Sample records for compression ignition internal

  1. 75 FR 47520 - Standards of Performance for Stationary Compression Ignition and Spark Ignition Internal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-06

    ... Ignition Internal Combustion Engines AGENCY: Environmental Protection Agency (EPA). ACTION: Extension of... for stationary compression ignition and spark ignition internal combustion engines. In this [[Page... combustion engines. After publication of the proposed rule, EPA received requests from the American Petroleum...

  2. 77 FR 40879 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-11

    ... Compression Ignition Internal Combustion Engines (Renewal) AGENCY: Environmental Protection Agency (EPA....regulations.gov . Title: NSPS for Stationary Source Compression Ignition Internal Combustion Engines (Renewal... Performance Standards (NSPS) for Stationary Source Compression Ignition Internal Combustion Engines (40 CFR...

  3. Variable valve timing in a homogenous charge compression ignition engine

    DOEpatents

    Lawrence, Keith E.; Faletti, James J.; Funke, Steven J.; Maloney, Ronald P.

    2004-08-03

    The present invention relates generally to the field of homogenous charge compression ignition engines, in which fuel is injected when the cylinder piston is relatively close to the bottom dead center position for its compression stroke. The fuel mixes with air in the cylinder during the compression stroke to create a relatively lean homogeneous mixture that preferably ignites when the piston is relatively close to the top dead center position. However, if the ignition event occurs either earlier or later than desired, lowered performance, engine misfire, or even engine damage, can result. The present invention utilizes internal exhaust gas recirculation and/or compression ratio control to control the timing of ignition events and combustion duration in homogeneous charge compression ignition engines. Thus, at least one electro-hydraulic assist actuator is provided that is capable of mechanically engaging at least one cam actuated intake and/or exhaust valve.

  4. 75 FR 32611 - Standards of Performance for Stationary Compression Ignition and Spark Ignition Internal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-08

    ... implement more stringent standards for stationary compression ignition engines with displacement greater... engines with displacement at or above 30 liters per cylinder to align more closely with recent standards.... Standards for New Engines With Displacement Greater Than or Equal to 10 l/cyl and Less Than 30 l/cyl B...

  5. A Study on Homogeneous Charge Compression Ignition Gasoline Engines

    NASA Astrophysics Data System (ADS)

    Kaneko, Makoto; Morikawa, Koji; Itoh, Jin; Saishu, Youhei

    A new engine concept consisting of HCCI combustion for low and midrange loads and spark ignition combustion for high loads was introduced. The timing of the intake valve closing was adjusted to alter the negative valve overlap and effective compression ratio to provide suitable HCCI conditions. The effect of mixture formation on auto-ignition was also investigated using a direct injection engine. As a result, HCCI combustion was achieved with a relatively low compression ratio when the intake air was heated by internal EGR. The resulting combustion was at a high thermal efficiency, comparable to that of modern diesel engines, and produced almost no NOx emissions or smoke. The mixture stratification increased the local A/F concentration, resulting in higher reactivity. A wide range of combustible A/F ratios was used to control the compression ignition timing. Photographs showed that the flame filled the entire chamber during combustion, reducing both emissions and fuel consumption.

  6. Engine Valve Actuation For Combustion Enhancement

    DOEpatents

    Reitz, Rolf Deneys; Rutland, Christopher J.; Jhavar, Rahul

    2004-05-18

    A combustion chamber valve, such as an intake valve or an exhaust valve, is briefly opened during the compression and/or power strokes of a 4-stroke combustion cycle in an internal combustion engine (in particular, a diesel or CI engine). The brief opening may (1) enhance mixing withing the combustion chamber, allowing more complete oxidation of particulates to decrease engine emissions; and/or may (2) delay ignition until a more desirable time, potentially allowing a means of timing ignition in otherwise difficult-to-control conditions, e.g., in HCCI (Homogeneous Charge Compression Ignition) conditions.

  7. Engine valve actuation for combustion enhancement

    DOEpatents

    Reitz, Rolf Deneys [Madison, WI; Rutland, Christopher J [Madison, WI; Jhavar, Rahul [Madison, WI

    2008-03-04

    A combustion chamber valve, such as an intake valve or an exhaust valve, is briefly opened during the compression and/or power strokes of a 4-strokes combustion cycle in an internal combustion engine (in particular, a diesel or CI engine). The brief opening may (1) enhance mixing withing the combustion chamber, allowing more complete oxidation of particulates to decrease engine emissions; and/or may (2) delay ignition until a more desirable time, potentially allowing a means of timing ignition in otherwise difficult-to-control conditions, e.g., in HCCI (Homogeneous Charge Compression Ignition) conditions.

  8. Experimental Investigation of Piston Heat Transfer in a Light Duty Engine Under Conventional Diesel, Homogeneous Charge Compression Ignition, and Reactivity Controlled Compression Ignition Combustion Regimes

    DTIC Science & Technology

    2014-01-15

    in a Light Duty Engine Under Conventional Diesel, Homogeneous Charge Compression Ignition , and Reactivity Controlled Compression Ignition ...Conventional Diesel (CDC), Homogeneous Charge Compression Ignition (HCCI), and Reactivity Controlled Compression Ignition (RCCI) combustion...LTC) regimes, including reactivity controlled compression ignition (RCCI), partially premixed combustion (PPC), and homogenous charge compression

  9. Relation of Hydrogen and Methane to Carbon Monoxide in Exhaust Gases from Internal-Combustion Engines

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold C; Tessmann, Arthur M

    1935-01-01

    The relation of hydrogen and methane to carbon monoxide in the exhaust gases from internal-combustion engines operating on standard-grade aviation gasoline, fighting-grade aviation gasoline, hydrogenated safety fuel, laboratory diesel fuel, and auto diesel fuel was determined by analysis of the exhaust gases. Two liquid-cooled single-cylinder spark-ignition, one 9-cylinder radial air-cooled spark-ignition, and two liquid-cooled single-cylinder compression-ignition engines were used.

  10. International Standards to Reduce Emissions from Marine Diesel Engines and Their Fuels

    EPA Pesticide Factsheets

    Overview of EPA coordination with International Maritime Organization including a list of all international regulations and materials related to emissions from marine compression-ignition (diesel) engines.

  11. Thermal Loss Determination for a Small Internal Combustion Engine

    DTIC Science & Technology

    2014-03-27

    calibration temperature rc Compression ratio S̄ p Mean piston speed T Temperature Vc Combustion chamber volume Vd Displacement volume Wc,i Indicated work...are typically fueled by gasoline, ignited by a spark, and operate on either a two or four-stroke cycle. Compression-ignition diesel engines as seen in...engine, the fuel is usually withheld from the cylinder until the combustion event is desired as in diesel engines. Similarly, the fuel in a gas

  12. 76 FR 37953 - Standards of Performance for Stationary Compression Ignition and Spark Ignition Internal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ... problems. Moreover, the use of SCR entails the supply, storage and use of a chemical reductant, usually..., storage and handling of the chemical reductant would be greater than for engines located elsewhere in the... proper availability of the chemical reductant during the harsh winter months, new heated storage vessels...

  13. LES/FMDF of turbulent jet ignition in a rapid compression machine

    NASA Astrophysics Data System (ADS)

    Validi, Abdoulahad; Schock, Harold; Toulson, Elisa; Jaberi, Farhad; CFD; Engine Research Labs, Michigan State University Collaboration

    2015-11-01

    Turbulent Jet Ignition (TJI) is an efficient method for initiating and controlling combustion in combustion systems, e.g. internal combustion engines. It enables combustion in ultra-lean mixtures by utilizing hot product turbulent jets emerging from a pre-chamber combustor as the ignition source for the main combustion chamber. Here, we study the TJI-assisted ignition and combustion of lean methane-air mixtures in a Rapid Compression Machine (RCM) for various flow/combustion conditions with the hybrid large eddy simulation/filtered mass density function (LES/FMDF) computational model. In the LES/FMDF model, the filtered form of compressible Navier-Stokes equations are solved with a high-order finite difference scheme for the turbulent velocity, while the FMDF transport equation is solved with a Lagrangian stochastic method to obtain the scalar (species mass fraction and temperature) field. The LES/FMDF data are used to study the physics of TJI and combustion in RCM. The results show the very complex behavior of the reacting flow and the flame structure in the pre-chamber and RCM.

  14. 75 FR 9647 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-03

    ...EPA is promulgating national emission standards for hazardous air pollutants for existing stationary compression ignition reciprocating internal combustion engines that either are located at area sources of hazardous air pollutant emissions or that have a site rating of less than or equal to 500 brake horsepower and are located at major sources of hazardous air pollutant emissions. In addition, EPA is promulgating national emission standards for hazardous air pollutants for existing non-emergency stationary compression ignition engines greater than 500 brake horsepower that are located at major sources of hazardous air pollutant emissions. Finally, EPA is revising the provisions related to startup, shutdown, and malfunction for the engines that were regulated previously by these national emission standards for hazardous air pollutants.

  15. Researches on Preliminary Chemical Reactions in Spark-Ignition Engines

    NASA Technical Reports Server (NTRS)

    Muehlner, E.

    1943-01-01

    Chemical reactions can demonstrably occur in a fuel-air mixture compressed in the working cylinder of an Otto-cycle (spark ignition) internal-combustion engine even before the charge is ignited by the flame proceeding from the sparking plug. These are the so-called "prelinminary reactions" ("pre-flame" combustion or oxidation), and an exact knowledge of their characteristic development is of great importance for a correct appreciation of the phenomena of engine-knock (detonation), and consequently for its avoidance. Such reactions can be studied either in a working engine cylinder or in a combustion bomb. The first method necessitates a complicated experimental technique, while the second has the disadvantage of enabling only a single reaction to be studied at one time. Consequently, a new series of experiments was inaugurated, conducted in a motored (externally-driven) experimental engine of mixture-compression type, without ignition, the resulting preliminary reactions being detectable and measurable thermometrically.

  16. 40 CFR 1042.1 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of “compression-ignition” in § 1042.901. (2) Marine gas turbine engines. (3) Other marine internal... engines powered by natural gas or other gaseous fuels with maximum engine power at or above 250 kW. Note... EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Overview and Applicability...

  17. 40 CFR 1042.1 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of “compression-ignition” in § 1042.901. (2) Marine gas turbine engines. (3) Other marine internal... engines powered by natural gas or other gaseous fuels with maximum engine power at or above 250 kW. Note... EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Overview and Applicability...

  18. 40 CFR 1042.1 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of “compression-ignition” in § 1042.901. (2) Marine gas turbine engines. (3) Other marine internal... engines powered by natural gas or other gaseous fuels with maximum engine power at or above 250 kW. Note... EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Overview and Applicability...

  19. 40 CFR 1042.1 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of “compression-ignition” in § 1042.901. (2) Marine gas turbine engines. (3) Other marine internal... engines powered by natural gas or other gaseous fuels with maximum engine power at or above 250 kW. Note... EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Overview and Applicability...

  20. 40 CFR 1042.1 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of “compression-ignition” in § 1042.901. (2) Marine gas turbine engines. (3) Other marine internal... engines powered by natural gas or other gaseous fuels with maximum engine power at or above 250 kW. Note... EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Overview and Applicability...

  1. Simultaneous dual mode combustion engine operating on spark ignition and homogenous charge compression ignition

    DOEpatents

    Fiveland, Scott B.; Wiggers, Timothy E.

    2004-06-22

    An engine particularly suited to single speed operation environments, such as stationary power generators. The engine includes a plurality of combustion cylinders operable under homogenous charge compression ignition, and at least one combustion cylinder operable on spark ignition concepts. The cylinder operable on spark ignition concepts can be convertible to operate under homogenous charge compression ignition. The engine is started using the cylinders operable under spark ignition concepts.

  2. Preliminary assessment of combustion modes for internal combustion wave rotors

    NASA Technical Reports Server (NTRS)

    Nalim, M. Razi

    1995-01-01

    Combustion within the channels of a wave rotor is examined as a means of obtaining pressure gain during heat addition in a gas turbine engine. Several modes of combustion are considered and the factors that determine the applicability of three modes are evaluated in detail; premixed autoignition/detonation, premixed deflagration, and non-premixed compression ignition. The last two will require strong turbulence for completion of combustion in a reasonable time in the wave rotor. The compression/autoignition modes will require inlet temperatures in excess of 1500 R for reliable ignition with most hydrocarbon fuels; otherwise, a supplementary ignition method must be provided. Examples of combustion mode selection are presented for two core engine applications that had been previously designed with equivalent 4-port wave rotor topping cycles using external combustion.

  3. Analysis of the Effect of Injection Pressure on Ignition Delay and Combustion Process of Biodiesel from Palm Oil, Algae and Waste Cooking Oil

    NASA Astrophysics Data System (ADS)

    Irham Anas, Mohd; Khalid, Amir; Hakim Zulkifli, Fathul; Jaat, Norrizam; Faisal Hushim, Mohd; Manshoor, Bukhari; Zaman, Izzuddin

    2017-10-01

    Biodiesel is a domestically produced, renewable fuel that can be manufactured from vegetable oils, animal fats, or recycled restaurant grease for use in diesel engines. The objective of this research is investigation the effects of the variant injection pressure on ignition delay and emission for different biodiesel using rapid compression machine. Rapid Compression Machine (RCM) is used to simulate a single compression stroke of an internal combustion engine as a real engine. Four types of biodiesel which are waste cooking oil, crude palm oil, algae and jatropha were tested at injection pressure of 80 MPa, 90 MPa and 130 MPa under constant ambient temperature at 950 K. Increased in injection pressure resulted shorter ignition delay proven by WCO5 which decreased from 1.3 ms at 80 MPa to 0.7 ms at 130 MPa. Meanwhile, emission for CO2 increased due to better fuel atomization for fuel-air mixture formation lead to completed combustion.

  4. 40 CFR 60.4214 - What are my notification, reporting, and recordkeeping requirements if I am an owner or operator...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., and recordkeeping requirements if I am an owner or operator of a stationary CI internal combustion... Stationary Compression Ignition Internal Combustion Engines Notification, Reports, and Records for Owners and... operator of a stationary CI internal combustion engine? (a) Owners and operators of non-emergency...

  5. 40 CFR 60.4214 - What are my notification, reporting, and recordkeeping requirements if I am an owner or operator...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., and recordkeeping requirements if I am an owner or operator of a stationary CI internal combustion... Stationary Compression Ignition Internal Combustion Engines Notification, Reports, and Records for Owners and... operator of a stationary CI internal combustion engine? (a) Owners and operators of non-emergency...

  6. 40 CFR 60.4214 - What are my notification, reporting, and recordkeeping requirements if I am an owner or operator...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., and recordkeeping requirements if I am an owner or operator of a stationary CI internal combustion... Stationary Compression Ignition Internal Combustion Engines Notification, Reports, and Records for Owners and... operator of a stationary CI internal combustion engine? (a) Owners and operators of non-emergency...

  7. 40 CFR 60.4214 - What are my notification, reporting, and recordkeeping requirements if I am an owner or operator...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., and recordkeeping requirements if I am an owner or operator of a stationary CI internal combustion... Stationary Compression Ignition Internal Combustion Engines Notification, Reports, and Records for Owners and... operator of a stationary CI internal combustion engine? (a) Owners and operators of non-emergency...

  8. 40 CFR 60.4214 - What are my notification, reporting, and recordkeeping requirements if I am an owner or operator...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., and recordkeeping requirements if I am an owner or operator of a stationary CI internal combustion... Stationary Compression Ignition Internal Combustion Engines Notification, Reports, and Records for Owners and... operator of a stationary CI internal combustion engine? (a) Owners and operators of non-emergency...

  9. Compression ignition engine having fuel system for non-sooting combustion and method

    DOEpatents

    Bazyn, Timothy; Gehrke, Christopher

    2014-10-28

    A direct injection compression ignition internal combustion engine includes a fuel system having a nozzle extending into a cylinder of the engine and a plurality of spray orifices formed in the nozzle. Each of the spray orifices has an inner diameter dimension of about 0.09 mm or less, and define inter-orifice angles between adjacent spray orifice center axes of about 36.degree. or greater such that spray plumes of injected fuel from each of the spray orifices combust within the cylinder according to a non-sooting lifted flame and gas entrainment combustion pattern. Related methodology is also disclosed.

  10. 77 FR 42724 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    ... Nonroad Spark-Ignited Engines, New Nonroad Compression-Ignited Engines, and New On-Road Heavy Duty Engines... Compression-ignited Engines, and New On-road Heavy Duty Engines (Renewal). ICR numbers: EPA ICR No. 1852.05... engines, new nonroad compression-ignited engines, and new on- road heavy duty engines. Estimated Number of...

  11. Reactivity-controlled compression ignition drive cycle emissions and fuel economy estimations using vehicle system simulations

    DOE PAGES

    Curran, Scott J.; Gao, Zhiming; Wagner, Robert M.

    2014-12-22

    In-cylinder blending of gasoline and diesel to achieve reactivity-controlled compression ignition has been shown to reduce NO X and soot emissions while maintaining or improving brake thermal efficiency as compared with conventional diesel combustion. The reactivity-controlled compression ignition concept has an advantage over many advanced combustion strategies in that the fuel reactivity can be tailored to the engine speed and load, allowing stable low-temperature combustion to be extended over more of the light-duty drive cycle load range. In this paper, a multi-mode reactivity-controlled compression ignition strategy is employed where the engine switches from reactivity-controlled compression ignition to conventional diesel combustionmore » when speed and load demand are outside of the experimentally determined reactivity-controlled compression ignition range. The potential for reactivity-controlled compression ignition to reduce drive cycle fuel economy and emissions is not clearly understood and is explored here by simulating the fuel economy and emissions for a multi-mode reactivity-controlled compression ignition–enabled vehicle operating over a variety of US drive cycles using experimental engine maps for multi-mode reactivity-controlled compression ignition, conventional diesel combustion, and a 2009 port-fuel injected gasoline engine. Drive cycle simulations are completed assuming a conventional mid-size passenger vehicle with an automatic transmission. Multi-mode reactivity-controlled compression ignition fuel economy simulation results are compared with the same vehicle powered by a representative 2009 port-fuel injected gasoline engine over multiple drive cycles. Finally, engine-out drive cycle emissions are compared with conventional diesel combustion, and observations regarding relative gasoline and diesel tank sizes needed for the various drive cycles are also summarized.« less

  12. 40 CFR 60.4217 - What emission standards must I meet if I am an owner or operator of a stationary internal...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... I am an owner or operator of a stationary internal combustion engine using special fuels? 60.4217... Compression Ignition Internal Combustion Engines Special Requirements § 60.4217 What emission standards must I meet if I am an owner or operator of a stationary internal combustion engine using special fuels? (a...

  13. 40 CFR 60.4217 - What emission standards must I meet if I am an owner or operator of a stationary internal...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... I am an owner or operator of a stationary internal combustion engine using special fuels? 60.4217... Compression Ignition Internal Combustion Engines Special Requirements § 60.4217 What emission standards must I meet if I am an owner or operator of a stationary internal combustion engine using special fuels...

  14. 40 CFR 60.4217 - What emission standards must I meet if I am an owner or operator of a stationary internal...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... I am an owner or operator of a stationary internal combustion engine using special fuels? 60.4217... Compression Ignition Internal Combustion Engines Special Requirements § 60.4217 What emission standards must I meet if I am an owner or operator of a stationary internal combustion engine using special fuels...

  15. 40 CFR 60.4217 - What emission standards must I meet if I am an owner or operator of a stationary internal...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... I am an owner or operator of a stationary internal combustion engine using special fuels? 60.4217... Compression Ignition Internal Combustion Engines Special Requirements § 60.4217 What emission standards must I meet if I am an owner or operator of a stationary internal combustion engine using special fuels? (a...

  16. 40 CFR 60.4217 - What emission standards must I meet if I am an owner or operator of a stationary internal...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... I am an owner or operator of a stationary internal combustion engine using special fuels? 60.4217... Compression Ignition Internal Combustion Engines Special Requirements § 60.4217 What emission standards must I meet if I am an owner or operator of a stationary internal combustion engine using special fuels...

  17. Injector tip for an internal combustion engine

    DOEpatents

    Shyu, Tsu Pin; Ye, Wen

    2003-05-20

    This invention relates to a the tip structure of a fuel injector as used in a internal combustion engine. Internal combustion engines using Homogeneous Charge Compression Ignition (HCCI) technology require a tip structure that directs fuel spray in a downward direction. This requirement necessitates a tip design that is capable of withstanding mechanical stresses associated with the design.

  18. Fluid-solid coupled simulation of the ignition transient of solid rocket motor

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Liu, Peijin; He, Guoqiang

    2015-05-01

    The first period of the solid rocket motor operation is the ignition transient, which involves complex processes and, according to chronological sequence, can be divided into several stages, namely, igniter jet injection, propellant heating and ignition, flame spreading, chamber pressurization and solid propellant deformation. The ignition transient should be comprehensively analyzed because it significantly influences the overall performance of the solid rocket motor. A numerical approach is presented in this paper for simulating the fluid-solid interaction problems in the ignition transient of the solid rocket motor. In the proposed procedure, the time-dependent numerical solutions of the governing equations of internal compressible fluid flow are loosely coupled with those of the geometrical nonlinearity problems to determine the propellant mechanical response and deformation. The well-known Zeldovich-Novozhilov model was employed to model propellant ignition and combustion. The fluid-solid coupling interface data interpolation scheme and coupling instance for different computational agents were also reported. Finally, numerical validation was performed, and the proposed approach was applied to the ignition transient of one laboratory-scale solid rocket motor. For the application, the internal ballistics were obtained from the ground hot firing test, and comparisons were made. Results show that the integrated framework allows us to perform coupled simulations of the propellant ignition, strong unsteady internal fluid flow, and propellant mechanical response in SRMs with satisfactory stability and efficiency and presents a reliable and accurate solution to complex multi-physics problems.

  19. Calculations of the Performance of a Compression-Ignition Engine-Compressor Turbine Combination I : Performance of a Highly Supercharged Compression-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Sanders, J. C.; Mendelson, Alexander

    1945-01-01

    Small high-speed single-cylinder compression-ignition engines were tested to determine their performance characteristics under high supercharging. Calculations were made on the energy available in the exhaust gas of the compression-ignition engines. The maximum power at any given maximum cylinder pressure was obtained when the compression pressure was equal to the maximum cylinder pressure. Constant-pressure combustion was found possible at an engine speed of 2200 rpm. Exhaust pressures and temperatures were determined from an analysis of indicator cards. The analysis showed that, at rich mixtures with the exhaust back pressure equal to the inlet-air pressure, there is excess energy available for driving a turbine over that required for supercharging. The presence of this excess energy indicates that a highly supercharged compression-ignition engine might be desirable as a compressor and combustion chamber for a turbine.

  20. 40 CFR 60.4207 - What fuel requirements must I meet if I am an owner or operator of a stationary CI internal...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... am an owner or operator of a stationary CI internal combustion engine subject to this subpart? 60... Compression Ignition Internal Combustion Engines Fuel Requirements for Owners and Operators § 60.4207 What fuel requirements must I meet if I am an owner or operator of a stationary CI internal combustion...

  1. 40 CFR 60.4207 - What fuel requirements must I meet if I am an owner or operator of a stationary CI internal...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... am an owner or operator of a stationary CI internal combustion engine subject to this subpart? 60... Compression Ignition Internal Combustion Engines Fuel Requirements for Owners and Operators § 60.4207 What fuel requirements must I meet if I am an owner or operator of a stationary CI internal combustion...

  2. 40 CFR 60.4207 - What fuel requirements must I meet if I am an owner or operator of a stationary CI internal...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... am an owner or operator of a stationary CI internal combustion engine subject to this subpart? 60... Compression Ignition Internal Combustion Engines Fuel Requirements for Owners and Operators § 60.4207 What fuel requirements must I meet if I am an owner or operator of a stationary CI internal combustion...

  3. 40 CFR 60.4207 - What fuel requirements must I meet if I am an owner or operator of a stationary CI internal...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... am an owner or operator of a stationary CI internal combustion engine subject to this subpart? 60... Compression Ignition Internal Combustion Engines Fuel Requirements for Owners and Operators § 60.4207 What fuel requirements must I meet if I am an owner or operator of a stationary CI internal combustion...

  4. 40 CFR 60.4207 - What fuel requirements must I meet if I am an owner or operator of a stationary CI internal...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... am an owner or operator of a stationary CI internal combustion engine subject to this subpart? 60... Compression Ignition Internal Combustion Engines Fuel Requirements for Owners and Operators § 60.4207 What fuel requirements must I meet if I am an owner or operator of a stationary CI internal combustion...

  5. Rotary vane type IC engine with built-in scavenging air blower

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, V.

    This patent describes a rotary internal combustion engine. This engine consists of: a housing assembly including three sections and having a single common power shaft, the three sections being integrally connected together and operatively connected together into a unitary self-contained engine, air and fuel mixture intake conduit means communicatively connected to a first of the three sections, means in the first section to perform admission and compression of the air and fuel mixture admitted from the conduit means, means to convey the compressed air and fuel mixture to a second of the three sections. A single internal partition wall meansmore » between the first and second sections, and the air and fuel mixture conveys means consisting of a port formed in the partition wall means. In the second section the compressed air is ignited with a fuel mixture and to permit expansion of the ignited air and fuel mixture to thereby furnish power strokes to the power shaft. In the second section for exhausting the gaseous products of combustion, air blower in the third of the three sections driven by the power shaft.« less

  6. 40 CFR Appendix Vi to Part 1039 - Nonroad Compression-ignition Composite Transient Cycle

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Nonroad Compression-ignition Composite Transient Cycle VI Appendix VI to Part 1039 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... ENGINES Pt. 1039, App. VI Appendix VI to Part 1039—Nonroad Compression-ignition Composite Transient Cycle...

  7. Compression Ratio and Catalyst Aging Effects on Aqueous Ethanol Ignition (Year 2): Part 1. Compression Ratio Effects on Aqueous Ethanol Ignition

    DOT National Transportation Integrated Search

    2009-09-01

    The lean burning of water ethanol blends has the potential to reduce NOx, CO, and HC emissions while reducing the ethanol fermentation production cost of distillation and dehydration. The torch style ignition produced by the catalytic igniter allows ...

  8. Internal combustion engine report: Spark ignited ICE GenSet optimization and novel concept development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, J.; Blarigan, P. Van

    1998-08-01

    In this manuscript the authors report on two projects each of which the goal is to produce cost effective hydrogen utilization technologies. These projects are: (1) the development of an electrical generation system using a conventional four-stroke spark-ignited internal combustion engine generator combination (SI-GenSet) optimized for maximum efficiency and minimum emissions, and (2) the development of a novel internal combustion engine concept. The SI-GenSet will be optimized to run on either hydrogen or hydrogen-blends. The novel concept seeks to develop an engine that optimizes the Otto cycle in a free piston configuration while minimizing all emissions. To this end themore » authors are developing a rapid combustion homogeneous charge compression ignition (HCCI) engine using a linear alternator for both power take-off and engine control. Targeted applications include stationary electrical power generation, stationary shaft power generation, hybrid vehicles, and nearly any other application now being accomplished with internal combustion engines.« less

  9. 40 CFR 60.4204 - What emission standards must I meet for non-emergency engines if I am an owner or operator of a...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... non-emergency engines if I am an owner or operator of a stationary CI internal combustion engine? 60... Compression Ignition Internal Combustion Engines Emission Standards for Owners and Operators § 60.4204 What... internal combustion engine? (a) Owners and operators of pre-2007 model year non-emergency stationary CI ICE...

  10. 40 CFR 60.4204 - What emission standards must I meet for non-emergency engines if I am an owner or operator of a...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... non-emergency engines if I am an owner or operator of a stationary CI internal combustion engine? 60... Compression Ignition Internal Combustion Engines Emission Standards for Owners and Operators § 60.4204 What... internal combustion engine? (a) Owners and operators of pre-2007 model year non-emergency stationary CI ICE...

  11. 40 CFR 60.4204 - What emission standards must I meet for non-emergency engines if I am an owner or operator of a...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... non-emergency engines if I am an owner or operator of a stationary CI internal combustion engine? 60... Compression Ignition Internal Combustion Engines Emission Standards for Owners and Operators § 60.4204 What... internal combustion engine? (a) Owners and operators of pre-2007 model year non-emergency stationary CI ICE...

  12. 40 CFR 60.4204 - What emission standards must I meet for non-emergency engines if I am an owner or operator of a...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... non-emergency engines if I am an owner or operator of a stationary CI internal combustion engine? 60... Compression Ignition Internal Combustion Engines Emission Standards for Owners and Operators § 60.4204 What... internal combustion engine? (a) Owners and operators of pre-2007 model year non-emergency stationary CI ICE...

  13. Premixed autoignition in compressible turbulence

    NASA Astrophysics Data System (ADS)

    Konduri, Aditya; Kolla, Hemanth; Krisman, Alexander; Chen, Jacqueline

    2016-11-01

    Prediction of chemical ignition delay in an autoignition process is critical in combustion systems like compression ignition engines and gas turbines. Often, ignition delay times measured in simple homogeneous experiments or homogeneous calculations are not representative of actual autoignition processes in complex turbulent flows. This is due the presence of turbulent mixing which results in fluctuations in thermodynamic properties as well as chemical composition. In the present study the effect of fluctuations of thermodynamic variables on the ignition delay is quantified with direct numerical simulations of compressible isotropic turbulence. A premixed syngas-air mixture is used to remove the effects of inhomogeneity in the chemical composition. Preliminary results show a significant spatial variation in the ignition delay time. We analyze the topology of autoignition kernels and identify the influence of extreme events resulting from compressibility and intermittency. The dependence of ignition delay time on Reynolds and turbulent Mach numbers is also quantified. Supported by Basic Energy Sciences, Dept of Energy, United States.

  14. Final Rule for Gasoline Spark-Ignition Marine Engines; Exemptions for New Nonroad Compression-Ignition Engines at or Above 37 Kilowatts and New Nonroad Spark-Ignition Engines at or Below 19 Kilowatts

    EPA Pesticide Factsheets

    These standards apply for outboard engines, personal watercraft engines, and jet boat engines. This rule also adds a national security exemption for Nonroad Compression-Ignition (CI) and Small SI sectors.

  15. Development of High Efficiency Clean Combustion Engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marriott, Craig; Gonzalez, Manual; Russell, Durrett

    2011-06-30

    This report summarizes activities related to the revised STATEMENT OF PROJECT OBJECTIVES (SOPO) dated June 2010 for the Development of High-Efficiency Clean Combustion engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines (COOPERATIVE AGREEMENT NUMBER DE-FC26-05NT42415) project. In both the spark- (SI) and compression-ignition (CI) development activities covered in this program, the goal was to develop potential production-viable internal combustion engine system technologies that both reduce fuel consumption and simultaneously met exhaust emission targets. To be production-viable, engine technologies were also evaluated to determine if they would meet customer expectations of refinement in terms of noise, vibration, performance, driveability, etc.more » in addition to having an attractive business case and value. Prior to this activity, only proprietary theoretical / laboratory knowledge existed on the combustion technologies explored The research reported here expands and develops this knowledge to determine series-production viability. Significant SI and CI engine development occurred during this program within General Motors, LLC over more than five years. In the SI program, several engines were designed and developed that used both a relatively simple multi-lift valve train system and a Fully Flexible Valve Actuation (FFVA) system to enable a Homogeneous Charge Compression Ignition (HCCI) combustion process. Many technical challenges, which were unknown at the start of this program, were identified and systematically resolved through analysis, test and development. This report documents the challenges and solutions for each SOPO deliverable. As a result of the project activities, the production viability of the developed clean combustion technologies has been determined. At this time, HCCI combustion for SI engines is not considered production-viable for several reasons. HCCI combustion is excessively sensitive to control variables such as internal dilution level and charge temperature. As a result, HCCI combustion has limited robustness when variables exceed the required narrow ranges determined in this program. HCCI combustion is also not available for the entire range of production engine speeds and loads, (i.e., the dynamic range is limited). Thus, regular SI combustion must be employed for a majority of the full dynamic range of the engine. This degrades the potential fuel economy impact of HCCI combustion. Currently-available combustion control actuators for the simple valve train system engine do not have the authority for continuous air - fuel or torque control for managing the combustion mode transitions between SI and HCCI and thus, require further refinement to meet customer refinement expectations. HCCI combustion control sensors require further development to enable robust long-term HCCI combustion control. Finally, the added technologies required to effectively manage HCCI combustion such as electric cam phasers, central direct fuel injection, cylinder pressure sensing, high-flow exhaust gas recirculation system, etc. add excessive on-engine cost and complexity that erodes the production-viability business« less

  16. Experimental investigation of piston heat transfer under conventional diesel and reactivity-controlled compression ignition combustion regimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Splitter, Derek A; Hendricks, Terry Lee; Ghandhi, Jaal B

    2014-01-01

    The piston of a heavy-duty single-cylinder research engine was instrumented with 11 fast-response surface thermocouples, and a commercial wireless telemetry system was used to transmit the signals from the moving piston. The raw thermocouple data were processed using an inverse heat conduction method that included Tikhonov regularization to recover transient heat flux. By applying symmetry, the data were compiled to provide time-resolved spatial maps of the piston heat flux and surface temperature. A detailed comparison was made between conventional diesel combustion and reactivity-controlled compression ignition combustion operations at matched conditions of load, speed, boost pressure, and combustion phasing. The integratedmore » piston heat transfer was found to be 24% lower, and the mean surface temperature was 25 C lower for reactivity-controlled compression ignition operation as compared to conventional diesel combustion, in spite of the higher peak heat release rate. Lower integrated piston heat transfer for reactivity-controlled compression ignition was found over all the operating conditions tested. The results showed that increasing speed decreased the integrated heat transfer for conventional diesel combustion and reactivity-controlled compression ignition. The effect of the start of injection timing was found to strongly influence conventional diesel combustion heat flux, but had a negligible effect on reactivity-controlled compression ignition heat flux, even in the limit of near top dead center high-reactivity fuel injection timings. These results suggest that the role of the high-reactivity fuel injection does not significantly affect the thermal environment even though it is important for controlling the ignition timing and heat release rate shape. The integrated heat transfer and the dynamic surface heat flux were found to be insensitive to changes in boost pressure for both conventional diesel combustion and reactivity-controlled compression ignition. However, for reactivity-controlled compression ignition, the mean surface temperature increased with changes in boost suggesting that equivalence ratio affects steady-state heat transfer.« less

  17. Homogenous charge compression ignition engine having a cylinder including a high compression space

    DOEpatents

    Agama, Jorge R.; Fiveland, Scott B.; Maloney, Ronald P.; Faletti, James J.; Clarke, John M.

    2003-12-30

    The present invention relates generally to the field of homogeneous charge compression engines. In these engines, fuel is injected upstream or directly into the cylinder when the power piston is relatively close to its bottom dead center position. The fuel mixes with air in the cylinder as the power piston advances to create a relatively lean homogeneous mixture that preferably ignites when the power piston is relatively close to the top dead center position. However, if the ignition event occurs either earlier or later than desired, lowered performance, engine misfire, or even engine damage, can result. Thus, the present invention divides the homogeneous charge between a controlled volume higher compression space and a lower compression space to better control the start of ignition.

  18. Effects of injection parameters, boost, and swirl ratio on gasoline compression ignition operation at idle and low-load conditions

    DOE PAGES

    Kodavasal, Janardhan; Kolodziej, Christopher P.; Ciatti, Stephen A.; ...

    2016-11-03

    In this study, we study the effects of injector nozzle inclusion angle, injection pressure, boost, and swirl ratio on gasoline compression ignition combustion. Closed-cycle computational fluid dynamics simulations using a 1/7th sector mesh representing a single cylinder of a four-cylinder 1.9 L diesel engine, operated in gasoline compression ignition mode with 87 anti-knock index (AKI) gasoline, were performed. Two different operating conditions were studied—the first is representative of idle operation (4 mg fuel/cylinder/cycle, 850 r/min), and the second is representative of a low-load condition (10 mg fuel/cylinder/cycle, 1500 r/min). The mixture preparation and reaction space from the simulations were analyzedmore » to gain insights into the effects of injection pressure, nozzle inclusion angle, boost, and swirl ratio on achieving stable low-load to idle gasoline compression ignition operation. It was found that narrower nozzle inclusion angles allow for more reactivity or propensity to ignition (determined qualitatively by computing constant volume ignition delays) and are suitable over a wider range of injection timings. Under idle conditions, it was found that lower injection pressures helped to reduce overmixing of the fuel, resulting in greater reactivity and ignitability (ease with which ignition can be achieved) of the gasoline. However, under the low-load condition, lower injection pressures did not increase ignitability, and it is hypothesized that this is because of reduced chemical residence time resulting from longer injection durations. Reduced swirl was found to maintain higher in-cylinder temperatures through compression, resulting in better ignitability. It was found that boosting the charge also helped to increase reactivity and advanced ignition timing.« less

  19. Effects of injection parameters, boost, and swirl ratio on gasoline compression ignition operation at idle and low-load conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kodavasal, Janardhan; Kolodziej, Christopher P.; Ciatti, Stephen A.

    In this study, we study the effects of injector nozzle inclusion angle, injection pressure, boost, and swirl ratio on gasoline compression ignition combustion. Closed-cycle computational fluid dynamics simulations using a 1/7th sector mesh representing a single cylinder of a four-cylinder 1.9 L diesel engine, operated in gasoline compression ignition mode with 87 anti-knock index (AKI) gasoline, were performed. Two different operating conditions were studied—the first is representative of idle operation (4 mg fuel/cylinder/cycle, 850 r/min), and the second is representative of a low-load condition (10 mg fuel/cylinder/cycle, 1500 r/min). The mixture preparation and reaction space from the simulations were analyzedmore » to gain insights into the effects of injection pressure, nozzle inclusion angle, boost, and swirl ratio on achieving stable low-load to idle gasoline compression ignition operation. It was found that narrower nozzle inclusion angles allow for more reactivity or propensity to ignition (determined qualitatively by computing constant volume ignition delays) and are suitable over a wider range of injection timings. Under idle conditions, it was found that lower injection pressures helped to reduce overmixing of the fuel, resulting in greater reactivity and ignitability (ease with which ignition can be achieved) of the gasoline. However, under the low-load condition, lower injection pressures did not increase ignitability, and it is hypothesized that this is because of reduced chemical residence time resulting from longer injection durations. Reduced swirl was found to maintain higher in-cylinder temperatures through compression, resulting in better ignitability. It was found that boosting the charge also helped to increase reactivity and advanced ignition timing.« less

  20. 30 CFR 7.82 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... apply in this subpart. Brake Power. The observed power measured at the crankshaft or its equivalent when... compression ignition internal combustion engine using the basic diesel cycle where combustion results from the... collected on a specified filter medium after diluting exhaust gases with clean, filtered air at a...

  1. 40 CFR Table 2b to Subpart Zzzz of... - Operating Limitations for New and Reconstructed 2SLB and Compression Ignition Stationary RICE...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Reconstructed 2SLB and Compression Ignition Stationary RICE >500 HP Located at a Major Source of HAP Emissions, New and Reconstructed 4SLB Stationary RICE â¥250 HP Located at a Major Source of HAP Emissions, Existing Compression Ignition Stationary RICE >500 HP, and Existing 4SLB Stationary RICE >500 HP Located at...

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehl, M; Kukkadapu, G; Kumar, K

    The use of gasoline in homogeneous charge compression ignition engines (HCCI) and in duel fuel diesel - gasoline engines, has increased the need to understand its compression ignition processes under engine-like conditions. These processes need to be studied under well-controlled conditions in order to quantify low temperature heat release and to provide fundamental validation data for chemical kinetic models. With this in mind, an experimental campaign has been undertaken in a rapid compression machine (RCM) to measure the ignition of gasoline mixtures over a wide range of compression temperatures and for different compression pressures. By measuring the pressure history duringmore » ignition, information on the first stage ignition (when observed) and second stage ignition are captured along with information on the phasing of the heat release. Heat release processes during ignition are important because gasoline is known to exhibit low temperature heat release, intermediate temperature heat release and high temperature heat release. In an HCCI engine, the occurrence of low-temperature and intermediate-temperature heat release can be exploited to obtain higher load operation and has become a topic of much interest for engine researchers. Consequently, it is important to understand these processes under well-controlled conditions. A four-component gasoline surrogate model (including n-heptane, iso-octane, toluene, and 2-pentene) has been developed to simulate real gasolines. An appropriate surrogate mixture of the four components has been developed to simulate the specific gasoline used in the RCM experiments. This chemical kinetic surrogate model was then used to simulate the RCM experimental results for real gasoline. The experimental and modeling results covered ultra-lean to stoichiometric mixtures, compressed temperatures of 640-950 K, and compression pressures of 20 and 40 bar. The agreement between the experiments and model is encouraging in terms of first-stage (when observed) and second-stage ignition delay times and of heat release rate. The experimental and computational results are used to gain insight into low and intermediate temperature processes during gasoline ignition.« less

  3. 40 CFR Table 2a to Subpart Zzzz of... - Emission Limitations for New and Reconstructed 2SLB and Compression Ignition Stationary RICE >500...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Reconstructed 2SLB and Compression Ignition Stationary RICE >500 HP and New and Reconstructed 4SLB Stationary RICE â¥250 HP Located at a Major Source of HAP Emissions 2a Table 2a to Subpart ZZZZ of Part 63... 2SLB and Compression Ignition Stationary RICE >500 HP and New and Reconstructed 4SLB Stationary RICE...

  4. 40 CFR Table 2a to Subpart Zzzz of... - Emission Limitations for New and Reconstructed 2SLB and Compression Ignition Stationary RICE >500...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Reconstructed 2SLB and Compression Ignition Stationary RICE >500 HP and New and Reconstructed 4SLB Stationary RICE â¥250 HP Located at a Major Source of HAP Emissions 2a Table 2a to Subpart ZZZZ of Part 63... 2SLB and Compression Ignition Stationary RICE >500 HP and New and Reconstructed 4SLB Stationary RICE...

  5. 40 CFR Table 2b to Subpart Zzzz of... - Operating Limitations for New and Reconstructed 2SLB and Compression Ignition Stationary RICE...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Reconstructed 2SLB and Compression Ignition Stationary RICE >500 HP Located at a Major Source of HAP Emissions, Existing Non-Emergency Compression Ignition Stationary RICE >500 HP, and New and Reconstructed 4SLB Burn Stationary RICE â¥250 HP Located at a Major Source of HAP Emissions 2b Table 2b to Subpart ZZZZ of Part 63...

  6. Local Limit Phenomena, Flow Compression, and Fuel Cracking Effects in High-Speed Turbulent Flames

    DTIC Science & Technology

    2015-06-01

    e.g. local extinction and re- ignition , interactions between flow compression and fast-reaction induced dilatation (reaction compression ), and to...time as a function of initial temperature in constant-pressure auto - ignition , and (b) the S-curves of perfectly stirred reactors (PSRs), for n...mechanism. The reduction covered auto - ignition and perfectly stirred reactors for equivalence ratio range of 0.5~1.5, initial temperature higher than

  7. Application of a high-repetition-rate laser diagnostic system for single-cycle-resolved imaging in internal combustion engines.

    PubMed

    Hult, Johan; Richter, Mattias; Nygren, Jenny; Aldén, Marcus; Hultqvist, Anders; Christensen, Magnus; Johansson, Bengt

    2002-08-20

    High-repetition-rate laser-induced fluorescence measurements of fuel and OH concentrations in internal combustion engines are demonstrated. Series of as many as eight fluorescence images, with a temporal resolution ranging from 10 micros to 1 ms, are acquired within one engine cycle. A multiple-laser system in combination with a multiple-CCD camera is used for cycle-resolved imaging in spark-ignition, direct-injection stratified-charge, and homogeneous-charge compression-ignition engines. The recorded data reveal unique information on cycle-to-cycle variations in fuel transport and combustion. Moreover, the imaging system in combination with a scanning mirror is used to perform instantaneous three-dimensional fuel-concentration measurements.

  8. Fundamental Interactions in Gasoline Compression Ignition Engines with Fuel Stratification

    NASA Astrophysics Data System (ADS)

    Wolk, Benjamin Matthew

    Transportation accounted for 28% of the total U.S. energy demand in 2011, with 93% of U.S. transportation energy coming from petroleum. The large impact of the transportation sector on global climate change necessitates more-efficient, cleaner-burning internal combustion engine operating strategies. One such strategy that has received substantial research attention in the last decade is Homogeneous Charge Compression Ignition (HCCI). Although the efficiency and emissions benefits of HCCI are well established, practical limits on the operating range of HCCI engines have inhibited their application in consumer vehicles. One such limit is at high load, where the pressure rise rate in the combustion chamber becomes excessively large. Fuel stratification is a potential strategy for reducing the maximum pressure rise rate in HCCI engines. The aim is to introduce reactivity gradients through fuel stratification to promote sequential auto-ignition rather than a bulk-ignition, as in the homogeneous case. A gasoline-fueled compression ignition engine with fuel stratification is termed a Gasoline Compression Ignition (GCI) engine. Although a reasonable amount of experimental research has been performed for fuel stratification in GCI engines, a clear understanding of how the fundamental in-cylinder processes of fuel spray evaporation, mixing, and heat release contribute to the observed phenomena is lacking. Of particular interest is gasoline's pressure sensitive low-temperature chemistry and how it impacts the sequential auto-ignition of the stratified charge. In order to computationally study GCI with fuel stratification using three-dimensional computational fluid dynamics (CFD) and chemical kinetics, two reduced mechanisms have been developed. The reduced mechanisms were developed from a large, detailed mechanism with about 1400 species for a 4-component gasoline surrogate. The two versions of the reduced mechanism developed in this work are: (1) a 96-species version and (2) a 98-species version including nitric oxide formation reactions. Development of reduced mechanisms is necessary because the detailed mechanism is computationally prohibitive in three-dimensional CFD and chemical kinetics simulations. Simulations of Partial Fuel Stratification (PFS), a GCI strategy, have been performed using CONVERGE with the 96-species reduced mechanism developed in this work for a 4-component gasoline surrogate. Comparison is made to experimental data from the Sandia HCCI/GCI engine at a compression ratio 14:1 at intake pressures of 1 bar and 2 bar. Analysis of the heat release and temperature in the different equivalence ratio regions reveals that sequential auto-ignition of the stratified charge occurs in order of increasing equivalence ratio for 1 bar intake pressure and in order of decreasing equivalence ratio for 2 bar intake pressure. Increased low- and intermediate-temperature heat release with increasing equivalence ratio at 2 bar intake pressure compensates for decreased temperatures in higher-equivalence ratio regions due to evaporative cooling from the liquid fuel spray and decreased compression heating from lower values of the ratio of specific heats. The presence of low- and intermediate-temperature heat release at 2 bar intake pressure alters the temperature distribution of the mixture stratification before hot-ignition, promoting the desired sequential auto-ignition. At 1 bar intake pressure, the sequential auto-ignition occurs in the reverse order compared to 2 bar intake pressure and too fast for useful reduction of the maximum pressure rise rate compared to HCCI. Additionally, the premixed portion of the charge auto-ignites before the highest-equivalence ratio regions. Conversely, at 2 bar intake pressure, the premixed portion of the charge auto-ignites last, after the higher-equivalence ratio regions. More importantly, the sequential auto-ignition occurs over a longer time period for 2 bar intake pressure than at 1 bar intake pressure such that a sizable reduction in the maximum pressure rise rate compared to HCCI can be achieved.

  9. Final Rule for Control of Emissions From New Marine Compression-Ignition Engines at or Above 2.5 Liters Per Cylinder

    EPA Pesticide Factsheets

    The near-term, Tier 1 standards in this rule are equivalent to the internationally negotiated emission limits for oxides of nitrogen (NOx). These standards will go into effect in 2004 and are based on readily available emission-control technology.

  10. 40 CFR 60.4218 - What parts of the General Provisions apply to me?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What parts of the General Provisions apply to me? 60.4218 Section 60.4218 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Performance for Stationary Compression Ignition Internal Combustion Engines General Provisions § 60.4218 What...

  11. 40 CFR 60.4200 - Am I subject to this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... stationary compression ignition (CI) internal combustion engines (ICE) and other persons as specified in... commences is the date the engine is ordered by the owner or operator. (1) Manufacturers of stationary CI ICE... model year, for fire pump engines. (2) Owners and operators of stationary CI ICE that commence...

  12. 40 CFR 60.4200 - Am I subject to this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... stationary compression ignition (CI) internal combustion engines (ICE) and other persons as specified in... commences is the date the engine is ordered by the owner or operator. (1) Manufacturers of stationary CI ICE... model year, for fire pump engines. (2) Owners and operators of stationary CI ICE that commence...

  13. 40 CFR 60.4200 - Am I subject to this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... stationary compression ignition (CI) internal combustion engines (ICE) as specified in paragraphs (a)(1... date the engine is ordered by the owner or operator. (1) Manufacturers of stationary CI ICE with a..., for fire pump engines. (2) Owners and operators of stationary CI ICE that commence construction after...

  14. 40 CFR 60.4200 - Am I subject to this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... stationary compression ignition (CI) internal combustion engines (ICE) and other persons as specified in... commences is the date the engine is ordered by the owner or operator. (1) Manufacturers of stationary CI ICE... model year, for fire pump engines. (2) Owners and operators of stationary CI ICE that commence...

  15. 40 CFR 60.4200 - Am I subject to this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... stationary compression ignition (CI) internal combustion engines (ICE) as specified in paragraphs (a)(1... date the engine is ordered by the owner or operator. (1) Manufacturers of stationary CI ICE with a..., for fire pump engines. (2) Owners and operators of stationary CI ICE that commence construction after...

  16. Two-dimensional simulations of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perkins, L. J.; Logan, B. G.; Zimmerman, G. B.

    2013-07-15

    We report for the first time on full 2-D radiation-hydrodynamic implosion simulations that explore the impact of highly compressed imposed magnetic fields on the ignition and burn of perturbed spherical implosions of ignition-scale cryogenic capsules. Using perturbations that highly convolute the cold fuel boundary of the hotspot and prevent ignition without applied fields, we impose initial axial seed fields of 20–100 T (potentially attainable using present experimental methods) that compress to greater than 4 × 10{sup 4} T (400 MG) under implosion, thereby relaxing hotspot areal densities and pressures required for ignition and propagating burn by ∼50%. The compressed fieldmore » is high enough to suppress transverse electron heat conduction, and to allow alphas to couple energy into the hotspot even when highly deformed by large low-mode amplitudes. This might permit the recovery of ignition, or at least significant alpha particle heating, in submarginal capsules that would otherwise fail because of adverse hydrodynamic instabilities.« less

  17. Laser-induced breakdown ignition in a gas fed two-stroke engine

    NASA Astrophysics Data System (ADS)

    Loktionov, E. Y.; Pasechnikov, N. A.; Telekh, V. D.

    2018-01-01

    Laser-induced ignition for internal combustion engines is investigated intensively after demonstration of a compact ‘laser plug’ possibility. Laser spark benefits as compared to traditional spark plugs are higher compression rate, and possibility of almost any fuel ignition, so lean mixtures burning with lower temperatures could reduce harmful exhausts (NO x , CH, etc). No need in electrode and possibility for multi-point, linear or circular ignition can make combustion even more effective. Laser induced combustion wave appears faster and is more stable in time, than electric one, so can be used for ramjets, chemical thrusters, and gas turbines. To the best of our knowledge, we have performed laser spark ignition of a gas fed two-stroke engine for the first time. Combustion temperature and pressure, exhaust composition, ignition timing were investigated at laser and compared to a regular electric spark ignition in a two-stroke model engine. Presented results show possibility for improvement of two-stroke engines performance, in terms of rotation rate increase and NO x emission reduction. Such compact engines using locally mined fuel could be highly demanded in remote Arctic areas.

  18. Laser-assisted homogeneous charge ignition in a constant volume combustion chamber

    NASA Astrophysics Data System (ADS)

    Srivastava, Dhananjay Kumar; Weinrotter, Martin; Kofler, Henrich; Agarwal, Avinash Kumar; Wintner, Ernst

    2009-06-01

    Homogeneous charge compression ignition (HCCI) is a very promising future combustion concept for internal combustion engines. There are several technical difficulties associated with this concept, and precisely controlling the start of auto-ignition is the most prominent of them. In this paper, a novel concept to control the start of auto-ignition is presented. The concept is based on the fact that most HCCI engines are operated with high exhaust gas recirculation (EGR) rates in order to slow-down the fast combustion processes. Recirculated exhaust gas contains combustion products including moisture, which has a relative peak of the absorption coefficient around 3 μm. These water molecules absorb the incident erbium laser radiations ( λ=2.79 μm) and get heated up to expedite ignition. In the present experimental work, auto-ignition conditions are locally attained in an experimental constant volume combustion chamber under simulated EGR conditions. Taking advantage of this feature, the time when the mixture is thought to "auto-ignite" could be adjusted/controlled by the laser pulse width optimisation, followed by its resonant absorption by water molecules present in recirculated exhaust gas.

  19. Interrelation of exhaust-gas constituents

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold C; Voss, Fred

    1938-01-01

    This report presents the results of an investigation conducted to determine the interrelation of the constituents of the exhaust gases of internal-combustion engines and the effect of engine performance on these relations. Six single-cylinder, liquid-cooled tests engines and one 9-cylinder radial air-cooled engine were tested. Various types of combustion chambers were used and the engines were operated at compression ratios from 5.1 to 7.0 using spark ignition and from 13.5 to 15.6 using compression ignition. The investigation covered a range of engine speeds from 1,500 to 2,100 r.p.m. The fuels used were two grades of aviation gasoline, auto diesel fuel, and laboratory diesel fuel. Power, friction, and fuel-consumption data were obtained from the single-cylinder engines at the same time that the exhaust-gas samples were collected.

  20. Friction of Compression-ignition Engines

    NASA Technical Reports Server (NTRS)

    Moore, Charles S; Collins, John H , Jr

    1936-01-01

    The cost in mean effective pressure of generating air flow in the combustion chambers of single-cylinder compression-ignition engines was determined for the prechamber and the displaced-piston types of combustion chamber. For each type a wide range of air-flow quantities, speeds, and boost pressures was investigated. Supplementary tests were made to determine the effect of lubricating-oil temperature, cooling-water temperature, and compression ratio on the friction mean effective pressure of the single-cylinder test engine. Friction curves are included for two 9-cylinder, radial, compression-ignition aircraft engines. The results indicate that generating the optimum forced air flow increased the motoring losses approximately 5 pounds per square inch mean effective pressure regardless of chamber type or engine speed. With a given type of chamber, the rate of increase in friction mean effective pressure with engine speed is independent of the air-flow speed. The effect of boost pressure on the friction cannot be predicted because the friction was decreased, unchanged, or increased depending on the combustion-chamber type and design details. High compression ratio accounts for approximately 5 pounds per square inch mean effective pressure of the friction of these single-cylinder compression-ignition engines. The single-cylinder test engines used in this investigation had a much higher friction mean effective pressure than conventional aircraft engines or than the 9-cylinder, radial, compression-ignition engines tested so that performance should be compared on an indicated basis.

  1. Shakedown and Preliminary Calibration Tests for the Fuel Engine Evaluation System Using the KM914A Sachs Rotary Combustion Engine.

    DTIC Science & Technology

    1981-12-01

    obtained recommendations are made to improve the system. FEES was designed to handle spark ignition and compression ignition research engines of...Thermometer T W OF Temperature Web Bulb Sling Psychrometer % Relative Humidity Psychrometric chart mm Hg Vapor Pressure Vapor Pressure chart - Correction...results obtained recommendations are made to improve the system. FEES was designed to handle spark ignition and compression ignition research engines of

  2. 77 FR 60341 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ... compression ignition (CI) RICE on offshore drilling vessels on the Outer Continental Shelf (OCS) that become... raised during the initial public comment period regarding existing engines on offshore vessels. DATES... (comment from Offshore Operators Committee), EPA-HQ- OAR-2008-0708-1105 at p. 6 (comment from American...

  3. 40 CFR Table 4 to Subpart IIIi of... - Emission Standards for Stationary Fire Pump Engines

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Emission Standards for Stationary Fire Pump Engines 4 Table 4 to Subpart IIII of Part 60 Protection of Environment ENVIRONMENTAL PROTECTION... of Performance for Stationary Compression Ignition Internal Combustion Engines Part 60, Subpt. IIII...

  4. 40 CFR Table 3 to Subpart IIIi of... - Certification Requirements for Stationary Fire Pump Engines

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Certification Requirements for Stationary Fire Pump Engines 3 Table 3 to Subpart IIII of Part 60 Protection of Environment ENVIRONMENTAL... Standards of Performance for Stationary Compression Ignition Internal Combustion Engines Part 60, Subpt...

  5. Ignition and combustion: Low compression ratio, high output diesel

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The feasibility of converting a spark ignition aircraft engine GTSI0-520 to compression ignition without increasing the peak combustion pressure of 1100 lbs/sq.in. was determined. The final contemplated utilized intake air heating at idle and light load and a compression ratio of about 10:1 with a small amount of fumigation (the addition of about 15% fuel into the combustion air before the cylinder). The engine used was a modification of a Continental-Teledyne gasoline engine cylinder from the GTSI0-520 supercharged aircraft engine.

  6. Hydrogen as an Auxiliary Fuel in Compression-Ignition Engines

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold C; Foster, H

    1936-01-01

    An investigation was made to determine whether a sufficient amount of hydrogen could be efficiently burned in a compression-ignition engine to compensate for the increase of lift of an airship due to the consumption of the fuel oil. The performance of a single-cylinder four-stroke-cycle compression-ignition engine operating on fuel oil alone was compared with its performance when various quantities of hydrogen were inducted with the inlet air. Engine-performance data, indicator cards, and exhaust-gas samples were obtained for each change in engine-operating conditions.

  7. Suppression of reaction during rapid compression and its effect on ignition delay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamed, C.

    1998-02-01

    A single-shot, rapid compression machine has been used to investigate the effect of diethylamine (5 mol%) on the spontaneous ignition (or autoignition) of n-heptane and n-pentane in stoichiometric proportion in air ({psi} = 1.0). Autoignition delays were measured at compressed gas temperatures and pressures in the range 659--950 K and 9--11 atm, respectively. In addition to pressure-time data, the total light output from the chamber was recorded as a function of time using a photomultiplier positioned at the end window. Diethylamine retards the first stage of the two-stage ignition of n-heptane and n-pentane, causing a reduction in both the pressuremore » rise and the light intensity associated with the first (cool flame) stage. A longer duration of the second stage of ignition was measured. Consequently, an increase in ignition delay was observed for n-heptane throughout the temperature range 650--950 K, for which first-stage reactions persist in the compression stroke at temperatures above 850 K. The ignition delay of n-pentane was increased in the range 650--850 K by the addition of diethylamine, but was decreased at compressed gas temperatures greater than 850 K. The possible mechanisms of the inhibition of the first stage of autoignition and promotion of the second stage by diethylamine are outlined.« less

  8. High load operation in a homogeneous charge compression ignition engine

    DOEpatents

    Duffy, Kevin P [Metamora, IL; Kieser, Andrew J [Morton, IL; Liechty, Michael P [Chillicothe, IL; Hardy, William L [Peoria, IL; Rodman, Anthony [Chillicothe, IL; Hergart, Carl-Anders [Peoria, IL

    2008-12-23

    A homogeneous charge compression ignition engine is set up by first identifying combinations of compression ratio and exhaust gas percentages for each speed and load across the engines operating range. These identified ratios and exhaust gas percentages can then be converted into geometric compression ratio controller settings and exhaust gas recirculation rate controller settings that are mapped against speed and load, and made available to the electronic

  9. Evaluation of heat engine for hybrid vehicle application

    NASA Technical Reports Server (NTRS)

    Schneider, H. W.

    1984-01-01

    The status of ongoing heat-engine developments, including spark-ignition, compression-ignition, internal-combustion, and external-combustion engines is presented. The potential of engine concepts under consideration for hybrid vehicle use is evaluated, using self-imposed criteria for selection. The deficiencies of the engines currently being evaluated in hybrid vehicles are discussed. Focus is on recent research with two-stroke, rotary, and free-piston engines. It is concluded that these engine concepts have the most promising potential for future application in hybrid vehicles. Recommendations are made for analysis and experimentation to evaluate stop-start and transient emission behavior of recommended engine concepts.

  10. Ignition process in Diesel engines

    NASA Technical Reports Server (NTRS)

    Wentzel, W

    1936-01-01

    This report analyzes the heating and vaporization process of fuel droplets in a compression-ignition engine on the basis of the theory of similitude - according to which, the period for heating and complete vaporization of the average size fuel drop is only a fraction of the actually observed ignition lag. The result is that ignition takes place in the fuel vapor air mixture rather than on the surface of the drop. The theoretical result is in accord with the experimental observations by Rothrock and Waldron. The combustion shock occurring at lower terminal compression temperature, especially in the combustion of coal-tar oil, is attributable to a simultaneous igniting of a larger fuel-vapor volume formed prior to ignition.

  11. Hydrofluoric acid burn resulting from ignition of gas from a compressed air duster.

    PubMed

    Foster, Kevin N; Jones, LouAnn; Caruso, Daniel M

    2003-01-01

    A young female suffered burns to her hand after the ignition of gas from a compressed air duster. After debridement and dressing, the patient continued to have pain out of proportion to injury that was refractory to intravenous morphine. The material safety data sheet revealed that the chemical used was 1,1-difluoroethane. High temperatures can cause decompensation to form hydrofluoric acid. Calcium gluconate gel was applied topically to the patient's burns, which caused prompt and complete relief of her pain. A review of different compressed air duster products revealed that the main ingredient in each was a halogenated hydrocarbon. Although not considered flammable, all products have warnings regarding the possibility of ignition under various circumstances. Ignition of the gas in compressed air cleaners not only can cause flame burns, it can also cause chemical damage from exposure to hydrogen and fluoride ions. Prompt recognition and treatment is necessary to prevent severe injury.

  12. CFD modeling of two-stage ignition in a rapid compression machine: Assessment of zero-dimensional approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mittal, Gaurav; Raju, Mandhapati P.; Sung, Chih-Jen

    2010-07-15

    In modeling rapid compression machine (RCM) experiments, zero-dimensional approach is commonly used along with an associated heat loss model. The adequacy of such approach has not been validated for hydrocarbon fuels. The existence of multi-dimensional effects inside an RCM due to the boundary layer, roll-up vortex, non-uniform heat release, and piston crevice could result in deviation from the zero-dimensional assumption, particularly for hydrocarbons exhibiting two-stage ignition and strong thermokinetic interactions. The objective of this investigation is to assess the adequacy of zero-dimensional approach in modeling RCM experiments under conditions of two-stage ignition and negative temperature coefficient (NTC) response. Computational fluidmore » dynamics simulations are conducted for n-heptane ignition in an RCM and the validity of zero-dimensional approach is assessed through comparisons over the entire NTC region. Results show that the zero-dimensional model based on the approach of 'adiabatic volume expansion' performs very well in adequately predicting the first-stage ignition delays, although quantitative discrepancy for the prediction of the total ignition delays and pressure rise in the first-stage ignition is noted even when the roll-up vortex is suppressed and a well-defined homogeneous core is retained within an RCM. Furthermore, the discrepancy is pressure dependent and decreases as compressed pressure is increased. Also, as ignition response becomes single-stage at higher compressed temperatures, discrepancy from the zero-dimensional simulations reduces. Despite of some quantitative discrepancy, the zero-dimensional modeling approach is deemed satisfactory from the viewpoint of the ignition delay simulation. (author)« less

  13. 40 CFR 94.1 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.1 Applicability. (a) Except as noted in paragraphs (b) and (c) of...

  14. 40 CFR Table 8 to Subpart IIIi of... - Applicability of General Provisions to Subpart IIII

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of Performance for Stationary Compression Ignition Internal Combustion Engines Part 60, Subpt. IIII... displacement of (≥30 liters per cylinder and engines that are not certified. § 60.9 Availability of information... Except that § 60.13 only applies to stationary CI ICE with a displacement of (≥30 liters per cylinder...

  15. 40 CFR 94.10 - Warranty period.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.10 Warranty period. (a)(1) Warranties imposed by § 94.1107 for...

  16. Prechamber Compression-Ignition Engine Performance

    NASA Technical Reports Server (NTRS)

    Moore, Charles S; Collins, John H , Jr

    1938-01-01

    Single-cylinder compression-ignition engine tests were made to investigate the performance characteristics of prechamber type of cylinder head. Certain fundamental variables influencing engine performance -- clearance distribution, size, shape, and direction of the passage connecting the cylinder and prechamber, shape of prechamber, cylinder clearance, compression ratio, and boosting -- were independently tested. Results of motoring and of power tests, including several typical indicator cards, are presented.

  17. An experimental study of the autoignition characteristics of conventional jet fuel/oxidizer mixtures: Jet-A and JP-8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Kamal; Sung, Chih-Jen

    2010-04-15

    Ignition delay times of Jet-A/oxidizer and JP-8/oxidizer mixtures are measured using a heated rapid compression machine at compressed charge pressures corresponding to 7, 15, and 30 bar, compressed temperatures ranging from 650 to 1100 K, and equivalence ratios varying from 0.42 to 2.26. When using air as the oxidant, two oxidizer-to-fuel mass ratios of 13 and 19 are investigated. To achieve higher compressed temperatures for fuel lean mixtures (equivalence ratio of {proportional_to}0.42), argon dilution is also used and the corresponding oxidizer-to-fuel mass ratio is 84.9. For the conditions studied, experimental results show two-stage ignition characteristics for both Jet-A and JP-8.more » Variations of both the first-stage and overall ignition delays with compressed temperature, compressed pressure, and equivalence ratio are reported and correlated. It is noted that the negative temperature coefficient phenomenon becomes more prominent at relatively lower pressures. Furthermore, the first-stage-ignition delay is found to be less sensitive to changes in equivalence ratio and primarily dependent on temperature. (author)« less

  18. 40 CFR Table 2d to Subpart Zzzz of... - Requirements for Existing Compression Ignition Stationary RICE Located at Area Sources of HAP...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Ignition Stationary RICE Located at Area Sources of HAP Emissions 2d Table 2d to Subpart ZZZZ of Part 63... Stationary RICE Located at Area Sources of HAP Emissions As stated in §§ 63.6600 and 63.6640, you must comply with the following emission and operating limitations for existing compression ignition stationary RICE...

  19. Autoignition Chemistry of Surrogate Fuel Components in an Engine Environment

    DTIC Science & Technology

    2015-08-21

    compression ratio (CR) on the auto - ignition of decane. Crank angle resolved cylinder pressure data was acquired and analyzed using an engine heat...schematic shown in Fig. 1, consists of a modified CFR (Cooperative Fuel Research) engine coupled to a dynamometer. In practical compression 2 ignition ...engines, auto - ignition occurs in the premixed spray envelope that forms during the fuel injection process. To focus on this regime without the

  20. 40 CFR 94.12 - Interim provisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... differences in testing will not affect NOX emission rates. (g) Flexibility for engines over 560kW... EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.12 Interim provisions. This section contains provisions that apply...

  1. 40 CFR 94.12 - Interim provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... differences in testing will not affect NOX emission rates. (g) Flexibility for engines over 560kW...) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.12 Interim provisions. This section contains provisions...

  2. 40 CFR 94.12 - Interim provisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... differences in testing will not affect NOX emission rates. (g) Flexibility for engines over 560kW...) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.12 Interim provisions. This section contains provisions...

  3. 40 CFR 94.12 - Interim provisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... differences in testing will not affect NOX emission rates. (g) Flexibility for engines over 560kW...) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.12 Interim provisions. This section contains provisions...

  4. 40 CFR 94.12 - Interim provisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... differences in testing will not affect NOX emission rates. (g) Flexibility for engines over 560kW...) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.12 Interim provisions. This section contains provisions...

  5. 40 CFR 94.4 - Treatment of confidential information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... 94.4 Section 94.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.4 Treatment of confidential information. (a) Any...

  6. Evolution and current understanding of physicochemical characterization of particulate matter from reactivity controlled compression ignition combustion on a multicylinder light-duty engine

    DOE PAGES

    Storey, John Morse; Curran, Scott J.; Lewis, Samuel A.; ...

    2016-08-04

    Low-temperature compression ignition combustion can result in nearly smokeless combustion, as indicated by a smoke meter or other forms of soot measurement that rely on absorbance due to elemental carbon content. Highly premixed low-temperature combustion modes do not form particulate matter in the traditional pathways seen with conventional diesel combustion. Previous research into reactivity controlled compression ignition particulate matter has shown, despite a near zero smoke number, significant mass can be collected on filter media used for particulate matter certification measurement. In addition, particulate matter size distributions reveal that a fraction of the particles survive heated double-dilution conditions. This papermore » summarizes research completed at Oak Ridge National Laboratory to date on characterizing the nature, chemistry and aftertreatment considerations of reactivity controlled compression ignition particulate matter and presents new research highlighting the importance of injection strategy and fuel composition on reactivity controlled compression ignition particulate matter formation. Particle size measurements and the transmission electron microscopy results do show the presence of soot particles; however, the elemental carbon fraction was, in many cases, within the uncertainty of the thermal–optical measurement. Particulate matter emitted during reactivity controlled compression ignition operation was also collected with a novel sampling technique and analyzed by thermal desorption or pyrolysis gas chromatography mass spectroscopy. Particulate matter speciation results indicated that the high boiling range of diesel hydrocarbons was likely responsible for the particulate matter mass captured on the filter media. Finally, to investigate potential fuel chemistry effects, either ethanol or biodiesel were incorporated to assess whether oxygenated fuels may enhance particle emission reduction.« less

  7. Evolution and current understanding of physicochemical characterization of particulate matter from reactivity controlled compression ignition combustion on a multicylinder light-duty engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Storey, John Morse; Curran, Scott J.; Lewis, Samuel A.

    Low-temperature compression ignition combustion can result in nearly smokeless combustion, as indicated by a smoke meter or other forms of soot measurement that rely on absorbance due to elemental carbon content. Highly premixed low-temperature combustion modes do not form particulate matter in the traditional pathways seen with conventional diesel combustion. Previous research into reactivity controlled compression ignition particulate matter has shown, despite a near zero smoke number, significant mass can be collected on filter media used for particulate matter certification measurement. In addition, particulate matter size distributions reveal that a fraction of the particles survive heated double-dilution conditions. This papermore » summarizes research completed at Oak Ridge National Laboratory to date on characterizing the nature, chemistry and aftertreatment considerations of reactivity controlled compression ignition particulate matter and presents new research highlighting the importance of injection strategy and fuel composition on reactivity controlled compression ignition particulate matter formation. Particle size measurements and the transmission electron microscopy results do show the presence of soot particles; however, the elemental carbon fraction was, in many cases, within the uncertainty of the thermal–optical measurement. Particulate matter emitted during reactivity controlled compression ignition operation was also collected with a novel sampling technique and analyzed by thermal desorption or pyrolysis gas chromatography mass spectroscopy. Particulate matter speciation results indicated that the high boiling range of diesel hydrocarbons was likely responsible for the particulate matter mass captured on the filter media. Finally, to investigate potential fuel chemistry effects, either ethanol or biodiesel were incorporated to assess whether oxygenated fuels may enhance particle emission reduction.« less

  8. A Comparison of Ignition Characteristics of Diesel Fuels as Determined in Engines and in a Constant-volume Bomb

    NASA Technical Reports Server (NTRS)

    Selden, Robert F

    1939-01-01

    Ignition-lag data have been obtained for seven fuels injected into heated, compressed air under conditions simulating those in a compression-ignition engine. The results of the bomb tests have been compared with similar engine data, and the differences between the two sets of results are explained in terms of the response of each fuel to variations in air density and temperature.

  9. Combustion chemistry of ethanol: Ignition and speciation studies in a rapid compression facility [On the combustion chemistry of ethanol: Ignition and speciation studies in a rapid compression facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barraza-Botet, Cesar L.; Wagnon, Scott W.; Wooldridge, Margaret S.

    Here, ethanol remains the most important alternative fuel for the transportation sector. This work presents new experimental data on ethanol ignition, including stable species measurements, obtained with the University of Michigan rapid compression facility. Ignition delay times were determined from pressure histories of ignition experiments with stoichiometric ethanol–air mixtures at pressures of ~3–10 atm. Temperatures (880–1150 K) were controlled by varying buffer gas composition (Ar, N 2, CO 2). High-speed imaging was used to record chemiluminescence during the experiments, which showed homogeneous ignition events. The results for ignition delay time agreed well with trends on the basis of previous experimentalmore » measurements. Speciation experiments were performed using fast gas sampling and gas chromatography to identify and quantify ethanol and 11 stable intermediate species formed during the ignition delay period. Simulations were carried out using a chemical kinetic mechanism available in the literature, and the agreement with the experimental results for ignition delay time and the intermediate species measured was excellent for the majority of the conditions studied. From the simulation results, ethanol + HO 2 was identified as an important reaction at the experimental conditions for both the ignition delay time and intermediate species measurements. Further studies to improve the accuracy of the rate coefficient for ethanol + HO 2 would improve the predictive understanding of intermediate and low-temperature ethanol combustion.« less

  10. Combustion chemistry of ethanol: Ignition and speciation studies in a rapid compression facility [On the combustion chemistry of ethanol: Ignition and speciation studies in a rapid compression facility

    DOE PAGES

    Barraza-Botet, Cesar L.; Wagnon, Scott W.; Wooldridge, Margaret S.

    2016-08-31

    Here, ethanol remains the most important alternative fuel for the transportation sector. This work presents new experimental data on ethanol ignition, including stable species measurements, obtained with the University of Michigan rapid compression facility. Ignition delay times were determined from pressure histories of ignition experiments with stoichiometric ethanol–air mixtures at pressures of ~3–10 atm. Temperatures (880–1150 K) were controlled by varying buffer gas composition (Ar, N 2, CO 2). High-speed imaging was used to record chemiluminescence during the experiments, which showed homogeneous ignition events. The results for ignition delay time agreed well with trends on the basis of previous experimentalmore » measurements. Speciation experiments were performed using fast gas sampling and gas chromatography to identify and quantify ethanol and 11 stable intermediate species formed during the ignition delay period. Simulations were carried out using a chemical kinetic mechanism available in the literature, and the agreement with the experimental results for ignition delay time and the intermediate species measured was excellent for the majority of the conditions studied. From the simulation results, ethanol + HO 2 was identified as an important reaction at the experimental conditions for both the ignition delay time and intermediate species measurements. Further studies to improve the accuracy of the rate coefficient for ethanol + HO 2 would improve the predictive understanding of intermediate and low-temperature ethanol combustion.« less

  11. Compression Ignition Engines – Revolutionary Technology That has Civilized Frontiers all Over the Globe from the Industrial Revolution into the Twenty-First Century

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciatti, Stephen A.

    The history, present and future of the compression ignition engine is a fascinating story that spans over 100 years, from the time of Rudolf Diesel to the highly regulated and computerized engines of the 21st Century. The development of these engines provided inexpensive, reliable and high power density machines to allow transportation, construction and farming to be more productive with less human effort than in any previous period of human history. The concept that fuels could be consumed efficiently and effectively with only the ignition of pressurized and heated air was a significant departure from the previous coal-burning architecture ofmore » the 1800s. Today, the compression ignition engine is undergoing yet another revolution. The equipment that provides transport, builds roads and infrastructure, and harvests the food we eat needs to meet more stringent requirements than ever before. How successfully 21st Century engineers are able to make compression ignition engine technology meet these demands will be of major influence in assisting developing nations (with over 50% of the world’s population) achieve the economic and environmental goals they seek.« less

  12. A Preliminary Study of Fuel Injection and Compression Ignition as Applied to an Aircraft Engine Cylinder

    NASA Technical Reports Server (NTRS)

    Gardiner, Arthur W

    1927-01-01

    This report summarizes some results obtained with a single cylinder test engine at the Langley Field Laboratory during a preliminary investigation of the problem of applying fuel injection and compression ignition to aircraft engines. For this work a standard Liberty Engine cylinder was fitted with a high compression, 11.4 : 1 compression ratio, piston, and equipped with an airless injection system, including a primary fuel pump, an injection pump, and an automatic injection valve. The results obtained during this investigation have indicated the possibility of applying airless injection and compression ignition to a cylinder of this size, 8-inch bore by 7-inch stroke, when operating at engine speeds as high as 1,850 R. P. M. A minimum specific fuel consumption with diesel engine fuel oil of 0.30 pound per I. HP. Hour was obtained when developing about 16 B. HP. At 1,730 R. P. M.

  13. Ignition threshold of aluminized HMX-based PBXs

    NASA Astrophysics Data System (ADS)

    Miller, Christopher; Zhou, Min

    2017-06-01

    We report the results of micromechanical simulations of the ignition of aluminized HMX-based PBX under loading due to impact by thin flyers. The conditions analyzed concern loading pulses on the order of 20 nanoseconds to 0.8 microseconds in duration and impact piston velocities on the order of 300-1000 ms-1. The samples consist of a stochastically similar bimodal distribution of HMX grains, an Estane binder, and 50 μm aluminum particles. The computational model accounts for constituent elasto-vicoplasticity, viscoelasticity, bulk compressibility, fracture, interfacial debonding, fracture, internal contact, bulk and frictional heating, and heat conduction. The analysis focuses on the development of hotspots under different material settings and loading conditions. In particular, the ignition threshold in the form of the James relation and the corresponding ignition probability are calculated for the PBXs containing 0%, 6%, 10%, and 18% aluminum by volume. It is found that the addition of aluminum increases the ignition threshold, causing the materials to be less sensitive. Dissipation and heating mechanism changes responsible for this trend are delineated. Support by DOE NNSA SSGF is gratefully acknowledged.

  14. Compression Dynamics of an Indirect Drive Fast Ignition Target

    NASA Astrophysics Data System (ADS)

    Stephens, R. B.; Hatchett, S. A.; Turner, R. E.; Tanaka, K. A.; Kodama, R.; Soures, J.

    2002-11-01

    We have compared the compression of an indirectly driven cone-in-shell target, a type proposed for the fast ignition concept, with models. The experimental parameters -500 μm diameter plastic shell with 60 μm thick wall were a 1/5 scale realization of a fast ignition target designed for NIF (absorbing 180 kJ for compression and ˜30 kJ for ignition, and yielding ˜30 MJ) [1]. The implosion was backlit with 6.4 keV x-rays, and observed with a framing camera which captured the implosion from ˜2.6 to 3.3 ns after the onset. The collapsing structure was very similar to model predictions except that non-thermal m-band emissions from the hohlraum penetrated the shell and vaporized gold off the reentrant cone. This could be eliminated by changing the hohlraum composition. [1] S. Hatchett, et al., 5th Wkshp on Fast Ignition of Fusion Targets (Satellite Wkshp, 28th EPS Conf. on Contr. Fusion and Plasma Phys.), Madeira, Portugal (2001).

  15. 40 CFR 94.9 - Compliance with emission standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... engineering analysis of information equivalent to such in-use data, such as data from research engines or... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.9 Compliance with emission standards. (a) The general...

  16. 40 CFR 94.9 - Compliance with emission standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... engineering analysis of information equivalent to such in-use data, such as data from research engines or... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.9 Compliance with emission standards. (a) The general...

  17. 40 CFR 94.9 - Compliance with emission standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... engineering analysis of information equivalent to such in-use data, such as data from research engines or... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.9 Compliance with emission standards. (a) The general...

  18. 40 CFR 94.9 - Compliance with emission standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... engineering analysis of information equivalent to such in-use data, such as data from research engines or... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.9 Compliance with emission standards. (a) The general...

  19. 40 CFR 94.9 - Compliance with emission standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... engineering analysis of information equivalent to such in-use data, such as data from research engines or... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.9 Compliance with emission standards. (a) The general...

  20. 40 CFR 89.124 - Record retention, maintenance, and submission.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... construction, including a general description of the origin and buildup of the engine, steps taken to ensure... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission... manufacturer of any nonroad compression-ignition engine must maintain the following adequately organized...

  1. Non-diffusive ignition of a gaseous reactive mixture following time-resolved, spatially distributed energy deposition

    NASA Astrophysics Data System (ADS)

    Kassoy, D. R.

    2014-01-01

    Systematic asymptotic methods are applied to the compressible conservation and state equations for a reactive gas, including transport terms, to develop a rational thermomechanical formulation for the ignition of a chemical reaction following time-resolved, spatially distributed thermal energy addition from an external source into a finite volume of gas. A multi-parameter asymptotic analysis is developed for a wide range of energy deposition levels relative to the initial internal energy in the volume when the heating timescale is short compared to the characteristic acoustic timescale of the volume. Below a quantitatively defined threshold for energy addition, a nearly constant volume heating process occurs, with a small but finite internal gas expansion Mach number. Very little added thermal energy is converted to kinetic energy. The gas expelled from the boundary of the hot, high-pressure spot is the source of mechanical disturbances (acoustic and shock waves) that propagate away into the neighbouring unheated gas. When the energy addition reaches the threshold value, the heating process is fully compressible with a substantial internal gas expansion Mach number, the source of blast waves propagating into the unheated environmental gas. This case corresponds to an extremely large non-dimensional hot-spot temperature and pressure. If the former is sufficiently large, a high activation energy chemical reaction is initiated on the short heating timescale. This phenomenon is in contrast to that for more modest levels of energy addition, where a thermal explosion occurs only after the familiar extended ignition delay period for a classical high activation reaction. Transport effects, modulated by an asymptotically small Knudsen number, are shown to be negligible unless a local gradient in temperature, concentration or velocity is exceptionally large.

  2. Influence of several factors on ignition lag in a compression-ignition engine

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold C; Voss, Fred

    1932-01-01

    This investigation was made to determine the influence of fuel quality, injection advance angle, injection valve-opening pressure, inlet-air pressure, compression ratio, and engine speed on the time lag of auto-ignition of a Diesel fuel oil in a single-cylinder compression-ignition engine as obtained from an analysis of indicator diagrams. Three cam-operated fuel-injection pumps, two pumps cams, and an automatic injection valve with two different nozzles were used. Ignition lag was considered to be the interval between the start of injection of the fuel as determined with a Stroborama and the start of effective combustion as determined from the indicator diagram, the latter being the point where 4.0 x 10(exp-6) pound of fuel had been effectively burned. For this particular engine and fuel it was found that: (1) for a constant start and the same rate of fuel injection up the point of cut-off, a variation in fuel quantity from 1.2 x 10(exp-4) to 4.1 x 10(exp-4) pound per cycle has no appreciable effect on the ignition lag; (2) injection advance angle increases or decreases the lag according to whether density, temperature, or turbulence has the controlling influence; (3) increase in valve-opening pressure slightly increases the lag; and (4) increase of inlet-air pressure, compression ratio, and engine speed reduces the lag.

  3. Low emission internal combustion engine

    DOEpatents

    Karaba, Albert M.

    1979-01-01

    A low emission, internal combustion compression ignition engine having a cylinder, a piston movable in the cylinder and a pre-combustion chamber communicating with the cylinder near the top thereof and in which low emissions of NO.sub.x are achieved by constructing the pre-combustion chamber to have a volume of between 70% and 85% of the combined pre-chamber and main combustion chamber volume when the piston is at top dead center and by variably controlling the initiation of fuel injection into the pre-combustion chamber.

  4. Numerical simulations of turbulent jet ignition and combustion

    NASA Astrophysics Data System (ADS)

    Validi, Abdoulahad; Irannejad, Abolfazl; Jaberi, Farhad

    2013-11-01

    The ignition and combustion of a homogeneous lean hydrogen-air mixture by a turbulent jet flow of hot combustion products injected into a colder gas mixture are studied by a high fidelity numerical model. Turbulent jet ignition can be considered as an efficient method for starting and controlling the reaction in homogeneously charged combustion systems used in advanced internal combustion and gas turbine engines. In this work, we study in details the physics of turbulent jet ignition in a fundamental flow configuration. The flow and combustion are modeled with the hybrid large eddy simulation/filtered mass density function (LES/FMDF) approach, in which the filtered form the compressible Navier-Stokes equations are solved with a high-order finite difference scheme for the turbulent velocity and the FMDF transport equations are solved with a Lagrangian stochastic method to obtain the scalar (temperature and species mass fractions) field. The hydrogen oxidation is described by a detailed reaction mechanism with 37 elementary reactions and 9 species.

  5. Prediction of Ignition of High Explosive When Submitted To Impact

    NASA Astrophysics Data System (ADS)

    Picart, Didier; Delmaire-Sizes, Franck; Gruau, Cyril; Trumel, Herve

    2009-06-01

    High explosive structures may unintentionally ignite and transit to deflagration or detonation, when subjected to mechanical loadings, such as low velocity impact. We focus our attention on ignition. The Browning and Scammon [1] criterion has been adapted. A concrete like constitutive law is derived, with an up-to-date experimental characterization. These models have been implemented in Abaqus/Explicit [2]. Numerical simulations are used to calibrate the ignition threshold. The presentation or the poster will detail the main assumptions, the models (Browning et al, mechanical behavior) and the calibration procedure. Comparisons between numerical results and experiments [3] will show the interest of this method but also its limitations (numerical artifacts, lack of mechanical data, misinterpretation of reactive tests). [1] R. Browning and R. Scammon, Shock compression of condensed matter, pp. 987-990, (2001). [2] C. Gruau, D. Picart et al., 17^th Dymat technical meeting, Cambridge, UK, (2007). [3] F. Delmaire-Sizes et al., 3^rd International symposium on energetic materials, Tokyo, Japan, (2008).

  6. A Comparison of Several Methods of Measuring Ignition Lag in a Compression-ignition Engine

    NASA Technical Reports Server (NTRS)

    Spanogle, J A

    1934-01-01

    The ignition lag of a fuel oil in the combustion chamber of a high speed compression-ignition engine was measured by three different methods. The start of injection of the fuel as observed with a Stoborama was taken as the start of the period of ignition lag in all cases. The end of the period of ignition lag was determined by observation of the appearance of incandescence in the combustion chamber, by inspection of a pressure-time card for evidence of pressure rise, and by analysis of the indicator card for evidence of the combustion of a small but definite quantity of fuel. A comparison of the values for ignition lags obtained by these three methods indicates that the appearance of incandescence is later than other evidences of the start of combustion, that visual inspection of a pressure-time diagram gives consistent and usable values with a minimum requirement of time and/or apparatus, and that analysis of the indicator card is not worth while for ignition lag alone.

  7. 40 CFR 1065.230 - Raw exhaust flow meter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sample NMHC downstream of the cooling for compression-ignition engines, 2-stroke spark-ignition engines, and 4-stroke spark-ignition engines below 19 kW. (3) If cooling causes aqueous condensation, do not...

  8. 40 CFR 1065.230 - Raw exhaust flow meter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sample NMHC downstream of the cooling for compression-ignition engines, 2-stroke spark-ignition engines, and 4-stroke spark-ignition engines below 19 kW. (3) If cooling causes aqueous condensation, do not...

  9. Mobile Source Emissions Regulatory Compliance Data Inventory

    EPA Pesticide Factsheets

    The Mobile Source Emissions Regulatory Compliance Data Inventory data asset contains measured summary compliance information on light-duty, heavy-duty, and non-road engine manufacturers by model, as well as fee payment data required by Title II of the 1990 Amendments to the Clean Air Act, to certify engines for sale in the U.S. and collect compliance certification fees. Data submitted by manufacturers falls into 12 industries: Heavy Duty Compression Ignition, Marine Spark Ignition, Heavy Duty Spark Ignition, Marine Compression Ignition, Snowmobile, Motorcycle & ATV, Non-Road Compression Ignition, Non-Road Small Spark Ignition, Light-Duty, Evaporative Components, Non-Road Large Spark Ignition, and Locomotive. Title II also requires the collection of fees from manufacturers submitting for compliance certification. Manufacturers submit data on an annual basis, to document engine model changes for certification. Manufacturers also submit compliance information on already certified in-use vehicles randomly selected by the EPA (1) year into their life and (4) years into their life to ensure that emissions systems continue to function appropriately over time.The EPA performs targeted confirmatory tests on approximately 15% of vehicles submitted for certification. Confirmatory data on engines is associated with its corresponding submission data to verify the accuracy of manufacturer submission beyond standard business rules.Section 209 of the 1990 Amendments to the Clea

  10. Inertial Confinement Fusion as an Extreme Example of Dynamic Compression

    NASA Astrophysics Data System (ADS)

    Moses, E.

    2013-06-01

    Initiating and controlling thermonuclear burn at the national ignition facility (NIF) will require the manipulation of matter to extreme energy densities. We will discuss recent advances in both controlling the dynamic compression of ignition targets and our understanding of the physical states and processes leading to ignition. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344.

  11. The Quiescent-Chamber Type Compression-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Foster, H H

    1937-01-01

    Report presents the results of performance tests of a single-cylinder 4-stroke-cycle compression-ignition engine having a vertical disk form of combustion chamber without air flow. The number, size, and direction of the orifices of the fuel-injection nozzles used were independently varied. A table and graphs are presented showing the performance of the engine with different nozzles; results of tests at different compression ratios, boost pressures, and coolant temperatures are also included.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rozanov, V. B., E-mail: rozanov@sci.lebedev.ru; Vergunova, G. A., E-mail: verg@sci.lebedev.ru

    The main parameters of compression of a target and tendencies at change in the irradiation conditions are determined by analyzing the published results of experiments at the megajoule National Ignition Facility (NIF) on the compression of capsules in indirect-irradiation targets by means of the one-dimensional RADIAN program in the spherical geometry. A possible version of the “failure of ignition” of an indirect-irradiation target under the NIF conditions is attributed to radiation transfer. The application of onedimensional model to analyze the National Ignition Campaign (NIC) experiments allows identifying conditions corresponding to the future ignition regime and distinguishing them from conditions undermore » which ignition does not occur.« less

  13. Stabilization of high-compression, indirect-drive inertial confinement fusion implosions using a 4-shock adiabat-shaped drive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacPhee, A. G.; Peterson, J. L.; Casey, D. T.

    Hydrodynamic instabilities and poor fuel compression are major factors for capsule performance degradation in ignition experiments on the National Ignition Facility. Using a recently developed laser drive profile with a decaying first shock to tune the ablative Richtmyer-Meshkov (ARM) instability and subsequent in-flight Rayleigh-Taylor growth, we have demonstrated reduced growth compared to the standard ignition pulse whilst maintaining conditions for a low fuel adiabat needed for increased compression. Using in-flight x-ray radiography of pre-machined modulations, the first growth measurements using this new ARM-tuned drive have demonstrated instability growth reduction of ∼4× compared to the original design at a convergence ratiomore » of ∼2. Corresponding simulations give a fuel adiabat of ∼1.6, similar to the original goal and consistent with ignition requirements.« less

  14. Stabilization of high-compression, indirect-drive inertial confinement fusion implosions using a 4-shock adiabat-shaped drive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacPhee, A. G.; Peterson, J. L.; Casey, D. T.

    Hydrodynamic instabilities and poor fuel compression are major factors for capsule performance degradation in ignition experiments on the National Ignition Facility. Using a recently developed laser drive profile with a decaying first shock to tune the ablative Richtmyer-Meshkov (ARM) instability and subsequent in-flight Rayleigh-Taylor growth, we have demonstrated reduced growth compared to the standard ignition pulse whilst maintaining conditions for a low fuel adiabat needed for increased compression. Here, using in-flight x-ray radiography of pre-machined modulations, the first growth measurements using this new ARM-tuned drive have demonstrated instability growth reduction of ~4× compared to the original design at a convergencemore » ratio of ~2. Corresponding simulations give a fuel adiabat of ~1.6, similar to the original goal and consistent with ignition requirements.« less

  15. Stabilization of high-compression, indirect-drive inertial confinement fusion implosions using a 4-shock adiabat-shaped drive

    DOE PAGES

    MacPhee, A. G.; Peterson, J. L.; Casey, D. T.; ...

    2015-08-01

    Hydrodynamic instabilities and poor fuel compression are major factors for capsule performance degradation in ignition experiments on the National Ignition Facility. Using a recently developed laser drive profile with a decaying first shock to tune the ablative Richtmyer-Meshkov (ARM) instability and subsequent in-flight Rayleigh-Taylor growth, we have demonstrated reduced growth compared to the standard ignition pulse whilst maintaining conditions for a low fuel adiabat needed for increased compression. Here, using in-flight x-ray radiography of pre-machined modulations, the first growth measurements using this new ARM-tuned drive have demonstrated instability growth reduction of ~4× compared to the original design at a convergencemore » ratio of ~2. Corresponding simulations give a fuel adiabat of ~1.6, similar to the original goal and consistent with ignition requirements.« less

  16. 40 CFR 1065.230 - Raw exhaust flow meter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sample NMHC downstream of the cooling for compression-ignition engines, two-stroke spark-ignition engines, or four-stroke spark-ignition engines at or below 19 kW. (3) The cooling must not cause aqueous...

  17. 40 CFR Appendix I to Part 92 - Emission Related Locomotive and Engine Parameters and Specifications

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... injection—non-compression ignition engines. a. Control parameters and calibrations. b. Idle mixture. c. Fuel...(s). i. Injector timing calibration. 4. Fuel injection—compression ignition engines. a. Control... restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Carburetion. a. Air-fuel flow calibration...

  18. 40 CFR Appendix I to Part 92 - Emission Related Locomotive and Engine Parameters and Specifications

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... injection—non-compression ignition engines. a. Control parameters and calibrations. b. Idle mixture. c. Fuel...(s). i. Injector timing calibration. 4. Fuel injection—compression ignition engines. a. Control... restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Carburetion. a. Air-fuel flow calibration...

  19. 40 CFR Appendix I to Part 92 - Emission Related Locomotive and Engine Parameters and Specifications

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... injection—non-compression ignition engines. a. Control parameters and calibrations. b. Idle mixture. c. Fuel...(s). i. Injector timing calibration. 4. Fuel injection—compression ignition engines. a. Control... restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Carburetion. a. Air-fuel flow calibration...

  20. 40 CFR Appendix I to Part 92 - Emission Related Locomotive and Engine Parameters and Specifications

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... injection—non-compression ignition engines. a. Control parameters and calibrations. b. Idle mixture. c. Fuel...(s). i. Injector timing calibration. 4. Fuel injection—compression ignition engines. a. Control... restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Carburetion. a. Air-fuel flow calibration...

  1. Enhancing the Ignition, Hardness and Compressive Response of Magnesium by Reinforcing with Hollow Glass Microballoons

    PubMed Central

    Gupta, Manoj

    2017-01-01

    Magnesium (Mg)/glass microballoons (GMB) metal matrix syntactic foams (1.47–1.67 g/cc) were synthesized using a disintegrated melt deposition (DMD) processing route. Such syntactic foams are of great interest to the scientific community as potential candidate materials for the ever-changing demands in automotive, aerospace, and marine sectors. The synthesized composites were evaluated for their microstructural, thermal, and compressive properties. Results showed that microhardness and the dimensional stability of pure Mg increased with increasing GMB content. The ignition response of these foams was enhanced by ~22 °C with a 25 wt % GMB addition to the Mg matrix. The authors of this work propose a new parameter, ignition factor, to quantify the superior ignition performance that the developed Mg foams exhibit. The room temperature compressive strengths of pure Mg increased with the addition of GMB particles, with Mg-25 wt % GMB exhibiting the maximum compressive yield strength (CYS) of 161 MPa and an ultimate compressive strength (UCS) of 232 MPa for a GMB addition of 5 wt % in Mg. A maximum failure strain of 37.7% was realized in Mg-25 wt % GMB foam. The addition of GMB particles significantly enhanced the energy absorption by ~200% prior to compressive failure for highest filler loading, as compared to pure Mg. Finally, microstructural changes in Mg owing to the presence of hollow GMB particles were elaborately discussed. PMID:28841189

  2. Enhancing the Ignition, Hardness and Compressive Response of Magnesium by Reinforcing with Hollow Glass Microballoons.

    PubMed

    Manakari, Vyasaraj; Parande, Gururaj; Doddamani, Mrityunjay; Gupta, Manoj

    2017-08-25

    Magnesium (Mg)/glass microballoons (GMB) metal matrix syntactic foams (1.47-1.67 g/cc) were synthesized using a disintegrated melt deposition (DMD) processing route. Such syntactic foams are of great interest to the scientific community as potential candidate materials for the ever-changing demands in automotive, aerospace, and marine sectors. The synthesized composites were evaluated for their microstructural, thermal, and compressive properties. Results showed that microhardness and the dimensional stability of pure Mg increased with increasing GMB content. The ignition response of these foams was enhanced by ~22 °C with a 25 wt % GMB addition to the Mg matrix. The authors of this work propose a new parameter, ignition factor, to quantify the superior ignition performance that the developed Mg foams exhibit. The room temperature compressive strengths of pure Mg increased with the addition of GMB particles, with Mg-25 wt % GMB exhibiting the maximum compressive yield strength (CYS) of 161 MPa and an ultimate compressive strength (UCS) of 232 MPa for a GMB addition of 5 wt % in Mg. A maximum failure strain of 37.7% was realized in Mg-25 wt % GMB foam. The addition of GMB particles significantly enhanced the energy absorption by ~200% prior to compressive failure for highest filler loading, as compared to pure Mg. Finally, microstructural changes in Mg owing to the presence of hollow GMB particles were elaborately discussed.

  3. 75 FR 37310 - Control of Emissions From New and In-Use Nonroad Compression-Ignition Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-29

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 1039 Control of Emissions From New and In-Use Nonroad Compression- Ignition Engines CFR Correction In Title 40 of the Code of Federal Regulations, Part 1000 to End... for my engines in model year 2014 and earlier? * * * * * Table 2 of Sec. 1039.102--Interim Tier 4...

  4. 76 FR 25246 - Control of Emissions From New and In-Use Marine Compression-Ignition Engines and Vessels; CFR...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-04

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 1042 Control of Emissions From New and In-Use Marine Compression- Ignition Engines and Vessels; CFR Correction Correction In rule document 2011-8794 appearing on pages 20550-20551 in the issue of Wednesday, April 13, 2011, make the following correction: Sec. 1042...

  5. Hydrogen-fueled diesel engine without timed ignition

    NASA Technical Reports Server (NTRS)

    Homan, H. S.; De Boer, P. C. T.; Mclean, W. J.; Reynolds, R. K.

    1979-01-01

    Experiments were carried out to investigate the feasibility of converting a diesel engine to hydrogen-fueled operation without providing a timed ignition system. Use was made of a glow plug and a multiple-strike spark plug. The glow plug was found to provide reliable ignition and smooth engine operation. It caused the hydrogen to ignite almost immediately upon the start of injection. Indicated mean effective pressures were on the order of 1.3 MPa for equivalence ratios between 0.1 and 0.4 at a compression ratio of 18. This is significantly higher than the corresponding result obtained with diesel oil (about 0.6 MPa for equivalence ratios between 0.3 and 0.9). Indicated thermal efficiencies were on the order of 0.4 for hydrogen and 0.20-0.25 for diesel oil. Operation with the multiple-strike spark system yielded similar values for IMEP and efficiency, but gave rise to large cycle-to-cycle variations in the delay between the beginning of injection and ignition. Large ignition delays were associated with large amplitude pressure waves in the combustion chamber. The measured NO(x) concentrations in the exhaust gas were of the order of 50-100 ppm. This is significantly higher than the corresponding results obtained with premixed hydrogen and air at low equivalence ratios. Compression ignition could not be achieved even at a compression ratio of 29.

  6. Simulations of inertial confinement fusion driven by a novel synchrotron-radiation-based x-ray igniter

    NASA Astrophysics Data System (ADS)

    Shlyaptsev, Vyacheslav N.; Tatchyn, Roman O.

    2004-01-01

    The advantages and challenges of using a powerful x-ray source for the fast ignition of compressed Inertial Confinement Fusion (ICF) targets have been considered. The requirements for such a source together with the optics to focus the x-rays onto compressed DT cores lead to a conceptual design based on Energy Recovery Linacs (ERLs) and long wigglers to produce x-ray pulses with the appropriate phase space properties. A comparative assessment of the parameters of the igniter system indicates that the technologies for building it, although expensive, are physically achievable. Our x-ray fast ignition (XFI) scheme requires substantially smaller energy for the initiation of nuclear fusion reactions than other methods.

  7. Thermofluidic compression effects to achieve combustion in a low-compression scramjet engine

    NASA Astrophysics Data System (ADS)

    Moura, A. F.; Wheatley, V.; Jahn, I.

    2018-07-01

    The compression provided by a scramjet inlet is an important parameter in its design. It must be low enough to limit thermal and structural loads and stagnation pressure losses, but high enough to provide the conditions favourable for combustion. Inlets are typically designed to achieve sufficient compression without accounting for the fluidic, and subsequently thermal, compression provided by the fuel injection, which can enable robust combustion in a low-compression engine. This is investigated using Reynolds-averaged Navier-Stokes numerical simulations of a simplified scramjet engine designed to have insufficient compression to auto-ignite fuel in the absence of thermofluidic compression. The engine was designed with a wide rectangular combustor and a single centrally located injector, in order to reduce three-dimensional effects of the walls on the fuel plume. By varying the injected mass flow rate of hydrogen fuel (equivalence ratios of 0.22, 0.17, and 0.13), it is demonstrated that higher equivalence ratios lead to earlier ignition and more rapid combustion, even though mean conditions in the combustor change by no more than 5% for pressure and 3% for temperature with higher equivalence ratio. By supplementing the lower equivalence ratio with helium to achieve a higher mass flow rate, it is confirmed that these benefits are primarily due to the local compression provided by the extra injected mass. Investigation of the conditions around the fuel plume indicated two connected mechanisms. The higher mass flow rate for higher equivalence ratios generated a stronger injector bow shock that compresses the free-stream gas, increasing OH radical production and promoting ignition. This was observed both in the higher equivalence ratio case and in the case with helium. This earlier ignition led to increased temperature and pressure downstream and, consequently, stronger combustion. The heat release from combustion provided thermal compression in the combustor, further increasing combustion efficiency.

  8. Thermofluidic compression effects to achieve combustion in a low-compression scramjet engine

    NASA Astrophysics Data System (ADS)

    Moura, A. F.; Wheatley, V.; Jahn, I.

    2017-12-01

    The compression provided by a scramjet inlet is an important parameter in its design. It must be low enough to limit thermal and structural loads and stagnation pressure losses, but high enough to provide the conditions favourable for combustion. Inlets are typically designed to achieve sufficient compression without accounting for the fluidic, and subsequently thermal, compression provided by the fuel injection, which can enable robust combustion in a low-compression engine. This is investigated using Reynolds-averaged Navier-Stokes numerical simulations of a simplified scramjet engine designed to have insufficient compression to auto-ignite fuel in the absence of thermofluidic compression. The engine was designed with a wide rectangular combustor and a single centrally located injector, in order to reduce three-dimensional effects of the walls on the fuel plume. By varying the injected mass flow rate of hydrogen fuel (equivalence ratios of 0.22, 0.17, and 0.13), it is demonstrated that higher equivalence ratios lead to earlier ignition and more rapid combustion, even though mean conditions in the combustor change by no more than 5% for pressure and 3% for temperature with higher equivalence ratio. By supplementing the lower equivalence ratio with helium to achieve a higher mass flow rate, it is confirmed that these benefits are primarily due to the local compression provided by the extra injected mass. Investigation of the conditions around the fuel plume indicated two connected mechanisms. The higher mass flow rate for higher equivalence ratios generated a stronger injector bow shock that compresses the free-stream gas, increasing OH radical production and promoting ignition. This was observed both in the higher equivalence ratio case and in the case with helium. This earlier ignition led to increased temperature and pressure downstream and, consequently, stronger combustion. The heat release from combustion provided thermal compression in the combustor, further increasing combustion efficiency.

  9. Effect of engine load and biogas flow rate to the performance of a compression ignition engine run in dual-fuel (dieselbiogas) mode

    NASA Astrophysics Data System (ADS)

    Ambarita, H.

    2018-02-01

    The Government of Indonesia (GoI) has released a target on reduction Green Houses Gases emissions (GHG) by 26% from level business-as-usual by 2020, and the target can be up to 41% by international supports. In the energy sector, this target can be reached effectively by promoting fossil fuel replacement or blending with biofuel. One of the potential solutions is operating compression ignition (CI) engine in dual-fuel (diesel-biogas) mode. In this study effects of engine load and biogas flow rate on the performance and exhaust gas emissions of a compression ignition engine run in dual-fuel mode are investigated. In the present study, the used biogas is refined with methane content 70% of volume. The objectives are to explore the optimum operating condition of the CI engine run in dual-fuel mode. The experiments are performed on a four-strokes CI engine with rated output power of 4.41 kW. The engine is tested at constant speed 1500 rpm. The engine load varied from 600W to 1500W and biogas flow rate varied from 0 L/min to 6 L/min. The results show brake thermal efficiency of the engine run in dual-fuel mode is better than pure diesel mode if the biogas flow rates are 2 L/min and 4 L/min. It is recommended to operate the present engine in a dual-fuel mode with biogas flow rate of 4 L/min. The consumption of diesel fuel can be replaced up to 50%.

  10. 76 FR 26620 - Control of Emissions From New and In-Use Marine Compression-Ignition Engines and Vessels; CFR...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-09

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 1042 Control of Emissions From New and In-Use Marine Compression- Ignition Engines and Vessels; CFR Correction Correction In rule correction document C1-2011-8794 appearing on page 25246 in the issue of Wednesday, May 4, 2011, make the following correction: Sec. 1042.901...

  11. Fuel Vaporization and Its Effect on Combustion in a High-Speed Compression-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Waldron, C D

    1933-01-01

    The tests discussed in this report were conducted to determine whether or not there is appreciable vaporization of the fuel injected into a high-speed compression-ignition engine during the time available for injection and combustion. The effects of injection advance angle and fuel boiling temperature were investigated. The results show that an appreciable amount of the fuel is vaporized during injection even though the temperature and pressure conditions in the engine are not sufficient to cause ignition either during or after injection, and that when the conditions are such as to cause ignition the vaporization process affects the combustion. The results are compared with those of several other investigators in the same field.

  12. Microwave-Assisted Ignition for Improved Internal Combustion Engine Efficiency

    NASA Astrophysics Data System (ADS)

    DeFilippo, Anthony Cesar

    The ever-present need for reducing greenhouse gas emissions associated with transportation motivates this investigation of a novel ignition technology for internal combustion engine applications. Advanced engines can achieve higher efficiencies and reduced emissions by operating in regimes with diluted fuel-air mixtures and higher compression ratios, but the range of stable engine operation is constrained by combustion initiation and flame propagation when dilution levels are high. An advanced ignition technology that reliably extends the operating range of internal combustion engines will aid practical implementation of the next generation of high-efficiency engines. This dissertation contributes to next-generation ignition technology advancement by experimentally analyzing a prototype technology as well as developing a numerical model for the chemical processes governing microwave-assisted ignition. The microwave-assisted spark plug under development by Imagineering, Inc. of Japan has previously been shown to expand the stable operating range of gasoline-fueled engines through plasma-assisted combustion, but the factors limiting its operation were not well characterized. The present experimental study has two main goals. The first goal is to investigate the capability of the microwave-assisted spark plug towards expanding the stable operating range of wet-ethanol-fueled engines. The stability range is investigated by examining the coefficient of variation of indicated mean effective pressure as a metric for instability, and indicated specific ethanol consumption as a metric for efficiency. The second goal is to examine the factors affecting the extent to which microwaves enhance ignition processes. The factors impacting microwave enhancement of ignition processes are individually examined, using flame development behavior as a key metric in determining microwave effectiveness. Further development of practical combustion applications implementing microwave-assisted spark technology will benefit from predictive models which include the plasma processes governing the observed combustion enhancement. This dissertation documents the development of a chemical kinetic mechanism for the plasma-assisted combustion processes relevant to microwave-assisted spark ignition. The mechanism includes an existing mechanism for gas-phase methane oxidation, supplemented with electron impact reactions, cation and anion chemical reactions, and reactions involving vibrationally-excited and electronically-excited species. Calculations using the presently-developed numerical model explain experimentally-observed trends, highlighting the relative importance of pressure, temperature, and mixture composition in determining the effectiveness of microwave-assisted ignition enhancement.

  13. Adaptive engine injection for emissions reduction

    DOEpatents

    Reitz, Rolf D. : Sun, Yong

    2008-12-16

    NOx and soot emissions from internal combustion engines, and in particular compression ignition (diesel) engines, are reduced by varying fuel injection timing, fuel injection pressure, and injected fuel volume between low and greater engine loads. At low loads, fuel is injected during one or more low-pressure injections occurring at low injection pressures between the start of the intake stroke and approximately 40 degrees before top dead center during the compression stroke. At higher loads, similar injections are used early in each combustion cycle, in addition to later injections which preferably occur between about 90 degrees before top dead center during the compression stroke, and about 90 degrees after top dead center during the expansion stroke (and which most preferably begin at or closely adjacent the end of the compression stroke). These later injections have higher injection pressure, and also lower injected fuel volume, than the earlier injections.

  14. Ignition and structure of a laminar diffusion flame in a compressible mixing layer with finite rate chemistry

    NASA Technical Reports Server (NTRS)

    Grosch, C. E.; Jackson, T. L.

    1991-01-01

    The ignition and structure of a reacting compressible mixing layer is considered using finite rate chemistry lying between two streams of reactants with different freestream speeds and temperatures. Numerical integration of the governing equations show that the structure of the reacting flow can be quite complicated depending on the magnitude of the Zeldovich number. An analysis of both the ignition a diffusion flame regimes is presented using a combination of large Zeldovich number asymptotics and numerics. This allows to analyze the behavior of these regimes as a function of the parameters of the problem.

  15. Fuel mixture stratification as a method for improving homogeneous charge compression ignition engine operation

    DOEpatents

    Dec, John E [Livermore, CA; Sjoberg, Carl-Magnus G [Livermore, CA

    2006-10-31

    A method for slowing the heat-release rate in homogeneous charge compression ignition ("HCCI") engines that allows operation without excessive knock at higher engine loads than are possible with conventional HCCI. This method comprises injecting a fuel charge in a manner that creates a stratified fuel charge in the engine cylinder to provide a range of fuel concentrations in the in-cylinder gases (typically with enough oxygen for complete combustion) using a fuel with two-stage ignition fuel having appropriate cool-flame chemistry so that regions of different fuel concentrations autoignite sequentially.

  16. Detonability of turbulent white dwarf plasma: Hydrodynamical models at low densities

    NASA Astrophysics Data System (ADS)

    Fenn, Daniel

    The origins of Type Ia supernovae (SNe Ia) remain an unsolved problem of contemporary astrophysics. Decades of research indicate that these supernovae arise from thermonuclear runaway in the degenerate material of white dwarf stars; however, the mechanism of these explosions is unknown. Also, it is unclear what are the progenitors of these objects. These missing elements are vital components of the initial conditions of supernova explosions, and are essential to understanding these events. A requirement of any successful SN Ia model is that a sufficient portion of the white dwarf plasma must be brought under conditions conducive to explosive burning. Our aim is to identify the conditions required to trigger detonations in turbulent, carbon-rich degenerate plasma at low densities. We study this problem by modeling the hydrodynamic evolution of a turbulent region filled with a carbon/oxygen mixture at a density, temperature, and Mach number characteristic of conditions found in the 0.8+1.2 solar mass (CO0812) model discussed by Fenn et al. (2016). We probe the ignition conditions for different degrees of compressibility in turbulent driving. We assess the probability of successful detonations based on characteristics of the identified ignition kernels, using Eulerian and Lagrangian statistics of turbulent flow. We found that material with very short ignition times is abundant in the case that turbulence is driven compressively. This material forms contiguous structures that persist over many ignition time scales, and that we identify as prospective detonation kernels. Detailed analysis of the kernels revealed that their central regions are densely filled with material characterized by short ignition times and contain the minimum mass required for self-sustained detonations to form. It is conceivable that ignition kernels will be formed for lower compressibility in the turbulent driving. However, we found no detonation kernels in models driven 87.5 percent compressively. We indirectly confirmed the existence of the lower limit of the degree of compressibility of the turbulent drive for the formation of detonation kernels by analyzing simulation results of the He0609 model of Fenn et al. (2016), which produces a detonation in a helium-rich boundary layer. We found that the amount of energy in the compressible component of the kinetic energy in this model corresponds to about 96 percent compressibility in the turbulent drive. The fact that no detonation was found in the original CO0812 model for nominally the same problem conditions suggests that models with carbon-rich boundary layers may require higher resolution in order to adequately represent the mass distributions in terms of ignition times.

  17. A novel method to detect ignition angle of diesel

    NASA Astrophysics Data System (ADS)

    Li, Baofu; Peng, Yong; Huang, Hongzhong

    2018-04-01

    This paper is based on the combustion signal collected by the combustion sensor of piezomagnetic type, taking how to get the diesel fuel to start the combustion as the starting point. It analyzes the operating principle and pressure change of the combustion sensor, the compression peak signal of the diesel engine in the process of compression, and several common methods. The author puts forward a new idea that ignition angle timing can be determined more accurately by the compression peak decomposition method. Then, the method is compared with several common methods.

  18. Over compression influence to the performances of the spark ignition engines

    NASA Astrophysics Data System (ADS)

    Rakosi, E.; Talif, S. G.; Manolache, G.

    2016-08-01

    This paper presents the theoretical and experimental results of some procedures used in improving the performances of the automobile spark ignition engines. The study uses direct injection and high over-compression applied to a standard engine. To this purpose, the paper contains both the constructive solutions and the results obtained from the test bed concerning the engine power indices, fuel consumption and exhaust emissions.

  19. Effect of spatial nonuniformity of heating on compression and burning of a thermonuclear target under direct multibeam irradiation by a megajoule laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bel’kov, S. A.; Bondarenko, S. V.; Vergunova, G. A.

    Direct-drive fusion targets are considered at present as an alternative to targets of indirect compression at a laser energy level of about 2 MJ. In this approach, the symmetry of compression and ignition of thermonuclear fuel play the major role. We report on the results of theoretical investigation of compression and burning of spherical direct-drive targets in the conditions of spatial nonuniformity of heating associated with a shift of the target from the beam center of focusing and possible laser radiation energy disbalance in the beams. The investigation involves numerous calculations based on a complex of 1D and 2D codesmore » RAPID, SEND (for determining the target illumination and the dynamics of absorption), DIANA, and NUT (1D and multidimensional hydrodynamics of compression and burning of targets). The target under investigation had the form of a two-layer shell (ablator made of inertial material CH and DT ice) filled with DT gas. We have determined the range of admissible variation of compression and combustion parameters of the target depending on the variation of the spatial nonuniformity of its heating by a multibeam laser system. It has been shown that low-mode (long-wavelength) perturbations deteriorate the characteristics of the central region due to less effective conversion of the kinetic energy of the target shell into the internal energy of the center. Local initiation of burning is also observed in off-center regions of the target in the case of substantial asymmetry of irradiation. In this case, burning is not spread over the entire volume of the DT fuel as a rule, which considerably reduces the thermonuclear yield as compared to that in the case of spherical symmetry and central ignition.« less

  20. Compression-ignition Engine Performance at Altitudes and at Various Air Pressures and Temperatures

    NASA Technical Reports Server (NTRS)

    Moore, Charles S; Collins, John H

    1937-01-01

    Engine test results are presented for simulated altitude conditions. A displaced-piston combustion chamber on a 5- by 7-inch single cylinder compression-ignition engine operating at 2,000 r.p.m. was used. Inlet air temperature equivalent to standard altitudes up to 14,000 feet were obtained. Comparison between performance at altitude of the unsupercharged compression-ignition engine compared favorably with the carburetor engine. Analysis of the results for which the inlet air temperature, inlet air pressure, and inlet and exhaust pressure were varied indicates that engine performance cannot be reliably corrected on the basis of inlet air density or weight of air charge. Engine power increases with inlet air pressure and decreases with inlet air temperatures very nearly as straight line relations over a wide range of air-fuel ratios. Correction factors are given.

  1. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements... interval. You may use the difference between a diluted exhaust flow meter and a dilution air meter to... compression-ignition engines, 2-stroke spark-ignition engines, and 4-stroke spark-ignition engines below 19 kW...

  2. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements... interval. You may use the difference between a diluted exhaust flow meter and a dilution air meter to... compression-ignition engines, two-stroke spark-ignition engines, or four-stroke spark-ignition engines at or...

  3. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements... interval. You may use the difference between a diluted exhaust flow meter and a dilution air meter to... compression-ignition engines, 2-stroke spark-ignition engines, and 4-stroke spark-ignition engines below 19 kW...

  4. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements... interval. You may use the difference between a diluted exhaust flow meter and a dilution air meter to... compression-ignition engines, 2-stroke spark-ignition engines, and 4-stroke spark-ignition engines below 19 kW...

  5. Exhaust Emissions Measured Under Real Traffic Conditions from Vehicles Fitted with Spark Ignition and Compression Ignition Engines

    NASA Astrophysics Data System (ADS)

    Merkisz, Jerzy; Lijewski, Piotr; Fuć, Paweł

    2011-06-01

    The tests performed under real traffic conditions provide invaluable information on the relations between the engine parameters, vehicle parameters and traffic conditions (traffic congestion) on one side and the exhaust emissions on the other. The paper presents the result of road tests obtained in an urban and extra-urban cycles for vehicles fitted with different engines, spark ignition engine and compression ignition engine. For the tests a portable emission analyzer SEMTECH DS. by SENSORS was used. This analyzer provides online measurement of the concentrations of exhaust emission components on a vehicle in motion under real traffic conditions. The tests were performed in city traffic. A comparative analysis has been presented of the obtained results for vehicles with individual powertrains.

  6. Low fuel convergence path to ignition on the NIF

    NASA Astrophysics Data System (ADS)

    Schmitt, M. J.; Molvig, Kim; Gianakon, T. A.; Woods, C. N.; Krasheninnikova, N. S.; Hsu, S. C.; Schmidt, D. W.; Dodd, E. S.; Zylstra, Alex; Scheiner, B.; McKenty, P.; Campbell, E. M.; Froula, D.; Betti, R.; Michel, T.

    2017-10-01

    A novel concept for achieving ignition on the NIF is proposed that obviates current issues plaguing single-shell high-convergence capsules. A large directly-driven Be shell is designed to robustly implode two nested internal shells by efficiently converting 1.7MJ of laser energy from a 6 ns, low intensity laser pulse, into a 1 ns dynamic pressure pulse to ignite and burn a central liquid DT core after a fuel convergence of only 9. The short, low intensity laser pulse mitigates LPI allowing more uniform laser drive of the target and eliminates hot e-, preheat and laser zooming issues. Preliminary rad-hydro simulations predict ignition initiation with 90% maximum inner shell velocity, before deceleration Rayleigh-Taylor growth can cause significant pusher shell mix into the compressed DT fuel. The gold inner pusher shell reduces pre-ignition radiation losses from the fuel allowing ignition to occur at 2.5keV. Further 2D simulations show that the short pulse design results in a spatially uniform kinetic drive that is tolerant to variations in laser cone power. A multi-pronged effort, in collaboration with LLE, is progressing to optimize this design for NIF's PDD laser configuration. Work performed under the auspices of the U.S. Dept. of Energy by the Los Alamos National Security, LLC, Los Alamos National Laboratory under contract DE-FG02-051ER54810.

  7. Impact of Formaldehyde Addition on Auto-Ignition in Internal-Combustion Engines

    NASA Astrophysics Data System (ADS)

    Kuwahara, Kazunari; Ando, Hiromitsu; Furutani, Masahiro; Ohta, Yasuhiko

    By employing a direct-injection diesel engine equipped with a common-rail type of injection system, by adding formaldehyde (CH2O) to the intake air, and by changing the fuel-injection timing, the compression ratio and the intake-air temperature, a mechanism for CH2O as a fuel additive to affect auto-ignition was discussed. Unlike an HCCI type of engine, the diesel engine can expose an air-fuel mixture only to a limited range of the in-cylinder temperature before the ignition, and can separate low- and high-temperature parts of the mechanism. When low-temperature oxidation starts at a temperature above 900K, there are cases that the CH2O advances the ignition timing. Below 900K, to the contrary, it always retards the timing. It is because, above 900K, a part of the CH2O changes into CO together with H2O2 as an ignition promoter. Below 900K, on the other hand, the CH2O itself acts as an OH radical scavenger against cool-flame reaction, from the beginning of low-temperature oxidation. Then, the engine was modified for its extraordinary function as a gasoline-knocking generator, in order that an effect of CH2O on knocking could be discussed. The CH2O retards the onset of auto-ignition of an end gas. Judging from a large degree of the retardation, the ignition is probably triggered below 900K.

  8. Methodology for the investigation of ignition near hot surfaces in a high-pressure shock tube

    NASA Astrophysics Data System (ADS)

    Niegemann, P.; Fikri, M.; Wlokas, I.; Röder, M.; Schulz, C.

    2018-05-01

    Autoignition of fuel/air mixtures is a determining process in internal combustion engines. Ignition can start either homogeneously in the gas phase after compression or in the vicinity of hot surfaces. While ignition properties of commercial fuels are conventionally described by a single quantity (octane number), it is known that some fuels have a varying propensity to the two processes. We present a new experimental concept that generates well-controlled temperature inhomogeneities in the shock-heated gases of a high-pressure shock tube. A shock-heated reactive mixture is brought into contact with a heated silicon nitride ceramic glow plug. The glow-plug temperature can be set up to 1200 K, higher than the post-reflected-shock gas temperatures (650-1050 K). High-repetition-rate chemiluminescence imaging is used to localize the onset of ignition in the vicinity of the hot surface. In experiments with ethanol, the results show that in most cases under shock-heated conditions, the ignition begins inhomogeneously in the vicinity of the glow plug and is favored because of the high wall temperature. Additionally, the interaction of geometry, external heating, and gas-dynamic effects was investigated by numerical simulations of the shock wave in a non-reactive flow.

  9. Methodology for the investigation of ignition near hot surfaces in a high-pressure shock tube.

    PubMed

    Niegemann, P; Fikri, M; Wlokas, I; Röder, M; Schulz, C

    2018-05-01

    Autoignition of fuel/air mixtures is a determining process in internal combustion engines. Ignition can start either homogeneously in the gas phase after compression or in the vicinity of hot surfaces. While ignition properties of commercial fuels are conventionally described by a single quantity (octane number), it is known that some fuels have a varying propensity to the two processes. We present a new experimental concept that generates well-controlled temperature inhomogeneities in the shock-heated gases of a high-pressure shock tube. A shock-heated reactive mixture is brought into contact with a heated silicon nitride ceramic glow plug. The glow-plug temperature can be set up to 1200 K, higher than the post-reflected-shock gas temperatures (650-1050 K). High-repetition-rate chemiluminescence imaging is used to localize the onset of ignition in the vicinity of the hot surface. In experiments with ethanol, the results show that in most cases under shock-heated conditions, the ignition begins inhomogeneously in the vicinity of the glow plug and is favored because of the high wall temperature. Additionally, the interaction of geometry, external heating, and gas-dynamic effects was investigated by numerical simulations of the shock wave in a non-reactive flow.

  10. Staged Z-pinch for the production of high-flux neutrons and net energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wessel, Frank J.; Rahman, Hafiz Ur; Rostoker, Norman

    A fusible target is embedded in a high Z liner, ohmically heated and then shock wave heated by implosion of an enveloping high Z liner. The target is adiabatically heated by compression, fusibly ignited and charged-particle heated as it is being ignited. A shock front forms as the liner implodes which shock front detaches from the more slowly moving liner, collides with the outer surface of the target, accelerates inward, rapidly heating the target, adiabatically compressing the target and liner and amplifying the current to converge the liner mass toward a central axis thereby compressing the target to a fusionmore » condition when it begins to ignite and produce charged particles. The charged particles are trapped in a large magnetic field surrounding the target. The energy of the charged particles is deposited into the target to further heat the target to produce an energy gain.« less

  11. Combustion engine system

    NASA Technical Reports Server (NTRS)

    Houseman, John (Inventor); Voecks, Gerald E. (Inventor)

    1986-01-01

    A flow through catalytic reactor which selectively catalytically decomposes methanol into a soot free hydrogen rich product gas utilizing engine exhaust at temperatures of 200 to 650 C to provide the heat for vaporizing and decomposing the methanol is described. The reactor is combined with either a spark ignited or compression ignited internal combustion engine or a gas turbine to provide a combustion engine system. The system may be fueled entirely by the hydrogen rich gas produced in the methanol decomposition reactor or the system may be operated on mixed fuels for transient power gain and for cold start of the engine system. The reactor includes a decomposition zone formed by a plurality of elongated cylinders which contain a body of vapor permeable, methanol decomposition catalyst preferably a shift catalyst such as copper-zinc.

  12. The effect of shock dynamics on compressibility of ignition-scale National Ignition Facility implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zylstra, A. B.; Frenje, J. A.; Séguin, F. H.

    The effects of shock dynamics on compressibility of indirect-drive ignition-scale surrogate implosions, CH shells filled with D 3He gas, have been studied using charged-particle spectroscopy. Spectral measurements of D 3He protons produced at the shock-bang time probe the shock dynamics and in-flight characteristics of an implosion. The proton shock yield is found to vary by over an order of magnitude. A simple model relates the observed yield to incipient hot-spot adiabat, suggesting that implosions with rapid radiation-power increase during the main drive pulse may have a 2x higher hot-spot adiabat, potentially reducing compressibility. A self-consistent 1-D implosion model was usedmore » to infer the areal density (pR) and the shell center-of-mass radius (R cm) from the downshift of the shock-produced D 3He protons. The observed pR at shock-bang time is substantially higher for implosions, where the laser drive is on until near the compression bang time ('short-coast'), while longer-coasting implosions have lower pR. This corresponds to a much larger temporal difference between the shock- and compression-bang time in the long-coast implosions (~800 ps) than in the short-coast (~400 ps); this will be verified with a future direct bang-time diagnostic. This model-inferred differential bang time contradicts radiation-hydrodynamic simulations, which predict constant 700–800 ps differential independent of coasting time. This result is potentially explained by uncertainties in modeling late-time ablation drive on the capsule. In an ignition experiment, an earlier shock-bang time resulting in an earlier onset of shell deceleration, potentially reducing compression and, thus, fuel pR.« less

  13. The effect of shock dynamics on compressibility of ignition-scale National Ignition Facility implosions

    DOE PAGES

    Zylstra, A. B.; Frenje, J. A.; Séguin, F. H.; ...

    2014-11-03

    The effects of shock dynamics on compressibility of indirect-drive ignition-scale surrogate implosions, CH shells filled with D 3He gas, have been studied using charged-particle spectroscopy. Spectral measurements of D 3He protons produced at the shock-bang time probe the shock dynamics and in-flight characteristics of an implosion. The proton shock yield is found to vary by over an order of magnitude. A simple model relates the observed yield to incipient hot-spot adiabat, suggesting that implosions with rapid radiation-power increase during the main drive pulse may have a 2x higher hot-spot adiabat, potentially reducing compressibility. A self-consistent 1-D implosion model was usedmore » to infer the areal density (pR) and the shell center-of-mass radius (R cm) from the downshift of the shock-produced D 3He protons. The observed pR at shock-bang time is substantially higher for implosions, where the laser drive is on until near the compression bang time ('short-coast'), while longer-coasting implosions have lower pR. This corresponds to a much larger temporal difference between the shock- and compression-bang time in the long-coast implosions (~800 ps) than in the short-coast (~400 ps); this will be verified with a future direct bang-time diagnostic. This model-inferred differential bang time contradicts radiation-hydrodynamic simulations, which predict constant 700–800 ps differential independent of coasting time. This result is potentially explained by uncertainties in modeling late-time ablation drive on the capsule. In an ignition experiment, an earlier shock-bang time resulting in an earlier onset of shell deceleration, potentially reducing compression and, thus, fuel pR.« less

  14. 40 CFR Table 2c to Subpart Zzzz of... - Requirements for Existing Compression Ignition Stationary RICE Located at a Major Source of HAP...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Ignition Stationary RICE Located at a Major Source of HAP Emissions and Existing Spark Ignition Stationary RICE ⤠500 HP Located at a Major Source of HAP Emissions 2c Table 2c to Subpart ZZZZ of Part 63... Stationary RICE Located at a Major Source of HAP Emissions and Existing Spark Ignition Stationary RICE ≤ 500...

  15. Flash Kα radiography of laser-driven solid sphere compression for fast ignition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawada, H.; Lee, S.; Shiroto, T.

    2016-06-20

    Time-resolved compression of a laser-driven solid deuterated plastic sphere with a cone was measured with flash Kα x-ray radiography. A spherically converging shockwave launched by nanosecond GEKKO XII beams was used for compression while a flash of 4.51 keV Ti Kα x-ray backlighter was produced by a high-intensity, picosecond laser LFEX (Laser for Fast ignition EXperiment) near peak compression for radiography. Areal densities of the compressed core were inferred from two-dimensional backlit x-ray images recorded with a narrow-band spherical crystal imager. The maximum areal density in the experiment was estimated to be 87 ± 26 mg/cm 2. Lastly, the temporalmore » evolution of the experimental and simulated areal densities with a 2-D radiation-hydrodynamics code is in good agreement.« less

  16. Flash Kα radiography of laser-driven solid sphere compression for fast ignition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawada, H.; Lee, S.; Nagatomo, H.

    2016-06-20

    Time-resolved compression of a laser-driven solid deuterated plastic sphere with a cone was measured with flash Kα x-ray radiography. A spherically converging shockwave launched by nanosecond GEKKO XII beams was used for compression while a flash of 4.51 keV Ti Kα x-ray backlighter was produced by a high-intensity, picosecond laser LFEX (Laser for Fast ignition EXperiment) near peak compression for radiography. Areal densities of the compressed core were inferred from two-dimensional backlit x-ray images recorded with a narrow-band spherical crystal imager. The maximum areal density in the experiment was estimated to be 87 ± 26 mg/cm{sup 2}. The temporal evolution of the experimental andmore » simulated areal densities with a 2-D radiation-hydrodynamics code is in good agreement.« less

  17. An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures

    DOE PAGES

    Keromnes, Alan; Metcalfe, Wayne K.; Heufer, Karl A.; ...

    2013-03-12

    The oxidation of syngas mixtures was investigated experimentally and simulated with an updated chemical kinetic model. Ignition delay times for H 2/CO/O 2/N 2/Ar mixtures have been measured using two rapid compression machines and shock tubes at pressures from 1 to 70 bar, over a temperature range of 914–2220 K and at equivalence ratios from 0.1 to 4.0. Results show a strong dependence of ignition times on temperature and pressure at the end of the compression; ignition delays decrease with increasing temperature, pressure, and equivalence ratio. The reactivity of the syngas mixtures was found to be governed by hydrogen chemistrymore » for CO concentrations lower than 50% in the fuel mixture. For higher CO concentrations, an inhibiting effect of CO was observed. Flame speeds were measured in helium for syngas mixtures with a high CO content and at elevated pressures of 5 and 10 atm using the spherically expanding flame method. A detailed chemical kinetic mechanism for hydrogen and H 2/CO (syngas) mixtures has been updated, rate constants have been adjusted to reflect new experimental information obtained at high pressures and new rate constant values recently published in the literature. Experimental results for ignition delay times and flame speeds have been compared with predictions using our newly revised chemical kinetic mechanism, and good agreement was observed. In the mechanism validation, particular emphasis is placed on predicting experimental data at high pressures (up to 70 bar) and intermediate- to high-temperature conditions, particularly important for applications in internal combustion engines and gas turbines. The reaction sequence H 2 + HO˙ 2 ↔ H˙+H 2O 2 followed by H 2O 2(+M) ↔ O˙H+O˙H(+M) was found to play a key role in hydrogen ignition under high-pressure and intermediate-temperature conditions. The rate constant for H 2+HO˙ 2 showed strong sensitivity to high-pressure ignition times and has considerable uncertainty, based on literature values. As a result, a rate constant for this reaction is recommended based on available literature values and on our mechanism validation.« less

  18. Exhaust gas recirculation in a homogeneous charge compression ignition engine

    DOEpatents

    Duffy, Kevin P [Metamora, IL; Kieser, Andrew J [Morton, IL; Rodman, Anthony [Chillicothe, IL; Liechty, Michael P [Chillicothe, IL; Hergart, Carl-Anders [Peoria, IL; Hardy, William L [Peoria, IL

    2008-05-27

    A homogeneous charge compression ignition engine operates by injecting liquid fuel directly in a combustion chamber, and mixing the fuel with recirculated exhaust and fresh air through an auto ignition condition of the fuel. The engine includes at least one turbocharger for extracting energy from the engine exhaust and using that energy to boost intake pressure of recirculated exhaust gas and fresh air. Elevated proportions of exhaust gas recirculated to the engine are attained by throttling the fresh air inlet supply. These elevated exhaust gas recirculation rates allow the HCCI engine to be operated at higher speeds and loads rendering the HCCI engine a more viable alternative to a conventional diesel engine.

  19. Monochromatic x-ray radiography of laser-driven spherical targets using high-energy, picoseconds LFEX laser

    NASA Astrophysics Data System (ADS)

    Sawada, Hiroshi; Fujioka, S.; Lee, S.; Arikawa, Y.; Shigemori, K.; Nagatomo, H.; Nishimura, H.; Sunahara, A.; Theobald, W.; Perez, F.; Patel, P. K.; Beg, F. N.

    2015-11-01

    Formation of a high density fusion fuel is essential in both conventional and advanced Inertial Confinement Fusion (ICF) schemes for the self-sustaining fusion process. In cone-guided Fast Ignition (FI), a metal cone is attached to a spherical target to maintain the path for the injection of an intense short-pulse ignition laser from blow-off plasma created when nanoseconds compression lasers drive the target. We have measured a temporal evolution of a compressed deuterated carbon (CD) sphere using 4.5 keV K-alpha radiography with the Kilo-Joule, picosecond LFEX laser at the Institute of Laser Engineering. A 200 μm CD sphere attached to the tip of a Au cone was directly driven by 9 Gekko XII beams with 300 J/beam in a 1.3 ns Gaussian pulse. The LFEX laser irradiated on a Ti foil to generate 4.51 Ti K-alpha x-ray. By varying the delay between the compression and backlighter lasers, the measured radiograph images show an increase of the areal density of the imploded target. The detail of the quantitative analyses to infer the areal density and comparisons to hydrodynamics simulations will be presented. This work was performed with the support and under the auspices of the NIFS Collaboration Research program (NIFS13KUGK072). H.S. was supported by the UNR's International Activities Grant program.

  20. Functional Group Analysis for Diesel-like Mixing-Controlled Compression Ignition Combustion Blendstocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaspar, Daniel J.; McCormick, Robert L.; Polikarpov, Evgueni

    This report addresses the suitability of hydrocarbon and oxygenate functional groups for use as a diesel-like fuel blending component in an advanced, mixing-controlled, compression ignition combustion engine. The functional groups are chosen from those that could be derived from a biomass feedstock, and represent a full range of chemistries. This first systematic analysis of functional groups will be of value to all who are pursuing new bio-blendstocks for diesel-like fuels.

  1. The single-zone numerical model of homogeneous charge compression ignition engine performance

    NASA Astrophysics Data System (ADS)

    Fedyanov, E. A.; Itkis, E. M.; Kuzmin, V. N.; Shumskiy, S. N.

    2017-02-01

    The single-zone model of methane-air mixture combustion in the Homogeneous Charge Compression Ignition engine was developed. First modeling efforts resulted in the selection of the detailed kinetic reaction mechanism, most appropriate for the conditions of the HCCI process. Then, the model was completed so as to simulate the performance of the four-stroke engine and was coupled by physically reasonable adjusting functions. Validation of calculations against experimental data showed acceptable agreement.

  2. Volatility characterization of nanoparticles from single and dual-fuel low temperature combustion in compression ignition engines

    DOE PAGES

    Lucachick, Glenn; Curran, Scott; Storey, John Morse; ...

    2016-03-10

    Our work explores the volatility of particles produced from two diesel low temperature combustion (LTC) modes proposed for high-efficiency compression ignition engines. It also explores mechanisms of particulate formation and growth upon dilution in the near-tailpipe environment. Moreover, the number distribution of exhaust particles from low- and mid-load dual-fuel reactivity controlled compression ignition (RCCI) and single-fuel premixed charge compression ignition (PPCI) modes were experimentally studied over a gradient of dilution temperature. Particle volatility of select particle diameters was investigated using volatility tandem differential mobility analysis (V-TDMA). Evaporation rates for exhaust particles were compared with V-TDMA results for candidate pure n-alkanesmore » to identify species with similar volatility characteristics. The results show that LTC particles are mostly comprised of material with volatility similar to engine oil alkanes. V-TDMA results were used as inputs to an aerosol condensation and evaporation model to support the finding that smaller particles in the distribution are comprised of lower volatility material than large particles under primary dilution conditions. Although the results show that saturation levels are high enough to drive condensation of alkanes onto existing particles under the dilution conditions investigated, they are not high We conclude that observed particles from LTC operation must grow from low concentrations of highly non-volatile compounds present in the exhaust.« less

  3. The Effect of Ethanol Addition to Gasoline on Low- and Intermediate-Temperature Heat Release under Boosted Conditions in Kinetically Controlled Engines

    NASA Astrophysics Data System (ADS)

    Vuilleumier, David Malcolm

    The detailed study of chemical kinetics in engines has become required to further advance engine efficiency while simultaneously lowering engine emissions. This push for higher efficiency engines is not caused by a lack of oil, but by efforts to reduce anthropogenic carbon dioxide emissions, that cause global warming. To operate in more efficient manners while reducing traditional pollutant emissions, modern internal combustion piston engines are forced to operate in regimes in which combustion is no longer fully transport limited, and instead is at least partially governed by chemical kinetics of combusting mixtures. Kinetically-controlled combustion allows the operation of piston engines at high compression ratios, with partially-premixed dilute charges; these operating conditions simultaneously provide high thermodynamic efficiency and low pollutant formation. The investigations presented in this dissertation study the effect of ethanol addition on the low-temperature chemistry of gasoline type fuels in engines. These investigations are carried out both in a simplified, fundamental engine experiment, named Homogeneous Charge Compression Ignition, as well as in more applied engine systems, named Gasoline Compression Ignition engines and Partial Fuel Stratification engines. These experimental investigations, and the accompanying modeling work, show that ethanol is an effective scavenger of radicals at low temperatures, and this inhibits the low temperature pathways of gasoline oxidation. Further, the investigations measure the sensitivity of gasoline auto-ignition to system pressure at conditions that are relevant to modern engines. It is shown that at pressures above 40 bar and temperatures below 850 Kelvin, gasoline begins to exhibit Low-Temperature Heat Release. However, the addition of 20% ethanol raises the pressure requirement to 60 bar, while the temperature requirement remains unchanged. These findings have major implications for a range of modern engines. Low-Temperature Heat Release significantly enhances the auto-ignition process, which limits the conditions under which advanced combustion strategies may operate. As these advanced combustion strategies are required to meet emissions and fuel-economy regulations, the findings of this dissertation may benefit and be incorporated into future engine design toolkits, such as detailed chemical kinetic mechanisms.

  4. The potential of imposed magnetic fields for enhancing ignition probability and fusion energy yield in indirect-drive inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Perkins, L. J.; Ho, D. D.-M.; Logan, B. G.; Zimmerman, G. B.; Rhodes, M. A.; Strozzi, D. J.; Blackfield, D. T.; Hawkins, S. A.

    2017-06-01

    We examine the potential that imposed magnetic fields of tens of Tesla that increase to greater than 10 kT (100 MGauss) under implosion compression may relax the conditions required for ignition and propagating burn in indirect-drive inertial confinement fusion (ICF) targets. This may allow the attainment of ignition, or at least significant fusion energy yields, in presently performing ICF targets on the National Ignition Facility (NIF) that today are sub-marginal for thermonuclear burn through adverse hydrodynamic conditions at stagnation [Doeppner et al., Phys. Rev. Lett. 115, 055001 (2015)]. Results of detailed two-dimensional radiation-hydrodynamic-burn simulations applied to NIF capsule implosions with low-mode shape perturbations and residual kinetic energy loss indicate that such compressed fields may increase the probability for ignition through range reduction of fusion alpha particles, suppression of electron heat conduction, and potential stabilization of higher-mode Rayleigh-Taylor instabilities. Optimum initial applied fields are found to be around 50 T. Given that the full plasma structure at capsule stagnation may be governed by three-dimensional resistive magneto-hydrodynamics, the formation of closed magnetic field lines might further augment ignition prospects. Experiments are now required to further assess the potential of applied magnetic fields to ICF ignition and burn on NIF.

  5. DESIGN OF A HIGH COMPRESSION, DIRECT INJECTION, SPARK-IGNITION, METHANOL FUELED RESEARCH ENGINE WITH AN INTEGRAL INJECTOR-IGNITION SOURCE INSERT, SAE PAPER 2001-01-3651

    EPA Science Inventory

    A stratified charge research engine and test stand were designed and built for this work. The primary goal of this project was to evaluate the feasibility of using a removal integral injector ignition source insert which allows a convenient method of charging the relative locat...

  6. Comparative study of oxihydrogen injection in turbocharged compression ignition engines

    NASA Astrophysics Data System (ADS)

    Barna, L.; Lelea, D.

    2018-01-01

    This document proposes for analysis, comparative study of the turbocharged, compression-ignition engine, equipped with EGR valve, operation in case the injection in intake manifold thereof a maximum flow rate of 1l/min oxyhydrogen resulted of water electrolysis, at two different injection pressures, namely 100 Pa and 3000 Pa, from the point of view of flue gas opacity. We found a substantial reduction of flue gas opacity in both cases compared to conventional diesel operation, but in different proportions.

  7. Combustion in a High-Speed Compression-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Rothrock, A M

    1933-01-01

    An investigation conducted to determine the factors which control the combustion in a high-speed compression-ignition engine is presented. Indicator cards were taken with the Farnboro indicator and analyzed according to the tangent method devised by Schweitzer. The analysis show that in a quiescent combustion chamber increasing the time lag of auto-ignition increases the maximum rate of combustion. Increasing the maximum rate of combustion increases the tendency for detonation to occur. The results show that by increasing the air temperature during injection the start of combustion can be forced to take place during injection and so prevent detonation from occurring. It is shown that the rate of fuel injection does not in itself control the rate of combustion.

  8. Fuel Effects on Ignition and Their Impact on Advanced Combustion Engines (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, J.; Li, H.; Neill, S.

    The objective of this report is to develop a pathway to use easily measured ignition properties as metrics for characterizing fuels in advanced combustion engine research--correlate IQT{trademark} measured parameters with engine data. In HCCL engines, ignition timing depends on the reaction rates throughout compression stroke: need to understand sensitivity to T, P, and [O{sub 2}]; need to rank fuels based on more than one set of conditions; and need to understand how fuel composition (molecular species) affect ignition properties.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Kamal; Zhang, Yu; Sung, Chi -Jen

    We study the influence of blending n-butanol on the ignition delay times of n-heptane and iso-octane, the primary reference fuels for gasoline. The ignition delay times are measured using a rapid compression machine, with an emphasis on the low-to-intermediate temperature conditions. The experiments are conducted at equivalence ratios of 0.4 and 1.0, for a compressed pressure of 20 bar, with the temperatures at the end of compression ranging from 613 K to 979 K. The effect of n-butanol addition on the development of the two-stage ignition characteristics for the two primary reference fuels is also examined. The experimental results aremore » compared to predictions obtained using a detailed chemical kinetic mechanism, which has been obtained by a systematic merger of previously reported base models for the combustion of the individual fuel constituents. In conclusion, a sensitivity analysis on the base, and the merged models, is also performed to understand the dependence of autoignition delay times on the model parameters.« less

  10. Performance analysis of exhaust heat recovery using organic Rankine cycle in a passenger car with a compression ignition engine

    NASA Astrophysics Data System (ADS)

    Ghilvacs, M.; Prisecaru, T.; Pop, H.; Apostol, V.; Prisecaru, M.; Pop, E.; Popescu, Gh; Ciobanu, C.; Mohanad, A.; Alexandru, A.

    2016-08-01

    Compression ignition engines transform approximately 40% of the fuel energy into power available at the crankshaft, while the rest part of the fuel energy is lost as coolant, exhaust gases and other waste heat. An organic Rankine cycle (ORC) can be used to recover this waste heat. In this paper, the characteristics of a system combining a compression ignition engine with an ORC which recover the waste heat from the exhaust gases are analyzed. The performance map of the diesel engine is measured on an engine test bench and the heat quantities wasted by the exhaust gases are calculated over the engine's entire operating region. Based on this data, the working parameters of ORC are defined, and the performance of a combined engine-ORC system is evaluated across this entire region. The results show that the net power of ORC is 6.304kW at rated power point and a maximum of 10% reduction in brake specific fuel consumption can be achieved.

  11. Compression-ignition engine performance with undoped and doped fuel oils and alcohol mixtures

    NASA Technical Reports Server (NTRS)

    Moore, Charles S; Foster, Hampton H

    1939-01-01

    Several fuel oils, doped fuel oils, and mixtures of alcohol and fuel oil were tested in a high-speed, single-cylinder, compression-ignition engine to determine power output, fuel consumption, and ignition and combustion characteristics. Fuel oils or doped fuel oils of high octane number had shorter ignition lags, lower rates of pressure rise, and gave smoother engine operation than fuel oils or doped fuel oils of low octane number. Higher engine rotative speeds and boost pressures resulted in smoother engine operation and permitted the use of fuel oils of relatively low octane number. Although the addition of a dope to a fuel oil decreased the ignition lag and the rate of pressure rise, the ensuing rate of combustion was somewhat slower than for the undoped fuel oil so that the effectiveness of combustion was practically unchanged. Alcohol used as an auxiliary fuel, either as a mixture or by separate injection, increased the rates of pressure rise and induced roughness. In general, the power output decreased as the proportion of alcohol increased and, below maximum power, varied with the heating value of the total fuel charge.

  12. Some Effects of Injection Advance Angle, Engine-Jacket Temperature, and Speed on Combustion in a Compression-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Waldron, C D

    1936-01-01

    An optical indicator and a high-speed motion-picture camera capable of operating at the rate of 2,000 frames per second were used to record simultaneously the pressure development and the flame formation in the combustion chamber of the NACA combustion apparatus. Tests were made at engine speeds of 570 and 1,500 r.p.m. The engine-jacket temperature was varied from 100 degrees to 300 degrees F. And the injection advance angle from 13 degrees after top center to 120 degrees before top center. The results show that the course of the combustion is largely controlled by the temperature and pressure of the air in the chamber from the time the fuel is injected until the time at which combustion starts and by the ignition lag. The conclusion is presented that in a compression-ignition engine with a quiescent combustion chamber the ignition lag should be the longest that can be used without excessive rates of pressure rise; any further shortening of the ignition lag decreased the effective combustion of the engine.

  13. Gasoline Combustion Fundamentals DOE FY17 Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekoto, Isaac W.

    Advanced automotive gasoline engines that leverage a combination of reduced heat transfer, throttling, and mechanical losses; shorter combustion durations; and higher compression and mixture specific heat ratios are needed to meet aggressive DOE VTP fuel economy and pollutant emission targets. Central challenges include poor combustion stability at low-power conditions when large amounts of charge dilution are introduced and high sensitivity of conventional inductive coil ignition systems to elevated charge motion and density for boosted high-load operation. For conventional spark ignited operation, novel low-temperature plasma (LTP) or pre-chamber based ignition systems can improve dilution tolerances while maintaining good performance characteristics atmore » elevated charge densities. Moreover, these igniters can improve the control of advanced compression ignition (ACI) strategies for gasoline at low to moderate loads. The overarching research objective of the Gasoline Combustion Fundamentals project is to investigate phenomenological aspects related to enhanced ignition. The objective is accomplished through targeted experiments performed in a single-cylinder optically accessible research engine or an in-house developed optically accessible spark calorimeter (OASC). In situ optical diagnostics and ex situ gas sampling measurements are performed to elucidate important details of ignition and combustion processes. Measurements are further used to develop and validate complementary high-fidelity ignition simulations. The primary project audience is automotive manufacturers, Tier 1 suppliers, and technology startups—close cooperation has resulted in the development and execution of project objectives that address crucial mid- to long-range research challenges.« less

  14. Enhancing Ignition Probability and Fusion Yield in NIF Indirect Drive Targets with Applied Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Perkins, L. John; Logan, B. Grant; Ho, Darwin; Zimmerman, George; Rhodes, Mark; Blackfield, Donald; Hawkins, Steven

    2017-10-01

    Imposed magnetic fields of tens of Tesla that increase to greater than 10 kT (100 MGauss) under capsule compression may relax conditions for ignition and propagating burn in indirect-drive ICF targets. This may allow attainment of ignition, or at least significant fusion energy yields, in presently-performing ICF targets on the National Ignition Facility that today are sub-marginal for thermonuclear burn through adverse hydrodynamic conditions at stagnation. Results of detailed 2D radiation-hydrodynamic-burn simulations applied to NIF capsule implosions with low-mode shape perturbations and residual kinetic energy loss indicate that such compressed fields may increase the probability for ignition through range reduction of fusion alpha particles, suppression of electron heat conduction and stabilization of higher-mode RT instabilities. Optimum initial applied fields are around 50 T. Off-line testing has been performed of a hohlraum coil and pulsed power supply that could be integrated on NIF; axial fields of 58T were obtained. Given the full plasma structure at capsule stagnation may be governed by 3-D resistive MHD, the formation of closed magnetic field lines might further augment ignition prospects. Experiments are now required to assess the potential of applied magnetic fields to NIF ICF ignition and burn. Work performed under auspices of U.S. DOE by LLNL under Contract DE-AC52-07NA27344.

  15. Performance of a High-Speed Compression-Ignition Engine Using Multiple Orifice Fuel Injection Nozzles

    NASA Technical Reports Server (NTRS)

    Spanogle, J A; Foster, H H

    1930-01-01

    This report presents test results obtained at the Langley Memorial Aeronautical Laboratory of the National Advisory Committee for Aeronautics during an investigation to determine the relative performance of a single-cylinder, high-speed, compression-ignition engine when using fuel injection valve nozzles with different numbers, sizes, and directions of round orifices. A spring-loaded, automatic injection valve was used, centrally located at the top of a vertical disk-type combustion chamber formed between horizontally opposed inlet and exhaust valves of a 5 inch by 7 inch engine.

  16. Low emissions compression ignited engine technology

    DOEpatents

    Coleman, Gerald N [Dunlap, IL; Kilkenny, Jonathan P [Peoria, IL; Fluga, Eric C [Dunlap, IL; Duffy, Kevin P [East Peoria, IL

    2007-04-03

    A method and apparatus for operating a compression ignition engine having a cylinder wall, a piston, and a head defining a combustion chamber. The method and apparatus includes delivering fuel substantially uniformly into the combustion chamber, the fuel being dispersed throughout the combustion chamber and spaced from the cylinder wall, delivering an oxidant into the combustion chamber sufficient to support combustion at a first predetermined combustion duration, and delivering a diluent into the combustion chamber sufficient to change the first predetermined combustion duration to a second predetermined combustion duration different from the first predetermined combustion duration.

  17. Fabrication of high temperature materials by exothermic synthesis and subsequent dynamic consolidation

    DOEpatents

    Rabin, Barry H.; Korth, Gary E.; Wright, Richard N.; Williamson, Richard L.

    1992-01-01

    An apparatus for synthesizing a composite material such as titanium carbide and alumina from exothermic reaction of a sample followed by explosive induced consolidation of the reacted sample. The apparatus includes a lower base for holding a powdered composite sample, an igniter and igniter powder for igniting the sample to initiate an exothermic reaction and a piston for dynamically compressing the sample utilizing an explosive reaction.

  18. Characterization of Diesel and Gasoline Compression Ignition Combustion in a Rapid Compression-Expansion Machine using OH* Chemiluminescence Imaging

    NASA Astrophysics Data System (ADS)

    Krishnan, Sundar Rajan; Srinivasan, Kalyan Kumar; Stegmeir, Matthew

    2015-11-01

    Direct-injection compression ignition combustion of diesel and gasoline were studied in a rapid compression-expansion machine (RCEM) using high-speed OH* chemiluminescence imaging. The RCEM (bore = 84 mm, stroke = 110-250 mm) was used to simulate engine-like operating conditions at the start of fuel injection. The fuels were supplied by a high-pressure fuel cart with an air-over-fuel pressure amplification system capable of providing fuel injection pressures up to 2000 bar. A production diesel fuel injector was modified to provide a single fuel spray for both diesel and gasoline operation. Time-resolved combustion pressure in the RCEM was measured using a Kistler piezoelectric pressure transducer mounted on the cylinder head and the instantaneous piston displacement was measured using an inductive linear displacement sensor (0.05 mm resolution). Time-resolved, line-of-sight OH* chemiluminescence images were obtained using a Phantom V611 CMOS camera (20.9 kHz @ 512 x 512 pixel resolution, ~ 48 μs time resolution) coupled with a short wave pass filter (cut-off ~ 348 nm). The instantaneous OH* distributions, which indicate high temperature flame regions within the combustion chamber, were used to discern the characteristic differences between diesel and gasoline compression ignition combustion. The authors gratefully acknowledge facilities support for the present work from the Energy Institute at Mississippi State University.

  19. Short Pulse Laser Applications Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Town, R J; Clark, D S; Kemp, A J

    We are applying our recently developed, LDRD-funded computational simulation tool to optimize and develop applications of Fast Ignition (FI) for stockpile stewardship. This report summarizes the work performed during a one-year exploratory research LDRD to develop FI point designs for the National Ignition Facility (NIF). These results were sufficiently encouraging to propose successfully a strategic initiative LDRD to design and perform the definitive FI experiment on the NIF. Ignition experiments on the National Ignition Facility (NIF) will begin in 2010 using the central hot spot (CHS) approach, which relies on the simultaneous compression and ignition of a spherical fuel capsule.more » Unlike this approach, the fast ignition (FI) method separates fuel compression from the ignition phase. In the compression phase, a laser such as NIF is used to implode a shell either directly, or by x rays generated from the hohlraum wall, to form a compact dense ({approx}300 g/cm{sup 3}) fuel mass with an areal density of {approx}3.0 g/cm{sup 2}. To ignite such a fuel assembly requires depositing {approx}20kJ into a {approx}35 {micro}m spot delivered in a short time compared to the fuel disassembly time ({approx}20ps). This energy is delivered during the ignition phase by relativistic electrons generated by the interaction of an ultra-short high-intensity laser. The main advantages of FI over the CHS approach are higher gain, a lower ignition threshold, and a relaxation of the stringent symmetry requirements required by the CHS approach. There is worldwide interest in FI and its associated science. Major experimental facilities are being constructed which will enable 'proof of principle' tests of FI in integrated subignition experiments, most notably the OMEGA-EP facility at the University of Rochester's Laboratory of Laser Energetics and the FIREX facility at Osaka University in Japan. Also, scientists in the European Union have recently proposed the construction of a new FI facility, called HiPER, designed to demonstrate FI. Our design work has focused on the NIF, which is the only facility capable of forming a full-scale hydro assembly, and could be adapted for full-scale FI by the conversion of additional beams to short-pulse operation.« less

  20. A Multicomponent Blend as a Diesel Fuel Surrogate for Compression Ignition Engine Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pei, Yuanjiang; Mehl, Marco; Liu, Wei

    A mixture of n-dodecane and m-xylene is investigated as a diesel fuel surrogate for compression ignition engine applications. Compared to neat n-dodecane, this binary mixture is more representative of diesel fuel because it contains an alkyl-benzene which represents an important chemical class present in diesel fuels. A detailed multi-component mechanism for n-dodecane and m-xylene was developed by combining a previously developed n-dodecane mechanism with a recently developed mechanism for xylenes. The xylene mechanism is shown to reproduce experimental ignition data from a rapid compression machine and shock tube, speciation data from the jet stirred reactor and flame speed data. Thismore » combined mechanism was validated by comparing predictions from the model with experimental data for ignition in shock tubes and for reactivity in a flow reactor. The combined mechanism, consisting of 2885 species and 11754 reactions, was reduced to a skeletal mechanism consisting 163 species and 887 reactions for 3D diesel engine simulations. The mechanism reduction was performed using directed relation graph (DRG) with expert knowledge (DRG-X) and DRG-aided sensitivity analysis (DRGASA) at a fixed fuel composition of 77% of n-dodecane and 23% m-xylene by volume. The sample space for the reduction covered pressure of 1 – 80 bar, equivalence ratio of 0.5 – 2.0, and initial temperature of 700 – 1600 K for ignition. The skeletal mechanism was compared with the detailed mechanism for ignition and flow reactor predictions. Finally, the skeletal mechanism was validated against a spray flame dataset under diesel engine conditions documented on the Engine Combustion Network (ECN) website. These multi-dimensional simulations were performed using a Representative Interactive Flame (RIF) turbulent combustion model. Encouraging results were obtained compared to the experiments with regards to the predictions of ignition delay and lift-off length at different ambient temperatures.« less

  1. Co-Optimization of Internal Combustion Engines and Biofuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, Robert L.

    2016-03-08

    The development of advanced engines has significant potential advantages in reduced aftertreatment costs for air pollutant emission control, and just as importantly for efficiency improvements and associated greenhouse gas emission reductions. There are significant opportunities to leverage fuel properties to create more optimal engine designs for both advanced spark-ignition and compression-ignition combustion strategies. The fact that biofuel blendstocks offer a potentially low-carbon approach to fuel production, leads to the idea of optimizing the entire fuel production-utilization value chain as a system from the standpoint of life cycle greenhouse gas emissions. This is a difficult challenge that has yet to bemore » realized. This presentation will discuss the relationship between chemical structure and critical fuel properties for more efficient combustion, survey the properties of a range of biofuels that may be produced in the future, and describe the ongoing challenges of fuel-engine co-optimization.« less

  2. A sustained-arc ignition system for internal combustion engines

    NASA Technical Reports Server (NTRS)

    Birchenough, A. G.

    1977-01-01

    A sustained-arc ignition system was developed for internal combustion engines. It produces a very-long-duration ignition pulse with an energy in the order of 100 millijoules. The ignition pulse waveform can be controlled to predetermined actual ignition requirements. The design of the sustained-arc ignition system is presented in the report.

  3. Improved Performance of High Areal Density Indirect Drive Implosions at the National Ignition Facility using a Four-Shock Adiabat Shaped Drive

    DOE PAGES

    Casey, D. T.; Milovich, J. L.; Smalyuk, V. A.; ...

    2015-09-01

    Hydrodynamic instabilities can cause capsule defects and other perturbations to grow and degrade implosion performance in ignition experiments at the National Ignition Facility (NIF). Here, we show the first experimental demonstration that a strong unsupported first shock in indirect drive implosions at the NIF reduces ablation front instability growth leading to a 3 to 10 times higher yield with fuel ρR > 1 g=cm 2. This work shows the importance of ablation front instability growth during the National Ignition Campaign and may provide a path to improved performance at the high compression necessary for ignition.

  4. Dynamic control of a homogeneous charge compression ignition engine

    DOEpatents

    Duffy, Kevin P [Metamora, IL; Mehresh, Parag [Peoria, IL; Schuh, David [Peoria, IL; Kieser, Andrew J [Morton, IL; Hergart, Carl-Anders [Peoria, IL; Hardy, William L [Peoria, IL; Rodman, Anthony [Chillicothe, IL; Liechty, Michael P [Chillicothe, IL

    2008-06-03

    A homogenous charge compression ignition engine is operated by compressing a charge mixture of air, exhaust and fuel in a combustion chamber to an autoignition condition of the fuel. The engine may facilitate a transition from a first combination of speed and load to a second combination of speed and load by changing the charge mixture and compression ratio. This may be accomplished in a consecutive engine cycle by adjusting both a fuel injector control signal and a variable valve control signal away from a nominal variable valve control signal. Thereafter in one or more subsequent engine cycles, more sluggish adjustments are made to at least one of a geometric compression ratio control signal and an exhaust gas recirculation control signal to allow the variable valve control signal to be readjusted back toward its nominal variable valve control signal setting. By readjusting the variable valve control signal back toward its nominal setting, the engine will be ready for another transition to a new combination of engine speed and load.

  5. Sudden Viscous Dissipation of Compressing Turbulence

    DOE PAGES

    Davidovits, Seth; Fisch, Nathaniel J.

    2016-03-11

    Here we report compression of turbulent plasma can amplify the turbulent kinetic energy, if the compression is fast compared to the viscous dissipation time of the turbulent eddies. A sudden viscous dissipation mechanism is demonstrated, whereby this amplified turbulent kinetic energy is rapidly converted into thermal energy, suggesting a new paradigm for fast ignition inertial fusion.

  6. Radiative shocks produced from spherical cryogenic implosions at the National Ignition Facility

    DOE PAGES

    Pak, A.; Divol, L.; Gregori, G.; ...

    2013-05-20

    Spherically expanding radiative shock waves have been observed from inertially confined implosion experiments at the National Ignition Facility. In these experiments, a spherical fusion target, initially 2 mm in diameter, is compressed via the pressure induced from the ablation of the outer target surface. At the peak compression of the capsule, x-ray and nuclear diagnostics indicate the formation of a central core, with a radius and ion temperature of ~20 μm and ~ 2 keV, respectively. This central core is surrounded by a cooler compressed shell of deuterium-tritium fuel that has an outer radius of ~40 μm and a densitymore » of >500 g/cm 3. Using inputs from multiple diagnostics, the peak pressure of the compressed core has been inferred to be of order 100 Gbar for the implosions discussed here. Furthermore, the shock front, initially located at the interface between the high pressure compressed fuel shell and surrounding in-falling low pressure ablator plasma, begins to propagate outwards after peak compression has been reached.« less

  7. Autoignition response of n-butanol and its blend with primary reference fuel constituents of gasoline.

    DOE PAGES

    Kumar, Kamal; Zhang, Yu; Sung, Chi -Jen; ...

    2015-04-13

    We study the influence of blending n-butanol on the ignition delay times of n-heptane and iso-octane, the primary reference fuels for gasoline. The ignition delay times are measured using a rapid compression machine, with an emphasis on the low-to-intermediate temperature conditions. The experiments are conducted at equivalence ratios of 0.4 and 1.0, for a compressed pressure of 20 bar, with the temperatures at the end of compression ranging from 613 K to 979 K. The effect of n-butanol addition on the development of the two-stage ignition characteristics for the two primary reference fuels is also examined. The experimental results aremore » compared to predictions obtained using a detailed chemical kinetic mechanism, which has been obtained by a systematic merger of previously reported base models for the combustion of the individual fuel constituents. In conclusion, a sensitivity analysis on the base, and the merged models, is also performed to understand the dependence of autoignition delay times on the model parameters.« less

  8. A hybrid-drive nonisobaric-ignition scheme for inertial confinement fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, X. T., E-mail: xthe@iapcm.ac.cn; Center for Applied Physics and Technology, HEDPS, Peking University, Beijing 100871; IFSA Collaborative Innovation Center of MoE, Shanghai Jiao-Tong University, Shanghai 200240

    A new hybrid-drive (HD) nonisobaric ignition scheme of inertial confinement fusion (ICF) is proposed, in which a HD pressure to drive implosion dynamics increases via increasing density rather than temperature in the conventional indirect drive (ID) and direct drive (DD) approaches. In this HD (combination of ID and DD) scheme, an assembled target of a spherical hohlraum and a layered deuterium-tritium capsule inside is used. The ID lasers first drive the shock to perform a spherical symmetry implosion and produce a large-scale corona plasma. Then, the DD lasers, whose critical surface in ID corona plasma is far from the radiationmore » ablation front, drive a supersonic electron thermal wave, which slows down to a high-pressure electron compression wave, like a snowplow, piling up the corona plasma into high density and forming a HD pressurized plateau with a large width. The HD pressure is several times the conventional ID and DD ablation pressure and launches an enhanced precursor shock and a continuous compression wave, which give rise to the HD capsule implosion dynamics in a large implosion velocity. The hydrodynamic instabilities at imploding capsule interfaces are suppressed, and the continuous HD compression wave provides main pdV work large enough to hotspot, resulting in the HD nonisobaric ignition. The ignition condition and target design based on this scheme are given theoretically and by numerical simulations. It shows that the novel scheme can significantly suppress implosion asymmetry and hydrodynamic instabilities of current isobaric hotspot ignition design, and a high-gain ICF is promising.« less

  9. 40 CFR 63.6675 - What definitions apply to this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for use during periods of high demand that are not emergencies. Percent load means the fractional... stationary RICE in which a high boiling point liquid fuel injected into the combustion chamber ignites when the air charge has been compressed to a temperature sufficiently high for auto-ignition. This process...

  10. Advantages of Fast Ignition Scenarios with Two Hot Spots for Space Propulsion Systems

    NASA Astrophysics Data System (ADS)

    Shmatov, M. L.

    The use of the fast ignition scenarios with the attempts to create two hot spots in one blob of the compressed thermonuclear fuel or, briefly, scenarios with two hot spots in space propulsion systems is proposed. The model, predicting that for such scenarios the probability pf of failure of ignition of thermonuclear microexplosion can be significantly less than that for the similar scenarios with the attempts to create one hot spot in one blob of the compressed fuel, is presented. For space propulsion systems consuming a relatively large amount of propellant, a decrease in pf due to the choice of the scenario with two hot spots can result in large, for example, two-fold, increase in the payload mass. Other advantages of the scenarios with two hot spots and some problems related to them are considered.

  11. Numerical Analysis of the Interaction between Thermo-Fluid Dynamics and Auto-Ignition Reaction in Spark Ignition Engines

    NASA Astrophysics Data System (ADS)

    Saijyo, Katsuya; Nishiwaki, Kazuie; Yoshihara, Yoshinobu

    The CFD simulations were performed integrating the low-temperature oxidation reaction. Analyses were made with respect to the first auto-ignition location in the case of a premixed-charge compression auto-ignition in a laminar flow field and in the case of the auto-ignition in an end gas during an S. I. Engine combustion process. In the latter simulation, the spatially-filtered transport equations were solved to express fluctuating temperatures in a turbulent flow in consideration of strong non-linearity to temperature in the reaction equations. It is suggested that the first auto-ignition location does not always occur at higher-temperature locations and that the difference in the locations of the first auto-ignition depends on the time period during which the local end gas temperature passes through the region of shorter ignition delay, including the NTC region.

  12. Two stroke homogenous charge compression ignition engine with pulsed air supplier

    DOEpatents

    Clarke, John M.

    2003-08-05

    A two stroke homogenous charge compression ignition engine includes a volume pulsed air supplier, such as a piston driven pump, for efficient scavenging. The usage of a homogenous charge tends to decrease emissions. The use of a volume pulsed air supplier in conjunction with conventional poppet type intake and exhaust valves results in a relatively efficient scavenging mode for the engine. The engine preferably includes features that permit valving event timing, air pulse event timing and injection event timing to be varied relative to engine crankshaft angle. The principle use of the invention lies in improving diesel engines.

  13. Controlling And Operating Homogeneous Charge Compression Ignition (Hcci) Engines

    DOEpatents

    Flowers, Daniel L.

    2005-08-02

    A Homogeneous Charge Compression Ignition (HCCI) engine system includes an engine that produces exhaust gas. A vaporization means vaporizes fuel for the engine an air induction means provides air for the engine. An exhaust gas recirculation means recirculates the exhaust gas. A blending means blends the vaporized fuel, the exhaust gas, and the air. An induction means inducts the blended vaporized fuel, exhaust gas, and air into the engine. A control means controls the blending of the vaporized fuel, the exhaust gas, and the air and for controls the inducting the blended vaporized fuel, exhaust gas, and air into the engine.

  14. Emission of a Dual-Fuel Turbocharged Compression Ignition Engine

    NASA Astrophysics Data System (ADS)

    Rózycki, Andrzej

    2012-02-01

    The paper describes the results of a four-cylinder dual fuel turbocharged compression ignition engine. The aim of the study was to determine the maximum CNG share in thefuel mixture delivered into the cylinder. Analysis of the investigation results showed that the CNG energy share in the fuel charge delivered into the cylinder can reach 45%. At that level of CNG energy share a 15% reduction in maximum torque is achieved in comparison with the standard fuelling. The unburnt hydrocarbon emission increases significantly. Emissions of other principal pollutants reach values comparable with those obtained at standard fuelling.

  15. Three-dimensional modeling of diesel engine intake flow, combustion and emissions

    NASA Technical Reports Server (NTRS)

    Reitz, R. D.; Rutland, C. J.

    1992-01-01

    A three-dimensional computer code (KIVA) is being modified to include state-of-the-art submodels for diesel engine flow and combustion: spray atomization, drop breakup/coalescence, multi-component fuel vaporization, spray/wall interaction, ignition and combustion, wall heat transfer, unburned HC and NOx formation, soot and radiation, and the intake flow process. Improved and/or new submodels which were completed are: wall heat transfer with unsteadiness and compressibility, laminar-turbulent characteristic time combustion with unburned HC and Zeldo'vich NOx, and spray/wall impingement with rebounding and sliding drops. Results to date show that adding the effects of unsteadiness and compressibility improves the accuracy of heat transfer predictions; spray drop rebound can occur from walls at low impingement velocities (e.g., in cold-starting); larger spray drops are formed at the nozzle due to the influence of vaporization on the atomization process; a laminar-and-turbulent characteristic time combustion model has the flexibility to match measured engine combustion data over a wide range of operating conditions; and finally, the characteristic time combustion model can also be extended to allow predictions of ignition. The accuracy of the predictions is being assessed by comparisons with available measurements. Additional supporting experiments are also described briefly. To date, comparisons with measured engine cylinder pressure and heat flux data were made for homogeneous charge, spark-ignited and compression-ignited engines. The model results are in good agreement with the experiments.

  16. Gain curves and hydrodynamic modeling for shock ignition

    NASA Astrophysics Data System (ADS)

    Lafon, M.; Ribeyre, X.; Schurtz, G.

    2010-05-01

    Ignition of a precompressed thermonuclear fuel by means of a converging shock is now considered as a credible scheme to obtain high gains for inertial fusion energy. This work aims at modeling the successive stages of the fuel time history, from compression to final thermonuclear combustion, in order to provide the gain curves of shock ignition (SI). The leading physical mechanism at work in SI is pressure amplification, at first by spherical convergence, and by collision with the shock reflected at center during the stagnation process. These two effects are analyzed, and ignition conditions are provided as functions of the shock pressure and implosion velocity. Ignition conditions are obtained from a non-isobaric fuel assembly, for which we present a gain model. The corresponding gain curves exhibit a significantly lower ignition threshold and higher target gains than conventional central ignition.

  17. Robust, Reliable Low Emission Gas Turbine Combustion of High Hydrogen Content Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wooldridge, Margaret Stacy; Im, Hong Geum

    2016-12-16

    The effects of high hydrogen content fuels were studied using experimental, computational and theoretical approaches to understand the effects of mixture and state conditions on the ignition behavior of the fuels. A rapid compression facility (RCF) was used to measure the ignition delay time of hydrogen and carbon monoxide mixtures. The data were combined with results of previous studies to develop ignition regime criteria. Analytical theory and direct numerical simulation were used to validate and interpret the RCF ignition data. Based on the integrated information the ignition regime criteria were extended to non-dimensional metrics which enable application of the resultsmore » to practical gas turbine combustion systems.« less

  18. Some aspects of the CI engine modification aimed at operation on LPG with the application of spark ignition

    NASA Astrophysics Data System (ADS)

    Kaparuk, J.; Luft, S.; Skrzek, T.; Wojtyniak, M.

    2016-09-01

    A lot of investigation on modification of the compression ignition engine aimed at operation on LPG with the application of spark ignition has been carried out in the Laboratory of Vehicles and Combustion Engines at Kazimierz Pulaski University of Technology and Humanities in Radom. This paper presents results of investigation on establishment of the proper ignition advance angle in the modified engine. Within the framework of this investigation it was assessed the effect of this regulation on basic engine operating parameters, exhaust emission as well as basic combustion parameters.

  19. The effect of ignition location on explosion venting of hydrogen-air mixtures

    NASA Astrophysics Data System (ADS)

    Cao, Y.; Guo, J.; Hu, K.; Xie, L.; Li, B.

    2017-07-01

    The effect of ignition location and vent burst pressure on the internal pressure-time history and external flame propagation was investigated for vented explosions of hydrogen-air mixtures in a small cylindrical vessel. A high-speed camera was used to record videos of the external flame while pressure transducers were used to record pressure-time histories. It was found that central ignition always leads to the maximum internal peak overpressure, and front ignition resulted in the lowest value of internal peak overpressure. The internal peak overpressures are increased corresponding to the increase in the vent burst pressure in the cases of central and rear ignition. Because of the effect of acoustic oscillations, the phenomenon of oscillations is observed in the internal pressure profile for the case of front ignition. The pressure oscillations for the cases of rear and central ignition are triggered by external explosions. The behavior of flames outside the chamber is significantly associated with the internal pressure of the chamber so that the velocity of the jet flame is closely related to the internal overpressure peak.

  20. Progress Toward Ignition on the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kauffman, R L

    2011-10-17

    The principal approach to ignition on the National Ignition Facility (NIF) is indirect drive. A schematic of an ignition target is shown in Figure 1. The laser beams are focused through laser entrance holes at each end of a high-Z cylindrical case, or hohlraum. The lasers irradiate the hohlraum walls producing x-rays that ablate and compress the fuel capsule in the center of the hohlraum. The hohlraum is made of Au, U, or other high-Z material. For ignition targets, the hohlraum is {approx}0.5 cm diameter by {approx}1 cm in length. The hohlraum absorbs the incident laser energy producing x-rays formore » symmetrically imploding the capsule. The fuel capsule is a {approx}2-mm-diameter spherical shell of CH, Be, or C filled with DT fuel. The DT fuel is in the form of a cryogenic layer on the inside of the capsule. X-rays ablate the outside of the capsule, producing a spherical implosion. The imploding shell stagnates in the center, igniting the DT fuel. NIC has overseen installation of all of the hardware for performing ignition experiments, including commissioning of approximately 50 diagnostic systems in NIF. The diagnostics measure scattered optical light, x-rays from the hohlraum over the energy range from 100 eV to 500 keV, and x-rays, neutrons, and charged particles from the implosion. An example of a diagnostic is the Magnetic Recoil Spectrometer (MRS) built by a collaboration of scientists from MIT, UR-LLE, and LLNL shown in Figure 2. MRS measures the neutron spectrum from the implosion, providing information on the neutron yield and areal density that are metrics of the quality of the implosion. Experiments on NIF extend ICF research to unexplored regimes in target physics. NIF can produce more than 50 times the laser energy and more than 20 times the power of any previous ICF facility. Ignition scale hohlraum targets are three to four times larger than targets used at smaller facilities, and the ignition drive pulses are two to five times longer. The larger targets and longer pulse lengths produce unique plasma conditions for laser-plasma instabilities that could reduce hohlraum coupling efficiency. Initial experiments have demonstrated efficient coupling of laser energy to x-rays. X-ray drive greater than 300 eV has been measured in gas-filled ignition hohlraum and shows the expected scaling with laser energy and hohlraum scale size. Experiments are now optimizing capsule implosions for ignition. Ignition conditions require assembling the fuel with sufficient density and temperature for thermonuclear burn. X-rays ablate the outside of the capsule, accelerating and spherically compressing the capsule for assembling the fuel. The implosion stagnates, heating the central core and producing a hot spot that ignites and burns the surrounding fuel. The four main characteristics of the implosion are shell velocity, central hot spot shape, fuel adiabat, and mix. Experiments studying these four characteristics of implosions are used to optimize the implosion. Integrated experiments using cryogenic fuel layer experiments demonstrate the quality of the implosion as the optimization experiments progress. The final compressed fuel conditions are diagnosed by measuring the x-ray emission from the hot core and the neutrons and charged particles produced in the fusion reactions. Metrics of the quality of the implosion are the neutron yield and the shell areal density, as well as the size and shape of the core. The yield depends on the amount of fuel in the hot core and its temperature and is a gauge of the energy coupling to the fuel. The areal density, the density of the fuel times its thickness, diagnoses the fuel assembly, which is measured using the fraction of neutrons that are down scattered passing through the dense shell. The yield and fraction of down scattered neutrons, or shell rho-r, from the cryogenic layered implosions are shown in Figure 3. The different sets of data represent results after a series of implosion optimization experiments. Both yield and areal density show significant increases as a result of the optimization. The experimental Ignition Threshold Factor (ITFX) is a measure of the progress toward ignition. ITFX is analogous to the Lawson Criterion in Magnetic Fusion. Implosions have improved by over a factor of 50 since the first cryogenic layered experiments were done in September 2010. This increase is a measure of the progress made toward the ignition goal in the past year. Optimization experiments are planned in the coming year for continued improvement in implosion performance to achieve the ignition goal. In summary, NIF has made significant progress toward ignition in the 30 months since project completion. Diagnostics and all of the supporting equipment are in place for ignition experiments. The Ignition Campaign is under way as a national collaborative effort of all the National Nuclear Security Administration (NNSA) science laboratories as well as international partners.« less

  1. Experimental investigation of gasoline compression ignition combustion in a light-duty diesel engine

    NASA Astrophysics Data System (ADS)

    Loeper, C. Paul

    Due to increased ignition delay and volatility, low temperature combustion (LTC) research utilizing gasoline fuel has experienced recent interest [1-3]. These characteristics improve air-fuel mixing prior to ignition allowing for reduced emissions of nitrogen oxides (NOx) and soot (or particulate matter, PM). Computational fluid dynamics (CFD) results at the University of Wisconsin-Madison's Engine Research Center (Ra et al. [4, 5]) have validated these attributes and established baseline operating parameters for a gasoline compression ignition (GCI) concept in a light-duty diesel engine over a large load range (3-16 bar net IMEP). In addition to validating these computational results, subsequent experiments at the Engine Research Center utilizing a single cylinder research engine based on a GM 1.9-liter diesel engine have progressed fundamental understanding of gasoline autoignition processes, and established the capability of critical controlling input parameters to better control GCI operation. The focus of this thesis can be divided into three segments: 1) establishment of operating requirements in the low-load operating limit, including operation sensitivities with respect to inlet temperature, and the capabilities of injection strategy to minimize NOx emissions while maintaining good cycle-to-cycle combustion stability; 2) development of novel three-injection strategies to extend the high load limit; and 3) having developed fundamental understanding of gasoline autoignition kinetics, and how changes in physical processes (e.g. engine speed effects, inlet pressure variation, and air-fuel mixture processes) affects operation, develop operating strategies to maintain robust engine operation. Collectively, experimental results have demonstrated the ability of GCI strategies to operate over a large load-speed range (3 bar to 17.8 bar net IMEP and 1300-2500 RPM, respectively) with low emissions (NOx and PM less than 1 g/kg-FI and 0.2 g/kg-FI, respectively), and low fuel consumption (gross indicated fuel consumption <200 g/kWh). [1] Dec, J. E., Yang, Y., and Dronniou, N., 2011, "Boosted HCCI - Controlling Pressure- Rise Rates for Performance Improvements using Partial Fuel Stratification with Conventional Gasoline," SAE Int. J. Engines, 4(1), pp. 1169-1189. [2] Kalghatgi, G., Hildingsson, L., and Johansson, B., 2010, "Low NO(x) and Low Smoke Operation of a Diesel Engine Using Gasolinelike Fuels," Journal of Engineering for Gas Turbines and Power-Transactions of the Asme, 132(9), p. 9. [3] Manente, V., Zander, C.-G., Johansson, B., Tunestal, P., and Cannella, W., 2010, "An Advanced Internal Combustion Engine Concept for Low Emissions and High Efficiency from Idle to Max Load Using Gasoline Partially Premixed Combustion," SAE International, 2010-01-2198. [4] Ra, Y., Loeper, P., Reitz, R., Andrie, M., Krieger, R., Foster, D., Durrett, R., Gopalakrishnan, V., Plazas, A., Peterson, R., and Szymkowicz, P., 2011, "Study of High Speed Gasoline Direct Injection Compression Ignition (GDICI) Engine Operation in the LTC Regime," SAE Int. J. Engines, 4(1), pp. 1412-1430. [5] Ra, Y., Loeper, P., Andrie, M., Krieger, R., Foster, D., Reitz, R., and Durrett, R., 2012, "Gasoline DICI Engine Operation in the LTC Regime Using Triple- Pulse Injection," SAE Int. J. Engines, 5(3), pp. 1109-1132.

  2. Compression Ratio and Catalyst Aging Effects on Aqueous Ethanol Ignition (Year 2) : Part 2 Catalyst Aging and Effects of Water on Ignition

    DOT National Transportation Integrated Search

    2009-09-01

    A tubular plug-flow reactor under low Reynolds Numbers Re flow regimes, along with a 127 um diameter coiled platinum (Pt) wire, were used to study catalytic surface reactions of nonflammable, fuel-lean mixtures of propane, oxygen, and water vapor dil...

  3. Illustrations for a Competency Based Curriculum Guide: Ethanol Spark Ignition Engine Conversion.

    ERIC Educational Resources Information Center

    Illinois State Board of Education, Springfield. Dept. of Adult, Vocational and Technical Education.

    This document contains 56 illustrations for use in an Illinois-developed competency-based course in ethanol spark ignition engine conversion. Each illustration is related to a specific competency in the course curriculum guide. Illustrations, which include photographs and line drawings, cover some of the following topics: carburetion, compression,…

  4. Simulations of Converging Shock Collisions for Shock Ignition

    NASA Astrophysics Data System (ADS)

    Sauppe, Joshua; Dodd, Evan; Loomis, Eric

    2016-10-01

    Shock ignition (SI) has been proposed as an alternative to achieving high gain in inertial confinement fusion (ICF) targets. A central hot spot below the ignition threshold is created by an initial compression pulse, and a second laser pulse drives a strong converging shock into the fuel. The collision between the rebounding shock from the compression pulse and the converging shock results in amplification of the converging shock and increases the hot spot pressure above the ignition threshold. We investigate shock collision in SI drive schemes for cylindrical targets with a polystyrene foam interior using radiation-hydrodynamics simulations with the RAGE code. The configuration is similar to previous targets fielded on the Omega laser. The CH interior results in a lower convergence ratio and the cylindrical geometry facilitates visualization of the shock transit using an axial X-ray backlighter, both of which are important for comparison to potential experimental measurements. One-dimensional simulations are used to determine shock timing, and the effects of low mode asymmetries in 2D computations are also quantified. LA-UR-16-24773.

  5. Numerical investigation of spontaneous flame propagation under RCCI conditions

    DOE PAGES

    Bhagatwala, Ankit V; Sankaran, Ramanan; Kokjohn, Sage; ...

    2015-06-30

    This paper presents results from one and two-dimensional direct numerical simulations under Reactivity Controlled Compression Ignition (RCCI) conditions of a primary reference fuel (PRF) mixture consisting of n-heptane and iso-octane. RCCI uses in-cylinder blending of two fuels with different autoignition characteristics to control combustion phasing and the rate of heat release. These simulations employ an improved model of compression heating through mass source/sink terms developed in a previous work by Bhagatwala et al. (2014), which incorporates feedback from the flow to follow a predetermined experimental pressure trace. Two-dimensional simulations explored parametric variations with respect to temperature stratification, pressure profiles andmore » n-heptane concentration. Furthermore, statistics derived from analysis of diffusion/reaction balances locally normal to the flame surface were used to elucidate combustion characteristics for the different cases. Both deflagration and spontaneous ignition fronts were observed to co-exist, however it was found that higher n-heptane concentration provided a greater degree of flame propagation, whereas lower n-heptane concentration (higher fraction of iso-octane) resulted in more spontaneous ignition fronts. A significant finding was that simulations initialized with a uniform initial temperature and a stratified n-heptane concentration field, resulted in a large fraction of combustion occurring through flame propagation. The proportion of spontaneous ignition fronts increased at higher pressures due to shorter ignition delay when other factors were held constant. For the same pressure and fuel concentration, the contribution of flame propagation to the overall combustion was found to depend on the level of thermal stratification, with higher initial temperature gradients resulting in more deflagration and lower gradients generating more ignition fronts. Statistics of ignition delay are computed to assess the Zel’dovich (1980) theory for the mode of combustion propagation based on ignition delay gradients.« less

  6. Low-Temperature Combustion of High Octane Fuels in a Gasoline Compression Ignition Engine

    DOE PAGES

    Cung, Khanh Duc; Ciatti, Stephen Anthony; Tanov, Slavey; ...

    2017-12-21

    Gasoline Compression Ignition (GCI) has been shown as one of the advanced combustion concepts that could potentially provide a pathway to achieve cleaner and more efficient combustion engines. Fuel and air in GCI are not fully premixed as compared to homogeneous charge compression ignition (HCCI) which is a completely kinetic-controlled combustion system. Therefore, the combustion phasing can be controlled by the time of injection, usually post injection in a multiple-injection scheme, to mitigate combustion noise. Gasoline fuels ignite more difficult than Diesel. The autoignition quality of gasoline can be indicated by research octane number (RON). Fuels with high octane tendmore » to have more resistance to auto-ignition, hence more time for fuel-air mixing. In this study, three fuels, namely, Aromatic, Alkylate, and E30, with similar RON value of 98 but different hydrocarbon compositions were tested in a multi-cylinder engine under GCI combustion mode. Considerations of EGR, start of injection (SOI), and boost were investigated to study the sensitivity of dilution, local stratification, and reactivity of the charge, respectively, for each fuel. Combustion phasing was kept constant during the experiments to the changes in ignition and combustion process before and after 50% of the fuel mass is burned. Emission characteristics at different levels of EGR and lambda were revealed for all fuels with E30 having the lowest filter smoke number (FSN) and was also most sensitive to the change in dilution. Reasonably low combustion noise (< 90 dB) and stable combustion (COVIMEP < 3%) were maintained during the experiments. The second part of this paper contains visualization of the combustion process obtained from endoscope imaging for each fuel at selected conditions. Soot radiation signal from GCI combustion were strong during late injection, and also more intense at low EGR conditions. Furthermore, soot/temperature profiles indicated only the high-temperature combustion period, while cylinder pressure-based heat release rate (HRR) showed a two-stage combustion phenomenon.« less

  7. Low-Temperature Combustion of High Octane Fuels in a Gasoline Compression Ignition Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cung, Khanh Duc; Ciatti, Stephen Anthony; Tanov, Slavey

    Gasoline Compression Ignition (GCI) has been shown as one of the advanced combustion concepts that could potentially provide a pathway to achieve cleaner and more efficient combustion engines. Fuel and air in GCI are not fully premixed as compared to homogeneous charge compression ignition (HCCI) which is a completely kinetic-controlled combustion system. Therefore, the combustion phasing can be controlled by the time of injection, usually post injection in a multiple-injection scheme, to mitigate combustion noise. Gasoline fuels ignite more difficult than Diesel. The autoignition quality of gasoline can be indicated by research octane number (RON). Fuels with high octane tendmore » to have more resistance to auto-ignition, hence more time for fuel-air mixing. In this study, three fuels, namely, Aromatic, Alkylate, and E30, with similar RON value of 98 but different hydrocarbon compositions were tested in a multi-cylinder engine under GCI combustion mode. Considerations of EGR, start of injection (SOI), and boost were investigated to study the sensitivity of dilution, local stratification, and reactivity of the charge, respectively, for each fuel. Combustion phasing was kept constant during the experiments to the changes in ignition and combustion process before and after 50% of the fuel mass is burned. Emission characteristics at different levels of EGR and lambda were revealed for all fuels with E30 having the lowest filter smoke number (FSN) and was also most sensitive to the change in dilution. Reasonably low combustion noise (< 90 dB) and stable combustion (COVIMEP < 3%) were maintained during the experiments. The second part of this paper contains visualization of the combustion process obtained from endoscope imaging for each fuel at selected conditions. Soot radiation signal from GCI combustion were strong during late injection, and also more intense at low EGR conditions. Furthermore, soot/temperature profiles indicated only the high-temperature combustion period, while cylinder pressure-based heat release rate (HRR) showed a two-stage combustion phenomenon.« less

  8. Time Resolved Digital PIV Measurements of Flow Field Cyclic Variation in an Optical IC Engine

    NASA Astrophysics Data System (ADS)

    Jarvis, S.; Justham, T.; Clarke, A.; Garner, C. P.; Hargrave, G. K.; Halliwell, N. A.

    2006-07-01

    Time resolved digital particle image velocimetry (DPIV) experimental data is presented for the in-cylinder flow field development of a motored four stroke spark ignition (SI) optical internal combustion (IC) engine. A high speed DPIV system was employed to quantify the velocity field development during the intake and compression stroke at an engine speed of 1500 rpm. The results map the spatial and temporal development of the in-cylinder flow field structure allowing comparison between traditional ensemble average and cycle average flow field structures. Conclusions are drawn with respect to engine flow field cyclic variations.

  9. Auto-Ignition and Combustion of Diesel Fuel in a Constant-Volume Bomb

    NASA Technical Reports Server (NTRS)

    Selden, Robert F

    1938-01-01

    Report presents the results of a study of variations in ignition lag and combustion associated with changes in air temperature and density for a diesel fuel in a constant-volume bomb. The test results have been discussed in terms of engine performance wherever comparisons could be drawn. The most important conclusions drawn from this investigation are: the ignition lag was essentially independent of the injected fuel quantity. Extrapolation of the curves for the fuel used shows that the lag could not be greatly decreased by exceeding the compression-ignition engines. In order to obtain the best combustion and thermal efficiency, it was desirable to use the longest ignition lag consistent with a permissible rate of pressure rise.

  10. The effectiveness of a double-stem injection valve in controlling combustion in a compression-ignition engine

    NASA Technical Reports Server (NTRS)

    Spanogle, J A; Whitney, E G

    1931-01-01

    An investigation was made to determine to what extent the rates of combustion in a compression-ignition engine can be controlled by varying the rates of fuel injection. The tests showed that the double-stem valve operated satisfactorily under all normal injection conditions; the rate of injection has a definite effect on the rate of combustion; the engine performance with the double-stem valve was inferior to that obtained with a single-stem valve; and the control of injection rates permitted by an injection valve of two stages of discharge is not sufficient to effect the desired rates of combustion.

  11. Simulating the Impact of Premixed Charge Compression Ignition on Light-Duty Diesel Fuel Economy and Emissions of Particulates and NOx

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Zhiming; Daw, C Stuart; Wagner, Robert M

    2013-01-01

    We utilize the Powertrain Systems Analysis Toolkit (PSAT) combined with transient engine and aftertreatment component models implemented in Matlab/Simulink to simulate the effect of premixed charge compression ignition (PCCI) on the fuel economy and emissions of light-duty diesel-powered conventional and hybrid electric vehicles (HEVs). Our simulated engine is capable of both conventional diesel combustion (CDC) and premixed charge compression ignition (PCCI) over real transient driving cycles. Our simulated aftertreatment train consists of a diesel oxidation catalyst (DOC), lean NOx trap (LNT), and catalyzed diesel particulate filter (DPF). The results demonstrate that, in the simulated conventional vehicle, PCCI can significantly reducemore » fuel consumption and emissions by reducing the need for LNT and DPF regeneration. However, the opportunity for PCCI operation in the simulated HEV is limited because the engine typically experiences higher loads and multiple stop-start transients that are outside the allowable PCCI operating range. Thus developing ways of extending the PCCI operating range combined with improved control strategies for engine and emissions control management will be especially important for realizing the potential benefits of PCCI in HEVs.« less

  12. Modeling the ignition of a copper oxide aluminum thermite

    NASA Astrophysics Data System (ADS)

    Lee, Kibaek; Stewart, D. Scott; Clemenson, Michael; Glumac, Nick; Murzyn, Christopher

    2017-01-01

    An experimental "striker confinement" shock compression experiment was developed in the Glumac-group at the University of Illinois to study ignition and reaction in composite reactive materials. These include thermitic and intermetallic reactive powders. Sample of materials such as a thermite mixture of copper oxide and aluminum powders are initially compressed to about 80 percent full density. Two RP-80 detonators simultaneously push steel bars into the reactive material and the resulting compression causes shock compaction of the material and rapid heating. At that point one observes significant reaction and propagation of fronts. But the fronts are peculiar in that they are comprised of reactive events that can be traced to the reaction of the initially separated reactants of copper oxide and aluminum that react at their mutual interfaces, that nominally make copper liquid and aluminum oxide products. We discuss our model of the ignition of the copper oxide aluminum thermite in the context of the striker experiment and how a Gibbs formulation model [1], that includes multi-components for liquid and solid phases of aluminum, copper oxide, copper and aluminum oxide, can predict the events observed at the particle scale in the experiments.

  13. Numerical investigation of CAI Combustion in the Opposed- Piston Engine with Direct and Indirect Water Injection

    NASA Astrophysics Data System (ADS)

    Pyszczek, R.; Mazuro, P.; Teodorczyk, A.

    2016-09-01

    This paper is focused on the CAI combustion control in a turbocharged 2-stroke Opposed-Piston (OP) engine. The barrel type OP engine arrangement is of particular interest for the authors because of its robust design, high mechanical efficiency and relatively easy incorporation of a Variable Compression Ratio (VCR). The other advantage of such design is that combustion chamber is formed between two moving pistons - there is no additional cylinder head to be cooled which directly results in an increased thermal efficiency. Furthermore, engine operation in a Controlled Auto-Ignition (CAI) mode at high compression ratios (CR) raises a possibility of reaching even higher efficiencies and very low emissions. In order to control CAI combustion such measures as VCR and water injection were considered for indirect ignition timing control. Numerical simulations of the scavenging and combustion processes were performed with the 3D CFD multipurpose AVL Fire solver. Numerous cases were calculated with different engine compression ratios and different amounts of directly and indirectly injected water. The influence of the VCR and water injection on the ignition timing and engine performance was determined and their application in the real engine was discussed.

  14. Performance of indirectly driven capsule implosions on the National Ignition Facility using adiabat-shaping

    DOE PAGES

    Robey, H. F.; Smalyuk, V. A.; Milovich, J. L.; ...

    2016-04-01

    A series of indirectly driven capsule implosions has been performed on the National Ignition Facility to assess the relative contributions of ablation-front instability growth vs. fuel compression on implosion performance. Laser pulse shapes for both low and high-foot pulses were modified to vary ablation-front growth & fuel adiabat, separately and controllably. Two principal conclusions are drawn from this study: 1) It is shown that an increase in laser picket energy reduces ablation-front instability growth in low-foot implosions resulting in a substantial (3-10X) increase in neutron yield with no loss of fuel compression. 2.) It is shown that a decrease inmore » laser trough power reduces the fuel adiabat in high-foot implosions results in a significant (36%) increase in fuel compression together with no reduction in neutron yield. These results taken collectively bridge the space between the higher compression low-foot results and the higher yield high-foot results.« less

  15. A Concept Exploration Program in Fast Ignition Inertial Fusion — Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephens, Richarad Burnite; Freeman, Richard R.; Van Woekom, L. D.

    The Fast Ignition (FI) approach to Inertial Confinement Fusion (ICF) holds particular promise for fusion energy because the independently generated compression and ignition pulses allow ignition with less compression, resulting in (potentially) higher gain. Exploiting this concept effectively requires an understanding of the transport of electrons in prototypical geometries and at relevant densities and temperatures. Our consortium, which included General Atomics (GA), The Ohio State University (OSU), the University of California, San Diego (UCSD), University of California, Davis (UC-Davis), and Princeton University under this grant (~$850K/yr) and Lawrence Livermore National Laboratory (LLNL) under a companion grant, won awards in 2000,more » renewed in 2005, to investigate the physics of electron injection and transport relevant to the FI concept, which is crucial to understand electron transport in integral FI targets. In the last two years we have also been preparing diagnostics and starting to extend the work to electron transport into hot targets. A complementary effort, the Advanced Concept Exploration (ACE) program for Fast Ignition, was funded starting in 2006 to integrate this understanding into ignition schemes specifically suitable for the initial fast ignition attempts on OMEGA and National Ignition Facility (NIF), and during that time these two programs have been managed as a coordinated effort. This result of our 7+ years of effort has been substantial. Utilizing collaborations to access the most capable laser facilities around the world, we have developed an understanding that was summarized in a Fusion Science & Technology 2006, Special Issue on Fast Ignition. The author lists in the 20 articles in that issue are dominated by our group (we are first authors in four of them). Our group has published, or submitted 67 articles, including 1 in Nature, 2 Nature Physics, 10 Physical Review Letters, 8 Review of Scientific Instruments, and has been invited to give numerous talks at national and international conferences (including APS-DPP, IAEA, FIW). The advent of PW capabilities – at Rutherford Appleton Lab (UK) and then at Titan (LLNL) (2005 and 2006, respectively), was a major step toward experiments in ultra-high intensity high-energy FI relevant regime. The next step comes with the activation of OMEGA EP at LLE, followed shortly by NIF-ARC at LLNL. These capabilities allow production of hot dense material for electron transport studies. In this transitional period, considerable effort has been spent in developing the necessary tools and experiments for electron transport in hot and dense plasmas. In addition, substantial new data on electron generation and transport in metallic targets has been produced and analyzed. Progress in FI detailed in §2 is related to the Concept Exploration Program (CEP) objectives; this section is a summary of the publications and presentations listed in §5. This work has benefited from the synergy with work on related Department of Energy (DOE) grants, the Fusion Science Center and the Fast Ignition Advanced Concept Exploration grant, and from our interactions with overseas colleagues, primarily at Rutherford Appleton Laboratory in the UK, and the Institute for Laser Engineering in Japan.« less

  16. A reduced mechanism for biodiesel surrogates with low temperature chemistry for compression ignition engine applications

    NASA Astrophysics Data System (ADS)

    Luo, Zhaoyu; Plomer, Max; Lu, Tianfeng; Som, Sibendu; Longman, Douglas E.

    2012-04-01

    Biodiesel is a promising alternative fuel for compression ignition (CI) engines. It is a renewable energy source that can be used in these engines without significant alteration in design. The detailed chemical kinetics of biodiesel is however highly complex. In the present study, a skeletal mechanism with 123 species and 394 reactions for a tri-component biodiesel surrogate, which consists of methyl decanoate, methyl 9-decanoate and n-heptane was developed for simulations of 3-D turbulent spray combustion under engine-like conditions. The reduction was based on an improved directed relation graph (DRG) method that is particularly suitable for mechanisms with many isomers, followed by isomer lumping and DRG-aided sensitivity analysis (DRGASA). The reduction was performed for pressures from 1 to 100 atm and equivalence ratios from 0.5 to 2 for both extinction and ignition applications. The initial temperatures for ignition were from 700 to 1800 K. The wide parameter range ensures the applicability of the skeletal mechanism under engine-like conditions. As such the skeletal mechanism is applicable for ignition at both low and high temperatures. Compared with the detailed mechanism that consists of 3299 species and 10806 reactions, the skeletal mechanism features a significant reduction in size while still retaining good accuracy and comprehensiveness. The validations of ignition delay time, flame lift-off length and important species profiles were also performed in 3-D engine simulations and compared with the experimental data from Sandia National Laboratories under CI engine conditions.

  17. Adiabatic Compression in a Fire Syringe.

    ERIC Educational Resources Information Center

    Hayn, Carl H.; Baird, Scott C.

    1985-01-01

    Suggests using better materials in fire syringes to obtain more effective results during demonstrations which show the elevation in temperature upon a very rapid (adiabatic) compression of air. Also describes an experiment (using ignition temperatures) which introduces students to the use of thermocouples for high temperature measurements. (DH)

  18. Increase in the thermodynamic efficiency of the working process of spark-ignited engines on natural gas with the addition of hydrogen

    NASA Astrophysics Data System (ADS)

    Mikhailovna Smolenskaya, Natalia; Vladimirovich Smolenskii, Victor; Vladimirovich Korneev, Nicholas

    2018-02-01

    The work is devoted to the substantiation and practical implementation of a new approach for estimating the change in internal energy by pressure and volume. The pressure is measured with a calibrated sensor. The change in volume inside the cylinder is determined by changing the position of the piston. The position of the piston is precisely determined by the angle of rotation of the crankshaft. On the basis of the proposed approach, the thermodynamic efficiency of the working process of spark ignition engines on natural gas with the addition of hydrogen was estimated. Experimental studies were carried out on a single-cylinder unit UIT-85. Their analysis showed an increase in the thermodynamic efficiency of the working process with the addition of hydrogen in a compressed natural gas (CNG).The results obtained make it possible to determine the characteristic of heat release from the analysis of experimental data. The effect of hydrogen addition on the CNG combustion process is estimated.

  19. Simultaneous Study of Intake and In-Cylinder IC Engine Flow Fields to Provide an Insight into Intake Induced Cyclic Variations

    NASA Astrophysics Data System (ADS)

    Justham, T.; Jarvis, S.; Clarke, A.; Garner, C. P.; Hargrave, G. K.; Halliwell, N. A.

    2006-07-01

    Simultaneous intake and in-cylinder digital particle image velocimetry (DPIV) experimental data is presented for a motored spark ignition (SI) optical internal combustion (IC) engine. Two individual DPIV systems were employed to study the inter-relationship between the intake and in-cylinder flow fields at an engine speed of 1500 rpm. Results for the intake runner velocity field at the time of maximum intake valve lift are compared to incylinder velocity fields later in the same engine cycle. Relationships between flow structures within the runner and cylinder were seen to be strong during the intake stroke but less significant during compression. Cyclic variations within the intake runner were seen to affect the large scale bulk flow motion. The subsequent decay of the large scale motions into smaller scale turbulent structures during the compression stroke appear to reduce the relationship with the intake flow variations.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidovits, Seth; Fisch, Nathaniel J.

    Here we report compression of turbulent plasma can amplify the turbulent kinetic energy, if the compression is fast compared to the viscous dissipation time of the turbulent eddies. A sudden viscous dissipation mechanism is demonstrated, whereby this amplified turbulent kinetic energy is rapidly converted into thermal energy, suggesting a new paradigm for fast ignition inertial fusion.

  1. 40 CFR Appendix I to Part 94 - Emission-Related Engine Parameters and Specifications

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Pt. 94, App. I Appendix...—Reciprocating Engines. 1. Compression ratio. 2. Type of air aspiration (natural, Roots blown, supercharged.... Temperature control system calibration. 4. Maximum allowable inlet air restriction. III. Fuel System. 1...

  2. Effect of Hydrogen Addition on Methane HCCI Engine Ignition Timing and Emissions Using a Multi-zone Model

    NASA Astrophysics Data System (ADS)

    Wang, Zi-han; Wang, Chun-mei; Tang, Hua-xin; Zuo, Cheng-ji; Xu, Hong-ming

    2009-06-01

    Ignition timing control is of great importance in homogeneous charge compression ignition engines. The effect of hydrogen addition on methane combustion was investigated using a CHEMKIN multi-zone model. Results show that hydrogen addition advances ignition timing and enhances peak pressure and temperature. A brief analysis of chemical kinetics of methane blending hydrogen is also performed in order to investigate the scope of its application, and the analysis suggests that OH radical plays an important role in the oxidation. Hydrogen addition increases NOx while decreasing HC and CO emissions. Exhaust gas recirculation (EGR) also advances ignition timing; however, its effects on emissions are generally the opposite. By adjusting the hydrogen addition and EGR rate, the ignition timing can be regulated with a low emission level. Investigation into zones suggests that NOx is mostly formed in core zones while HC and CO mostly originate in the crevice and the quench layer.

  3. First downscattered neutron images from Inertial Confinement Fusion experiments at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Guler, Nevzat; Aragonez, Robert J.; Archuleta, Thomas N.; Batha, Steven H.; Clark, David D.; Clark, Deborah J.; Danly, Chris R.; Day, Robert D.; Fatherley, Valerie E.; Finch, Joshua P.; Gallegos, Robert A.; Garcia, Felix P.; Grim, Gary; Hsu, Albert H.; Jaramillo, Steven A.; Loomis, Eric N.; Mares, Danielle; Martinson, Drew D.; Merrill, Frank E.; Morgan, George L.; Munson, Carter; Murphy, Thomas J.; Oertel, John A.; Polk, Paul J.; Schmidt, Derek W.; Tregillis, Ian L.; Valdez, Adelaida C.; Volegov, Petr L.; Wang, Tai-Sen F.; Wilde, Carl H.; Wilke, Mark D.; Wilson, Douglas C.; Atkinson, Dennis P.; Bower, Dan E.; Drury, Owen B.; Dzenitis, John M.; Felker, Brian; Fittinghoff, David N.; Frank, Matthias; Liddick, Sean N.; Moran, Michael J.; Roberson, George P.; Weiss, Paul; Buckles, Robert A.; Cradick, Jerry R.; Kaufman, Morris I.; Lutz, Steve S.; Malone, Robert M.; Traille, Albert

    2013-11-01

    Inertial Confinement Fusion experiments at the National Ignition Facility (NIF) are designed to understand and test the basic principles of self-sustaining fusion reactions by laser driven compression of deuterium-tritium (DT) filled cryogenic plastic (CH) capsules. The experimental campaign is ongoing to tune the implosions and characterize the burning plasma conditions. Nuclear diagnostics play an important role in measuring the characteristics of these burning plasmas, providing feedback to improve the implosion dynamics. The Neutron Imaging (NI) diagnostic provides information on the distribution of the central fusion reaction region and the surrounding DT fuel by collecting images at two different energy bands for primary (13-15 MeV) and downscattered (10-12 MeV) neutrons. From these distributions, the final shape and size of the compressed capsule can be estimated and the symmetry of the compression can be inferred. The first downscattered neutron images from imploding ICF capsules are shown in this paper.

  4. The causes of unstable engine idle speed and their solutions

    NASA Astrophysics Data System (ADS)

    Yang, Fan

    2018-06-01

    There are many types of engines. The most commonly used engine for automobiles is the internal combustion engine. Internal combustion engines use a four-stroke combustion cycle to convert gasoline into motion. The four-stroke approach, also known as the "Ototo cycle," commemorates Nicklaus Otto, who invented it in 1867. The working cycle of a four-stroke engine consists of four piston strokes, ie, intake stroke, compression stroke, power stroke, and exhaust stroke. This article focuses on the cause of the instability of the four-stroke engine and its solution. There are many reasons for the instability of the engine, so this article will be divided into four areas: intake system, fuel system, ignition system and mechanical structure. Based on the above reasons, the corresponding solution is proposed.

  5. Transient flow characteristics of a high speed rotary valve

    NASA Astrophysics Data System (ADS)

    Browning, Patrick H.

    Pressing economic and environmental concerns related to the performance of fossil fuel burning internal combustion engines have revitalized research in more efficient, cleaner burning combustion methods such as homogeneous charge compression ignition (HCCI). Although many variations of such engines now exist, several limiting factors have restrained the full potential of HCCI. A new method patented by West Virginia University (WVU) called Compression Ignition by Air Injection (CIBAI) may help broaden the range of effective HCCI operation. The CIBAI process is ideally facilitated by operating two synchronized piston-cylinders mounted head-to-head with one of the cylinders filled with a homogeneous mixture of air and fuel and the other cylinder filled with air. A specialized valve called the cylinder connecting valve (CCV) separates the two cylinders, opens just before reaching top dead center (TDC), and allows the injection air into the charge to achieve autoignition. The CCV remains open during the entire power stroke such that upon ignition the rapid pressure rise in the charge cylinder forces mass flow back through the CCV into the air-only cylinder. The limited mass transfer between the cylinders through the CCV limits the theoretical auto ignition timing capabilities and thermal efficiency of the CIBAI cycle. Research has been performed to: (1) Experimentally measure the transient behavior of a potential CCV design during valve opening between two chambers maintained at constant pressure and again at constant volume; (2) Develop a modified theoretical CCV mass flow model based upon the measured cold flow valve performance that is capable of predicting the operating conditions required for successful mixture autoignition; (3) Make recommendations for future CCV designs to maximize CIBAI combustion range. Results indicate that the modified-ball CCV design offers suitable transient flow qualities required for application to the CIBAI concept. Mass injection events were experimentally mapped as a function of valve speed, inter-cylinder pressure ratios and volume ratios and the results were compared to compressible flow theoretical models. Specifically, the transient behavior suggested a short-lived loss-mode initiation closely resembled by shock tube theory followed by a quasi-steady flow regime resembling choked flow behavior. An empirical model was then employed to determine the useful range of the CCV design as applied to a four-stroke CIBAI engine cycle modeled using a 1-D quasi-steady numerical method, with particular emphasis on the cyclic timing of the CCV opening. Finally, a brief discussion of a high-temperature version of the CCV design is presented.

  6. Invited Review: A review of deterministic effects in cyclic variability of internal combustion engines

    DOE PAGES

    Finney, Charles E.; Kaul, Brian C.; Daw, C. Stuart; ...

    2015-02-18

    Here we review developments in the understanding of cycle to cycle variability in internal combustion engines, with a focus on spark-ignited and premixed combustion conditions. Much of the research on cyclic variability has focused on stochastic aspects, that is, features that can be modeled as inherently random with no short term predictability. In some cases, models of this type appear to work very well at describing experimental observations, but the lack of predictability limits control options. Also, even when the statistical properties of the stochastic variations are known, it can be very difficult to discern their underlying physical causes andmore » thus mitigate them. Some recent studies have demonstrated that under some conditions, cyclic combustion variations can have a relatively high degree of low dimensional deterministic structure, which implies some degree of predictability and potential for real time control. These deterministic effects are typically more pronounced near critical stability limits (e.g. near tipping points associated with ignition or flame propagation) such during highly dilute fueling or near the onset of homogeneous charge compression ignition. We review recent progress in experimental and analytical characterization of cyclic variability where low dimensional, deterministic effects have been observed. We describe some theories about the sources of these dynamical features and discuss prospects for interactive control and improved engine designs. In conclusion, taken as a whole, the research summarized here implies that the deterministic component of cyclic variability will become a pivotal issue (and potential opportunity) as engine manufacturers strive to meet aggressive emissions and fuel economy regulations in the coming decades.« less

  7. Time-resolved compression of a capsule with a cone to high density for fast-ignition laser fusion

    DOE PAGES

    Theobald, W.; Solodov, A. A.; Stoeckl, C.; ...

    2014-12-12

    The advent of high-intensity lasers enables us to recreate and study the behaviour of matter under the extreme densities and pressures that exist in many astrophysical objects. It may also enable us to develop a power source based on laser-driven nuclear fusion. Achieving such conditions usually requires a target that is highly uniform and spherically symmetric. Here we show that it is possible to generate high densities in a so-called fast-ignition target that consists of a thin shell whose spherical symmetry is interrupted by the inclusion of a metal cone. Using picosecond-time-resolved X-ray radiography, we show that we can achievemore » areal densities in excess of 300 mg cm -2 with a nanosecond-duration compression pulse -- the highest areal density ever reported for a cone-in-shell target. Such densities are high enough to stop MeV electrons, which is necessary for igniting the fuel with a subsequent picosecond pulse focused into the resulting plasma.« less

  8. Time-resolved compression of a capsule with a cone to high density for fast-ignition laser fusion.

    PubMed

    Theobald, W; Solodov, A A; Stoeckl, C; Anderson, K S; Beg, F N; Epstein, R; Fiksel, G; Giraldez, E M; Glebov, V Yu; Habara, H; Ivancic, S; Jarrott, L C; Marshall, F J; McKiernan, G; McLean, H S; Mileham, C; Nilson, P M; Patel, P K; Pérez, F; Sangster, T C; Santos, J J; Sawada, H; Shvydky, A; Stephens, R B; Wei, M S

    2014-12-12

    The advent of high-intensity lasers enables us to recreate and study the behaviour of matter under the extreme densities and pressures that exist in many astrophysical objects. It may also enable us to develop a power source based on laser-driven nuclear fusion. Achieving such conditions usually requires a target that is highly uniform and spherically symmetric. Here we show that it is possible to generate high densities in a so-called fast-ignition target that consists of a thin shell whose spherical symmetry is interrupted by the inclusion of a metal cone. Using picosecond-time-resolved X-ray radiography, we show that we can achieve areal densities in excess of 300 mg cm(-2) with a nanosecond-duration compression pulse--the highest areal density ever reported for a cone-in-shell target. Such densities are high enough to stop MeV electrons, which is necessary for igniting the fuel with a subsequent picosecond pulse focused into the resulting plasma.

  9. Coefficients of discharge of fuel-injection nozzles for compression-ignition engines

    NASA Technical Reports Server (NTRS)

    Gelalles, A G

    1932-01-01

    This report presents the results of an investigation to determine the coefficients of discharge of nozzles with small, round orifices of the size used with high-speed compression-ignition engines. The injection pressures and chamber back pressures employed were comparable to those existing in compression-ignition engines during injection. The construction of the nozzles was varied to determine the effect of the nozzle design on the coefficient. Tests were also made with nozzles assembled in an automatic injection valve, both with a plain and with a helically grooved stem. It was found that a smooth passage before the orifice is requisite for high flow efficiency. A beveled leading edge before the orifice gave a higher coefficient of discharge than a rounded edge. The results with the nozzles assembled in an automatic injection valve having a plain stem duplicated those with the nozzles assembled at the end of a straight tube of constant diameter. Lower coefficients were obtained with the nozzles assembled in an injection valve having a helically grooved stem. When the coefficients of nozzles of any one geometrical shape were plotted against values of corresponding Reynold's numbers for the orifice diameters and rates of flow tested, it was found that experimental points were distributed along a single curve.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucachick, Glenn; Curran, Scott; Storey, John Morse

    Our work explores the volatility of particles produced from two diesel low temperature combustion (LTC) modes proposed for high-efficiency compression ignition engines. It also explores mechanisms of particulate formation and growth upon dilution in the near-tailpipe environment. Moreover, the number distribution of exhaust particles from low- and mid-load dual-fuel reactivity controlled compression ignition (RCCI) and single-fuel premixed charge compression ignition (PPCI) modes were experimentally studied over a gradient of dilution temperature. Particle volatility of select particle diameters was investigated using volatility tandem differential mobility analysis (V-TDMA). Evaporation rates for exhaust particles were compared with V-TDMA results for candidate pure n-alkanesmore » to identify species with similar volatility characteristics. The results show that LTC particles are mostly comprised of material with volatility similar to engine oil alkanes. V-TDMA results were used as inputs to an aerosol condensation and evaporation model to support the finding that smaller particles in the distribution are comprised of lower volatility material than large particles under primary dilution conditions. Although the results show that saturation levels are high enough to drive condensation of alkanes onto existing particles under the dilution conditions investigated, they are not high We conclude that observed particles from LTC operation must grow from low concentrations of highly non-volatile compounds present in the exhaust.« less

  11. Modeling the Shock Ignition of a Copper Oxide Aluminum Thermite

    NASA Astrophysics Data System (ADS)

    Lee, Kibaek; Stewart, D. Scott; Clemenson, Michael; Glumac, Nick; Murzyn, Christopher

    2015-06-01

    An experimental ``striker confinement'' shock compression test was developed in the Glumac-group at the University of Illinois to study ignition and reaction in composite reactive materials. These include thermitic and intermetallic reactive powders. The test places a sample of materials such as a thermite mixture of copper oxide and aluminum powders that are initially compressed to about 80 percent full density. Two RP-80 detonators simultaneously push steel bars into reactive material and the resulting compression causes shock compaction of the material and rapid heating. At that point one observes significant reaction and propagation of fronts. But the fronts are peculiar in that they are comprised of reactive events that can be traced to the reaction/diffusion of the initially separated reactants of copper oxide and aluminum that react at their mutual interfaces that nominally make copper liquid and aluminum oxide products. We discuss our model of the shock ignition of the copper oxide aluminum thermite in the context of the striker experiment and how a Gibbs formulation model, that includes multi-components for liquid and solid phases of aluminum, copper oxide, copper and aluminum oxide can predict the events observed at the particle scale in the experiments. Supported by HDTRA1-10-1-0020 (DTRA), N000014-12-1-0555 (ONR).

  12. Fuel Spray and Flame Formation in a Compression-Ignition Engine Employing Air Flow

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Waldron, C D

    1937-01-01

    The effects of air flow on fuel spray and flame formation in a high-speed compression-ignition engine have been investigated by means of the NACA combustion apparatus. The process was studied by examining high-speed motion pictures taken at the rate of 2,200 frames a second. The combustion chamber was of the flat-disk type used in previous experiments with this apparatus. The air flow was produced by a rectangular displacer mounted on top of the engine piston. Three fuel-injection nozzles were tested: a 0.020-inch single-orifice nozzle, a 6-orifice nozzle, and a slit nozzle. The air velocity within the combustion chamber was estimated to reach a value of 425 feet a second. The results show that in no case was the form of the fuel spray completely destroyed by the air jet although in some cases the direction of the spray was changed and the spray envelope was carried away by the moving air. The distribution of the fuel in the combustion chamber of a compression-ignition engine can be regulated to some extent by the design of the combustion chamber, by the design of the fuel-injection nozzle, and by the use of air flow.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pal, Pinaki; Probst, Daniel; Pei, Yuanjiang

    Fuels in the gasoline auto-ignition range (Research Octane Number (RON) > 60) have been demonstrated to be effective alternatives to diesel fuel in compression ignition engines. Such fuels allow more time for mixing with oxygen before combustion starts, owing to longer ignition delay. Moreover, by controlling fuel injection timing, it can be ensured that the in-cylinder mixture is “premixed enough” before combustion occurs to prevent soot formation while remaining “sufficiently inhomogeneous” in order to avoid excessive heat release rates. Gasoline compression ignition (GCI) has the potential to offer diesel-like efficiency at a lower cost and can be achieved with fuelsmore » such as low-octane straight run gasoline which require significantly less processing in the refinery compared to today’s fuels. To aid the design and optimization of a compression ignition (CI) combustion system using such fuels, a global sensitivity analysis (GSA) was conducted to understand the relative influence of various design parameters on efficiency, emissions and heat release rate. The design parameters included injection strategies, exhaust gas recirculation (EGR) fraction, temperature and pressure at intake valve closure and injector configuration. These were varied simultaneously to achieve various targets of ignition timing, combustion phasing, overall burn duration, emissions, fuel consumption, peak cylinder pressure and maximum pressure rise rate. The baseline case was a three-dimensional closed-cycle computational fluid dynamics (CFD) simulation with a sector mesh at medium load conditions. Eleven design parameters were considered and ranges of variation were prescribed to each of these. These input variables were perturbed in their respective ranges using the Monte Carlo (MC) method to generate a set of 256 CFD simulations and the targets were calculated from the simulation results. GSA was then applied as a screening tool to identify the input parameters having the most significant impact on each target. The results were further assessed by investigating the impact of individual parameter variations on the targets. Overall, it was demonstrated that GSA can be an effective tool in understanding parameters sensitive to a low temperature combustion concept with novel fuels.« less

  14. 49 CFR 579.21 - Reporting requirements for manufacturers of 5,000 or more light vehicles annually.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (compressed natural gas), CIF (compression ignition fuel), EBP (electric battery power), FCP (fuel-cell power... (electric battery power), FCP (fuel-cell power), HEV (hybrid electric vehicle), HCP (hydrogen combustion... and engine cooling system, 07 fuel system, 10 power train, 11 electrical system, 12 exterior lighting...

  15. A perspective on the range of gasoline compression ignition combustion strategies for high engine efficiency and low NOx and soot emissions: Effects of in-cylinder fuel stratification

    DOE PAGES

    Dempsey, Adam B.; Curran, Scott J.; Wagner, Robert M.

    2016-01-14

    Many research studies have shown that low temperature combustion in compression ignition engines has the ability to yield ultra-low NOx and soot emissions while maintaining high thermal efficiency. To achieve low temperature combustion, sufficient mixing time between the fuel and air in a globally dilute environment is required, thereby avoiding fuel-rich regions and reducing peak combustion temperatures, which significantly reduces soot and NOx formation, respectively. It has been demonstrated that achieving low temperature combustion with diesel fuel over a wide range of conditions is difficult because of its properties, namely, low volatility and high chemical reactivity. On the contrary, gasolinemore » has a high volatility and low chemical reactivity, meaning it is easier to achieve the amount of premixing time required prior to autoignition to achieve low temperature combustion. In order to achieve low temperature combustion while meeting other constraints, such as low pressure rise rates and maintaining control over the timing of combustion, in-cylinder fuel stratification has been widely investigated for gasoline low temperature combustion engines. The level of fuel stratification is, in reality, a continuum ranging from fully premixed (i.e. homogeneous charge of fuel and air) to heavily stratified, heterogeneous operation, such as diesel combustion. However, to illustrate the impact of fuel stratification on gasoline compression ignition, the authors have identified three representative operating strategies: partial, moderate, and heavy fuel stratification. Thus, this article provides an overview and perspective of the current research efforts to develop engine operating strategies for achieving gasoline low temperature combustion in a compression ignition engine via fuel stratification. In this paper, computational fluid dynamics modeling of the in-cylinder processes during the closed valve portion of the cycle was used to illustrate the opportunities and challenges associated with the various fuel stratification levels.« less

  16. A perspective on the range of gasoline compression ignition combustion strategies for high engine efficiency and low NOx and soot emissions: Effects of in-cylinder fuel stratification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dempsey, Adam B.; Curran, Scott J.; Wagner, Robert M.

    Many research studies have shown that low temperature combustion in compression ignition engines has the ability to yield ultra-low NOx and soot emissions while maintaining high thermal efficiency. To achieve low temperature combustion, sufficient mixing time between the fuel and air in a globally dilute environment is required, thereby avoiding fuel-rich regions and reducing peak combustion temperatures, which significantly reduces soot and NOx formation, respectively. It has been demonstrated that achieving low temperature combustion with diesel fuel over a wide range of conditions is difficult because of its properties, namely, low volatility and high chemical reactivity. On the contrary, gasolinemore » has a high volatility and low chemical reactivity, meaning it is easier to achieve the amount of premixing time required prior to autoignition to achieve low temperature combustion. In order to achieve low temperature combustion while meeting other constraints, such as low pressure rise rates and maintaining control over the timing of combustion, in-cylinder fuel stratification has been widely investigated for gasoline low temperature combustion engines. The level of fuel stratification is, in reality, a continuum ranging from fully premixed (i.e. homogeneous charge of fuel and air) to heavily stratified, heterogeneous operation, such as diesel combustion. However, to illustrate the impact of fuel stratification on gasoline compression ignition, the authors have identified three representative operating strategies: partial, moderate, and heavy fuel stratification. Thus, this article provides an overview and perspective of the current research efforts to develop engine operating strategies for achieving gasoline low temperature combustion in a compression ignition engine via fuel stratification. In this paper, computational fluid dynamics modeling of the in-cylinder processes during the closed valve portion of the cycle was used to illustrate the opportunities and challenges associated with the various fuel stratification levels.« less

  17. Main drive optimization of a high-foot pulse shape in inertial confinement fusion implosions

    NASA Astrophysics Data System (ADS)

    Wang, L. F.; Ye, W. H.; Wu, J. F.; Liu, Jie; Zhang, W. Y.; He, X. T.

    2016-12-01

    While progress towards hot-spot ignition has been made achieving an alpha-heating dominated state in high-foot implosion experiments [Hurricane et al., Nat. Phys. 12, 800 (2016)] on the National Ignition Facility, improvements are needed to increase the fuel compression for the enhancement of the neutron yield. A strategy is proposed to improve the fuel compression through the recompression of a shock/compression wave generated by the end of the main drive portion of a high-foot pulse shape. Two methods for the peak pulse recompression, namely, the decompression-and-recompression (DR) and simple recompression schemes, are investigated and compared. Radiation hydrodynamic simulations confirm that the peak pulse recompression can clearly improve fuel compression without significantly compromising the implosion stability. In particular, when the convergent DR shock is tuned to encounter the divergent shock from the capsule center at a suitable position, not only the neutron yield but also the stability of stagnating hot-spot can be noticeably improved, compared to the conventional high-foot implosions [Hurricane et al., Phys. Plasmas 21, 056314 (2014)].

  18. Experimental data on compressive strength and durability of sulfur concrete modified by styrene and bitumen.

    PubMed

    Dehestani, M; Teimortashlu, E; Molaei, M; Ghomian, M; Firoozi, S; Aghili, S

    2017-08-01

    In this data article experimental data on the compressive strength, and the durability of styrene and bitumen modified sulfur concrete against acidic water and ignition are presented. The percent of the sulfur cement and the gradation of the aggregates used are according to the ACI 548.2R-93 and ASTM 3515 respectively. For the styrene modified sulfur concrete different percentages of styrene are used. Also for the bitumen modified sulfur concrete, different percentages of bitumen and the emulsifying agent (triton X-100) are utilized. From each batch three 10×10×10 cm cubic samples were casted. One of the samples was used for the compressive strength on the second day of casting, and one on the twenty-eighth day. Then the two samples were put under the high pressure flame of the burning liquid gas for thirty seconds and their ignition resistances were observed. The third sample was put into the acidic water and after twenty eight days immersion in water was dried in the ambient temperature. After drying its compressive strength has been evaluated.

  19. On the effect of injection timing on the ignition of lean PRF/air/EGR mixtures under direct dual fuel stratification conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luong, Minh Bau; Sankaran, Ramanan; Yu, Gwang Hyeon

    2017-06-09

    The ignition characteristics of lean primary reference fuel (PRF)/air/exhaust gas recirculation (EGR) mixture under reactivity-controlled compression ignition (RCCI) and direct duel fuel stratification (DDFS) conditions are investigated in this paper by 2-D direct numerical simulations (DNSs) with a 116-species reduced chemistry of the PRF oxidation. The 2-D DNSs of the DDFS combustion are performed by varying the injection timing of iso-octane (i-C 8H 18) with a pseudo-iso-octane (PC 8H 18) model together with a novel compression heating model to account for the compression heating and expansion cooling effects of the piston motion in an engine cylinder. The PC 8H 18more » model is newly developed to mimic the timing, duration, and cooling effects of the direct injection of i-C 8H 18 onto a premixed background charge of PRF/air/EGR mixture with composition inhomogeneities. It is found that the RCCI combustion exhibits a very high peak heat release rate (HRR) with a short combustion duration due to the predominance of the spontaneous ignition mode of combustion. However, the DDFS combustion has much lower peak HRR and longer combustion duration regardless of the fuel injection timing compared to those of the RCCI combustion, which is primarily attributed to the sequential injection of i-C 8H 18. It is also found that the ignition delay of the DDFS combustion features a non-monotonic behavior with increasing fuel-injection timing due to the different effect of fuel evaporation on the low-, intermediate-, and high-temperature chemistry of the PRF oxidation. The budget and Damköhler number analyses verify that although a mixed combustion mode of deflagration and spontaneous ignition exists during the early phase of the DDFS combustion, the spontaneous ignition becomes predominant during the main combustion, and hence, the spread-out of heat release rate in the DDFS combustion is mainly governed by the direct injection process of i-C 8H 18. Finally, a misfire is observed for the DDFS combustion when the direct injection of i-C 8H 18 occurs during the intermediate-temperature chemistry (ITC) regime between the first- and second-stage ignition. Finally, this is because the temperature drop induced by the direct injection of i-C 8H 18 impedes the main ITC reactions, and hence, the main combustion fails to occur.« less

  20. The impact of physicochemical property interactions of iso -octane/ethanol blends on ignition timescales

    DOE PAGES

    Barraza-Botet, Cesar L.; Luecke, Jon; Zigler, Bradley T.; ...

    2018-03-20

    This work presents new measurements of liquid fuel ignition delay times of iso-octane and ethanol fuel blends obtained from an ignition quality tester at the National Renewable Energy Laboratory (NREL IQT), which are compared to previous ignition delay data from the University of Michigan rapid compression facility (UM RCF), at the same experimental conditions. Pressure-time histories were used to determine liquid fuel ignition delays at global stoichiometric non-premixed conditions for iso-octane, ethanol and iso-octane/ethanol blends of 25, 50, 75% by volume in mixtures of 10% oxygen diluted in nitrogen. Temperatures ranging from 880 to 970 K were studied at amore » pressure of 10 atm. By comparing total ignition delay times from the NREL IQT with chemical ignition delay times from the UM RCF, the contributions of physical phenomena were quantified as representative time scales for spray injection, breakup and evaporation processes, and for gas-phase turbulent mixing. Regression analyses were developed for ignition time scales as function of blend level and charge temperature. Non-dimensional analyses were also carried out to determine the relative effects of physical time scales with respect to chemical ignition delay times.« less

  1. Simulations of electron transport and ignition for direct-drive fast-ignition targets

    NASA Astrophysics Data System (ADS)

    Solodov, A. A.; Anderson, K. S.; Betti, R.; Gotcheva, V.; Myatt, J.; Delettrez, J. A.; Skupsky, S.; Theobald, W.; Stoeckl, C.

    2008-11-01

    The performance of high-gain, fast-ignition fusion targets is investigated using one-dimensional hydrodynamic simulations of implosion and two-dimensional (2D) hybrid fluid-particle simulations of hot-electron transport, ignition, and burn. The 2D/3D hybrid-particle-in-cell code LSP [D. R. Welch et al., Nucl. Instrum. Methods Phys. Res. A 464, 134 (2001)] and the 2D fluid code DRACO [P. B. Radha et al., Phys. Plasmas 12, 056307 (2005)] are integrated to simulate the hot-electron transport and heating for direct-drive fast-ignition targets. LSP simulates the transport of hot electrons from the place where they are generated to the dense fuel core where their energy is absorbed. DRACO includes the physics required to simulate compression, ignition, and burn of fast-ignition targets. The self-generated resistive magnetic field is found to collimate the hot-electron beam, increase the coupling efficiency of hot electrons with the target, and reduce the minimum energy required for ignition. Resistive filamentation of the hot-electron beam is also observed. The minimum energy required for ignition is found for hot electrons with realistic angular spread and Maxwellian energy-distribution function.

  2. The impact of physicochemical property interactions of iso -octane/ethanol blends on ignition timescales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barraza-Botet, Cesar L.; Luecke, Jon; Zigler, Bradley T.

    This work presents new measurements of liquid fuel ignition delay times of iso-octane and ethanol fuel blends obtained from an ignition quality tester at the National Renewable Energy Laboratory (NREL IQT), which are compared to previous ignition delay data from the University of Michigan rapid compression facility (UM RCF), at the same experimental conditions. Pressure-time histories were used to determine liquid fuel ignition delays at global stoichiometric non-premixed conditions for iso-octane, ethanol and iso-octane/ethanol blends of 25, 50, 75% by volume in mixtures of 10% oxygen diluted in nitrogen. Temperatures ranging from 880 to 970 K were studied at amore » pressure of 10 atm. By comparing total ignition delay times from the NREL IQT with chemical ignition delay times from the UM RCF, the contributions of physical phenomena were quantified as representative time scales for spray injection, breakup and evaporation processes, and for gas-phase turbulent mixing. Regression analyses were developed for ignition time scales as function of blend level and charge temperature. Non-dimensional analyses were also carried out to determine the relative effects of physical time scales with respect to chemical ignition delay times.« less

  3. Structural behavior of the Bitter plate tf magnet for the Zephyr ignition test reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bobrov, E.S.; Becker, H.

    1981-01-01

    This paper discusses methods and results of the computer structural analysis of the Bitter plate toroidal field magnet design for the ZEPHYR Ignition Test Reactor. The magnet provides a field of 7.06 T at the center of the bore which is 1.76 m from the major toroidal axis. The ignited plasma is located at a major radius of 1.36 m where the magnetic field is 9.11 T. The plasma is moved to this final position following compression in the major radius. The horizontal bore of the magnet is 1.8 m.

  4. Optimum hot electron production with low-density foams for laser fusion by fast ignition.

    PubMed

    Lei, A L; Tanaka, K A; Kodama, R; Kumar, G R; Nagai, K; Norimatsu, T; Yabuuchi, T; Mima, K

    2006-06-30

    We propose a foam cone-in-shell target design aiming at optimum hot electron production for the fast ignition. A thin low-density foam is proposed to cover the inner tip of a gold cone inserted in a fuel shell. An intense laser is then focused on the foam to generate hot electrons for the fast ignition. Element experiments demonstrate increased laser energy coupling efficiency into hot electrons without increasing the electron temperature and beam divergence with foam coated targets in comparison with solid targets. This may enhance the laser energy deposition in the compressed fuel plasma.

  5. Heat energy of various ignition sparks

    NASA Technical Reports Server (NTRS)

    Silsbee, F B; Loeb, L B; Fonseca, E L

    1920-01-01

    This report describes a method developed at the Bureau of Standards for measuring the total energy liberated as heat in a spark gap by an ignition system. Since this heat energy is obtained from the electromagnetic energy stored in the windings of the magneto or coil, it is a measure of the effectiveness of the device as an electric generator. Part 2 gives the results of measurements in absolute units of the total heat supplied to a spark gap by ignition systems of different types operating at various speeds, under conditions substantially equivalent to those in the cylinder of a high-compression aviation engine.

  6. A Description and Test Results of a Spark-Ignition and a Compression-Ignition 2-Stroke-Cycle Engine

    NASA Technical Reports Server (NTRS)

    Spanogle, J A; Whitney, E G

    1935-01-01

    This report presents performance results of air cooled and water-cooled engines. The results obtained were sufficiently promising to warrant further investigation with fuel injection and spark ignition, with the same arrangement of inlet ports and exhaust valves at the bottom of the cylinder and the exhaust gases discharged through two poppet valves in the cylinder head. The displacement of the engine was 118 cubic inches. Optimum performance was obtained with the inlet air directed into the cylinder at an angle of 20 degrees to the radial.

  7. First results of radiation-driven, layered deuterium-tritium implosions with a 3-shock adiabat-shaped drive at the National Ignition Facility

    DOE PAGES

    Smalyuk, V. A.; Robey, H. F.; Döppner, T.; ...

    2015-08-27

    Radiation-driven, layered deuterium-tritium plastic capsule implosions were carried out using a new, 3-shock “adiabat-shaped” drive on the National Ignition Facility. The purpose of adiabat shaping is to use a stronger first shock, reducing hydrodynamic instability growth in the ablator. The shock can decay before reaching the deuterium-tritium fuel leaving it on a low adiabat and allowing higher fuel compression. The fuel areal density was improved by ~25% with this new drive compared to similar “high-foot” implosions, while neutron yield was improved by more than 4 times, compared to “low-foot” implosions driven at the same compression and implosion velocity.

  8. Regulatory impact analysis and regulatory support document: Control of air pollution; determination of significance for nonroad sources and emission standards for new nonroad compression-ignition engines at or above 37 kilowatts (50 horsepower). Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trimble, T.; North, D.R.; Green, K.A.H.

    1994-05-27

    The regulatory impact analysis and support document provides additional information in support of the Final Rulemaking (FRM). This FRM will regulate all new nonroad compression-ignition engines greater than or equal to 37 kilowatts (50 hp), except engines which propel or are used on marine vessels, aircraft engines, engines which propel locomotives, and engines regulated by the Mining, Safety, and Health Administration. The regulated engines are hereafter referred to as nonroad large CI engines. The goal of this regulation is to substantially reduce NOx emission and smoke from nonroad large CI engines beginning in the 1996 model year.

  9. Precision shock tuning on the national ignition facility.

    PubMed

    Robey, H F; Celliers, P M; Kline, J L; Mackinnon, A J; Boehly, T R; Landen, O L; Eggert, J H; Hicks, D; Le Pape, S; Farley, D R; Bowers, M W; Krauter, K G; Munro, D H; Jones, O S; Milovich, J L; Clark, D; Spears, B K; Town, R P J; Haan, S W; Dixit, S; Schneider, M B; Dewald, E L; Widmann, K; Moody, J D; Döppner, T D; Radousky, H B; Nikroo, A; Kroll, J J; Hamza, A V; Horner, J B; Bhandarkar, S D; Dzenitis, E; Alger, E; Giraldez, E; Castro, C; Moreno, K; Haynam, C; LaFortune, K N; Widmayer, C; Shaw, M; Jancaitis, K; Parham, T; Holunga, D M; Walters, C F; Haid, B; Malsbury, T; Trummer, D; Coffee, K R; Burr, B; Berzins, L V; Choate, C; Brereton, S J; Azevedo, S; Chandrasekaran, H; Glenzer, S; Caggiano, J A; Knauer, J P; Frenje, J A; Casey, D T; Johnson, M Gatu; Séguin, F H; Young, B K; Edwards, M J; Van Wonterghem, B M; Kilkenny, J; MacGowan, B J; Atherton, J; Lindl, J D; Meyerhofer, D D; Moses, E

    2012-05-25

    Ignition implosions on the National Ignition Facility [J. D. Lindl et al., Phys. Plasmas 11, 339 (2004)] are underway with the goal of compressing deuterium-tritium fuel to a sufficiently high areal density (ρR) to sustain a self-propagating burn wave required for fusion power gain greater than unity. These implosions are driven with a very carefully tailored sequence of four shock waves that must be timed to very high precision to keep the fuel entropy and adiabat low and ρR high. The first series of precision tuning experiments on the National Ignition Facility, which use optical diagnostics to directly measure the strength and timing of all four shocks inside a hohlraum-driven, cryogenic liquid-deuterium-filled capsule interior have now been performed. The results of these experiments are presented demonstrating a significant decrease in adiabat over previously untuned implosions. The impact of the improved shock timing is confirmed in related deuterium-tritium layered capsule implosions, which show the highest fuel compression (ρR~1.0 g/cm(2)) measured to date, exceeding the previous record [V. Goncharov et al., Phys. Rev. Lett. 104, 165001 (2010)] by more than a factor of 3. The experiments also clearly reveal an issue with the 4th shock velocity, which is observed to be 20% slower than predictions from numerical simulation.

  10. 49 CFR 579.21 - Reporting requirements for manufacturers of 5,000 or more light vehicles annually.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., 05 parking brake, 06 engine and engine cooling system, 07 fuel system, 10 power train, 11 electrical... model, the model year, the type, the platform, the fuel and/or propulsion system type coded as follows: CNG (compressed natural gas), CIF (compression ignition fuel), EBP (electric battery power), FCP (fuel...

  11. Ignition of steel alloys by impact of low-velocity iron/inert particles in gaseous oxygen

    NASA Technical Reports Server (NTRS)

    Benz, Frank J.; Mcilroy, Kenneth; Williams, Ralph E.

    1988-01-01

    The ignition of carbon steel and 316 and 304 stainless steels caused by the impact of low-velocity particles (a standard mixture consisting of 2 g of iron and 3 g of inert materials) in gaseous oxygen was investigated using NASA/White Sands Test Facility for the ignition test, and a subsonic particle impact chamber to accelerate the particles that were injected into flowing oxygen upstream of the target specimen. It was found that the oxygen velocities required to ignite the three alloys were the same as that required to ignite the particle mixture. Ignition occurred at oxygen velocities greater than 45 m/sec at 20 to 24 MPa and was found to be independent of pressure between 2 and 30 MPa. Comparison of the present results and the past results from Wegener (1964) with the Compressed Gas Association (CGA) oxygen velocity limits for safe operations indicates that the CGA limits may be excessively conservative at high pressures and too liberal at low pressures.

  12. Ignition of contaminants by impact of high-pressure oxygen

    NASA Technical Reports Server (NTRS)

    Pedley, Michael D.; Pao, Jenn-Hai; Bamford, Larry; Williams, Ralph E.; Plante, Barry

    1988-01-01

    The ignition of oil-film contaminants in high-pressure gaseous oxygen systems, caused by rapid pressurization, was investigated using the NASA/White Sands Test Facility's large-volume pneumatic impact test system. The test section consisted of stainless steel lines, contaminated on the inside surface with known amounts of Mobil DTE 24 oil and closed at one end, which was attached to a high-pressure oxygen system; the test section was pressurized to 48 MPa by opening a high-speed valve. Ignition of the oil was detected by a photocell attached to the closed end of the line. It was found that the frequency of ignition increased as a function of both the concentration of oil and of the pressure of the impacting oxygen. The threshold of ignition was between 25 and 65 mg/sq m. The results were correlated with the present NASA and Compressed Gas Association requirements for maximum levels of organic contaminants.

  13. Investigation of transient ignition process in a cavity based scramjet combustor using combined ethylene injectors

    NASA Astrophysics Data System (ADS)

    Liu, Xiao; Cai, Zun; Tong, Yiheng; Zheng, Hongtao

    2017-08-01

    Large Eddy Simulation (LES) and experiment were employed to investigate the transient ignition and flame propagation process in a rearwall-expansion cavity scramjet combustor using combined fuel injection schemes. The compressible supersonic solver and three ethylene combustion mechanisms were first validated against experimental data and results show in reasonably good agreement. Fuel injection scheme combining transverse and direct injectors in the cavity provides a benefit mixture distribution and could achieve a successful ignition. Four stages are illustrated in detail from both experiment and LES. After forced ignition in the cavity, initial flame kernel propagates upstream towards the cavity front edge and ignites the mixture, which acts as a continuous pilot flame, and then propagates downstream along the cavity shear layer rapidly to the combustor exit. Cavity shear layer flame stabilization mode can be concluded from the heat release rate and local high temperature distribution during the combustion process.

  14. The simulations of indirect-drive targets for ignition on megajoule lasers.

    NASA Astrophysics Data System (ADS)

    Lykov, Vladimir; Andreev, Eugene; Ardasheva, Ludmila; Avramenko, Michael; Chernyakov, Valerian; Chizhkov, Maxim; Karlykhanov, Nikalai; Kozmanov, Michael; Lebedev, Serge; Rykovanov, George; Seleznev, Vladimir; Sokolov, Lev; Timakova, Margaret; Shestakov, Alexander; Shushlebin, Aleksander

    2013-10-01

    The calculations were performed with use of radiation hydrodynamic codes developed in RFNC-VNIITF. The analysis of published calculations of indirect-drive targets to obtain ignition on NIF and LMJ lasers has shown that these targets have very low margins for ignition: according to 1D-ERA code calculations it could not be ignited under decreasing of thermonuclear reaction rate less than in 2 times.The purpose of new calculations is search of indirect-drive targets with the raised margins for ignition. The calculations of compression and thermonuclear burning of targets are carried out for conditions of X-ray flux asymmetry obtained in simulations of Rugby hohlraum that were performed with 2D-SINARA code. The requirements to accuracy of manufacturing and irradiation symmetry of targets were studied with use of 2D-TIGR-OMEGA-3T code. The necessity of performed researches is caused by the construction of magajoule laser in Russia.

  15. Studies of Carbonization Process on the Production of Durian Peel Biobriquettes with Mixed Biomass Coconut and Palm Shells

    NASA Astrophysics Data System (ADS)

    Sari, Ellyta; Pasymi; Khatab, Umar; Desmiarti, Reni; Ariansyah, Rian; Hariadi; Sutra

    2018-03-01

    Biobriquettes as alternative energy that can replace the role of kerosene. Biobriquettes made from agricultural waste biomass. Biobriquettes durian peel has been researched and developed continuously to obtain optimal quality in terms of calorific value, compressive strength and duration of ignition. In making durian peel biobriquettes needed other biomass mix to sustain duration of Ignition for biobriquettes durian skin quickly burned out. Stages of making biobriquettes durian skin are: material of drying, carbonization of biomass, grinding, mixing with adhesives, and printing. Carbonization process is a process that is important in obtaining the biomass charcoal. Carbonization is done by means of karbonisator pyrolysis. The purpose of this research is to study the process of carbonization to obtain biobriquettes durian skin that of quality in terms of value compressive strength, calorific value, and duration of ignition. Variations that done was kind mix of biomass,coconut shells and palm shells with the massa ratio 2 : 1, type of adhesive used tapioca powder and banana peels, carbonization of temperature 200°C. 300°C and 400 °C. The results showed that the highest compressive strength of the durian skin with a mixture of coconut shell and adhesive tapioca powder and carbonization temperature of 300 °C namely 12,7 g/cm2. The calorific value of the highest on the mix of skin durian with coconut shells and adhesive banana skin with temperature of carbonization 400 °C ie 6040 cal/g, and duration of ignition highest on a mixture of skin durian with coconut shell and adhesive banana skin at a temperature of carbonization 300 °C is 73 minutes.

  16. An experimental study of the combustion characteristics in SCCI and CAI based on direct-injection gasoline engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, C.H.; Lee, K.H.

    2007-08-15

    Emissions remain a critical issue affecting engine design and operation, while energy conservation is becoming increasingly important. One approach to favorably address these issues is to achieve homogeneous charge combustion and stratified charge combustion at lower peak temperatures with a variable compression ratio, a variable intake temperature and a trapped rate of the EGR using NVO (negative valve overlap). This experiment was attempted to investigate the origins of these lower temperature auto-ignition phenomena with SCCI and CAI using gasoline fuel. In case of SCCI, the combustion and emission characteristics of gasoline-fueled stratified-charge compression ignition (SCCI) engine according to intake temperaturemore » and compression ratio was examined. We investigated the effects of air-fuel ratio, residual EGR rate and injection timing on the CAI combustion area. In addition, the effect of injection timing on combustion factors such as the start of combustion, its duration and its heat release rate was also investigated. (author)« less

  17. Ignition study of a petrol/CNG single cylinder engine

    NASA Astrophysics Data System (ADS)

    Khan, N.; Saleem, Z.; Mirza, A. A.

    2005-11-01

    Benefits of laser ignition over the electrical ignition system for Compressed Natural Gas (CNG) engines have fuelled automobile industry and led to an extensive research on basic characteristics to switch over to the emerging technologies. This study was undertaken to determine the electrical and physical characteristics of the electric spark ignition of single cylinder petrol/CNG engine to determine minimum ignition requirements and timeline of ignition events to use in subsequent laser ignition study. This communication briefly reviews the ongoing research activities and reports the results of this experimental study. The premixed petrol and CNG mixtures were tested for variation of current and voltage characteristics of the spark with speed of engine. The current magnitude of discharge circuit was found to vary linearly over a wide range of speed but the stroke to stroke fire time was found to vary nonlinearly. The DC voltage profiles were observed to fluctuate randomly during ignition process and staying constant in rest of the combustion cycle. Fire to fire peaks of current amplitudes fluctuated up to 10% of the peak values at constant speed but increased almost linearly with increase in speed. Technical barriers of laser ignition related to threshold minimum ignition energy, inter-pulse durations and firing sequence are discussed. Present findings provide a basic initiative and background information for designing suitable timeline algorithms for laser ignited leaner direct injected CNG engines.

  18. Co-Optimization of Fuels and Engines (Co-Optima) -- Introduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrell, John T; Wagner, Robert; Holladay, John

    The Co-Optimization of Fuels and Engines (Co-Optima) initiative is a U.S. Department of Energy (DOE) effort funded by both the Vehicle and Bioenergy Technology Offices. The overall goal of the effort is to identify the combinations of fuel properties and engine characteristics that maximize efficiency, independent of production pathway or fuel composition, and accelerate commercialization of these technologies. Multiple research efforts are underway focused on both spark-ignition and compression-ignition strategies applicable across the entire light, medium, and heavy-duty fleet. A key objective of Co-Optima's research is to identify new blendstocks that enhance current petroleum blending components, increase blendstock diversity, andmore » provide refiners with increased flexibility to blend fuels with the key properties required to optimize advanced internal combustion engines. In addition to fuels and engines R&D, the initiative is guided by analyses assessing the near-term commercial feasibility of new blendstocks based on economics, environmental performance, compatibility, and large-scale production viability. This talk will provide an overview of the Co-Optima effort.« less

  19. Co-Optimization of Fuels & Engines: Fuel Blendstocks with the Potential to Optimize Future Gasoline Engine Performance; Identification of Five Chemical Families for Detailed Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrell, John T; Holladay, John; Wagner, Robert

    The U.S. Department of Energy's (DOE's) Co-Optimization of Fuels & Engines (Co-Optima) initiative is conducting the early-stage research needed to accelerate the market introduction of advanced fuel and engine technologies. The research includes both spark-ignition (SI) and compression-ignition (CI) combustion approaches, targeting applications that impact the entire on-road fleet (light-, medium-, and heavy-duty vehicles). The initiative's major goals include significant improvements in vehicle fuel economy, lower-cost pathways to reduce emissions, and leveraging diverse U.S. fuel resources. A key objective of Co-Optima's research is to identify new blendstocks that enhance current petroleum blending components, increase blendstock diversity, and provide refiners withmore » increased flexibility to blend fuels with the key properties required to optimize advanced internal combustion engines. This report identifies eight representative blendstocks from five chemical families that have demonstrated the potential to increase boosted SI engine efficiency, meet key fuel quality requirements, and be viable for production at commercial scale by 2025-2030.« less

  20. Ducted fuel injection: A new approach for lowering soot emissions from direct-injection engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Charles J.; Nilsen, Christopher W.; Ruth, Daniel J.

    Designers of direct-injection compression-ignition engines use a variety of strategies to improve the fuel/charge-gas mixture within the combustion chamber for increased efficiency and reduced pollutant emissions. Strategies include the use of high fuel-injection pressures, multiple injections, small injector orifices, flow swirl, long-ignition-delay conditions, and oxygenated fuels. This is the first journal publication paper on a new mixing-enhancement strategy for emissions reduction: ducted fuel injection. The concept involves injecting fuel along the axis of a small cylindrical duct within the combustion chamber, to enhance the mixture in the autoignition zone relative to a conventional free-spray configuration (i.e., a fuel spray thatmore » is not surrounded by a duct). Finally, the results described herein, from initial proof-of-concept experiments conducted in a constant-volume combustion vessel, show dramatically lower soot incandescence from ducted fuel injection than from free sprays over a range of charge-gas conditions that are representative of those in modern direct-injection compression-ignition engines.« less

  1. Autoignition study of binary blends of n- dodecane/1-methylnaphthalene and iso- cetane/1-methylnaphthalene

    DOE PAGES

    Kukkadapu, Goutham; Sung, Chih-Jen

    2017-11-24

    An experimental study on autoignition of two binary blends, n-dodecane/1-methylnaphthalene and iso-cetane/1-methylnaphthalene, has been conducted using a rapid compression machine. Specifically, the ignition delays of the stoichiometric blend+air mixtures were measured at elevated pressures of P C = 15 bar and 30 bar, compressed temperatures of T C = 626–944 K, and varying blending ratios of the constituents. For a given set of P C and T C, a nonlinear response of the blend reactivity with respect to the relative amount of the constituents was observed. Since a comprehensive chemical kinetic model for the blends investigated here is under development,more » the current ignition delay datasets serve as the needed targets for model validation. For selected conditions, ignition delay simulations were conducted to highlight and discuss the deficiencies of the literature models and the potential areas for model improvements, especially at low temperatures. In conclusion, further chemical kinetic analyses were conducted to gain understanding of the blending behavior predicted by the available model.« less

  2. Experimental investigation of homogeneous charge compression ignition combustion of biodiesel fuel with external mixture formation in a CI engine.

    PubMed

    Ganesh, D; Nagarajan, G; Ganesan, S

    2014-01-01

    In parallel to the interest in renewable fuels, there has also been increased interest in homogeneous charge compression ignition (HCCI) combustion. HCCI engines are being actively developed because they have the potential to be highly efficient and to produce low emissions. Even though HCCI has been researched extensively, few challenges still exist. These include controlling the combustion at higher loads and the formation of a homogeneous mixture. To obtain better homogeneity, in the present investigation external mixture formation method was adopted, in which the fuel vaporiser was used to achieve excellent HCCI combustion in a single cylinder air-cooled direct injection diesel engine. In continuation of our previous works, in the current study a vaporised jatropha methyl ester (JME) was mixed with air to form a homogeneous mixture and inducted into the cylinder during the intake stroke to analyze the combustion, emission and performance characteristics. To control the early ignition of JME vapor-air mixture, cooled (30 °C) Exhaust gas recirculation (EGR) technique was adopted. The experimental result shows 81% reduction in NOx and 72% reduction in smoke emission.

  3. Autoignition study of binary blends of n- dodecane/1-methylnaphthalene and iso- cetane/1-methylnaphthalene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kukkadapu, Goutham; Sung, Chih-Jen

    An experimental study on autoignition of two binary blends, n-dodecane/1-methylnaphthalene and iso-cetane/1-methylnaphthalene, has been conducted using a rapid compression machine. Specifically, the ignition delays of the stoichiometric blend+air mixtures were measured at elevated pressures of P C = 15 bar and 30 bar, compressed temperatures of T C = 626–944 K, and varying blending ratios of the constituents. For a given set of P C and T C, a nonlinear response of the blend reactivity with respect to the relative amount of the constituents was observed. Since a comprehensive chemical kinetic model for the blends investigated here is under development,more » the current ignition delay datasets serve as the needed targets for model validation. For selected conditions, ignition delay simulations were conducted to highlight and discuss the deficiencies of the literature models and the potential areas for model improvements, especially at low temperatures. In conclusion, further chemical kinetic analyses were conducted to gain understanding of the blending behavior predicted by the available model.« less

  4. The combustion behavior of diesel/CNG mixtures in a constant volume combustion chamber

    NASA Astrophysics Data System (ADS)

    Firmansyah; Aziz, A. R. A.; Heikal, M. R.

    2015-12-01

    The stringent emissions and needs to increase fuel efficiency makes controlled auto-ignition (CAI) based combustion an attractive alternative for the new combustion system. However, the combustion control is the main obstacles in its development. Reactivity controlled compression ignition (RCCI) that employs two fuels with significantly different in reactivity proven to be able to control the combustion. The RCCI concept applied in a constant volume chamber fuelled with direct injected diesel and compressed natural gas (CNG) was tested. The mixture composition is varied from 0 - 100% diesel/CNG at lambda 1 with main data collection are pressure profile and combustion images. The results show that diesel-CNG mixture significantly shows better combustion compared to diesel only. It is found that CNG is delaying the diesel combustion and at the same time assisting in diesel distribution inside the chamber. This combination creates a multipoint ignition of diesel throughout the chamber that generate very fast heat release rate and higher maximum pressure. Furthermore, lighter yellow color of the flame indicates lower soot production in compared with diesel combustion.

  5. Ducted fuel injection: A new approach for lowering soot emissions from direct-injection engines

    DOE PAGES

    Mueller, Charles J.; Nilsen, Christopher W.; Ruth, Daniel J.; ...

    2017-07-18

    Designers of direct-injection compression-ignition engines use a variety of strategies to improve the fuel/charge-gas mixture within the combustion chamber for increased efficiency and reduced pollutant emissions. Strategies include the use of high fuel-injection pressures, multiple injections, small injector orifices, flow swirl, long-ignition-delay conditions, and oxygenated fuels. This is the first journal publication paper on a new mixing-enhancement strategy for emissions reduction: ducted fuel injection. The concept involves injecting fuel along the axis of a small cylindrical duct within the combustion chamber, to enhance the mixture in the autoignition zone relative to a conventional free-spray configuration (i.e., a fuel spray thatmore » is not surrounded by a duct). Finally, the results described herein, from initial proof-of-concept experiments conducted in a constant-volume combustion vessel, show dramatically lower soot incandescence from ducted fuel injection than from free sprays over a range of charge-gas conditions that are representative of those in modern direct-injection compression-ignition engines.« less

  6. Development of a Stiffness-Based Chemistry Load Balancing Scheme, and Optimization of Input/Output and Communication, to Enable Massively Parallel High-Fidelity Internal Combustion Engine Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kodavasal, Janardhan; Harms, Kevin; Srivastava, Priyesh

    A closed-cycle gasoline compression ignition engine simulation near top dead center (TDC) was used to profile the performance of a parallel commercial engine computational fluid dynamics code, as it was scaled on up to 4096 cores of an IBM Blue Gene/Q supercomputer. The test case has 9 million cells near TDC, with a fixed mesh size of 0.15 mm, and was run on configurations ranging from 128 to 4096 cores. Profiling was done for a small duration of 0.11 crank angle degrees near TDC during ignition. Optimization of input/output performance resulted in a significant speedup in reading restart files, andmore » in an over 100-times speedup in writing restart files and files for post-processing. Improvements to communication resulted in a 1400-times speedup in the mesh load balancing operation during initialization, on 4096 cores. An improved, “stiffness-based” algorithm for load balancing chemical kinetics calculations was developed, which results in an over 3-times faster run-time near ignition on 4096 cores relative to the original load balancing scheme. With this improvement to load balancing, the code achieves over 78% scaling efficiency on 2048 cores, and over 65% scaling efficiency on 4096 cores, relative to 256 cores.« less

  7. Reaction kinetics of hydrogen atom abstraction from isopentanol by the H atom and HO2˙ radical.

    PubMed

    Parab, Prajakta Rajaram; Heufer, K Alexander; Fernandes, Ravi Xavier

    2018-04-25

    Isopentanol is a potential next-generation biofuel for future applications to Homogeneous Charge Compression Ignition (HCCI) engine concepts. To provide insights into the combustion behavior of isopentanol, especially to its auto-ignition behavior which is linked both to efficiency and pollutant formation in real combustion systems, detailed quantum chemical studies for crucial reactions are desired. H-Abstraction reaction rates from fuel molecules are key initiation steps for chain branching required for auto-ignition. In this study, rate constants are determined for the hydrogen atom abstraction reactions from isopentanol by the H atom and HO2˙ radical by implementing the CBS-QB3 composite method. For the treatment of the internal rotors, a Pitzer-Gwinn-like approximation is applied. On comparing the computed reaction energies, the highest exothermicity (ΔE = -46 kJ mol-1) is depicted for Hα abstraction by the H atom whereas the lowest endothermicity (ΔE = 29 kJ mol-1) is shown for the abstraction of Hα by the HO2˙ radical. The formation of hydrogen bonding is found to affect the kinetics of the H atom abstraction reactions by the HO2˙ radical. Further above 750 K, the calculated high pressure limit rate constants indicate that the total contribution from delta carbon sites (Cδ) is predominant for hydrogen atom abstraction by the H atom and HO2˙ radical.

  8. Review of homogeneous charge compression ignition (HCCI) combustion engines and exhaust gas recirculation (EGR) effects on HCCI

    NASA Astrophysics Data System (ADS)

    Akma Tuan Kamaruddin, Tengku Nordayana; Wahid, Mazlan Abdul; Sies, Mohsin Mohd

    2012-06-01

    This paper describes the development in ICE which leads to the new advanced combustion mode named Homogeneous Charge Compression Ignition (HCCI). It explains regarding the theory and working principle of HCCI plus the difference of the process in gasoline and diesel fuelled engines. Many of pioneer and recent research works are discussed to get the current state of art about HCCI. It gives a better indication on the potential of this method in improving the fuel efficiency and emission produced by the vehicles' engine. Apart from the advantages, the challenges and future trend of this technology are also included. HCCI is applying few types of control strategy in producing the optimum performance. This paper looks into Exhaust Gas Recirculation (EGR) as one of the control strategies.

  9. Adaptive individual-cylinder thermal state control using intake air heating for a GDCI engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, Gregory T.; Sellnau, Mark C.

    A system for a multi-cylinder compression ignition engine includes a plurality of heaters, at least one heater per cylinder, with each heater configured to heat air introduced into a cylinder. Independent control of the heaters is provided on a cylinder-by-cylinder basis. A combustion parameter is determined for combustion in each cylinder of the engine, and control of the heater for that cylinder is based on the value of the combustion parameter for combustion in that cylinder. A method for influencing combustion in a multi-cylinder compression ignition engine, including determining a combustion parameter for combustion taking place in a cylinder ofmore » the engine and controlling a heater configured to heat air introduced into that cylinder, is also provided.« less

  10. High efficiency stoichiometric internal combustion engine system

    DOEpatents

    Winsor, Richard Edward; Chase, Scott Allen

    2009-06-02

    A power system including a stoichiometric compression ignition engine in which a roots blower is positioned in the air intake for the engine to control air flow. Air flow is decreased during part power conditions to maintain the air-fuel ratio in the combustion chamber of the engine at stoichiometric, thus enabling the use of inexpensive three-way catalyst to reduce oxides of nitrogen. The roots blower is connected to a motor generator so that when air flow is reduced, electrical energy is stored which is made available either to the roots blower to temporarily increase air flow or to the system electrical load and thus recapture energy that would otherwise be lost in reducing air flow.

  11. 40 CFR 94.219 - Durability data engine selection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Certification Provisions § 94.219... this section. (c) Durability data engines shall be built from subsystems and components that are...

  12. Indirect drive ignition at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meezan, N. B.; Edwards, M. J.; Hurricane, O. A.

    This article reviews scientific results from the pursuit of indirect drive ignition on the National Ignition Facility (NIF) and describes the program's forward looking research directions. In indirect drive on the NIF, laser beams heat an x-ray enclosure called a hohlraum that surrounds a spherical pellet. X-ray radiation ablates the surface of the pellet, imploding a thin shell of deuterium/tritium (DT) that must accelerate to high velocity (v > 350 km s -1) and compress by a factor of several thousand. Since 2009, substantial progress has been made in understanding the major challenges to ignition: Rayleigh Taylor (RT) instability seededmore » by target imperfections; and low-mode asymmetries in the hohlraum x-ray drive, exacerbated by laser-plasma instabilities (LPI). Requirements on velocity, symmetry, and compression have been demonstrated separately on the NIF but have not been achieved simultaneously. We now know that the RT instability, seeded mainly by the capsule support tent, severely degraded DT implosions from 2009–2012. Experiments using a 'high-foot' drive with demonstrated lower RT growth improved the thermonuclear yield by a factor of 10, resulting in yield amplification due to alpha particle heating by more than a factor of 2. However, large time dependent drive asymmetry in the LPI-dominated hohlraums remains unchanged, preventing further improvements. High fidelity 3D hydrodynamic calculations explain these results. In conclusion, future research efforts focus on improved capsule mounting techniques and on hohlraums with little LPI and controllable symmetry. In parallel, we are pursuing improvements to the basic physics models used in the design codes through focused physics experiments.« less

  13. Indirect drive ignition at the National Ignition Facility

    DOE PAGES

    Meezan, N. B.; Edwards, M. J.; Hurricane, O. A.; ...

    2016-10-27

    This article reviews scientific results from the pursuit of indirect drive ignition on the National Ignition Facility (NIF) and describes the program's forward looking research directions. In indirect drive on the NIF, laser beams heat an x-ray enclosure called a hohlraum that surrounds a spherical pellet. X-ray radiation ablates the surface of the pellet, imploding a thin shell of deuterium/tritium (DT) that must accelerate to high velocity (v > 350 km s -1) and compress by a factor of several thousand. Since 2009, substantial progress has been made in understanding the major challenges to ignition: Rayleigh Taylor (RT) instability seededmore » by target imperfections; and low-mode asymmetries in the hohlraum x-ray drive, exacerbated by laser-plasma instabilities (LPI). Requirements on velocity, symmetry, and compression have been demonstrated separately on the NIF but have not been achieved simultaneously. We now know that the RT instability, seeded mainly by the capsule support tent, severely degraded DT implosions from 2009–2012. Experiments using a 'high-foot' drive with demonstrated lower RT growth improved the thermonuclear yield by a factor of 10, resulting in yield amplification due to alpha particle heating by more than a factor of 2. However, large time dependent drive asymmetry in the LPI-dominated hohlraums remains unchanged, preventing further improvements. High fidelity 3D hydrodynamic calculations explain these results. In conclusion, future research efforts focus on improved capsule mounting techniques and on hohlraums with little LPI and controllable symmetry. In parallel, we are pursuing improvements to the basic physics models used in the design codes through focused physics experiments.« less

  14. Certification and Compliance for Nonroad Vehicles and Engines

    EPA Pesticide Factsheets

    Certification and compliance information for aircraft, all-terrain vehicles (ATVs) and dirt bikes, locomotives, marine compression-ignition (CI) engines, nonroad CI engines, nonroad spark (SI) engines, portable fuel containers, snowmobiles.

  15. 40 CFR Table 2c to Subpart Zzzz of... - Requirements for Existing Compression Ignition Stationary Rice Located at Major Sources of HAP...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., non-black start CI 500 HP a. Limit concentration of CO in the stationary RICE exhaust to 23 ppmvd or... Ignition Stationary Rice Located at Major Sources of HAP Emissions 2c Table 2c to Subpart ZZZZ of Part 63... Stationary Rice Located at Major Sources of HAP Emissions As stated in §§ 63.6600 and 63.6640, you must...

  16. Simple model of the indirect compression of targets under conditions close to the national ignition facility at an energy of 1.5 MJ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rozanov, V. B., E-mail: rozanov@sci.lebedev.ru; Vergunova, G. A., E-mail: verg@sci.lebedev.ru

    2015-11-15

    The possibility of the analysis and interpretation of the reported experiments with the megajoule National Ignition Facility (NIF) laser on the compression of capsules in indirect-irradiation targets by means of the one-dimensional RADIAN program in the spherical geometry has been studied. The problem of the energy balance in a target and the determination of the laser energy that should be used in the spherical model of the target has been considered. The results of action of pulses differing in energy and time profile (“low-foot” and “high-foot” regimes) have been analyzed. The parameters of the compression of targets with a high-densitymore » carbon ablator have been obtained. The results of the simulations are in satisfactory agreement with the measurements and correspond to the range of the observed parameters. The set of compared results can be expanded, in particular, for a more detailed determination of the parameters of a target near the maximum compression of the capsule. The physical foundation of the possibility of using the one-dimensional description is the necessity of the closeness of the last stage of the compression of the capsule to a one-dimensional process. The one-dimensional simulation of the compression of the capsule can be useful in establishing the boundary behind which two-dimensional and three-dimensional simulation should be used.« less

  17. 40 CFR 89.503 - Test orders.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Selective Enforcement Auditing § 89.503... Selective Enforcement Auditing (SEA) test orders than an annual limit determined to be the larger of the...

  18. Compressible Heating in the Condense Phase due to Pore Collapse in HMX

    NASA Astrophysics Data System (ADS)

    Zhang, Ju; Jackson, Thomas

    Axisymmetric pore collapse in HMX is studied numerically by solving multi-phase reactive Euler equations. The generation of hot spots in the condense phase due to compressible heating is examined. The motivation is to improve the understanding of the role of embedded cavities in the initiation of reaction in explosives, and to investigate the effect of hot spots in the condense phase due to compressible heating alone, complementing previous study on hot spots due to the reaction in the gas phase and at the interface. It is found that the shock-cavity interaction results in pressures and thus temperatures that are substantially higher than the post-shock values in the condense phase. However, these hot spots in the condense phase due to compressible heating alone do not seem to be sufficiently hot to lead to ignition at shock pressures of 1-3 GPa. Thus, compressible heating in the condense phase may be excluded as a mechanism for initiation of explosives. It should be pointed out that the ignition threshold for the temperature, the so-called ``switch-on'' temperature, of hot spots depend on chemistry kinetics parameters. Switch-on temperature is lower for faster reaction rate. The current chemistry kinetics parameters are based on previous experimental work. This work was supported in part by the Defense Threat Reduction Agency and by the U.S. Department of Energy.

  19. Shock ignition targets: gain and robustness vs ignition threshold factor

    NASA Astrophysics Data System (ADS)

    Atzeni, Stefano; Antonelli, Luca; Schiavi, Angelo; Picone, Silvia; Volponi, Gian Marco; Marocchino, Alberto

    2017-10-01

    Shock ignition is a laser direct-drive inertial confinement fusion scheme, in which the stages of compression and hot spot formation are partly separated. The hot spot is created at the end of the implosion by a converging shock driven by a final ``spike'' of the laser pulse. Several shock-ignition target concepts have been proposed and relevant gain curves computed (see, e.g.). Here, we consider both pure-DT targets and more facility-relevant targets with plastic ablator. The investigation is conducted with 1D and 2D hydrodynamic simulations. We determine ignition threshold factors ITF's (and their dependence on laser pulse parameters) by means of 1D simulations. 2D simulations indicate that robustness to long-scale perturbations increases with ITF. Gain curves (gain vs laser energy), for different ITF's, are generated using 1D simulations. Work partially supported by Sapienza Project C26A15YTMA, Sapienza 2016 (n. 257584), Eurofusion Project AWP17-ENR-IFE-CEA-01.

  20. Auto-ignition of methane-air mixtures flowing along an array of thin catalytic plates

    NASA Astrophysics Data System (ADS)

    Treviño, C.

    2010-12-01

    In this paper, the heterogeneous ignition of a methane-air mixture flowing along an infinite array of catalytic parallel plates has been studied by inclusion of gas expansion effects and the finite heat conduction on the plates. The system of equations considers the full compressible Navier-Stokes equations coupled with the energy equations of the plates. The gas expansion effects which arise from temperature changes have been considered. The heterogeneous kinetics considers the adsorption and desorption reactions for both reactants. The limits of large and small longitudinal thermal conductance of the plate material are analyzed and the critical conditions for ignition are obtained in closed form. The governing equations are solved numerically using finite differences. The results show that ignition is more easily produced as the longitudinal wall thermal conductance increases, and the effects of the gas expansion on the catalytic ignition process are rather small due to the large value of the activation energy of the desorption reaction of adsorbed oxygen atoms.

  1. Performance of High-Convergence, Layered DT Implosions on Power-Scaling Experiments at National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smalyuk, V. A.; Atherton, L. J.; Benedetti, L. R.

    The radiation-driven, low-adiabat, cryogenic DT layered plastic capsule implosions were carried out on the National Ignition Facility (NIF) to study the sensitivity of performance to peak power and drive duration. An implosion with extended drive and at reduced peak power of 350 TW achieved the highest compression with fuel areal density of ~1.3±0.1 g/cm 2, representing a significant step from previously measured ~1.0 g/cm 2 toward a goal of 1.5 g/cm 2. Moreover, for future experiments will focus on understanding and mitigating hydrodynamic instabilities and mix, and improving symmetry required to reach the threshold for thermonuclear ignition on NIF.

  2. Performance of High-Convergence, Layered DT Implosions on Power-Scaling Experiments at National Ignition Facility

    DOE PAGES

    Smalyuk, V. A.; Atherton, L. J.; Benedetti, L. R.; ...

    2013-10-19

    The radiation-driven, low-adiabat, cryogenic DT layered plastic capsule implosions were carried out on the National Ignition Facility (NIF) to study the sensitivity of performance to peak power and drive duration. An implosion with extended drive and at reduced peak power of 350 TW achieved the highest compression with fuel areal density of ~1.3±0.1 g/cm 2, representing a significant step from previously measured ~1.0 g/cm 2 toward a goal of 1.5 g/cm 2. Moreover, for future experiments will focus on understanding and mitigating hydrodynamic instabilities and mix, and improving symmetry required to reach the threshold for thermonuclear ignition on NIF.

  3. 78 FR 77671 - Information Collection Request Submitted to OMB for Review and Approval; Comment Request; NSPS...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-24

    ... Internal Combustion Engines (Renewal) AGENCY: Environmental Protection Agency (EPA). ACTION: Notice... for Stationary Spark Ignition Internal Combustion Engines (40 CFR Part 60, Subpart JJJJ) (Renewal... operators of stationary spark ignition internal combustion engines. Respondent's obligation to respond...

  4. 40 CFR 89.1009 - What special provisions apply to branded engines?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION... branded engines? A manufacturer identifying the name and trademark of another company on the emission...

  5. 40 CFR 89.1009 - What special provisions apply to branded engines?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION... branded engines? A manufacturer identifying the name and trademark of another company on the emission...

  6. 40 CFR 89.1009 - What special provisions apply to branded engines?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION... branded engines? A manufacturer identifying the name and trademark of another company on the emission...

  7. 40 CFR 89.1009 - What special provisions apply to branded engines?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION... branded engines? A manufacturer identifying the name and trademark of another company on the emission...

  8. Increasing the Air Charge and Scavenging the Clearance Volume of a Compression-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Spanogle, J A; Hicks, C W; Foster, H H

    1934-01-01

    The object of the investigation presented in this report was to determine the effects of increasing the air charge and scavenging the clearance volume of a 4-stroke-cycle compression-ignition engine having a vertical-disk form combustion chamber. Boosting the inlet-air pressure with normal valve timing increased the indicated engine power in proportion to the additional air inducted and resulted in smoother engine operation with less combustion shock. Scavenging the clearance volume by using a valve overlap of 145 degrees and an inlet-air boost pressure of approximately 2 1/2 inches of mercury produced a net increase in performance for clear exhaust operation of 33 percent over that obtained with normal valve timing and the same boost pressure. The improved combustion characteristics result in lower specific fuel consumption, and a clearer exhaust.

  9. The Comparison of Hydrotreated Vegetable Oils With Respect to Petroleum Derived Fuels and the Effects of Transient Plasma Ignition in a Compression-Ignition Engine

    DTIC Science & Technology

    2012-09-01

    Content per Combustion J FAME Fatty Acid Methyl Ester FMEP Friction Mean Effective Pressure PSI or Bar FT Fischer-Tropsch h Heat...recently, algae-derived oils. Biodiesel has gained popularity in North America over the past decade, but the ester content of Fatty Acid Methyl ... Ester ( FAME ) fuel creates both cold weather and water- based operational issues. The Fischer-Tropsch (FT) process produces liquid fuels from “syngas,” a

  10. Extending operating range of a homogeneous charge compression ignition engine via cylinder deactivation

    DOEpatents

    Hergart, Carl-Anders [Peoria, IL; Hardy, William L [Peoria, IL; Duffy, Kevin P [Metamora, IL; Liechty, Michael P [Chillicothe, IL

    2008-05-27

    An HCCI engine has the ability to operate over a large load range by utilizing a lower cetane distillate diesel fuel to increase ignition delay. This permits more stable operation at high loads by avoidance of premature combustion before top dead center. During low load conditions, a portion of the engines cylinders are deactivated so that the remaining cylinders can operate at a pseudo higher load while the overall engine exhibits behavior typical of a relatively low load.

  11. Fire Resistant Fuel for Military Compression Ignition Engines

    DTIC Science & Technology

    2013-12-04

    Turbo Diesel Maximum Power Output Figure 5. 6.5L Turbo Diesel Maximum Torque Output 40 60 80 100 120 140 160 180 1000 1200 1400 1600 1800 2000 2200...H2O & 250ppm) JP8-FRF AMA (5% H2O & 250ppm) UNCLASSIFIED 9 UNCLASSIFIED Figure 6. 6.5L Turbo Diesel Brake Specific Fuel Consumption From...mid-1980s, fire-resistant diesel fuel that self extinguished when ignited by an explosive projectile was developed. Chemically, this fire resistant

  12. Development of Kinetic Mechanisms for Next-Generation Fuels and CFD Simulation of Advanced Combustion Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pitz, William J.; McNenly, Matt J.; Whitesides, Russell

    Predictive chemical kinetic models are needed to represent next-generation fuel components and their mixtures with conventional gasoline and diesel fuels. These kinetic models will allow the prediction of the effect of alternative fuel blends in CFD simulations of advanced spark-ignition and compression-ignition engines. Enabled by kinetic models, CFD simulations can be used to optimize fuel formulations for advanced combustion engines so that maximum engine efficiency, fossil fuel displacement goals, and low pollutant emission goals can be achieved.

  13. The Effect of Fuel Composition, Compression Pressure, and Fuel-Air Ratio on the Compression-Ignition Characteristics of Several Fuels

    DTIC Science & Technology

    1948-03-01

    to this arbitrary value as ntandard. The compression time was maintained unifcum by uElng a ccnstent . driving ~ essure of 500 pounds per squ=e inch...ir ratio,0.066 (chemlo~ correct); initial~ essure , 14.7 lb/sq in. abs.; intt Ml temperature, 609° F abs~ Ignitiondelay Compres- Compres- sion...chemically correct); initial ~ essure , 14.7 lb/sq in. abso; fimal pressures 379 lb/sq in. abs.; initial temperatume~ 6090 F abs.; final temperature, 1340° F abs

  14. A survey of pulse shape options for a revised plastic ablator ignition design

    NASA Astrophysics Data System (ADS)

    Clark, Daniel; Eder, David; Haan, Steven; Hinkel, Denise; Jones, Ogden; Marinak, Michael; Milovich, Jose; Peterson, Jayson; Robey, Harold; Salmonson, Jay; Smalyuk, Vladimir; Weber, Christopher

    2014-10-01

    Recent experimental results using the ``high foot'' pulse shape on the National Ignition Facility (NIF) have shown encouraging progress compared to earlier ``low foot'' experiments. These results strongly suggest that controlling ablation front instability growth can dramatically improve implosion performance, even in the presence of persistent, large, low-mode distortions. In parallel, Hydro. Growth Radiography experiments have so far validated the techniques used for modeling ablation front growth in NIF experiments. It is timely then to combine these two results and ask how current ignition pulse shapes could be modified so as to improve implosion performance, namely fuel compressibility, while maintaining the stability properties demonstrated with the high foot. This talk presents a survey of pulse shapes intermediate between the low and high foot extremes in search of a more optimal design. From the database of pulse shapes surveyed, a higher picket version of the original low foot pulse shape shows the most promise for improved compression without loss of stability. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  15. Experimental cross-correlation nitrogen Q-branch CARS thermometry in a spark ignition engine

    NASA Astrophysics Data System (ADS)

    Lockett, R. D.; Ball, D.; Robertson, G. N.

    2013-07-01

    A purely experimental technique was employed to derive temperatures from nitrogen Q-branch Coherent Anti-Stokes Raman Scattering (CARS) spectra, obtained in a high pressure, high temperature environment (spark ignition Otto engine). This was in order to obviate any errors arising from deficiencies in the spectral scaling laws which are commonly used to represent nitrogen Q-branch CARS spectra at high pressure. The spectra obtained in the engine were compared with spectra obtained in a calibrated high pressure, high temperature cell, using direct cross-correlation in place of the minimisation of sums of squares of residuals. The technique is demonstrated through the measurement of air temperature as a function of crankshaft angle inside the cylinder of a motored single-cylinder Ricardo E6 research engine, followed by the measurement of fuel-air mixture temperatures obtained during the compression stroke in a knocking Ricardo E6 engine. A standard CARS programme (SANDIA's CARSFIT) was employed to calibrate the altered non-resonant background contribution to the CARS spectra that was caused by the alteration to the mole fraction of nitrogen in the unburned fuel-air mixture. The compression temperature profiles were extrapolated in order to predict the auto-ignition temperatures.

  16. The Effect of Clearance Distribution on the Performance of a Compression-ignition Engine with a Precombustion Chamber

    NASA Technical Reports Server (NTRS)

    Moore, C. S.; Collins, J. H. Jr

    1932-01-01

    The clearance distribution in a precombustion chamber cylinder head was varied so that for a constant compression ratio of 13.5 the spherical auxiliary chambers contained 20, 35, 50, and 70 per cent of the total clearance volume. Each chamber was connected to the cylinder by a single circular passage, flared at both ends, and of a cross-sectional area proportional to the chamber volume, thereby giving the same calculated air-flow velocity through each passage. Results of engine-performance tests are presented with variations of power, fuel consumption, explosion pressure, rate of pressure rise, ignition lag, heat loss to the cooling water, and motoring characteristics. For good performance the minimum auxiliary chamber volume, with the cylinder head design used, was 35 per cent of the total clearance volume; for larger volumes the performance improves but slightly. With the auxiliary chamber that contained 35 percent of the clearance volume there were obtained the lowest explosion pressures, medium rates of pressure rise, and slightly less than the maximum power. For all clearance distributions an increase in engine speed decreased the ignition lag in seconds and increased the rate of pressure rise.

  17. Integral low-energy thermite igniter

    DOEpatents

    Gibson, A.; Haws, L.D.; Mohler, J.H.

    1983-05-13

    In a thermite igniter/heat source comprising a container holding an internal igniter load, there is provided the improvement wherein the container consists essentially of consumable consolidated thermite having a low gas output upon combustion, whereby upon ignition, substantially all of the container and said load is consumed with low gas production.

  18. Integral low-energy thermite igniter

    DOEpatents

    Gibson, Albert; Haws, Lowell D.; Mohler, Jonathan H.

    1984-08-14

    In a thermite igniter/heat source comprising a container holding an internal igniter load, there is provided the improvement wherein the container consists essentially of consumable consolidated thermite having a low gas output upon combustion, whereby upon ignition, substantially all of the container and said load is consumed with low gas production.

  19. 40 CFR 89.311 - Analyzer calibration frequency.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Test... rejection ratio and the CO2 rejection ratio as specified in § 89.318. (e) Verify that the dynamometer test...

  20. 49 CFR 176.200 - General stowage requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...” over a hold or compartment containing coal. (f) Class 2 (compressed gas) material must be kept as cool as practicable and be stowed away from all sources of heat and ignition. Any package containing a...

  1. 77 FR 34407 - Certain Reduced Ignition Proclivity Cigarette Paper Wrappers and Products Containing Same...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-11

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-756] Certain Reduced Ignition Proclivity... of No Violation AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International Trade Commission has determined to terminate the above-captioned...

  2. Understanding turbulence in compressing plasmas and its exploitation or prevention.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidovits, Seth

    Unprecedented densities and temperatures are now achieved in compressions of plasma, by lasers and by pulsed power, in major experimental facilities. These compressions, carried out at the largest scale at the National Ignition Facility and at the Z Pulsed Power Facility, have important applications, including fusion, X-ray production, and materials research. Several experimental and simulation results suggest that the plasma in some of these compressions is turbulent. In fact, measurements suggest that in certain laboratory plasma compressions the turbulent energy is a dominant energy component. Similarly, turbulence is dominant in some compressing astrophysical plasmas, such as in molecular clouds. Turbulencemore » need not be dominant to be important; even small quantities could greatly influence experiments that are sensitive to mixing of non-fuel into fuel, such as compressions seeking fusion ignition. Despite its important role in major settings, bulk plasma turbulence under compression is insufficiently understood to answer or even to pose some of the most fundamental questions about it. This thesis both identifies and answers key questions in compressing turbulent motion, while providing a description of the behavior of three-dimensional, isotropic, compressions of homogeneous turbulence with a plasma viscosity. This description includes a simple, but successful, new model for the turbulent energy of plasma undergoing compression. The unique features of compressing turbulence with a plasma viscosity are shown, including the sensitivity of the turbulence to plasma ionization, and a sudden viscous dissipation'' effect which rapidly converts plasma turbulent energy into thermal energy. This thesis then examines turbulence in both laboratory compression experiments and molecular clouds. It importantly shows: the possibility of exploiting turbulence to make fusion or X-ray production more efficient; conditions under which hot-spot turbulence can be prevented; and a lower bound on the growth of turbulence in molecular clouds. This bound raises questions about the level of dissipation in existing molecular cloud models. Finally, the observations originally motivating the thesis, Z-pinch measurements suggesting dominant turbulent energy, are reexamined by self-consistently accounting for the impact of the turbulence on the spectroscopic analysis. This is found to strengthen the evidence that the multiple observations describe a highly turbulent plasma state.« less

  3. Understanding Turbulence in Compressing Plasmas and Its Exploitation or Prevention

    NASA Astrophysics Data System (ADS)

    Davidovits, Seth

    Unprecedented densities and temperatures are now achieved in compressions of plasma, by lasers and by pulsed power, in major experimental facilities. These compressions, carried out at the largest scale at the National Ignition Facility and at the Z Pulsed Power Facility, have important applications, including fusion, X-ray production, and materials research. Several experimental and simulation results suggest that the plasma in some of these compressions is turbulent. In fact, measurements suggest that in certain laboratory plasma compressions the turbulent energy is a dominant energy component. Similarly, turbulence is dominant in some compressing astrophysical plasmas, such as in molecular clouds. Turbulence need not be dominant to be important; even small quantities could greatly influence experiments that are sensitive to mixing of non-fuel into fuel, such as compressions seeking fusion ignition. Despite its important role in major settings, bulk plasma turbulence under compression is insufficiently understood to answer or even to pose some of the most fundamental questions about it. This thesis both identifies and answers key questions in compressing turbulent motion, while providing a description of the behavior of three-dimensional, isotropic, compressions of homogeneous turbulence with a plasma viscosity. This description includes a simple, but successful, new model for the turbulent energy of plasma undergoing compression. The unique features of compressing turbulence with a plasma viscosity are shown, including the sensitivity of the turbulence to plasma ionization, and a "sudden viscous dissipation'' effect which rapidly converts plasma turbulent energy into thermal energy. This thesis then examines turbulence in both laboratory compression experiments and molecular clouds. It importantly shows: the possibility of exploiting turbulence to make fusion or X-ray production more efficient; conditions under which hot-spot turbulence can be prevented; and a lower bound on the growth of turbulence in molecular clouds. This bound raises questions about the level of dissipation in existing molecular cloud models. Finally, the observations originally motivating the thesis, Z-pinch measurements suggesting dominant turbulent energy, are reexamined by self-consistently accounting for the impact of the turbulence on the spectroscopic analysis. This is found to strengthen the evidence that the multiple observations describe a highly turbulent plasma state.

  4. Renewable Energy Laboratory Development for Biofuels Advanced Combustion Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soloiu, Valentin A.

    2012-03-31

    The research advanced fundamental science and applied engineering for increasing the efficiency of internal combustion engines and meeting emissions regulations with biofuels. The project developed a laboratory with new experiments and allowed investigation of new fuels and their combustion and emissions. This project supports a sustainable domestic biofuels and automotive industry creating economic opportunities across the nation, reducing the dependence on foreign oil, and enhancing U.S. energy security. The one year period of research developed fundamental knowledge and applied technology in advanced combustion, emissions and biofuels formulation to increase vehicle's efficiency. Biofuels combustion was investigated in a Compression Ignition Directmore » Injection (DI) to develop idling strategies with biofuels and an Indirect Diesel Injection (IDI) intended for auxiliary power unit.« less

  5. Compressed Natural Gas Vehicle Maintenance Facility Modification Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, K.; Melendez, M.; Gonzales, J.

    To ensure the safety of personnel and facilities, vehicle maintenance facilities are required by law and by guidelines of the National Fire Protection Association (NFPA) and the International Fire Code (IFC) to exhibit certain design features. They are also required to be fitted with certain fire protection equipment and devices because of the potential for fire or explosion in the event of fuel leakage or spills. All fuels have an explosion or fire potential if specific conditions are present. This handbook covers the primary elements that must be considered when developing a CNG vehicle maintenance facility design that will protectmore » against the ignition of natural gas releases. It also discusses specific protocols and training needed to ensure safety.« less

  6. Experimental Investigation of Fuel-Reactivity Controlled Compression Ignition (RCCI) Combustion Mode in a Multi-Cylinder, Light-Duty Diesel Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Kukwon; Curran, Scott; Prikhodko, Vitaly Y

    2011-01-01

    An experimental study was performed to provide the combustion and emission characteristics resulting from fuel-reactivity controlled compression ignition (RCCI) combustion mode utilizing dual-fuel approach in a light-duty, multi-cylinder diesel engine. In-cylinder fuel blending using port fuel injection of gasoline before intake valve opening (IVO) and early-cycle, direct injection of diesel fuel was used as the charge preparation and fuel blending strategy. In order to achieve the desired auto-ignition quality through the stratification of the fuel-air equivalence ratio ( ), blends of commercially available gasoline and diesel fuel were used. Engine experiments were performed at an engine speed of 2300rpm andmore » an engine load of 4.3bar brake mean effective pressure (BMEP). It was found that significant reduction in both nitrogen oxide (NOx) and particulate matter (PM) was realized successfully through the RCCI combustion mode even without applying exhaust gas recirculation (EGR). However, high carbon monoxide (CO) and hydrocarbon (HC) emissions were observed. The low combustion gas temperature during the expansion and exhaust processes seemed to be the dominant source of high CO emissions in the RCCI combustion mode. The high HC emissions during the RCCI combustion mode could be due to the increased combustion quenching layer thickness as well as the -stratification at the periphery of the combustion chamber. The slightly higher brake thermal efficiency (BTE) of the RCCI combustion mode was observed than the other combustion modes, such as the conventional diesel combustion (CDC) mode, and single-fuel, premixed charge compression ignition (PCCI) combustion mode. The parametric study of the RCCI combustion mode revealed that the combustion phasing and/or the peak cylinder pressure rise rate of the RCCI combustion mode could be controlled by several physical parameters premixed ratio (rp), intake swirl intensity, and start of injection (SOI) timing of directly injected fuel unlike other low temperature combustion (LTC) strategies.« less

  7. Scaling of Energy Deposition in Fast Ignition Targets

    NASA Astrophysics Data System (ADS)

    Campbell, R. B.; Welch, Dale

    2005-10-01

    We examine the scaling to ignition of the energy deposition of laser generated electrons in compressed fast ignition cores. Relevant cores have densities of several hundred g/cm^3, with a few keV initial temperature. As the laser intensities increase approaching ignition systems, on the order of a few 10^21W/cm^2, the hot electron energies expected to approach 100MeV[1]. Most certainly anomalous processes must play a role in the energy transfer, but the exact nature of these processes, as well as a practical way to model them, remain open issues. Traditional PIC explicit methods are limited to low densities on current and anticipated computing platforms, so the study of relevant parameter ranges has received so far little attention. We use LSP[2] to examine a relativistic electron beam (presumed generated from a laser plasma interaction) of legislated energy and angular distribution is injected into a 3D block of compressed DT. Collective effects will determine the stopping, most likely driven by magnetic field filamentation. The scaling of the stopping as a function of block density and temperature, as well as hot electron current and laser intensity is presented. Sub-grid models may be profitably used and degenerate effects included in the solution of this problem. Sandia is operated by Sandia Corporation, for the USDOE. [1] A. Pukhov, et. al., Phys. Plas. 6, p2847 (1999) [2] D. R. Welch et al., Comput. Phys.Commun. 164, p183 (2004).

  8. New Technology Sparks Smoother Engines and Cleaner Air

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Automotive Resources, Inc. (ARI) has developed a new device for igniting fuel in engines-the SmartPlug.TM SmartPlug is a self-contained ignition system that may be retrofitted to existing spark-ignition and compression-ignition engines. The SmartPlug needs as little as six watts of power for warm-up, and requires no electricity at all when the engine is running. Unlike traditional spark plugs, once the SmartPlug ignites the engine, and the engine heats up, the power supply for the plug is no longer necessary. In the utility industry, SmartPlugs can be used in tractors, portable generators, compressors, and pumps. In addition to general-purpose applications, such as lawn mowers and chainsaws, SmartPlugs can also be used in the recreational, marine, aviation, and automotive industries. Unlike traditional ignition systems, the SmartPlug system requires no distributor, coil points, or moving parts. SmartPlugs are non-fouling, with a faster and cleaner burn than traditional spark plugs. They prevent detonation and are not sensitive to moisture, allowing them to be used on a variety of engines. Other advantages include no electrical noise, no high voltage, exceptionally high altitude capabilities, and better cold-start statistics than those of standard spark ignition systems. Future applications for the SmartPlug are being evaluated by manufacturers in the snowmobile industry.

  9. Internal short circuit and accelerated rate calorimetry tests of lithium-ion cells: Considerations for methane-air intrinsic safety and explosion proof/flameproof protection methods.

    PubMed

    Dubaniewicz, Thomas H; DuCarme, Joseph P

    2016-09-01

    Researchers with the National Institute for Occupational Safety and Health (NIOSH) studied the potential for lithium-ion cell thermal runaway from an internal short circuit in equipment for use in underground coal mines. In this third phase of the study, researchers compared plastic wedge crush-induced internal short circuit tests of selected lithium-ion cells within methane (CH 4 )-air mixtures with accelerated rate calorimetry tests of similar cells. Plastic wedge crush test results with metal oxide lithium-ion cells extracted from intrinsically safe evaluated equipment were mixed, with one cell model igniting the chamber atmosphere while another cell model did not. The two cells models exhibited different internal short circuit behaviors. A lithium iron phosphate (LiFePO 4 ) cell model was tolerant to crush-induced internal short circuits within CH 4 -air, tested under manufacturer recommended charging conditions. Accelerating rate calorimetry tests with similar cells within a nitrogen purged 353-mL chamber produced ignitions that exceeded explosion proof and flameproof enclosure minimum internal pressure design criteria. Ignition pressures within a 20-L chamber with 6.5% CH 4 -air were relatively low, with much larger head space volume and less adiabatic test conditions. The literature indicates that sizeable lithium thionyl chloride (LiSOCl 2 ) primary (non rechargeable) cell ignitions can be especially violent and toxic. Because ignition of an explosive atmosphere is expected within explosion proof or flameproof enclosures, there is a need to consider the potential for an internal explosive atmosphere ignition in combination with a lithium or lithium-ion battery thermal runaway process, and the resulting effects on the enclosure.

  10. A simplified life-cycle cost comparison of various engines for small helicopter use

    NASA Technical Reports Server (NTRS)

    Civinskas, K. C.; Fishbach, L. M.

    1974-01-01

    A ten-year, life-cycle cost comparison is made of the following engines for small helicopter use: (1) simple turboshaft; (2) regenerative turboshaft; (3) compression-ignition reciprocator; (4) spark-ignited rotary; and (5) spark-ignited reciprocator. Based on a simplified analysis and somewhat approximate data, the simple turboshaft engine apparently has the lowest costs for mission times up to just under 2 hours. At 2 hours and above, the regenerative turboshaft appears promising. The reciprocating and rotary engines are less attractive, requiring from 10 percent to 80 percent more aircraft to have the same total payload capability as a given number of turbine powered craft. A nomogram was developed for estimating total costs of engines not covered in this study.

  11. Rapid detonation initiation by sparks in a short duct: a numerical study

    NASA Astrophysics Data System (ADS)

    Hu, Z. M.; Dou, H. S.; Khoo, B. C.

    2010-06-01

    Rapid onset of detonation can efficiently increase the working frequency of a pulse detonation engine (PDE). In the present study, computations of detonation initiation in a duct are conducted to investigate the mechanisms of detonation initiation. The governing equations are the Euler equations and the chemical kinetic model consists of 19 elementary reactions and nine species. Different techniques of initiation have been studied for the purpose of accelerating detonation onset with a relatively weak ignition energy. It is found that detonation ignition induced by means of multiple sparks is applicable to auto-ignition for a PDE. The interaction among shock waves, flame fronts and the strip of pre-compressed fresh (unburned) mixture plays an important role in rapid onset of detonation.

  12. 40 CFR 94.804 - Exemptions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Importation of Nonconforming Engines § 94.804 Exemptions...) Notwithstanding other requirements of this subpart, a nonconforming engine that qualifies for a temporary...

  13. 40 CFR 94.801 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Importation of Nonconforming Engines § 94.801 Applicability. (a) Except where otherwise indicated, this subpart is applicable to importers of engines (and...

  14. 40 CFR 89.417 - Data evaluation for gaseous emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exhaust... emission recording, the last 60 seconds of each mode are recorded, and the average values for HC, CO, CO2...

  15. 40 CFR 89.417 - Data evaluation for gaseous emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exhaust... emission recording, the last 60 seconds of each mode are recorded, and the average values for HC, CO, CO2...

  16. 40 CFR 89.417 - Data evaluation for gaseous emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exhaust... emission recording, the last 60 seconds of each mode are recorded, and the average values for HC, CO, CO2...

  17. 40 CFR 89.417 - Data evaluation for gaseous emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exhaust... emission recording, the last 60 seconds of each mode are recorded, and the average values for HC, CO, CO2...

  18. 40 CFR 89.417 - Data evaluation for gaseous emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exhaust... emission recording, the last 60 seconds of each mode are recorded, and the average values for HC, CO, CO2...

  19. X-ray scattering measurements on imploding CH spheres at the National Ignition Facility

    DOE PAGES

    Kraus, D.; Chapman, D. A.; Kritcher, A. L.; ...

    2016-07-21

    In this study, we have performed spectrally resolved x-ray scattering measurements on highly compressed polystyrene at pressures of several tens of TPa (100 Mbar) created by spherically convergent shocks at the National Ignition Facility. Scattering data of line radiation at 9.0 keV were recorded from the dense plasma shortly after shock coalescence. Accounting for spatial gradients, opacity effects, and source broadening, we demonstrate the sensitivity of the elastic scattering component to carbon K -shell ionization while at the same time constraining the temperature of the dense plasma. Finally, for six times compressed polystyrene, we find an average temperature of 86more » eV and carbon ionization state of 4.9, indicating that widely used ionization models need revision in order to be suitable for the extreme states of matter tested in our experiment.« less

  20. Consider the DME alternative for diesel engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleisch, T.H.; Meurer, P.C.

    1996-07-01

    Engine tests demonstrate that dimethyl ether (DME, CH{sub 3}OCH{sub 3}) can provide an alternative approach toward efficient, ultra-clean and quiet compression ignition (CI) engines. From a combustion point of view, DME is an attractive alternative fuel for CI engines, primarily for commercial applications in urban areas, where ultra-low emissions will be required in the future. DME can resolve the classical diesel emission problem of smoke emissions, which are completely eliminated. With a properly developed DME injection and combustion system, NO{sub x} emissions can be reduced to 40% of Euro II or U.S. 1998 limits, and can meet the future ULEVmore » standards of California. Simultaneously, the combustion noise is reduced by as much as 15 dB(A) below diesel levels. In addition, the classical diesel advantages such as high thermal efficiency, compression ignition, engine robustness, etc., are retained.« less

  1. Detailed kinetic modeling study of n-pentanol oxidation

    DOE PAGES

    Heufer, K. Alexander; Sarathy, S. Mani; Curran, Henry J.; ...

    2012-09-28

    To help overcome the world’s dependence upon fossil fuels, suitable biofuels are promising alternatives that can be used in the transportation sector. Recent research on internal combustion engines shows that short alcoholic fuels (e.g., ethanol or n-butanol) have reduced pollutant emissions and increased knock resistance compared to fossil fuels. Although higher molecular weight alcohols (e.g., n-pentanol and n-hexanol) exhibit higher reactivity that lowers their knock resistance, they are suitable for diesel engines or advanced engine concepts, such as homogeneous charge compression ignition (HCCI), where higher reactivity at lower temperatures is necessary for engine operation. The present study presents a detailedmore » kinetic model for n-pentanol based on modeling rules previously presented for n-butanol. This approach was initially validated using quantum chemistry calculations to verify the most stable n-pentanol conformation and to obtain C–H and C–C bond dissociation energies. In addition, the proposed model has been validated against ignition delay time data, speciation data from a jet-stirred reactor, and laminar flame velocity measurements. Overall, the model shows good agreement with the experiments and permits a detailed discussion of the differences between alcohols and alkanes.« less

  2. On the effect of Di-Ethyl-Ether (DEE) injection upon the cold starting of a biodiesel fuelled compression ignition engine

    NASA Astrophysics Data System (ADS)

    Clenci, Adrian; Niculescu, Rodica; Iorga-Simǎn, Victor; Tricǎ, Alina; Danlos, Amélie

    2017-02-01

    The use of biodiesel fuel in compression ignition engines has the potential to reduce CO2, which can lead to a reduction in global warming and environmental hazards. Biodiesel is an attractive fuel, as it is made from renewable resources. A major drawback associated with the use of biodiesel, however, is its poor cold flow properties, which have a direct influence on the cold starting performance of the engine. This paper is a consequence of a study on assessing the cold-starting performance of a compression ignition engine fueled with different blends of fossil diesel fuel and biodiesel. Through experimental investigations, it was found that the engine starting at -20°C was no longer possible in the case of using B50 (50% diesel + 50% biofuel made from sunflower oil). In order to "force" the engine starting in this particular situation, Di-Ethyl-Ether (DEE) was injected into the intake manifold. DEE being a highly flammable substance, the result was a sudden and explosive engine starting, the peak pressure in the monitored cylinder in the first successful engine cycle being almost twice the one which is usually considered as normal. Thus, to explain the observed phenomena, we launched this work relying on the analysis of the in-cylinder instantaneous pressure evolution, which was acquired during cranking, stabilizing and idling phases. Moreover, since the cause of the sudden and explosive engine starting was the DEE, by using a CFD approach, we also obtained results regarding the inter-cylinder distribution of the injected DEE.

  3. Effects of the injected trigger pulse focusing and timing on the ignition and gain of dense static, or imploding DT fuel

    NASA Astrophysics Data System (ADS)

    Caruso, Angelo; Pais, Vicente A.

    1998-07-01

    We discuss two issues relevant for the feasibility of the scheme in which a heavy ion pulse is used to ignite a DT fuel spherically compressed, by laser induced ablation, along a low adiabat (no self-ignition). The discussed issues are (i) the degree of synchronism between the laser driven implosion and the trigger pulse; (ii) the requirements on focusing for the trigger beam. The numerical simulation have been made by using cylindrical heavy ion beams with gaussian radial distribution, truncated where the intensity is {1}/{e-4} of the maximum. The parameter ( dbeam), used to measure the focusing, is the diameter of the circle where the intensity is {1}/{e} of the maximum (energy content ≈ 64% of the total energy). Requirements on focusing have been first explored by simulating (2D) the irradiation of static DT cylinders at 200 g/cm 3 by coaxially impinging 15 GeV Bi ions. The ignition conditions have been studied for pulses having 10 ps or 50 ps duration. For both the cases, the ignition energy ( Emin) is constant for spot radii smaller than 50 μm. In the range 50-140 μm the ignition energy increases linearly (3 × Emin at 140 μm, with Emin = 40 kJ for 10 ps pulses, Emin = 100 kJ for 50 ps pulses). The study on synchronism has been performed by simulating (2D) the irradiation, by a heavy ion beam, of a laser imploded spherical DT shell (initial aspect ratio 10). The trigger beam was started at different times near the stagnation, and the initial fuel state (field of velocity, density, temperature, etc.) was that computed by a 1D simulation. It has been found that ignition, and almost constant thermonuclear energy release, can be obtained by triggering within a temporal window of the order of 1 ns, around the stagnation. The interplay between focusing and synchronization for the ignition of the spherical imploding fuel has also been studied. The heavy ion pulse duration was maintained constant at 50 ps (FWHM). Ignition conditions have been studied for trigger energies below 38% of the laser energy used to compress the target (1 MJ), for focusing spot diameters ranging from 30 to 150 μm (full beam diameter, 60 and 300 μm respectively). Useful timing ranges of 400-900 ps in which the overall gain (that is, thermonuclear energy /(laser energy + trigger energy) is greater than 200 have been found.

  4. Modeling potential structure ignitions from flame radiation exposure with implications for wildland/urban interface fire management

    Treesearch

    Jack D. Cohen; Bret W. Butler

    1998-01-01

    Residential losses associated with wildland fires have become a serious international fire protection problem. The radiant heat flux from burning vegetation adjacent to a structure is a principal ignition factor. A thermal radiation and ignition model estimated structure ignition potential using designated flame characteristics (inferred from various types and...

  5. Hydraulics of Fuel-Injection Pumps for Compression-ignition Engines

    NASA Technical Reports Server (NTRS)

    Rothrock, A M

    1932-01-01

    Formulas are derived for computing the instantaneous pressures delivered by a fuel pump. The first derivation considers the compressibility of the fuel and the second, the compressibility, elasticity, and inertia of the fuel. The second derivation follows that given by Sass; it is shown to be the more accurate of the two. Additional formulas are given for determining the resistance losses in the injection tube. Experimental data are presented in support of the analyses. The report is concluded with an application of the theory to the design of fuel pump injection systems for which sample calculations are included.

  6. 40 CFR 94.803 - Admission.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Importation of Nonconforming Engines § 94.803 Admission. (a) A nonconforming engine offered for importation may be admitted into the United States pursuant to...

  7. Methylal and methylal-diesel blended fuels for use in compression-ignition engines

    DOT National Transportation Integrated Search

    2000-06-21

    Gas-to-liquids catalytic conversion technologies show promise for liberating stranded natural gas reserves and for achieving energy diversity worldwide. Some gas-toliquids : products are used as transportation fuels and as blendstocks for upgra...

  8. Biodiesel fuels

    USDA-ARS?s Scientific Manuscript database

    The mono-alkyl esters, most commonly the methyl esters, of vegetable oils, animal fats or other materials consisting mainly of triacylglycerols, often referred to as biodiesel, are an alternative to conventional petrodiesel for use in compression-ignition engines. The fatty acid esters that thus com...

  9. Diagnosing radiative shocks from deuterium and tritium implosions on NIF.

    PubMed

    Pak, A; Divol, L; Weber, S; Döppner, T; Kyrala, G A; Kilne, J; Izumi, N; Glenn, S; Ma, T; Town, R P; Bradley, D K; Glenzer, S H

    2012-10-01

    During the recent ignition tuning campaign at the National Ignition Facility, layered cryogenic deuterium and tritium capsules were imploded via x-ray driven ablation. The hardened gated x-ray imager diagnostic temporally and spatially resolves the x-ray emission from the core of the capsule implosion at energies above ~8 keV. On multiple implosions, ~200-400 ps after peak compression a spherically expanding radiative shock has been observed. This paper describes the methods used to characterize the radial profile and rate of expansion of the shock induced x-ray emission.

  10. Modeling Parasitic Energy Losses and the Impact of Advanced Tribological Concepts on Fuel Efficiency - Final CRADA Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fenske, George

    2016-11-28

    Our primary task for this project was to perform FMEP calculations for a broad range of parameters including engine type [spark ignition (SI) or compression ignition (CI)], engine size, engine mode (speed and load), lubricant viscosity, asperity friction, surface finish, oil type (mineral or synthetic), and additive (friction modifier), as discussed previously [1–3]. The actual analysis was limited to a large diesel engine and it included both load and speed dependencies as well as lubricant viscosity and speed.

  11. Environmental implications of alternative-fueled automobiles: Air quality and greenhouse gas tradeoffs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MaClean, H.L.; Lave, L.B.

    The authors analyze alternative fuel-powerstrain options for internal combustion engine automobiles. Fuel/engine efficiency, energy use, pollutant discharges, and greenhouse gas emissions are estimated for spark and compression ignited, direct injected (DI), and indirect injected (II) engines fueled by conventional and reformulated gasoline, reformulated diesel, compressed natural gas (CNG), and alcohols. Since comparisons of fuels and technologies in dissimilar vehicles are misleading, the authors hold emissions level, range, vehicle size class, and style constant. At present, CNG vehicles have the best exhaust emissions performance while DI diesels have the worst. Compared to a conventional gasoline fueled II automobile, greenhouse gases couldmore » be reduced by 40% by a DI CNG automobile and by 25% by a DI diesel. Gasoline- and diesel-fueled automobiles are able to attain long ranges with little weight or fuel economy penalty. CNG vehicles have the highest penalty for increasing range, due to their heavy fuel storage systems, but are the most attractive for a 160-km range. DI engines, particularly diesels, may not be able to meet strict emissions standards, at least not without lowering efficiency.« less

  12. Effect of E85 on RCCI Performance and Emissions on a Multi-Cylinder Light-Duty Diesel Engine - SAE World Congress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curran, Scott; Hanson, Reed M; Wagner, Robert M

    2012-01-01

    This paper investigates the effect of E85 on load expansion and FTP modal point emissions indices under reactivity controlled compression ignition (RCCI) operation on a light-duty multi-cylinder diesel engine. A General Motors (GM) 1.9L four-cylinder diesel engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure exhaust gas recirculation (EGR) system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline or E85. Controlling the fuel reactivity in-cylinder by the adjustment of the ratio of premixed low-reactivity fuel (gasoline or E85) to direct injected high reactivity fuel (diesel fuel) has been shownmore » to extend the operating range of high-efficiency clean combustion (HECC) compared to the use of a single fuel alone as in homogeneous charge compression ignition (HCCI) or premixed charge compression ignition (PCCI). The effect of E85 on the Ad-hoc federal test procedure (FTP) modal points is explored along with the effect of load expansion through the light-duty diesel speed operating range. The Ad-hoc FTP modal points of 1500 rpm, 1.0bar brake mean effective pressure (BMEP); 1500rpm, 2.6bar BMEP; 2000rpm, 2.0bar BMEP; 2300rpm, 4.2bar BMEP; and 2600rpm, 8.8bar BMEP were explored. Previous results with 96 RON unleaded test gasoline (UTG-96) and ultra-low sulfur diesel (ULSD) showed that with stock hardware, the 2600rpm, 8.8bar BMEP modal point was not obtainable due to excessive cylinder pressure rise rate and unstable combustion both with and without the use of EGR. Brake thermal efficiency and emissions performance of RCCI operation with E85 and ULSD is explored and compared against conventional diesel combustion (CDC) and RCCI operation with UTG 96 and ULSD.« less

  13. DRIVE CYCLE EFFICIENCY AND EMISSIONS ESTIMATES FOR REACTIVITY CONTROLLED COMPRESSION IGNITION IN A MULTI-CYLINDER LIGHT-DUTY DIESEL ENGINE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curran, Scott; Briggs, Thomas E; Cho, Kukwon

    2011-01-01

    In-cylinder blending of gasoline and diesel to achieve Reactivity Controlled Compression Ignition (RCCI) has been shown to reduce NOx and PM emissions while maintaining or improving brake thermal efficiency as compared to conventional diesel combustion (CDC). The RCCI concept has an advantage over many advanced combustion strategies in that by varying both the percent of premixed gasoline and EGR rate, stable combustion can be extended over more of the light-duty drive cycle load range. Changing the percent premixed gasoline changes the fuel reactivity stratification in the cylinder providing further control of combustion phasing and pressure rise rate than the usemore » of EGR alone. This paper examines the combustion and emissions performance of light-duty diesel engine using direct injected diesel fuel and port injected gasoline to carry out RCCI for steady-state engine conditions which are consistent with a light-duty drive cycle. A GM 1.9L four-cylinder engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure EGR system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline. Engine-out emissions, engine performance and combustion behavior for RCCI operation is compared against both CDC and a premixed charge compression ignition (PCCI) strategy which relies on high levels of EGR dilution. The effect of percent of premixed gasoline, EGR rate, boost level, intake mixture temperature, combustion phasing and pressure rise rate is investigated for RCCI combustion for the light-duty modal points. Engine-out emissions of NOx and PM were found to be considerably lower for RCCI operation as compared to CDC and PCCI, while HC and CO emissions were higher. Brake thermal efficiency was similar or higher for many of the modal conditions for RCCI operation. The emissions results are used to estimate hot-start FTP-75 emissions levels with RCCI and are compared against CDC and PCCI modes.« less

  14. Thermally generated magnetic fields in laser-driven compressions and explosions

    NASA Technical Reports Server (NTRS)

    Tidman, D. A.

    1975-01-01

    The evolution of thermally generated magnetic fields in a plasma undergoing a nearly spherically symmetric adiabatic compression or expansion is calculated. The analysis is applied to obtain approximate results for the development of magnetic fields in laser-driven compression and explosion of a pellet of nuclear fuel. Localized sources, such as those occurring at composition boundaries in structured pellets or at shock fronts, give stronger fields than those deriving from smoothly distributed asymmetries. Although these fields may approach 10 million G in the late stages of compression, this is not expected to present difficulties for the compression process. Assuming ignition of a nuclear explosion occurs, the sources become much stronger, and values of approximately 10 billion G are obtained at tamper boundaries assuming a 20% departure from spherical symmetry during the explosion.

  15. Deflagration Wave Profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menikoff, Ralph

    2012-04-03

    Shock initiation in a plastic-bonded explosives (PBX) is due to hot spots. Current reactive burn models are based, at least heuristically, on the ignition and growth concept. The ignition phase occurs when a small localized region of high temperature (or hot spot) burns on a fast time scale. This is followed by a growth phase in which a reactive front spreads out from the hot spot. Propagating reactive fronts are deflagration waves. A key question is the deflagration speed in a PBX compressed and heated by a shock wave that generated the hot spot. Here, the ODEs for a steadymore » deflagration wave profile in a compressible fluid are derived, along with the needed thermodynamic quantities of realistic equations of state corresponding to the reactants and products of a PBX. The properties of the wave profile equations are analyzed and an algorithm is derived for computing the deflagration speed. As an illustrative example, the algorithm is applied to compute the deflagration speed in shock compressed PBX 9501 as a function of shock pressure. The calculated deflagration speed, even at the CJ pressure, is low compared to the detonation speed. The implication of this are briefly discussed.« less

  16. A Brief Study on Toxic Combustion Products of the Polymers Used in High-Pressure Oxygen Systems

    NASA Technical Reports Server (NTRS)

    Hshieh, Fu-Yu; Beeson, Harold D.

    2005-01-01

    One likely cause of polymer ignition in a high-pressure oxygen system is the adiabatic-compression heating of polymers caused by pneumatic impact. Oxidative pyrolysis or combustion of polymers in a high-pressure oxygen system could generate toxic gases. This paper investigates the feasibility of using the NASA pneumatic-impact system to conduct adiabatic-compression combustion tests and determines the toxic combustion products produced from the burning of five selected polymers. Five polymers commonly used in high-pressure oxygen systems, Zytel(Registered TradeMark) 42 (Nylon 6/6), Buna N (nitrile rubber), Witon(Registered TradeMark) A (copolymer of vinylidene fluoride and hexafluoropropylene), Neoflon(Registered TradeMark) (polychlorotrifluoroethylene), and Teflon(Registered TradeMark) (polytetrafluoroethylene), were tested in the NASA pneumatic-impact test system at 17.2-MPa oxygen pressure. The polymers were ignited and burned; combustion products were collected in a stainless-steel sample bottle and analyzed using various methods. The results show that the NASA pneumatic-impact system is an appropriate test system to conduct adiabatic-compression combustion tests and to collect combustion products for further chemical analysis. The composition of the combustion product gas generated from burning the five selected polymers are presented and discussed.

  17. A numerical study on combustion process in a small compression ignition engine run dual-fuel mode (diesel-biogas)

    NASA Astrophysics Data System (ADS)

    Ambarita, H.; Widodo, T. I.; Nasution, D. M.

    2017-01-01

    In order to reduce the consumption of fossil fuel of a compression ignition (CI) engines which is usually used in transportation and heavy machineries, it can be operated in dual-fuel mode (diesel-biogas). However, the literature reviews show that the thermal efficiency is lower due to incomplete combustion process. In order to increase the efficiency, the combustion process in the combustion chamber need to be explored. Here, a commercial CFD code is used to explore the combustion process of a small CI engine run on dual fuel mode (diesel-biogas). The turbulent governing equations are solved based on finite volume method. A simulation of compression and expansions strokes at an engine speed and load of 1000 rpm and 2500W, respectively has been carried out. The pressure and temperature distributions and streamlines are plotted. The simulation results show that at engine power of 732.27 Watt the thermal efficiency is 9.05%. The experiment and simulation results show a good agreement. The method developed in this study can be used to investigate the combustion process of CI engine run on dual-fuel mode.

  18. The Effect of Compression Ratio, Fuel Octane Rating, and Ethanol Content on Spark-Ignition Engine Efficiency.

    PubMed

    Leone, Thomas G; Anderson, James E; Davis, Richard S; Iqbal, Asim; Reese, Ronald A; Shelby, Michael H; Studzinski, William M

    2015-09-15

    Light-duty vehicles (LDVs) in the United States and elsewhere are required to meet increasingly challenging regulations on fuel economy and greenhouse gas (GHG) emissions as well as criteria pollutant emissions. New vehicle trends to improve efficiency include higher compression ratio, downsizing, turbocharging, downspeeding, and hybridization, each involving greater operation of spark-ignited (SI) engines under higher-load, knock-limited conditions. Higher octane ratings for regular-grade gasoline (with greater knock resistance) are an enabler for these technologies. This literature review discusses both fuel and engine factors affecting knock resistance and their contribution to higher engine efficiency and lower tailpipe CO2 emissions. Increasing compression ratios for future SI engines would be the primary response to a significant increase in fuel octane ratings. Existing LDVs would see more advanced spark timing and more efficient combustion phasing. Higher ethanol content is one available option for increasing the octane ratings of gasoline and would provide additional engine efficiency benefits for part and full load operation. An empirical calculation method is provided that allows estimation of expected vehicle efficiency, volumetric fuel economy, and CO2 emission benefits for future LDVs through higher compression ratios for different assumptions on fuel properties and engine types. Accurate "tank-to-wheel" estimates of this type are necessary for "well-to-wheel" analyses of increased gasoline octane ratings in the context of light duty vehicle transportation.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milovich, J. L., E-mail: milovich1@llnl.gov; Robey, H. F.; Clark, D. S.

    Experimental results from indirectly driven ignition implosions during the National Ignition Campaign (NIC) [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] achieved a record compression of the central deuterium-tritium fuel layer with measured areal densities up to 1.2 g/cm{sup 2}, but with significantly lower total neutron yields (between 1.5 × 10{sup 14} and 5.5 × 10{sup 14}) than predicted, approximately 10% of the 2D simulated yield. An order of magnitude improvement in the neutron yield was subsequently obtained in the “high-foot” experiments [O. A. Hurricane et al., Nature 506, 343 (2014)]. However, this yield was obtained at the expensemore » of fuel compression due to deliberately higher fuel adiabat. In this paper, the design of an adiabat-shaped implosion is presented, in which the laser pulse is tailored to achieve similar resistance to ablation-front instability growth, but with a low fuel adiabat to achieve high compression. Comparison with measured performance shows a factor of 3–10× improvement in the neutron yield (>40% of predicted simulated yield) over similar NIC implosions, while maintaining a reasonable fuel compression of >1 g/cm{sup 2}. Extension of these designs to higher laser power and energy is discussed to further explore the trade-off between increased implosion velocity and the deleterious effects of hydrodynamic instabilities.« less

  20. 40 CFR 94.802 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Definitions. 94.802 Section 94.802 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Importation of Nonconforming Engines § 94.802 Definitions...

  1. 40 CFR 89.510 - Compliance with acceptable quality level and passing and failing criteria for selective...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Selective Enforcement Auditing § 89.510... Plans for Selective Enforcement Auditing of Nonroad Engines,” appropriate to the projected sales as made...

  2. 40 CFR 89.117 - Test fleet selection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Standards and... establishing deterioration factors, the manufacturer shall select the engines, subsystems, or components to be used to determine exhaust emission deterioration factors for each engine-family control system...

  3. 40 CFR 1042.350 - Recordkeeping.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....350 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Testing Production-line Engines § 1042.350 Recordkeeping. (a) Organize and maintain your records as described in this...

  4. 40 CFR 94.908 - National security exemption.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Exclusion and Exemption Provisions § 94.908 National security exemption. (a)(1) Any marine engine, otherwise subject to this part, that is... armor, permanently affixed weaponry, specialized electronic warfare systems, unique stealth performance...

  5. 40 CFR 1042.125 - Maintenance instructions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Emission... converters, electronic control units, particulate traps, trap oxidizers, components related to particulate..., electronic control units, particulate traps, trap oxidizers, components related to particulate traps and trap...

  6. 40 CFR 1042.350 - Recordkeeping.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....350 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Testing Production-line Engines § 1042.350 Recordkeeping. (a) Organize and maintain your records as described in this...

  7. 40 CFR 1042.125 - Maintenance instructions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Emission... converters, electronic control units, particulate traps, trap oxidizers, components related to particulate..., electronic control units, particulate traps, trap oxidizers, components related to particulate traps and trap...

  8. 40 CFR 1042.125 - Maintenance instructions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Emission... converters, electronic control units, particulate traps, trap oxidizers, components related to particulate..., electronic control units, particulate traps, trap oxidizers, components related to particulate traps and trap...

  9. 40 CFR 1042.350 - Recordkeeping.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....350 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Testing Production-line Engines § 1042.350 Recordkeeping. (a) Organize and maintain your records as described in this...

  10. 40 CFR 1042.835 - Certification of remanufactured engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... engines. 1042.835 Section 1042.835 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES... you provide must include appropriate manifolds, aftertreatment devices, electronic control units, and...

  11. 40 CFR 94.908 - National security exemption.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Exclusion and Exemption Provisions § 94.908 National security exemption. (a)(1) Any marine engine, otherwise subject to this part, that is... armor, permanently affixed weaponry, specialized electronic warfare systems, unique stealth performance...

  12. 40 CFR 1042.835 - Certification of remanufactured engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... engines. 1042.835 Section 1042.835 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES... you provide must include appropriate manifolds, aftertreatment devices, electronic control units, and...

  13. 40 CFR 1042.125 - Maintenance instructions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Emission... converters, electronic control units, particulate traps, trap oxidizers, components related to particulate..., electronic control units, particulate traps, trap oxidizers, components related to particulate traps and trap...

  14. 40 CFR 94.908 - National security exemption.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Exclusion and Exemption Provisions § 94.908 National security exemption. (a)(1) Any marine engine, otherwise subject to this part, that is... armor, permanently affixed weaponry, specialized electronic warfare systems, unique stealth performance...

  15. 40 CFR 1042.835 - Certification of remanufactured engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... engines. 1042.835 Section 1042.835 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES... you provide must include appropriate manifolds, aftertreatment devices, electronic control units, and...

  16. 40 CFR 94.908 - National security exemption.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Exclusion and Exemption Provisions § 94.908 National security exemption. (a)(1) Any marine engine, otherwise subject to this part, that is... armor, permanently affixed weaponry, specialized electronic warfare systems, unique stealth performance...

  17. 40 CFR 94.908 - National security exemption.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Exclusion and Exemption Provisions § 94.908 National security exemption. (a)(1) Any marine engine, otherwise subject to this part, that is... armor, permanently affixed weaponry, specialized electronic warfare systems, unique stealth performance...

  18. 40 CFR 1042.835 - Certification of remanufactured engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... engines. 1042.835 Section 1042.835 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES... you provide must include appropriate manifolds, aftertreatment devices, electronic control units, and...

  19. 40 CFR 1042.350 - Recordkeeping.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....350 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Testing Production-line Engines § 1042.350 Recordkeeping. (a) Organize and maintain your records as described in this...

  20. Investigation of the Discharge Rate of a Fuel-injection System

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold C; Voss, Fred

    1931-01-01

    In connection with the development of a method for analyzing indicator cards taken from high-speed compression-ignition engines, this investigation was undertaken to determine the average quantity of fuel discharged during each crank degree of injection period.

  1. Nova Upgrade: A proposed ICF facility to demonstrate ignition and gain, revision 1

    NASA Astrophysics Data System (ADS)

    1992-07-01

    The present objective of the national Inertial Confinement Fusion (ICF) Program is to determine the scientific feasibility of compressing and heating a small mass of mixed deuterium and tritium (DT) to conditions at which fusion occurs and significant energy is released. The potential applications of ICF will be determined by the resulting fusion energy yield (amount of energy produced) and gain (ratio of energy released to energy required to heat and compress the DT fuel). Important defense and civilian applications, including weapons physics, weapons effects simulation, and ultimately the generation of electric power will become possible if yields of 100 to 1,000 MJ and gains exceeding approximately 50 can be achieved. Once ignition and propagating bum producing modest gain (2 to 10) at moderate drive energy (1 to 2 MJ) has been achieved, the extension to high gain (greater than 50) is straightforward. Therefore, the demonstration of ignition and modest gain is the final step in establishing the scientific feasibility of ICF. Lawrence Livermore National Laboratory (LLNL) proposes the Nova Upgrade Facility to achieve this demonstration by the end of the decade. This facility would be constructed within the existing Nova building at LLNL for a total cost of approximately $400 M over the proposed FY 1995-1999 construction period. This report discusses this facility.

  2. Real-time analysis of aromatics in combustion engine exhaust by resonance-enhanced multiphoton ionisation time-of-flight mass spectrometry (REMPI-TOF-MS): a robust tool for chassis dynamometer testing.

    PubMed

    Adam, T W; Clairotte, M; Streibel, T; Elsasser, M; Pommeres, A; Manfredi, U; Carriero, M; Martini, G; Sklorz, M; Krasenbrink, A; Astorga, C; Zimmermann, R

    2012-07-01

    Resonance-enhanced multiphoton ionisation time-of-flight mass spectrometry (REMPI-TOF-MS) is a robust method for real-time analysis of monocyclic and polycyclic aromatic hydrocarbons in complex emissions. A mobile system has been developed which enables direct analysis on site. In this paper, we utilize a multicomponent calibration scheme based on the analytes' photo-ionisation cross-sections relative to a calibrated species. This allows semi-quantification of a great number of components by only calibrating one compound of choice, here toluene. The cross-sections were determined by injecting nebulised solutions of aromatic compounds into the TOF-MS ion source with the help of a HPLC pump. Then, REMPI-TOF-MS was implemented at various chassis dynamometers and test cells and the exhaust of the following vehicles and engines investigated: a compression ignition light-duty (LD) passenger car, a compression ignition LD van, two spark ignition LD passenger cars, 2 two-stroke mopeds, and a two-stroke engine of a string gas trimmer. The quantitative time profiles of benzene are shown. The results indicate that two-stroke engines are a significant source for toxic and cancerogenic compounds. Air pollution and health effects caused by gardening equipment might still be underestimated.

  3. Research on cylinder processes of gasoline homogenous charge compression ignition (HCCI) engine

    NASA Astrophysics Data System (ADS)

    Cofaru, Corneliu

    2017-10-01

    This paper is designed to develop a HCCI engine starting from a spark ignition engine platform. The engine test was a single cylinder, four strokes provided with carburetor. The results of experimental research on this version were used as a baseline for the next phase of the work. After that, the engine was modified for a HCCI configuration, the carburetor was replaced by a direct fuel injection system in order to control precisely the fuel mass per cycle taking into account the measured intake air-mass. To ensure that the air - fuel mixture auto ignite, the compression ratio was increased from 9.7 to 11.5. The combustion process in HCCI regime is governed by chemical kinetics of mixture of air-fuel, rein ducted or trapped exhaust gases and fresh charge. To modify the quantities of trapped burnt gases, the exchange gas system was changed from fixed timing to variable valve timing. To analyze the processes taking place in the HCCI engine and synthesizing a control system, a model of the system which takes into account the engine configuration and operational parameters are needed. The cylinder processes were simulated on virtual model. The experimental research works were focused on determining the parameters which control the combustion timing of HCCI engine to obtain the best energetic and ecologic parameters.

  4. Controlling dynamics of imploded core plasma for fast ignition

    NASA Astrophysics Data System (ADS)

    Nagatomo, H.; Johzaki, T.; Sunahara, A.; Shiraga, H.; Sakagami, H.; Cai, H.; Mima, K.

    2010-08-01

    In the Fast ignition, formation of highly compressed core plasma is one of critical issue. In this work, the effect hydrodynamic instability in cone-guided shell implosion is studied. Two-dimensional radiation hydrodynamic simulations are carried out where realistic seeds of Rayleigh-Taylor instability are imposed. Preliminary results suggest that the instability reduces implosion performance, such as implosion velocity, areal density, and maximum density. In perturbed target implosion, the break-up time of the tip of the cone is earlier than that of ideal unperturbed target implosion case. This is crucial matter for the Fast ignition because the pass for the heating laser is filled with plasma before the shot of heating laser. A sophisticated implosion design of stable and low in-flight aspect ratio is necessary for cone-guided shell implosion.

  5. A Photographic Study of Combustion and Knock in a Spark-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Spencer, R C

    1938-01-01

    Report presents the results of a photographic study of the combustion in a spark-ignition engine using both Schlieren and flame photographs taken at high rates of speed. Although shock waves are present after knock occurs, there was no evidence of any type of sonic or supersonic compression waves existing in the combustion gases prior to the occurrence of knock. Artificially induced shock waves in the engine did not in themselves cause knock. The photographs also indicate that, although auto-ignition ahead of the flame front may occur in conjunction with knock, it is not necessary for the occurrence of knock. There is also evidence that the reaction is not completed in the flame front but continues for some time after the flame front has passed through the charge.

  6. Direct-drive inertial confinement fusion research at the Laboratory for Laser Energetics: charting the path to thermonuclear ignition

    NASA Astrophysics Data System (ADS)

    McCrory, R. L.; Regan, S. P.; Loucks, S. J.; Meyerhofer, D. D.; Skupsky, S.; Betti, R.; Boehly, T. R.; Craxton, R. S.; Collins, T. J. B.; Delettrez, J. A.; Edgell, D.; Epstein, R.; Fletcher, K. A.; Freeman, C.; Frenje, J. A.; Glebov, V. Yu.; Goncharov, V. N.; Harding, D. R.; Igumenshchev, I. V.; Keck, R. L.; Kilkenny, J. D.; Knauer, J. P.; Li, C. K.; Marciante, J.; Marozas, J. A.; Marshall, F. J.; Maximov, A. V.; McKenty, P. W.; Myatt, J.; Padalino, S.; Petrasso, R. D.; Radha, P. B.; Sangster, T. C.; Séguin, F. H.; Seka, W.; Smalyuk, V. A.; Soures, J. M.; Stoeckl, C.; Yaakobi, B.; Zuegel, J. D.

    2005-10-01

    Significant theoretical and experimental progress continues to be made at the University of Rochester's Laboratory for Laser Energetics (LLE), charting the path to direct-drive inertial confinement fusion (ICF) ignition. Direct drive offers the potential for higher-gain implosions than x-ray drive and is a leading candidate for an inertial fusion energy power plant. LLE's direct-drive ICF ignition target designs for the National Ignition Facility (NIF) are based on hot-spot ignition. A cryogenic target with a spherical DT-ice layer, within or without a foam matrix, enclosed by a thin plastic shell, will be directly irradiated with ~1.5 MJ of laser energy. Cryogenic and plastic/foam (surrogate-cryogenic) targets that are hydrodynamically scaled from these ignition target designs are imploded on the 60-beam, 30 kJ, UV OMEGA laser system to validate the key target physics issues, including energy coupling, hydrodynamic instabilities and implosion symmetry. Prospects for direct-drive ignition on the NIF are extremely favourable, even while it is in its x-ray-drive irradiation configuration, with the development of the polar-direct-drive concept. A high-energy petawatt capability is being constructed at LLE next to the existing 60-beam OMEGA compression facility. This OMEGA EP (extended performance) laser will add two short-pulse, 2.6 kJ beams to the OMEGA laser system to backlight direct-drive ICF implosions and study fast-ignition physics with focused intensities up to 6 × 1020 W cm-2.

  7. Numerical simulation and validation of SI-CAI hybrid combustion in a CAI/HCCI gasoline engine

    NASA Astrophysics Data System (ADS)

    Wang, Xinyan; Xie, Hui; Xie, Liyan; Zhang, Lianfang; Li, Le; Chen, Tao; Zhao, Hua

    2013-02-01

    SI-CAI hybrid combustion, also known as spark-assisted compression ignition (SACI), is a promising concept to extend the operating range of CAI (Controlled Auto-Ignition) and achieve the smooth transition between spark ignition (SI) and CAI in the gasoline engine. In this study, a SI-CAI hybrid combustion model (HCM) has been constructed on the basis of the 3-Zones Extended Coherent Flame Model (ECFM3Z). An ignition model is included to initiate the ECFM3Z calculation and induce the flame propagation. In order to precisely depict the subsequent auto-ignition process of the unburned fuel and air mixture independently after the initiation of flame propagation, the tabulated chemistry concept is adopted to describe the auto-ignition chemistry. The methodology for extracting tabulated parameters from the chemical kinetics calculations is developed so that both cool flame reactions and main auto-ignition combustion can be well captured under a wider range of thermodynamic conditions. The SI-CAI hybrid combustion model (HCM) is then applied in the three-dimensional computational fluid dynamics (3-D CFD) engine simulation. The simulation results are compared with the experimental data obtained from a single cylinder VVA engine. The detailed analysis of the simulations demonstrates that the SI-CAI hybrid combustion process is characterised with the early flame propagation and subsequent multi-site auto-ignition around the main flame front, which is consistent with the optical results reported by other researchers. Besides, the systematic study of the in-cylinder condition reveals the influence mechanism of the early flame propagation on the subsequent auto-ignition.

  8. Spark ignition timing control system for internal combustion engine with feature of suppression of jerking during engine acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomisawa, N.

    1989-07-04

    This patent describes a spark ignition timing control system for an internal combustion engine, it comprises: sensor means monitoring preselected parameters for producing a sensor signal; first means for deriving a spark ignition timing on the basis of data contained in the sensor signal; second means for detecting an engine acceleration demand for producing an accelerating condition indicative signal; and third means, responsive to the accelerating condition indicative signal, for modifying the spark ignition timing derived by the first means after expiration of a first predetermined period of time of occurence of the accelerating condition indicative signal, in such amore » manner that the spark ignition timing is advanced and retarded for suppressing cycle-to-cycle fluctuation of engine speed and for smoothly increasing engine speed.« less

  9. 77 FR 6821 - Certain Reduced Ignition Proclivity Cigarette Paper Wrappers and Products Containing Same...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-09

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-756] Certain Reduced Ignition Proclivity Cigarette Paper Wrappers and Products Containing Same; Request for Statements on the Public Interest AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the...

  10. 77 FR 20844 - Certain Reduced Ignition Proclivity Cigarette Paper Wrappers and Products Containing Same...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-06

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-756] Certain Reduced Ignition Proclivity Cigarette Paper Wrappers and Products Containing Same Determination to Partially Review the Final Initial... reduced ignition proclivity cigarette paper wrappers and products containing same by reason of...

  11. Investigating Premature Ignition of Thruster Pressure Cartridges by Mechanical Impact of Internal Components

    NASA Technical Reports Server (NTRS)

    Woods, Stephen S.; Saulsberry, Regor

    2010-01-01

    Pyrotechnic thruster pressure cartridges (TPCs) are used for aeroshell separation on a new NASA crew launch vehicle. The premature ignition concern was hypothesized based on the potential range of motion of the subassemblies, projected worst case accelerations, and the internal geometry that could subject propellant grains to mechanical impact sufficiently high for ignition. This possibility was investigated by fabricating a high-fidelity model of the suspected contact geometry, placing a representative amount of propellant in it, and impacting the propellant with a range of forces equivalent to and greater than the maximum possible during launch. Testing demonstrated that the likelihood of ignition is less than 1 in 1,000,000. The test apparatus, methodology, and results are described in this paper. Nondestructive evaluation ( NDE) during TPC acceptance testing indicated that internal assemblies moved during shock and vibration testing due to an internal bond anomaly. This caused concerns that the launch environment might produce the same movement and release propellant grains that might be prematurely ignited through impact or through electrostatic discharge (ESD) as grains vibrated against internal surfaces. Since a new lot could not be fabricated in time, a determination had to be made as to whether the lot was acceptable to fly. This paper discusses the analysis and impact testing used to address the potential impact issue and a separate paper addresses the ESD issue.

  12. Compact Fast Ignition experiments using Joule-class tailored drive pulses under counterbeam configuration

    NASA Astrophysics Data System (ADS)

    Mori, Yoshitaka; Hanayama, Ryohei; Ishii, Katsuhiro; Kitagawa, Yoneyoshi; Sekine, Takashi; Takeuchi, Yasuki; Kurita, Takashi; Katoh, Yoshinori; Satoh, Nakahiro; Kurita, Norio; Kawashima, Toshiyuki; Komeda, Osamu; Hioki, Tatsumi; Motohiro, Tomoyoshi; Sunahara, Atsushi; Sentoku, Yasuhiko; Miura, Eisuke; Iwamoto, Akifumi; Sakagami, Hitoshi

    2017-10-01

    Fast ignition (FI) is a form of inertial confinement fusion in which the ignition step and the compression step are separate processes resulting in a reduction of the symmetry requirement for hot spot generation. One of the problems of FI so far are the accessibility of an ignition laser pulse into the assembled core in which the driver energy is converted into relativistic electrons produced in the laser-plasma interaction. We have experimentally demonstrated that a tailored-pulse-assembled core with a diameter of 70 μ m, originally a deuterated polystyrene spherical shell of 500 μ m diameter, is flashed by directly counter irradiating 0.8 J/110 fs laser pulses [Y. MORI et al., PRL 2016]. This result indicates that once the assembled core is squeezed into the target center, the heating lasers can access the core's; edges and deposit their energy into the core. In this talk, we will discuss the heating effects in relation to formation of the assembled core.

  13. Experimental Study of Grit Particle Enhancement in Non-Shock Ignition

    NASA Astrophysics Data System (ADS)

    Browning, Richard V.; Peterson, Paul D.; Roemer, Edward L.; Oldenborg, Michael R.; Thompson, Darla G.; Deluca, Racci

    2006-07-01

    The drop weight impact test is the most commonly used configuration for evaluating sensitivity of explosives to non-shock ignition. Although developed 60 years ago and widely used both as a material compression test and as a test bed for understanding the ignition process itself, little is known about the flow mechanisms or involvement of grit particles as sensitizing agents. In this paper, we present the results of a series of experiments designed to study the flow mechanisms and events leading up to ignition. The experimental configuration used involves two pellet sizes, 3 and 5 mm in diameter, tested with three conditions: (1) smooth steel anvils, (2) standard flint sandpaper, and (3) shed grit particles loaded between the steel anvils and the pellet faces. Diagnostics include optical micrographs, and scanning electron micrographs. Un-reacted samples show a variety of morphologies, including what appear to be quenched reaction sites, even at very low drop heights. Quasi-static crushing experiments were also done to quantify load-time histories.

  14. Experimental Study of Grit Particle Enhancement in Non-Shock Ignition of PBX 9501

    NASA Astrophysics Data System (ADS)

    Peterson, Paul

    2005-07-01

    The drop weight impact test is the most commonly used configuration for evaluating sensitivity of explosives to non-shock ignition. Although developed 60 years ago and widely used both as a material compression test and as a test bed for understanding the ignition process itself, little is known about the flow mechanisms or involvement of grit particles as sensitizing agents. In this paper we present the results of a series of experiments designed to study the flow mechanisms and events leading up to ignition. The experimental configuration used involves two pellet sizes, 3 and 5 mm in diameter, tested in three conditions, (1) with smooth steel anvils, (2) with standard flint sandpaper, and (3) with shed grit particles loaded between the steel anvils and the pellet faces. Diagnostics include optical micrographs, and scanning electron micrographs. Un-reacted samples show a variety of morphologies, including what appear to be quenched reaction sites, even at very low drop heights. Quasi-static crushing experiments were also done to quantify load-time histories.

  15. DNS and LES/FMDF of turbulent jet ignition and combustion

    NASA Astrophysics Data System (ADS)

    Validi, Abdoulahad; Jaberi, Farhad

    2014-11-01

    The ignition and combustion of lean fuel-air mixtures by a turbulent jet flow of hot combustion products injected into various geometries are studied by high fidelity numerical models. Turbulent jet ignition (TJI) is an efficient method for starting and controlling the combustion in complex propulsion systems and engines. The TJI and combustion of hydrogen and propane in various flow configurations are simulated with the direct numerical simulation (DNS) and the hybrid large eddy simulation/filtered mass density function (LES/FMDF) models. In the LES/FMDF model, the filtered form of the compressible Navier-Stokes equations are solved with a high-order finite difference scheme for the turbulent velocity and the FMDF transport equation is solved with a Lagrangian stochastic method to obtain the scalar field. The DNS and LES/FMDF data are used to study the physics of TJI and combustion for different turbulent jet igniter and gas mixture conditions. The results show the very complex and different behavior of the turbulence and the flame structure at different jet equivalence ratios.

  16. Applications and results of X-ray spectroscopy in implosion experiments on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Epstein, R.; Regan, S. P.; Hammel, B. A.; Suter, L. J.; Scott, H. A.; Barrios, M. A.; Bradley, D. K.; Callahan, D. A.; Cerjan, C.; Collins, G. W.; Dixit, S. N.; Döppner, T.; Edwards, M. J.; Farley, D. R.; Fournier, K. B.; Glenn, S.; Glenzer, S. H.; Golovkin, I. E.; Hamza, A.; Hicks, D. G.; Izumi, N.; Jones, O. S.; Key, M. H.; Kilkenny, J. D.; Kline, J. L.; Kyrala, G. A.; Landen, O. L.; Ma, T.; MacFarlane, J. J.; Mackinnon, A. J.; Mancini, R. C.; McCrory, R. L.; Meyerhofer, D. D.; Meezan, N. B.; Nikroo, A.; Park, H.-S.; Patel, P. K.; Ralph, J. E.; Remington, B. A.; Sangster, T. C.; Smalyuk, V. A.; Springer, P. T.; Town, R. P. J.; Tucker, J. L.

    2017-03-01

    Current inertial confinement fusion experiments on the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)] are attempting to demonstrate thermonuclear ignition using x-ray drive by imploding spherical targets containing hydrogen-isotope fuel in the form of a thin cryogenic layer surrounding a central volume of fuel vapor [J. Lindl, Phys. Plasmas 2, 3933 (1995)]. The fuel is contained within a plastic ablator layer with small concentrations of one or more mid-Z elements, e.g., Ge or Cu. The capsule implodes, driven by intense x-ray emission from the inner surface of a hohlraum enclosure irradiated by the NIF laser, and fusion reactions occur in the central hot spot near the time of peak compression. Ignition will occur if the hot spot within the compressed fuel layer attains a high-enough areal density to retain enough of the reaction product energy to reach nuclear reaction temperatures within the inertial hydrodynamic disassembly time of the fuel mass [J. Lindl, Phys. Plasmas 2, 3933 (1995)]. The primary purpose of the ablator dopants is to shield the ablator surface adjacent to the DT ice from heating by the hohlraum x-ray drive [S. W. Haan et al., Phys. Plasmas 18, 051001 (2011)]. Simulations predicted that these dopants would produce characteristic K-shell emission if ablator material mixed into the hot spot [B. A. Hammel et al., High Energy Density Phys. 6, 171 (2010)]. In NIF ignition experiments, emission and absorption features from these dopants appear in x-ray spectra measured with the hot-spot x-ray spectrometer in Supersnout II [S. P. Regan et al., "Hot-Spot X-Ray Spectrometer for the National Ignition Facility," to be submitted to Review of Scientific Instruments]. These include K-shell emission lines from the hot spot (driven primarily by inner-shell collisional ionization and dielectronic recombination) and photoionization edges, fluorescence, and absorption lines caused by the absorption of the hot-spot continuum in the shell. These features provide diagnostics of the central hot spot and the compressed shell, plus a measure of the shell mass that has mixed into the hot spot [S. P. Regan et al., Phys. Plasmas 19, 056307 (2012)] and evidence locating the origin of the mixed shell mass in the imploding ablator [S. P. Regan et al., Phys. Rev. Lett. 111, 045001 (2013)]. Spectra are analyzed and interpreted using detailed atomic models (including radiation-transport effects) to determine the characteristic temperatures, densities, and sizes of the emitting regions. A mix diagnostic based on enhanced continuum x-ray production, relative to neutron yield, provides sensitivity to the undoped shell material mixed into the hot spot [T. Ma et al., Phys. Rev. Lett., 111, 085004 (2013)]. Together, these mix-mass measurements confirm that mix is a serious impediment to ignition. The spectroscopy and atomic physics of shell dopants have become essential in confronting this impediment and will be described.

  17. Investigation of a rotary valving system with variable valve timing for internal combustion engines

    NASA Astrophysics Data System (ADS)

    Cross, Paul C.; Hansen, Craig N.

    1994-11-01

    The objective of the program was to provide a functional demonstration of the Hansen Rotary Valving System with Variable Valve Timing (HRVS/VVT), capable of throttleless inlet charge control, as an alternative to conventional poppet-valves for use in spark ignited internal combustion engines. The goal of this new technology is to secure benefits in fuel economy, broadened torque band, vibration reduction, and overhaul accessibility. Additionally, use of the variable valve timing capability to vary the effective compression ratio is expected to improve multifuel tolerance and efficiency. Efforts directed at the design of HRVS components proved to be far more extensive than had been anticipated, ultimately requiring that proof-trial design/development work be performed. Although both time and funds were exhausted before optical or ion-probe types of in-cylinder investigation could be undertaken, a great deal of laboratory data was acquired during the course of the design/development work. This laboratory data is the basis for the information presented in this final report.

  18. Deuteron Beam Driven Fast Ignition of a Pre-Compressed Inertial Confinement Fusion (ICF) Fuel Capsule

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoling; Miley, George; Flippo, Kirk; Hora, Heinrich; Gaillard, Sandrine; Offermann, Dustin

    2012-10-01

    We proposed to utilize a new ``Deuterium Cluster'' type structure for the laser interaction foil to generate an energetic deuteron beam as the fast igniter to ignite inertial confinement fusion fuel capsule. The benefit of deuteron beam driven fast ignition is that its deposition in the target fuel will not only provide heating but also fuse with fuel as they slow down in the target. The preliminary results from recent laser-deuteron acceleration experiment at LANL were encouraging. Also, in most recent calculations, we found that a 12.73% extra energy gain from deuteron beam-target fusion could be achieved when quasi-Maxwellian deuteron beam was assumed, and when a ρrb = 4.5 g/cm2 was considered, where ρ is the fuel density, and rb is the ion beam focusing radius on the target. These results provide some insight into the contribution of the extra heat produced by deuteron beam-target fusion to the hot spot ignition process. If the physics works as anticipated, this novel type of interaction foil can efficiently generate energetic deuterons during intense laser pulses. The massive yield of deuterons should turn out to be the most efficient way of igniting the DT fuel, making the dream of near-term commercialization of FI fusion more achievable.

  19. 40 CFR 89.905 - Testing exemption.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exemption Provisions § 89... proposed test program, an appropriate purpose would be research, investigations, studies, demonstrations... must exhibit a duration of reasonable length and affect a reasonable number of engines. In this regard...

  20. 40 CFR 94.905 - Testing exemption.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Exclusion and Exemption Provisions § 94.905... prohibitions of this part new engines that are being used solely for the purpose of conducting a test program... purpose would be research, investigations, studies, demonstrations, technology development, or training...

  1. 40 CFR 89.905 - Testing exemption.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exemption Provisions § 89... proposed test program, an appropriate purpose would be research, investigations, studies, demonstrations... must exhibit a duration of reasonable length and affect a reasonable number of engines. In this regard...

  2. 40 CFR 89.905 - Testing exemption.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exemption Provisions § 89... proposed test program, an appropriate purpose would be research, investigations, studies, demonstrations... must exhibit a duration of reasonable length and affect a reasonable number of engines. In this regard...

  3. 40 CFR 89.905 - Testing exemption.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exemption Provisions § 89... proposed test program, an appropriate purpose would be research, investigations, studies, demonstrations... must exhibit a duration of reasonable length and affect a reasonable number of engines. In this regard...

  4. 40 CFR 94.905 - Testing exemption.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Exclusion and Exemption Provisions § 94.905... prohibitions of this part new engines that are being used solely for the purpose of conducting a test program... purpose would be research, investigations, studies, demonstrations, technology development, or training...

  5. 40 CFR 94.905 - Testing exemption.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Exclusion and Exemption Provisions § 94.905... prohibitions of this part new engines that are being used solely for the purpose of conducting a test program... purpose would be research, investigations, studies, demonstrations, technology development, or training...

  6. 40 CFR 89.905 - Testing exemption.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exemption Provisions § 89... proposed test program, an appropriate purpose would be research, investigations, studies, demonstrations... must exhibit a duration of reasonable length and affect a reasonable number of engines. In this regard...

  7. 40 CFR 94.905 - Testing exemption.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Exclusion and Exemption Provisions § 94.905... prohibitions of this part new engines that are being used solely for the purpose of conducting a test program... purpose would be research, investigations, studies, demonstrations, technology development, or training...

  8. 40 CFR 94.905 - Testing exemption.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Exclusion and Exemption Provisions § 94.905... prohibitions of this part new engines that are being used solely for the purpose of conducting a test program... purpose would be research, investigations, studies, demonstrations, technology development, or training...

  9. 40 CFR 1042.301 - General provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 1042.301 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Testing Production-line Engines § 1042.301 General provisions. (a) If you produce engines that are subject to the...

  10. 40 CFR 94.211 - Emission-related maintenance instructions for purchasers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... filter change, fuel filter change, air filter change, cooling system maintenance, adjustment of idle... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES... at 1,500-hour intervals thereafter. (i) Exhaust gas recirculation system-related filters and coolers...

  11. Improving the cold flow properties of biodiesel by fractionation

    USDA-ARS?s Scientific Manuscript database

    Production of biodiesel is increasing world-wide and contributing to the growing development of renewable alternative fuels. Biodiesel has many fuel properties such as density, viscosity, lubricity, and cetane number that make it compatible for combustion in compression-ignition (diesel) engines. ...

  12. 40 CFR 1042.230 - Engine families.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... degree). (19) The type of smoke control system. (d) For Category 3 engines, group engines into engine....230 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Certifying Engine...

  13. 40 CFR 1042.230 - Engine families.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... degree). (19) The type of smoke control system. (d) For Category 3 engines, group engines into engine....230 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Certifying Engine...

  14. 40 CFR 1042.230 - Engine families.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... degree). (19) The type of smoke control system. (d) For Category 3 engines, group engines into engine....230 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Certifying Engine...

  15. 40 CFR 1042.230 - Engine families.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... degree). (19) The type of smoke control system. (d) For Category 3 engines, group engines into engine....230 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Certifying Engine...

  16. 40 CFR 89.502 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Definitions. 89.502 Section 89.502 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Selective Enforcement Auditing § 89.502...

  17. 40 CFR 89.501 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Applicability. 89.501 Section 89.501 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Selective Enforcement Auditing § 89.501...

  18. 40 CFR 94.1107 - Warranty provisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... were in general use with engines prior to 1999. For diesel engines, this would generally include...) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Enforcement Provisions and Prohibited Acts § 94.1107 Warranty provisions. (a) The manufacturer of each engine must warrant to the...

  19. 40 CFR 94.1107 - Warranty provisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... were in general use with engines prior to 1999. For diesel engines, this would generally include...) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Enforcement Provisions and Prohibited Acts § 94.1107 Warranty provisions. (a) The manufacturer of each engine must warrant to the...

  20. 40 CFR 94.1107 - Warranty provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... were in general use with engines prior to 1999. For diesel engines, this would generally include...) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Enforcement Provisions and Prohibited Acts § 94.1107 Warranty provisions. (a) The manufacturer of each engine must warrant to the...

  1. 40 CFR 94.1107 - Warranty provisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... were in general use with engines prior to 1999. For diesel engines, this would generally include...) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Enforcement Provisions and Prohibited Acts § 94.1107 Warranty provisions. (a) The manufacturer of each engine must warrant to the...

  2. 40 CFR 94.1107 - Warranty provisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... were in general use with engines prior to 1999. For diesel engines, this would generally include...) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Enforcement Provisions and Prohibited Acts § 94.1107 Warranty provisions. (a) The manufacturer of each engine must warrant to the...

  3. 40 CFR 1042.235 - Emission testing related to certification.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... The engine you provide must include appropriate manifolds, aftertreatment devices, electronic control...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Certifying Engine Families § 1042.235 Emission testing related to certification. This...

  4. 40 CFR 1042.235 - Emission testing related to certification.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... The engine you provide must include appropriate manifolds, aftertreatment devices, electronic control...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Certifying Engine Families § 1042.235 Emission testing related to certification. This...

  5. 40 CFR 1042.345 - Reporting.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... procedures for test engines in a way that might affect emission controls. All the information in this report... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Testing Production-line...

  6. 40 CFR 1042.345 - Reporting.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... procedures for test engines in a way that might affect emission controls. All the information in this report... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Testing Production-line...

  7. 40 CFR 1042.235 - Emission testing related to certification.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... The engine you provide must include appropriate manifolds, aftertreatment devices, electronic control...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Certifying Engine Families § 1042.235 Emission testing related to certification. This...

  8. 40 CFR 1042.235 - Emission testing related to certification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... The engine you provide must include appropriate manifolds, aftertreatment devices, electronic control...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Certifying Engine Families § 1042.235 Emission testing related to certification. This...

  9. 40 CFR 1042.235 - Emission testing related to certification.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... The engine you provide must include appropriate manifolds, aftertreatment devices, electronic control...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Certifying Engine Families § 1042.235 Emission testing related to certification. This...

  10. 40 CFR 1042.345 - Reporting.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... procedures for test engines in a way that might affect emission controls. All the information in this report... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Testing Production-line...

  11. 40 CFR 1042.345 - Reporting.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... procedures for test engines in a way that might affect emission controls. All the information in this report... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Testing Production-line...

  12. CFD simulations of Rapid Compression Machines using detailed chemistry: Evaluation of the ‘crevice containment’ concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourgeois, Nicolas; Goldsborough, S. Scott; Jeanmart, Herve

    The use of creviced pistons in Rapid Compression Machines (RCMs) has proven to be very effcient in making the temperature homogeneous inside the reaction chamber but has the disadvantage of inducing a mass transfer from the reaction chamber to the crevice, especially during the preliminary heat release of two- stage ignition processes. Aiming to mitigate this mass transfer, the technique of `crevice containment' (CC) has been proposed. It consists of a physical separa- tion between the reaction chamber and the crevice region that is engaged at the end of the compression, physically preventing any mass transfer between both parts ofmore » the geometry. In order to numerically assess this novel design concept across a broader range of conditions than previously investigated, reactive simu- lations using detailed chemical kinetic mechanisms are performed for n-heptane and iso-octane. For compressed temperatures outside of the NTC (negative temperature coeffcient) region, the CC approach is very effective in suppress- ing the influence of the crevice mass transfer and thus increases the validity of the widely-used 0-D model based on the adiabatic core assumption. Still, for most of the temperature cases inside the NTC region, the ignition appears to be precipitately initiated in the residual vortex region formed after the seal engagement, possibly inducing very significant differences with the 0-D model. The benefits of eliminating the post-compression crevice mass transfer appear to be counter-balanced by effects that have not been previously investigated in detail.« less

  13. CFD simulations of Rapid Compression Machines using detailed chemistry: Evaluation of the ‘crevice containment’ concept

    DOE PAGES

    Bourgeois, Nicolas; Goldsborough, S. Scott; Jeanmart, Herve; ...

    2018-01-17

    The use of creviced pistons in Rapid Compression Machines (RCMs) has proven to be very effcient in making the temperature homogeneous inside the reaction chamber but has the disadvantage of inducing a mass transfer from the reaction chamber to the crevice, especially during the preliminary heat release of two- stage ignition processes. Aiming to mitigate this mass transfer, the technique of `crevice containment' (CC) has been proposed. It consists of a physical separa- tion between the reaction chamber and the crevice region that is engaged at the end of the compression, physically preventing any mass transfer between both parts ofmore » the geometry. In order to numerically assess this novel design concept across a broader range of conditions than previously investigated, reactive simu- lations using detailed chemical kinetic mechanisms are performed for n-heptane and iso-octane. For compressed temperatures outside of the NTC (negative temperature coeffcient) region, the CC approach is very effective in suppress- ing the influence of the crevice mass transfer and thus increases the validity of the widely-used 0-D model based on the adiabatic core assumption. Still, for most of the temperature cases inside the NTC region, the ignition appears to be precipitately initiated in the residual vortex region formed after the seal engagement, possibly inducing very significant differences with the 0-D model. The benefits of eliminating the post-compression crevice mass transfer appear to be counter-balanced by effects that have not been previously investigated in detail.« less

  14. Effects of Laser Frequency and Multiple Beams on Hot Electron Generation in Fast Ignition

    NASA Astrophysics Data System (ADS)

    Royle, Ryan B.

    Inertial confinement fusion (ICF) is one approach to harnessing fusion power for the purpose of energy production in which a small deuterium-tritium capsule is imploded to about a thousand times solid density with ultra-intense lasers. In the fast ignition (FI) scheme, a picosecond petawatt laser pulse is used to deposit ˜10 kJ of energy in ˜10 ps into a small hot-spot at the periphery of the compressed core, igniting a fusion burn wave. FI promises a much higher energy gain over the conventional central hot-spot ignition scheme in which ignition is achieved through compression alone. Sufficient energy coupling between ignition laser and implosion core is critical for the feasibility of the FI scheme. Laser-core energy coupling is mediated by hot electrons which absorb laser energy near the critical density and propagate to the dense core, depositing their energy primarily through collisions. The hot electron energy distribution plays a large role in achieving efficient energy coupling since electrons with energy much greater than a few MeV will only deposit a small fraction of their energy into the hot-spot region due to reduced collisional cross section. It is understood that it may be necessary to use the second or third harmonic of the 1.05 mum Nd glass laser to reduce the average hot electron energy closer to the few-MeV range. Also, it is likely that multiple ignition beams will be used to achieve the required intensities. In this study, 2D particle-in-cell simulations are used to examine the effects of frequency doubling and tripling of a 1 mum laser as well as effects of using various dual-beam configurations. While the hot-electron energy spectrum is indeed shifted closer to the few-MeV range for higher frequency beams, the overall energy absorption is reduced, canceling the gain from higher efficiency. For a fixed total laser input energy, we find that the amount of hot electron energy able to be deposited into the core hot-spot is fairly insensitive to the laser configuration used. Our results hint that the more important issue at hand may be divergence and transport of the hot electrons, which tend to spray into 2pi radians due to instabilities and current filamentation present in the laser-plasma interaction region.

  15. An analytical investigation of NO sub x control techniques for methanol fueled spark ignition engines

    NASA Technical Reports Server (NTRS)

    Browning, L. H.; Argenbright, L. A.

    1983-01-01

    A thermokinetic SI engine simulation was used to study the effects of simple nitrogen oxide control techniques on performance and emissions of a methanol fueled engine. As part of this simulation, a ring crevice storage model was formulated to predict UBF emissions. The study included spark retard, two methods of compression ratio increase and EGR. The study concludes that use of EGR in high turbulence, high compression engines will both maximize power and thermal efficiency while minimizing harmful exhaust pollutants.

  16. Method for destroying hazardous organics and other combustible materials in a subcritical/supercritical reactor

    DOEpatents

    Janikowski, Stuart K.

    2000-01-01

    A waste destruction method using a reactor vessel to combust and destroy organic and combustible waste, including the steps of introducing a supply of waste into the reactor vessel, introducing a supply of an oxidant into the reactor vessel to mix with the waste forming a waste and oxidant mixture, introducing a supply of water into the reactor vessel to mix with the waste and oxidant mixture forming a waste, water and oxidant mixture, reciprocatingly compressing the waste, water and oxidant mixture forming a compressed mixture, igniting the compressed mixture forming a exhaust gas, and venting the exhaust gas into the surrounding atmosphere.

  17. Emission Characteristics of a Diesel Engine Operating with In-Cylinder Gasoline and Diesel Fuel Blending

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prikhodko, Vitaly Y; Curran, Scott; Barone, Teresa L

    2010-01-01

    Advanced combustion regimes such as homogeneous charge compression ignition (HCCI) and premixed charge compression ignition (PCCI) offer benefits of reduced nitrogen oxides (NOx) and particulate matter (PM) emissions. However, these combustion strategies often generate higher carbon monoxide (CO) and hydrocarbon (HC) emissions. In addition, aldehydes and ketone emissions can increase in these modes. In this study, the engine-out emissions of a compression-ignition engine operating in a fuel reactivity- controlled PCCI combustion mode using in-cylinder blending of gasoline and diesel fuel have been characterized. The work was performed on a 1.9-liter, 4-cylinder diesel engine outfitted with a port fuel injection systemmore » to deliver gasoline to the engine. The engine was operated at 2300 rpm and 4.2 bar brake mean effective pressure (BMEP) with the ratio of gasoline to diesel fuel that gave the highest engine efficiency and lowest emissions. Engine-out emissions for aldehydes, ketones and PM were compared with emissions from conventional diesel combustion. Sampling and analysis was carried out following micro-tunnel dilution of the exhaust. Particle geometric mean diameter, number-size distribution, and total number concentration were measured by a scanning mobility particle sizer (SMPS). For the particle mass measurements, samples were collected on Teflon-coated quartz-fiber filters and analyzed gravimetrically. Gaseous aldehydes and ketones were sampled using dinitrophenylhydrazine-coated solid phase extraction cartridges and the extracts were analyzed by liquid chromatography/mass spectrometry (LC/MS). In addition, emissions after a diesel oxidation catalyst (DOC) were also measured to investigate the destruction of CO, HC and formaldehydes by the catalyst.« less

  18. Probing the antagonistic effect of toluene as a component in surrogate fuel models at low temperatures and high pressures. A case study of toluene/dimethyl ether mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yingjia; Somers, Kieran P.; Mehl, Marco

    There is a dearth of experimental data which examine the fundamental low-temperature ignition (T < 900 K) behavior of toluene resulting in a lack of data for the construction, validation, and interpretation of chemical kinetic models for commercial fuels. In order to gain a better understanding of its combustion chemistry, dimethyl ether (DME) has been used as a radical initiator to induce ignition in this highly knock resistant aromatic, and its influence on the combustion of toluene ignition was studied in both shock tube and rapid compression machines as a function of temperature (624–1459 K), pressure (20–40 atm), equivalence ratiomore » (0.5–2.0), and blending ratio (100% toluene, 76% toluene (76T/24D), 58% toluene (58T/42D), 26% toluene (26T/74D) and 100% DME). We use several literature chemical kinetic models to interpret our experimental results. For mixtures containing high concentrations of toluene at low-temperatures none of these are capable of reproducing experiment. This then implies an incomplete understanding of the low-temperature oxidation pathways which control its ignition in our experimental reactors, and by extension, in spark- (SI) and compression-ignition (CI) engines, and an updated detailed chemical kinetic model is presented for engineering applications. Model analyses indicate that although the initial fate of the fuel is dominated by single-step H-atom abstraction reactions from both the benzylic and phenylic sites, the subsequent fate of the allylic and vinylic radicals formed is much more complex. Further experimental and theoretical endeavors are required to gain a holistic qualitative and quantitative chemical kinetics based understanding of the combustion of pure toluene, toluene blends, and commercial fuels containing other aromatic components, at temperatures of relevance to SI and CI engines.« less

  19. Evaluating temperature and fuel stratification for heat-release rate control in a reactivity-controlled compression-ignition engine using optical diagnostics and chemical kinetics modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musculus, Mark P. B.; Kokjohn, Sage L.; Reitz, Rolf D.

    We investigated the combustion process in a dual-fuel, reactivity-controlled compression-ignition (RCCI) engine using a combination of optical diagnostics and chemical kinetics modeling to explain the role of equivalence ratio, temperature, and fuel reactivity stratification for heat-release rate control. An optically accessible engine is operated in the RCCI combustion mode using gasoline primary reference fuels (PRF). A well-mixed charge of iso-octane (PRF = 100) is created by injecting fuel into the engine cylinder during the intake stroke using a gasoline-type direct injector. Later in the cycle, n-heptane (PRF = 0) is delivered through a centrally mounted diesel-type common-rail injector. This injectionmore » strategy generates stratification in equivalence ratio, fuel blend, and temperature. The first part of this study uses a high-speed camera to image the injection events and record high-temperature combustion chemiluminescence. Moreover, the chemiluminescence imaging showed that, at the operating condition studied in the present work, mixtures in the squish region ignite first, and the reaction zone proceeds inward toward the center of the combustion chamber. The second part of this study investigates the charge preparation of the RCCI strategy using planar laser-induced fluorescence (PLIF) of a fuel tracer under non-reacting conditions to quantify fuel concentration distributions prior to ignition. The fuel-tracer PLIF data show that the combustion event proceeds down gradients in the n-heptane distribution. The third part of the study uses chemical kinetics modeling over a range of mixtures spanning the distributions observed from the fuel-tracer fluorescence imaging to isolate the roles of temperature, equivalence ratio, and PRF number stratification. The simulations predict that PRF number stratification is the dominant factor controlling the ignition location and growth rate of the reaction zone. Equivalence ratio has a smaller, but still significant, influence. Lastly, temperature stratification had a negligible influence due to the NTC behavior of the PRF mixtures.« less

  20. Evaluating temperature and fuel stratification for heat-release rate control in a reactivity-controlled compression-ignition engine using optical diagnostics and chemical kinetics modeling

    DOE PAGES

    Musculus, Mark P. B.; Kokjohn, Sage L.; Reitz, Rolf D.

    2015-04-23

    We investigated the combustion process in a dual-fuel, reactivity-controlled compression-ignition (RCCI) engine using a combination of optical diagnostics and chemical kinetics modeling to explain the role of equivalence ratio, temperature, and fuel reactivity stratification for heat-release rate control. An optically accessible engine is operated in the RCCI combustion mode using gasoline primary reference fuels (PRF). A well-mixed charge of iso-octane (PRF = 100) is created by injecting fuel into the engine cylinder during the intake stroke using a gasoline-type direct injector. Later in the cycle, n-heptane (PRF = 0) is delivered through a centrally mounted diesel-type common-rail injector. This injectionmore » strategy generates stratification in equivalence ratio, fuel blend, and temperature. The first part of this study uses a high-speed camera to image the injection events and record high-temperature combustion chemiluminescence. Moreover, the chemiluminescence imaging showed that, at the operating condition studied in the present work, mixtures in the squish region ignite first, and the reaction zone proceeds inward toward the center of the combustion chamber. The second part of this study investigates the charge preparation of the RCCI strategy using planar laser-induced fluorescence (PLIF) of a fuel tracer under non-reacting conditions to quantify fuel concentration distributions prior to ignition. The fuel-tracer PLIF data show that the combustion event proceeds down gradients in the n-heptane distribution. The third part of the study uses chemical kinetics modeling over a range of mixtures spanning the distributions observed from the fuel-tracer fluorescence imaging to isolate the roles of temperature, equivalence ratio, and PRF number stratification. The simulations predict that PRF number stratification is the dominant factor controlling the ignition location and growth rate of the reaction zone. Equivalence ratio has a smaller, but still significant, influence. Lastly, temperature stratification had a negligible influence due to the NTC behavior of the PRF mixtures.« less

  1. Probing the antagonistic effect of toluene as a component in surrogate fuel models at low temperatures and high pressures. A case study of toluene/dimethyl ether mixtures

    DOE PAGES

    Zhang, Yingjia; Somers, Kieran P.; Mehl, Marco; ...

    2016-07-12

    There is a dearth of experimental data which examine the fundamental low-temperature ignition (T < 900 K) behavior of toluene resulting in a lack of data for the construction, validation, and interpretation of chemical kinetic models for commercial fuels. In order to gain a better understanding of its combustion chemistry, dimethyl ether (DME) has been used as a radical initiator to induce ignition in this highly knock resistant aromatic, and its influence on the combustion of toluene ignition was studied in both shock tube and rapid compression machines as a function of temperature (624–1459 K), pressure (20–40 atm), equivalence ratiomore » (0.5–2.0), and blending ratio (100% toluene, 76% toluene (76T/24D), 58% toluene (58T/42D), 26% toluene (26T/74D) and 100% DME). We use several literature chemical kinetic models to interpret our experimental results. For mixtures containing high concentrations of toluene at low-temperatures none of these are capable of reproducing experiment. This then implies an incomplete understanding of the low-temperature oxidation pathways which control its ignition in our experimental reactors, and by extension, in spark- (SI) and compression-ignition (CI) engines, and an updated detailed chemical kinetic model is presented for engineering applications. Model analyses indicate that although the initial fate of the fuel is dominated by single-step H-atom abstraction reactions from both the benzylic and phenylic sites, the subsequent fate of the allylic and vinylic radicals formed is much more complex. Further experimental and theoretical endeavors are required to gain a holistic qualitative and quantitative chemical kinetics based understanding of the combustion of pure toluene, toluene blends, and commercial fuels containing other aromatic components, at temperatures of relevance to SI and CI engines.« less

  2. Lightweight, low compression aircraft diesel engine. [converting a spark ignition engine to the diesel cycle

    NASA Technical Reports Server (NTRS)

    Gaynor, T. L.; Bottrell, M. S.; Eagle, C. D.; Bachle, C. F.

    1977-01-01

    The feasibility of converting a spark ignition aircraft engine to the diesel cycle was investigated. Procedures necessary for converting a single cylinder GTS10-520 are described as well as a single cylinder diesel engine test program. The modification of the engine for the hot port cooling concept is discussed. A digital computer graphics simulation of a twin engine aircraft incorporating the diesel engine and Hot Fort concept is presented showing some potential gains in aircraft performance. Sample results of the computer program used in the simulation are included.

  3. Influence and measurement of mass ablation in ICF implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spears, B K; Hicks, D; Velsko, C

    2007-09-05

    Point design ignition capsules designed for the National Ignition Facility (NIF) currently use an x-ray-driven Be(Cu) ablator to compress the DT fuel. Ignition specifications require that the mass of unablated Be(Cu), called residual mass, be known to within 1% of the initial ablator mass when the fuel reaches peak velocity. The specifications also require that the implosion bang time, a surrogate measurement for implosion velocity, be known to +/- 50 ps RMS. These specifications guard against several capsule failure modes associated with low implosion velocity or low residual mass. Experiments designed to measure and to tune experimentally the amount ofmore » residual mass are being developed as part of the National Ignition Campaign (NIC). Tuning adjustments of the residual mass and peak velocity can be achieved using capsule and laser parameters. We currently plan to measure the residual mass using streaked radiographic imaging of surrogate tuning capsules. Alternative techniques to measure residual mass using activated Cu debris collection and proton spectrometry have also been developed. These developing techniques, together with bang time measurements, will allow us to tune ignition capsules to meet NIC specs.« less

  4. Detection of combustion start in the controlled auto ignition engine by wavelet transform of the engine block vibration signal

    NASA Astrophysics Data System (ADS)

    Kim, Seonguk; Min, Kyoungdoug

    2008-08-01

    The CAI (controlled auto ignition) engine ignites fuel and air mixture by trapping high temperature burnt gas using a negative valve overlap. Due to auto ignition in CAI combustion, efficiency improvements and low level NOx emission can be obtained. Meanwhile, the CAI combustion regime is restricted and control parameters are limited. The start of combustion data in the compressed ignition engine are most critical for controlling the overall combustion. In this research, the engine block vibration signal is transformed by the Meyer wavelet to analyze CAI combustion more easily and accurately. Signal acquisition of the engine block vibration is a more suitable method for practical use than measurement of in-cylinder pressure. A new method for detecting combustion start in CAI engines through wavelet transformation of the engine block vibration signal was developed and results indicate that it is accurate enough to analyze the start of combustion. Experimental results show that wavelet transformation of engine block vibration can track the start of combustion in each cycle. From this newly developed method, the start of combustion data in CAI engines can be detected more easily and used as input data for controlling CAI combustion.

  5. Modeling reacting gases and aftertreatment devices for internal combustion engines

    NASA Astrophysics Data System (ADS)

    Depcik, Christopher David

    As more emphasis is placed worldwide on reducing greenhouse gas emissions, automobile manufacturers have to create more efficient engines. Simultaneously, legislative agencies want these engines to produce fewer problematic emissions such as nitrogen oxides and particulate matter. In response, newer combustion methods, like homogeneous charge compression ignition and fuel cells, are being researched alongside the old standard of efficiency, the compression ignition or diesel engine. These newer technologies present a number of benefits but still have significant challenges to overcome. As a result, renewed interest has risen in making diesel engines cleaner. The key to cleaning up the diesel engine is the placement of aftertreatment devices in the exhaust. These devices have shown great potential in reducing emission levels below regulatory levels while still allowing for increased fuel economy versus a gasoline engine. However, these devices are subject to many flow control issues. While experimental evaluation of these devices helps to understand these issues better, it is impossible to solve the problem through experimentation alone because of time and cost constraints. Because of this, accurate models are needed in conjunction with the experimental work. In this dissertation, the author examines the entire exhaust system including reacting gas dynamics and aftertreatment devices, and develops a complete numerical model for it. The author begins by analyzing the current one-dimensional gas-dynamics simulation models used for internal combustion engine simulations. It appears that more accurate and faster numerical method is available, in particular, those developed in aeronautical engineering, and the author successfully implements one for the exhaust system. The author then develops a comprehensive literature search to better understand the aftertreatment devices. A number of these devices require a secondary injection of fuel or reductant in the exhaust stream. Accordingly, the author develops a simple post-cylinder injection model which can be easily tuned to match experimental findings. In addition, the author creates a general catalyst model which can be used to model virtually all of the different aftertreatment devices. Extensive validation of this model with experimental data is presented along with all of the numerical algorithms needed to reproduce the model.

  6. 40 CFR 89.405 - Recorded information.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... temperature outlet. (10) Engine fuel inlet temperature at the pump inlet. (f) Test data; post-test. (1...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exhaust Emission Test..., where applicable, for each test. (b) Engine description and specification. A copy of the information...

  7. 40 CFR 89.405 - Recorded information.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... temperature outlet. (10) Engine fuel inlet temperature at the pump inlet. (f) Test data; post-test. (1...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exhaust Emission Test..., where applicable, for each test. (b) Engine description and specification. A copy of the information...

  8. 40 CFR 89.405 - Recorded information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... temperature outlet. (10) Engine fuel inlet temperature at the pump inlet. (f) Test data; post-test. (1...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exhaust Emission Test..., where applicable, for each test. (b) Engine description and specification. A copy of the information...

  9. 40 CFR 89.405 - Recorded information.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... temperature outlet. (10) Engine fuel inlet temperature at the pump inlet. (f) Test data; post-test. (1...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exhaust Emission Test..., where applicable, for each test. (b) Engine description and specification. A copy of the information...

  10. 40 CFR 89.405 - Recorded information.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... temperature outlet. (10) Engine fuel inlet temperature at the pump inlet. (f) Test data; post-test. (1...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exhaust Emission Test..., where applicable, for each test. (b) Engine description and specification. A copy of the information...

  11. 40 CFR 89.902 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exemption Provisions § 89.902 Definitions... an exemption granted under § 89.1004(b) for the purpose of exporting new nonroad engines. National... security. Manufacturer-owned nonroad engine means an uncertified nonroad engine owned and controlled by a...

  12. 40 CFR 89.902 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exemption Provisions § 89.902 Definitions... an exemption granted under § 89.1004(b) for the purpose of exporting new nonroad engines. National... security. Manufacturer-owned nonroad engine means an uncertified nonroad engine owned and controlled by a...

  13. 40 CFR 89.902 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exemption Provisions § 89.902 Definitions... an exemption granted under § 89.1004(b) for the purpose of exporting new nonroad engines. National... security. Manufacturer-owned nonroad engine means an uncertified nonroad engine owned and controlled by a...

  14. 40 CFR 89.902 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exemption Provisions § 89.902 Definitions... an exemption granted under § 89.1004(b) for the purpose of exporting new nonroad engines. National... security. Manufacturer-owned nonroad engine means an uncertified nonroad engine owned and controlled by a...

  15. 40 CFR 94.805 - Prohibited acts; penalties.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Importation of Nonconforming Engines § 94.805 Prohibited acts; penalties. (a) The importation of an engine (including an engine... otherwise permitted by this subpart, during a period of conditional admission, the importer of an engine may...

  16. 40 CFR 89.113 - Smoke emission standard.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Smoke emission standard. 89.113 Section 89.113 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... Certification Provisions § 89.113 Smoke emission standard. (a) Exhaust opacity from compression-ignition nonroad...

  17. 40 CFR 94.214 - Production engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Production engines. 94.214 Section 94...) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Certification Provisions § 94.214 Production engines. Any manufacturer obtaining certification under this part shall supply to the Administrator, upon...

  18. 40 CFR 94.8 - Exhaust emission standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Engines fueled with alcohol fuel shall comply with THCE+NOX standards that are numerically equivalent to... advance by the Administrator. (g) Standards for alternative fuels. The standards described in this section apply to compression-ignition engines, irrespective of fuel, with the following two exceptions for...

  19. 40 CFR 1042.815 - Demonstrating availability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Special Provisions for Remanufactured Marine Engines § 1042.815 Demonstrating availability. (a) A certified remanufacturing system is considered to be available for a specific engine only if EPA has certified the...

  20. 40 CFR 89.203 - General provisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... credits to offset the difference between the emission standards and the FEL for such engine families will...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Averaging, Banking, and.... NMHC+NOX. and PM emissions from eligible nonroad engines are described in this subpart. Participation...

  1. 40 CFR 1042.815 - Demonstrating availability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Special Provisions for Remanufactured Marine Engines § 1042.815 Demonstrating availability. (a) A certified remanufacturing system is considered to be available for a specific engine only if EPA has certified the...

  2. 40 CFR 89.203 - General provisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... credits to offset the difference between the emission standards and the FEL for such engine families will...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Averaging, Banking, and.... NMHC+NOX. and PM emissions from eligible nonroad engines are described in this subpart. Participation...

  3. 40 CFR 1042.815 - Demonstrating availability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Special Provisions for Remanufactured Marine Engines § 1042.815 Demonstrating availability. (a) A certified remanufacturing system is considered to be available for a specific engine only if EPA has certified the...

  4. 40 CFR 89.203 - General provisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... credits to offset the difference between the emission standards and the FEL for such engine families will...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Averaging, Banking, and.... NMHC+NOX. and PM emissions from eligible nonroad engines are described in this subpart. Participation...

  5. 40 CFR 1042.815 - Demonstrating availability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Special Provisions for Remanufactured Marine Engines § 1042.815 Demonstrating availability. (a) A certified remanufacturing system is considered to be available for a specific engine only if EPA has certified the...

  6. 40 CFR 89.203 - General provisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... credits to offset the difference between the emission standards and the FEL for such engine families will...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Averaging, Banking, and.... NMHC+NOX. and PM emissions from eligible nonroad engines are described in this subpart. Participation...

  7. 40 CFR 1042.815 - Demonstrating availability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Special Provisions for Remanufactured Marine Engines § 1042.815 Demonstrating availability. (a) A certified remanufacturing system is considered to be available for a specific engine only if EPA has certified the...

  8. 40 CFR 89.203 - General provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... credits to offset the difference between the emission standards and the FEL for such engine families will...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Averaging, Banking, and.... NMHC+NOX. and PM emissions from eligible nonroad engines are described in this subpart. Participation...

  9. 40 CFR 94.212 - Labeling.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... auxiliary, variable-speed propulsion engines used with fixed-pitch propellers, recreational, etc.) (c) The... EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Certification Provisions § 94.212 Labeling. (a) General requirements. (1) Each new engine covered by a certificate of conformity under § 94.208 shall be labeled by the...

  10. 40 CFR 94.212 - Labeling.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... auxiliary, variable-speed propulsion engines used with fixed-pitch propellers, recreational, etc.) (c) The... EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Certification Provisions § 94.212 Labeling. (a) General requirements. (1) Each new engine covered by a certificate of conformity under § 94.208 shall be labeled by the...

  11. 40 CFR 1042.135 - Labeling.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... fixed-pitch propellers, etc.). If the engine is certified as a recreational engine, state: “INSTALLING... EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Emission Standards and Related Requirements § 1042.135 Labeling. (a) Assign each engine a unique identification number and permanently affix...

  12. 40 CFR 94.212 - Labeling.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... auxiliary, variable-speed propulsion engines used with fixed-pitch propellers, recreational, etc.) (c) The... EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Certification Provisions § 94.212 Labeling. (a) General requirements. (1) Each new engine covered by a certificate of conformity under § 94.208 shall be labeled by the...

  13. 40 CFR 1042.135 - Labeling.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... fixed-pitch propellers, etc.). If the engine is certified as a recreational engine, state: “INSTALLING... EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Emission Standards and Related Requirements § 1042.135 Labeling. (a) Assign each engine a unique identification number and permanently affix...

  14. 40 CFR 1042.135 - Labeling.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... fixed-pitch propellers, etc.). If the engine is certified as a recreational engine, state: “INSTALLING... EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Emission Standards and Related Requirements § 1042.135 Labeling. (a) Assign each engine a unique identification number and permanently affix...

  15. 40 CFR 94.212 - Labeling.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... auxiliary, variable-speed propulsion engines used with fixed-pitch propellers, recreational, etc.) (c) The... EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Certification Provisions § 94.212 Labeling. (a) General requirements. (1) Each new engine covered by a certificate of conformity under § 94.208 shall be labeled by the...

  16. 40 CFR 94.212 - Labeling.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... auxiliary, variable-speed propulsion engines used with fixed-pitch propellers, recreational, etc.) (c) The... EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Certification Provisions § 94.212 Labeling. (a) General requirements. (1) Each new engine covered by a certificate of conformity under § 94.208 shall be labeled by the...

  17. 40 CFR 89.305 - Equipment measurement accuracy/calibration frequency.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Equipment measurement accuracy... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Test Equipment Provisions § 89.305 Equipment measurement accuracy/calibration frequency...

  18. 30 CFR 36.21 - Engine for equipment considered for certification.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... considered for certification. Only equipment powered by a compression-ignition (diesel) engine and burning... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Engine for equipment considered for... TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS APPROVAL REQUIREMENTS FOR PERMISSIBLE MOBILE DIESEL...

  19. 30 CFR 36.21 - Engine for equipment considered for certification.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... considered for certification. Only equipment powered by a compression-ignition (diesel) engine and burning... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Engine for equipment considered for... TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS APPROVAL REQUIREMENTS FOR PERMISSIBLE MOBILE DIESEL...

  20. 30 CFR 36.21 - Engine for equipment considered for certification.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... considered for certification. Only equipment powered by a compression-ignition (diesel) engine and burning... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Engine for equipment considered for... TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS APPROVAL REQUIREMENTS FOR PERMISSIBLE MOBILE DIESEL...

  1. 30 CFR 36.21 - Engine for equipment considered for certification.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... considered for certification. Only equipment powered by a compression-ignition (diesel) engine and burning... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Engine for equipment considered for... TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS APPROVAL REQUIREMENTS FOR PERMISSIBLE MOBILE DIESEL...

  2. 30 CFR 36.21 - Engine for equipment considered for certification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... considered for certification. Only equipment powered by a compression-ignition (diesel) engine and burning... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Engine for equipment considered for... TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS APPROVAL REQUIREMENTS FOR PERMISSIBLE MOBILE DIESEL...

  3. 40 CFR 89.124 - Record retention, maintenance, and submission.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... manufacturer of any nonroad compression-ignition engine must maintain the following adequately organized... emission test data, such as those reporting test cell temperature and relative humidity at start and finish... media, provided that at the Administrator's request, organized, written records in English are promptly...

  4. 40 CFR 89.124 - Record retention, maintenance, and submission.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... manufacturer of any nonroad compression-ignition engine must maintain the following adequately organized... emission test data, such as those reporting test cell temperature and relative humidity at start and finish... media, provided that at the Administrator's request, organized, written records in English are promptly...

  5. 40 CFR 89.209 - Certification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Averaging, Banking, and Trading... its intent to include specific engine families in the averaging, banking, and trading programs. (2) Submit a statement that the engines for which certification is requested will not, to the best of the...

  6. 40 CFR 1042.250 - Recordkeeping and reporting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... buildup, steps you took to ensure that it represents production engines, any components you built... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Certifying Engine Families § 1042.250 Recordkeeping and reporting. (a) Send the Designated Compliance Officer...

  7. 40 CFR 1042.115 - Other requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Emission... and electronic control modules. If you broadcast a surrogate parameter for torque values, you must... that is necessary for proper operation of the engine. (e) Prohibited controls. You may not design your...

  8. 40 CFR 1042.115 - Other requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Emission... and electronic control modules. If you broadcast a surrogate parameter for torque values, you must... that is necessary for proper operation of the engine. (e) Prohibited controls. You may not design your...

  9. 40 CFR 1042.115 - Other requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Emission... and electronic control modules. If you broadcast a surrogate parameter for torque values, you must... that is necessary for proper operation of the engine. (e) Prohibited controls. You may not design your...

  10. 40 CFR 1042.115 - Other requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Emission... and electronic control modules. If you broadcast a surrogate parameter for torque values, you must... that is necessary for proper operation of the engine. (e) Prohibited controls. You may not design your...

  11. 40 CFR 94.214 - Production engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Production engines. 94.214 Section 94...) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Certification Provisions § 94.214 Production engines. Any manufacturer obtaining certification under this part shall supply to the Administrator, upon...

  12. 40 CFR 94.214 - Production engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Production engines. 94.214 Section 94...) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Certification Provisions § 94.214 Production engines. Any manufacturer obtaining certification under this part shall supply to the Administrator, upon...

  13. 40 CFR 94.214 - Production engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Production engines. 94.214 Section 94...) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Certification Provisions § 94.214 Production engines. Any manufacturer obtaining certification under this part shall supply to the Administrator, upon...

  14. 40 CFR 94.214 - Production engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Production engines. 94.214 Section 94...) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Certification Provisions § 94.214 Production engines. Any manufacturer obtaining certification under this part shall supply to the Administrator, upon...

  15. Basic requirements of fuel-injection nozzles for quiescent combustion chambers

    NASA Technical Reports Server (NTRS)

    Spanogle, J A; Foster, H H

    1931-01-01

    This report presents test results obtained during an investigation of the performance of a single-cylinder, high-speed, compression-ignition test engine when using multiple-orifice fuel-injection valve nozzles in which the number and the direction of the orifices were varied independently.

  16. 40 CFR 89.611 - Exemptions and exclusions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Importation of....905(f) for a subsequent one-year period. (3) Precertification exemption. A prototype nonroad engine for use in applying to EPA for certification pursuant to this subpart may be conditionally imported...

  17. Ablation driven by hot electrons generated during the ignitor laser pulse in shock ignition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piriz, A. R.; Rodriguez Prieto, G.; Tahir, N. A.

    2012-12-15

    An analytical model for the ablation driven by hot electrons is presented. The hot electrons are assumed to be generated during the high intensity laser spike used to produce the ignitor shock wave in the shock ignition driven inertial fusion concept, and to carry on the absorbed laser energy in its totality. Efficient energy coupling requires to keep the critical surface sufficiently close to the ablation front and this goal can be achieved for high laser intensities provided that the laser wavelength is short enough. Scaling laws for the ablation pressure and the other relevant magnitudes of the ablation cloudmore » are found in terms of the laser and target parameters. The effect of the preformed plasma assembled by the compression pulse, previous to the ignitor, is also discussed. It is found that a minimum ratio between the compression and the ignitor pulses would be necessary for the adequate matching of the corresponding scale lengths.« less

  18. Pressure Amplification Off High Impedance Barriers in DDT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heatwole, Eric Mann; Broilo, Robert M.; Kistle, Trevin Joseph

    The Deflagration-to-Detonation Transition (DDT) in one-dimensional porous explosive, where combustion in an explosive transitions to detonation, can be described by the following model. This simplified model proceeds in five steps, as follows: 1) Ignition of the explosive, surface burning. 2) Convective burning, with the flame front penetrating through the porous network of the explosive. This proceeds until the pressure grows high enough to result in choked flow in the pores restricting the convective burn. 3) The choked flow results in the formation of a high-density compact of explosive. This compact is driven into undisturbed material by the pressure of themore » burning explosive. See Figure1. 4) The compression of the undisturbed porous explosive by the compact leads to the ignition of a compressive burn. This builds in pressure until a supported shock forms. 5) The shock builds in pressure until detonation occurs. See Figure 2 for an overview streak of the proceeding steps.« less

  19. Heavy-Duty Stoichiometric Compression Ignition Engine with Improved Fuel Economy over Alternative Technologies for Meeting 2010 On-Highway Emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirby J. Baumgard; Richard E. Winsor

    2009-12-31

    The objectives of the reported work were: to apply the stoichiometric compression ignition (SCI) concept to a 9.0 liter diesel engine; to obtain engine-out NO{sub x} and PM exhaust emissions so that the engine can meet 2010 on-highway emission standards by applying a three-way catalyst for NO{sub x} control and a particulate filter for PM control; and to simulate an optimize the engine and air system to approach 50% thermal efficiency using variable valve actuation and electric turbo compounding. The work demonstrated that an advanced diesel engine can be operated at stoichiometric conditions with reasonable particulate and NOx emissions atmore » full power and peak torque conditions; calculated that the SCI engine will operate at 42% brake thermal efficiency without advanced hardware, turbocompounding, or waste heat recovery; and determined that EGR is not necessary for this advanced concept engine, and this greatly simplifies the concept.« less

  20. Boosted performance of a compression-ignition engine with a displaced piston

    NASA Technical Reports Server (NTRS)

    Moore, Charles S; Foster, Hampton H

    1936-01-01

    Performance tests were made using a rectangular displacer arranged so that the combustion air was forced through equal passages at either end of the displacer into the vertical-disk combustion chamber of a single-cylinder, four-stroke-cycle compression-ignition test engine. After making tests to determine optimum displacer height, shape, and fuel-spray arrangement, engine-performance tests were made at 1,500 and 2,000 r.p.m. for a range of boost pressures from 0 to 20 inches of mercury and for maximum cylinder pressures up to 1,150 pounds per square inch. The engine operation for boosted conditions was very smooth, there being no combustion shock even at the highest maximum cylinder pressures. Indicated mean effective pressures of 240 pounds per square inch for fuel consumptions of 0.39 pound per horsepower-hour have been readily reproduced during routine testing at 2,000 r.p.m. at a boost pressure of 20 inches of mercury.

Top