Sample records for compression laser driving

  1. Magnetic compression laser driving circuit

    DOEpatents

    Ball, D.G.; Birx, D.; Cook, E.G.

    1993-01-05

    A magnetic compression laser driving circuit is disclosed. The magnetic compression laser driving circuit compresses voltage pulses in the range of 1.5 microseconds at 20 kilovolts of amplitude to pulses in the range of 40 nanoseconds and 60 kilovolts of amplitude. The magnetic compression laser driving circuit includes a multi-stage magnetic switch where the last stage includes a switch having at least two turns which has larger saturated inductance with less core material so that the efficiency of the circuit and hence the laser is increased.

  2. Magnetic compression laser driving circuit

    DOEpatents

    Ball, Don G.; Birx, Dan; Cook, Edward G.

    1993-01-01

    A magnetic compression laser driving circuit is disclosed. The magnetic compression laser driving circuit compresses voltage pulses in the range of 1.5 microseconds at 20 Kilovolts of amplitude to pulses in the range of 40 nanoseconds and 60 Kilovolts of amplitude. The magnetic compression laser driving circuit includes a multi-stage magnetic switch where the last stage includes a switch having at least two turns which has larger saturated inductance with less core material so that the efficiency of the circuit and hence the laser is increased.

  3. Physics-Based Computational Algorithm for the Multi-Fluid Plasma Model

    DTIC Science & Technology

    2014-06-30

    applying it to study laser - 20 Physics-Based Multi-Fluid Plasma Algorithm Shumlak Figure 6: Blended finite element method applied to the species...separation problem in capsule implosions. Number densities and electric field are shown after the laser drive has compressed the multi-fluid plasma and...6 after the laser drive has started the compression. A separation clearly develops. The solution is found using an explicit advance (CFL=1) for the

  4. Fast Electron Deposition in Laser Shock Compressed Plastic Targets

    NASA Astrophysics Data System (ADS)

    Hall, T. A.; Ellwi, S.; Batani, D.; Bernardinello, A.; Masella, V.; Koenig, M.; Benuzzi, A.; Krishnan, J.; Pisani, F.; Djaoui, A.; Norreys, P.; Neely, D.; Rose, S.; Key, M. H.; Fews, P.

    1998-08-01

    We present the first results of fast electron deposition in a laser shock compressed plasma. The interaction of a 3 ps, 15 J laser pulse with solid polyethylene targets is used to produce fast electrons on one side of foil targets and a 2 ns duration laser pulse is used to drive a shock wave into the target from the opposite side. Kα emission from chlorine fluor buried layers is used to measure the electron transport. The hot electron range in the shock compressed plastic is found to be approximately twice as large as the range in the solid density plastic.

  5. Copper laser modulator driving assembly including a magnetic compression laser

    DOEpatents

    Cook, Edward G.; Birx, Daniel L.; Ball, Don G.

    1994-01-01

    A laser modulator (10) having a low voltage assembly (12) with a plurality of low voltage modules (14) with first stage magnetic compression circuits (20) and magnetic assist inductors (28) with a common core (91), such that timing of the first stage magnetic switches (30b) is thereby synchronized. A bipolar second stage of magnetic compression (42) is coupled to the low voltage modules (14) through a bipolar pulse transformer (36) and a third stage of magnetic compression (44) is directly coupled to the second stage of magnetic compression (42). The low voltage assembly (12) includes pressurized boxes (117) for improving voltage standoff between the primary winding assemblies (34) and secondary winding (40) contained therein.

  6. Ultra high-speed x-ray imaging of laser-driven shock compression using synchrotron light

    NASA Astrophysics Data System (ADS)

    Olbinado, Margie P.; Cantelli, Valentina; Mathon, Olivier; Pascarelli, Sakura; Grenzer, Joerg; Pelka, Alexander; Roedel, Melanie; Prencipe, Irene; Laso Garcia, Alejandro; Helbig, Uwe; Kraus, Dominik; Schramm, Ulrich; Cowan, Tom; Scheel, Mario; Pradel, Pierre; De Resseguier, Thibaut; Rack, Alexander

    2018-02-01

    A high-power, nanosecond pulsed laser impacting the surface of a material can generate an ablation plasma that drives a shock wave into it; while in situ x-ray imaging can provide a time-resolved probe of the shock-induced material behaviour on macroscopic length scales. Here, we report on an investigation into laser-driven shock compression of a polyurethane foam and a graphite rod by means of single-pulse synchrotron x-ray phase-contrast imaging with MHz frame rate. A 6 J, 10 ns pulsed laser was used to generate shock compression. Physical processes governing the laser-induced dynamic response such as elastic compression, compaction, pore collapse, fracture, and fragmentation have been imaged; and the advantage of exploiting the partial spatial coherence of a synchrotron source for studying low-density, carbon-based materials is emphasized. The successful combination of a high-energy laser and ultra high-speed x-ray imaging using synchrotron light demonstrates the potentiality of accessing complementary information from scientific studies of laser-driven shock compression.

  7. Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition.

    PubMed

    Kodama, R; Norreys, P A; Mima, K; Dangor, A E; Evans, R G; Fujita, H; Kitagawa, Y; Krushelnick, K; Miyakoshi, T; Miyanaga, N; Norimatsu, T; Rose, S J; Shozaki, T; Shigemori, K; Sunahara, A; Tampo, M; Tanaka, K A; Toyama, Y; Yamanaka, T; Zepf, M

    2001-08-23

    Modern high-power lasers can generate extreme states of matter that are relevant to astrophysics, equation-of-state studies and fusion energy research. Laser-driven implosions of spherical polymer shells have, for example, achieved an increase in density of 1,000 times relative to the solid state. These densities are large enough to enable controlled fusion, but to achieve energy gain a small volume of compressed fuel (known as the 'spark') must be heated to temperatures of about 108 K (corresponding to thermal energies in excess of 10 keV). In the conventional approach to controlled fusion, the spark is both produced and heated by accurately timed shock waves, but this process requires both precise implosion symmetry and a very large drive energy. In principle, these requirements can be significantly relaxed by performing the compression and fast heating separately; however, this 'fast ignitor' approach also suffers drawbacks, such as propagation losses and deflection of the ultra-intense laser pulse by the plasma surrounding the compressed fuel. Here we employ a new compression geometry that eliminates these problems; we combine production of compressed matter in a laser-driven implosion with picosecond-fast heating by a laser pulse timed to coincide with the peak compression. Our approach therefore permits efficient compression and heating to be carried out simultaneously, providing a route to efficient fusion energy production.

  8. Analysis of direct-drive capsule compression experiments on the Iskra-5 laser facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gus'kov, S. Yu.; Demchenko, N. N.; Zhidkov, N. V.

    2010-09-15

    We have analyzed and numerically simulated our experiments on the compression of DT-gas-filled glass capsules under irradiation by a small number of beams on the Iskra-5 facility (12 beams) at the second harmonic of an iodine laser ({lambda} = 0.66 {mu}m) for a laser pulse energy of 2 kJ and duration of 0.5 ns in the case of asymmetric irradiation and compression. Our simulations include the construction of a target illumination map and a histogram of the target surface illumination distribution; 1D capsule compression simulations based on the DIANA code corresponding to various target surface regions; and 2D compression simulationsmore » based on the NUTCY code corresponding to the illumination conditions. We have succeeded in reproducing the shape of the compressed region at the time of maximum compression and the reduction in neutron yield (compared to the 1D simulations) to the experimentally observed values. For the Iskra-5 conditions, we have considered targets that can provide a more symmetric compression and a higher neutron yield.« less

  9. Laser drive development for the APS Dynamic Compression Sector

    NASA Astrophysics Data System (ADS)

    Lagrange, Thomas; Swift, Damian; Reed, Bryan; Bernier, Joel; Kumar, Mukul; Hawreliak, James; Eggert, Jon; Dixit, Sham; Collins, Gilbert

    2013-06-01

    The Dynamic Compression Sector (DCS) at the APS synchrotron offers unprecedented possibilities for x-ray diffraction and scattering measurements in-situ during dynamic loading, including single-shot data collection with x-ray energies high enough (tens of kV) to study high-Z samples in transmission as well as reflection. Dynamic loading induced by laser ablation is an important component of load generation, as the duration, strain rate, and pressure can be controlled via the energy, spot size, and pulse shape. Using radiation hydrodynamics simulations, validated by experiments at several laser facilities, we have investigated the relationship between irradiance history and pressure for ablative loads designed to induce shock and ramp loading in the nanosecond to microsecond range, and including free ablation and also ablation confined by a transparent substrate. We have investigated the effects of lateral release, which constrains the minimum diameter of the focal spot for a given drive duration. In this way, we are able to relate the desired drive conditions to the total laser energy needed, which dictates the laser technologies suitable for a given type of experiment. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  10. Effect of spatial nonuniformity of heating on compression and burning of a thermonuclear target under direct multibeam irradiation by a megajoule laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bel’kov, S. A.; Bondarenko, S. V.; Vergunova, G. A.

    Direct-drive fusion targets are considered at present as an alternative to targets of indirect compression at a laser energy level of about 2 MJ. In this approach, the symmetry of compression and ignition of thermonuclear fuel play the major role. We report on the results of theoretical investigation of compression and burning of spherical direct-drive targets in the conditions of spatial nonuniformity of heating associated with a shift of the target from the beam center of focusing and possible laser radiation energy disbalance in the beams. The investigation involves numerous calculations based on a complex of 1D and 2D codesmore » RAPID, SEND (for determining the target illumination and the dynamics of absorption), DIANA, and NUT (1D and multidimensional hydrodynamics of compression and burning of targets). The target under investigation had the form of a two-layer shell (ablator made of inertial material CH and DT ice) filled with DT gas. We have determined the range of admissible variation of compression and combustion parameters of the target depending on the variation of the spatial nonuniformity of its heating by a multibeam laser system. It has been shown that low-mode (long-wavelength) perturbations deteriorate the characteristics of the central region due to less effective conversion of the kinetic energy of the target shell into the internal energy of the center. Local initiation of burning is also observed in off-center regions of the target in the case of substantial asymmetry of irradiation. In this case, burning is not spread over the entire volume of the DT fuel as a rule, which considerably reduces the thermonuclear yield as compared to that in the case of spherical symmetry and central ignition.« less

  11. Extended x-ray absorption fine structure measurements of quasi-isentropically compressed vanadium targets on the OMEGA laser

    NASA Astrophysics Data System (ADS)

    Yaakobi, B.; Boehly, T. R.; Sangster, T. C.; Meyerhofer, D. D.; Remington, B. A.; Allen, P. G.; Pollaine, S. M.; Lorenzana, H. E.; Lorenz, K. T.; Hawreliak, J. A.

    2008-06-01

    The use of in situ extended x-ray absorption fine structure (EXAFS) for characterizing nanosecond laser-shocked vanadium, titanium, and iron has recently been demonstrated. These measurements are extended to laser-driven, quasi-isentropic compression experiments (ICE). The radiation source (backlighter) for EXAFS in all of these experiments is obtained by imploding a spherical target on the OMEGA laser [T. R. Boehly et al., Rev. Sci. Instrum. 66, 508 (1995)]. Isentropic compression (where the entropy is kept constant) enables to reach high compressions at relatively low temperatures. The absorption spectra are used to determine the temperature and compression in a vanadium sample quasi-isentropically compressed to pressures of up to ˜0.75Mbar. The ability to measure the temperature and compression directly is unique to EXAFS. The drive pressure is calibrated by substituting aluminum for the vanadium and interferometrically measuring the velocity of the back target surface by the velocity interferometer system for any reflector (VISAR). The experimental results obtained by EXAFS and VISAR agree with each other and with the simulations of a hydrodynamic code. The role of a shield to protect the sample from impact heating is studied. It is shown that the shield produces an initial weak shock that is followed by a quasi-isentropic compression at a relatively low temperature. The role of radiation heating from the imploding target as well as from the laser-absorption region is studied. The results show that in laser-driven ICE, as compared with laser-driven shocks, comparable compressions can be achieved at lower temperatures. The EXAFS results show important details not seen in the VISAR results.

  12. Stabilization of high-compression, indirect-drive inertial confinement fusion implosions using a 4-shock adiabat-shaped drive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacPhee, A. G.; Peterson, J. L.; Casey, D. T.

    Hydrodynamic instabilities and poor fuel compression are major factors for capsule performance degradation in ignition experiments on the National Ignition Facility. Using a recently developed laser drive profile with a decaying first shock to tune the ablative Richtmyer-Meshkov (ARM) instability and subsequent in-flight Rayleigh-Taylor growth, we have demonstrated reduced growth compared to the standard ignition pulse whilst maintaining conditions for a low fuel adiabat needed for increased compression. Using in-flight x-ray radiography of pre-machined modulations, the first growth measurements using this new ARM-tuned drive have demonstrated instability growth reduction of ∼4× compared to the original design at a convergence ratiomore » of ∼2. Corresponding simulations give a fuel adiabat of ∼1.6, similar to the original goal and consistent with ignition requirements.« less

  13. Stabilization of high-compression, indirect-drive inertial confinement fusion implosions using a 4-shock adiabat-shaped drive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacPhee, A. G.; Peterson, J. L.; Casey, D. T.

    Hydrodynamic instabilities and poor fuel compression are major factors for capsule performance degradation in ignition experiments on the National Ignition Facility. Using a recently developed laser drive profile with a decaying first shock to tune the ablative Richtmyer-Meshkov (ARM) instability and subsequent in-flight Rayleigh-Taylor growth, we have demonstrated reduced growth compared to the standard ignition pulse whilst maintaining conditions for a low fuel adiabat needed for increased compression. Here, using in-flight x-ray radiography of pre-machined modulations, the first growth measurements using this new ARM-tuned drive have demonstrated instability growth reduction of ~4× compared to the original design at a convergencemore » ratio of ~2. Corresponding simulations give a fuel adiabat of ~1.6, similar to the original goal and consistent with ignition requirements.« less

  14. Stabilization of high-compression, indirect-drive inertial confinement fusion implosions using a 4-shock adiabat-shaped drive

    DOE PAGES

    MacPhee, A. G.; Peterson, J. L.; Casey, D. T.; ...

    2015-08-01

    Hydrodynamic instabilities and poor fuel compression are major factors for capsule performance degradation in ignition experiments on the National Ignition Facility. Using a recently developed laser drive profile with a decaying first shock to tune the ablative Richtmyer-Meshkov (ARM) instability and subsequent in-flight Rayleigh-Taylor growth, we have demonstrated reduced growth compared to the standard ignition pulse whilst maintaining conditions for a low fuel adiabat needed for increased compression. Here, using in-flight x-ray radiography of pre-machined modulations, the first growth measurements using this new ARM-tuned drive have demonstrated instability growth reduction of ~4× compared to the original design at a convergencemore » ratio of ~2. Corresponding simulations give a fuel adiabat of ~1.6, similar to the original goal and consistent with ignition requirements.« less

  15. A hybrid-drive nonisobaric-ignition scheme for inertial confinement fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, X. T., E-mail: xthe@iapcm.ac.cn; Center for Applied Physics and Technology, HEDPS, Peking University, Beijing 100871; IFSA Collaborative Innovation Center of MoE, Shanghai Jiao-Tong University, Shanghai 200240

    A new hybrid-drive (HD) nonisobaric ignition scheme of inertial confinement fusion (ICF) is proposed, in which a HD pressure to drive implosion dynamics increases via increasing density rather than temperature in the conventional indirect drive (ID) and direct drive (DD) approaches. In this HD (combination of ID and DD) scheme, an assembled target of a spherical hohlraum and a layered deuterium-tritium capsule inside is used. The ID lasers first drive the shock to perform a spherical symmetry implosion and produce a large-scale corona plasma. Then, the DD lasers, whose critical surface in ID corona plasma is far from the radiationmore » ablation front, drive a supersonic electron thermal wave, which slows down to a high-pressure electron compression wave, like a snowplow, piling up the corona plasma into high density and forming a HD pressurized plateau with a large width. The HD pressure is several times the conventional ID and DD ablation pressure and launches an enhanced precursor shock and a continuous compression wave, which give rise to the HD capsule implosion dynamics in a large implosion velocity. The hydrodynamic instabilities at imploding capsule interfaces are suppressed, and the continuous HD compression wave provides main pdV work large enough to hotspot, resulting in the HD nonisobaric ignition. The ignition condition and target design based on this scheme are given theoretically and by numerical simulations. It shows that the novel scheme can significantly suppress implosion asymmetry and hydrodynamic instabilities of current isobaric hotspot ignition design, and a high-gain ICF is promising.« less

  16. Direct-drive inertial confinement fusion research at the Laboratory for Laser Energetics: charting the path to thermonuclear ignition

    NASA Astrophysics Data System (ADS)

    McCrory, R. L.; Regan, S. P.; Loucks, S. J.; Meyerhofer, D. D.; Skupsky, S.; Betti, R.; Boehly, T. R.; Craxton, R. S.; Collins, T. J. B.; Delettrez, J. A.; Edgell, D.; Epstein, R.; Fletcher, K. A.; Freeman, C.; Frenje, J. A.; Glebov, V. Yu.; Goncharov, V. N.; Harding, D. R.; Igumenshchev, I. V.; Keck, R. L.; Kilkenny, J. D.; Knauer, J. P.; Li, C. K.; Marciante, J.; Marozas, J. A.; Marshall, F. J.; Maximov, A. V.; McKenty, P. W.; Myatt, J.; Padalino, S.; Petrasso, R. D.; Radha, P. B.; Sangster, T. C.; Séguin, F. H.; Seka, W.; Smalyuk, V. A.; Soures, J. M.; Stoeckl, C.; Yaakobi, B.; Zuegel, J. D.

    2005-10-01

    Significant theoretical and experimental progress continues to be made at the University of Rochester's Laboratory for Laser Energetics (LLE), charting the path to direct-drive inertial confinement fusion (ICF) ignition. Direct drive offers the potential for higher-gain implosions than x-ray drive and is a leading candidate for an inertial fusion energy power plant. LLE's direct-drive ICF ignition target designs for the National Ignition Facility (NIF) are based on hot-spot ignition. A cryogenic target with a spherical DT-ice layer, within or without a foam matrix, enclosed by a thin plastic shell, will be directly irradiated with ~1.5 MJ of laser energy. Cryogenic and plastic/foam (surrogate-cryogenic) targets that are hydrodynamically scaled from these ignition target designs are imploded on the 60-beam, 30 kJ, UV OMEGA laser system to validate the key target physics issues, including energy coupling, hydrodynamic instabilities and implosion symmetry. Prospects for direct-drive ignition on the NIF are extremely favourable, even while it is in its x-ray-drive irradiation configuration, with the development of the polar-direct-drive concept. A high-energy petawatt capability is being constructed at LLE next to the existing 60-beam OMEGA compression facility. This OMEGA EP (extended performance) laser will add two short-pulse, 2.6 kJ beams to the OMEGA laser system to backlight direct-drive ICF implosions and study fast-ignition physics with focused intensities up to 6 × 1020 W cm-2.

  17. Ultrahigh Pressure Dynamic Compression

    NASA Astrophysics Data System (ADS)

    Duffy, T. S.

    2017-12-01

    Laser-based dynamic compression provides a new opportunity to study the lattice structure and other properties of geological materials to ultrahigh pressure conditions ranging from 100 - 1000 GPa (1 TPa) and beyond. Such studies have fundamental applications to understanding the Earth's core as well as the interior structure of super-Earths and giant planets. This talk will review recent dynamic compression experiments using high-powered lasers on materials including Fe-Si, MgO, and SiC. Experiments were conducted at the Omega laser (University of Rochester) and the Linac Coherent Light Source (LCLS, Stanford). At Omega, laser drives as large as 2 kJ are applied over 10 ns to samples that are 50 microns thick. At peak compression, the sample is probed with quasi-monochromatic X-rays from a laser-plasma source and diffraction is recorded on image plates. At LCLS, shock waves are driven into the sample using a 40-J laser with a 10-ns pulse. The sample is probed with X-rays form the LCLS free electron laser providing 1012 photons in a monochromatic pulse near 10 keV energy. Diffraction is recorded using pixel array detectors. By varying the delay between the laser and the x-ray beam, the sample can be probed at various times relative to the shock wave transiting the sample. By controlling the shape and duration of the incident laser pulse, either shock or ramp (shockless) loading can be produced. Ramp compression produces less heating than shock compression, allowing samples to be probed to ultrahigh pressures without melting. Results for iron alloys, oxides, and carbides provide new constraints on equations of state and phase transitions that are relevant to the interior structure of large, extrasolar terrestrial-type planets.

  18. Direct-drive inertial confinement fusion: A review

    NASA Astrophysics Data System (ADS)

    Craxton, R. S.; Anderson, K. S.; Boehly, T. R.; Goncharov, V. N.; Harding, D. R.; Knauer, J. P.; McCrory, R. L.; McKenty, P. W.; Meyerhofer, D. D.; Myatt, J. F.; Schmitt, A. J.; Sethian, J. D.; Short, R. W.; Skupsky, S.; Theobald, W.; Kruer, W. L.; Tanaka, K.; Betti, R.; Collins, T. J. B.; Delettrez, J. A.; Hu, S. X.; Marozas, J. A.; Maximov, A. V.; Michel, D. T.; Radha, P. B.; Regan, S. P.; Sangster, T. C.; Seka, W.; Solodov, A. A.; Soures, J. M.; Stoeckl, C.; Zuegel, J. D.

    2015-11-01

    The direct-drive, laser-based approach to inertial confinement fusion (ICF) is reviewed from its inception following the demonstration of the first laser to its implementation on the present generation of high-power lasers. The review focuses on the evolution of scientific understanding gained from target-physics experiments in many areas, identifying problems that were demonstrated and the solutions implemented. The review starts with the basic understanding of laser-plasma interactions that was obtained before the declassification of laser-induced compression in the early 1970s and continues with the compression experiments using infrared lasers in the late 1970s that produced thermonuclear neutrons. The problem of suprathermal electrons and the target preheat that they caused, associated with the infrared laser wavelength, led to lasers being built after 1980 to operate at shorter wavelengths, especially 0.35 μm—the third harmonic of the Nd:glass laser—and 0.248 μm (the KrF gas laser). The main physics areas relevant to direct drive are reviewed. The primary absorption mechanism at short wavelengths is classical inverse bremsstrahlung. Nonuniformities imprinted on the target by laser irradiation have been addressed by the development of a number of beam-smoothing techniques and imprint-mitigation strategies. The effects of hydrodynamic instabilities are mitigated by a combination of imprint reduction and target designs that minimize the instability growth rates. Several coronal plasma physics processes are reviewed. The two-plasmon-decay instability, stimulated Brillouin scattering (together with cross-beam energy transfer), and (possibly) stimulated Raman scattering are identified as potential concerns, placing constraints on the laser intensities used in target designs, while other processes (self-focusing and filamentation, the parametric decay instability, and magnetic fields), once considered important, are now of lesser concern for mainline direct-drive target concepts. Filamentation is largely suppressed by beam smoothing. Thermal transport modeling, important to the interpretation of experiments and to target design, has been found to be nonlocal in nature. Advances in shock timing and equation-of-state measurements relevant to direct-drive ICF are reported. Room-temperature implosions have provided an increased understanding of the importance of stability and uniformity. The evolution of cryogenic implosion capabilities, leading to an extensive series carried out on the 60-beam OMEGA laser [Boehly et al., Opt. Commun. 133, 495 (1997)], is reviewed together with major advances in cryogenic target formation. A polar-drive concept has been developed that will enable direct-drive-ignition experiments to be performed on the National Ignition Facility [Haynam et al., Appl. Opt. 46(16), 3276 (2007)]. The advantages offered by the alternative approaches of fast ignition and shock ignition and the issues associated with these concepts are described. The lessons learned from target-physics and implosion experiments are taken into account in ignition and high-gain target designs for laser wavelengths of 1/3 μm and 1/4 μm. Substantial advances in direct-drive inertial fusion reactor concepts are reviewed. Overall, the progress in scientific understanding over the past five decades has been enormous, to the point that inertial fusion energy using direct drive shows significant promise as a future environmentally attractive energy source.

  19. Spatio-temporal characterisation of a 100 kHz 24 W sub-3-cycle NOPCPA laser system

    NASA Astrophysics Data System (ADS)

    Witting, Tobias; Furch, Federico J.; Vrakking, Marc J. J.

    2018-04-01

    In recent years, OPCPA and NOPCPA laser systems have shown the potential to supersede Ti:sapphire plus post-compression based laser systems to drive next generation attosecond light sources via direct amplification of few-cycle pulses to high pulse energies at high repetition rates. In this paper, we present a sub 3-cycle, 100 kHz, 24 W NOPA laser system and characterise its spatio-temporal properties using the SEA-F-SPIDER technique. Our results underline the importance of spatio-temporal diagnostics for these emerging laser systems.

  20. The simulations of indirect-drive targets for ignition on megajoule lasers.

    NASA Astrophysics Data System (ADS)

    Lykov, Vladimir; Andreev, Eugene; Ardasheva, Ludmila; Avramenko, Michael; Chernyakov, Valerian; Chizhkov, Maxim; Karlykhanov, Nikalai; Kozmanov, Michael; Lebedev, Serge; Rykovanov, George; Seleznev, Vladimir; Sokolov, Lev; Timakova, Margaret; Shestakov, Alexander; Shushlebin, Aleksander

    2013-10-01

    The calculations were performed with use of radiation hydrodynamic codes developed in RFNC-VNIITF. The analysis of published calculations of indirect-drive targets to obtain ignition on NIF and LMJ lasers has shown that these targets have very low margins for ignition: according to 1D-ERA code calculations it could not be ignited under decreasing of thermonuclear reaction rate less than in 2 times.The purpose of new calculations is search of indirect-drive targets with the raised margins for ignition. The calculations of compression and thermonuclear burning of targets are carried out for conditions of X-ray flux asymmetry obtained in simulations of Rugby hohlraum that were performed with 2D-SINARA code. The requirements to accuracy of manufacturing and irradiation symmetry of targets were studied with use of 2D-TIGR-OMEGA-3T code. The necessity of performed researches is caused by the construction of magajoule laser in Russia.

  1. Impact of ablator thickness and laser drive duration on a platform for supersonic, shockwave-driven hydrodynamic instability experiments

    DOE PAGES

    Wan, W. C.; Malamud, Guy; Shimony, A.; ...

    2016-12-07

    Here, we discuss changes to a target design that improved the quality and consistency of data obtained through a novel experimental platform that enables the study of hydrodynamic instabilities in a compressible regime. The experiment uses a laser to drive steady, supersonic shockwave over well-characterized initial perturbations. Early experiments were adversely affected by inadequate experimental timescales and, potentially, an unintended secondary shockwave. These issues were addressed by extending the 4 x 10 13 W/cm 2 laser pulse from 19 ns to 28 ns, and increasing the ablator thickness from 185 µm to 500 µm. We present data demonstrating the performancemore » of the platform.« less

  2. Impact of ablator thickness and laser drive duration on a platform for supersonic, shockwave-driven hydrodynamic instability experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, W. C.; Malamud, Guy; Shimony, A.

    Here, we discuss changes to a target design that improved the quality and consistency of data obtained through a novel experimental platform that enables the study of hydrodynamic instabilities in a compressible regime. The experiment uses a laser to drive steady, supersonic shockwave over well-characterized initial perturbations. Early experiments were adversely affected by inadequate experimental timescales and, potentially, an unintended secondary shockwave. These issues were addressed by extending the 4 x 10 13 W/cm 2 laser pulse from 19 ns to 28 ns, and increasing the ablator thickness from 185 µm to 500 µm. We present data demonstrating the performancemore » of the platform.« less

  3. Ti:sapphire-pumped diamond Raman laser with sub-100-fs pulse duration.

    PubMed

    Murtagh, Michelle; Lin, Jipeng; Mildren, Richard P; Spence, David J

    2014-05-15

    We report a synchronously pumped femtosecond diamond Raman laser operating at 895 nm with a 33% slope efficiency. Pumped using a mode-locked Ti:sapphire laser at 800 nm with a duration of 170 fs, the bandwidth of the Stokes output is broadened and chirped to enable subsequent pulse compression to 95 fs using a prism pair. Modeling results indicate that self-phase modulation drives the broadening of the Stokes spectrum in this highly transient laser. Our results demonstrate the potential for Raman conversion to extend the wavelength coverage and pulse shorten Ti:sapphire lasers.

  4. Hybrid-drive implosion system for ICF targets

    DOEpatents

    Mark, James W.

    1988-08-02

    Hybrid-drive implosion systems (20,40) for ICF targets (10,22,42) are described which permit a significant increase in target gain at fixed total driver energy. The ICF target is compressed in two phases, an initial compression phase and a final peak power phase, with each phase driven by a separate, optimized driver. The targets comprise a hollow spherical ablator (12) surroundingly disposed around fusion fuel (14). The ablator is first compressed to higher density by a laser system (24), or by an ion beam system (44), that in each case is optimized for this initial phase of compression of the target. Then, following compression of the ablator, energy is directly delivered into the compressed ablator by an ion beam driver system (30,48) that is optimized for this second phase of operation of the target. The fusion fuel (14) is driven, at high gain, to conditions wherein fusion reactions occur. This phase separation allows hydrodynamic efficiency and energy deposition uniformity to be individually optimized, thereby securing significant advantages in energy gain. In additional embodiments, the same or separate drivers supply energy for ICF target implosion.

  5. Hybrid-drive implosion system for ICF targets

    DOEpatents

    Mark, James W.

    1988-01-01

    Hybrid-drive implosion systems (20,40) for ICF targets (10,22,42) are described which permit a significant increase in target gain at fixed total driver energy. The ICF target is compressed in two phases, an initial compression phase and a final peak power phase, with each phase driven by a separate, optimized driver. The targets comprise a hollow spherical ablator (12) surroundingly disposed around fusion fuel (14). The ablator is first compressed to higher density by a laser system (24), or by an ion beam system (44), that in each case is optimized for this initial phase of compression of the target. Then, following compression of the ablator, energy is directly delivered into the compressed ablator by an ion beam driver system (30,48) that is optimized for this second phase of operation of the target. The fusion fuel (14) is driven, at high gain, to conditions wherein fusion reactions occur. This phase separation allows hydrodynamic efficiency and energy deposition uniformity to be individually optimized, thereby securing significant advantages in energy gain. In additional embodiments, the same or separate drivers supply energy for ICF target implosion.

  6. Hybrid-drive implosion system for ICF targets

    DOEpatents

    Mark, J.W.K.

    1987-10-14

    Hybrid-drive implosion systems for ICF targets are described which permit a significant increase in target gain at fixed total driver energy. The ICF target is compressed in two phases, an initial compression phase and a final peak power phase, with each phase driven by a separate, optimized driver. The targets comprise a hollow spherical ablator surroundingly disposed around fusion fuel. The ablator is first compressed to higher density by a laser system, or by an ion beam system, that in each case is optimized for this initial phase of compression of the target. Then, following compression of the ablator, energy is directly delivered into the compressed ablator by an ion beam driver system that is optimized for this second phase of operation of the target. The fusion fuel is driven, at high gain, to conditions wherein fusion reactions occur. This phase separation allows hydrodynamic efficiency and energy deposition uniformity to be individually optimized, thereby securing significant advantages in energy gain. In additional embodiments, the same or separate drivers supply energy for ICF target implosion. 3 figs.

  7. Laser driven supersonic flow over a compressible foam surface on the Nike lasera)

    NASA Astrophysics Data System (ADS)

    Harding, E. C.; Drake, R. P.; Aglitskiy, Y.; Plewa, T.; Velikovich, A. L.; Gillespie, R. S.; Weaver, J. L.; Visco, A.; Grosskopf, M. J.; Ditmar, J. R.

    2010-05-01

    A laser driven millimeter-scale target was used to generate a supersonic shear layer in an attempt to create a Kelvin-Helmholtz (KH) unstable interface in a high-energy-density (HED) plasma. The KH instability is a fundamental fluid instability that remains unexplored in HED plasmas, which are relevant to the inertial confinement fusion and astrophysical environments. In the experiment presented here the Nike laser [S. P. Obenschain et al., Phys. Plasmas 3, 2098 (1996)] was used to create and drive Al plasma over a rippled foam surface. In response to the supersonic Al flow (Mach=2.6±1.1) shocks should form in the Al flow near the perturbations. The experimental data were used to infer the existence and location of these shocks. In addition, the interface perturbations show growth that has possible contributions from both KH and Richtmyer-Meshkov instabilities. Since compressible shear layers exhibit smaller growth, it is important to use the KH growth rate derived from the compressible dispersion relation.

  8. Numerical studies of the use of thin high-Z layers for reducing laser imprint in direct-drive inertial-fusion targets

    NASA Astrophysics Data System (ADS)

    Bates, Jason; Schmitt, Andrew; Karasik, Max; Obenschain, Steve

    2012-10-01

    Using the FAST code, we present numerical studies of the effect of thin metallic layers with high atomic number (high-Z) on the hydrodynamics of directly-driven inertial-confinement-fusion (ICF) targets. Previous experimental work on the NIKE Laser Facility at the U.S. Naval Research Laboratory demonstrated that the use of high-Z layers may be efficacious in reducing laser non-uniformities imprinted on the target during the start-up phase of the implosion. Such a reduction is highly desirable in a direct-drive ICF scenario because laser non-uniformities seed hydrodynamic instabilities that can amplify during the implosion process, prevent uniform compression and spoil high gain. One of the main objectives of the present work is to assess the utility of high-Z layers for achieving greater laser uniformity in polar-drive target designs planned for the National Ignition Facility. To address this problem, new numerical routines have recently been incorporated in the FAST code, including an improved radiation-transfer package and a three-dimensional ray-tracing algorithm. We will discuss these topics, and present initial simulation results for high-Z planar-target experiments planned on the NIKE Laser Facility later this year.

  9. Monochromatic x-ray radiography of laser-driven spherical targets using high-energy, picoseconds LFEX laser

    NASA Astrophysics Data System (ADS)

    Sawada, Hiroshi; Fujioka, S.; Lee, S.; Arikawa, Y.; Shigemori, K.; Nagatomo, H.; Nishimura, H.; Sunahara, A.; Theobald, W.; Perez, F.; Patel, P. K.; Beg, F. N.

    2015-11-01

    Formation of a high density fusion fuel is essential in both conventional and advanced Inertial Confinement Fusion (ICF) schemes for the self-sustaining fusion process. In cone-guided Fast Ignition (FI), a metal cone is attached to a spherical target to maintain the path for the injection of an intense short-pulse ignition laser from blow-off plasma created when nanoseconds compression lasers drive the target. We have measured a temporal evolution of a compressed deuterated carbon (CD) sphere using 4.5 keV K-alpha radiography with the Kilo-Joule, picosecond LFEX laser at the Institute of Laser Engineering. A 200 μm CD sphere attached to the tip of a Au cone was directly driven by 9 Gekko XII beams with 300 J/beam in a 1.3 ns Gaussian pulse. The LFEX laser irradiated on a Ti foil to generate 4.51 Ti K-alpha x-ray. By varying the delay between the compression and backlighter lasers, the measured radiograph images show an increase of the areal density of the imploded target. The detail of the quantitative analyses to infer the areal density and comparisons to hydrodynamics simulations will be presented. This work was performed with the support and under the auspices of the NIFS Collaboration Research program (NIFS13KUGK072). H.S. was supported by the UNR's International Activities Grant program.

  10. Nonlinear pulse compression stage delivering 43-W few-cycle pulses with GW peak-power at 2-μm wavelength

    NASA Astrophysics Data System (ADS)

    Gebhardt, Martin; Gaida, Christian; Heuermann, T.; Stutzki, F.; Jauregui, C.; Antonio-Lopez, J.; Schüuzgen, A.; Amezcua-Correa, R.; Tünnermann, A.; Limpert, J.

    2018-02-01

    In this contribution we demonstrate the nonlinear pulse compression of an ultrafast thulium-doped fiber laser down to 14 fs FWHM duration (sub-3 optical cycles) at a record average power of 43 W and 34.5 μJ pulse energy. To the best of our knowledge, we present the highest average power few-cycle laser source at 2 μm wavelength. This performance level in combination with GW-class peak power makes our laser source extremely interesting for driving high-harmonic generation or for generating mid-infrared frequency combs via intra-pulse frequency down-conversion at an unprecedented average power. The experiments were enabled by an ultrafast thulium-doped fiber laser delivering 110 fs pulses at high repetition rates, and an argon gas-filled antiresonant hollow-core fiber (ARHCF) with excellent transmission and weak anomalous dispersion, leading to the self-compression of the pulses. We have shown that ARHCFs are well-suited for nonlinear pulse compression around 2 μm wavelength and that this concept features excellent power handling capabilities. Based on this result, we discuss the next steps for energy and average power scaling including upscaling the fiber dimensions in order to fully exploit the capabilities of our laser system, which can deliver several GW of peak power. This way, a 100 W-class laser source with mJ-level few-cycle pulses at 2 μm wavelength is feasible in the near future.

  11. Direct-drive inertial confinement fusion: A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craxton, R. S.; Anderson, K. S.; Boehly, T. R.

    The direct-drive, laser-based approach to inertial confinement fusion (ICF) is reviewed from its inception following the demonstration of the first laser to its implementation on the present generation of high-power lasers. The review focuses on the evolution of scientific understanding gained from target-physics experiments in many areas, identifying problems that were demonstrated and the solutions implemented. The review starts with the basic understanding of laser–plasma interactions that was obtained before the declassification of laser-induced compression in the early 1970s and continues with the compression experiments using infrared lasers in the late 1970s that produced thermonuclear neutrons. The problem of suprathermalmore » electrons and the target preheat that they caused, associated with the infrared laser wavelength, led to lasers being built after 1980 to operate at shorter wavelengths, especially 0.35 μm—the third harmonic of the Nd:glass laser—and 0.248 μm (the KrF gas laser). The main physics areas relevant to direct drive are reviewed. The primary absorption mechanism at short wavelengths is classical inverse bremsstrahlung. Nonuniformities imprinted on the target by laser irradiation have been addressed by the development of a number of beam-smoothing techniques and imprint-mitigation strategies. The effects of hydrodynamic instabilities are mitigated by a combination of imprint reduction and target designs that minimize the instability growth rates. Several coronal plasma physics processes are reviewed. The two-plasmon–decay instability, stimulated Brillouin scattering (together with cross-beam energy transfer), and (possibly) stimulated Raman scattering are identified as potential concerns, placing constraints on the laser intensities used in target designs, while other processes (self-focusing and filamentation, the parametric decay instability, and magnetic fields), once considered important, are now of lesser concern for mainline direct-drive target concepts. Filamentation is largely suppressed by beam smoothing. Thermal transport modeling, important to the interpretation of experiments and to target design, has been found to be nonlocal in nature. Advances in shock timing and equation-of-state measurements relevant to direct-drive ICF are reported. Room-temperature implosions have provided an increased understanding of the importance of stability and uniformity. The evolution of cryogenic implosion capabilities, leading to an extensive series carried out on the 60-beam OMEGA laser [Boehly et al., Opt. Commun. 133, 495 (1997)], is reviewed together with major advances in cryogenic target formation. A polar-drive concept has been developed that will enable direct-drive–ignition experiments to be performed on the National Ignition Facility [Haynam et al., Appl. Opt. 46(16), 3276 (2007)]. The advantages offered by the alternative approaches of fast ignition and shock ignition and the issues associated with these concepts are described. The lessons learned from target-physics and implosion experiments are taken into account in ignition and high-gain target designs for laser wavelengths of 1/3 μm and 1/4 μm. Substantial advances in direct-drive inertial fusion reactor concepts are reviewed. Overall, the progress in scientific understanding over the past five decades has been enormous, to the point that inertial fusion energy using direct drive shows significant promise as a future environmentally attractive energy source.« less

  12. Direct-drive inertial confinement fusion: A review

    DOE PAGES

    Craxton, R. S.; Anderson, K. S.; Boehly, T. R.; ...

    2015-11-25

    In this study, the direct-drive, laser-based approach to inertial confinement fusion (ICF) is reviewed from its inception following the demonstration of the first laser to its implementation on the present generation of high-power lasers. The review focuses on the evolution of scientific understanding gained from target-physics experiments in many areas, identifying problems that were demonstrated and the solutions implemented. The review starts with the basic understanding of laser–plasma interactions that was obtained before the declassification of laser-induced compression in the early 1970s and continues with the compression experiments using infrared lasers in the late 1970s that produced thermonuclear neutrons. Themore » problem of suprathermal electrons and the target preheat that they caused, associated with the infrared laser wavelength, led to lasers being built after 1980 to operate at shorter wavelengths, especially 0.35 um—the third harmonic of the Nd:glass laser—and 0.248 um (the KrF gas laser). The main physics areas relevant to direct drive are reviewed. The primary absorption mechanism at short wavelengths is classical inverse bremsstrahlung. Nonuniformities imprinted on the target by laser irradiation have been addressed by the development of a number of beam-smoothing techniques and imprint-mitigation strategies. The effects of hydrodynamic instabilities are mitigated by a combination of imprint reduction and target designs that minimize the instability growth rates. Several coronal plasma physics processes are reviewed. The two-plasmon–decay instability, stimulated Brillouin scattering (together with cross-beam energy transfer), and (possibly) stimulated Raman scattering are identified as potential concerns, placing constraints on the laser intensities used in target designs, while other processes (self-focusing and filamentation, the parametric decay instability, and magnetic fields), once considered important, are now of lesser concern for mainline direct-drive target concepts. Filamentation is largely suppressed by beam smoothing. Thermal transport modeling, important to the interpretation of experiments and to target design, has been found to be non-local in nature. Advances in shock timing and equation-of-state measurements relevant to direct-drive ICF are reported. Room-temperature implosions have provided an increased understanding of the importance of stability and uniformity. The evolution of cryogenic implosion capabilities, leading to an extensive series carried out on the 60-beam OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)], is reviewed together with major advances in cryogenic target formation. A polar-drive concept has been developed that will enable direct-drive–ignition experiments to be performed on the National Ignition Facility [C. A. Haynam et al., Appl. Opt. 46 (16), 3276 (2007)]. The advantages offered by the alternative approaches of fast ignition and shock ignition and the issues associated with these concepts are described. The lessons learned from target-physics and implosion experiments are taken into account in ignition and high-gain target designs for laser wavelengths of 1/3 μm and 1/4 μm. Substantial advances in direct-drive inertial fusion reactor concepts are reviewed. Overall, the progress in scientific understanding over the past five decades has been enormous, to the point that inertial fusion energy using direct drive shows significant promise as a future environmentally attractive energy source.« less

  13. Direct-drive inertial confinement fusion: A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craxton, R. S.; Anderson, K. S.; Boehly, T. R.

    In this study, the direct-drive, laser-based approach to inertial confinement fusion (ICF) is reviewed from its inception following the demonstration of the first laser to its implementation on the present generation of high-power lasers. The review focuses on the evolution of scientific understanding gained from target-physics experiments in many areas, identifying problems that were demonstrated and the solutions implemented. The review starts with the basic understanding of laser–plasma interactions that was obtained before the declassification of laser-induced compression in the early 1970s and continues with the compression experiments using infrared lasers in the late 1970s that produced thermonuclear neutrons. Themore » problem of suprathermal electrons and the target preheat that they caused, associated with the infrared laser wavelength, led to lasers being built after 1980 to operate at shorter wavelengths, especially 0.35 um—the third harmonic of the Nd:glass laser—and 0.248 um (the KrF gas laser). The main physics areas relevant to direct drive are reviewed. The primary absorption mechanism at short wavelengths is classical inverse bremsstrahlung. Nonuniformities imprinted on the target by laser irradiation have been addressed by the development of a number of beam-smoothing techniques and imprint-mitigation strategies. The effects of hydrodynamic instabilities are mitigated by a combination of imprint reduction and target designs that minimize the instability growth rates. Several coronal plasma physics processes are reviewed. The two-plasmon–decay instability, stimulated Brillouin scattering (together with cross-beam energy transfer), and (possibly) stimulated Raman scattering are identified as potential concerns, placing constraints on the laser intensities used in target designs, while other processes (self-focusing and filamentation, the parametric decay instability, and magnetic fields), once considered important, are now of lesser concern for mainline direct-drive target concepts. Filamentation is largely suppressed by beam smoothing. Thermal transport modeling, important to the interpretation of experiments and to target design, has been found to be non-local in nature. Advances in shock timing and equation-of-state measurements relevant to direct-drive ICF are reported. Room-temperature implosions have provided an increased understanding of the importance of stability and uniformity. The evolution of cryogenic implosion capabilities, leading to an extensive series carried out on the 60-beam OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)], is reviewed together with major advances in cryogenic target formation. A polar-drive concept has been developed that will enable direct-drive–ignition experiments to be performed on the National Ignition Facility [C. A. Haynam et al., Appl. Opt. 46 (16), 3276 (2007)]. The advantages offered by the alternative approaches of fast ignition and shock ignition and the issues associated with these concepts are described. The lessons learned from target-physics and implosion experiments are taken into account in ignition and high-gain target designs for laser wavelengths of 1/3 μm and 1/4 μm. Substantial advances in direct-drive inertial fusion reactor concepts are reviewed. Overall, the progress in scientific understanding over the past five decades has been enormous, to the point that inertial fusion energy using direct drive shows significant promise as a future environmentally attractive energy source.« less

  14. Modular approach to achieving the next-generation X-ray light source

    NASA Astrophysics Data System (ADS)

    Biedron, S. G.; Milton, S. V.; Freund, H. P.

    2001-12-01

    A modular approach to the next-generation light source is described. The "modules" include photocathode, radio-frequency, electron guns and their associated drive-laser systems, linear accelerators, bunch-compression systems, seed laser systems, planar undulators, two-undulator harmonic generation schemes, high-gain harmonic generation systems, nonlinear higher harmonics, and wavelength shifting. These modules will be helpful in distributing the next-generation light source to many more laboratories than the current single-pass, high-gain free-electron laser designs permit, due to both monetary and/or physical space constraints.

  15. Indirect drive ignition at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meezan, N. B.; Edwards, M. J.; Hurricane, O. A.

    This article reviews scientific results from the pursuit of indirect drive ignition on the National Ignition Facility (NIF) and describes the program's forward looking research directions. In indirect drive on the NIF, laser beams heat an x-ray enclosure called a hohlraum that surrounds a spherical pellet. X-ray radiation ablates the surface of the pellet, imploding a thin shell of deuterium/tritium (DT) that must accelerate to high velocity (v > 350 km s -1) and compress by a factor of several thousand. Since 2009, substantial progress has been made in understanding the major challenges to ignition: Rayleigh Taylor (RT) instability seededmore » by target imperfections; and low-mode asymmetries in the hohlraum x-ray drive, exacerbated by laser-plasma instabilities (LPI). Requirements on velocity, symmetry, and compression have been demonstrated separately on the NIF but have not been achieved simultaneously. We now know that the RT instability, seeded mainly by the capsule support tent, severely degraded DT implosions from 2009–2012. Experiments using a 'high-foot' drive with demonstrated lower RT growth improved the thermonuclear yield by a factor of 10, resulting in yield amplification due to alpha particle heating by more than a factor of 2. However, large time dependent drive asymmetry in the LPI-dominated hohlraums remains unchanged, preventing further improvements. High fidelity 3D hydrodynamic calculations explain these results. In conclusion, future research efforts focus on improved capsule mounting techniques and on hohlraums with little LPI and controllable symmetry. In parallel, we are pursuing improvements to the basic physics models used in the design codes through focused physics experiments.« less

  16. Indirect drive ignition at the National Ignition Facility

    DOE PAGES

    Meezan, N. B.; Edwards, M. J.; Hurricane, O. A.; ...

    2016-10-27

    This article reviews scientific results from the pursuit of indirect drive ignition on the National Ignition Facility (NIF) and describes the program's forward looking research directions. In indirect drive on the NIF, laser beams heat an x-ray enclosure called a hohlraum that surrounds a spherical pellet. X-ray radiation ablates the surface of the pellet, imploding a thin shell of deuterium/tritium (DT) that must accelerate to high velocity (v > 350 km s -1) and compress by a factor of several thousand. Since 2009, substantial progress has been made in understanding the major challenges to ignition: Rayleigh Taylor (RT) instability seededmore » by target imperfections; and low-mode asymmetries in the hohlraum x-ray drive, exacerbated by laser-plasma instabilities (LPI). Requirements on velocity, symmetry, and compression have been demonstrated separately on the NIF but have not been achieved simultaneously. We now know that the RT instability, seeded mainly by the capsule support tent, severely degraded DT implosions from 2009–2012. Experiments using a 'high-foot' drive with demonstrated lower RT growth improved the thermonuclear yield by a factor of 10, resulting in yield amplification due to alpha particle heating by more than a factor of 2. However, large time dependent drive asymmetry in the LPI-dominated hohlraums remains unchanged, preventing further improvements. High fidelity 3D hydrodynamic calculations explain these results. In conclusion, future research efforts focus on improved capsule mounting techniques and on hohlraums with little LPI and controllable symmetry. In parallel, we are pursuing improvements to the basic physics models used in the design codes through focused physics experiments.« less

  17. The effect of shock dynamics on compressibility of ignition-scale National Ignition Facility implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zylstra, A. B.; Frenje, J. A.; Séguin, F. H.

    The effects of shock dynamics on compressibility of indirect-drive ignition-scale surrogate implosions, CH shells filled with D 3He gas, have been studied using charged-particle spectroscopy. Spectral measurements of D 3He protons produced at the shock-bang time probe the shock dynamics and in-flight characteristics of an implosion. The proton shock yield is found to vary by over an order of magnitude. A simple model relates the observed yield to incipient hot-spot adiabat, suggesting that implosions with rapid radiation-power increase during the main drive pulse may have a 2x higher hot-spot adiabat, potentially reducing compressibility. A self-consistent 1-D implosion model was usedmore » to infer the areal density (pR) and the shell center-of-mass radius (R cm) from the downshift of the shock-produced D 3He protons. The observed pR at shock-bang time is substantially higher for implosions, where the laser drive is on until near the compression bang time ('short-coast'), while longer-coasting implosions have lower pR. This corresponds to a much larger temporal difference between the shock- and compression-bang time in the long-coast implosions (~800 ps) than in the short-coast (~400 ps); this will be verified with a future direct bang-time diagnostic. This model-inferred differential bang time contradicts radiation-hydrodynamic simulations, which predict constant 700–800 ps differential independent of coasting time. This result is potentially explained by uncertainties in modeling late-time ablation drive on the capsule. In an ignition experiment, an earlier shock-bang time resulting in an earlier onset of shell deceleration, potentially reducing compression and, thus, fuel pR.« less

  18. The effect of shock dynamics on compressibility of ignition-scale National Ignition Facility implosions

    DOE PAGES

    Zylstra, A. B.; Frenje, J. A.; Séguin, F. H.; ...

    2014-11-03

    The effects of shock dynamics on compressibility of indirect-drive ignition-scale surrogate implosions, CH shells filled with D 3He gas, have been studied using charged-particle spectroscopy. Spectral measurements of D 3He protons produced at the shock-bang time probe the shock dynamics and in-flight characteristics of an implosion. The proton shock yield is found to vary by over an order of magnitude. A simple model relates the observed yield to incipient hot-spot adiabat, suggesting that implosions with rapid radiation-power increase during the main drive pulse may have a 2x higher hot-spot adiabat, potentially reducing compressibility. A self-consistent 1-D implosion model was usedmore » to infer the areal density (pR) and the shell center-of-mass radius (R cm) from the downshift of the shock-produced D 3He protons. The observed pR at shock-bang time is substantially higher for implosions, where the laser drive is on until near the compression bang time ('short-coast'), while longer-coasting implosions have lower pR. This corresponds to a much larger temporal difference between the shock- and compression-bang time in the long-coast implosions (~800 ps) than in the short-coast (~400 ps); this will be verified with a future direct bang-time diagnostic. This model-inferred differential bang time contradicts radiation-hydrodynamic simulations, which predict constant 700–800 ps differential independent of coasting time. This result is potentially explained by uncertainties in modeling late-time ablation drive on the capsule. In an ignition experiment, an earlier shock-bang time resulting in an earlier onset of shell deceleration, potentially reducing compression and, thus, fuel pR.« less

  19. LLE Review 116 (July-September 2008)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marozas, J.A., editor

    2010-03-12

    This issue has the following articles: (1) Optimizing Electron-Positron Pair Production on kJ-Class High-Intensity Lasers for the Purpose of Pair-Plasma Creation; (2) Neutron Yield Study of Direct-Drive, Low-Adiabat Cryogenic D2 Implosions on OMEGA; (3) Al 1s-2p Absorption Spectroscopy of Shock-Wave Heating and Compression in Laser-Driven Planar Foil; (4) A Measurable Lawson Criterion and Hydro-Equivalent Curves for Inertial Confinement Fusion; (5) Pulsed-THz Characterization of Hg-Based, High-Temperature Superconductors; (6) LLE's Summer High School Research Program; (7) FY08 Laser Facility Report; and (8) National Laser Users Facility and External Users Programs.

  20. Al 1s-2p absorption spectroscopy of shock-wave heating and compression in laser-driven planar foil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawada, H.; Regan, S. P.; Radha, P. B.

    Time-resolved Al 1s-2p absorption spectroscopy is used to diagnose direct-drive, shock-wave heating and compression of planar targets having nearly Fermi-degenerate plasma conditions (T{sub e}{approx}10-40 eV, {rho}{approx}3-11 g/cm{sup 3}) on the OMEGA Laser System [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. A planar plastic foil with a buried Al tracer layer was irradiated with peak intensities of 10{sup 14}-10{sup 15} W/cm{sup 2} and probed with the pseudocontinuum M-band emission from a point-source Sm backlighter in the range of 1.4-1.7 keV. The laser ablation process launches 10-70 Mbar shock waves into the CH/Al/CH target. The Al 1s-2p absorption spectramore » were analyzed using the atomic physic code PRISMSPECT to infer T{sub e} and {rho} in the Al layer, assuming uniform plasma conditions during shock-wave heating, and to determine when the heat front penetrated the Al layer. The drive foils were simulated with the one-dimensional hydrodynamics code LILAC using a flux-limited (f=0.06 and f=0.1) and nonlocal thermal-transport model [V. N. Goncharov et al., Phys. Plasmas 13, 012702 (2006)]. The predictions of simulated shock-wave heating and the timing of heat-front penetration are compared to the observations. The experimental results for a wide variety of laser-drive conditions and buried depths have shown that the LILAC predictions using f=0.06 and the nonlocal model accurately model the shock-wave heating and timing of the heat-front penetration while the shock is transiting the target. The observed discrepancy between the measured and simulated shock-wave heating at late times of the drive can be explained by the reduced radiative heating due to lateral heat flow in the corona.« less

  1. Al 1s-2p Absorption Spectroscopy of Shock-Wave Heating and Compression in Laser-Driven Planar Foil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawada, H.; Regan, S.P.; Radha, P.B.

    Time-resolved Al 1s-2p absorption spectroscopy is used to diagnose direct-drive, shock-wave heating and compression of planar targets having nearly Fermi-degenerate plasma conditions (Te ~ 10–40 eV, rho ~ 3–11 g/cm^3) on the OMEGA Laser System [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. A planar plastic foil with a buried Al tracer layer was irradiated with peak intensities of 10^14–10^15 W/cm^2 and probed with the pseudocontinuum M-band emission from a point-source Sm backlighter in the range of 1.4–1.7 keV. The laser ablation process launches 10–70 Mbar shock waves into the CH/Al/CH target. The Al 1s-2p absorption spectra weremore » analyzed using the atomic physic code PRISMSPECT to infer Te and rho in the Al layer, assuming uniform plasma conditions during shock-wave heating, and to determine when the heat front penetrated the Al layer. The drive foils were simulated with the one-dimensional hydrodynamics code LILAC using a flux-limited (f =0.06 and f =0.1) and nonlocal thermal-transport model [V. N. Goncharov et al., Phys. Plasmas 13, 012702 (2006)]. The predictions of simulated shock-wave heating and the timing of heat-front penetration are compared to the observations. The experimental results for a wide variety of laser-drive conditions and buried depths have shown that the LILAC predictions using f = 0.06 and the nonlocal model accurately model the shock-wave heating and timing of the heat-front penetration while the shock is transiting the target. The observed discrepancy between the measured and simulated shock-wave heating at late times of the drive can be explained by the reduced radiative heating due to lateral heat flow in the corona.« less

  2. Imprinting of Pre-Imposed Laser Perturbations on Targets With a High-Z Overcoat

    NASA Astrophysics Data System (ADS)

    Karasik, Max; Weaver, J. L.; Aglitskiy, Y.; Oh, J.; Schmitt, A. J.; Bates, J. W.; Serlin, V.; Obenschain, S. P.

    2014-10-01

    In direct drive ICF, most of the laser imprint is expected to occur during the initial part of the laser pulse, which generates the first shocks necessary to compress the target to achieve high gain. Previous experiments found that a thin (400-800Å) high-Z (Au or Pd) overcoat on the laser side of the target is effective in suppressing broadband imprint. The overcoat initially absorbs the laser and emits soft x-rays that ablate the target, forming a large stand-off distance between laser absorption and ablation and smoothing the drive perturbations. We investigate the effectiveness of imprint suppression for different spatial wavelengths via perturbations imposed on top of the beams smoothed by Induced Spatial Incoherence (ISI). Measurements of areal mass non-uniformity on planar targets driven by the Nike KrF laser are made by curved crystal x-ray radiography. Simultaneous side-on radiography allows observation of the layer dynamics and monitoring of the laser absorption - target ablation stand-off. X-ray flux from the high-Z layer is monitored using absolutely calibrated time-resolved x-ray spectrometers. Work supported by the Department of Energy/NNSA.

  3. Simulations of Converging Shock Collisions for Shock Ignition

    NASA Astrophysics Data System (ADS)

    Sauppe, Joshua; Dodd, Evan; Loomis, Eric

    2016-10-01

    Shock ignition (SI) has been proposed as an alternative to achieving high gain in inertial confinement fusion (ICF) targets. A central hot spot below the ignition threshold is created by an initial compression pulse, and a second laser pulse drives a strong converging shock into the fuel. The collision between the rebounding shock from the compression pulse and the converging shock results in amplification of the converging shock and increases the hot spot pressure above the ignition threshold. We investigate shock collision in SI drive schemes for cylindrical targets with a polystyrene foam interior using radiation-hydrodynamics simulations with the RAGE code. The configuration is similar to previous targets fielded on the Omega laser. The CH interior results in a lower convergence ratio and the cylindrical geometry facilitates visualization of the shock transit using an axial X-ray backlighter, both of which are important for comparison to potential experimental measurements. One-dimensional simulations are used to determine shock timing, and the effects of low mode asymmetries in 2D computations are also quantified. LA-UR-16-24773.

  4. Dynamic Chirp Control and Pulse Compression for Attosecond High-Order Harmonic Emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng Yinghui; Zeng Zhinan; Zou Pu

    2009-07-24

    We propose a scheme to compensate dynamically the intrinsic chirp of the attosecond harmonic pulses. By adding a weak second harmonic laser field to the driving laser field, the chirp compensation can be varied from the negative to the positive continuously by simply adjusting the relative time delay between the two-color pulses. Using this technique, the compensation of the negative chirp in harmonic emission is demonstrated experimentally for the first time and the nearly transform-limited attosecond pulse trains are obtained.

  5. Observation of hohlraum-wall motion with spectrally selective x-ray imaging at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Izumi, N.; Meezan, N. B.; Divol, L.; Hall, G. N.; Barrios, M. A.; Jones, O.; Landen, O. L.; Kroll, J. J.; Vonhof, S. A.; Nikroo, A.; Jaquez, J.; Bailey, C. G.; Hardy, C. M.; Ehrlich, R. B.; Town, R. P. J.; Bradley, D. K.; Hinkel, D. E.; Moody, J. D.

    2016-11-01

    The high fuel capsule compression required for indirect drive inertial confinement fusion requires careful control of the X-ray drive symmetry throughout the laser pulse. When the outer cone beams strike the hohlraum wall, the plasma ablated off the hohlraum wall expands into the hohlraum and can alter both the outer and inner cone beam propagations and hence the X-ray drive symmetry especially at the final stage of the drive pulse. To quantitatively understand the wall motion, we developed a new experimental technique which visualizes the expansion and stagnation of the hohlraum wall plasma. Details of the experiment and the technique of spectrally selective x-ray imaging are discussed.

  6. Observation of hohlraum-wall motion with spectrally selective x-ray imaging at the National Ignition Facility.

    PubMed

    Izumi, N; Meezan, N B; Divol, L; Hall, G N; Barrios, M A; Jones, O; Landen, O L; Kroll, J J; Vonhof, S A; Nikroo, A; Jaquez, J; Bailey, C G; Hardy, C M; Ehrlich, R B; Town, R P J; Bradley, D K; Hinkel, D E; Moody, J D

    2016-11-01

    The high fuel capsule compression required for indirect drive inertial confinement fusion requires careful control of the X-ray drive symmetry throughout the laser pulse. When the outer cone beams strike the hohlraum wall, the plasma ablated off the hohlraum wall expands into the hohlraum and can alter both the outer and inner cone beam propagations and hence the X-ray drive symmetry especially at the final stage of the drive pulse. To quantitatively understand the wall motion, we developed a new experimental technique which visualizes the expansion and stagnation of the hohlraum wall plasma. Details of the experiment and the technique of spectrally selective x-ray imaging are discussed.

  7. Single photon energy dispersive x-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higginbotham, Andrew; Patel, Shamim; Ciricosta, Orlando

    2014-03-15

    With the pressure range accessible to laser driven compression experiments on solid material rising rapidly, new challenges in the diagnosis of samples in harsh laser environments are emerging. When driving to TPa pressures (conditions highly relevant to planetary interiors), traditional x-ray diffraction techniques are plagued by increased sources of background and noise, as well as a potential reduction in signal. In this paper we present a new diffraction diagnostic designed to record x-ray diffraction in low signal-to-noise environments. By utilising single photon counting techniques we demonstrate the ability to record diffraction patterns on nanosecond timescales, and subsequently separate, photon-by-photon, signalmore » from background. In doing this, we mitigate many of the issues surrounding the use of high intensity lasers to drive samples to extremes of pressure, allowing for structural information to be obtained in a regime which is currently largely unexplored.« less

  8. Adiabat-shaping in indirect drive inertial confinement fusion

    DOE PAGES

    Baker, K. L.; Robey, H. F.; Milovich, J. L.; ...

    2015-05-05

    Adiabat-shaping techniques were investigated in this paper in indirect drive inertial confinement fusion experiments on the National Ignition Facility as a means to improve implosion stability, while still maintaining a low adiabat in the fuel. Adiabat-shaping was accomplished in these indirect drive experiments by altering the ratio of the picket and trough energies in the laser pulse shape, thus driving a decaying first shock in the ablator. This decaying first shock is designed to place the ablation front on a high adiabat while keeping the fuel on a low adiabat. These experiments were conducted using the keyhole experimental platform formore » both three and four shock laser pulses. This platform enabled direct measurement of the shock velocities driven in the glow-discharge polymer capsule and in the liquid deuterium, the surrogate fuel for a DT ignition target. The measured shock velocities and radiation drive histories are compared to previous three and four shock laser pulses. This comparison indicates that in the case of adiabat shaping the ablation front initially drives a high shock velocity, and therefore, a high shock pressure and adiabat. The shock then decays as it travels through the ablator to pressures similar to the original low-adiabat pulses when it reaches the fuel. Finally, this approach takes advantage of initial high ablation velocity, which favors stability, and high-compression, which favors high stagnation pressures.« less

  9. Laser acceleration

    NASA Astrophysics Data System (ADS)

    Tajima, T.; Nakajima, K.; Mourou, G.

    2017-02-01

    The fundamental idea of Laser Wakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wakefields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ˜ c and ultrafastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nanomaterials is also emerging.

  10. Accessing ultrahigh-pressure, quasi-isentropic states of mattera)

    NASA Astrophysics Data System (ADS)

    Lorenz, K. T.; Edwards, M. J.; Glendinning, S. G.; Jankowski, A. F.; McNaney, J.; Pollaine, S. M.; Remington, B. A.

    2005-05-01

    A new approach to the study of material strength of metals at extreme pressures has been developed on the Omega laser, using a ramped plasma piston drive. The laser drives a shock through a solid plastic reservoir that unloads at the rear free surface, expands across a vacuum gap, and stagnates on the metal sample under study. This produces a gently increasing ram pressure, compressing the sample nearly isentropically. The peak pressure on the sample, inferred from interferometric measurements of velocity, can be varied by adjusting the laser energy and pulse length, gap size, and reservoir density, and obeys a simple scaling relation [J. Edwards et al., Phys. Rev. Lett. 92, 075002 (2004)]. In an important application, using in-flight x-ray radiography, the material strength of solid-state samples at high pressure can be inferred by measuring the reductions in the growth rates (stabilization) of Rayleigh-Taylor unstable interfaces. This paper reports the first attempt to use this new laser-driven, quasi-isentropic technique for determining material strength in high-pressure solids. Modulated foils of Al-6061-T6 were accelerated and compressed to peak pressures of ˜200kbar. Modulation growth was recorded at a series of times after peak acceleration and well into the release phase. Fits to the growth data, using a Steinberg-Guinan constitutive strength model, give yield strengths 38% greater than those given by the nominal parameters for Al-6061-T6. Calculations indicate that the dynamic enhancement to the yield strength at ˜200kbar is a factor of ˜3.6× over the ambient yield strength of 2.9kbar. Experimental designs based on this drive developed for the National Ignition Facility laser [W. Hogan, E. Moses, B. Warner, M. Sorem, and J. Soures, Nuclear Fusion 41, 567 (2001)] predict that solid-state samples can be quasi-isentropically driven to pressures an order of magnitude higher than on Omega, accessing new regimes of dense, high-pressure matter.

  11. Transverse emittance-preserving arc compressor for high-brightness electron beam-based light sources and colliders

    NASA Astrophysics Data System (ADS)

    Di Mitri, S.; Cornacchia, M.

    2015-03-01

    Bunch length magnetic compression is used in high-brightness linacs driving free-electron lasers (FELs) and particle colliders to increase the peak current of the injected beam. To date, it is performed in dedicated insertions made of few degrees bending magnets and the compression factor is limited by the degradation of the beam transverse emittance owing to emission of coherent synchrotron radiation (CSR). We reformulate the known concept of CSR-driven optics balance for the general case of varying bunch length and demonstrate, through analytical and numerical results, that a 500 pC charge beam can be time-compressed in a periodic 180 deg arc at 2.4 GeV beam energy and lower, by a factor of up to 45, reaching peak currents of up to 2 kA and with a normalized emittance growth at the 0.1 μ \\text{m} rad level. The proposed solution offers new schemes of beam longitudinal gymnastics; an application to an energy recovery linac driving FEL is discussed.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goncharov, V.N.; Knauer, J.P.; McKenty, P.W.

    (B204)Hydrodynamic instabilities seeded by laser imprint and surface roughness limit the compression ratio and neutron yield in the direct-drive inertial confinement fusion target designs. New improved-performance designs use adiabat shaping to increase the entropy of only the outer portion of the shell, reducing the instability growth. The inner portion of the shell is kept on a lower entropy to maximize shell compressibility. The adiabat shaping is implemented using a high-intensity picket in front of the main-drive pulse. The picket launches a strong shock that decays as it propagates through the shell. This increases the ablation velocity and reduces the Rayleigh-Taylormore » growth rates. In addition, as shown earlier [T.J.B. Collis and S. Skupsky, Phys. Plasmas 9 275 (2002)], the picket reduces the instability seed due to the laser imprint. To test the results of calculations, a series of the picket pulse implosions of CH capsules were performed on the OMEGA laser system [T.R. Boehly, D .L. Brown, R.S. Craxton, et al., Opt. Commun. 133, 495 (1997)]. The experiments demonstrated a significant improvement in target yields for the pulses with the picket compared to the pulses without the picket. Results of the theory and experiments with adiabat shaping are being extended to future OMEGA and the National Ignition Facility's [J.A. Paisner, J.D. Boyes, S.A. Kumpan, W.H. Lowdermilk, and M.S. Sorem, Laser Focus World 30, 75 (1994)] cryogenic target designs.« less

  13. NASA Tech Briefs, February 2010

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Topics covered include: Insulation-Testing Cryostat With Lifting Mechanism; Optical Testing of Retroreflectors for Cryogenic Applications; Measuring Cyclic Error in Laser Heterodyne Interferometers; Self-Referencing Hartmann Test for Large-Aperture Telescopes; Measuring a Fiber-Optic Delay Line Using a Mode-Locked Laser; Reconfigurable Hardware for Compressing Hyperspectral Image Data; Spatio-Temporal Equalizer for a Receiving-Antenna Feed Array; High-Speed Ring Bus; Nanoionics-Based Switches for Radio-Frequency Applications; Lunar Dust-Tolerant Electrical Connector; Compact, Reliable EEPROM Controller; Quad-Chip Double-Balanced Frequency Tripler; Ka-Band Waveguide Two-Way Hybrid Combiner for MMIC Amplifiers; Radiation-Hardened Solid-State Drive; Use of Nanofibers to Strengthen Hydrogels of Silica, Other Oxides, and Aerogels; Two Concepts for Deployable Trusses; Concentric Nested Toroidal Inflatable Structures; Investigating Dynamics of Eccentricity in Turbomachines; Improved Low-Temperature Performance of Li-Ion Cells Using New Electrolytes; Integrity Monitoring of Mercury Discharge Lamps; White-Light Phase-Conjugate Mirrors as Distortion Correctors; Biasable, Balanced, Fundamental Submillimeter Monolithic Membrane Mixer; ICER-3D Hyperspectral Image Compression Software; and Context Modeler for Wavelet Compression of Spectral Hyperspectral Images.

  14. Observation of hohlraum-wall motion with spectrally selective x-ray imaging at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izumi, N., E-mail: izumi2@llnl.gov; Meezan, N. B.; Divol, L.

    The high fuel capsule compression required for indirect drive inertial confinement fusion requires careful control of the X-ray drive symmetry throughout the laser pulse. When the outer cone beams strike the hohlraum wall, the plasma ablated off the hohlraum wall expands into the hohlraum and can alter both the outer and inner cone beam propagations and hence the X-ray drive symmetry especially at the final stage of the drive pulse. To quantitatively understand the wall motion, we developed a new experimental technique which visualizes the expansion and stagnation of the hohlraum wall plasma. Details of the experiment and the techniquemore » of spectrally selective x-ray imaging are discussed.« less

  15. Solid-state experiments at high pressure and strain rates

    NASA Astrophysics Data System (ADS)

    Kalantar, D. H.

    1999-11-01

    We are developing experiments on intense laser facilities to study shock compressed metal foils in the solid state. At high pressure, Rayleigh-Taylor induced perturbation growth can be reduced by the strength of the material. [1] We use this to characterize the strength of the metal foils accelerated at high pressure in the solid state. In our experiments, Al and Cu foils are compressed and accelerated with staged shocks using a temporally shaped x-ray drive that is generated in a Nova laser hohlraum target. [2] The peak pressures exceed 1 Mbar (100 GPa), and strain rates are very high, 10^7-10^9 s-1. The instability growth is observed by x-ray radiography. To probe the state of the material under compression and to demonstrate that it remains solid, we are using the dynamic Bragg diffraction technique. [3] This technique has been demonstrated on the Nova laser [4] using Si crystals shocked to 200-500 kbar. Additionally, we have observed diffraction from Cu crystals that are shocked to 100-200 kbar by direct laser irradiation on the Trident and OMEGA lasers. Compressions of up to a 10in the crystal lattice spacing have been observed. We will present the results of our work to develop these high pressure solid-state hydrodynamics experiments. 1. J. F. Barnes et al, J. Appl. Phys. 45, 727 (1974); A. I. Lebedev et al , Proc. 4th IWPCTM, 29 March-1 April, 1993, p. 81. 2. D. H. Kalantar et al., to appear in Int. J. of Impact Eng. (1999). 3. R. R. Whitlock and J. S. Wark, Phys. Rev. B 52, 8 (1995). 4. D. H. Kalantar et al, Rev. Sci. Instrum. 70, 629 (1999).

  16. Quasi-isentropic Compression of Iron and Magnesium Oxide to 3 Mbar at the Omega Laser Facility

    NASA Astrophysics Data System (ADS)

    Wang, J.; Smith, R. F.; Coppari, F.; Eggert, J. H.; Boehly, T.; Collins, G.; Duffy, T. S.

    2011-12-01

    Developing a high-pressure, modest temperature ramp compression drive permits exploration of new regions of thermodynamic space, inaccessible through traditional methods of shock or static compression, and of particular relevance to material conditions found in planetary interiors both within and outside our solar system. Ramp compression is a developing technique that allows materials to be compressed along a quasi-isentropic path and provides the ability to study materials in the solid state to higher pressures than can be achieved with diamond anvil cell or shock wave methods. Iron and magnesium oxide are geologically important materials each representative of one of the two major interior regions (core and mantle) of terrestrial planets. An experimental platform for ramp loading of iron (Fe) and magnesium oxide (MgO), has been established and tested in experiments at the Omega Laser Facility, University of Rochester. Omega is a 60-beam ultraviolet (352 nm) neodymium glass laser which is capable of delivery kilojoules of energy in ~10 ns pulses onto targets of a few mm in dimension. In the current experiments, we used a composite ramped laser pulse involving typically 15 beams with total energy of 2.6-3.3 kJ. The laser beams were used to launch spatially planar ramp compression waves into Fe and MgO targets. Each target had four steps that were approximately 5-7 μm thick. Detection of the ramp wave arrival and its velocity at the free surface of each step was made using a VISAR velocity interferometer. Through the use of Lagrangian analysis on the measured wave profiles, stress-density states in iron and magnesium oxide have been determined to pressures of 291 GPa and 260 GPa respectively. For Fe, the α-ɛ transition of iron is overdriven by an initial shock pulse of ~90.1 GPa followed by ramp compression to the peak pressure. The results will be compared with shock compression and diamond anvil cell data for both materials.

    We acknowledge the Omega staff at LLE for their assistance, Micro/Nano fabrication laboratory staff at Princeton University and the Target Engineering Team at LLNL for fabrication and metrology of the targets used in these experiments. The research was supported by DOE under DE-FG52-09NA29037.

  17. The effects of laser absorption on direct-drive capsule experiments at OMEGA

    NASA Astrophysics Data System (ADS)

    Dodd, E. S.; Benage, J. F.; Kyrala, G. A.; Wilson, D. C.; Wysocki, F. J.; Seka, W.; Glebov, V. Yu.; Stoeckl, C.; Frenje, J. A.

    2012-04-01

    The yield of an inertial confinement fusion capsule can be greatly affected by the inclusion of high-Z material in the fuel, either intentionally as a diagnostic or from mixing due to hydrodynamic instabilities. To validate calculations of these conditions, glass shell targets filled with a D2 and 3He fuel mixture were fielded in experiments with controlled amounts of pre-mixed Ar, Kr, or Xe. The experiments were fielded at the OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] using 1.0 ns square laser pulses having a total energy 23 kJ and direct drive illumination of shells with an outer diameter of ˜925 μm and a thickness of ˜5 μm. Data were collected and compared to one-dimensional integrated models for yield and burn-temperature measurements. This paper presents a critical examination of the calculational assumptions used in our experimental modeling. A modified treatment of laser-capsule interaction improves the match to the measured scattered laser light and also improves agreement for yields, burn-temperatures, and the fuel compression as measured by the ratio of two yields. Remaining discrepancies between measurement and calculation will also be discussed.

  18. Anomalous yield reduction in direct-drive DT implosions due to 3He addition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrmann, Hans W; Langenbrunner, James R; Mack, Joseph M

    2008-01-01

    Glass capsules were imploded in direct drive on the OMEGA laser [T. R. Boehly et aI., Opt. Commun. 133, 495, 1997] to look for anomalous degradation in deuterium/tritium (DT) yield (i.e., beyond what is predicted) and changes in reaction history with {sup 3}He addition. Such anomalies have previously been reported for D/{sup 3}He plasmas, but had not yet been investigated for DT/{sup 3}He. Anomalies such as these provide fertile ground for furthering our physics understanding of ICF implosions and capsule performance. A relatively short laser pulse (600 ps) was used to provide some degree of temporal separation between shock andmore » compression yield components for analysis. Anomalous degradation in the compression component of yield was observed, consistent with the 'factor of two' degradation previously reported by MIT at a 50% {sup 3}He atom fraction in D{sub 2} using plastic capsules [Rygg et aI., Phys. Plasmas 13, 052702 (2006)]. However, clean calculations (i.e., no fuel-shell mixing) predict the shock component of yield quite well, contrary to the result reported by MIT, but consistent with LANL results in D{sub 2}/{sup 3}He [Wilson, et aI., lml Phys: Conf Series 112, 022015 (2008)]. X-ray imaging suggests less-than-predicted compression ofcapsules containing {sup 3}He. Leading candidate explanations are poorly understood Equation-of-State (EOS) for gas mixtures, and unanticipated particle pressure variation with increasing {sup 3}He addition.« less

  19. The high velocity, high adiabat, "Bigfoot" campaign and tests of indirect-drive implosion scaling

    NASA Astrophysics Data System (ADS)

    Casey, D. T.; Thomas, C. A.; Baker, K. L.; Spears, B. K.; Hohenberger, M.; Khan, S. F.; Nora, R. C.; Weber, C. R.; Woods, D. T.; Hurricane, O. A.; Callahan, D. A.; Berger, R. L.; Milovich, J. L.; Patel, P. K.; Ma, T.; Pak, A.; Benedetti, L. R.; Millot, M.; Jarrott, C.; Landen, O. L.; Bionta, R. M.; MacGowan, B. J.; Strozzi, D. J.; Stadermann, M.; Biener, J.; Nikroo, A.; Goyon, C. S.; Izumi, N.; Nagel, S. R.; Bachmann, B.; Volegov, P. L.; Fittinghoff, D. N.; Grim, G. P.; Yeamans, C. B.; Gatu Johnson, M.; Frenje, J. A.; Rice, N.; Kong, C.; Crippen, J.; Jaquez, J.; Kangas, K.; Wild, C.

    2018-05-01

    The Bigfoot approach is to intentionally trade off high convergence, and therefore areal-density, in favor of high implosion velocity and good coupling between the laser, hohlraum, shell, and hotspot. This results in a short laser pulse that improves hohlraum symmetry and predictability, while the reduced compression reduces hydrodynamic instability growth. The results thus far include demonstrated low-mode symmetry control at two different hohlraum geometries (5.75 mm and 5.4 mm diameters) and at two different target scales (5.4 mm and 6.0 mm hohlraum diameters) spanning 300-405 TW in laser power and 0.8-1.6 MJ in laser energy. Additionally, by carefully scaling the 5.4 mm design to 6.0 mm, an increase in target scale of 13%, equivalent to 40% increase in laser energy, has been demonstrated.

  20. Direct Laser Writing of Low-Density Interdigitated Foams for Plasma Drive Shaping [Direct Laser Writing of Low Density Nanostitched Foams for Plasma Drive Shaping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oakdale, James S.; Smith, Raymond F.; Forien, Jean -Baptiste

    Monolithic porous bulk materials have many promising applications ranging from energy storage and catalysis to high energy density physics. High resolution additive manufacturing techniques, such as direct laser writing via two photon polymerization (DLW-TPP), now enable the fabrication of highly porous microlattices with deterministic morphology control. In this work, DLW-TPP is used to print millimeter-sized foam reservoirs (down to 0.06 g cm –3) with tailored density-gradient profiles, where density is varied by over an order of magnitude (for instance from 0.6 to 0.06 g cm –3) along a length of <100 µm. Taking full advantage of this technology, however, ismore » a multiscale materials design problem that requires detailed understanding of how the different length scales, from the molecular level to the macroscopic dimensions, affect each other. The design of these 3D-printed foams is based on the brickwork arrangement of 100 × 100 × 16 µm 3 log-pile blocks constructed from sub-micrometer scale features. A block-to-block interdigitated stitching strategy is introduced for obtaining high density uniformity at all length scales. Lastly, these materials are used to shape plasma-piston drives during ramp-compression of targets under high energy density conditions created at the OMEGA Laser Facility.« less

  1. Direct Laser Writing of Low-Density Interdigitated Foams for Plasma Drive Shaping [Direct Laser Writing of Low Density Nanostitched Foams for Plasma Drive Shaping

    DOE PAGES

    Oakdale, James S.; Smith, Raymond F.; Forien, Jean -Baptiste; ...

    2017-09-27

    Monolithic porous bulk materials have many promising applications ranging from energy storage and catalysis to high energy density physics. High resolution additive manufacturing techniques, such as direct laser writing via two photon polymerization (DLW-TPP), now enable the fabrication of highly porous microlattices with deterministic morphology control. In this work, DLW-TPP is used to print millimeter-sized foam reservoirs (down to 0.06 g cm –3) with tailored density-gradient profiles, where density is varied by over an order of magnitude (for instance from 0.6 to 0.06 g cm –3) along a length of <100 µm. Taking full advantage of this technology, however, ismore » a multiscale materials design problem that requires detailed understanding of how the different length scales, from the molecular level to the macroscopic dimensions, affect each other. The design of these 3D-printed foams is based on the brickwork arrangement of 100 × 100 × 16 µm 3 log-pile blocks constructed from sub-micrometer scale features. A block-to-block interdigitated stitching strategy is introduced for obtaining high density uniformity at all length scales. Lastly, these materials are used to shape plasma-piston drives during ramp-compression of targets under high energy density conditions created at the OMEGA Laser Facility.« less

  2. Low fuel convergence path to ignition on the NIF

    NASA Astrophysics Data System (ADS)

    Schmitt, M. J.; Molvig, Kim; Gianakon, T. A.; Woods, C. N.; Krasheninnikova, N. S.; Hsu, S. C.; Schmidt, D. W.; Dodd, E. S.; Zylstra, Alex; Scheiner, B.; McKenty, P.; Campbell, E. M.; Froula, D.; Betti, R.; Michel, T.

    2017-10-01

    A novel concept for achieving ignition on the NIF is proposed that obviates current issues plaguing single-shell high-convergence capsules. A large directly-driven Be shell is designed to robustly implode two nested internal shells by efficiently converting 1.7MJ of laser energy from a 6 ns, low intensity laser pulse, into a 1 ns dynamic pressure pulse to ignite and burn a central liquid DT core after a fuel convergence of only 9. The short, low intensity laser pulse mitigates LPI allowing more uniform laser drive of the target and eliminates hot e-, preheat and laser zooming issues. Preliminary rad-hydro simulations predict ignition initiation with 90% maximum inner shell velocity, before deceleration Rayleigh-Taylor growth can cause significant pusher shell mix into the compressed DT fuel. The gold inner pusher shell reduces pre-ignition radiation losses from the fuel allowing ignition to occur at 2.5keV. Further 2D simulations show that the short pulse design results in a spatially uniform kinetic drive that is tolerant to variations in laser cone power. A multi-pronged effort, in collaboration with LLE, is progressing to optimize this design for NIF's PDD laser configuration. Work performed under the auspices of the U.S. Dept. of Energy by the Los Alamos National Security, LLC, Los Alamos National Laboratory under contract DE-FG02-051ER54810.

  3. Point-Cloud Compression for Vehicle-Based Mobile Mapping Systems Using Portable Network Graphics

    NASA Astrophysics Data System (ADS)

    Kohira, K.; Masuda, H.

    2017-09-01

    A mobile mapping system is effective for capturing dense point-clouds of roads and roadside objects Point-clouds of urban areas, residential areas, and arterial roads are useful for maintenance of infrastructure, map creation, and automatic driving. However, the data size of point-clouds measured in large areas is enormously large. A large storage capacity is required to store such point-clouds, and heavy loads will be taken on network if point-clouds are transferred through the network. Therefore, it is desirable to reduce data sizes of point-clouds without deterioration of quality. In this research, we propose a novel point-cloud compression method for vehicle-based mobile mapping systems. In our compression method, point-clouds are mapped onto 2D pixels using GPS time and the parameters of the laser scanner. Then, the images are encoded in the Portable Networking Graphics (PNG) format and compressed using the PNG algorithm. In our experiments, our method could efficiently compress point-clouds without deteriorating the quality.

  4. Coherent control of plasma dynamics by feedback-optimized wavefront manipulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Z.-H.; Hou, B.; Gao, G.

    2015-05-15

    Plasmas generated by an intense laser pulse can support coherent structures such as large amplitude wakefield that can affect the outcome of an experiment. We investigate the coherent control of plasma dynamics by feedback-optimized wavefront manipulation using a deformable mirror. The experimental outcome is directly used as feedback in an evolutionary algorithm for optimization of the phase front of the driving laser pulse. In this paper, we applied this method to two different experiments: (i) acceleration of electrons in laser driven plasma waves and (ii) self-compression of optical pulses induced by ionization nonlinearity. The manipulation of the laser wavefront leadsmore » to orders of magnitude improvement to electron beam properties such as the peak charge, beam divergence, and transverse emittance. The demonstration of coherent control for plasmas opens new possibilities for future laser-based accelerators and their applications.« less

  5. Toward Sodium X-Ray Diffraction in the High-Pressure Regime

    NASA Astrophysics Data System (ADS)

    Gong, X.; Polsin, D. N.; Rygg, J. R.; Boehly, T. R.; Crandall, L.; Henderson, B. J.; Hu, S. X.; Huff, M.; Saha, R.; Collins, G. W.; Smith, R.; Eggert, J.; Lazicki, A. E.; McMahon, M.

    2017-10-01

    We are working to quasi-isentropically compress sodium into the terapascal regime to test theoretical predictions that sodium transforms to an electride. A series of hydrodynamic simulations have been performed to design experiments to investigate the structure and optical properties of sodium at pressures up to 500 GPa. We show preliminary results where sodium samples, sandwiched between diamond plates and lithium-fluoride windows, are ramp compressed by a gradual increase in the drive-laser intensity. The low sound speed in sodium makes it particularly susceptible to forming a shock; therefore, it is difficult to compress without melting the sample. Powder x-ray diffraction is used to provide information on the structure of sodium at these high pressures. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  6. Comparison and analysis of the results of direct-driven targets implosion

    NASA Astrophysics Data System (ADS)

    Demchenko, N. N.; Dolgoleva, G. V.; Gus'kov, S. Yu; Kuchugov, P. A.; Rozanov, V. B.; Stepanov, R. V.; Zmitrenko, N. V.; Yakhin, R. A.

    2017-10-01

    The article presents calculation results, which were received for the implosion of the typical cryogenic thermonuclear direct-drive targets that are intended for use at the OMEGA facility, NIF and Russian laser facility. The compression and burning characteristics, which were obtained using various numerical codes of different scientific groups, are compared. The data indicate good agreement between the numerical results. Various sources of target irradiation inhomogeneity and their influence on the implosion parameters are considered. The nominal scales of these disturbances for various facilities are close to each other. The main negative effect on the efficiency of compression and burning is due to the accidental offset of the target from the center of the chamber.

  7. Thermonuclear targets for direct-drive ignition by a megajoule laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bel’kov, S. A.; Bondarenko, S. V.; Vergunova, G. A.

    2015-10-15

    Central ignition of a thin two-layer-shell fusion target that is directly driven by a 2-MJ profiled pulse of Nd laser second-harmonic radiation has been studied. The parameters of the target were selected so as to provide effective acceleration of the shell toward the center, which was sufficient for the onset of ignition under conditions of increased hydrodynamic stability of the ablator acceleration and compression. The aspect ratio of the inner deuterium-tritium layer of the shell does not exceed 15, provided that a major part (above 75%) of the outer layer (plastic ablator) is evaporated by the instant of maximum compression.more » The investigation is based on two series of numerical calculations that were performed using one-dimensional (1D) hydrodynamic codes. The first 1D code was used to calculate the absorption of the profiled laser-radiation pulse (including calculation of the total absorption coefficient with allowance for the inverse bremsstrahlung and resonance mechanisms) and the spatial distribution of target heating for a real geometry of irradiation using 192 laser beams in a scheme of focusing with a cubo-octahedral symmetry. The second 1D code was used for simulating the total cycle of target evolution under the action of absorbed laser radiation and for determining the thermonuclear gain that was achieved with a given target.« less

  8. High-pulse energy-stabilized passively mode-locked external cavity inverse bow-tie 980nm laser diode for space applications

    NASA Astrophysics Data System (ADS)

    Krakowski, M.; Resneau, P.; Garcia, M.; Vinet, E.; Robert, Y.; Lecomte, M.; Parillaud, O.; Gerard, B.; Kundermann, S.; Torcheboeuf, N.; Boiko, D. L.

    2018-02-01

    We report on multi-section inverse bow-tie laser producing mode-locked pulses of 90 pJ energy and 6.5 ps width (895 fs after compression) at 1.3 GHz pulse repetition frequency (PRF) and consuming 2.9 W of electric power. The laser operates in an 80 mm long external cavity. By translation of the output coupling mirror, the PRF was continuously tuned over 37 MHz range without additional adjustments. Active stabilization with a phase lock loop actuating on the driving current has allowed us to reach the PRF relative stability at a 2·10-10 level on 10 s intervals, as required by the European Space Agency (ESA) for inter-satellite long distance measurements.

  9. Review of Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Haines, M. G.

    The physics of inertial confinement fusion is reviewed. The trend to short-wavelength lasers is argued, and the distinction between direct and indirect (soft X-ray) drive is made. Key present issues include the non-linear growth of Rayleigh-Taylor (R-T) instabilities, the seeding of this instability by the initial laser imprint, the relevance of self-generated magnetic fields, and the importance of parametric instabilities (stimulated Brillouin and Raman scattering) in gas-filled hohlraums. Experiments are reviewed which explore the R-T instability in both planar and converging geometry. The employment of various optical smoothing techniques is contrasted with the overcoating of the capsule by gold coated plastic foams to reduce considerably the imprint problem. The role of spontaneously generated magnetic fields in non-symmetric plasmas is discussed. Recent hohlraum compression results are presented together with gas bag targets which replicate the long-scale-length low density plasmas expected in NIF gas filled hohlraums. The onset of first Brillouin and then Raman scattering is observed. The fast ignitor scheme is a proposal to use an intense short pulse laser to drill a hole through the coronal plasma and then, with laser excited fast electrons, create a propagating thermonuclear spark in a dense, relatively cold laser-compressed target. Some preliminary results of laser hole drilling and 2-D and 3-D PIC simulations of this and the > 10^8 Gauss self-generated magnetic fields are presented. The proposed National Ignition Facility (NIF) is described.

  10. 100 J UV glass laser for dynamic compression research

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Fochs, S. F.; Bromage, J.; Broege, D.; Cuffney, R.; Currier, Z.; Dorrer, C.; Ehrich, B.; Engler, J.; Guardalben, M.; Kephalos, N.; Marozas, J.; Roides, R.; Zuegel, J.

    2017-02-01

    A frequency tripled, Nd:Glass laser has been constructed and installed at the Dynamic Compression Sector located at the Advanced Photon Source. This 100-J laser will be used to drive shocks in condensed matter which will then be interrogated by the facility x-ray beam. The laser is designed for reliable operation, utilizing proven designs for all major subsystems. A fiber front-end provides arbitrarily shaped pulses to the amplifier chain. A diode-pumped Nd:glass regenerative amplifier is followed by a four-pass, flashlamp- pumped rod amplifier. The regenerative amplifier produces up to 20 mJ with better than 1% RMS stability. The passively multiplexed four-pass amplifier produces up to 2 J. The final amplifier uses a 15-cm Nd:glass disk amplifier in a six-pass configuration. Over 200 J of infrared energy is produced by the disk amplifier. A KDP Type-II/Type-II frequency tripler configuration, utilizing a dual tripler, converts the 1053-nm laser output to a wavelength of 351 nm and the ultraviolet beam is image relayed to the target chamber. Output energy stability is better than 3%. Smoothing by Spectral Dispersion and polarization smoothing have been optimized to produce a highly uniform focal spot. A distributed phase plate and aspheric lens produce a farfield spot with a measured uniformity of 8.2% RMS. Custom control software collects all data and provides the operator an intuitive interface to operate and maintain the laser.

  11. Laser-pulse compression in a collisional plasma under weak-relativistic ponderomotive nonlinearity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Mamta; Gupta, D. N., E-mail: dngupta@physics.du.ac.in

    We present theory and numerical analysis which demonstrate laser-pulse compression in a collisional plasma under the weak-relativistic ponderomotive nonlinearity. Plasma equilibrium density is modified due to the ohmic heating of electrons, the collisions, and the weak relativistic-ponderomotive force during the interaction of a laser pulse with plasmas. First, within one-dimensional analysis, the longitudinal self-compression mechanism is discussed. Three-dimensional analysis (spatiotemporal) of laser pulse propagation is also investigated by coupling the self-compression with the self-focusing. In the regime in which the laser becomes self-focused due to the weak relativistic-ponderomotive nonlinearity, we provide results for enhanced pulse compression. The results show thatmore » the matched interplay between self-focusing and self-compression can improve significantly the temporal profile of the compressed pulse. Enhanced pulse compression can be achieved by optimizing and selecting the parameters such as collision frequency, ion-temperature, and laser intensity.« less

  12. Isolated attosecond pulses in the water window

    NASA Astrophysics Data System (ADS)

    Chang, Zenghu

    Millijoule level, few-cycle, carrier-envelope phase (CEP) stable Ti:Sapphire lasers have been the workhorse for the first generation attosecond light sources in the last decade. The spectral range of isolated attosecond pulses with sufficient photon flux for time-resolved pump-probe experiments has been limited to extreme ultraviolet (10 to 150 eV). The shortest pulses achieved are 67 as. The center wavelength of Ti:Sapphire lasers is 800 nm. It was demonstrated in 2001 that the cutoff photon energy of the high harmonic spectrum can be extended by increasing the center wavelength of the driving lasers. In recent years, mJ level, two-cycle, carrier-envelope phase stabilized lasers at 1.6 to 2.1 micron have been developed by compressing pulses from Optical Parametric Amplifiers with gas-filled hollow-core fibers or by implementing Optical Parametric Chirped Pulse Amplification (OPCPA) techniques. Recently, when long wavelength driving was combined with polarization gating, isolated soft x-rays in the water window (280-530 eV) were generated in our laboratory. The number of x-ray photons in the 120-400 eV range is comparable to that generated with Ti:Sapphire lasers in the 50 to 150 eV range. The yield of harmonic generation depends strongly on the ellipticity of the driving fields, which is the foundation of polarization gating. When the width of the gate was set to less than one half of the laser cycle, a soft x-ray supercontinuum was generated. The intensity of the gated x-ray spectrum is sensitive to the carrier-envelope phase of the driving laser, which indicates that single isolated attosecond pulses were generated. The ultrabroadband isolated x-ray pulses with 53 as duration were characterized by attosecond streaking measurements. This work has been supported by the DARPA PULSE program (W31P4Q1310017); the Army Research Office (W911NF-14-1-0383, W911NF-15-1- 0336); the Air Force Office of Scientific Research (FA9550-15-1-0037, FA9550-16-1-0149), and NSF 1506345.

  13. Polar-Direct-Drive Defect Implosions at OMEGA inPreparation for Experiments at NIF

    NASA Astrophysics Data System (ADS)

    Cobble, J. A.; Schmitt, M. J.; Murphy, T. J.; Tregillis, I. L.; Wysocki, F. J.; Obrey, K. D.; Magelssen, G. R.; Glebov, V.; Bradley, P. A.; Hsu, S. C.; Krasheninnikova, N. V.; Batha, S. H.

    2011-10-01

    The Defect-Implosion (DIME) campaign involves compressing perturbed spherical capsules with polar direct drive (PDD). For direct-drive implosions at NIF, PDD will be used. We have done simulations and experiments at OMEGA to test our modeling capability for equatorial-plane defects in fusion capsules and for PDD at NIF. Since PDD is anisotropic, we show the results of 0th hydrodynamics of implosions and perturbation-driven features near stagnation. Later presentations discuss defect-induced mix and neutronics, and laser pointing for NIF experiments. Prototype OMEGA shots used 865- μm diameter CH shells filled with 5 atm of D2. Machined channels 30- μm wide and up to 9- μm deep formed the defects. This work has been performed under the auspices of the US DOE, contract number DE-AC52-06NA25396.

  14. University of Rochester, Laboratory for Laser Energetics

    NASA Astrophysics Data System (ADS)

    1987-01-01

    In FY86 the Laboratory has produced a list of accomplishments in which it takes pride. LLE has met every laser-fusion program milestone to date in a program of research for direct-drive ultraviolet laser fusion originally formulated in 1981. LLE scientists authored or co-authored 135 scientific papers during 1985 to 1986. The collaborative experiments with NRL, LANL, and LLNL have led to a number of important ICF results. The cryogenic target system developed by KMS Fusion for LLE will be used in future high-density experiments on OMEGA to demonstrate the compression of thermonuclear fuel to 100 to 200 times that of solid (20 to 40 g/cm) in a test of the direct-drive concept, as noted in the National Academy of Sciences' report. The excellence of the advanced technology efforts at LLE is illustrated by the establishment of the Ultrafast Science Center by the Department of Defense through the Air Force Office of Scientific Research. Research in the Center will concentrate on bridging the gap between high-speed electronics and ultrafast optics by providing education, research, and development in areas critical to future communications and high-speed computer systems. The Laboratory for Laser Energetics continues its pioneering work on the interaction of intense radiation with matter. This includes inertial-fusion and advanced optical and optical electronics research; training people in the technology and applications of high-power, short-pulse lasers; and interacting with the scientific community, business, industry, and government to promote the growth of laser technology.

  15. Laser-absorption effect on pulse-compression under Ohmic and weak-relativistic ponderomotive nonlinearity in plasmas

    NASA Astrophysics Data System (ADS)

    Singh, Mamta; Gupta, D. N.

    2018-01-01

    The inclusion of laser absorption in plasmas plays an important role in laser-plasma interactions. In this work, the laser pulse compression in weakly relativistic plasmas has been revisited by incorporating the collision-based laser absorption effects. By considering the role of laser absorption in plasmas, a set of coupled nonlinear equations is derived to describe the evolution of pulse compression. The laser pulse compression is reduced due to the collisional absorption in the plasmas. Fast dispersion is also observed with increasing the absorption coefficient, which is obviously due to the strong energy attenuation in plasmas. Using our theoretical model, the involvement and importance of a particular absorption mechanism for pulse compression in plasmas is analyzed.

  16. Development of an All Solid State 6 kHz Pulse Generator for Driving Free Electron Laser Amplifiers

    DTIC Science & Technology

    1990-07-16

    programs. 1-6 SCIENCE RESEARCH LABORATORY In these efforts, Science Research Laboratory is exploiting recent progress in Silicon Con- trolled Rectifier...electrons in silicon as opposed to the low pressure gas in the thyratron. In addition these all-solid-state SCR-switched drivers can be engineered to...nsec PFN 2-5 C Li Figure 2.3: Electrical schematic and cross-sectional view of SNOMAD-11 SCR corn - mutated pulse compression driver. 2-5 SCIENCE

  17. Reactivity-controlled compression ignition drive cycle emissions and fuel economy estimations using vehicle system simulations

    DOE PAGES

    Curran, Scott J.; Gao, Zhiming; Wagner, Robert M.

    2014-12-22

    In-cylinder blending of gasoline and diesel to achieve reactivity-controlled compression ignition has been shown to reduce NO X and soot emissions while maintaining or improving brake thermal efficiency as compared with conventional diesel combustion. The reactivity-controlled compression ignition concept has an advantage over many advanced combustion strategies in that the fuel reactivity can be tailored to the engine speed and load, allowing stable low-temperature combustion to be extended over more of the light-duty drive cycle load range. In this paper, a multi-mode reactivity-controlled compression ignition strategy is employed where the engine switches from reactivity-controlled compression ignition to conventional diesel combustionmore » when speed and load demand are outside of the experimentally determined reactivity-controlled compression ignition range. The potential for reactivity-controlled compression ignition to reduce drive cycle fuel economy and emissions is not clearly understood and is explored here by simulating the fuel economy and emissions for a multi-mode reactivity-controlled compression ignition–enabled vehicle operating over a variety of US drive cycles using experimental engine maps for multi-mode reactivity-controlled compression ignition, conventional diesel combustion, and a 2009 port-fuel injected gasoline engine. Drive cycle simulations are completed assuming a conventional mid-size passenger vehicle with an automatic transmission. Multi-mode reactivity-controlled compression ignition fuel economy simulation results are compared with the same vehicle powered by a representative 2009 port-fuel injected gasoline engine over multiple drive cycles. Finally, engine-out drive cycle emissions are compared with conventional diesel combustion, and observations regarding relative gasoline and diesel tank sizes needed for the various drive cycles are also summarized.« less

  18. Observation of hohlraum-wall motion with spectrally selective x-ray imaging at the National Ignition Facility

    DOE PAGES

    Izumi, N.; Meezan, N. B.; Divol, L.; ...

    2016-08-12

    The high fuel capsule compression required for indirect drive inertial confinement fusion (ICF) requires careful control of the X-raydrive symmetry throughout the laser pulse. When the outer cone beams strike the hohlraum wall, the plasma ablated off the hohlraum wall expands into the hohlraum and can alter both the outer and inner cone beam propagation and hencethe X-raydrive symmetry especially at thefinal stage of the drive pulse. In order to quantitatively understand the wall motion, we developed a new experimental technique which visualizes the expansion and stagnation of the hohlraum wall plasma. Finally, we discuss details of the experiment andmore » the technique of spectrally selectivex-ray imaging.« less

  19. Observation of hohlraum-wall motion with spectrally selective x-ray imaging at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izumi, N.; Meezan, N. B.; Divol, L.

    The high fuel capsule compression required for indirect drive inertial confinement fusion (ICF) requires careful control of the X-raydrive symmetry throughout the laser pulse. When the outer cone beams strike the hohlraum wall, the plasma ablated off the hohlraum wall expands into the hohlraum and can alter both the outer and inner cone beam propagation and hencethe X-raydrive symmetry especially at thefinal stage of the drive pulse. In order to quantitatively understand the wall motion, we developed a new experimental technique which visualizes the expansion and stagnation of the hohlraum wall plasma. Finally, we discuss details of the experiment andmore » the technique of spectrally selectivex-ray imaging.« less

  20. Polar-Drive--Implosion Physics on OMEGA and the NIF

    NASA Astrophysics Data System (ADS)

    Radha, P. B.

    2012-10-01

    Polar drive (PD) permits the execution of direct-drive--ignition experiments on facilities that are configured for x-ray drive such as the National Ignition Facility (NIF) and Laser M'egajoule. Experiments on the OMEGA laser are used to develop and validate models of PD implosions. Results from OMEGA PD shock-timing and warm implosions are presented. Experiments are simulated with the 2-D hydrodynamic code DRACO including full 3-D ray trace to model oblique beams. Excellent agreement is obtained in shock velocity and catch-up in PD geometry in warm, plastic shells. Predicted areal densities are measured in PD implosion experiments. Good agreement between simulation and experiments is obtained in the overall shape of the compressing shell when observed through x-ray backlighting. Simulated images of the hot core, including the effect of magnetic fields, are compared with experiments. Comparisons of simulated and observed scattered light and bang time in PD geometry are presented. Several techniques to increase implosion velocity are presented including beam profile variations and different ablator materials. Results from shimmed-target PD experiments will also be presented. Designs for future PD OMEGA experiments at ignition-relevant intensities will be presented. The implication of these results for NIF-scale plasmas is discussed. Experiments for the NIF in its current configuration, with indirect-drive phase plates, are proposed to study implosion energetics and shell asymmetries. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302.

  1. Laser shock compression experiments on precompressed water in ``SG-II'' laser facility

    NASA Astrophysics Data System (ADS)

    Shu, Hua; Huang, Xiuguang; Ye, Junjian; Fu, Sizu

    2017-06-01

    Laser shock compression experiments on precompressed samples offer the possibility to obtain new hugoniot data over a significantly broader range of density-temperature phase than was previously achievable. This technique was developed in ``SG-II'' laser facility. Hugoniot data were obtained for water in 300 GPa pressure range by laser-driven shock compression of samples statically precompressed in diamond-anvil cells.

  2. Shock ignition targets: gain and robustness vs ignition threshold factor

    NASA Astrophysics Data System (ADS)

    Atzeni, Stefano; Antonelli, Luca; Schiavi, Angelo; Picone, Silvia; Volponi, Gian Marco; Marocchino, Alberto

    2017-10-01

    Shock ignition is a laser direct-drive inertial confinement fusion scheme, in which the stages of compression and hot spot formation are partly separated. The hot spot is created at the end of the implosion by a converging shock driven by a final ``spike'' of the laser pulse. Several shock-ignition target concepts have been proposed and relevant gain curves computed (see, e.g.). Here, we consider both pure-DT targets and more facility-relevant targets with plastic ablator. The investigation is conducted with 1D and 2D hydrodynamic simulations. We determine ignition threshold factors ITF's (and their dependence on laser pulse parameters) by means of 1D simulations. 2D simulations indicate that robustness to long-scale perturbations increases with ITF. Gain curves (gain vs laser energy), for different ITF's, are generated using 1D simulations. Work partially supported by Sapienza Project C26A15YTMA, Sapienza 2016 (n. 257584), Eurofusion Project AWP17-ENR-IFE-CEA-01.

  3. Compact Fast Ignition experiments using Joule-class tailored drive pulses under counterbeam configuration

    NASA Astrophysics Data System (ADS)

    Mori, Yoshitaka; Hanayama, Ryohei; Ishii, Katsuhiro; Kitagawa, Yoneyoshi; Sekine, Takashi; Takeuchi, Yasuki; Kurita, Takashi; Katoh, Yoshinori; Satoh, Nakahiro; Kurita, Norio; Kawashima, Toshiyuki; Komeda, Osamu; Hioki, Tatsumi; Motohiro, Tomoyoshi; Sunahara, Atsushi; Sentoku, Yasuhiko; Miura, Eisuke; Iwamoto, Akifumi; Sakagami, Hitoshi

    2017-10-01

    Fast ignition (FI) is a form of inertial confinement fusion in which the ignition step and the compression step are separate processes resulting in a reduction of the symmetry requirement for hot spot generation. One of the problems of FI so far are the accessibility of an ignition laser pulse into the assembled core in which the driver energy is converted into relativistic electrons produced in the laser-plasma interaction. We have experimentally demonstrated that a tailored-pulse-assembled core with a diameter of 70 μ m, originally a deuterated polystyrene spherical shell of 500 μ m diameter, is flashed by directly counter irradiating 0.8 J/110 fs laser pulses [Y. MORI et al., PRL 2016]. This result indicates that once the assembled core is squeezed into the target center, the heating lasers can access the core's; edges and deposit their energy into the core. In this talk, we will discuss the heating effects in relation to formation of the assembled core.

  4. 100J Pulsed Laser Shock Driver for Dynamic Compression Research

    NASA Astrophysics Data System (ADS)

    Wang, X.; Sethian, J.; Bromage, J.; Fochs, S.; Broege, D.; Zuegel, J.; Roides, R.; Cuffney, R.; Brent, G.; Zweiback, J.; Currier, Z.; D'Amico, K.; Hawreliak, J.; Zhang, J.; Rigg, P. A.; Gupta, Y. M.

    2017-06-01

    Logos Technologies and the Laboratory for Laser Energetics (LLE, University of Rochester) - in partnership with Washington State University - have designed, built and deployed a one of a kind 100J pulsed UV (351 nm) laser system to perform real-time, x-ray diffraction and imaging experiments in laser-driven compression experiments at the Dynamic Compression Sector (DCS) at the Advanced Photon Source, Argonne National Laboratory. The laser complements the other dynamic compression drivers at DCS. The laser system features beam smoothing for 2-d spatially uniform loading of samples and four, highly reproducible, temporal profiles (total pulse duration: 5-15 ns) to accommodate a wide variety of scientific needs. Other pulse shapes can be achieved as the experimental needs evolve. Timing of the laser pulse is highly precise (<200 ps) to allow accurate synchronization of the x-rays with the dynamic compression event. Details of the laser system, its operating parameters, and representative results will be presented. Work supported by DOE/NNSA.

  5. Down-Bore Two-Laser Heterodyne Velocimetry of an Implosion-Driven Hypervelocity Launcher

    NASA Astrophysics Data System (ADS)

    Hildebrand, Myles; Huneault, Justin; Loiseau, Jason; Higgins, Andrew J.

    2015-06-01

    The implosion-driven launcher uses explosives to shock-compress helium, driving well-characterized projectiles to velocities exceeding 10 km/s. The masses of projectiles range between 0.1 - 10 g, and the design shows excellent scalability, reaching similar velocities across different projectile sizes. In the past, velocity measurements have been limited to muzzle velocity obtained via a high-speed videography upon the projectile exiting the launch tube. Recently, Photonic Doppler Velocimetry (PDV) has demonstrated the ability to continuously measure in-bore velocity, even in the presence of significant blow-by of high temperature helium propellant past the projectile. While a single-laser PDV is limited to approximately 8 km/s, a two-laser PDV system is developed that uses two lasers operating near 1550 nm to provide velocity measurement capabilities up to 16 km/s. The two laser PDV system is used to obtain a continuous velocity history of the projectile throughout the entire launch cycle. These continuous velocity data are used to validate models of the launcher cycle and compare different advanced concepts aimed at increasing the projectile velocity to well beyond 10 km/s.

  6. Anomalous neutron yield in indirect-drive inertial-confinement-fusion due to the formation of collisionless shocks in the corona

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Shuai; Cai, Hong-Bo; Shan, Lian-Qiang; Zhang, Hua-Sen; Gu, Yu-Qiu; Zhu, Shao-Ping

    2017-06-01

    Observations of anomalous neutron yield in the indirect-drive inertial confinement fusion implosion experiments conducted at SG-III prototype and SG-II upgrade laser facilities are interpreted. The anomalous mechanism results in a neutron yield which is 100-times higher than that predicted by 1D radiation-hydrodynamic simulations. 2D radiation-hydrodynamic simulations show that the supersonic, radially directed gold (Au) plasma jets arising from the laser-hohlraum interactions can collide with the carbon-deuterium (CD) corona plasma of the compressed pellet. It is found that in the interaction front of the high-Z jet with the low-Z corona, with low density  ˜{{10}20}~\\text{c}{{\\text{m}}-3} and high temperature  ˜keV, kinetic effects become important. Particle-in-cell simulations indicate that an electrostatic shock wave can be driven when the high-temperature Au jet expands into the low-temperature CD corona. Deuterium ions with an amount of  ˜1015 can be accelerated to  ˜25 keV by the collisionless shock wave, thus causing efficient neutron productions though the beam-target method by stopping these energetic ions in the corona. The evaluated neutron yield is consistent with the experiments conducted at SG laser facilities.

  7. Spatiotemporal dynamics of Gaussian laser pulse in a multi ions plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jafari Milani, M. R., E-mail: mrj.milani@gmail.com

    Spatiotemporal evolutions of Gaussian laser pulse propagating through a plasma with multiple charged ions are studied, taking into account the ponderomotive nonlinearity. Coupled differential equations for beam width and pulse length parameters are established and numerically solved using paraxial ray approximation. In one-dimensional geometry, effects of laser and plasma parameters such as laser intensity, plasma density, and temperature on the longitudinal pulse compression and the laser intensity distribution are analyzed for plasmas with singly and doubly charged ions. The results demonstrate that self-compression occurs in a laser intensity range with a turning point intensity in which the self-compression process hasmore » its strongest extent. The results also show that the multiply ionized ions have different effect on the pulse compression above and below turning point intensity. Finally, three-dimensional geometry is used to analyze the simultaneous evolution of both self-focusing and self-compression of Gaussian laser pulse in such plasmas.« less

  8. Bunch length compression method for free electron lasers to avoid parasitic compressions

    DOEpatents

    Douglas, David R.; Benson, Stephen; Nguyen, Dinh Cong; Tennant, Christopher; Wilson, Guy

    2015-05-26

    A method of bunch length compression method for a free electron laser (FEL) that avoids parasitic compressions by 1) applying acceleration on the falling portion of the RF waveform, 2) compressing using a positive momentum compaction (R.sub.56>0), and 3) compensating for aberration by using nonlinear magnets in the compressor beam line.

  9. Propagation in compressed matter of hot electrons created by short intense lasers

    NASA Astrophysics Data System (ADS)

    Batani, D.; Bernardinello, A.; Masella, V.; Pisani, F.; Koenig, M.; Krishnan, J.; Benuzzi, A.; Ellwi, S.; Hall, T.; Norreys, P.; Djaoui, A.; Neely, D.; Rose, S.; Fews, P.; Key, M.

    1998-02-01

    We performed the first experimental study of propagation in compressed matter of hot electrons created by a short pulse intense laser. The experiment has been carried out with the VULCAN laser at Rutherford compressing plastic targets with two ns laser beams at an intensity ⩾1014W/cm2. A CPA beam with an intensity ⩾1016W/cm2 irradiated the rear side of the target and created hot electrons propagating through the compressed matter. K-α emission was used as diagnostics of hot electron penetration by putting a chloride plastic layer inside the target.

  10. All-Fiber, Directly Chirped Laser Source for Chirped-Pulse-Amplification

    NASA Astrophysics Data System (ADS)

    Xin, Ran

    Chirped-pulse-amplification (CPA) technology is widely used to produce ultra-short optical pulses (sub picosecond to femtoseconds) with high pulse energy. A chirped pulse laser source with flexible dispersion control is highly desirable as a CPA seed. This thesis presents an all-fiber, directly chirped laser source (DCLS) that produces nanosecond, linearly-chirped laser pulses at 1053 nm for seeding high energy CPA systems. DCLS produces a frequency chirp on an optical pulse through direct temporal phase modulation. DCLS provides programmable control for the temporal phase of the pulse, high pulse energy and diffraction-limited beam performance, which are beneficial for CPA systems. The DCLS concept is first described. Its key enabling technologies are identified and their experimental demonstration is presented. These include high-precision temporal phase control using an arbitrary waveform generator, multi-pass phase modulation to achieve high modulation depth, regenerative amplification in a fiber ring cavity and a negative feedback system that controls the amplifier cavity dynamics. A few technical challenges that arise from the multi-pass architecture are described and their solutions are presented, such as polarization management and gain-spectrum engineering in the DCLS fiber cavity. A DCLS has been built and its integration into a high energy OPCPA system is demonstrated. DCLS produces a 1-ns chirped pulse with a 3-nm bandwidth. The temporal phase and group delay dispersion on the DCLS output pulse is measured using temporal interferometry. The measured temporal phase has an ˜1000 rad amplitude and is close to a quadratic shape. The chirped pulse is amplified from 0.9 nJ to 76 mJ in an OPCPA system. The amplified pulse is compressed to close to its Fourier transform limit, producing an intensity autocorrelation trace with a 1.5-ps width. Direct compressed-pulse duration control by adjusting the phase modulation drive amplitude is demonstrated. Limitation to pulse compression is investigated using numerical simulation.

  11. Progress in the Science and Technology of Direct Drive Laser Fusion with the KrF Laser

    DTIC Science & Technology

    2010-12-01

    important parameters KrF technology leads) Direct Laser Drive is a better choice for Energy Indirect Drive (initial path for NIF ) Laser Beams x-rays Hohlraum...Pellet Direct Drive (IFE) Laser Beams Pellet .. • ID Ignition being explored on NIF • Providing high enough gain for pure fusion energy is...challenging. • DD Ignition physics can be explored on NIF . • More efficient use of laser light, and greater flexibility in applying drive provides potential for

  12. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Effect of compression of a laser plasma on the generation of harmonics and hard x radiation

    NASA Astrophysics Data System (ADS)

    Apollonov, V. V.; Derzhavin, S. I.; Kazakov, K. Kh

    1993-02-01

    A compression of a plasma produced at a conical target by a low-intensity beam (q≲10 GW/cm2) from a CO2 laser has been studied. The effect of this compression on the onset of the parametric instability responsible for the generation of harmonics and of hard x radiation has also been studied. A qualitative interpretation of the results is offered.

  13. Free-beam soliton self-compression in air

    NASA Astrophysics Data System (ADS)

    Voronin, A. A.; Mitrofanov, A. V.; Sidorov-Biryukov, D. A.; Fedotov, A. B.; Pugžlys, A.; Panchenko, V. Ya; Shumakova, V.; Ališauskas, S.; Baltuška, A.; Zheltikov, A. M.

    2018-02-01

    We identify a physical scenario whereby soliton transients generated in freely propagating laser beams within the regions of anomalous dispersion in air can be compressed as a part of their free-beam spatiotemporal evolution to yield few-cycle mid- and long-wavelength-infrared field waveforms, whose peak power is substantially higher than the peak power of the input pulses. We show that this free-beam soliton self-compression scenario does not require ionization or laser-induced filamentation, enabling high-throughput self-compression of mid- and long-wavelength-infrared laser pulses within a broad range of peak powers from tens of gigawatts up to the terawatt level. We also demonstrate that this method of pulse compression can be extended to long-range propagation, providing self-compression of high-peak-power laser pulses in atmospheric air within propagation ranges as long as hundreds of meters, suggesting new ways towards longer-range standoff detection and remote sensing.

  14. High-pressure phase transition in silicon carbide under shock loading using ultrafast x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Tracy, S. J.; Smith, R. F.; Wicks, J. K.; Fratanduono, D. E.; Gleason, A. E.; Bolme, C.; Speziale, S.; Appel, K.; Prakapenka, V. B.; Fernandez Panella, A.; Lee, H. J.; MacKinnon, A.; Eggert, J.; Duffy, T. S.

    2017-12-01

    The behavior of silicon carbide (SiC) under shock loading was investigated through a series of time-resolved pump-probe x-ray diffraction (XRD) measurements. SiC is found at impact sites and has been put forward as a possible constituent in the proposed class of extra-solar planets known as carbon planets. Previous studies have used wave profile measurements to identify a phase transition under shock loading near 1 Mbar, but crystal structure information was not obtained. We have carried out an in situ XRD study of shock-compressed SiC using the Matter in Extreme Conditions instrument of the Linac Coherent Light Source. The femtosecond time resolution of the x-ray free electron laser allows for the determination of time-dependent atomic arrangements during shock loading and release. Two high-powered lasers were used to generate ablation-driven compression waves in the samples. Time scans were performed using the same drive conditions and nominally identical targets. For each shot in a scan, XRD data was collected at a different probe time after the shock had entered the SiC. Probe times extended up to 40 ns after release. Scans were carried out for peak pressures of 120 and 185 GPa. Our results demonstrate that SiC transforms directly from the ambient tetrahedrally-coordinated phase to the octahedral B1 structure on the nanosecond timescale of laser-drive experiments and reverts to the tetrahedrally coordinated ambient phase within nanoseconds of release. The data collected at 120 GPa exhibit diffraction peaks from both compressed ambient phase and transformed B1 phase, while the data at 185 GPa show a complete transformation to the B1 phase. Densities determined from XRD peaks are in agreement with an extrapolation of previous continuum data as well as theoretical predictions. Additionally, a high degree of texture was retained in both the high-pressure phase as well as on back transformation. Two-dimensional fits to the XRD data reveal details of the orientational relationships between the low- and high-pressure phases that can be interpreted to provide information about transformation pathways between tetrahedral and octahedral coordination structures. We acknowledge support for this work from SLAC National Accelerator Laboratory, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory.

  15. Laser-direct-drive program: Promise, challenge, and path forward

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, E. M.; Goncharov, V. N.; Sangster, T. C.

    Along with laser-indirect (x-ray)-drive and magnetic-drive target concepts, laser direct drive is a viable approach to achieving ignition and gain with inertial confinement fusion. In the United States, a national program has been established to demonstrate and understand the physics of laser direct drive. The program utilizes the Omega Laser Facility to conduct implosion and coupling physics at the nominally 30-kJ scale and laser–plasma interaction and coupling physics at the MJ scale at the National Ignition Facility. This paper will discuss the motivation and challenges for laser direct drive and the broad-based program presently underway in the United States.

  16. Laser-direct-drive program: Promise, challenge, and path forward

    DOE PAGES

    Campbell, E. M.; Goncharov, V. N.; Sangster, T. C.; ...

    2017-03-19

    Along with laser-indirect (x-ray)-drive and magnetic-drive target concepts, laser direct drive is a viable approach to achieving ignition and gain with inertial confinement fusion. In the United States, a national program has been established to demonstrate and understand the physics of laser direct drive. The program utilizes the Omega Laser Facility to conduct implosion and coupling physics at the nominally 30-kJ scale and laser–plasma interaction and coupling physics at the MJ scale at the National Ignition Facility. This paper will discuss the motivation and challenges for laser direct drive and the broad-based program presently underway in the United States.

  17. Experimental Evidence of Kinetic Effects in Indirect-Drive Inertial Confinement Fusion Hohlraums

    NASA Astrophysics Data System (ADS)

    Shan, L. Q.; Cai, H. B.; Zhang, W. S.; Tang, Q.; Zhang, F.; Song, Z. F.; Bi, B.; Ge, F. J.; Chen, J. B.; Liu, D. X.; Wang, W. W.; Yang, Z. H.; Qi, W.; Tian, C.; Yuan, Z. Q.; Zhang, B.; Yang, L.; Jiao, J. L.; Cui, B.; Zhou, W. M.; Cao, L. F.; Zhou, C. T.; Gu, Y. Q.; Zhang, B. H.; Zhu, S. P.; He, X. T.

    2018-05-01

    We present the first experimental evidence supported by simulations of kinetic effects launched in the interpenetration layer between the laser-driven hohlraum plasma bubbles and the corona plasma of the compressed pellet at the Shenguang-III prototype laser facility. Solid plastic capsules were coated with carbon-deuterium layers; as the implosion neutron yield is quenched, DD fusion yield from the corona plasma provides a direct measure of the kinetic effects inside the hohlraum. An anomalous large energy spread of the DD neutron signal (˜282 keV ) and anomalous scaling of the neutron yield with the thickness of the carbon-deuterium layers cannot be explained by the hydrodynamic mechanisms. Instead, these results can be attributed to kinetic shocks that arise in the hohlraum-wall-ablator interpenetration region, which result in efficient acceleration of the deuterons (˜28.8 J , 0.45% of the total input laser energy). These studies provide novel insight into the interactions and dynamics of a vacuum hohlraum and near-vacuum hohlraum.

  18. First experiments probing the collision of parallel magnetic fields using laser-produced plasmas

    DOE PAGES

    Rosenberg, M. J.; Li, C. K.; Fox, W.; ...

    2015-04-08

    Novel experiments to study the strongly-driven collision of parallel magnetic fields in β~10, laser-produced plasmas have been conducted using monoenergetic proton radiography. These experiments were designed to probe the process of magnetic flux pileup, which has been identified in prior laser-plasma experiments as a key physical mechanism in the reconnection of anti-parallel magnetic fields when the reconnection inflow is dominated by strong plasma flows. In the present experiments using colliding plasmas carrying parallel magnetic fields, the magnetic flux is found to be conserved and slightly compressed in the collision region. Two-dimensional (2D) particle-in-cell (PIC) simulations predict a stronger flux compressionmore » and amplification of the magnetic field strength, and this discrepancy is attributed to the three-dimensional (3D) collision geometry. Future experiments may drive a stronger collision and further explore flux pileup in the context of the strongly-driven interaction of magnetic fields.« less

  19. 2-Shock layered tuning campaign

    NASA Astrophysics Data System (ADS)

    Masse, Laurent; Dittrich, T.; Khan, S.; Kyrala, G.; Ma, T.; MacLaren, S.; Ralph, J.; Salmonson, J.; Tipton, R.; Los Alamos Natl Lab Team; Lawrence Livermore Natl Lab Team

    2016-10-01

    The 2-Shock platform has been developed to maintain shell sphericity throughout the compression phase of an indirect-drive target implosion and produce a stagnating hot spot in a quasi 1D-like manner. A sub-scale, 1700 _m outer diameter, and thick, 200 _m, uniformly Silicon doped, gas-filled plastic capsule is driven inside a nominal size 5750 _m diameter ignition hohlraum. The hohlraum fill is near vacuum to reduce back-scatter and improve laser/drive coupling. A two-shock pulse of about 1 MJ of laser energy drives the capsule. The thick capsule prevents ablation front feed-through to the imploded core. This platform has demonstrated its efficiency to tune a predictable and reproducible 1-D implosion with a nearly round shape. It has been shown that the high foot performance was dominated by the local defect growth due to the ablation front instability and by the hohlraum radiation asymmetries. The idea here is to take advantage of this 2-Shock platform to design a 1D-like layered implosion and eliminates the deleterious effects of radiation asymmetries and ablation front instability growth. We present the design work and our first experimental results of this near one-dimensional 2-Shock layered design. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  20. Down-bore two-laser heterodyne velocimetry of an implosion-driven hypervelocity launcher

    NASA Astrophysics Data System (ADS)

    Hildebrand, Myles; Huneault, Justin; Loiseau, Jason; Higgins, Andrew J.

    2017-01-01

    The implosion-driven launcher uses explosives to shock-compress helium, driving well-characterized projectiles to velocities exceeding 10 km/s. The masses of projectiles range between 0.1 - 15 g, and the design shows excellent scalability, reaching similar velocities across different projectile sizes. In the past, velocity measurements have been limited to muzzle velocity obtained via a high-speed videography upon the projectile exiting the launch tube. Recently, Photon Doppler Velocimetry (PDV) has demonstrated the ability to continuously measure in-bore velocity, even in the presence of significant blow-by of high temperature helium propellant past the projectile. While a single laser system sampled at 40 GS/s with a 13 GHz detector/scope bandwidth is limited to 8 km/s, a two-laser PDV system is developed that uses two lasers operating near 1550 nm to provide velocity measurement capabilities up to 16 km/s with the same bandwidth and sampling rate. The two-laser PDV system is used to obtain a continuous velocity history of the projectile throughout the entire launch cycle. These internal ballistics trajectories are used to compare different advanced concepts aimed at increasing the projectile velocity to well beyond 10 km/s.

  1. Laser pulse shape design for laser-indirect-driven quasi-isentropic compression experiments

    NASA Astrophysics Data System (ADS)

    Xue, Quanxi; Jiang, Shaoen; Wang, Zhebin; Wang, Feng; Zhao, Xueqing; Ding, Yongkun

    2018-02-01

    Laser pulse shape design is a key work in the design of indirect-laser-driven experiments, especially for long pulse laser driven quasi-isentropic compression experiments. A method for designing such a laser pulse shape is given here. What's more, application experiments were performed, and the results of a typical shot are presented. At last of this article, the details of the application of the method are discussed, such as the equation parameter choice, radiation ablation pressure expression, and approximations in the method. The application shows that the method can provide reliable descriptions of the energy distribution in a hohlraum target; thus, it can be used in the design of long-pulse laser driven quasi-isentropic compression experiments and even other indirect-laser-driven experiments.

  2. Flash Kα radiography of laser-driven solid sphere compression for fast ignition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawada, H.; Lee, S.; Shiroto, T.

    2016-06-20

    Time-resolved compression of a laser-driven solid deuterated plastic sphere with a cone was measured with flash Kα x-ray radiography. A spherically converging shockwave launched by nanosecond GEKKO XII beams was used for compression while a flash of 4.51 keV Ti Kα x-ray backlighter was produced by a high-intensity, picosecond laser LFEX (Laser for Fast ignition EXperiment) near peak compression for radiography. Areal densities of the compressed core were inferred from two-dimensional backlit x-ray images recorded with a narrow-band spherical crystal imager. The maximum areal density in the experiment was estimated to be 87 ± 26 mg/cm 2. Lastly, the temporalmore » evolution of the experimental and simulated areal densities with a 2-D radiation-hydrodynamics code is in good agreement.« less

  3. Flash Kα radiography of laser-driven solid sphere compression for fast ignition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawada, H.; Lee, S.; Nagatomo, H.

    2016-06-20

    Time-resolved compression of a laser-driven solid deuterated plastic sphere with a cone was measured with flash Kα x-ray radiography. A spherically converging shockwave launched by nanosecond GEKKO XII beams was used for compression while a flash of 4.51 keV Ti Kα x-ray backlighter was produced by a high-intensity, picosecond laser LFEX (Laser for Fast ignition EXperiment) near peak compression for radiography. Areal densities of the compressed core were inferred from two-dimensional backlit x-ray images recorded with a narrow-band spherical crystal imager. The maximum areal density in the experiment was estimated to be 87 ± 26 mg/cm{sup 2}. The temporal evolution of the experimental andmore » simulated areal densities with a 2-D radiation-hydrodynamics code is in good agreement.« less

  4. BOOK REVIEW: Inertial confinement fusion: The quest for ignition and energy gain using indirect drive

    NASA Astrophysics Data System (ADS)

    Yamanaka, C.

    1999-06-01

    Inertial confinement fusion (ICF) is an alternative way to control fusion which is based on scaling down a thermonuclear explosion to a small size, applicable for power production, a kind of thermonuclear internal combustion engine. This book extends many interesting topics concerning the research and development on ICF of the last 25 years. It provides a systematic development of the physics basis and also various experimental data on radiation driven implosion. This is a landmark treatise presented at the right time. It is based on the article ``Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain'' by J.D. Lindl, published in Physics of Plasmas, Vol. 2, November 1995, pp. 3933-4024. As is well known, in the United States of America research on the target physics basis for indirect drive remained largely classified until 1994. The indirect drive approaches were closely related to nuclear weapons research at Lawrence Livermore and Los Alamos National Laboratories. In Japan and other countries, inertial confinement fusion research for civil energy has been successfully performed to achieve DT fuel pellet compression up to 1000 times normal density, and indirect drive concepts, such as the `Cannon Ball' scheme, also prevailed at several international conferences. In these circumstances the international fusion community proposed the Madrid Manifesto in 1988, which urged openness of ICF information to promote international collaboration on civil energy research for the future resources of the human race. This proposal was also supported by some of the US scientists. The United States Department of Energy revised its classification guidelines for ICF six years after the Madrid Manifesto. This first book from the USA treating target physics issues, covering topics from implosion dynamics to hydrodynamic stability, ignition physics, high-gain target design and the scope for energy applications is enthusiastically welcomed. The author joined Lawrence Livermore National Laboratory in 1972 to perform intensive theoretical and computational research on implosion and ignition. He was awarded the Edward Teller Medal in 1993. One therefore expects the topics to be treated with authority, and this expectation is well fulfilled. The general treatment throughout the book is to begin with the basic physics of implosion and show how its development leads to an explanation of many fundamental ideas about implosion, via direct drive or indirect drive, particularly ideas associated with radiation transport. This approach is generally successful, with the reader immediately able to relate the theoretical treatments to physical problems. One danger in this approach, however, is that fundamental concepts in implosion often become stressed within the framework of indirect radiation drive of hohlraum targets oriented towards research in the National Ignition Facility. The references in this book to Livermore or Los Alamos internal documents are not yet publicly available, because many are in the process of review for declassification. The reader will have to become accustomed to this situation, which has lasted for a long time but now seems to be gradually improving. The treatise is composed of 13 chapters, including 271 illustrations. An overview of ICF and the historical development of indirect drive in the ICF programme are described in Chapters 1 and 2. Direct drive and indirect drive have different features. The choice of which to use is a very interesting issue. The former has a higher laser-target coupling efficiency but is less uniform in laser irradiation due to discrete beams of lasers. Beam smoothing techniques have a key role in direct drive. The indirect drive by soft X rays which are generated at the inner surface of a hohlraum can have a higher uniform irradiation to reduce the growth of perturbations due to Rayleigh-Taylor (RT) instabilities. The soft X ray drive has much higher ablation rates and is less sensitive to hot electron preheat. A potential disadvantage of indirect drive is the larger scale length of the plasma travelled by the laser beam from the inlet hole to the hohlraum wall. Parametric instabilities in hohlraums have problems because of energy loss and coupling. One of the most important issues for indirect drive is a radiation drive concept which is essentially independent of the driver, such as laser or particle beam. The historical progress of ICF in the USA mainly depended upon the resolution of the fusion database for weaponry. This was a reason to choose indirect drive as the main scheme. Several structures of hohlraum target are described which for a long time were closed to the public. As the minimum energy for ignition depends strongly on the achievable implosion velocity, a great deal of benefit is derived from operating at the highest possible hohlraum temperature and in-flight aspect ratio (IFAR). The conclusion of Chapters 3, 4 and 5 is that achieving an implosion velocity of 3 × 107cm/s with an IFAR-30 Fermi degenerated shell would require a minimum drive temperature of about 200 eV. The hydrodynamic instability, ignition threshold and capsule gain are discussed in Chapter 6. The RT hydrodynamic instability began at the upper limit of the IFAR and hence at the peak implosion velocity. The growth rate of the instability in the acceleration phase was found to be suppressed by the ablation flow at Osaka. Instability during the deceleration phase was primarily stabilized by electron conduction. The combined effects of acceleration, feed-through and deceleration show that the principal modes contributing to perturbations in the fuel have spherical harmonic mode numbers less than about 30-40. The higher modes are rapidly reduced by rarefaction. The lower modes are killed by so-called `fire polishing'. The target uniformity and irradiation uniformity are very effective at suppressing instabilities. The maximum number of e-foldings sets the upper limit of the implosion velocity. This gives the threshold energy of ignition. The minimum capsule energy for ignition for indirect drive is compared with Nuckoll's projections for direct drive. The estimation depends strongly upon the effects of hydrodynamic instability and symmetry in the compressed fuel volume. If the margin of energy is 2, the necessary capsule absorbed energy is about 90 kJ with a radiation temperature of 300 eV. The coupling between driver and capsule is 10-15%, and the driver energy is 0.6-0.9 MJ. The scaling laws for the capsule absorbed power, radius and pulse length with a certain IFAR are given. It is concluded (Chapter 6) that the optimum strategy for gain is operation at the minimum implosion velocity consistent with the desired capsule size and yield, because at the excess implosion velocity the capsules tend to ignite earlier than the optimal point in the compression process. The most crucial issues for the hohlraum target are the coupling efficiency and hohlraum radiation uniformity. Various kinds of devices for hohlraum structures and double cone irradiation schemes have been investigated. These technological developments are energetically described. The implosion symmetry reproducibility (Chapters 7 and 8) for the Precision Nova advanced system meets the requirement of 1% uniformity for ignition experiment time averaged flux. Combined tests of symmetry and hydrodynamic instability as well as the hohlraum plasma conditions estimating the simulated Brillouin scattering (SBS) and simulated Raman scattering (SRS) effects and their influence on the hot electron preheat are summarized in Chapters 9, 10 and 11. The tolerable fraction of hot electrons for keeping the DT fuel preheat at approximately the Fermi specific energy indicates that direct drive capsules are 3 to 4 times larger than the indirect drive capsules. As a conclusion, Chapters 12 and 13 are proudly devoted to the National Ignition Facility and ignition targets. The NIF has a 192 beam, frequency tripled Nd:glass laser system with routine target energies and powers of 1.8 MJ and 500 TW, appropriately pulse shaped. The 192 beams are clustered in groups of 4, so that there are effectively 8 spots in each of the inner cones, and 16 in the outer cones in the hohlraum. Each cluster of 4 beams combines to form an effective f/8 optic. Various kinds of target design are described, for instance, a baseline design 300 eV hohlraum capsule, which absorbs 1.35 MJ of light, an ignition point hydrocarbon (CH) capsule, which is aimed at determining the requirements for symmetry, stability and ignition, and a lower temperature 250 eV capsule with a beryllium ablator, which provides a trade-off between hydroinstabilities and laser-plasma effects. The NIF baseline capsule designs absorb 150 kJ, of which about 25 kJ ends up in the compressed fuel. The central temperature increases to 10 keV when the capsule produces 400 kJ. The fuel energy gain is about 16 at ignition, or when the alpha particle deposition is about 3 times the initial energy delivered to the compressed fuel. The NIF baseline targets are then expected to yield up to 15 MJ and a fuel gain of about 600. Estimates based on NOVA experiments and modelling indicate that SBS, SRS and other plasma hazard processes can be kept within acceptable limits. If these are not attained, the ultimate recourse is to increase the hohlraum size, reduce the laser intensity and reduce the drive temperature to that of the 250 eV design, which has significantly less plasma. The remaining uncertainties can be mitigated by changes in the target design. The author has confidence ignition will be achieved in NIF, which seems to be strongly supported by the Centurion-Halite underground nuclear experiments demonstrating the excellent performance and the basic feasibility of achieving high gain. He thoughtfully adds a comment that developments in direct drive have reached the point where this approach also looks quite promising. NIF will be able to shift rapidly ( <= 1 d) between indirect drive and direct drive. Finally, the short last chapter (Chapter 13) gives an overview on the greatest potential for future ICF power plants. In a book review, questions are usually asked about the readers the book is primarily intended for, whether the book is written at the appropriate level for those readers and whether there are other books that achieve similar objectives. The last section of the Preface states that this book provides an in-depth analysis of theoretical and experimental work on indirect drive ICF classified up to 1994, as well as work carried out throughout the world. It is intended to serve as a reference guide for researchers in the field. Each topic covered contains enough introductory material that the book can also be used at the graduate level by students or newly interested researchers. Most of the laser technology and diagnostic development are not covered at all. To this reviewer that statement is a succinct summary of what the book achieves. Working fusion physicists, particularly in ICF, will find the book to be both instructive and enjoyable. As a secondary market, the book could well be used as a text for a graduate course in laser plasma physics, although some parts are like review papers. As to which books cover some of the same material, W.L. Kruer published Physics of Laser Plasma Interactions (Addison-Wesley, Redwood City, CA, 1988), which is suitable as a textbook for graduate students and also for the plasma physicist in general and C. Yamanaka published Introduction to Laser Fusion (Harwood Academic, Chur, 1991), which is the only book treating implosion physics, lasers, target design and diagnostics prior to the USDOE's declassification. As for the Handbook of Plasma Physics series (edited by M.N. Rosenbluth and R.Z. Sagdeev), Vol. 3, Physics of Laser Plasma (edited by A.H. Rubenchik and S. Witkowski) (Elsevier Science, Amsterdam, 1991) comes to mind. However, this last book is larger, and covers somewhat diverse topics. The typography of the book presently under review is also much to be preferred. In summary, I would strongly recommend the book by Lindl to my colleagues in plasma physics, particularly to those engaged in ICF.

  5. Dual sub-picosecond and sub-nanosecond laser system

    NASA Astrophysics Data System (ADS)

    Xie, Xinglong; Liu, Fengqiao; Yang, Jingxin; Yang, Xin; Li, Meirong; Xue, Zhiling; Gao, Qi; Guan, Fuyi; Zhang, Weiqing; Huang, Guanlong; Zhuang, Yifei; Han, Aimei; Lin, Zunqi

    2003-11-01

    A high power laser system delivering a 20-TW, 0.5 - 0.8 ps ultra-short laser pulse and a 20-J, 500-ps long pulse simultaneously in one shot is completed. This two-beam laser operates at the wavelength of 1053 nm and uses Nd doped glass as the gain media of the main amplification chain. The chirped-pulse amplification (CPA) technology is used to compress the stretched laser pulse. After compression, the ultrashort laser pulse is measured: energy above 16.0 J, S/N contrast ratio ~ 10^(5) : 1, filling factor ~>52.7%. Another long pulse beam is a non-compressed chirped laser pulse, which is measured: energy ~ 20 J, pulse duration 500 ps. The two beams are directed onto the target surface at an angle of 15°.

  6. Formation of nanosecond SBS-compressed pulses for pumping an ultra-high power parametric amplifier

    NASA Astrophysics Data System (ADS)

    Kuz’min, A. A.; Kulagin, O. V.; Rodchenkov, V. I.

    2018-04-01

    Compression of pulsed Nd : glass laser radiation under stimulated Brillouin scattering (SBS) in perfluorooctane is investigated. Compression of 16-ns pulses at a beam diameter of 30 mm is implemented. The maximum compression coefficient is 28 in the optimal range of laser pulse energies from 2 to 4 J. The Stokes pulse power exceeds that of the initial laser pulse by a factor of about 11.5. The Stokes pulse jitter (fluctuations of the Stokes pulse exit time from the compressor) is studied. The rms spread of these fluctuations is found to be 0.85 ns.

  7. Seeding magnetic fields for laser-driven flux compression in high-energy-density plasmas.

    PubMed

    Gotchev, O V; Knauer, J P; Chang, P Y; Jang, N W; Shoup, M J; Meyerhofer, D D; Betti, R

    2009-04-01

    A compact, self-contained magnetic-seed-field generator (5 to 16 T) is the enabling technology for a novel laser-driven flux-compression scheme in laser-driven targets. A magnetized target is directly irradiated by a kilojoule or megajoule laser to compress the preseeded magnetic field to thousands of teslas. A fast (300 ns), 80 kA current pulse delivered by a portable pulsed-power system is discharged into a low-mass coil that surrounds the laser target. A >15 T target field has been demonstrated using a <100 J capacitor bank, a laser-triggered switch, and a low-impedance (<1 Omega) strip line. The device has been integrated into a series of magnetic-flux-compression experiments on the 60 beam, 30 kJ OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. The initial application is a novel magneto-inertial fusion approach [O. V. Gotchev et al., J. Fusion Energy 27, 25 (2008)] to inertial confinement fusion (ICF), where the amplified magnetic field can inhibit thermal conduction losses from the hot spot of a compressed target. This can lead to the ignition of massive shells imploded with low velocity-a way of reaching higher gains than is possible with conventional ICF.

  8. Effect of the carrier-envelope phase of the driving laser field on the high-order harmonic attosecond pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng Zhinan; Li Ruxin; Yu Wei

    2003-01-01

    The effect of the carrier-envelope phase of a few-cycle driving laser field on the generation and measurement of high-order harmonic attosecond pulses is investigated theoretically. We find that the position of the generated attosecond soft-x-ray pulse in the cutoff region is locked to the oscillation of the driving laser field, but not to the envelope of the laser pulse. This property ensures the success of the width measurement of an attosecond soft-x-ray pulse based on the cross correlation between the attosecond pulse and its driving laser pulse [M. Hentschel et al., Nature (London) 414, 509 (2001)]. However, there still existsmore » a timing jitter of the order of tens of attoseconds between the attosecond pulse and its driving laser field. We also propose a method to detect the carrier-envelope phase of the driving laser field by measuring the spatial distribution of the photoelectrons induced by the attosecond soft-x-ray pulse and its driving laser pulse.« less

  9. Performance characteristics of an excimer laser (XeCl) with single-stage magnetic pulse compression

    NASA Astrophysics Data System (ADS)

    Varshnay, N. K.; Singh, A.; Benerji, N. S.

    2017-02-01

    Performance characteristics of an excimer laser (XeCl) with single-stage magnetic pulse compression suitable for material processing applications are presented here. The laser incorporates in-built compact gas circulation and gas cooling to ensure fresh gas mixture between the electrodes for repetitive operation. A magnetically coupled tangential blower is used for gas circulation inside the laser chamber for repetitive operation. The exciter consists of C-C energy transfer circuit and thyratron is used as a high-voltage main switch with single-stage magnetic pulse compression (MPC) between thyratron and the laser electrodes. Low inductance of the laser head and uniform and intense pre-ionization are the main features of the electric circuit used in the laser. A 250 ns rise time voltage pulse was compressed to 100 ns duration with a single-stage magnetic pulse compressor using Ni-Zn ferrite cores. The laser can generate about 150 mJ at ˜100 Hz rep-rate reliably from a discharge volume of 100 cm 3. 2D spatial laser beam profile generated is presented here. The profile shows that the laser beam is completely filled with flat-top which is suitable for material processing applications. The SEM image of the microhole generated on copper target is presented here.

  10. Anomalous yield reduction in direct-drive deuterium/tritium implosions due to 3He addition

    NASA Astrophysics Data System (ADS)

    Herrmann, H. W.; Langenbrunner, J. R.; Mack, J. M.; Cooley, J. H.; Wilson, D. C.; Evans, S. C.; Sedillo, T. J.; Kyrala, G. A.; Caldwell, S. E.; Young, C. S.; Nobile, A.; Wermer, J.; Paglieri, S.; McEvoy, A. M.; Kim, Y.; Batha, S. H.; Horsfield, C. J.; Drew, D.; Garbett, W.; Rubery, M.; Glebov, V. Yu.; Roberts, S.; Frenje, J. A.

    2009-05-01

    Glass capsules were imploded in direct drive on the OMEGA laser [Boehly et al., Opt. Commun. 133, 495 (1997)] to look for anomalous degradation in deuterium/tritium (DT) yield and changes in reaction history with H3e addition. Such anomalies have previously been reported for D/H3e plasmas but had not yet been investigated for DT/H3e. Anomalies such as these provide fertile ground for furthering our physics understanding of inertial confinement fusion implosions and capsule performance. Anomalous degradation in the compression component of yield was observed, consistent with the "factor of 2" degradation previously reported by Massachusetts Institute of Technology (MIT) at a 50% H3e atom fraction in D2 using plastic capsules [Rygg, Phys. Plasmas 13, 052702 (2006)]. However, clean calculations (i.e., no fuel-shell mixing) predict the shock component of yield quite well, contrary to the result reported by MIT but consistent with Los Alamos National Laboratory results in D2/H3e [Wilson et al., J. Phys.: Conf. Ser. 112, 022015 (2008)]. X-ray imaging suggests less-than-predicted compression of capsules containing H3e. Leading candidate explanations are poorly understood equation of state for gas mixtures and unanticipated particle pressure variation with increasing H3e addition.

  11. Collapsing Radiative Shocks in Xenon Gas on the Omega Laser

    NASA Astrophysics Data System (ADS)

    Reighard, A. B.; Glendinning, S. G.; Knauer, J.; Bouquet, S.; Koenig, M.

    2005-10-01

    A number of astrophysical systems involve radiative shocks that collapse spatially in response to energy lost through radiation, producing thin shells believed to be Vishniac unstable. We report experiments intended to study such collapsing shocks. The Omega laser drives a thin slab of material at >100 km/s through Xe gas. Simulations predict a collapsed layer in which the density reaches 45 times initial density. X-ray backlighting techniques have yielded images of a collapsed shock compressed to <1/25 its initial thickness (45 μm) at a speed of ˜100 km/s when the shock has traveled 1.3 mm. Optical depth before and behind the shock is important for comparison to astrophysical systems. This research was sponsored by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Research Grants DE-FG52-03NA00064, DE-FG53-2005-NA26014, and other grants and contracts.

  12. Gain compression and its dependence on output power in quantum dot lasers

    NASA Astrophysics Data System (ADS)

    Zhukov, A. E.; Maximov, M. V.; Savelyev, A. V.; Shernyakov, Yu. M.; Zubov, F. I.; Korenev, V. V.; Martinez, A.; Ramdane, A.; Provost, J.-G.; Livshits, D. A.

    2013-06-01

    The gain compression coefficient was evaluated by applying the frequency modulation/amplitude modulation technique in a distributed feedback InAs/InGaAs quantum dot laser. A strong dependence of the gain compression coefficient on the output power was found. Our analysis of the gain compression within the frame of the modified well-barrier hole burning model reveals that the gain compression coefficient decreases beyond the lasing threshold, which is in a good agreement with the experimental observations.

  13. Laser Imprint Suppression for Spike Pulseshapes using a Thin High-Z Overcoat

    NASA Astrophysics Data System (ADS)

    Karasik, Max; Aglitskiy, Y.; Oh, J.; Weaver, J. L.; Bates, J. W.; Serlin, V.; Obenschain, S. P.

    2013-10-01

    In directly driven ICF, most of the laser imprint is expected to occur during the initial part of the laser pulse, which generates the first shocks necessary to compress the target to achieve high gain. Previous experiments where the laser pulse had a low intensity foot to generate the first shock found that a thin (< 1000 Å) high-Z overcoat is effective in suppressing imprint [PoP 9, 2234 (2002)]. The overcoat initially absorbs the laser and emits soft x-rays that ablate the target, allowing a large stand-off distance between laser absorption and ablation and giving higher ablation velocity. The coating is thin so that it becomes transparent to the main part of the pulse, minimizing x-ray preheat. The present experiments aim to extend this method to spike pulseshapes used in current target designs, with a view to direct drive on the NIF. Measurements of RT-amplified areal mass non-uniformity on planar targets driven by ISI-smoothed Nike KrF laser are made by curved crystal x-ray radiography. X-ray flux from the high-Z layer is monitored using absolutely calibrated time-resolved x-ray spectrometers. Simultaneous side-on radiography allows observation of the layer dynamics as well as target trajectory. The effect on imprint as well as pre-imposed ripple growth will be presented. Work supported by DOE/NNSA.

  14. Ionizing laser propagation and spectral phase determination

    NASA Astrophysics Data System (ADS)

    Mittelberger, D. E.; Nakamura, K.; Lehe, R.; Gonsalves, A. J.; Benedetti, C.; Mao, H.-S.; Daniels, J.; Dale, N.; Swanson, K. K.; Esarey, E.; Leemans, W. P.

    2017-03-01

    Ionization-induced blueshifting is investigated through INF&RNO simulations and experimental studies at the Berkeley Laboratory Laser Accelerator (BELLA) Center. The effects of spectral phase and optical compression are explored. An in-situ method for verifying the spectral phase of an intense laser pulse at focus is presented, based on the effects of optical compression on the morphology of the blueshifted laser spectra.

  15. Pulse Power Compression by Cutting a Dense Z-Pinch with a Laser Beam

    NASA Astrophysics Data System (ADS)

    Winterberg, F.

    1999-07-01

    A thin cut made through a z-pinch by an intense laser beam can become a magnetically insulated diode crossed by an intense ion beam. For larger cuts, the gap is crossed by an intense relativistic electron beam, stopped by magnetic bremsstrahlung resulting in a pointlike intense x-ray source. In either case, the impedance of the pinch discharge is increased, with the power delivered rising in the same pro-portion. A magnetically insulated cut is advantageous for three reasons: First, with the ion current com-parable to the Alfvèn ion current, the pinch instabilities are reduced. Second, with the energy deposit-ed into fast ions, a non-Maxwellian velocity distribution is established increasing<σ ν> value for nuclear fusion reactions taking place in the pinch discharge. Third, in a high density z-pinch plasma, the intense ion beam can launch a thermonuclear detonation wave propagating along the pinch discharge channel. For larger cuts the soft x-rays produced by magnetic bremsstrahlung can be used to drive a thermonuclear hohlraum target. Finally, the proposed pulse power compression scheme permits to use a cheap low power d.c. source charging a magnetic storage coil delivering the magnetically stored energy to the pinch discharge load by an exploding wire opening switch.

  16. Process and application of shock compression by nanosecond pulses of frequency-doubled Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Sano, Yuji; Kimura, Motohiko; Mukai, Naruhiko; Yoda, Masaki; Obata, Minoru; Ogisu, Tatsuki

    2000-02-01

    The authors have developed a new process of laser-induced shock compression to introduce a residual compressive stress on material surface, which is effective for prevention of stress corrosion cracking (SCC) and enhancement of fatigue strength of metal materials. The process developed is unique and beneficial. It requires no pre-conditioning for the surface, whereas the conventional process requires that the so-called sacrificial layer is made to protect the surface from damage. The new process can be freely applied to water- immersed components, since it uses water-penetrable green light of a frequency-doubled Nd:YAG laser. The process developed has the potential to open up new high-power laser applications in manufacturing and maintenance technologies. The laser-induced shock compression process (LSP) can be used to improve a residual stress field from tensile to compressive. In order to understand the physics and optimize the process, the propagation of a shock wave generated by the impulse of laser irradiation and the dynamic response of the material were analyzed by time-dependent elasto-plastic calculations with a finite element program using laser-induced plasma pressure as an external load. The analysis shows that a permanent strain and a residual compressive stress remain after the passage of the shock wave with amplitude exceeding the yield strength of the material. A practical system materializing the LSP was designed, manufactured, and tested to confirm the applicability to core components of light water reactors (LWRs). The system accesses the target component and remotely irradiates laser pulses to the heat affected zone (HAZ) along weld lines. Various functional tests were conducted using a full-scale mockup facility, in which remote maintenance work in a reactor vessel could be simulated. The results showed that the system remotely accessed the target weld lines and successfully introduced a residual compressive stress. After sufficient training for operational personnel, the system was applied to the core shroud of an existing nuclear power plant.

  17. Plasma Gradient Piston: a new approach to precision pulse shaping

    NASA Astrophysics Data System (ADS)

    Prisbrey, Shon T.

    2011-10-01

    We have successfully developed a method to create shaped pressure drives from large shocks that can be applied to a wide variety of experimental platforms. The method consists of transforming a large shock or blast wave into a ramped pressured drive by utilizing a graded density reservoir that unloads across a gap and stagnates against the sample being studied. The utilization of a graded density reservoir, different materials, and a gap transforms the energy in the initial large shock into a quasi-isentropic ramped compression. Control of the ramp history is via the size of the initial shock, the chosen reservoir materials, their densities, the thickness of each density layer, and the gap size. There are two keys to utilizing this approach to create ramped drives: the ability to produce a large shock, and making the layered density reservoir. A number of facilities can produce the strong initial shock (Z, Omega, NIF, Phoenix, high explosives, NIKE, LMJ, pulsed power,...). We have demonstrated ramped drives from 0.5 to 1.5 Mbar utilizing a large shock created at the Omega laser facility. We recently concluded a pair of NIF drive shots where we successfully converted a hohlraum-generated shock into a stepped, ramped pressure drive with a peak pressure of ~4 - 5 Mbar in a Ta sample. We will explain the basic concepts needed for producing a ramped pressure drive, compare experimental data with simulations from Omega (Pmax ~ 1 Mbar) and NIF (Pmax ~ 5-10 Mbar), and present designs for ramped, staged-shock designs up to Pmax ~ 30 Mbar. The approach that we have developed enables precision pulse shaping of the drive (applied pressure vs. time) via target characteristics, as opposed to tailoring laser power vs time or Z-pinch facility current vs time. This enables ramped, quasi-isentropic materials studies to be performed on a wide variety of HED facilities. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-490532.

  18. Dynamic response and residual stress fields of Ti6Al4V alloy under shock wave induced by laser shock peening

    NASA Astrophysics Data System (ADS)

    Sun, Rujian; Li, Liuhe; Zhu, Ying; Zhang, Lixin; Guo, Wei; Peng, Peng; Li, Bo; Guo, Chao; Liu, Lei; Che, Zhigang; Li, Weidong; Sun, Jianfei; Qiao, Hongchao

    2017-09-01

    Laser shock peening (LSP), an innovative surface treatment technique, generates compressive residual stress on the surface of metallic components to improve their fatigue performance, wear resistance and corrosion resistance. To illustrate the dynamic response during LSP and residual stress fields after LSP, this study conducted FEM simulations of LSP in a Ti6Al4V alloy. Results showed that when power density was 7 GW cm-2, a plastic deformation occurred at 10 ns during LSP and increased until the shock pressure decayed below the dynamic yield strength of Ti6Al4V after 60 ns. A maximum tensile region appeared beneath the surface at around 240 ns, forming a compressive-tensile-compressive stress sandwich structure with a thickness of 98, 1020 and 606 μm for each layer. After the model became stabilized, the value of the surface residual compressive stress was 564 MPa at the laser spot center. Higher value of residual stress across the surface and thicker compressive residual stress layers were achieved by increasing laser power density, impact times and spot sizes during LSP. A ‘Residual stress hole’ occurred with a high laser power density of 9 GW cm-2 when laser pulse duration was 10 ns, or with a long laser pulse duration of 20 ns when laser power density was 7 GW cm-2 for Ti6Al4V. This phenomenon occurred because of the permanent reverse plastic deformation generated at laser spot center.

  19. APPLICATIONS OF LASERS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Laser system based on a commercial microwave oscillator with time compression of a microwave pump pulse

    NASA Astrophysics Data System (ADS)

    Arteev, M. S.; Vaulin, V. A.; Slinko, V. N.; Chumerin, P. Yu; Yushkov, Yu G.

    1992-06-01

    An analysis is made of the possibility of using a commercial microsecond microwave oscillator, supplemented by a device for time compression of microwave pulses, in pumping of industrial lasers with a high efficiency of conversion of the pump source energy into laser radiation. The results are reported of preliminary experiments on the commissioning of an excimer XeCl laser.

  20. Generation of short and intense attosecond pulses

    NASA Astrophysics Data System (ADS)

    Khan, Sabih Ud Din

    Extremely broad bandwidth attosecond pulses (which can support 16as pulses) have been demonstrated in our lab based on spectral measurements, however, compensation of intrinsic chirp and their characterization has been a major bottleneck. In this work, we developed an attosecond streak camera using a multi-layer Mo/Si mirror (bandwidth can support ˜100as pulses) and position sensitive time-of-flight detector, and the shortest measured pulse was 107.5as using DOG, which is close to the mirror bandwidth. We also developed a PCGPA based FROG-CRAB algorithm to characterize such short pulses, however, it uses the central momentum approximation and cannot be used for ultra-broad bandwidth pulses. To facilitate the characterization of such pulses, we developed PROOF using Fourier filtering and an evolutionary algorithm. We have demonstrated the characterization of pulses with a bandwidth corresponding to ˜20as using synthetic data. We also for the first time demonstrated single attosecond pulses (SAP) generated using GDOG with a narrow gate width from a multi-cycle driving laser without CE-phase lock, which opens the possibility of scaling attosecond photon flux by extending the technique to peta-watt class lasers. Further, we generated intense attosecond pulse trains (APT) from laser ablated carbon plasmas and demonstrated ˜9.5 times more intense pulses as compared to those from argon gas and for the first time demonstrated a broad continuum from a carbon plasma using DOG. Additionally, we demonstrated ˜100 times enhancement in APT from gases by switching to 400 nm (blue) driving pulses instead of 800 nm (red) pulses. We measured the ellipticity dependence of high harmonics from blue pulses in argon, neon and helium, and developed a simple theoretical model to numerically calculate the ellipticity dependence with good agreement with experiments. Based on the ellipticity dependence, we proposed a new scheme of blue GDOG which we predict can be employed to extract intense SAP from an APT driven by blue laser pulses. We also demonstrated compression of long blue pulses into >240 microJ broad-bandwidth pulses using neon filled hollow core fiber, which is the highest reported pulse energy of short blue pulses. However, compression of phase using chirp mirrors is still a technical challenge.

  1. Beam collimation and energy spectrum compression of laser-accelerated proton beams using solenoid field and RF cavity

    NASA Astrophysics Data System (ADS)

    Teng, J.; Gu, Y. Q.; Zhu, B.; Hong, W.; Zhao, Z. Q.; Zhou, W. M.; Cao, L. F.

    2013-11-01

    This paper presents a new method of laser produced proton beam collimation and spectrum compression using a combination of a solenoid field and a RF cavity. The solenoid collects laser-driven protons efficiently within an angle that is smaller than 12 degrees because it is mounted few millimeters from the target, and collimates protons with energies around 2.3 MeV. The collimated proton beam then passes through a RF cavity to allow compression of the spectrum. Particle-in-cell (PIC) simulations demonstrate the proton beam transport in the solenoid and RF electric fields. Excellent energy compression and collection efficiency of protons are presented. This method for proton beam optimization is suitable for high repetition-rate laser acceleration proton beams, which could be used as an injector for a conventional proton accelerator.

  2. Magnetic field effects on ultrafast lattice compression dynamics of Si(111) crystal when excited by linearly-polarized femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Hatanaka, Koji; Odaka, Hideho; Ono, Kimitoshi; Fukumura, Hiroshi

    2007-03-01

    Time-resolved X-ray diffraction measurements of Si (111) single crystal are performed when excited by linearly-polarized femtosecond laser pulses (780 nm, 260 fs, negatively-chirped, 1 kHz) under a magnetic field (0.47 T). Laser fluence on the sample surface is 40 mJ/cm^2, which is enough lower than the ablation threshold at 200 mJ/cm^2. Probing X-ray pulses of iron characteristic X-ray lines at 0.193604 and 0.193998 nm are generated by focusing femtosecond laser pulses onto audio-cassette tapes in air. Linearly-polarized femtosecond laser pulse irradiation onto Si(111) crystal surface induces transient lattice compression in the picosecond time range, which is confirmed by transient angle shift of X-ray diffraction to higher angles. Little difference of compression dynamics is observed when the laser polarization is changed from p to s-pol. without a magnetic field. On the other hand, under a magnetic field, the lattice compression dynamics changes when the laser is p-polarized which is vertical to the magnetic field vector. These results may be assigned to photo-carrier formation and energy-band distortion.

  3. Flow speed of the ablation vapors generated during laser drilling of CFRP with a continuous-wave laser beam

    NASA Astrophysics Data System (ADS)

    Faas, S.; Freitag, C.; Boley, S.; Berger, P.; Weber, R.; Graf, T.

    2017-03-01

    The hot plume of ablation products generated during the laser drilling process of carbon fiber reinforced plastics (CFRP) with a continuous-wave laser beam was analyzed by means of high-speed imaging. The formation of compression shocks was observed within the flow of the evaporated material, which is an indication of flow speeds well above the local speed of sound. The flow speed of the hot ablation products can be estimated by analyzing the position of these compression shocks. We investigated the temporal evolution of the flow speed during the drilling process and the influence of the average laser power on the flow speed. The flow speed increases with increasing average laser powers. The moment of drilling through the material changes the conditions for the drilling process and was confirmed to influence the flow speed of the ablated material. Compression shocks can also be observed during laser cutting of CFRP with a moving laser beam.

  4. Demonstration of coherent addition of multiple gratings for high-energy chirped-pulse-amplified lasers.

    PubMed

    Kessler, Terrance J; Bunkenburg, Joachim; Huang, Hu; Kozlov, Alexei; Meyerhofer, David D

    2004-03-15

    Petawatt solid-state lasers require meter-sized gratings to reach multiple-kilojoule energy levels without laser-induced damage. As an alternative to large single gratings, we demonstrate that smaller, coherently added (tiled) gratings can be used for subpicosecond-pulse compression. A Fourier-transform-limited, 650-fs chirped-pulse-amplified laser pulse is maintained by replacing a single compression grating with a tiled-grating assembly. Grating tiling provides a means to scale the energy and irradiance of short-pulse lasers.

  5. Interaction of laser beams with magnetized substance in a strong magnetic field

    NASA Astrophysics Data System (ADS)

    Kuzenov, V. V.

    2018-03-01

    Laser-driven magneto-inertial fusion assumed plasma and magnetic flux compression by quasisymmetric laser-driven implosion of magnetized target. We develop a 2D radiation magnetohydrodynamic code and a formulation for the one-fluid two-temperature equations for simulating compressible non-equilibrium magnetized target plasma. Laser system with pulse radiation with 10 ns duration is considered for numerical experiments. A numerical study of a scheme of magnetized laser-driven implosion in the external magnetic field is carried out.

  6. Confinement of laser plasma expansion with strong external magnetic field

    NASA Astrophysics Data System (ADS)

    Tang, Hui-bo; Hu, Guang-yue; Liang, Yi-han; Tao, Tao; Wang, Yu-lin; Hu, Peng; Zhao, Bin; Zheng, Jian

    2018-05-01

    The evolutions of laser ablation plasma, expanding in strong (∼10 T) transverse external magnetic field, were investigated in experiments and simulations. The experimental results show that the magnetic field pressure causes the plasma decelerate and accumulate at the plasma-field interface, and then form a low-density plasma bubble. The saturation size of the plasma bubble has a scaling law on laser energy and magnetic field intensity. Magnetohydrodynamic simulation results support the observation and find that the scaling law (V max ∝ E p /B 2, where V max is the maximum volume of the plasma bubble, E p is the absorbed laser energy, and B is the magnetic field intensity) is effective in a broad laser energy range from several joules to kilo-joules, since the plasma is always in the state of magnetic field frozen while expanding. About 15% absorbed laser energy converts into magnetic field energy stored in compressed and curved magnetic field lines. The duration that the plasma bubble comes to maximum size has another scaling law t max ∝ E p 1/2/B 2. The plasma expanding dynamics in external magnetic field have a similar character with that in underdense gas, which indicates that the external magnetic field may be a feasible approach to replace the gas filled in hohlraum to suppress the wall plasma expansion and mitigate the stimulated scattering process in indirect drive ignition.

  7. Analysis of staged Z-pinch implosion trajectories from experiments on Zebra

    NASA Astrophysics Data System (ADS)

    Ross, Mike P.; Conti, F.; Darling, T. W.; Ruskov, E.; Valenzuela, J.; Wessel, F. J.; Beg, F.; Narkis, J.; Rahman, H. U.

    2017-10-01

    The Staged Z-pinch plasma confinement concept relies on compressing an annular liner of high-Z plasma onto a target plasma column of deuterium fuel. The interface between the liner and target is stable against the Magneto-Rayleigh-Taylor Instability, which leads to effective fuel compression and makes the concept interesting as a potential fusion reactor. The liner initiates as a neutral gas puff, while the target plasma is a partially ionized (Zeff < 10 percent column ejected from a coaxial plasma gun. The Zebra pulsed power generator (1 MA peak current, 100 ns rise time) provides the discharge that ionizes the liner and drives the Z-pinch implosion. Diverse diagnostics observe the 100-300 km/s implosions including silicon diodes, photo-conducting detectors (PCDs), laser shadowgraphy, an XUV framing camera, and a visible streak camera. The imaging diagnostics track instabilities smaller than 0.1 mm, and Z-pinch diameters below 2.5 mm are seen at peak compression. This poster correlates the data from these diagnostics to elucidate implosion behavior dependencies on liner gas, liner pressure, target pressure, and applied, axial-magnetic field. Funded by the Advanced Research Projects Agency - Energy, DE-AR0000569.

  8. Planar temperature measurement in compressible flows using laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J., Jr.; Hollo, Steven D.; Mcdaniel, James C.

    1991-01-01

    A laser-induced iodine fluorescence technique that is suitable for the planar measurement of temperature in cold nonreacting compressible air flows is investigated analytically and demonstrated in a known flow field. The technique is based on the temperature dependence of the broadband fluorescence from iodine excited by the 514-nm line of an argon-ion laser. Temperatures ranging from 165 to 245 K were measured in the calibration flow field. This technique makes complete, spatially resolved surveys of temperature practical in highly three-dimensional, low-temperature compressible flows.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Regan, S.P.

    This volume of the LLE Review, covering the period October--December 1998, includes two articles addressing issues applicable to direct-drive ICF on the National Ignition Facility (NIF): laser-plasma interactions and laser-irradiation uniformity. Additional highlights of the research presented in this issue are: (1) P.B. Radha and S. Skupsky present a novel charged-particle diagnostic that performs simultaneous {rho}R measurements of the fuel, shell, and ablator regions of a compressed ICF target, consisting of an inner DT fuel region, a plastic (CH) shell, and an ablator (CD), by measuring the knock-on deuteron spectrum. (2) F. Dahmani, S. Burns, J. Lambropoulos, S. Papernov, andmore » A. Schmid report results from stress-inhibited laser-driven crack propagation and stress-delayed damage-initiation experiments in fused silica at 351 nm. Research is underway presently to determine the ramifications of these findings for large-aperture systems, such as OMEGA. (3) V. Goncharov presents an analytic theory of the ablative Richtmyer-Meshkov instability, which shows that the main stabilizing mechanism of the ablation-front perturbations is the dynamic overpressure of the blowoff plasma with respect to the target material. The perturbation evolution during the shock transit time is studied to determine the initial conditions for the Rayleigh-Taylor phase of the instability and to analyze the level of laser imprint on ICF direct-drive targets. (4) J.M. Larkin, W.R. Donaldson, T.H. Foster, and R.S. Knox examine the triplet state of rose bengal, a dye used in photodynamic therapy, that is produced by 1,064-nm excitation of T{sub 1}. (5) R. Adam, M. Currie, R. Sobolewski, O. Harnack, and M. Darula report measurements of the picosecond photoresponse of a current-biased YBCO microbridge coupled to a bicrystal YBCO Josephson junction.« less

  10. Measurements and Calculations of Halfraum Radiation Drives at the Omega Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacLaren, S A; Back, C A; Hammer, J H

    2005-01-06

    Thin walled gold halfraums are a common choice for producing x-ray drives in experiments at high-power laser facilities. At the Omega Laser, we use 10 kJ of laser energy in a two-pulse sequence to generate halfraum drive temperatures of 160-190 eV for {approx}3ns. This type of drive is well characterized and reproducible, with characterization of the drive radiation temperature typically performed using the Dante diagnostic. Additionally, calibrated Photoconductive Diamond Detectors (PCDs) are used to measure the drive when it is desirable to utilize the Dante elsewhere in the experiment. Measurements of halfraum drives from both Dante and PCDs are comparedmore » with calculations, with good agreement. This agreement lends the calculations a predictive capability in designing further experiments utilizing halfraum drives.« less

  11. Control of ultra-intense single attosecond pulse generation in laser-driven overdense plasmas.

    PubMed

    Liu, Qingcao; Xu, Yanxia; Qi, Xin; Zhao, Xiaoying; Ji, Liangliang; Yu, Tongpu; Wei, Luo; Yang, Lei; Hu, Bitao

    2013-12-30

    Ultra-intense single attosecond pulse (AP) can be obtained from circularly polarized (CP) laser interacting with overdense plasma. High harmonics are naturally generated in the reflected laser pulses due to the laser-induced one-time drastic oscillation of the plasma boundary. Using two-dimensional (2D) planar particle-in-cell (PIC) simulations and analytical model, we show that multi-dimensional effects have great influence on the generation of AP. Self-focusing and defocusing phenomena occur in front of the compressed plasma boundary, which lead to the dispersion of the generated AP in the far field. We propose to control the reflected high harmonics by employing a density-modulated foil target (DMFT). When the target density distribution fits the laser intensity profile, the intensity of the attosecond pulse generated from the center part of the plasma has a flatten profile within the center range in the transverse direction. It is shown that a single 300 attosecond (1 as = 10(-18)s) pulse with the intensity of 1.4 × 10(21) W cm(-2) can be naturally generated. Further simulations reveal that the reflected high harmonics properties are highly related to the modulated density distribution and the phase offset between laser field and the carrier envelope. The emission direction of the AP generated from the plasma boundary can be controlled in a very wide range in front of the plasma surface by combining the DMFT and a suitable driving laser.

  12. Laser Optical Disk: The Coming Revolution in On-Line Storage.

    ERIC Educational Resources Information Center

    Fujitani, Larry

    1984-01-01

    Review of similarities and differences between magnetic-based and optical disk drives includes a discussion of the electronics necessary for their operation; describes benefits, possible applications, and future trends in development of laser-based drives; and lists manufacturers of laser optical disk drives. (MBR)

  13. Effects of laser source parameters on the generation of narrow band and directed laser ultrasound

    NASA Technical Reports Server (NTRS)

    Spicer, James B.; Deaton, John B., Jr.; Wagner, James W.

    1992-01-01

    Predictive and prescriptive modeling of laser arrays is performed to demonstrate the effects of the extension of array elements on laser array performance. For a repetitively pulsed laser source (the temporal laser array), efficient frequency compression is best achieved by detecting longitudinal waves off-epicenter in plates where the source size and shape directly influence the longitudinal wave shape and duration; the longitudinal array may be tailored for a given repetition frequency to yield efficient overtone energy compression into the fundamental frequency band. For phased arrays, apparent array directivity is heavily influenced by array element size.

  14. Laser pulse self-compression in an active fibre with a finite gain bandwidth under conditions of a nonstationary nonlinear response

    NASA Astrophysics Data System (ADS)

    Balakin, A. A.; Litvak, A. G.; Mironov, V. A.; Skobelev, S. A.

    2018-04-01

    We study the influence of a nonstationary nonlinear response of a medium on self-compression of soliton-like laser pulses in active fibres with a finite gain bandwidth. Based on the variational approach, we qualitatively analyse the self-action of the wave packet in the system under consideration in order to classify the main evolution regimes and to determine the minimum achievable laser pulse duration during self-compression. The existence of stable soliton-type structures is shown in the framework of the parabolic approximation of the gain profile (in the approximation of the Gnizburg – Landau equation). An analysis of the self-action of laser pulses in the framework of the nonlinear Schrödinger equation with a sign-constant gain profile demonstrate a qualitative change in the dynamics of the wave field in the case of a nonsta­tionary nonlinear response that shifts the laser pulse spectrum from the amplification region and stops the pulse compression. Expressions for a minimum duration of a soliton-like laser pulse are obtained as a function of the problem parameters, which are in good agreement with the results of numerical simulation.

  15. Shock drive capabilities of a 30-Joule laser at the matter in extreme conditions hutch of the Linac Coherent Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Shaughnessy Brennan; Hashim, Akel; Gleason, Arianna

    In this paper, we measure the shock drive capabilities of a 30 J, nanosecond, 527 nm laser system at the matter in extreme conditions hutch of the Linac Coherent Light Source. Using a velocity interferometer system for any reflector, we ascertain the maximum instantaneous ablation pressure and characterize its dependence on a drive laser spot size, spatial profile, and temporal profile. We also examine the effects of these parameters on shock spatial and temporal uniformity. Our analysis shows the drive laser capable of generating instantaneous ablation pressures exceeding 160 GPa while maintaining a 1D shock profile. We find that slopemore » pulses provide higher instantaneous ablation pressures than plateau pulses. Our results show instantaneous ablation pressures comparable to those measured at the Omega Laser Facility in Rochester, NY under similar optical drive parameters. In conclusion, we analyze how optical laser ablation pressures are compare with known scaling relations, accounting for variable laser wavelengths.« less

  16. Shock drive capabilities of a 30-Joule laser at the matter in extreme conditions hutch of the Linac Coherent Light Source

    DOE PAGES

    Brown, Shaughnessy Brennan; Hashim, Akel; Gleason, Arianna; ...

    2017-10-23

    In this paper, we measure the shock drive capabilities of a 30 J, nanosecond, 527 nm laser system at the matter in extreme conditions hutch of the Linac Coherent Light Source. Using a velocity interferometer system for any reflector, we ascertain the maximum instantaneous ablation pressure and characterize its dependence on a drive laser spot size, spatial profile, and temporal profile. We also examine the effects of these parameters on shock spatial and temporal uniformity. Our analysis shows the drive laser capable of generating instantaneous ablation pressures exceeding 160 GPa while maintaining a 1D shock profile. We find that slopemore » pulses provide higher instantaneous ablation pressures than plateau pulses. Our results show instantaneous ablation pressures comparable to those measured at the Omega Laser Facility in Rochester, NY under similar optical drive parameters. In conclusion, we analyze how optical laser ablation pressures are compare with known scaling relations, accounting for variable laser wavelengths.« less

  17. Pre-loading of components during laser peenforming

    DOEpatents

    Hackel, Lloyd A [Livermore, CA; Halpin, John M [Tracy, CA; Harris, Fritz B [Rocklin, CA

    2003-12-30

    A method and apparatus are provided for forming shapes and contours in metal sections by prestressing a workpiece and generating laser induced compressive stress on the surface of the metal workpiece. The step of prestressing the workpiece is carried out with a jig. The laser process can generate deep compressive stresses to shape even thick components without inducing unwanted tensile stress at the metal surface. The precision of the laser-induced stress enables exact prediction and subsequent contouring of parts.

  18. Active high-power RF switch and pulse compression system

    DOEpatents

    Tantawi, Sami G.; Ruth, Ronald D.; Zolotorev, Max

    1998-01-01

    A high-power RF switching device employs a semiconductor wafer positioned in the third port of a three-port RF device. A controllable source of directed energy, such as a suitable laser or electron beam, is aimed at the semiconductor material. When the source is turned on, the energy incident on the wafer induces an electron-hole plasma layer on the wafer, changing the wafer's dielectric constant, turning the third port into a termination for incident RF signals, and. causing all incident RF signals to be reflected from the surface of the wafer. The propagation constant of RF signals through port 3, therefore, can be changed by controlling the beam. By making the RF coupling to the third port as small as necessary, one can reduce the peak electric field on the unexcited silicon surface for any level of input power from port 1, thereby reducing risk of damaging the wafer by RF with high peak power. The switch is useful to the construction of an improved pulse compression system to boost the peak power of microwave tubes driving linear accelerators. In this application, the high-power RF switch is placed at the coupling iris between the charging waveguide and the resonant storage line of a pulse compression system. This optically controlled high power RF pulse compression system can handle hundreds of Megawatts of power at X-band.

  19. Contour forming of metals by laser peening

    DOEpatents

    Hackel, Lloyd; Harris, Fritz

    2002-01-01

    A method and apparatus are provided for forming shapes and contours in metal sections by generating laser induced compressive stress on the surface of the metal workpiece. The laser process can generate deep compressive stresses to shape even thick components without inducing unwanted tensile stress at the metal surface. The precision of the laser-induced stress enables exact prediction and subsequent contouring of parts. A light beam of 10 to 100 J/pulse is imaged to create an energy fluence of 60 to 200 J/cm.sup.2 on an absorptive layer applied over a metal surface. A tamping layer of water is flowed over the absorptive layer. The absorption of laser light causes a plasma to form and consequently creates a shock wave that induces a deep residual compressive stress into the metal. The metal responds to this residual stress by bending.

  20. Identification marking by means of laser peening

    DOEpatents

    Hackel, Lloyd A.; Dane, C. Brent; Harris, Fritz

    2002-01-01

    The invention is a method and apparatus for marking components by inducing a shock wave on the surface that results in an indented (strained) layer and a residual compressive stress in the surface layer. One embodiment of the laser peenmarking system rapidly imprints, with single laser pulses, a complete identification code or three-dimensional pattern and leaves the surface in a state of deep residual compressive stress. A state of compressive stress in parts made of metal or other materials is highly desirable to make them resistant to fatigue failure and stress corrosion cracking. This process employs a laser peening system and beam spatial modulation hardware or imaging technology that can be setup to impress full three dimensional patterns into metal surfaces at the pulse rate of the laser, a rate that is at least an order of magnitude faster than competing marking technologies.

  1. Development of a broadband reflectivity diagnostic for laser driven shock compression experiments

    DOE PAGES

    Ali, S. J.; Bolme, C. A.; Collins, G. W.; ...

    2015-04-16

    Here, a normal-incidence visible and near-infrared shock wave optical reflectivity diagnostic was constructed to investigate changes in the optical properties of materials under dynamic laser compression. Documenting wavelength- and time-dependent changes in the optical properties of laser-shock compressed samples has been difficult, primarily due to the small sample sizes and short time scales involved, but we succeeded in doing so by broadening a series of time delayed 800-nm pulses from an ultrafast Ti:sapphire laser to generate high-intensity broadband light at nanosecond time scales. This diagnostic was demonstrated over the wavelength range 450–1150 nm with up to 16 time displaced spectramore » during a single shock experiment. Simultaneous off-normal incidence velocity interferometry (velocity interferometer system for any reflector) characterized the sample under laser-compression and also provided an independent reflectivity measurement at 532 nm wavelength. The shock-driven semiconductor-to-metallic transition in germanium was documented by the way of reflectivity measurements with 0.5 ns time resolution and a wavelength resolution of 10 nm.« less

  2. Characterization of particle deformation during compression measured by confocal laser scanning microscopy.

    PubMed

    Guo, H X; Heinämäki, J; Yliruusi, J

    1999-09-20

    Direct compression of riboflavin sodium phosphate tablets was studied by confocal laser scanning microscopy (CLSM). The technique is non-invasive and generates three-dimensional (3D) images. Tablets of 1% riboflavin sodium phosphate with two grades of microcrystalline cellulose (MCC) were individually compressed at compression forces of 1.0 and 26.8 kN. The behaviour and deformation of drug particles on the upper and lower surfaces of the tablets were studied under compression forces. Even at the lower compression force, distinct recrystallized areas in the riboflavin sodium phosphate particles were observed in both Avicel PH-101 and Avicel PH-102 tablets. At the higher compression force, the recrystallization of riboflavin sodium phosphate was more extensive on the upper surface of the Avicel PH-102 tablet than the Avicel PH-101 tablet. The plastic deformation properties of both MCC grades reduced the fragmentation of riboflavin sodium phosphate particles. When compressed with MCC, riboflavin sodium phosphate behaved as a plastic material. The riboflavin sodium phosphate particles were more tightly bound on the upper surface of the tablet than on the lower surface, and this could also be clearly distinguished by CLSM. Drug deformation could not be visualized by other techniques. Confocal laser scanning microscopy provides valuable information on the internal mechanisms of direct compression of tablets.

  3. Accessing Ultrahigh-Pressure, Quasi-Isentropic States of Matter

    NASA Astrophysics Data System (ADS)

    Lorenz, Thomas

    2004-11-01

    A new approach to materials science at extreme pressures has been developed on the OMEGA laser, using a ramped plasma piston drive. The laser drives a shock through a solid plastic reservoir that unloads at the rear free surface, expands across a vacuum gap, and stagnates on the metal sample under study. This produces a gently increasing ram pressure, compressing the sample nearly isentropically. The peak pressure on the sample, diagnosed with VISAR measurements, can be varied by adjusting the laser energy and pulse length, gap size, and reservoir density, and obeys a simple scaling relation. [1] This has been demonstrated at OMEGA at pressures of P = 0.1-2.0 Mbar in Al foils. [2] In an important application, using in-flight x-ray radiography, the material strength of solid-state samples at high pressure can be inferred by measuring the reductions in the growth rates (stabilization) of Rayleigh-Taylor (RT) unstable interfaces. The material strength is predicted to be as much as an order of magnitude higher at P ˜ 1 Mbar than at ambient pressures. Initial RT measurements testing this prediction in foils of Al and V will be shown. We also use TEM microscopy of recovered targets to show that the samples never melted, and the presence of pressure-induced structural defects. [3,4] Experimental designs based on this drive have been developed for the NIF laser, predicting that solid-state samples can be quasi-isentropically driven to pressures an order of magnitude higher than on Omega - accessing new regimes of dense, high-pressure matter. [5] [1] J. Edwards et al., Phys. Rev. Lett., 92, 075002 (2004). [2] K.T. Lorenz et al., submitted, J. Appl. Phys. (2004). [3] J. McNaney et al., in press, Met. Mat. Trans. 35A (2004). [4] E.M. Bringa et al., to be submitted, Nature (2004). [5] B.A. Remington et al., in press, Met. Mat. Trans. 35A (2004). This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

  4. Optical Properties of Compressible Inhomogeneous Shear Layers Relevant to High Power Lasers.

    DTIC Science & Technology

    1987-09-30

    trend of laser development towards shorter wavelenghts , the fluid optics challenge is increased con- siderahly. In general, the conditioning of the gas...tion pattern of laser beams passing through the layer. We hoped to under- ", stand and to predict compressible shear layer growth rate and optical per...layer growth rates for jet Mach numbers of 0.1, 0.3 and n.6 were measured using a Mach-Zehnder interferometer. Interferograms using a He-Ne laser source

  5. Femtosecond timing-jitter between photo-cathode laser and ultra-short electron bunches by means of hybrid compression

    NASA Astrophysics Data System (ADS)

    Pompili, R.; Anania, M. P.; Bellaveglia, M.; Biagioni, A.; Castorina, G.; Chiadroni, E.; Cianchi, A.; Croia, M.; Di Giovenale, D.; Ferrario, M.; Filippi, F.; Gallo, A.; Gatti, G.; Giorgianni, F.; Giribono, A.; Li, W.; Lupi, S.; Mostacci, A.; Petrarca, M.; Piersanti, L.; Di Pirro, G.; Romeo, S.; Scifo, J.; Shpakov, V.; Vaccarezza, C.; Villa, F.

    2016-08-01

    The generation of ultra-short electron bunches with ultra-low timing-jitter relative to the photo-cathode (PC) laser has been experimentally proved for the first time at the SPARC_LAB test-facility (INFN-LNF, Frascati) exploiting a two-stage hybrid compression scheme. The first stage employs RF-based compression (velocity-bunching), which shortens the bunch and imprints an energy chirp on it. The second stage is performed in a non-isochronous dogleg line, where the compression is completed resulting in a final bunch duration below 90 fs (rms). At the same time, the beam arrival timing-jitter with respect to the PC laser has been measured to be lower than 20 fs (rms). The reported results have been validated with numerical simulations.

  6. ORION Low Cost Laser Analysis

    NASA Technical Reports Server (NTRS)

    Phipps, Claude R.

    1996-01-01

    We show that laser-target interaction physics demands the shortest laser pulse of which hardware is capable (but not less than 100 ps) in the ORION ground-based laser concept. We compare two leading ways to achieve such pulses - SRS/SBS cascade compression and grating compression - with the standard MOPA approach, and conclude that the first of these is most robust. However, the state of the art in laser devices will require a year or two to implement these ideas. We present a pulse format and beam footprint protocol which will solve the conflict between relativistic lookahead and beam tilt and should permit all-laser active acquisition and tracking in ORION.

  7. Laser chirp effect on femtosecond laser filamentation generated for pulse compression.

    PubMed

    Park, Juyun; Lee, Jae-Hwan; Nam, Chang H

    2008-03-31

    The influence of laser chirp on the formation of femtosecond laser filamentation in Ar was investigated for the generation of few-cycle high-power laser pulses. The condition for the formation of a single filament has been carefully examined using 28-fs laser pulses with energy over 3 mJ. The filament formation and output spectrum changed very sensitively to the initial laser chirp and gas pressure. Much larger spectral broadening was obtained with positively chirped pulses, compared to the case of negatively chirped pulses that generated much longer filament, and compressed pulses of 5.5 fs with energy of 0.5 mJ were obtained from the filamentation of positively chirped 30-fs laser pulses in a single Ar cell.

  8. Multi-color γ-rays from comb-like electron beams driven by incoherent stacks of laser pulses

    NASA Astrophysics Data System (ADS)

    Kalmykov, S. Y.; Davoine, X.; Ghebregziabher, I.; Shadwick, B. A.

    2017-03-01

    Trains of fs-length, GeV-scale electron bunches with controlled energy spacing and a 5-D brightness up to 1017 A/m2 may be produced in a mm-scale uniform plasma. The main element of the scheme is an incoherent stack of 10-TW-scale laser pulses of different colors, with mismatched focal spots, with the highest-frequency pulse advanced in time. While driving an electron density bubble, this stack remains almost proof against nonlinear red-shift and self-compression. As a consequence, the unwanted continuous injection of background electrons is minimized. Weak focusing of the trailing (lower-frequency) component of the stack enforces expansions and contractions of the bubble, inducing controlled periodic injection. The resulting train of electron bunches maintains exceptional quality while being accelerated beyond the energy limits predicted by accepted scalings. Inverse Thomson scattering from this comb-like beam generates a sequence of quasi-monochromatic, fs-length γ-ray beams, an asset for nuclear forensics and pump-probe experiments in dense plasmas.

  9. Positron Radiography of Ignition-Relevant ICF Capsules

    NASA Astrophysics Data System (ADS)

    Williams, Jackson; Chen, Hui; Field, John; Landen, Nino; Strozzi, David

    2017-10-01

    X-ray and neutron radiography are currently used to infer residual ICF shell and fuel asymmetries and areal density non-uniformities near and at peak compression that can impede ignition. Charged particles offer an alternative probe source that, in principle, are capable of radiographing the shell shape and areal density at arbitrary times, even in the presence of large x-ray self-emission. Laser-generated positrons are evaluated as a source to radiograph ICF capsules where current ultraintense laser facilities are capable of producing 2 ×1012 relativistic positrons in a narrow energy bandwidth and short duration. Monte Carlo simulations suggest that both the areal density and shell radius can be reconstructed for ignition-relevant capsules conditions between 0.002-2 g/cm2, and that this technique might be better suited to direct-drive. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the LDRD Program under project tracking code 17-ERD-010.

  10. Deleterious effects of nonthermal electrons in shock ignition concept.

    PubMed

    Nicolaï, Ph; Feugeas, J-L; Touati, M; Ribeyre, X; Gus'kov, S; Tikhonchuk, V

    2014-03-01

    Shock ignition concept is a promising approach to inertial confinement fusion that may allow obtaining high fusion energy gains with the existing laser technology. However, the spike driving laser intensities in the range of 1-10 PW/cm2 produces the energetic electrons that may have a significant effect on the target performance. The hybrid numerical simulations including a radiation hydrodynamic code coupled to a rapid Fokker-Planck module are used to asses the role of hot electrons in the shock generation and the target preheat in the time scale of 100 ps and spatial scale of 100 μm. It is shown that depending on the electron energy distribution and the target density profile the hot electrons can either increase the shock amplitude or preheat the imploding shell. In particular, the exponential electron energy spectrum corresponding to the temperature of 30 keV in the present HiPER target design preheats the deuterium-tritium shell and jeopardizes its compression. Ways of improving the target performance are suggested.

  11. Numerical analysis of laser-driven reservoir dynamics for shockless loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Mu; Zhang Hongping; Sun Chengwei

    2011-05-01

    Laser-driven plasma loader for shockless compression provides a new approach to study the rapid compression response of materials not attainable in conventional shock experiments. In this method, the strain rate is varied from {approx}10{sup 6}/s to {approx}10{sup 8}/s, significantly higher than other shockless compression methods. Thus, this loading process is attractive in the research of solid material dynamics and astrophysics. The objective of the current study is to demonstrate the dynamic properties of the jet from the rear surface of the reservoir, and how important parameters such as peak load, rise time, shockless compression depth, and stagnating melt depth inmore » the sample vary with laser intensity, laser pulse length, reservoir thickness, vacuum gap size, and even the sample material. Numerical simulations based on the space-time conservation element and solution element method, together with the bulk ablation model, were used. The dynamics of the reservoir depend on the laser intensity, pulse length, equation of state, as well as the molecular structure of the reservoir. The critical pressure condition at which the reservoir will unload, similar to a gas or weak plasma, is 40-80 GPa before expansion. The momentum distribution bulges downward near the front of the plasma jet, which is an important characteristic that determines shockless compression. The total energy density is the most important parameter, and has great influence on the jet characteristics, and consequently on the shockless compression characteristics. If the reservoir is of a single material irradiated at a given laser condition, the relation of peak load and shockless compression depth is in conflict, and the highest loads correspond to the smallest thickness of sample. The temperature of jet front runs up several electron volts after impacting on the sample, and the heat transfer between the stagnating plasma and the sample is sufficiently significant to induce the melting of the sample surface. However, this diffusion heat wave propagates much more slowly than the stress wave, and has minimal effect on the shockless compression progress at a deeper position.« less

  12. Frequency shift measurement in shock-compressed materials

    DOEpatents

    Moore, David S.; Schmidt, Stephen C.

    1985-01-01

    A method for determining molecular vibrational frequencies in shock-compressed transparent materials. A single laser beam pulse is directed into a sample material while the material is shock-compressed from a direction opposite that of the incident laser beam. A Stokes beam produced by stimulated Raman scattering is emitted back along the path of the incident laser beam, that is, in the opposite direction to that of the incident laser beam. The Stokes beam is separated from the incident beam and its frequency measured. The difference in frequency between the Stokes beam and the incident beam is representative of the characteristic frequency of the Raman active mode of the sample. Both the incident beam and the Stokes beam pass perpendicularly through the shock front advancing through the sample, thereby minimizing adverse effects of refraction.

  13. Frequency shift measurement in shock-compressed materials

    DOEpatents

    Moore, D.S.; Schmidt, S.C.

    1984-02-21

    A method is disclosed for determining molecular vibrational frequencies in shock-compressed transparent materials. A single laser beam pulse is directed into a sample material while the material is shock-compressed from a direction opposite that of the incident laser beam. A Stokes beam produced by stimulated Raman scattering is emitted back along the path of the incident laser beam, that is, in the opposite direction to that of the incident laser beam. The Stokes beam is separated from the incident beam and its frequency measured. The difference in frequency between the Stokes beam and the incident beam is representative of the characteristic frequency of the Raman active mode of the sample. Both the incident beam and the Stokes beam pass perpendicularly through the stock front advancing through the sample, thereby minimizing adverse effects of refraction.

  14. Laser-Driven Fusion.

    ERIC Educational Resources Information Center

    Gibson, A. F.

    1980-01-01

    Discusses the present status and future prospects of laser-driven fusion. Current research (which is classified under three main headings: laser-matter interaction processes, compression, and laser development) is also presented. (HM)

  15. Hugoniot and refractive indices of bromoform under shock compression

    NASA Astrophysics Data System (ADS)

    Liu, Q. C.; Zeng, X. L.; Zhou, X. M.; Luo, S. N.

    2018-01-01

    We investigate physical properties of bromoform (liquid CHBr3) including compressibility and refractive index under dynamic extreme conditions of shock compression. Planar shock experiments are conducted along with high-speed laser interferometry. Our experiments and previous results establish a linear shock velocity-particle velocity relation for particle velocities below 1.77 km/s, as well as the Hugoniot and isentropic compression curves up to ˜21 GPa. Shock-state refractive indices of CHBr3 up to 2.3 GPa or ˜26% compression, as a function of density, can be described with a linear relation and follows the Gladstone-Dale relation. The velocity corrections for laser interferometry measurements at 1550 nm are also obtained.

  16. Characterization of short-pulse laser-produced x-rays for diagnosing magnetically driven cylindrical isentropic compression

    NASA Astrophysics Data System (ADS)

    Sawada, Hiroshi; Daykin, Tyler; Bauer, Bruno; Beg, Farhat

    2017-10-01

    We have developed an experimental platform to study material properties of magnetically compressed cylinder using a 1 MA pulsed power generator Zebra and a 50 TW subpicosecond short-pulse laser Leopard at the UNR's Nevada Terawatt Facility. According to a MHD simulation, strong magnetic fields generated by 100 ns rise time Zebra current can quasi-isentropically compress a material to the strongly coupled plasma regime. Taking advantage of the cylindrical geometry, a metal rod can be brought to higher pressures than that in the planar geometry. To diagnose the compressed rod with high precision x-ray measurements, an initial laser-only experiment was carried out to characterize laser-produced x-rays. Interaction of a high-intensity, short-pulse laser with solids produces broadband and monochromatic x-rays with photon energies high enough to probe dense metal rods. Bremsstrahlung was measured with Imaging plate-based filter stack spectrometers and monochromatic 8.0 keV Cu K-alpha was recorded with an absolutely calibrated Bragg crystal spectrometer. The broadband x-ray source was applied to radiography of thick metal objects and different filter materials were tested. The experimental results and a design of a coupled experiment will be presented.

  17. Transparency of the strong shock-compressed diamond for 532 nm laser light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhiyu; Department of Engineering Physics, Tsinghua University, Beijing 100084; Zhao, Yang

    2016-04-15

    An optical reflectivity and transmissivity model for the shock-compressed diamond is established and used to calculate the optical reflectivity and transmissivity of the diamond under different shock compressions. The simulated results indicate that the reflection occurs at the shock front and does not depend on the thickness of the compressed diamond, but the transmissivity decreases with the thickness. The simulated reflectivity is consistent with the experimental results in the literature, which validates the model. It is shown that the diamond keeps transparent when the shock pressure is lower than 2.00 Mbar, and becomes opaque but does not reflect the probemore » laser as the shock pressure increases from 2.00 Mbar to 4.60 Mbar and reflects the probe laser markedly when the shock pressure is higher than 4.60 Mbar.« less

  18. Monitoring compaction and compressibility changes in offshore chalk reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dean, G.; Hardy, R.; Eltvik, P.

    1994-03-01

    Some of the North Sea's largest and most important oil fields are in chalk reservoirs. In these fields, it is important to measure reservoir compaction and compressibility because compaction can result in platform subsidence. Also, compaction drive is a main drive mechanism in these fields, so an accurate reserves estimate cannot be made without first measuring compressibility. Estimating compaction and reserves is difficult because compressibility changes throughout field life. Installing of accurate, permanent downhole pressure gauges on offshore chalk fields makes it possible to use a new method to monitor compressibility -- measurement of reservoir pressure changes caused by themore » tide. This tidal-monitoring technique is an in-situ method that can greatly increase compressibility information. It can be used to estimate compressibility and to measure compressibility variation over time. This paper concentrates on application of the tidal-monitoring technique to North Sea chalk reservoirs. However, the method is applicable for any tidal offshore area and can be applied whenever necessary to monitor in-situ rock compressibility. One such application would be if platform subsidence was expected.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, G. N., E-mail: hall98@llnl.gov; Izumi, N.; Landen, O. L.

    Compton radiography provides a means to measure the integrity, ρR and symmetry of the DT fuel in an inertial confinement fusion implosion near peak compression. Upcoming experiments at the National Ignition Facility will use the ARC (Advanced Radiography Capability) laser to drive backlighter sources for Compton radiography experiments and will use the newly commissioned AXIS (ARC X-ray Imaging System) instrument as the detector. AXIS uses a dual-MCP (micro-channel plate) to provide gating and high DQE at the 40–200 keV x-ray range required for Compton radiography, but introduces many effects that contribute to the spatial resolution. Experiments were performed at energiesmore » relevant to Compton radiography to begin characterization of the spatial resolution of the AXIS diagnostic.« less

  20. Pulse Compression Techniques for Laser Generated Ultrasound

    NASA Technical Reports Server (NTRS)

    Anastasi, R. F.; Madaras, E. I.

    1999-01-01

    Laser generated ultrasound for nondestructive evaluation has an optical power density limit due to rapid high heating that causes material damage. This damage threshold limits the generated ultrasound amplitude, which impacts nondestructive evaluation inspection capability. To increase ultrasound signal levels and improve the ultrasound signal-to-noise ratio without exceeding laser power limitations, it is possible to use pulse compression techniques. The approach illustrated here uses a 150mW laser-diode modulated with a pseudo-random sequence and signal correlation. Results demonstrate the successful generation of ultrasonic bulk waves in aluminum and graphite-epoxy composite materials using a modulated low-power laser diode and illustrate ultrasound bandwidth control.

  1. Laser-pulse compression using magnetized plasmas

    DOE PAGES

    Shi, Yuan; Qin, Hong; Fisch, Nathaniel J.

    2017-02-28

    Proposals to reach the next generation of laser intensities through Raman or Brillouin backscattering have centered on optical frequencies. Higher frequencies are beyond the range of such methods mainly due to the wave damping that accompanies the higher-density plasmas necessary for compressing higher frequency lasers. However, we find that an external magnetic field transverse to the direction of laser propagation can reduce the required plasma density. Using parametric interactions in magnetized plasmas to mediate pulse compression, both reduces the wave damping and alleviates instabilities, thereby enabling higher frequency or lower intensity pumps to produce pulses at higher intensities and longermore » durations. Finally, in addition to these theoretical advantages, our method in which strong uniform magnetic fields lessen the need for high-density uniform plasmas also lessens key engineering challenges or at least exchanges them for different challenges.« less

  2. Real-time compression of raw computed tomography data: technology, architecture, and benefits

    NASA Astrophysics Data System (ADS)

    Wegener, Albert; Chandra, Naveen; Ling, Yi; Senzig, Robert; Herfkens, Robert

    2009-02-01

    Compression of computed tomography (CT) projection samples reduces slip ring and disk drive costs. A lowcomplexity, CT-optimized compression algorithm called Prism CTTM achieves at least 1.59:1 and up to 2.75:1 lossless compression on twenty-six CT projection data sets. We compare the lossless compression performance of Prism CT to alternative lossless coders, including Lempel-Ziv, Golomb-Rice, and Huffman coders using representative CT data sets. Prism CT provides the best mean lossless compression ratio of 1.95:1 on the representative data set. Prism CT compression can be integrated into existing slip rings using a single FPGA. Prism CT decompression operates at 100 Msamp/sec using one core of a dual-core Xeon CPU. We describe a methodology to evaluate the effects of lossy compression on image quality to achieve even higher compression ratios. We conclude that lossless compression of raw CT signals provides significant cost savings and performance improvements for slip rings and disk drive subsystems in all CT machines. Lossy compression should be considered in future CT data acquisition subsystems because it provides even more system benefits above lossless compression while achieving transparent diagnostic image quality. This result is demonstrated on a limited dataset using appropriately selected compression ratios and an experienced radiologist.

  3. Nuclear propulsion apparatus with alternate reactor segments

    DOEpatents

    Szekely, Thomas

    1979-04-03

    1. Nuclear propulsion apparatus comprising: A. means for compressing incoming air; B. nuclear fission reactor means for heating said air; C. means for expanding a portion of the heated air to drive said compressing means; D. said nuclear fission reactor means being divided into a plurality of radially extending segments; E. means for directing a portion of the compressed air for heating through alternate segments of said reactor means and another portion of the compressed air for heating through the remaining segments of said reactor means; and F. means for further expanding the heated air from said drive means and the remaining heated air from said reactor means through nozzle means to effect reactive thrust on said apparatus.

  4. Nanometer-scale characterization of laser-driven plasmas, compression, shocks and phase transitions, by coherent small angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Kluge, Thomas

    2015-11-01

    Combining ultra-intense short-pulse and high-energy long-pulse lasers, with brilliant coherent hard X-ray FELs, such as the Helmholtz International Beamline for Extreme Fields (HIBEF) under construction at the HED Instrument of European XFEL, or MEC at LCLS, holds the promise to revolutionize our understanding of many High Energy Density Physics phenomena. Examples include the relativistic electron generation, transport, and bulk plasma response, and ionization dynamics and heating in relativistic laser-matter interactions, or the dynamics of laser-driven shocks, quasi-isentropic compression, and the kinetics of phase transitions at high pressure. A particularly promising new technique is the use of coherent X-ray diffraction to characterize electron density correlations, and by resonant scattering to characterize the distribution of specific charge-state ions, either on the ultrafast time scale of the laser interaction, or associated with hydrodynamic motion. As well one can image slight density changes arising from phase transitions inside of shock-compressed high pressure matter. The feasibility of coherent diffraction techniques in laser-driven matter will be discussed. including recent results from demonstration experiments at MEC. Among other things, very sharp density changes from laser-driven compression are observed, having an effective step width of 10 nm or smaller. This compares to a resolution of several hundred nm achievedpreviously with phase contrast imaging. and on behalf of HIBEF User Consortium, for the Helmholtz International Beamline for Extreme Fields at the European XFEL.

  5. Oscillating-Linear-Drive Vacuum Compressor for CO2

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Shimko, Martin

    2005-01-01

    A vacuum compressor has been designed to compress CO2 from approximately equal to 1 psia (approximately equal to 6.9 kPa absolute pressure) to approximately equal to 75 psia (approximately equal to 0.52 MPa), to be insensitive to moisture, to have a long operational life, and to be lightweight, compact, and efficient. The compressor consists mainly of (1) a compression head that includes hydraulic diaphragms, a gas-compression diaphragm, and check valves; and (2) oscillating linear drive that includes a linear motor and a drive spring, through which compression force is applied to the hydraulic diaphragms. The motor is driven at the resonance vibrational frequency of the motor/spring/compression-head system, the compression head acting as a damper that takes energy out of the oscillation. The net effect of the oscillation is to cause cyclic expansion and contraction of the gas-compression diaphragm, and, hence, of the volume bounded by this diaphragm. One-way check valves admit gas into this volume from the low-pressure side during expansion and allow the gas to flow out to the high-pressure side during contraction. Fatigue data and the results of diaphragm stress calculations have been interpreted as signifying that the compressor can be expected to have an operational life of greater than 30 years with a confidence level of 99.9 percent.

  6. Laser-plasma interactions in direct-drive ignition plasmas

    NASA Astrophysics Data System (ADS)

    Froula, D. H.; Michel, D. T.; Igumenshchev, I. V.; Hu, S. X.; Yaakobi, B.; Myatt, J. F.; Edgell, D. H.; Follett, R.; Glebov, V. Yu; Goncharov, V. N.; Kessler, T. J.; Maximov, A. V.; Radha, P. B.; Sangster, T. C.; Seka, W.; Short, R. W.; Solodov, A. A.; Sorce, C.; Stoeckl, C.

    2012-12-01

    Direct-drive ignition is most susceptible to multiple-beam laser-plasma instabilities, as the single-beam intensities are low (Is ˜ 1014 W cm-2) and the electron temperature in the underdense plasma is high (Te ≃ 3.5 keV). Cross-beam energy transfer is driven by multiple laser beams and can significantly reduce the hydrodynamic efficiency in direct-drive experiments on OMEGA (Boehly et al 1997 Opt. Commun. 133 495). Reducing the radii of the laser beams significantly increases the hydrodynamic efficiency at the cost of an increase in the low-mode modulations. Initial 2D hydrodynamic simulations indicate that zooming, transitioning the laser-beam radius prior to the main drive, does not increase low-mode nonuniformities. The combination of zooming and dynamic bandwidth reduction will provide a 30% effective increase in the drive energy on OMEGA direct-drive implosions. It was shown that two-plasmon decay (TPD) can be driven by multiple laser beams and both planar and spherical experiments were performed to study the hot electrons generated by TPD. The fraction of laser energy converted to hot electrons scales with the hot-electron temperature for all geometries and over a wide range of intensities. At ignition-relevant intensities, the fraction of laser energy converted to hot electrons is measured to decrease by an order of magnitude when the ablator material is changed from carbon-hydrogen to aluminum. The TPD results are compared with a multiple-beam linear theory and a nonlinear Zakharov model.

  7. Injectant mole-fraction imaging in compressible mixing flows using planar laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J., Jr.; Abbitt, John D., III; Mcdaniel, James C.

    1989-01-01

    A technique is described for imaging the injectant mole-fraction distribution in nonreacting compressible mixing flow fields. Planar fluorescence from iodine, seeded into air, is induced by a broadband argon-ion laser and collected using an intensified charge-injection-device array camera. The technique eliminates the thermodynamic dependence of the iodine fluorescence in the compressible flow field by taking the ratio of two images collected with identical thermodynamic flow conditions but different iodine seeding conditions.

  8. Measuring twinning and slip in shock-compressed Ta from in-situ x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Wehrenberg, Christopher; McGonegle, David; Sliwa, Marcin; Suggit, Matt; Wark, Justin; Lee, Hae Ja; Nagler, Bob; Tavella, Franz; Remington, Bruce; Rudd, Rob; Lazicki, Amy; Park, Hye-Sook; Swift, Damian; Zepeda-Ruiz, Louis; Higginbotham, Andrew; Bolme, Cindy

    2017-06-01

    A fundamental understanding of high-pressure and high-strain-rate deformation rests on grasping the underlying microstructural processes, such as twinning and dislocation generation and transport (slip), yet simulations and ex-post-facto recovery experiments provide conflicting answers to these basic issues. Here, we report direct, in-situ observation of twinning and slip in shock compressed Ta using in-situ x-ray diffraction. A series of shock experiments were performed on the Matter in Extreme Conditions end station at LCLS. Direct laser ablation was used to drive a shock, ranging in pressure from 10-300 GPa, into a Ta sample with an initial (110) fiber texture. The subsequent changes in texture were observed in-situ by examining the azimuthal distribution of the diffraction intensity and found to match twinning and lattice rotation. Measurements of the twin fraction and lattice rotation were used to calculate the equivalent plastic strain from twinning and slip. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  9. Optimisation of parameters of Raman laser pulse compression in a plasma for its implementation using the PEARL laser facility (IAP RAS)

    NASA Astrophysics Data System (ADS)

    Balakin, A. A.; Levin, D. S.; Skobelev, S. A.

    2018-04-01

    We consider Raman compression of laser pulses in a plasma under the conditions of an experiment planned at the Institute of Applied Physics of the Russian Academy of Sciences on the PEARL laser facility. The analysis is based on the equations describing, among other things, the effect of plasma dispersion and relativistic nonlinearity, as well as the dynamics of the field near the plasma wave breaking threshold. It is shown that the main limiting factors are excessive frequency modulation of the pump pulse and a too low plasma density in which the plasma wave breaking can occur. To reduce the negative influence of these effects, we suggest using an intense and short (on the order of the plasma period) seed laser pulse. Numerical simulation shows the possibility of a hundredfold increase in the intensity of the compressed pulse in comparison with the intensity of the pump pulse at a length of uniform plasma of 2 cm.

  10. Supernova Driving. II. Compressive Ratio in Molecular-cloud Turbulence

    NASA Astrophysics Data System (ADS)

    Pan, Liubin; Padoan, Paolo; Haugbølle, Troels; Nordlund, Åke

    2016-07-01

    The compressibility of molecular cloud (MC) turbulence plays a crucial role in star formation models, because it controls the amplitude and distribution of density fluctuations. The relation between the compressive ratio (the ratio of powers in compressive and solenoidal motions) and the statistics of turbulence has been previously studied systematically only in idealized simulations with random external forces. In this work, we analyze a simulation of large-scale turbulence (250 pc) driven by supernova (SN) explosions that has been shown to yield realistic MC properties. We demonstrate that SN driving results in MC turbulence with a broad lognormal distribution of the compressive ratio, with a mean value ≈0.3, lower than the equilibrium value of ≈0.5 found in the inertial range of isothermal simulations with random solenoidal driving. We also find that the compressibility of the turbulence is not noticeably affected by gravity, nor are the mean cloud radial (expansion or contraction) and solid-body rotation velocities. Furthermore, the clouds follow a general relation between the rms density and the rms Mach number similar to that of supersonic isothermal turbulence, though with a large scatter, and their average gas density probability density function is described well by a lognormal distribution, with the addition of a high-density power-law tail when self-gravity is included.

  11. New methods of generation of ultrashort laser pulses for ranging

    NASA Technical Reports Server (NTRS)

    Jelinkova, Helena; Hamal, Karel; Kubecek, V.; Prochazka, Ivan

    1993-01-01

    To reach the millimeter satellite laser ranging accuracy, the goal for nineties, new laser ranging techniques have to be applied. To increase the laser ranging precision, the application of the ultrashort laser pulses in connection with the new signal detection and processing techniques, is inevitable. The two wavelength laser ranging is one of the ways to measure the atmospheric dispersion to improve the existing atmospheric correction models and hence, to increase the overall system ranging accuracy to the desired value. We are presenting a review of several nonstandard techniques of ultrashort laser pulses generation, which may be utilized for laser ranging: compression of the nanosecond pulses using stimulated Brillouin and Raman backscattering; compression of the mode-locked pulses using Raman backscattering; passive mode-locking technique with nonlinear mirror; and passive mode-locking technique with the negative feedback.

  12. Compressed 6 ps pulse in nonlinear amplification of a Q-switched microchip laser

    NASA Astrophysics Data System (ADS)

    Diao, Ruxin; Liu, Zuosheng; Niu, Fuzeng; Wang, Aimin; Taira, Takunori; Zhang, Zhigang

    2017-02-01

    We present a passively Q-switched Nd:YVO4 crystal microchip laser with a 6 ps pulse width, which is based on SPM-induced spectral broadening and pulse compression. The passive Q-switching is obtained by a semiconductor saturable absorber mirror. The laser’s seed source centered at 1064 nm pulses with a duration of 80 ps, at a repetition rate of 600 kHz corresponding to an average output power of 10 mW. After amplification and compression, the pulses were compressed to 6 ps with a maximum pulse energy of 0.5 µJ.

  13. Compression of Intense Laser Pulses in Plasma

    NASA Astrophysics Data System (ADS)

    Fisch, Nathaniel J.; Malkin, Vladimir M.; Shvets, Gennady

    2001-10-01

    A counterpropagating short pulse can absorb the energy of a long laser pulse in plasma, resulting in pulse compression. For processing very high power and very high total energy, plasma is an ideal medium. Thus, in plasma one can contemplate the compression of micron light pulses to exawatts per square cm or fluences to kilojoules per square cm, prior to the vacuum focus. Two nonlinear plasma effects have recently been proposed to accomplish compression at very high power in counterpropagating geometry: One is compression by means of Compton or so-called superradiant scattering, where the nonlinear interaction of the plasma electrons with the lasers dominates the plasma restoring motion due to charge imbalance [G. Shvets, N. J. Fisch, A. Pukhov, and J. Meyer-ter-Vehn, Phys. Rev. Lett. v. 81, 4879 (1998)]. The second is fast compression by means of stimulated backward Raman scattering (SBRS), where the amplification process outruns deleterious processes associated with the ultraintense pulse [V. M. Malkin, G. Shvets, N. J. Fisch, Phys. Rev. Lett., v. 82, 4448 (1999)]. In each of these regimes, in a realistic plasma, there are technological challenges that must be met and competing effects that must be kept smaller than the desired interaction.

  14. Conceptual design of a 15-TW pulsed-power accelerator for high-energy-density–physics experiments

    DOE PAGES

    Spielman, R. B.; Froula, D. H.; Brent, G.; ...

    2017-06-21

    We have developed a conceptual design of a 15-TW pulsed-power accelerator based on the linear-transformer-driver (LTD) architecture described by Stygar [W. A. Stygar et al., Phys. Rev. ST Accel. Beams 18, 110401 (2015)]. The driver will allow multiple, high-energy-density experiments per day in a university environment and, at the same time, will enable both fundamental and integrated experiments that are scalable to larger facilities. In this design, many individual energy storage units (bricks), each composed of two capacitors and one switch, directly drive the target load without additional pulse compression. Ten LTD modules in parallel drive the load. Each modulemore » consists of 16 LTD cavities connected in series, where each cavity is powered by 22 bricks connected in parallel. This design stores up to 2.75 MJ and delivers up to 15 TW in 100 ns to the constant-impedance, water-insulated radial transmission lines. The transmission lines in turn deliver a peak current as high as 12.5 MA to the physics load. To maximize its experimental value and flexibility, the accelerator is coupled to a modern, multibeam laser facility (four beams with up to 5 kJ in 10 ns and one beam with up to 2.6 kJ in 100 ps or less) that can provide auxiliary heating of the physics load. The lasers also enable advanced diagnostic techniques such as x-ray Thomson scattering and multiframe and three-dimensional radiography. In conclusion, the coupled accelerator-laser facility will be the first of its kind and be capable of conducting unprecedented high-energy-density-physics experiments.« less

  15. Conceptual design of a 15-TW pulsed-power accelerator for high-energy-density–physics experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spielman, R. B.; Froula, D. H.; Brent, G.

    We have developed a conceptual design of a 15-TW pulsed-power accelerator based on the linear-transformer-driver (LTD) architecture described by Stygar [W. A. Stygar et al., Phys. Rev. ST Accel. Beams 18, 110401 (2015)]. The driver will allow multiple, high-energy-density experiments per day in a university environment and, at the same time, will enable both fundamental and integrated experiments that are scalable to larger facilities. In this design, many individual energy storage units (bricks), each composed of two capacitors and one switch, directly drive the target load without additional pulse compression. Ten LTD modules in parallel drive the load. Each modulemore » consists of 16 LTD cavities connected in series, where each cavity is powered by 22 bricks connected in parallel. This design stores up to 2.75 MJ and delivers up to 15 TW in 100 ns to the constant-impedance, water-insulated radial transmission lines. The transmission lines in turn deliver a peak current as high as 12.5 MA to the physics load. To maximize its experimental value and flexibility, the accelerator is coupled to a modern, multibeam laser facility (four beams with up to 5 kJ in 10 ns and one beam with up to 2.6 kJ in 100 ps or less) that can provide auxiliary heating of the physics load. The lasers also enable advanced diagnostic techniques such as x-ray Thomson scattering and multiframe and three-dimensional radiography. In conclusion, the coupled accelerator-laser facility will be the first of its kind and be capable of conducting unprecedented high-energy-density-physics experiments.« less

  16. Laser Shock Compression Studies of Phase Changes in Ce3 Al Metallic Glass

    NASA Astrophysics Data System (ADS)

    Bryant, Alex; Wehrenberg, Christopher; Alamgir, Faisal; Remington, Bruce; Thadhani, Naresh

    2017-06-01

    Laser shock-compression of Ce3 Al metallic glass (MG) was performed to probe pressure-induced phase transitions. Ce3 Al MG has been previously shown to crystallize into a single crystal FCC phase during static compression at 25 GPa. In the present work, experiments were performed using the 3J Nd:YAG pulse laser at Georgia Tech and the high energy laser at the OMEGA facility. Characterization of shock compressed samples recovered from the OMEGA laser experiments were performed using XRD and PDF measurements at the NSLS-2 synchrotron at Brookhaven National Lab. The results showed evidence of a permanent polyamorphous phase change at pressures > 10 GPa and crystallization at pressures > 75 GPa. Particle velocities were measured using VISAR in experiments performed at Georgia Tech and simulated using Hyades and Abaqus to create an empirical equation of state and correlate with results obtained from XRD and PDF characterization. The results attained to-date in terms of the evolution of the high pressure amorphous and crystalline phases and their correlations with the shock conditions will be presented. This work is supported in part by ARO Grant No. W9HNF-09-1-0403 and the National Science Foundation Graduate Research Fellowship Program awarded to Alex Bryant under Grant No. 0946809.

  17. Some optical and electron microscope comparative studies of excimer laser-assisted and nonassisted molecular-beam epitaxically grown thin GaAs films on Si

    NASA Technical Reports Server (NTRS)

    Lao, Pudong; Tang, Wade C.; Rajkumar, K. C.; Guha, S.; Madhukar, A.; Liu, J. K.; Grunthaner, F. J.

    1990-01-01

    The quality of GaAs thin films grown via MBE under pulsed excimer laser irradiation on Si substrates is examined in both laser-irradiated and nonirradiated areas using Raman scattering, Rayleigh scattering, and by photoluminescence (PL), as a function of temperature, and by TEM. The temperature dependence of the PL and Raman peak positions indicates the presence of compressive stress in the thin GaAs films in both laser-irradiated and nonirradiated areas. This indicates incomplete homogeneous strain relaxation by dislocations at the growth temperature. The residual compressive strain at the growth temperature is large enough such that even with the introduction of tensile strain arising from the difference in thermal expansion coefficients of GaAs and Si, a compressive strain is still present at room temperature for these thin GaAs/Si films.

  18. Pseudo-Random Modulation of a Laser Diode for Generating Ultrasonic Longitudinal Waves

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.; Anatasi, Robert F.

    2004-01-01

    Laser generated ultrasound systems have historically been more complicated and expensive than conventional piezoelectric based systems, and this fact has relegated the acceptance of laser based systems to niche applications for which piezoelectric based systems are less suitable. Lowering system costs, while improving throughput, increasing ultrasound signal levels, and improving signal-to-noise are goals which will help increase the general acceptance of laser based ultrasound. One current limitation with conventional laser generated ultrasound is a material s damage threshold limit. Increasing the optical power to generate more signal eventually damages the material being tested due to rapid, high heating. Generation limitations for laser based ultrasound suggests the use of pulse modulation techniques as an alternate generation method. Pulse modulation techniques can spread the laser energy over time or space, thus reducing laser power densities and minimizing damage. Previous experiments by various organizations using spatial or temporal pulse modulation have been shown to generate detectable surface, plate, and bulk ultrasonic waves with narrow frequency bandwidths . Using narrow frequency bandwidths improved signal detectability, but required the use of expensive and powerful lasers and opto-electronic systems. The use of a laser diode to generate ultrasound is attractive because of its low cost, small size, light weight, simple optics and modulation capability. The use of pulse compression techniques should allow certain types of laser diodes to produce usable ultrasonic signals. The method also does not need to be limited to narrow frequency bandwidths. The method demonstrated here uses a low power laser diode (approximately 150 mW) that is modulated by controlling the diode s drive current and the resulting signal is recovered by cross correlation. A potential application for this system which is briefly demonstrated is in detecting signals in thick composite materials where attenuation is high and signal amplitude and bandwidth are at a premium.

  19. Configuring and Characterizing X-Rays for Laser-Driven Compression Experiments at the Dynamic Compression Sector

    NASA Astrophysics Data System (ADS)

    Li, Y.; Capatina, D.; D'Amico, K.; Eng, P.; Hawreliak, J.; Graber, T.; Rickerson, D.; Klug, J.; Rigg, P. A.; Gupta, Y. M.

    2017-06-01

    Coupling laser-driven compression experiments to the x-ray beam at the Dynamic Compression Sector (DCS) at the Advanced Photon Source (APS) of Argonne National Laboratory requires state-of-the-art x-ray focusing, pulse isolation, and diagnostics capabilities. The 100J UV pulsed laser system can be fired once every 20 minutes so precise alignment and focusing of the x-rays on each new sample must be fast and reproducible. Multiple Kirkpatrick-Baez (KB) mirrors are used to achieve a focal spot size as small as 50 μm at the target, while the strategic placement of scintillating screens, cameras, and detectors allows for fast diagnosis of the beam shape, intensity, and alignment of the sample to the x-ray beam. In addition, a series of x-ray choppers and shutters are used to ensure that the sample is exposed to only a single x-ray pulse ( 80ps) during the dynamic compression event and require highly precise synchronization. Details of the technical requirements, layout, and performance of these instruments will be presented. Work supported by DOE/NNSA.

  20. Ultraviolet laser transverse profile shaping for improving x-ray free electron laser performance

    DOE PAGES

    Li, S.; Alverson, S.; Bohler, D.; ...

    2017-08-17

    The photocathode rf gun is one of the most critical components in x-ray free electron lasers. The drive laser strikes the photocathode surface, which emits electrons with properties that depend on the shape of the drive laser. Most free electron lasers use photocathodes with work function in the ultraviolet, a wavelength where direct laser manipulation becomes challenging. In this paper, we present a novel application of a digital micromirror device (DMD) for the 253 nm drive laser at the Linear Coherent Light Source. Laser profile shaping is accomplished through an iterative algorithm that takes into account shaping error and efficiency.more » Next, we use laser shaping to control the X-ray laser output via an online optimizer, which shows improvement in FEL pulse energy. Lastly, as a preparation for electron beam shaping, we use the DMD to measure the photocathode quantum efficiency across cathode surface with an averaged laser rms spot size of 59 μm. In conclusion, our experiments demonstrate promising outlook of using DMD to shape ultraviolet lasers for photocathode rf guns with various applications.« less

  1. Ultraviolet laser transverse profile shaping for improving x-ray free electron laser performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, S.; Alverson, S.; Bohler, D.

    The photocathode rf gun is one of the most critical components in x-ray free electron lasers. The drive laser strikes the photocathode surface, which emits electrons with properties that depend on the shape of the drive laser. Most free electron lasers use photocathodes with work function in the ultraviolet, a wavelength where direct laser manipulation becomes challenging. In this paper, we present a novel application of a digital micromirror device (DMD) for the 253 nm drive laser at the Linear Coherent Light Source. Laser profile shaping is accomplished through an iterative algorithm that takes into account shaping error and efficiency.more » Next, we use laser shaping to control the X-ray laser output via an online optimizer, which shows improvement in FEL pulse energy. Lastly, as a preparation for electron beam shaping, we use the DMD to measure the photocathode quantum efficiency across cathode surface with an averaged laser rms spot size of 59 μm. In conclusion, our experiments demonstrate promising outlook of using DMD to shape ultraviolet lasers for photocathode rf guns with various applications.« less

  2. Ultraviolet laser transverse profile shaping for improving x-ray free electron laser performance

    NASA Astrophysics Data System (ADS)

    Li, S.; Alverson, S.; Bohler, D.; Egger, A.; Fry, A.; Gilevich, S.; Huang, Z.; Miahnahri, A.; Ratner, D.; Robinson, J.; Zhou, F.

    2017-08-01

    The photocathode rf gun is one of the most critical components in x-ray free electron lasers. The drive laser strikes the photocathode surface, which emits electrons with properties that depend on the shape of the drive laser. Most free electron lasers use photocathodes with work function in the ultraviolet, a wavelength where direct laser manipulation becomes challenging. In this paper, we present a novel application of a digital micromirror device (DMD) for the 253 nm drive laser at the Linear Coherent Light Source. Laser profile shaping is accomplished through an iterative algorithm that takes into account shaping error and efficiency. Next, we use laser shaping to control the X-ray laser output via an online optimizer, which shows improvement in FEL pulse energy. Lastly, as a preparation for electron beam shaping, we use the DMD to measure the photocathode quantum efficiency across cathode surface with an averaged laser rms spot size of 59 μ m . Our experiments demonstrate promising outlook of using DMD to shape ultraviolet lasers for photocathode rf guns with various applications.

  3. Compressed air production with waste heat utilization in industry

    NASA Astrophysics Data System (ADS)

    Nolting, E.

    1984-06-01

    The centralized power-heat coupling (PHC) technique using block heating power stations, is presented. Compressed air production in PHC technique with internal combustion engine drive achieves a high degree of primary energy utilization. Cost savings of 50% are reached compared to conventional production. The simultaneous utilization of compressed air and heat is especially interesting. A speed regulated drive via an internal combustion motor gives a further saving of 10% to 20% compared to intermittent operation. The high fuel utilization efficiency ( 80%) leads to a pay off after two years for operation times of 3000 hr.

  4. Rayleigh-Taylor instability experiments in cryogenic deuterium

    NASA Astrophysics Data System (ADS)

    Hansen, J. F.; Smalyuk, V. A.

    2005-10-01

    We report on experiments under way at the Omega laser, using cryogenic deuterium to study Rayleigh-Taylor instabilities in laser targets. These instabilities are important in astrophysical situations (e.g., mixing of the different shells during a supernova explosion) and in inertial fusion (during the compression stage of a fusion target). They can be studied in small (˜1 mm) shock tubes filled with one heavy and one light material, with an interface between the two materials that is machined to seed the instability. A high-energy laser (˜5 kJ) drives a shock from the heavy to the light material. The evolution of the interface is studied using gated x-ray cameras, where x-ray illumination is obtained from additional laser beams focused on metal backlighter foils. Traditionally the heavy material is CH (1 g/cm^3) doped with I or Br for improved contrast, while the light material is a low-density (˜0.1 g/cm^3) C foam. The goal of the current experiments is to determine if contrast can be improved even further by replacing the foam with cryogenic deuterium, which has a density similar to the foam, but a lower x-ray opacity allowing clearer images, including images taken at late times in the evolution. Work performed under the auspices of the Department of Energy by the Lawrence Livermore National Laboratory under contract number W-7405-ENG-48.

  5. Thermally generated magnetic fields in laser-driven compressions and explosions

    NASA Technical Reports Server (NTRS)

    Tidman, D. A.

    1975-01-01

    The evolution of thermally generated magnetic fields in a plasma undergoing a nearly spherically symmetric adiabatic compression or expansion is calculated. The analysis is applied to obtain approximate results for the development of magnetic fields in laser-driven compression and explosion of a pellet of nuclear fuel. Localized sources, such as those occurring at composition boundaries in structured pellets or at shock fronts, give stronger fields than those deriving from smoothly distributed asymmetries. Although these fields may approach 10 million G in the late stages of compression, this is not expected to present difficulties for the compression process. Assuming ignition of a nuclear explosion occurs, the sources become much stronger, and values of approximately 10 billion G are obtained at tamper boundaries assuming a 20% departure from spherical symmetry during the explosion.

  6. Mechanical properties and polymerization shrinkage of composite resins light-cured using two different lasers.

    PubMed

    Kim, Tae-Wan; Lee, Jang-Hoon; Jeong, Seung-Hwa; Ko, Ching-Chang; Kim, Hyung-Il; Kwon, Yong Hoon

    2015-04-01

    The purpose of the present study was to investigate the usefulness of 457 and 473 nm lasers for the curing of composite resins during the restoration of damaged tooth cavity. Monochromaticity and coherence are attractive features of laser compared with most other light sources. Better polymerization of composite resins can be expected. Eight composite resins were light cured using these two lasers and a light-emitting diode (LED) light-curing unit (LCU). To evaluate the degrees of polymerization achieved, polymerization shrinkage and flexural and compressive properties were measured and compared. Polymerization shrinkage values by 457 and 473 nm laser, and LED ranged from 10.9 to 26.8, from 13.2 to 26.1, and from 11.5 to 26.3 μm, respectively. The values by 457 nm laser was significantly different from those by 473 and LED LCU (p<0.05). However, there was no statistical difference between values by 473 and LED LCU. Before immersion in distilled water, flexural strength (FS) and compressive modulus (CM) of the specimens were inconsistently influenced by LCUs. On the other hand, flexural modulus (FM) and compressive strength (CS) were not significantly different for the three LCUs (p>0.05). For the tested LCUs, no specific LCU could consistently achieve highest strength and modulus from the specimens tested. Two lasers (457 and 473 nm) can polymerize composite resins to the level that LED LCU can achieve despite inconsistent trends of polymerization shrinkage and flexural and compressive properties of the tested specimens.

  7. Velocity measurement using frequency domain interferometer and chirped pulse laser

    NASA Astrophysics Data System (ADS)

    Ishii, K.; Nishimura, Y.; Mori, Y.; Hanayama, R.; Kitagawa, Y.; Sekine, T.; Sato, N.; Kurita, T.; Kawashima, T.; Sunahara, A.; Sentoku, Y.; Miura, E.; Iwamoto, A.; Sakagami, H.

    2017-02-01

    An ultra-intense short pulse laser induces a shock wave in material. The pressure of shock compression is stronger than a few tens GPa. To characterize shock waves, time-resolved velocity measurement in nano- or pico-second time scale is needed. Frequency domain interferometer and chirped pulse laser provide single-shot time-resolved measurement. We have developed a laser-driven shock compression system and frequency domain interferometer with CPA laser. In this paper, we show the principle of velocity measurement using a frequency domain interferometer and a chirped pulse laser. Next, we numerically calculated spectral interferograms and show the time-resolved velocity measurement can be done from the phase analysis of spectral interferograms. Moreover we conduct the laser driven shock generation and shock velocity measurement. From the spectral fringes, we analyze the velocities of the sample and shockwaves.

  8. Characterization of Quantum Efficiency and Robustness of Cesium-Based Photocathodes

    DTIC Science & Technology

    2010-01-01

    photocathodes produce picosecond-pulsed, high- current electron beams for photoinjection applications like free electron lasers . In photoinjectors, a...pulsed drive laser incident on the photocathode causes photoemission of short, dense bunches of electrons, which are then accelerated into a...relativistic, high quality beam. Future free electron lasers demand reliable photocathodes with long-lived quantum efficiency at suitable drive laser

  9. Inelastic response of silicon to shock compression.

    PubMed

    Higginbotham, A; Stubley, P G; Comley, A J; Eggert, J H; Foster, J M; Kalantar, D H; McGonegle, D; Patel, S; Peacock, L J; Rothman, S D; Smith, R F; Suggit, M J; Wark, J S

    2016-04-13

    The elastic and inelastic response of [001] oriented silicon to laser compression has been a topic of considerable discussion for well over a decade, yet there has been little progress in understanding the basic behaviour of this apparently simple material. We present experimental x-ray diffraction data showing complex elastic strain profiles in laser compressed samples on nanosecond timescales. We also present molecular dynamics and elasticity code modelling which suggests that a pressure induced phase transition is the cause of the previously reported 'anomalous' elastic waves. Moreover, this interpretation allows for measurement of the kinetic timescales for transition. This model is also discussed in the wider context of reported deformation of silicon to rapid compression in the literature.

  10. In-flight observations of low-mode ρR asymmetries in NIF implosions

    DOE PAGES

    Zylstra, A. B.; Frenje, J. A.; Seguin, F. H.; ...

    2015-05-01

    Charged-particle spectroscopy is used to assess implosion symmetry in ignition-scale indirect-drive implosions for the first time. Surrogate D 3He gas-filled implosions at the National Ignition Facility produce energetic protons via D+ 3He fusion that are used to measure the implosion areal density (ρR) at the shock-bang time. By using protons produced several hundred ps before the main compression bang, the implosion is diagnosed in-flight at a convergence ratio of 3-5 just prior to peak velocity. This isolates acceleration-phase asymmetry growth. For many surrogate implosions, proton spectrometers placed at the north pole and equator reveal significant asymmetries with amplitudes routinely ≳10%,more » which are interpreted as l=2 Legendre modes. With significant expected growth by stagnation, it is likely that these asymmetries would degrade the final implosion performance. X-ray self-emission images at stagnation show asymmetries that are positively correlated with the observed in-flight asymmetries and comparable in magnitude, contradicting growth models; this suggests that the hot-spot shape does not reflect the stagnated shell shape or that significant residual kinetic energy exists at stagnation. More prolate implosions are observed when the laser drive is sustained (“no-coast”), implying a significant time-dependent asymmetry in peak drive.« less

  11. In-flight observations of low-mode ρR asymmetries in NIF implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zylstra, A. B., E-mail: zylstra@mit.edu; Frenje, J. A.; Séguin, F. H.

    2015-05-15

    Charged-particle spectroscopy is used to assess implosion symmetry in ignition-scale indirect-drive implosions for the first time. Surrogate D{sup 3}He gas-filled implosions at the National Ignition Facility produce energetic protons via D+{sup 3}He fusion that are used to measure the implosion areal density (ρR) at the shock-bang time. By using protons produced several hundred ps before the main compression bang, the implosion is diagnosed in-flight at a convergence ratio of 3–5 just prior to peak velocity. This isolates acceleration-phase asymmetry growth. For many surrogate implosions, proton spectrometers placed at the north pole and equator reveal significant asymmetries with amplitudes routinely ≳10%,more » which are interpreted as ℓ=2 Legendre modes. With significant expected growth by stagnation, it is likely that these asymmetries would degrade the final implosion performance. X-ray self-emission images at stagnation show asymmetries that are positively correlated with the observed in-flight asymmetries and comparable in magnitude, contradicting growth models; this suggests that the hot-spot shape does not reflect the stagnated shell shape or that significant residual kinetic energy exists at stagnation. More prolate implosions are observed when the laser drive is sustained (“no-coast”), implying a significant time-dependent asymmetry in peak drive.« less

  12. In-flight observations of low-mode ρR asymmetries in NIF implosionsa)

    NASA Astrophysics Data System (ADS)

    Zylstra, A. B.; Frenje, J. A.; Séguin, F. H.; Rygg, J. R.; Kritcher, A.; Rosenberg, M. J.; Rinderknecht, H. G.; Hicks, D. G.; Friedrich, S.; Bionta, R.; Meezan, N. B.; Olson, R.; Atherton, J.; Barrios, M.; Bell, P.; Benedetti, R.; Berzak Hopkins, L.; Betti, R.; Bradley, D.; Callahan, D.; Casey, D.; Collins, G.; Dewald, E. L.; Dixit, S.; Döppner, T.; Edwards, M. J.; Gatu Johnson, M.; Glenn, S.; Grim, G.; Hatchett, S.; Jones, O.; Khan, S.; Kilkenny, J.; Kline, J.; Knauer, J.; Kyrala, G.; Landen, O.; LePape, S.; Li, C. K.; Lindl, J.; Ma, T.; Mackinnon, A.; Manuel, M. J.-E.; Meyerhofer, D.; Moses, E.; Nagel, S. R.; Nikroo, A.; Parham, T.; Pak, A.; Petrasso, R. D.; Prasad, R.; Ralph, J.; Robey, H. F.; Ross, J. S.; Sangster, T. C.; Sepke, S.; Sinenian, N.; Sio, H. W.; Spears, B.; Tommasini, R.; Town, R.; Weber, S.; Wilson, D.; Yeamans, C.; Zacharias, R.

    2015-05-01

    Charged-particle spectroscopy is used to assess implosion symmetry in ignition-scale indirect-drive implosions for the first time. Surrogate D3He gas-filled implosions at the National Ignition Facility produce energetic protons via D+3He fusion that are used to measure the implosion areal density (ρR) at the shock-bang time. By using protons produced several hundred ps before the main compression bang, the implosion is diagnosed in-flight at a convergence ratio of 3-5 just prior to peak velocity. This isolates acceleration-phase asymmetry growth. For many surrogate implosions, proton spectrometers placed at the north pole and equator reveal significant asymmetries with amplitudes routinely ≳ 10 % , which are interpreted as ℓ = 2 Legendre modes. With significant expected growth by stagnation, it is likely that these asymmetries would degrade the final implosion performance. X-ray self-emission images at stagnation show asymmetries that are positively correlated with the observed in-flight asymmetries and comparable in magnitude, contradicting growth models; this suggests that the hot-spot shape does not reflect the stagnated shell shape or that significant residual kinetic energy exists at stagnation. More prolate implosions are observed when the laser drive is sustained ("no-coast"), implying a significant time-dependent asymmetry in peak drive.

  13. Direct current force sensing device based on compressive spring, permanent magnet, and coil-wound magnetostrictive/piezoelectric laminate.

    PubMed

    Leung, Chung Ming; Or, Siu Wing; Ho, S L

    2013-12-01

    A force sensing device capable of sensing dc (or static) compressive forces is developed based on a NAS106N stainless steel compressive spring, a sintered NdFeB permanent magnet, and a coil-wound Tb(0.3)Dy(0.7)Fe(1.92)/Pb(Zr, Ti)O3 magnetostrictive∕piezoelectric laminate. The dc compressive force sensing in the device is evaluated theoretically and experimentally and is found to originate from a unique force-induced, position-dependent, current-driven dc magnetoelectric effect. The sensitivity of the device can be increased by increasing the spring constant of the compressive spring, the size of the permanent magnet, and/or the driving current for the coil-wound laminate. Devices of low-force (20 N) and high-force (200 N) types, showing high output voltages of 262 and 128 mV peak, respectively, are demonstrated at a low driving current of 100 mA peak by using different combinations of compressive spring and permanent magnet.

  14. Laser beam riding artillery missiles guidance device is designed

    NASA Astrophysics Data System (ADS)

    Yan, Mingliang; Huo, Zhicheng; Chen, Wei

    2014-09-01

    Laser driving gun missile guidance type beam of laser information field formed by any link failure or reduced stability will directly lead to ballistic or miss out of control, and based on this, this paper designed the driving beam of laser guided missile guidance beam type forming device modulation and zoom mechanism, in order to make the missile can recognize its position in the laser beam, laser beam gun missile, by means of spatial encoding of the laser beam laser beam into information after forming device, a surface to achieve the purpose of precision guidance.

  15. SUPERNOVA DRIVING. II. COMPRESSIVE RATIO IN MOLECULAR-CLOUD TURBULENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Liubin; Padoan, Paolo; Haugbølle, Troels

    2016-07-01

    The compressibility of molecular cloud (MC) turbulence plays a crucial role in star formation models, because it controls the amplitude and distribution of density fluctuations. The relation between the compressive ratio (the ratio of powers in compressive and solenoidal motions) and the statistics of turbulence has been previously studied systematically only in idealized simulations with random external forces. In this work, we analyze a simulation of large-scale turbulence (250 pc) driven by supernova (SN) explosions that has been shown to yield realistic MC properties. We demonstrate that SN driving results in MC turbulence with a broad lognormal distribution of themore » compressive ratio, with a mean value ≈0.3, lower than the equilibrium value of ≈0.5 found in the inertial range of isothermal simulations with random solenoidal driving. We also find that the compressibility of the turbulence is not noticeably affected by gravity, nor are the mean cloud radial (expansion or contraction) and solid-body rotation velocities. Furthermore, the clouds follow a general relation between the rms density and the rms Mach number similar to that of supersonic isothermal turbulence, though with a large scatter, and their average gas density probability density function is described well by a lognormal distribution, with the addition of a high-density power-law tail when self-gravity is included.« less

  16. Advances in compact proton spectrometers for inertial-confinement fusion and plasma nuclear science.

    PubMed

    Seguin, F H; Sinenian, N; Rosenberg, M; Zylstra, A; Manuel, M J-E; Sio, H; Waugh, C; Rinderknecht, H G; Johnson, M Gatu; Frenje, J; Li, C K; Petrasso, R; Sangster, T C; Roberts, S

    2012-10-01

    Compact wedge-range-filter proton spectrometers cover proton energies ∼3-20 MeV. They have been used at the OMEGA laser facility for more than a decade for measuring spectra of primary D(3)He protons in D(3)He implosions, secondary D(3)He protons in DD implosions, and ablator protons in DT implosions; they are now being used also at the National Ignition Facility. The spectra are used to determine proton yields, shell areal density at shock-bang time and compression-bang time, fuel areal density, and implosion symmetry. There have been changes in fabrication and in analysis algorithms, resulting in a wider energy range, better accuracy and precision, and better robustness for survivability with indirect-drive inertial-confinement-fusion experiments.

  17. Implosion spectroscopy in Rugby hohlraums on OMEGA

    NASA Astrophysics Data System (ADS)

    Philippe, Franck; Tassin, Veronique; Bitaud, Laurent; Seytor, Patricia; Reverdin, Charles

    2014-10-01

    The rugby hohlraum concept has been validated in previous experiments on the OMEGA laser facility. This new hohlraum type can now be used as a well-characterized experimental platform to study indirect drive implosion, at higher radiation temperatures than would be feasible at this scale with classical cylindrical hohlraums. Recent experiments have focused on the late stages of implosion and hotspot behavior. The capsules included both a thin buried Titanium tracer layer, 0-3 microns from the inner surface, Argon dopant in the deuterium gas fuel and Germanium doped CH shells, providing a variety of spectral signatures of the plasma conditions in different parts of the target. X-ray spectroscopy and imaging were used to study compression, Rayleigh-Taylor instabilities growth at the inner surface and mix between the shell and gas.

  18. A unified planar measurement technique for compressible flows using laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J., Jr.; Hollo, Steven D.; Mcdaniel, James C.

    1992-01-01

    A unified laser-induced fluorescence technique for conducting planar measurements of temperature, pressure and velocity in nonreacting, highly compressible flows has been developed, validated and demonstrated. Planar fluorescence from iodine, seeded into air, was induced by an argon-ion laser and collected using a liquid-nitrogen cooled CCD camera. In the measurement technique, temperature is determined from the fluorescence induced with the laser operated broad band. Pressure and velocity are determined from the shape and position of the fluorescence excitation spectrum which is measured with the laser operated narrow band. The measurement approach described herein provides a means of obtaining accurate, spatially-complete maps of the primary flow field parameters in a wide variety of cold supersonic and transonic flows.

  19. Measurement of concrete strength using the emission intensity ratio between Ca(II) 396.8 nm and Ca(I) 422.6 nm in a Nd:YAG laser-induced plasma.

    PubMed

    Tsuyuki, Kenichiro; Miura, Satoru; Idris, Nasrullah; Kurniawan, Koo Hendrik; Lie, Tjung Jie; Kagawa, Kiichiro

    2006-01-01

    An experiment to investigate the potential of a laser-induced plasma method for determining concrete compressive strength was conducted by focusing a Nd:YAG laser on concrete samples with different degrees of compressive strength. This technique was developed in light of the role of the shock wave in the generation of a laser-induced plasma. It was found that the speed of the shock front depends on the hardness of the sample. It was also found that a positive relationship exists between the speed of the shock front and the ionization rate of the ablated atoms. Hence, the ratio of the intensity between the Ca(II) 396.8 nm and Ca(I) 422.6 nm emission lines detected from the laser-induced plasma can be used to examine the hardness of the material. In fact, it was observed that the ratio changes with respect to the change in the concrete compressive strength. The findings also show that the ratio increases with time after the cement is mixed with water.

  20. Characterization and compression of dissipative-soliton-resonance pulses in fiber lasers

    PubMed Central

    Li, Daojing; Li, Lei; Zhou, Junyu; Zhao, Luming; Tang, Dingyuan; Shen, Deyuan

    2016-01-01

    We report numerical and experimental studies of dissipative-soliton-resonance (DSR) in a fiber laser with a nonlinear optical loop mirror. The DSR pulse presents temporally a flat-top profile and a clamped peak power. Its spectrum has a rectangle profile with characteristic steep edges. It shows a unique behavior as pulse energy increases: The rectangle part of the spectrum is unchanged while the newly emerging spectrum sits on the center part and forms a peak. Experimental observations match well with the numerical results. Moreover, the detailed evolution of the DSR pulse compression is both numerically and experimentally demonstrated for the first time. An experimentally obtained DSR pulse of 63 ps duration is compressed down to 760 fs, with low-intensity pedestals using a grating pair. Before being compressed to its narrowest width, the pulse firstly evolves into a cat-ear profile, and the corresponding autocorrelation trace shows a crown shape, which distinguishes itself from properties of other solitons formed in fiber lasers. PMID:27025189

  1. Performance of indirectly driven capsule implosions on the National Ignition Facility using adiabat-shaping

    DOE PAGES

    Robey, H. F.; Smalyuk, V. A.; Milovich, J. L.; ...

    2016-04-01

    A series of indirectly driven capsule implosions has been performed on the National Ignition Facility to assess the relative contributions of ablation-front instability growth vs. fuel compression on implosion performance. Laser pulse shapes for both low and high-foot pulses were modified to vary ablation-front growth & fuel adiabat, separately and controllably. Two principal conclusions are drawn from this study: 1) It is shown that an increase in laser picket energy reduces ablation-front instability growth in low-foot implosions resulting in a substantial (3-10X) increase in neutron yield with no loss of fuel compression. 2.) It is shown that a decrease inmore » laser trough power reduces the fuel adiabat in high-foot implosions results in a significant (36%) increase in fuel compression together with no reduction in neutron yield. These results taken collectively bridge the space between the higher compression low-foot results and the higher yield high-foot results.« less

  2. X-ray Thomson scattering measurement of temperature in warm dense carbon

    DOE PAGES

    Falk, Katerina; Fryer, C. L.; Gamboa, E. J.; ...

    2016-11-22

    Here, a novel platform to measure the equation of state using a combination of diagnostics, where the spectrally resolved x-ray Thomson scattering (XRTS) is used to obtain accurate temperature measurements of warm dense matter (WDM) was developed for the OMEGA laser facility. OMEGA laser beams have been used to drive strong shocks in carbon targets creating WDM and generating the Ni He-alpha x-ray probe used for XRTS. Additional diagnostics including x-ray radiography, velocity interferometry and streaked optical pyrometry provided complementary measurements of density and pressure. The WDM regime of near solid density and moderate temperatures (1–100 eV) is a challengingmore » yet important area of research in inertial confinement fusion and astrophysics. This platform has been used to study off-Hugoniot states of shock-released diamond and graphite at pressures between 1 and 10 Mbar and temperatures between 5 and 15 eV as well as first x-ray Thomson scattering data from shocked low density CH foams reaching five times compression and temperatures of 20–30 eV.« less

  3. Cross-Beam Energy Transfer Driven by Incoherent Laser Beams with Frequency Detuning

    NASA Astrophysics Data System (ADS)

    Maximov, A.; Myatt, J. F.; Short, R. W.; Igumenshchev, I. V.; Seka, W.

    2015-11-01

    In the direct-drive method of the inertial confinement fusion (ICF), the coupling of laser energy to target plasmas is strongly influenced by the effect of cross-beam energy transfer (CBET) between multiple driving laser beams. The laser -plasma interaction (LPI) model of CBET is based on the nonparaxial laser light propagation coupled with the low-frequency ion-acoustic-domain plasma response. Common ion waves driven by multiple laser beams play a very important role in CBET. The effect of the frequency detuning (colors) in the driving laser beams is studied and it is shown to significantly reduce the level of common ion waves and therefore the level of CBET. The differences between the LPI-based CBET model and the ray-based CBET model used in hydrocodes are discussed. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  4. THE EFFECT OF LASER SHOCK PEENING ON THE LIFE AND FAILURE MODE OF A COLD PILGER DIE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavender, Curt A.; Hong, Sung-tae; Smith, Mark T.

    2008-08-11

    The laser shock peening process was used to increase fatigue life of pilger dies made of A2 tool steel by imparting compressive residual stresses to fatigue prone areas of the dies. The result of X-Ray diffraction analysis indicated that deep, high- magnitude compressive residual stresses were generated by the laser shock peening process, and the peened dies exhibited a significant increase of in-service life. Fractography of the failed dies indicates that the fracture mechanism was altered by the peening process.

  5. Single laser pulse compression via strongly coupled stimulated Brillouin scattering in plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, H.; Wu, Z. H.; Zhang, Z. M.

    2016-07-15

    Laser amplification in plasma, including stimulated Raman scattering amplification and strongly coupled stimulated Brillouin scattering (sc-SBS) amplification, is very promising to generate ultrahigh-power and ultrashort laser pulses. But both are quite complex in experiments: at least three different laser pulses must be prepared; temporal delay and spatial overlap of these three pulses are difficult. We propose a single pulse compression scheme based on sc-SBS in plasma. Only one moderately long laser is applied, the front part of which ionizes the gas to produced plasma, and gets reflected by a plasma mirror at the end of the gas channel. The reflectedmore » front quickly depletes the remaining part of the laser by sc-SBS in the self-similar regime. The output laser is much stronger and shorter. This scheme is at first considered theoretically, then validated by using 1D PIC simulations.« less

  6. Nanometer-scale characterization of laser-driven compression, shocks, and phase transitions, by x-ray scattering using free electron lasers

    DOE PAGES

    Kluge, T.; Rödel, C.; Rödel, M.; ...

    2017-10-23

    In this paper, we study the feasibility of using small angle X-ray scattering (SAXS) as a new experimental diagnostic for intense laser-solid interactions. By using X-ray pulses from a hard X-ray free electron laser, we can simultaneously achieve nanometer and femtosecond resolution of laser-driven samples. This is an important new capability for the Helmholtz international beamline for extreme fields at the high energy density endstation currently built at the European X-ray free electron laser. We review the relevant SAXS theory and its application to transient processes in solid density plasmas and report on first experimental results that confirm the feasibilitymore » of the method. Finally, we present results of two test experiments where the first experiment employs ultra-short laser pulses for studying relativistic laser plasma interactions, and the second one focuses on shock compression studies with a nanosecond laser system.« less

  7. Nanometer-scale characterization of laser-driven compression, shocks, and phase transitions, by x-ray scattering using free electron lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kluge, T.; Rödel, C.; Rödel, M.

    In this paper, we study the feasibility of using small angle X-ray scattering (SAXS) as a new experimental diagnostic for intense laser-solid interactions. By using X-ray pulses from a hard X-ray free electron laser, we can simultaneously achieve nanometer and femtosecond resolution of laser-driven samples. This is an important new capability for the Helmholtz international beamline for extreme fields at the high energy density endstation currently built at the European X-ray free electron laser. We review the relevant SAXS theory and its application to transient processes in solid density plasmas and report on first experimental results that confirm the feasibilitymore » of the method. Finally, we present results of two test experiments where the first experiment employs ultra-short laser pulses for studying relativistic laser plasma interactions, and the second one focuses on shock compression studies with a nanosecond laser system.« less

  8. Piezoelectric step-motion actuator

    DOEpatents

    Mentesana,; Charles, P [Leawood, KS

    2006-10-10

    A step-motion actuator using piezoelectric material to launch a flight mass which, in turn, actuates a drive pawl to progressively engage and drive a toothed wheel or rod to accomplish stepped motion. Thus, the piezoelectric material converts electrical energy into kinetic energy of the mass, and the drive pawl and toothed wheel or rod convert the kinetic energy of the mass into the desired rotary or linear stepped motion. A compression frame may be secured about the piezoelectric element and adapted to pre-compress the piezoelectric material so as to reduce tensile loads thereon. A return spring may be used to return the mass to its resting position against the compression frame or piezoelectric material following launch. Alternative embodiment are possible, including an alternative first embodiment wherein two masses are launched in substantially different directions, and an alternative second embodiment wherein the mass is eliminated in favor of the piezoelectric material launching itself.

  9. A 1-D Study of the Ignition Space for Magnetic Indirect (X-ray) Drive Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cobble, James Allen; Sinars, Daniel Brian

    The ICF program today is investigating three approaches to achieving multi-MJ fusion yields and ignition: (1) laser indirect (x-ray) drive on the National Ignition Facility (NIF), (2) laser direct drive (primarily on the Omega laser facility at the University of Rochester), and (3) magnetic direct drive on the Z pulsed power facility. In this white paper we briefly consider a fourth approach, magnetic indirect drive, in which pulsedpower- driven x-ray sources are used in place of laser driven sources. We first look at some of the x-ray sources studied on Z prior to 2007 before the pulsed power ICF programmore » shifted to magnetic direct drive. We then show results from a series of 1D Helios calculations of double-shell capsules that suggest that these sources, scaled to higher temperatures, could be a promising path to achieving multi-MJ fusion yields and ignition. We advocate here that more detailed design calculations with widely accepted 2D/3D ICF codes should be conducted for a better assessment of the prospects.« less

  10. Implosion dynamics measurements at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Hicks, D. G.; Meezan, N. B.; Dewald, E. L.; Mackinnon, A. J.; Olson, R. E.; Callahan, D. A.; Döppner, T.; Benedetti, L. R.; Bradley, D. K.; Celliers, P. M.; Clark, D. S.; Di Nicola, P.; Dixit, S. N.; Dzenitis, E. G.; Eggert, J. E.; Farley, D. R.; Frenje, J. A.; Glenn, S. M.; Glenzer, S. H.; Hamza, A. V.; Heeter, R. F.; Holder, J. P.; Izumi, N.; Kalantar, D. H.; Khan, S. F.; Kline, J. L.; Kroll, J. J.; Kyrala, G. A.; Ma, T.; MacPhee, A. G.; McNaney, J. M.; Moody, J. D.; Moran, M. J.; Nathan, B. R.; Nikroo, A.; Opachich, Y. P.; Petrasso, R. D.; Prasad, R. R.; Ralph, J. E.; Robey, H. F.; Rinderknecht, H. G.; Rygg, J. R.; Salmonson, J. D.; Schneider, M. B.; Simanovskaia, N.; Spears, B. K.; Tommasini, R.; Widmann, K.; Zylstra, A. B.; Collins, G. W.; Landen, O. L.; Kilkenny, J. D.; Hsing, W. W.; MacGowan, B. J.; Atherton, L. J.; Edwards, M. J.

    2012-12-01

    Measurements have been made of the in-flight dynamics of imploding capsules indirectly driven by laser energies of 1-1.7 MJ at the National Ignition Facility [Miller et al., Nucl. Fusion 44, 228 (2004)]. These experiments were part of the National Ignition Campaign [Landen et al., Phys. Plasmas 18, 051002 (2011)] to iteratively optimize the inputs required to achieve thermonuclear ignition in the laboratory. Using gated or streaked hard x-ray radiography, a suite of ablator performance parameters, including the time-resolved radius, velocity, mass, and thickness, have been determined throughout the acceleration history of surrogate gas-filled implosions. These measurements have been used to establish a dynamically consistent model of the ablative drive history and shell compressibility throughout the implosion trajectory. First results showed that the peak velocity of the original 1.3-MJ Ge-doped polymer (CH) point design using Au hohlraums reached only 75% of the required ignition velocity. Several capsule, hohlraum, and laser pulse changes were then implemented to improve this and other aspects of implosion performance and a dedicated effort was undertaken to test the sensitivity of the ablative drive to the rise time and length of the main laser pulse. Changing to Si rather than Ge-doped inner ablator layers and increasing the pulse length together raised peak velocity to 93% ± 5% of the ignition goal using a 1.5 MJ, 420 TW pulse. Further lengthening the pulse so that the laser remained on until the capsule reached 30% (rather than 60%-70%) of its initial radius, reduced the shell thickness and improved the final fuel ρR on companion shots with a cryogenic hydrogen fuel layer. Improved drive efficiency was observed using U rather than Au hohlraums, which was expected, and by slowing the rise time of laser pulse, which was not. The effect of changing the Si-dopant concentration and distribution, as well as the effect of using a larger initial shell thickness were also examined, both of which indicated that instabilities seeded at the ablation front are a significant source of hydrodynamic mix into the central hot spot. Additionally, a direct test of the surrogacy of cryogenic fuel layered versus gas-filled targets was performed. Together all these measurements have established the fundamental ablative-rocket relationship describing the dependence of implosion velocity on fractional ablator mass remaining. This curve shows a lower-than-expected ablator mass at a given velocity, making the capsule more susceptible to feedthrough of instabilities from the ablation front into the fuel and hot spot. This combination of low velocity and low ablator mass indicates that reaching ignition on the NIF will require >20 μm (˜10%) thicker targets and laser powers at or beyond facility limits.

  11. Implosion dynamics measurements at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hicks, D. G.; Meezan, N. B.; Dewald, E. L.

    2012-12-15

    Measurements have been made of the in-flight dynamics of imploding capsules indirectly driven by laser energies of 1-1.7 MJ at the National Ignition Facility [Miller et al., Nucl. Fusion 44, 228 (2004)]. These experiments were part of the National Ignition Campaign [Landen et al., Phys. Plasmas 18, 051002 (2011)] to iteratively optimize the inputs required to achieve thermonuclear ignition in the laboratory. Using gated or streaked hard x-ray radiography, a suite of ablator performance parameters, including the time-resolved radius, velocity, mass, and thickness, have been determined throughout the acceleration history of surrogate gas-filled implosions. These measurements have been used tomore » establish a dynamically consistent model of the ablative drive history and shell compressibility throughout the implosion trajectory. First results showed that the peak velocity of the original 1.3-MJ Ge-doped polymer (CH) point design using Au hohlraums reached only 75% of the required ignition velocity. Several capsule, hohlraum, and laser pulse changes were then implemented to improve this and other aspects of implosion performance and a dedicated effort was undertaken to test the sensitivity of the ablative drive to the rise time and length of the main laser pulse. Changing to Si rather than Ge-doped inner ablator layers and increasing the pulse length together raised peak velocity to 93% {+-} 5% of the ignition goal using a 1.5 MJ, 420 TW pulse. Further lengthening the pulse so that the laser remained on until the capsule reached 30% (rather than 60%-70%) of its initial radius, reduced the shell thickness and improved the final fuel {rho}R on companion shots with a cryogenic hydrogen fuel layer. Improved drive efficiency was observed using U rather than Au hohlraums, which was expected, and by slowing the rise time of laser pulse, which was not. The effect of changing the Si-dopant concentration and distribution, as well as the effect of using a larger initial shell thickness were also examined, both of which indicated that instabilities seeded at the ablation front are a significant source of hydrodynamic mix into the central hot spot. Additionally, a direct test of the surrogacy of cryogenic fuel layered versus gas-filled targets was performed. Together all these measurements have established the fundamental ablative-rocket relationship describing the dependence of implosion velocity on fractional ablator mass remaining. This curve shows a lower-than-expected ablator mass at a given velocity, making the capsule more susceptible to feedthrough of instabilities from the ablation front into the fuel and hot spot. This combination of low velocity and low ablator mass indicates that reaching ignition on the NIF will require >20 {mu}m ({approx}10%) thicker targets and laser powers at or beyond facility limits.« less

  12. The relationship between gas fill density and hohlraum drive performance at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Hall, G. N.; Jones, O. S.; Strozzi, D. J.; Moody, J. D.; Turnbull, D.; Ralph, J.; Michel, P. A.; Hohenberger, M.; Moore, A. S.; Landen, O. L.; Divol, L.; Bradley, D. K.; Hinkel, D. E.; Mackinnon, A. J.; Town, R. P. J.; Meezan, N. B.; Berzak Hopkins, L.; Izumi, N.

    2017-05-01

    Indirect drive inertial confinement fusion experiments were conducted at the National Ignition Facility to investigate the performance of the hohlraum drive as a function of hohlraum gas fill density by imploding high-density-carbon capsules using a 2-shock laser pulse. Measurements characterized the backscatter behavior, the production of hot electrons, the motion and brightness of the laser spots on the hohlraum wall, and the efficiency of the hohlraum x-ray drive as a function of gas fill density ρgf between 0.03 mg/cc ("near vacuum") and 1.6 mg/cc. For hohlraums with ρgf up to 0.85 mg/cc, very little stimulated Raman backscatter (SRS) was observed. For higher ρgf, significant SRS was produced and was observed to occur during the rise to peak laser power and throughout the main pulse. The efficiency with which laser energy absorbed by the hohlraum is converted into drive energy was measured to be the same for ρgf ≥ 0.6 mg/cc once the laser reached peak power. However, for the near vacuum case, the absorbed energy was converted to drive energy more efficiently throughout the pulse and maintained an efficiency ˜10% higher than the gas filled hohlraums throughout the main pulse.

  13. The relationship between gas fill density and hohlraum drive performance at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, G. N.; Jones, O. S.; Strozzi, D. J.

    Indirect drive inertial confinement fusion experiments were conducted at the National Ignition Facility to investigate the performance of the hohlraum drive as a function of hohlraum gas fill density by imploding high-density-carbon capsules using a 2-shock laser pulse. Our ,easurements characterize the backscatter behavior, the production of hot electrons, the motion and brightness of the laser spots on the hohlraum wall, and the efficiency of the hohlraum x-ray drive as a function of gas fill density ρ gf between 0.03 mg/cc (“near vacuum”) and 1.6 mg/cc. For hohlraums with ρ gf up to 0.85 mg/cc, very little stimulated Raman backscattermore » (SRS) was observed. Furthermore, for higher ρ gf, significant SRS was produced and was observed to occur during the rise to peak laser power and throughout the main pulse. The efficiency with which laser energy absorbed by the hohlraum is converted into drive energy was measured to be the same for ρ gf ≥ 0.6 mg/cc once the laser reached peak power. But, for the near vacuum case, the absorbed energy was converted to drive energy more efficiently throughout the pulse and maintained an efficiency ~10% higher than the gas filled hohlraums throughout the main pulse.« less

  14. The relationship between gas fill density and hohlraum drive performance at the National Ignition Facility

    DOE PAGES

    Hall, G. N.; Jones, O. S.; Strozzi, D. J.; ...

    2017-05-11

    Indirect drive inertial confinement fusion experiments were conducted at the National Ignition Facility to investigate the performance of the hohlraum drive as a function of hohlraum gas fill density by imploding high-density-carbon capsules using a 2-shock laser pulse. Our ,easurements characterize the backscatter behavior, the production of hot electrons, the motion and brightness of the laser spots on the hohlraum wall, and the efficiency of the hohlraum x-ray drive as a function of gas fill density ρ gf between 0.03 mg/cc (“near vacuum”) and 1.6 mg/cc. For hohlraums with ρ gf up to 0.85 mg/cc, very little stimulated Raman backscattermore » (SRS) was observed. Furthermore, for higher ρ gf, significant SRS was produced and was observed to occur during the rise to peak laser power and throughout the main pulse. The efficiency with which laser energy absorbed by the hohlraum is converted into drive energy was measured to be the same for ρ gf ≥ 0.6 mg/cc once the laser reached peak power. But, for the near vacuum case, the absorbed energy was converted to drive energy more efficiently throughout the pulse and maintained an efficiency ~10% higher than the gas filled hohlraums throughout the main pulse.« less

  15. Inelastic response of silicon to shock compression

    DOE PAGES

    Higginbotham, Andrew; Stubley, P. G.; Comley, A. J.; ...

    2016-04-13

    The elastic and inelastic response of [001] oriented silicon to laser compression has been a topic of considerable discussion for well over a decade, yet there has been little progress in understanding the basic behaviour of this apparently simple material. We present experimental x-ray diffraction data showing complex elastic strain profiles in laser compressed samples on nanosecond timescales. We also present molecular dynamics and elasticity code modelling which suggests that a pressure induced phase transition is the cause of the previously reported ‘anomalous’ elastic waves. Moreover, this interpretation allows for measurement of the kinetic timescales for transition. Lastly, this modelmore » is also discussed in the wider context of reported deformation of silicon to rapid compression in the literature.« less

  16. Inelastic response of silicon to shock compression

    PubMed Central

    Higginbotham, A.; Stubley, P. G.; Comley, A. J.; Eggert, J. H.; Foster, J. M.; Kalantar, D. H.; McGonegle, D.; Patel, S.; Peacock, L. J.; Rothman, S. D.; Smith, R. F.; Suggit, M. J.; Wark, J. S.

    2016-01-01

    The elastic and inelastic response of [001] oriented silicon to laser compression has been a topic of considerable discussion for well over a decade, yet there has been little progress in understanding the basic behaviour of this apparently simple material. We present experimental x-ray diffraction data showing complex elastic strain profiles in laser compressed samples on nanosecond timescales. We also present molecular dynamics and elasticity code modelling which suggests that a pressure induced phase transition is the cause of the previously reported ‘anomalous’ elastic waves. Moreover, this interpretation allows for measurement of the kinetic timescales for transition. This model is also discussed in the wider context of reported deformation of silicon to rapid compression in the literature. PMID:27071341

  17. Experimental observation of the shift and width of the aluminium K absorption edge in laser shock-compressed plasmas

    NASA Astrophysics Data System (ADS)

    Hall, T. A.; Al-Kuzee, J.; Benuzzi, A.; Koenig, M.; Krishnan, J.; Grandjouan, N.; Batani, D.; Bossi, S.; Nicolella, S.

    1998-03-01

    Experimental measurements of the shift and width of the aluminium K-absorption edge in laser shock-compressed plasma is presented. The spectrometer used in these experiments allows an accurate wavelength calibration and fiduciary and hence provides precise measurements of both the shift and the width of the absorption edge. Results have been obtained for compressions up to approximately ×2 and temperatures up to about 1.5 eV. The values of shift and width are compared with a new model with which there is very good agreement.

  18. Remotely controllable mixing system

    NASA Technical Reports Server (NTRS)

    Belew, R. R. (Inventor)

    1986-01-01

    This invention relates to a remotely controllable mixing system in which a plurality of mixing assemblies are arranged in an annular configuration, and wherein each assembly employs a central chamber and two outer, upper and lower chambers. Valves are positioned between chambers, and these valves for a given mixing assembly are operated by upper and lower control rotors, which in turn are driven by upper and lower drive rotors. Additionally, a hoop is compressed around upper control rotors and a hoop is compressed around lower control rotors to thus insure constant frictional engagement between all control rotors and drive rotors. The drive rollers are driven by a motor.

  19. Onset of turbulence in accelerated high-Reynolds-number flow

    NASA Astrophysics Data System (ADS)

    Zhou, Ye; Robey, Harry F.; Buckingham, Alfred C.

    2003-05-01

    A new criterion, flow drive time, is identified here as a necessary condition for transition to turbulence in accelerated, unsteady flows. Compressible, high-Reynolds-number flows initiated, for example, in shock tubes, supersonic wind tunnels with practical limitations on dimensions or reservoir capacity, and high energy density pulsed laser target vaporization experimental facilities may not provide flow duration adequate for turbulence development. In addition, for critical periods of the overall flow development, the driving background flow is often unsteady in the experiments as well as in the physical flow situations they are designed to mimic. In these situations transition to fully developed turbulence may not be realized despite achievement of flow Reynolds numbers associated with or exceeding stationary flow transitional criteria. Basically our transitional criterion and prediction procedure extends to accelerated, unsteady background flow situations the remarkably universal mixing transition criterion proposed by Dimotakis [P. E. Dimotakis, J. Fluid Mech. 409, 69 (2000)] for stationary flows. This provides a basis for the requisite space and time scaling. The emphasis here is placed on variable density flow instabilities initiated by constant acceleration Rayleigh-Taylor instability (RTI) or impulsive (shock) acceleration Richtmyer-Meshkov instability (RMI) or combinations of both. The significant influences of compressibility on these developing transitional flows are discussed with their implications on the procedural model development. A fresh perspective for predictive modeling and design of experiments for the instability growth and turbulent mixing transitional interval is provided using an analogy between the well-established buoyancy-drag model with applications of a hierarchy of single point turbulent transport closure models. Experimental comparisons with the procedural results are presented where use is made of three distinctly different types of acceleration driven instability experiments: (1) classical, relatively low speed, constant acceleration RTI experiments; (2) shock tube, shockwave driven RMI flow mixing experiments; (3) laser target vaporization RTI and RMI mixing experiments driven at very high energy density. These last named experiments are of special interest as they provide scaleable flow conditions simulating those of astrophysical magnitude such as shock-driven hydrodynamic mixing in supernova evolution research.

  20. Video compression via log polar mapping

    NASA Astrophysics Data System (ADS)

    Weiman, Carl F. R.

    1990-09-01

    A three stage process for compressing real time color imagery by factors in the range of 1600-to-i is proposed for remote driving'. The key is to match the resolution gradient of human vision and preserve only those cues important for driving. Some hardware components have been built and a research prototype is planned. Stage 1 is log polar mapping, which reduces peripheral image sampling resolution to match the peripheral gradient in human visual acuity. This can yield 25-to-i compression. Stage 2 partitions color and contrast into separate channels. This can yield 8-to-i compression. Stage 3 is conventional block data compression such as hybrid DCT/DPCM which can yield 8-to-i compression. The product of all three stages is i600-to-i data compression. The compressed signal can be transmitted over FM bands which do not require line-of-sight, greatly increasing the range of operation and reducing the topographic exposure of teleoperated vehicles. Since the compressed channel data contains the essential constituents of human visual perception, imagery reconstructed by inverting each of the three compression stages is perceived as complete, provided the operator's direction of gaze is at the center of the mapping. This can be achieved by eye-tracker feedback which steers the center of log polar mapping in the remote vehicle to match the teleoperator's direction of gaze.

  1. Design of Aircraft (Selected Chapters),

    DTIC Science & Technology

    1986-09-22

    9 - compressed air motor of the drive of the reverser of the thrust of fan; 10 - flexible drive shaft; 11 - gearbox and jack; 12 - moving ring; 13...24 - cutoff and control valve; 25 - main line of pneumatic system; 26 - pneumo-starter; 27 - given by compressed air motor hydraulic pump; 28...kilometer; p - mass air density; p, - on the surface of sea; .A=p/p°- relative density of air ; R - radius of the Earth, a radius turn/bank and so forth; S

  2. Compression of turbulent magnetized gas in giant molecular clouds

    NASA Astrophysics Data System (ADS)

    Birnboim, Yuval; Federrath, Christoph; Krumholz, Mark

    2018-01-01

    Interstellar gas clouds are often both highly magnetized and supersonically turbulent, with velocity dispersions set by a competition between driving and dissipation. This balance has been studied extensively in the context of gases with constant mean density. However, many astrophysical systems are contracting under the influence of external pressure or gravity, and the balance between driving and dissipation in a contracting, magnetized medium has yet to be studied. In this paper, we present three-dimensional magnetohydrodynamic simulations of compression in a turbulent, magnetized medium that resembles the physical conditions inside molecular clouds. We find that in some circumstances the combination of compression and magnetic fields leads to a rate of turbulent dissipation far less than that observed in non-magnetized gas, or in non-compressing magnetized gas. As a result, a compressing, magnetized gas reaches an equilibrium velocity dispersion much greater than would be expected for either the hydrodynamic or the non-compressing case. We use the simulation results to construct an analytic model that gives an effective equation of state for a coarse-grained parcel of the gas, in the form of an ideal equation of state with a polytropic index that depends on the dissipation and energy transfer rates between the magnetic and turbulent components. We argue that the reduced dissipation rate and larger equilibrium velocity dispersion has important implications for the driving and maintenance of turbulence in molecular clouds and for the rates of chemical and radiative processes that are sensitive to shocks and dissipation.

  3. ICPP: Relativistic Plasma Physics with Ultra-Short High-Intensity Laser Pulses

    NASA Astrophysics Data System (ADS)

    Meyer-Ter-Vehn, Juergen

    2000-10-01

    Recent progress in generating ultra-short high-intensity laser pulses has opened a new branch of relativistic plasma physics, which is discussed in this talk in terms of particle-in-cell (PIC) simulations. These pulses create small plasma volumes of high-density plasma with plasma fields above 10^12 V/m and 10^8 Gauss. At intensities beyond 10^18 W/cm^2, now available from table-top systems, they drive relativistic electron currents in self-focussing plasma channels. These currents are close to the Alfven limit and allow to study relativistic current filamentation. A most remarkable feature is the generation of well collimated relativistic electron beams emerging from the channels with energies up to GeV. In dense matter they trigger cascades of gamma-rays, e^+e^- pairs, and a host of nuclear and particle processes. One of the applications may be fast ignition of compressed inertial fusion targets. Above 10^23 W/cm^2, expected to be achieved in the future, solid-density matter becomes relativistically transparent for optical light, and the acceleration of protons to multi-GeV energies is predicted in plasma layers less than 1 mm thick. These results open completely new perspectives for plasma-based accelerator schemes. Three-dimensional PIC simulations turn out to be the superior tool to explore the relativistic plasma kinetics at such intensities. Results obtained with the VLPL code [1] are presented. Different mechanisms of particle acceleration are discussed. Both laser wakefield and direct laser acceleration in plasma channels (by a mechanism similar to inverse free electron lasers) have been identified. The latter describes recent MPQ experimental results. [1] A. Pukhov, J. Plasma Physics 61, 425 - 433 (1999): Three-dimensional electromagnetic relativistic particle-in-cell code VLPL (Virtual Laser Plasma Laboratory).

  4. Temperature measurement in a compressible flow field using laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Fletcher, D. G.; Mcdaniel, J. C.

    1987-01-01

    The thermometric capability of a two-line fluorescence technique using iodine seed molecules in air is investigated analytically and verified experimentally in a known steady compressible flow field. Temperatures ranging from 165 to 295 K were measured in the flowfield using two iodine transitions accessed with a 30-GHz dye-laser scan near 543 nm. The effect of pressure broadening on temperature measurement is evaluated.

  5. Method for mounting laser fusion targets for irradiation

    DOEpatents

    Fries, R. Jay; Farnum, Eugene H.; McCall, Gene H.

    1977-07-26

    Methods for preparing laser fusion targets of the ball-and-disk type are disclosed. Such targets are suitable for irradiation with one or two laser beams to produce the requisite uniform compression of the fuel material.

  6. Small-signal modulation characteristics of a polariton laser

    PubMed Central

    Zunaid Baten, Md; Frost, Thomas; Iorsh, Ivan; Deshpande, Saniya; Kavokin, Alexey; Bhattacharya, Pallab

    2015-01-01

    Use of large bandgap materials together with electrical injection makes the polariton laser an attractive low-power coherent light source for medical and biomedical applications or short distance plastic fiber communication at short wavelengths (violet and ultra-violet), where a conventional laser is difficult to realize. The dynamic properties of a polariton laser have not been investigated experimentally. We have measured, for the first time, the small signal modulation characteristics of a GaN-based electrically pumped polariton laser operating at room temperature. A maximum −3 dB modulation bandwidth of 1.18 GHz is measured. The experimental results have been analyzed with a theoretical model based on the Boltzmann kinetic equations and the agreement is very good. We have also investigated frequency chirping during such modulation. Gain compression phenomenon in a polariton laser is interpreted and a value is obtained for the gain compression factor. PMID:26154681

  7. Pulse compression in an electro-optic Q-switched diode-pumped YVO4/Nd:YVO4 laser with a Cr4+:YAG saturable absorber.

    PubMed

    Li, Tao; Zhao, Shengzhi; Zhuo, Zhuang; Yang, Kejian; Li, Guiqiu; Li, Dechun

    2009-04-20

    A diode end-pumped doubly Q-switched YVO4/Nd:YVO4 laser has been realized for the first time to our knowledge by using both an electro-optic (EO) modulator and a Cr4):YAG saturable absorber. A 3.8 ns pulse width is generated by this laser under a pump power of 15 W at 2 kHz, which is obviously compressed in comparison with that of 8.8 ns from a single actively EO Q-switched laser. Under the same conditions, peak power values of 174.7 and 93 kW are also obtained. A coupled equation is given to theoretically analyze the experimental data. The experimental and theoretical results show that the doubly Q-switched laser has the advantages of a shorter pulse width and higher pulse peak power in contrast with a singly Q-switched laser.

  8. A platform for detecting material melting from shock compression using the NIF x-ray diffraction diagnostic TARDIS

    NASA Astrophysics Data System (ADS)

    Wehrenberg, Christopher; Kraus, Richard; Braun, Dave; Rygg, Ryan; Coppari, Federica; Lazicki, Amy; McNaney, James; Eggert, Jon

    2016-10-01

    A series of experiments were performed on NIF to develop a platform to detect material melting during shock compression using x-ray diffraction. The unique pulse shaping on NIF can be utilized to directly-drive a steady shock into an ablator and material sample while simultaneously creating an x-ray source to probe the material state. Sharp diffraction lines are observed when the material is in the solid state, while broad diffuse lines are seen when in the liquid state, providing an unambiguous signal for shock driven melting. Several shots were performed in which a shock of 50-80 GPa was driven into a Pb sample while a Ge foil was used as an x-ray source probe. Laser conditions were varied to create a suitable x-ray source that provides a short, bright burst of He-alpha emission from the Ge while maintaining a low background level on the image plates contained in the TARDIS diagnostic. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  9. High-power ultrashort fiber laser for solar cells micromachining

    NASA Astrophysics Data System (ADS)

    Lecourt, J.-B.; Duterte, C.; Liegeois, F.; Lekime, D.; Hernandez, Y.; Giannone, D.

    2012-02-01

    We report on a high-power ultra-short fiber laser for thin film solar cells micromachining. The laser is based on Chirped Pulse Amplification (CPA) scheme. The pulses are stretched to hundreds of picoseconds prior to amplification and can be compressed down to picosecond at high energy. The repetition rate is adjustable from 100 kHz to 1 MHz and the optical average output power is close to 13 W (before compression). The whole setup is fully fibred, except the compressor achieved with bulk gratings, resulting on a compact and reliable solution for cold ablation.

  10. Solving the jitter problem in microwave compressed ultrafast electron diffraction instruments: Robust sub-50 fs cavity-laser phase stabilization

    PubMed Central

    Otto, M. R.; René de Cotret, L. P.; Stern, M. J.; Siwick, B. J.

    2017-01-01

    We demonstrate the compression of electron pulses in a high-brightness ultrafast electron diffraction instrument using phase-locked microwave signals directly generated from a mode-locked femtosecond oscillator. Additionally, a continuous-wave phase stabilization system that accurately corrects for phase fluctuations arising in the compression cavity from both power amplification and thermal drift induced detuning was designed and implemented. An improvement in the microwave timing stability from 100 fs to 5 fs RMS is measured electronically, and the long-term arrival time stability (>10 h) of the electron pulses improves to below our measurement resolution of 50 fs. These results demonstrate sub-relativistic ultrafast electron diffraction with compressed pulses that is no longer limited by laser-microwave synchronization. PMID:28852686

  11. Optimizing pulse compressibility in completely all-fibered Ytterbium chirped pulse amplifiers for in vivo two photon laser scanning microscopy

    PubMed Central

    Fernández, A.; Grüner-Nielsen, L.; Andreana, M.; Stadler, M.; Kirchberger, S.; Sturtzel, C.; Distel, M.; Zhu, L.; Kautek, W.; Leitgeb, R.; Baltuska, A.; Jespersen, K.; Verhoef, A.

    2017-01-01

    A simple and completely all-fiber Yb chirped pulse amplifier that uses a dispersion matched fiber stretcher and a spliced-on hollow core photonic bandgap fiber compressor is applied in nonlinear optical microscopy. This stretching-compression approach improves compressibility and helps to maximize the fluorescence signal in two-photon laser scanning microscopy as compared with approaches that use standard single mode fibers as stretcher. We also show that in femtosecond all-fiber systems, compensation of higher order dispersion terms is relevant even for pulses with relatively narrow bandwidths for applications relying on nonlinear optical effects. The completely all-fiber system was applied to image green fluorescent beads, a stained lily-of-the-valley root and rat-tail tendon. We also demonstrated in vivo imaging in zebrafish larvae, where we simultaneously measure second harmonic and fluorescence from two-photon excited red-fluorescent protein. Since the pulses are compressed in a fiber, this source is especially suited for upgrading existing laser scanning (confocal) microscopes with multiphoton imaging capabilities in space restricted settings or for incorporation in endoscope-based microscopy. PMID:28856032

  12. Optimizing pulse compressibility in completely all-fibered Ytterbium chirped pulse amplifiers for in vivo two photon laser scanning microscopy.

    PubMed

    Fernández, A; Grüner-Nielsen, L; Andreana, M; Stadler, M; Kirchberger, S; Sturtzel, C; Distel, M; Zhu, L; Kautek, W; Leitgeb, R; Baltuska, A; Jespersen, K; Verhoef, A

    2017-08-01

    A simple and completely all-fiber Yb chirped pulse amplifier that uses a dispersion matched fiber stretcher and a spliced-on hollow core photonic bandgap fiber compressor is applied in nonlinear optical microscopy. This stretching-compression approach improves compressibility and helps to maximize the fluorescence signal in two-photon laser scanning microscopy as compared with approaches that use standard single mode fibers as stretcher. We also show that in femtosecond all-fiber systems, compensation of higher order dispersion terms is relevant even for pulses with relatively narrow bandwidths for applications relying on nonlinear optical effects. The completely all-fiber system was applied to image green fluorescent beads, a stained lily-of-the-valley root and rat-tail tendon. We also demonstrated in vivo imaging in zebrafish larvae, where we simultaneously measure second harmonic and fluorescence from two-photon excited red-fluorescent protein. Since the pulses are compressed in a fiber, this source is especially suited for upgrading existing laser scanning (confocal) microscopes with multiphoton imaging capabilities in space restricted settings or for incorporation in endoscope-based microscopy.

  13. Laser Fusion - A New Thermonuclear Concept

    ERIC Educational Resources Information Center

    Cooper, Ralph S.

    1975-01-01

    Describes thermonuclear processes induced by interaction of a laser beam with the surface of a fuel pellet. An expanding plasma is formed which results in compression of the element. Laser and reactor technology are discussed. Pictures and diagrams are included. (GH)

  14. Hybrid indirect-drive/direct-drive target for inertial confinement fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perkins, Lindsay John

    A hybrid indirect-drive/direct drive for inertial confinement fusion utilizing laser beams from a first direction and laser beams from a second direction including a central fusion fuel component; a first portion of a shell surrounding said central fusion fuel component, said first portion of a shell having a first thickness; a second portion of a shell surrounding said fusion fuel component, said second portion of a shell having a second thickness that is greater than said thickness of said first portion of a shell; and a hohlraum containing at least a portion of said fusion fuel component and at leastmore » a portion of said first portion of a shell; wherein said hohlraum is in a position relative to said first laser beam and to receive said first laser beam and produce X-rays that are directed to said first portion of a shell and said fusion fuel component; and wherein said fusion fuel component and said second portion of a shell are in a position relative to said second laser beam such that said second portion of a shell and said fusion fuel component receive said second laser beam.« less

  15. Compression of magnetized target in the magneto-inertial fusion

    NASA Astrophysics Data System (ADS)

    Kuzenov, V. V.

    2017-12-01

    This paper presents a mathematical model, numerical method and results of the computer analysis of the compression process and the energy transfer in the target plasma, used in magneto-inertial fusion. The computer simulation of the compression process of magnetized cylindrical target by high-power laser pulse is presented.

  16. Computer-controlled multi-parameter mapping of 3D compressible flowfields using planar laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Donohue, James M.; Victor, Kenneth G.; Mcdaniel, James C., Jr.

    1993-01-01

    A computer-controlled technique, using planar laser-induced iodine fluorescence, for measuring complex compressible flowfields is presented. A new laser permits the use of a planar two-line temperature technique so that all parameters can be measured with the laser operated narrowband. Pressure and temperature measurements in a step flowfield show agreement within 10 percent of a CFD model except in regions close to walls. Deviation of near wall temperature measurements from the model was decreased from 21 percent to 12 percent compared to broadband planar temperature measurements. Computer-control of the experiment has been implemented, except for the frequency tuning of the laser. Image data storage and processing has been improved by integrating a workstation into the experimental setup reducing the data reduction time by a factor of 50.

  17. Spatial resolution measurements of the advanced radiographic capability x-ray imaging system at energies relevant to Compton radiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, G. N.; Izumi, N.; Landen, O. L.

    2016-08-03

    Compton radiography provides a means to measure the integrity, ρR and symmetry of the DT fuel in an inertial confinement fusion implosion near peak compression. Upcoming experiments at the National Ignition Facility will use the ARC (Advanced Radiography Capability) laser to drive backlighter sources for Compton radiography experiments, and will use the newly commissioned AXIS (ARC X-ray Imaging System) instrument as the detector. AXIS uses a dual-MCP (micro channel plate) to provide gating and high DQE at the 40–200keV x-ray range required for Compton radiography, but introduces many effects that contribute to the spatial resolution. Here, experiments were performed atmore » energies relevant to Compton radiography to begin characterization of the spatial resolution of the AXIS diagnostic.« less

  18. Uniform laser-driven relativistic electron layer for coherent Thomson scattering.

    PubMed

    Wu, H-C; Meyer-ter-Vehn, J; Fernández, J; Hegelich, B M

    2010-06-11

    A novel scheme is proposed to generate uniform relativistic electron layers for coherent Thomson backscattering. A few-cycle laser pulse is used to produce the electron layer from an ultrathin solid foil. The key element of the new scheme is an additional foil that reflects the drive-laser pulse, but lets the electrons pass almost unperturbed. Making use of two-dimensional particle-in-cell simulations and well-known basic theory, it is shown that the electrons, after interacting with both the drive and reflected laser pulses, form a very uniform flyer freely cruising with a high relativistic γ factor exactly in the drive-laser direction (no transverse momentum). It backscatters the probe light with a full Doppler shift factor of 4γ(2). The reflectivity and its decay due to layer expansion are discussed.

  19. Fuel Areal-Density Measurements in Laser-Driven Magnetized Inertial Fusion from Secondary Neutrons

    NASA Astrophysics Data System (ADS)

    Davies, J. R.; Barnak, D. H.; Betti, R.; Glebov, V. Yu.; Knauer, J. P.; Peebles, J. L.

    2017-10-01

    Laser-driven magnetized liner inertial fusion is being developed on the OMEGA laser to provide the first data at a significantly smaller scale than the Z pulsed-power machine in order to test scaling and to provide more shots with better diagnostic access than Z. In OMEGA experiments, a 0.6-mm-outer-diam plastic cylinder filled with 11 atm of D2 is placed in an axial magnetic field of 10 T, the D2 is preheated by a single beam along the axis, and then the cylinder is compressed by 40 beams. Secondary DT neutron yields provide a measurement of the areal density of the compressed D2 because the compressed fuel is much smaller than the mean free path and the Larmor radius of the T produced in D-D fusion. Measured secondary yields confirm theoretical predictions that preheating and magnetization reduce fuel compression. Higher fuel compression is found to consistently lead to lower neutron yields, which is not predicted by simulations. The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000568 and the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  20. Experience with Geared Propeller Drives for Aviation Engines

    NASA Technical Reports Server (NTRS)

    Kutzbach, K

    1920-01-01

    I. The development of the gear wheels: (a) bending stresses; (b) compressive stresses; (c) heating; (d) precision of manufacture. II. General arrangement of the gearing. III. Vibration in the shaft transmission. An overview is given of experience with geared propeller drives for aviation engines. The development of gear wheels is discussed with emphasis upon bending stresses, compressive stresses, heating, and precision in manufacturing. With respect to the general arrangement of gear drives for airplanes, some principal rules of mechanical engineering that apply with special force are noted. The primary vibrations in the shaft transmission are discussed. With respect to vibration, various methods for computing vibration frequency and the influence of elastic couplings are discussed.

  1. Intense laser-driven ion beams in the relativistic-transparency regime: acceleration, control and applications

    NASA Astrophysics Data System (ADS)

    Fernandez, Juan C.

    2016-10-01

    Laser-plasma interactions in the novel regime of relativistically-induced transparency have been harnessed to generate efficiently intense ion beams with average energies exceeding 10 MeV/nucleon (>100 MeV for protons) at ``table-top'' scales. We have discovered and utilized a self-organizing scheme that exploits persisting self-generated plasma electric ( 0.1 TV/m) and magnetic ( 104 Tesla) fields to reduce the ion-energy (Ei) spread after the laser exits the plasma, thus separating acceleration from spread reduction. In this way we routinely generate aluminum and carbon beams with narrow spectral peaks at Ei up to 310 MeV and 220 MeV, respectively, with high efficiency ( 5%). The experimental demonstration has been done at the LANL Trident laser with 0.12 PW, high-contrast, 0.65 ps Gaussian laser pulses irradiating planar foils up to 250 nm thick. In this regime, Ei scales empirically with laser intensity (I) as I 1 / 2. Our progress is enabled by high-fidelity, massive computer simulations of the experiments. This work advances next-generation compact accelerators suitable for new applications. E . g ., a carbon beam with Ei 400 MeV and 10% energy spread is suitable for fast ignition (FI) of compressed DT. The observed scaling suggests that is feasible with existing target fabrication and PW-laser technologies, using a sub-ps laser pulse with I 2.5 ×1021 W/cm2. These beams have been used on Trident to generate warm-dense matter at solid-densities, enabling us to investigate its equation of state and mixing of heterogeneous interfaces purely by plasma effects distinct from hydrodynamics. They also drive an intense neutron-beam source with great promise for important applications such as active interrogation of shielded nuclear materials. Considerations on controlling ion-beam divergence for their increased utility are discussed. Funded by the LANL LDRD program.

  2. A Beat Frequency RF Modulator for Generation of Low Repetition Rate Electron Microbunches for the CEBAF Polarized Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Musson; Reza Kazimi; Benard Poelker

    2007-06-25

    Fiber-based drive lasers now produce all of the spin-polarized electron beams at CEBAF/Jefferson Lab. The flexibility of these drive lasers, combined with the existing three-beam CEBAF photoinjector Chopper, provides a means to implement a beat frequency technique to produce long time intervals between individual electron microbunches (tens of nanoseconds) by merely varying the nominal 499 MHz drive laser frequency by < 20%. This submission describes the RF Laser modulator that uses a divider and heterodyne scheme to maintain coherence with the accelerator Master Oscillator (MO), while providing delay resolution in increments of 2ns. Some possible uses for such a beammore » are discussed as well as intended future development.« less

  3. Significant skin-tightening by closure of fractional ablative laser holes.

    PubMed

    Russe, Elisabeth; Purschke, Martin; Limpiangkanan, Wikunda; Farinelli, William A; Wang, Ying; Doukas, Apostolos G; Sakamoto, Fernanda H; Wechselberger, Gottfried; Anderson, Richard Rox

    2018-01-01

    Ablative fractional laser treatment uses thousands of very small laser beam wounds to damage a fraction of the skin, which stimulates tissue remodeling. Each open micro-wound heals without scarring, but the amount of skin tightening achieved is limited. This animal study was performed to test the hypothesis that immediate temporary closure of fractional laser wounds could increase skin tightening after fractional ablative laser treatment. Four adult swine were used for the study; 98 square test sites (3 × 3 cm) were tattooed on the abdomen and flanks of each pig. An ablative fractional Erbium:YAG laser (Sciton Profile, Sciton Inc, Palo Alto, CA) was used to treat the test areas. A laser micro-spot fluence of 375 J/cm 2 was delivered in 150-250 microseconds pulses, resulting in an array of ablation channels extending 1.5 mm deep into the skin, with a spot size of 250 µm, with 10% treatment density. Immediately following laser exposure the resulting holes were closed using a stretched elastic adhesive dressing, which, when applied, recoiled and compressed the diameter of the ablation holes. The compressive dressings were removed after 7 days. This procedure was compared to removing the same amount of skin (10%) mechanically by specially designed 19 gauge coring needles, as well as to the same laser and coring methods without compression closure. Area and shape of test sites were measured by digital photography before and 28 days after treatment. Data analysis included compensation for animal growth, as measured by increase in the area of the untreated control sites. All treated and control sites healed within a week, without scarring evident at 28 days. Laser treatment combined with compressive wound closure caused significant shrinkage at 28 days compared with untreated control sites. The treated skin area was reduced by 11.5% (P = 0.0001). Needle coring with wound closure produced similar, significant shrinkage (8%, P < 0.0021), whereas laser and needle coring treatment without closure did not result in significant area reduction (P = 0.1289) compared with untreated control sites. Significant skin tightening can be achieved by immediate temporary non-invasive wound closure after short pulse Er:YAG fractional ablative laser treatment, as well as after mechanically removing skin with a coring needle. This approach may improve skin tightening after ablative laser treatments. Further clinical studies are necessary to confirm successful application in humans. Lasers Surg. Med. 50:64-69, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Tunable radio-frequency photonic filter based on an actively mode-locked fiber laser.

    PubMed

    Ortigosa-Blanch, A; Mora, J; Capmany, J; Ortega, B; Pastor, D

    2006-03-15

    We propose the use of an actively mode-locked fiber laser as a multitap optical source for a microwave photonic filter. The fiber laser provides multiple optical taps with an optical frequency separation equal to the external driving radio-frequency signal of the laser that governs its repetition rate. All the optical taps show equal polarization and an overall Gaussian apodization, which reduces the sidelobes. We demonstrate continuous tunability of the filter by changing the external driving radio-frequency signal of the laser, which shows good fine tunability in the operating range of the laser from 5 to 10 GHz.

  5. Laser shock wave and its applications

    NASA Astrophysics Data System (ADS)

    Yang, Chaojun; Zhang, Yongkang; Zhou, Jianzhong; Zhang, Fang; Feng, Aixin

    2007-12-01

    The technology of laser shock wave is used to not only surface modification but also metal forming. It can be divided into three parts: laser shock processing, laser shock forming (LSF) and laser peenforming(LPF). Laser shock processing as a surface treatment to metals can make engineering components have a residual compressive stress so that it obviously improves their fatigue strength and stress corrosion performances, while laser shock forming (LSF) is a novel technique that is used in plastic deformation of sheet metal recently and Laser peen forming (LPF) is another new sheet metal forming process presented in recent years. They all can be carried out by a high-power and repetition pulse Nd:Glass laser device made by Jiangsu University. Laser shock technology has characterized of ultrahigh pressure and high strain rate (10 6 - 10 7s -1). Now, for different materials, we are able to form different metals to contours and shapes and simultaneity leave their surfaces in crack-resistant compressive stress state. The results show that the technology of laser shock wave can strengthen surface property and prolong fatigue life and especially can deform metals to shapes that could not be adequately made using conventional methods. With the development of the technology of laser shock wave, the applied fields of laser will become greater and greater.

  6. Time-resolved Measurements of ICF Capsule Ablator Properties by Streaked X-Ray Radiography

    NASA Astrophysics Data System (ADS)

    Hicks, Damien

    2008-11-01

    Determining the capsule ablator thickness and peak laser or x-ray drive pressure required to optimize fuel compression is a critical part of ensuring ICF ignition on the NIF. If too little ablator is burned off, the implosion velocity will be too low for adequate final compression; if too much ablator is burned off, the fuel will be preheated or the shell will be broken up by growth of hydrodynamic instabilities, again compromising compression. Avoiding such failure modes requires having an accurate, in-flight measure of the implosion velocity, areal density, and remaining mass of the ablator near peak velocity. We present a new technique which achieves simultaneous time-resolved measurements of all these parameters in a single, area-backlit, x-ray streaked radiograph. This is accomplished by tomographic inversion of the radiograph to determine the radial density profile at each time step; scalar quantities such as the average position, areal density, and mass of the ablator can then be calculated by taking moments of this density profile. Details of the successful demonstration of this technique using backlit Cu-doped Be capsule implosions at the Omega facility will be presented. This work was performed under the auspices of the U.S.Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and in collaboration with Brian Spears, David Braun, Peter Celliers, Gilbert Collins, and Otto Landen at LLNL and Rick Olson at SNL.

  7. Design, fabrication, and performance testing of a vacuum chamber for pulse compressor of a 150 TW Ti:sapphire laser

    NASA Astrophysics Data System (ADS)

    Tripathi, P. K.; Singh, Rajvir; Bhatnagar, V. K.; Sharma, S. D.; Sharma, Sanjay; Sisodia, B.; Yedle, K.; Kushwaha, R. P.; Sebastin, S.; Mundra, G.

    2012-11-01

    A vacuum chamber, to house the optical pulse compressor of a 150 TW Ti:sapphire laser system, has been designed, fabricated, and tested. As the intensity of the laser pulse becomes very high after pulse compression, there is phase distortion of the laser beam in air. Hence, the beam (after pulse compression) has to be transported in vacuum to avoid this distortion, which affects the laser beam focusability. A breadboard with optical gratings and reflective optics for compression of the optical pulse has to be kept inside the chamber. The chamber is made of SS 316L material in cuboidal shape with inside dimensions 1370×1030×650 mm3, with rectangular and circular demountable ports for entry and exit of the laser beam, evacuation, system cables, and ports to access optics mounted inside the chamber. The front and back sides of the chamber are kept demountable in order to insert the breadboard with optical components mounted on it. Leak tightness of 9×10-9 mbar-lit/sec in all the joints and ultimate vacuum of 6.5×10-6 mbar was achieved in the chamber using a turbo molecular pumping system. The paper describe details of the design/ features of the chamber, important procedure involved in machining, fabrication, processing and final testing.

  8. Laser-driven magnetic-flux compression in high-energy-density plasmas.

    PubMed

    Gotchev, O V; Chang, P Y; Knauer, J P; Meyerhofer, D D; Polomarov, O; Frenje, J; Li, C K; Manuel, M J-E; Petrasso, R D; Rygg, J R; Séguin, F H; Betti, R

    2009-11-20

    The demonstration of magnetic field compression to many tens of megagauss in cylindrical implosions of inertial confinement fusion targets is reported for the first time. The OMEGA laser [T. R. Boehly, Opt. Commun. 133, 495 (1997)10.1016/S0030-4018(96)00325-2] was used to implode cylindrical CH targets filled with deuterium gas and seeded with a strong external field (>50 kG) from a specially developed magnetic pulse generator. This seed field was trapped (frozen) in the shock-heated gas fill and compressed by the imploding shell at a high implosion velocity, minimizing the effect of resistive flux diffusion. The magnetic fields in the compressed core were probed via proton deflectrometry using the fusion products from an imploding D3He target. Line-averaged magnetic fields between 30 and 40 MG were observed.

  9. Determining the Carrier-Envelope Phase of Intense Few-Cycle Laser Pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackenroth, F.; Di Piazza, A.; Keitel, C. H.

    2010-08-06

    The electromagnetic radiation emitted by an ultrarelativistic accelerated electron is extremely sensitive to the precise shape of the field driving the electron. We show that the angular distribution of the photons emitted by an electron via multiphoton Compton scattering off an intense (I>10{sup 20} W/cm{sup 2}), few-cycle laser pulse provides a direct way of determining the carrier-envelope phase of the driving laser field. Our calculations take into account exactly the laser field, include relativistic and quantum effects and are in principle applicable to presently available and future foreseen ultrastrong laser facilities.

  10. Multiple film plane diagnostic for shocked lattice measurements (invited)

    NASA Astrophysics Data System (ADS)

    Kalantar, Daniel H.; Bringa, E.; Caturla, M.; Colvin, J.; Lorenz, K. T.; Kumar, M.; Stölken, J.; Allen, A. M.; Rosolankova, K.; Wark, J. S.; Meyers, M. A.; Schneider, M.; Boehly, T. R.

    2003-03-01

    Laser-based shock experiments have been conducted in thin Si and Cu crystals at pressures above the Hugoniot elastic limit. In these experiments, static film and x-ray streak cameras recorded x rays diffracted from lattice planes both parallel and perpendicular to the shock direction. These data showed uniaxial compression of Si(100) along the shock direction and three-dimensional compression of Cu(100). In the case of the Si diffraction, there was a multiple wave structure observed, which may be due to a one-dimensional phase transition or a time variation in the shock pressure. A new film-based detector has been developed for these in situ dynamic diffraction experiments. This large-angle detector consists of three film cassettes that are positioned to record x rays diffracted from a shocked crystal anywhere within a full π steradian. It records x rays that are diffracted from multiple lattice planes both parallel and at oblique angles with respect to the shock direction. It is a time-integrating measurement, but time-resolved data may be recorded using a short duration laser pulse to create the diffraction source x rays. This new instrument has been fielded at the OMEGA and Janus lasers to study single-crystal materials shock compressed by direct laser irradiation. In these experiments, a multiple wave structure was observed on many different lattice planes in Si. These data provide information on the structure under compression.

  11. Ultrafast probing of magnetic field growth inside a laser-driven solenoid

    NASA Astrophysics Data System (ADS)

    Goyon, C.; Pollock, B. B.; Turnbull, D. P.; Hazi, A.; Divol, L.; Farmer, W. A.; Haberberger, D.; Javedani, J.; Johnson, A. J.; Kemp, A.; Levy, M. C.; Grant Logan, B.; Mariscal, D. A.; Landen, O. L.; Patankar, S.; Ross, J. S.; Rubenchik, A. M.; Swadling, G. F.; Williams, G. J.; Fujioka, S.; Law, K. F. F.; Moody, J. D.

    2017-03-01

    We report on the detection of the time-dependent B-field amplitude and topology in a laser-driven solenoid. The B-field inferred from both proton deflectometry and Faraday rotation ramps up linearly in time reaching 210 ± 35 T at the end of a 0.75-ns laser drive with 1 TW at 351 nm. A lumped-element circuit model agrees well with the linear rise and suggests that the blow-off plasma screens the field between the plates leading to an increased plate capacitance that converts the laser-generated hot-electron current into a voltage source that drives current through the solenoid. ALE3D modeling shows that target disassembly and current diffusion may limit the B-field increase for longer laser drive. Scaling of these experimental results to a National Ignition Facility (NIF) hohlraum target size (˜0.2 cm3 ) indicates that it is possible to achieve several tens of Tesla.

  12. Ultrafast probing of magnetic field growth inside a laser-driven solenoid.

    PubMed

    Goyon, C; Pollock, B B; Turnbull, D P; Hazi, A; Divol, L; Farmer, W A; Haberberger, D; Javedani, J; Johnson, A J; Kemp, A; Levy, M C; Grant Logan, B; Mariscal, D A; Landen, O L; Patankar, S; Ross, J S; Rubenchik, A M; Swadling, G F; Williams, G J; Fujioka, S; Law, K F F; Moody, J D

    2017-03-01

    We report on the detection of the time-dependent B-field amplitude and topology in a laser-driven solenoid. The B-field inferred from both proton deflectometry and Faraday rotation ramps up linearly in time reaching 210 ± 35 T at the end of a 0.75-ns laser drive with 1 TW at 351 nm. A lumped-element circuit model agrees well with the linear rise and suggests that the blow-off plasma screens the field between the plates leading to an increased plate capacitance that converts the laser-generated hot-electron current into a voltage source that drives current through the solenoid. ALE3D modeling shows that target disassembly and current diffusion may limit the B-field increase for longer laser drive. Scaling of these experimental results to a National Ignition Facility (NIF) hohlraum target size (∼0.2cm^{3}) indicates that it is possible to achieve several tens of Tesla.

  13. Progress Toward Ignition on the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kauffman, R L

    2011-10-17

    The principal approach to ignition on the National Ignition Facility (NIF) is indirect drive. A schematic of an ignition target is shown in Figure 1. The laser beams are focused through laser entrance holes at each end of a high-Z cylindrical case, or hohlraum. The lasers irradiate the hohlraum walls producing x-rays that ablate and compress the fuel capsule in the center of the hohlraum. The hohlraum is made of Au, U, or other high-Z material. For ignition targets, the hohlraum is {approx}0.5 cm diameter by {approx}1 cm in length. The hohlraum absorbs the incident laser energy producing x-rays formore » symmetrically imploding the capsule. The fuel capsule is a {approx}2-mm-diameter spherical shell of CH, Be, or C filled with DT fuel. The DT fuel is in the form of a cryogenic layer on the inside of the capsule. X-rays ablate the outside of the capsule, producing a spherical implosion. The imploding shell stagnates in the center, igniting the DT fuel. NIC has overseen installation of all of the hardware for performing ignition experiments, including commissioning of approximately 50 diagnostic systems in NIF. The diagnostics measure scattered optical light, x-rays from the hohlraum over the energy range from 100 eV to 500 keV, and x-rays, neutrons, and charged particles from the implosion. An example of a diagnostic is the Magnetic Recoil Spectrometer (MRS) built by a collaboration of scientists from MIT, UR-LLE, and LLNL shown in Figure 2. MRS measures the neutron spectrum from the implosion, providing information on the neutron yield and areal density that are metrics of the quality of the implosion. Experiments on NIF extend ICF research to unexplored regimes in target physics. NIF can produce more than 50 times the laser energy and more than 20 times the power of any previous ICF facility. Ignition scale hohlraum targets are three to four times larger than targets used at smaller facilities, and the ignition drive pulses are two to five times longer. The larger targets and longer pulse lengths produce unique plasma conditions for laser-plasma instabilities that could reduce hohlraum coupling efficiency. Initial experiments have demonstrated efficient coupling of laser energy to x-rays. X-ray drive greater than 300 eV has been measured in gas-filled ignition hohlraum and shows the expected scaling with laser energy and hohlraum scale size. Experiments are now optimizing capsule implosions for ignition. Ignition conditions require assembling the fuel with sufficient density and temperature for thermonuclear burn. X-rays ablate the outside of the capsule, accelerating and spherically compressing the capsule for assembling the fuel. The implosion stagnates, heating the central core and producing a hot spot that ignites and burns the surrounding fuel. The four main characteristics of the implosion are shell velocity, central hot spot shape, fuel adiabat, and mix. Experiments studying these four characteristics of implosions are used to optimize the implosion. Integrated experiments using cryogenic fuel layer experiments demonstrate the quality of the implosion as the optimization experiments progress. The final compressed fuel conditions are diagnosed by measuring the x-ray emission from the hot core and the neutrons and charged particles produced in the fusion reactions. Metrics of the quality of the implosion are the neutron yield and the shell areal density, as well as the size and shape of the core. The yield depends on the amount of fuel in the hot core and its temperature and is a gauge of the energy coupling to the fuel. The areal density, the density of the fuel times its thickness, diagnoses the fuel assembly, which is measured using the fraction of neutrons that are down scattered passing through the dense shell. The yield and fraction of down scattered neutrons, or shell rho-r, from the cryogenic layered implosions are shown in Figure 3. The different sets of data represent results after a series of implosion optimization experiments. Both yield and areal density show significant increases as a result of the optimization. The experimental Ignition Threshold Factor (ITFX) is a measure of the progress toward ignition. ITFX is analogous to the Lawson Criterion in Magnetic Fusion. Implosions have improved by over a factor of 50 since the first cryogenic layered experiments were done in September 2010. This increase is a measure of the progress made toward the ignition goal in the past year. Optimization experiments are planned in the coming year for continued improvement in implosion performance to achieve the ignition goal. In summary, NIF has made significant progress toward ignition in the 30 months since project completion. Diagnostics and all of the supporting equipment are in place for ignition experiments. The Ignition Campaign is under way as a national collaborative effort of all the National Nuclear Security Administration (NNSA) science laboratories as well as international partners.« less

  14. Laser Driven Compression Equations of State and Hugoniot Pressure Measurements in Thick Solid Metallic Targets at ˜0.17-13 TW/cm2

    NASA Astrophysics Data System (ADS)

    Remo, John L.

    2010-10-01

    An electro-optic laser probe was developed to obtain parameters for high energy density equations of state (EoS), Hugoniot pressures (PH), and strain rates for high energy density laser irradiation intensity, I, experiments at ˜170 GW/cm2 (λ = 1064 nm) to ˜13 TW/cm2 (λ = 527 nm) on Al, Cu, Ti, Fe, Ni metal targets in a vacuum. At I ˜7 TW/cm2 front surface plasma pressures and temperatures reached 100's GPa and over two million K. Rear surface PH ranged from 7-120 GPa at average shock wave transit velocities 4.2-8.5 km/s, depending on target thickness and I. A surface plasma compression ˜100's GPa generated an impulsive radial expanding shock wave causing compression, rarefactions, and surface elastic and plastic deformations depending on I. A laser/fiber optic system measured rear surface shock wave emergence and particle velocity with ˜3 GHz resolution by monitoring light deflection from diamond polished rear surfaces of malleable metallic targets, analogous to an atomic force microscope. Target thickness, ˜0.5-2.9 mm, prevented front surface laser irradiation penetration, due to low radiation skin depth, from altering rear surface reflectivity (refractive index). At ˜10 TW electromagnetic plasma pulse noise generated from the target chamber overwhelmed detector signals. Pulse frequency analysis using Moebius loop antennae probed transient noise characteristics. Average shock (compression) and particle (rear surface displacement) velocity measurements determined rear surface PH and GPa) EoS that are compared with gas guns.

  15. Compression-sensitive magnetic resonance elastography

    NASA Astrophysics Data System (ADS)

    Hirsch, Sebastian; Beyer, Frauke; Guo, Jing; Papazoglou, Sebastian; Tzschaetzsch, Heiko; Braun, Juergen; Sack, Ingolf

    2013-08-01

    Magnetic resonance elastography (MRE) quantifies the shear modulus of biological tissue to detect disease. Complementary to the shear elastic properties of tissue, the compression modulus may be a clinically useful biomarker because it is sensitive to tissue pressure and poromechanical interactions. In this work, we analyze the capability of MRE to measure volumetric strain and the dynamic bulk modulus (P-wave modulus) at a harmonic drive frequency commonly used in shear-wave-based MRE. Gel phantoms with various densities were created by introducing CO2-filled cavities to establish a compressible effective medium. The dependence of the effective medium's bulk modulus on phantom density was investigated via static compression tests, which confirmed theoretical predictions. The P-wave modulus of three compressible phantoms was calculated from volumetric strain measured by 3D wave-field MRE at 50 Hz drive frequency. The results demonstrate the MRE-derived volumetric strain and P-wave modulus to be sensitive to the compression properties of effective media. Since the reconstruction of the P-wave modulus requires third-order derivatives, noise remains critical, and P-wave moduli are systematically underestimated. Focusing on relative changes in the effective bulk modulus of tissue, compression-sensitive MRE may be useful for the noninvasive detection of diseases involving pathological pressure alterations such as hepatic hypertension or hydrocephalus.

  16. National direct-drive program on OMEGA and the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Goncharov, V. N.; Regan, S. P.; Campbell, E. M.; Sangster, T. C.; Radha, P. B.; Myatt, J. F.; Froula, D. H.; Betti, R.; Boehly, T. R.; Delettrez, J. A.; Edgell, D. H.; Epstein, R.; Forrest, C. J.; Glebov, V. Yu; Harding, D. R.; Hu, S. X.; Igumenshchev, I. V.; Marshall, F. J.; McCrory, R. L.; Michel, D. T.; Seka, W.; Shvydky, A.; Stoeckl, C.; Theobald, W.; Gatu-Johnson, M.

    2017-01-01

    A major advantage of the laser direct-drive (DD) approach to ignition is the increased fraction of laser drive energy coupled to the hot spot and relaxed hot-spot requirements for the peak pressure and convergence ratios relative to the indirect-drive approach at equivalent laser energy. With the goal of a successful ignition demonstration using DD, the recently established national strategy has several elements and involves multiple national and international institutions. These elements include the experimental demonstration on OMEGA cryogenic implosions of hot-spot conditions relevant for ignition at MJ-scale energies available at the National Ignition Facility (NIF) and developing an understanding of laser-plasma interactions and laser coupling using DD experiments on the NIF. DD designs require reaching central stagnation pressures in excess of 100 Gbar. The current experiments on OMEGA have achieved inferred peak pressures of 56 Gbar (Regan et al 2016 Phys. Rev. Lett. 117 025001). Extensive analysis of the cryogenic target experiments and two- and three-dimensional simulations suggest that power balance, target offset, and target quality are the main limiting factors in target performance. In addition, cross-beam energy transfer (CBET) has been identified as the main mechanism reducing laser coupling. Reaching the goal of demonstrating hydrodynamic equivalence on OMEGA includes improving laser power balance, target position, and target quality at shot time. CBET must also be significantly reduced and several strategies have been identified to address this issue.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robey, H. F.; Smalyuk, V. A.; Milovich, J. L.

    A series of indirectly driven capsule implosions has been performed on the National Ignition Facility to assess the relative contributions of ablation-front instability growth vs. fuel compression on implosion performance. Laser pulse shapes for both low and high-foot pulses were modified to vary ablation-front growth and fuel adiabat, separately and controllably. Three principal conclusions are drawn from this study: (1) It is shown that reducing ablation-front instability growth in low-foot implosions results in a substantial (3-10X) increase in neutron yield with no loss of fuel compression. (2) It is shown that reducing the fuel adiabat in high-foot implosions results inmore » a significant (36%) increase in fuel compression together with a small (10%) increase in neutron yield. (3) Increased electron preheat at higher laser power in high-foot implosions, however, appears to offset the gain in compression achieved by adiabat-shaping at lower power. These results taken collectively bridge the space between the higher compression low-foot results and the higher yield high-foot results.« less

  18. X-ray Diffraction Study of Molybdenum to 900 GPa

    NASA Astrophysics Data System (ADS)

    Wang, J.; Coppari, F.; Smith, R.; Eggert, J.; Boehly, T.; Collins, G. W.; Duffy, T. S.

    2013-12-01

    Molybdenum (Mo) is a transition metal that is important as a high-pressure standard. Its equation of state, structure, and melting behavior have been explored extensively in both experimental and theoretical studies. Melting data up to the Mbar pressure region from static compression experiments in the diamond anvil cell [Errandonea et al. 2004] are inconsistent with shock wave sound velocity measurements [Hixson et al., 1989]. There are also conflicting reports as to whether body-centered cubic (BCC) Mo transforms to a face-centered cubic (FCC), hexagonal close packed (HCP) or double hexagonal close packed (DHCP) structure at either high pressure or high pressure and temperature conditions [Belonoshko et al. 2008, Mikhaylushkin et al., 2008 and Cazorla et al., 2008]. Recently, a phase transition from BCC to the DHCP phase at 660 GPa and 0 K was predicted using the particle swam optimization (PSO) method (Wang et al, 2013). Here we report an x-ray diffraction study of dynamically compressed molybdenum. Experiments were conducted using the Omega laser at the Laboratory for Laser Energetics at the University of Rochester. Mo targets were either ramp or shock compressed using a laser drive. In ramp loading, the sample is compressed sufficiently slowly that a shock wave does not form. This results in lower temperatures, keeping the sample in the solid state to higher pressures. X-ray diffraction measurements were performed using quasi-monochromatic x-rays from a highly ionized He-α Cu source and image plate detectors. Upon ramp compression, we found no evidence of phase transition in solid Mo up to 900 GPa. The observed peaks can be assigned to the (110) and (200) or (220) reflections of BCC Mo up to the highest pressure, indicating that Mo does not melt under ramp loading to maximum pressure reached. Under shock loading, we did not observe any evidence for the solid-solid phase transformation around 210 GPa as reported in previous work (Hixson et al, 1989). The BCC phase of Mo remained stable along the Hugoniot up to at least 350 GPa. Our observation of diffraction peaks from shocked Mo shows that Hugoniot does not cross the melting curve until at least this pressure. This indicates that previous diamond cell experiments (Errandonea et al., 2004) have underestimated the Mo melting curve. We acknowledge the Omega staff at LLE for their assistance, and the Target Engineering Team at LLNL for fabrication of the targets used in these experiments. The research was supported by NNSA/DOE through the National Laser Users' Facility Program under contracts DE-NA0000856 and DE-FG52-09NA29037. References: [1] R.S. Hixson, D.A. Boness, and J.W. Shaner, Phys. Rev. Lett., 62, 637 (1989). [2] D. Errandonea, B. Schwager, R. Ditz, C. Gessmann, R. Boehler, and M. Ross, Phys. Rev. B, 63, 132104 (2004). [3] A.B. Belonoshko, L. Burakovsky, S.P. Chen, B. Johansson, A.S. Mikhaylushkin, D.L. Preston, S.I. Simak, and D.C. Swift, Phys. Rev. Lett., 100, 135701 (2008). [4] C. Cazorla, D. Alfè, and M.J. Gillan, Phys. Rev. Lett. 101, 049601 (2008). [5] A.S. Mikhaylushkin, S.I. Simak ,L. Burakovsky, S.P. Chen, B. Johansson, D.L. Preston, D.C. Swift, and A.B. Belonoshko Phys. Rev. Lett., 101, 049602 (2008). [6] B. Wang, G. Zhang, and Y. Wang, J. Alloys Compd., 556, 116-120, (2013).

  19. Ion response to relativistic electron bunches in the blowout regime of laser-plasma accelerators.

    PubMed

    Popov, K I; Rozmus, W; Bychenkov, V Yu; Naseri, N; Capjack, C E; Brantov, A V

    2010-11-05

    The ion response to relativistic electron bunches in the so called bubble or blowout regime of a laser-plasma accelerator is discussed. In response to the strong fields of the accelerated electrons the ions form a central filament along the laser axis that can be compressed to densities 2 orders of magnitude higher than the initial particle density. A theory of the filament formation and a model of ion self-compression are proposed. It is also shown that in the case of a sharp rear plasma-vacuum interface the ions can be accelerated by a combination of three basic mechanisms. The long time ion evolution that results from the strong electrostatic fields of an electron bunch provides a unique diagnostic of laser-plasma accelerators.

  20. Divided-pulse nonlinear amplification and simultaneous compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Qiang; Zhang, Qingshan; Sun, Tingting

    2015-03-09

    We report on a fiber laser system delivering 122 fs pulse duration and 600 mW average power at 1560 nm by the interplay between divided pulse amplification and nonlinear pulse compression. A small-core double-clad erbium-doped fiber with anomalous dispersion carries out the pulse amplification and simultaneously compresses the laser pulses such that a separate compressor is no longer necessary. A numeric simulation reveals the existence of an optimum fiber length for producing transform-limited pulses. Furthermore, frequency doubling to 780 nm with 240 mW average power and 98 fs pulse duration is achieved by using a periodically poled lithium niobate crystal at roommore » temperature.« less

  1. Observations of subsonic and supersonic shear flows in laser driven high-energy-density plasmas

    NASA Astrophysics Data System (ADS)

    Harding, E. C.

    2009-11-01

    Shear layers containing strong velocity gradients appear in many high-energy-density (HED) systems and play important roles in mixing and the transition to turbulence. Yet few laboratory experiments have been carried out to study their detailed evolution in this extreme environment where plasmas are compressible, actively ionizing, often involve strong shock waves and have complex material properties. Many shear flows produce the Kelvin-Helmholtz (KH) instability, which initiates the mixing at a fluid interface. We present results from two dedicated shear flow experiments that produced overall subsonic and supersonic flows using novel target designs. In the subsonic case, the Omega laser was used to drive a blast wave along a rippled interface between plastic and foam, shocking both the materials to produce two fluids separated by a sharp shear layer. The interface subsequently rolled-upped into large KH vortices that were accompanied by bubble-like structures of unknown origin. This was the first time the evolution of a well-resolved KH instability was observed in a HED plasma in the laboratory. We have analyzed the properties and dynamics of the plasma based on the data and fundamental models, without resorting to simulated values. In the second, supersonic experiment the Nike laser was used to drive a supersonic flow of Al plasma along a rippled, low-density foam surface. Here again the flowing plasma drove a shock into the second material, so that two fluids were separated by a shear layer. In contrast to the subsonic case, the flow developed shocks around the ripples in response to the supersonic flow of Al. Collaborators: R.P. Drake, O.A. Hurricane, J.F. Hansen, Y. Aglitskiy, T. Plewa, B.A. Remington, H.F. Robey, J.L. Weaver, A.L. Velikovich, R.S. Gillespie, M.J. Bono, M.J. Grosskopf, C.C. Kuranz, A. Visco.

  2. SOIMUMPs micromirror scanner and its application in laser line generator

    NASA Astrophysics Data System (ADS)

    Zuo, Hui; Nia, Farzad Hossein; He, Siyuan

    2017-01-01

    A SOIMUMPs 1-D rotation micromirror is presented. The micromirror is driven by electrostatic vertical comb-drive actuators to work at resonant mode to scan a laser beam. The residual stress in the metal film coated on the SOI device layer is used to generate vertical offset in the comb-drive actuators with the combs located far from the rotation axis to increase the torque. A concave lens is designed to put after the micromirror to amplify the laser beam scanning angle, as well as to compensate for the curvature of the micromirror. A micromirror-based scanning system is used to build a laser line generator with a continuously adjustable fan angle, which solves the limitation of a fixed fan angle in conventional laser line generators. Prototypes of the micromirror and the laser line generator are fabricated and measured. A driving circuit that can generate a high-voltage square wave driving signal with adjustable amplitude and frequency is designed. All the parts are integrated in a 44 mm×88 mm×44 mm box and powered with a single 5-V power supply. The optical scanning angle under 100 V with or without the concave lens is 27 deg and 12 deg, respectively, at a resonant frequency of 900 Hz.

  3. Ablation driven by hot electrons generated during the ignitor laser pulse in shock ignition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piriz, A. R.; Rodriguez Prieto, G.; Tahir, N. A.

    2012-12-15

    An analytical model for the ablation driven by hot electrons is presented. The hot electrons are assumed to be generated during the high intensity laser spike used to produce the ignitor shock wave in the shock ignition driven inertial fusion concept, and to carry on the absorbed laser energy in its totality. Efficient energy coupling requires to keep the critical surface sufficiently close to the ablation front and this goal can be achieved for high laser intensities provided that the laser wavelength is short enough. Scaling laws for the ablation pressure and the other relevant magnitudes of the ablation cloudmore » are found in terms of the laser and target parameters. The effect of the preformed plasma assembled by the compression pulse, previous to the ignitor, is also discussed. It is found that a minimum ratio between the compression and the ignitor pulses would be necessary for the adequate matching of the corresponding scale lengths.« less

  4. Laser-Plasma Interactions in Magnetized Environment

    NASA Astrophysics Data System (ADS)

    Shi, Yuan

    2017-10-01

    Propagation and scattering of lasers present new phenomena and applications when the plasma medium becomes magnetized. Starting from mega-Gauss magnetic fields, laser scattering becomes manifestly anisotropic [arXiv 1705.09758]. By arranging beams at special angles, one may be able to optimize laser-plasma coupling in magnetized environment. In stronger giga-Gauss magnetic field, laser propagation becomes modified by relativistic quantum effects [PRA 94.012124]. The modified wave dispersion relation enables correct interpretation of Faraday rotation measurements of strong magnetic fields, as well as correct extraction of plasma parameters from the X-ray spectra of pulsars. In addition, magnetized plasmas can be utilized to mediate laser pulse compression [PRE 95.023211]. Using magnetic resonances, it is not only possible to produce optic pulses of higher intensity, but also possible to amplify UV and soft X-ray pulses that cannot be compressed using existing technology. This research is supported by NNSA Grant No. DE-NA0002948 and DOE Research Grant No. DEAC02- 09CH11466.

  5. Generation of 360 ps laser pulse with 3 J energy by stimulated Brillouin scattering with a nonfocusing scheme.

    PubMed

    Zhu, Xuehua; Wang, Yulei; Lu, Zhiwei; Zhang, Hengkang

    2015-09-07

    A new technique for generating high energy sub-400 picosecond laser pulses is presented in this paper. The temporally super-Gaussian-shaped laser pulses are used as light source. When the forward pump is reflected by the rear window of SBS cell, the frequency component that fulfills Brillouin frequency shift in its sideband spectrum works as a seed and excites SBS, which results in efficient compression of the incident pump pulse. First the pulse compression characteristics of 20th-order super-Gaussian temporally shaped pulses with 5 ns duration are analyzed theoretically. Then experiment is carried out with a narrow-band high power Nd:glass laser system at the double-frequency and wavelength of 527 nm which delivers 5 ns super-Gaussian temporally shaped pulses with single pulse energy over 10 J. FC-40 is used as the active SBS medium for its brief phonon lifetime and high power capacity. In the experiment, the results agree well with the numerical calculations. With pump energy of 5.36J, the compression of pulse duration from 5 ns to 360 ps is obtained. The output energy is 3.02 J and the peak-power is magnified 8.3 times. Moreover, the compressed pulse shows a high stability because it is initiated by the feedback of rear window rather than the thermal noise distributing inside the medium. This technique of generating high energy hundred picosecond laser pulses has simple structure and is easy to operate, and it also can be scaled to higher energy pulse compression in the future. Meanwhile, it should also be taken into consideration that in such a nonfocusing scheme, the noise-initiated SBS would increase the distortion on the wavefront of Stokes beam to some extent, and the pump energy should be controlled below the threshold of noise-initiated SBS.

  6. First results of radiation-driven, layered deuterium-tritium implosions with a 3-shock adiabat-shaped drive at the National Ignition Facility

    DOE PAGES

    Smalyuk, V. A.; Robey, H. F.; Döppner, T.; ...

    2015-08-27

    Radiation-driven, layered deuterium-tritium plastic capsule implosions were carried out using a new, 3-shock “adiabat-shaped” drive on the National Ignition Facility. The purpose of adiabat shaping is to use a stronger first shock, reducing hydrodynamic instability growth in the ablator. The shock can decay before reaching the deuterium-tritium fuel leaving it on a low adiabat and allowing higher fuel compression. The fuel areal density was improved by ~25% with this new drive compared to similar “high-foot” implosions, while neutron yield was improved by more than 4 times, compared to “low-foot” implosions driven at the same compression and implosion velocity.

  7. The Effect of Drive Signal Limiting on High Cycle Fatigue Life Analysis

    NASA Technical Reports Server (NTRS)

    Kihm, Frederic; Rizzi, Stephen A.

    2014-01-01

    It is common practice to assume a Gaussian distribution of both the input acceleration and the response when modeling random vibration tests. In the laboratory, however, shaker controllers often limit the drive signal to prevent high amplitude peaks. The high amplitudes may either be truncated at a given level (socalled brick wall limiting or abrupt clipping), or compressed (soft limiting), resulting in drive signals which are no longer Gaussian. The paper first introduces several methods for limiting a drive signal, including brick wall limiting and compression. The limited signal is then passed through a linear time-invariant system representing a device under test. High cycle fatigue life predictions are subsequently made using spectral fatigue and rainflow cycle counting schemes. The life predictions are compared with those obtained from unclipped input signals. Some guidelines are provided to help the test engineer decide how clipping should be applied under different test scenarios.

  8. Actively suspended counter-rotating machine

    NASA Technical Reports Server (NTRS)

    Studer, Philip A. (Inventor)

    1983-01-01

    A counter-rotating machine, such as a positive displacement pump having a pair of meshed, non-contacting helical screws (10,12), subjects its rotating members to axial and radial thrust forces when used for such purposes as compression of liquid or gaseous phase fluids while transporting them through a pump cavity (11,13). Each helical screw (10,12) has a shaft (17,17') which is actively suspended at opposite ends (11a,11b) of the pump cavity by a servo-controlled magnetic bearing assembly (19) and a servo-controlled rotary drive motor (20). Both bearing assemblies and drive motors are mounted on the outside of the pump cavity (11,13). Opto-electric angular position sensors (250) provide synchronization between radial orientation of the drive motors. The bearing assemblies and drive motors conjugately provide axial stabilization and radial centering of the helical screws during volumetric compression of aspirated liquid or gaseous phase fluids.

  9. PROCEEDING OF THE SEEDED X-RAY FREE ELECTRON LASER WORKSHOP.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WANG,X.J.; MURPHY,J.B.; YU,L.H.

    2002-12-13

    The underlying theory of a high gain free electron laser (FEL) has existed for two decades [1-2], but it is only in the last few years that these novel radiation sources have been realized experimentally. Several high gain FELs have successfully reached saturation in the infrared, visible and the VUV portion of the spectrum: the High Gain Harmonic Generation (HGHG) free electron lasers [3] at BNL and the Self Amplified Spontaneous Emission (SASE) FELs at LEUTL, VISA and TTF [4-6]. The outstanding challenges for future FELs are to extend high gain FELs to the X-ray regime, improve the longitudinal coherencemore » of the radiation using seeded FEL schemes and generate ultrashort pulses (<100 fs). The National Synchrotron Light Source (NSLS) of the Brookhaven National Laboratory (BNL) sponsored a Seeded X-ray Free Electron Laser Workshop on December 13-14, 2002 to explore these challenging issues. Representatives from BNL, DESY, LBNL, SLAC and UCLA made presentations on the novel schemes under consideration at their laboratories. Workshop participants had a lively discussion on the feasibility, performance and R&D issues associated with the seeded XFEL schemes. An improvement of the electron beam quality will certainly be necessary to drive the XFEL. Self-seeding SASE, cascaded HGHG, and SASE pulse compression FELs show the most promise for producing short pulse X-rays. Of these, only the self-seeded and HGHG schemes generate longitudinally coherent radiation. While the pulse length in the self-seeded scheme is determined by the electron bunch length ({approx}100 fs), the pulse length in the HGHG scheme is determined by the short pulse seed laser, and so can be much shorter ({approx} 20 fs).« less

  10. Higher Velocity High-Foot Implosions on the National Ignition Facility Laser

    NASA Astrophysics Data System (ADS)

    Callahan, Debra

    2014-10-01

    After the end of the National Ignition Campaign on the National Ignition Facility (NIF) laser, we began a campaign to test capsule performance using a modified laser pulse-shape that delivers higher power early in the pulse (``high foot''). This pulse-shape trades one-dimensional performance (peak compression) for increased hydrodynamic stability. The focus of the experiments this year have been to improve performance by increasing the implosion velocity using higher laser power/energy, depleted uranium hohlraums, and thinner capsules. While the mix of ablator material into the hotspot has been low for all of these implosions, the challenge has been to keep the implosion shape under control. As the peak laser power is increased, the plasma density in the hohlraum is increased - making it more and more challenging for the inner cone beams to reach the midplane of the hohlraum and resulting in an oblate implosion. Depleted uranium hohlraums have higher albedo than Au hohlraums, which leads to additional drive and improved implosion shape. Thinner ablators increase the velocity by reducing the amount of payload; thinner ablators also put less mass into the hohlraum which results in improved inner beam propagation. These techniques have allowed us to push the capsule to higher and higher velocity. In parallel with this effort, we are exploring other hohlraums such as the rugby shaped hohlraum to allow us to push these implosions further. This talk will summarize the progress of the high foot campaign in terms of both capsule and hohlraum performance. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  11. Fast ignition realization experiment with high-contrast kilo-joule peta-watt LFEX laser and strong external magnetic field

    NASA Astrophysics Data System (ADS)

    Fujioka, Shinsuke; Arikawa, Yasunobu; Kojima, Sadaoki; Johzaki, Tomoyuki; Nagatomo, Hideo; Sawada, Hiroshi; Lee, Seung Ho; Shiroto, Takashi; Ohnishi, Naofumi; Morace, Alessio; Vaisseau, Xavier; Sakata, Shohei; Abe, Yuki; Matsuo, Kazuki; Farley Law, King Fai; Tosaki, Shota; Yogo, Akifumi; Shigemori, Keisuke; Hironaka, Yoichiro; Zhang, Zhe; Sunahara, Atsushi; Ozaki, Tetsuo; Sakagami, Hitoshi; Mima, Kunioki; Fujimoto, Yasushi; Yamanoi, Kohei; Norimatsu, Takayoshi; Tokita, Shigeki; Nakata, Yoshiki; Kawanaka, Junji; Jitsuno, Takahisa; Miyanaga, Noriaki; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Kondo, Kotaro; Bailly-Grandvaux, Mathieu; Bellei, Claudio; Santos, João Jorge; Azechi, Hiroshi

    2016-05-01

    A petawatt laser for fast ignition experiments (LFEX) laser system [N. Miyanaga et al., J. Phys. IV France 133, 81 (2006)], which is currently capable of delivering 2 kJ in a 1.5 ps pulse using 4 laser beams, has been constructed beside the GEKKO-XII laser facility for demonstrating efficient fast heating of a dense plasma up to the ignition temperature under the auspices of the Fast Ignition Realization EXperiment (FIREX) project [H. Azechi et al., Nucl. Fusion 49, 104024 (2009)]. In the FIREX experiment, a cone is attached to a spherical target containing a fuel to prevent a corona plasma from entering the path of the intense heating LFEX laser beams. The LFEX laser beams are focused at the tip of the cone to generate a relativistic electron beam (REB), which heats a dense fuel core generated by compression of a spherical deuterized plastic target induced by the GEKKO-XII laser beams. Recent studies indicate that the current heating efficiency is only 0.4%, and three requirements to achieve higher efficiency of the fast ignition (FI) scheme with the current GEKKO and LFEX systems have been identified: (i) reduction of the high energy tail of the REB; (ii) formation of a fuel core with high areal density using a limited number (twelve) of GEKKO-XII laser beams as well as a limited energy (4 kJ of 0.53-μm light in a 1.3 ns pulse); (iii) guiding and focusing of the REB to the fuel core. Laser-plasma interactions in a long-scale plasma generate electrons that are too energetic to efficiently heat the fuel core. Three actions were taken to meet the first requirement. First, the intensity contrast of the foot pulses to the main pulses of the LFEX was improved to >109. Second, a 5.5-mm-long cone was introduced to reduce pre-heating of the inner cone wall caused by illumination of the unconverted 1.053-μm light of implosion beam (GEKKO-XII). Third, the outside of the cone wall was coated with a 40-μm plastic layer to protect it from the pressure caused by imploding plasma. Following the above improvements, conversion of 13% of the LFEX laser energy to a low energy portion of the REB, whose slope temperature is 0.7 MeV, which is close to the ponderomotive scaling value, was achieved. To meet the second requirement, the compression of a solid spherical ball with a diameter of 200-μm to form a dense core with an areal density of ˜0.07 g/cm2 was induced by a laser-driven spherically converging shock wave. Converging shock compression is more hydrodynamically stable compared to shell implosion, while a hot spot cannot be generated with a solid ball target. Solid ball compression is preferable also for compressing an external magnetic field to collimate the REB to the fuel core, due to the relatively small magnetic Reynolds number of the shock compressed region. To meet the third requirement, we have generated a strong kilo-tesla magnetic field using a laser-driven capacitor-coil target. The strength and time history of the magnetic field were characterized with proton deflectometry and a B-dot probe. Guidance of the REB using a 0.6-kT field in a planar geometry has been demonstrated at the LULI 2000 laser facility. In a realistic FI scenario, a magnetic mirror is formed between the REB generation point and the fuel core. The effects of the strong magnetic field on not only REB transport but also plasma compression were studied using numerical simulations. According to the transport calculations, the heating efficiency can be improved from 0.4% to 4% by the GEKKO and LFEX laser system by meeting the three requirements described above. This efficiency is scalable to 10% of the heating efficiency by increasing the areal density of the fuel core.

  12. Experimental demonstration of low laser-plasma instabilities in gas-filled spherical hohlraums at laser injection angle designed for ignition target

    NASA Astrophysics Data System (ADS)

    Lan, Ke; Li, Zhichao; Xie, Xufei; Chen, Yao-Hua; Zheng, Chunyang; Zhai, Chuanlei; Hao, Liang; Yang, Dong; Huo, Wen Yi; Ren, Guoli; Peng, Xiaoshi; Xu, Tao; Li, Yulong; Li, Sanwei; Yang, Zhiwen; Guo, Liang; Hou, Lifei; Liu, Yonggang; Wei, Huiyue; Liu, Xiangming; Cha, Weiyi; Jiang, Xiaohua; Mei, Yu; Li, Yukun; Deng, Keli; Yuan, Zheng; Zhan, Xiayu; Zhang, Haijun; Jiang, Baibin; Zhang, Wei; Deng, Xuewei; Liu, Jie; Du, Kai; Ding, Yongkun; Wei, Xiaofeng; Zheng, Wanguo; Chen, Xiaodong; Campbell, E. M.; He, Xian-Tu

    2017-03-01

    Octahedral spherical hohlraums with a single laser ring at an injection angle of 55∘ are attractive concepts for laser indirect drive due to the potential for achieving the x-ray drive symmetry required for high convergence implosions. Laser-plasma instabilities, however, are a concern given the long laser propagation path in such hohlraums. Significant stimulated Raman scattering has been observed in cylindrical hohlraums with similar laser propagation paths during the ignition campaign on the National Ignition Facility (NIF). In this Rapid Communication, experiments demonstrating low levels of laser-driven plasma instability (LPI) in spherical hohlraums with a laser injection angle of 55∘ are reported and compared to that observed with cylindrical hohlraums with injection angles of 28 .5∘ and 55∘, similar to that of the NIF. Significant LPI is observed with the laser injection of 28 .5∘ in the cylindrical hohlraum where the propagation path is similar to the 55∘ injection angle for the spherical hohlraum. The experiments are performed on the SGIII laser facility with a total 0.35 -μ m incident energy of 93 kJ in a 3 nsec pulse. These experiments demonstrate the role of hohlraum geometry in LPI and demonstrate the need for systematic experiments for choosing the optimal configuration for ignition studies with indirect drive inertial confinement fusion.

  13. Experimental demonstration of low laser-plasma instabilities in gas-filled spherical hohlraums at laser injection angle designed for ignition target.

    PubMed

    Lan, Ke; Li, Zhichao; Xie, Xufei; Chen, Yao-Hua; Zheng, Chunyang; Zhai, Chuanlei; Hao, Liang; Yang, Dong; Huo, Wen Yi; Ren, Guoli; Peng, Xiaoshi; Xu, Tao; Li, Yulong; Li, Sanwei; Yang, Zhiwen; Guo, Liang; Hou, Lifei; Liu, Yonggang; Wei, Huiyue; Liu, Xiangming; Cha, Weiyi; Jiang, Xiaohua; Mei, Yu; Li, Yukun; Deng, Keli; Yuan, Zheng; Zhan, Xiayu; Zhang, Haijun; Jiang, Baibin; Zhang, Wei; Deng, Xuewei; Liu, Jie; Du, Kai; Ding, Yongkun; Wei, Xiaofeng; Zheng, Wanguo; Chen, Xiaodong; Campbell, E M; He, Xian-Tu

    2017-03-01

    Octahedral spherical hohlraums with a single laser ring at an injection angle of 55^{∘} are attractive concepts for laser indirect drive due to the potential for achieving the x-ray drive symmetry required for high convergence implosions. Laser-plasma instabilities, however, are a concern given the long laser propagation path in such hohlraums. Significant stimulated Raman scattering has been observed in cylindrical hohlraums with similar laser propagation paths during the ignition campaign on the National Ignition Facility (NIF). In this Rapid Communication, experiments demonstrating low levels of laser-driven plasma instability (LPI) in spherical hohlraums with a laser injection angle of 55^{∘} are reported and compared to that observed with cylindrical hohlraums with injection angles of 28.5^{∘} and 55^{∘}, similar to that of the NIF. Significant LPI is observed with the laser injection of 28.5^{∘} in the cylindrical hohlraum where the propagation path is similar to the 55^{∘} injection angle for the spherical hohlraum. The experiments are performed on the SGIII laser facility with a total 0.35-μm incident energy of 93 kJ in a 3 nsec pulse. These experiments demonstrate the role of hohlraum geometry in LPI and demonstrate the need for systematic experiments for choosing the optimal configuration for ignition studies with indirect drive inertial confinement fusion.

  14. Suppression of laser nonuniformity imprinting using a thin high-z coating.

    PubMed

    Karasik, Max; Weaver, J L; Aglitskiy, Y; Oh, J; Obenschain, S P

    2015-02-27

    Imprinting of laser nonuniformity is a limiting factor in direct-drive inertial confinement fusion experiments, particularly when available laser smoothing is limited. A thin (∼400  Å) high-Z metal coating is found to substantially suppress laser imprint for planar targets driven by pulse shapes and intensities relevant to implosions on the National Ignition Facility while retaining low adiabat target acceleration. A hybrid of indirect and direct drive, this configuration results in initial ablation by x rays from the heated high-Z layer, creating a large standoff for perturbation smoothing.

  15. Distributed Compressive Sensing vs. Dynamic Compressive Sensing: Improving the Compressive Line Sensing Imaging System through Their Integration

    DTIC Science & Technology

    2015-01-01

    streak tube imaging Lidar [15]. Nevertheless, instead of one- dimensional (1D) fan beam, a laser source modulates the digital micromirror device DMD and...Trans. Inform. Theory, vol. 52, pp. 1289-1306, 2006. [10] D. Dudley, W. Duncan and J. Slaughter, "Emerging Digital Micromirror Device (DMD) Applications

  16. Single-pass high harmonic generation at high repetition rate and photon flux

    NASA Astrophysics Data System (ADS)

    Hädrich, Steffen; Rothhardt, Jan; Krebs, Manuel; Demmler, Stefan; Klenke, Arno; Tünnermann, Andreas; Limpert, Jens

    2016-09-01

    Sources of short wavelength radiation with femtosecond to attosecond pulse durations, such as synchrotrons or free electron lasers, have already made possible numerous, and will facilitate more, seminal studies aimed at understanding atomic and molecular processes on fundamental length and time scales. Table-top sources of coherent extreme ultraviolet to soft x-ray radiation enabled by high harmonic generation (HHG) of ultrashort pulse lasers have also gained significant attention in the last few years due to their enormous potential for addressing a plethora of applications, therefore constituting a complementary source to large-scale facilities (synchrotrons and free electron lasers). Ti:sapphire based laser systems have been the workhorses for HHG for decades, but are limited in repetition rate and average power. On the other hand, it has been widely recognized that fostering applications in fields such as photoelectron spectroscopy and microscopy, coincidence detection, coherent diffractive imaging and frequency metrology requires a high repetition rate and high photon flux HHG sources. In this article we will review recent developments in realizing the demanding requirement of producing a high photon flux and repetition rate at the same time. Particular emphasis will be put on suitable ultrashort pulse and high average power lasers, which directly drive harmonic generation without the need for external enhancement cavities. To this end we describe two complementary schemes that have been successfully employed for high power fiber lasers, i.e. optical parametric chirped pulse amplifiers and nonlinear pulse compression. Moreover, the issue of phase-matching in tight focusing geometries will be discussed and connected to recent experiments. We will highlight the latest results in fiber laser driven high harmonic generation that currently produce the highest photon flux of all existing sources. In addition, we demonstrate the first promising applications and discuss the future direction and challenges of this new type of HHG source.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niemann, Christoph; Gekelman, W.; Winske, D.

    We have performed several thousand high-energy laser shots in the LAPD to investigate the dynamics of an exploding laser-produced plasma in a large ambient magneto-plasma. Debris-ions expanding at super-Alfvenic velocity (up to MA=1.5) expel the ambient magnetic field, creating a large (> 20 cm) diamagnetic cavity. We observed field compressions of up to B/B{sub 0} = 1.5 at the edge of the bubble, consistent with the MHD jump conditions, as well as localized electron heating at the edge of the bubble. Two-dimensional hybrid simulations reproduce these measurements well and show that the majority of the ambient ions are energized bymore » the magnetic piston to super-Alfvenic speeds and swept outside the bubble volume. Nonlinear shear-Alfven waves ({delta}B/B{sub 0} > 25%) are radiated from the cavity with a coupling efficiency of 70% from magnetic energy in the bubble to the wave. While the data is consistent with a weak magneto-sonic shock, the experiments were severely limited by the low ambient plasma densities (10{sup 12} cm{sup -3}). 2D hybrid simulations indicate that future experiments with the new LAPD plasma source and densities in excess of 10{sup 13} cm{sup -3} will drive full-blown collisionless shocks with MA>10 over several c/wpi and shocked Larmor radii. In a separate experiment at the LANL Trident laser facility we have performed a proof-of-principle experiment at higher densities to demonstrate key elements of collisionless shocks in laser-produced magnetized plasmas with important implications to NIF. Simultaneously we have upgraded the UCLA glass-laser system by adding two large amplitude disk amplifiers from the NOVA laser and boost the on-target energy from 30 J to up to 1 kJ, making this one of the world’s largest university-scale laser systems. We now have the infrastructure in place to perform novel and unique high-impact experiments on collision-less shocks at the LAPD.« less

  18. Rugby-like hohlraum experimental designs for demonstrating x-ray drive enhancement

    NASA Astrophysics Data System (ADS)

    Amendt, Peter; Cerjan, C.; Hinkel, D. E.; Milovich, J. L.; Park, H.-S.; Robey, H. F.

    2008-01-01

    A suite of experimental designs for the Omega laser facility [Boehly et al., Opt. Commun. 133, 495 (1997)] using rugby and cylindrical hohlraums is proposed to confirm the energetics benefits of rugby-shaped hohlraums over cylinders under optimal implosion symmetry conditions. Postprocessed Dante x-ray drive measurements predict a 12-17eV (23%-36%) peak hohlraum temperature (x-ray flux) enhancement for a 1ns flattop laser drive history. Simulated core self-emission x-ray histories also show earlier implosion times by 200-400ps, depending on the hohlraum case-to-capsule ratio and laser-entrance-hole size. Capsules filled with 10 or 50atm of deuterium (DD) are predicted to give in excess of 1010 neutrons in two-dimensional hohlraum simulations in the absence of mix, enabling DD burn history measurements for the first time in indirect-drive on Omega. Capsule designs with 50atm of DHe3 are also proposed to make use of proton slowing for independently verifying the drive benefits of rugby hohlraums. Scale-5/4 hohlraum designs are also introduced to provide further margin to potential laser-plasma-induced backscatter and hot-electron production.

  19. Angular radiation temperature simulation for time-dependent capsule drive prediction in inertial confinement fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing, Longfei; Yang, Dong; Li, Hang

    2015-02-15

    The x-ray drive on a capsule in an inertial confinement fusion setup is crucial for ignition. Unfortunately, a direct measurement has not been possible so far. We propose an angular radiation temperature simulation to predict the time-dependent drive on the capsule. A simple model, based on the view-factor method for the simulation of the radiation temperature, is presented and compared with the experimental data obtained using the OMEGA laser facility and the simulation results acquired with VISRAD code. We found a good agreement between the time-dependent measurements and the simulation results obtained using this model. The validated model was thenmore » used to analyze the experimental results from the Shenguang-III prototype laser facility. More specifically, the variations of the peak radiation temperatures at different view angles with the albedo of the hohlraum, the motion of the laser spots, the closure of the laser entrance holes, and the deviation of the laser power were investigated. Furthermore, the time-dependent radiation temperature at different orientations and the drive history on the capsule were calculated. The results indicate that the radiation temperature from “U20W112” (named according to the diagnostic hole ID on the target chamber) can be used to approximately predict the drive temperature on the capsule. In addition, the influence of the capsule on the peak radiation temperature is also presented.« less

  20. Long-duration planar direct-drive hydrodynamics experiments on the NIF

    NASA Astrophysics Data System (ADS)

    Casner, A.; Mailliet, C.; Khan, S. F.; Martinez, D.; Izumi, N.; Kalantar, D.; Di Nicola, P.; Di Nicola, J. M.; Le Bel, E.; Igumenshchev, I.; Tikhonchuk, V. T.; Remington, B. A.; Masse, L.; Smalyuk, V. A.

    2018-01-01

    The advent of high-power lasers facilities such as the National Ignition Facility (NIF) and the laser megajoule provide unique platforms to study the physics of turbulent mixing flows in high energy density plasmas. We report here on the commissioning of a novel planar direct-drive platform on the NIF, which allows the acceleration of targets during 30 ns. Planar plastic samples were directly irradiated by 300-450 kJ of UV laser light (351 nm) and a very good planarity of the laser drive is demonstrated. No detrimental effect of imprint is observed in the case of these thick plastic targets (300 μm), which is beneficial for future academic experiments requesting similar irradiation conditions. The long-duration direct-drive (DD) platform is thereafter harnessed to study the ablative Rayleigh-Taylor instability (RTI) in DD. The growth of two-dimensional pre-imposed perturbations is quantified through time-resolved face-on x-ray radiography and used as a benchmark for radiative hydrocode simulations. The ablative RTI is then quantified in its highly nonlinear stage starting from intentionally large 3D imprinted broadband modulations. Two generations of bubble mergers is observed for the first time in DD, as a result of the unprecedented long laser acceleration.

  1. Observation of a New High-Pressure Solid Phase in Dynamically Compressed Aluminum

    NASA Astrophysics Data System (ADS)

    Polsin, D. N.

    2017-10-01

    Aluminum is ideal for testing theoretical first-principles calculations because of the relative simplicity of its atomic structure. Density functional theory (DFT) calculations predict that Al transforms from an ambient-pressure, face-centered-cubic (fcc) crystal to the hexagonal close-packed (hcp) and body-centered-cubic (bcc) structures as it is compressed. Laser-driven experiments performed at the University of Rochester's Laboratory for Laser Energetics and the National Ignition Facility (NIF) ramp compressed Al samples to pressures up to 540 GPa without melting. Nanosecond in-situ x-ray diffraction was used to directly measure the crystal structure at pressures where the solid-solid phase transformations of Al are predicted to occur. Laser velocimetry provided the pressure in the Al. Our results show clear evidence of the fcc-hcp and hpc-bcc transformations at 216 +/- 9 GPa and 321 +/- 12 GPa, respectively. This is the first experimental in-situ observation of the bcc phase in compressed Al and a confirmation of the fcc-hcp transition previously observed under static compression at 217 GPa. The observations indicate these solid-solid phase transitions occur on the order of tens of nanoseconds time scales. In the fcc-hcp transition we find the original texture of the sample is preserved; however, the hcp-bcc transition diminishes that texture producing a structure that is more polycrystalline. The importance of this dynamic is discussed. The NIF results are the first demonstration of x-ray diffraction measurements at two different pressures in a single laser shot. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  2. X-ray scattering measurements of strong ion-ion correlations in shock-compressed aluminum.

    PubMed

    Ma, T; Döppner, T; Falcone, R W; Fletcher, L; Fortmann, C; Gericke, D O; Landen, O L; Lee, H J; Pak, A; Vorberger, J; Wünsch, K; Glenzer, S H

    2013-02-08

    The strong ion-ion correlation peak characteristic of warm dense matter (WDM) is observed for the first time using simultaneous angularly, temporally, and spectrally resolved x-ray scattering measurements in laser-driven shock-compressed aluminum. Laser-produced molybdenum x-ray line emission at an energy of 17.9 keV is employed to probe aluminum compressed to a density of ρ>8 g/cm(3). We observe a well pronounced peak in the static structure factor at a wave number of k=4.0 Å(-1). The measurements of the magnitude and position of this correlation peak are precise enough to test different theoretical models for the ion structure and show that only models taking the complex interaction in WDM into account agree with the data. This also demonstrates a new highly accurate diagnostic to directly measure the state of compression of warm dense matter.

  3. Two-stage Raman compression of laser pulses with controllable phase fronts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balakin, A. A.; Fraiman, G. M.; State University of Nizhny Novgorod, Nizhny Novgorod

    2015-05-15

    The phase front of an ultrashort laser pulse undergoing Raman amplification and compression in inhomogeneous plasma can be controlled such that it is unaffected by density gradients and thus remains focusable. This is achieved by performing the Raman backscattering in two stages. At the first stage, the standard nonlinear Raman compression of a seed wave takes place and produces a short ultraintense pulse, which yet may be poorly focusable. At the second stage, this amplified pulse is scattered again, now serving as a pump, off a second copy of the initial seed. This stage, which utilizes a denser and shortermore » plasma, is intended not for compression but rather for passing a significant fraction of the energy to the second seed quickly. Then, the output pulse that is produced is not just short and ultraintense, but also has the smooth phase front of the original seed.« less

  4. An efficient supersonic wind tunnel drive system for Mach 2.5 flows

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen W. D.; Laub, James A.; King, Lyndell S.

    1991-01-01

    A novel efficient drive system has been developed which provides for the continuous operation of a pitot Mach 2.5 wind tunnel at compression ratios down to 0.625:1. The drive system does not require an overpressure to start, and no hysteresis has been observed. The general design of the proof-of-concept wind tunnel using the new drive system and its modifications are described.

  5. Rectification of pulsatile stress on soft tissues: a mechanism for normal-pressure hydrocephalus

    NASA Astrophysics Data System (ADS)

    Jalikop, Shreyas; Hilgenfeldt, Sascha

    2011-11-01

    Hydrocephalus is a pathological condition of the brain that occurs when cerebrospinal fluid (CSF) accumulates excessively in the brain cavities, resulting in compression of the brain parenchyma. Counter-intuitively, normal-pressure hydrocephalus (NPH) does not show elevated pressure differences across the compressed parenchyma. We investigate the effects of nonlinear tissue mechanics and periodic driving in this system. The latter is due to the cardiac cycle, which provides significant intracranial pressure and volume flow rate fluctuations. Nonlinear rectification of the periodic driving within a model of fluid flow in poroelastic material can lead to compression or expansion of the parenchyma, and this effect does not rely on changes in the mean intracranial pressure. The rectification effects can occur gradually over several days, in agreement with clinical studies of NPH.

  6. Laser-Plasma Interactions in Drive Campaign targets on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Hinkel, D. E.; Callahan, D. A.; Moody, J. D.; Amendt, P. A.; Lasinski, B. F.; MacGowan, B. J.; Meeker, D.; Michel, P. A.; Ralph, J.; Rosen, M. D.; Ross, J. S.; Schneider, M. B.; Storm, E.; Strozzi, D. J.; Williams, E. A.

    2016-03-01

    The Drive campaign [D A Callahan et al., this conference] on the National Ignition Facility (NIF) laser [E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, R. Al-Ayat, Phys. Plasmas 16, 041006 (2009)] has the focused goal of understanding and optimizing the hohlraum for ignition. Both the temperature and symmetry of the radiation drive depend on laser and hohlraum characteristics. The drive temperature depends on the coupling of laser energy to the hohlraum, and the symmetry of the drive depends on beam-to-beam interactions that result in energy transfer [P. A. Michel, S. H. Glenzer, L. Divol, et al, Phys. Plasmas 17, 056305 (2010).] within the hohlraum. To this end, hohlraums are being fielded where shape (rugby vs. cylindrical hohlraums), gas fill composition (neopentane at room temperature vs. cryogenic helium), and gas fill density (increase of ∼ 150%) are independently changed. Cylindrical hohlraums with higher gas fill density show improved inner beam propagation, as should rugby hohlraums, because of the larger radius over the capsule (7 mm vs. 5.75 mm in a cylindrical hohlraum). Energy coupling improves in room temperature neopentane targets, as well as in hohlraums at higher gas fill density. In addition cross-beam energy transfer is being addressed directly by using targets that mock up one end of a hohlraum, but allow observation of the laser beam uniformity after energy transfer. Ideas such as splitting quads into “doublets” by re-pointing the right and left half of quads are also being pursued. LPI results of the Drive campaign will be summarized, and analyses of future directions presented.

  7. Odd harmonics-enhanced supercontinuum in bulk solid-state dielectric medium.

    PubMed

    Garejev, N; Jukna, V; Tamošauskas, G; Veličkė, M; Šuminas, R; Couairon, A; Dubietis, A

    2016-07-25

    We report on generation of ultrabroadband, more than 4 octave spanning supercontinuum in thin CaF2 crystal, as pumped by intense mid-infrared laser pulses with central wavelength of 2.4 μm. The supercontinuum spectrum covers wavelength range from the ultraviolet to the mid-infrared and its short wavelength side is strongly enhanced by cascaded generation of third, fifth and seventh harmonics. Our results capture the transition from Kerr-dominated to plasma-dominated filamentation regime and uncover that in the latter the spectral superbroadening originates from dramatic plasma-induced compression of the driving pulse, which in turn induces broadening of the harmonics spectra due to cross-phase modulation effects. The experimental measurements are backed up by the numerical simulations based on a nonparaxial unidirectional propagation equation for the electric field of the pulse, which accounts for the cubic nonlinearity-induced effects, and which reproduce the experimental data in great detail.

  8. Mitigate the tent-induced perturbation in ignition capsules by supersonic radiation propagation

    NASA Astrophysics Data System (ADS)

    Dai, Zhensheng; Gu, Jianfa; Zheng, Wudi

    2017-10-01

    In the inertial confinement fusion (ICF) scheme, to trap the alpha particle products of the D-T reaction, the capsules needs to be imploded and compressed with high symmetry In the laser indirect drive scheme, the capsules are held at the center of high-Z hohlraums by thin membranes (tents). However, the tents are recognized as one of the most important contributors to hot spot asymmetries, areal density perturbations and reduced performance. To improve the capsule implosion performance, various alternatives such as the micro-scale rods, a larger fill-tube and a low-density foam layer around the capsule have been presented. Our simulations show that the radiation propagates supersonically in the low-density foam layer and starts to ablate the capsule before the perturbations induced by the tents reach the ablating fronts. The tent induced perturbations are remarkably weakened when they are propagating in the blow-off plasma.

  9. High dynamic range spectroscopic studies of shocked nitromethane

    NASA Astrophysics Data System (ADS)

    Bhowmick, Mithun; Nissen, Erin J.; Dlott, Dana D.

    In this talk we describe a tabletop apparatus that can reproducibly drive shocks through tiny cells containing liquid arranged in an array for high-throughput shock compression studies. This talk will focus on nitromethane, a liquid reactive to shocks and capable of detonation. In our studies, a laser-driven flyer plate was used to shock nitromethane, and a spectrometer with high dynamic range was employed to measure emission spectra from nanosecond to millisecond time scales. Typically, 50 single-shock experiments were performed per day with precisely controllable shock speeds below, above, or equal to the detonation shock speed. The emission spectra provide temperature histories using the graybody approximation. The ability to conveniently shock nitromethane on a benchtop will be used with isotopically substituted and amine-sensitized nitromethane and in future will be combined with other spectroscopies such as infrared absorption. Multidisciplinary University Research Initiative (MURI), Office of Naval Research.

  10. Studies in shocked nitromethane through High dynamic range spectroscopy

    NASA Astrophysics Data System (ADS)

    Bhowmick, Mithun; Nissen, Erin; Matveev, Sergey; Dlott, Dana

    2017-06-01

    In this talk we describe a tabletop apparatus that can reproducibly drive shocks through tiny cells containing liquid arranged in an array for high-throughput shock compression studies. This talk will focus on nitromethane, a liquid reactive to shocks and capable of detonation. In our studies, a laser-driven ?yer plate was used to shock nitromethane, and a spectrometer with high dynamic range was employed to measure emission spectra from nanosecond to millisecond time scales. Typically, 50 single-shock experiments were performed per day with precisely controllable shock speeds below, above, or equal to the detonation shock speed. The emission spectra provide temperature histories using the grey body approximation. The ability to conveniently shock nitromethane on a benchtop was used with isotopically substituted and amine-sensitized nitromethane and in future will be combined with other spectroscopies such as infrared absorption. Multidisciplinary University Research Initiative (MURI), Office of Naval Research.

  11. Shock compression of [001] single crystal silicon

    DOE PAGES

    Zhao, S.; Remington, B.; Hahn, E. N.; ...

    2016-03-14

    Silicon is ubiquitous in our advanced technological society, yet our current understanding of change to its mechanical response at extreme pressures and strain-rates is far from complete. This is due to its brittleness, making recovery experiments difficult. High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon (using impedance-matched momentum traps) unveiled remarkable structural changes observed by transmission electron microscopy. As laser energy increases, corresponding to an increase in peak shock pressure, the following plastic responses are are observed: surface cleavage along {111} planes, dislocations and stacking faults; bands of amorphized material initially forming on crystallographic orientations consistent withmore » dislocation slip; and coarse regions of amorphized material. Molecular dynamics simulations approach equivalent length and time scales to laser experiments and reveal the evolution of shock-induced partial dislocations and their crucial role in the preliminary stages of amorphization. Furthermore, application of coupled hydrostatic and shear stresses produce amorphization below the hydrostatically determined critical melting pressure under dynamic shock compression.« less

  12. Shock compression of [001] single crystal silicon

    NASA Astrophysics Data System (ADS)

    Zhao, S.; Hahn, E. N.; Kad, B.; Remington, B. A.; Bringa, E. M.; Meyers, M. A.

    2016-05-01

    Silicon is ubiquitous in our advanced technological society, yet our current understanding of change to its mechanical response at extreme pressures and strain-rates is far from complete. This is due to its brittleness, making recovery experiments difficult. High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon (using impedance-matched momentum traps) unveiled remarkable structural changes observed by transmission electron microscopy. As laser energy increases, corresponding to an increase in peak shock pressure, the following plastic responses are are observed: surface cleavage along {111} planes, dislocations and stacking faults; bands of amorphized material initially forming on crystallographic orientations consistent with dislocation slip; and coarse regions of amorphized material. Molecular dynamics simulations approach equivalent length and time scales to laser experiments and reveal the evolution of shock-induced partial dislocations and their crucial role in the preliminary stages of amorphization. Application of coupled hydrostatic and shear stresses produce amorphization below the hydrostatically determined critical melting pressure under dynamic shock compression.

  13. Phase stabilization for mode locked lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baer, M.T.

    A method is described for stabilizing a phase relationship between two mode locked lasers, comprising: driving through a power splitter the mode lockers of both lasers from a single stable radio frequency source; monitoring the phase of pulses from each laser utilizing a fast photodiode output of each laser; feeding the output of the fast photodiodes to a phase detector and comparator; measuring a relative phase difference between the lasers with a phase detector and comparator, producing a voltage output signal or phase error signal representing the phase difference; amplifying and filtering the voltage output signal with an amplifier andmore » loop filter; feeding the resulting output signal to a voltage controlled phase delay between the power splitter and one of the lasers; and delaying the RF drive to the one laser to achieve a desired phase relationship, between the two lasers.« less

  14. Laser particle sorter

    DOEpatents

    Martin, J.C.; Buican, T.N.

    1987-11-30

    Method and apparatus are provided for sorting particles, such as biological particles. A first laser is used to define an optical path having an intensity gradient which is effective to propel the particles along the path but which is sufficiently weak that the particles are not trapped in an axial direction. A probe laser beam is provided for interrogating the particles to identify predetermined phenotypical characteristics of the particles. A second laser beam is provided to intersect the driving first laser beam, wherein the second laser beam is activated by an output signal indicative of a predetermined characteristic. The second laser beam is switchable between a first intensity and a second intensity, where the first intensity is effective to displace selected particles from the driving laser beam and the second intensity is effective to propel selected particles along the deflection laser beam. The selected particles may then be propelled by the deflection beam to a location effective for further analysis. 2 figs.

  15. Laser particle sorter

    DOEpatents

    Martin, John C.; Buican, Tudor N.

    1989-01-01

    Method and apparatus for sorting particles, such as biological particles. A first laser defines an optical path having an intensity gradient which is effective to propel the particles along the path but which is sufficiently weak that the particles are not trapped in an axial direction. A probe laser beam interrogates the particles to identify predetermined phenotypical characteristics of the particles. A second laser beam intersects the driving first laser beam, wherein the second laser beam is activated by an output signal indicative of a predetermined characteristic. The second laser beam is switchable between a first intensity and a second intensity, where the first intensity is effective to displace selected particles from the driving laser beam and the second intensity is effective to propel selected particles along the deflection laser beam. The selected particles may then be propelled by the deflection beam to a location effective for further analysis.

  16. Final Technical Report "Study of Efficiency of Raman Backscattering Amplification in Plasma"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suckewer, Szymon

    2014-03-31

    General : Our major scientific achievements in Raman Backscattering (RBS) amplification and compression of short laser pulses in plasma. The laser system based on RBS steps in where the current technology of chirped pulse amplification (CPA) (extremely successful in developing ultra-short and ultra-intense laser pulses in last 2 decades) becomes difficult and very expensive to apply. Good base for such RBS laser was created by our recent experiments, which were supported by GPS grants. The main objective of the present grant was: improvement efficiency of energy transfer from pump to seed. The results surpassed our expectations; we improved the efficiencymore » of energy transfer from pump to seed by a factor of 6 compared to the best of our previous results and amplified seed pulse compressed down to about 50 fsec.« less

  17. Accelerating gradient improvement using shape-tailor laser front in radiation pressure acceleration progress

    NASA Astrophysics Data System (ADS)

    Wang, W. P.; Shen, B. F.; Xu, Z. Z.

    2017-05-01

    The accelerating gradient of a proton beam is crucial for stable radiation pressure acceleration (RPA) because the multi-dimensional instabilities increase γ times slower in the relativistic region. In this paper, a shape-tailored laser is proposed to significantly accelerate the ions in a controllable high accelerating gradient. In this method, the fastest ions initially rest in the middle of the foil are controlled to catch the compressed electron layer at the end of the hole-boring stage, thus the light-sail stage can start as soon as possible. Then the compressed electron layer is accelerated tightly together with the fastest ions by the shaped laser intensity, which further increases the accelerating gradient in the light-sail stage. Such tailored pulse may be beneficial for the RPA driven by the 10-fs 10 petawatt laser in the future.

  18. Fast ignition realization experiment with high-contrast kilo-joule peta-watt LFEX laser and strong external magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujioka, Shinsuke, E-mail: sfujioka@ile.osaka-u.ac.jp; Arikawa, Yasunobu; Kojima, Sadaoki

    A petawatt laser for fast ignition experiments (LFEX) laser system [N. Miyanaga et al., J. Phys. IV France 133, 81 (2006)], which is currently capable of delivering 2 kJ in a 1.5 ps pulse using 4 laser beams, has been constructed beside the GEKKO-XII laser facility for demonstrating efficient fast heating of a dense plasma up to the ignition temperature under the auspices of the Fast Ignition Realization EXperiment (FIREX) project [H. Azechi et al., Nucl. Fusion 49, 104024 (2009)]. In the FIREX experiment, a cone is attached to a spherical target containing a fuel to prevent a corona plasma frommore » entering the path of the intense heating LFEX laser beams. The LFEX laser beams are focused at the tip of the cone to generate a relativistic electron beam (REB), which heats a dense fuel core generated by compression of a spherical deuterized plastic target induced by the GEKKO-XII laser beams. Recent studies indicate that the current heating efficiency is only 0.4%, and three requirements to achieve higher efficiency of the fast ignition (FI) scheme with the current GEKKO and LFEX systems have been identified: (i) reduction of the high energy tail of the REB; (ii) formation of a fuel core with high areal density using a limited number (twelve) of GEKKO-XII laser beams as well as a limited energy (4 kJ of 0.53-μm light in a 1.3 ns pulse); (iii) guiding and focusing of the REB to the fuel core. Laser–plasma interactions in a long-scale plasma generate electrons that are too energetic to efficiently heat the fuel core. Three actions were taken to meet the first requirement. First, the intensity contrast of the foot pulses to the main pulses of the LFEX was improved to >10{sup 9}. Second, a 5.5-mm-long cone was introduced to reduce pre-heating of the inner cone wall caused by illumination of the unconverted 1.053-μm light of implosion beam (GEKKO-XII). Third, the outside of the cone wall was coated with a 40-μm plastic layer to protect it from the pressure caused by imploding plasma. Following the above improvements, conversion of 13% of the LFEX laser energy to a low energy portion of the REB, whose slope temperature is 0.7 MeV, which is close to the ponderomotive scaling value, was achieved. To meet the second requirement, the compression of a solid spherical ball with a diameter of 200-μm to form a dense core with an areal density of ∼0.07 g/cm{sup 2} was induced by a laser-driven spherically converging shock wave. Converging shock compression is more hydrodynamically stable compared to shell implosion, while a hot spot cannot be generated with a solid ball target. Solid ball compression is preferable also for compressing an external magnetic field to collimate the REB to the fuel core, due to the relatively small magnetic Reynolds number of the shock compressed region. To meet the third requirement, we have generated a strong kilo-tesla magnetic field using a laser-driven capacitor-coil target. The strength and time history of the magnetic field were characterized with proton deflectometry and a B-dot probe. Guidance of the REB using a 0.6-kT field in a planar geometry has been demonstrated at the LULI 2000 laser facility. In a realistic FI scenario, a magnetic mirror is formed between the REB generation point and the fuel core. The effects of the strong magnetic field on not only REB transport but also plasma compression were studied using numerical simulations. According to the transport calculations, the heating efficiency can be improved from 0.4% to 4% by the GEKKO and LFEX laser system by meeting the three requirements described above. This efficiency is scalable to 10% of the heating efficiency by increasing the areal density of the fuel core.« less

  19. Matter under extreme conditions experiments at the Linac Coherent Light Source

    DOE PAGES

    Glenzer, S. H.; Fletcher, L. B.; Galtier, E.; ...

    2015-12-10

    The Matter in Extreme Conditions end station at the Linac Coherent Light Source (LCLS) is a new tool enabling accurate pump-probe measurements for studying the physical properties of matter in the high-energy density physics regime. This instrument combines the world’s brightest x-ray source, the LCLS x-ray beam, with high-power lasers consisting of two nanosecond Nd:glass laser beams and one short-pulse Ti:sapphire laser. These lasers produce short-lived states of matter with high pressures, high temperatures or high densities with properties that are important for applications in nuclear fusion research, laboratory astrophysics and the development of intense radiation sources. In the firstmore » experiments, we have performed highly accurate x-ray diffraction and x-ray Thomson scattering techniques on shock-compressed matter resolving the transition from compressed solid matter to a co-existence regime and into the warm dense matter state. Furthermore, these complex charged-particle systems are dominated by strong correlations and quantum effects. They exist in planetary interiors and laboratory experiments, e.g., during high-power laser interactions with solids or the compression phase of inertial confinement fusion implosions. Applying record peak brightness X rays resolves the ionic interactions at atomic (Ångstrom) scale lengths and measure the static structure factor, which is a key quantity for determining equation of state data and important transport coefficients. Simultaneously, spectrally resolved measurements of plasmon features provide dynamic structure factor information that yield temperature and density with unprecedented precision at micron-scale resolution in dynamic compression experiments. This set of studies demonstrates our ability to measure fundamental thermodynamic properties that determine the state of matter in the high-energy density physics regime.« less

  20. LDRD Final Report: Advanced Hohlraum Concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Ogden S.

    Indirect drive inertial confinement fusion (ICF) experiments to date have mostly used cylindrical, laser-heated, gas-filled hohlraums to produce the radiation drive needed to symmetrically implode DT-filled fusion capsules. These hohlraums have generally been unable to produce a symmetric radiation drive through the end of the desired drive pulse, and are plagued with complications due to laser-plasma interactions (LPI) that have made it difficult to predict their performance. In this project we developed several alternate hohlraum concepts. These new hohlraums utilize different hohlraum geometries, radiation shields, and foam materials in an attempt to improve performance relative to cylindrical hohlraums. Each alternatemore » design was optimized using radiation hydrodynamic (RH) design codes to implode a reference DT capsule with a high-density carbon (HDC) ablator. The laser power and energy required to produce the desired time-dependent radiation drive, and the resulting time-dependent radiation symmetry for each new concept were compared to the results for a reference cylindrical hohlraum. Since several of the new designs needed extra laser entrance holes (LEHs), techniques to keep small LEHs open longer, including high-Z foam liners and low-Z wires at the LEH axis, were investigated numerically. Supporting experiments and target fabrication efforts were also done as part of this project. On the Janus laser facility plastic tubes open at one end (halfraums) and filled with SiO 2 or Ta 2O 5 foam were heated with a single 2w laser. Laser propagation and backscatter were measured. Generally the measured propagation was slower than calculated, and the measured laser backscatter was less than calculated. A comparable, scaled up experiment was designed for the NIF facility and four targets were built. Since low density gold foam was identified as a desirable material for lining the LEH and the hohlraum wall, a technique was developed to produce 550 mg/cc gold foam, and a sample of this material was successfully manufactured.« less

  1. Roller-gear drives for robotic manipulators design, fabrication and test

    NASA Technical Reports Server (NTRS)

    Anderson, William J.; Shipitalo, William

    1991-01-01

    Two single axis planetary roller-gear drives and a two axis roller-gear drive with dual inputs were designed for use as robotic transmissions. Each of the single axis drives is a two planet row, four planet arrangement with spur gears and compressively loaded cylindrical rollers acting in parallel. The two axis drive employs bevel gears and cone rollers acting in parallel. The rollers serve a dual function: they remove backlash from the system, and they transmit torque when the gears are not fully engaged.

  2. Isentropic compression of liquid metals near the melt line

    NASA Astrophysics Data System (ADS)

    Seagle, Christopher; Porwitzky, Andrew

    2017-06-01

    A series of experiments designed to study the liquid metal response to isentropic compression have been conducted at Sandia's Z Pulsed Power Facility. Cerium and Tin have been shock melted by driving a quasi-ballistic flyer into the samples followed by a ramp compression wave generated by an increased driving magnetic field. The sound speed of the liquid metals has been investigated with the purpose of exploring possible solidification on ramp compression. Additional surface sensitive diagnostics have been employed to search for signatures of solidification at the window interface. Results of these experiments will be discussed in relation to the existing equation of state models and phase diagrams for these materials as well as future plans for exploring the response of liquid metals near the melt line. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  3. Air-guided photonic-crystal-fiber pulse-compression delivery of multimegawatt femtosecond laser output for nonlinear-optical imaging and neurosurgery

    NASA Astrophysics Data System (ADS)

    Lanin, Aleksandr A.; Fedotov, Il'ya V.; Sidorov-Biryukov, Dmitrii A.; Doronina-Amitonova, Lyubov V.; Ivashkina, Olga I.; Zots, Marina A.; Sun, Chi-Kuang; Ömer Ilday, F.; Fedotov, Andrei B.; Anokhin, Konstantin V.; Zheltikov, Aleksei M.

    2012-03-01

    Large-core hollow photonic-crystal fibers (PCFs) are shown to enable a fiber-format air-guided delivery of ultrashort infrared laser pulses for neurosurgery and nonlinear-optical imaging. With an appropriate dispersion precompensation, an anomalously dispersive 15-μm-core hollow PCF compresses 510-fs, 1070-nm light pulses to a pulse width of about 110 fs, providing a peak power in excess of 5 MW. The compressed PCF output is employed to induce a local photodisruption of corpus callosum tissues in mouse brain and is used to generate the third harmonic in brain tissues, which is captured by the PCF and delivered to a detector through the PCF cladding.

  4. A polar-drive-ignition design for the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, T. J. B.; Marozas, J. A.; Anderson, K. S.

    2012-05-15

    Polar drive [Skupsky et al., Phys. Plasmas 11, 2763 (2004)] will enable direct-drive experiments to be conducted on the National Ignition Facility (NIF) [Miller et al., Opt. Eng. 43, 2841 (2004)], while the facility is configured for x-ray drive. A polar-drive ignition design for the NIF has been developed that achieves a gain of 32 in two-dimensional (2-D) simulations, which include single- and multiple-beam nonuniformities and ice and outer-surface roughness. This design requires both single-beam UV polarization smoothing and one-dimensional (1-D) multi-frequency modulator (MFM) single-beam smoothing to achieve the required laser uniformity. The multi-FM smoothing is employed only during themore » low-intensity portion of the laser pulse, allowing for the use of sufficient smoothing-by-spectral-dispersion bandwidth while maintaining safe laser operations during the high-intensity part of the pulse. This target is robust to all expected sources of perturbations.« less

  5. Far-infrared-light shadowgraphy for high extraction efficiency of extreme ultraviolet light from a CO2-laser-generated tin plasma

    NASA Astrophysics Data System (ADS)

    Matsukuma, Hiraku; Hosoda, Tatsuya; Suzuki, Yosuke; Yogo, Akifumi; Yanagida, Tatsuya; Kodama, Takeshi; Nishimura, Hiroaki

    2016-08-01

    The two-color, double-pulse method is an efficient scheme to generate extreme ultraviolet light for fabricating the next generation semiconductor microchips. In this method, a Nd:YAG laser pulse is used to expand a several-tens-of-micrometers-scale tin droplet, and a CO2 laser pulse is subsequently directed at the expanded tin vapor after an appropriate delay time. We propose the use of shadowgraphy with a CO2 laser probe-pulse scheme to optimize the CO2 main-drive laser. The distribution of absorption coefficients is derived from the experiment, and the results are converted to a practical absorption rate for the CO2 main-drive laser.

  6. Design and simulation of MEMS-actuated adjustable optical wedge for laser beam scanners

    NASA Astrophysics Data System (ADS)

    Bahgat, Ahmed S.; Zaki, Ahmed H.; Abdo Mohamed, Mohamed; El Sherif, Ashraf Fathy

    2018-01-01

    This paper introduces both optical and mechanical design and simulation of large static deflection MOEMS actuator. The designed device is in the form of an adjustable optical wedge (AOW) laser scanner. The AOW is formed of 1.5-mm-diameter plano-convex lens separated by air gap from plano-concave fixed lens. The convex lens is actuated by staggered vertical comb drive and suspended by rectangular cross-section torsion beam. An optical analysis and simulation of air separated AOW as well as detailed design, analysis, and static simulation of comb -drive are introduced. The dynamic step response of the full system is also introduced. The analytical solution showed a good agreement with the simulation results. A general global minimum optimization algorithm is applied to the comb-drive design to minimize driving voltage. A maximum comb-drive mechanical deflection angle of 12 deg in each direction was obtained under DC actuation voltage of 32 V with a settling time of 90 ms, leading to 1-mm one-dimensional (1-D) steering of laser beam with continuous optical scan angle of 5 deg in each direction. This optimization process provided a design of larger deflection actuator with smaller driving voltage compared with other conventional devices. This enhancement could lead to better performance of MOEMS-based laser beam scanners for imaging and low-speed applications.

  7. Absolute Hugoniot measurements for CH foams in the 1.5-8 Mbar range

    NASA Astrophysics Data System (ADS)

    Aglitskiy, Y.; Velikovich, A. L.; Schmitt, A. J.; Karasik, M.; Serlin, V.; Weaver, J. L.; Oh, J.; Obenschain, S. P.

    2016-10-01

    We report the absolute Hugoniot measurements for dry CH foams at 10% of solid polystyrene density. The 400 μm thick, 500 μm wide planar foam slabs covered with a 10 μm solid plastic ablator were driven with 4 ns long Nike KrF laser pulses whose intensity was varied between 10 and 50 TW/cm2. The trajectories of the shock front and the ablative piston, as well as the rarefaction fan emerging after the shock breakout from the rear surface of the target were clearly observed using the side-on monochromatic x-ray imaging radiography. From these measurements the shock density compression ratio and the shock pressure are evaluated directly. The observed compression ratios varied between 4 and 8, and the corresponding shock pressures - between 1.5 and 8 Mbar. The data was simulated with the FASTRAD3D hydrocode, using standard models of inverse bremsstrahlung absorption, flux-limited thermal conduction, and multi-group radiation diffusion. The demonstrated diagnostics technique applied in a cryo experiment would make it possible to make the first absolute Hugoniot measurements for liquid deuterium or DT-wetted CH foams, which is relevant for designing the wetted-foam indirect-drive ignition targets for NIF. This work was supported by the US DOE/NNSA.

  8. Technical Feasibility of Compressed Air Energy Storage (CAES) Utilizing a Porous Rock Reservoir (Appendix)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medeiros, Michael

    Pacific Gas & Electric Company (PG&E) conducted a project to explore the viability of underground compressed air energy storage (CAES) technology. CAES uses low-cost, off-peak electricity to compress air into a storage system in an underground space such as a rock formation or salt cavern. When electricity is needed, the air is withdrawn and used to drive a generator for electricity production.

  9. Technical Feasibility of Compressed Air Energy Storage (CAES) Utilizing a Porous Rock Reservoir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medeiros, Michael; Booth, Robert; Fairchild, James

    Pacific Gas & Electric Company (PG&E) conducted a project to explore the viability of underground compressed air energy storage (CAES) technology. CAES uses low-cost, off-peak electricity to compress air into a storage system in an underground space such as a rock formation or salt cavern. When electricity is needed, the air is withdrawn and used to drive a generator for electricity production.

  10. High-order harmonic generation in a capillary discharge

    DOEpatents

    Rocca, Jorge J.; Kapteyn, Henry C.; Mumane, Margaret M.; Gaudiosi, David; Grisham, Michael E.; Popmintchev, Tenio V.; Reagan, Brendan A.

    2010-06-01

    A pre-ionized medium created by a capillary discharge results in more efficient use of laser energy in high-order harmonic generation (HHG) from ions. It extends the cutoff photon energy, and reduces the distortion of the laser pulse as it propagates down the waveguide. The observed enhancements result from a combination of reduced ionization energy loss and reduced ionization-induced defocusing of the driving laser as well as waveguiding of the driving laser pulse. The discharge plasma also provides a means to spectrally tune the harmonics by tailoring the initial level of ionization of the medium.

  11. Raman accumulator as a fusion laser driver

    DOEpatents

    George, E. Victor; Swingle, James C.

    1985-01-01

    Apparatus for simultaneous laser pulse amplification and compression, using multiple pass Raman scattering in one Raman cell and pulse switchout from the optical cavity through use of a dichroic device associated with the Raman cell.

  12. Raman accumulator as a fusion laser driver

    DOEpatents

    George, E.V.; Swingle, J.C.

    1982-03-31

    Apparatus for simultaneous laser pulse amplification and compression, using multiple pass Raman scattering in one Raman cell and pulse switchout from the optical cavity through use of a dichroic device associated with the Raman cell.

  13. A simple accurate chest-compression depth gauge using magnetic coils during cardiopulmonary resuscitation

    NASA Astrophysics Data System (ADS)

    Kandori, Akihiko; Sano, Yuko; Zhang, Yuhua; Tsuji, Toshio

    2015-12-01

    This paper describes a new method for calculating chest compression depth and a simple chest-compression gauge for validating the accuracy of the method. The chest-compression gauge has two plates incorporating two magnetic coils, a spring, and an accelerometer. The coils are located at both ends of the spring, and the accelerometer is set on the bottom plate. Waveforms obtained using the magnetic coils (hereafter, "magnetic waveforms"), which are proportional to compression-force waveforms and the acceleration waveforms were measured at the same time. The weight factor expressing the relationship between the second derivatives of the magnetic waveforms and the measured acceleration waveforms was calculated. An estimated-compression-displacement (depth) waveform was obtained by multiplying the weight factor and the magnetic waveforms. Displacements of two large springs (with similar spring constants) within a thorax and displacements of a cardiopulmonary resuscitation training manikin were measured using the gauge to validate the accuracy of the calculated waveform. A laser-displacement detection system was used to compare the real displacement waveform and the estimated waveform. Intraclass correlation coefficients (ICCs) between the real displacement using the laser system and the estimated displacement waveforms were calculated. The estimated displacement error of the compression depth was within 2 mm (<1 standard deviation). All ICCs (two springs and a manikin) were above 0.85 (0.99 in the case of one of the springs). The developed simple chest-compression gauge, based on a new calculation method, provides an accurate compression depth (estimation error < 2 mm).

  14. High-Performance Cryogenic Designs for OMEGA and the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Goncharov, V. N.; Collins, T. J. B.; Marozas, J. A.; Regan, S. P.; Betti, R.; Boehly, T. R.; Campbell, E. M.; Froula, D. H.; Igumenshchev, I. V.; McCrory, R. L.; Myatt, J. F.; Radha, P. B.; Sangster, T. C.; Shvydky, A.

    2016-10-01

    The main advantage of laser symmetric direct drive (SDD) is a significantly higher coupled drive laser energy to the hot-spot internal energy at stagnation compared to that of laser indirect drive. Because of coupling losses resulting from cross-beam energy transfer (CBET), however, reaching ignition conditions on the NIF with SDD requires designs with excessively large in-flight aspect ratios ( 30). Results of cryogenic implosions performed on OMEGA show that such designs are unstable to short-scale nonuniformity growth during shell implosion. Several CBET reduction strategies have been proposed in the past. This talk will discuss high-performing designs using several CBET-mitigation techniques, including using drive laser beams smaller than the target size and wavelength detuning. Designs that are predicted to reach alpha burning regimes as well as a gain of 10 to 40 at the NIF-scale will be presented. Hydrodynamically scaled OMEGA designs with similar CBET-reduction techniques will also be discussed. This material is based upon work supported by the Department Of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  15. Convergent Geometry Foam Buffered Direct Drive Experiments*

    NASA Astrophysics Data System (ADS)

    Watt, R. G.; Wilson, D. C.; Hollis, R. V.; Gobby, P. L.; Chrien, R. E.; Mason, R. J.; Kopp, R. A.; Willi, O.; Iwase, A.; Barringer, L. H.; Gaillard, R.; Kalantar, D. H.; Lerche, R. A.; MacGowan, B.; Nelson, M.; Phillips, T.; Knauer, J. P.; McKenty, P. W.

    1996-11-01

    A serious concern for directly driven ICF implosions is the asymmetry imparted to the capsule by laser drive non-uniformities, particularly the ``early time imprint'' remaining despite the use of random phase plates and smoothing with spectral dispersion. The use of a foam buffer has been proposed as a means to reduce this imprint. Two types of convergent geometry tests of the technique to correct static nonuniformities have been studied to date; cylindrical implosions at the Trident and Vulcan lasers, and spherical implosions at the NOVA laser, all using 527 nm laser drive. Cylindrical implosions used end on x-ray backlighter imaging of inner surface disruption due an intentional hole in the drive footprint, using 50 mg/cc acyrlate foam with a thin Au preheat layer. Spherical implosions used 50 mg/cc polystyrene foam plus Au to study yield and imploded core symmetry of capsules with and without a foam buffer, in comparison to ``clean 1D'' calculations. For thick enough layers, all cases showed improvement. Details of the experiments and theoretical unpinnings will be shown. *Work performed under US DOE Contract No. W-7405-Eng-36.

  16. Evaluation of Wavelength Detuning to Mitigate Cross-Beam Energy Transfer Using the Nike Laser

    NASA Astrophysics Data System (ADS)

    McKenty, P. W.; Marozas, J. A.; Weaver, J.; Obenschain, S. P.; Schmitt, A. J.

    2015-11-01

    Cross-beam energy transfer (CBET) has become a serious threat to the overall success of direct-drive experiments, and especially for polar-direct-drive (PDD) ignition experiments. CBET redirects incident laser light before it can be absorbed into the target, thereby degrading overall target performance. CBET is particularly detrimental over the equator of the target, which is hydrodynamically very sensitive to such losses in the PDD configuration. A promising solution uses laser wavelength detuning between beams to shift the resonance, thereby reducing the interaction cross section between them. Testing this process for direct drive is now underway at the Nike laser at the Naval Research Laboratory. Calculations evaluating the effect CBET has on the scattered-light signals indicate such an experiment will demonstrate the benefits of wavelength detuning for direct-drive implosions. Two-dimensional simulation results will be presented, predicting the effect for both spherical and cylindrical experiments. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  17. The National Direct-Drive Program: OMEGA to the National Ignition Facility

    DOE PAGES

    Regan, S. P.; Goncharov, V. N.; Sangster, T. C.; ...

    2017-12-28

    The goal of the National Direct-Drive Program is to demonstrate and understand the physics of laser direct drive (LDD). Efforts are underway on OMEGA for the 100-Gbar Campaign to demonstrate and understand the physics for hot-spot conditions and formation relevant for ignition at the 1-MJ scale, and at the National Ignition Facility to develop an understanding of the direct-drive physics at long scale lengths for the MJ Direct-Drive Campaign. For this paper the strategy of the National Direct-Drive Program is described; the requirements for the DT cryogenic fill-tube target being developed for OMEGA are presented; and preliminary LDD implosion measurementsmore » of hydrodynamic mixing seeded by laser imprint, the target-mounting stalk, and microscopic surface debris are reported.« less

  18. The National Direct-Drive Program: OMEGA to the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Regan, S. P.; Goncharov, V. N.; Sangster, T. C.

    The goal of the National Direct-Drive Program is to demonstrate and understand the physics of laser direct drive (LDD). Efforts are underway on OMEGA for the 100-Gbar Campaign to demonstrate and understand the physics for hot-spot conditions and formation relevant for ignition at the 1-MJ scale, and at the National Ignition Facility to develop an understanding of the direct-drive physics at long scale lengths for the MJ Direct-Drive Campaign. For this paper the strategy of the National Direct-Drive Program is described; the requirements for the DT cryogenic fill-tube target being developed for OMEGA are presented; and preliminary LDD implosion measurementsmore » of hydrodynamic mixing seeded by laser imprint, the target-mounting stalk, and microscopic surface debris are reported.« less

  19. Compton scattering measurements from dense plasmas

    DOE PAGES

    Glenzer, S. H.; Neumayer, P.; Doppner, T.; ...

    2008-06-12

    Here, Compton scattering techniques have been developed for accurate measurements of densities and temperatures in dense plasmas. One future challenge is the application of this technique to characterize compressed matter on the National Ignition Facility where hydrogen and beryllium will approach extremely dense states of matter of up to 1000 g/cc. In this regime, the density, compressibility, and capsule fuel adiabat may be directly measured from the Compton scattered spectrum of a high-energy x-ray line source. Specifically, the scattered spectra directly reflect the electron velocity distribution. In non-degenerate plasmas, the width provides an accurate measure of the electron temperatures, whilemore » in partially Fermi degenerate systems that occur in laser-compressed matter it provides the Fermi energy and hence the electron density. Both of these regimes have been accessed in experiments at the Omega laser by employing isochorically heated solid-density beryllium and moderately compressed beryllium foil targets. In the latter experiment, compressions by a factor of 3 at pressures of 40 Mbar have been measured in excellent agreement with radiation hydrodynamic modeling.« less

  20. X-ray lasers and methods utilizing two component driving illumination provided by optical laser means of relatively low energy and small physical size

    DOEpatents

    Rosen, Mordecai D.; Matthews, Dennis L.

    1991-01-01

    An X-ray laser (10), and related methodology, are disclosed wherein an X-ray laser target (12) is illuminated with a first pulse of optical laser radiation (14) of relatively long duration having scarcely enough energy to produce a narrow and linear cool plasma of uniform composition (38). A second, relatively short pulse of optical laser radiation (18) is uniformly swept across the length, from end to end, of the plasma (38), at about the speed of light, to consecutively illuminate continuously succeeding portions of the plasma (38) with optical laser radiation having scarcely enough energy to heat, ionize, and invert them into the continuously succeeding portions of an X-ray gain medium. This inventive double pulse technique results in a saving of more than two orders of magnitude in driving optical laser energy, when compared to the conventional single pulse approach.

  1. Crack-free conditions in welding of glass by ultrashort laser pulse.

    PubMed

    Miyamoto, Isamu; Cvecek, Kristian; Schmidt, Michael

    2013-06-17

    The spatial distribution of the laser energy absorbed by nonlinear absorption process in bulk glass w(z) is determined and thermal cycles due to the successive ultrashort laser pulse (USLP) is simulated using w(z) based on the transient thermal conduction model. The thermal stress produced in internal melting of bulk glass by USLP is qualitatively analyzed based on a simple thermal stress model, and crack-free conditions are studied in glass having large coefficient of thermal expansion. In heating process, cracks are prevented when the laser pulse impinges into glass with temperatures higher than the softening temperature of glass. In cooling process, shrinkage stress is suppressed to prevent cracks, because the embedded molten pool produced by nonlinear absorption process behaves like an elastic body under the compressive stress field unlike the case of CW-laser welding where the molten pool having a free surface produced by linear absorption process is plastically deformed under the compressive stress field.

  2. Investigation of laser-induced iodine fluorescence for the measurement of density in compressible flows

    NASA Technical Reports Server (NTRS)

    Mcdaniel, J. C., Jr.

    1982-01-01

    Laser induced fluorescence is an attractive nonintrusive approach for measuring molecular number density in compressible flows although this technique does not produce a signal that is directly related to the number density. Saturation and frequency detuned excitation are explored as means for minimizing the quenching effect using iodine as the molecular system because of its convenient absorption spectrum. Saturation experiments indicate that with available continuous wave laser sources of Gaussian transverse intensity distribution only partial saturation could be achieved in iodine at the pressures of interest in gas dynamics. Using a fluorescence lineshape theory, it is shown that for sufficiently large detuning of a narrow bandwidth laser from a molecular transition, the quenching can be cancelled by collisional broadening over a large range of pressures and temperatures. Experimental data obtained in a Mach 4.3 underexpanded jet of nitrogen seeded with iodine for various single mode argon laser detunings from a strong iodine transition at 5145 A are discussed.

  3. 7. TOP SURFACES OF FOUR HYDRAULIC UNITS TO DRIVE COMPRESSORS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. TOP SURFACES OF FOUR HYDRAULIC UNITS TO DRIVE COMPRESSORS. Looking southeast along rear of building. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Helium Compression Plant, Test Area 1-115, intersection of Altair & Saturn Boulevards, Boron, Kern County, CA

  4. Enhanced hole boring with two-color relativistic laser pulses in the fast ignition scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Changhai; Tian, Ye; Li, Wentao

    A scheme of using two-color laser pulses for hole boring into overdense plasma as well as energy transfer into electron and ion beams has been studied using particle-in-cell simulations. Following an ultra-short ultra-intense hole-boring laser pulse with a short central wavelength in extreme ultra-violet range, the main infrared driving laser pulse can be guided in the hollow channel preformed by the former laser and propagate much deeper into an overdense plasma, as compared to the case using the infrared laser only. In addition to efficiently transferring the main driving laser energy into energetic electrons and ions generation deep inside themore » overdense plasma, the ion beam divergence can be greatly reduced. The results might be beneficial for the fast ignition concept of inertial confinement fusion.« less

  5. A practical large scale/high speed data distribution system using 8 mm libraries

    NASA Technical Reports Server (NTRS)

    Howard, Kevin

    1993-01-01

    Eight mm tape libraries are known primarily for their small size, large storage capacity, and low cost. However, many applications require an additional attribute which, heretofore, has been lacking -- high transfer rate. Transfer rate is particularly important in a large scale data distribution environment -- an environment in which 8 mm tape should play a very important role. Data distribution is a natural application for 8 mm for several reasons: most large laboratories have access to 8 mm tape drives, 8 mm tapes are upwardly compatible, 8 mm media are very inexpensive, 8 mm media are light weight (important for shipping purposes), and 8 mm media densely pack data (5 gigabytes now and 15 gigabytes on the horizon). If the transfer rate issue were resolved, 8 mm could offer a good solution to the data distribution problem. To that end Exabyte has analyzed four ways to increase its transfer rate: native drive transfer rate increases, data compression at the drive level, tape striping, and homogeneous drive utilization. Exabyte is actively pursuing native drive transfer rate increases and drive level data compression. However, for non-transmitted bulk data applications (which include data distribution) the other two methods (tape striping and homogeneous drive utilization) hold promise.

  6. Dynamic Response of Monolithic and Laminate/Particulate Reactive Mixtures

    NASA Astrophysics Data System (ADS)

    Wei, Chung-Ting

    Two dynamic compression methods were applied to a monolithic metal and reactive mixtures to investigate their responses: (a) Dynamic experiments using a split Hopkinson pressure bar were applied to reactive mixtures densified by explosive consolidation in order to establish their mechanical response and failure mechanisms. (b) Laser compression and release, which can impart high stresses, up to hundreds GPa, in times of nanoseconds and fractions thereof, was applied to establish the spalling strength of vanadium and the reaction threshold for Ni/Al laminates. The spallation and fragmentation exhibited by recovered mono- and poly-crystalline vanadium prove that the laser intensities and crystal structure play important roles in determining spall strength, fragmentation, and microstructural processes. Densified reactive mixtures with different microstructures (Ni, Mo, W, Nb and Ta with Al) were subjected to the quasi-static and dynamic strain rates. Two distinct failure mechanisms, axial splitting and shear failure, were observed in the recovered specimens. Axial splitting occurred when the bonding between the powders was poor; shear failure was primarily associated with extensive deformation of continuous Ta and Nb phases. Finite element simulations provided valuable information in interpreting the experimental results and predicting failure mechanisms akin to those observed. Ni/Al laminates were subjected to laser compression. The strain rates varied from 105 to 108 s-1, and the initial stress varied from 30 to ˜300 GPa. It is found the thickness of the lamellar and the interlaminar bonding strength are the two critical factors in determining mechanical failure. The intermetallic reaction leading to Ni3Al and NiAl were produced by the laser energies and laser pulse durations in direct laser shock experiments. Laser-driven compression was also applied to study the high temperature synthesis in nano-scale Ni/Al laminates with bilayer thickness 54 nm. Intermetallic phases, NiAl and NiAl 3, were found on the plasma stagnated laminates. However, the self-propagating high temperature synthesis (SHS) did not self-sustain in the micro-scale laminate because of the short duration of the pulse.

  7. Phase-matched generation of coherent soft and hard X-rays using IR lasers

    DOEpatents

    Popmintchev, Tenio V.; Chen, Ming-Chang; Bahabad, Alon; Murnane, Margaret M.; Kapteyn, Henry C.

    2013-06-11

    Phase-matched high-order harmonic generation of soft and hard X-rays is accomplished using infrared driving lasers in a high-pressure non-linear medium. The pressure of the non-linear medium is increased to multi-atmospheres and a mid-IR (or higher) laser device provides the driving pulse. Based on this scaling, also a general method for global optimization of the flux of phase-matched high-order harmonic generation at a desired wavelength is designed.

  8. The advanced hohlraum research project

    NASA Astrophysics Data System (ADS)

    Jones, Ogden; Tabak, M.; Amendt, P. A.; Hammer, J. H.; Baker, K. L.; Baumann, T. F.; Berger, R. L.; Biener, M. M.; Ho, D. D.; Kim, S. H.; Logan, B. G.; Mariscal, D. A.; Patankar, S.; Wallace, R. L.

    2017-10-01

    We present results of a three-year study on alternate hohlraum designs. Several alternatives to cylindrical gas-filled hohlraums have been investigated. Proposed new hohlraum concepts utilize different hohlraum shapes, multiple laser entrance holes, and alternate materials such as metal foam walls. For each design we assess the radiation drive efficiency, the time-dependent drive symmetry, and laser-plasma interaction issues such as backscatter and crossed beam energy transfer. Results from supporting experiments on laser-heated foams are also summarized. Prepared by LLNL under LDRD 15-ERD-058.

  9. Core-pumped mode-locked ytterbium-doped fiber laser operating around 980 nm

    NASA Astrophysics Data System (ADS)

    Zhou, Yue; Dai, Yitang; Li, Jianqiang; Yin, Feifei; Dai, Jian; Zhang, Tian; Xu, Kun

    2018-07-01

    In this letter, we first demonstrate a core-pumped passively mode-locked all-normal-dispersion ytterbium-doped fiber oscillator based on nonlinear polarization evolution operating around 980 nm. The dissipative soliton fiber laser pulse can be compressed down to 250 fs with 1 nJ pulse energy, and the slope efficiency of the oscillator can be as high as 19%. To improve the dissipative soliton laser output spectrum smoothness, we replace the birefringent plate based intracavity filter with a diffraction-grating based filter. The output pulse duration can then be further compressed down to 180 fs with improved spectral-smoothness. These schemes have potential applications in seeding cryogenic Yb:YLF amplifiers and underwater exploration of marine resources.

  10. Ultrafast observation of lattice dynamics in laser-irradiated gold foils

    DOE PAGES

    Hartley, N. J.; Ozaki, Norimasa; Matsuoka, T.; ...

    2017-02-13

    Here, we have observed the lattice expansion before the onset of compression in an optical-laser-driven target, using diffraction of femtosecond X-ray beams generated by the SPring-8 Angstrom Compact Free-electron Laser. The change in diffraction angle provides a direct measure of the lattice spacing, allowing the density to be calculated with a precision of ±1%. From the known equation of state relations, this allows an estimation of the temperature responsible for the expansion as <1000 K. The subsequent ablation-driven compression was observed with a clear rise in density at later times. This demonstrates the feasibility of studying the dynamics of preheatingmore » and shock formation with unprecedented detail.« less

  11. Ultrafast observation of lattice dynamics in laser-irradiated gold foils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartley, N. J.; Ozaki, Norimasa; Matsuoka, T.

    Here, we have observed the lattice expansion before the onset of compression in an optical-laser-driven target, using diffraction of femtosecond X-ray beams generated by the SPring-8 Angstrom Compact Free-electron Laser. The change in diffraction angle provides a direct measure of the lattice spacing, allowing the density to be calculated with a precision of ±1%. From the known equation of state relations, this allows an estimation of the temperature responsible for the expansion as <1000 K. The subsequent ablation-driven compression was observed with a clear rise in density at later times. This demonstrates the feasibility of studying the dynamics of preheatingmore » and shock formation with unprecedented detail.« less

  12. Time-Resolved K-shell Photoabsorption Edge Measurement in a Strongly Coupled Matter Driven by Laser-converted Radiation

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Yang, Jia-Min; Zhang, Ji-Yan; Yang, Guo-Hong; Xiong, Gang; Wei, Min-Xi; Song, Tian-Ming; Zhang, Zhi-Yu

    2013-06-01

    A time-resolved K edge absorption measurement of warm dense KCl was performed on Shenguang II laser facility. The x-ray radiation driven shocks were adopted to take colliding shocks compression. By using Dog bone hohlraum the CH/KCl/CH sample was shielded from the laser hitting point to suppress the M band preheating and enhance the compressibility. Thus, an unexplored and extreme region of the plasma state with the maximum 5 times solid density and temperature lower than 3 eV (with coupling constant Γii around 100) was first obtained. The photoabsorption spectra of chlorine near the K-shell edge have been measured with a crystal spectrometer using a short x-ray backlighter. The K edge red shift up to 11.7 eV and broadening of 15.2 eV were obtained for the maximum compression. The electron temperature, inferred by Fermi-Dirac fit of the measured K-edge broadening, was consistent with the hydrodynamic predictions. The comparison of the K edge shift with a plasma model, in which the ionization effect, continuum lowering and partial degeneracy are considered, shows that more improvements are desired to describe in details the variation of K edge shift. This work might extend future study of WDM in extreme conditions of high compression.

  13. Manufacturing and Characterization of 18Ni Marage 300 Lattice Components by Selective Laser Melting.

    PubMed

    Contuzzi, Nicola; Campanelli, Sabina L; Casavola, Caterina; Lamberti, Luciano

    2013-08-13

    The spreading use of cellular structures brings the need to speed up manufacturing processes without deteriorating mechanical properties. By using Selective Laser Melting (SLM) to produce cellular structures, the designer has total freedom in defining part geometry and manufacturing is simplified. The paper investigates the suitability of Selective Laser Melting for manufacturing steel cellular lattice structures with characteristic dimensions in the micrometer range. Alternative lattice topologies including reinforcing bars in the vertical direction also are considered. The selected lattice structure topology is shown to be superior over other lattice structure designs considered in literature. Compression tests are carried out in order to evaluate mechanical strength of lattice strut specimens made via SLM. Compressive behavior of samples also is simulated by finite element analysis and numerical results are compared with experimental data in order to assess the constitutive behavior of the lattice structure designs considered in this study. Experimental data show that it is possible to build samples of relative density in the 0.2456-0.4367 range. Compressive strength changes almost linearly with respect to relative density, which in turns depends linearly on the number of vertical reinforces. Specific strength increases with cell and strut edge size. Numerical simulations confirm the plastic nature of the instability phenomena that leads the cellular structures to collapse under compression loading.

  14. System for generating pluralities of optical pulses with predetermined frequencies in a temporally and spatially overlapped relationship

    DOEpatents

    Meyerhofer, David D.; Schmid, Ansgar W.; Chuang, Yung-ho

    1992-01-01

    Ultra short (pico second and shorter) laser pulses having components of different frequency which are overlapped coherently in space and with a predetermined constant relationship in time, are generated and may be used in applications where plural spectrally separate, time-synchronized pulses are needed as in wave-length resolved spectroscopy and spectral pump probe measurements for characterization of materials. A Chirped Pulse Amplifier (CPA), such as a regenerative amplifier, which provides amplified, high intensity pulses at the output thereof which have the same spatial intensity profile, is used to process a series of chirped pulses, each with a different central frequency (the desired frequencies contained in the output pulses). Each series of chirped pulses is obtained from a single chirped pulse by spectral windowing with a mask in a dispersive expansion stage ahead of the laser amplifier. The laser amplifier amplifies the pulses and provides output pulses with like spatial and temporal profiles. A compression stage then compresses the amplified pulses. All the individual pulses of different frequency, which originated in each single chirped pulse, are compressed and thereby coherently overlapped in space and time. The compressed pulses may be used for the foregoing purposes and other purposes wherien pulses having a plurality of discrete frequency components are required.

  15. System for generating pluralities of optical pulses with predetermined frequencies in a temporally and spatially overlapped relationship

    DOEpatents

    Meyerhofer, D.D.; Schmid, A.W.; Chuang, Y.

    1992-03-10

    Ultrashort (pico second and shorter) laser pulses having components of different frequency which are overlapped coherently in space and with a predetermined constant relationship in time, are generated and may be used in applications where plural spectrally separate, time-synchronized pulses are needed as in wave-length resolved spectroscopy and spectral pump probe measurements for characterization of materials. A Chirped Pulse Amplifier (CPA), such as a regenerative amplifier, which provides amplified, high intensity pulses at the output thereof which have the same spatial intensity profile, is used to process a series of chirped pulses, each with a different central frequency (the desired frequencies contained in the output pulses). Each series of chirped pulses is obtained from a single chirped pulse by spectral windowing with a mask in a dispersive expansion stage ahead of the laser amplifier. The laser amplifier amplifies the pulses and provides output pulses with like spatial and temporal profiles. A compression stage then compresses the amplified pulses. All the individual pulses of different frequency, which originated in each single chirped pulse, are compressed and thereby coherently overlapped in space and time. The compressed pulses may be used for the foregoing purposes and other purposes wherien pulses having a plurality of discrete frequency components are required. 4 figs.

  16. Intensity dependence of non-linear kinetic behaviour of stimulated Raman scattering in fusion relevant plasmas

    NASA Astrophysics Data System (ADS)

    Mašek, Martin; Rohlena, Karel

    2015-05-01

    Influence of kinetic effects on 3-wave interaction was examined within the frame of stimulated Raman backward scattering (SRBS) in a rarefied laser corona. The plasma is supposed to be weakly collisional with a negligible density gradient. The model is centred on the physical situation of shock ignition at a large scale direct drive compression experiments. The modelling uses a 1D geometry in a Maxwell-Vlasov model. The method used is a truncated Fourier-Hermite expansion numerically stabilized by a model collisional term with a realistic value of the collision frequency. In parallel, besides the linear theory of SRBS, a coupled mode 3-wave equation system (laser driving wave, Raman back-scattered wave and the daughter forward scattered plasma wave) is solved to demonstrate the correspondence between the full kinetic model and 3-wave interaction with no electron kinetics involved to identify the differences between both the solutions arising due to the electron kinetic effects. We concentrated mainly on the Raman reflectivity, which is one of the important parameters controlling the efficiency of the shock ignition scheme. It was found that the onset of the kinetic effects has a distinct intensity threshold, above which the Raman reflectivity may go down due to the electron kinetics. In addition, we were trying to identify the most important features of the electron phase space behaviour, such as particle trapping in potential minima of the generated plasma wave and its consequences for the 3-wave interaction. The role of the trapped electrons seems to be crucial for a deformation of the plasma wave dispersion curve, as indicated in some earlier work.

  17. Isolating and quantifying cross-beam energy transfer in direct-drive implosions on OMEGA and the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, A. K.; Cao, D.; Michel, D. T.

    The angularly-resolved mass ablation rates and ablation front trajectories for Si-coated CH targets were measured in direct-drive inertial confinement fusion experiments to quantify crossbeam energy transfer (CBET) while constraining the hydrodynamic coupling. A polar-direct-drive laser configuration was used, where the equatorial laser beams were dropped from a symmetric direct-drive configuration to suppress CBET at the pole, while allowing it to persist at the equator. The combination of low- and high-CBET conditions in the same implosion allowed the effects of CBET on the ablation rate and ablation pressure to be decoupled from the other physics effects that influence laser-coupling. Hydrodynamic simulationsmore » performed without CBET reproduced the measured ablation rate and ablation front trajectory at the pole of the target, verifying that the other laser-coupling physics effects are well-modeled when CBET effects are negligible. The simulated mass ablation rates and ablation front trajectories were in excellent agreement with the measurements at all angles when a CBET model based on Randall’s equations [C. J. Randall et al., Phys. Fluids 24, 1474 (1981)] was included into the simulations with an optimized multiplier on the CBET gain factor. These measurements were performed on both OMEGA and the National Ignition Facility to access a wide range of plasma conditions, laser intensities, and laser beam geometries. Furthermore, the presence of the CBET gain multiplier required to match the data in all of the configurations tested suggests that additional physics effects, such as intensity variations due to diffraction, shortcomings of extending the 1-D Randall model to 3-D, or polarization effects, should be explored to explain the differences in observed and predicted drive.« less

  18. Isolating and quantifying cross-beam energy transfer in direct-drive implosions on OMEGA and the National Ignition Facility

    DOE PAGES

    Davis, A. K.; Cao, D.; Michel, D. T.; ...

    2016-04-20

    The angularly-resolved mass ablation rates and ablation front trajectories for Si-coated CH targets were measured in direct-drive inertial confinement fusion experiments to quantify crossbeam energy transfer (CBET) while constraining the hydrodynamic coupling. A polar-direct-drive laser configuration was used, where the equatorial laser beams were dropped from a symmetric direct-drive configuration to suppress CBET at the pole, while allowing it to persist at the equator. The combination of low- and high-CBET conditions in the same implosion allowed the effects of CBET on the ablation rate and ablation pressure to be decoupled from the other physics effects that influence laser-coupling. Hydrodynamic simulationsmore » performed without CBET reproduced the measured ablation rate and ablation front trajectory at the pole of the target, verifying that the other laser-coupling physics effects are well-modeled when CBET effects are negligible. The simulated mass ablation rates and ablation front trajectories were in excellent agreement with the measurements at all angles when a CBET model based on Randall’s equations [C. J. Randall et al., Phys. Fluids 24, 1474 (1981)] was included into the simulations with an optimized multiplier on the CBET gain factor. These measurements were performed on both OMEGA and the National Ignition Facility to access a wide range of plasma conditions, laser intensities, and laser beam geometries. Furthermore, the presence of the CBET gain multiplier required to match the data in all of the configurations tested suggests that additional physics effects, such as intensity variations due to diffraction, shortcomings of extending the 1-D Randall model to 3-D, or polarization effects, should be explored to explain the differences in observed and predicted drive.« less

  19. Combination ring cavity and backward Raman waveguide amplifier

    DOEpatents

    Kurnit, Norman A.

    1983-01-01

    A combination regenerative ring and backward Raman waveguide amplifier and a combination regenerative ring oscillator and backward Raman waveguide amplifier which produce Raman amplification, pulse compression, and efficient energy extraction from the CO.sub.2 laser pump signal for conversion into a Stokes radiation signal. The ring cavity configuration allows the CO.sub.2 laser pump signal and Stokes signal to copropagate through the Raman waveguide amplifier. The backward Raman waveguide amplifier configuration extracts a major portion of the remaining energy from the CO.sub.2 laser pump signal for conversion to Stokes radiation. Additionally, the backward Raman amplifier configuration produces a Stokes radiation signal which has a high intensity and a short duration. Adjustment of the position of overlap of the Stokes signal and the CO.sub.2 laser pump signal in the backward Raman waveguide amplifiers alters the amount of pulse compression which can be achieved.

  20. Characterizing and Optimizing Photocathode Laser Distributions for Ultra-low Emittance Electron Beam Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, F.; Bohler, D.; Ding, Y.

    2015-12-07

    Photocathode RF gun has been widely used for generation of high-brightness electron beams for many different applications. We found that the drive laser distributions in such RF guns play important roles in minimizing the electron beam emittance. Characterizing the laser distributions with measurable parameters and optimizing beam emittance versus the laser distribution parameters in both spatial and temporal directions are highly desired for high-brightness electron beam operation. In this paper, we report systematic measurements and simulations of emittance dependence on the measurable parameters represented for spatial and temporal laser distributions at the photocathode RF gun systems of Linac Coherent Lightmore » Source. The tolerable parameter ranges for photocathode drive laser distributions in both directions are presented for ultra-low emittance beam operations.« less

  1. Ultrashort x-ray backlighters and applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umstadter, D., University of Michigan

    Previously, using ultrashort laser pulses focused onto solid targets, we have experimentally studied a controllable ultrafast broadband radiation source in the extreme ultraviolet for time-resolved dynamical studies in ultrafast science [J. Workman, A. Maksimchuk, X. Llu, U. Ellenberger, J. S. Coe, C.-Y. Chien, and D. Umstadter, ``Control of Bright Picosecond X-Ray Emission from Intense Sub- Picosecond Laser-Plasma Interactions,`` Phys. Rev. Lett. 75, 2324 (1995)]. Once armed with a bright ultrafast broadband continuum x-ray source and appropriate detectors, we used the source as a backlighter to study a remotely produced plasma. The application of the source to a problem relevant tomore » high-density matter completes the triad: creating and controlling, efficiently detecting, and applying the source. This work represented the first use of an ultrafast laser- produced x-ray source as a time-resolving probe in an application relevant to atomic, plasma and high-energy-density matter physics. Using the x-ray source as a backlighter, we adopted a pump-probe geometry to investigate the dynamic changes in electronic structure of a thin metallic film as it is perturbed by an ultrashort laser pulse. Because the laser deposits its energy in a skin depth of about 100 {Angstrom} before expansion occurs, up to gigabar pressure shock waves lasting picosecond in duration have been predicted to form in these novel plasmas. This raises the possibility of studying high- energy-density matter relevant to inertial confinement fusion (ICF) and astrophysics in small-scale laboratory experiments. In the past, time-resolved measurements of K-edge shifts in plasmas driven by nanosecond pulses have been used to infer conditions in highly compressed materials. In this study, we used 100-fs laser pulses to impulsively drive shocks into a sample (an untamped 1000 {Angstrom} aluminum film on 2000 {Angstrom} of parylene-n), measuring L-edge shifts.« less

  2. Observations of shear flows in high-energy-density plasmas

    NASA Astrophysics Data System (ADS)

    Harding, Eric C.

    The research discussed in this thesis represents work toward the demonstration of experimental designs for creating a Kelvin-Helmholtz (KH) unstable shear layer in a high-energy-density (HED) plasma. Such plasmas are formed by irradiating materials with several kilo-Joules of laser light over a few nanoseconds, and are defined as having an internal pressure greater than one-million atmospheres. Similar plasmas exist in laboratory fusion experiments and in the astrophysical environment. The KH instability is a fundamental fluid instability that arises when strong velocity gradients exist at the interface between two fluids. The KH instability is important because it drives the mixing of fluids and initiates the transition to turbulence in the flow. Until now, the evolution of the KH instability has remained relatively unexplored in the HED regime This thesis presents the observations and analysis of two novel experiments carried out using two separate laser facilities. The first experiment used 1.4 kJ from the Nike laser to generate a supersonic flow of Al plasma over a low-density, rippled foam surface. The Al flow interacted with the foam and created distinct features that resulted from compressible effects. In this experiment there is little evidence of the KH instability. Nevertheless, this experimental design has perhaps pioneered a new method for generating a supersonic shear flow that has the potential to produce the KH instability if more laser energy is applied. The second experiment was performed on the Omega laser. In this case 4.3 kJ of laser energy drove a blast wave along a rippled foam/plastic interface. In response to the vorticity deposited and the shear flow established by the blast wave, the interface rolls up into large vorticies characteristic of the KH instability. The Omega experiment was the first HED experiment to capture the evolution of the KH instability.

  3. All-Union Conference on Laser Optics, 4th, Leningrad, USSR, January 13-18, 1984, Proceedings

    NASA Astrophysics Data System (ADS)

    Bukhenskii, M. F.

    1984-08-01

    The papers presented in this volume provide an overview of current theoretical and experimental research in laser optics. Topics discussed include electronically controlled tunable lasers, nonlinear phenomena in fiber-optic waveguides, holographic distributed-feedback dye lasers, and new developments in solid-state lasers. Papers are also presented on the generation of picosecond pulses through self-Q-switching in a distributed-feedback laser, temporal compression of light pulses during stimulated backscattering, and optimization of second harmonic generation in a multimode Nd:glass laser.

  4. Generation of bright isolated attosecond soft X-ray pulses driven by multicycle midinfrared lasers

    PubMed Central

    Chen, Ming-Chang; Mancuso, Christopher; Hernández-García, Carlos; Dollar, Franklin; Galloway, Ben; Popmintchev, Dimitar; Huang, Pei-Chi; Walker, Barry; Plaja, Luis; Jaroń-Becker, Agnieszka A.; Becker, Andreas; Murnane, Margaret M.; Kapteyn, Henry C.; Popmintchev, Tenio

    2014-01-01

    High harmonic generation driven by femtosecond lasers makes it possible to capture the fastest dynamics in molecules and materials. However, to date the shortest subfemtosecond (attosecond, 10−18 s) pulses have been produced only in the extreme UV region of the spectrum below 100 eV, which limits the range of materials and molecular systems that can be explored. Here we experimentally demonstrate a remarkable convergence of physics: when midinfrared lasers are used to drive high harmonic generation, the conditions for optimal bright, soft X-ray generation naturally coincide with the generation of isolated attosecond pulses. The temporal window over which phase matching occurs shrinks rapidly with increasing driving laser wavelength, to the extent that bright isolated attosecond pulses are the norm for 2-µm driving lasers. Harnessing this realization, we experimentally demonstrate the generation of isolated soft X-ray attosecond pulses at photon energies up to 180 eV for the first time, to our knowledge, with a transform limit of 35 attoseconds (as), and a predicted linear chirp of 300 as. Most surprisingly, advanced theory shows that in contrast with as pulse generation in the extreme UV, long-duration, 10-cycle, driving laser pulses are required to generate isolated soft X-ray bursts efficiently, to mitigate group velocity walk-off between the laser and the X-ray fields that otherwise limit the conversion efficiency. Our work demonstrates a clear and straightforward approach for robustly generating bright isolated attosecond pulses of electromagnetic radiation throughout the soft X-ray region of the spectrum. PMID:24850866

  5. Generation of bright isolated attosecond soft X-ray pulses driven by multicycle midinfrared lasers.

    PubMed

    Chen, Ming-Chang; Mancuso, Christopher; Hernández-García, Carlos; Dollar, Franklin; Galloway, Ben; Popmintchev, Dimitar; Huang, Pei-Chi; Walker, Barry; Plaja, Luis; Jaroń-Becker, Agnieszka A; Becker, Andreas; Murnane, Margaret M; Kapteyn, Henry C; Popmintchev, Tenio

    2014-06-10

    High harmonic generation driven by femtosecond lasers makes it possible to capture the fastest dynamics in molecules and materials. However, to date the shortest subfemtosecond (attosecond, 10(-18) s) pulses have been produced only in the extreme UV region of the spectrum below 100 eV, which limits the range of materials and molecular systems that can be explored. Here we experimentally demonstrate a remarkable convergence of physics: when midinfrared lasers are used to drive high harmonic generation, the conditions for optimal bright, soft X-ray generation naturally coincide with the generation of isolated attosecond pulses. The temporal window over which phase matching occurs shrinks rapidly with increasing driving laser wavelength, to the extent that bright isolated attosecond pulses are the norm for 2-µm driving lasers. Harnessing this realization, we experimentally demonstrate the generation of isolated soft X-ray attosecond pulses at photon energies up to 180 eV for the first time, to our knowledge, with a transform limit of 35 attoseconds (as), and a predicted linear chirp of 300 as. Most surprisingly, advanced theory shows that in contrast with as pulse generation in the extreme UV, long-duration, 10-cycle, driving laser pulses are required to generate isolated soft X-ray bursts efficiently, to mitigate group velocity walk-off between the laser and the X-ray fields that otherwise limit the conversion efficiency. Our work demonstrates a clear and straightforward approach for robustly generating bright isolated attosecond pulses of electromagnetic radiation throughout the soft X-ray region of the spectrum.

  6. Technical Feasibility of Compressed Air Energy Storage (CAES) Utilizing a Porous Rock Reservoir, Appendix — Chapter 7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medeiros, Michael

    Pacific Gas & Electric Company (PG&E) conducted a project to explore the viability of underground compressed air energy storage (CAES) technology. CAES uses low-cost, off-peak electricity to compress air into a storage system in an underground space such as a rock formation or salt cavern. When electricity is needed, the air is withdrawn and used to drive a generator for electricity production.

  7. Technical Feasibility of Compressed Air Energy Storage (CAES) Utilizing a Porous Rock Reservoir, Appendix — Chapter 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medeiros, Michael

    Pacific Gas & Electric Company (PG&E) conducted a project to explore the viability of underground compressed air energy storage (CAES) technology. CAES uses low-cost, off-peak electricity to compress air into a storage system in an underground space such as a rock formation or salt cavern. When electricity is needed, the air is withdrawn and used to drive a generator for electricity production.

  8. Technical Feasibility of Compressed Air Energy Storage (CAES) Utilizing a Porous Rock Reservoir, Appendix — Chapter 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medeiros, Michael

    Pacific Gas & Electric Company (PG&E) conducted a project to explore the viability of underground compressed air energy storage (CAES) technology. CAES uses low-cost, off-peak electricity to compress air into a storage system in an underground space such as a rock formation or salt cavern. When electricity is needed, the air is withdrawn and used to drive a generator for electricity production.

  9. Technical Feasibility of Compressed Air Energy Storage (CAES) Utilizing a Porous Rock Reservoir, Appendix — Chapter 9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medeiros, Michael

    Pacific Gas & Electric Company (PG&E) conducted a project to explore the viability of underground compressed air energy storage (CAES) technology. CAES uses low-cost, off-peak electricity to compress air into a storage system in an underground space such as a rock formation or salt cavern. When electricity is needed, the air is withdrawn and used to drive a generator for electricity production.

  10. Technical Feasibility of Compressed Air Energy Storage (CAES) Utilizing a Porous Rock Reservoir, Appendix — Chapter 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medeiros, Michael

    Pacific Gas & Electric Company (PG&E) conducted a project to explore the viability of underground compressed air energy storage (CAES) technology. CAES uses low-cost, off-peak electricity to compress air into a storage system in an underground space such as a rock formation or salt cavern. When electricity is needed, the air is withdrawn and used to drive a generator for electricity production.

  11. Technical Feasibility of Compressed Air Energy Storage (CAES) Utilizing a Porous Rock Reservoir, Appendix — Chapter 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medeiros, Michael

    Pacific Gas & Electric Company (PG&E) conducted a project to explore the viability of underground compressed air energy storage (CAES) technology. CAES uses low-cost, off-peak electricity to compress air into a storage system in an underground space such as a rock formation or salt cavern. When electricity is needed, the air is withdrawn and used to drive a generator for electricity production.

  12. Adiabatic Compression Sensitivity of AF-M315E (Briefing Charts)

    DTIC Science & Technology

    2015-07-27

    Charts 3. DATES COVERED (From - To) July 2015-July 2015 4. TITLE AND SUBTITLE Adiabatic Compression Sensitivity of AF - M315E (Briefing Charts) 5a...PA#15402. 14. ABSTRACT The Air Force Research Laboratory developed monopropellant, AF - M315E , has been selected for demonstration under the NASA...Pollux Drive, Edwards AFB, CA 93524-7048. Adiabatic Compression Sensitivity of AF - M315E Phu Quach ERC, Incorporated Air Force Research Laboratory

  13. Technical Feasibility of Compressed Air Energy Storage (CAES) Utilizing a Porous Rock Reservoir, Appendix — Chapter 8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medeiros, Michael

    Pacific Gas & Electric Company (PG&E) conducted a project to explore the viability of underground compressed air energy storage (CAES) technology. CAES uses low-cost, off-peak electricity to compress air into a storage system in an underground space such as a rock formation or salt cavern. When electricity is needed, the air is withdrawn and used to drive a generator for electricity production.

  14. Wavelength-detuning cross-beam energy transfer mitigation scheme for direct drive: Modeling and evidence from National Ignition Facility implosions

    NASA Astrophysics Data System (ADS)

    Marozas, J. A.; Hohenberger, M.; Rosenberg, M. J.; Turnbull, D.; Collins, T. J. B.; Radha, P. B.; McKenty, P. W.; Zuegel, J. D.; Marshall, F. J.; Regan, S. P.; Sangster, T. C.; Seka, W.; Campbell, E. M.; Goncharov, V. N.; Bowers, M. W.; Di Nicola, J.-M. G.; Erbert, G.; MacGowan, B. J.; Pelz, L. J.; Moody, J.; Yang, S. T.

    2018-05-01

    Cross-beam energy transfer (CBET) results from two-beam energy exchange via seeded stimulated Brillouin scattering, which detrimentally reduces laser-energy absorption for direct-drive inertial confinement fusion. Consequently, ablation pressure and implosion velocity suffer from the decreased absorption, reducing target performance in both symmetric and polar direct drive. Additionally, CBET alters the time-resolved scattered-light spectra and redistributes absorbed and scattered-light-changing shell morphology and low-mode drive symmetry. Mitigating CBET is demonstrated in inertial confinement implosions at the National Ignition Facility by detuning the laser-source wavelengths (±2.3 Å UV) of the interacting beams. In polar direct drive, wavelength detuning was shown to increase the equatorial region velocity experimentally by 16% and to alter the in-flight shell morphology. These experimental observations are consistent with design predictions of radiation-hydrodynamic simulations that indicate a 10% increase in the average ablation pressure. These results indicate that wavelength detuning successfully mitigates CBET. Simulations predict that optimized phase plates and wavelength-detuning CBET mitigation utilizing the three-legged beam layout of the OMEGA Laser System significantly increase absorption and achieve >100-Gbar hot-spot pressures in symmetric direct drive.

  15. Laser dazzling impacts on car driver performance

    NASA Astrophysics Data System (ADS)

    Steinvall, Ove; Sandberg, Stig; Hörberg, Ulf; Persson, Rolf; Berglund, Folke; Karslsson, Kjell; Öhgren, Johan; Yu, Zhaohua; Söderberg, Per

    2013-10-01

    A growing problem for the Police and Security Forces has been to prevent potentially hostile individuals to pass a checkpoint, without using lethatl violence. Therefore the question has been if there is a laser or any other strong light source that could be used as a warning and dazzling device, without lethal or long term effects. To investigate the possibilities a field trial has been performed at a motor-racing track. A green CW laser with an irradiance on the eye of maximum 0.5 MPE, as defined by ICNIRP [1] and the ANZI standard [2], was used as a dazzle source. Ten drivers have been driving with dipped headlights through a course of three lines with orange cones. In every line there has been only one gate wide enough to pass without hitting the cones. The time through the course, the choice of gates and the number of cones hit have been measured. For every second trial drive through the track, the driver was exposed to the laser dazzler. The background illuminances ranged from a thousand lux in daylight to about ten millilux in darkness. The protective effect of the sun-visor of the car was investigated. The drives visual system was carefully examined before and after experimental driving and a few weeks after the experimental driving to verify that no pathological effects, that could potentially be induced by the laser exposure, pre-existed or occurred after the laser exposure. An analysis of variance for a within subjects design has been used for evaluation. It was found that green laser light can have an obvious warning effect in daylight. Dazzling does reduce the drivers ability to make judgments and manouver the car in twilight and darkness. A sun-visor can reduce the glare and give the driver an improved control, but that perception can be unjustified. No damage to the visual system was observed.

  16. Optimal Path to a Laser Fusion Energy Power Plant

    NASA Astrophysics Data System (ADS)

    Bodner, Stephen

    2013-10-01

    There was a decision in the mid 1990s to attempt ignition using indirect-drive targets. It is now obvious that this decision was unjustified. The target design was too geometrically complex, too inefficient, and too far above plasma instability thresholds. By that same time, the mid 1990s, there had also been major advances in the direct-drive target concept. It also was not yet ready for a major test. Now, finally, because of significant advances in target designs, laser-target experiments, and laser development, the direct-drive fusion concept is ready for significant enhancements in funding, on the path to commercial fusion energy. There are two laser contenders. A KrF laser is attractive because of its shortest wavelength, broad bandwidth, and superb beam uniformity. A frequency-converted DPSSL has the disadvantage of inherently narrow bandwidth and longer wavelength, but by combining many beams in parallel one might be able to produce at the target the equivalent of an ultra-broad bandwidth. One or both of these lasers may also meet all of the engineering and economic requirements for a reactor. It is time to further develop and evaluate these two lasers as rep-rate systems, in preparation for a future high-gain fusion test.

  17. Multi-millijoule few-cycle mid-infrared pulses through nonlinear self-compression in bulk

    PubMed Central

    Shumakova, V.; Malevich, P.; Ališauskas, S.; Voronin, A.; Zheltikov, A. M.; Faccio, D.; Kartashov, D.; Baltuška, A.; Pugžlys, A.

    2016-01-01

    The physics of strong-field applications requires driver laser pulses that are both energetic and extremely short. Whereas optical amplifiers, laser and parametric, boost the energy, their gain bandwidth restricts the attainable pulse duration, requiring additional nonlinear spectral broadening to enable few or even single cycle compression and a corresponding peak power increase. Here we demonstrate, in the mid-infrared wavelength range that is important for scaling the ponderomotive energy in strong-field interactions, a simple energy-efficient and scalable soliton-like pulse compression in a mm-long yttrium aluminium garnet crystal with no additional dispersion management. Sub-three-cycle pulses with >0.44 TW peak power are compressed and extracted before the onset of modulation instability and multiple filamentation as a result of a favourable interplay between strong anomalous dispersion and optical nonlinearity around the wavelength of 3.9 μm. As a manifestation of the increased peak power, we show the evidence of mid-infrared pulse filamentation in atmospheric air. PMID:27620117

  18. Realizing Ultrafast Electron Pulse Self-Compression by Femtosecond Pulse Shaping Technique.

    PubMed

    Qi, Yingpeng; Pei, Minjie; Qi, Dalong; Yang, Yan; Jia, Tianqing; Zhang, Shian; Sun, Zhenrong

    2015-10-01

    Uncorrelated position and velocity distribution of the electron bunch at the photocathode from the residual energy greatly limit the transverse coherent length and the recompression ability. Here we first propose a femtosecond pulse-shaping method to realize the electron pulse self-compression in ultrafast electron diffraction system based on a point-to-point space-charge model. The positively chirped femtosecond laser pulse can correspondingly create the positively chirped electron bunch at the photocathode (such as metal-insulator heterojunction), and such a shaped electron pulse can realize the self-compression in the subsequent propagation process. The greatest advantage for our proposed scheme is that no additional components are introduced into the ultrafast electron diffraction system, which therefore does not affect the electron bunch shape. More importantly, this scheme can break the limitation that the electron pulse via postphotocathode static compression schemes is not shorter than the excitation laser pulse due to the uncorrelated position and velocity distribution of the initial electron bunch.

  19. Temperature control of the ultra-short laser pulse compression in a one-dimensional photonic band gap structure with nematic liquid crystal as a defect layer

    NASA Astrophysics Data System (ADS)

    Shiri, Ramin; Safari, Ebrahim; Bananej, Alireza

    2018-04-01

    We investigate numerically the controllable chirped pulse compression in a one-dimensional photonic structure containing a nematic liquid crystal defect layer using the temperature dependent refractive index of the liquid crystal. We consider the structure under irradiation by near-infrared ultra-short laser pulses polarized parallel to the liquid crystal director at a normal angle of incidence. It is found that the dispersion behaviour and consequently the compression ability of the system can be changed in a controlled manner due to the variation in the defect temperature. When the temperature increased from 290 to 305 K, the transmitted pulse duration decreased from 75 to 42 fs in the middle of the structure, correspondingly. As a result, a novel low-loss tunable pulse compressor with a really compact size and high compression factor is achieved. The so-called transfer matrix method is utilized for numerical simulations of the band structure and reflection/transmission spectra of the structure under investigation.

  20. Effect of laser shot peening on precipitation hardened aluminum alloy 6061-T6 using low energy laser

    NASA Astrophysics Data System (ADS)

    Sathyajith, S.; Kalainathan, S.

    2012-03-01

    Mechanical properties of engineering material can be improved by introducing compressive residual stress on the material surface and refinement of their microstructure. Variety of mechanical process such as shot peening, water jet peening, ultrasonic peening, laser shot peening were developed in the last decades on this contrast. Among these, lasers shot peening emerged as a novel industrial treatment to improve the crack resistance of turbine blades and the stress corrosion cracking (SCC) of austenic stainless steel in power plants. In this study we successfully performed laser shot peening on precipitation hardened aluminum alloy 6061-T6 with low energy (300 mJ, 1064 nm) Nd:YAG laser using different pulse densities of 22 pulses/mm 2 and 32 pulses/mm 2. Residual stress evaluation based on X-ray diffraction sin 2 ψ method indicates a maximum of 190% percentage increase on surface compressive stress. Depth profile of micro-hardness shows the impact of laser generated shock wave up to 1.2 mm from the surface. Apart from that, the crystalline size and micro-strain on the laser shot peened surfaces have been investigated and compared with the unpeened surface using X-ray diffraction in conjunction with line broadening analysis through the Williamson-Hall plot.

  1. Pulse-burst laser systems for fast Thomson scattering (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Den Hartog, D. J.; Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas, University of Wisconsin-Madison, Madison, Wisconsin 53706; Ambuel, J. R.

    2010-10-15

    Two standard commercial flashlamp-pumped Nd:YAG (YAG denotes yttrium aluminum garnet) lasers have been upgraded to ''pulse-burst'' capability. Each laser produces a burst of up to 15 2 J Q-switched pulses (1064 nm) at repetition rates of 1-12.5 kHz. Variable pulse-width drive (0.15-0.39 ms) of the flashlamps is accomplished by insulated gate bipolar transistor (IGBT) switching of electrolytic capacitor banks. Direct control of the laser Pockels cell drive enables optimal pulse energy extraction, and up to four 2 J laser pulses during one flashlamp pulse. These lasers are used in the Thomson scattering plasma diagnostic system on the MST reversed-field pinchmore » to record the dynamic evolution of the electron temperature profile and temperature fluctuations. To further these investigations, a custom pulse-burst laser system with a maximum pulse repetition rate of 250 kHz is now being commissioned.« less

  2. Comparison of modified driver circuit and capacitor-transfer circuit in longitudinally excited N2 laser.

    PubMed

    Uno, Kazuyuki; Akitsu, Tetsuya; Nakamura, Kenshi; Jitsuno, Takahisa

    2013-04-01

    We developed a modified driver circuit composed of a capacitance and a spark gap, called a direct-drive circuit, for a longitudinally excited gas laser. The direct-drive circuit uses a large discharge impedance caused by a long discharge length of the longitudinal excitation scheme and eliminates the buffer capacitance used in the traditional capacitor-transfer circuit. We compared the direct-drive circuit and the capacitor-transfer circuit in a longitudinally excited N2 laser (wavelength: 337 nm). Producing high output energy with the capacitor-transfer circuit requires a large storage capacitance and a discharge tube with optimum dimensions (an inner diameter of 4 mm and a length of 10 cm in this work); in contrast, the direct-drive circuit requires a high breakdown voltage, achieved with a small storage capacitance and a large discharge tube. Additionally, for the same input energy of 792 mJ, the maximum output energy of the capacitor-transfer circuit was 174.2 μJ, and that of the direct-drive circuit was 344.7 μJ.

  3. Laser and acoustic lens for lithotripsy

    DOEpatents

    Visuri, Steven R.; Makarewicz, Anthony J.; London, Richard A.; Benett, William J.; Krulevitch, Peter; Da Silva, Luiz B.

    2002-01-01

    An acoustic focusing device whose acoustic waves are generated by laser radiation through an optical fiber. The acoustic energy is capable of efficient destruction of renal and biliary calculi and deliverable to the site of the calculi via an endoscopic procedure. The device includes a transducer tip attached to the distal end of an optical fiber through which laser energy is directed. The transducer tip encapsulates an exogenous absorbing dye. Under proper irradiation conditions (high absorbed energy density, short pulse duration) a stress wave is produced via thermoelastic expansion of the absorber for the destruction of the calculi. The transducer tip can be configured into an acoustic lens such that the transmitted acoustic wave is shaped or focused. Also, compressive stress waves can be reflected off a high density/low density interface to invert the compressive wave into a tensile stress wave, and tensile stresses may be more effective in some instances in disrupting material as most materials are weaker in tension than compression. Estimations indicate that stress amplitudes provided by this device can be magnified more than 100 times, greatly improving the efficiency of optical energy for targeted material destruction.

  4. Compact Encoding of Robot-Generated 3D Maps for Efficient Wireless Transmission

    DTIC Science & Technology

    2003-01-01

    Lempel - Ziv -Welch (LZW) and Ziv - Lempel (LZ77) respectively. Image based compression can also be based on dic- tionaries... compression of the data , without actually displaying a 3D model, printing statistical results for comparison of the different algorithms . 1http... compression algorithms , and wavelet algorithms tuned to the specific nature of the raw laser data . For most such applications, the usage of lossless

  5. Quasi-remote Pulse Compression and Generation of Radiation and Particle Beams

    NASA Astrophysics Data System (ADS)

    Hubbard, Richard F.; Ting, Antonio; Penano, Joseph R.; Hafizi, Bahman; Gordon, Daniel F.; Sprangle, Phillip; Zigler, Arie

    2013-10-01

    Using chirped pulse amplification (CPA), laser pulses are routinely compressed to pulse lengths below 50 femtoseconds and focused to spot sizes of a few microns. These intense pulses may be focused onto a solid, gas, or plasma converter to produce penetrating electromagnetic radiation (e.g., x-rays, terahertz) or energetic particles. However, nonlinear effects and plasma generation place severe restrictions on the intensity of the pulse that can be propagated through the air to a distant target or object. This paper describes a quasi-remote laser pulse compression architecture in which the pulse compression apparatus, focusing system, and radiation or particle beam converter are placed at a substantial distance from the rest of the CPA system. By propagating a radially-expanded, chirped/stretched pulse through the air at a sufficiently low intensity, the stretched pulse can be compressed and focused onto the converter while keeping the largest and most expensive components of the CPA system far from the object to be irradiated. Analytical and simulation models are used to determine how axial compression and focused spot size degrade as the standoff distance to the compressor/focusing/converter assembly is increased. The implications of these results for proof-of-concept experiments and various potential applications will be discussed. Supported by the NRL Base Program

  6. Laser imprint reduction for the critical-density foam buffered target driven by a relatively strong foot pulse at early stage of laser implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J. W., E-mail: li-jiwei@iapcm.ac.cn; He, X. T.; Institute of Applied Physics and Computational Mathematics, P. O. Box 8009, Beijing 100094

    In order to reduce the effect of laser imprint in direct-drive ignition scheme a low-density foam buffered target has been proposed. This target is driven by a laser pulse with a low-intensity foot at the early stage of implosion, which heats the foam and elongates the thermal conduction zone between the laser absorption region and ablation front, increasing the thermal smoothing effect. In this paper, a relatively strong foot pulse is adopted to irradiate the critical-density foam buffered target. The stronger foot, near 1 × 10{sup 14 }W/cm{sup 2}, is able to drive a radiative shock in the low-density foam, which helps smoothmore » the shock and further reduce the effect of laser imprint. The radiative shock also forms a double ablation front structure between the two ablation fronts to further stabilize the hydrodynamics, achieving the similar results to a target with a high-Z dopant in the ablator. 2D analysis shows that for the critical-density foam buffered target irradiated by the strong foot pulse, the laser imprint can be reduced due to the radiative shock in the foam and an increased thermal smoothing effect. It seems viable for the critical-density foam buffered target to be driven by a relatively strong foot pulse with the goal of reducing the laser imprint and achieving better implosion symmetry in the direct-drive laser fusion.« less

  7. Remote driving with reduced bandwidth communication

    NASA Technical Reports Server (NTRS)

    Depiero, Frederick W.; Noell, Timothy E.; Gee, Timothy F.

    1993-01-01

    Oak Ridge National Laboratory has developed a real-time video transmission system for low bandwidth remote operations. The system supports both continuous transmission of video for remote driving and progressive transmission of still images. Inherent in the system design is a spatiotemporal limitation to the effects of channel errors. The average data rate of the system is 64,000 bits/s, a compression of approximately 1000:1 for the black and white National Television Standard Code video. The image quality of the transmissions is maintained at a level that supports teleoperation of a high mobility multipurpose wheeled vehicle at speeds up to 15 mph on a moguled dirt track. Video compression is achieved by using Laplacian image pyramids and a combination of classical techniques. Certain subbands of the image pyramid are transmitted by using interframe differencing with a periodic refresh to aid in bandwidth reduction. Images are also foveated to concentrate image detail in a steerable region. The system supports dynamic video quality adjustments between frame rate, image detail, and foveation rate. A typical configuration for the system used during driving has a frame rate of 4 Hz, a compression per frame of 125:1, and a resulting latency of less than 1s.

  8. Multicontrast reconstruction using compressed sensing with low rank and spatially varying edge-preserving constraints for high-resolution MR characterization of myocardial infarction.

    PubMed

    Zhang, Li; Athavale, Prashant; Pop, Mihaela; Wright, Graham A

    2017-08-01

    To enable robust reconstruction for highly accelerated three-dimensional multicontrast late enhancement imaging to provide improved MR characterization of myocardial infarction with isotropic high spatial resolution. A new method using compressed sensing with low rank and spatially varying edge-preserving constraints (CS-LASER) is proposed to improve the reconstruction of fine image details from highly undersampled data. CS-LASER leverages the low rank feature of the multicontrast volume series in MR relaxation and integrates spatially varying edge preservation into the explicit low rank constrained compressed sensing framework using weighted total variation. With an orthogonal temporal basis pre-estimated, a multiscale iterative reconstruction framework is proposed to enable the practice of CS-LASER with spatially varying weights of appropriate accuracy. In in vivo pig studies with both retrospective and prospective undersamplings, CS-LASER preserved fine image details better and presented tissue characteristics with a higher degree of consistency with histopathology, particularly in the peri-infarct region, than an alternative technique for different acceleration rates. An isotropic resolution of 1.5 mm was achieved in vivo within a single breath-hold using the proposed techniques. Accelerated three-dimensional multicontrast late enhancement with CS-LASER can achieve improved MR characterization of myocardial infarction with high spatial resolution. Magn Reson Med 78:598-610, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  9. Limits of Single-stage Compression in Centrifugal Superchargers for Aircraft

    NASA Technical Reports Server (NTRS)

    Kollmann, K

    1940-01-01

    The limits of the single-stage compression in superchargers at the present state of development are determined by five factors. 1) by the rotor material; 2) by the formation of the flow; 3) by the manufacture of double shrouded rotors; 4) by the bearing problem; 5) by the drive method.

  10. Main drive optimization of a high-foot pulse shape in inertial confinement fusion implosions

    NASA Astrophysics Data System (ADS)

    Wang, L. F.; Ye, W. H.; Wu, J. F.; Liu, Jie; Zhang, W. Y.; He, X. T.

    2016-12-01

    While progress towards hot-spot ignition has been made achieving an alpha-heating dominated state in high-foot implosion experiments [Hurricane et al., Nat. Phys. 12, 800 (2016)] on the National Ignition Facility, improvements are needed to increase the fuel compression for the enhancement of the neutron yield. A strategy is proposed to improve the fuel compression through the recompression of a shock/compression wave generated by the end of the main drive portion of a high-foot pulse shape. Two methods for the peak pulse recompression, namely, the decompression-and-recompression (DR) and simple recompression schemes, are investigated and compared. Radiation hydrodynamic simulations confirm that the peak pulse recompression can clearly improve fuel compression without significantly compromising the implosion stability. In particular, when the convergent DR shock is tuned to encounter the divergent shock from the capsule center at a suitable position, not only the neutron yield but also the stability of stagnating hot-spot can be noticeably improved, compared to the conventional high-foot implosions [Hurricane et al., Phys. Plasmas 21, 056314 (2014)].

  11. Residual-stress-induced grain growth of twinned grains and its effect on formability of magnesium alloy sheet at room temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Se-Jong; Kim, Daeyong, E-mail: daeyong@kims.re.kr; Lee, Keunho

    2015-11-15

    A magnesium alloy sheet was subjected to in-plane compression along with a vertical load to avoid buckling during compression. Pre-compressed specimens machined from the sheet were annealed at different temperatures and the changes in microstructure and texture were observed using electron back scattered diffraction (EBSD). Twinned grains preferentially grew during annealing at 300 °C, so that a strong texture with the < 0001 > direction parallel to the transverse direction developed. EBSD analysis confirmed that the friction caused by the vertical load induced inhomogeneous distribution of residual stress, which acted as an additional driving force for preferential grain growth ofmore » twinned grain during annealing. The annealed specimen showed excellent formability. - Highlights: • A magnesium alloy sheet subjected to in-plane compression under a vertical load • The vertical load induced inhomogeneous distribution of the residual stress. • The residual stress acted as an additional driving force for grain growth. • The annealed specimen with strong non-basal texture showed excellent formability.« less

  12. Characterization of the spectral phase of an intense laser at focus via ionization blueshift

    DOE PAGES

    Mittelberger, D. E.; Nakamura, K.; Lehe, R.; ...

    2016-01-01

    An in situ diagnostic for verifying the spectral phase of an intense laser pulse at focus is shown. This diagnostic relies on measuring the effect of optical compression on ionization-induced blueshifting of the laser spectrum. Experimental results from the Berkeley Lab Laser Accelerator, a laser source rigorously characterized by conventional techniques, are presented and compared with simulations to illustrate the utility of this technique. These simulations show distinguishable effects from second-, third-, and fourth-order spectral phase.

  13. A new approach to driving and controlling precision lasers for cold-atom science

    NASA Astrophysics Data System (ADS)

    Luey, Ben; Shugrue, Jeremy; Anderson, Mike

    2014-05-01

    Vescent's Integrated Control Electronics (ICE) Platform is a new approach to controlling and driving lasers and other electoral devices in complex atomic and optical experiments. By employing low-noise, high-bandwidth analog electronics with digital control, ICE combines the performance of analog design with the convenience of the digital world. Utilizing a simple USB COM port interface, ICE can easily be controlled via LabView, Python, or an FPGA. High-speed TTL inputs enable precise external timing or triggering. ICE is capable of generating complex timing internally, enabling ICE to drive an entire experiment or it can be directed by an external control program. The system is capable of controlling up to 8 unique ICE slave boards providing flexibility to tailor an assortment of electronics hardware to the needs of a specific experiment. Examples of ICE slave boards are: a current controller and peak-lock laser servo, a four channel temperature controller, a current controller and offset phase lock servo. A single ensemble can drive, stabilize, and frequency lock 3 lasers in addition to powering an optical amplifier, while still leaving 2 remaining slots for further control needs. Staff Scientist

  14. Laser-Plasma Interaction Experiments at Direct-Drive Ignition-Relevant Plasma Conditions at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Solodov, A. A.; Rosenberg, M. J.; Myatt, J. F.; Shaw, J. G.; Seka, W.; Epstein, R.; Short, R. W.; Follett, R. K.; Regan, S. P.; Froula, D. H.; Radha, P. B.; Michel, P.; Chapman, T.; Hohenberger, M.

    2017-10-01

    Laser-plasma interaction (LPI) instabilities, such as stimulated Raman scattering (SRS) and two-plasmon decay, can be detrimental for direct-drive inertial confinement fusion because of target preheat by the high-energy electrons they generate. The radiation-hydrodynamic code DRACO was used to design planar-target experiments at the National Ignition Facility that generated plasma and interaction conditions relevant to ignition direct-drive designs (IL 1015W/cm2 , Te > 3 keV, density gradient scale lengths of Ln 600 μm). Laser-energy conversion efficiency to hot electrons of 0.5% to 2.5% with temperature of 45 to 60 keV was inferred from the experiment when the laser intensity at the quarter-critical surface increased from 6 to 15 ×1014W/cm2 . LPI was dominated by SRS, as indicated by the measured scattered-light spectra. Simulations of SRS using the LPI code LPSE have been performed and compared with predictions of theoretical models. Implications for ignition-scale direct-drive experiments will be discussed. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  15. Benefits of Moderate-Z Ablators for Direct-Drive Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Lafon, M.; Betti, R.; Anderson, K. S.; Collins, T. J. B.; Skupsky, S.; McKenty, P. W.

    2014-10-01

    Control of hydrodynamic instabilities and DT-fuel preheating by hot electrons produced by laser-plasma interaction is crucial in inertial confinement fusion. Moderate- Z ablators have been shown to reduce the laser imprinting on target and suppress the generation of hot electrons from the two-plasmon-decay instability. These results have motivated the use of ablators of higher- Z than pure plastic in direct-drive-ignition target designs for the National Ignition Facility (NIF). Two-dimensional radiation-hydrodynamic simulations assess the robustness of these ignition designs to laser imprint and capsule nonuniformities. The complex behavior of the hydrodynamic stability of mid- Z ablators is investigated through single and multimode simulations. A polar-drive configuration is developed within the NIF Laser System specifications for each ablator material. The use of multilayer ablators is also investigated to enhance the hydrodynamic stability. Results indicate that ignition target designs using mid- Z ablators exhibit good hydrodynamic properties, leading to high target gain for direct-drive implosions on the NIF. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and the Office of Fusion Energy Sciences Number DE-FG02-04ER54786.

  16. Modeling Laser-Plasma Interactions at Direct-Drive Ignition-Relevant Plasma Conditions at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Solodov, A. A.; Rosenberg, M. J.; Myatt, J. F.; Epstein, R.; Seka, W.; Hohenberger, M.; Short, R. W.; Shaw, J. G.; Regan, S. P.; Froula, D. H.; Radha, P. B.; Bates, J. W.; Schmitt, A. J.; Michel, P.; Moody, J. D.; Ralph, J. E.; Turnbull, D. P.; Barrios, M. A.

    2016-10-01

    Laser-plasma interaction instabilities, such as two-plasmon decay (TPD) and stimulated Raman scattering (SRS), can be detrimental for direct-drive inertial confinement fusion because of target preheat by generated high-energy electrons. The radiation-hydrodynamics code DRACO has been used to design planar-target experiments that generate plasma and interaction conditions relevant to direct-drive-ignition designs (IL 1015 W / cm 2 , Te > 3 KeV density gradient scale lengths of Ln 600 μm) . The hot-electron temperature of 40to50keV and the fraction of laser energy converted to hot electrons of 0.5to were inferred based on comparing the simulated and experimentally observed x-ray emission when the laser intensity at the quarter-critical surface increased from 6 to 15 ×1014 W / cm 2 . The measured SRS energy was sufficient to explain the observed total energy in hot electrons. Implications for ignition-scale direct-drive experiments and hot-electron preheat mitigation using mid- Z ablators will be discussed. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  17. Sub-5-ps, multimegawatt peak-power pulses from a fiber-amplified and optically compressed passively Q-switched microchip laser.

    PubMed

    Steinmetz, A; Jansen, F; Stutzki, F; Lehneis, R; Limpert, J; Tünnermann, A

    2012-07-01

    We report on high-energy picosecond pulse generation from a passively Q-switched and fiber-amplified microchip laser system. Initially, the utilized microchip lasers produce pulses with durations of around 100 ps at 1064 nm central wavelength. These pulses are amplified to energies exceeding 100 μJ, simultaneously chirped and spectrally broadened by self-phase modulation using a double stage amplifier based on single-mode LMA photonic crystal fibers at repetition rates of up to 1 MHz. Subsequently, the pulse duration of chirped pulses is reduced by means of nonlinear pulse compression to durations of 2.7 ps employing a conventional grating compressor and 4.7 ps using a compact compressor based on a chirped volume Bragg grating.

  18. From few-cycle femtosecond pulse to single attosecond pulse-controlling and tracking electron dynamics with attosecond precision

    NASA Astrophysics Data System (ADS)

    Wang, He

    The few-cycle femtosecond laser pulse has proved itself to be a powerful tool for controlling the electron dynamics inside atoms and molecules. By applying such few-cycle pulses as a driving field, single isolated attosecond pulses can be produced through the high-order harmonic generation process, which provide a novel tool for capturing the real time electron motion. The first part of the thesis is devoted to the state of the art few-cycle near infrared (NIR) laser pulse development, which includes absolute phase control (carrier-envelope phase stabilization), amplitude control (power stabilization), and relative phase control (pulse compression and shaping). Then the double optical gating (DOG) method for generating single attosecond pulses and the attosecond streaking experiment for characterizing such pulses are presented. Various experimental limitations in the attosecond streaking measurement are illustrated through simulation. Finally by using the single attosecond pulses generated by DOG, an attosecond transient absorption experiment is performed to study the autoionization process of argon. When the delay between a few-cycle NIR pulse and a single attosecond XUV pulse is scanned, the Fano resonance shapes of the argon autoionizing states are modified by the NIR pulse, which shows the direct observation and control of electron-electron correlation in the temporal domain.

  19. Residual stress and crack initiation in laser clad composite layer with Co-based alloy and WC + NiCr

    NASA Astrophysics Data System (ADS)

    Lee, Changmin; Park, Hyungkwon; Yoo, Jaehong; Lee, Changhee; Woo, WanChuck; Park, Sunhong

    2015-08-01

    Although laser cladding process has been widely used to improve the wear and corrosion resistance, there are unwanted cracking issues during and/or after laser cladding. This study investigates the tendency of Co-based WC + NiCr composite layers to cracking during the laser cladding process. Residual stress distributions of the specimen are measured using neutron diffraction and elucidate the correlation between the residual stress and the cracking in three types of cylindrical specimens; (i) no cladding substrate only, (ii) cladding with 100% stellite#6, and (iii) cladding with 55% stellite#6 and 45% technolase40s. The microstructure of the clad layer was composed of Co-based dendrite and brittle eutectic phases at the dendritic boundaries. And WC particles were distributed on the matrix forming intermediate composition region by partial melting of the surface of particles. The overlaid specimen exhibited tensile residual stress, which was accumulated through the beads due to contraction of the coating layer generated by rapid solidification, while the non-clad specimen showed compressive. Also, the specimen overlaid with 55 wt% stellite#6 and 45 wt% technolase40s showed a tensile stress higher than the specimen overlaid with 100% stellite#6 possibly, due to the difference between thermal expansion coefficients of the matrix and WC particles. Such tensile stresses can be potential driving force to provide an easy crack path ways for large brittle fractures combined with the crack initiation sites such as the fractured WC particles, pores and solidification cracks. WC particles directly caused clad cracks by particle fracture under the tensile stress. The pores and solidification cracks also affected as initiation sites and provided an easy crack path ways for large brittle fractures.

  20. Transverse compression of PPTA fibers

    NASA Astrophysics Data System (ADS)

    Singletary, James

    2000-07-01

    Results of single transverse compression testing of PPTA and PIPD fibers, using a novel test device, are presented and discussed. In the tests, short lengths of single fibers are compressed between two parallel, stiff platens. The fiber elastic deformation is analyzed as a Hertzian contact problem. The inelastic deformation is analyzed by elastic-plastic FE simulation and by laser-scanning confocal microscopy of the compressed fibers ex post facto. The results obtained are compared to those in the literature and to the theoretical predictions of PPTA fiber transverse elasticity based on PPTA crystal elasticity.

  1. Proton spectra diagnostics for shock-compression studies

    NASA Astrophysics Data System (ADS)

    Welch, D. R.; Harris, D. B.; Bennish, A. H.; Miley, G. H.

    1984-12-01

    The energy spectra of fusion products escaping long-pulse-length laser-imploded deuterium-tritium filled glass microballoons have been measured with a time-of-flight spectrometer. The D(d,p)T reaction proton energy spectra showed two distinct peaks, indicating two burn phases in the target. The first burn phase is attributed to a spherically converging shock, while the second is attributed to subsequent compression heating. The analysis of these spectra provides the first conclusive proof of significant compression yields in these targets, where approximately half of the yield occurs during the compression burn phase.

  2. Effect of uniaxial stress on electroluminescence, valence band modification, optical gain, and polarization modes in tensile strained p-AlGaAs/GaAsP/n-AlGaAs laser diode structures: Numerical calculations and experimental results

    NASA Astrophysics Data System (ADS)

    Bogdanov, E. V.; Minina, N. Ya.; Tomm, J. W.; Kissel, H.

    2012-11-01

    The effects of uniaxial compression in [110] direction on energy-band structures, heavy and light hole mixing, optical matrix elements, and gain in laser diodes with "light hole up" configuration of valence band levels in GaAsP quantum wells with different widths and phosphorus contents are numerically calculated. The development of light and heavy hole mixing caused by symmetry lowering and converging behavior of light and heavy hole levels in such quantum wells under uniaxial compression is displayed. The light or heavy hole nature of each level is established for all considered values of uniaxial stress. The results of optical gain calculations for TM and TE polarization modes show that uniaxial compression leads to a significant increase of the TE mode and a minor decrease of the TM mode. Electroluminescence experiments were performed under uniaxial compression up to 5 kbar at 77 K on a model laser diode structure (p-AlxGa1-xAs/GaAs1-yPy/n-AlxGa1-xAs) with y = 0.16 and a quantum well width of 14 nm. They reveal a maximum blue shift of 27 meV of the electroluminescence spectra that is well described by the calculated change of the optical gap and the increase of the intensity being referred to a TE mode enhancement. Numerical calculations and electroluminescence data indicate that uniaxial compression may be used for a moderate wavelength and TM/TE intensity ratio tuning.

  3. Detonability of turbulent white dwarf plasma: Hydrodynamical models at low densities

    NASA Astrophysics Data System (ADS)

    Fenn, Daniel

    The origins of Type Ia supernovae (SNe Ia) remain an unsolved problem of contemporary astrophysics. Decades of research indicate that these supernovae arise from thermonuclear runaway in the degenerate material of white dwarf stars; however, the mechanism of these explosions is unknown. Also, it is unclear what are the progenitors of these objects. These missing elements are vital components of the initial conditions of supernova explosions, and are essential to understanding these events. A requirement of any successful SN Ia model is that a sufficient portion of the white dwarf plasma must be brought under conditions conducive to explosive burning. Our aim is to identify the conditions required to trigger detonations in turbulent, carbon-rich degenerate plasma at low densities. We study this problem by modeling the hydrodynamic evolution of a turbulent region filled with a carbon/oxygen mixture at a density, temperature, and Mach number characteristic of conditions found in the 0.8+1.2 solar mass (CO0812) model discussed by Fenn et al. (2016). We probe the ignition conditions for different degrees of compressibility in turbulent driving. We assess the probability of successful detonations based on characteristics of the identified ignition kernels, using Eulerian and Lagrangian statistics of turbulent flow. We found that material with very short ignition times is abundant in the case that turbulence is driven compressively. This material forms contiguous structures that persist over many ignition time scales, and that we identify as prospective detonation kernels. Detailed analysis of the kernels revealed that their central regions are densely filled with material characterized by short ignition times and contain the minimum mass required for self-sustained detonations to form. It is conceivable that ignition kernels will be formed for lower compressibility in the turbulent driving. However, we found no detonation kernels in models driven 87.5 percent compressively. We indirectly confirmed the existence of the lower limit of the degree of compressibility of the turbulent drive for the formation of detonation kernels by analyzing simulation results of the He0609 model of Fenn et al. (2016), which produces a detonation in a helium-rich boundary layer. We found that the amount of energy in the compressible component of the kinetic energy in this model corresponds to about 96 percent compressibility in the turbulent drive. The fact that no detonation was found in the original CO0812 model for nominally the same problem conditions suggests that models with carbon-rich boundary layers may require higher resolution in order to adequately represent the mass distributions in terms of ignition times.

  4. Pulse-Shaping-Based Nonlinear Microscopy: Development and Applications

    NASA Astrophysics Data System (ADS)

    Flynn, Daniel Christopher

    The combination of optical microscopy and ultrafast spectroscopy make the spatial characterization of chemical kinetics on the femtosecond time scale possible. Commercially available octave-spanning Ti:Sapphire oscillators with sub-8 fs pulse durations can drive a multitude of nonlinear transitions across a significant portion of the visible spectrum with minimal average power. Unfortunately, dispersion from microscope objectives broadens pulse durations, decreases temporal resolution and lowers the peak intensities required for driving nonlinear transitions. In this dissertation, pulse shaping is used to compress laser pulses after the microscope objective. By using a binary genetic algorithm, pulse-shapes are designed to enable selective two-photon excitation. The pulse-shapes are demonstrated in two-photon fluorescence of live COS-7 cells expressing GFP-variants mAmetrine and tdTomato. The pulse-shaping approach is applied to a new multiphoton fluorescence resonance energy transfer (FRET) stoichiometry method that quantifies donor and acceptor molecules in complex, as well as the ratio of total donor to acceptor molecules. Compared to conventional multi-photon imaging techniques that require laser tuning or multiple laser systems to selectively excite individual fluorophores, the pulse-shaping approach offers rapid selective multifluorphore imaging at biologically relevant time scales. By splitting the laser beam into two beams and building a second pulse shaper, a pulse-shaping-based pump-probe microscope is developed. The technique offers multiple imaging modalities, such as excited state absorption (ESA), ground state bleach (GSB), and stimulated emission (SE), enhancing contrast of structures via their unique quantum pathways without the addition of contrast agents. Pulse-shaping based pump-probe microscopy is demonstrated for endogenous chemical-contrast imaging of red blood cells. In the second section of this dissertation, ultrafast spectroscopic techniques are used to characterize structure-function relationships of two-photon absorbing GFP-type probes and optical limiting materials. Fluorescence lifetimes of GFP-type probes are shown to depend on functional group substitution position, therefore, enabling the synthesis of designer probes for the possible study of conformation changes and aggregation in biological systems. Similarly, it is determined that small differences in the structure and dimensionality of organometallic macrocycles result in a diverse set of optical properties, which serves as a basis for the molecular level design of nonlinear optical materials.

  5. Surface treatment to form a dispersed Y2O3 layer on Zircaloy-4 tubes

    NASA Astrophysics Data System (ADS)

    Jung, Yang-Il; Kim, Hyun-Gil; Guim, Hwan-Uk; Lim, Yoon-Soo; Park, Jung-Hwan; Park, Dong-Jun; Yang, Jae-Ho

    2018-01-01

    Zircaloy-4 is a traditional zirconium-based alloy developed for application in nuclear fuel cladding tubes. The surfaces of Zircaloy-4 tubes were treated using a laser beam to increase their mechanical strength. Laser beam scanning of a tube coated with yttrium oxide (Y2O3) resulted in the formation of a dispersed oxide layer in the tube's surface region. Y2O3 particles penetrated the Zircaloy-4 during the laser treatment and were distributed uniformly in the surface region. The thickness of the dispersed oxide layer varied from 50 to 140 μm depending on the laser beam trajectory. The laser treatment also modified the texture of the tube. The preferred basal orientation along the normal to the tube surface disappeared, and a random structure appeared after laser processing. The most obvious result was an increase in the mechanical strength. The tensile strength of Zircaloy-4 increased by 10-20% with the formation of the dispersed oxide layer. The compressive yield stress also increased, by more than 15%. Brittle fracture was observed in the surface-treated samples during tensile and compressive deformation at room temperature; however, the fracture behavior was changed in ductile at elevated temperatures.

  6. Manufacturing and Characterization of 18Ni Marage 300 Lattice Components by Selective Laser Melting

    PubMed Central

    Contuzzi, Nicola; Campanelli, Sabina L.; Casavola, Caterina; Lamberti, Luciano

    2013-01-01

    The spreading use of cellular structures brings the need to speed up manufacturing processes without deteriorating mechanical properties. By using Selective Laser Melting (SLM) to produce cellular structures, the designer has total freedom in defining part geometry and manufacturing is simplified. The paper investigates the suitability of Selective Laser Melting for manufacturing steel cellular lattice structures with characteristic dimensions in the micrometer range. Alternative lattice topologies including reinforcing bars in the vertical direction also are considered. The selected lattice structure topology is shown to be superior over other lattice structure designs considered in literature. Compression tests are carried out in order to evaluate mechanical strength of lattice strut specimens made via SLM. Compressive behavior of samples also is simulated by finite element analysis and numerical results are compared with experimental data in order to assess the constitutive behavior of the lattice structure designs considered in this study. Experimental data show that it is possible to build samples of relative density in the 0.2456–0.4367 range. Compressive strength changes almost linearly with respect to relative density, which in turns depends linearly on the number of vertical reinforces. Specific strength increases with cell and strut edge size. Numerical simulations confirm the plastic nature of the instability phenomena that leads the cellular structures to collapse under compression loading. PMID:28811445

  7. Chapter 22: Compressed Air Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurnik, Charles W; Benton, Nathanael; Burns, Patrick

    Compressed-air systems are used widely throughout industry for many operations, including pneumatic tools, packaging and automation equipment, conveyors, and other industrial process operations. Compressed-air systems are defined as a group of subsystems composed of air compressors, air treatment equipment, controls, piping, pneumatic tools, pneumatically powered machinery, and process applications using compressed air. A compressed-air system has three primary functional subsystems: supply, distribution, and demand. Air compressors are the primary energy consumers in a compressed-air system and are the primary focus of this protocol. The two compressed-air energy efficiency measures specifically addressed in this protocol are: High-efficiency/variable speed drive (VSD) compressormore » replacing modulating, load/unload, or constant-speed compressor; and Compressed-air leak survey and repairs. This protocol provides direction on how to reliably verify savings from these two measures using a consistent approach for each.« less

  8. Method of controlling coherent synchroton radiation-driven degradation of beam quality during bunch length compression

    DOEpatents

    Douglas, David R [Newport News, VA; Tennant, Christopher D [Williamsburg, VA

    2012-07-10

    A method of avoiding CSR induced beam quality defects in free electron laser operation by a) controlling the rate of compression and b) using a novel means of integrating the compression with the remainder of the transport system: both are accomplished by means of dispersion modulation. A large dispersion is created in the penultimate dipole magnet of the compression region leading to rapid compression; this large dispersion is demagnified and dispersion suppression performed in a final small dipole. As a result, the bunch is short for only a small angular extent of the transport, and the resulting CSR excitation is small.

  9. Evaluation of Wavelength Detuning to Mitigate Cross-Beam Energy Transfer Using the Nike Laser

    NASA Astrophysics Data System (ADS)

    McKenty, P. W.; Delettrez, J. A.; Marozas, J. A.; Weaver, J.; Obenschain, S.; Schmitt, A.

    2014-10-01

    Cross-beam energy transfer (CBET) has become a serious threat to the overall success of polar-drive-ignition experiments. CBET redirects incident laser light before it can be absorbed into the target, thereby degrading overall target performance. CBET is particularly effective over the equator of the target, which is hydrodynamically very sensitive to such losses. A promising solution uses laser wavelength detuning between beams to break the resonance between them and reduce energy transfer. Testing this process for direct drive has been limited because of the lack of sufficient detuning capabilities. However, the Naval Research Laboratory's Nike laser has the capability of providing a wide range of detuning between its main drive and backlighter beams. This paper explores the design of an experimental platform on Nike to directly evaluate the benefit of frequency detuning in mitigating CBET. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  10. Wavelength-detuning cross-beam energy transfer mitigation scheme for direct drive: Modeling and evidence from National Ignition Facility implosions

    DOE PAGES

    Marozas, J. A.; Hohenberger, M.; Rosenberg, M. J.; ...

    2018-05-25

    Here, cross-beam energy transfer (CBET) results from two-beam energy exchange via seeded stimulated Brillouin scattering, which detrimentally reduces laser-energy absorption for direct-drive inertial confinement fusion. Consequently, ablation pressure and implosion velocity suffer from the decreased absorption, reducing target performance in both symmetric and polar direct drive. Additionally, CBET alters the time-resolved scattered-light spectra and redistributes absorbed and scattered-light–changing shell morphology and low-mode drive symmetry. Mitigating CBET is demonstrated in inertial confinement implosions at the National Ignition Facility by detuning the laser-source wavelengths (±2.3 Å UV) of the interacting beams. In polar direct drive, wavelength detuning was shown to increase themore » equatorial region velocity experimentally by 16% and to alter the in-flight shell morphology. These experimental observations are consistent with design predictions of radiation–hydrodynamic simulations that indicate a 10% increase in the average ablation pressure. These results indicate that wavelength detuning successfully mitigates CBET. Simulations predict that optimized phase plates and wavelength-detuning CBET mitigation utilizing the three-legged beam layout of the OMEGA Laser System significantly increase absorption and achieve >100-Gbar hot-spot pressures in symmetric direct drive.« less

  11. Laser-driven Mach waves for gigabar-range shock experiments

    NASA Astrophysics Data System (ADS)

    Swift, Damian; Lazicki, Amy; Coppari, Federica; Saunders, Alison; Nilsen, Joseph

    2017-10-01

    Mach reflection offers possibilities for generating planar, supported shocks at higher pressures than are practical even with laser ablation. We have studied the formation of Mach waves by algebraic solution and hydrocode simulation for drive pressures at much than reported previously, and for realistic equations of state. We predict that Mach reflection continues to occur as the drive pressure increases, and the pressure enhancement increases monotonically with drive pressure even though the ``enhancement spike'' characteristic of low-pressure Mach waves disappears. The growth angle also increases monotonically with pressure, so a higher drive pressure seems always to be an advantage. However, there are conditions where the Mach wave is perturbed by reflections. We have performed trial experiments at the Omega facility, using a laser-heated halfraum to induce a Mach wave in a polystyrene cone. Pulse length and energy limitations meant that the drive was not maintained long enough to fully support the shock, but the results indicated a Mach wave of 25-30 TPa from a drive pressure of 5-6 TPa, consistent with simulations. A similar configuration should be tested at the NIF, and a Z-pinch driven configuration may be possible. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  12. Laser-driven Mach waves for gigabar-range shock experiments

    NASA Astrophysics Data System (ADS)

    Swift, Damian; Jenei, Amy; Coppari, Federica; Saunders, Alison; Nilsen, Joseph

    2017-06-01

    Mach reflection offers possibilities for generating planar, supported shocks at higher pressures than are practical even with laser ablation. We have studied the formation of Mach waves by algebraic solution and hydrocode simulation for drive pressures at much than reported previously, and for realistic equations of state. We predict that Mach reflection continues to occur as the drive pressure increases, and the pressure enhancement increases monotonically with drive pressure even though the ``enhancement spike'' characteristic of low-pressure Mach waves disappears. The growth angle also increases monotonically with pressure, so a higher drive pressure seems always to be an advantage. However, there are conditions where the Mach wave is perturbed by reflections. We have performed trial experiments at the Omega facility, using a laser-heated halfraum to induce a Mach wave in a polystyrene cone. Pulse length and energy limitations meant that the drive was not maintained long enough to fully support the shock, but the results indicated a Mach wave of 25-30 TPa from a drive pressure of 5-6 TPa, consistent with simulations. A similar configuration should perform well at the NIF, and a Z-pinch driven configuration may be possible. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  13. Wavelength-detuning cross-beam energy transfer mitigation scheme for direct drive: Modeling and evidence from National Ignition Facility implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marozas, J. A.; Hohenberger, M.; Rosenberg, M. J.

    Here, cross-beam energy transfer (CBET) results from two-beam energy exchange via seeded stimulated Brillouin scattering, which detrimentally reduces laser-energy absorption for direct-drive inertial confinement fusion. Consequently, ablation pressure and implosion velocity suffer from the decreased absorption, reducing target performance in both symmetric and polar direct drive. Additionally, CBET alters the time-resolved scattered-light spectra and redistributes absorbed and scattered-light–changing shell morphology and low-mode drive symmetry. Mitigating CBET is demonstrated in inertial confinement implosions at the National Ignition Facility by detuning the laser-source wavelengths (±2.3 Å UV) of the interacting beams. In polar direct drive, wavelength detuning was shown to increase themore » equatorial region velocity experimentally by 16% and to alter the in-flight shell morphology. These experimental observations are consistent with design predictions of radiation–hydrodynamic simulations that indicate a 10% increase in the average ablation pressure. These results indicate that wavelength detuning successfully mitigates CBET. Simulations predict that optimized phase plates and wavelength-detuning CBET mitigation utilizing the three-legged beam layout of the OMEGA Laser System significantly increase absorption and achieve >100-Gbar hot-spot pressures in symmetric direct drive.« less

  14. Propagation of intense short laser pulses in the atmosphere.

    PubMed

    Sprangle, P; Peñano, J R; Hafizi, B

    2002-10-01

    The propagation of short, intense laser pulses in the atmosphere is investigated theoretically and numerically. A set of three-dimensional (3D), nonlinear propagation equations is derived, which includes the effects of dispersion, nonlinear self-focusing, stimulated molecular Raman scattering, multiphoton and tunneling ionization, energy depletion due to ionization, relativistic focusing, and ponderomotively excited plasma wakefields. The instantaneous frequency spread along a laser pulse in air, which develops due to various nonlinear effects, is analyzed and discussed. Coupled equations for the power, spot size, and electron density are derived for an intense ionizing laser pulse. From these equations we obtain an equilibrium for a single optical-plasma filament, which involves a balancing between diffraction, nonlinear self-focusing, and plasma defocusing. The equilibrium is shown to require a specific distribution of power along the filament. It is found that in the presence of ionization a self-guided optical filament is not realizable. A method for generating a remote spark in the atmosphere is proposed, which utilizes the dispersive and nonlinear properties of air to cause a low-intensity chirped laser pulse to compress both longitudinally and transversely. For optimally chosen parameters, we find that the transverse and longitudinal focal lengths can be made to coincide, resulting in rapid intensity increase, ionization, and white light generation in a localized region far from the source. Coupled equations for the laser spot size and pulse duration are derived, which can describe the focusing and compression process in the low-intensity regime. More general examples involving beam focusing, compression, ionization, and white light generation near the focal region are studied by numerically solving the full set of 3D, nonlinear propagation equations.

  15. Analysis-Preserving Video Microscopy Compression via Correlation and Mathematical Morphology

    PubMed Central

    Shao, Chong; Zhong, Alfred; Cribb, Jeremy; Osborne, Lukas D.; O’Brien, E. Timothy; Superfine, Richard; Mayer-Patel, Ketan; Taylor, Russell M.

    2015-01-01

    The large amount video data produced by multi-channel, high-resolution microscopy system drives the need for a new high-performance domain-specific video compression technique. We describe a novel compression method for video microscopy data. The method is based on Pearson's correlation and mathematical morphology. The method makes use of the point-spread function (PSF) in the microscopy video acquisition phase. We compare our method to other lossless compression methods and to lossy JPEG, JPEG2000 and H.264 compression for various kinds of video microscopy data including fluorescence video and brightfield video. We find that for certain data sets, the new method compresses much better than lossless compression with no impact on analysis results. It achieved a best compressed size of 0.77% of the original size, 25× smaller than the best lossless technique (which yields 20% for the same video). The compressed size scales with the video's scientific data content. Further testing showed that existing lossy algorithms greatly impacted data analysis at similar compression sizes. PMID:26435032

  16. Evaluation of Bauer K-20 Diesel Drive High Pressure Breathing Air Compressor

    DTIC Science & Technology

    1993-12-01

    was to: A. Determine if the compressor and Purification System provides compressed air at the required pressures, flow rates, quality and cleanliness... compressed air return from the air storage flasks to the compressor during unit shut down. All four stages of the compressor are protected by safety...1993. 6. Naval Ships Technical Manual, S9086-SY-STM-0O0, Chapeter 551 1st Rev. I November 1987. Compressed Air Plants and Systems, para 551-4.2.21. 7

  17. Long duration X-ray drive hydrodynamics experiments relevant for laboratory astrophysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casner, A.; Martinez, D.; Smalyuk, V.

    The advent of high-power lasers facilities such as the National Ignition Facility (NIF), and the Laser Megajoule (LMJ) in the near future, opens a new era in the field of High Energy Density Laboratory Astrophysics. These versatile laser facilities will provide unique platforms to study the rich physics of nonlinear and turbulent mixing flows. The extended laser pulse duration could be harnessed to accelerate targets over much larger distances and longer time periods than previously achieved. Here, we report on the first results acquired on NIF with the ablative Rayleigh–Taylor Instability (RTI) platform. A 20-ns X-ray drive is tailored tomore » accelerate planar modulated samples into the highly-nonlinear bubble merger regime. Based on the analogy between flames front and ablation front, highly nonlinear RTI measurements at ablation front can provide important insights into the initial deflagration stage of thermonuclear supernova of Type Ia. We also report on an innovative concept used to create even longer drive on multi-beam laser facilities. The multi-barrel hohlraum (Gattling Gun) approach consists, here, of three adjacent cavities, driven in succession in time. This novel concept has been validated on the Omega EP laser system. The three cavities were irradiated with three 6–10 ns pulse UV beams and a 30 ns, 90 eV X-ray radiation drive was measured with the time-resolved X-ray spectrometer μDMX. This concept is promising to investigate the pillar structures in the Eagle Nebula or for photoionization studies which require a steady light source of sufficient duration to recreate relevant physics.« less

  18. Long duration X-ray drive hydrodynamics experiments relevant for laboratory astrophysics

    DOE PAGES

    Casner, A.; Martinez, D.; Smalyuk, V.; ...

    2014-09-20

    The advent of high-power lasers facilities such as the National Ignition Facility (NIF), and the Laser Megajoule (LMJ) in the near future, opens a new era in the field of High Energy Density Laboratory Astrophysics. These versatile laser facilities will provide unique platforms to study the rich physics of nonlinear and turbulent mixing flows. The extended laser pulse duration could be harnessed to accelerate targets over much larger distances and longer time periods than previously achieved. Here, we report on the first results acquired on NIF with the ablative Rayleigh–Taylor Instability (RTI) platform. A 20-ns X-ray drive is tailored tomore » accelerate planar modulated samples into the highly-nonlinear bubble merger regime. Based on the analogy between flames front and ablation front, highly nonlinear RTI measurements at ablation front can provide important insights into the initial deflagration stage of thermonuclear supernova of Type Ia. We also report on an innovative concept used to create even longer drive on multi-beam laser facilities. The multi-barrel hohlraum (Gattling Gun) approach consists, here, of three adjacent cavities, driven in succession in time. This novel concept has been validated on the Omega EP laser system. The three cavities were irradiated with three 6–10 ns pulse UV beams and a 30 ns, 90 eV X-ray radiation drive was measured with the time-resolved X-ray spectrometer μDMX. This concept is promising to investigate the pillar structures in the Eagle Nebula or for photoionization studies which require a steady light source of sufficient duration to recreate relevant physics.« less

  19. Laser Mode Behavior of the Cassini CIRS Fourier Transform Spectrometer at Saturn

    NASA Technical Reports Server (NTRS)

    Brasunas, John C.

    2012-01-01

    The CIRS Fourier transform spectrometer aboard the NASA/ESA/ASI Cassini orbiter has been acquiring spectra of the Saturnian system since 2004. The CIRS reference interferometer employs a laser diode to trigger the interferogram sampling. Although the control of laser diode drive current and operating temperature are stringent enough to restrict laser wavelength variation to a small fraction of CIRS finest resolution element, the CIRS instrument does need to be restarted every year or two, at which time it may start in a new laser mode. By monitoring the Mylar absorption features in uncalibrated spectra due to the beam splitter Mylar substrate, it can be shown that these jumps are to adjacent modes and that most of the eight-year operation so far is restricted to three adjacent modes. For a given mode, the wavelength stability appears consistent with the stability of the laser diode drive curren.t and operating temperature.

  20. High-rep-rate Thomson scattering for LHD

    NASA Astrophysics Data System (ADS)

    den Hartog, D. J.; Borchardt, M. T.; Holly, D. J.; Schmitz, O.; Yasuhara, R.; Yamada, I.; Funaba, H.; Osakabe, M.; Morisaki, T.

    2017-10-01

    A high-rep-rate pulse-burst laser system is being built for the LHD Thomson scattering (TS) diagnostic. This laser will have two operating scenarios, a fast-burst sequence of 15 kHz rep rate for at least 15 ms, and a slow-burst sequence of 1 kHz for at least 50 ms. There will be substantial flexibility in burst sequences for tailoring to experimental requirements. This new laser system will operate alongside the existing lasers in the LHD TS diagnostic, and will use the same beamline. This increase in temporal resolution capability complements the high spatial resolution (144 points) of the LHD TS diagnostic, providing unique measurement capability unmatched on any other fusion experiment. The new pulse-burst laser is a straightforward application of technology developed at UW-Madison, consisting of a Nd:YAG laser head with modular flashlamp drive units and a customized control system. Variable pulse-width drive of the flashlamps is accomplished by IGBT (insulated gate bipolar transistor) switching of electrolytic capacitor banks. Direct control of the laser Pockels cell drive enables optimal pulse energy extraction, producing >1.5 J q-switched pulses with 20 ns FWHM. Burst operation of this laser system will be used to capture fast time evolution of the electron temperature and density profiles during events such as ELMs, RMP perturbations, and various MHD modes. This work is supported by the U. S. Department of Energy and the National Institute for Fusion Science (Japan).

  1. Dynamic characteristics and mechanisms of compressible metallic vapor plume behaviors in transient keyhole during deep penetration fiber laser welding

    NASA Astrophysics Data System (ADS)

    Pang, Shengyong; Shao, Xinyu; Li, Wen; Chen, Xin; Gong, Shuili

    2016-07-01

    The compressible metallic vapor plume or plasma plume behaviors in the keyhole during deep penetration laser welding have significant effects on the joint quality. However, these behaviors and their responses to process parameter variations have not been well understood. In this paper, we first systematically study the dynamic characteristics and mechanisms of compressible metallic vapor plume behaviors in transient keyhole during fiber laser welding of 304 stainless steels based on a multiple timescale multiphase model. The time-dependent temperature, pressure, velocity and Mach number distributions of vapor plume under different process parameters are theoretically predicted. It is found that the distributions of the main physical characteristics of vapor plume such as pressure, velocity as well as Mach number in keyhole are usually highly uneven and highly time dependent. The peak difference of the velocity, pressure, temperature and Mach number of the vapor plume in a keyhole could be greater than 200 m/s, 20 kPa, 1000 K and 0.6 Mach, respectively. The vapor plume characteristics in a transient keyhole can experience significant changes within several hundreds of nanoseconds. The formation mechanisms of these dynamic characteristics are mainly due to the mesoscale keyhole hump (sized in several tens of microns) dynamics. It is also demonstrated that it is possible to suppress the oscillations of compressible vapor plume in the keyhole by improving the keyhole stability through decreasing the heat input. However, stabilizing the keyhole could only weaken, but not eliminate, the observed highly uneven and transient characteristics. This finding may pose new challenges for accurate experimental measurements of vapor plume induced by laser welding.

  2. Laser observations of the moon: Normal points for 1973

    NASA Technical Reports Server (NTRS)

    Mulholland, J. D.; Shelus, P. J.; Silverburg, E. C.

    1975-01-01

    McDonald Observatory lunar laser ranging observations for 1973 are presented in the form of compressed normal points and amendments for the 1969-1972 data set are given. Observations of the reflector mounted on the Soviet roving vehicle Lunakhod 2 have also been included.

  3. Laser observations of the moon - Normal points for 1973

    NASA Technical Reports Server (NTRS)

    Mulholland, J. D.; Shelus, P. J.; Silverberg, E. C.

    1975-01-01

    McDonald Observatory lunar laser-ranging observations for 1973 are presented in the form of compressed normal points, and amendments for the 1969-1972 data set are given. Observations of the reflector mounted on the Soviet roving vehicle Lunakhod 2 have also been included.

  4. All-fiber nonlinearity- and dispersion-managed dissipative soliton nanotube mode-locked laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Z.; Nanjing University of Posts and Communications, Nanjing 210003; Popa, D., E-mail: dp387@cam.ac.uk

    We report dissipative soliton generation from an Yb-doped all-fiber nonlinearity- and dispersion-managed nanotube mode-locked laser. A simple all-fiber ring cavity exploits a photonic crystal fiber for both nonlinearity enhancement and dispersion compensation. The laser generates stable dissipative solitons with large linear chirp in the net normal dispersion regime. Pulses that are 8.7 ps long are externally compressed to 118 fs, outperforming current nanotube-based Yb-doped fiber laser designs.

  5. Compression of Ultrafast Laser Beams

    DTIC Science & Technology

    2016-03-01

    Copyright 2003, AIP Publishing LLC. DOI: http://dx.doi.org/10.1063/1.1611998.) When designing the pulse shaper, the laser beam must completely fill the...for the design of future versions of this device. The easiest way to align the pulse shaper is to use the laser beam that will be shaped, without...Afterward, an ultrafast thin beam splitter is placed into the system after the diameter of the laser beam is reduced; this is done to monitor the beam

  6. Modeling and Positioning of a PZT Precision Drive System.

    PubMed

    Liu, Che; Guo, Yanling

    2017-11-08

    The fact that piezoelectric ceramic transducer (PZT) precision drive systems in 3D printing are faced with nonlinear problems with respect to positioning, such as hysteresis and creep, has had an extremely negative impact on the precision of laser focusing systems. To eliminate the impact of PZT nonlinearity during precision drive movement, mathematical modeling and theoretical analyses of each module comprising the system were carried out in this study, a micro-displacement measurement circuit based on Position Sensitive Detector (PSD) is constructed, followed by the establishment of system closed-loop control and creep control models. An XL-80 laser interferometer (Renishaw, Wotton-under-Edge, UK) was used to measure the performance of the precision drive system, showing that system modeling and control algorithms were correct, with the requirements for precision positioning of the drive system satisfied.

  7. Modeling and Positioning of a PZT Precision Drive System

    PubMed Central

    Liu, Che; Guo, Yanling

    2017-01-01

    The fact that piezoelectric ceramic transducer (PZT) precision drive systems in 3D printing are faced with nonlinear problems with respect to positioning, such as hysteresis and creep, has had an extremely negative impact on the precision of laser focusing systems. To eliminate the impact of PZT nonlinearity during precision drive movement, mathematical modeling and theoretical analyses of each module comprising the system were carried out in this study, a micro-displacement measurement circuit based on Position Sensitive Detector (PSD) is constructed, followed by the establishment of system closed-loop control and creep control models. An XL-80 laser interferometer (Renishaw, Wotton-under-Edge, UK) was used to measure the performance of the precision drive system, showing that system modeling and control algorithms were correct, with the requirements for precision positioning of the drive system satisfied. PMID:29117140

  8. Development and Application of Laser Peening System for PWR Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masaki Yoda; Itaru Chida; Satoshi Okada

    2006-07-01

    Laser peening is a process to improve residual stress from tensile to compressive in surface layer of materials by irradiating high-power laser pulses on the material in water. Toshiba has developed a laser peening system composed of Q-switched Nd:YAG laser oscillators, laser delivery equipment and underwater remote handling equipment. We have applied the system for Japanese operating BWR power plants as a preventive maintenance measure for stress corrosion cracking (SCC) on reactor internals like core shrouds or control rod drive (CRD) penetrations since 1999. As for PWRs, alloy 600 or 182 can be susceptible to primary water stress corrosion crackingmore » (PWSCC), and some cracks or leakages caused by the PWSCC have been discovered on penetrations of reactor vessel heads (RVHs), reactor bottom-mounted instrumentation (BMI) nozzles, and others. Taking measures to meet the unconformity of the RVH penetrations, RVHs themselves have been replaced in many PWRs. On the other hand, it's too time-consuming and expensive to replace BMI nozzles, therefore, any other convenient and less expensive measures are required instead of the replacement. In Toshiba, we carried out various tests for laser-peened nickel base alloys and confirmed the effectiveness of laser peening as a preventive maintenance measure for PWSCC. We have developed a laser peening system for PWRs as well after the one for BWRs, and applied it for BMI nozzles, core deluge line nozzles and primary water inlet nozzles of Ikata Unit 1 and 2 of Shikoku Electric Power Company since 2004, which are Japanese operating PWR power plants. In this system, laser oscillators and control devices were packed into two containers placed on the operating floor inside the reactor containment vessel. Laser pulses were delivered through twin optical fibers and irradiated on two portions in parallel to reduce operation time. For BMI nozzles, we developed a tiny irradiation head for small tubes and we peened the inner surface around J-groove welds after laser ultrasonic testing (LUT) as the remote inspection, and we peened the outer surface and the weld for Ikata Unit 2 supplementary. For core deluge line nozzles and primary water inlet nozzles, we peened the inner surface of the dissimilar metal welding, which is of nickel base alloy, joining a safe end and a low alloy metal nozzle. In this paper, the development and the actual application of the laser peening system for PWR power plants will be described. (authors)« less

  9. The physics basis for ignition using indirect-drive targets on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Lindl, John D.; Amendt, Peter; Berger, Richard L.; Glendinning, S. Gail; Glenzer, Siegfried H.; Haan, Steven W.; Kauffman, Robert L.; Landen, Otto L.; Suter, Laurence J.

    2004-02-01

    The 1990 National Academy of Science final report of its review of the Inertial Confinement Fusion Program recommended completion of a series of target physics objectives on the 10-beam Nova laser at the Lawrence Livermore National Laboratory as the highest-priority prerequisite for proceeding with construction of an ignition-scale laser facility, now called the National Ignition Facility (NIF). These objectives were chosen to demonstrate that there was sufficient understanding of the physics of ignition targets that the laser requirements for laboratory ignition could be accurately specified. This research on Nova, as well as additional research on the Omega laser at the University of Rochester, is the subject of this review. The objectives of the U.S. indirect-drive target physics program have been to experimentally demonstrate and predictively model hohlraum characteristics, as well as capsule performance in targets that have been scaled in key physics variables from NIF targets. To address the hohlraum and hydrodynamic constraints on indirect-drive ignition, the target physics program was divided into the Hohlraum and Laser-Plasma Physics (HLP) program and the Hydrodynamically Equivalent Physics (HEP) program. The HLP program addresses laser-plasma coupling, x-ray generation and transport, and the development of energy-efficient hohlraums that provide the appropriate spectral, temporal, and spatial x-ray drive. The HEP experiments address the issues of hydrodynamic instability and mix, as well as the effects of flux asymmetry on capsules that are scaled as closely as possible to ignition capsules (hydrodynamic equivalence). The HEP program also addresses other capsule physics issues associated with ignition, such as energy gain and energy loss to the fuel during implosion in the absence of alpha-particle deposition. The results from the Nova and Omega experiments approach the NIF requirements for most of the important ignition capsule parameters, including drive temperature, drive symmetry, and hydrodynamic instability. This paper starts with a review of the NIF target designs that have formed the motivation for the goals of the target physics program. Following that are theoretical and experimental results from Nova and Omega relevant to the requirements of those targets. Some elements of this work were covered in a 1995 review of indirect-drive [J. D. Lindl, ``Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain,'' Phys. Plasmas 2, 3933 (1995)]. In order to present as complete a picture as possible of the research that has been carried out on indirect drive, key elements of that earlier review are also covered here, along with a review of work carried out since 1995.

  10. Characterizing Hohlraum Plasma Conditions at the National Ignition Facility (NIF) Using X-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Barrios, Maria Alejandra

    2015-11-01

    Improved hohlraums will have a significant impact on increasing the likelihood of indirect drive ignition at the NIF. In indirect-drive Inertial Confinement Fusion (ICF), a high-Z hohlraum converts laser power into a tailored x-ray flux that drives the implosion of a spherical capsule filled with D-T fuel. The x-radiation drive to capsule coupling sets the velocity, adiabat, and symmetry of the implosion. Previous experiments in gas-filled hohlraums determined that the laser-hohlraum energy coupling is 20-25% less than modeled, therefore identifying energy loss mechanisms that reduce the efficacy of the hohlraum drive is central to improving implosion performance. Characterizing the plasma conditions, particularly the plasma electron temperature (Te) , is critical to understanding mechanism that affect the energy coupling such as the laser plasma interactions (LPI), hohlraum x-ray conversion efficiency, and dynamic drive symmetry. The first Te measurements inside a NIF hohlraum, presented here, were achieved using K-shell X-ray spectroscopy of an Mn-Co tracer dot. The dot is deposited on a thin-walled CH capsule, centered on the hohlraum symmetry axis below the laser entrance hole (LEH) of a bottom-truncated hohlraum. The hohlraum x-ray drive ablates the dot and causes it to flow upward, towards the LEH, entering the hot laser deposition region. An absolutely calibrated streaked spectrometer with a line of sight into the LEH records the temporal history of the Mn and Co X-ray emission. The measured (interstage) Lyα/ Heα line ratios for Co and Mn and the Mn-Heα/Co-Heα isoelectronic line ratio are used to infer the local plasma Te from the atomic physics code SCRAM. Time resovled x-ray images perpendicular to the hohlraum axis record the dot expansion and trajectory into the LEH region. The temporal evolution of the measured Te and dot trajectory are compared with simulations from radiation-hydrodynamic codes. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  11. Spectrally resolved modal characteristics of leaky-wave-coupled quantum cascade phase-locked laser arrays

    NASA Astrophysics Data System (ADS)

    Sigler, Chris; Gibson, Ricky; Boyle, Colin; Kirch, Jeremy D.; Lindberg, Donald; Earles, Thomas; Botez, Dan; Mawst, Luke J.; Bedford, Robert

    2018-01-01

    The modal characteristics of nonresonant five-element phase-locked arrays of 4.7-μm emitting quantum cascade lasers (QCLs) have been studied using spectrally resolved near- and far-field measurements and correlated with results of device simulation. Devices are fabricated by a two-step metal-organic chemical vapor deposition process and operate predominantly in an in-phase array mode near threshold, although become multimode at higher drive levels. The wide spectral bandwidth of the QCL's core region is found to be a factor in promoting multispatial-mode operation at high drive levels above threshold. An optimized resonant-array design is identified to allow sole in-phase array-mode operation to high drive levels above threshold, and indicates that for phase-locked laser arrays full spatial coherence to high output powers does not require full temporal coherence.

  12. Subsonic and Supersonic shear flows in laser driven high-energy-density plasmas

    NASA Astrophysics Data System (ADS)

    Harding, E. C.; Drake, R. P.; Gillespie, R. S.; Grosskopf, M. J.; Kuranz, C. C.; Visco, A.; Ditmar, J. R.; Aglitskiy, Y.; Weaver, J. L.; Velikovich, A. L.; Hurricane, O. A.; Hansen, J. F.; Remington, B. A.; Robey, H. F.; Bono, M. J.; Plewa, T.

    2009-05-01

    Shear flows arise in many high-energy-density (HED) and astrophysical systems, yet few laboratory experiments have been carried out to study their evolution in these extreme environments. Fundamentally, shear flows can initiate mixing via the Kelvin-Helmholtz (KH) instability and may eventually drive a transition to turbulence. We present two dedicated shear flow experiments that created subsonic and supersonic shear layers in HED plasmas. In the subsonic case the Omega laser was used to drive a shock wave along a rippled plastic interface, which subsequently rolled-upped into large KH vortices. In the supersonic shear experiment the Nike laser was used to drive Al plasma across a low-density foam surface also seeded with a ripple. Unlike the subsonic case, detached shocks developed around the ripples in response to the supersonic Al flow.

  13. Hohlraum energetics scaling to 520 TW on the National Ignition Facilitya)

    NASA Astrophysics Data System (ADS)

    Kline, J. L.; Callahan, D. A.; Glenzer, S. H.; Meezan, N. B.; Moody, J. D.; Hinkel, D. E.; Jones, O. S.; MacKinnon, A. J.; Bennedetti, R.; Berger, R. L.; Bradley, D.; Dewald, E. L.; Bass, I.; Bennett, C.; Bowers, M.; Brunton, G.; Bude, J.; Burkhart, S.; Condor, A.; Di Nicola, J. M.; Di Nicola, P.; Dixit, S. N.; Doeppner, T.; Dzenitis, E. G.; Erbert, G.; Folta, J.; Grim, G.; Glenn, S.; Hamza, A.; Haan, S. W.; Heebner, J.; Henesian, M.; Hermann, M.; Hicks, D. G.; Hsing, W. W.; Izumi, N.; Jancaitis, K.; Jones, O. S.; Kalantar, D.; Khan, S. F.; Kirkwood, R.; Kyrala, G. A.; LaFortune, K.; Landen, O. L.; Lagin, L.; Larson, D.; Pape, S. Le; Ma, T.; MacPhee, A. G.; Michel, P. A.; Miller, P.; Montincelli, M.; Moore, A. S.; Nikroo, A.; Nostrand, M.; Olson, R. E.; Pak, A.; Park, H. S.; Patel, J. P.; Pelz, L.; Ralph, J.; Regan, S. P.; Robey, H. F.; Rosen, M. D.; Ross, J. S.; Schneider, M. B.; Shaw, M.; Smalyuk, V. A.; Strozzi, D. J.; Suratwala, T.; Suter, L. J.; Tommasini, R.; Town, R. P. J.; Van Wonterghem, B.; Wegner, P.; Widmann, K.; Widmayer, C.; Wilkens, H.; Williams, E. A.; Edwards, M. J.; Remington, B. A.; MacGowan, B. J.; Kilkenny, J. D.; Lindl, J. D.; Atherton, L. J.; Batha, S. H.; Moses, E.

    2013-05-01

    Indirect drive experiments have now been carried out with laser powers and energies up to 520 TW and 1.9 MJ. These experiments show that the energy coupling to the target is nearly constant at 84% ± 3% over a wide range of laser parameters from 350 to 520 TW and 1.2 to 1.9 MJ. Experiments at 520 TW with depleted uranium hohlraums achieve radiation temperatures of ˜330 ± 4 eV, enough to drive capsules 20 μm thicker than the ignition point design to velocities near the ignition goal of 370 km/s. A series of three symcap implosion experiments with nearly identical target, laser, and diagnostics configurations show the symmetry and drive are reproducible at the level of ±8.5% absolute and ±2% relative, respectively.

  14. Investigation of Innovative Lightcraft Designs for Hypersonic Air Breathing and Rocket Flight by Beamed Energy Propulsion

    DTIC Science & Technology

    2012-06-01

    driven down the barrel , compressing the test gas in an approximately isentropic manner. A representative pressure history measured within in the barrel ...have shown that the isentropic compression is a good approximation for the test flow which is first discharged from the barrel . A survey of nozzle exit...of the craft, and air is delivered by an axi-symmetric, internal compression inlet. The external laser induced df’tnnation configuration

  15. Low Fuel Convergence Path to Direct-Drive Fusion Ignition

    DOE PAGES

    Molvig, Kim; Schmitt, Mark J.; Albright, Brian James; ...

    2016-06-24

    A new class of inertial fusion capsules is presented that combines multishell targets with laser direct drive at low intensity (2.8 × 10 14 W/cm 2) to achieve robust ignition. The targets consist of three concentric, heavy, metal shells, enclosing a volume of tens of μg of liquid deuterium-tritium fuel. Ignition is designed to occur well “upstream” from stagnation, with minimal pusher deceleration to mitigate interface Rayleigh-Taylor growth. As a result, laser intensities below thresholds for laser plasma instability and cross beam energy transfer facilitate high hydrodynamic efficiency (~10%).

  16. Robust generation of isolated attosecond pulse against the variation of carrier envelope phase of driving laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou Pu; Zeng Zhinan; Zheng Yinghui

    2010-11-15

    We propose a scheme for generating isolated attosecond pulse (IAP) via high-order harmonic generation in gases using a chirped two-color laser field of multicycle duration. In contrast to previous techniques where the stable carrier-envelope phase (CEP) of the driving laser pulses is a prerequisite for IAP generation, the proposed scheme is robust against the large variation of CEP. We show the generation of IAP with an intensity fluctuation less than 50% and an intensity contrast ratio higher than 5:1 when the CEP shift is as large as 1.35{pi}.

  17. Femtosecond wavelength tunable semiconductor optical amplifier fiber laser mode-locked by backward dark-optical-comb injection at 10 GHz.

    PubMed

    Lin, Gong-Ru; Chiu, I-Hsiang

    2005-10-31

    Femtosecond nonlinear pulse compression of a wavelength-tunable, backward dark-optical-comb injection harmonic-mode-locked semiconductor optical amplifier based fiber laser (SOAFL) is demonstrated for the first time. Shortest mode-locked SOAFL pulsewidth of 15 ps at 1 GHz is generated, which can further be compressed to 180 fs after linear chirp compensation, nonlinear soliton compression, and birefringent filtering. A maximum pulsewidth compression ratio for the compressed eighth-order SOAFL soliton of up to 80 is reported. The pedestal-free eighth-order soliton can be obtained by injecting the amplified pulse with peak power of 51 W into a 107.5m-long single-mode fiber (SMF), providing a linewidth and time-bandwidth product of 13.8 nm and 0.31, respectively. The tolerance in SMF length is relatively large (100-300 m) for obtaining <200fs SOAFL pulsewidth at wavelength tuning range of 1530-1560 nm. By extending the repetition frequency of dark-optical-comb up to 10 GHz, the mode-locked SOAFL pulsewidth can be slightly shortened from 5.4 ps to 3.9 ps after dispersion compensating, and further to 560 fs after second-order soliton compression. The lasing linewidth, time-bandwidth product and pulsewidth suppressing ratio of the SOAFL soliton become 4.5 nm, 0.33, and 10, respectively.

  18. Drive Scaling of hohlraums heated with 2ω light

    NASA Astrophysics Data System (ADS)

    Oades, Kevin; Foster, John; Slark, Gary; Stevenson, Mark; Kauffman, Robert; Suter, Larry; Hinkel, Denise; Miller, Mike; Schneider, Marilyn; Springer, Paul

    2002-11-01

    We report on experiments using a single beam from the AWE?s HELEN laser to study scaling of hohlraum drive with hohlraum scale size. The hohlruams were heated with 400 J in a 1 ns square pulse with and without a phaseplate. The drive was measured using a PCD and an FRD. Scattered light was measured using a full aperture backscatter system. Drive is consistent with hohlraum scaling and LASNEX modeling using the absorbed laser energy. Bremsstrahlung from fast electrons and M-shell x-ray production were also measured. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  19. DENSITY-MAGNETIC FIELD CORRELATION IN MAGNETOHYDRODYNAMIC TURBULENCE DRIVEN BY DIFFERENT DRIVING SCHEMES WITH DIFFERENT CORRELATION TIMES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Heesun; Cho, Jungyeon; Kim, Jongsoo, E-mail: hsyoon@cnu.ac.kr, E-mail: jcho@cnu.ac.kr, E-mail: jskim@kasi.re.kr

    Turbulent motions naturally produce density and magnetic-field fluctuations. Correlation between the two fluctuations is important for interpretation of observations, such as observations of the rotation measure (RM). In this paper, we study the effect of driving schemes on the density-magnetic-field correlation. In particular, we numerically investigate how the correlation time of driving affects the correlation between density and magnetic field. We perform compressible magnetohydrodynamic turbulence simulations at different sonic Mach numbers ( M {sub s} ), using two different driving schemes—a finite-correlated driving and a delta-correlated driving. In the former, the forcing vectors change continuously with a correlation time comparablemore » to the large-eddy turnover time. In the latter, the direction (and amplitude) of driving changes in a very short timescale. The finite-correlated driving results in strong anti-correlation between two fields when the sonic and the Alfvénic Mach numbers are similar to unity (i.e., when M {sub s} ∼ 1 and M {sub A} ∼ 1, respectively). However, the anti-correlation becomes weaker and approaches zero for higher values of M {sub s} or M {sub A}. The delta-correlated driving produces virtually no correlation between two fields when M {sub s} ∼ 1 and M {sub A} ∼ 1, and produces more and more positive correlations as M {sub s} or M {sub A} increases. We conjecture that two competing effects, tendency for achieving balance between the gas and the magnetic pressure and simultaneous compression of fluid and magnetic field, determine the correlation behavior. We also investigate how different driving schemes affect the Probability Density Function of three-dimensional density, dispersion measure, and RM.« less

  20. Laser quench hardening of steel: Effects of superimposed elastic pre-stress on the hardness and residual stress distribution

    NASA Astrophysics Data System (ADS)

    Meserve, Justin

    Cold drawn AISI 4140 beams were LASER surface hardened with a 2 kW CO2 LASER. Specimens were treated in the free state and while restrained in a bending fixture inducing surface tensile stresses of 94 and 230 MPa. Knoop hardness indentation was used to evaluate the through thickness hardness distribution, and a layer removal methodology was used to evaluate the residual stress distribution. Results showed the maximum surface hardness attained was not affected by pre-stress during hardening, and ranged from 513 to 676 kg/mm2. The depth of effective hardening varied at different magnitudes of pre-stress, but did not vary proportionately to the pre-stress. The surface residual stress, coinciding with the maximum compressive residual stress, increased as pre-stress was increased, from 1040 MPa for the nominally treated specimens to 1270 MPa for specimens pre-stressed to 230 MPa. The maximum tensile residual stress observed in the specimens decreased from 1060 MPa in the nominally treated specimens to 760 MPa for specimens pre-stressed to 230 MPa. Similarly, thickness of the compressive residual stress region increased and the depth at which maximum tensile residual stress occurred increased as the pre-stress during treatment was increased Overall, application of tensile elastic pre-stress during LASER hardening is beneficial to the development of compressive residual stress in AISI 4140, with minimal impact to the hardness attained from the treatment. The newly developed approach for LASER hardening may support efforts to increase both the wear and fatigue resistance of parts made from hardenable steels.

  1. Computer Simulation of Compression and Energy Release upon Laser Irradiation of Cylindrically Symmetric Target

    NASA Astrophysics Data System (ADS)

    Kuzenov, V. V.

    2017-12-01

    The paper is devoted to the theoretical and computational study of compression and energy release for magneto-inertial plasma confinement. This approach makes it possible to create new high-density plasma sources, apply them in materials science experiments, and use them in promising areas of power engineering.

  2. Lasers, extreme UV and soft X-ray

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nilsen, Joseph

    2015-09-20

    Three decades ago, large ICF lasers that occupied entire buildings were used as the energy sources to drive the first X-ray lasers. Today X-ray lasers are tabletop, spatially coherent, high-repetition rate lasers that enable many of the standard optical techniques such as interferometry to be extended to the soft X-ray regime between wavelengths of 10 and 50 nm. Over the last decade X-ray laser performance has been improved by the use of the grazing incidence geometry, diode-pumped solid-state lasers, and seeding techniques. The dominant X-ray laser schemes are the monopole collisional excitation lasers either driven by chirped pulse amplification (CPA)more » laser systems or capillary discharge. The CPA systems drive lasing in neon-like or nickel-like ions, typically in the 10 – 30 nm range, while the capillary system works best for neon-like argon at 46.9 nm. Most researchers use nickel-like ion lasers near 14 nm because they are well matched to the Mo:Si multilayer mirrors that have peak reflectivity near 13 nm and are used in many applications. As a result, the last decade has seen the birth of the X-ray free electron laser (XFEL) that can reach wavelengths down to 0.15 nm and the inner-shell Ne laser at 1.46 nm.« less

  3. Thermal equation of state of Molybdenum determined from in situ synchrotron X-ray diffraction with laser-heated diamond anvil cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Xiaoli; Li, Fangfei; Zhou, Qiang

    Here we report that the equation of state (EOS) of Mo is obtained by an integrated technique of laser-heated DAC and synchrotron X-ray diffraction. The cold compression and thermal expansion of Mo have been measured up to 80 GPa at 300 K, and 92 GPa at 3470 K, respectively. The P-V-T data have been treated with both thermodynamic and Mie–Gruneisen-Debye methods for the thermal EOS inversion. The results are self-consistent and in agreement with the static multi-anvil compression data of Litasov et al. (J. Appl. Phys. 113, 093507 (2013)) and the theoretical data of Zeng et al. (J. Phys. Chem.more » B 114, 298 (2010)). Furthermore, these high pressure and high temperature (HPHT) data with high precision firstly complement and close the gap between the resistive heating and the shock compression experiment.« less

  4. Thermal equation of state of Molybdenum determined from in situ synchrotron X-ray diffraction with laser-heated diamond anvil cells

    DOE PAGES

    Huang, Xiaoli; Li, Fangfei; Zhou, Qiang; ...

    2016-02-17

    Here we report that the equation of state (EOS) of Mo is obtained by an integrated technique of laser-heated DAC and synchrotron X-ray diffraction. The cold compression and thermal expansion of Mo have been measured up to 80 GPa at 300 K, and 92 GPa at 3470 K, respectively. The P-V-T data have been treated with both thermodynamic and Mie–Gruneisen-Debye methods for the thermal EOS inversion. The results are self-consistent and in agreement with the static multi-anvil compression data of Litasov et al. (J. Appl. Phys. 113, 093507 (2013)) and the theoretical data of Zeng et al. (J. Phys. Chem.more » B 114, 298 (2010)). Furthermore, these high pressure and high temperature (HPHT) data with high precision firstly complement and close the gap between the resistive heating and the shock compression experiment.« less

  5. Time-resolved microscopy reveals the driving mechanism of particle formation during ultrashort pulse laser ablation of dentin-like ivory

    NASA Astrophysics Data System (ADS)

    Domke, Matthias; Gavrilova, Anna; Rapp, Stephan; Frentzen, Matthias; Meister, Joerg; Huber, Heinz P.

    2015-07-01

    In dental health care, the application of ultrashort laser pulses enables dental tissue ablation free from thermal side effects, such as melting and cracking. However, these laser types create undesired micro- and nanoparticles, which might cause a health risk for the patient or surgeon. The aim of this study was to investigate the driving mechanisms of micro- and nanoparticle formation during ultrashort pulse laser ablation of dental tissue. Time-resolved microscopy was chosen to observe the ablation dynamics of mammoth ivory after irradiation with 660 fs laser pulses. The results suggest that nanoparticles might arise in the excited region. The thermal expansion of the excited material induces high pressure in the surrounding bulk tissue, generating a pressure wave. The rarefaction wave behind this pressure wave causes spallation, leading to ejection of microparticles.

  6. Theoretical studies of solar lasers and converters

    NASA Technical Reports Server (NTRS)

    Heinbockel, John H.

    1988-01-01

    The previously constructed one dimensional model for the simulated operation of an iodine laser assumed that the perfluoroalkyl iodide gas n-C3F7I was incompressible. The present study removes this simplifying assumption and considers n-C3F7I as a compressible fluid.

  7. Progress on 58 m2 Passive Resonant Ring Laser Gyroscope,

    DTIC Science & Technology

    Pad; design of the optical-mechanical hardware to input the laser to the ring; investigations to insure against ZERODUR bar buckling associated with the...ring evacuation force; verification of ZERODUR physical properties which are key to this application, e.g. compressibility resulting from the usual

  8. Hybrid chirped pulse amplification system

    DOEpatents

    Barty, Christopher P.; Jovanovic, Igor

    2005-03-29

    A hybrid chirped pulse amplification system wherein a short-pulse oscillator generates an oscillator pulse. The oscillator pulse is stretched to produce a stretched oscillator seed pulse. A pump laser generates a pump laser pulse. The stretched oscillator seed pulse and the pump laser pulse are directed into an optical parametric amplifier producing an optical parametric amplifier output amplified signal pulse and an optical parametric amplifier output unconverted pump pulse. The optical parametric amplifier output amplified signal pulse and the optical parametric amplifier output laser pulse are directed into a laser amplifier producing a laser amplifier output pulse. The laser amplifier output pulse is compressed to produce a recompressed hybrid chirped pulse amplification pulse.

  9. Combined resistive and laser heating technique for in situ radial X-ray diffraction in the diamond anvil cell at high pressure and temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyagi, Lowell; Department of Earth Sciences, Montana State University, Bozeman, Montana 59717; Kanitpanyacharoen, Waruntorn

    2013-02-15

    To extend the range of high-temperature, high-pressure studies within the diamond anvil cell, a Liermann-type diamond anvil cell with radial diffraction geometry (rDAC) was redesigned and developed for synchrotron X-ray diffraction experiments at beamline 12.2.2 of the Advanced Light Source. The rDAC, equipped with graphite heating arrays, allows simultaneous resistive and laser heating while the material is subjected to high pressure. The goals are both to extend the temperature range of external (resistive) heating and to produce environments with lower temperature gradients in a simultaneously resistive- and laser-heated rDAC. Three different geomaterials were used as pilot samples to calibrate andmore » optimize conditions for combined resistive and laser heating. For example, in Run1, FeO was loaded in a boron-mica gasket and compressed to 11 GPa then gradually resistively heated to 1007 K (1073 K at the diamond side). The laser heating was further applied to FeO to raise temperature to 2273 K. In Run2, Fe-Ni alloy was compressed to 18 GPa and resistively heated to 1785 K (1973 K at the diamond side). The combined resistive and laser heating was successfully performed again on (Mg{sub 0.9}Fe{sub 0.1})O in Run3. In this instance, the sample was loaded in a boron-kapton gasket, compressed to 29 GPa, resistive-heated up to 1007 K (1073 K at the diamond side), and further simultaneously laser-heated to achieve a temperature in excess of 2273 K at the sample position. Diffraction patterns obtained from the experiments were deconvoluted using the Rietveld method and quantified for lattice preferred orientation of each material under extreme conditions and during phase transformation.« less

  10. Synthesis of Binary Transition Metal Nitrides, Carbides and Borides from the Elements in the Laser-Heated Diamond Anvil Cell and Their Structure-Property Relations

    PubMed Central

    Friedrich, Alexandra; Winkler, Björn; Juarez-Arellano, Erick A.; Bayarjargal, Lkhamsuren

    2011-01-01

    Transition metal nitrides, carbides and borides have a high potential for industrial applications as they not only have a high melting point but are generally harder and less compressible than the pure metals. Here we summarize recent advances in the synthesis of binary transition metal nitrides, carbides and borides focusing on the reaction of the elements at extreme conditions generated within the laser-heated diamond anvil cell. The current knowledge of their structures and high-pressure properties like high-(p,T) stability, compressibility and hardness is described as obtained from experiments. PMID:28824101

  11. Whispering-gallery-mode-based seismometer

    DOEpatents

    Fourguette, Dominique Claire; Otugen, M Volkan; Larocque, Liane Marie; Ritter, Greg Aan; Meeusen, Jason Jeffrey; Ioppolo, Tindaro

    2014-06-03

    A whispering-gallery-mode-based seismometer provides for receiving laser light into an optical fiber, operatively coupling the laser light from the optical fiber into a whispering-gallery-mode-based optical resonator, operatively coupling a spring of a spring-mass assembly to a housing structure; and locating the whispering-gallery-mode-based optical resonator between the spring-mass assembly and the housing structure so as to provide for compressing the whispering-gallery-mode-based optical resonator between the spring-mass assembly and the housing structure responsive to a dynamic compression force from the spring-mass assembly responsive to a motion of the housing structure relative to an inertial frame of reference.

  12. All-fiber pulse shortening of passively Q-switched microchip laser pulses down to sub-200 fs.

    PubMed

    Lehneis, R; Steinmetz, A; Limpert, J; Tünnermann, A

    2014-10-15

    We present an all-fiber concept that generates ultrashort pulses using a passively Q-switched microchip seed laser. A proof-of-principle configuration combines nonlinear pulse compression applying a chirped fiber-Bragg-grating, dispersion-free pulse shortening by means of a fiber-integrated spectral filtering, and a final hollow-core-fiber compression to reach the sub-200-fs pulse-duration region. In a compact all-fiber pulse-shortening unit, initial 100 ps long microchip pulses at 1064 nm wavelength have been shortened to 174 fs and shifted to 1034 nm while preserving a high temporal quality.

  13. Wavelength-tunable, sub-picosecond pulses from a passively Q-switched microchip laser system.

    PubMed

    Lehneis, R; Steinmetz, A; Limpert, J; Tünnermann, A

    2013-07-15

    We present a novel concept to generate sub-picosecond pulses from a passively Q-switched Nd:YVO4 microchip laser system with an adjustable wavelength shift up to a few tens of nanometers around the original emission wavelength of 1064 nm. This concept comprises two stages: one that carries out a nonlinear compression of fiber-amplified microchip pulses and a subsequent stage in which the compressed pulses are coupled into a further waveguide structure followed by a bandpass filter. In a proof-of-principle experiment, pedestal-free 0.62 ps long pulses have been demonstrated with a wavelength shift to 1045 nm.

  14. Pulse compression of a high-power thin disk laser using rod-type fiber amplifiers.

    PubMed

    Saraceno, C J; Heckl, O H; Baer, C R E; Südmeyer, T; Keller, U

    2011-01-17

    We report on two pulse compressors for a high-power thin disk laser oscillator using rod-type fiber amplifiers. Both systems are seeded by a standard SESAM modelocked thin disk laser that delivers 16 W of average power at a repetition rate of 10.6 MHz with a pulse energy of 1.5 μJ and a pulse duration of 1 ps. We discuss two results with different fiber parameters with different trade-offs in pulse duration, average power, damage and complexity. The first amplifier setup consists of a Yb-doped fiber amplifier with a 2200 μm2 core area and a length of 55 cm, resulting in a compressed average power of 55 W with 98-fs pulses at a repetition rate of 10.6 MHz. The second system uses a shorter 36-cm fiber with a larger core area of 4500 μm2. In a stretcher-free configuration we obtained 34 W of compressed average power and 65-fs pulses. In both cases peak powers of > 30 MW were demonstrated at several μJ pulse energies. The power scaling limitations due to damage and self-focusing are discussed.

  15. Laser-driven shock compression of gold foam in the terapascal pressure range

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Duan, Xiaoxi; Jiang, Shaoen; Wang, Zhebin; Sun, Liang; Liu, Hao; Yang, Weiming; Zhang, Huan; Ye, Qing; Wang, Peng; Li, Yulong; Yi, Lin; Dong, Suo

    2018-06-01

    Shock compression experiments are carried out on gold foam with an initial density of 3.2 g/cm3 through indirectly laser-driven shock waves at the SG-III prototype laser facility. The impedance-matching technique is applied to determine the equation-of-state (EOS) data of the shocked gold foam. A passive shock breakout diagnostic system is employed to obtain the shock velocities in both the standard material and gold foam. The gold foams are compressed to a maximum density of 20 g/cm3 under a shock pressure of about 2 TPa. The effects of the unsteadiness of shock waves on the EOS measurement are quantitatively analyzed and corrected. The correction of unsteady waves, as well as the good planarity of the shock waves and the low preheating of the gold foam, contributes high-confidence EOS data for the gold foam. The corrected experimental data are compared with the Hugoniot states from the SESAME library. The comparison suggests that the database is suitable for describing the states of gold foam with an initial density of 3.2 g/cm3 under a pressure of about 2 TPa.

  16. A 1-channel 3-band wide dynamic range compression chip for vibration transducer of implantable hearing aids.

    PubMed

    Kim, Dongwook; Seong, Kiwoong; Kim, Myoungnam; Cho, Jinho; Lee, Jyunghyun

    2014-01-01

    In this paper, a digital audio processing chip which uses a wide dynamic range compression (WDRC) algorithm is designed and implemented for implantable hearing aids system. The designed chip operates at a single voltage of 3.3V and drives a 16 bit parallel input and output at 32 kHz sample. The designed chip has 1-channel 3-band WDRC composed of a FIR filter bank, a level detector, and a compression part. To verify the performance of the designed chip, we measured the frequency separations of bands and compression gain control to reflect the hearing threshold level.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokollik, T.; Leemans, W. P.; University of California, Berkeley, California 94720

    We present experimental results on a tape-drive based plasma mirror which could be used for a compact coupling of a laser beam into a staged laser driven electron accelerator. This novel kind of plasma mirror is suitable for high repetition rates and for high number of laser shots.

  18. Cascade laser applications: trends and challenges

    NASA Astrophysics Data System (ADS)

    d'Humières, B.; Margoto, Éric; Fazilleau, Yves

    2016-03-01

    When analyses need rapid measurements, cost effective monitoring and miniaturization, tunable semiconductor lasers can be very good sources. Indeed, applications like on-field environmental gas analysis or in-line industrial process control are becoming available thanks to the advantage of tunable semiconductor lasers. Advances in cascade lasers (CL) are revolutionizing Mid-IR spectroscopy with two alternatives: interband cascade lasers (ICL) in the 3-6μm spectrum and quantum cascade lasers (QCL), with more power from 3 to 300μm. The market is getting mature with strong players for driving applications like industry, environment, life science or transports. CL are not the only Mid-IR laser source. In fact, a strong competition is now taking place with other technologies like: OPO, VCSEL, Solid State lasers, Gas, SC Infrared or fiber lasers. In other words, CL have to conquer a share of the Mid-IR application market. Our study is a market analysis of CL technologies and their applications. It shows that improvements of components performance, along with the progress of infrared laser spectroscopy will drive the CL market growth. We compare CL technologies with other Mid-IR sources and estimate their share in each application market.

  19. Aero-optics overview. [laser applications

    NASA Technical Reports Server (NTRS)

    Gilbert, K. G.

    1980-01-01

    Various aero-optical phenomena are discussed with reference to their effect on airborne high energy lasers. Major emphasis is placed on: compressibility effects induced in the surrounding flow field; viscous effects which manifests themselves as aircraft boundary layers or shear layers; inviscid flow fields surrounding the aircraft due to airflow around protuberance such as laser turret assemblies; and shocks, established whenever local flow exceeds Mach one. The significant physical parameters affecting the interaction of a laser beam with a turbulent boundary layer are also described.

  20. Development of Electron Beam Pumped KrF Lasers for Fusion Energy

    DTIC Science & Technology

    2008-01-01

    Direct drive with krypton fluoride (KrF) lasers is an attractive approach to inertial fusion energy (IFE): KrF lasers have outstanding beam spatial...attractive power plant [3]. In view of these advances, several world-wide programs are underway to develop KrF lasers for fusion energy . These include

  1. Activities report in quantum optics

    NASA Astrophysics Data System (ADS)

    1985-03-01

    Soft X-ray radiation from laser plasmas, intense Planck radiation, X-ray spectroscopy with transmission gratings, simulation of laser-produced shock waves, self-similar expansion in vacuum, radiation hydrodynamics, electronic structure of highly compressed matter, and heavy-ion beams for inertial confinement were investigated, and a high power iodine laser was developed. Laser-spectroscopy experiments, as well as a gravitational wave experiments were conducted. The fundamentals of light-matter interaction and nonlinear dynamics were studied. Many-photon ionization of molecules; spectroscopy of shock pairs; interaction of excited molecules with surfaces; IR laser applications; organic photochemistry with UV lasers; theoretical chemistry; and a ClF laser were investigated. Thin layers, and a high-pressure CO2 laser were studied.

  2. Study of optimal laser parameters for cutting QFN packages by Taguchi's matrix method

    NASA Astrophysics Data System (ADS)

    Li, Chen-Hao; Tsai, Ming-Jong; Yang, Ciann-Dong

    2007-06-01

    This paper reports the study of optimal laser parameters for cutting QFN (Quad Flat No-lead) packages by using a diode pumped solid-state laser system (DPSSL). The QFN cutting path includes two different materials, which are the encapsulated epoxy and a copper lead frame substrate. The Taguchi's experimental method with orthogonal array of L 9(3 4) is employed to obtain optimal combinatorial parameters. A quantified mechanism was proposed for examining the laser cutting quality of a QFN package. The influences of the various factors such as laser current, laser frequency, and cutting speed on the laser cutting quality is also examined. From the experimental results, the factors on the cutting quality in the order of decreasing significance are found to be (a) laser frequency, (b) cutting speed, and (c) laser driving current. The optimal parameters were obtained at the laser frequency of 2 kHz, the cutting speed of 2 mm/s, and the driving current of 29 A. Besides identifying this sequence of dominance, matrix experiment also determines the best level for each control factor. The verification experiment confirms that the application of laser cutting technology to QFN is very successfully by using the optimal laser parameters predicted from matrix experiments.

  3. Laser driving and data processing concept for mobile trace gas sensing: Design and implementation

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Tuzson, Béla; Scheidegger, Philipp; Looser, Herbert; Bereiter, Bernhard; Graf, Manuel; Hundt, Morten; Aseev, Oleg; Maas, Deran; Emmenegger, Lukas

    2018-06-01

    High precision mobile sensing of multi-species gases is greatly demanded in a wide range of applications. Although quantum cascade laser absorption spectroscopy demonstrates excellent field-deployment capabilities for gas sensing, the implementation of this measurement technique into sensor-like portable instrumentation still remains challenging. In this paper, two crucial elements, the laser driving and data acquisition electronics, are addressed. Therefore, we exploit the benefits of the time-division multiplexed intermittent continuous wave driving concept and the real-time signal pre-processing capabilities of a commercial System-on-Chip (SoC, Red Pitaya). We describe a re-designed current driver that offers a universal solution for operating a wide range of multi-wavelength quantum cascade laser device types and allows stacking for the purpose of multiple laser configurations. Its adaptation to the various driving situations is enabled by numerous field programmable gate array (FPGA) functionalities that were developed on the SoC, such as flexible generation of a large variety of synchronized trigger signals and digital inputs/outputs (DIOs). The same SoC is used to sample the spectroscopic signal at rates up to 125 MS/s with 14-bit resolution. Additional FPGA functionalities were implemented to enable on-board averaging of consecutive spectral scans in real-time, resulting in optimized memory bandwidth and hardware resource utilisation and autonomous system operation. Thus, we demonstrate how a cost-effective, compact, and commercial SoC can successfully be adapted to obtain a fully operational research-grade laser spectrometer. The overall system performance was examined in a spectroscopic setup by analyzing low pressure absorption features of CO2 at 4.3 μm.

  4. Evaluation of δ2H and δ18O of water in pores extracted by compression method-effects of closed pores and comparison to direct vapor equilibration and laser spectrometry method

    NASA Astrophysics Data System (ADS)

    Nakata, Kotaro; Hasegawa, Takuma; Oyama, Takahiro; Miyakawa, Kazuya

    2018-06-01

    Stable isotopes (δ2H and δ18O) of water can help our understanding of origin, mixing and migration of groundwater. In the formation with low permeability, it provides information about migration mechanism of ion such as diffusion and/or advection. Thus it has been realized as very important information to understand the migration of water and ions in it. However, in formation with low permeability it is difficult to obtain the ground water sample as liquid and water in pores needs to be extracted to estimate it. Compressing rock is the most common and widely used method of extracting water in pores. However, changes in δ2H and δ18O may take place during compression because changes in ion concentration have been reported in previous studies. In this study, two natural rocks were compressed, and the changes in the δ2H and δ18O with compression pressure were investigated. Mechanisms for the changes in water isotopes observed during the compression were then discussed. In addition, δ2H and δ18O of water in pores were also evaluated by direct vapor equilibration and laser spectrometry (DVE-LS) and δ2H and δ18O were compared with those obtained by compression. δ2H was found to change during the compression and a part of this change was found to be explained by the effect of water from closed pores extracted by compression. In addition, water isotopes in both open and closed pores were estimated by combining the results of 2 kinds of compression experiments. Water isotopes evaluated by compression that not be affected by water from closed pores showed good agreements with those obtained by DVE-LS indicating compression could show the mixed information of water from open and closed pores, while DVE-LS could show the information only for open pores. Thus, the comparison of water isotopes obtained by compression and DVE-LS could provide the information about water isotopes in closed and open pores.

  5. Compact compressive arc and beam switchyard for energy recovery linac-driven ultraviolet free electron lasers

    NASA Astrophysics Data System (ADS)

    Akkermans, J. A. G.; Di Mitri, S.; Douglas, D.; Setija, I. D.

    2017-08-01

    High gain free electron lasers (FELs) driven by high repetition rate recirculating accelerators have received considerable attention in the scientific and industrial communities in recent years. Cost-performance optimization of such facilities encourages limiting machine size and complexity, and a compact machine can be realized by combining bending and bunch length compression during the last stage of recirculation, just before lasing. The impact of coherent synchrotron radiation (CSR) on electron beam quality during compression can, however, limit FEL output power. When methods to counteract CSR are implemented, appropriate beam diagnostics become critical to ensure that the target beam parameters are met before lasing, as well as to guarantee reliable, predictable performance and rapid machine setup and recovery. This article describes a beam line for bunch compression and recirculation, and beam switchyard accessing a diagnostic line for EUV lasing at 1 GeV beam energy. The footprint is modest, with 12 m compressive arc diameter and ˜20 m diagnostic line length. The design limits beam quality degradation due to CSR both in the compressor and in the switchyard. Advantages and drawbacks of two switchyard lines providing, respectively, off-line and on-line measurements are discussed. The entire design is scalable to different beam energies and charges.

  6. Demonstration of Fuel Hot-Spot Pressure in Excess of 50 Gbar for Direct-Drive, Layered Deuterium-Tritium Implosions on OMEGA

    NASA Astrophysics Data System (ADS)

    Regan, S. P.; Goncharov, V. N.; Igumenshchev, I. V.; Sangster, T. C.; Betti, R.; Bose, A.; Boehly, T. R.; Bonino, M. J.; Campbell, E. M.; Cao, D.; Collins, T. J. B.; Craxton, R. S.; Davis, A. K.; Delettrez, J. A.; Edgell, D. H.; Epstein, R.; Forrest, C. J.; Frenje, J. A.; Froula, D. H.; Gatu Johnson, M.; Glebov, V. Yu.; Harding, D. R.; Hohenberger, M.; Hu, S. X.; Jacobs-Perkins, D.; Janezic, R.; Karasik, M.; Keck, R. L.; Kelly, J. H.; Kessler, T. J.; Knauer, J. P.; Kosc, T. Z.; Loucks, S. J.; Marozas, J. A.; Marshall, F. J.; McCrory, R. L.; McKenty, P. W.; Meyerhofer, D. D.; Michel, D. T.; Myatt, J. F.; Obenschain, S. P.; Petrasso, R. D.; Radha, P. B.; Rice, B.; Rosenberg, M. J.; Schmitt, A. J.; Schmitt, M. J.; Seka, W.; Shmayda, W. T.; Shoup, M. J.; Shvydky, A.; Skupsky, S.; Solodov, A. A.; Stoeckl, C.; Theobald, W.; Ulreich, J.; Wittman, M. D.; Woo, K. M.; Yaakobi, B.; Zuegel, J. D.

    2016-07-01

    A record fuel hot-spot pressure Phs=56 ±7 Gbar was inferred from x-ray and nuclear diagnostics for direct-drive inertial confinement fusion cryogenic, layered deuterium-tritium implosions on the 60-beam, 30-kJ, 351-nm OMEGA Laser System. When hydrodynamically scaled to the energy of the National Ignition Facility, these implosions achieved a Lawson parameter ˜60 % of the value required for ignition [A. Bose et al., Phys. Rev. E 93, LM15119ER (2016)], similar to indirect-drive implosions [R. Betti et al., Phys. Rev. Lett. 114, 255003 (2015)], and nearly half of the direct-drive ignition-threshold pressure. Relative to symmetric, one-dimensional simulations, the inferred hot-spot pressure is approximately 40% lower. Three-dimensional simulations suggest that low-mode distortion of the hot spot seeded by laser-drive nonuniformity and target-positioning error reduces target performance.

  7. Demonstration of fuel hot-spot pressure in excess of 50 Gbar for direct-drive, layered deuterium-tritium implosions on OMEGA

    DOE PAGES

    Regan, S. P.; Goncharov, V. N.; Igumenshchev, I. V.; ...

    2016-07-07

    A record fuel hot-spot pressure P hs = 56±7 Gbar was inferred from x-ray and nuclear diagnostics for direct-drive inertial confinement fusion cryogenic, layered deuterium–tritium implosions on the 60-beam, 30-kJ, 351-nm OMEGA Laser System. When hydrodynamically scaled to the energy of the National Ignition Facility (NIF), these implosions achieved a Lawson parameter ~60% of the value required for ignition [A. Bose et al., Phys. Rev. E (in press)], similar to indirect-drive implosions [R. Betti et al., Phys. Rev. Lett. 114, 255003 (2015)], and nearly half of the direct-drive ignition-threshold pressure. Relative to symmetric, one-dimensional simulations, the inferred hot-spot pressure ismore » ~40% lower. Furthermore, three-dimensional simulations suggest that low-mode distortion of the hot spot seeded by laser-drive nonuniformity and target-positioning error reduces target performance.« less

  8. Demonstration of fuel hot-spot pressure in excess of 50 Gbar for direct-drive, layered deuterium-tritium implosions on OMEGA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Regan, S. P.; Goncharov, V. N.; Igumenshchev, I. V.

    A record fuel hot-spot pressure P hs = 56±7 Gbar was inferred from x-ray and nuclear diagnostics for direct-drive inertial confinement fusion cryogenic, layered deuterium–tritium implosions on the 60-beam, 30-kJ, 351-nm OMEGA Laser System. When hydrodynamically scaled to the energy of the National Ignition Facility (NIF), these implosions achieved a Lawson parameter ~60% of the value required for ignition [A. Bose et al., Phys. Rev. E (in press)], similar to indirect-drive implosions [R. Betti et al., Phys. Rev. Lett. 114, 255003 (2015)], and nearly half of the direct-drive ignition-threshold pressure. Relative to symmetric, one-dimensional simulations, the inferred hot-spot pressure ismore » ~40% lower. Furthermore, three-dimensional simulations suggest that low-mode distortion of the hot spot seeded by laser-drive nonuniformity and target-positioning error reduces target performance.« less

  9. Quasi-isentropic compression using compressed water flow generated by underwater electrical explosion of a wire array

    NASA Astrophysics Data System (ADS)

    Gurovich, V.; Virozub, A.; Rososhek, A.; Bland, S.; Spielman, R. B.; Krasik, Ya. E.

    2018-05-01

    A major experimental research area in material equation-of-state today involves the use of off-Hugoniot measurements rather than shock experiments that give only Hugoniot data. There is a wide range of applications using quasi-isentropic compression of matter including the direct measurement of the complete isentrope of materials in a single experiment and minimizing the heating of flyer plates for high-velocity shock measurements. We propose a novel approach to generating quasi-isentropic compression of matter. Using analytical modeling and hydrodynamic simulations, we show that a working fluid composed of compressed water, generated by an underwater electrical explosion of a planar wire array, might be used to efficiently drive the quasi-isentropic compression of a copper target to pressures ˜2 × 1011 Pa without any complex target designs.

  10. Microhardness and Stress Analysis of Laser-Cladded AISI 420 Martensitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Alam, Mohammad K.; Edrisy, Afsaneh; Urbanic, Jill; Pineault, James

    2017-03-01

    Laser cladding is a surface treatment process which is starting to be employed as a novel additive manufacturing. Rapid cooling during the non-equilibrium solidification process generates non-equilibrium microstructures and significant amounts of internal residual stresses. This paper investigates the laser cladding of 420 martensitic stainless steel of two single beads produced by different process parameters (e.g., laser power, laser speed, and powder feed rate). Metallographic sample preparation from the cross section revealed three distinct zones: the bead zone, the dilution zone, and the heat-affected zone (HAZ). The tensile residual stresses were in the range of 310-486 MPa on the surface and the upper part of the bead zone. The compressive stresses were in the range of 420-1000 MPa for the rest of the bead zone and the dilution zone. The HAZ also showed tensile residual stresses in the range of 140-320 MPa for both samples. The post-cladding heat treatment performed at 565 °C for an hour had significantly reduced the tensile stresses at the surface and in the subsurface and homogenized the compressive stress throughout the bead and dilution zones. The microstructures, residual stresses, and microhardness profiles were correlated for better understanding of the laser-cladding process.

  11. Self-starting, self-regulating Fourier domain mode locked fiber laser for OCT imaging

    PubMed Central

    Murari, Kartikeya; Mavadia, Jessica; Xi, Jiefeng; Li, Xingde

    2011-01-01

    We present a Fourier domain mode locking (FDML) fiber laser with a feedback loop allowing automatic startup without a priori knowledge of the fundamental drive frequency. The feedback can also regulate the drive frequency making the source robust against environmental variations. A control system samples the energy of the light traversing the FDML cavity and uses a voltage controlled oscillator (VCO) to drive the tunable fiber Fabry-Perot filter in order to maximize that energy. We demonstrate a prototype self-starting, self-regulating FDML operating at 40 kHz with a full width tuning range of 140 nm around 1305 nm and a power output of ~40 mW. The laser starts up with no operator intervention in less than 5 seconds and exhibits improved spectral stability over a conventional FDML source. In OCT applications the source achieved over 120 dB detection sensitivity and an ~8.9-µm axial resolution. PMID:21750775

  12. Core conditions for alpha heating attained in direct-drive inertial confinement fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bose, A.; Woo, K. M.; Betti, R.

    It is shown that direct-drive implosions on the OMEGA laser have achieved core conditions that would lead to significant alpha heating at incident energies available on the National Ignition Facility (NIF) scale. The extrapolation of the experimental results from OMEGA to NIF energy assumes only that the implosion hydrodynamic efficiency is unchanged at higher energies. This approach is independent of the uncertainties in the physical mechanism that degrade implosions on OMEGA, and relies solely on a volumetric scaling of the experimentally observed core conditions. It is estimated that the current best-performing OMEGA implosion [Regan et al., Phys. Rev. Lett. 117,more » 025001 (2016)] extrapolated to a 1.9 MJ laser driver with the same illumination configuration and laser-target coupling would produce 125 kJ of fusion energy with similar levels of alpha heating observed in current highest performing indirect-drive NIF implosions.« less

  13. A novel three-axis cylindrical hohlraum designed for inertial confinement fusion ignition

    NASA Astrophysics Data System (ADS)

    Kuang, Longyu; Li, Hang; Jing, Longfei; Lin, Zhiwei; Zhang, Lu; Li, Liling; Ding, Yongkun; Jiang, Shaoen; Liu, Jie; Zheng, Jian

    2016-10-01

    A novel ignition hohlraum for indirect-drive inertial confinement fusion is proposed, which is named three-axis cylindrical hohlraum (TACH). TACH is a kind of 6 laser entrance holes (LEHs) hohlraum, which is orthogonally jointed of three cylindrical hohlraums. Laser beams are injected through every entrance hole with the same incident angle of 55°. A view-factor simulation result shows that the time-varying drive asymmetry of TACH is less than 1.0% in the whole drive pulse period without any supplementary technology. Coupling efficiency of TACH is close to that of 6 LEHs spherical hohlraum with corresponding size. Its plasma-filling time is close to that of typical cylindrical ignition hohlraum. Its laser plasma interaction has as low backscattering as the outer cone of the cylindrical ignition hohlraum. Therefore, TACH combines most advantages of various hohlraums and has little predictable risk, providing an important competitive candidate for ignition hohlraum.

  14. Core conditions for alpha heating attained in direct-drive inertial confinement fusion

    DOE PAGES

    Bose, A.; Woo, K. M.; Betti, R.; ...

    2016-07-07

    It is shown that direct-drive implosions on the OMEGA laser have achieved core conditions that would lead to significant alpha heating at incident energies available on the National Ignition Facility (NIF) scale. The extrapolation of the experimental results from OMEGA to NIF energy assumes only that the implosion hydrodynamic efficiency is unchanged at higher energies. This approach is independent of the uncertainties in the physical mechanism that degrade implosions on OMEGA, and relies solely on a volumetric scaling of the experimentally observed core conditions. It is estimated that the current best-performing OMEGA implosion [Regan et al., Phys. Rev. Lett. 117,more » 025001 (2016)] extrapolated to a 1.9 MJ laser driver with the same illumination configuration and laser-target coupling would produce 125 kJ of fusion energy with similar levels of alpha heating observed in current highest performing indirect-drive NIF implosions.« less

  15. A novel three-axis cylindrical hohlraum designed for inertial confinement fusion ignition

    PubMed Central

    Kuang, Longyu; Li, Hang; Jing, Longfei; Lin, Zhiwei; Zhang, Lu; Li, Liling; Ding, Yongkun; Jiang, Shaoen; Liu, Jie; Zheng, Jian

    2016-01-01

    A novel ignition hohlraum for indirect-drive inertial confinement fusion is proposed, which is named three-axis cylindrical hohlraum (TACH). TACH is a kind of 6 laser entrance holes (LEHs) hohlraum, which is orthogonally jointed of three cylindrical hohlraums. Laser beams are injected through every entrance hole with the same incident angle of 55°. A view-factor simulation result shows that the time-varying drive asymmetry of TACH is less than 1.0% in the whole drive pulse period without any supplementary technology. Coupling efficiency of TACH is close to that of 6 LEHs spherical hohlraum with corresponding size. Its plasma-filling time is close to that of typical cylindrical ignition hohlraum. Its laser plasma interaction has as low backscattering as the outer cone of the cylindrical ignition hohlraum. Therefore, TACH combines most advantages of various hohlraums and has little predictable risk, providing an important competitive candidate for ignition hohlraum. PMID:27703250

  16. Core conditions for alpha heating attained in direct-drive inertial confinement fusion.

    PubMed

    Bose, A; Woo, K M; Betti, R; Campbell, E M; Mangino, D; Christopherson, A R; McCrory, R L; Nora, R; Regan, S P; Goncharov, V N; Sangster, T C; Forrest, C J; Frenje, J; Gatu Johnson, M; Glebov, V Yu; Knauer, J P; Marshall, F J; Stoeckl, C; Theobald, W

    2016-07-01

    It is shown that direct-drive implosions on the OMEGA laser have achieved core conditions that would lead to significant alpha heating at incident energies available on the National Ignition Facility (NIF) scale. The extrapolation of the experimental results from OMEGA to NIF energy assumes only that the implosion hydrodynamic efficiency is unchanged at higher energies. This approach is independent of the uncertainties in the physical mechanism that degrade implosions on OMEGA, and relies solely on a volumetric scaling of the experimentally observed core conditions. It is estimated that the current best-performing OMEGA implosion [Regan et al., Phys. Rev. Lett. 117, 025001 (2016)10.1103/PhysRevLett.117.025001] extrapolated to a 1.9 MJ laser driver with the same illumination configuration and laser-target coupling would produce 125 kJ of fusion energy with similar levels of alpha heating observed in current highest performing indirect-drive NIF implosions.

  17. A novel three-axis cylindrical hohlraum designed for inertial confinement fusion ignition.

    PubMed

    Kuang, Longyu; Li, Hang; Jing, Longfei; Lin, Zhiwei; Zhang, Lu; Li, Liling; Ding, Yongkun; Jiang, Shaoen; Liu, Jie; Zheng, Jian

    2016-10-05

    A novel ignition hohlraum for indirect-drive inertial confinement fusion is proposed, which is named three-axis cylindrical hohlraum (TACH). TACH is a kind of 6 laser entrance holes (LEHs) hohlraum, which is orthogonally jointed of three cylindrical hohlraums. Laser beams are injected through every entrance hole with the same incident angle of 55°. A view-factor simulation result shows that the time-varying drive asymmetry of TACH is less than 1.0% in the whole drive pulse period without any supplementary technology. Coupling efficiency of TACH is close to that of 6 LEHs spherical hohlraum with corresponding size. Its plasma-filling time is close to that of typical cylindrical ignition hohlraum. Its laser plasma interaction has as low backscattering as the outer cone of the cylindrical ignition hohlraum. Therefore, TACH combines most advantages of various hohlraums and has little predictable risk, providing an important competitive candidate for ignition hohlraum.

  18. The Effect of Fuel Composition, Compression Pressure, and Fuel-Air Ratio on the Compression-Ignition Characteristics of Several Fuels

    DTIC Science & Technology

    1948-03-01

    to this arbitrary value as ntandard. The compression time was maintained unifcum by uElng a ccnstent . driving ~ essure of 500 pounds per squ=e inch...ir ratio,0.066 (chemlo~ correct); initial~ essure , 14.7 lb/sq in. abs.; intt Ml temperature, 609° F abs~ Ignitiondelay Compres- Compres- sion...chemically correct); initial ~ essure , 14.7 lb/sq in. abso; fimal pressures 379 lb/sq in. abs.; initial temperatume~ 6090 F abs.; final temperature, 1340° F abs

  19. Progress on 3-D ICF simulations and Ray-Traced Power Deposition Method

    NASA Astrophysics Data System (ADS)

    Schmitt, Andrew J.; Fyfe, David E.

    2016-10-01

    We have performed 3D simulations of Omega-scale and NIF-scale spherical direct-drive targets with the massively parallel fastrad3d code. Of particular interest is the robustness of the targets to the low mode perturbations impressed on the target by the laser system and how it compares to the influence of the perturbations produced by laser imprinting. As part of this simulation capability, we have upgraded our smoothed 3D raytrace package to run in spherical geometry. This package, which connects rays to form bundles and performs power deposition calculations on the bundles, can decrease laser absorption noise while using fewer rays and less message passing. This model produces both the imprint and the low-mode asymmetry drive that we are interested in here. We show recent simulation results of directly-driven targets using conventional ignition drive, and report on the influences of the two sources - low mode asymmetry and laser imprint - as the pellet conditions (e.g. adiabat) are varied. Work supported by DoE/NNSA.

  20. Application of laser ranging and VLBI data to a study of plate tectonic driving forces. [finite element method

    NASA Technical Reports Server (NTRS)

    Solomon, S. C.

    1980-01-01

    The measurability of changes in plate driving or resistive forces associated with plate boundary earthquakes by laser rangefinding or VLBI is considered with emphasis on those aspects of plate forces that can be characterized by such measurements. Topics covered include: (1) analytic solutions for two dimensional stress diffusion in a plate following earthquake faulting on a finite fault; (2) two dimensional finite-element solutions for the global state of stress at the Earth's surface for possible plate driving forces; and (3) finite-element solutions for three dimensional stress diffusion in a viscoelastic Earth following earthquake faulting.

  1. Vector generator scan converter

    DOEpatents

    Moore, James M.; Leighton, James F.

    1990-01-01

    High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O (input/output) channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardward for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold.

  2. Vector generator scan converter

    DOEpatents

    Moore, J.M.; Leighton, J.F.

    1988-02-05

    High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardware for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold. 7 figs.

  3. Strategies for Time-resolved X-ray Diffraction of Phase Transitions with Laser Compression

    NASA Astrophysics Data System (ADS)

    Benedetti, Laura Robin; Eggert, J. H.; Bradley, D. K.; Bell, P. M.; Kilkenny, J. D.; Palmer, N.; Petre, R. B.; Rygg, J. R.; Sorce, C.; Collins, G. W.; Boehly, T. R.

    2017-10-01

    As part of a program to document kinetics of phase transitions under laser-driven dynamic compression, we are designing a platform to make multiple x-ray diffraction measurements during a single laser experiment. Our plans include experimental development at Omega-EP and eventual implementation at NIF. We will present our strategy for designing a robust platform that can effectively document a wide variety of phase transformations by utilizing both streaked and multiple-frame imaging detectors. Preliminary designs utilize a novel CMOS detector designed by Sandia National Lab. Our initial experiments include scoping studies that will focus on photometrics and shielding requirements in the high EMP environment close to the target. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC, LLNL-ABS-734470.

  4. Synchronization of an optomechanical system to an external drive

    NASA Astrophysics Data System (ADS)

    Amitai, Ehud; Lörch, Niels; Nunnenkamp, Andreas; Walter, Stefan; Bruder, Christoph

    2017-05-01

    Optomechanical systems driven by an effective blue-detuned laser can exhibit self-sustained oscillations of the mechanical oscillator. These self-oscillations are a prerequisite for the observation of synchronization. Here, we study the synchronization of the mechanical oscillations to an external reference drive. We study two cases of reference drives: (1) an additional laser applied to the optical cavity; (2) a mechanical drive applied directly to the mechanical oscillator. Starting from a master equation description, we derive a microscopic Adler equation for both cases, valid in the classical regime in which the quantum shot noise of the mechanical self-oscillator does not play a role. Furthermore, we numerically show that, in both cases, synchronization arises also in the quantum regime. The optomechanical system is therefore a good candidate for the study of quantum synchronization.

  5. Spectral gain profile of a multi-stack terahertz quantum cascade laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bachmann, D., E-mail: dominic.bachmann@tuwien.ac.at; Deutsch, C.; Krall, M.

    2014-11-03

    The spectral gain of a multi-stack terahertz quantum cascade laser, composed of three active regions with emission frequencies centered at 2.3, 2.7, and 3.0 THz, is studied as a function of driving current and temperature using terahertz time-domain spectroscopy. The optical gain associated with the particular quantum cascade stacks clamps at different driving currents and saturates to different values. We attribute these observations to varying pumping efficiencies of the respective upper laser states and to frequency dependent optical losses. The multi-stack active region exhibits a spectral gain full width at half-maximum of 1.1 THz. Bandwidth and spectral position of themore » measured gain match with the broadband laser emission. As the laser action ceases with increasing operating temperature, the gain at the dominant lasing frequency of 2.65 THz degrades sharply.« less

  6. Active Motion of a Janus Particle by Self-Thermophoresis in a Defocused Laser Beam

    NASA Astrophysics Data System (ADS)

    Jiang, Hong-Ren; Yoshinaga, Natsuhiko; Sano, Masaki

    2010-12-01

    We study self-propulsion of a half-metal coated colloidal particle under laser irradiation. The motion is caused by self-thermophoresis: i.e., absorption of a laser at the metal-coated side of the particle creates local temperature gradient which in turn drives the particle by thermophoresis. To clarify the mechanism, temperature distribution and a thermal slip flow field around a microscale Janus particle are measured for the first time. With measured temperature drop across the particle, the speed of self-propulsion is corroborated with the prediction based on accessible parameters. As an application for driving a micromachine, a microrotor is demonstrated.

  7. Laser plasma interaction on rugby hohlraum on the Omega Laser Facility: Comparisons between cylinder, rugby, and elliptical hohlraums

    NASA Astrophysics Data System (ADS)

    Masson-Laborde, P. E.; Monteil, M. C.; Tassin, V.; Philippe, F.; Gauthier, P.; Casner, A.; Depierreux, S.; Neuville, C.; Villette, B.; Laffite, S.; Seytor, P.; Fremerye, P.; Seka, W.; Teychenné, D.; Debayle, A.; Marion, D.; Loiseau, P.; Casanova, M.

    2016-02-01

    Gas-filled rugby-shaped hohlraums have demonstrated high performances compared to a classical similar diameter cylinder hohlraum with a nearly 40% increase of x-ray drive, 10% higher measured peak drive temperature, and an increase in neutron production. Experimental comparisons have been done between rugby, cylinder, and elliptical hohlraums. The impact of these geometry differences on the laser plasma instabilities is examined. Using comparisons with hydrodynamic simulations carried out with the code FCI2 and postprocessed by Piranah, we have been able to reproduce the stimulated Raman and Brillouin scattering spectrum of the different beams. Using a methodology based on a statistical analysis for the gain calculations, we show that the behavior of the laser plasma instabilities in rugby hohlraums can be reproduced. The efficiency of laser smoothing techniques to mitigate these instabilities are discussed, and we show that while rugby hohlraums exhibit more laser plasma instabilities than cylinder hohlraum, the latter can be mitigated in the case of an elliptical hohlraum.

  8. Laser fusion neutron source employing compression with short pulse lasers

    DOEpatents

    Sefcik, Joseph A; Wilks, Scott C

    2013-11-05

    A method and system for achieving fusion is provided. The method includes providing laser source that generates a laser beam and a target that includes a capsule embedded in the target and filled with DT gas. The laser beam is directed at the target. The laser beam helps create an electron beam within the target. The electron beam heats the capsule, the DT gas, and the area surrounding the capsule. At a certain point equilibrium is reached. At the equilibrium point, the capsule implodes and generates enough pressure on the DT gas to ignite the DT gas and fuse the DT gas nuclei.

  9. Low Convergence path to Fusion I: Ignition physics and high margin design

    NASA Astrophysics Data System (ADS)

    Molvig, Kim; Schmitt, M. J.; McCall, G. H.; Betti, R.; Foula, D. H.; Campbell, E. M.

    2016-10-01

    A new class of inertial fusion capsules is presented that combines multi-shell targets with laser direct drive at low intensity (280 TW/cm2) to achieve robust ignition. These Revolver targets consist of three concentric metal shells, enclosing a volume of 10s of µg of liquid deuterium-tritium fuel. The inner shell pusher, nominally of gold, is compressed to over 2000 g/cc, effectively trapping the radiation and enabling ignition at low temperature (2.5 keV) and relatively low implosion velocity (20 cm/micro-sec) at a fuel convergence of 9. Ignition is designed to occur well ``upstream'' from stagnation, with implosion velocity at 90% of maximum, so that any deceleration phase mix will occur only after ignition. Mix, in all its non-predictable manifestations, will effect net yield in a Revolver target - but not the achievement of ignition and robust burn. Simplicity of the physics is the dominant principle. There is no high gain requirement. These basic physics elements can be combined into a simple analytic model that generates a complete target design specification given the fuel mass and the kinetic energy needed in the middle (drive) shell (of order 80 kJ). This research supported by the US DOE/NNSA, performed in part at LANL, operated by LANS LLC under contract DE-AC52-06NA25396.

  10. Centrifugal reciprocating compressor

    NASA Technical Reports Server (NTRS)

    High, W. H.

    1980-01-01

    Efficient compressor uses centrifugal force to compress gas. System incorporates two coupled dc motors, each driving separate centrifugal reciprocating-compressor assembly. Motors are synchronized to accelerate and decelerate alternately.

  11. Indirect Vision Driving with Fixed Flat Panel Displays for Near Unity, Wide, and Extended Fields of Camera View

    DTIC Science & Technology

    2001-06-01

    The choice of camera FOV may depend on the task being performed. The driver may prefer a unity view for driving along a known route to...increase his or her perception of potential road hazards. On the other hand, the driver may prefer a compressed image at road turns for route selection...with a supervisory evaluation of the road ahead and the impact on the driving schema. Included in this

  12. Design of a high-power, high-brightness Nd:YAG solar laser.

    PubMed

    Liang, Dawei; Almeida, Joana; Garcia, Dário

    2014-03-20

    A simple high-power, high-brightness Nd:YAG solar laser pumping approach is presented in this paper. The incoming solar radiation is both collected and concentrated by four Fresnel lenses and redirected toward a Nd:YAG laser head by four plane-folding mirrors. A fused-silica secondary concentrator is used to compress the highly concentrated solar radiation to a laser rod. Optimum pumping conditions and laser resonator parameters are found through ZEMAX and LASCAD numerical analysis. Solar laser power of 96 W is numerically calculated, corresponding to the collection efficiency of 24  W/m². A record-high solar laser beam brightness figure of merit of 9.6 W is numerically achieved.

  13. Laser radiography forming bremsstrahlung radiation to image an object

    DOEpatents

    Perry, Michael D.; Sefcik, Joseph A.

    2004-01-13

    A method of imaging an object by generating laser pulses with a short-pulse, high-power laser. When the laser pulse strikes a conductive target, bremsstrahlung radiation is generated such that hard ballistic high-energy electrons are formed to penetrate an object. A detector on the opposite side of the object detects these electrons. Since laser pulses are used to form the hard x-rays, multiple pulses can be used to image an object in motion, such as an exploding or compressing object, by using time gated detectors. Furthermore, the laser pulses can be directed down different tubes using mirrors and filters so that each laser pulse will image a different portion of the object.

  14. Progress in indirect and direct-drive planar experiments on hydrodynamic instabilities at the ablation front

    DOE PAGES

    Casner, A.; Masse, L.; Delorme, B.; ...

    2014-12-01

    Understanding and mitigating hydrodynamic instabilities and the fuel mix are the key elements for achieving ignition in Inertial Confinement Fusion. Cryogenic indirect-drive implosions on the National Ignition Facility have evidenced that the ablative Rayleigh-Taylor Instability (RTI) is a driver of the hot spot mix. This motivates the switch to a more flexible higher adiabat implosion design [O. A. Hurricane et al., Phys. Plasmas 21, 056313 (2014)]. The shell instability is also the main candidate for performance degradation in low-adiabat direct drive cryogenic implosions [Goncharov et al., Phys. Plasmas 21, 056315 (2014)]. This paper reviews recent results acquired in planar experimentsmore » performed on the OMEGA laser facility and devoted to the modeling and mitigation of hydrodynamic instabilities at the ablation front. In application to the indirect-drive scheme, we describe results obtained with a specific ablator composition such as the laminated ablator or a graded-dopant emulator. In application to the direct drive scheme, we discuss experiments devoted to the study of laser imprinted perturbations with special phase plates. The simulations of the Richtmyer-Meshkov phase reversal during the shock transit phase are challenging, and of crucial interest because this phase sets the seed of the RTI growth. Recent works were dedicated to increasing the accuracy of measurements of the phase inversion. We conclude by presenting a novel imprint mitigation mechanism based on the use of underdense foams. Lastly, the foams induce laser smoothing by parametric instabilities thus reducing the laser imprint on the CH foil.« less

  15. Electric power generating plant having direct-coupled steam and compressed-air cycles

    DOEpatents

    Drost, M.K.

    1981-01-07

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  16. Internet Telephony

    DTIC Science & Technology

    1999-12-01

    compression technology . The ubiquity of routed Internet Protocol (IP) networks, and the desire to trim telephony costs are the major driving forces of the...mid- 󈨞s, data and voice began to merge, propelled by advances in compression technology . The ubiquity of routed Internet Protocol (IP) networks...transmit voice over IP networks that are privately owned or publicly utilized. If we have the technology to transmit Voice over the Internet then why not

  17. Electric power generating plant having direct coupled steam and compressed air cycles

    DOEpatents

    Drost, Monte K.

    1982-01-01

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  18. Preliminary Design and Investigation of Integrated Compressor with Composite Material Wheel

    NASA Astrophysics Data System (ADS)

    Wang, Jifeng; Müller, Norbert

    2012-06-01

    An integrated water vapor compressor with composite material wheel is developed and strength analysis using FEM is presented. The design of wound composite material allows for integrating all rotating parts of the drive that may simply reduce to only the rotor of the electrical motor, since no drive shaft is required anymore. This design can reduce the number of parts and mass, which is convenient for engineers to maintain the compressor. The electrical motors are brushless DC motors operating through a frequency drive and apply a torque on the wheels through the materials bonded in the wheel shrouds. This system allows a large amount of compression to be produced in a multi-stage compression setup. To determine the stress and vibration characteristics of this integrated compressor, numerical analysis is carried out using FEM. The simulation result shows that the integrated compressor with composite material wheel can be used in a chiller system where water as a refrigerant.

  19. Ion Fast Ignition-Establishing a Scientific Basis for Inertial Fusion Energy --- Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephens, Richard Burnite; Foord, Mark N.; Wei, Mingsheng

    The Fast Ignition (FI) Concept for Inertial Confinement Fusion (ICF) has the potential to provide a significant advance in the technical attractiveness of Inertial Fusion Energy reactors. FI differs from conventional ?central hot spot? (CHS) target ignition by decoupling compression from heating: using a laser (or heavy ion beam or Z pinch) drive pulse (10?s of nanoseconds) to create a dense fuel and a second, much shorter (~10 picoseconds) high intensity pulse to ignite a small volume within the dense fuel. The compressed fuel is opaque to laser light. The ignition laser energy must be converted to a jet ofmore » energetic charged particles to deposit energy in the dense fuel. The original concept called for a spray of laser-generated hot electrons to deliver the energy; lack of ability to focus the electrons put great weight on minimizing the electron path. An alternative concept, proton-ignited FI, used those electrons as intermediaries to create a jet of protons that could be focused to the ignition spot from a more convenient distance. Our program focused on the generation and directing of the proton jet, and its transport toward the fuel, none of which were well understood at the onset of our program. We have developed new experimental platforms, diagnostic packages, computer modeling analyses, and taken advantage of the increasing energy available at laser facilities to create a self-consistent understanding of the fundamental physics underlying these issues. Our strategy was to examine the new physics emerging as we added the complexity necessary to use proton beams in an inertial fusion energy (IFE) application. From the starting point of a proton beam accelerated from a flat, isolated foil, we 1) curved it to focus the beam, 2) attached the foil to a superstructure, 3) added a side sheath to protect it from the surrounding plasma, and finally 4) studied the proton beam behavior as it passed through a protective end cap into plasma. We built up, as we proceeded, a self-consistent picture of the quasi-neutral plasma jet that is the proton beam that, for the first time, included the role of the hot electrons in shaping the jet. Controlling them?through design of the accelerating surface and its connection to the surrounding superstructure?is critical; their uniform spread across the proton accelerating area is vital, but their presence in the jet opposes focus; their electron flow away from the acceleration area reduces conversion efficiency but can also increase focusing ability. The understanding emerging from our work and the improved simulation tools we have developed allow designing structures that optimize proton beams for focused heating. Our findings include: ? The achievable focus of proton beams is limited by the thermal pressure gradient in the laser-generated hot electrons that drive the process. This bending can be suppressed using a controlled flow of hot electrons along the surrounding cone wall, which induces a local transverse focusing sheath electric field. The resultant (vacuum-focused) spot can meet IFE requirements. ? Confinement of laser-generated electrons to the proton accelerating area can be achieved by supporting targets on thin struts. That increases laser-to-proton conversion energy by ~50%. As noted above, confinement should not be total; necessary hot-electron leakage into the surrounding superstructure for proton focusing can be controlled by with the strut width/number. ? Proton jets are further modified as they enter the fuel through the superstructure?s end cap. They can generate currents during that transit that further focus the proton beams. We developed a new ion stopping module for LSP code that properly accounted for changes in stopping power with ionization (e.g. temperature), and will be using it in future studies. The improved understanding, new experimental platforms, and the self-consistent modeling capability allow researchers a new ability to investigate the interaction of large ion currents with warm dense matter. That is of direct importance to the creation and investigation of all aspects of warm dense matter as well as to proton-ignited FI.« less

  20. Fast-Ion Spectrometry of ICF Implosions and Laser-Foil Experiments at the Omega and MTW Laser Facilities

    NASA Astrophysics Data System (ADS)

    Sinenian, Nareg

    Fast ions generated from laser-plasma interactions (LPI) have been used to study inertial confinement fusion (ICF) implosions and laser-foil interactions. LPI, which vary in nature depending on the wavelength and intensity of the driver, generate hot electrons with temperatures ranging from tens to thousands of kilo-electron-volts. These electrons, which accelerate the ions measured in this work, can be either detrimental or essential to implosion performance depending on the ICF scheme employed. In direct-drive hot-spot ignition, hot electrons can preheat the fuel and raise the adiabat, potentially degrading compression in the implosion. The amount of preheat depends on the hot-electron source characteristics and the time duration over which electrons can deposit energy into the fuel. This time duration is prescribed by the evolution of a sheath that surrounds the implosion and traps electrons. Fast-ion measurements have been used to develop a circuit model that describes the time decay of the sheath voltage for typical OMEGA implosions. In the context of electron fast ignition, the produced fast ions are considered a loss channel that has been characterized for the first time. These ions have also been used as a diagnostic tool to infer the temperature of the hot electrons in fast-ignition experiments. It has also been shown that the hot-electron temperature scales with laser intensity as expected, but is enhanced by a factor of 2-3. This enhancement is possibly due to relativistic effects and leads to poor implosion performance. Finally, fast-ion generation by ultra-intense lasers has also been studied using planar targets. The mean and maximum energies of protons and heavy ions has been measured, and it has been shown that a two-temperature hot-electron distribution affects the energies of heavy ions and protons. This work is important for advanced fusion concepts that utilize ion beams and also has applications in medicine. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs@mit.edu)

  1. Simple model of the indirect compression of targets under conditions close to the national ignition facility at an energy of 1.5 MJ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rozanov, V. B., E-mail: rozanov@sci.lebedev.ru; Vergunova, G. A., E-mail: verg@sci.lebedev.ru

    2015-11-15

    The possibility of the analysis and interpretation of the reported experiments with the megajoule National Ignition Facility (NIF) laser on the compression of capsules in indirect-irradiation targets by means of the one-dimensional RADIAN program in the spherical geometry has been studied. The problem of the energy balance in a target and the determination of the laser energy that should be used in the spherical model of the target has been considered. The results of action of pulses differing in energy and time profile (“low-foot” and “high-foot” regimes) have been analyzed. The parameters of the compression of targets with a high-densitymore » carbon ablator have been obtained. The results of the simulations are in satisfactory agreement with the measurements and correspond to the range of the observed parameters. The set of compared results can be expanded, in particular, for a more detailed determination of the parameters of a target near the maximum compression of the capsule. The physical foundation of the possibility of using the one-dimensional description is the necessity of the closeness of the last stage of the compression of the capsule to a one-dimensional process. The one-dimensional simulation of the compression of the capsule can be useful in establishing the boundary behind which two-dimensional and three-dimensional simulation should be used.« less

  2. Pre-chirp managed nonlinear amplification in fibers delivering 100  W, 60  fs pulses.

    PubMed

    Liu, Wei; Schimpf, Damian N; Eidam, Tino; Limpert, Jens; Tünnermann, Andreas; Kärtner, Franz X; Chang, Guoqing

    2015-01-15

    We demonstrate a pre-chirp managed Yb-doped fiber laser system that outputs 75 MHz, 130 W spectrally broadened pulses, which are compressed by a diffraction-grating pair to 60 fs with average powers as high as 100 W. Fine tuning the pulse chirp prior to amplification leads to high-quality compressed pulses. Detailed experiments and numerical simulation reveal that the optimum pre-chirp group-delay dispersion increases from negative to positive with increasing output power for rod-type high-power fiber amplifiers. The resulting laser parameters are suitable for extreme nonlinear optics applications such as frequency conversion in femtosecond enhancement cavities.

  3. Optimization design and laser damage threshold analysis of pulse compression multilayer dielectric gratings

    NASA Astrophysics Data System (ADS)

    Fan, Shuwei; Bai, Liang; Chen, Nana

    2016-08-01

    As one of the key elements of high-power laser systems, the pulse compression multilayer dielectric grating is required for broader band, higher diffraction efficiency and higher damage threshold. In this paper, the multilayer dielectric film and the multilayer dielectric gratings(MDG) were designed by eigen matrix and optimized with the help of generic algorithm and rigorous coupled wave method. The reflectivity was close to 100% and the bandwith were over 250nm, twice compared to the unoptimized film structure. The simulation software of standing wave field distribution within MDG was developed and the electric field of the MDG was calculated. And the key parameters which affected the electric field distribution were also studied.

  4. Enhanced direct-drive implosions with thin high-Z ablation layers.

    PubMed

    Mostovych, Andrew N; Colombant, Denis G; Karasik, Max; Knauer, James P; Schmitt, Andrew J; Weaver, James L

    2008-02-22

    New direct-drive spherical implosion experiments with deuterium filled plastic shells have demonstrated significant and absolute (2x) improvements in neutron yield when the shells are coated with a very thin layer ( approximately 200-400 A) of high-Z material such as palladium. This improvement is interpreted as resulting from increased stability of the imploding shell. These results provide for a possible path to control laser imprint and stability in laser-fusion-energy target designs.

  5. High-quality electron beam generation and bright betatron radiation from a cascaded laser wakefield accelerator (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Liu, Jiansheng; Wang, Wentao; Li, Wentao; Qi, Rong; Zhang, Zhijun; Yu, Changhai; Wang, Cheng; Liu, Jiaqi; Qing, Zhiyong; Ming, Fang; Xu, Yi; Leng, Yuxin; Li, Ruxin; Xu, Zhizhan

    2017-05-01

    One of the major goals of developing laser wakefiled accelerators (LWFAs) is to produce compact high-energy electron beam (e-beam) sources, which are expected to be applied in developing compact x-ray free-electron lasers and monoenergetic gamma-ray sources. Although LWFAs have been demonstrated to generate multi-GeV e-beams, to date they are still failed to produce high quality e beams with several essential properties (narrow energy spread, small transverse emittance and high beam charge) achieved simultaneously. Here we report on the demonstration of a high-quality cascaded LWFA experimentally via manipulating electron injection, seeding in different periods of the wakefield, as well as controlling energy chirp for the compression of energy spread. The cascaded LWFA was powered by a 1-Hz 200-TW femtosecond laser facility at SIOM. High-brightness e beams with peak energies in the range of 200-600 MeV, 0.4-1.2% rms energy spread, 10-80 pC charge, and 0.2 mrad rms divergence are experimentally obtained. Unprecedentedly high 6-dimensional (6-D) brightness B6D,n in units of A/m2/0.1% was estimated at the level of 1015-16, which is very close to the typical brightness of e beams from state-of-the-art linac drivers and several-fold higher than those of previously reported LWFAs. Furthermore, we propose a scheme to minimize the energy spread of an e beam in a cascaded LWFA to the one-thousandth-level by inserting a stage to compress its longitudinal spatial distribution via velocity bunching. In this scheme, three-segment plasma stages are designed for electron injection, e-beam length compression, and e-beam acceleration, respectively. A one-dimensional theory and two-dimensional particle-in-cell simulations have demonstrated this scheme and an e beam with 0.2% rms energy spread and low transverse emittance could be generated without loss of charge. Based on the high-quality e beams generated in the LWFA, we have experimentally realized a new scheme to enhance the betatron radiation via manipulating the e-beam transverse oscillation in the wakefield. Very brilliant quasi-monochromatic betatron x-rays in tens of keV with significant enhancement both in photon yield and peak energy have been generated. Besides, by employing a self-synchronized all-optical Compton scattering scheme, in which the electron beam collided with the intense driving laser pulse via the reflection of a plasma mirror, we produced tunable quasi-monochromatic MeV γ-rays ( 33% full-width at half-maximum) with a peak brilliance of 3.1×1022 photons s-1 mm-2 mrad-2 0.1% BW at 1 MeV, which is one order of magnitude higher than ever reported value in MeV regime to the best of our knowledge. 1. J. S. Liu, et al., Phys. Rev. Lett. 107, 035001 (2011). 2. X. Wang, et al., Nat. Commun. 4, 1988 (2013). 3. W. P. Leemans, et al., Phys. Rev. Lett. 113, 245002 (2014) 4. W. T. Wang et al., Phys. Rev. Lett. 117, 124801 (2016). 5. Z. J. Zhang et al., Phys. Plasmas 23, 053106 (2016). 6. C. H. Yu et al., Sci. Rep. 6, 29518 (2016).

  6. Efficient generation of ultra-intense few-cycle radially polarized laser pulses.

    PubMed

    Carbajo, Sergio; Granados, Eduardo; Schimpf, Damian; Sell, Alexander; Hong, Kyung-Han; Moses, Jeffrey; Kärtner, Franz X

    2014-04-15

    We report on efficient generation of millijoule-level, kilohertz-repetition-rate few-cycle laser pulses with radial polarization by combining a gas-filled hollow-waveguide compression technique with a suitable polarization mode converter. Peak power levels >85  GW are routinely achieved, capable of reaching relativistic intensities >10(19)  W/cm2 with carrier-envelope-phase control, by employing readily accessible ultrafast high-energy laser technology.

  7. A novel two-step sintering for nano-hydroxyapatite scaffolds for bone tissue engineering

    PubMed Central

    Feng, Pei; Niu, Man; Gao, Chengde; Peng, Shuping; Shuai, Cijun

    2014-01-01

    In this study, nano-hydroxyapatite scaffolds with high mechanical strength and an interconnected porous structure were prepared using NTSS for the first time. The first step was performed using a laser characterized by the rapid heating to skip the surface diffusion and to obtain the driving force for grain boundary diffusion. Additionally, the interconnected porous structure was achieved by SLS. The second step consisted of isothermal heating in a furnace at a lower temperature (T2) than that of the laser beam to further increase the density and to suppress grain growth by exploiting the difference in kinetics between grain-boundary diffusion and grain-boundary migration. The results indicated that the mechanical properties first increased and then decreased as T2 was increased from 1050 to 1250°C. The optimal fracture toughness, compressive strength and stiffness were 1.69 MPam1/2, 18.68 MPa and 245.79 MPa, respectively. At the optimal point, the T2 was 1100°C, the grain size was 60 nm and the relative density was 97.6%. The decrease in mechanical properties was due to the growth of grains and the decomposition of HAP. The cytocompatibility test results indicated that cells adhered and spread well on the scaffolds. A bone-like apatite layer formed, indicating good bioactivity. PMID:24998362

  8. 780nm-range VCSEL array for laser printer system and other applications at Ricoh

    NASA Astrophysics Data System (ADS)

    Jikutani, Naoto; Itoh, Akihiro; Harasaka, Kazuhiro; Sasaki, Toshihide; Sato, Shunichi

    2016-03-01

    A 780 nm-range 40 channels vertical-cavity surface-emitting laser (VCSEL) array was developed as a writing light source for printers. A 15° off missoriented GaAs substrate, an aluminum-free GaInAsP/GaInP compressively-strained multiple quantum well and an anisotropic-shape transverse-mode filter were employed to control polarization characteristics. The anisotropic-shape transverse-mode filter also suppressed higher transverse-mode and enabled high-power single-mode operation. Thus, orthogonal-polarization suppression-ratio (OPSR) of over 22 dB and side-mode suppression-ratio (SMSR) of 30 dB were obtained at operation power of 3mW at same time for wide oxide-aperture range below 50 μm2. Moreover, a thermal resistance was reduced for 38% by increasing a thickness of high thermal conductivity layer (3λ/4-AlAs layer) near a cavity. By this structure, a peak-power increased to 1.3 times. Moreover, a power-fall caused by self-heating at pulse-rise was decreased to 10% and the one caused by a thermal-crosstalk between channels was decreased to 46%. The VCSEL array was mounted in a ceramic package with a tilted seal glass to prevent optical-crosstalk caused by other channels. Thus, we achieved stable-output and high-quality beam characteristics for long-duration pulse drive.

  9. Noncontacting Laser Inspection System for Dimensional Profiling of Space Application Thermal Barriers

    NASA Technical Reports Server (NTRS)

    Taylor, Shawn C.

    2011-01-01

    A noncontacting, two-dimensional (2-D) laser inspection system has been designed and implemented to dimensionally profile thermal barriers being developed for space vehicle applications. In a vehicle as-installed state, thermal barriers are commonly compressed between load sensitive thermal protection system (TPS) panels to prevent hot gas ingestion through the panel interface during flight. Loads required to compress the thermal barriers are functions of their construction, as well as their dimensional characteristics relative to the gaps in which they are installed. Excessive loads during a mission could damage surrounding TPS panels and have catastrophic consequences. As such, accurate dimensional profiling of thermal barriers prior to use is important. Due to the compliant nature of the thermal barriers, traditional contact measurement techniques (e.g., calipers and micrometers) are subjective and introduce significant error and variability into collected dimensional data. Implementation of a laser inspection system significantly enhanced the method by which thermal barriers are dimensionally profiled, and improved the accuracy and repeatability of collected data. A statistical design of experiments study comparing laser inspection and manual caliper measurement techniques verified these findings.

  10. Development of a Short-Duration Drive Cycle to Represent Long-Term Measured Drive Cycle Data: Evaluation of Truck Efficiency Technologies in Class 8 Tractor Trailers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaClair, Tim; Gao, Zhiming; Fu, Joshua

    Quantifying the fuel savings and emissions reductions that can be achieved from truck fuel efficiency technologies for a fleet's specific usage allows the fleet to select a combination of technologies that will yield the greatest operational efficiency and profitability. An accurate characterization of usage for the fleet is critical for such an evaluation; however, short-term measured drive cycle data do not generally reflect overall usage very effectively. This study presents a detailed analysis of vehicle usage in a commercial vehicle fleet and demonstrates the development of a short-duration synthetic drive cycle with measured drive cycle data collected over an extendedmore » period of time. The approach matched statistical measures of the vehicle speed with acceleration history and integrated measured grade data to develop a compressed drive cycle that accurately represents total usage. Drive cycle measurements obtained during a full year from six tractor trailers in normal operations in a less-than-truckload carrier were analyzed to develop a synthetic drive cycle. The vehicle mass was also estimated to account for the variation of loads that the fleet experienced. These drive cycle and mass data were analyzed with a tractive energy analysis to quantify the benefits in terms of fuel efficiency and reduced carbon dioxide emissions that can be achieved on Class 8 tractor trailers by using advanced efficiency technologies, either individually or in combination. Although differences exist between Class 8 tractor trailer fleets, this study provides valuable insight into the energy and emissions reduction potential that various technologies can bring in this important trucking application. Finally, the methodology employed for generating the synthetic drive cycle serves as a rigorous approach to develop an accurate usage characterization that can be used to effectively compress large quantities of drive cycle data.« less

  11. Development of a Short-Duration Drive Cycle to Represent Long-Term Measured Drive Cycle Data: Evaluation of Truck Efficiency Technologies in Class 8 Tractor Trailers

    DOE PAGES

    LaClair, Tim; Gao, Zhiming; Fu, Joshua; ...

    2014-12-01

    Quantifying the fuel savings and emissions reductions that can be achieved from truck fuel efficiency technologies for a fleet's specific usage allows the fleet to select a combination of technologies that will yield the greatest operational efficiency and profitability. An accurate characterization of usage for the fleet is critical for such an evaluation; however, short-term measured drive cycle data do not generally reflect overall usage very effectively. This study presents a detailed analysis of vehicle usage in a commercial vehicle fleet and demonstrates the development of a short-duration synthetic drive cycle with measured drive cycle data collected over an extendedmore » period of time. The approach matched statistical measures of the vehicle speed with acceleration history and integrated measured grade data to develop a compressed drive cycle that accurately represents total usage. Drive cycle measurements obtained during a full year from six tractor trailers in normal operations in a less-than-truckload carrier were analyzed to develop a synthetic drive cycle. The vehicle mass was also estimated to account for the variation of loads that the fleet experienced. These drive cycle and mass data were analyzed with a tractive energy analysis to quantify the benefits in terms of fuel efficiency and reduced carbon dioxide emissions that can be achieved on Class 8 tractor trailers by using advanced efficiency technologies, either individually or in combination. Although differences exist between Class 8 tractor trailer fleets, this study provides valuable insight into the energy and emissions reduction potential that various technologies can bring in this important trucking application. Finally, the methodology employed for generating the synthetic drive cycle serves as a rigorous approach to develop an accurate usage characterization that can be used to effectively compress large quantities of drive cycle data.« less

  12. Calculations of the Performance of a Compression-Ignition Engine-Compressor Turbine Combination I : Performance of a Highly Supercharged Compression-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Sanders, J. C.; Mendelson, Alexander

    1945-01-01

    Small high-speed single-cylinder compression-ignition engines were tested to determine their performance characteristics under high supercharging. Calculations were made on the energy available in the exhaust gas of the compression-ignition engines. The maximum power at any given maximum cylinder pressure was obtained when the compression pressure was equal to the maximum cylinder pressure. Constant-pressure combustion was found possible at an engine speed of 2200 rpm. Exhaust pressures and temperatures were determined from an analysis of indicator cards. The analysis showed that, at rich mixtures with the exhaust back pressure equal to the inlet-air pressure, there is excess energy available for driving a turbine over that required for supercharging. The presence of this excess energy indicates that a highly supercharged compression-ignition engine might be desirable as a compressor and combustion chamber for a turbine.

  13. A 532 nm Chaotic Fiber Laser Transmitter for Underwater Lidar

    DTIC Science & Technology

    2013-04-23

    passes through unaffected. 3.1.1.2 Ring Lasers as Oscillators The simplest form of laser is a called a Fabry - Perot laser, in which two reflectors are...insufficient to drive the gain amplifier, and so the circulator-based design was scrapped in favor of the Fabry - Perot , whose efficiency was far better...Bidirectional Ring and Fabry - Perot Lasers The Fabry - Perot laser used two matched FBGs to create a wavelength-selective resonator cavity. First single- and

  14. CO2 laser drives extreme ultraviolet nano-lithography — second life of mature laser technology

    NASA Astrophysics Data System (ADS)

    Nowak, K. M.; Ohta, T.; Suganuma, T.; Fujimoto, J.; Mizoguchi, H.; Sumitani, A.; Endo, A.

    2013-12-01

    It was shown both theoretically and experimentally that nanosecond order laser pulses at 10.6 micron wavelength were superior for driving the Sn plasma extreme ultraviolet (EUV) source for nano-lithography for the reasons of higher conversion efficiency, lower production of debris and higher average power levels obtainable in CO2 media without serious problems of beam distortions and nonlinear effects occurring in competing solid-state lasers at high intensities. The renewed interest in such pulse format, wavelength, repetition rates in excess of 50 kHz and average power levels in excess of 18 kiloWatt has sparked new opportunities for a matured multi-kiloWatt CO2 laser technology. The power demand of EUV source could be only satisfied by a Master-Oscillator-Power-Amplifier system configuration, leading to a development of a new type of hybrid pulsed CO2 laser employing a whole spectrum of CO2 technology, such as fast flow systems and diffusion-cooled planar waveguide lasers, and relatively recent quantum cascade lasers. In this paper we review briefly the history of relevant pulsed CO2 laser technology and the requirements for multi-kiloWatt CO2 laser, intended for the laser-produced plasma EUV source, and present our recent advances, such as novel solid-state seeded master oscillator and efficient multi-pass amplifiers built on planar waveguide CO2 lasers.

  15. Suppressing Two-Plasmon Decay with Laser Frequency Detuning

    DOE PAGES

    Follett, R. K.; Shaw, J. G.; Myatt, J. F.; ...

    2018-03-30

    Three-dimensional laser-plasma interaction simulations show that laser frequency detuning by an amount achievable with current laser technology can be used to suppress the two-plasmon decay (TPD) instability and the corresponding hot-electron generation. For the plasma conditions and laser configuration in a direct-drive inertial confinement fusion implosion on the OMEGA laser, the simulations show that ~0.7% laser frequency detuning is sufficient to eliminate TPD-driven hot-electron generation in current experiments. In conclusion, this allows for higher ablation pressures in future implosion designs by using higher laser intensities.

  16. Suppressing Two-Plasmon Decay with Laser Frequency Detuning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Follett, R. K.; Shaw, J. G.; Myatt, J. F.

    Three-dimensional laser-plasma interaction simulations show that laser frequency detuning by an amount achievable with current laser technology can be used to suppress the two-plasmon decay (TPD) instability and the corresponding hot-electron generation. For the plasma conditions and laser configuration in a direct-drive inertial confinement fusion implosion on the OMEGA laser, the simulations show that ~0.7% laser frequency detuning is sufficient to eliminate TPD-driven hot-electron generation in current experiments. In conclusion, this allows for higher ablation pressures in future implosion designs by using higher laser intensities.

  17. Suppressing Two-Plasmon Decay with Laser Frequency Detuning

    NASA Astrophysics Data System (ADS)

    Follett, R. K.; Shaw, J. G.; Myatt, J. F.; Palastro, J. P.; Short, R. W.; Froula, D. H.

    2018-03-01

    Three-dimensional laser-plasma interaction simulations show that laser frequency detuning by an amount achievable with current laser technology can be used to suppress the two-plasmon decay (TPD) instability and the corresponding hot-electron generation. For the plasma conditions and laser configuration in a direct-drive inertial confinement fusion implosion on the OMEGA laser, the simulations show that ˜0.7 % laser frequency detuning is sufficient to eliminate TPD-driven hot-electron generation in current experiments. This allows for higher ablation pressures in future implosion designs by using higher laser intensities.

  18. Electron beam switched discharge for rapidly pulsed lasers

    DOEpatents

    Pleasance, Lyn D.; Murray, John R.; Goldhar, Julius; Bradley, Laird P.

    1981-01-01

    Method and apparatus for electrical excitation of a laser gas by application of a pulsed voltage across the gas, followed by passage of a pulsed, high energy electron beam through the gas to initiate a discharge suitable for laser excitation. This method improves upon current power conditioning techniques and is especially useful for driving rare gas halide lasers at high repetition rates.

  19. On the effective turbulence driving mode of molecular clouds formed in disc galaxies

    NASA Astrophysics Data System (ADS)

    Jin, Keitaro; Salim, Diane M.; Federrath, Christoph; Tasker, Elizabeth J.; Habe, Asao; Kainulainen, Jouni T.

    2017-07-01

    We determine the physical properties and turbulence driving mode of molecular clouds formed in numerical simulations of a Milky Way-type disc galaxy with parsec-scale resolution. The clouds form through gravitational fragmentation of the gas, leading to average values for mass, radii and velocity dispersion in good agreement with observations of Milky Way clouds. The driving parameter (b) for the turbulence within each cloud is characterized by the ratio of the density contrast (σ _{ρ /ρ _0}) to the average Mach number (M) within the cloud, b=σ _{ρ /ρ _0}/M. As shown in previous works, b ˜ 1/3 indicates solenoidal (divergence-free) driving and b ˜ 1 indicates compressive (curl-free) driving. We find that the average b value of all the clouds formed in the simulations has a lower limit of b > 0.2. Importantly, we find that b has a broad distribution, covering values from purely solenoidal to purely compressive driving. Tracking the evolution of individual clouds reveals that the b value for each cloud does not vary significantly over their lifetime. Finally, we perform a resolution study with minimum cell sizes of 8, 4, 2 and 1 pc and find that the average b value increases with increasing resolution. Therefore, we conclude that our measured b values are strictly lower limits and that a resolution better than 1 pc is required for convergence. However, regardless of the resolution, we find that b varies by factors of a few in all cases, which means that the effective driving mode alters significantly from cloud to cloud.

  20. X-ray conversion efficiency of high-Z hohlraum wall materials for indirect drive ignition

    NASA Astrophysics Data System (ADS)

    Dewald, E. L.; Rosen, M.; Glenzer, S. H.; Suter, L. J.; Girard, F.; Jadaud, J. P.; Schein, J.; Constantin, C.; Wagon, F.; Huser, G.; Neumayer, P.; Landen, O. L.

    2008-07-01

    The conversion efficiency of 351nm laser light to soft x rays (0.1-5keV) was measured for Au, U, and high Z mixture "cocktails" used as hohlraum wall materials in indirect drive fusion experiments. For the spherical targets in a direct drive geometry, flattop laser pulses and laser smoothing with phase plates are employed to achieve constant and uniform laser intensities of 1014 and 1015W/cm2 over the target surface that are relevant for the future ignition experiments at the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Nucl. Fusion 44, 228 (2004)]. The absolute time and spectrally resolved radiation flux is measured with a multichannel soft x-ray power diagnostic. The conversion efficiency is then calculated by dividing the measured x-ray power by the incident laser power from which the measured laser backscattering losses are subtracted. After ˜0.5ns, the time resolved x-ray conversion efficiency reaches a slowly increasing plateau of 95% at 1014W/cm2 laser intensity and of 80% at 1015W/cm2. The M-band flux (2-5keV) is negligible at 1014W/cm2 reaching ˜1% of the total x-ray flux for all target materials. In contrast, the M-band flux is significant and depends on the target material at 1015W/cm2 laser intensity, reaching values between 10% of the total flux for U and 27% for Au. LASNEX simulations [G. B. Zimmerman and W. L. Kruer, Comm. Plasma Phys. Contr. Fusion 2, 51 (1975)] show good agreement in conversion efficiency and radiated spectra with data when using XSN atomic physics model and a flux limiter of 0.15, but they underestimate the generated M-band flux.

Top