.) with or without aspirin compared with current pharmacological protocols for prophylaxis against venous thromboembolism in patients undergoing elective primary unilateral arthroplasty of a lower-extremity joint. A multicenter registry was established to capture the rate of symptomatic venous thromboembolic events following primary knee arthroplasty (1551 patients) or hip arthroplasty (1509 patients) from ten sites. All patients were eighteen years of age or older with no known history of venous thromboembolism, coagulation disorder, or solid tumor. Use of the compression device began perioperatively and continued for a minimum of ten days. Patients with symptoms of deep venous thrombosis or pulmonary embolism underwent duplex ultrasonography and/or spiral computed tomography. All patients were evaluated at three months postoperatively to document any evidence of deep venous thrombosis or pulmonary embolism. Of 3060 patients, twenty-eight (0.92%) had venous thromboembolism (twenty distal deep venous thrombi, three proximal deep venous thrombi, and five pulmonary emboli). One death occurred, with no autopsy performed. Symptomatic venous thromboembolic rates observed in patients who had an arthroplasty of a lower-extremity joint using the mobile compression device were noninferior (not worse than), at a margin of 1.0%, to the rates reported for pharmacological prophylaxis, including warfarin, enoxaparin, rivaroxaban, and dabigatran, except in the knee arthroplasty group, in which the mobile compression device fell short of the rate reported for rivaroxaban by 0.06%. Use of the mobile compression device with or without aspirin for patients undergoing arthroplasty of a lower-extremity joint provides a noninferior risk for the development of venous thromboembolism compared with current pharmacological protocols.
Microstructure and mechanical behavior of direct metal laser sintered Inconel alloy 718
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Derek H.; Bicknell, Jonathan; Jorgensen, Luke
2016-03-15
In this paper, we investigate microstructure and quasi-static mechanical behavior of the direct metal laser sintered Inconel 718 superalloy as a function of build direction (BD). The printed material was further processed by annealing and double-aging, hot isostatic pressing (HIP), and machining. We characterize porosity fraction and distribution using micro X-ray computed tomography (μXCT), grain structure and crystallographic texture using electron backscattered diffraction (EBSD), and mechanical response in quasi-static tension and compression using standard mechanical testing at room temperature. Analysis of the μXCT imaging shows that majority of porosity develops in the outer layer of the printed material. However, porositymore » inside the material is also present. The EBSD measurements reveal formation of columnar grains, which favor < 001 > fiber texture components along the BD. These measurements also show evidence of coarse-grained microstructure present in the samples treated by HIP. Finally, analysis of grain boundaries reveal that HIP results in a large number of annealing twins compared to that in samples that underwent annealing and double-aging. The yield strength varies with the testing direction by approximately 7%, which is governed by a combination of grain morphology and crystallographic texture. In particular, we determine tension–compression asymmetry in the yield stress as well as anisotropy of the material flow during compression. We find that HIP lowers yield stress but improves ductility relative to the annealed and aged material. These results are discussed and critically compared with the data reported for wrought material in the same condition. - Highlights: • Microstructure and mechanical properties of DMLS Inconel 718 are studied in function of build direction. • Inhomogeneity of microstructure in the material in several conditions is quantified by μXCT and EBSD. • Anisotropy and asymmetry in the mechanical response are determined by tension and compression testing.« less
Jo, Jae-Young; Yang, Dong-Seok; Huh, Jung-Bo; Heo, Jae-Chan; Yun, Mi-Jung; Jeong, Chang-Mo
2014-12-01
This study evaluated the influence of abutment materials on the stability of the implant-abutment joint in internal conical connection type implant systems. Internal conical connection type implants, cement-retained abutments, and tungsten carbide-coated abutment screws were used. The abutments were fabricated with commercially pure grade 3 titanium (group T3), commercially pure grade 4 titanium (group T4), or Ti-6Al-4V (group TA) (n=5, each). In order to assess the amount of settlement after abutment fixation, a 30-Ncm tightening torque was applied, then the change in length before and after tightening the abutment screw was measured, and the preload exerted was recorded. The compressive bending strength was measured under the ISO14801 conditions. In order to determine whether there were significant changes in settlement, preload, and compressive bending strength before and after abutment fixation depending on abutment materials, one-way ANOVA and Tukey's HSD post-hoc test was performed. Group TA exhibited the smallest mean change in the combined length of the implant and abutment before and after fixation, and no difference was observed between groups T3 and T4 (P>.05). Group TA exhibited the highest preload and compressive bending strength values, followed by T4, then T3 (P<.001). The abutment material can influence the stability of the interface in internal conical connection type implant systems. The strength of the abutment material was inversely correlated with settlement, and positively correlated with compressive bending strength. Preload was inversely proportional to the frictional coefficient of the abutment material.
[Dynamic forces of Mitkovic self-dinamysible trochanteric Internal fixators (SIF)].
Mitković, Milan M; Manić, Miodrag T; Petković, Dusan Lj; Milenković, Sasa S; Mitković, Milorad B
2013-01-01
Dynamic trochanteric fractures implants allow fracture fragments to be compressed. Dynamisation can be realized if the axial pin force overcome friction force between pin and body of the implant. Examination of sliding iniciation forces in Mitkovic Selfdinamysible Trochanteric Internal Fixator (SIF). SIF was attached for angle block in the position with vertical orientation of pins. The transversal load of 5 kg was connected to pins by a rope. A dynamometer was used to measure force during the movement of angle block in up direction. Regression coefficients were a1 = 4,052 i b1 = 0,623 for SIF with 2 sliding screws with diameter of 7mm and a2 = 4,534 i b2 = 0,422 for SIF with 1 screw with diameter of 10 mm. Coefficients of determination were: r12 = 0,470 and r22 = 0,123. Sliding of SIF pins can be achieved for each analysed body weight of patient (50-130 kg). Early bearing of operated leg is significant for sliding initiation of SIF sliding screws.
Surface structural damage study in cortical bone due to medical drilling.
Tavera R, Cesar G; De la Torre-I, Manuel H; Flores-M, Jorge M; Hernandez M, Ma Del Socorro; Mendoza-Santoyo, Fernando; Briones-R, Manuel de J; Sanchez-P, Jorge
2017-05-01
A bone's fracture could be produced by an excessive, repetitive, or sudden load. A regular medical practice to heal it is to fix it in two possible ways: external immobilization, using a ferule, or an internal fixation, using a prosthetic device commonly attached to the bone by means of surgical screws. The bone's volume loss due to this drilling modifies its structure either in the presence or absence of a fracture. To observe the bone's surface behavior caused by the drilling effects, a digital holographic interferometer is used to analyze the displacement surface's variations in nonfractured post-mortem porcine femoral bones. Several nondrilled post-mortem bones are compressed and compared to a set of post-mortem bones with a different number of cortical drillings. During each compression test, a series of digital interferometric holograms were recorded using a high-speed CMOS camera. The results are presented as pseudo 3D mesh displacement maps for comparisons in the physiological range of load (30 and 50 lbs) and beyond (100, 200, and 400 lbs). The high resolution of the optical phase gives a better understanding about the bone's microstructural modifications. Finally, a relationship between compression load and bone volume loss due to the drilling was observed. The results prove that digital holographic interferometry is a viable technique to study the conditions that avoid the surgical screw from loosening in medical procedures of this kind.
NASA Astrophysics Data System (ADS)
Dremov, V. V.; Ionov, G. V.; Sapozhnikov, F. A.; Smirnov, N. A.; Karavaev, A. V.; Vorobyova, M. A.; Ryzhkov, M. V.
2015-09-01
The present work is devoted to classical molecular dynamics investigation into microscopic mechanisms of the bcc-hcp transition in iron. The interatomic potential of EAM type used in the calculations was tested for the capability to reproduce ab initio data on energy evolution along the bcc-hcp transformation path (Burgers deformation + shuffe) and then used in the large-scale MD simulations. The large-scale simulations included constant volume deformation along the Burgers path to study the origin and nature of the plasticity, hydrostatic volume compression of defect free samples above the bcc to hcp transition threshold to observe the formation of new phase embryos, and the volume compression of samples containing screw dislocations to study the effect of the dislocations on the probability of the new phase critical embryo formation. The volume compression demonstrated high level of metastability. The transition starts at pressure much higher than the equilibrium one. Dislocations strongly affect the probability of the critical embryo formation and significantly reduce the onset pressure of transition. The dislocations affect also the resulting structure of the samples upon the transition. The formation of layered structure is typical for the samples containing the dislocations. The results of the simulations were compared with the in-situ experimental data on the mechanism of the bcc-hcp transition in iron.
Wang, Yong; He, Dongmei; Yang, Chi; Wang, Baoli; Qian, Wentao
2012-04-01
To study the results of an easy orthodontic extraction method for impacted lower third molar removal which had roots compressing to the inferior alveolar nerve (IAN). Forty patients were divided into two groups according to their desire. Orthodontic traction group (n=20) had brackets or mini bone screws on the antagonist maxillary molars as anchorage for orthodontic traction from 3 to 10 weeks until the roots' tip was away from the IAN, the tooth was then removed. Traditional extraction group (n=20) had the tooth removed immediately by the same surgeon. Post-operative results were compared between the two groups. All 20 patients in the orthodontic extraction group had their lower impacted third molar removed easily without lower lip numbness after surgery, while 5 patients in the traditional extraction group had transient IAN injury and went away 1 week later. There were no anchorage teeth and adjacent mandibular second molar loose or displacement. Application of orthodontic brackets or mini bone screws on the antagonist maxillary molars is an easy way for orthodontic extraction of impacted lower third molar with roots' tip compressed to the IAN. It is an effective way to avoid IAN injury during tooth extraction. Copyright © 2011 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Age-related changes in dynamic compressive properties of trochanteric soft tissues over the hip.
Choi, W J; Russell, C M; Tsai, C M; Arzanpour, S; Robinovitch, S N
2015-02-26
Hip fracture risk increases dramatically with age, and 90% of fractures are due to falls. During a fall on the hip, the soft tissues overlying the hip region (skin, fat, and muscle) act as shock absorbers to absorb energy and reduce the peak force applied to the underlying bone. We conducted dynamic indentation experiments with young women (aged 19-30; n=17) and older women (aged 65-81; n=17) to test the hypothesis that changes occur with age in the stiffness and damping properties of these tissues. Tissue stiffness and damping were derived from experiments where subjects lay sideways on a bed with the greater trochanter contacting a 3.8cm diameter indenter, which applied sinusoidal compression between 5 to 30Hz with a peak-to-peak amplitude of 1mm. Soft tissue thickness was measured using ultrasound. On average, stiffness was 2.9-fold smaller in older than young women (5.7 versus 16.8kN/m, p=0.0005) and damping was 3.5-fold smaller in older than young women (81 versus 282Ns/m, p=0.001). Neither parameter associated with soft tissue thickness. Our results indicate substantial age-related reductions in the stiffness and damping of soft tissues over the hip region, which likely reduce their capacity to absorb and dissipate energy (before "bottoming out") during a fall. Strategies such as wearable hip protectors or compliant flooringmay compensate for age-related reductions in the shock-absorbing properties of soft tissues and decrease the injury potential of falls. Copyright © 2014 Elsevier Ltd. All rights reserved.
Moran, Eduardo; Zderic, Ivan; Klos, Kajetan; Simons, Paul; Triana, Miguel; Richards, R Geoff; Gueorguiev, Boyko; Lenz, Mark
2017-10-01
Split fractures of the lateral tibia plateau in young patients with good bone quality are commonly treated using two minimally invasive percutaneous lag screws, followed by unloading of the knee joint. Improved stability could be achieved with the use of a third screw inserted either in the jail-technique fashion or with a triangular support screw configuration. The aim of this study was to investigate under cyclic loading the compliance and endurance of the triangular support fixation in comparison with the standard two lag-screw fixation and the jail technique. Lateral split fractures of type AO/OTA 41-B1 were created on 21 synthetic tibiae and subsequently fixed with one of the following three techniques for seven specimens: standard fixation by inserting two partially threaded 6.5 mm cannulated lag screws parallel to each other and orthogonal to the fracture plane; triangular support fixation-standard fixation with one additional support screw at the distal end of the fracture at 30° proximal inclination; and jail fixation-standard fixation with one additional orthogonal support screw inserted in the medial nonfractured part of the bone. Mechanical testing was performed under progressively increasing cyclic compression loading. Fragment displacement was registered via triggered radiographic imaging. Mean construct compliance was 3.847 × 10 -3 mm/N [standard deviation (SD) 0.784] for standard fixation, 3.838 × 10 -3 mm/N (SD 0.242) for triangular fixation, and 3.563 × 10 -3 mm/N (SD 0.383) for jail fixation, with no significant differences between the groups ( p = 0.525). The mean numbers of cycles to 2 mm fragment dislocation, defined as a failure criterion, were 12,384 (SD 2267) for standard fixation, 17,708 (SD 2193) for triangular fixation, and 14,629 (SD 5194) for jail fixation. Triangular fixation revealed significantly longer endurance than the standard one ( p = 0.047). Triangular support fixation enhanced interfragmentary stability at the ultimate stage of dynamic loading. However, the level of improvement seems to be limited and may not legitimate the intervention with an additional third screw.
Herthel, T D; Rick, M C; Judy, C E; Cohen, N D; Herthel, D J
2016-09-01
Outcomes associated with arthrodesis of the proximal interphalangeal (PIP) joint in Quarter Horses used for Western performance activities are well documented but little is known regarding outcomes for other types of horses. To identify factors associated with outcomes, including breed and activity, after arthrodesis of the PIP joint in Warmbloods, Thoroughbreds and Quarter Horses. Retrospective case series. Surgical case records of 82 Quarter Horses principally engaged in Western performance and Thoroughbred or Warmblood breeds principally engaged in showing, showjumping and dressage, with arthrodesis of the PIP joint were reviewed. Arthrodesis was performed with either 3 transarticular cortex bone screws placed in lag fashion, a dynamic compression plate (DCP) with 2 transarticular cortex bone screws placed in lag fashion, or a locking compression plate (LCP) with 2 transarticular cortex bone screws placed in lag fashion. Demographic data, clinical presentation, radiographic findings, surgical technique, post operative treatment and complications were recorded. Long-term follow-up was obtained for all 82 horses. Osteoarthritis of the PIP joint was the most common presenting condition requiring arthrodesis, which was performed with either the 3 screw technique (n = 41), DCP fixation (n = 22), or LCP fixation (n = 19). Post operatively, 23/31 (74%) Warmbloods/Thoroughbreds and 44/51 (87%) Quarter Horses achieved successful outcomes. Thirteen of 23 (57%) Warmbloods/Thoroughbreds and 24 of 38 (63%) Quarter Horses, used for athletic performance, returned to successful competition. Within this subgroup of horses engaged in high-level activity, regardless of breed type, horses undergoing hindlimb arthrodesis were significantly more likely to return to successful competition (73%; 33/45) than those with forelimb arthrodesis (25%; 4/16, P = 0.002). Arthrodesis of the PIP joint in Warmbloods/Thoroughbreds and Quarter Horses results in a favourable outcome for return to their intended use and athletic competition. © 2015 EVJ Ltd.
Berliner, Jonathan L; Ortiz, Philippe A; Lee, Yuo-Yu; Miller, Theodore T; Westrich, Geoffrey H
2018-01-01
Improvements in device design have allowed for portable pneumatic compression devices (PPCDs). However, portability results in smaller pumps that move less blood. Additionally, although patients often stand when wearing PPCDs, few studies have evaluated the hemodynamic effects of PCDs while standing. A crossover study was performed to compare a PPCD (ActiveCare+S.F.T.; Medical Compression Systems, Or Akiva, Israel) to a stationary pneumatic compression device (SPCD) (VenaFlow; DJO Global, Carlsbad, CA) on hemodynamics in supine and standing positions among 2 cohorts composed of 10 controls and 10 total hip arthroplasty patients. Differences in baseline peak venous velocity (PVV), PVV with each PCD, and delta PVV with each PCD were assessed. A multivariate analysis was performed to examine differences between cohorts, devices, and position. In both positions, the SPCD demonstrated a larger change in PVV when compared to the PPCD (P < .001). The total hip arthroplasty group had a greater delta PVV while standing when considering both PCDs together (P < .001). When considering both cohorts, delta PVV was greater while standing, only when the SPCD was used (P < .001). There was no difference between standing and supine positions when the PPCD was used. The SPCD demonstrated a greater capacity to increase PPV in the supine and standing positions. The SPCD generated greater values of PVV and delta PVV in the standing position. Although these results demonstrate a difference between devices, it is important to establish the PVV necessary to prevent VTE before one is considered more effective. Copyright © 2017 Elsevier Inc. All rights reserved.
Risk of ionising radiation to trainee orthopaedic surgeons.
Khan, Ishrat A; Kamalasekaran, Senthil; Fazal, M Ali
2012-02-01
We undertook this study to determine the amount of scattered radiation received by the primary surgeon, assistant and patient during dynamic hip screw fixation for proximal femoral fractures. Data was collected from fifty patients. Five registrars were included as operating surgeon and four senior house officers as assistant surgeon. Radiation was monitored by thermo luminescent dosimeters placed on the surgeon and assistant. The approximate distance of surgeon and assistant from the operative site was measured. A dosimeter on the unaffected hip of patients measured the radiation to the patient. The results show that the surgeon's dominant hand receives the highest dose of radiation and radiation exposure is dependent on the experience of the operator. Our study concludes that exposure to radiation during this procedure is well below the toxic levels; however greater awareness is needed for harmful effects of exposure to long term low dose radiation.
Innovations in the management of hip fractures.
Teasdall, Robert D; Webb, Lawrence X
2003-08-01
Hip fractures include fractures of the head, neck, intertrochanteric, and subtrochanteric regions. Head fractures commonly accompany dislocations. Neck fractures and intertrochanteric fractures occur with greatest frequency in elderly patients with a low bone mineral density and are produced by low-energy mechanisms. Subtrochanteric fractures occur in a predominantly strong cortical osseous region that is exposed to large compressive stresses. Implants used to address these fractures must accommodate significant loads while the fractures consolidate. Complications secondary to hip fractures produce significant morbidity and include infection, nonunion, malunion, decubitus ulcers, fat emboli, deep venous thrombosis, pulmonary embolus, pneumonia, myocardial infarction, stroke, and death.
Park, Kyung Soon; Diwanji, Sanket R; Kim, Hyung Keun; Song, Eun Kyoo; Yoon, Taek Rim
2009-08-01
Iliopsoas bursitis has been increasingly recognized as a complication of total hip arthroplasty and is usually associated with polyethylene wear. Here, the authors report a case of hemorrhagic iliopsoas bursitis complicating an otherwise well-functioning ceramic-on-ceramic arthroplasty performed by minimal invasive modified 2-incision technique. The bursitis in turn resulted in femoral nerve palsy and femoral vein compression. In this report, there was no evidence to support that the bursitis was due to an inflammatory response to ceramic wear particles or any other wear particles originating from the total hip arthroplasty.
Critical bending moment of four implant-abutment interface designs.
Lee, Frank K; Tan, Keson B; Nicholls, Jack I
2010-01-01
Critical bending moment (CBM), defined as the bending moment at which the external nonaxial load applied overcomes screw joint preload and causes loss of contact between the mating surfaces of the implant screw joint components, was measured for four different implants and their single-tooth replacement abutments. CBM at the implant-abutment screw joint for four implant-abutment test groups was measured in vitro at 80%, 100%, and 120% of the manufacturers' recommended torque levels. Regular-platform implants with their corresponding single-tooth abutments were used. Microstrain was measured while known loads were applied to the abutment at known distances from the implant-abutment interface. Strain instrumentation was used to record the strain data dynamically to determine the point of gap opening. All torque applications and strain measurements were repeated five times for the five samples in each group. For the Branemark/CeraOne assemblies, the mean CBMs were 72.14 Ncm, 102.21 Ncm, and 119.13 Ncm, respectively, at 80%, 100%, and 120% of the manufacturer's recommended torque. For the Replace/Easy assemblies, mean CBMs were 86.20 Ncm, 109.92 Ncm, and 120.93 Ncm; for the Biomet 3i/STA assemblies, they were 67.97 Ncm, 83.14 Ncm, and 91.81 Ncm; and for the Lifecore/COC assemblies, they were 58.32 Ncm, 76.79 Ncm, and 78.93 Ncm. Two-way analysis of variance revealed significant effects for the test groups and torque levels. Subsequent tests confirmed that significant differences existed between test groups and torque levels. The results appear to confirm the primary role of the compressive preload imparted by the abutment screw in maintaining screw joint integrity. CBM was found to differ among implant systems and torque levels. Torque levels recommended by the manufacturer should be followed to ensure screw joint integrity.
Elwell, Josie; Choi, Joseph; Willing, Ryan
2017-02-08
Lateralizing the center of rotation (COR) of reverse total shoulder arthroplasty (rTSA) could improve functional outcomes and mitigate scapular notching, a commonly occurring complication of the procedure. However, resulting increases in torque at the bone-implant interface may negatively affect initial fixation of the glenoid-side component, especially if only two fixation screws can be placed. Shoulder-specific finite element (FE) models of four fresh-frozen cadaveric shoulders were constructed. Scapular geometry and material property distributions were derived from CT data. Generic baseplates with two and four fixation screws were virtually implanted, after which superiorly-oriented shear loads, accompanied by a compressive load, were applied incrementally further from the glenoid surface to simulate lateralization of the COR. Relationships between lateralization, adduction range of motion (ROM), the number of fixation screws and micromotion of the baseplate (initial implant fixation) were characterized. Lateralization significantly increases micromotion (p=0.015) and adduction ROM (p=0.001). Using two, versus four, baseplate fixation screws significantly increases micromotion (p=0.008). The effect of lateralization and the number of screws on adduction ROM and baseplate fixation is variable on a shoulder-specific basis. Trade-offs exist between functional outcomes, namely adduction ROM, and initial implant fixation and the negative effect of lateralization on implant fixation is amplified when only two fixation screws are used. The possibility of lateralizing the COR in order to improve functional outcomes of the procedure should be considered on a patient-specific basis accounting for factors such as availability and quality of bone stock. Copyright © 2016 Elsevier Ltd. All rights reserved.
High-quality vertical light emitting diodes fabrication by mechanical lift-off technique
NASA Astrophysics Data System (ADS)
Tu, Po-Min; Hsu, Shih-Chieh; Chang, Chun-Yen
2011-10-01
We report the fabrication of mechanical lift-off high quality thin GaN with Hexagonal Inversed Pyramid (HIP) structures for vertical light emitting diodes (V-LEDs). The HIP structures were formed at the GaN/sapphire substrate interface under high temperature during KOH wet etching process. The average threading dislocation density (TDD) was estimated by transmission electron microscopy (TEM) and found the reduction from 2×109 to 1×108 cm-2. Raman spectroscopy analysis revealed that the compressive stress of GaN epilayer was effectively relieved in the thin-GaN LED with HIP structures. Finally, the mechanical lift-off process is claimed to be successful by using the HIP structures as a sacrificial layer during wafer bonding process.
Sarigul, Sani; Salci, Hakan; Lekesiz, Huseyin; Dogan, Seref; Ozcan, Resat; Gorgul, Osman Sacit; Aksoy, Kaya
2017-01-01
Objectives: Xenograft bone plate-screws (XBPSs) can be alternative tools in lumbar transpedicular stabilization (TS). The aim of this study was to show biomechanical and histopathological contribution of the XBPSs system in lumbar TS. Materials and Methods: Fifteen (n = 15) hybrid dog and ten (n = 10) L2-4 cadaveric specimens were included in the study. The dogs were separated according to surgical techniques: L3 laminectomy and bilateral facetectomy (LBF) in Group I (experimental group [EG I] (n = 5), L3 LBF plus TS with metal plate-screws (MPSs) in Group II (EG II) (n = 5), and L3 LBF plus TS with XBPSs in Group III (EG III) (n = 5). The cadaveric specimens were separated to L2-4 intact in Group I (CG I), (n = 5), and L3 LBF in Group II (CG II), (n = 5). The dogs were sacrificed at the end of 3rd month, and their L2-4 spinal segments were en bloc removed and prepared as in control groups. Flexion, extension, left-right bending, rotation, and compression tests were applied to all segments. Stiffness values were calculated and analyzed statistically. All dog segments were evaluated histopathologically. Results: XBPS system showed a higher average stiffness values for left bending, extension, flexion, and compression compared to MPS, but these differences were not statistically meaningful. XBPS system had superiority to the fusion formation, as well. Conclusions: XBPSs provide stability and help the fusion formation, but this system does not have a biomechanical advantage over MPS system in TS. PMID:28761530
Lang, T.; Boonen, S.; Cummings, S.; Delmas, P. D.; Cauley, J. A.; Horowitz, Z.; Kerzberg, E.; Bianchi, G.; Kendler, D.; Leung, P.; Man, Z.; Mesenbrink, P.; Eriksen, E. F.; Black, D. M.
2016-01-01
Summary Changes in bone mineral density and bone strength following treatment with zoledronic acid (ZOL) were measured by quantitative computed analysis (QCT) or dual-energy X-ray absorptiometry (DXA). ZOL treatment increased spine and hip BMD vs placebo, assessed by QCT and DXA. Changes in trabecular bone resulted in increased bone strength. Introduction To investigate bone mineral density (BMD) changes in trabecular and cortical bone, estimated by quantitative computed analysis (QCT) or dual-energy X-ray absorptiometry (DXA), and whether zoledronic acid 5 mg (ZOL) affects bone strength. Methods In 233 women from a randomized, controlled trial of once-yearly ZOL, lumbar spine, total hip, femoral neck, and trochanter were assessed by DXA and QCT (baseline, Month 36). Mean percentage changes from baseline and between-treatment differences (ZOL vs placebo, t-test) were evaluated. Results Mean between-treatment differences for lumbar spine BMD were significant by DXA (7.0%, p<0.01) and QCT (5.7%, p<0.0001). Between-treatment differences were significant for trabecular spine (p=0.0017) [non-parametric test], trabecular trochanter (10.7%, p<0.0001), total hip (10.8%, p<0.0001), and compressive strength indices at femoral neck (8.6%, p=0.0001), and trochanter (14.1%, p<0.0001). Conclusions Once-yearly ZOL increased hip and spine BMD vs placebo, assessed by QCT vs DXA. Changes in trabecular bone resulted in increased indices of compressive strength. PMID:19802508
Morelli, Moreno; Poitras, Philippe; Grimes, Valentine; Backman, David; Dervin, Geoffrey
2007-04-01
The purpose of this study was to determine what characteristics of fixation devices used in the treatment of osteochondritis dissecans (OCD) contribute to improved stability to resist shear loading. An OCD model was designed using rigid polyurethane foam. Each specimen consisted of two components, an osteochondral fragment and a corresponding defect. A total of 40 specimens were prepared and assigned to one of four groups: control (no extrinsic stabilizer); two 2-mm-diameter Kirschner wires (K-wires), 40 mm in length; one threaded washer and a 28-mm screw; and one threaded washer and a 38 mm screw. Each specimen was mounted onto an Iosipescu shear test fixture and subjected to shear loads at a pseudo-static displacement rate of 0.075 mm/s. All groups demonstrated some stability; controls were significantly less stable than all other groups. The group with the threaded washer and 38-mm screw demonstrated the greatest stability (p < 0.001), and no difference was noted between the K-wire and 28-mm screw groups. These results suggest that, in this OCD model, friction conferred some intrinsic stability to resist loads in shear. However, stability was improved with the use of long implants that compressed the fragments together.
Dealing with sub-trochanteric fracture in a child with osteopetrosis : A case report.
Behera, P; Khurana, A; Saibaba, B; Aggarwal, S
2016-12-01
Osteopetrosis is a rare hereditary condition which may have autosomal recessive or autosomal dominant inheritance. Patients tend to present most commonly with fractures but involvement of cranial nerves and hematopoetic system is not uncommon. Patients with infantile and intermediate type tend to present more often with problems other than orthopaedic problems. While diagnosis can be made on the basis of radiographs, management needs to be customized for every patient. Non operative and operative management both have their advantages and disadvantages. We are here reporting a case of sub-trochanteric fracture in an eight-year-old child which was managed successfully with a dynamic hip screw (DHS). Surgery could be performed successfully by taking precautions during reduction, drilling and screw placement. At the latest follow up, which was after one and half years of surgery, the fracture had united well and the child faced no limitations of activities. Thus, open reduction and fixation with DHS can be considered as an effective management modality for pediatric sub-trochanteric fractures in osteopetrosis.
Abdullah, Abdul Halim; Todo, Mitsugu; Nakashima, Yasuharu
2017-06-01
Femoral bone fracture is one of the main causes for the failure of hip arthroplasties (HA). Being subjected to abrupt and high impact forces in daily activities may lead to complex loading configuration such as bending and sideway falls. The objective of this study is to predict the risk of femoral bone fractures in total hip arthroplasty (THA) and resurfacing hip arthroplasty (RHA). A computed tomography (CT) based on finite element analysis was conducted to demonstrate damage formation in a three dimensional model of HAs. The inhomogeneous model of femoral bone was constructed from a 79 year old female patient with hip osteoarthritis complication. Two different femoral components were modeled with titanium alloy and cobalt chromium and inserted into the femoral bones to present THA and RHA models respectively. The analysis included six configurations, which exhibited various loading and boundary conditions, including axial compression, torsion, lateral bending, stance and two types of falling configurations. The applied hip loadings were normalized to body weight (BW) and accumulated from 1 BW to 3 BW. Predictions of damage formation in the femoral models were discussed as the resulting tensile failure as well as the compressive yielding and failure elements. The results indicate that loading directions can forecast the pattern and location of fractures at varying magnitudes of loading. Lateral bending configuration experienced the highest damage formation in both THA and RHA models. Femoral neck and trochanteric regions were in a common location in the RHA model in most configurations, while the predicted fracture locations in THA differed as per the Vancouver classification. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
Jo, Jae-Young; Yang, Dong-Seok; Huh, Jung-Bo; Heo, Jae-Chan; Yun, Mi-Jung
2014-01-01
PURPOSE This study evaluated the influence of abutment materials on the stability of the implant-abutment joint in internal conical connection type implant systems. MATERIALS AND METHODS Internal conical connection type implants, cement-retained abutments, and tungsten carbide-coated abutment screws were used. The abutments were fabricated with commercially pure grade 3 titanium (group T3), commercially pure grade 4 titanium (group T4), or Ti-6Al-4V (group TA) (n=5, each). In order to assess the amount of settlement after abutment fixation, a 30-Ncm tightening torque was applied, then the change in length before and after tightening the abutment screw was measured, and the preload exerted was recorded. The compressive bending strength was measured under the ISO14801 conditions. In order to determine whether there were significant changes in settlement, preload, and compressive bending strength before and after abutment fixation depending on abutment materials, one-way ANOVA and Tukey's HSD post-hoc test was performed. RESULTS Group TA exhibited the smallest mean change in the combined length of the implant and abutment before and after fixation, and no difference was observed between groups T3 and T4 (P>.05). Group TA exhibited the highest preload and compressive bending strength values, followed by T4, then T3 (P<.001). CONCLUSION The abutment material can influence the stability of the interface in internal conical connection type implant systems. The strength of the abutment material was inversely correlated with settlement, and positively correlated with compressive bending strength. Preload was inversely proportional to the frictional coefficient of the abutment material. PMID:25551010
Microstructure, Tensile and Creep Properties of Ta20Nb20Hf20Zr20Ti20 High Entropy Alloy
Larianovsky, Natalya; Katz-Demyanetz, Alexander; Eshed, Eyal; Regev, Michael
2017-01-01
This paper examines the microstructure and mechanical properties of Ta20Nb20Hf20Zr20Ti20. Two casting processes, namely, gravity casting and suction-assisted casting, were applied, both followed by Hot Isostatic Pressing (HIP). The aim of the current study was to investigate the creep and tensile properties of the material, since the literature review revealed no data whatsoever regarding these properties. The main findings are that the HIP process is responsible for the appearance of a Hexagonal Close Packed (HCP) phase that is dispersed differently in these two castings. The HIP process also led to a considerable increase in the mechanical properties of both materials under compression, with values found to be higher than those reported in the literature. Contrary to the compression properties, both materials were found to be highly brittle under tension, either during room temperature tension tests or creep tests conducted at 282 °C. Fractography yielded brittle fracture without any evidence of plastic deformation prior to fracture. PMID:28773245
Cystic lesion around the hip joint
Yukata, Kiminori; Nakai, Sho; Goto, Tomohiro; Ikeda, Yuichi; Shimaoka, Yasunori; Yamanaka, Issei; Sairyo, Koichi; Hamawaki, Jun-ichi
2015-01-01
This article presents a narrative review of cystic lesions around the hip and primarily consists of 5 sections: Radiological examination, prevalence, pathogenesis, symptoms, and treatment. Cystic lesions around the hip are usually asymptomatic but may be observed incidentally on imaging examinations, such as computed tomography and magnetic resonance imaging. Some cysts may enlarge because of various pathological factors, such as trauma, osteoarthritis, rheumatoid arthritis, or total hip arthroplasty (THA), and may become symptomatic because of compression of surrounding structures, including the femoral, obturator, or sciatic nerves, external iliac or common femoral artery, femoral or external iliac vein, sigmoid colon, cecum, small bowel, ureters, and bladder. Treatment for symptomatic cystic lesions around the hip joint includes rest, nonsteroidal anti-inflammatory drug administration, needle aspiration, and surgical excision. Furthermore, when these cysts are associated with osteoarthritis, rheumatoid arthritis, and THA, primary or revision THA surgery will be necessary concurrent with cyst excision. Knowledge of the characteristic clinical appearance of cystic masses around the hip will be useful for determining specific diagnoses and treatments. PMID:26495246
Bulaqi, Haddad Arabi; Mousavi Mashhadi, Mahmoud; Safari, Hamed; Samandari, Mohammad Mahdi; Geramipanah, Farideh
2015-06-01
Implants in posterior regions of the jaw require short dental implants with long crown heights, leading to increased crown-to-implant ratios and mechanical stress. This can lead to fracture and screw loosening. The purpose of this study was to investigate the dynamic nature and behavior of prosthetic components and preimplant bone and evaluate the effect of increased crown height space (CHS) and crown-to-implant ratio on stress concentrations under external oblique forces. The severely resorbed bone of a posterior mandible site was modeled with Mimics and Catia software. A second mandibular premolar tooth was modeled with CHS values of 8.8, 11.2, 13.6, and 16 mm. A Straumann implant (4.1×8 mm), a directly attached crown, and an abutment screw were modeled with geometric data and designed by using SolidWorks software. Abaqus software was used for the dynamic simulation of screw tightening and the application of an external load to the buccal cusp at a 75.8-degree angle with the occlusal plane. The distribution of screw load and member load at each step was compared, and the stress values were calculated within the dental implant complex and surrounding bone. During tightening, the magnitude and distribution of the preload and clamp load were uniform and equal at the cross section of all CHSs. Under an external load, the screw load decreased and member load increased. An increase in the CHS caused the corresponding distribution to become more nonuniform and increased the maximum compressive and tensile stresses in the preimplant bone. Additionally, the von Mises stress decreased at the abutment screw and increased at the abutment and fixture. Under nonaxial forces, increased CHS does not influence the decrease in screw load or increase in member load. However, it contributes to screw loosening and fatigue fracture by skewing the stress distribution to the transverse section of the implant. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Hoggett, L; Cross, C; Helm, T
2017-12-01
Dislocation after total hip arthroplasty (THA) remains a significant complication of the procedure and is the third leading cause for revision THA. One technique for treatment of this complication is the use of the posterior lip augmentation device (PLAD). We describe our experience using the PLAD including complication rates. A retrospective review of 55 PLADs (54 patients) was carried out following identification from electronic theatre records. Basic patient demographics, operative records and radiographs were collected and reviewed and data was analysed using Microsoft Excel. Failure of the PLAD was defined as further operative intervention after PLAD insertion and included: dislocation, implant breakage, infection and revision of the THA for loosening of either component. 55 PLADs were implanted in 54 patients with an average age of 77 years. There was a significant preponderance of females and a variety of surgical approaches had been used for the original hip replacement, including trochanteric osteotomy, posterior and antero-lateral. 9 (16%) patients had recurrent dislocations,1 (2%) failed secondary to screw breakage, 3 (5%) had and infection requiring intervention and 2 (4%) underwent further revision for aseptic loosening of the femoral component. The overall failure rate was 25% with 14 patients requiring intervention post PLAD. Our results are inferior to other published results and indicate that the PLAD should be used with caution for recurrent dislocations of the Charnley hip replacement.
In vivo measurement of spinal column viscoelasticity--an animal model.
Hult, E; Ekström, L; Kaigle, A; Holm, S; Hansson, T
1995-01-01
The goal of this study was to measure the in vivo viscoelastic response of spinal motion segments loaded in compression using a porcine model. Nine pigs were used in the study. The animals were anaesthetized and, using surgical techniques, four intrapedicular screws were inserted into the vertebrae of the L2-L3 motion segment. A miniaturized servohydraulic exciter capable of compressing the motion segment was mounted on to the screws. In six animals, a loading scheme consisting of 50 N and 100 N of compression, each applied for 10 min, was used. Each loading period was followed by 10 min restitution with zero load. The loading scheme was repeated four times. Three animals were examined for stiffening effects by consecutively repeating eight times 50 N loading for 5 min followed by 5 min restitution with zero load. This loading scheme was repeated using a 100 N load level. The creep-recovery behavior of the motion segment was recorded continuously. Using non-linear regression techniques, the experimental data were used for evaluating the parameters of a three-parameter standard linear solid model. Correlation coefficients of the order of 0.85 or higher were obtained for the three independent parameters of the model. A survey of the data shows that the viscous deformation rate was a function of the load level. Also, repeated loading at 100 N seemed to induce long-lasting changes in the viscoelastic properties of the porcine lumbar motion segment.
Shin, Hong Kyung; Choi, Il; Roh, Sung Woo; Rhim, Seung Chul; Jeon, Sang Ryong
2017-11-01
It is difficult to evaluate the significant findings of epidural hematoma in magnetic resonance images (MRIs) obtained immediately after thoracic posterior screw fixation (PSF). Prospectively, immediate postoperative MRI was performed in 10 patients who underwent thoracic PSF from April to December 2013. Additionally, we retrospectively analyzed the MRIs from 3 patients before hematoma evacuation out of 260 patients who underwent thoracic PSF from January 2000 to March 2013. The MRI findings of 9 out of the 10 patients, consecutively collected after thoracic PSF, showed neurologic recovery with a well-preserved cerebrospinal fluid (CSF) space and no prominent hemorrhage. Even though there were metal artifacts at the level of the pedicle screws, the preserved CSF space was observed. In contrast, the MRI of 1 patient with poor neurologic outcome demonstrated a typical hematoma and slight spinal cord compression and reduced CSF space. In the retrospective analysis of the 3 patients who showed definite motor weakness in the lower extremities after their first thoracic fusion surgery and underwent hematoma evacuation, the magnetic resonance images before hematoma evacuation also revealed hematoma compressing the spinal cord and diminished CSF space. This study shows that epidural hematomas can be detected on MRI performed immediately after thoracic fixation surgery, despite metal artifacts and findings such as hematoma causing spinal cord compression. Loss of CSF space should be considered to be associated with neurologic deficit. Copyright © 2017 Elsevier Inc. All rights reserved.
Interventional MSK procedures: the hip.
Dodré, Emilie; Lefebvre, Guillaume; Cockenpot, Eric; Chastanet, Patrick; Cotten, Anne
2016-01-01
Percutaneous musculoskeletal procedures are widely accepted as low invasive, highly effective, efficient and safe methods in a vast amount of hip pathologies either in diagnostic or in therapeutic management. Hip intra-articular injections are used for the symptomatic treatment of osteoarthritis. Peritendinous or intrabursal corticosteroid injections can be used for the symptomatic treatment of greater trochanteric pain syndrome and anterior iliopsoas impingement. In past decades, the role of interventional radiology has rapidly increased in metastatic disease, thanks to the development of many ablative techniques. Image-guided percutaneous ablation of skeletal metastases provides a minimally invasive treatment option that appears to be a safe and effective palliative treatment for localized painful lytic lesion. Methods of tumour destruction based on temperature, such as radiofrequency ablation (RFA) and cryotherapy, are performed for the management of musculoskeletal metastases. MR-guided focused ultrasound surgery provides a non-invasive alternative to these ablative methods. Cementoplasty is now widely used for pain management and consolidation of acetabular metastases and can be combined with RFA. RFA is also used to treat benign tumours, namely osteoid osteomas. New interventional procedures such as percutaneous screw fixation are also proposed to treat non-displaced or minimally displaced acetabular roof fractures.
Windolf, Markus; Muths, Raphael; Braunstein, Volker; Gueorguiev, Boyko; Hänni, Markus; Schwieger, Karsten
2009-01-01
Compaction of cancellous bone is believed to prevent cut-out. This in vitro study quantified the compaction in the femoral head due to insertion of a dynamic hip screw-blade with and without predrilling and investigated the resulting implant anchorage under cyclic loading. Eight pairs of human cadaveric femoral heads were instrumented with a dynamic hip screw-blade made of Polyetheretherketon. Pairwise instrumentation was performed either with or without predrilling the specimens. CT scanning was performed before and after implantation, to measure bone-compaction. Subsequently the implant was removed and a third scan was performed to analyze the relaxation of the bone structure. Commercial implants were reinserted and the specimens were cyclically loaded until onset of cut-out occurred. The bone-implant interface was monitored by means of fluoroscopic imaging throughout the experiment. Paired t-tests were performed to identify differences regarding compaction, relaxation and cycles to failure. Bone density in the surrounding of the implant increased about 30% for the non-predrilled and 20% for the predrilled group when inserting the implant. After implant removal the predrilled specimens fully relaxed; the non-predrilled group showed about 10% plastic deformation. No differences were found regarding cycles to failure (P=0.32). Significant bone-compaction due to blade insertion was verified. Even though compaction was lower when predrilling the specimens, mainly elastic deformation was present, which is believed to primarily enhance the implant anchorage. Cyclic loading tests confirmed this thesis. The importance of the implantation technique with regard to predrilling is therefore decreased.
PSEUDARTHROSIS OF THE SCAPHOID IN IMMATURE SKELETONS
de Lemos, Marcelo Barreto; Bentes, Ádria Simone Ferreira; Neto, Miguel Flores do Amaral; Spinelli, Leandro de Freitas; Severo, Antônio Lourenço; Lech, Osvandré
2015-01-01
This paper presents a review of the literature on pseudarthrosis of the scaphoid in skeletally immature individuals, taking into consideration its epidemiology, diagnosis and treatment, as well as its controversies. Knowledge of this subject makes it possible for patients to be given appropriate treatment immediately. Pseudarthrosis of the scaphoid in skeletally immature patients is a rare condition that results from error or lack of diagnosis of a fracture. Thus, careful clinical and radiographic examination should be performed in order to confirm or rule out this diagnosis. Several treatment methods have been reported and have shown good results. These include conservative plaster cast treatment, bone graft without osteosynthesis, bone graft with Kirschner wires, percutaneous screws and bone graft with compression screws. The treatment performed depends on the characteristics of the pseudarthrosis and the surgeon's experience. PMID:27042636
PSEUDARTHROSIS OF THE SCAPHOID IN IMMATURE SKELETONS.
de Lemos, Marcelo Barreto; Bentes, Ádria Simone Ferreira; Neto, Miguel Flores do Amaral; Spinelli, Leandro de Freitas; Severo, Antônio Lourenço; Lech, Osvandré
2012-01-01
This paper presents a review of the literature on pseudarthrosis of the scaphoid in skeletally immature individuals, taking into consideration its epidemiology, diagnosis and treatment, as well as its controversies. Knowledge of this subject makes it possible for patients to be given appropriate treatment immediately. Pseudarthrosis of the scaphoid in skeletally immature patients is a rare condition that results from error or lack of diagnosis of a fracture. Thus, careful clinical and radiographic examination should be performed in order to confirm or rule out this diagnosis. Several treatment methods have been reported and have shown good results. These include conservative plaster cast treatment, bone graft without osteosynthesis, bone graft with Kirschner wires, percutaneous screws and bone graft with compression screws. The treatment performed depends on the characteristics of the pseudarthrosis and the surgeon's experience.
Cuadrado, A; Yánez, A; Carta, J A; Garcés, G
2013-06-01
This paper analyses the suitability of a system comprising a Dynamic Compression Plate (DCP) and Screw Locking Elements (SLEs) to allow sufficient interfragmentary motion to promote secondary bone healing in osteoporotic fractures. Four fixation systems were mounted on bone-simulating reinforced epoxy bars filled with solid rigid polyurethane foam. Group 1, used for comparison purposes, represents a system comprised of a Locking Compression Plate (LCP) and eight locking screws. Groups 2 and 3 represent a system comprised of a DCP plate with eight cortical screws and two SLEs placed on the screws furthest from (group 2) and nearest to (group 3) the fracture. Group 4 represents the system comprised of a DCP plate with SLEs placed on all eight cortical screws. Cyclic compression tests of up to 10,000 load cycles were performed in order to determine the parameters of interest, namely the stiffnesses and the interfragmentary motion of the various configurations under consideration. Tukey's multiple comparison test was used to analyse the existence or otherwise of significant differences between the means of the groups. At 10,000 cycles, interfragmentary motion at the far cortex for group 2 was 0.60±0.04 mm and for group 3 0.59±0.03 mm (there being no significant differences: p=0.995). The mean interfragmentary motion at the far cortex of the LCP construct was 70% less than that of the two groups with 2SLEs (there being significant differences: p=1.1×10(-8)). In the case of group 4 this figure was 45% less than in groups 2 and 3 (there being significant differences: p=5.6×10(-6)). At 10,000 cycles, interfragmentary motion at the near cortex for group 2 was 0.24±0.06 mm and for group 3 0.24±0.03 mm (there being no significant differences: p=1.000). The mean interfragmentary motion at the near cortex of the LCP construct was 70.8% less than that of the two groups with 2SLEs (there being significant differences: p=0.011). In the case of group 4 this figure was 66.7% less than in groups 2 and 3 (there being significant differences: p=0.016). The mean stiffness at 10,000 cycles was 960±110 N mm(-1) for group 2 and 969±53 N mm(-1) for group 3 (there being no significant differences: p=1.000). For group 1 (the LCP construct) the mean stiffness at 10,000 cycles was 3144±446 N mm(-1), 3.25 times higher than that of groups 2 and 3 (there being significant differences: p=0.00002), and 1.6 times higher than that of the DCP+8SLEs construct (1944±408 N mm(-1), there being significant differences: p=0.007). It is concluded that using the DCP+2SLEs construct sufficient interfragmentary motion is ensured to promote secondary bone healing. However, if too many SLEs are used the result may be, as with the LCP, an excessively rigid system for callus formation. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.
Furuhashi, Hiroki; Togawa, Daisuke; Koyama, Hiroshi; Hoshino, Hironobu; Yasuda, Tatsuya; Matsuyama, Yukihiro
2017-05-01
Several reports have indicated that anterior dislocation of total hip arthroplasty (THA) can be caused by spinal degenerative changes with excessive pelvic retroversion. However, no reports have indicated that posterior dislocation can be caused by fixed pelvic anteversion after corrective spine surgery. We describe a rare case experiencing repeated posterior THA dislocation that occurred at 5 months after corrective spinal long fusion with pelvic fixation. A 64-year-old woman had undergone bilateral THA at 13 years before presenting to our institution. She had been diagnosed with kyphoscoliosis and underwent three subsequent spinal surgeries after the THA. We finally performed spinal corrective long fusion from T5 to ilium with pelvic fixation (with iliac screws). Five months later, she experienced severe hip pain when she tried to stand up from the toilet, and was unable to move, due to posterior THA dislocation. Therefore, we performed closed reduction under sedation, and her left hip was easily reduced. After the reduction, she started to walk with a hip abduction brace. However, she had experienced 5 subsequent dislocations. Based on our findings and previous reports, we have hypothesized that posterior dislocation could be occurred after spinal corrective long fusion with pelvic fixation due to three mechanisms: (1) a change in the THA cup alignment before and after spinal corrective long fusion surgery, (2) decreased and fixed pelvic posterior tilt in the sitting position, or (3) the trunk's forward tilting during standing-up motion after spinopelvic fixation. Spinal long fusion with pelvic fixation could be a risk factor for posterior THA dislocation.
Continuous twin screw granulation of controlled release formulations with various HPMC grades.
Vanhoorne, V; Janssens, L; Vercruysse, J; De Beer, T; Remon, J P; Vervaet, C
2016-09-25
HPMC is a popular matrix former to formulate tablets with extended drug release. Tablets with HPMC are preferentially produced by direct compression. However, granulation is often required prior to tableting to overcome poor flowability of the formulation. While continuous twin screw granulation has been extensively evaluated for granulation of immediate release formulations, twin screw granulation of controlled release formulations including the dissolution behavior of the formulations received little attention. Therefore, the influence of the HPMC grade (viscosity and substitution degree) and the particle size of theophylline on critical quality attributes of granules (continuously produced via twin screw granulation) and tablets was investigated in the current study. Formulations with 20 or 40% HPMC, 20% theophylline and lactose were granulated with water at fixed process parameters via twin screw granulation. The torque was influenced by the viscosity and substitution degree of HPMC, but was not a limiting factor for the granulation process. An optimal L/S ratio was selected for each formulation based on the granule size distribution. The granule size distributions were influenced by the substitution degree and concentration of HPMC and the particle size of theophylline. Raman and UV spectroscopic analysis on 8 sieve fractions of granules indicated an inhomogeneous distribution of theophylline over the size fractions. However, this phenomenon was not correlated with the hydration rate or viscosity of HPMC. Controlled release of theophylline could be obtained over 24h with release profiles close to zero-order. The release of theophylline could be tailored via selection of the substitution degree and viscosity of HPMC. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huegli, R. W.; Messmer, P.; Jacob, A. L.
2003-09-15
Delayed or non-union of a sacral fracture is a serious clinical condition that may include chronic pain, sitting discomfort, gait disturbances, neurological problems, and inability to work. It is also a difficult reconstruction problem. Late correction of the deformity is technically more demanding than the primary treatment of acute pelvic injuries. Open reduction, internal fixation (ORIF), excision of scar tissue, and bone grafting often in a multi-step approach are considered to be the treatment of choice in delayed unions of the pelvic ring. This procedure implies the risk of neurological and vascular injuries, infection, repeated failure of union, incomplete correctionmore » of the deformity, and incomplete pain relief as the most important complications. We report a new approach for minimally invasive treatment of a delayed union of the sacrum without vertical displacement. A patient who suffered a Malgaigne fracture (Tile C1.3) was initially treated with closed reduction and percutaneous screw fixation (CRPF) of the posterior pelvic ring under CT navigation and plating of the anterior pelvic ring. Three months after surgery he presented with increasing hip pain caused by a delayed union of the sacral fracture. The lesion was successfully treated percutaneously in a single step procedure using CT navigation for drilling of the delayed union, autologous bone grafting, and screw fixation.« less
Biomechanics important to interpret radiographs of the hip
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenthal, D.I.; Scott, J.A.
1983-02-01
Biomechanic principles have important implications to film interpretation. Angulation of the femoral neck results in four different types of forces: compression on the medial side, tension on the lateral side, shear stress in the center, and torque forces at the neck-shaft angle. The body's response to these forces results in recognicable trabecular patterns which respond in a predictable manner to disease states. Surgical intervention in the form of hip replacement or fracture fixation must reflect these engineering consideration.
A finite element investigation of upper cervical instrumentation.
Puttlitz, C M; Goel, V K; Traynelis, V C; Clark, C R
2001-11-15
The finite element technique was used to predict changes in biomechanics that accompany the application of a novel instrumentation system designed for use in the upper cervical spine. To determine alterations in joint loading, kinematics, and instrumentation stresses in the craniovertebral junction after application of a novel instrumentation system. Specifically, this design was used to assess the changes in these parameters brought about by two different cervical anchor types: C2 pedicle versus C2-C1 transarticular screws, and unilateral versus bilateral instrumentation. Arthrodesis procedures can be difficult to obtain in the highly mobile craniovertebral junction. Solid fusion is most likely achieved when motion is eliminated. Biomechanical studies have shown that C1-C2 transarticular screws provide good stability in craniovertebral constructs; however, implantation of these screws is accompanied by risk of vertebral artery injury. A novel instrumentation system that can be used with transarticular screws or with C2 pedicle screws has been developed. This design also allows for unilateral or bilateral implantation. However, the authors are unaware of any reports to date on the changes in joint loading or instrumentation stresses that are associated with the choice of C2 anchor or unilateral/bilateral use. A ligamentous, nonlinear, sliding contact, three-dimensional finite element model of the C0-C1-C2 complex and a novel instrumentation system was developed. Validation of the model has been previously reported. Finite element models representing combinations of cervical anchor type (C1-C2 transarticular screws vs. C2 pedicle screws) and unilateral versus bilateral instrumentation were evaluated. All models were subjected to compression with pure moments in either flexion, extension, or lateral bending. Kinematic reductions with respect to the intact (uninjured and without instrumentation) case caused by instrumentation use were reported. Changes in loading profiles through the right and left C0-C1 and C1-C2 facets, transverse ligament-dens, and dens-anterior ring of C1 articulations were calculated by the finite element model. Maximum von Mises stresses within the instrumentation were predicted for each model variant and loading scenario. Bilateral instrumentation provided greater motion reductions than the unilateral instrumentation. When used bilaterally, C2 pedicle screws approximate the kinematic reductions and instrumentation stresses (except in lateral bending) that are seen with C1-C2 transarticular screws. The finite element model predicted that the maximum stress was always in the region in which the plate transformed into the rod. To the best of the authors' knowledge, this is the first report of predicting changes in loading in the upper cervical spine caused by instrumentation. The most significant conclusion that can be drawn from the finite element model predictions is that C2 pedicle screw fixation provides the same relative stability and instrumentation stresses as C1-C2 transarticular screw use. C2 pedicle screws can be a good alternative to C2-C1 transarticular screws when bilateral instrumentation is applied.
Measuring Scaling Effects in Small Two-Stroke Internal Combustion Engines
2014-06-20
Figure 17. The engines ingest air /fuel mixture through a dual mixing screw carburetor to the crankcase. Crankcase compression drives the scavenging...Alex K. Rowton, Captain, USAF AFIT-ENY-T-14-J-36 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright...Patterson Air Force Base, Ohio DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. The views expressed
Nelson, Thomas A; Strom, Adam
2017-11-01
Objectives Retrospective evaluation of repairing distal radial and ulnar fractures in small breed dogs with the Synthes 1.5-mm locking Adaption plate system and compare results in a similar group of patients repaired with the Synthes 2.0-mm limited contact-dynamic compression plate (LC-DCP). Methods Electronic medical records from one specialty referral centre were reviewed from March 21, 2010, to October 9, 2015, for patients weighing less than or equal to 4 kg that had a distal one-third radial and ulnar fracture repaired with a Synthes 1.5-mm locking adaption plate or Synthes 2.0-mm LC-DCP. Further inclusion criteria included application of the plate to the cranial surface of the radius via open reduction and internal fixation. Results Six 1.5-mm Adaption plates and 7 2.0-mm LC-DCPs were used to repair 13 distal radial and ulnar fractures in 12 dogs. There were three major complications in the 1.5-mm adaption plate group (one plate fracture, one screw pull-out and one fracture through a distal screw hole) and one major complication in the 2.0-mm LC-DCP group due to a re-fracture. All patients without a complication had good or excellent functional outcome. Clinical Significance The authors recommend that the 1.5-mm Adaption plate be used only when a 2.0-mm LC-DCP would not allow for a minimum of two screws in the distal segment and at the discretion of the surgeon. Schattauer GmbH Stuttgart.
The core structure and recombination energy of a copper screw dislocation: a Peierls study
NASA Astrophysics Data System (ADS)
Szajewski, B. A.; Hunter, A.; Beyerlein, I. J.
2017-09-01
The recombination process of dislocations is central to cross-slip, and transmission through ?3 grain boundaries among other fundamental plastic deformation processes. Despite its importance, a detailed mechanistic understanding remains lacking. We apply a continuous dislocation model, inspired by Peierls and Nabarro, complete with an ab-initio computed ?-surface and continuous units of infinitesimal dislocation slip, towards computing the stress-dependent recombination path of both an isotropic and anisotropic Cu screw dislocation. Under no applied stress, our model reproduces the stacking fault width between Shockley partial dislocations as predicted by discrete linear elasticity. Upon application of a compressive Escaig stress, the two partial dislocations coalesce to a separation of ??. Upon increased loading the edge components of each partial dislocation recede, leaving behind a spread Peierls screw dislocation, indicating the recombined state. We demonstrate that the critical stress required to achieve the recombined state is independent of the shear modulus. Rather the critical recombination stress depends on an energy difference between an unstable fault energy (?) and the intrinsic stacking fault energy (?-?). We report recombination energies of ?W = 0.168 eV/Å and ?W = 0.084 eV/Å, respectively, for the Cu screw dislocation within isotropic and anisotropic media. We develop an analytic model which provides insight into our simulation results which compare favourably with other (similar) models.
Biomechanical stability according to different configurations of screws and rods.
Ha, Kee-Yong; Hwang, Sung-Chul; Whang, Tae-Hyuk
2013-05-01
Comparison of biomechanical strength according to 2 different configurations of screws and rods. To compare the biomechanical strength of different configurations of screws and rods composed of the same material and of the same size. Many complications related to instrumentation have been reported. The incidence of metallic failure would differ according to the materials and configurations of the assembly of the screws and rods used. However, to our knowledge, the biomechanical effects of implant assembly rods and screws with different configurations and different contours have not been reported. Biomechanical testing was conducted to compare top tightening (TT) screw-rod configuration with side tightening (ST) screw-rod configuration. All tests were conducted using a hydraulic all-purpose testing machine. All data were acquired at a rate of 10 Hz. Both screw systems used spinal rods of 6 mm diameter and were made of TiAl4V ELI material. Among 5 types of tests, 3 were conducted on the basis of American Society for Testing and Materials (ASTM) F 1798 to 97 and F1717-10. The other 2 tests were conducted for comparing the characteristics between TT and ST pedicle screws according to modified methods from ASTM F 1717-10 and ASTM F 1798-97. All results including axial gripping capacity and yield forces were obtained using the same methods on the basis of the mentioned ASTM standards. In the axial gripping capacity test, the mean axial gripping capacity of the TT screw-rod configuration was 3332 ± 118 N and that of ST was 2222 ± 147 N in straight rods (P = 0.019). In 15-degree contoured rods, TT was 2988 ± 199 N and ST was 2116 ± 423 N (P = 0.014). In 30-degree contoured rods, TT was 2227 ± 408 N and ST was 1814 ± 285 N (P = 0.009). In the pulling-out test, the pulling-out force of ST was 8695 ± 1616 N and that of TT was 6106 ± 195 N (P = 0.014). In the rod-pushing test, the failure force of ST was 4131 ± 205 N and that of TT was 5639 ± 105 N. In the compressive fatigue test, the maximum load was 145 N in ST and 119 N in TT. In the cycle fatigue test, the fatigue strength of ST was higher than that of TT. In the rod-pushing test, the failure force of ST was 4131 ± 205 N and that of TT was 5639 ± 105 N (P=0.046). Two different configurations of rod-screw systems found statistically significant differences with axial gripping, pulling out, and fatigue failures. ST constructs improved fixation stability over TT constructs. It was concluded that ST configuration may reduce complications related to implantation.
Cooke, Christopher C; Hozack, William; Lavernia, Carlos; Sharkey, Peter; Shastri, Shani; Rothman, Richard H
2003-10-01
Fifty-eight patients received an Osteonics constrained acetabular implant for recurrent instability (46), girdlestone reimplant (8), correction of leg lengthening (3), and periprosthetic fracture (1). The constrained liner was inserted into a cementless shell (49), cemented into a pre-existing cementless shell (6), cemented into a cage (2), and cemented directly into the acetabular bone (1). Eight patients (13.8%) required reoperation for failure of the constrained implant. Type I failure (bone-prosthesis interface) occurred in 3 cases. Two cementless shells became loose, and in 1 patient, the constrained liner was cemented into an acetabular cage, which then failed by pivoting laterally about the superior fixation screws. Type II failure (liner locking mechanism) occurred in 2 cases. Type III failure (femoral head locking mechanism) occurred in 3 patients. Seven of the 8 failures occurred in patients with recurrent instability. Constrained liners are an effective method for treatment during revision total hip arthroplasty but should be used in select cases only.
Iwata, Takahiro; Nozawa, Satoshi; Ohashi, Minoru; Sakai, Hiroshi; Shimizu, Katsuji
2013-05-01
We report a 61-year-old woman with rheumatoid arthritis (RA: Steinblocker stage III, class 3) who developed severe swelling and neuropathy of the right lower limb caused by an iliopectineal bursa associated with destruction of the hip joint. Physical examination revealed an inguinal mass and groin pain. X-ray examination indicated destruction of the hip joint. Contrast-enhanced computed tomography showed the bursa connected with the hip joint and a markedly compressed external iliac vein among the inguinal ligament, pubis, and bursa. The patient underwent partial synovial resection and total hip arthroplasty for recovery of hip function, and this led to successful resolution of the symptoms and bursa. We present the characteristic images from this case and review all previously reported cases of RA iliopsoas bursitis causing leg swelling or neuropathy, and summarize the background. Since this lesion may cause various symptoms, clinical awareness that iliopsoas bursitis may present with unique clinical symptoms may aid correct diagnosis.
Nelson, Joshua D; McIff, Terence E; Moodie, Patrick G; Iverson, Jamey L; Horton, Greg A
2010-03-01
Internal fixation of the os calcis is often complicated by prolonged soft tissue management and posterior facet disruption. An ideal calcaneal construct would include minimal hardware prominence, sturdy posterior facet fixation and nominal soft tissue disruption. The purpose of this study was to develop such a construct and provide a biomechanical analysis comparing our technique to a standard internal fixation technique. Twenty fresh-frozen cadaver calcanei were used to create a reproducible Sanders type-IIB calcaneal fracture pattern. One calcaneus of each pair was randomly selected to be fixed using our compressive headless screw technique. The contralateral matched calcaneus was fixed with a nonlocking calcaneal plate in a traditional fashion. Each calcaneus was cyclically loaded at a frequency of 1 Hz for 4000 cycles using an increasing force from 250 N to 1000 N. An Optotrak motion capturing system was used to detect relative motion of the three fracture fragments at eight different points along the fracture lines. Horizontal separation and vertical displacement at the fracture lines was recorded, as well as relative rotation at the primary fracture line. When the data were averaged, there was more horizontal displacement at the primary fracture line of the plate and screw construct compared to the headless screw construct. The headless screw construct also had less vertical displacement at the primary fracture line at every load. On average those fractures fixed with the headless screw technique had less rotation than those fixed with the side plate technique. A new headless screw technique for calcaneus fracture fixation was shown to provide stability as good as, or better than, a standard side plating technique under the axial loading conditions of our model. Although further testing is needed, the stability of the proposed technique is similar to that typically provided by intramedullary fixation. This fixation technique provides a biomechanically stable construct with the potential for a minimally invasive approach and improved post-operative soft tissue healing.
[Compression of the sciatic nerve in uremic tumor calcinosis].
García, S; Cofán, F; Combalia, A; Casas, A; Campistol, J M; Oppenheimer, F
1999-02-01
Tumoral calcinosis is an uncommon and benign condition characterized by the presence of slow-growing calcified periarticular soft tissue masses of varying size. They are usually asymptomatic and nerve compression is rare. We describe the case of a 54-year-old female patient on long-term hemodialysis for chronic renal failure presenting sciatica in the left lower limb secondary to an extensive uremic tumoral calcinosis that affected the hip and thigh. The pathogenesis of uremic tumoral calcinosis as well as the treatment and clinical outcome are analyzed. The uncommon nerve compression due to tumoral calcinosis are reviewed. In conclusion, uremic tumoral calcinosis is a not previously reported infrequent cause of sciatic nerve compression.
Pressure Roller For Tape-Lift Tests
NASA Technical Reports Server (NTRS)
Abrams, Eve
1991-01-01
Rolling device applies nearly constant, uniform pressure to surface. Simple tool exerts nearly constant pressure via compression of sheath by fixed amount. Pins hold wheels on cylinder and cylinder on tangs of handle. Cylinder and handle made of metal or plastic. Sheath press-fit or glued to cylinder. End pins attached to cylinder by adhesive or screw threads. Device intended for use in taking tape-lift samples of particulate contamination on surface.
Xie, Mei-Ming; Xia, Kang; Zhang, Hong-Xin; Cao, Hong-Hui; Yang, Zhi-Jin; Cui, Hai-Feng; Gao, Shang; Tang, Kang-Lai
2017-01-23
Screw fixation is a typical technique for isolated talonavicular arthrodesis (TNA), however, no consensus has been reached on how to select most suitable inserted position and direction. The study aimed to present a new fixation technique and to evaluate the clinical outcome of individual headless compression screws (HCSs) applied with three-dimensional (3D) image processing technology to isolated TNA. From 2007 to 2014, 69 patients underwent isolated TNA by using double Acutrak HCSs. The preoperative three-dimensional (3D) insertion model of double HCSs was applied by Mimics, Catia, and SolidWorks reconstruction software. One HCS oriented antegradely from the edge of dorsal navicular tail where intersected interspace between the first and the second cuneiform into the talus body along the talus axis, and the other one paralleled the first screw oriented from the dorsal-medial navicular where intersected at the medial plane of the first cuneiform. The anteroposterior and lateral X-ray examinations certified that the double HCSs were placed along the longitudinal axis of the talus. Postoperative assessment included the American Orthopaedic Foot & Ankle Society hindfoot (AOFAS), the visual analogue scale (VAS) score, satisfaction score, imaging assessments, and complications. At the mean 44-months follow-up, all patients exhibited good articular congruity and solid bone fusion at an average of 11.26 ± 0.85 weeks (range, 10 ~ 13 weeks) without screw loosening, shifting, or breakage. The overall fusion rates were 100%. The average AOFAS score increased from 46.62 ± 4.6 (range, 37 ~ 56) preoperatively to 74.77 ± 5.4 (range, 64-88) at the final follow-up (95% CI: -30.86 ~ -27.34; p < 0.001). The mean VAS score decreased from 7.01 ± 1.2 (range, 4 ~ 9) to 1.93 ± 1.3 (range, 0 ~ 4) (95% CI: 4.69 ~ 5.48; p < 0.001). One cases (1.45%) and three cases (4.35%) experienced wound infection and adjacent arthritis respectively. The postoperative satisfaction score including pain relief, activities of daily living, and return to recreational activities were good to excellent in 62 (89.9%) cases. Individual 3D reconstruction of HCSs insertion model can be designed with three-dimensional image processing technology in TNA. The technology is safe, effective, and reliable to isolated TNA method with high bone fusion rates, low incidences of complications.
Kato, Fumihiko; Ito, Keigo; Nakashima, Hiroaki; Machino, Masaaki
2009-01-01
Anterior procedures in the cervical spine are feasible in cases having anterior aetiologies such as anterior neural compression and/or severe kyphosis. Halo vests or anterior plates are used concurrently for cases with long segmental fixation. Halo vests are bothersome and anterior plate fixation is not adequately durable. We developed a new anterior pedicle screw (APS) and plate fixation procedure that can be used with fluoroscope-assisted pedicle axis view imaging. Six patients (3 men and 3 women; mean age, 54 years) with anterior multisegmental aetiology were included in this study. Their original diagnoses comprised cervical myelopathy and/or radiculopathy (n = 4), posterior longitudinal ligament ossification (n = 1) and post-traumatic kyphosis (n = 1). All patients underwent anterior decompression and strut grafting with APS and plate fixation. Mean operative time was 192 min and average blood loss was 73 ml. Patients were permitted to ambulate the next day with a cervical collar. Local sagittal alignment was characterised by 3.5° of kyphosis preoperatively, which improved to 6.8° of lordosis postoperatively and 5.2° of lordosis at final follow-up. Postoperative improvement and early bony union were observed in all cases. There was no serious complication except for two cases of dysphagia. Postoperative imaging demonstrated screw exposure in one screw, but no pedicle perforation. APS and plate fixation is useful in selected cases of multisegmental anterior reconstruction of cervical spine. However, the adequate familiarity and experience with both cervical pedicle screw fixation and the imaging technique used for visualising the pedicle during surgery are crucial for this procedure. PMID:19343377
Grau, Luis; Collon, Kevin; Alhandi, Ali; Kaimrajh, David; Varon, Maria; Latta, Loren; Vilella, Fernando
2018-06-01
The aim of this study is to evaluate the biomechanical effect of filling locking variable angle (VA) screw holes at the area of metaphyseal fracture comminution in a Sawbones® (Sawbones USA, Vashon, Washington) model (AO/OTA 33A-3 fracture) using a Synthes VA locking compression plate (LCP) (Depuy Synthes, Warsaw, Indiana). Seven Sawbones® femur models had a Synthes VA-LCP placed as indicated by the manufacturers technique. A 4cm osteotomy was then created to simulate an AO/OTA 33-A3 femoral fracture pattern with metaphyseal comminution. The control group consisted of four constructs in which the open screw holes at the area of comminution were left unfilled; the experimental group consisted of three constructs in which the VA screw holes were filled with locking screws. One of the control constructs was statically loaded to failure at a rate of 5mm/min. A value equal to 75% of the ultimate load to failure was used as the loading force for fatigue testing of 250,000 cycles at 3Hz. Cycles to failure was recorded for each construct and averages were compared between groups. The average number of cycles to failure in the control and experimental groups were 37524±8187 and 43304±23835, respectively (p=0.72). No significant difference was observed with respect to cycles to failure or mechanism of failure between groups. In all constructs in both the control and experimental groups, plate failure reproducibly occurred with cracks through the variable angle holes in the area of bridged comminution. The Synthes VA-LCP in a simulated AO/OTA 33-A3 comminuted metaphyseal femoral fracture fails in a reproducible manner at the area of comminution through the "honeycomb" VA screw holes. Filling open VA screw holes at the site of comminution with locking screws does not increase fatigue life of the Synthes VA-LCP in a simulated AO/OTA 33-A3 distal femoral fracture. Further studies are necessary to determine whether use of this particular plate is contraindicated when bridging distal femoral fractures with metaphyseal comminution.
Oral Steroids (Steroid Pills and Syrups)
... compressions, especially of the backbone and the hip Loss of blood supply to bones (aseptic necrosis) may cause severe bone pain and may require surgical correction Bones To prevent osteoporosis (loss of calcium in the bones), it is important ...
Verma, Nikhil; Singh, M P; Ul-Haq, Rehan; Rajnish, Rajesh K; Anshuman, Rahul
2017-08-01
The aim of present study is to evaluate the outcome of bone marrow instillation at the fracture site in fracture of intracapsular neck femur treated by head preserving surgery. This study included 32 patients of age group 18-50 years with closed fracture of intracapsular neck femur. Patients were randomized into two groups as per the plan generated via www.randomization.com. The two groups were Group A (control), in which the fracture of intracapsular neck femur was treated by closed reduction and cannulated cancellous screw fixation, and Group B (intervention), in which additional percutaneous autologous bone marrow aspirate instillation at fracture site was done along with cannulated cancellous screw fixation. Postoperatively the union at fracture site and avascular necrosis of the femoral head were assessed on serial plain radiographs at final follow-up. Functional outcome was evaluated by Harris hip score. The average follow-up was 19.6 months. Twelve patients in each group had union and 4 patients had signs of nonunion. One patient from each group had avascular necrosis of the femoral head. The average Harris hip score at final follow-up in Group A was 80.50 and in Group B was 75.73, which was found to be not significant. There is no significant role of adding on bone marrow aspirate instillation at the fracture site in cases of fresh fracture of intracapsular neck femur treated by head preserving surgery in terms of accelerating the bone healing and reducing the incidence of femoral head necrosis. Copyright © 2017 Daping Hospital and the Research Institute of Surgery of the Third Military Medical University. Production and hosting by Elsevier B.V. All rights reserved.
CURRENT CONCEPTS AND TREATMENT OF PATELLOFEMORAL COMPRESSIVE ISSUES.
Mullaney, Michael J; Fukunaga, Takumi
2016-12-01
Patellofemoral disorders, commonly encountered in sports and orthopedic rehabilitation settings, may result from dysfunction in patellofemoral joint compression. Osseous and soft tissue factors, as well as the mechanical interaction of the two, contribute to increased patellofemoral compression and pain. Treatment of patellofemoral compressive issues is based on identification of contributory impairments. Use of reliable tests and measures is essential in detecting impairments in hip flexor, quadriceps, iliotibial band, hamstrings, and gastrocnemius flexibility, as well as in joint mobility, myofascial restrictions, and proximal muscle weakness. Once relevant impairments are identified, a combination of manual techniques, instrument-assisted methods, and therapeutic exercises are used to address the impairments and promote functional improvements. The purpose of this clinical commentary is to describe the clinical presentation, contributory considerations, and interventions to address patellofemoral joint compressive issues.
CURRENT CONCEPTS AND TREATMENT OF PATELLOFEMORAL COMPRESSIVE ISSUES
Fukunaga, Takumi
2016-01-01
Patellofemoral disorders, commonly encountered in sports and orthopedic rehabilitation settings, may result from dysfunction in patellofemoral joint compression. Osseous and soft tissue factors, as well as the mechanical interaction of the two, contribute to increased patellofemoral compression and pain. Treatment of patellofemoral compressive issues is based on identification of contributory impairments. Use of reliable tests and measures is essential in detecting impairments in hip flexor, quadriceps, iliotibial band, hamstrings, and gastrocnemius flexibility, as well as in joint mobility, myofascial restrictions, and proximal muscle weakness. Once relevant impairments are identified, a combination of manual techniques, instrument-assisted methods, and therapeutic exercises are used to address the impairments and promote functional improvements. The purpose of this clinical commentary is to describe the clinical presentation, contributory considerations, and interventions to address patellofemoral joint compressive issues. PMID:27904792
Caron, M; Kron, E; Saltrick, K R
1999-04-01
The technical aspects of fusion of the rheumatoid ankle do not deviate from those in the post-traumatic or osteoarthritic ankle. Screw fixation can usually be achieved, and rarely is fixation failure a problem in rheumatoid ankle arthrodesis. If fixation is difficult because of deformity or bone quality, external fixation or locking intramedullary nails should be used. The placement of cannulated screws and adequacy of screw fixation has not been a problem (Fig. 13). Screw fixation provides compression and prevents rotation. The surgeon, however, needs to be assured that no screws invade the subtalar joint and that all threads are beyond the arthrodesis site. A washer may be necessary for further stability if this screw is not inserted at too great an angle. The authors have found that troughing out of the cortical surface of the tibia with a power bur aids in screw insertion. Not only does the trough act as a countersink, but it also provides a path for screw insertion and prevents palpable screw irritation. Malalignment is unforgiving. The foot must be placed neutral to dorsiflexion and plantarflexion. Equinus positioning places added stress on the tibia and a back-knee gait occurs. Approximately 5 degrees of valgus is recommended, and varus positioning is unforgiving. Internal and external rotation is determined by the position of the contralateral extremity. Nonunion does not seem to be a problem with rigid internal fixation to any greater degree in patients with RA. Despite this, patients may continue to have pain despite solid fusion, which can be caused by incomplete correction of deformity, painful internal fixation, or adjacent joint pathology. Additionally, patients may experience supramalleolar pain above the fusion site consistent with tibial stress fracture, which is more common if the subtalar or midtarsal joint is rigid or if the patient is obese. A rocker sole shoe with impact-absorbing soles used after brief periods of guarded mobilization in a removable walking cast alleviates this stress on the tibia. Neurovascular insult can be avoided with careful dissection direct to bone, incisions placed in nerve-free zones, and avoidance of plunging deep posteriorly-medially and anteriorly when dissecting and resecting surfaces. Arthrodesis of the tibiotalar joint in the patient with RA should be performed to relieve severe pain caused by advanced arthrosis. Achieving a solid arthrodesis does not seem to be a problem and provides the patient with pain relief; however, marked improvement in patient function and level of activity remains limited by the nature of RA and adjacent joint involvement.
NASA Technical Reports Server (NTRS)
2008-01-01
This is a photo of an engineering model of the Thermal and Evolved-Gas Analyzer (TEGA) instrument on board NASA's Phoenix Mars Lander. This view shows a TEGA oven-loading mechanism beneath the input screen. The screen on the 1-and-1/2-inch-wide funnel has been removed in this model to show the whirligig that is suspended from the screw on the shaft. The black hole underneath is the porthole that leads to the oven. A tiny electric current compresses and releases a spring on the shaft. As the shaft spins, the screw bumps the screen, breaking up clumps of material into fine particles so they pass through the one millimeter-square screen openings. The energy applied to the tapping screen is about 0.02 inch per pound, or the force needed to move a one-pound mass two-hundredths of an inch. The screw also lifts the three-bladed whirligig so that it jostles fine particles and keeps the oven port open to aid the loading process. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, W.; Zhou, L.; Kassen, A. G.
2015-05-25
Fine Alnico 8 spherical powder produced by gas atomization was consolidated through hot pressing (HP), hot isostatic pressing (HIP), and compression molding and subsequent sintering (CMS) techniques. The effects of different fabrication techniques and processing parameters on microstructure and magnetic properties were analyzed and compared. The HP, HIP, and CMS magnets exhibited different features in microstructures and magnetic properties. Magnetically annealed at 840°C for 10 min and subsequently tempered at 650°C for 5h and 580°C for 15h, the HIP sample achieved the best coercivity (H cj =1845 Oe) due to spinodally decomposed (SD) phases with uniform and well-faceted mosaic morphology.more » As a result, the CMS sample had a lower Hcj than HIP and HP samples, but a higher remanence and thus the best energy product (6.5 MGOe) due to preferential grain alignment induced by abnormal grain growth.« less
NASA Astrophysics Data System (ADS)
Cheng, Hu; Zhang, Junran; Li, Yanchun; Li, Gong; Li, Xiaodong; Liu, Jing
2018-01-01
We have designed and implemented a novel DLD for controlling pressure and compression/decompression rate. Combined with the use of the symmetric diamond anvil cells (DACs), the DLD adopts three piezo-electric (PE) actuators and three static load screws to remotely control pressure in accurate and consistent manner at room temperature. This device allows us to create different loading mechanisms and frames for a variety of existing and commonly used diamond cells rather than designing specialized or dedicated diamond cells with various drives. The sample pressure compression/decompression rate that we have achieved is up to 58.6/43.3 TPa/s, respectively. The minimum of load time is less than 1 ms. The DLD is a powerful tool for exploring the effects of rapid (de)compression on the structure of materials and the properties of materials.
The core structure and recombination energy of a copper screw dislocation: a Peierls study
Szajewski, B. A.; Hunter, A.; Beyerlein, I. J.
2017-05-19
The recombination process of dislocations is central to cross-slip, and transmission through Σ3 grain boundaries among other fundamental plastic deformation processes. Despite its importance, a detailed mechanistic understanding remains lacking. In this paper, we apply a continuous dislocation model, inspired by Peierls and Nabarro, complete with an ab-initio computed -surface and continuous units of infinitesimal dislocation slip, towards computing the stress-dependent recombination path of both an isotropic and anisotropic Cu screw dislocation. Under no applied stress, our model reproduces the stacking fault width between Shockley partial dislocations as predicted by discrete linear elasticity. Upon application of a compressive Escaig stress,more » the two partial dislocations coalesce to a separation of ~|b|. Upon increased loading the edge components of each partial dislocation recede, leaving behind a spread Peierls screw dislocation, indicating the recombined state. We demonstrate that the critical stress required to achieve the recombined state is independent of the shear modulus. Rather the critical recombination stress depends on an energy difference between an unstable fault energy (γτ) and the intrinsic stacking fault energy (γτ-γisf). We report recombination energies of ΔW = 0.168 eV/Å and ΔW = 0.084 eV/Å, respectively, for the Cu screw dislocation within isotropic and anisotropic media. Finally, we develop an analytic model which provides insight into our simulation results which compare favourably with other (similar) models.« less
The core structure and recombination energy of a copper screw dislocation: a Peierls study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szajewski, B. A.; Hunter, A.; Beyerlein, I. J.
The recombination process of dislocations is central to cross-slip, and transmission through Σ3 grain boundaries among other fundamental plastic deformation processes. Despite its importance, a detailed mechanistic understanding remains lacking. In this paper, we apply a continuous dislocation model, inspired by Peierls and Nabarro, complete with an ab-initio computed -surface and continuous units of infinitesimal dislocation slip, towards computing the stress-dependent recombination path of both an isotropic and anisotropic Cu screw dislocation. Under no applied stress, our model reproduces the stacking fault width between Shockley partial dislocations as predicted by discrete linear elasticity. Upon application of a compressive Escaig stress,more » the two partial dislocations coalesce to a separation of ~|b|. Upon increased loading the edge components of each partial dislocation recede, leaving behind a spread Peierls screw dislocation, indicating the recombined state. We demonstrate that the critical stress required to achieve the recombined state is independent of the shear modulus. Rather the critical recombination stress depends on an energy difference between an unstable fault energy (γτ) and the intrinsic stacking fault energy (γτ-γisf). We report recombination energies of ΔW = 0.168 eV/Å and ΔW = 0.084 eV/Å, respectively, for the Cu screw dislocation within isotropic and anisotropic media. Finally, we develop an analytic model which provides insight into our simulation results which compare favourably with other (similar) models.« less
CFD simulation of a screw compressor including leakage flows and rotor heating
NASA Astrophysics Data System (ADS)
Spille-Kohoff, Andreas, Dr.; Hesse, Jan; El Shorbagy, Ahmed
2015-08-01
Computational Fluid Dynamics (CFD) simulations have promising potential to become an important part in the development process of positive displacement (PD) machines. CFD delivers deep insights into the flow and thermodynamic behaviour of PD machines. However, the numerical simulation of such machines is more complex compared to dynamic pumps like turbines or fans. The fluid transport in size-changing chambers with very small clearances between the rotors, and between rotors and casing, demands complex meshes that change with each time step. Additionally, the losses due to leakage flows and the heat transfer to the rotors need high-quality meshes so that automatic remeshing is almost impossible. In this paper, setup steps and results for the simulation of a dry screw compressor are shown. The rotating parts are meshed with TwinMesh, a special hexahedral meshing program for gear pumps, gerotors, lobe pumps and screw compressors. In particular, these meshes include axial and radial clearances between housing and rotors, and beside the fluid volume the rotor solids are also meshed. The CFD simulation accounts for gas flow with compressibility and turbulence effects, heat transfer between gas and rotors, and leakage flows through the clearances. We show time- resolved results for torques, forces, interlobe pressure, mass flow, and heat flow between gas and rotors, as well as time- and space-resolved results for pressure, velocity, temperature etc. for different discharge ports and working points of the screw compressor. These results are also used as thermal loads for deformation simulations of the rotors.
Malik, Mudasir; Halwai, Manzoor Ahmad
2014-10-01
The purpose of this study was to evaluate effectiveness and safety of a relatively new technique of open reduction and internal fixation of displaced transverse patellar fractures with tension band wiring (TBW) through parallel cannulated compression screws. A total of 30 patients with displaced transverse patellar fracture were enrolled in this prospective study. Of the 30 patients, 20 patients had trauma due to fall, 5 due to road traffic accident, 2 due to fall of heavy object on the knee, 2 due to forced flexion of knee, and 1 had fracture due to being beaten. All 30 patients were treated with vertical skin exposure, fracture open reduction, and internal fixation by anterior TBW through 4.0 mm cannulated screws. The postoperative rehabilitation protocol was standardized. The patients were followed postsurgery to evaluate time required for radiographic bone union, knee joint range of motion (ROM), loss of fracture reduction, material failure, and the overall functional result of knee using Bostman scoring. All the fractures healed radiologically, at an average time of 10.7 weeks (range, 8-12 weeks). The average ROM arc was 129.7 degrees (range, 115-140 degrees). No patient had loss of fracture reduction, implant migration, or material failure. The average Bostman score was 28.6 out of 30. Anterior TBW through cannulated screws for displaced transverse fractures is safe and effective alternative treatment. Good functional results and recovery can be expected. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
European Scientific Notes. Volume 37, Number 4,
1983-04-30
information through the system. Conventional screening of cytologi - V P.ftnost., P... l,,, S."". cal material is done manually using --... _ smears or other...simple single commands in the high level remotely located, cable drive units and Microvision language. Components are a vertical axis ball -screw...specially built compressed air , Jr. cannon . The cannon has a bore of 150 mm (fitted with sleeves for smaller mis- siles), and impact velocities up to
Supraintercondylar fractures of the humerus--treatment by the Vigliani osteosynthesis.
Fama, G
1987-03-01
Nineteen cases of supraintercondylar fractures of the humerus treated by the Vigliani osteosynthesis technique are described. This consists of wide transolecranon exposure of the fracture, stabilisation of the epiphyseal fragments with a transcondylar screw, and of the metaphyseo-epiphyseal junction with two condylo-diaphyseal "Eiffel Tower" Kirschner wires. The ulnar nerve is transposed anteriorly and the operation is carried out early in order to prevent neural disturbances and intra and/or periarticular ossification. The results confirm the validity of this method, which respects the delicate structure of this part of the humerus. Postoperative plaster is necessary as an indispensable complement to "minimum" osteosynthesis but this is quite free from risk. The importance of careful and gradual mobilisation of the elbow is also confirmed. Finally, this method combines the advantages of stable osteosynthesis in compression (screw and nut) at the epiphyseal site, with those of elastic osteosynthesis (Kirschner wires) at the metaphyseo-epiphyseal junction.
Pressure Dependence of the Peierls Stress in Aluminum
NASA Astrophysics Data System (ADS)
Dang, Khanh; Spearot, Douglas
2018-03-01
The effect of pressure applied normal to the {111} slip plane on the Peierls stress in Al is studied via atomistic simulations. Edge, screw, 30°, and 60° straight dislocations are created using the Volterra displacement fields for isotropic elasticity. For each dislocation character angle, the Peierls stress is calculated based on the change in the internal energy, which is an invariant measure of the dislocation driving force. It is found that the Peierls stress for dislocations under zero pressure is in general agreement with previous results. For screw and 60° dislocations, the Peierls stress versus pressure relationship has maximum values associated with stacking fault widths that are multiples of the Peierls period. For the edge dislocation, the Peierls stress decreases with increasing pressure from tension to compression. Compared with the Mendelev potential, the Peierls stress calculated from the Mishin potential is more sensitive to changes in pressure.
Ossendorf, C; Hofmann, A; Rommens, P M
2013-03-01
Surgical treatment of pelvic ring injuries requires in-depth knowledge of the topographic anatomy of the pelvic bones, joints and soft tissue structures. A wide range of stabilizing techniques is available including bridging plate osteosynthesis, iliosacral compression screw osteosynthesis and transpubic positioning screws. In this article the different treatment strategies with the respective surgical approaches and patient positioning for pelvic ring fractures and combined lesions of the pelvic ring and acetabulum are presented. Pelvic ring lesions with rotational instability are approached from the anterior and occasionally from both the anterior and posterior based on the amount and localization of the instability. In vertically unstable lesions the most unstable part must be addressed first by reduction and fixation of the dislocated part to the axial skeleton. In combined fractures of the pelvis and acetabulum dorsal stabilization is carried out first.
Vk, Kandhari; Ss, Bava; Mm, Desai; Rn, Wade
2015-01-01
Fibrous dysplasia is a rare benign disorder of the skeletal system characterized by fibro osseous proliferation with intervening areas of normal or immature bone in the intramedullary region. It can either be a monostotic (involves one bone) or a polyostotic (involves more than one bone) presentation and usually occurs equally in males and females. Deformities like scoliosis and shepherd's crook deformity are frequently encountered in the polyostotic form. We report a rare managed case of bilateral non-union of the pathological fracture of femur neck with shepherd's crook deformity of the proximal femur in a case of polyostotic fibrous dysplasia. A 16 years old female case of polyostotic fibrous dysplasia had bilateral Shepherd's crook deformity of the proximal femur with bilateral non - union of pathological fracture of neck femur. We managed each side in one stage with two osteotomies. On the right side, first oblique osteotomy was done from just distal to the greater trochanter up to the level of the neck and the second; lateral closing wedge abduction osteotomy was done at the subtrochanteric level. 2 months later on the left side double lateral closing wedge abduction osteotomies were performed both at the subtrochanteric level. Fixation of both the sides was done using a 135° Dynamic Richard's screw with a long side plate to span the osteotomy sites and the lesion. Post - operatively we achieved a neck shaft angle of 135° on right side and 133° on the left side. Follow up imaging showed union at both the osteotomy sites bilaterally and also at the site of the pathological fracture of neck femur. Presently, at 18 months post - operatively, patient is walking full weight bearing without support and there are no signs of recurrence of lesions of fibrous dysplasia or the deformity. Double osteotomy is an easy and effective method to correct the shepherd's crook deformity and achieve correct mechanical alignment. Dynamic hip screw with long side plate is a versatile implant to tackle the proximal femur deformity. Double osteotomy corrects the deformity and tackles the associated problems like non - union of the pathological neck femur fracture in one stage.
VK, Kandhari; SS, Bava; MM, Desai; RN, Wade
2015-01-01
Introduction: Fibrous dysplasia is a rare benign disorder of the skeletal system characterized by fibro osseous proliferation with intervening areas of normal or immature bone in the intramedullary region. It can either be a monostotic (involves one bone) or a polyostotic (involves more than one bone) presentation and usually occurs equally in males and females. Deformities like scoliosis and shepherd’s crook deformity are frequently encountered in the polyostotic form. We report a rare managed case of bilateral non-union of the pathological fracture of femur neck with shepherd’s crook deformity of the proximal femur in a case of polyostotic fibrous dysplasia. Case Report: A 16 years old female case of polyostotic fibrous dysplasia had bilateral Shepherd’s crook deformity of the proximal femur with bilateral non – union of pathological fracture of neck femur. We managed each side in one stage with two osteotomies. On the right side, first oblique osteotomy was done from just distal to the greater trochanter up to the level of the neck and the second; lateral closing wedge abduction osteotomy was done at the subtrochanteric level. 2 months later on the left side double lateral closing wedge abduction osteotomies were performed both at the subtrochanteric level. Fixation of both the sides was done using a 135° Dynamic Richard’s screw with a long side plate to span the osteotomy sites and the lesion. Post – operatively we achieved a neck shaft angle of 135° on right side and 133° on the left side. Follow up imaging showed union at both the osteotomy sites bilaterally and also at the site of the pathological fracture of neck femur. Presently, at 18 months post – operatively, patient is walking full weight bearing without support and there are no signs of recurrence of lesions of fibrous dysplasia or the deformity. Conclusion: Double osteotomy is an easy and effective method to correct the shepherd’s crook deformity and achieve correct mechanical alignment. Dynamic hip screw with long side plate is a versatile implant to tackle the proximal femur deformity. Double osteotomy corrects the deformity and tackles the associated problems like non - union of the pathological neck femur fracture in one stage. PMID:27299066
Kim, Jong Moon; Je, Hyun Dong; Kim, Hyeong-Dong
2017-01-01
[Purpose] To investigate the effects of a pelvic compression belt (PCB) and chair height on the kinematics and kinetics of the lower extremity during sit-to-stand (STS) maneuvers in healthy people. [Subjects and Methods] Twenty-two people participated in this study. They were required to perform STS maneuvers under four conditions. Hip joint moment and angular displacement of the hip, knee, and ankle were measured. A PCB was also applied below the anterior superior iliac spine. [Results] The angular displacement of the ankle joint increased while performing STS maneuvers from a normal chair with a PCB in phase 1, and decreased during phase 2 when performing STS maneuvers from a high chair. The overall angular displacement in phase 3 was decreased while rising from a chair with a PCB and rising from a high chair. When performed STS maneuvers from a high chair, the angular displacement of the hip, knee, and ankle joint decreased considerably in phase 3. This decreased lower extremity motion in phase 3 indicated that participants required less momentum to complete the maneuver. [Conclusion] The results of this study suggest that a PCB might be appropriate for patients with pelvic girdle pain and lower back pain related to pregnancy. PMID:28878454
Kim, Jong Moon; Je, Hyun Dong; Kim, Hyeong-Dong
2017-08-01
[Purpose] To investigate the effects of a pelvic compression belt (PCB) and chair height on the kinematics and kinetics of the lower extremity during sit-to-stand (STS) maneuvers in healthy people. [Subjects and Methods] Twenty-two people participated in this study. They were required to perform STS maneuvers under four conditions. Hip joint moment and angular displacement of the hip, knee, and ankle were measured. A PCB was also applied below the anterior superior iliac spine. [Results] The angular displacement of the ankle joint increased while performing STS maneuvers from a normal chair with a PCB in phase 1, and decreased during phase 2 when performing STS maneuvers from a high chair. The overall angular displacement in phase 3 was decreased while rising from a chair with a PCB and rising from a high chair. When performed STS maneuvers from a high chair, the angular displacement of the hip, knee, and ankle joint decreased considerably in phase 3. This decreased lower extremity motion in phase 3 indicated that participants required less momentum to complete the maneuver. [Conclusion] The results of this study suggest that a PCB might be appropriate for patients with pelvic girdle pain and lower back pain related to pregnancy.
O'Toole, Robert V; Hui, Emily; Chandra, Amit; Nascone, Jason W
2014-03-01
We hypothesized that open reduction and internal fixation (ORIF) of displaced acetabular fractures in geriatric patients result in a low rate of conversion to hip arthroplasty and satisfactory hip-specific validated outcome scores at medium-term follow-up. Retrospective review. Level I trauma center. One hundred forty-seven consecutive patients who were 60 years or older who had acetabular fractures were treated at our center from 2001 through 2006. During this time period, fractures meeting operative criteria were treated with ORIF unless medical conditions warranted nonoperative treatment. Twenty-nine patients were lost to follow-up, 46 were deceased, and 11 declined to participate, leaving 61 potential patients for inclusion, 46 of whom were treated with ORIF (average follow-up, 4.4 years; range, 1.1-8.0 years). Standardized telephone interviews included hip-specific questions and validated outcome measures. Rates of conversion to hip arthroplasty and hip-specific validated outcome scores. Among 46 patients treated with ORIF (15 others were treated nonoperatively or with percutaneous screw fixation), 28% underwent hip arthroplasty an average 2.5 years after injury (range, 0.4-5.5 years) and had an average Western Ontario and McMaster Universities Index of Osteoarthritis score of 17 (range, 0-56; n = 38). This score is similar to or better than the typical scores after elective arthroplasty for arthritis and much better than the scores for patients with established arthritis (P < 0.05). The average SF-8 Health Survey physical component score was 46.1 (range, 31-62), similar to US population norms for the geriatric age group (P > 0.20). Few data exist regarding the treatment outcomes for geriatric acetabular fractures. It is difficult for clinicians to decide among ORIF, percutaneous fixation, acute arthroplasty, and nonoperative treatment. Our protocol of mostly ORIF showed a high 1-year mortality rate of 25% and a rate of conversion to arthroplasty after ORIF of 28%. Therapeutic Level III. See Instructions for Authors for a complete description of levels of evidence.
Mansuri, Samir; Abdulkhayum, Abdul Mujeeb; Gazal, Giath; Hussain, Mohammed Abid Zahir
2013-12-01
Surgical treatment of fracture mandible using an internal fixation has changed in the last decades to achieve the required rigidity, stability and immediate restoration of function. The aim of the study was to do a Prospective study of 10 patients to determine the efficacy of rectangular grid compression miniplates in mandibular fractures. This study was carried out using 2.0 rectangular grid compression miniplates and 8 mm multidirectional screws as a rigid internal fixation in 10 patients without post operative intermaxillary fixation (IMF). Follow up was done for period of 6 months. All fractures were healed with an absolute stability in post operative period. None of the patient complained of post operative difficulty in occlusion. Within the limits of this study, it can be concluded that rectangular grid compression miniplates was rigid, reliable and thus can be recommended for the treatment of mandibular angle fractures. How to cite this article: Mansuri S, Abdulkhayum AM, Gazal G, Hussain MA. Treatment of mandibular angle fracture with a 2mm, 3 dimensional rectangular grid compression miniplates: A prospective clinical study. J Int Oral Health 2013;5(6):93-100 .
Palencia, Jesús; Alfayez, Saud; Serro, Firas; Alqahtani, Jamal; Alharbi, Hani; Alhinai, Hamed
2016-01-01
Femoral head and neck fractures in children are uncommon, accounting for fewer than 1% of all pediatric fractures and fewer than 8% of all hip fractures. Furthermore, traumatic transphyseal hip fracture is rare to present in daily practice especially when associated with an acetabular fracture. A twelve years old boy, not known to have any chronic illnesses, presented to the emergency department as a case of polytrauma after a road traffic accident. Signs of left hip dislocation were discovered upon physical examination. X-rays and CT scans, revealed a complete transphyseal posterior dislocation and a left anterior column fracture of the acetabulum with a minimal displacement. Within five hours, the patient underwent open reduction and internal fixation by two cannulated screws. The acetabular fracture was managed conservatively. After six months, there were clear signs of osteonecrosis of the femoral head. A high-energy trauma in children and adolescents can lead to simultaneous epiphyseal and acetabular fractures which are associated with a poor prognosis. The age seems to play a role as patients older than ten years have a higher risk of developing AVN after sustaining a hip dislocation regardless of the time of intervention. Epiphyseal fracture with dislocation of the femoral head is rare among children and adolescents, especially when associated with an acetabular fracture. AVN in such cases can develop, and it represents a challenge to orthopedic surgeons due to the poor prognosis and the future functional limitations of the joint. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Cox, Christopher; Earp, Brandon E; Floyd, W Emerson; Blazar, Philip E
2014-01-01
To study the results of using a small, headless compression screw (AcuTwist) for thumb interphalangeal (IP) joint and finger distal interphalangeal (DIP) joint arthrodeses. Between November 2007 and January 2012, 48 primary arthrodeses of the thumb IP joint or DIP joint in the other digits were performed in 29 consecutive patients with AcuTwist devices. Indications for arthrodesis included 19 cases of osteoarthritis in 25 fingers, 3 cases of lupus in 9 fingers, 2 cases of post-traumatic osteoarthritis in 2 fingers, and 1 case and finger each of acute trauma, neuromuscular disorder, postinfectious osteoarthritis, boutonniere deformity, and Dupuytren contracture. Charts were reviewed for clinical data, and radiographs were assessed for alignment and healing. Age averaged 59 years and follow-up averaged 12 months (range, 2-50 mo). Union occurred in 43 out of 46 fingers (94%). There were no cases of nail deformity, wound complications, tip hypersensitivity, or clinically notable malalignment. Three arthrodeses failed to fuse, including 2 asymptomatic nonunions and 1 fixation loss requiring revision with autograft. The complication rate was 9%. Distal digital joint arthrodesis with the AcuTwist resulted in a fusion rate of 94% with a complication rate of 9%. Our rate of fusion compares favorably with prior series using other methods of fixation. Therapeutic IV. Copyright © 2014 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Nousiainen, Markku T; Omoto, Daniel M; Zingg, Patrick O; Weil, Yoram A; Mardam-Bey, Sami W; Eward, William C
2013-02-01
: Femoral neck fractures are among the most common orthopaedic injuries impacting the health care system. Surgical management of such fractures with cannulated screws is a commonly performed procedure. The acquisition of surgical skills necessary to perform this procedure typically involves learning on real patients with fluoroscopic guidance. This study attempts to determine if a novel computer-navigated training model improves the learning of this basic surgical skill. A multicenter, prospective, randomized, and controlled study was conducted using surgical trainees with no prior experience in surgically managing femoral neck fractures. After a training session, participants underwent a pretest by performing the surgical task (screw placement) on a simulated hip fracture using fluoroscopic guidance. Immediately after, participants were randomized into either undergoing a training session using conventional fluoroscopy or computer-based navigation. Immediate posttest, retention (4 weeks later), and transfer tests were performed. Performance during the tests was determined by radiographic analysis of hardware placement. Screw placement by trainees was ultimately equal to the level of an expert surgeon with either training technique. Participants who trained with computer navigation took fewer attempts to position hardware and used less fluoroscopy time than those trained with fluoroscopy. When those trained with fluoroscopy used computer navigation at the transfer test, less fluoroscopy time and dosage was used. The concurrent augmented feedback provided by computer navigation did not affect the learning of this basic surgical skill in surgical novices. No compromise in learning occurred if the surgical novice trained with one type of technology and transferred to using the other. The findings of this study suggest that computer navigation may be safely used to train surgical novices in a basic procedure. This model avoids using both live patients and harmful radiation without a compromise in the acquisition of a 3-dimensional technical skill.
Willecke, N; Szepes, A; Wunderlich, M; Remon, J P; Vervaet, C; De Beer, T
2018-04-21
The overall objective of this work is to understand how excipient characteristics influence the drug product quality attributes and process performance of a continuous twin screw wet granulation process. The knowledge gained in this study is intended to be used for Quality by Design (QbD)-based formulation design and formulation optimization. Three principal components which represent the overarching properties of 8 selected pharmaceutical fillers were used as factors, whereas factors 4 and 5 represented binder type and binder concentration in a design of experiments (DoE). The majority of process parameters were kept constant to minimize their influence on the granule and drug product quality. 27 DoE batches consisting of binary filler/binder mixtures were processed via continuous twin screw wet granulation followed by tablet compression. Multiple linear regression models were built providing understanding of the impact of filler and binder properties on granule and tablet quality attributes (i.e. 16 DoE responses). The impact of fillers on the granule and tablet responses was more dominant compared to the impact of binder type and concentration. The filler properties had a relevant effect on granule characteristics, such as particle size, friability and specific surface area. Binder type and concentration revealed a relevant influence on granule flowability and friability as well as on the compactability (required compression force during tableting to obtain target hardness). In order to evaluate the DoE models' validity, a verification of the DoE models was performed with new formulations (i.e. a new combination of filler, binder type and binder concentration) which were initially not included in the dataset used to build the DoE models. The combined PCA (principle component analysis)/DoE approach allowed to link the excipient properties with the drug product quality attributes. Copyright © 2018 Elsevier B.V. All rights reserved.
Kashayi-Chowdojirao, Sreekanth; Vallurupalli, Aashish; Chilakamarri, Vijay Krishna; Patnala, Chandrasekhar; Chodavarapu, Lalith Mohan; Kancherla, Nageswara Rao; Khazi Syed, Asif Hussain
2017-11-01
Non-union humeral shaft fractures are seen frequently in clinical practice at about 2-10% in conservative management and 30% in surgically operated patients. Osteosynthesis using dynamic compression plate (DCP), intramedullary nailing, locking compression plate (LCP), Ilizarov technique along with bone grafting have been reported previously. In cases of prior failed plate-screw osteosynthesis the resultant osteopenia, cortical defect, bone loss, scalloping around screws and metallosis, make the management of non-union more complicated. Fibular graft as an intramedullary strut is useful in these conditions by increasing screw purchase, union and mechanical stability. This study is a retrospective and prospective follow up of revision plating along with autologous non-vascularised intramedullary fibular strut graft (ANVFG) for humeral non-unions following failed plate osteosynthesis. Seventy eight cases of nonunion humeral shaft fractures were managed in our institute between 2008 and 2015. Of these, 57 cases were failed plate osteosynthesis, in which 15 cases were infected and 42 cases were noninfected. Out of the 78 cases, bone grafting was done in 55 cases. Fibular strut graft was used in 22 patients, of which 4 cases were of primary nonunion with osteoporotic bone. Applying the exclusion criteria of infection and inclusion criteria of failed plate osteosynthesis managed with revision plating using either LCP or DCP and ANVFG, 17 cases were studied. The mean age of the patients was 40.11 yrs (range: 26-57 yrs). The mean duration of non-union was 4.43 yrs (range: 0.5-14 yrs). The mean follow-up period was 33.41 months (range: 12-94 months). The average length of fibula was 10.7 cm (range: 6-15 cm). Main outcome measurements included bony union by radiographic assessment and pre- and postoperative functional evaluation using the DASH (Disabilities of the Arm, Shoulder and Hand) score. Results: Sixteen out of 17 fractures united following revision plating and fibular strut grafting. Average time taken for union was 3.5 months (range: 3-5 months). Complications included one each of implant failure with bending, transient radial nerve palsy and transient ulnar nerve palsy. No case had infection, graft site morbidity or peroneal nerve palsy. Functional assessment by DASH score improved from 59.14 (range: 43.6-73.21) preoperatively to 23.39 (range: 8.03-34.2) postoperatively (p = 0.0003). Conclusion: The results of our study indicate that revision plating along with ANVFG is a reliable option in humeral diaphyseal non-unions with failed plate-screw osteosynthesis providing adequate screw purchase, mechanical stability and high chances of union with good functional outcome.
Akamaru, Tomoyuki; Kawahara, Norio; Sakamoto, Jiro; Yoshida, Akira; Murakami, Hideki; Hato, Taizo; Awamori, Serina; Oda, Juhachi; Tomita, Katsuro
2005-12-15
A finite-element study of posterior alone or anterior/posterior combined instrumentation following total spondylectomy and replacement with a titanium mesh cage used as an anterior strut. To compare the effect of posterior instrumentation versus anterior/posterior instrumentation on transmission of the stress to grafted bone inside a titanium mesh cage following total spondylectomy. The most recent reconstruction techniques following total spondylectomy for malignant spinal tumor include a titanium mesh cage filled with autologous bone as an anterior strut. The need for additional anterior instrumentation with posterior pedicle screws and rods is controversial. Transmission of the mechanical stress to grafted bone inside a titanium mesh cage is important for fusion and remodeling. To our knowledge, there are no published reports comparing the load-sharing properties of the different reconstruction methods following total spondylectomy. A 3-dimensional finite-element model of the reconstructed spine (T10-L4) following total spondylectomy at T12 was constructed. A Harms titanium mesh cage (DePuy Spine, Raynham, MA) was positioned as an anterior replacement, and 3 types of the reconstruction methods were compared: (1) multilevel posterior instrumentation (MPI) (i.e., posterior pedicle screws and rods at T10-L2 without anterior instrumentation); (2) MPI with anterior instrumentation (MPAI) (i.e., MPAI [Kaneda SR; DePuy Spine] at T11-L1); and (3) short posterior and anterior instrumentation (SPAI) (i.e., posterior pedicle screws and rods with anterior instrumentation at T11-L1). The mechanical energy stress distribution exerted inside the titanium mesh cage was evaluated and compared by finite-element analysis for the 3 different reconstruction methods. Simulated forces were applied to give axial compression, flexion, extension, and lateral bending. In flexion mode, the energy stress distribution in MPI was higher than 3.0 x 10 MPa in 73.0% of the total volume inside the titanium mesh cage, while 38.0% in MPAI, and 43.3% in SPAI. In axial compression and extension modes, there were no remarkable differences for each reconstruction method. In left-bending mode, there was little stress energy in the cancellous bone inside the titanium mesh cage in MPAI and SPAI. This experiment shows that from the viewpoint of stress shielding, the reconstruction method, using additional anterior instrumentation with posterior pedicle screws (MPAI and SPAI), stress shields the cancellous bone inside the titanium mesh cage to a higher degree than does the system using posterior pedicle screw fixation alone (MPI). Thus, a reconstruction method with no anterior fixation should be better at allowing stress for remodeling of the bone graft inside the titanium mesh cage.
Tsutsui, Sadaaki; Kawasaki, Keikichi; Yamakoshi, Ken-Ichi; Uchiyama, Eiichi; Aoki, Mitsuhiro; Inagaki, Katsunori
2016-09-01
The present study compared the changes in biomechanical and radiographic properties under cyclic axial loadings between the 'double-tiered subchondral support' (DSS) group (wherein two rows of screws were used) and the 'non-DSS' (NDSS) group (wherein only one row of distal screws was used) using cadaveric forearm models of radius fractures fixed with a polyaxial locking plate. Fifteen fresh cadaveric forearms were surgically operated to generate an Arbeitsgemeinschaft für Osteosynthesefragen (AO) type 23-C2 fracture model with the fixation of polyaxial volar locking plates. The model specimens were randomized into two groups: DSS (n = 7) and NDSS (n = 8). Both the groups received 4 locking screws in the most distal row, as is usually applied, whereas the DSS group received 2 additional screws in the second row inserted at an inclination of about 15° to support the dorsal aspect of the dorsal subchondral bone. Cyclic axial compression test was performed (3000 cycles; 0-250 N; 60 mm/min) to measure absolute rigidity and displacement, after 1, 1000, 2000 and 3000 cycles, and values were normalized relative to cycle 1. These absolute and normalized values were compared between those two groups. Radiographic images were taken before and after the cyclic loading to measure changes in volar tilt (ΔVT) and radial inclination (ΔRI). The DSS group maintained significantly higher rigidity and lower displacement values than the NDSS group during the entire loading period. Radiographic analysis indicated that the ΔVT values of the DSS group were lower than those of the NDSS group. In contrast, the fixation design did not influence the impact of loading on the ΔRI values. Biomechanical and radiographic analyses demonstrated that two rows of distal locking screws in the DSS procedure conferred higher stability than one row of distal locking screws. Copyright © 2016 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.
Biomechanical Strength of Retrograde Fixation in Proximal Third Scaphoid Fractures.
Daly, Charles A; Boden, Allison L; Hutton, William C; Gottschalk, Michael B
2018-04-01
Current techniques for fixation of proximal pole scaphoid fractures utilize antegrade fixation via a dorsal approach endangering the delicate vascular supply of the dorsal scaphoid. Volar and dorsal approaches demonstrate equivalent clinical outcomes in scaphoid wrist fractures, but no study has evaluated the biomechanical strength for fractures of the proximal pole. This study compares biomechanical strength of antegrade and retrograde fixation for fractures of the proximal pole of the scaphoid. A simulated proximal pole scaphoid fracture was produced in 22 matched cadaveric scaphoids, which were then assigned randomly to either antegrade or retrograde fixation with a cannulated headless compression screw. Cyclic loading and load to failure testing were performed and screw length, number of cycles, and maximum load sustained were recorded. There were no significant differences in average screw length (25.5 mm vs 25.6 mm, P = .934), average number of cyclic loading cycles (3738 vs 3847, P = .552), average load to failure (348 N vs 371 N, P = .357), and number of catastrophic failures observed between the antegrade and retrograde fixation groups (3 in each). Practical equivalence between the 2 groups was calculated and the 2 groups were demonstrated to be practically equivalent (upper threshold P = .010). For this model of proximal pole scaphoid wrist fractures, antegrade and retrograde screw configuration have been proven to be equivalent in terms of biomechanical strength. With further clinical study, we hope surgeons will be able to make their decision for fixation technique based on approaches to bone grafting, concern for tenuous blood supply, and surgeon preference without fear of poor biomechanical properties.
Biomechanical analysis of posteromedial tibial plateau split fracture fixation.
Zeng, Zhi-Min; Luo, Cong-Feng; Putnis, Sven; Zeng, Bing-Fang
2011-01-01
The purpose of this study was to compare the biomechanical strength of four different fixation methods for a posteromedial tibial plateau split fracture. Twenty-eight tibial plateau fractures were simulated using right-sided synthetic tibiae models. Each fracture model was randomly instrumented with one of the four following constructs, anteroposterior lag-screws, an anteromedial limited contact dynamic compression plate (LC-DCP), a lateral locking plate, or a posterior T-shaped buttress plate. Vertical subsidence of the posteromedial fragment was measured from 500 N to 1500 N during biomechanical testing, the maximum load to failure was also determined. It was found that the posterior T-shaped buttress plate allowed the least subsidence of the posteromedial fragment and produced the highest mean failure load than each of the other three constructs (P=0.00). There was no statistical significant difference between using lag screws or an anteromedial LC-DCP construct for the vertical subsidence at a 1500 N load and the load to failure (P>0.05). This study showed that a posterior-based buttress technique is biomechanically the most stable in-vitro fixation method for posteromedial split tibial plateau fractures, with AP screws and anteromedial-based LC-DCP are not as stable for this type of fracture. Copyright © 2010 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmit, P. F.; Velikovich, A. L.; McBride, R. D.
Magnetically driven implosions of solid metal shells are an effective vehicle to compress materials to extreme pressures and densities. Rayleigh-Taylor instabilities (RTI) are ubiquitous, yet typically undesired features in all such experiments where solid materials are rapidly accelerated to high velocities. In cylindrical shells (“liners”), the magnetic field driving the implosion can exacerbate the RTI. Here, we suggest an approach to implode solid metal liners enabling a remarkable reduction in the growth of magnetized RTI (MRTI) by employing a magnetic drive with a tilted, dynamic polarization, forming a dynamic screw pinch. Our calculations, based on a self-consistent analytic framework, demonstratemore » that the cumulative growth of the most deleterious MRTI modes may be reduced by as much as 1 to 2 orders of magnitude. One key application of this technique is to generate increasingly stable, higher-performance implosions of solid metal liners to achieve fusion [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)]. Finally, we weigh the potentially dramatic benefits of the solid liner dynamic screw pinch against the experimental tradeoffs required to achieve the desired drive field history and identify promising designs for future experimental and computational studies.« less
Design and manufacture a coconut milk squeezer
NASA Astrophysics Data System (ADS)
Wayan Surata, I.; Gde Tirta Nindhia, Tjokorda; Budyanto, D.; Yulianto, A. E.
2017-05-01
The process of cooking oil production generally is started by grating the ripe coconut meat, then pressing the grated meat to obtain coconut milk, and finally heating the coconut milk to obtain the cooking oil. Pressing mechanism to obtain coconut milk is a very important step and decisive in the process of producing cooking oil. The amount of milk produced depends on the pressure applied at the time of pressing grated coconut. The higher the pressure, the more milk is obtained. Some commercial mechanical pressing tools that available in the market are not efficient due to the working steps too much and take long time per cycle of work. The aims of this study was to design and manufacture a power screw squeezer for the collection of coconut milk. Power screw produces a compressive force in the cylinder to push and press the grated coconut until the end of the cylinder while the coconut milk and coconut dregs flow out simultaneously. Screw press was designed using straight shaft configuration with square profile. Performance test was done to investigate the actual capacity and yield of milk produced. The results showed that squeezer of grated coconut worked well with capacity an average of 13,63 kg/h and coconut milk yield of 58%.
Schmit, P. F.; Velikovich, A. L.; McBride, R. D.; ...
2016-11-11
Magnetically driven implosions of solid metal shells are an effective vehicle to compress materials to extreme pressures and densities. Rayleigh-Taylor instabilities (RTI) are ubiquitous, yet typically undesired features in all such experiments where solid materials are rapidly accelerated to high velocities. In cylindrical shells (“liners”), the magnetic field driving the implosion can exacerbate the RTI. Here, we suggest an approach to implode solid metal liners enabling a remarkable reduction in the growth of magnetized RTI (MRTI) by employing a magnetic drive with a tilted, dynamic polarization, forming a dynamic screw pinch. Our calculations, based on a self-consistent analytic framework, demonstratemore » that the cumulative growth of the most deleterious MRTI modes may be reduced by as much as 1 to 2 orders of magnitude. One key application of this technique is to generate increasingly stable, higher-performance implosions of solid metal liners to achieve fusion [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)]. Finally, we weigh the potentially dramatic benefits of the solid liner dynamic screw pinch against the experimental tradeoffs required to achieve the desired drive field history and identify promising designs for future experimental and computational studies.« less
A novel compact compliant actuator design for rehabilitation robots.
Yu, Haoyong; Huang, Sunan; Thakor, Nitish V; Chen, Gong; Toh, Siew-Lok; Sta Cruz, Manolo; Ghorbel, Yassine; Zhu, Chi
2013-06-01
Rehabilitation robots have direct physical interaction with human body. Ideally, actuators for rehabilitation robots should be compliant, force controllable, and back drivable due to safety and control considerations. Various designs of Series Elastic Actuators (SEA) have been developed for these applications. However, current SEA designs face a common performance limitation due to the compromise on the spring stiffness selection. This paper presents a novel compact compliant force control actuator design for portable rehabilitation robots to overcome the performance limitations in current SEAs. Our design consists of a servomotor, a ball screw, a torsional spring between the motor and the ball screw, and a set of translational springs between the ball screw nut and the external load. The soft translational springs are used to handle the low force operation and reduce output impedance, stiction, and external shock load. The torsional spring, being in the high speed range, has high effective stiffness and improves the system bandwidth in large force operation when the translational springs are fully compressed. This design is also more compact due to the smaller size of the springs. We explain the construction and the working principle of our new design, followed by the dynamic modeling and analysis of the actuator. We also show the preliminary testing results of a prototype actuator designed for a lower limb exoskeleton for gait rehabilitation.
Shelf arthroplasty by minimal invasive surgery: technique and results of 76 cases.
Chiron, P; Laffosse, J M; Bonnevialle, N
2007-01-01
Shelf arthroplasty is an old technique which by a classical approach, proposed by Lance in 1925, had a low morbidity rate and long term known results. A minimal invasive approach reduces the magnitude of the operation, its consequences and might allow one to broaden its indications. The approach is 4 cm long at the anterolateral part of the hip, through the space between tensor fascia latae and gluteus muscles. A 3x3 cm cortical-cancellous autograft is applied using a guide wire positioned by fluoroscopy and the osteosynthesis is based on a cannulated screw. 76 cases were reviewed over two years (4.6 years average, 2-8 years). The average hospitalization period lasted for three days; patients have to respect partial weight bearing for two months and no one has been placed in a re-education center. 75% patients had a completely painless hip without limiting their activity. 93% shelves are consolidated with a callus in three months; 6% nonunion was due, in part, to a technical mistake. No infection, no phlebitis, no palsy of the cutaneo lateral nerve has been evidenced.
The stability of a hip fracture determines the fatigue of an intramedullary nail.
Eberle, S; Bauer, C; Gerber, C; von Oldenburg, G; Augat, P
2010-01-01
The purpose of this study was to address the question of how the stability of a proximal hip fracture determines the fatigue and failure mechanism of an intramedullary implant. To answer this question, mechanical experiments and finite element simulations with two different loading scenarios were conducted. The two load scenarios differed in the mechanical support of the fracture by an artificial bone sleeve, representing the femoral head and neck. The experiments confirmed that an intramedullary nail fails at a lower load in an unstable fracture situation in the proximal femur than in a stable fracture. The nails with an unstable support failed at a load 28 per cent lower than the nails with a stable support by the femoral neck. Hence, the mechanical support of a fracture is crucial to the fatigue failure of an implant. The simulation showed why the fatigue fracture of the nail starts at the aperture of the lag screw. It is the location of the highest von Mises stress, which is the failure criterion for ductile materials.
Huda, Najmul; Julfiqar; Pant, Ajay; Aslam, M
2015-01-01
Perioperative complications are well known during partial and total hip arthroplasty. One of the common categories of these complications is an intraoperative fractures of the proximal femur. Here we discuss a case of perforation of posteromedial cortex of the proximal femur, while doing a press fit modular bipolar hemiarthroplasty, in a young adult with secondary nonunion of the femoral neck fracture. The cause of this proximal femur perforation was residual fibular strut graft that, redirected the femoral stem into undesirable direction. This complication of residual fibular strut graft has not been disscussed much in the orthopedic literature previously. A press fit modular bipolar hiparthroplasty was performed in a young adult male with nonunion fracture neck of the femur secondary to initial fixation using 6.5mm cannulated hip screws and nonvascularized free fibular strut grafting. Failure to completely remove the fibular strut from the proximal femur lead to difficult negotiation of the femoral stem into the femoral canal and ultimately a perforation in the proximal femur at the level of the lesser trochanter. A revision procedure was done to completely remove the residual fibular graft, and then a fresh press fit modular bipolar hemiarthroplasty was done. Complete removal of fibular strut graft should be done, while performing hip arthroplasty in patients with failed fibular grafting for fracture neck of the femur.
Wu, Chang-Chin; Hsu, Li-Ho; Tsai, Yuh-Feng; Sumi, Shoichiro; Yang, Kai-Chiang
2016-04-04
Internal fixation devices, which can stabilize and realign fractured bone, are widely used in fracture management. In this paper, a biodegradable composite fixator, composed of poly(ε-caprolactone), calcium phosphate ceramic and calcium sulfate (PCL/CPC/CS), is developed. The composition of CS, which has a high dissolution rate, was expected to create a porous structure to improve osteofixation to the composite fixator. PCL, PCL/CPC, and PCL/CPC/CS samples were prepared and their physical properties were characterized in vitro. In vivo performance of the composite screws was verified in the distal femurs of rabbits. Results showed that the PCL/CPC/CS composite had a higher compressive strength (28.55 ± 3.32 MPa) in comparison with that of PCL (20.64 ± 1.81 MPa) (p < 0.05). A larger amount of apatite was formed on PCL/CPC/CS than on PCL/CPC, while no apatite was found on PCL after simulated body fluid immersion. In addition, PCL/CPC/CS composites also had a faster in vitro degradation rate (13.05 ± 3.42% in weight loss) relative to PCL (1.79 ± 0.23%) and PCL/CPC (4.32 ± 2.18%) (p < 0.001). In animal studies, PCL/CPC/CS screws showed a greater volume loss than that of PCL or PCL/CPC at 24 weeks post-implantation. Under micro-computerized tomography observation, animals with PCL/CPC/CS implants had better osseointegration in terms of the structural parameters of the distal metaphysis, including trabecular number, trabecular spacing, and connectivity density, than the PCL screw. This study reveals that the addition of CS accelerates the biodegradation and enhanced apatite formation of the PCL/CPC composite screw. This osteoconductive PCL/CPC/CS is a good candidate material for internal fixation devices.
Head salvage of an infected neck of femur fracture in an adult: a case report.
Joseph, Christina Marie; Jepegnanam, Thilak Samuel
2018-05-23
Head preservation of an infected neck of femur fracture appears to be extremely rare with no described cases in literature till date. We present the outcome of head salvage in a young adult with an infected neck of femur nonunion who in addition had chronic osteomyelitic sequelae of his entire femur with reactivation of latent infection in the distal femoral diaphysis. Osteosynthesis was performed by means of cancellous screw fixation augmented with bone substitute following a failed attempt at salvage with a valgus intertrochanteric osteotomy. The patient had an excellent functional outcome with near normal hip range of movements at a follow-up of 5 years after union.
Buttaro, Martin A; Zanotti, Gerardo; Comba, Fernando M; Piccaluga, Francisco
2017-02-01
Delta ceramics may be the bearing of choice for younger and active patients due to its improved toughness and wear characteristics, provided there is no risk of fracture. However, ceramic fracture is the most serious complication related to this type of bearing. Although millions of Delta ceramics have been implanted worldwide, short to midterm results have been scarcely reported in the literature. The purpose of this study was to report the complication rate at short to midterm follow-up associated with the bearing surface used in a series of primary total hip arthroplasties with Delta ceramic-on-ceramic bearings performed in a single institution. A total of 939 cases (880 patients) undergoing primary total hip arthroplasty with fourth-generation Delta ceramic-on-ceramic bearings were retrospectively reviewed. They were followed for an average of 5.3 years (2-10 years). One hip experienced a liner fracture, 2 cups presented early loosening due to friction between the acetabular screw and the backside of the liner, one femoral ball head had a fracture; one case of squeaking was reported, which is impending revision. Considering revision or impending revision in relationship with the bearing surface as the end point, the mean survival rate was 99.3% (confidence interval 95%, 98.3%-99.7%) at 2-10 years. This study showed a low rate of ceramic fracture compared with others; however, it was much higher than the complication rate presented by the manufacturers. The complications observed were directly related to technical errors that surgeons should avoid when using this type of surface. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Bondarenko, J. A.; Fedorenko, M. A.; Pogonin, A. A.
2018-03-01
The loading and unloading units and grinding mills of raw devices have internal cone type or pipe screw perceive load of incoming and outgoing material. The main part of the support assembly is a pin. Mounting seats for the pipe screws cone have traces of deformation and work hardening, while they themselves have wear of pins and deformation of the inner and outer cylindrical working surface. In the mill body, there are constantly acting dynamic forces causing vibration, which are transmitted to the stud and inner accelerating elements. Under the influence of stress and vibration, the housing spigot is in the stress-compressed state and stretched vertically and horizontally. As a result, the insertion element is deformed and weakened in the fixture. A moving element appears in the gap leading to the fact that it drops lfeedstock and under the influence of variable loads it is destroyed, as well as the seating surfaces of the insert pin member.
Batista, Karla A; Prudêncio, Sandra H; Fernandes, Kátia F
2010-04-01
The biochemical and functional properties of 2 hard-to-cook common bean cultivars (Phaseolus vulgaris, L.) were investigated after the extrusion process. Beans of BRS pontal and BRS grafite cultivars were milled and extruded at 150 degrees C, with a compression ratio screw of 3 : 1, 5-mm die, and screw speed of 150 rpm. Extrudate flours were evaluated for water solubility (WS), water absorption index (WAI), oil absorption capacity (OAC), foaming capacity (FC), emulsifying activity (EA), antinutritional factors, and in vitro protein and starch digestibility. Results indicated that the extrusion significantly decreased antinutrients such as phytic acid, lectin, alpha-amylase, and trypsin inhibitors, reduced the emulsifying capacity and eliminated the FC in both BRS pontal and BRS grafite cultivars. In addition, the WS, WAI, and in vitro protein and starch digestibility were improved by the extrusion process. These results indicate that it is possible to produce new extruded products with good functional and biochemical properties from these common bean cultivars.
Syrimpeis, Vasileios; Vitsas, Vasileios; Korovessis, Panagiotis
2014-03-01
Context Hemangiomas are the commonest benign tumors of the spine. Most occur in the thoracolumbar spine and the majority are asymptomatic. Rarely, hemangiomas cause symptoms through epidural expansion of the involved vertebra, resulting in spinal canal stenosis, spontaneous epidural hemorrhage, and pathological burst fracture. Findings We report a rare case of a 73-year-old woman, who had been treated for two months for degenerative neurogenic claudication. On admission, magnetic resonance imaging and computed tomographic scans revealed a hemangioma of the third lumbar vertebra protruding to the epidural space producing lateral spinal stenosis and ipsilateral nerve root compression. The patient underwent successful right hemilaminectomy for decompression of the nerve root, balloon kyphoplasty with poly-methyl methacrylate (PMMA) and pedicle screw segmental stabilization. Postoperative course was uneventful. Conclusion In the elderly, this rare presentation of spinal stenosis due to hemangiomas may be encountered. Decompression and vertebral augmentation by means balloon kyphoplasty with PMMA plus segmental pedicle screw fixation is recommended.
Syrimpeis, Vasileios; Vitsas, Vasileios; Korovessis, Panagiotis
2014-01-01
Context Hemangiomas are the commonest benign tumors of the spine. Most occur in the thoracolumbar spine and the majority are asymptomatic. Rarely, hemangiomas cause symptoms through epidural expansion of the involved vertebra, resulting in spinal canal stenosis, spontaneous epidural hemorrhage, and pathological burst fracture. Findings We report a rare case of a 73-year-old woman, who had been treated for two months for degenerative neurogenic claudication. On admission, magnetic resonance imaging and computed tomographic scans revealed a hemangioma of the third lumbar vertebra protruding to the epidural space producing lateral spinal stenosis and ipsilateral nerve root compression. The patient underwent successful right hemilaminectomy for decompression of the nerve root, balloon kyphoplasty with poly-methyl methacrylate (PMMA) and pedicle screw segmental stabilization. Postoperative course was uneventful. Conclusion In the elderly, this rare presentation of spinal stenosis due to hemangiomas may be encountered. Decompression and vertebral augmentation by means balloon kyphoplasty with PMMA plus segmental pedicle screw fixation is recommended. PMID:24090267
Edwards, Scott G; Argintar, Evan; Lamb, Joshua
2011-06-01
Intramedullary nails have been used for the fixation of olecranon fractures in an attempt to reduce the soft tissue irritation and resulting need for hardware removal seen with plating and tension banding. Further benefits include preservation of vascular supply, and increase stability and improved compression over some alternative techniques. Most intramedullary nails have been limited to simple olecranon fractures or osteotomies. One novel multiplanar, locking intramedullary nail, however, is indicated to stabilize all fracture patterns of the proximal ulna, including the coronoid. This particular locking nail has screws that radiate in multiple planes and form a fixed-angle lattice throughout the bone. The nail also has fixed-angle screws dedicated to the 3 parts of the coronoid: process tip, medial facet, and medial wall. This allows the nail to secure multiple fragments regardless of the fracture pattern's extent of instability. The objective of this article is to illustrate the recommended steps in reducing and stabilizing a comminuted proximal ulna fracture-dislocation using this multiplanar locking intramedullary nail.
Kolodziej, Lukas; Sadlik, Boguslaw; Sokolowski, Sebastian; Bohatyrewicz, Andrzej
2017-01-01
Background: As orthopedic surgeons become skilled in ankle arthroscopy technique and evidence -based data is supporting its use, arthroscopic ankle arthrodesis (AAA) will likely continue to increase, but stabilization methods have not been described clearly. We present a technique for two parallel 7.3-mm headless compression screws fixation (HCSs) for AAA in cases of ankle arthritis with different etiology, both traumatic and non-traumatic, including neuromuscular and inflammatory patients. Materials and Methods: We retrospectively verified 24 consecutive patients (25 ankles) who underwent AAA between 2011 and 2015. The average follow-up was 26 months (range 18 to 52 months). Arthrodesis was performed in 16 patients due to posttraumatic arthritis (in 5 as a sequela of pilon, 6 ankles, 3 tibia fractures, and 2 had arthritis due to chronic instability after lateral ligament injury), in 4 patients due to neuromuscular ankle joint deformities, and in 4 patients due to rheumatoid arthritis. Results: Fusion occurred in 23 joints (92%) over an average of 12 weeks (range 6 to 18 weeks). Ankle arthrodesis was not achieved in 2 joints (8%), both in post-pilon fracture patients. The correct foot alignment was not achieved in 4 feet (16%). None of the treated patients required hardware removal. Conclusion: The presented technique was effective in achieving a high fusion rate in a variety of diseases, decreasing intra- and post-operative hardware complications while maintaining adequate bone stability. PMID:28400871
Effect of crown-to-implant ratio on peri-implant stress: a finite element analysis.
Verri, Fellippo Ramos; Batista, Victor Eduardo de Souza; Santiago, Joel Ferreira; Almeida, Daniel Augusto de Faria; Pellizzer, Eduardo Piza
2014-12-01
The aim of this study was to evaluate stress distribution in the fixation screws and bone tissue around implants in single-implant supported prostheses with crowns of different heights (10, 12.5, 15 mm - crown-to-implant ratio 1:1, 1.25:1, 1.5:1, respectively). It was designed using three 3-D models. Each model was developed with a mandibular segment of bone block including an internal hexagon implant supporting a screw-retained, single metal-ceramic crown. The crown height was set at 10, 12.5, and 15 mm with crown-to-implant ratio of 1:1, 1.25:1, 1.5:1, respectively. The applied forces were 200N (axial) and 100 N (oblique). The increase of crown height showed differences with the oblique load in some situations. By von Mises' criterion, a high stress area was concentrated at the implant/fixation screw and abutment/implant interfaces at crown-to-implant ratio of 1:1, 1.25:1, 1.5:1, respectively. Using the maximum principal criteria, the buccal regions showed higher traction stress intensity, whereas the distal regions showed the largest compressive stress in all models. The increase of C/I ratio must be carefully evaluated by the dentist since the increase of this C/I ratio is proportional to the increase of average stress for both screw fixation (C/I 1:1 to 1:1.25 ratio=30.1% and C/I 1:1 to 1:1.5 ratio=46.3%) and bone tissue (C/I 1:1 to 1:1.25 ratio=30% and C/I 1:1 to 1:1.5 ratio=51.5%). Copyright © 2014 Elsevier B.V. All rights reserved.
Korovessis, Panagiotis; Vardakastanis, Konstantinos; Repantis, Thomas; Vitsas, Vasilios
2014-04-01
The aim of this clinical study was to report on the efficacy in reduction and safety in PMMA leakage of a novel vertebral augmentation technique with PEEK and PMMA, together with pedicle screws in the treatment of fresh vertebral fractures in young adults. Twenty consecutive young adults aged 45 ± 11 years with fresh burst A3/AO or severely compressed A2/AO fractures underwent via a less invasive posterior approach one-staged reduction with a novel augmentation implant and PMMA plus 3-vertebrae pedicle screw fixation and fusion. Radiologic parameters as segmental kyphosis (SKA), anterior (AVBHr) and posterior vertebral body height ratio (PVBHr), spinal canal encroachment (SCE), cement leakage and functional parameters as VAS, SF-36 were measured pre- and post-operatively. Hybrid construct restored AVBHr (P < 0.000), PVBHr (P = 0.02), SKA (P = 0.015), SCE (P = 0.002) without loss of correction at an average follow-up of 17 months. PMMA leakage occurred in 3 patients (3 vertebrae) either anteriorly to the fractured vertebral body or to the adjacent disc, but in no case to the spinal canal. Two pedicle screws were malpositioned (one medially, one laterally to the pedicle at the fracture level) without neurologic sequelae. Solid posterolateral spinal fusion occurred 8-10 months post-operatively. Pre-operative VAS and SF-36 scores improved post-operatively significantly. This study showed that this novel vertebral augmentation technique using PEEK implant and PMMA reduces and stabilizes via less invasive technique A2 and A3 vertebral fractures without loss of correction and leakage to the spinal canal.
Chanana, Mitin; Kumar, Adarsh; Tyagi, Som Prakash; Singla, Amit Kumar; Sharma, Arvind; Farooq, Uiase Bin
2018-02-01
The current study was undertaken to evaluate the clinical efficacy of end-threaded intramedullary pinning for management of various long bone fractures in canines. This study was conducted in two phases, managing 25 client-owned dogs presented with different fractures. The technique of application of end-threaded intramedullary pinning in long bone fractures was initially standardized in 6 clinical patients presented with long bone fractures. In this phase, end-threaded pins of different profiles, i.e., positive and negative, were used as the internal fixation technique. On the basis of results obtained from standardization phase, 19 client-owned dogs clinically presented with different fractures were implanted with end-threaded intramedullary positive profile screw ended self-tapping pin in the clinical application phase. The patients, allocated randomly in two groups, when evaluated postoperatively revealed slight pin migration in Group-I (negative profile), which resulted in disruption of callus site causing delayed union in one case and large callus formation in other two cases whereas no pin migration was observed in Group-II (positive profile). Other observations in Group-I was reduced muscle girth and delayed healing time as compared to Group-II. In clinical application, phase 21 st and 42 nd day post-operative radiographic follow-up revealed no pin migration in any of the cases, and there was no bone shortening or fragment collapse in end-threaded intramedullary positive profile screw ended self-tapping pin. The end-threaded intramedullary positive profile screw ended self-tapping pin used for fixation of long bone fractures in canines can resist pin migration, pin breakage, and all loads acting on the bone, i.e., compression, tension, bending, rotation, and shearing to an extent with no post-operative complications.
NASA Astrophysics Data System (ADS)
Javed, Hassan; Armstrong, Peter
2015-08-01
The efficiency bar for a Minimum Equipment Performance Standard (MEPS) generally aims to minimize energy consumption and life cycle cost of a given chiller type and size category serving a typical load profile. Compressor type has a significant chiller performance impact. Performance of screw and reciprocating compressors is expressed in terms of pressure ratio and speed for a given refrigerant and suction density. Isentropic efficiency for a screw compressor is strongly affected by under- and over-compression (UOC) processes. The theoretical simple physical UOC model involves a compressor-specific (but sometimes unknown) volume index parameter and the real gas properties of the refrigerant used. Isentropic efficiency is estimated by the UOC model and a bi-cubic, used to account for flow, friction and electrical losses. The unknown volume index, a smoothing parameter (to flatten the UOC model peak) and bi-cubic coefficients are identified by curve fitting to minimize an appropriate residual norm. Chiller performance maps are produced for each compressor type by selecting optimized sub-cooling and condenser fan speed options in a generic component-based chiller model. SEER is the sum of hourly load (from a typical building in the climate of interest) and specific power for the same hourly conditions. An empirical UAE cooling load model, scalable to any equipment capacity, is used to establish proposed UAE MEPS. Annual electricity use and cost, determined from SEER and annual cooling load, and chiller component cost data are used to find optimal chiller designs and perform life-cycle cost comparison between screw and reciprocating compressor-based chillers. This process may be applied to any climate/load model in order to establish optimized MEPS for any country and/or region.
Mechanical Prophylaxis after Lower Extremity Total Joint Arthroplasty: A Review.
Chughtai, Morad; Newman, Jared M; Solow, Max; Davidson, Iyooh U; Sodhi, Nipun; Gaal, Benjamin; Khlopas, Anton; Sultan, Assem A; Mont, Michael A
2017-12-22
Venous thromboembolism (VTE) is a serious complication that can occur after total hip and knee arthroplasty, and can potentially lead to significant morbidity and even mortality. While various modalities have been used to prevent VTE development, the medications can be associated with a number of adverse events. Therefore, mechanical prophylaxis with pumps and compressive devices has been used more frequently alone, or in combination, with medications. Therefore, the purpose of this study was to review the current literature on mechanical prophylaxis for VTEs after lower extremity total joint arthroplasty. Specifically, we reviewed mechanical prophylaxis after: 1) total hip arthroplasty and 2) total knee arthroplasty.
Burnishing Techniques Strengthen Hip Implants
NASA Technical Reports Server (NTRS)
2010-01-01
In the late 1990s, Lambda Research Inc., of Cincinnati, Ohio, received Small Business Innovation Research (SBIR) awards from Glenn Research Center to demonstrate low plasticity burnishing (LPB) on metal engine components. By producing a thermally stable deep layer of compressive residual stress, LPB significantly strengthened turbine alloys. After Lambda patented the process, the Federal Aviation Administration accepted LPB for repair and alteration of commercial aircraft components, the U.S. Department of Energy found LPB suitable for treating nuclear waste containers at Yucca Mountain. Data from the U.S. Food and Drug Administration confirmed LPB to completely eliminate the occurrence of fretting fatigue failures in modular hip implants.
Strain-Rate Dependence of Deformation-Twinning in Tantalum
NASA Astrophysics Data System (ADS)
Abeywardhana, Jayalath; Germann, Tim; Ravelo, Ramon
2017-06-01
Large-Scale molecular dynamics (MD) simulations are used to model quasi-isentropic compression and expansion (QIC) in tantalum crystals varying the rate of deformation between the range 108 -1012s-1 and compressive pressures up to 100 GPa. The atomic interactions were modeled employing an embedded-atom method (EAM) potential of Ta. Isentropic expansion was done employing samples initially compressed to pressures of 60 and 100 GPa followed by uniaxial and quasi-isentropically expansion to zero pressure. The effect of initial dislocation density on twinning was also examined by varying the initial defect density of the Ta samples (1010 -1012cm-2). At these high-strain rates, a threshold in strain-rate on deformation twining is observed. Under expansion or compression, deformation twinning increases with strain rate for strain-rates >109s-1 . Below this value, small fraction of twins nucleates but anneal out with time. Samples with lower fraction of twins equilibrate to defect states containing higher screw dislocation densities from those with initially higher twinning fractions. This work was supported by the Department of Energy under contract DE-AC52-06NA25396 and by the Air Force Office of Scientific Research under AFOSR Award No. FA9550-12-1-0476.
COMPRESSIVE FATIGUE IN TITANIUM DENTAL IMPLANTS SUBMITTED TO FLUORIDE IONS ACTION
Ribeiro, Ana Lúcia Roselino; Noriega, Jorge Roberto; Dametto, Fábio Roberto; Vaz, Luís Geraldo
2007-01-01
The aim of this study was to assess the influence of a fluoridated medium on the mechanical properties of an internal hexagon implant-abutment set, by means of compression, mechanical cycling and metallographic characterization by scanning electronic microscopy. Five years of regular use of oral hygiene with a sodium fluoride solution content of 1500 ppm were simulated, immersing the samples in this medium for 184 hours, with the solutions being changed every 12 hours. Data were analyzed at a 95% confidence level with Fisher's exact test. After the action of fluoride ions, a negative influence occurred in the mechanical cycling test performed in a servohydraulic machine (Material Test System-810) set to a frequency of 15 Hz with 100,000 cycles and programmed to 60% of the maximum resistance of static compression test. The sets tended to fracture by compression on the screw, characterized by mixed ruptures with predominance of fragile fracture, as observed by microscopy. An evidence of corrosion by pitting on sample surfaces was found after the fluoride ions action. It may be concluded that prolonged contact with fluoride ions is harmful to the mechanical properties of commercially pure titanium structures. PMID:19089148
Minimally invasive repair of pectus carinatum and how to deal with complications
Aragone, Xavier; Blanco, Javier Borbore; Ciano, Alejandro; Abramson, Leonardo
2016-01-01
While less common than pectus excavatum, pectus carinatum is also a chest wall deformity affecting males in higher proportion than women. Patient requests for a solution of this disease occur especially during the growth spurt of puberty when this malformation becomes more obvious and difficult to conceal. Those people suffering from pectus carinatum are very likely subject to behavioral changes and negative personality impacts. By compressing the protruding anterior region of the chest wall we achieve correction of the chest contour and simultaneous lateral expansion of the depressed costochondral arches. This original technique and the procedure to apply it fit within the category of minimally invasive surgery. The compression system acts in a way similar to that of orthodontic braces. Two rectangular fixation plates are fixed to the compression strut with screws. The plates have threaded holes along a groove in the central portion, and two holes at both ends used to attach them to the ribs by means of steel wire suture. The compression strut has to be modified into a convex shape to adapt it to the particular characteristics of the patient’s malformation. This molding is done using benders designed as part of the procedure. PMID:29078492
Minimally invasive repair of pectus carinatum and how to deal with complications.
Abramson, Horacio; Aragone, Xavier; Blanco, Javier Borbore; Ciano, Alejandro; Abramson, Leonardo
2016-01-01
While less common than pectus excavatum, pectus carinatum is also a chest wall deformity affecting males in higher proportion than women. Patient requests for a solution of this disease occur especially during the growth spurt of puberty when this malformation becomes more obvious and difficult to conceal. Those people suffering from pectus carinatum are very likely subject to behavioral changes and negative personality impacts. By compressing the protruding anterior region of the chest wall we achieve correction of the chest contour and simultaneous lateral expansion of the depressed costochondral arches. This original technique and the procedure to apply it fit within the category of minimally invasive surgery. The compression system acts in a way similar to that of orthodontic braces. Two rectangular fixation plates are fixed to the compression strut with screws. The plates have threaded holes along a groove in the central portion, and two holes at both ends used to attach them to the ribs by means of steel wire suture. The compression strut has to be modified into a convex shape to adapt it to the particular characteristics of the patient's malformation. This molding is done using benders designed as part of the procedure.
Luo, Peng; Dou, Hai-cheng; Ni, Wen-fei; Huang, Qi-shan; Wang, Xiang-yang; Xu, Hua-zi; Chi, Yong-long
2011-03-01
To explore the efficacy of anterior percutaneous screw fixation in the treatment of odontoid process fractures in aged people. From February 2001 to April 2009, 15 elderly patients with odontoid fracture were treated with anterior percutaneous screw fixation,including 13 males and 2 females; the average age was 69.3 years (ranged, 60 to 86 years). According to Anderson classification, there were 10 patients with type II fractures (type II A in 7 cases, type II B in 3 cases, based on Eysel and Roosen classification), 4 patients with shallow type III fractures, 1 patient with deep type III fractures. Thirteen patients were fresh fractures, 2 patients were obsolete fractures. All patients had varying degrees of neck or shoulder pain, and limit activity of neck. There were 4 patients with neural symptoms including 2 grade D and 2 grade C according to Frankel classification. All the patients were followed up and were assessed by radiology. Clinical examination included neck activity, neurological function and the degree of neck pain. Radiology examinations including anteroposterior, lateral, open mouth position and flexion-extension radiographs of cervical vertebra were performed. After surgery, all patients were followed up,and the duration ranged from 6 to 60 months (averaged 31.3 months). Two patients died of other diseases during the follow-up period (18 and 22 months after surgery respectively). All patients got satisfactory results, and all screws were in good position. As the screw was too long, esophagus was compressed by screw tail in one case. One case showed fibrous union, 12 cases had achieved solid bony union, 2 cases showed nonunion without clinical symptoms. The rotation of neck in 3 cases was mildly limited,the neck function of the remaining patients were normal. Four patients with symptoms nerve injuries improved after operation (Frankel E in 3 cases, Frankel D in 1 case). The symptom of neck pain had a significant improvement after surgery (P < 0.001). The VAS score decreased from preoperative (6.07 +/- 1.44) (4 to 8 scores),to postoperative (1.13 +/- 0.92) (0 to 3 scores). And there were no severe postoperative complications. The anterior percutaneous screw fixation is less traumatic than conventional approaches for aged people in dealing with odontoid process fractures. Most patients will achieve satisfactory clinical results, as long as the general conditions of them are comprehensively assess. However, this procedure should not be used in patients with comminuted odontoid fractures or severe osteoporosis.
NASA Astrophysics Data System (ADS)
Beresnev, A. G.
2012-05-01
A concept of a two-stage hot isostatic pressing (HIP) cycle is developed for castings made of nickel superalloys in order to minimize plastic deformation and the recrystallization ability of their structure. At the first stage of the cycle, diffusion pore dissolution is predominant due to the motion of vacancies toward grain boundaries in a polycrystal; at the second stage, retained coarse pores are filled during plastic deformation. The effect of uniform compression pressure during HIP and microstructure defects on the vacancy diffusion in nickel superalloys is estimated. A two-stage HIP regime is developed for processing of cast gas-turbine engine blades made of a ZhS6U alloy in order to substantially decrease the shrinkage porosity and to increase the high-temperature characteristics, including the creep and fatigue resistance.
MRSA-infected external iliac artery pseudoaneurysm treated with endovascular stenting.
Clarke, M G; Thomas, H G; Chester, J F
2005-01-01
A 48-year-old woman with severe juvenile-onset rheumatoid arthritis presented with a bleeding cutaneous sinus distal to her right total hip replacement scar. Methicillin resistant Staphylococcus aureus (MRSA) was isolated on culture. She had previously undergone bilateral total hip and knee replacements at aged 23 and six years later had the right knee prosthesis removed for infection, with subsequent osteomyelitis of the femoral shaft and right total hip prosthesis disruption. Peripheral arteriography was performed in view of persistent bleeding from the sinus, which revealed a 6 cm false aneurysm filling from and compressing the right external iliac artery (EIA). A PTFE-covered, balloon expandable JOSTENT was deployed in the right EIA, successfully excluding the false aneurysm and preventing further bleeding from the sinus. No graft infection was reported at 12 months. This case illustrates the potential use of endovascular stent-grafting in the treatment of an infected pseudoaneurysm.
MRSA-Infected External Iliac Artery Pseudoaneurysm Treated with Endovascular Stenting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clarke, M.G.; Thomas, H.G.; Chester, J.F.
2005-04-15
A 48-year-old woman with severe juvenile-onset rheumatoid arthritis presented with a bleeding cutaneous sinus distal to her right total hip replacement scar. Methicillin resistant Staphylococcus aureus (MRSA) was isolated on culture. She had previously undergone bilateral total hip and knee replacements at aged 23 and six years later had the right knee prosthesis removed for infection, with subsequent osteomyelitis of the femoral shaft and right total hip prosthesis disruption. Peripheral arteriography was performed in view of persistent bleeding from the sinus, which revealed a 6 cm false aneurysm filling from and compressing the right external iliac artery (EIA). A PTFE-covered,more » balloon expandable JOSTENT was deployed in the right EIA, successfully excluding the false aneurysm and preventing further bleeding from the sinus. No graft infection was reported at 12 months. This case illustrates the potential use of endovascular stent-grafting in the treatment of an infected pseudoaneurysm.« less
NERVE ENTRAPMENT IN THE HIP REGION: CURRENT CONCEPTS REVIEW.
Martin, RobRoy; Martin, Hal David; Kivlan, Benjamin R
2017-12-01
The purpose of this clinical commentary is to review the anatomy, etiology, evaluation, and treatment techniques for nerve entrapments of the hip region. Nerve entrapment can occur around musculotendinous, osseous, and ligamentous structures because of the potential for increased strain and compression on the peripheral nerve at those sites. The sequela of localized trauma may also result in nerve entrapment if normal nerve gliding is prevented. Nerve entrapment can be difficult to diagnose because patient complaints may be similar to and coexist with other musculoskeletal conditions in the hip and pelvic region. However, a detailed description of symptom location and findings from a comprehensive physical examination can be used to determine if an entrapment has occurred, and if so where. The sciatic, pudendal, obturator, femoral, and lateral femoral cutaneous are nerves that can be entrapped and serve a source of hip pain in the athletic population. Manual therapy, stretching and strengthening exercises, aerobic conditioning, and cognitive-behavioral education are potential interventions. When conservative treatment is ineffective at relieving symptoms surgical treatment with neurolysis or neurectomy may be considered. 5.
NERVE ENTRAPMENT IN THE HIP REGION: CURRENT CONCEPTS REVIEW
Martin, Hal David; Kivlan, Benjamin R.
2017-01-01
The purpose of this clinical commentary is to review the anatomy, etiology, evaluation, and treatment techniques for nerve entrapments of the hip region. Nerve entrapment can occur around musculotendinous, osseous, and ligamentous structures because of the potential for increased strain and compression on the peripheral nerve at those sites. The sequela of localized trauma may also result in nerve entrapment if normal nerve gliding is prevented. Nerve entrapment can be difficult to diagnose because patient complaints may be similar to and coexist with other musculoskeletal conditions in the hip and pelvic region. However, a detailed description of symptom location and findings from a comprehensive physical examination can be used to determine if an entrapment has occurred, and if so where. The sciatic, pudendal, obturator, femoral, and lateral femoral cutaneous are nerves that can be entrapped and serve a source of hip pain in the athletic population. Manual therapy, stretching and strengthening exercises, aerobic conditioning, and cognitive-behavioral education are potential interventions. When conservative treatment is ineffective at relieving symptoms surgical treatment with neurolysis or neurectomy may be considered. Level of Evidence 5 PMID:29234567
Vercruysse, J; Peeters, E; Fonteyne, M; Cappuyns, P; Delaet, U; Van Assche, I; De Beer, T; Remon, J P; Vervaet, C
2015-01-01
Since small scale is key for successful introduction of continuous techniques in the pharmaceutical industry to allow its use during formulation development and process optimization, it is essential to determine whether the product quality is similar when small quantities of materials are processed compared to the continuous processing of larger quantities. Therefore, the aim of this study was to investigate whether material processed in a single cell of the six-segmented fluid bed dryer of the ConsiGma™-25 system (a continuous twin screw granulation and drying system introduced by GEA Pharma Systems, Collette™, Wommelgem, Belgium) is predictive of granule and tablet quality during full-scale manufacturing when all drying cells are filled. Furthermore, the performance of the ConsiGma™-1 system (a mobile laboratory unit) was evaluated and compared to the ConsiGma™-25 system. A premix of two active ingredients, powdered cellulose, maize starch, pregelatinized starch and sodium starch glycolate was granulated with distilled water. After drying and milling (1000 μm, 800 rpm), granules were blended with magnesium stearate and compressed using a Modul™ P tablet press (tablet weight: 430 mg, main compression force: 12 kN). Single cell experiments using the ConsiGma™-25 system and ConsiGma™-1 system were performed in triplicate. Additionally, a 1h continuous run using the ConsiGma™-25 system was executed. Process outcomes (torque, barrel wall temperature, product temperature during drying) and granule (residual moisture content, particle size distribution, bulk and tapped density, hausner ratio, friability) as well as tablet (hardness, friability, disintegration time and dissolution) quality attributes were evaluated. By performing a 1h continuous run, it was detected that a stabilization period was needed for torque and barrel wall temperature due to initial layering of the screws and the screw chamber walls with material. Consequently, slightly deviating granule and tablet quality attributes were obtained during the start-up phase of the 1h run. For the single cell runs, granule and tablet properties were comparable with results obtained during the second part of the 1h run (after start-up). Although deviating granule quality (particle size distribution and Hausner ratio) was observed due to the divergent design of the ConsiGma™-1 unit and the ConsiGma™-25 system (horizontal set-up) used in this study, tablet quality produced from granules processed with the ConsiGma™-1 system was predictive for tablet quality obtained during continuous production using the ConsiGma™-25 system. Copyright © 2014 Elsevier B.V. All rights reserved.
Compression-compression fatigue of selective electron beam melted cellular titanium (Ti-6Al-4V).
Hrabe, Nikolas W; Heinl, Peter; Flinn, Brian; Körner, Carolin; Bordia, Rajendra K
2011-11-01
Regular 3D periodic porous Ti-6Al-4V structures intended to reduce the effects of stress shielding in load-bearing bone replacement implants (e.g., hip stems) were fabricated over a range of relative densities (0.17-0.40) and pore sizes (approximately 500-1500 μm) using selective electron beam melting (EBM). Compression-compression fatigue testing (15 Hz, R = 0.1) resulted in normalized fatigue strengths at 10(6) cycles ranging from 0.15 to 0.25, which is lower than the expected value of 0.4 for solid material of the same acicular α microstructure. The three possible reasons for this reduced fatigue lifetime are stress concentrations from closed porosity observed within struts, stress concentrations from observed strut surface features (sintered particles and texture lines), and microstructure (either acicular α or martensite) with less than optimal high-cycle fatigue resistance. 2011 Wiley Periodicals, Inc.
Goossens, Quentin; Leuridan, Steven; Henyš, Petr; Roosen, Jorg; Pastrav, Leonard; Mulier, Michiel; Desmet, Wim; Denis, Kathleen; Vander Sloten, Jos
2017-11-01
In cementless total hip arthroplasty (THA), the initial stability is obtained by press-fitting the implant in the bone to allow osseointegration for a long term secondary stability. However, finding the insertion endpoint that corresponds to a proper initial stability is currently based on the tactile and auditory experiences of the orthopedic surgeon, which can be challenging. This study presents a novel real-time method based on acoustic signals to monitor the acetabular implant fixation in cementless total hip arthroplasty. Twelve acoustic in vitro experiments were performed on three types of bone models; a simple bone block model, an artificial pelvic model and a cadaveric model. A custom made beam was screwed onto the implant which functioned as a sound enhancer and insertor. At each insertion step an acoustic measurement was performed. A significant acoustic resonance frequency shift was observed during the insertion process for the different bone models; 250 Hz (35%, second bending mode) to 180 Hz (13%, fourth bending mode) for the artificial bone block models and 120 Hz (11%, eighth bending mode) for the artificial pelvis model. No significant frequency shift was observed during the cadaveric experiment due to a lack of implant fixation in this model. This novel diagnostic method shows the potential of using acoustic signals to monitor the implant seating during insertion. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
Aziz, Mina S R; Dessouki, Omar; Samiezadeh, Saeid; Bougherara, Habiba; Schemitsch, Emil H; Zdero, Radovan
2017-08-01
Acetabular fractures potentially account for up to half of all pelvic fractures, while pelvic fractures potentially account for over one-tenth of all human bone fractures. This is the first biomechanical study to assess acetabular fracture fixation using plates versus cables in the presence of a total hip arthroplasty, as done for the elderly. In Phase 1, finite element (FE) models compared a standard plate method versus 3 cable methods for repairing an acetabular fracture (type: anterior column plus posterior hemi-transverse) subjected to a physiological-type compressive load of 2207N representing 3 x body weight for a 75kg person during walking. FE stress maps were compared to choose the most mechanically stable cable method, i.e. lowest peak bone stress. In Phase 2, mechanical tests were then done in artificial hemipelvises to compare the standard plate method versus the optimal cable method selected from Phase 1. FE analysis results showed peak bone stresses of 255MPa (Plate method), 205MPa (Mears cable method), 250MPa (Kang cable method), and 181MPa (Mouhsine cable method). Mechanical tests then showed that the Plate method versus the Mouhsine cable method selected from Phase 1 had higher stiffness (662versus 385N/mm, p=0.001), strength (3210versus 2060N, p=0.009), and failure energy (8.8versus 6.2J, p=0.002), whilst they were statistically equivalent for interfragmentary sliding (p≥0.179) and interfragmentary gapping (p≥0.08). The Plate method had superior mechanical properties, but the Mouhsine cable method may be a reasonable alternative if osteoporosis prevents good screw thread interdigitation during plating. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
Chapman, Cary B; Herrera, Mauricio F; Binenbaum, Gil; Schweppe, Michael; Staron, Ronald B; Feldman, Frieda; Rosenwasser, Melvin P
2003-09-01
The purpose of this prospective study was to determine the level of interobserver and intraobserver agreement among orthopedic surgeons and radiologists when computed tomography (CT) scans are used with plain radiographs to evaluate intertrochanteric fractures. In addition, the prognostic value of current classifications systems concerning quality of life was evaluated. Sixty-one patients who presented with intertrochanteric fractures received open reduction and internal fixation with compression hip screw. Three orthopedic surgeons and 2 radiologists independently classified the fractures according to 2 systems: Evans-Jensen and AO (Arbeitsgemeinschaft für Osteo-synthesefragen). Fractures were initially graded with plain radiographs and then again in conjunction with CT. Results were analyzed using the (kappa) kappa coefficient. The 36-item Short-Form Health Survey was administered at baseline, 3 months, and 1 year, and results were correlated with fracture grade. Mean kappa coefficients when comparing radiography alone with radiography and CT scan were 0.63 for the AO system and 0.59 for the Evans-Jensen system. Both represent "fair" agreements. Mean overall interobserver kappa coefficients were 0.67 for radiologists and 0.57 for orthopedic surgeons. Radiologists also had higher intraobserver kappa coefficients. No significant relationships were found between follow-up Short Form Health Survey results and intraoperative grading of fractures. When these classification schemes are compared, interobserver agreement does not appear to change dramatically when information from CT scans is added. This may suggest that (1) more data have been provided by CT with greater possibilities for misinterpretation and (2) these classification schemes may not be comprehensive in describing fracture pattern and displacement. Finally, both systems failed to provide any prognostic value.
Docker, Charles; Starks, Ian; Wade, Roger; Wynn-Jones, Charles
2011-06-01
We present the case of a woman diagnosed with simultaneous displaced intracapsular femoral neck fractures following the birth of her second child. No traumatic event was identified. Diagnosis was delayed as the cause of her pain was thought to be non-skeletal in origin. Radiological and serological investigations were diagnostic of osteomalacia. Surgical fixation of her fractures was further delayed due to profound hypocalcaemia. Despite the delays, fixation with bilateral dynamic hip screws resulted in union with no evidence of avascular necrosis at 2 years follow-up. We believe this to be the first report of atraumatic bilateral femoral neck fractures and it shows that a good result can be achieved even in the presence of delayed fixation.
Melikian, Rojeh; Yoon, Sangwook Tim; Kim, Jin Young; Park, Kun Young; Yoon, Caroline; Hutton, William
2016-09-01
Cadaveric biomechanical study. To determine the degree of segmental correction that can be achieved through lateral transpsoas approach by varying cage angle and adding anterior longitudinal ligament (ALL) release and posterior element resection. Lordotic cage insertion through the lateral transpsoas approach is being used increasingly for restoration of sagittal alignment. However, the degree of correction achieved by varying cage angle and ALL release and posterior element resection is not well defined. Thirteen lumbar motion segments between L1 and L5 were dissected into single motion segments. Segmental angles and disk heights were measured under both 50 N and 500 N compressive loads under the following conditions: intact specimen, discectomy (collapsed disk simulation), insertion of parallel cage, 10° cage, 30° cage with ALL release, 30° cage with ALL release and spinous process (SP) resection, 30° cage with ALL release, SP resection, facetectomy, and compression with pedicle screws. Segmental lordosis was not increased by either parallel or 10° cages as compared with intact disks, and contributed small amounts of lordosis when compared with the collapsed disk condition. Placement of 30° cages with ALL release increased segmental lordosis by 10.5°. Adding SP resection increased lordosis to 12.4°. Facetectomy and compression with pedicle screws further increased lordosis to approximately 26°. No interventions resulted in a decrease in either anterior or posterior disk height. Insertion of a parallel or 10° cage has little effect on lordosis. A 30° cage insertion with ALL release resulted in a modest increase in lordosis (10.5°). The addition of SP resection and facetectomy was needed to obtain a larger amount of correction (26°). None of the cages, including the 30° lordotic cage, caused a decrease in posterior disk height suggesting hyperlordotic cages do not cause foraminal stenosis. N/A.
Operative treatment of sternal fractures.
Al-Qudah, Abdullah
2006-10-01
Four patients with displaced sternal fractures complained of intractable pain following road traffic accidents. They all had bone deformities, but only one had associated traumatic injuries. All patients underwent operative reduction and fixation of the fractured sternum using a T-shaped compression-tension stainless steel plate and screws. Pain relief was often dramatic and all patients progressed to sternal union. None required reoperation. No infections occurred. Two plates have subsequently been removed. On follow-up, all patients had excellent results. Sternal plating, which is based on the tension-band principle, is an effective treatment for displaced sternal fractures.
The orthopedic diseases of ancient Egypt.
Fritsch, Klaus O; Hamoud, Heshem; Allam, Adel H; Grossmann, Alexander; Nur El-Din, Abdel-Halim; Abdel-Maksoud, Gomaa; Soliman, Muhammad Al-Tohamy; Badr, Ibrahim; Sutherland, James D; Sutherland, M Linda; Akl, Mahmoud; Finch, Caleb E; Thomas, Gregory S; Wann, L Samuel; Thompson, Randall C
2015-06-01
CT scanning of ancient human remains has the potential to provide insights into health and diseases. While Egyptian mummies have undergone CT scans in prior studies, a systematic survey of the orthopedic conditions afflicting a group of these ancient individuals has never been carried out. We performed whole body CT scanning on 52 ancient Egyptian mummies using technique comparable to that of medical imaging. All of the large joints and the spine were systematically examined and osteoarthritic (OA) changes were scored 0-4 using Kellgren and Lawrence classification. The cruciate ligaments and menisci could be identified frequently. There were much more frequent OA changes in the spine (25 mummies) than in the large joints (15 cases of acromioclavicular and/or glenohumeral joint OA changes, five involvement of the ankle, one in the elbow, four in the knee, and one in the hip). There were six cases of scoliosis. Individual mummies had the following conditions: juvenile aseptic necrosis of the hip (Perthes disease), stage 4 osteochondritis dissecans of the knee, vertebral compression fracture, lateral patella-femoral joint hyper-compression syndrome, severe rotator cuff arthropathy, rotator cuff impingement, hip pincer impingement, and combined fracture of the greater trochantor and vertebral bodies indicating obvious traumatic injury. This report includes the most ancient discovery of several of these syndromes. Ancient Egyptians often suffered painful orthopedic conditions. The high frequency of scoliosis merits further study. The pattern of degenerative changes in the spine and joints may offer insights into activity levels of these people. © 2015 Wiley Periodicals, Inc.
Majumder, Santanu; Roychowdhury, Amit; Pal, Subrata
2008-09-18
A major worldwide health problem is hip fracture due to sideways fall among the elderly population. The effects of sideways fall on the hip are required to be investigated thoroughly. The objectives of this study are to evaluate the responses to trochanteric soft tissue thickness (T) variations and hip impact velocity (V) variations during sideways fall based on a previously developed CT scan derived 3D non-linear and non-homogeneous finite element model of pelvis-femur-soft tissue complex with simplified biomechanical representation of the whole body. This study is also aimed at quantifying the effects [peak impact force (F(max)), time to F(max), acceleration and peak principal compressive strain (epsilon(max))] of these variations (T,V) on hip fracture. It was found that under constant impact energy, for 81% decrease in T (26-5mm), F(max) and epsilon(max) increased by 38% and 97%, respectively. Hence, decrease in T (as in slimmer persons) strongly correlated to risk for hip fracture (phi) and strain ratio (SR) by 0.972 and 0.988, respectively. Also under same T and body weight, for 75% decrease in V (4.79-1.2m/s), F(max) and epsilon(max) decreased by 70% and 86%, respectively. Hence, increase in V (as in taller persons) strongly correlated to phi and SR by 0.995 and 0.984, respectively. For both variations in T and V, inter-trochanteric fracture situations were well demonstrated by phi as well as by SR and strain contours, similar to clinically observed fractures. These quantifications would be helpful for effective design of person-specific hip protective devices.
Lenich, Andreas; Bachmeier, Samuel; Prantl, Lukas; Nerlich, Michael; Hammer, Jochen; Mayr, Edgar; Al-Munajjed, Amir Andreas; Füchtmeier, Bernd
2011-04-22
Since cut-out still remains one of the major clinical challenges in the field of osteoporotic proximal femur fractures, remarkable developments have been made in improving treatment concepts. However, the mechanics of these complications have not been fully understood.We hypothesize using the experimental data and a theoretical model that a previous rotation of the femoral head due to de-central implant positioning can initiate a cut-out. In this investigation we analysed our experimental data using two common screws (DHS/Gamma 3) and helical blades (PFN A/TFN) for the fixation of femur fractures in a simple theoretical model applying typical gait pattern on de-central positioned implants. In previous tests during a forced implant rotation by a biomechanical testing machine in a human femoral head the two screws showed failure symptoms (2-6Nm) at the same magnitude as torques acting in the hip during daily activities with de-central implant positioning, while the helical blades showed a better stability (10-20Nm).To calculate the torque of the head around the implant only the force and the leverarm is needed (N [Nm] = F [N] * × [m]). The force F is a product of the mass M [kg] multiplied by the acceleration g [m/s2]. The leverarm is the distance between the center of the head of femur and the implant center on a horizontal line. Using 50% of 75 kg body weight a torque of 0.37Nm for the 1 mm decentralized position and 1.1Nm for the 3 mm decentralized position of the implant was calculated. At 250% BW, appropriate to a normal step, torques of 1.8Nm (1 mm) and 5.5Nm (3 mm) have been calculated.Comparing of the experimental and theoretical results shows that both screws fail in the same magnitude as torques occur in a more than 3 mm de-central positioned implant. We conclude the center-center position in the head of femur of any kind of lag screw or blade is to be achieved to minimize rotation of the femoral head and to prevent further mechanical complications.
Ultrasonic Structural Health Monitoring to Assess the Integrity of Spinal Growing Rods In Vitro.
Oetgen, Matthew E; Goodley, Addison; Yoo, Byungseok; Pines, Darryll J; Hsieh, Adam H
2016-01-01
Rod fracture is a common complication of growing rods and can result in loss of correction, patient discomfort, and unplanned revision surgery. The ability to quantitate rod integrity at each lengthening would be advantageous to avoid this complication. We investigate the feasibility of applying structural health monitoring to evaluate the integrity of growing rods in vitro. Single-rod titanium 4.5-mm growing rod constructs (n = 9), one screw proximally and one distally connected by in-line connectors, were assembled with pedicle screws fixed in polyethylene blocks. Proximal and distal ends were loaded and constructs subjected to cyclic axial compression (0-100 N at 1 Hz), with incrementally increasing maximum compressive loads of 10 N every 9k cycles until failure. Four piezoceramic transducers (PZTs) were mounted along the length the constructs to interrogate the integrity of the rods with an ultrasonic, guided lamb wave approach. Every 9k cycles, an 80 V excitatory voltage was applied to a PZT to generate high-frequency vibrations, which, after propagating through the construct, was detected by the remaining PZTs. Amplitude differences between pre- and postload waveform signals were calculated until rod failure. Average construct lifetime was 88,991 ± 13,398 cycles. All constructs failed due to rod fracture within 21 mm (mean = 15 ± 4.5 mm) of a screw or connector. Amplitude differences between pre- and postload increased in a stepwise fashion as constructs were cycled. Compared to baseline, we found a 1.8 ± 0.6-fold increase in amplitude 18k cycles before failure, a 2.2 ± 1.0-fold increase in amplitude 9k cycles before failure, and a 2.75 ± 1.5-fold increase in amplitude immediately before rod fracture. We describe a potential method for assessing the structural integrity of growing rods using ultrasonic structural health monitoring. These preliminary data demonstrate the ability of periodic rod assessment to detect structural changes in cycled growing rods, which appear to correspond to subclinical rod fatigue before rod fracture. Copyright © 2016 Scoliosis Research Society. Published by Elsevier Inc. All rights reserved.
Vamsi, K.; Rao, Sharath K.; Gnanadoss, James J.; Pandian, S.
2008-01-01
Humeral shaft fractures respond well to conservative treatment and unite without much problem. Since it is uncommon, there is not much discussion regarding the management of nonunion in the literature, and hence this is a challenge to the treating orthopaedic surgeon. Osteoporosis of the fractured bone and stiffness of the surrounding joints compounds the situation further. The Ilizarov fixator, locking compression plate, and vascularised fibular graft are viable options in this scenario but are technically demanding. We used a fibular strut graft for bridging the fracture site in order to enhance the pull-out strength of the screws of the dynamic compression plate. Six patients in the study had successful uneventful union of the fracture at the last follow-up. The fibula is easy to harvest and produces less graft site morbidity. None of the study patients needed additional iliac crest bone grafting. This is the largest reported series of patients with osteoporotic atrophic nonunion of humerus successfully treated solely using the combination of an intramedullary fibular strut graft and dynamic compression plate. PMID:18563410
Use of CFD to predict trapped gas excitation as source of vibration and noise in screw compressors
NASA Astrophysics Data System (ADS)
Willie, James
2017-08-01
This paper investigates the source of noise in oil free screw compressors mounted on highway trucks and driven by a power take-off (PTO) transmission system. Trapped gas at the discharge side is suggested as possible source of the excitation of low frequency torsional resonance in these compressors that can lead to noise and vibration. Measurements and lumped mass torsional models have shown low frequency torsional resonance in the drive train of these compressors when they are mounted on trucks. This results in high torque peak at the compressor input shaft and in part to pulsating noise inside the machine. The severity of the torque peak depends on the amplitude of the input torque fluctuation from the drive (electric motor or truck engine). This in turn depends on the prop-shaft angle. However, the source of the excitation of this low torsional resonance inside the machine is unknown. Using CFD with mesh motion at every 1° rotation of the rotors, it is shown that the absence of a pressure equalizing chamber at the discharge can lead to trapped gas creation, which can lead to over-compression, over-heating of the rotors, and to high pressure pulsations at the discharge. Over-compression can lead to shock wave generation at the discharge plenum and the pulsation in pressure can lead to noise generation. In addition, if the frequency of the pressure pulsation in the low frequency range coincides with the first torsional frequency of the drive train the first torsional resonance mode can be excited.
Caravaggi, Carlo; Cimmino, Marzio; Caruso, Sebastiano; Dalla Noce, Sergio
2006-01-01
Involvement of the ankle joint in Charcot osteoarthropathy may be associated with severe instability and fracture or collapse of the talus. Recalcitrant ulceration may result over the lateral malleolus, increasing the risk of major amputation. This study evaluated ankle arthrodesis with a compressive intramedullary nail in 14 patients with diabetes affected by Charcot of the ankle. The mean patient age was 58 +/- 12 years, and the mean duration of diabetes was 17 +/- 5 years. Transcutaneous oxygen pressures were > or = 50 mm Hg in all patients, indicating a good distal blood supply. A below-knee amputation had previously been suggested because of severe ankle joint instability. None of the patients were able to walk without a brace. Four patients had an ulceration that had healed before the index procedure. All procedures were performed in the quiescent phase of the disease. After a mean follow-up of 18 +/- 4 months, 10 patients (71.4%) achieved a solid arthrodesis, returning to walking with protective shoes. Three patients (21.4%) developed breakage of the calcaneus screws, necessitating removal of the screws in 2 cases and removal of the entire nail in 2 cases. These 3 patients went on to fibrous union that allowed walking with a brace. One patient (7.2%) required a below-knee amputation because of postoperative osteomyelitis of the distal tibia. The data from our study demonstrate a high rate of limb salvage (92.8%), suggesting that this device is safe and effective in the treatment of Charcot arthropathy of the ankle.
Influence of dislocation strain fields on the diffusion of interstitial iron impurities in silicon
NASA Astrophysics Data System (ADS)
Ziebarth, Benedikt; Mrovec, Matous; Elsässer, Christian; Gumbsch, Peter
2015-09-01
The efficiency of silicon (Si)-based solar cells is strongly affected by crystal defects and impurities. Metallic impurities, in particular interstitial iron (Fe) atoms, cause large electric losses because they act as recombination centers for photogenerated charge carriers. Here, we present a systematic first-principles density functional theory (DFT) study focusing on the influence of hydrostatic, uniaxial, and shear strains on the thermodynamic stability and the diffusivity of Fe impurities in crystalline Si. Our calculations show that the formation energy of neutral Fe interstitials in tetrahedral interstitial sites is almost unaffected by uniform deformations of the Si crystal up to strains of 5%. In contrast, the migration barrier varies significantly with strain, especially for hydrostatic deformation. In order to determine effective diffusion coefficients for different strain states, a kinetic Monte Carlo (kMC) model was set up based on the activation energy barriers and frequency factors obtained from the DFT simulations. By using the strain dependence of the migration barrier, we examined the migration of Fe interstitials in the vicinity of perfect 1 /2 <110 > screw and 60∘ mixed dislocations, and 1 /6 <112 > 90∘ and 30∘ partial dislocations. While the strain field of the perfect screw dislocation always enhances the local Fe diffusion, the existence of tensile and compressive regions around the 60∘ mixed dislocation results in a strong anisotropic diffusion profile with significantly faster and slower diffusivities on its tensile and compressive sides. The influences of the partial dislocations are qualitatively similar to that of the 60∘ mixed dislocation.
Kuemmerle, Jan M; Kühn, Karolin; Bryner, Marco; Fürst, Anton E
2013-10-01
To evaluate if the use of locking head screws (LHS) in the distal holes of a locking compression plate (LCP) applied to the caudal aspect of the ulna to treat equine ulnar fractures is associated with a risk of injury to the lateral cortex of the radius. Controlled laboratory study. Cadaveric equine forelimbs (n = 8 pair). After transverse ulnar osteotomy, osteosynthesis was performed with a narrow 10-13 hole 4.5/5.0 LCP applied to the caudal aspect of each ulna. The distal 3 holes were filled with 4.5 mm cortex screws (CS) in 1 limb (group 1) and with 5.0 mm LHS contralaterally (group 2). CS were inserted in an angle deemed appropriate by the surgeon and LHS were inserted perpendicular to the plate. Implant position and injury to the lateral cortex of the radius were assessed by radiography, CT, and limb dissection. In group 1, injury of the lateral radius cortex did not occur. In group 2, 4 limbs and 6/24 LHS were associated with injury of the lateral radius cortex by penetration of a LHS. This difference was statistically significant. CS were inserted with a mean angle of 17.6° from the sagittal plane in a caudolateral-craniomedial direction. Use of LHS in the distal part of a LCP applied to the caudal aspect of the ulna is associated with a risk of inadvertent injury to the lateral cortex of the radius. © Copyright 2013 by The American College of Veterinary Surgeons.
Revision Tibiotalocalcaneal Arthrodesis With a Pseudoelastic Intramedullary Nail.
Latt, L Daniel; Smith, Kathryn Elizabeth; Dupont, Kenneth Michael
2017-02-01
Hindfoot (tibiotalocalcaneal or TTC) arthrodesis is commonly used to treat concomitant arthritis of the ankle and subtalar joints. Simultaneous fusion of both joints can be difficult to achieve especially in patients with impaired healing due to smoking, diabetes mellitus, or Charcot neuroarthropathy. Conventional intramedullary fixation devices allow for compression to be applied at the time of surgery, but this compression can be lost due to bone resorption or settling, leading to impaired healing. In contrast, the novel pseudoelastic intramedullary nail is designed to maintain compression at the arthrodesis sites throughout the healing process by the use of an internal pseudoelastic element. We present 2 cases of revision TTC arthrodesis using the pseudoelastic intramedullary nail. In the first case, an 80-year-old diabetic man with previous ankle and failed subtalar fusion with screws underwent revision TTC arthrodesis. In the second case, a 66-year-old man with Charcot neuroarthropathy and a failed TTC arthrodesis with a static intramedullary nail underwent revision tibiotalar arthrodesis. In both cases, computed tomography scan demonstrated successful union and patients were allowed full weight bearing by 3 months after surgery. These cases provide early evidence that sustained compression via an intramedullary nail can lead to rapid successful hindfoot fusion when standard approaches have failed. Therapeutic, Level IV: Case study.
Periprosthetic Occult Fractures of the Acetabulum Occur Frequently During Primary THA.
Hasegawa, Kazuhiro; Kabata, Tamon; Kajino, Yoshitomo; Inoue, Daisuke; Tsuchiya, Hiroyuki
2017-02-01
Periprosthetic fractures of the acetabulum occurring during primary THA are rare. Periprosthetic occult fractures are defined as those not identified by the surgeon during the procedure which might be missed on a routine postoperative radiograph. However, it is unclear how frequently these fractures occur and whether their presence affects functional recovery. In this study, using routine CT scans that were obtained as part of another primary hip arthroplasty study protocol, we retrospectively assessed (1) the prevalence of occult fractures of the acetabulum occurring during primary THA, (2) the location of occult fractures of the acetabulum during THA, and (3) risk factors contributing to such occult fractures. Between 2004 and 2013, our institute performed 585 primary THAs (cementless or hybrid) in 494 patients with DICOM pre- and postoperative CT; during the period in question, all patients undergoing THA underwent CT before and after surgery. Preoperative CT images were taken as part of a CT-based three-dimensional templating software and navigation system. Postoperative CT images were taken an average of 1 week after surgery as part of a different protocol to evaluate cup position, restoration of leg length and offset, volume of postoperative hematoma to assess anticoagulation effects after THA, and fractures that were not found on routine postoperative radiographs (which we defined as occult fractures). Patients with a history of prior pelvic osteotomy, trauma, and infection were excluded (88 patients/99 hips); 406 patients (102 males and 304 females; 486 hips) form the basis of this report. The mean age of the patients was 60 ± 11 years, with a mean BMI of 23 ± 4 kg/m 2 . The mean followup of the patients with periprosthetic fracture of the acetabulum was 58 ± 28 months (range, 12-131 months). Potential risk factors for occult acetabular fracture including age, sex, BMI, preoperative diagnosis, additional dome screw fixation, composition and size of each cup, and acetabular design were examined in multivariate analysis. Acetabular component designs were categorized as true hemispheric, peripheral self-locking, and elliptical; during the period in question the indications for each cup design were based on the brand of stem used. Comparison between preoperative and postoperative CT images was done to detect the fractures. Patients with fractures identified during surgery were treated with additional dome screw fixation and a 3-week period of nonweightbearing. Patients with occult fractures in this series did not receive additional treatment as we had confirmed secure fixation of the cup during surgery. Occult fractures occurred in 41 hips (8.4%); periprosthetic fractures of the acetabulum were seen during surgery in an additional two hips (0.4%). The superolateral wall was the most frequent location for occult fractures of the acetabulum. After controlling for relevant confounding variables, only the use of peripheral self-locking cups was associated with an increased risk of occult fracture (odds ratio [OR], 2.6 compared with hemispheric cups; 95% CI, 1.2-5.6; p < 0.05). All patients with occult fractures showed bone ingrowth fixation at the final followup, without any additional surgical intervention. Periprosthetic occult fractures of the acetabulum may occur relatively frequently during press-fit impaction. We observed a higher rate of fractures associated with the use of peripheral self-locking components. Occult acetabular fractures not detected on routine postoperative plain films may be ignored if secure fixation of the cup has been confirmed during the operation. Level III, therapeutic study.
Squat exercise to estimate knee megaprosthesis rehabilitation: a pilot study
Lovecchio, Nicola; Zago, Matteo; Sciumè, Luciana; Lopresti, Maurizio; Sforza, Chiarella
2015-01-01
[Purpose] This study evaluated a specific rehabilitation protocol using a half squat after total knee reconstruction with distal femur megaprosthesis and tibial allograft-prosthesis composite. [Subject and Methods] Squat execution was recorded by a three-dimensional system before and after a specific rehabilitation program on a 28-year-old patient. Squat duration, body center of mass trajectory, and vertical range of motion were determined. Step width and joint angles and symmetry (hip flexion, extension, and rotation, knee flexion, and ankle dorsal and plantar flexion) were estimated. Knee and hip joint symmetry was computed using a bilateral cyclogram technique. [Results] After rehabilitation, the squat duration was longer (75%), step width was similar, and vertical displacement was higher. Hip flexion increased by over 20%, and ankle dorsiflexion diminished by 14%. The knee had the highest symmetry gain (4.1–3.4%). Angle-angle plot subtended areas decreased from 108° to 40°2 (hip) and from 204° to 85°2 (knee), showing improvement in movement symmetry. [Conclusion] We concluded that the squat is an effective multifactorial exercise to estimate rehabilitation outcomes after megaprosthesis, also considering that compressive and shear forces are minimal up to 60–70° of knee flexion. PMID:26311992
Kwak, Hong Suk; Cho, Jai Ho; Kim, Jung Taek; Yoo, Jeong Joon
2017-01-01
Background Venous thromboembolism (VTE) is a relatively common and potentially life threatening complication after major hip surgery. There are two main types of prophylaxis: chemical and mechanical. Chemical prophylaxis is very effective but causes bleeding complications in surgical wounds and remote organs. On the other hand, mechanical methods are free of hemorrhagic complications but are less effective. We hypothesized that mechanical prophylaxis is effective enough for Asians in whom VTE occurs less frequently. This study evaluated the effect of intermittent pneumatic compression (IPC) in the prevention of VTE after major hip surgery. Methods Incidences of symptomatic VTE after primary total hip arthroplasty with and without application of IPC were compared. A total of 379 patients were included in the final analysis. The IPC group included 233 patients (106 men and 127 women) with a mean age of 54 years. The control group included 146 patients (80 men and 66 women) with a mean age of 53 years. All patients took low-dose aspirin for 6 weeks after surgery. IPC was applied to both legs just after surgery and maintained all day until discharge. When a symptom or a sign suspicious of VTE, such as swelling or redness of the foot and ankle, Homans' sign, and dyspnea was detected, computed tomography (CT) angiogram or duplex ultrasonogram was performed. Results Until 3 months after surgery, symptomatic VTE occurred in three patients in the IPC group and in 6 patients in the control group. The incidence of VTE was much lower in the IPC group (1.3%) than in the control group (4.1%), but the difference was not statistically significant. Complications associated with the application of IPC were not detected in any patient. Patients affected by VTE were older and hospitalized longer than the unaffected patients. Conclusions The results of this study suggest that IPC might be an effective and safe method for the prevention of postoperative VTE. PMID:28261425
Electrical apparatus lockout device
Gonzales, Rick
1999-01-01
A simple lockout device for electrical equipment equipped with recessed power blades is described. The device comprises a face-plate (12) having a threaded member (14) attached thereto and apertures suitable for accommodating the power blades of a piece of electrical equipment, an elastomeric nose (16) abutting the face-plate having a hole for passage of the threaded member therethrough and power blade apertures in registration with those of the face-plate, a block (20) having a recess (34) in its forward face for receiving at least a portion of the hose, a hole therein for receiving the threaded member and an integral extension (26) extending from its rear face. A thumb screw (22) suitable for turning with the hands and having internal threads suitable for engaging the threaded member attached to the face-plate is inserted into a passage in the integral extension to engage the threaded member in such a fashion that when the device is inserted over the recessed power blades of a piece of electrical equipment and the thumb screw (22) tightened, the elastomeric nose (16) is compressed between the face-plate (12) and the block (20) forcing it to expand laterally thereby securing the device in the recess and precluding the accidental or intentional energization of the piece of equipment by attachment of a power cord to the recessed power blades. Means are provided in the interval extension and the thumb screw for the attachment of a locking device (46) which will satisfy OSHA standards.
Meena, Anuprabha K; Desai, Divyakant; Serajuddin, Abu T M
2017-02-01
The objective of this study was to enhance tabletability of a poorly compactible drug, acetaminophen, by wet granulation using twin screw extruder at high temperature. It was desired that there would be minimum amounts of excipients used and the granules obtained after extrusion would be dry and fall within a size range suitable for tableting without any further processing. Mixtures of acetaminophen (95%) with binders (5% povidone or partially pregelatinized starch) were wet granulated through twin screw extruder at 70°C by adding 7% w/w water. The process had a short granulation time (<1 min), and, on account of the elevated processing temperature used, no drying after extrusion was needed. By optimizing formulation and processing parameters, >90% granules in the size range of 125 to 1000 μm (<3% above 1000 μm and <7% below 125 μm) were obtained without any milling. When the granules were compressed by adding 1% disintegrant and 0.5% lubricant extragranularly, tablets produced (93.6% drug load) had good mechanical strength having hardness >1.7 MPa, which was superior to that of tablets prepared by conventional high shear wet granulation. As the granules could be extruded continuously and did not require drying and milling, the method was amenable to continuous processing. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Sciatica and claudication caused by ganglion cyst.
Yang, Guang; Wen, Xiaoyu; Gong, Yubao; Yang, Chen
2013-12-15
Case report. We report a rare case that a ganglion cyst compressed the sciatic nerve and caused sciatica and claudication in a 51-year-old male. Sciatica and claudication commonly occurs in spinal stenosis. To our knowledge, only 4 cases have been reported on sciatica resulting from posterior ganglion cyst of hip. A 51-year-old male had a 2-month history of radiating pain on his right leg. He could only walk 20 to 30 m before stopping and standing to rest for 1 to 3 minutes. Interestingly, he was able to walk longer distances (about 200 m) when walking slowly in small steps, without any rest. He had been treated as a case of lumbar disc herniation, but conservative treatment was ineffective. On buttock examination, a round, hard, and fixative mass was palpated at the exit of the sciatic nerve. MR imaging of hip revealed a multilocular cystic mass located on the posterior aspect of the superior gemellus and obturator internus, compressing the sciatic nerve. On operation, we found that the cyst extended to the superior gemellus and the obturator internus, positioned right at the outlet of the sciatic nerve. At 18 months of follow-up, the patient continued to be symptom free. He returned to comprehensive physical activity with no limitations. For an extraspinal source, a direct compression on the sciatic nerve also resulted in sciatica and claudication. A meticulous physical examination is very important for the differential diagnosis of extraspinal sciatica from spinal sciatica.
Cuff, Derek J; Pupello, Derek R; Santoni, Brandon G; Clark, Rachel E; Frankle, Mark A
2017-11-15
We previously evaluated 94 patients (96 shoulders) who underwent reverse shoulder arthroplasty using a central compressive screw with 5.0-mm peripheral locking screws for baseplate fixation and a center of rotation lateral to the glenoid as treatment for end-stage rotator cuff deficiency. The purpose of this study was to report updated results at a minimum follow-up of 10 years. Forty patients (42 shoulders) were available for clinical follow-up. In the patients available for study, implant survivorship, with the end point being revision for any reason, was 90.7%. Since our 5-year report, 2 patients underwent revision surgery; 1 patient sustained a periprosthetic fracture 7 years postoperatively and 1 patient had a dislocation because of chronic shoulder instability at 8 years postoperatively. At a minimum follow-up of 10 years, the patients continued to maintain their improved outcome scores and range of motion, which were comparable with earlier follow-up evaluations. Therapeutic Level IV. See Instructions for Authors for a complete description of levels of evidence.
Kempegowda, Harish; Richard, Raveesh; Borade, Amrut; Tawari, Akhil; Howenstein, Abby M; Kubiak, Erik N; Suk, Michael; Horwitz, Daniel S
2016-12-01
The purpose of this study was to evaluate the role and the necessity of radiographs and office visits obtained during follow-up of intertrochanteric hip injuries. Retrospective study. Two level I trauma centers. Four hundred sixty-five elderly patients who were surgically treated for an intertrochanteric fracture of the femur at 2 level I trauma centers between January 2009 and August 2014 were retrospectively identified from orthopaedic trauma databases. Analysis of all healed intertrochanteric hip fractures, including demographic characteristics, quality of reduction, time of healing, number of office visits, number of radiographs obtained, and each radiograph for fracture alignment, implant position or any pathological changes. The surgical fixation of 465 fractures included 155 short nails (33%), 232 long nails (50%), 69 sliding hip screw devices (15%), 7 trochanteric stabilizing plates (1.5%), and 2 proximal femur locking plates (0.5%). The average fracture healing time was 12.8 weeks and the average follow-up was 81.2 weeks. Radiographs of any patient obtained after the fracture had healed did not reveal any changes, including fracture alignment or implant position and hardware failure. In 9 patients, pathological changes, including arthritis (3), avascular necrosis (3), and ectopic ossification (3) were noted. The average number of elective office visits and radiographs obtained after the fracture had healed were 2.8 (range: 1-8) and 2.6 (range: 1-8), respectively. According to Medicare payments to the institution, these radiographs and office visits account for a direct cost of $360.81 and $192, respectively, per patient. The current study strongly suggests that there is a negligible role for radiographs and office visits during the follow-up of a well-healed hip fracture when there is documented evidence of radiographic and clinical healing with acceptable fracture alignment and implant position. Implementation of this simple measure will help in reducing the cost of care and inconvenience to elderly patients. Diagnostic Level IV. See Instructions for Authors for a complete description of levels of evidence.
Hasan, Hosni; Davids, Keith; Chow, Jia Yi; Kerr, Graham
2017-04-01
This study investigated effects of wearing compression garments and textured insoles on modes of movement organisation emerging during performance of lower limb interceptive actions in association football. Participants were six skilled (age = 15.67 ± 0.74 years) and six less-skilled (age = 15.17 ± 1.1 years) football players. All participants performed 20 instep kicks with maximum velocity in four randomly organised insoles and socks conditions, (a) Smooth Socks with Smooth Insoles (SSSI); (b) Smooth Socks with Textured Insoles (SSTI); (c) Compression Socks with Smooth Insoles (CSSI); and (d), Compression Socks with Textured Insoles (CSTI). Results showed that, when wearing textured and compression materials (CSSI condition), less-skilled participants displayed significantly greater hip extension and flexion towards the ball contact phase, indicating larger ranges of motion in the kicking limb than in other conditions. Less-skilled participants also demonstrated greater variability in knee-ankle intralimb (angle-angle plots) coordination modes in the CSTI condition. Findings suggested that use of textured and compression materials increased attunement to somatosensory information from lower limb movement, to regulate performance of dynamic interceptive actions like kicking, especially in less-skilled individuals.
Leijendekkers, Ruud A; van Hinte, Gerben; Nijhuis-van der Sanden, Maria Wg; Staal, J Bart
2017-02-01
In patients with a transfemoral amputation socket-related problems are associated with reduced prosthetic use, activity, and quality of life. Furthermore, gait asymmetries are present that may explain secondary complaints. Bone-anchored prostheses (BAPs) may help these patients. Two types of BAP are available, screw and press-fit implants. Rehabilitation following surgery for a press-fit BAP is poorly described. To describe a rehabilitation program designed to minimize compensation strategies and increase activity using a case-report of an active, 70-year-old man with a traumatic transfemoral amputation who had used a socket prosthesis for 52 years and received a press-fit BAP [Endo-Exo Femoral Prosthesis - EEFP]. A 13-week physiotherapy program. Outcomes were assessed before surgery, at the end of rehabilitation, and six-month and one-year follow-ups. After rehabilitation gait had improved, the patient had more arm movement, more pelvic shift, less hip rotation during swing phase on the prosthetic side, and absence of vaulting on the sound side. Isometric hip abductor strength was 15% higher on the sound side and 16% higher on the prosthetic side, and walking distance increased from 200 m to 1500 m. At the six-month follow-up, the patient had lower back complications and reduced hip abductor strength and walking distance. At one-year follow-up, walking distance had recovered to 1000 m and gait pattern had improved again, with yielding and absence of terminal impact on the prosthetic side. The described rehabilitation program may be an effective method of improving gait in patients with an EEFP even after long-term socket usage.
Martinov, Dobrivoje; Popov, Veljko; Ignjatov, Zoran; Harris, Robert D
2013-04-01
Evolution of communication systems, especially internet-based technologies, has probably affected Radiology more than any other medical specialty. Tremendous increase in internet bandwidth has enabled a true revolution in image transmission and easy remote viewing of the static images and real-time video stream. Previous reports of real-time telesonography, such as the ones developed for emergency situations and humanitarian work, rely on high compressions of images utilized by remote sonologist to guide and supervise the unexperienced examiner. We believe that remote sonology could be also utilized in teleultrasound exam of infant hip. We tested feasibility of a low-cost teleultrasound system for infant hip and performed data analysis on the transmitted and original images. Transmission of data was accomplished with Remote Ultrasound (RU), a software package specifically designed for teleultrasound transmission through limited internet bandwidth. While image analysis of image pairs revealed statistically significant loss of information, panel evaluation failed to recognize any clinical difference between the original saved and transmitted still images.
Compressive strength of human openwedges: a selection method
NASA Astrophysics Data System (ADS)
Follet, H.; Gotteland, M.; Bardonnet, R.; Sfarghiu, A. M.; Peyrot, J.; Rumelhart, C.
2004-02-01
A series of 44 samples of bone wedges of human origin, intended for allograft openwedge osteotomy and obtained without particular precautions during hip arthroplasty were re-examined. After viral inactivity chemical treatment, lyophilisation and radio-sterilisation (intended to produce optimal health safety), the compressive strength, independent of age, sex and the height of the sample (or angle of cut), proved to be too widely dispersed [ 10{-}158 MPa] in the first study. We propose a method for selecting samples which takes into account their geometry (width, length, thicknesses, cortical surface area). Statistical methods (Principal Components Analysis PCA, Hierarchical Cluster Analysis, Multilinear regression) allowed final selection of 29 samples having a mean compressive strength σ_{max} =103 MPa ± 26 and with variation [ 61{-}158 MPa] . These results are equivalent or greater than average materials currently used in openwedge osteotomy.
Gluteal Tendinopathy: A Review of Mechanisms, Assessment and Management.
Grimaldi, Alison; Mellor, Rebecca; Hodges, Paul; Bennell, Kim; Wajswelner, Henry; Vicenzino, Bill
2015-08-01
Tendinopathy of the gluteus medius and gluteus minimus tendons is now recognized as a primary local source of lateral hip pain. The condition mostly occurs in mid-life both in athletes and in subjects who do not regularly exercise. Females are afflicted more than males. This condition interferes with sleep (side lying) and common weight-bearing tasks, which makes it a debilitating musculoskeletal condition with a significant impact. Mechanical loading drives the biological processes within a tendon and determines its structural form and load-bearing capacity. The combination of excessive compression and high tensile loads within tendons are thought to be most damaging. The available evidence suggests that joint position (particularly excessive hip adduction), together with muscle and bone elements, are key factors in gluteal tendinopathy. These factors provide a basis for a clinical reasoning process in the assessment and management of a patient presenting with localized lateral hip pain from gluteal tendinopathy. Currently, there is a lack of consensus as to which clinical examination tests provide best diagnostic utility. On the basis of the few diagnostic utility studies and the current understanding of the pathomechanics of gluteal tendinopathy, we propose that a battery of clinical tests utilizing a combination of provocative compressive and tensile loads is currently best practice in its assessment. Management of this condition commonly involves corticosteroid injection, exercise or shock wave therapy, with surgery reserved for recalcitrant cases. There is a dearth of evidence for any treatments, so the approach we recommend involves managing the load on the tendons through exercise and education on the underlying pathomechanics.
Nonpainful wide-area compression inhibits experimental pain.
Honigman, Liat; Bar-Bachar, Ofrit; Yarnitsky, David; Sprecher, Elliot; Granovsky, Yelena
2016-09-01
Compression therapy, a well-recognized treatment for lymphoedema and venous disorders, pressurizes limbs and generates massive non-noxious afferent sensory barrages. The aim of this study was to study whether such afferent activity has an analgesic effect when applied on the lower limbs, hypothesizing that larger compression areas will induce stronger analgesic effects, and whether this effect correlates with conditioned pain modulation (CPM). Thirty young healthy subjects received painful heat and pressure stimuli (47°C for 30 seconds, forearm; 300 kPa for 15 seconds, wrist) before and during 3 compression protocols of either SMALL (up to ankles), MEDIUM (up to knees), or LARGE (up to hips) compression areas. Conditioned pain modulation (heat pain conditioned by noxious cold water) was tested before and after each compression protocol. The LARGE protocol induced more analgesia for heat than the SMALL protocol (P < 0.001). The analgesic effect interacted with gender (P = 0.015). The LARGE protocol was more efficient for females, whereas the MEDIUM protocol was more efficient for males. Pressure pain was reduced by all protocols (P < 0.001) with no differences between protocols and no gender effect. Conditioned pain modulation was more efficient than the compression-induced analgesia. For the LARGE protocol, precompression CPM efficiency positively correlated with compression-induced analgesia. Large body area compression exerts an area-dependent analgesic effect on experimental pain stimuli. The observed correlation with pain inhibition in response to robust non-noxious sensory stimulation may suggest that compression therapy shares similar mechanisms with inhibitory pain modulation assessed through CPM.
Opening wedge and anatomic-specific plates in foot and ankle applications.
Kluesner, Andrew J; Morris, Jason B
2011-08-01
As surgeons continually push to improve techniques and outcomes, anatomic-specific and procedure-specific fixation options are becoming increasingly available. The unique size, shape, and function of the foot provide an ideal framework for the use of anatomic-specific plates. These distinctive plate characteristics range from anatomic contouring and screw placements to incorporated step-offs and wedges. By optimizing support, compression, and stabilization, patients may return to weight bearing and activity sooner, improving outcomes. This article discusses anatomic-specific plates and their use in forefoot and rearfoot surgical procedures. Copyright © 2011 Elsevier Inc. All rights reserved.
Schödel, Petra; Proescholdt, Martin; Brawanski, Alexander; Bele, Sylvia; Schebesch, Karl-Michael
2012-04-01
Burr-hole trephine and insertion of an external ventricular drainage (EVD) is a common procedure in neurosurgical practice. In critically ill patients, the transport to the operating room, OR represents a major risk. Thus, the burr-hole trephine and implantation of an EVD is frequently performed on the Intensive Care Unit (ICU). Since 2004, we have applied two different procedures: the conventional method with a mechanical compressed air or an electric drill, and an alternative method with a manual twist drill, including fixation of the EVD in a skull screw (Bolt Kit, Raumedic AG, Germany). This study was designed to evaluate the outcome of both surgical procedures. In this retrospective analysis we included 166 consecutive patients with acute hydrocephalus due to intracranial hemorrhage that had been operated at our neurosurgical ICU in a six years interval. We reviewed the charts for gender and age, kind of surgical procedure, cerebrospinal fluid (CSF)-infections, duration of drainage, attempts of insertions, wound infections, misplacement rate, post-surgical hemorrhages, revisions, comorbidities and shunt-dependency. In 122 patients we applied the Bolt Kit System, in 44 patients the conventional method was performed. We found a significantly lower rate of CSF-infections and significantly fewer attempts of insertions in the Bolt Kit group (p = 0.002 and p = 0.001, respectively). The rate of wound infections, misplacement, revisions, shunt-dependency and the post-surgical hemorrhages did not differ significantly. Our data indicate that the manual drill and the skull screw are safe and feasible tools in the treatment of acute hydrocephalus. Presumably, the direct skin contact is causative for the higher rate of CSF-infections when the conventional method is performed. The skull screw guides the EVD into the ventricle without skin contact. The lower number of insertions needed may be due to the fact that the skull screw allows just one trajectory for the insertion of the EVD.
Fixation Options for the Volar Lunate Facet Fracture: Thinking Outside the Box.
Harness, Neil G
2016-03-01
Background Fractures of the distal radius with small volar ulnar marginal fracture fragments are difficult to stabilize with standard volar locking plates. The purpose of this study is to describe alternative techniques available to stabilize these injuries. Materials and Methods Five patients were identified retrospectively with unstable volar lunate facet fracture fragments treated with supplemental fixation techniques. The demographic data, pre- and postoperative radiographic parameters, and early outcomes data were analyzed. The AO classification, preoperative and final postoperative ulnar variance, articular step-off, volar tilt, radial inclination, and teardrop angle were measured. The lunate subsidence and length of the volar cortex available for fixation were measured from the initial injury films. Description of Technique Lunate facet fixation was based on the morphology of the fragment, and stabilization was achieved with headless compression screws in three patients, a tension band wire construct in one, and two cortical screws in another. Results Five patients with a mean age of 58 years (range: 41-82) were included. There were two AO C3.2 and three B3.3 fractures. Preoperative radiographic measurements including radial inclination, tilt, and ulnar variance all improved after surgery and were maintained within normal limits at 3-month follow-up. There was no change in the teardrop angle at final follow-up (70-64 degrees; p = 0.14). None of the patients had loss of fixation or volar carpal subluxation. The mean visual analog scale pain score at 3 months was 1 (range: 0-2). Conclusions The morphology of volar lunate facet fracture fragments is variable, and fixation must be customized to the particular pattern. Small fragments may preclude the use of plates and screws for fixation. These fractures can be managed successfully with tension band wire constructs and headless screws. These low-profile implants may decrease the risk of tendon irritation that might accompany distally placed plates.
Fixation Options for the Volar Lunate Facet Fracture: Thinking Outside the Box
Harness, Neil G.
2016-01-01
Background Fractures of the distal radius with small volar ulnar marginal fracture fragments are difficult to stabilize with standard volar locking plates. The purpose of this study is to describe alternative techniques available to stabilize these injuries. Materials and Methods Five patients were identified retrospectively with unstable volar lunate facet fracture fragments treated with supplemental fixation techniques. The demographic data, pre- and postoperative radiographic parameters, and early outcomes data were analyzed. The AO classification, preoperative and final postoperative ulnar variance, articular step-off, volar tilt, radial inclination, and teardrop angle were measured. The lunate subsidence and length of the volar cortex available for fixation were measured from the initial injury films. Description of Technique Lunate facet fixation was based on the morphology of the fragment, and stabilization was achieved with headless compression screws in three patients, a tension band wire construct in one, and two cortical screws in another. Results Five patients with a mean age of 58 years (range: 41–82) were included. There were two AO C3.2 and three B3.3 fractures. Preoperative radiographic measurements including radial inclination, tilt, and ulnar variance all improved after surgery and were maintained within normal limits at 3-month follow-up. There was no change in the teardrop angle at final follow-up (70–64 degrees; p = 0.14). None of the patients had loss of fixation or volar carpal subluxation. The mean visual analog scale pain score at 3 months was 1 (range: 0–2). Conclusions The morphology of volar lunate facet fracture fragments is variable, and fixation must be customized to the particular pattern. Small fragments may preclude the use of plates and screws for fixation. These fractures can be managed successfully with tension band wire constructs and headless screws. These low-profile implants may decrease the risk of tendon irritation that might accompany distally placed plates. PMID:26855830
Kose, Kamil Cagri; Inanmaz, Mustafa Erkan; Uslu, Mustafa; Bal, Emre; Caliskan, Islam
2012-06-01
This study is a case report of a meningomyelocele patient with congenital kyphosis who was treated with kyphectomy and a special approach to soft tissue healing. The objective of this study is to show a step by step approach to surgical treatment and postoperative care of a meningomyelocele patient with congenital kyphosis. In meningomyelocele the incidence of kyphosis is around 12-20%. It may cause recurrent skin ulcerations, impaired sitting balance and respiratory compromise. Kyphectomy has first been described by Sharrard. This surgery is prone to complications including pseudoarthrosis, skin healing problems, recurrence of deformity and deep infections. A 15-year-old male presented with congenital kyphosis due to meningomyelocele. He had back pain, deformity and bedsores at the apex of the deformity. The wound cultures showed Staphylococcus epidermidis colonisation at the apex. He was given appropriate antibiotic prophylaxis. During surgery, the apex of the deformity was exposed through a spindle-shaped incision. After instrumentation and excision of the apex, correction was carried out by cantilever technique. Two screws were inserted to the bodies of L3 and T11. After the operation, the skin was closed in a reverse cross fashion. He was sent to hyperbaric oxygen treatment for prevention of a subsequent skin infection and for rapid healing of skin flaps post operation. The patient's deformity was corrected from a preoperative Cobb angle of 135°-15° postoperative. The skin healed without any problems. Preoperative culture and appropriate antibiotic prophylaxis, spindle-shaped incision, reverse cross-skin closure and postoperative hyperbaric oxygen treatment can be useful adjuncts to treatment in congenital kyphosis patients with myelomeningocele to prevent postoperative wound healing and infection problems. Reduction screws and intracorporeal compression screws help to reduce the amount of screws and aid in corection of the deformity. © 2011 The Authors. © 2011 Blackwell Publishing Ltd and Medicalhelplines.com Inc.
Kim, Young-Hoo; Park, Jang-Won; Kim, Jun-Shik
2017-02-01
The major concern with the use of tranexamic acid is that it may promote a hypercoagulable state and increase the risk of deep vein thrombosis (DVT) and pulmonary embolism (PE), particularly when chemical thromboprophylaxis is not used. The objective of this study was to ascertain whether tranexamic acid reduces blood loss and transfusion amounts and increases the prevalence of DVT and PE in the patients undergoing primary cementless total hip arthroplasty (THA) without the use of routine chemical thromboprophylaxis. There were 480 patients (582 hips) in the control group who did not receive tranexamic acid and 487 patients (584 hips) in the study group who received tranexamic acid. Mechanical compression device was applied without any chemical thromboprophylaxis. Transfusion rates and volumes were recorded. DVT was diagnosed using both sonogram and venogram at 7 or 8 days postoperatively. All patients had pre- and postoperative perfusion lung scanning to defect pulmonary embolism (PE). Intraoperative (614 vs 389 mL) and postoperative blood loss (515 vs 329 mL) and transfusion volumes (3 units vs 1.5 units) were significantly lower (P < .001) in the tranexamic acid group. The prevalence of DVT was 15% (87 of 582 hips) in the control group and 18% (105 of 584 hips) in the tranexamic acid group. No fatal PE occurred in either group. The use of tranexamic acid reduces the volume of blood transfusion and does not increase the prevalence of DVT or PE in the patients who did not receive routine chemical thromboprophylaxis after primary cementless THA. Copyright © 2016 Elsevier Inc. All rights reserved.
Model-based tomographic reconstruction of objects containing known components.
Stayman, J Webster; Otake, Yoshito; Prince, Jerry L; Khanna, A Jay; Siewerdsen, Jeffrey H
2012-10-01
The likelihood of finding manufactured components (surgical tools, implants, etc.) within a tomographic field-of-view has been steadily increasing. One reason is the aging population and proliferation of prosthetic devices, such that more people undergoing diagnostic imaging have existing implants, particularly hip and knee implants. Another reason is that use of intraoperative imaging (e.g., cone-beam CT) for surgical guidance is increasing, wherein surgical tools and devices such as screws and plates are placed within or near to the target anatomy. When these components contain metal, the reconstructed volumes are likely to contain severe artifacts that adversely affect the image quality in tissues both near and far from the component. Because physical models of such components exist, there is a unique opportunity to integrate this knowledge into the reconstruction algorithm to reduce these artifacts. We present a model-based penalized-likelihood estimation approach that explicitly incorporates known information about component geometry and composition. The approach uses an alternating maximization method that jointly estimates the anatomy and the position and pose of each of the known components. We demonstrate that the proposed method can produce nearly artifact-free images even near the boundary of a metal implant in simulated vertebral pedicle screw reconstructions and even under conditions of substantial photon starvation. The simultaneous estimation of device pose also provides quantitative information on device placement that could be valuable to quality assurance and verification of treatment delivery.
Freitas, Anderson; Torres, Gustavo Melo; Souza, André Cezar de Andrade de Mello e; Maciel, Rafael Almeida; Souto, Diogo Ranier de Macedo; Ferreira, George Neri de Barros
2014-01-01
Objective To statistically analyze the results obtained from biomechanical tests on fixation of femoral neck fractures of Pauwels III type, in synthetic bone, using the dynamic hip system with an anti-rotation screw, versus a control group. Methods Ten synthetic bones from a Brazilian manufacturer (model C1010) were used and divided into two groups: test and control. In the test group, fixation of an osteotomy was performed with 70° of inclination at the level of the femoral neck, using DHS with an anti-rotation screw. The resistance of this fixation was evaluated, along with its rotational deviation at 5 mm of displacement (phase 1) and at 10 mm of displacement (phase 2), which was considered to be failure of synthesis. In the control group, the models were tested in their entirety until femoral neck fracturing occurred. Results The test values in the test group (samples 1–5) in phase 1 were: 1512 N, 1439 N, 1205 N, 1251 N and 1273 N, respectively (mean = 1336 N; standard deviation [SD] = 132 N). The rotational deviations were: 4.90°, 3.27°, 2.62°, 0.66° and 0.66°, respectively (mean = 2.42°; SD = 1.81°). In phase 2, we obtained: 2064 N, 1895 N, 1682 N, 1713 N and 1354 N, respectively (mean = 1742 N; SD = 265 N). The failure loading values in the control group were: 1544 N, 1110 N, 1359 N, 1194 N and 1437 N, respectively (mean = 1329 N; SD = 177 N). The statistical analysis using the Mann–Whitney test showed that the test group presented maximum loading at a displacement of 10 mm, i.e. significantly greater than the failure loading of the control group (p = 0.047). Conclusion The mechanical resistance of the test group was significantly greater than that of the control group. PMID:26229866
Abben, Kyle W; Sorensen, Matthew D; Waverly, Brett J
2018-05-08
Historically, the postoperative protocol for patients undergoing first metatarsophalangeal joint arthrodesis has included 6 weeks of non-weightbearing, followed by protected weightbearing in a below-the-knee cast boot or postoperative shoe. This prolonged period of non-weightbearing predisposes the patient to disuse atrophy, osteopenia, deep vein thrombosis risk, and, overall, a prolonged time to recovery. The present study reports a retrospective review of a patient cohort that underwent first metatarsophalangeal joint fusion with immediate full weightbearing postoperatively. Thirty consecutive first metatarsophalangeal joint arthrodeses were performed during the study period. Five patients were excluded secondary to insufficient postoperative follow-up data or a lack of adequate radiographic evaluation at regular postoperative intervals. Conical reamers were used for joint preparation. Internal fixation, consisting of a single cannulated interfragmentary compression screw and a dorsal locking plate, was used in all patients. The results showed that patients achieved clinical healing at an average of 5.92 weeks and showed radiographic fusion at an average of 6.83 weeks. The patients in the present study had an overall union rate of 96%. Complications included 1 nonunion, 1 superficial wound infection, 1 wound dehiscence, 1 case of symptomatic hardware, and 2 patients with symptomatic hallux interphalangeal joint arthralgia. The mean visual analog pain score preoperatively was 6.64 (range 4 to 8) and postoperatively was 0.6 (range 0 to 4). In conclusion, we found that immediate full weightbearing after first metatarsophalangeal joint fusion in the context of interfragmentary compression and locked plating techniques is a safe, predictable postoperative protocol that allows for a successful fusion interval and an early return to regular activity. Copyright © 2018 The American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
Marques, Elisa A; Carballido-Gamio, Julio; Gudnason, Vilmundur; Sigurdsson, Gunnar; Sigurdsson, Sigurdur; Aspelund, Thor; Siggeirsdottir, Kristin; Launer, Lenore; Eiriksdottir, Gudny; Lang, Thomas; Harris, Tamara B
2018-05-16
In this case-cohort study, we used data-driven computational anatomy approaches to assess within and between sex spatial differences in proximal femoral bone characteristics in relation to incident hip fracture. One hundred male and 234 female incident hip fracture cases, and 1047 randomly selected noncase subcohort participants (562 female) were chosen from the population-based AGES-Reykjavik study (mean age of 77 years). The baseline -i.e. before hip fracture- hip quantitative computed tomography scans of these subjects were analyzed using voxel-based morphometry, tensor-based morphometry, and surface-based statistical parametric mapping to assess the spatial distribution of volumetric bone mineral density (vBMD), internal structure, and cortical bone properties (thickness, vBMD and trabecular vBMD adjacent to the endosteal surface) of the proximal femur, respectively, in relation to incident hip fracture. Results showed that in both men and women: 1) the superior aspect of the femoral neck and the trochanteric region (except for cortical bone thickness) were consistently identified as being associated with incident hip fracture, and 2) differences in bone properties between noncases and incident hip fracture cases followed similar trends, were located at compatible regions, and manifested heterogeneity in the spatial distribution of their magnitude with focal regions showing larger differences. With respect to sex differences, most of the regions with a significant interaction between fracture group and sex showed: 1) differences of greater magnitude in men between noncases and incident hip fracture cases with different spatial distributions for all bone properties with the exception of cortical bone thickness, and 2) that while most of these regions showed better bone quality in male cases than in female cases, female cases showed higher vBMD in the principal compressive group and higher endotrabecular vBMD at several regions including the anterior, posterior, and lateral aspects of the proximal femur. These findings indicate the value of these image analysis techniques by providing unique information about the specific patterns of bone deterioration associated with incident hip fracture and their sex differences, highlighting the importance of looking to men and women separately in the assessment of hip fracture risk. Copyright © 2017. Published by Elsevier Inc.
Darrow, Brett G; Biskup, Jeffrey J; Weigel, Joseph P; Jones, Michael P; Xie, Xie; Liaw, Peter K; Tharpe, Josh L; Sharma, Aashish; Penumadu, Dayakar
2017-05-01
OBJECTIVE To evaluate mechanical properties of pigeon (Columba livia) cadaver intact humeri versus ostectomized humeri stabilized with a locking or nonlocking plate. SAMPLE 30 humeri from pigeon cadavers. PROCEDURES Specimens were allocated into 3 groups and tested in bending and torsion. Results for intact pigeon humeri were compared with results for ostectomized humeri repaired with a titanium 1.6-mm screw locking plate or a stainless steel 1.5-mm dynamic compression plate; the ostectomized humeri mimicked a fracture in a thin cortical bone. Locking plates were secured with locking screws (2 bicortical and 4 monocortical), and nonlocking plates were secured with bicortical nonlocking screws. Constructs were cyclically tested nondestructively in 4-point bending and then tested to failure in bending. A second set of constructs were cyclically tested non-destructively and then to failure in torsion. Stiffness, strength, and strain energy of each construct were compared. RESULTS Intact specimens were stiffer and stronger than the repair groups for all testing methods, except for nonlocking constructs, which were significantly stiffer than intact specimens under cyclic bending. Intact bones had significantly higher strain energies than locking plates in both bending and torsion. Locking and nonlocking plates were of equal strength and strain energy, but not stiffness, in bending and were of equal strength, stiffness, and strain energy in torsion. CONCLUSIONS AND CLINICAL RELEVANCE Results for this study suggested that increased torsional strength may be needed before bone plate repair can be considered as the sole fixation method for avian species.
Kaneyama, Shuichi; Sugawara, Taku; Sumi, Masatoshi
2015-03-15
Clinical trial for midcervical pedicle screw insertion using a novel patient-specific intraoperative screw guiding device. To evaluate the availability of the "Screw Guide Template" (SGT) system for insertion of midcervical pedicle screws. Despite many efforts for accurate midcervical pedicle screw insertion, there still remain unacceptable rate of screw malpositioning that might cause neurovascular injuries. We developed patient-specific SGT system for safe and accurate intraoperative screw navigation tool and have reported its availability for the screw insertion to C2 vertebra and thoracic spine. Preoperatively, the bone image on computed tomography was analyzed and the trajectories of the screws were designed in 3-dimensional format. Three types of templates were created for each lamina: location template, drill guide template, and screw guide template. During the operations, after engaging the templates directly with the laminae, drilling, tapping, and screwing were performed with each template. We placed 80 midcervical pedicle screws for 20 patients. The accuracy and safety of the screw insertion by SGT system were evaluated using postoperative computed tomographic scan by calculation of screw deviation from the preplanned trajectory and evaluation of screw breach of pedicle wall. All templates fitted the laminae and screw navigation procedures proceeded uneventfully. All screws were inserted accurately with the mean screw deviation from planned trajectory of 0.29 ± 0.31 mm and no neurovascular complication was experienced. We demonstrated that our SGT system could support the precise screw insertion in midcervical pedicle. SGT prescribes the safe screw trajectory in a 3-dimensional manner and the templates fit and lock directly to the target laminae, which prevents screwing error along with the change of spinal alignment during the surgery. These advantages of the SGT system guarantee the high accuracy in screw insertion, which allowed surgeons to insert cervical pedicle screws safely. 3.
Four-corner fusion of the wrist: clinical and radiographic outcome of 31 patients.
Mavrogenis, Andreas F; Flevas, Dimitrios A; Raptis, Konstantinos; Megaloikonomos, Panayiotis D; Igoumenou, Vasilios G; Antoniadou, Thekla; Dimopoulos, Leonidas; Antonopoulos, Dimitrios; Spyridonos, Sarantis G
2016-12-01
Four-corner fusion is a rational surgical option for the management of degenerative conditions of the wrist. Most related studies have compared four-corner fusion with scaphoid excision or proximal row carpectomy, with a variety of reported results. To enhance the literature, we performed this study to evaluate a series of patients with degenerative conditions of the wrist treated with four-corner fusion using 3 surgical techniques and to discuss the clinical and radiographic outcome of the patients. We retrospectively studied 31 patients (24 men, 7 women; mean age, 43 years; 9 heavy manual laborers) who underwent four-corner fusion of their wrists for degenerative conditions from 2005 to 2015. Internal fixation was done using multiple Kirschner wires (14 patients), headless compressive screws (8 patients), or a circular plate (9 patients). Mean follow-up was 4 years (1-11 years). We evaluated the clinical outcome with the Patient-Rated Wrist Evaluation (PRWE) score and fusion with radiographs. All patients experienced improvement of their pain, function, range of motion and grip strength (p < 0.05). Twenty-three patients (74 %) reported no pain, and eight patients reported mild, occasional pain. Twenty-one patients (68 %) were able to do usual and specific activities. Mean wrist motion improved to 70 % and mean grip strength improved to 85 % of opposite wrist. Two heavy manual labor patients requested a job modification because of wrist impairment. Radiographs of the wrist showed fusion of all fused joints in 28 (90.3 %) patients and partial fusion in three patients (9.7 %). No patient with partial fusion required a reoperation for symptomatic nonunion until the period of this study. Three patients experienced complications (10 %). Two patients treated with a circular plate experienced complex regional pain syndrome and painful implant impingement; another patient treated with Kirschner wires and headless compression screws experienced radiolunate arthritis from impingement of the lunate screw to the radius. Four-corner fusion is a reliable limited wrist fusion technique that provides pain relief, grip strength and satisfactory range of motion in patients with degenerative conditions of the wrist. Partial union is more common with Kirschner wire fixation and complications are more common with circular plate fixation.
Nonpainful wide-area compression inhibits experimental pain
Honigman, Liat; Bar-Bachar, Ofrit; Yarnitsky, David; Sprecher, Elliot; Granovsky, Yelena
2016-01-01
Abstract Compression therapy, a well-recognized treatment for lymphoedema and venous disorders, pressurizes limbs and generates massive non-noxious afferent sensory barrages. The aim of this study was to study whether such afferent activity has an analgesic effect when applied on the lower limbs, hypothesizing that larger compression areas will induce stronger analgesic effects, and whether this effect correlates with conditioned pain modulation (CPM). Thirty young healthy subjects received painful heat and pressure stimuli (47°C for 30 seconds, forearm; 300 kPa for 15 seconds, wrist) before and during 3 compression protocols of either SMALL (up to ankles), MEDIUM (up to knees), or LARGE (up to hips) compression areas. Conditioned pain modulation (heat pain conditioned by noxious cold water) was tested before and after each compression protocol. The LARGE protocol induced more analgesia for heat than the SMALL protocol (P < 0.001). The analgesic effect interacted with gender (P = 0.015). The LARGE protocol was more efficient for females, whereas the MEDIUM protocol was more efficient for males. Pressure pain was reduced by all protocols (P < 0.001) with no differences between protocols and no gender effect. Conditioned pain modulation was more efficient than the compression-induced analgesia. For the LARGE protocol, precompression CPM efficiency positively correlated with compression-induced analgesia. Large body area compression exerts an area-dependent analgesic effect on experimental pain stimuli. The observed correlation with pain inhibition in response to robust non-noxious sensory stimulation may suggest that compression therapy shares similar mechanisms with inhibitory pain modulation assessed through CPM. PMID:27152691
Thermo-mechanical process for treatment of welds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malik, R K
1980-03-01
Benefits from thermo-mechanical processing (TMP) of austenitic stainless steel weldments, analogous to hot isostatic pressing (HIP) of castings, most likely result from compressive plastic deformation, enhanced diffusion, and/or increased dislocation density. TMP improves ultrasonic inspectability of austenitic stainless steel welds owing to: conversion of cast dendrites into equiaxed austenitic grains, reduction in size and number of stringers and inclusions, and reduction of delta ferrite content. TMP induces structural homogenization and healing of void-type defects and thus contributes to an increase in elongation, impact strength, and fracture toughness as well as a significant reduction in data scatter for these properties. Anmore » optimum temperature for TMP or HIP of welds is one which causes negligible grain growth and an acceptable reduction in yield strength, and permits healing of porosity.« less
Yuan, Cheng-song; Chen, Wan; Chen, Chen; Yang, Guang-hua; Hu, Chao; Tang, Kang-lai
2015-01-01
We investigated the effects on subtalar joint stress distribution after cannulated screw insertion at different positions and directions. After establishing a 3-dimensional geometric model of a normal subtalar joint, we analyzed the most ideal cannulated screw insertion position and approach for subtalar joint stress distribution and compared the differences in loading stress, antirotary strength, and anti-inversion/eversion strength among lateral-medial antiparallel screw insertion, traditional screw insertion, and ideal cannulated screw insertion. The screw insertion approach allowing the most uniform subtalar joint loading stress distribution was lateral screw insertion near the border of the talar neck plus medial screw insertion close to the ankle joint. For stress distribution uniformity, antirotary strength, and anti-inversion/eversion strength, lateral-medial antiparallel screw insertion was superior to traditional double-screw insertion. Compared with ideal cannulated screw insertion, slightly poorer stress distribution uniformity and better antirotary strength and anti-inversion/eversion strength were observed for lateral-medial antiparallel screw insertion. Traditional single-screw insertion was better than double-screw insertion for stress distribution uniformity but worse for anti-rotary strength and anti-inversion/eversion strength. Lateral-medial antiparallel screw insertion was slightly worse for stress distribution uniformity than was ideal cannulated screw insertion but superior to traditional screw insertion. It was better than both ideal cannulated screw insertion and traditional screw insertion for anti-rotary strength and anti-inversion/eversion strength. Lateral-medial antiparallel screw insertion is an approach with simple localization, convenient operation, and good safety. Copyright © 2015 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
Surface characteristics of clinically used dental implant screws
NASA Astrophysics Data System (ADS)
Han, Myung-Ju; Choe, Han-Cheol; Chung, Chae-Heon
2005-12-01
Surface alteration of implant screws after function may be associated with mechanicalffailure. This type of metal fatigue appears to be the most common cause of structural failure. The purpose of this study was to evaluate surface alteration of implant screws after function through an examination of used and unused implant screws via scanning electron microscopy (SEM). In this study, abutment screws (Steri-oss, 3i, USA), gold retaining screws (3i, USA), and titanium retaining screws (3i, USA) were retrieved from patients, New, unused abutment, and retaining screws were prepared for a control group. Each of the old, used screws was retrieved with a screwdriver. The retrieved implant complex of a Steri-oss system was also prepared for this study. SEM investigation and energy dispersive spectroscopy (EDS) analysis of the abutment and retaining screws were then performed, as well as SEM investigation of a cross-sectioned sample of the retrieved implant complex in the case of new, unused implant screws, as-manufactured circumferential grooves were regularly examined and screw threads were sharply maintained. Before ultrasonic cleansing of old, used implant screws, there was a large amount of debris accumulation and corrosion products. After ultrasonic cleansing of old, used implant screws, circumferential grooves were examined were found to be randomly deepened and scratching increased. Also, dull screw fhreads were observed. More surface alterations after function were observed in titanium screws than in gold screws. Furthermore, more surface alteration was observed when the screws were retrieved with a driver than without a driver. These surface alterations after function may result in screw instability. Regular cleansing and exchange of screws is therefore recommended. We also recommend the use of gold screws over titanium screws, and careful manipulation of the driver.
Ramoutar, D N; Kodumuri, P; Rodrigues, J N; Olewicz, S; Moran, C G; Ollivere, B J; Forward, D P
2017-02-01
Proximal femoral fractures in adults under 50 years are not as common as in the elderly, but may have just as significant an impact. There is little in the literature describing the functional outcomes of fixation in this age group. Our aim was to assess the clinical and functional outcomes of operative management of extracapsular proximal femoral fractures (AO 31-A) in the young adult (<50 years). Consecutive skeletally mature patients <50 years undergoing operative fixation of these fractures were obtained from a prospective database over a 12-year period. Complications and mortality data were obtained from this database and case note review. Outcome scores were obtained via postal questionnaires. Eighty-eight patients were included in the study of which 74 (84%) had fixation with the dynamic hip screw. The mean age was 39 years (range 17-50) with a male preponderance (73.8%). Mean hospital stay was 14 days (range 2-94). Seventeen (19.3%) patients had died at a mean of 40 months from their operation date. The 1-year mortality was 4.5%. There were five complications (5.7%). SF-36 and EuroQol 5D scores showed that 5-10% had severe problems with a 20% decrease in quality of life compared to population norms. The biggest differences were in the physical function modalities. One-third had fair to poor hip function as assessed by the Oxford Hip Score. Though these injuries are relatively rare in this age group, they do have significant mortality and functional impairment reflecting a higher energy of injury rather than the frailty seen in the elderly.
Newcomb, Anna G. U. S.; Baek, Seungwon; Kelly, Brian P.; Crawford, Neil R.
2016-01-01
Angled screw insertion has been advocated to enhance fixation strength during posterior spine fixation. Stresses on a pedicle screw and surrounding vertebral bone with different screw angles were studied by finite element analysis during simulated multidirectional loading. Correlations between screw-specific vertebral geometric parameters and stresses were studied. Angulations in both the sagittal and axial planes affected stresses on the cortical and cancellous bones and the screw. Pedicle screws pointing laterally (vs. straight or medially) in the axial plane during superior screw angulation may be advantageous in terms of reducing the risk of both screw loosening and screw breakage. PMID:27454197
Noehren, Brian; Davis, Irene; Hamill, Joseph
2007-11-01
Iliotibial band syndrome is the leading cause of lateral knee pain in runners. Despite its high prevalence, little is known about the biomechanics that lead to this syndrome. The purpose of this study was to prospectively compare lower extremity kinematics and kinetics between a group of female runners who develop iliotibial band syndrome compared to healthy controls. It was hypothesized that runners who develop iliotibial band syndrome will exhibit greater peak hip adduction, knee internal rotation, rearfoot eversion and no difference in knee flexion at heel strike. Additionally, the iliotibial band syndrome group were expected to have greater hip abduction, knee external rotation, and rearfoot inversion moments. A group of healthy female recreational runners underwent an instrumented gait analysis and were then followed for two years. Eighteen runners developed iliotibial band syndrome. Their initial running mechanics were compared to a group of age and mileage matched controls with no history of knee or hip pain. Comparisons of peak hip, knee, rearfoot angles and moments were made during the stance phase of running. Variables of interest were averaged over the five running trials, and then averaged across groups. The iliotibial band syndrome group exhibited significantly greater hip adduction and knee internal rotation. However, rearfoot eversion and knee flexion were similar between groups. There were no differences in moments between groups. The development of iliotibial band syndrome appears to be related to increased peak hip adduction and knee internal rotation. These combined motions may increase iliotibial band strain causing it to compress against the lateral femoral condyle. These data suggest that treatment interventions should focus on controlling these secondary plane movements through strengthening, stretching and neuromuscular re-education.
Load Transmission Through Artificial Hip Joints due to Stress Wave Loading
NASA Astrophysics Data System (ADS)
Tanabe, Y.; Uchiyama, T.; Yamaoka, H.; Ohashi, H.
Since wear of the polyethylene (Ultra High Molecular Weight Polyethylene or UHMWPE) acetabular cup is considered to be the main cause of loosening of the artificial hip joint, the cross-linked UHMWPE with high durability to wear has been developed. This paper deals with impact load transmission through the complex of an artificial hip joint consisting of a UHMWPE acetabular cup (or liner), a metallic femoral head and stem. Impact compressive tests on the complex were performed using the split-Hopkinson pressure bar apparatus. To investigate the effects of material (conventional or cross-linked UHMWPE), size and setting angle of the liner, and test temperature on force transmission, the impact load transmission ratio (ILTR) was experimentally determined. The ILTR decreased with an increase of the setting angle independent of material and size of the liner, and test temperature. The ILTR values at 37°C were larger than those at 24 °C and 60°C. The ILTR also appeared to be affected by the type of material as well as size of the liner.
Hollow screw-like drill in plasma using an intense Laguerre-Gaussian laser
NASA Astrophysics Data System (ADS)
Wang, Wenpeng; Shen, Baifei; Zhang, Xiaomei; Zhang, Lingang; Shi, Yin; Xu, Zhizhan
2015-02-01
With the development of ultra-intense laser technology, MeV ions can be obtained from laser-foil interactions in the laboratory. These energetic ion beams can be applied in fast ignition for inertial confinement fusion, medical therapy, and proton imaging. However, these ions are mainly accelerated in the laser propagation direction. Ion acceleration in an azimuthal orientation was scarcely studied. In this research, a doughnut Laguerre-Gaussian (LG) laser is used for the first time to examine laser-plasma interaction in the relativistic intensity regime in three-dimensional particle-in-cell simulations. Studies have shown that a novel rotation of the plasma is produced from the hollow screw-like drill of an mode laser. The angular momentum of particles in the longitudinal direction produced by the LG laser is enhanced compared with that produced by the usual laser pulses, such as linearly and circularly polarized Gaussian pulses. Moreover, the particles (including electrons and ions) can be trapped and uniformly compressed in the dark central minimum of the doughnut LG pulse. The hollow-structured LG laser has potential applications in the generation of x-rays with orbital angular momentum, plasma accelerators, fast ignition for inertial confinement fusion, and pulsars in the astrophysical environment.
Hollow screw-like drill in plasma using an intense Laguerre-Gaussian laser.
Wang, Wenpeng; Shen, Baifei; Zhang, Xiaomei; Zhang, Lingang; Shi, Yin; Xu, Zhizhan
2015-02-05
With the development of ultra-intense laser technology, MeV ions can be obtained from laser-foil interactions in the laboratory. These energetic ion beams can be applied in fast ignition for inertial confinement fusion, medical therapy, and proton imaging. However, these ions are mainly accelerated in the laser propagation direction. Ion acceleration in an azimuthal orientation was scarcely studied. In this research, a doughnut Laguerre-Gaussian (LG) laser is used for the first time to examine laser-plasma interaction in the relativistic intensity regime in three-dimensional particle-in-cell simulations. Studies have shown that a novel rotation of the plasma is produced from the hollow screw-like drill of an mode laser. The angular momentum of particles in the longitudinal direction produced by the LG laser is enhanced compared with that produced by the usual laser pulses, such as linearly and circularly polarized Gaussian pulses. Moreover, the particles (including electrons and ions) can be trapped and uniformly compressed in the dark central minimum of the doughnut LG pulse. The hollow-structured LG laser has potential applications in the generation of x-rays with orbital angular momentum, plasma accelerators, fast ignition for inertial confinement fusion, and pulsars in the astrophysical environment.
NASA Astrophysics Data System (ADS)
McKirahan, James N., Jr.
The purpose of this research was to determine the feasibility of direct melt-blending (intercalation) montmorillonite nanoclay to polyhydroxybutyrate along with vinyl acetate, at different weight percentages, to enhance plasticization using typical plastic processing equipment and typical processing methodology. The purpose was to determine and compare the specific mechanical properties of tensile strength and flexural strength developed as a result from this processing. Single screw and twin screw extrusion, Banbury mixer compounding, and compression molding were used to intercalate montmorillonite, and for sample preparation purposes, to test tensile and flexural strength of the resultant polymer clay nanocomposites (PCN). Results indicate Polyhydroxybutyrate and Ethylene vinyl acetate, and weight percentages of 70%, 65% and 60% PHB, and 15%, 20%, and 25% of EVA, respectively, influenced mechanical properties. The resultant materials remained in a mostly amorphous state. The nanoclay, at specific weight percentage of 10%, acted as an antimicrobial and preservative for the materials produced during the research. The intention of the research was to promote knowledge and understanding concerning these materials and processes so technology transfer regarding the use, mechanical properties, manufacture, and process ability of these bio-friendly materials to academia, industry, and society can occur.
Adverse Reactions to Metal on Metal Are Not Exclusive to Large Heads in Total Hip Arthroplasty.
Lombardi, Adolph V; Berend, Keith R; Adams, Joanne B; Satterwhite, Keri L
2016-02-01
There is some suggestion that smaller diameter heads in metal-on-metal total hip arthroplasty (MoM THA) may be less prone to the adverse reactions to metal debris (ARMD) seen with large-diameter heads. We reviewed our population of patients with small head (≤ 32 mm) MoM THA to determine (1) the frequency of ARMD; (2) potential risk factors for ARMD in this population; and (3) the etiology of revision and Kaplan-Meier survivorship with revision for all causes. Small-diameter head MoM devices were used in 9% (347 of 3753) of primary THAs during the study period (January 1996 to March 2005). We generally used these implants in younger, more active, higher-demand patients. Three hundred hips (258 patients) had MoM THA using a titanium modular acetabular component with a cobalt-chromium tapered insert and were available for review with minimum 2-year followup (mean, 10 years; range, 2-19 years). Complete followup was available in 86% of hips (300 of 347). Clinical records and radiographs were reviewed to determine the frequency and etiology of revision. Kaplan-Meier survivorship analysis was performed. ARMD frequency was 5% (14 of 300 hips) and represented 70% (14 of 20) of revisions performed. Using multivariate analysis, no variable tested, including height, weight, body mass index, age, cup diameter, cup angle, use of screws, stem diameter, stem type, head diameter, preoperative clinical score, diagnosis, activity level, or sex, was significant as a risk factor for revision. Twenty hips have been revised: two for infection, four for aseptic loosening, and 14 for ARMD. Kaplan-Meier analysis revealed survival free of component revision for all causes was 95% at 10 years (95% confidence interval [CI], 91%-97%), 92% at 15 years (95% CI, 87%-95%), and 72% at 19 years (95% CI, 43%-90%), and survival free of component revision for aseptic causes was 96% at 10 years (95% CI, 92%-98%), 92% at 15 years (95% CI, 88%-95%), and 73% at 19 years (95% CI, 43%-90%). The late onset and devastating nature of metal-related failures is concerning with this small-diameter MoM device. Although the liner is modular, it cannot be exchanged and full acetabular revision is required. Patients with all MoM THA devices should be encouraged to return for clinical and radiographic followup, and clinicians should maintain a low threshold to perform a systematic evaluation. Symptomatic patients should undergo thorough investigation and vigilant observation for ARMD. Level IV, therapeutic study.
White, Alexander A; Kubacki, Meghan R; Samona, Jason; Telehowski, Paul; Atkinson, Patrick J
2016-06-01
Studies have shown that titanium implants can be challenging to explant due to the material's excellent biocompatibility and resulting osseointegration. Clinically, titanium alloy nail interlocking screws may require removal to dynamize a construct or revise the nail due to nonunion, infection, pain, or periprosthetic fracture. This study was designed to determine what variables influence the removal torque for titanium alloy interlocking screws. An intramedullary nail with four interlocking screws was used to stabilize a 1-cm segmental femoral defect in a canine model for 16 weeks. The animals were observed to be active following a several-day recovery after surgery. In six animals, the femora and implanted nail/screws were first tested to failure in torsion to simulate periprosthetic fracture of an implant after which the screws were then removed. In four additional animals, the screws were removed without mechanical testing. Both intraoperative insertional and extraction torques were recorded for all screws. Mechanical testing to failure broke 10/24 screws. On average, the intact screws required 70% of the insertional torque during removal while broken screws only required 16% of the insertional torque (p < 0.001). In addition, intact screws closer to the fracture required 2.8 times more removal torque than the outboard distal screw (p < 0.005). On average, the angle of rotation to peak torque was ∼80°. The peak axial load did not significantly correlate with the torque required to remove the screws. On average, the removal torque was lower than at the time of insertion, and less torque was required to remove broken screws and screws remote to the fracture. However, broken screws will require additional time to retrieve the remaining screw fragment. This study suggests that broken screws and screws in prematurely active patients will require less torque to remove. © IMechE 2016.
Kiyak, Gorkem; Balikci, Tevfik; Heydar, Ahmed Majid; Bezer, Murat
2018-02-01
Mechanical study. To compare the pullout strength of different screw designs and augmentation techniques in an osteoporotic bone model. Adequate bone screw pullout strength is a common problem among osteoporotic patients. Various screw designs and augmentation techniques have been developed to improve the biomechanical characteristics of the bone-screw interface. Polyurethane blocks were used to mimic human osteoporotic cancellous bone, and six different screw designs were tested. Five standard and expandable screws without augmentation, eight expandable screws with polymethylmethacrylate (PMMA) or calcium phosphate augmentation, and distal cannulated screws with PMMA and calcium phosphate augmentation were tested. Mechanical tests were performed on 10 unused new screws of each group. Screws with or without augmentation were inserted in a block that was held in a fixture frame, and a longitudinal extraction force was applied to the screw head at a loading rate of 5 mm/min. Maximum load was recorded in a load displacement curve. The peak pullout force of all tested screws with or without augmentation was significantly greater than that of the standard pedicle screw. The greatest pullout force was observed with 40-mm expandable pedicle screws with four fins and PMMA augmentation. Augmented distal cannulated screws did not have a greater peak pullout force than nonaugmented expandable screws. PMMA augmentation provided a greater peak pullout force than calcium phosphate augmentation. Expandable pedicle screws had greater peak pullout forces than standard pedicle screws and had the advantage of augmentation with either PMMA or calcium phosphate cement. Although calcium phosphate cement is biodegradable, osteoconductive, and nonexothermic, PMMA provided a significantly greater peak pullout force. PMMA-augmented expandable 40-mm four-fin pedicle screws had the greatest peak pullout force.
Xu, Chun; Silder, Amy; Zhang, Ju; Reifman, Jaques; Unnikrishnan, Ginu
2017-03-23
Load carriage is associated with musculoskeletal injuries, such as stress fractures, during military basic combat training. By investigating the influence of load carriage during exercises on the kinematics and kinetics of the body and on the biomechanical responses of bones, such as the tibia, we can quantify the role of load carriage on bone health. We conducted a cross-sectional study using an integrated musculoskeletal-finite-element model to analyze how the amount of load carriage in women affected the kinematics and kinetics of the body, as well as the tibial mechanical stress during running. We also compared the biomechanics of walking (studied previously) and running under various load-carriage conditions. We observed substantial changes in both hip kinematics and kinetics during running when subjects carried a load. Relative to those observed during running without load, the joint reaction forces at the hip increased by an average of 49.1% body weight when subjects carried a load that was 30% of their body weight (ankle, 4.8%; knee, 20.6%). These results indicate that the hip extensor muscles in women are the main power generators when running with load carriage. When comparing running with walking, finite element analysis revealed that the peak tibial stress during running (tension, 90.6 MPa; compression, 136.2 MPa) was more than three times as great as that during walking (tension, 24.1 MPa; compression, 40.3 MPa), whereas the cumulative stress within one stride did not differ substantially between running (15.2 MPa · s) and walking (13.6 MPa · s). Our findings highlight the critical role of hip extensor muscles and their potential injury in women when running with load carriage. More importantly, our results underscore the need to incorporate the cumulative effect of mechanical stress when evaluating injury risk under various exercise conditions. The results from our study help to elucidate the mechanisms of stress fracture in women.
Youssef, J A; McKinley, T O; Yerby, S A; McLain, R F
1999-06-01
A bending analysis of pedicle screws inserted into vertebral body analogues. Intravertebral and intrapedicular pedicle screw bending moments were studied as a function of sagittal insertion angle. To determine how the pedicle screw bending moment is affected by changes in the insertion angle. There is a significant incidence of failure when pedicle screws are used to instrument unstable spinal segments. Extrinsic factors that affect screw bending failure have been poorly characterized. Previous work has demonstrated that intrapedicular pedicle screw bending moments are significantly affected by the sagittal location and depth of pedicle screw placement. Pedicle screw transducers were inserted in analogue vertebrae at one of three orientations: 7 degrees cephalad (toward the superior endplate), 7 degrees caudal (toward the inferior endplate), or parallel to the superior endplate (control). An axial load was applied to the superior endplate of the vertebra, and screw bending moments were recorded directly from the transducers. Screws angled 7 degrees cephalad developed significantly greater mean intrapedicular bending moments compared with screws inserted caudal or control screws. There was no significant difference in bending moments realized within the vertebral body for the three screw positions. Angulating pedicle screws toward the superior endplate increased bending moments within the pedicle. If attention to optimal screw insertion technique can reduce bending moments and potential for screw failure without increasing morbidity, surgical risk, or operative time, then proper insertion technique takes on new importance.
A Comparison of Removal Rates of Headless Screws Versus Headed Screws in Calcaneal Osteotomy.
Kunzler, Daniel; Shazadeh Safavi, Pejma; Jupiter, Daniel; Panchbhavi, Vinod K
2017-11-01
Calcaneal osteotomy has been used to successfully treat both valgus and varus hindfoot deformities. Pain associated with implanted hardware may lead to further surgical intervention for hardware removal. Headless screws have been used to reduce postoperative hardware-associated pain and accompanying hardware removal, but data proving their effectiveness in this regard is lacking. The purpose of this study is to compare the rates of removal of headed and headless screws utilized in calcaneal osteotomy. We conducted a retrospective chart review of 74 patients who underwent calcaneal osteotomy between January 2010 and December 2014. The cohort was divided into 2 groups by fixation method: a headed screw and a headless screw group. Bivariate associations between infection or hardware removal, and screw type, screw head width, gender, smoking status, alcohol, hypertension, diabetes, hyperlipidemia, age, and body mass index were assessed using t-tests and Fisher's exact/χ 2 tests for continuous and discrete variables, respectively. Headed screws were removed more frequently than headless screws (P < .0001): 15 of 30 (50%) feet that received headed screws and 4 of 44 (9%) of feet that received headless screws underwent subsequent revision for screw removal. In all cases, screws were removed because of pain. The calcaneal union rate was 100% in both cohorts. The rate of screw removal in calcaneal osteotomies is significantly lower in patients who receive headless screws than in those receiving headed screws. Level IV.
Torsional stability of interference screws derived from bovine bone - a biomechanical study
2010-01-01
Background In the present biomechanical study, the torsional stability of different interference screws, made of bovine bone, was tested. Interference screws derived from bovine bone are a possible biological alternative to conventional metallic or bioabsorbable polymer interference screws. Methods In the first part of the study we compared the torsional stability of self-made 8 mm Interference screws (BC) and a commercial 8 mm interference screw (Tutofix®). Furthermore, we compared the torsional strength of BC screws with different diameters. For screwing in, a hexagon head and an octagon head were tested. Maximum breaking torques in polymethyl methacrylate resin were recorded by means of an electronic torque screw driver. In the second part of the study the tibial part of a bone-patellar tendon-bone graft was fixed in porcine test specimens using an 8 mm BC screw and the maximum insertion torques were recorded. Each interference screw type was tested 5 times. Results There was no statistically significant difference between the different 8 mm interference screws (p = 0.121). Pairwise comparisons did not reveal statistically significant differences, either. It was demonstrated for the BC screws, that a larger screw diameter significantly leads to higher torsional stability (p = 9.779 × 10-5). Pairwise comparisons showed a significantly lower torsional stability for the 7 mm BC screw than for the 8 mm BC screw (p = 0.0079) and the 9 mm BC screw (p = 0.0079). Statistically significant differences between the 8 mm and the 9 mm BC screw could not be found (p = 0.15). During screwing into the tibial graft channel of the porcine specimens, insertion torques between 0.5 Nm and 3.2 Nm were recorded. In one case the hexagon head of a BC screw broke off during the last turn. Conclusions The BC screws show comparable torsional stability to Tutofix® interference screws. As expected the torsional strength of the screws increases significantly with the diameter. The safety and in vivo performance of products derived from xenogeneic bone should be the focus of further investigations. PMID:20433761
Deng, Ting; Jiang, Minghui; Lei, Qing; Cai, Lihong; Chen, Li
2016-12-01
Clinical trial for cervical screw insertion by using individualized 3-dimensional (3D) printing screw insertion templates device. The objective of this study is to evaluate the safety and accuracy of the individualized 3D printing screw insertion template in the cervical spine. Ten patients who underwent posterior cervical fusion surgery with cervical pedicle screws, laminar screws or lateral mass screws between December 2014 and December 2015 were involved in this study. The patients were examined by CT scan before operation. The individualized 3D printing templates were made with photosensitive resin by a 3D printing system to ensure the screw shafts entered the vertebral body without breaking the pedicle or lamina cortex. The templates were sterilized by a plasma sterilizer and used during the operation. The accuracy and the safety of the templates were evaluated by CT scans at the screw insertion levels after operation. The accuracy of this patient-specific template technique was demonstrated. Only one screw axis greatly deviated from the planned track and breached the cortex of the pedicle because the template was split by rough handling and then we inserted the screws under the fluoroscopy. The remaining screws were inserted in the track as preoperative design and the screw axis deviated by less than 2 mm. Vascular or neurologic complications or injuries did not happen. And no infection, broken nails, fracture of bone structure, or screw pullout occurred. This study verified the safety and the accuracy of the individualized 3D printing screw insertion templates in the cervical spine as a kind of intraoperative screw navigation. This individualized 3D printing screw insertion template was user-friendly, moderate cost, and enabled a radiation-free cervical screw insertion.
Simple New Screw Insertion Technique without Extraction for Broken Pedicle Screws.
Kil, Jin-Sang; Park, Jong-Tae
2018-05-01
Spinal transpedicular screw fixation is widely performed. Broken pedicle screw rates range from 3%-7.1%. Several techniques have been described for extraction of broken pedicle screws. However, most of these techniques require special instruments. We describe a simple, modified technique for management of broken pedicle screws without extraction. No special instruments or drilling in an adjacent pedicle are required. We used a high-speed air drill with a round burr. With C-arm fluoroscopy guidance, the distal fragment of a broken pedicle screw was palpated using free-hand technique through the screw entry hole. A high-speed air drill with a round burr (not a diamond burr) was inserted through the hole. Drilling began slowly and continued until enough space was obtained for new screw insertion. Using this space, we performed new pedicle screw fixation medially alongside the distal fragment of the broken pedicle screw. We performed the insertion with a previously used entry hole and pathway in the pedicle. The same size pedicle screw was used. Three patients were treated with this modified technique. New screw insertion was successful in all cases after partial drilling of the distal broken pedicle screw fragment. There were no complications, such as screw loosening, dural tears, or root injury. We describe a simple, modified technique for management of broken pedicle screws without extraction. This technique is recommended in patients who require insertion of a new screw. Copyright © 2017. Published by Elsevier Inc.
Intramedullary nails with two lag screws.
Brown, C J; Wang, C J; Yettram, A L; Procter, P
2004-06-01
To investigate the structural integrity of intramedullary nails with two lag screws, and to give guidance to orthopaedic surgeons in the choice of appropriate devices. Alternative designs of the construct are considered, and the use of a slotted upper lag screw insertion hole is analysed. Intramedullary fixation devices with a single lag screw have been known to fail at the lag screw insertion hole. Using two lag screws is considered. It has also been proposed to use a slot in the nail for the upper lag screw to prevent the upper lag screw from sticking. Bending and torsion load cases are analysed using finite element method. Consideration of both load conditions is essential. The results present the overall stiffness of the assembly, the load sharing between lag screws, and the possibility for cut-out to occur. While the slot for the upper lag screw might be advantageous with regard to the stresses in the lag screws, it could be detrimental for cut-out occurring adjacent to the lag screws. Comparative analyses demonstrate that two lag screws may be advantageous in patients whose cancellous bone quality is good and who impose large loads on the lag screw/nail interface. However, the use of two screws might pre-dispose to failure by cut-out of the lag screws. The addition of a slotted hole for the upper lag screw appears to do nothing significant to reduce the risk of such a failure. Copyright 2004 Elsevier Ltd.
Are We Underestimating the Significance of Pedicle Screw Misplacement?
Sarwahi, Vishal; Wendolowski, Stephen F; Gecelter, Rachel C; Amaral, Terry; Lo, Yungtai; Wollowick, Adam L; Thornhill, Beverly
2016-05-01
A retrospective review of charts, x-rays (XRs) and computed tomography (CT) scans was performed. To evaluate the accuracy of pedicle screw placement using a novel classification system to determine potentially significant screw misplacement. The accuracy rate of pedicle screw (PS) placement varies from 85% to 95% in the literature. This demonstrates technical ability but does not represent the impact of screw misplacement on individual patients. This study quantifies the rate of screw misplacement on a per-patient basis to highlight its effect on potential morbidity. A retrospective review of charts, XRs and low-dose CT scans of 127 patients who underwent spinal fusion with pedicle screws for spinal deformity was performed. Screws were divided into four categories: screws at risk (SAR), indeterminate misplacements (IMP), benign misplacements (BMP), accurately placed (AP). A total of 2724 screws were placed in 127 patients. A total of 2396 screws were placed accurately (87.96%). A total of 247 screws (9.07%) were BMP, 52 (1.91%) were IMP, and 29 (1.06%) were considered SAR. Per-patient analysis showed 23 (18.11%) of patients had all screws AP. Thirty-five (27.56%) had IMP and 18 (14.17%) had SAR. Risk factor analysis showed smaller Cobb angles increased likelihood of all screws being AP. Sub-analysis of adolescent idiopathic scoliotic patients showed no curve or patient characteristic that correlated with IMP or SAR. Over 40% of patients had screws with either some/major concern. Overall reported screw misplacement is low, but it does not reflect the potential impact on patient morbidity. Per-patient analysis reveals more concerning numbers toward screw misplacement. With increasing pedicle screw usage, the number of patients with misplaced screws will likely increase proportionally. Better strategies need to be devised for evaluation of screw placement, including establishment of a national database of deformity surgery, use of intra-operative image guidance, and reevaluation of postoperative low-dose CT imaging. 3.
Hollow Abutment Screw Design for Easy Retrieval in Case of Screw Fracture in Dental Implant System.
Sim, Bo Kyun; Kim, Bongju; Kim, Min Jeong; Jeong, Guk Hyun; Ju, Kyung Won; Shin, Yoo Jin; Kim, Man Yong; Lee, Jong-Ho
2017-01-01
The prosthetic component of dental implant is attached on the abutment which is connected to the fixture with an abutment screw. The abutment screw fracture is not frequent; however, the retrieval of the fractured screw is not easy, and it poses complications. A retrieval kit was developed which utilizes screw removal drills to make a hole on the fractured screw that provides an engaging drill to unscrew it. To minimize this process, the abutment screw is modified with a prefabricated access hole for easy retrieval. This study aimed to introduce this modified design of the abutment screw, the concept of easy retrieval, and to compare the mechanical strengths of the conventional and hollow abutment screws by finite element analysis (FEA) and mechanical test. In the FEA results, both types of abutment screws showed similar stress distribution in the single artificial tooth system. A maximum load difference of about 2% occurred in the vertical load by a mechanical test. This study showed that the hollow abutment screw may be an alternative to the conventional abutment screws because this is designed for easy retrieval and that both abutment screws showed no significant difference in the mechanical tests and in the FEA.
Ball Screw Actuator Including a Compliant Ball Screw Stop
NASA Technical Reports Server (NTRS)
Wingett, Paul T. (Inventor); Hanlon, Casey (Inventor)
2015-01-01
An actuator includes a ball nut, a ball screw, and a ball screw stop. The ball nut is adapted to receive an input torque and in response rotates and supplies a drive force. The ball screw extends through the ball nut and has a first end and a second end. The ball screw receives the drive force from the ball nut and in response selectively translates between a retract position and a extend position. The ball screw stop is mounted on the ball screw proximate the first end to translate therewith. The ball screw stop engages the ball nut when the ball screw is in the extend position, translates, with compliance, a predetermined distance toward the first end upon engaging the ball nut, and prevents further rotation of the ball screw upon translating the predetermined distance.
Ball Screw Actuator Including a Compliant Ball Screw Stop
NASA Technical Reports Server (NTRS)
Wingett, Paul T. (Inventor); Hanlon, Casey (Inventor)
2017-01-01
An actuator includes a ball nut, a ball screw, and a ball screw stop. The ball nut is adapted to receive an input torque and in response rotates and supplies a drive force. The ball screw extends through the ball nut and has a first end and a second end. The ball screw receives the drive force from the ball nut and in response selectively translates between a retract position and a extend position. The ball screw stop is mounted on the ball screw proximate the first end to translate therewith. The ball screw stop engages the ball nut when the ball screw is in the extend position, translates, with compliance, a predetermined distance toward the first end upon engaging the ball nut, and prevents further rotation of the ball screw upon translating the predetermined distance.
Schmoelz, W; Mayr, R; Schlottig, F; Ivanovic, N; Hörmann, R; Goldhahn, J
2016-03-01
Screw anchorage in osteoporotic bone is still limited and makes treatment of osteoporotic fractures challenging for surgeons. Conventional screws fail in poor bone quality due to loosening at the screw-bone interface. A new technology should help to improve this interface. In a novel constant amelioration process technique, a polymer sleeve is melted by ultrasound in the predrilled screw hole prior to screw insertion. The purpose of this study was to investigate in vitro the effect of the constant amelioration process platform technology on primary screw anchorage. Fresh frozen femoral heads (n=6) and vertebrae (n=6) were used to measure the maximum screw insertion torque of reference and constant amelioration process augmented screws. Specimens were cut in cranio-caudal direction, and the screws (reference and constant amelioration process) were implanted in predrilled holes in the trabecular structure on both sides of the cross section. This allowed the pairwise comparison of insertion torque for constant amelioration process and reference screws (femoral heads n=18, vertebrae n=12). Prior to screw insertion, a micro-CT scan was made to ensure comparable bone quality at the screw placement location. The mean insertion torque for the constant amelioration process augmented screws in both, the femoral heads (44.2 Ncm, SD 14.7) and the vertebral bodies (13.5 Ncm, SD 6.3) was significantly higher than for the reference screws of the femoral heads (31.7 Ncm, SD 9.6, p<0.001) and the vertebral bodies (7.1 Ncm, SD 4.5, p<0.001). The interconnection of the melted polymer sleeve with the surrounding trabecular bone in the constant amelioration process technique resulted in a higher screw insertion torque and can improve screw anchorage in osteoporotic trabecular bone. Copyright © 2016 Elsevier Ltd. All rights reserved.
In vitro bone strain distributions in a sample of primate pelves
Lewton, Kristi L
2015-01-01
The pelvis is a critical link in the hindlimb locomotor system and has a central role in resisting loads associated with locomotion, but our understanding of its structural biomechanics is quite limited. Empirical data on how the pelvis responds to the loads it encounters are important for understanding pelvic adaptation to locomotion, and for testing hypotheses regarding how the pelvis is adapted to its mechanical demands. This paper presents in vitro strain gauge data on a sample of monkey and ape cadaveric specimens (Macaca, Papio, Ateles, Hylobates), and assesses strain magnitudes and distributions through the bones of the pelvis: the ilium, ischium and pubis. Pelves were individually mounted in a materials testing system, loads were applied across three hindlimb angular positions, and strains were recorded from 18 locations on the pelvic girdle. Peak principal strains range from 2000 to 3000 με, similar to peak strains recorded from other mammals in vivo. Although previous work has suggested that the bones of the pelvis may act as bent beams, this study suggests that there are likely additional loading regimes superimposed on bending. Specifically, these data suggest that the ilium is loaded in axial compression and torsion, the ischium in torsion, the pubic rami in mediolateral bending, and the pubic symphysis is loaded in a combination of compression and torsion. Compressive strains dominate the pelves of all species representatives. Shear strains change with limb position; hip flexion at 45 ° induces smaller shear strains than mid-stance (90 °) or hip extension (105 °). The pelvic girdle is a complex structure that does not lend itself easily to modeling, but finite element analyses may prove useful to generate and refine hypotheses of pelvic biomechanics. PMID:25846322
Failure analysis of broken pedicle screws on spinal instrumentation.
Chen, Chen-Sheng; Chen, Wen-Jer; Cheng, Cheng-Kung; Jao, Shyh-Hua Eric; Chueh, Shan-Chang; Wang, Chang-Chih
2005-07-01
Revised spinal surgery is needed when there is a broken pedicle screw in the patient. This study investigated the pedicle screw breakage by conducting retrieval analyses of broken pedicle screws from 16 patients clinically and by performing stress analyses in the posterolateral fusion computationally using finite element (FE) models. Fracture surface of screws was studied by scanning electron microscope (SEM). The FE model of the posterolateral fusion with the screw showed that screws on the caudal side had larger axial stress than those on the cephalic side, supporting the clinical findings that 75% of the patients had the screw breakage on the caudal side. SEM fractography showed that all broken screws exhibited beach marks or striations on the fractured surface, indicating fatigue failure. Screws of patients with spinal fracture showed fatigue striations and final ductile fracture around the edge. Among the 16 patients who had broken pedicle screws 69% of them achieved bone union in the bone graft, showing that bone union in the bone graft did not warrant the prevention of screw breakage.
Zhao, Y; Zhang, S; Sun, T; Wang, D; Lian, W; Tan, J; Zou, D; Zhao, Y
2013-09-01
To compare the stability of lengthened sacroiliac screw and standard sacroiliac screw for the treatment of unilateral vertical sacral fractures; to provide reference for clinical applications. A finite element model of Tile type C pelvic ring injury (unilateral Denis type II fracture of the sacrum) was produced. The unilateral sacral fractures were fixed with lengthened sacroiliac screw and sacroiliac screw in six different types of models respectively. The translation and angle displacement of the superior surface of the sacrum (in standing position on both feet) were measured and compared. The stability of one lengthened sacroiliac screw fixation in S1 or S2 segment is superior to that of one sacroiliac screw fixation in the same sacral segment. The stability of one lengthened sacroiliac screw fixation in S1 and S2 segments respectively is superior to that of one sacroiliac screw fixation in S1 and S2 segments respectively. The stability of one lengthened sacroiliac screw fixation in S1 and S2 segments respectively is superior to that of one lengthened sacroiliac screw fixation in S1 or S2 segment. The stability of one sacroiliac screw fixation in S1 and S2 segments respectively is markedly superior to that of one sacroiliac screw fixation in S1 or S2 segment. The vertical and rotational stability of lengthened sacroiliac screw fixation and sacroiliac screw fixation in S2 is superior to that of S1. In a finite element model of type C pelvic ring disruption, S1 and S2 lengthened sacroiliac screws should be utilized for the fixation as regularly as possible and the most stable fixation is the combination of the lengthened sacroiliac screws of S1 and S2 segments. Even if lengthened sacroiliac screws cannot be systematically used due to specific conditions, one sacroiliac screw fixation in S1 and S2 segments respectively is recommended. No matter which kind of sacroiliac screw is used, if only one screw can be implanted, the fixation in S2 segment is more recommended than that in S1. Experimental study Level III. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
[Tumor prostheses : Important in modern revision arthroplasty].
Hillmann, A; Ipach, I
2015-05-01
Due to demographic aging, an increasing number of revision arthroplasty procedures is expected during upcoming years. While the use of a megaprosthesis for bone reconstruction after tumor resection is gold standard, this type of prosthesis still meets with reservation in the field of revision arthroplasty because of numerous risk factors. The purpose of this article is to present the importance of modular megaprostheses in revision arthroplasty, taking into consideration the risks of periprosthetic infection, aseptic loosening, material failure, and hip dislocation. Because of improvements in the field of megaprostheses during the last 30 years, the risks after implantation of this type of prosthesis have significantly decreased. The risk of periprosthetic infection has been reduced about 1/3 by the use of silver surface coating. Improvements in stem design, cement technique, and the additional use of locking screws have minimized the risk of aseptic loosening. Improvements in material composition have reduced the risk of material failure. The risk of hip dislocation could also be minimized by careful tissue preparation and appropriate suture technique. There is no need for the conservative use of megaprostheses in revision arthroplasty. There are many benefits in the use of megaprostheses in multimorbid patients (i.e., reduced operating time, the possibility of early full weight bearing, and a reduced risk of periprosthetic infection by the use of silver surface coating) instead of complex bone reconstruction during revision arthroplasty.
Fan, Wei; Guo, Li-Xin
2018-06-01
Few studies have evaluated the need for supplementary instrumentation after lumbar interbody fusion under the condition of whole body vibration (WBV) that is typically present in vehicles. This study aimed to determine the effect of posterior pedicle screw fixation on dynamic response of the whole lumbar spine to vertical WBV after transforaminal lumbar interbody fusion (TLIF). A previously validated nonlinear, osteoligamentous finite element (FE) model of the intact L1-sacrum human lumbar spine was modified to simulate single-level (L4-L5) TLIF without and with bilateral pedicle screw fixation (BPSF). Transit dynamic analysis was performed on the 2 developed models under a sinusoidal vertical vibration load of ±40 N and a compressive follower preload of 400 N. The resulting dynamic response results for the 2 models in terms of stresses and deformations were recorded and compared. When compared with no fixation, BPSF decreased dynamic responses of the spinal levels to the vertical vibration after TLIF. At the fused level (L4-L5), vibration amplitudes of the von-Mises stresses in L4 inferior endplate and L5 superior endplate decreased after BPSF by 48.0% and 46.4%, respectively. At other disc levels (L1-L2, L2-L3, L3-L4, and L5-S1), vibration amplitudes of the disc bulge, von-Mises stress in annulus ground substance and intradiscal pressure also produced 4.2%-9.0%, 2.3%-8.9%, and 3.4%-8.8% deceases, respectively, after BPSF. After TLIF, application of BPSF can be helpful in the prevention of spine injury during vertical WBV. Copyright © 2018 Elsevier Inc. All rights reserved.
Weng, Pei-Wei; Chen, Chia-Hsien; Luo, Chu-An; Sun, Jui-Sheng; Tsuang, Yang-Hwei; Cheng, Cheng-Kung; Lin, Shang-Chih
2017-04-01
Several plate systems for high tibial osteotomy (HTO) have been developed to stabilize the opening wedge of an osteotomized tibia. Among them, the TomoFix system, having a quasi-straight and T-shaped design, has been widely adopted in the literature. However, this system is implemented by inserting a lag (i.e., cortical) screw through the proximal combi-hole, to deform the plate and pull the distal tibia toward the plate. This process potentially induces plate springback and creates an elastic preload on the osteotomized tibia, especially at the lateral hinge of the distracted wedge. Using the finite-element method, this study aims to investigate the contoured effect of lag-screw application on the biomechanical behavior of the tibia-plate construct. Two tibial profiles (normal and more concave), three distraction angles (6°, 9°, and 12°), and three knee loads (intraoperative: contouring plate; postoperative: weight and nonweight bearing) are systematically varied in this study. The wedge instability and fracture risk at the lateral hinge are chosen as the comparison indices. The results show the necessity of preoperative planning for a precontoured procedure, rather than elastic deformation using a lag screw. Within the intraoperative period, a more concave tibial profile and/or reduced distraction angle (i.e., 6° or 9°) necessitate a higher compressive load to elastically deform the plate, thereby deteriorating the lateral-hinge fracture risk. A precontoured plate is recommended in the case that the proximal tibia is highly concave and the distraction angle is insufficient to stretch the tibial profile. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
Gutierrez-Quintana, Rodrigo; Guevar, Julien; Stalin, Catherine; Faller, Kiterie; Yeamans, Carmen; Penderis, Jacques
2014-01-01
Congenital vertebral malformations are common in brachycephalic "screw-tailed" dog breeds such as French bulldogs, English bulldogs, Boston terriers, and pugs. The aim of this retrospective study was to determine whether a radiographic classification scheme developed for use in humans would be feasible for use in these dog breeds. Inclusion criteria were hospital admission between September 2009 and April 2013, neurologic examination findings available, diagnostic quality lateral and ventro-dorsal digital radiographs of the thoracic vertebral column, and at least one congenital vertebral malformation. Radiographs were retrieved and interpreted by two observers who were unaware of neurologic status. Vertebral malformations were classified based on a classification scheme modified from a previous human study and a consensus of both observers. Twenty-eight dogs met inclusion criteria (12 with neurologic deficits, 16 with no neurologic deficits). Congenital vertebral malformations affected 85/362 (23.5%) of thoracic vertebrae. Vertebral body formation defects were the most common (butterfly vertebrae 6.6%, ventral wedge-shaped vertebrae 5.5%, dorsal hemivertebrae 0.8%, and dorso-lateral hemivertebrae 0.5%). No lateral hemivertebrae or lateral wedge-shaped vertebrae were identified. The T7 vertebra was the most commonly affected (11/28 dogs), followed by T8 (8/28 dogs) and T12 (8/28 dogs). The number and type of vertebral malformations differed between groups (P = 0.01). Based on MRI, dorsal, and dorso-lateral hemivertebrae were the cause of spinal cord compression in 5/12 (41.6%) of dogs with neurologic deficits. Findings indicated that a modified human radiographic classification system of vertebral malformations is feasible for use in future studies of brachycephalic "screw-tailed" dogs. © 2014 American College of Veterinary Radiology.
de Medeiros, Raquel Correia; Lauria de Moura, Andrezza; Rodrigues, Danillo Costa; Menezes Mendes, Marcelo Breno; Sawazaki, Renato; Fernandes Moreira, Roger William
2014-06-01
The purpose of the present study was to analyze the fractured plates from 2 brands of 2.0-mm locking fixation systems submitted to axial linear load testing. Four aluminum hemimandibles with linear sectioning to simulate a mandibular body fracture were used as a substrate and fixed with 2 fixation techniques from 2 national brands: Tóride and Traumec. The techniques were as follows: one 4-hole plate, with four 6-mm screws in the tension zone, and one 4-hole plate, with four 10-mm screws in the compression zone; and one 4-hole plate, with four 6-mm holes in the neutral zone. The hemimandibles were submitted to vertical linear load tests using an Instron 4411 mechanical test machine. The system was submitted to the test until complete failure had occurred. Next, a topographic analysis of the surface of the plates was performed using a stereomicroscope and an electronic scanning microscope. The samples were evaluated using different magnifications, and images were obtained. The surface of the fracture analyzed in scanning electron microscopy demonstrated a ductile-type fracture, usually found in the traction test bodies of ductile materials, such as titanium. No evidence of failure was observed in any fracture surface from a change in the structure or composition of the material. The plates were fractured by a ductile rupture mechanism, as expected, suggesting that the manufacturing of the national brand name plates used in the present study has been under adequate quality control, with no structural changes produced by the manufacturing process that could compromise their function. Copyright © 2014 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Atalar, Ata C; Tunalı, Onur; Erşen, Ali; Kapıcıoğlu, Mehmet; Sağlam, Yavuz; Demirhan, Mehmet S
2017-01-01
In intraarticular distal humerus fractures, internal fixation with double plates is the gold standard treatment. However the optimal plate configuration is not clear in the literature. The aim of this study was to compare the biomechanical stability of the parallel and the orthogonal anatomical locking plating systems in intraarticular distal humerus fractures in artificial humerus models. Intraarticular distal humerus fracture (AO13-C2) with 5 mm metaphyseal defect was created in sixteen artificial humeral models. Models were fixed with either orthogonal or parallel plating systems with locking screws (Acumed elbow plating systems). Both systems were tested for their stiffness with loads in axial compression, varus, valgus, anterior and posterior bending. Then plastic deformation after cyclic loading in posterior bending and load to failure in posterior bending were tested. The failure mechanisms of all the samples were observed. Stiffness values in every direction were not significantly different among the orthogonal and the parallel plating groups. There was no statistical difference between the two groups in plastic deformation values (0.31 mm-0.29 mm) and load to failure tests in posterior bending (372.4 N-379.7 N). In the orthogonal plating system most of the failures occurred due to the proximal shaft fracture, whereas in the parallel plating system failure occurred due to the shift of the most distal screw in proximal fragment. Our study showed that both plating systems had similar biomechanical stabilities when anatomic plates with distal locking screws were used in intraarticular distal humerus fractures in artificial humerus models. Copyright © 2016 Turkish Association of Orthopaedics and Traumatology. Production and hosting by Elsevier B.V. All rights reserved.
Yoshida, Kazushige; Kasama, Kentaro; Akahane, Tsutomu
2016-01-01
The displaced extra-articular avulsion fracture of the calcaneus has been classified as a Böhler type 1c calcaneal fracture, and most cases will require surgical repair. In the present report, we describe 2 patients in whom we performed the soft anchor bridge technique using single loaded suture anchors with lag screws for the repair of Böhler type 1c avulsion fractures of the calcaneus. In one of these patients, clinically relevant osteoporosis complicated the injury. In both cases, bone union was achieved, and by 1.5 months after surgery satisfactory recovery was observed. To our knowledge, the soft anchor bridge technique was first used for the treatment of rotator cuff tears, and the greatest merit of this technique is the ability to generate vertical compression force to the pulled out rotator cuff through the use of knotting sutures. In recent years, the soft anchor bridge technique using 4 suture anchors has also been used for fractures of the greater tuberosity of the humerus, an injury that poses operative difficulties similar to those encountered with an avulsion fracture of the calcaneus owing to the traction force of the rotator cuff and relative weakness of adjacent bone. The outcomes of our patients suggest that the soft anchor bridge technique combined with adjunct lag screws is useful in the fixation of avulsion fractures of the calcaneus. In addition, the result in the elderly patient indicates the possibility of using this technique for patients with osteoporosis. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
Vaughn, Denty Paul; Syrcle, Jason Alan; Ball, John E; Elder, Steven H; Gambino, Jennifer Michele; Griffin, Russell L; McLaughlin, Ronald M
2016-11-23
Monocortical screws are commonly employed in locking plate fixation, but specific recommendations for their placement are lacking and use of short monocortical screws in metaphyseal bone may be contraindicated. Objectives of this study were to evaluate axial pullout strength of two different lengths of monocortical screws placed in various regions of the canine humerus compared to bicortical screws, and to derive cortical thickness and bone density values for those regions using quantitative computed tomography analysis (QCT). The QCT analysis was performed on 36 cadaveric canine humeri for six regions of interest (ROI). A bicortical, short monocortical, or 50% transcortical 3.5 mm screw was implanted in each ROI and axial pullout testing was performed. Bicortical screws were stronger than monocortical screws in all ROI except the lateral epicondylar crest. Short monocortical metaphyseal screws were weaker than those placed in other regions. The 50% transcortical screws were stronger than the short monocortical screws in the condyle. A linear relationship between screw length and pullout strength was observed. Cortical thickness and bone density measurements were obtained from multiple regions of the canine humerus using QCT. Use of short monocortical screws may contribute to failure of locking plate fixation of humeral fractures, especially when placed in the condyle. When bicortical screw placement is not possible, maximizing monocortical screw length may optimize fixation stability for distal humeral fractures.
Kuhns, Craig A; Reiter, Michael; Pfeiffer, Ferris; Choma, Theodore J
2014-02-01
Study Design Biomechanical study of pedicle screw fixation in osteoporotic bone. Objective To investigate whether it is better to tap or not tap osteoporotic bone prior to placing a cement-augmented pedicle screw. Methods Initially, we evaluated load to failure of screws placed in cancellous bone blocks with or without prior tapping as well as after varying the depths of tapping prior to screw insertion. Then we evaluated load to failure of screws placed in bone block models with a straight-ahead screw trajectory as well as with screws having a 23-degree cephalad trajectory (toward the end plate). These techniques were tested with nonaugmented (NA) screws as well as with bioactive cement (BioC) augmentation prior to screw insertion. Results In the NA group, pretapping decreased fixation strength in a dose-dependent fashion. In the BioC group, the tapped screws had significantly greater loads to failure (p < 0.01). Comparing only the screw orientation, the screws oriented at 23 degrees cephalad had a significantly higher failure force than their respective counterparts at 0 degrees (p < 0.01). Conclusions Standard pedicle screw fixation is often inadequate in the osteoporotic spine, but this study suggests tapping prior to cement augmentation will substantially improve fixation when compared with not tapping. Angulating screws more cephalad also seems to enhance aging spine fixation.
Kim, Ha Yong; Cha, Yong Han; Choy, Won Sik; Jeung, Sang Wook; Min, Yeon Seung
2018-05-01
This research focuses on femoral head wedge resection for the treatment of avascular necrosis (AVN) of the femoral head. A 9-year-old girl presented to the emergency room complaining of right hip pain that occurred after a pedestrian car accident. After 8 months of internal fixation using cannulated screws for Delbet-type 2 fracture of the femoral neck, AVN of the femoral head developed in the patient. Even though valgus-derotation-extension intertrochanteric osteotomy was performed for the treatment of AVN, it progressed further and femoral head wedge resection was performed to recover the femoral head sphericity. After 3 years of follow-up, radiograph results showed appropriate and satisfactory congruency and containment. This research shows that the treatment of AVN of the femoral head using femoral head wedge resection is an effective method that can yield excellent results.
Check radiography after fixation of hip fractures: is it necessary?
Mohanty, K; Gupta, S K; Evans, R M
2000-12-01
Technological advances in radiography in the form of image intensification has not only made internal fixation of femoral neck fracture much easier but these high resolution films can be saved as hard copies and can also be reversed into 'positives' at a later date. However, requesting routine post-operative check radiographs for these fractures are still a common practice. A retrospective study was carried out to compare the quality of image intensifier films with conventional post-operative radiographs. 79 sets of films were reviewed with particular reference to adequacy of fixation and possible joint penetration by the screws. No significant difference was noted between the two sets of films. We suggest that routine post-operative radiographs after femoral neck fracture fixation are unnecessary unless there is some clinical indication. This has significant implications in relation to patient discomfort, radiation exposure and cost-effectiveness.
Kennon, Justin C; Lu, Caroline; McGee-Lawrence, Meghan E; Crosby, Lynn A
2017-06-01
Reverse total shoulder arthroplasty (RTSA) is a viable treatment option for rotator cuff tear arthropathy but carries a complication risk of scapular fracture. We hypothesized that using screws above the central glenoid axis for metaglene fixation creates a stress riser contributing to increased scapula fracture incidence. Clinical type III scapular fracture incidence was determined with screw placement correlation: superior screw vs. screws placed exclusively below the glenoid midpoint. Cadaveric RTSA biomechanical modeling was employed to analyze scapular fractures. We reviewed 318 single-surgeon single-implant RTSAs with screw correlation to identify type III scapular fractures. Seventeen cadaveric scapula specimens were matched for bone mineral density, metaglenes implanted, and fixation with 2 screw configurations: inferior screws alone (group 1 INF ) vs. inferior screws with one additional superior screw (group 2 SUP ). Biomechanical load to failure was analyzed. Of 206 patients, 9 (4.4%) from the superior screw group experienced scapula fractures (type III); 0 fractures (0/112; 0%) were identified in the inferior screw group. Biomechanically, superior screw constructs (group 2 SUP ) demonstrated significantly (P < .05) lower load to failure (1077 N vs. 1970 N) compared with constructs with no superior screws (group 1 INF ). There was no significant age or bone mineral density discrepancy. Clinical scapular fracture incidence significantly decreased (P < .05) for patients with no screws placed above the central cage compared with patients with superior metaglene screws. Biomechanical modeling demonstrates significant construct compromise when screws are used above the central cage, fracturing at nearly half the ultimate load of the inferior screw constructs. We recommend use of inferior screws, all positioned below the central glenoid axis, unless necessary to stabilize the metaglene construct. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Tsai, Pei-I; Chen, Chih-Yu; Huang, Shu-Wei; Yang, Kuo-Yi; Lin, Tzu-Hung; Chen, San-Yuan; Sun, Jui-Sheng
2018-05-04
The interference screw is a widely used fixation device in the anterior cruciate ligament (ACL) reconstruction surgeries. Despite the generally satisfactory results, problems of using interference screws were reported. By using additive manufacturing (AM) technology, we developed an innovative titanium alloy (Ti 6 Al 4 V) interference screw with rough surface and inter-connected porous structure designs to improve the bone-tendon fixation. An innovative Ti 6 Al 4 V interference screws were manufactured by AM technology. In vitro mechanical tests were performed to validate its mechanical properties. Twenty-seven New Zealand white rabbits were randomly divided into control and AM screw groups for biomechanical analyses and histological analysis at 4, 8 and 12 weeks postoperatively; while micro-CT analysis was performed at 12 weeks postoperatively. The biomechanical tests showed that the ultimate failure load in the AM interference screw group was significantly higher than that in the control group at all tested periods. These results were also compatible with the findings of micro-CT and histological analyses. In micro-CT analysis, the bone-screw gap was larger in the control group; while for the additive manufactured screw, the screw and bone growth was in close contact. In histological study, the bone-screw gaps were wider in the control group and were almost invisible in the AM screw group. The innovative AM interference screws with surface roughness and inter-connected porous architectures demonstrated better bone-tendon-implant integration, and resulted in stronger biomechanical characteristics when compared to traditional screws. These advantages can be transferred to future interference screw designs to improve their clinical performance. The AM interference screw could improve graft fixation and eventually result in better biomechanical performance of the bone-tendon-screw construct. The innovative AM interference screws can be transferred to future interference screw designs to improve the performance of implants. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Arshad, Mahnaz; Mahgoli, Hosseinali; Payaminia, Leila
To evaluate the effect of repeated screw joint closing and opening cycles and cyclic loading on abutment screw removal torque and screw thread morphology using scanning electron microscopy (SEM). Three groups (n = 10 in each group) of implant-abutment-abutment screw assemblies were created. There were also 10 extra abutment screws as new screws in group 3. The abutment screws were tightened to 12 Ncm with an electronic torque meter; then they were removed and removal torque values were recorded. This sequence was repeated 5 times for group 1 and 15 times for groups 2 and 3. The same screws in groups 1 and 2 and the new screws in group 3 were then tightened to 12 Ncm; this was also followed by screw tightening to 30 Ncm and retightening to 30 Ncm 15 minutes later. Removal torque measurements were performed after screws were subjected to cyclic loading (0.5 × 10⁶ cycles; 1 Hz; 75 N). Moreover, the surface topography of one screw from each group before and after cyclic loading was evaluated with SEM and compared with an unused screw. All groups exhibited reduced removal torque values in comparison to insertion torque in each cycle. However, there was a steady trend of torque loss in each group. A comparison of the last cycle of the groups before loading showed significantly greater torque loss value in the 15th cycle of groups 2 and 3 compared with the fifth cycle of group 1 (P < .05). Nonetheless, torque loss values after loading were not shown to be significantly different from each other. Using a new screw could not significantly increase the value of removal torque. It was concluded that restricting the amount of screw tightening is more important than replacing the screw with a new one when an abutment is definitively placed.
Bagheri, Zahra S; Tavakkoli Avval, Pouria; Bougherara, Habiba; Aziz, Mina S R; Schemitsch, Emil H; Zdero, Radovan
2014-09-01
Femur fracture at the tip of a total hip replacement (THR), commonly known as Vancouver B1 fracture, is mainly treated using rigid metallic bone plates which may result in "stress shielding" leading to bone resorption and implant loosening. To minimize stress shielding, a new carbon fiber (CF)/Flax/Epoxy composite plate has been developed and biomechanically compared to a standard clinical metal plate. For fatigue tests, experiments were done using six artificial femurs cyclically loaded through the femoral head in axial compression for four stages: Stage 1 (intact), stage 2 (after THR insertion), stage 3 (after plate fixation of a simulated Vancouver B1 femoral midshaft fracture gap), and stage 4 (after fracture gap healing). For fracture fixation, one group was fitted with the new CF/Flax/Epoxy plate (n = 3), whereas another group was repaired with a standard clinical metal plate (Zimmer, Warsaw, IN) (n = 3). In addition to axial stiffness measurements, infrared thermography technique was used to capture the femur and plate surface stresses during the testing. Moreover, finite element analysis (FEA) was performed to evaluate the composite plate's axial stiffness and surface stress field. Experimental results showed that the CF/Flax/Epoxy plated femur had comparable axial stiffness (fractured = 645 ± 67 N/mm; healed = 1731 ± 109 N/mm) to the metal-plated femur (fractured = 658 ± 69 N/mm; healed = 1751 ± 39 N/mm) (p = 1.00). However, the bone beneath the CF/Flax/Epoxy plate was the only area that had a significantly higher average surface stress (fractured = 2.10 ± 0.66 MPa; healed = 1.89 ± 0.39 MPa) compared to bone beneath the metal plate (fractured = 1.18 ± 0.93 MPa; healed = 0.71 ± 0.24 MPa) (p < 0.05). FEA bone surface stresses yielded peak of 13 MPa at distal epiphysis (stage 1), 16 MPa at distal epiphysis (stage 2), 85 MPa for composite and 129 MPa for metal-plated femurs at the vicinity of nearest screw just proximal to fracture (stage 3), 21 MPa for composite and 24 MPa for metal-plated femurs at the vicinity of screw farthest away distally from fracture (stage 4). These results confirm that the new CF/Flax/Epoxy material could be a potential candidate for bone fracture plate applications as it can simultaneously provide similar mechanical stiffness and lower stress shielding (i.e., higher bone stress) compared to a standard clinical metal bone plate.
Hollow Abutment Screw Design for Easy Retrieval in Case of Screw Fracture in Dental Implant System
Kim, Bongju; Shin, Yoo Jin
2017-01-01
The prosthetic component of dental implant is attached on the abutment which is connected to the fixture with an abutment screw. The abutment screw fracture is not frequent; however, the retrieval of the fractured screw is not easy, and it poses complications. A retrieval kit was developed which utilizes screw removal drills to make a hole on the fractured screw that provides an engaging drill to unscrew it. To minimize this process, the abutment screw is modified with a prefabricated access hole for easy retrieval. This study aimed to introduce this modified design of the abutment screw, the concept of easy retrieval, and to compare the mechanical strengths of the conventional and hollow abutment screws by finite element analysis (FEA) and mechanical test. In the FEA results, both types of abutment screws showed similar stress distribution in the single artificial tooth system. A maximum load difference of about 2% occurred in the vertical load by a mechanical test. This study showed that the hollow abutment screw may be an alternative to the conventional abutment screws because this is designed for easy retrieval and that both abutment screws showed no significant difference in the mechanical tests and in the FEA. PMID:29065610
Compressive tibiofemoral force during crouch gait.
Steele, Katherine M; Demers, Matthew S; Schwartz, Michael H; Delp, Scott L
2012-04-01
Crouch gait, a common walking pattern in individuals with cerebral palsy, is characterized by excessive flexion of the hip and knee. Many subjects with crouch gait experience knee pain, perhaps because of elevated muscle forces and joint loading. The goal of this study was to examine how muscle forces and compressive tibiofemoral force change with the increasing knee flexion associated with crouch gait. Muscle forces and tibiofemoral force were estimated for three unimpaired children and nine children with cerebral palsy who walked with varying degrees of knee flexion. We scaled a generic musculoskeletal model to each subject and used the model to estimate muscle forces and compressive tibiofemoral forces during walking. Mild crouch gait (minimum knee flexion 20-35°) produced a peak compressive tibiofemoral force similar to unimpaired walking; however, severe crouch gait (minimum knee flexion>50°) increased the peak force to greater than 6 times body-weight, more than double the load experienced during unimpaired gait. This increase in compressive tibiofemoral force was primarily due to increases in quadriceps force during crouch gait, which increased quadratically with average stance phase knee flexion (i.e., crouch severity). Increased quadriceps force contributes to larger tibiofemoral and patellofemoral loading which may contribute to knee pain in individuals with crouch gait. Copyright © 2011 Elsevier B.V. All rights reserved.
Niinimäki, Tuukka Timo; Klemola, Tero-Matti; Leppilahti, Juhana Ilmari
2007-04-01
Tibiotalocalcaneal arthrodesis is a treatment modality for severe arthrosis and malalignment of the hindfoot. Complications, such as delayed union and nonunion, are well-known risks of the procedure. Arthrodesis can be done with a plate, screws, an external fixator, or an intramedullary nail. Compression with an intramedullary nail was the focus of this report. Thirty-four consecutive patients (23 men and 11 women) with an average age range of 57 (range 25-77) years had tibiotalocalcaneal arthrodesis using retrograde intramedullary compression nail fixation. Mean followup was 24 (range 6 to 43) months. One patient died of an unrelated cause, but 30 (91%) of the remaining 33 patients answered the questionnaire. Bony consolidation was achieved in 26 (76%) patients, the mean time to fusion being 16 weeks. Five patients (15%) had complications and seven (20%) had repeat surgery. Of the 30 patients who responded to the questionnaire, three patients (10%) evaluated the overall result subjectively as being of no benefit and 27 (90%) as improved. The visual analog scale (VAS) score for preoperative pain was 66 at rest and 83 when walking, and the mean postoperative scores were 19 and 32, respectively (p<0.001). Tibiotalocalcaneal arthrodesis with a compressive retrograde intramedullary nail is an effective and safe procedure for patients with severe malalignment or arthrosis of the hindfoot. It is essentially a salvage procedure, and most patients benefit from it, but excellent results are rare.
Zhang, Hui-Lin; Hu, Yong-Cheng; Aryal, Rajendra; He, Xin; Lun, Deng-Xing; Zhao, Li-Ming
2016-11-01
To provide useful insights of multidisciplinary surgical treatment for vertebral hemangioma with spinal cord compression. From 2009 to 2014, data on six patients who were diagnosed with cord compression vertebral hemangioma were reviewed and analyzed retrospectively. There were five women and one man with a mean age of 48.6 years (range, 26-68 years). All the patients were treated by multidisciplinary approach, including use of gelfoam, pedicle screw instrumentation, vertebroplasty, and decompression laminectomy. Neurological status and Frankel grades were documented, CT scan and MRI were performed after surgery. The follow-up period ranged from 8 to 54 months. Mean blood loss was around 367 mL, and the mean surgical time was 2.30 h. All patients had uneventful intraoperative and postoperative courses and reported symptomatic and neurological relief to varying degrees, at an average follow-up period of 23 months. Bone cement distribution was disseminated homogeneously over the affected vertebra and no leakage was observed. All the patients had a complete restoration to Frankel grade E. The postoperative and follow-up imaging showed that the implant was in perfect position, and no recurrence occurred in all patients. The vertebral hemangioma with cord compression is a challenge to surgeons for therapeutic improvement, and an active involvement of several disciplines as well as performance of multidisciplinary surgical treatment can be crucial in achieving favorable results. © 2016 Chinese Orthopaedic Association and John Wiley & Sons Australia, Ltd.
NASA Astrophysics Data System (ADS)
Ginghtong, Thatchanok; Nakpathomkun, Natthapon; Pechyen, Chiravoot
2018-06-01
The parameters of the plastic injection molding process have been investigated for the manufacture of a 64 oz. ultra-thin polypropylene bucket. The 3 main parameters, such as injection speed, melting temperature, holding pressure, were investigated to study their effect on the physical appearance and compressive strength. The orthogonal array of Taguchi's L9 (33) was used to carry out the experimental plan. The physical properties were measured and the compressive strength was determined using linear regression analysis. The differential scanning calorimeter (DSC) was used to analyze the crystalline structure of the product. The optimization results show that the proposed approach can help engineers identify optimal process parameters and achieve competitive advantages of energy consumption and product quality. In addition, the injection molding of the product includes 24 mm of shot stroke, 1.47 mm position transfer, 268 rpm screw speed, injection speed 100 mm/s, 172 ton clamping force, 800 kgf holding pressure, 0.9 s holding time and 1.4 s cooling time, make the products in the shape and proportion of the product satisfactory. The parameters of influence are injection speed 71.07%, melting temperature 23.31% and holding pressure 5.62%, respectively. The compressive strength of the product was able to withstand a pressure of up to 839 N before the product became plastic. The low melting temperature was caused by the superior crystalline structure of the super-ultra-thin wall product which leads to a lower compressive strength.
A comparison of preload values in gold and titanium dental implant retaining screws.
Doolabh, R; Dullabh, H D; Sykes, L M
2014-08-01
This in vitro investigation compared the effect of using either gold or titanium retaining screws on preload in the dental implant- abutment complex. Inadequate preload can result in screw loosening, whilst fracture may occur if preload is excessive. These are the most commonly reported complications in implant-retained prostheses, and result in unscheduled, costly and time-consuming visits for the patient and the clinician. This study investigated changes in preload generation after repeated torque applications to gold and titanium screws. The test set-up consisted of an implant body, a cylindrical transmucosa abutment, and the test samples of gold and of titanium retaining screws. The implant bodies were anchored using a load cell, and the transmucosal abutments were attached using either gold or titanium retaining screws. A torque gauge was used to apply torque of 20Ncm, 32Ncm, and 40Ncm to the retaining screws. The preloads generated in each screw type were compared at each torque setting, and after repeated tightening episodes. In addition, the effect of applying torque beyond the manufacturers' recommendations was also examined. Gold retaining screws were found to achieve consistently higher preload values than titanium retaining screws. Preload values were not significantly different from the first to the tenth torque cycle. Titanium screws showed more consistent preload values, albeit lower than those of the gold screws. However due to possible galling of the internal thread of the implant body by titanium screws, gold screws remain the retaining screw of choice. Based on the findings of this study, gold retaining screws generate better preload than titanium. Torque beyond the manufacturers' recommendations resulted in a more stable implant complex. However, further investigations, with torque applications repeated until screw breakage, are needed to advise on ideal maintenance protocols.
Spazzin, Aloísio Oro; Henriques, Guilherme Elias Pessanha; de Arruda Nóbilo, Mauro Antônio; Consani, Rafael Leonardo Xediek; Correr-Sobrinho, Lourenço; Mesquita, Marcelo Ferraz
2009-01-01
Objectives: This study evaluated the influence of prosthetic screw material on joint stability in implantsupported dentures at two levels of fit. Methods: Ten mandibular implant-supported dentures were fabricated. Twenty cast models were fabricated using these dentures. Four groups (n=10) were tested, according to the vertical fit of the dentures [passive and non-passive] and prosthetic screw materials [titanium (Ti) or gold (Au) alloy]. The one-screw test was performed to quantify the vertical misfits using an optic microscope. The loosening torque for the prosthetic screws was measured 24 hours after the tightening torque (10 Ncm) using a digital torque meter. Data were analyzed by two-way ANOVA and Tukey’s test (α=0.05). Results: Overall, dentures with passive fit and Ti screws resulted in significantly higher loosening torque of the prosthetic screws (p<0.05). No significant interaction was found between fit level and screw material (p=0.199). The prosthetic screw material and fit of implant-supported dentures have an influence on screw joint stability. Ti screws presented higher joint stability than Au screws and minimum of misfit should be found clinically to improve the mechanical behavior of the screw joint. PMID:20148135
Sugawara, Taku; Higashiyama, Naoki; Kaneyama, Shuichi; Sumi, Masatoshi
2017-03-15
Prospective clinical trial of the screw insertion method for posterior C1-C2 fixation utilizing the patient-specific screw guide template technique. To evaluate the efficacy of this method for insertion of C1 lateral mass screws (LMS), C2 pedicle screws (PS), and C2 laminar screws (LS). Posterior C1LMS and C2PS fixation, also known as the Goel-Harms method, can achieve immediate rigid fixation and high fusion rate, but the screw insertion carries the risk of injury to neuronal and vascular structures. Dissection of venous plexus and C2 nerve root to confirm the insertion point of the C1LMS may also cause problems. We have developed an intraoperative screw guiding method using patient-specific laminar templates. Preoperative bone images of computed tomography (CT) were analyzed using three-dimensional (3D)/multiplanar imaging software to plan the trajectories of the screws. Plastic templates with screw guiding structures were created for each lamina using 3D design and printing technology. Three types of templates were made for precise multistep guidance, and all templates were specially designed to fit and lock on the lamina during the procedure. Surgery was performed using this patient-specific screw guide template system, and placement of the screws was postoperatively evaluated using CT. Twelve patients with C1-C2 instability were treated with a total of 48 screws (24 C1LMS, 20 C2PS, 4 C2LS). Intraoperatively, each template was found to exactly fit and lock on the lamina and screw insertion was completed successfully without dissection of the venous plexus and C2 nerve root. Postoperative CT showed no cortical violation by the screws, and mean deviation of the screws from the planned trajectories was 0.70 ± 0.42 mm. The multistep, patient-specific screw guide template system is useful for intraoperative screw navigation in posterior C1-C2 fixation. This simple and economical method can improve the accuracy of screw insertion, and reduce operation time and radiation exposure of posterior C1-C2 fixation surgery. 3.
Wang, Joon Ho; Lee, Eun Su; Lee, Byung Hoon
2017-09-16
Tibial aperture fixation with a bioabsorbable interference screw is a popular fixation method in anterior cruciate ligament reconstruction (ACLR). An interference screw containing β-tricalcium phosphate (β-TCP) to improve bony integration and biocompatibility was recently introduced. This study aims to compare the clinical outcomes and radiological results of tunnel enlargement effect between the 2 bioabsorbable fixative devices of pure poly-L-lactic acid (PLLA) interference screws and β-TCP-containing screws, for tibial interference fixation in ACLR using hamstring autografts. Eighty consecutive patients who had undergone double-bundle ACLR between 2011 to 2012 were prospectively reviewed and randomly divided into two groups based on the type of tibial interference screw: 28 were assigned to the pure PLLA screw group (Group A), while the other 29 were assigned to the β-TCP-containing screw fixation group (Group B). Clinical evaluations and radiological analyses were conducted in both groups with a minimum 2- year follow-up. There was no significant difference in subjective or objective clinical outcome between the 2 groups. In radiological analyses, the use of a β-TCP-containing screw reduced tunnel widening in the portion of the tunnel with screw engagement compared to the pure PLLA screw, while the use of a β-TCP-containing screw resulted in greater tunnel enlargement in the proximal portion of the tunnel without screw engagement than use of a pure PLLA screw. Use of a β-TCP-containing interference screw in tibial aperture fixation reduced tunnel enlargement in the vicinity of the screw, whereas greater enlargement occurred proximal to the screw end relative to use of a pure PLLA interference screw. These paradoxical enlargements in use of β-TCP containing screws suggest that for reducing tunnel enlargement, the length of the interference screw should be as fit as possible with tunnel length in terms of using soft grafts. II, Prospectively comparative study. Retrospectively registered with ClinicalTrials.gov. (NCT02754674) , Date of trial registration: February 10, 2016.
Koller, Heiko; Fierlbeck, Johann; Auffarth, Alexander; Niederberger, Alfred; Stephan, Daniel; Hitzl, Wolfgang; Augat, Peter; Zenner, Juliane; Blocher, Martina; Blocher, Martina; Resch, Herbert; Mayer, Michael
2014-03-15
Biomechanical in vitro laboratory study. To compare the biomechanical performance of 3 fixation concepts used for anterior instrumented scoliosis correction and fusion (AISF). AISF is an ideal estimate for selective fusion in adolescent idiopathic scoliosis. Correction is mediated using rods and screws anchored in the vertebral bodies. Application of large correction forces can promote early weakening of the implant-vertebra interfaces, with potential postoperative loss of correction, implant dislodgment, and nonunion. Therefore, improvement of screw-rod anchorage characteristics with AISF is valuable. A total of 111 thoracolumbar vertebrae harvested from 7 human spines completed a testing protocol. Age of specimens was 62.9 ± 8.2 years. Vertebrae were potted in polymethylmethacrylate and instrumented using 3 different devices with identical screw length and unicortical fixation: single constrained screw fixation (SC fixation), nonconstrained dual-screw fixation (DNS fixation), and constrained dual-screw fixation (DC fixation) resembling a novel implant type. Mechanical testing of each implant-vertebra unit using cyclic loading and pullout tests were performed after stress tests were applied mimicking surgical maneuvers during AISF. Test order was as follows: (1) preload test 1 simulating screw-rod locking and cantilever forces; (2) preload test 2 simulating compression/distraction maneuver; (3) cyclic loading tests with implant-vertebra unit subjected to stepwise increased cyclic loading (maximum: 200 N) protocol with 1000 cycles at 2 Hz, tests were aborted if displacement greater than 2 mm occurred before reaching 1000 cycles; and (4) coaxial pullout tests at a pullout rate of 5 mm/min. With each test, the mode of failure, that is, shear versus fracture, was noted as well as the ultimate load to failure (N), number of implant-vertebra units surpassing 1000 cycles, and number of cycles and related loads applied. Thirty-three percent of vertebrae surpassed 1000 cycles, 38% in the SC group, 19% in the DNS group, and 43% in the DC group. The difference between the DC group and the DNS group yielded significance (P = 0.04). For vertebrae not surpassing 1000 cycles, the number of cycles at implant displacement greater than 2 mm in the SC group was 648.7 ± 280.2 cycles, in the DNS group was 478.8 ± 219.0 cycles, and in the DC group was 699.5 ± 150.6 cycles. Differences between the SC group and the DNS group were significant (P = 0.008) as between the DC group and the DNS group (P = 0.0009). Load to failure in the SC group was 444.3 ± 302 N, in the DNS group was 527.7 ± 273 N, and in the DC group was 664.4 ± 371.5 N. The DC group outperformed the other constructs. The difference between the SC group and the DNS group failed significance (P = 0.25), whereas there was a significant difference between the SC group and the DC group (P = 0.003). The DC group showed a strong trend toward increased load to failure compared with the DNS group but without significance (P = 0.067). Surpassing 1000 cycles had a significant impact on the maximum load to failure in the SC group (P = 0.0001) and in the DNS group (P = 0.01) but not in the DC group (P = 0.2), which had the highest number of vertebrae surpassing 1000 cycles. Constrained dual-screw fixation characteristics in modern AISF implants can improve resistance to cyclic loading and pullout forces. DC constructs bear the potential to reduce the mechanical shortcomings of AISF.
Tomio, Ryosuke; Akiyama, Takenori; Ohira, Takayuki; Yoshida, Kazunari
2016-01-01
Intraoperative monitoring of motor evoked potentials by transcranial electric stimulation is popular in neurosurgery for monitoring motor function preservation. Some authors have reported that the peg-screw electrodes screwed into the skull can more effectively conduct current to the brain compared to subdermal cork-screw electrodes screwed into the skin. The aim of this study was to investigate the influence of electrode design on transcranial motor evoked potential monitoring. We estimated differences in effectiveness between the cork-screw electrode, peg-screw electrode, and cortical electrode to produce electric fields in the brain. We used the finite element method to visualize electric fields in the brain generated by transcranial electric stimulation using realistic three-dimensional head models developed from T1-weighted images. Surfaces from five layers of the head were separated as accurately as possible. We created the "cork-screws model," "1 peg-screw model," "peg-screws model," and "cortical electrode model". Electric fields in the brain radially diffused from the brain surface at a maximum just below the electrodes in coronal sections. The coronal sections and surface views of the brain showed higher electric field distributions under the peg-screw compared to the cork-screw. An extremely high electric field was observed under cortical electrodes. Our main finding was that the intensity of electric fields in the brain are higher in the peg-screw model than the cork-screw model.
Percutaneous computer-assisted translaminar facet screw: an initial human cadaveric study.
Sasso, Rick C; Best, Natalie M; Potts, Eric A
2005-01-01
Translaminar facet screws are a minimally invasive technique for posterior lumbar fixation with good success rates. Computer-assisted image navigation using virtual fluoroscopy allows multiple simultaneous screens in various planes to plan and drive spinal instrumentation. This study evaluates the percutaneous placement of translaminar facet screws with the use of virtual fluoroscopy as an image guidance technique. A human cadaveric study was performed with a percutaneous reference frame applied to the iliac crest. Ten translaminar facet screws were placed bilaterally at five levels. Anteroposterior and lateral images were used to navigate 4.0-mm screws through a percutaneous portal under virtual fluoroscopy. An axial computed tomographic scan through the instrumented levels was obtained after the screws were placed. Screws were graded on entry, course through the lamina, and terminus. A grading system was devised to grade the course through the lamina. All 10 screw-entry points were judged optimal at the spinous process laminar junction. There were five Grade I breeches with less than 1/2 the screw through the lamina, and five Grade 0 screw placements with the screw contained completely within the lamina. The termination point was acceptable in five screws. The screws that began on the right and terminated on the left were all found to have grade II breakouts. No screws placed the spinal canal or exiting nerve root at risk. Virtual fluoroscopy provides significant assistance in percutaneous placement of translaminar facet screws and results in safe position of entry, lamina course, and terminus.
Sun, Edward; Alkalay, Ron; Vader, David; Snyder, Brian D
2009-06-01
An in vitro biomechanical study. Compare the mechanical behavior of 5 different constructs used to terminate dual-rod posterior spinal instrumentation in resisting forward flexion moment. Failure of the distal fixation construct can be a significant problem for patients undergoing surgical treatment for thoracic hyperkyphosis. We hypothesize that augmenting distal pedicle screws with infralaminar hooks or sublaminar cables significantly increases the strength and stiffness of these constructs. Thirty-seven thoracolumbar (T12 to L2) calf spines were implanted with 5 configurations of distal constructs: (1) infralaminar hooks, (2) sublaminar cables, (3) pedicle screws, (4) pedicle screws+infralaminar hooks, and (5) pedicle screws+sublaminar cables. Progressive bending moment was applied to each construct until failure. The mode of failure was noted and the construct's stiffness and failure load determined from the load-displacement curves. Bone density and vertebral dimensions were equivalent among the groups (F=0.1 to 0.9, P>0.05). One-way analysis of covariance (adjusted for differences in density and vertebral dimension) demonstrated that all of the screw-constructs (screw, screw+hook, and screw+cable) exhibited significantly higher stiffness and ultimate failure loads compared with either sublaminar hook or cable alone (P<0.05). The screw+hook constructs (109+/-11 Nm/mm) were significantly stiffer than either screws alone (88+/-17 Nm/mm) or screw+cable (98+/-13 Nm/mm) constructs, P<0.05. Screw+cable construct exhibited significantly higher failure load (1336+/-328 N) compared with screw constructs (1102+/-256 N, P<0.05), whereas not statistically different from the screw+hook construct (1220+/-75 N). The cable and hook constructs failed by laminar fracture, screw construct failed in uniaxial shear (pullout), whereas the screws+(hooks or wires) failed by fracture of caudal vertebral body. Posterior dual rod constructs fixed distally using pedicle screws were stiffer and stronger in resisting forward flexion compared with cables or hooks alone. Augmenting these screws with either infralaminar hooks or sublaminar cables provided additional resistance to failure.
Tsuji, Matthew; Crookshank, Meghan; Olsen, Michael; Schemitsch, Emil H; Zdero, Rad
2013-06-01
Orthopedic surgeons apply torque to metal screws manually by "subjective feel" to obtain adequate fracture fixation, i.e. stopping torque, and attempt to avoid accidental over-tightening that leads to screw-bone interface failure, i.e. stripping torque. Few studies have quantified stripping torque in human bone, and only one older study from 1980 reported stopping/ stripping torque ratio. The present aim was to measure stopping and stripping torque of cortical and cancellous screws in artificial and human bone over a wide range of densities. Sawbone blocks were obtained having densities from 0.08 to 0.80g/cm(3). Sixteen fresh-frozen human femurs of known standardized bone mineral density (sBMD) were also used. Using a torque screwdriver, 3.5-mm diameter cortical screws and 6.5-mm diameter cancellous screws were inserted for adequate tightening as determined subjectively by an orthopedic surgeon, i.e. stopping torque, and then further tightened until failure of the screw-bone interface, i.e. stripping torque. There were weak (R=0.25) to strong (R=0.99) linear correlations of absolute and normalized torque vs. density or sBMD. Maximum stopping torques normalized by screw thread area engaged by the host material were 15.2N/mm (cortical screws) and 13.4N/mm (cancellous screws) in sawbone blocks and 20.9N/mm (cortical screws) and 6.1N/mm (cancellous screws) in human femurs. Maximum stripping torques normalized by screw thread area engaged by the host material were 23.4N/mm (cortical screws) and 16.8N/mm (cancellous screws) in sawbone blocks and 29.3N/mm (cortical screws) and 8.3N/mm (cancellous screws) in human femurs. Combined average stopping/ stripping torque ratios were 80.8% (cortical screws) and 76.8% (cancellous screws) in sawbone blocks, as well as 66.6% (cortical screws) and 84.5% (cancellous screws) in human femurs. Surgeons should be aware of stripping torque limits for human femurs and monitor stopping torque during surgery. This is the first study of the effect of sawbone density or human bone sBMD on stopping and stripping torque. Copyright © 2013 Elsevier Ltd. All rights reserved.
Objectively measured physical activity and bone strength in 9-year-old boys and girls.
Sardinha, Luís B; Baptista, Fátima; Ekelund, Ulf
2008-09-01
The purpose of this work was to analyze the relationship between intensity and duration of physical activity and composite indices of femoral neck strength and bone-mineral content of the femoral neck, lumbar spine, and total body. Physical activity was assessed by accelerometry in 143 girls and 150 boys (mean age: 9.7 years). Measurement of bone-mineral content, femoral neck bone-mineral density, femoral neck width, hip axis length, and total body fat-free mass was performed with dual-energy radiograph absorptiometry. Compressive [(bone-mineral density x femoral neck width/weight)] and bending strength [(bone-mineral density x femoral neck width(2))/(hip axis length x weight)] express the forces that the femoral neck has to withstand in weight bearing, whereas impact strength [(bone-mineral density x femoral neck width x hip axis length)/(height x weight)] expresses the energy that the femoral neck has to absorb in an impact from standing height. Analysis of covariance (fat-free mass and age adjusted) showed differences between boys and girls of approximately 9% for compressive, 10% for bending, and 9% for impact strength. Stepwise regression analysis using time spent at sedentary, light, moderate, and vigorous physical activity as predictors revealed that vigorous physical activity explained 5% to 9% of femoral neck strength variable variance in both genders, except for bending strength in boys, and approximately 1% to 3% of total body and femoral neck bone-mineral content variance. Vigorous physical activity was then used to categorize boys and girls into quartiles. Pairwise comparison indicated that boys in the third and fourth quartiles (accumulation of >26 minutes/day) demonstrated higher compressive (11%-12%), bending (10%), and impact (14%) strength than boys in the first quartile. In girls, comparison revealed a difference between the fourth (accumulation of >25 minutes/day) and first quartiles for bending strength (11%). We did not observe any relationship between physical activity and lumbar spine strength. Femoral neck strength is higher in boys than girls. Vigorous intensity emerged as the main physical activity predictor of femoral neck strength but did not explain gender differences. Daily vigorous physical activity for at least approximately 25 minutes seems to improve femoral neck bone health in children.
Electrical wiring box with structure for fast device mounting
Johnston, Earl S.
1991-01-08
An electrical wiring box of molded insulating material is provided with bosses having screw holes for receiving a mounting screw that include two colinear portions of which a first portion proximate the front surface has an internal configuration, such as molded threads, that engage the mounting screw while permitting the mounting screw to be manually inserted therethrough without turning because of flexibility built into the boss structure. A second portion of the screw hole is of greater restriction for securely engaging the screw such as by self tapping. The flexibility of the boss is provided by a first center slot that extends from the screw hole to the boss exterior over a length substantially equal to the first portion of the screw hole. Second and third slots are located respectively on each side of the screw hole and provide projections respectively between the first and second slots and the first and third slots that flex to allow easy screw insertion through the first portion of the screw hole.
[Use of the Omega plate for stabilisation of acetabular fractures: first experience].
Šrám, J; Taller, S; Lukáš, R; Endrych, L
2013-01-01
The aim of our study is to solve the problem of insufficient fixation of comminuted fractures of the quadrilateral plane and the iliopectineal line. These fixation problems occur while using the standard narrow 3.5 mm fixation plate applied from a modified Stoppa approach. A new plate developed by the authors--the Omega plate--fulfils the requirements. In the period 2010-2012, we performed 156 stabilisations of pelvic ring fractures and acetabular fractures. We used the modified Stoppa approach applying the standard fixation plate in 24 patients and the Omega plate in 15 patients. The patient group with the Omega plate included 10 male and five female patients with the average age of 61 years (range, 30-72). Only 11 patients were followed up, with an average period of 13.3 months, because one patient was lost to followup and three patients were shortly after surgery. The surgical technique of Omega plate application is described in detail. The clinical evaluation of post-operative results was based on the Harris Hip Score; the graphical results were rated using the Matta and Pohlemann criteria. The Stoppa approach alone was used in four patients, combination of two approaches (Stoppa and Kocher-Langenbeck approach) was used in six cases and three approaches were employed in five patients. No adverse intra- or post-operative events were recorded. Excellent or satisfactory graphical results were obtained in 12 patients and an unsatisfactory graphical outcome was recorded in three cases. In the follow-up period ranging from 8 to 22 months, 11 patients healed. Late complications included avascular femoral head necrosis in two and severe post-traumatic coxarthrosis in three patients. Due to these complications, all five patients underwent total hip arthroplasty without previous Omega plate removal at an average interval of 15 months from the primary pelvic surgery. They were not included in the follow-up evaluation. The remaining six patients had an average Harris Hip Score of 88 points (range, 81-98). The novel plate, shaped as a reverse omega letter, enables fixation of the quadrilateral area of the acetabulum through pressure of the arc of the plate against this area. Hitches, with holes for screw insertion, attached to the Omega plate in its middle part allow for fixation of fragments above the linea arcuata simply by pressure. Hitches in the ventral part provide for plate fixation to the ventral acetabular column and the superior pubic ramus. Hitches in the posterior segment of the plate facilitate insertion of a long screw in the posterior acetabular column from an additional iliac approach for stabilisation of simple acetabular fractures. The Omega plates are manufactured in several modifications. The Omega plate enables us to fix fractures of the superior pubic ramus, fractures of the anterior acetabular column, fractures of the quadrilateral acetabular plate, fractures in the iliopectineal line and simple fractures of the posterior column. A CT-defined projection of the pelvic inlet based on pre-operative CT scans allows us to choose the appropriate plate size and to shape the plate pre-operatively. After a technically well performed Stoppa approach and good fragment reduction, the application of an Omega plate is easy if our recommendations are followed. Fixation of all fragments of the anterior column and the quadrilateral plate is very stable and the Omega plate is highly resistant to secondary loss of reduction. A potential total hip arthroplasty does not require Omega plate removal.
Development of structural schemes of parallel structure manipulators using screw calculus
NASA Astrophysics Data System (ADS)
Rashoyan, G. V.; Shalyukhin, K. A.; Gaponenko, EV
2018-03-01
The paper considers the approach to the structural analysis and synthesis of parallel structure robots based on the mathematical apparatus of groups of screws and on a concept of reciprocity of screws. The results are depicted of synthesis of parallel structure robots with different numbers of degrees of freedom, corresponding to the different groups of screws. Power screws are applied with this aim, based on the principle of static-kinematic analogy; the power screws are similar to the orts of axes of not driven kinematic pairs of a corresponding connecting chain. Accordingly, kinematic screws of the outlet chain of a robot are simultaneously determined which are reciprocal to power screws of kinematic sub-chains. Solution of certain synthesis problems is illustrated with practical applications. Closed groups of screws can have eight types. The three-membered groups of screws are of greatest significance, as well as four-membered screw groups [1] and six-membered screw groups. Three-membered screw groups correspond to progressively guiding mechanisms, to spherical mechanisms, and to planar mechanisms. The four-membered group corresponds to the motion of the SCARA robot. The six-membered group includes all possible motions. From the works of A.P. Kotelnikov, F.M. Dimentberg, it is known that closed fifth-order screw groups do not exist. The article presents examples of the mechanisms corresponding to the given groups.
SEM and fractography analysis of screw thread loosening in dental implants.
Scarano, A; Quaranta, M; Traini, T; Piattelli, M; Piattelli, A
2007-01-01
Biological and technical failures of implants have already been reported. Mechanical factors are certainly of importance in implant failures, even if their exact nature has not yet been established. The abutment screw fracture or loosening represents a rare, but quite unpleasant failure. The aim of the present research is an analysis and structural examination of screw thread or abutment loosening compared with screw threads or abutment without loosening. The loosening of screw threads was compared to screw thread without loosening of three different implant systems; Branemark (Nobel Biocare, Gothenburg, Sweden), T.B.R. implant systems (Benax, Ancona, Italy) and Restore (Lifecore Biomedical, Chaska, Minnesota, USA). In this study broken screws were excluded. A total of 16 screw thread loosenings were observed (Group I) (4 Branemark, 4 T.B.R and 5 Restore), 10 screw threads without loosening were removed (Group II), and 6 screw threads as received by the manufacturer (unused) (Group III) were used as control (2 Branemark, 2 T.B.R and 2 Restore). The loosened abutment screws were retrieved and analyzed under SEM. Many alterations and deformations were present in concavities and convexities of screw threads in group I. No macroscopic alterations or deformations were observed in groups II and III. A statistical difference of the presence of microcracks were observed between screw threads with an abutment loosening and screw threads without an abutment loosening.
[Biomaterials in bone repair].
Puska, Mervi; Aho, Allan J; Vallittu, Pekka K
2013-01-01
In orthopedics, traumatology, and craniofacial surgery, biomaterials should meet the clinical demands of bone that include shape, size and anatomical location of the defect, as well as the physiological load-bearing stresses. Biomaterials are metals, ceramics, plastics or materials of biological origin. In the treatment of large defects, metallic endoprostheses or bone grafts are employed, whereas ceramics in the case of small defects. Plastics are employed on the artificial joint surfaces, in the treatment of vertebral compression fractures, and as biodegradable screws and plates. Porosity, bioactivity, and identical biomechanics to bone are fundamental for achieving a durable, well-bonded, interface between biomaterial and bone. In the case of severe bone treatments, biomaterials should also imply an option to add biologically active substances.
Rajasekaran, S; Bhushan, Manindra; Aiyer, Siddharth; Kanna, Rishi; Shetty, Ajoy Prasad
2018-01-09
To develop a classification based on the technical complexity encountered during pedicle screw insertion and to evaluate the performance of AIRO ® CT navigation system based on this classification, in the clinical scenario of complex spinal deformity. 31 complex spinal deformity correction surgeries were prospectively analyzed for performance of AIRO ® mobile CT-based navigation system. Pedicles were classified according to complexity of insertion into five types. Analysis was performed to estimate the accuracy of screw placement and time for screw insertion. Breach greater than 2 mm was considered for analysis. 452 pedicle screws were inserted (T1-T6: 116; T7-T12: 171; L1-S1: 165). The average Cobb angle was 68.3° (range 60°-104°). We had 242 grade 2 pedicles, 133 grade 3, and 77 grade 4, and 44 pedicles were unfit for pedicle screw insertion. We noted 27 pedicle screw breach (medial: 10; lateral: 16; anterior: 1). Among lateral breach (n = 16), ten screws were planned for in-out-in pedicle screw insertion. Among lateral breach (n = 16), ten screws were planned for in-out-in pedicle screw insertion. Average screw insertion time was 1.76 ± 0.89 min. After accounting for planned breach, the effective breach rate was 3.8% resulting in 96.2% accuracy for pedicle screw placement. This classification helps compare the accuracy of screw insertion in range of conditions by considering the complexity of screw insertion. Considering the clinical scenario of complex pedicle anatomy in spinal deformity AIRO ® navigation showed an excellent accuracy rate of 96.2%.
Chen, Hua; Li, Huibo; Deng, Yuxiao; Rong, Xin; Gong, Quan; Li, Tao; Song, Yueming; Liu, Hao
2017-04-01
Lateral mass mini-screws used in plated cervical laminoplasty might penetrate into facet joints. The objective is to observe this complication incidence and to identify the optimal areas for 5- and 7-mm-long mini-screws to implant on lateral mass. 47 patients who underwent plated cervical laminoplasty were included. The optimal area for mini-screws implanting was set according to pre-operative 3D CT reconstruction data. Then, each posterior-lateral mass surface was divided into three regions: 7-mm region, 5-mm region, and dangerous area. The mini-screw implanted region was recorded. Post-operative CT images were used to identify whether the mini-screws penetrated into facet joints. 235 mini-plates and 470 lateral mass mini-screws were used in the study. 117 (24.9%) mini-screws penetrated 88 (37.4%) facet joints. The 5-mm-long mini-screw optimal area occupied the upper 72, 65, 65, 64, and 65 % area of the posterior-lateral mass surface for C3-7, while the 7-mm-long mini-screw optimal area encompassed the upper 54, 39, 40, 33, and 32 %. Only 7-mm-long mini-screws were used to fix the plate to the lateral mass. 4 of 240 mini-screws in 7-mm region, 67 of the 179 mini-screws in 5-mm region, and 46 of the 51 mini-screws in dangerous region penetrated into the facet joint. The differences in the rate of facet joint penetration related to region were statistically significant (P < 0.001). The facet joint destruction by mini-screws was not a rare complication in plated cervical laminoplasty. The optimal areas we proposed may help guide the mini-screw implantation positions.
Finite element analysis of the axial stiffness of a ball screw
NASA Astrophysics Data System (ADS)
Zhou, L.-X.; Li, P.-Y.
2018-06-01
The ball screw was developed for high speed and high precision operation; therefore, increasingly greater demands have been placed on the stiffness of the ball screw. Firstly, ANSYS software was used to compare the axial stiffness of a single-nut and single-arc ball screw and a single-nut and double-arc ball screw when the spiral angle is not considered. On this basis, the model of a single-nut ball screw was established taking into consideration the spiral lead angle, and then the variations in displacement and stiffness when the ball screw pair was subjected to an axial force were determined. The axial contact stiffness of the double-nut ball screw pair, subject to a pre-tightening force, was analyzed, according to the above-mentioned steps. The simulation results demonstrated that under the same working conditions, the stiffness of the double-arc ball screw was larger by between 5∼100 N/um than that of the single-arc ball screw. The spiral lead angle increased the axial stiffness of the ball screw pair, and the axial stiffness of the double-nut ball screw pair subject to a pre-tightening force was larger by between 790∼1360 N/um than that of the axial stiffness of the single-nut ball screw pair.
Ball Screw Actuator Including a Stop with an Integral Guide
NASA Technical Reports Server (NTRS)
Wingett, Paul T. (Inventor); Perek, John (Inventor); Geck, Kellan (Inventor)
2015-01-01
An actuator includes a housing assembly, a ball nut, a ball screw, and a ball screw stop. The ball nut is rotationally mounted in the housing assembly, is adapted to receive an input torque, and is configured, upon receipt thereof, to rotate and supply a drive force. The ball screw is mounted within the housing assembly and extends through the ball nut. The ball screw has a first end and a second end, and is coupled to receive the drive force from the ball nut. The ball screw is configured, upon receipt of the drive force, to selectively translate between a stow position and a deploy position. The ball screw stop is mounted on the ball screw to translate therewith and is configured to at selectively engage the housing assembly while the ball screw is translating, and engage the ball nut when the ball screw is in the deploy position.
NASA Astrophysics Data System (ADS)
Kiriyama, Yoshimori; Yamazaki, Nobutoshi; Nagura, Takeo; Matsumoto, Morio; Chiba, Kazuhiro; Toyama, Yoshiaki
In segmental pedicle screw instrumentation, the relationship between the combinations of pedicle screw placements and the degree of deformity correction was investigated with a three-dimensional rigid body and spring model. The virtual thoracolumbar scoliosis (Cobb’s angle of 47 deg.) was corrected using six different combinations of pedicle-screw placements. As a result, better correction in the axial rotation was obtained with the pedicle screws placed at or close to the apical vertebra than with the screws placed close to the end vertebrae, while the correction in the frontal plane was better with the screws close to the end vertebrae than with those close to the apical vertebra. Additionally, two screws placed in the convex side above and below the apical vertebra provided better correction than two screws placed in the concave side. Effective deformity corrections of scoliosis were obtained with the proper combinations of pedicle screw placements.
Hernigou, Philippe; Pariat, Jacques
2017-07-01
The first techniques of operative fracture with plates were developed in the 19th century. In fact, at the beginning these methods consisted of an open reduction of the fracture usually followed by a very unstable fixation. As a consequence, the fracture had to be opened with a real risk of (sometimes lethal) infection, and due to unstable fixation, protection with a cast was often necessary. During the period between World Wars I and II, plates for fracture fixation developed with great variety. It became increasingly recognised that, because a fracture of a long bone normally heals with minimal resorption at the bone ends, this may result in slight shortening and collapse, so a very rigid plate might prevent such collapse. However, as a consequence, delayed healing was observed unless the patient was lucky enough to have the plate break. One way of dealing with this was to use a slotted plate in which the screws could move axially, but the really important advance was recognition of the role of compression. After the first description of compression by Danis with a "coapteur", Bagby and Müller with the AO improved the technique of compression. The classic dynamic compression plates from the 1970s were the key to a very rigid fixation, leading to primary bone healing. Nevertheless, the use of strong plates resulted in delayed union and the osteoporosis, cancellous bone, comminution, and/or pathological bone resulted in some failures due to insufficient stability. Finally, new devices represented by locking plates increased the stability, contributing to the principles of a more biological osteosynthesis while giving enough stability to allow immediate full weight bearing in some patients.
Evaluation of the field relevance of several injury risk functions.
Prasad, Priya; Mertz, Harold J; Dalmotas, Danius J; Augenstein, Jeffrey S; Diggs, Kennerly
2010-11-01
An evaluation of the four injury risk curves proposed in the NHTSA NCAP for estimating the risk of AIS>= 3 injuries to the head, neck, chest and AIS>=2 injury to the Knee-Thigh-Hip (KTH) complex has been conducted. The predicted injury risk to the four body regions based on driver dummy responses in over 300 frontal NCAP tests were compared against those to drivers involved in real-world crashes of similar severity as represented in the NASS. The results of the study show that the predicted injury risks to the head and chest were slightly below those in NASS, and the predicted risk for the knee-thigh-hip complex was substantially below that observed in the NASS. The predicted risk for the neck by the Nij curve was greater than the observed risk in NASS by an order of magnitude due to the Nij risk curve predicting a non-zero risk when Nij = 0. An alternative and published Nte risk curve produced a risk estimate consistent with the NASS estimate of neck injury. Similarly, an alternative and published chest injury risk curve produced a risk estimate that was within the bounds of the NASS estimates. No published risk curve for femur compressive load could be found that would give risk estimates consistent with the range of the NASS estimates. Additional work on developing a femur compressive load risk curve is recommended.
Gallizzi, Michael A.; Kuhns, Craig A.; Jenkins, Tyler J.; Pfeiffer, Ferris M.
2014-01-01
Study Design Biomechanical analysis of lateral mass screw pullout strength. Objective We compare the pullout strength of our bone cement–revised lateral mass screw with the standard lateral mass screw. Methods In cadaveric cervical spines, we simulated lateral mass screw “cutouts” unilaterally from C3 to C7. We salvaged fixation in the cutout side with polymethyl methacrylate (PMMA) or Cortoss cement (Orthovita, Malvern, Pennsylvania, United States), allowed the cement to harden, and then drilled and placed lateral mass screws back into the cement-augmented lateral masses. On the contralateral side, we placed standard lateral mass screws into the native, or normal lateral, masses and then compared pullout strength of the cement-augmented side to the standard lateral mass screw. For pullout testing, each augmentation group was fixed to a servohydraulic load frame and a specially designed pullout fixture was attached to each lateral mass screw head. Results Quick-mix PMMA-salvaged lateral mass screws required greater force to fail when compared with native lateral mass screws. Cortoss cement and PMMA standard-mix cement-augmented screws demonstrated less strength of fixation when compared with control-side lateral mass screws. Attempts at a second round of cement salvage of the same lateral masses led to more variations in load to failure, but quick-mix PMMA again demonstrated greater load to failure when compared with the nonaugmented control lateral mass screws. Conclusion Quick-mix PMMA cement revision equips the spinal surgeon with a much needed salvage option for a failed lateral mass screw in the subaxial cervical spine. PMID:25649421
Nowicki, Philip D; Silva, Selina; Toelle, Lisa; Strohmeyer, Greg; Wahlquist, Trevor; Li, Ying; Farley, Frances A; Caird, Michelle S
2017-01-01
Routine prophylactic screw fixation for skeletally immature patients with slipped capital femoral epiphysis (SCFE) continues to be debated. The purpose of this study was to assess the slip severity of a second SCFE in skeletally immature versus more mature patients and determine necessity of contralateral hip prophylactic screw fixation. All patients treated for SCFE at 3 pediatric hospitals over a 10-year time period (January 1, 2002 to December 31, 2011) were evaluated. Patients were included if they had a unilateral SCFE and a contralateral asynchronous SCFE, and were divided into immature (Oxford triradiate score 1) versus more mature (Oxford triradiate score 2 and 3) groups. Data evaluation included age, time between slips, body mass index, Southwick angles of first then second SCFEs, and follow-up duration. There were a total of 45 patients: 16 patients in the skeletally immature and 29 patients in the more mature group. Average age at first SCFE in immature patients was 10.9 years and in more mature patients 12.1 years (P=0.70). Age at second SCFE in immature patients was 11.5 years and in more mature patients 13.0 years (P=0.023). Average time between SCFEs was 6.6 months for immature and 11.4 months for more mature patients (P=0.093). Southwick angles for immature patient first and second SCFEs were 25 and 12.9 degrees, respectively, and for more mature patient first and second SCFEs were 31 and 21 degrees, respectively. Southwick angles were higher at first and second slips in the more mature group, significant only at the second slip (P=0.032). SCFE severity at initial event was predictive of severity of second SCFE regardless of maturity (P=0.043). Regression analysis of slip severity against multiple patient factors demonstrated triradiate score was not a factor assessing subsequent SCFE magnitude (P=0.099). There was no significant difference between first and second SCFEs regardless of skeletal maturity but severity of initial SCFE did correlate with severity of the second SCFE. Deciding not to prophylactically pin an unaffected hip does not lead to worse deformity if a second SCFE occurs in skeletally immature or more mature patients, unless the initial event is severe. Prophylactic pin fixation in skeletally immature patients should occur as a shared decision between patient, guardians, and treating surgeon. Level III-retrospective comparative study.
The Frank Stinchfield Award. Pulmonary fat embolism in revision hip arthroplasty.
Woo, R; Minster, G J; Fitzgerald, R H; Mason, L D; Lucas, D R; Smith, F E
1995-10-01
Unilateral cemented hip hemiarthroplasty was done on 16 dogs who subsequently had revision arthroplasty and who were divided into 1 control and 3 experimental groups: The first group had cement extraction using osteotomes; the second, using a high speed burr; the third, an ultrasonic tool. Hemodynamic and transesophageal echocardiographic monitoring were done. Postmortem pulmonary specimens were examined for differences in the quantity of fat emboli. There was a significant increase in emboli with the ultrasonic tool as compared with osteotomes and high speed burr. There was no significant difference in emboli between the osteotomes and high speed burr. Fat emboli syndrome is related to mechanical compression of the femoral canal. The ultrasonic instrument was unique in its tendency to cause large embolic showers, especially during extraction of the distal cement plug. In these young dogs, minimal hemodynamic changes and no cardiac dysrhythmias occurred, which in part may be attributed to their good health. These changes may remain subclinical for patients with good cardiorespiratory reserve, or may become life threatening for those with poor reserve. By outlining the mechanisms of fat embolism in revision total hip arthroplasty, it may be possible to decrease future morbidity, especially in patients who frequently have cardiopulmonary disease.
The development and use of SPIO Lycra compression bracing in children with neuromotor deficits.
Hylton, N; Allen, C
1997-01-01
The use of flexible compression bracing in persons with neuromotor deficits offers improved possibilities for stability and movement control without severely limiting joint movement options. At the Children's Therapy Center in Kent, Washington, this treatment modality has been explored with increasing application in children with moderate to severe cerebral palsy and other neuromotor deficits over the past 6 years, with good success. Significant functional improvements using Neoprene shoulder/trunk/hip Bracing led us to experiment with much lighter compression materials. The stabilizing pressure input orthosis or SPIO bracing system (developed by Cheryl Allen, parent and Chief Designer, and Nancy Hylton, PT) is custom-fitted to the stability, movement control and sensory deficit needs of a specific individual. SPIO bracing developed for a specific child has often become part of a rapidly increasing group of flexible bracing options which appear to provide an improved base of support for functional gains in balance, dynamic stability, general and specific movement control with improved postural and muscle readiness. Both deep sensory and subtle biomechanical factors may account for the functional changes observed. This article discusses the development and current use of flexible compression SPIO bracing in this area.
2D and 3D assessment of sustentaculum tali screw fixation with or without Screw Targeting Clamp.
De Boer, A Siebe; Van Lieshout, Esther M M; Vellekoop, Leonie; Knops, Simon P; Kleinrensink, Gert-Jan; Verhofstad, Michael H J
2017-12-01
Precise placement of sustentaculum tali screw(s) is essential for restoring anatomy and biomechanical stability of the calcaneus. This can be challenging due to the small target area and presence of neurovascular structures on the medial side. The aim was to evaluate the precision of positioning of the subchondral posterior facet screw and processus anterior calcanei screw with or without a Screw Targeting Clamp. The secondary aim was to evaluate the added value of peroperative 3D imaging over 2D radiographs alone. Twenty Anubifix™ embalmed, human anatomic lower limb specimens were used. A subchondral posterior facet screw and a processus anterior calcanei screw were placed using an extended lateral approach. A senior orthopedic trauma surgeon experienced in calcaneal fracture surgery and a senior resident with limited experience in calcaneal surgery performed screw fixation in five specimens with and in five specimens without the clamp. 2D lateral and axial radiographs and a 3D recording were obtained postoperatively. Anatomical dissection was performed postoperatively as a diagnostic golden standard in order to obtain the factual screw positions. Blinded assessment of quality of fixation was performed by two surgeons. In 2D, eight screws were considered malpositioned when placed with the targeting device versus nine placed freehand. In 3D recordings, two additional screws were malpositioned in each group as compared to the golden standard. As opposed to the senior surgeon, the senior resident seemed to get the best results using the Screw Targeting Clamp (number of malpositioned screws using freehand was eight, and using the targeting clamp five). In nine out of 20 specimens 3D images provided additional information concerning target area and intra-articular placement. Based on the 3D assessment, five additional screws would have required repositioning. Except for one, all screw positions were rated equally after dissection when compared with 3D examinations. This study does not show a substantial benefit between the Screw Targeting Clamp and the freehand technique as well between experienced and inexperienced surgeons. Data suggest that the clamp might help positioning sustentaculum tali screws, especially for inexperienced surgeons. Perioperative 3D recordings facilitate identification of malpositioned screws. Copyright © 2017 Elsevier Ltd. All rights reserved.
Malham, Gregory M; Parker, Rhiannon M
2018-04-01
OBJECTIVE Image guidance for spine surgery has been reported to improve the accuracy of pedicle screw placement and reduce revision rates and radiation exposure. Current navigation and robot-assisted techniques for percutaneous screws rely on bone-anchored trackers and Kirchner wires (K-wires). There is a paucity of published data regarding the placement of image-guided percutaneous screws without K-wires. A new skin-adhesive stereotactic patient tracker (SpineMask) eliminates both an invasive bone-anchored tracker and K-wires for pedicle screw placement. This study reports the authors' early experience with the use of SpineMask for "K-wireless" placement of minimally invasive pedicle screws and makes recommendations for its potential applications in lumbar fusion. METHODS Forty-five consecutive patients (involving 204 screws inserted) underwent K-wireless lumbar pedicle screw fixation with SpineMask and intraoperative neuromonitoring. Screws were inserted by percutaneous stab or Wiltse incisions. If required, decompression with or without interbody fusion was performed using mini-open midline incisions. Multimodality intraoperative neuromonitoring assessing motor and sensory responses with triggered electromyography (tEMG) was performed. Computed tomography scans were obtained 2 days postoperatively to assess screw placement and any cortical breaches. A breach was defined as any violation of a pedicle screw involving the cortical bone of the pedicle. RESULTS Fourteen screws (7%) required intraoperative revision. Screws were removed and repositioned due to a tEMG response < 13 mA, tactile feedback, and 3D fluoroscopic assessment. All screws were revised using the SpineMask with the same screw placement technique. The highest proportion of revisions occurred with Wiltse incisions (4/12, 33%) as this caused the greatest degree of SpineMask deformation, followed by a mini midline incision (3/26, 12%). Percutaneous screws via a single stab incision resulted in the fewest revisions (7/166, 4%). Postoperative CT demonstrated 7 pedicle screw breaches (3%; 5 lateral, 1 medial, 1 superior), all with percutaneous stab incisions (7/166, 4%). The radiological accuracy of the SpineMask tracker was 97% (197/204 screws). No patients suffered neural injury or required postoperative screw revision. CONCLUSIONS The noninvasive cutaneous SpineMask tracker with 3D image guidance and tEMG monitoring provided high accuracy (97%) for percutaneous pedicle screw placement via stab incisions without K-wires.
Helgeson, Melvin D; Kang, Daniel G; Lehman, Ronald A; Dmitriev, Anton E; Luhmann, Scott J
2013-08-01
There is currently no reliable technique for intraoperative assessment of pedicle screw fixation strength and optimal screw size. Several studies have evaluated pedicle screw insertional torque (IT) and its direct correlation with pullout strength. However, there is limited clinical application with pedicle screw IT as it must be measured during screw placement and rarely causes the spine surgeon to change screw size. To date, no study has evaluated tapping IT, which precedes screw insertion, and its ability to predict pedicle screw pullout strength. The objective of this study was to investigate tapping IT and its ability to predict pedicle screw pullout strength and optimal screw size. In vitro human cadaveric biomechanical analysis. Twenty fresh-frozen human cadaveric thoracic vertebral levels were prepared and dual-energy radiographic absorptiometry scanned for bone mineral density (BMD). All specimens were osteoporotic with a mean BMD of 0.60 ± 0.07 g/cm(2). Five specimens (n=10) were used to perform a pilot study, as there were no previously established values for optimal tapping IT. Each pedicle during the pilot study was measured using a digital caliper as well as computed tomography measurements, and the optimal screw size was determined to be equal to or the first size smaller than the pedicle diameter. The optimal tap size was then selected as the tap diameter 1 mm smaller than the optimal screw size. During optimal tap size insertion, all peak tapping IT values were found to be between 2 in-lbs and 3 in-lbs. Therefore, the threshold tapping IT value for optimal pedicle screw and tap size was determined to be 2.5 in-lbs, and a comparison tapping IT value of 1.5 in-lbs was selected. Next, 15 test specimens (n=30) were measured with digital calipers, probed, tapped, and instrumented using a paired comparison between the two threshold tapping IT values (Group 1: 1.5 in-lbs; Group 2: 2.5 in-lbs), randomly assigned to the left or right pedicle on each specimen. Each pedicle was incrementally tapped to increasing size (3.75, 4.00, 4.50, and 5.50 mm) until the threshold value was reached based on the assigned group. Pedicle screw size was determined by adding 1 mm to the tap size that crossed the threshold torque value. Torque measurements were recorded with each revolution during tap and pedicle screw insertion. Each specimen was then individually potted and pedicle screws pulled out "in-line" with the screw axis at a rate of 0.25 mm/sec. Peak pullout strength (POS) was measured in Newtons (N). The peak tapping IT was significantly increased (50%) in Group 2 (3.23 ± 0.65 in-lbs) compared with Group 1 (2.15 ± 0.56 in-lbs) (p=.0005). The peak screw IT was also significantly increased (19%) in Group 2 (8.99 ± 2.27 in-lbs) compared with Group 1 (7.52 ± 2.96 in-lbs) (p=.02). The pedicle screw pullout strength was also significantly increased (23%) in Group 2 (877.9 ± 235.2 N) compared with Group 1 (712.3 ± 223.1 N) (p=.017). The mean pedicle screw diameter was significantly increased in Group 2 (5.70 ± 1.05 mm) compared with Group 1 (5.00 ± 0.80 mm) (p=.0002). There was also an increased rate of optimal pedicle screw size selection in Group 2 with 9 of 15 (60%) pedicle screws compared with Group 1 with 4 of 15 (26.7%) pedicle screws within 1 mm of the measured pedicle width. There was a moderate correlation for tapping IT with both screw IT (r=0.54; p=.002) and pedicle screw POS (r=0.55; p=.002). Our findings suggest that tapping IT directly correlates with pedicle screw IT, pedicle screw pullout strength, and optimal pedicle screw size. Therefore, tapping IT may be used during thoracic pedicle screw instrumentation as an adjunct to preoperative imaging and clinical experience to maximize fixation strength and optimize pedicle "fit and fill" with the largest screw possible. However, further prospective, in vivo studies are necessary to evaluate the intraoperative use of tapping IT to predict screw loosening/complications. Published by Elsevier Inc.
Li, Xu; Zhang, Feng; Zhang, Wenzhi; Shang, Xifu; Han, Jintao; Liu, Pengfei
2017-03-01
Technique note. To report a new method for precisely controlling the depth of percutaneous pedicle screws (PPS)-without radiation exposure to surgeons and less fluoroscopy exposure to patients than with conventional methods. PPS is widely used in minimal invasive spine surgery; the advantages include reduced muscle damage, pain, and hospital stays. However, placement of PPS demands repeated checking with fluoroscopy. Thus, radiation exposure is considerable for both surgeons and patients. The PPS depth was determined by counting rotations of the screws. The distance between screw threads can be measured for particular screws; thus, full rotations of the PPS results in the screw advancing in the pedicle the distance between screw threads. To fully insert screws into the pedicle, the number of full rotations is equal to the number of threads in the PPS. We applied this technique in 58 patients with thoracolumbar fracture. The position and depth of the screws was checked during the operation with the C-arm and after operation by anteroposterior X-ray film or computed tomography. No additional procedures were required to correct the screws; we observed no neurological deficits or malpositioning of the screws. In the screw placement procedure, the radiation exposure for surgeons is zero, and the patient is well protected from extensive radiation exposure. This method of counting rotation of screws is a safe way to precisely determine the depth of PPS in the placement procedure. IV.
Fatigue strength of common tibial intramedullary nail distal locking screws
Griffin, Lanny V; Harris, Robert M; Zubak, Joseph J
2009-01-01
Background Premature failure of either the nail and/or locking screws with unstable fracture patterns may lead to angulation, shortening, malunion, and IM nail migration. Up to thirty percent of all unreamed nail locking screws can break after initial weight bearing is allowed at 8–10 weeks if union has not occurred. The primary problem this presents is hardware removal during revision surgery. The purposes of our study was to evaluate the relative fatigue resistance of distal locking screws and bolts from representative manufacturers of tibial IM nail systems, and develop a relative risk assessment of screws and materials used. Evaluations included quantitative and qualitative measures of the relative performance of these screws. Methods Fatigue tests were conducted to simulate a comminuted fracture that was treated by IM nailing assuming that all load was carried by the screws. Each screw type was tested ten times in a single screw configuration. One screw type was tested an additional ten times in a two-screw parallel configuration. Fatigue tests were performed using a servohydraulic materials testing system and custom fixturing that simulated screws placed in the distal region of an appropriately sized tibial IM nail. Fatigue loads were estimated based on a seventy-five kilogram individual at full weight bearing. The test duration was one million cycles (roughly one year), or screw fracture, whichever occurred first. Failure analysis of a representative sample of titanium alloy and stainless steel screws included scanning electron microscopy (SEM) and quantitative metallography. Results The average fatigue life of a single screw with a diameter of 4.0 mm was 1200 cycles, which would correspond roughly to half a day of full weight bearing. Single screws with a diameter of 4.5 mm or larger have approximately a 50 percent probability of withstanding a week of weight bearing, whereas a single 5.0 mm diameter screw has greater than 90 percent probability of withstanding more than a week of weight bearing. If two small diameter screws are used, our tests showed that the probability of withstanding a week of weight bearing increases from zero to about 20 percent, which is similar to having a single 4.5 mm diameter screw providing fixation. Conclusion Our results show that selecting the system that uses the largest distal locking screws would offer the best fatigue resistance for an unstable fracture pattern subjected to full weight bearing. Furthermore, using multiple screws will substantially reduce the risk of premature hardware failure. PMID:19371438
Risk factors for unsuccessful acetabular press-fit fixation at primary total hip arthroplasty.
Brulc, U; Antolič, V; Mavčič, B
2017-11-01
Surgeon at primary total hip arthroplasty sometimes cannot achieve sufficient cementless acetabular press-fit fixation and must resort to other fixation methods. Despite a predominant use of cementless cups, this issue is not fully clarified, therefore we performed a large retrospective study to: (1) identify risk factors related to patient or implant or surgeon for unsuccessful intraoperative press-fit; (2) check for correlation between surgeons' volume of operated cases and the press-fit success rate. Unsuccessful intra-operative press-fit more often occurs in older female patients, particular implants, due to learning curve and low-volume surgeons. Retrospective observational cohort of prospectively collected intraoperative data (2009-2016) included all primary total hip arthroplasty patients with implant brands that offered acetabular press-fit fixation only. Press-fit was considered successful if acetabulum was of the same implant brand as the femoral component without additional screws or cement. Logistic regression models for unsuccessful acetabular press-fit included patients' gender/age/operated side, implant, surgeon, approach (posterior n=1206, direct-lateral n=871) and surgery date (i.e. learning curve). In 2077 patients (mean 65.5 years, 1093 females, 1163 right hips), three different implant brands (973 ABG-II™-Stryker, 646 EcoFit™ Implantcast, 458 Procotyl™ L-Wright) were implanted by eight surgeons. Their unsuccessful press-fit fixation rates ranged from 3.5% to 23.7%. Older age (odds ratio 1.01 [95% CI: 0.99-1.02]), female gender (2.87 [95% CI: 2.11-3.91]), right side (1.44 [95% CI: 1.08-1.92]), surgery date (0.90 [95% CI: 1.08-1.92]) and particular implants were significant risk factors only in three surgeons with less successful surgical technique (higher rates of unsuccessful press-fit with Procotyl™-L and EcoFit™ [P=0.01]). Direct-lateral hip approach had a lower rate of unsuccessful press-fit than posterior hip approach (P<0.01), but there was no correlation between surgeons' volume and rate of successful press-fit (Spearman's rho=0.10, P=0.82). Subcohort of 961 patients with 5-7-years follow-up indicated higher early/late cup revision rates with unsuccessful press-fit. Success of press-fit fixation depends entirely on the surgeon and surgical approach. With proper operative technique, the unsuccessful press-fit fixation rate should be below 5% and the impact of patients' characteristics or implants on press-fit fixation is then insignificant. Findings of huge variability in operative technique between surgeons of the presented study emphasize the need for surgeon-specific data stratification in arthroplasty studies and indicate the possibility of false attribution of clinically observed phenomena to patient-related factors in pooled data of large centers or hip arthroplasty registers. Level III, retrospective observational case control study. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
NASA Technical Reports Server (NTRS)
De Bothezat, George
1920-01-01
Report presents a theory which gives a complete picture and an exact quantitative analysis of the whole phenomenon of the working of blade screws, but also unites in a continuous whole the entire scale of states of work conceivable for a blade screw. Chapter 1 is devoted to the establishment of the system of fundamental equations relating to the blade screw. Chapter 2 contains the general discussion of the 16 states of work which may establish themselves for a blade screw. The existence of the vortex ring state and the whirling phenomenon are established. All the fundamental functions which enter the blade-screw theory are submitted to a general analytical discussion. The general outline of the curve of the specific function is examined. Two limited cases of the work of the screw, the screw with a zero constructive pitch and the screw with an infinite constructive pitch, are pointed out. Chapter 3 is devoted to the study of the propulsive screw or propeller. (author)
Tang, Jin; Hu, Jin-feng; Guo, Wei-chun; Yu, Ling; Zhao, Sheng-hao
2013-01-01
To observe the therapeutic effect of absorbable screw in medial malleolus fracture and discuss its clinical application in orthopedics. A total of 129 patients with simple medial malleolus fracture were studied. Among them, 64 patients were treated with poly-D, L-lactic acid (PDLLA) absorbable screws, while the others were treated with metal screws. All the patients were followed up for 12-20 months (averaged 18.4 months) and the therapeutic effect was evaluated according to the American Orthopaedic Foot and Ankle Society clinical rating systems. In absorbable screw group, we obtained excellent and good results in 62 cases (96.88%); in steel screw group, 61 cases (93.85%) achieved excellent and good results. There was no significant difference between the two groups. In the treatment of malleolus fracture, absorbable screw can achieve the same result compared with metal screw fixation. Absorbable screw is preferred due to its advantages of safety, cleanliness and avoiding the removal procedure associated with metallic implants.
Preload evaluation of different screws in external hexagon joint.
Assunção, Wirley Gonçalves; Delben, Juliana Aparecida; Tabata, Lucas Fernando; Barão, Valentim Adelino Ricardo; Gomes, Erica Alves; Garcia, Idelmo Rangel
2012-02-01
This study compared the maintenance of tightening torque in different retention screw types of implant-supported crowns. Twelve metallic crowns in UCLA abutments cast with cobalt-chromium alloy were attached to external hexagon osseointegrated implants with different retention screws: group A: titanium alloy retention screw; group B: gold alloy retention screw with gold coating; group C: titanium alloy retention screw with diamond-like carbon film coating; and group D: titanium alloy retention screw with aluminum titanium nitride coating. Three detorque measurements were obtained after torque insertion in each replica. Data were evaluated by analysis of variance (ANOVA), Tukey's test (P < 0.05), and t test (P < 0.05). Detorque value reduced in all groups (P < 0.05). Group A retained the highest percentage of torque in comparison with the other groups (P < 0.05). Groups B and D retained the lowest percentage of torque without statistically significant difference between them (P > 0.05). All screw types exhibited reduction in the detorque value. The titanium screw maintained the highest percentage of torque whereas the gold-coated screw and the titanium screw with aluminum titanium nitride coating retained the lowest percentage.
Maruyama, Masaaki; Wakabayashi, Shinji; Ota, Hiroshi; Tensho, Keiji
2017-02-01
Acetabular bone deficiency, especially proximal and lateral deficiency, is a difficult technical problem during primary total hip arthroplasty (THA) in developmental dysplasia of the hip (DDH). We report a new reconstruction method using a medial-reduced cemented socket and additional bulk bone in conjunction with impaction morselized bone grafting (additional bulk bone grafting method). In a population of patients with acetabular dysplasia undergoing THA using a medial-reduced cemented socket and additional bulk bone with impacted morselized bone grafting, we evaluated (1) the radiographic appearance of bone graft; (2) the proportion of cups that developed loosening and subsequent revision; and (3) clinical results (outcome scores and complications). Forty percent of 330 THAs for DDH performed at one center between 1999 and 2009 were defined as shallow dysplastic hips. The additional bulk bone grafting method was performed on 102 THAs with shallow acetabulum (31% for DDH) at one center between 1999 and 2009. We used this approach and technique for shallow acetabuli when a cup protruded from the lateral acetabular edge in preoperative templating. The other 132 dysplastic hips without bone grafting had THA performed at the same periods and served as a control. Acetabuli were defined as shallow when the depth was less than or equal to one-fifth of the pelvic height (cranial-caudal length on radiograph). The additional bulk bone grafting technique was as follows: the resected femoral head was sectioned at 1 to 2 cm thickness, and a suitable size of the bulk bone graft was placed on the lateral iliac cortex and fixed by poly-L-lactate absorbable screws. Autologous impaction morselized bone grafting, with or without hydroxyapatite granules, was performed along with the implantation of a medial-reduced cemented socket. We defined an "incorporated" graft as remodeling and trabeculation including rounding off of the protruding edge of a graft beyond the socket. Radiographic criteria used for determining loosening were migration or a continuous radiolucent zone between the prosthesis/bone cement and host bone. Clinical outcomes were assessed using the Japanese Orthopaedic Association (JOA) and the Merle d'Aubigne and Postel score; complications were tallied from chart review. The followup was 10 ± 3 years (range, 6-15 years). One acetabular component (1%) with severe shallow and steep acetabuli showed definite radiographic evidence of loosening and was revised. Clinically, the mean JOA score for the hips treated with additional bulk bone grafting THA in this study improved from 39 ± 10 points preoperatively to 95 ± 5 points postoperatively (p < 0.05, paired t-test). The mean Merle d'Aubigne and Postel score for the hips improved from 7 ± 2 points to 17 ± 1 points (p < 0.05, paired t-test). Complications included a Trendelenburg sign in one hip, dislocation in one, and transient partial sciatic nerve palsy in one. Within 3 years 6 months postoperatively, 101 of 102 additional bulk bone grafting cases showed successful bone remodeling and bone graft reorientation without collapse on radiographs. Partial resorption of the additional bone graft on the lateral side was observed in two hips (2%) with socket abduction angles of < 35°. Achieving stable acetabular fixation is often challenging in the dysplastic hip, especially shallow acetabulum, and a variety of techniques have been described. Early results of combining bulk graft with impaction of morselized graft are promising. Although each surgical technique was well established, further investigation for clinical results of a combination of these techniques might be necessary to confirm longer term outcomes. Level IV, therapeutic study.
Byrne, Declan; Jacobs, Stuart; O'Connell, Brian; Houston, Frank; Claffey, Noel
2006-01-01
Abutment screw loosening, especially in the case of cemented single tooth restorations, is a cause of implant restoration failure. This study compared three screws (titanium alloy, gold alloy, and gold-coated) with similar geometry by recording the preload induced when torques of 10, 20, and 35 Ncm were used for fixation. Two abutment types were used-prefabricated preparable abutments and cast-on abutments. A custom-designed rig was used to measure preload in the abutment-screw-implant assembly with a strain gauge. Ten screws of each type were sequentially tightened to 10, 20, and 35 Ncm on ten of the two abutment types. The same screws were then loosened and re-tightened. This procedure was repeated. Thus, each screw was tightened on three occasions to the three insertion torques. A linear regression model was used to analyze the effects on preload values of screw type and abutment type for each of the three insertion torques. The results indicated that the gold-coated screw generated the highest preloads for all insertion torques and for each tightening episode. Further analysis focused on the effects of screw type and abutment type for each episode of tightening and for each fixation torque. The gold-coated screw, fixed to the prefabricated abutment, displayed higher preloads for the first tightening at 10, 20, and 35 Ncm. Conversely, the same screw fixed to the cast-on abutment showed higher values for the second and third tightening for all fixation torques. All screws showed decay in preload with the number of times tightened. Given the higher preloads generated using the gold-coated screw with both abutment types, it is more likely that this type of screw will maintain a secure joint when tightened for the second and third time. All screw types displayed some decay in preload with repeated tightening, irrespective of abutment type and insertion torque. The gold-coated screw showed markedly higher preloads for all insertion torques and for all instances of tightening when compared with the uncoated screws.
Hollow screw-like drill in plasma using an intense Laguerre–Gaussian laser
Wang, Wenpeng; Shen, Baifei; Zhang, Xiaomei; Zhang, Lingang; Shi, Yin; Xu, Zhizhan
2015-01-01
With the development of ultra-intense laser technology, MeV ions can be obtained from laser–foil interactions in the laboratory. These energetic ion beams can be applied in fast ignition for inertial confinement fusion, medical therapy, and proton imaging. However, these ions are mainly accelerated in the laser propagation direction. Ion acceleration in an azimuthal orientation was scarcely studied. In this research, a doughnut Laguerre–Gaussian (LG) laser is used for the first time to examine laser–plasma interaction in the relativistic intensity regime in three-dimensional particle-in-cell simulations. Studies have shown that a novel rotation of the plasma is produced from the hollow screw-like drill of an mode laser. The angular momentum of particles in the longitudinal direction produced by the LG laser is enhanced compared with that produced by the usual laser pulses, such as linearly and circularly polarized Gaussian pulses. Moreover, the particles (including electrons and ions) can be trapped and uniformly compressed in the dark central minimum of the doughnut LG pulse. The hollow-structured LG laser has potential applications in the generation of x-rays with orbital angular momentum, plasma accelerators, fast ignition for inertial confinement fusion, and pulsars in the astrophysical environment. PMID:25651780
Optimisation of mechanical properties of bamboo fibre reinforced-PLA biocomposites
NASA Astrophysics Data System (ADS)
Nurnadia M., J.; Fazita, M. R. Nurul; Abdul Khalil H. P., S.; Mohamad Haafiz M., K.
2017-12-01
The majority of the raw materials that have been widely used in industries are petroleum-based. Growing environmental awareness, the depletion of fossil fuels, and climate change are the key drivers to seek more ecologically friendly materials, such as natural fibres to replace synthetic fibres in polymeric composite. Among the natural fibres available, bamboo fibre has relatively high strength. Poly (lactic) acid (PLA), one of the well-known biopolymers, has been used as a matrix in order to produce totally biodegradable biocomposites. In this study, bamboo fibres were compounded with PLA by a twin screw extruder. The bamboo fibre reinforced PLA composites were then manufactured via the compression moulding method. The influences of screw speed and die temperature during extrusion on the mechanical properties, the tensile and flexural of the biocomposites, were studied. The effects of fibre content and fibre length were also investigated. Taguchi experimental design approach was adopted to determine the optimum set of conditions to achieve the "best" mechanical properties of the composites. Tensile and flexural properties were characterised based on the D638-10 and D790-10 standards, respectively. It was observed that the fibre aspect ratio and fibre content significantly affected the mechanical performance of bamboo fibres reinforced PLA composites.
Wähnert, Dirk; Hofmann-Fliri, Ladina; Richards, R. Geoff; Gueorguiev, Boyko; Raschke, Michael J.; Windolf, Markus
2014-01-01
Abstract The increasing problems in the field of osteoporotic fracture fixation results in specialized implants as well as new operation methods, for example, implant augmentation with bone cement. The aim of this study was to determine the biomechanical impact of augmentation in the treatment of osteoporotic distal femur fractures. Seven pairs of osteoporotic fresh frozen distal femora were randomly assigned to either an augmented or nonaugmented group. In both groups, an Orthopaedic Trauma Association 33 A3 fractures was fixed using the locking compression plate distal femur and cannulated and perforated screws. In the augmented group, additionally, 1 mL of polymethylmethacrylate cement was injected through the screw. Prior to mechanical testing, bone mineral density (BMD) and local bone strength were determined. Mechanical testing was performed by cyclic axial loading (100 N to 750 N + 0.05N/cycle) using a servo-hydraulic testing machine. As a result, the BMD as well as the axial stiffness did not significantly differ between the groups. The number of cycles to failure was significantly higher in the augmented group with the BMD as a significant covariate. In conclusion, cement augmentation can significantly improve implant anchorage in plating of osteoporotic distal femur fractures. PMID:25415673
Standard Waste Box Lid Screw Removal Option Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anast, Kurt Roy
This report provides results from test work conducted to resolve the removal of screws securing the standard waste box (SWB) lids that hold the remediated nitrate salt (RNS) drums. The test work evaluated equipment and process alternatives for removing the 42 screws that hold the SWB lid in place. The screws were secured with a red Loctite thread locker that makes removal very difficult because the rivets that the screw threads into would slip before the screw could be freed from the rivet, making it impossible to remove the screw and therefore the SWB lid.
Evaluation of Titanium-Coated Pedicle Screws: In Vivo Porcine Lumbar Spine Model.
Kim, Do-Yeon; Kim, Jung-Ryul; Jang, Kyu Yun; Kim, Min Gu; Lee, Kwang-Bok
2016-07-01
Many studies have addressed the problem of loosening pedicle screws in spinal surgery, which is a serious concern. Titanium coating of medical implants (arthroplasty) is common, but few studies involving in vivo spine models have been reported. We evaluated the radiological, mechanical, and histological characteristics of titanium-coated pedicle screws compared with uncoated or hydroxyapatite-coated pedicle screws. Three different types of pedicle screws, i.e., uncoated, hydroxyapatite-coated, and titanium-coated, were implanted into the lumbar 3-4-5 levels of 9 mature miniature pigs. Radiological evaluation of loosening of pedicle screws was performed. Peak torsional extraction torque was tested in the 42 screws from 7 miniature pigs at 12 weeks postoperatively. The implant-bone interface of the remaining 12 pedicle screws from 2 miniature pigs in each group was assessed by micro-computed tomography and histologic studies. The incidence of loosening at 12 weeks postoperatively was not significantly different between the titanium-coated pedicle screw group and the other groups. The titanium-coated pedicle screw group exhibited the greatest mean extraction torsional peak torque at 12 weeks postoperatively (P < 0.05). Quantitative micro-computed tomography data were greatest in the titanium-coated pedicle screw group (P < 0.05). Histologic findings showed osteointegration with densely packed new bone formation at the screw coating-bone interface in the titanium-coated pedicle screw group. Fixation strength was greatest in the titanium-coated pedicle screw group. Osteointegration at the interface between the titanium-coated implant and bone produced prominent and firm bonding. The titanium-coated pedicle screw is a promising device for application in spinal surgery. Copyright © 2016 Elsevier Inc. All rights reserved.
Olsen, Michael; Al Saied, Mohamed; Morison, Zachary; Sellan, Michael; Waddell, James P; Schemitsch, Emil H
2014-12-01
Mid-head resection short-stem hip arthroplasty is a conservative alternative to conventional total hip replacement and addresses proximal fixation challenges in patients not suitable for hip resurfacing. It is unclear whether proximal femoral morphology impacts the ultimate failure load of mid-head resection implanted femurs, thus the aim of this study was to investigate the effect of native neck-shaft angle (NSA) and coronal implant alignment on proximal femoral strength. In total, 36 synthetic femurs with two different proximal femoral morphologies were utilized in this study. Of them, 18 femurs with a varus NSA of 120° and 18 femurs with a valgus NSA of 135° were each implanted with a mid-head resection prosthesis. Femurs within the two different femoral morphology groups were divided into three equal coronal implant alignment groups: 10° valgus, 10° varus or neutral alignment. Prepared femurs were tested for stiffness and to failure in axial compression. There was no significant difference in stiffness nor failure load between femurs implanted with valgus-, varus- or neutrally aligned implants in femurs with a NSA of 120° (p = 0.396, p = 0.111, respectively). Femurs implanted in valgus orientation were significantly stiffer and failed at significantly higher loads than those implanted in varus alignment in femurs with a NSA of 135° (p = 0.001, p = 0.007, respectively). A mid-head resection short-stem hip arthroplasty seems less sensitive to clinically relevant variations of coronal implant alignment and may be more forgiving upon implantation in some femoral morphologies, however, a relative valgus component alignment is recommended. © IMechE 2014.
The fragile elderly hip: Mechanisms associated with age-related loss of strength and toughness☆
Reeve, Jonathan; Loveridge, Nigel
2014-01-01
Every hip fracture begins with a microscopic crack, which enlarges explosively over microseconds. Most hip fractures in the elderly occur on falling from standing height, usually sideways or backwards. The typically moderate level of trauma very rarely causes fracture in younger people. Here, this paradox is traced to the decline of multiple protective mechanisms at many length scales from nanometres to that of the whole femur. With normal ageing, the femoral neck asymmetrically and progressively loses bone tissue precisely where the cortex is already thinnest and is also compressed in a sideways fall. At the microscopic scale of the basic remodelling unit (BMU) that renews bone tissue, increased numbers of actively remodelling BMUs associated with the reduced mechanical loading in a typically inactive old age augments the numbers of mechanical flaws in the structure potentially capable of initiating cracking. Menopause and over-deep osteoclastic resorption are associated with incomplete BMU refilling leading to excessive porosity, cortical thinning and disconnection of trabeculae. In the femoral cortex, replacement of damaged bone or bone containing dead osteocytes is inefficient, impeding the homeostatic mechanisms that match strength to habitual mechanical usage. In consequence the participation of healthy osteocytes in crack-impeding mechanisms is impaired. Observational studies demonstrate that protective crack deflection in the elderly is reduced. At the most microscopic levels attention now centres on the role of tissue ageing, which may alter the relationship between mineral and matrix that optimises the inhibition of crack progression and on the role of osteocyte ageing and death that impedes tissue maintenance and repair. This review examines recent developments in the understanding of why the elderly hip becomes fragile. This growing understanding is suggesting novel testable approaches for reducing risk of hip fracture that might translate into control of the growing worldwide impact of hip fractures on our ageing populations. PMID:24412288