Combined refrigeration system with a liquid pre-cooling heat exchanger
Gaul, Christopher J.
2003-07-01
A compressor-pump unit for use in a vapor-compression refrigeration system is provided. The compressor-pump unit comprises a driving device including a rotatable shaft. A compressor is coupled with a first portion of the shaft for compressing gaseous refrigerant within the vapor-compression refrigeration system. A liquid pump is coupled with a second portion of the shaft for receiving liquid refrigerant having a first pressure and for discharging the received liquid refrigerant at a second pressure with the second pressure being higher than the first pressure by a predetermined amount such that the discharged liquid refrigerant is subcooled. A pre-cooling circuit is connected to the liquid pump with the pre-cooling circuit being exposed to the gaseous refrigerant whereby the gaseous refrigerant absorbs heat from the liquid refrigerant, prior to the liquid refrigerant entering the liquid pump.
NASA Astrophysics Data System (ADS)
Gu, Rui
Vapor compression cycles are widely used in heating, refrigerating and air-conditioning. A slight performance improvement in the components of a vapor compression cycle, such as the compressor, can play a significant role in saving energy use. However, the complexity and cost of these improvements can block their application in the market. Modifying the conventional cycle configuration can offer a less complex and less costly alternative approach. Economizing is a common modification for improving the performance of the refrigeration cycle, resulting in decreasing the work required to compress the gas per unit mass. Traditionally, economizing requires multi-stage compressors, the cost of which has restrained the scope for practical implementation. Compressors with injection ports, which can be used to inject economized refrigerant during the compression process, introduce new possibilities for economization with less cost. This work focuses on computationally investigating a refrigeration system performance with two-phase fluid injection, developing a better understanding of the impact of injected refrigerant quality on refrigeration system performance as well as evaluating the potential COP improvement that injection provides based on refrigeration system performance provided by Copeland.
Process Options for Nominal 2-K Helium Refrigeration System Designs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peter Knudsen, Venkatarao Ganni
Nominal 2-K helium refrigeration systems are frequently used for superconducting radio frequency and magnet string technologies used in accelerators. This paper examines the trade-offs and approximate performance of four basic types of processes used for the refrigeration of these technologies; direct vacuum pumping on a helium bath, direct vacuum pumping using full or partial refrigeration recovery, cold compression, and hybrid compression (i.e., a blend of cold and warm sub-atmospheric compression).
Magnetic-Flux-Compression Cooling Using Superconductors
NASA Technical Reports Server (NTRS)
Strayer, Donald M.; Israelsson, Ulf E.; Elleman, Daniel D.
1989-01-01
Proposed magnetic-flux-compression refrigeration system produces final-stage temperatures below 4.2 K. More efficient than mechanical and sorption refrigerators at temperatures in this range. Weighs less than comparable liquid-helium-cooled superconducting magnetic refrigeration systems operating below 4.2 K. Magnetic-flux-compression cooling stage combines advantages of newly discovered superconductors with those of cooling by magnetization and demagnetization of paramagnetic salts.
Manganese Nitride Sorption Joule-Thomson Refrigerator
NASA Technical Reports Server (NTRS)
Jones, Jack A.; Phillips, Wayne M.
1992-01-01
Proposed sorption refrigeration system of increased power efficiency combines MnxNy sorption refrigeration stage with systems described in "Regenerative Sorption Refrigerator" (NPO-17630). Measured pressure-vs-composition isotherms for reversible chemisorption of N2 in MnxNy suggest feasibility to incorporate MnxNy chemisorption stage in Joule-Thomson cryogenic system. Discovery represents first known reversible nitrogen chemisorption compression system. Has potential in nitrogen-isotope separation, nitrogen purification, or contamination-free nitrogen compression.
NASA Astrophysics Data System (ADS)
Ambarita, H.; Sihombing, H. V.
2018-03-01
Vapor compression cycle is mainly employed as a refrigeration cycle in the Air-Conditioning (AC) unit. In order to save energy, the Coefficient of Performance (COP) of the need to be improved. One of the potential solutions is to modify the system into multi-stages vapor compression cycle. The suitable intermediate pressure between the high and low pressures is one of the design issues. The present work deals with the investigation of an optimum intermediate pressure of two-stages vapor compression refrigeration cycle. Typical vapor compression cycle that is used in AC unit is taken into consideration. The used refrigerants are R134a. The governing equations have been developed for the systems. An inhouse program has been developed to solve the problem. COP, mass flow rate of the refrigerant and compressor power as a function of intermediate pressure are plotted. It was shown that there exists an optimum intermediate pressure for maximum COP. For refrigerant R134a, the proposed correlations need to be revised.
Mountain Plains Learning Experience Guide: Heating, Refrigeration, & Air Conditioning.
ERIC Educational Resources Information Center
Carey, John
This Heating, Refrigeration, and Air Conditioning course is comprised of eleven individualized units: (1) Refrigeration Tools, Materials, and Refrigerant; (2) Basic Heating and Air Conditioning; (3) Sealed System Repairs; (4) Basic Refrigeration Systems; (5) Compression Systems and Compressors; (6) Refrigeration Controls; (7) Electric Circuit…
NASA Astrophysics Data System (ADS)
Veera Raghavalu, K.; Govindha Rasu, N.
2018-03-01
The present research paper focuses on the use of Nano additive refrigerants in vapor compression refrigeration system (VCRS) because of their amazing development during Thermo Physical along with heat transfer potential to improve the coefficient of performance (COP) and reliability of refrigeration system. Furthermore, challenges and future instructions of performance enhancement of VCRS using Nano additive refrigerants were presented. Lubricant oil is essential in the entire vapour compression refrigeration systems, mostly for the efficient function of the compressor. But, some assign of the oil is entire the cycle oil circulates with the refrigerant. Presently, an assortment of investigation is going on in the field of the Nano-particles like metals, oxides, carbon Nano-tubes or carbides. Nano-lubricants are unique type of Nano-fluids which are varieties of Nano-particles, lubricants and have a wide variety in the fields of refrigeration systems. This paper, has been done on the application of Nano-particles balanced in lubricating oils of refrigerating systems are reviewed. The aim of this investigation is to study and find which type of lubricant oil works better with Nano-particles in the area of refrigeration. From the review of literature, it has been observed that Nano-particles mixed with mineral oil gives enhanced results than polyolester (POE) oil.
46 CFR 151.40-11 - Refrigeration systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Refrigeration systems. 151.40-11 Section 151.40-11... Refrigeration systems. (a) Boiloff systems. The venting of cargo boiloff to atmosphere shall not be used as a...) Vapor compression, tank refrigeration, and secondary refrigeration systems: The required cooling...
46 CFR 151.40-11 - Refrigeration systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Refrigeration systems. 151.40-11 Section 151.40-11... Refrigeration systems. (a) Boiloff systems. The venting of cargo boiloff to atmosphere shall not be used as a...) Vapor compression, tank refrigeration, and secondary refrigeration systems: The required cooling...
46 CFR 151.40-11 - Refrigeration systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Refrigeration systems. 151.40-11 Section 151.40-11... Refrigeration systems. (a) Boiloff systems. The venting of cargo boiloff to atmosphere shall not be used as a...) Vapor compression, tank refrigeration, and secondary refrigeration systems: The required cooling...
46 CFR 151.40-11 - Refrigeration systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Refrigeration systems. 151.40-11 Section 151.40-11... Refrigeration systems. (a) Boiloff systems. The venting of cargo boiloff to atmosphere shall not be used as a...) Vapor compression, tank refrigeration, and secondary refrigeration systems: The required cooling...
46 CFR 151.40-11 - Refrigeration systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Refrigeration systems. 151.40-11 Section 151.40-11... Refrigeration systems. (a) Boiloff systems. The venting of cargo boiloff to atmosphere shall not be used as a...) Vapor compression, tank refrigeration, and secondary refrigeration systems: The required cooling...
Development of a refrigeration system for lunar surface and spacecraft applications
NASA Technical Reports Server (NTRS)
Copeland, R. J.
1976-01-01
An evaluation of refrigeration devices suitable for potential lunar surface and spacecraft applications was performed. The following conclusions were reached: (1) the vapor compression system is the best overall refrigeration system for lunar surface and spacecraft applications and the single phase radiator system is generally preferred for earth orbit applications, (2) the vapor compression cycle may have some application for simultaneous heating and cooling, (3) a Stirling cycle refrigerator was selected for the manned cabin of the space shuttle, and (4) significant increases in payload heat rejection can be obtained by a kit vapor compression refrigerator added to the shuttle R-21 loop. The following recommendations were made: (1) a Stirling cycle refrigerator may be used for food freezer and biomedical sample storage, (2) the best system for a food freezer/experiments compartment for an earth orbit space station has not been determined, (3) a deployed radiator system can be designed for large heat loads in earth orbit.
Application of JLab 12GeV helium refrigeration system for the FRIB accelerator at MSU
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganni, Venkatarao; Knudsen, Peter N.; Arenius, Dana M.
The planned approach to have a turnkey helium refrigeration system for the MSU-FRIB accelerator system, encompassing the design, fabrication, installation and commissioning of the 4.5-K refrigerator cold box(es), cold compression system, warm compression system, gas management, oil removal and utility/ancillary systems, was found to be cost prohibitive. Following JLab’s suggestion, MSU-FRIB accelerator management made a formal request to evaluate the applicability of the recently designed 12GeV JLab cryogenic system for this application. The following paper will outline the findings and the planned approach for the FRIB helium refrigeration system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaul, Chris; Sheppy, Michael
This study describes the test results of a Refrigerant Pump System integrated into a commercial supermarket direct expansion (DX) vapor compression refrigeration system. The Liquid Refrigerant Pump System retrofit (patent-pending; application number 13/964,198) was introduced to NREL in August 2014 by CTA Architects Engineers.
46 CFR 154.1720 - Indirect refrigeration.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Indirect refrigeration. 154.1720 Section 154.1720... § 154.1720 Indirect refrigeration. A refrigeration system that is used to cool acetaldehyde, ethylene oxide, or methyl bromide, must be an indirect refrigeration system that does not use vapor compression. ...
46 CFR 154.1720 - Indirect refrigeration.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Indirect refrigeration. 154.1720 Section 154.1720... § 154.1720 Indirect refrigeration. A refrigeration system that is used to cool acetaldehyde, ethylene oxide, or methyl bromide, must be an indirect refrigeration system that does not use vapor compression. ...
46 CFR 154.1720 - Indirect refrigeration.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Indirect refrigeration. 154.1720 Section 154.1720... § 154.1720 Indirect refrigeration. A refrigeration system that is used to cool acetaldehyde, ethylene oxide, or methyl bromide, must be an indirect refrigeration system that does not use vapor compression. ...
46 CFR 154.1720 - Indirect refrigeration.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Indirect refrigeration. 154.1720 Section 154.1720... § 154.1720 Indirect refrigeration. A refrigeration system that is used to cool acetaldehyde, ethylene oxide, or methyl bromide, must be an indirect refrigeration system that does not use vapor compression. ...
46 CFR 154.1720 - Indirect refrigeration.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Indirect refrigeration. 154.1720 Section 154.1720... § 154.1720 Indirect refrigeration. A refrigeration system that is used to cool acetaldehyde, ethylene oxide, or methyl bromide, must be an indirect refrigeration system that does not use vapor compression. ...
46 CFR 154.1750 - Butadiene or vinyl chloride: Refrigeration system.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Butadiene or vinyl chloride: Refrigeration system. 154... and Operating Requirements § 154.1750 Butadiene or vinyl chloride: Refrigeration system. A refrigeration system for butadiene or vinyl chloride must not use vapor compression unless it: (a) Avoids any...
46 CFR 154.1750 - Butadiene or vinyl chloride: Refrigeration system.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Butadiene or vinyl chloride: Refrigeration system. 154... and Operating Requirements § 154.1750 Butadiene or vinyl chloride: Refrigeration system. A refrigeration system for butadiene or vinyl chloride must not use vapor compression unless it: (a) Avoids any...
46 CFR 154.1750 - Butadiene or vinyl chloride: Refrigeration system.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Butadiene or vinyl chloride: Refrigeration system. 154... and Operating Requirements § 154.1750 Butadiene or vinyl chloride: Refrigeration system. A refrigeration system for butadiene or vinyl chloride must not use vapor compression unless it: (a) Avoids any...
46 CFR 154.1750 - Butadiene or vinyl chloride: Refrigeration system.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Butadiene or vinyl chloride: Refrigeration system. 154... and Operating Requirements § 154.1750 Butadiene or vinyl chloride: Refrigeration system. A refrigeration system for butadiene or vinyl chloride must not use vapor compression unless it: (a) Avoids any...
46 CFR 154.1750 - Butadiene or vinyl chloride: Refrigeration system.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Butadiene or vinyl chloride: Refrigeration system. 154... and Operating Requirements § 154.1750 Butadiene or vinyl chloride: Refrigeration system. A refrigeration system for butadiene or vinyl chloride must not use vapor compression unless it: (a) Avoids any...
COMPARISON OF CFC-114 AND HFC-236EA PERFORMANCE IN SHIPBOARD VAPOR COMPRESSION SYSTEMS
The report gives results of a comparison of the performance of two refrigerants - 1,1,1,2,3,3-hexafluoropropane (HFC-236ea) and 1,2-dichloro-tetrafluoroethane (CFC-114) - in shipboard vapor compression refrigeration systems. (NOTE: In compliance with the Montreal Protocol and Dep...
Refrigeration system having standing wave compressor
Lucas, Timothy S.
1992-01-01
A compression-evaporation refrigeration system, wherein gaseous compression of the refrigerant is provided by a standing wave compressor. The standing wave compressor is modified so as to provide a separate subcooling system for the refrigerant, so that efficiency losses due to flashing are reduced. Subcooling occurs when heat exchange is provided between the refrigerant and a heat pumping surface, which is exposed to the standing acoustic wave within the standing wave compressor. A variable capacity and variable discharge pressure for the standing wave compressor is provided. A control circuit simultaneously varies the capacity and discharge pressure in response to changing operating conditions, thereby maintaining the minimum discharge pressure needed for condensation to occur at any time. Thus, the power consumption of the standing wave compressor is reduced and system efficiency is improved.
46 CFR 154.1735 - Methyl acetylene-propadiene mixture.
Code of Federal Regulations, 2011 CFR
2011-10-01
... mixture must have a refrigeration system without vapor compression or have a refrigeration system with the... separate cargo piping, vent piping, and refrigeration equipment for methyl acetylene-propadiene that are segregated from other cargo piping, vent piping and refrigeration equipment on the vessel. [CGD 74-289, 44 FR...
46 CFR 154.1735 - Methyl acetylene-propadiene mixture.
Code of Federal Regulations, 2014 CFR
2014-10-01
... mixture must have a refrigeration system without vapor compression or have a refrigeration system with the... separate cargo piping, vent piping, and refrigeration equipment for methyl acetylene-propadiene that are segregated from other cargo piping, vent piping and refrigeration equipment on the vessel. [CGD 74-289, 44 FR...
46 CFR 154.1735 - Methyl acetylene-propadiene mixture.
Code of Federal Regulations, 2013 CFR
2013-10-01
... mixture must have a refrigeration system without vapor compression or have a refrigeration system with the... separate cargo piping, vent piping, and refrigeration equipment for methyl acetylene-propadiene that are segregated from other cargo piping, vent piping and refrigeration equipment on the vessel. [CGD 74-289, 44 FR...
46 CFR 154.1735 - Methyl acetylene-propadiene mixture.
Code of Federal Regulations, 2012 CFR
2012-10-01
... mixture must have a refrigeration system without vapor compression or have a refrigeration system with the... separate cargo piping, vent piping, and refrigeration equipment for methyl acetylene-propadiene that are segregated from other cargo piping, vent piping and refrigeration equipment on the vessel. [CGD 74-289, 44 FR...
46 CFR 154.1735 - Methyl acetylene-propadiene mixture.
Code of Federal Regulations, 2010 CFR
2010-10-01
... mixture must have a refrigeration system without vapor compression or have a refrigeration system with the... separate cargo piping, vent piping, and refrigeration equipment for methyl acetylene-propadiene that are segregated from other cargo piping, vent piping and refrigeration equipment on the vessel. [CGD 74-289, 44 FR...
NASA Astrophysics Data System (ADS)
Poese, Matthew E.; Smith, Robert W. M.; Garrett, Steven L.
2005-09-01
This talk will compare electrodynamically driven thermoacoustic refrigeration technology to some common implementations of low-lift vapor-compression technology. A rudimentary explanation of vapor-compression refrigeration will be presented along with some of the implementation problems faced by refrigeration engineers using compressor-based systems. These problems include oil management, compressor slugging, refrigerant leaks and the environmental impact of refrigerants. Recently, the method of evaluating this environmental impact has been codified to include the direct effects of the refrigerants on global warming as well as the so-called ``indirect'' warming impact of the carbon dioxide released during the generation (at the power plant) of the electrical power consumed by the refrigeration equipment. It is issues like these that generate commercial interest in an alternative refrigeration technology. However, the requirements of a candidate technology for adoption in a mature and risk-averse commercial refrigeration industry are as hard to divine as they are to meet. Also mentioned will be the state of other alternative refrigeration technologies like free-piston Stirling, thermoelectric and magnetocaloric as well as progress using vapor compression technology with alternative refrigerants like hydrocarbons and carbon dioxide.
46 CFR 151.50-79 - Methyl acetylene-propadiene mixture.
Code of Federal Regulations, 2014 CFR
2014-10-01
... acetylene-propadiene mixture must have a refrigeration system that does not compress the cargo vapor or have a refrigeration system with the following features: (1) A vapor compressor that does not raise the... suction line. (c) The piping system, including the cargo refrigeration system, for tanks to be loaded with...
46 CFR 151.50-79 - Methyl acetylene-propadiene mixture.
Code of Federal Regulations, 2013 CFR
2013-10-01
... acetylene-propadiene mixture must have a refrigeration system that does not compress the cargo vapor or have a refrigeration system with the following features: (1) A vapor compressor that does not raise the... suction line. (c) The piping system, including the cargo refrigeration system, for tanks to be loaded with...
46 CFR 151.50-79 - Methyl acetylene-propadiene mixture.
Code of Federal Regulations, 2012 CFR
2012-10-01
... acetylene-propadiene mixture must have a refrigeration system that does not compress the cargo vapor or have a refrigeration system with the following features: (1) A vapor compressor that does not raise the... suction line. (c) The piping system, including the cargo refrigeration system, for tanks to be loaded with...
Experimental investigation of the ecological hybrid refrigeration cycle
NASA Astrophysics Data System (ADS)
Cyklis, Piotr; Kantor, Ryszard; Ryncarz, Tomasz; Górski, Bogusław; Duda, Roman
2014-09-01
The requirements for environmentally friendly refrigerants promote application of CO2 and water as working fluids. However there are two problems related to that, namely high temperature limit for CO2 in condenser due to the low critical temperature, and low temperature limit for water being the result of high triple point temperature. This can be avoided by application of the hybrid adsorption-compression system, where water is the working fluid in the adsorption high temperature cycle used to cool down the CO2 compression cycle condenser. The adsorption process is powered with a low temperature renewable heat source as solar collectors or other waste heat source. The refrigeration system integrating adsorption and compression system has been designed and constructed in the Laboratory of Thermodynamics and Thermal Machine Measurements of Cracow University of Technology. The heat source for adsorption system consists of 16 tube tulbular collectors. The CO2 compression low temperature cycle is based on two parallel compressors with frequency inverter. Energy efficiency and TEWI of this hybrid system is quite promising in comparison with the compression only systems.
Review of vortex tube expansion in vapour compression refrigeration system
NASA Astrophysics Data System (ADS)
Liu, Yefeng; Yu, Jun
2018-05-01
A vortex tube expansion device replacing the throttle valve is proposed to improve the efficiency of vapour compression refrigeration cycle by reducing the loss of irreversibility in expansion process. The vortex tube is well-suited for these applications because it is simple, compact, light, quiet. Thus, this paper presents an overview of the thermodynamic analysis of vapour compression refrigeration cycle with vortex tube expansion device using different refrigerants. The paper also reviews the experiments and the calculations presented in previous studies on temperature separation in the vortex tube. The temperature separation mechanism and the flow-field inside the vortex tubes is explored by measuring the pressure, velocity, and temperature fields.
Code of Federal Regulations, 2013 CFR
2013-07-01
... vehicle air conditioners means mechanical vapor compression refrigeration equipment used to cool the... the hermetically sealed refrigeration systems used on motor vehicles for refrigerated cargo and the...-conditioning and Refrigeration Institute (ARI 700-93) (which is codified at 40 CFR part 82, subpart F, appendix...
Code of Federal Regulations, 2014 CFR
2014-07-01
... vehicle air conditioners means mechanical vapor compression refrigeration equipment used to cool the... the hermetically sealed refrigeration systems used on motor vehicles for refrigerated cargo and the...-conditioning and Refrigeration Institute (ARI 700-93) (which is codified at 40 CFR part 82, subpart F, appendix...
Code of Federal Regulations, 2011 CFR
2011-07-01
... vehicle air conditioners means mechanical vapor compression refrigeration equipment used to cool the... the hermetically sealed refrigeration systems used on motor vehicles for refrigerated cargo and the...-conditioning and Refrigeration Institute (ARI 700-93) (which is codified at 40 CFR part 82, subpart F, appendix...
Code of Federal Regulations, 2010 CFR
2010-07-01
... vehicle air conditioners means mechanical vapor compression refrigeration equipment used to cool the... the hermetically sealed refrigeration systems used on motor vehicles for refrigerated cargo and the...-conditioning and Refrigeration Institute (ARI 700-93) (which is codified at 40 CFR part 82, subpart F, appendix...
Floating Loop System For Cooling Integrated Motors And Inverters Using Hot Liquid Refrigerant
Hsu, John S [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Coomer, Chester [Knoxville, TN; Marlino, Laura D [Oak Ridge, TN
2006-02-07
A floating loop vehicle component cooling and air-conditioning system having at least one compressor for compressing cool vapor refrigerant into hot vapor refrigerant; at least one condenser for condensing the hot vapor refrigerant into hot liquid refrigerant by exchanging heat with outdoor air; at least one floating loop component cooling device for evaporating the hot liquid refrigerant into hot vapor refrigerant; at least one expansion device for expanding the hot liquid refrigerant into cool liquid refrigerant; at least one air conditioning evaporator for evaporating the cool liquid refrigerant into cool vapor refrigerant by exchanging heat with indoor air; and piping for interconnecting components of the cooling and air conditioning system.
NASA Astrophysics Data System (ADS)
Gill, Jatinder; Singh, Jagdev
2018-05-01
In this work, the experimental examination was carried out using a mixture of R134a and LPG refrigerant (consisting of R134a and LPG in a proportion of 28:72 by weight) as a replacement for R134a in a vapor compression refrigeration system. Exergy and energy tests were carried out at different evaporator and condenser temperatures with controlled environmental conditions. The results showed that the exergy destruction in the compressor, condenser, evaporator, and a capillary tube of the R134a / LPG refrigeration system was found lower by approximately 11.13-3.41%, 2.24-3.43%, 12.02-13.47% and 1.54-5.61% respectively. The compressor exhibits the highest level of destruction, accompanied by a condenser, an evaporator and a capillary tube in refrigeration systems. The refrigeration capacity, COP and power consumption of the compressor of the R134a /LPG refrigeration system were detected higher and lower compared to the R134a refrigeration system by about 7.04-11.41%, 15.1-17.82%, and 3.83-8.08% respectively. Also, the miscibility of R134a and LPG blend with mineral oil discovered good. The R134a and LPG refrigerant mixture proposed in this study perform superior to R134a from component-wise exergy and energy analyses under similar experimental conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-09-01
BEETIT Project: Astronautics is developing an air conditioning system that relies on magnetic fields. Typical air conditioners use vapor compression to cool air. Vapor compression uses a liquid refrigerant to circulate within the air conditioner, absorb the heat, and pump the heat out into the external environment. Astronautics’ design uses a novel property of certain materials, called “magnetocaloric materials”, to achieve the same result as liquid refrigerants. These magnetocaloric materials essentially heat up when placed within a magnetic field and cool down when removed, effectively pumping heat out from a cooler to warmer environment. In addition, magnetic refrigeration uses nomore » ozone-depleting gases and is safer to use than conventional air conditioners which are prone to leaks.« less
Development of Carbon Dioxide Hermitic Compressor
NASA Astrophysics Data System (ADS)
Imai, Satoshi; Oda, Atsushi; Ebara, Toshiyuki
Because of global environmental problems, the existing refrigerants are to be replaced with natural refrigerants. CO2 is one of the natural refrigerants and environmentally safe, inflammable and non-toxic refrigerant. Therefore high efficiency compressor that can operate with natural refrigerants, especially CO2, needs to be developed. We developed a prototype CO2 hermetic compressor, which is able to use in carbon dioxide refrigerating systems for practical use. The compressor has two rolling pistons, and it leads to low vibrations, low noise. In additions, two-stage compression with two cylinders is adopted, because pressure difference is too large to compress in one stage. And inner pressure of the shell case is intermediate pressure to minimize gas leakage between compressing rooms and inner space of shell case. Intermediate pressure design enabled to make the compressor smaller in size and lighter in weight. As a result, the compressor achieved high efficiency and high reliability by these technology. We plan to study heat pump water heater, cup vending machine and various applications with CO2 compressor.
A Case Study of a Low Powervapour Compression Refrigeration System
NASA Astrophysics Data System (ADS)
Abinav, R.; Nambiar, G. K.; Sahu, Debjyoti
2016-09-01
Reported in this paper is a case study on a normal vapor compression refrigeration system which is expected to be run by photovoltaic panels to utilize minimum grid power. A small 120 W refrigerator is fabricated out of commercially available components and run by an inverter and battery connected to solar photovoltaic panel as well as grid. Temperature at several points was measured and the performance was evaluated. The Coefficient of performance (COP) to run such refrigerator is estimated after numerical simulation of major components namely, evaporator, condenser and a capillary tube. The simulation was done to obtain an effective cooling temperature and the results were compared with measured temperatures. Calculation proves to be in conformity with the actual model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
BEETIT Project: Battelle is developing a new air conditioning system that uses a cascade reverse osmosis (RO)-based absorption cycle. Analyses show that this new cycle can be as much as 60% more efficient than vapor compression, which is used in 90% of air conditioners. Traditional vapor-compression systems use polluting liquids for a cooling effect. Absorption cycles use benign refrigerants such as water, which is absorbed in a salt solution and pumped as liquid—replacing compression of vapor. The refrigerant is subsequently separated from absorbing salt using heat for re-use in the cooling cycle. Battelle is replacing thermal separation of refrigerant withmore » a more efficient reverse osmosis process. Research has shown that the cycle is possible, but further investment will be needed to reduce the number of cascade reverse osmosis stages and therefore cost.« less
NASA Astrophysics Data System (ADS)
Yakovlev, A. A.; Sorokin, V. S.; Mishustina, S. N.; Proidakova, N. V.; Postupaeva, S. G.
2017-01-01
The article describes a new method of search design of refrigerating systems, the basis of which is represented by a graph model of the physical operating principle based on thermodynamical description of physical processes. The mathematical model of the physical operating principle has been substantiated, and the basic abstract theorems relatively semantic load applied to nodes and edges of the graph have been represented. The necessity and the physical operating principle, sufficient for the given model and intended for the considered device class, were demonstrated by the example of a vapour-compression refrigerating plant. The example of obtaining a multitude of engineering solutions of a vapour-compression refrigerating plant has been considered.
46 CFR 151.40-1 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... lower energy vapor or its condensate returned to the tank. (2) External heat exchange. A refrigeration... heat exchanger. Refrigeration is not accomplished by direct compression of the cargo. (c) Internal heat exchange. A refrigeration system in which a cooling fluid is passed through heat transfer coils immersed in...
46 CFR 151.40-1 - Definitions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... lower energy vapor or its condensate returned to the tank. (2) External heat exchange. A refrigeration... heat exchanger. Refrigeration is not accomplished by direct compression of the cargo. (c) Internal heat exchange. A refrigeration system in which a cooling fluid is passed through heat transfer coils immersed in...
46 CFR 151.40-1 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... lower energy vapor or its condensate returned to the tank. (2) External heat exchange. A refrigeration... heat exchanger. Refrigeration is not accomplished by direct compression of the cargo. (c) Internal heat exchange. A refrigeration system in which a cooling fluid is passed through heat transfer coils immersed in...
46 CFR 151.40-1 - Definitions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... lower energy vapor or its condensate returned to the tank. (2) External heat exchange. A refrigeration... heat exchanger. Refrigeration is not accomplished by direct compression of the cargo. (c) Internal heat exchange. A refrigeration system in which a cooling fluid is passed through heat transfer coils immersed in...
46 CFR 151.40-1 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... lower energy vapor or its condensate returned to the tank. (2) External heat exchange. A refrigeration... heat exchanger. Refrigeration is not accomplished by direct compression of the cargo. (c) Internal heat exchange. A refrigeration system in which a cooling fluid is passed through heat transfer coils immersed in...
Magnetic refrigeration using flux compression in superconductors
NASA Technical Reports Server (NTRS)
Israelsson, U. E.; Strayer, D. M.; Jackson, H. W.; Petrac, D.
1990-01-01
The feasibility of using flux compression in high-temperature superconductors to produce the large time-varying magnetic fields required in a field cycled magnetic refrigerator operating between 20 K and 4 K is presently investigated. This paper describes the refrigerator concept and lists limitations and advantages in comparison with conventional refrigeration techniques. The maximum fields obtainable by flux compression in high-temperature supercoductor materials, as presently prepared, are too low to serve in such a refrigerator. However, reports exist of critical current values that are near usable levels for flux pumps in refrigerator applications.
Performance of a hybrid chemical/mechanical heat pump
NASA Technical Reports Server (NTRS)
Silvestri, John J.; Scaringe, Robert P.; Grzyll, Lawrence R.
1990-01-01
The authors present the design and preliminary results of the performance of a hybrid chemical/mechanical, low-lift (20 C) heat pump. Studies have indicated that this heat pump has several advantages over the traditional single fluid vapor compression (reverse Rankine) heat pump. Included in these benefits are: 1) increased COPc due to the approximation of the cycle to the Lorenz cycle and due to the availability of the heat of solution, along with the heat of vaporization, to provide cooling; and 2) ease of variation in system cooling capacity by changing the fluid composition. The system performance is predicted for a variety of refrigerant-absorbent pairs. Cooling capacity is determined for systems operating with ammonia as the refrigerant and lithium nitrate and sodium thiocyanate as the absorbents and also with water as the refrigerant and magnesium chloride, potassium hydroxide, lithium bromide, sodium hydroxide, and sulfuric acid as the absorbents. Early indications have shown that the systems operating with water as the refrigerant operate at 2-4 times the capacity of the ammonia-refrigerant-based systems. Using existing working fluids in the proposed innovative design, a coefficient-of-performance improvement of 21 percent is possible when compared to the best vapor compression systems analyzed.
Method of reducing chlorofluorocarbon refrigerant emissons to the atmosphere
DeVault, Robert C.; Fairchild, Phillip D.; Biermann, Wendell J.
1990-01-01
A method is disclosed for reducing chloroflurocarbon (CFC) refrigerant emissions during removal or transfer or refrigerants from a vapor compression cooling system or heat pump which comprises contacting the refrigerant with a suitable sorbent material. The sorbent material allows for the storage and retention or the chlorofluorocarbon in non-gaseous form so that it does not tend to escape to the atmosphere where it would cause harm by contributing to ozone depletion. In other aspects of the invention, contacting of CFC refrigerants with sorbent material allows for purification and recycling of used refrigerant, and a device containing stored sorbent material can be employed in the detection of refrigerant leakage in a cooling system or heat pump.
Mei, Viung C.; Chen, Fang C.
1997-01-01
A refrigeration system having a vapor compression cycle utilizing a liquid over-feeding operation with an integrated accumulator-expander-heat exchanger. Hot, high-pressure liquid refrigerant from the condenser passes through one or more lengths of capillary tubing substantially immersed in a pool liquid refrigerant in the accumulator-expander-heat exchanger for simultaneously sub-cooling and expanding the liquid refrigerant while vaporizing liquid refrigerant from the pool for the return thereof to the compressor as saturated vapor. The sub-cooling of the expanded liquid provides for the flow of liquid refrigerant into the evaporator for liquid over-feeding the evaporator and thereby increasing the efficiency of the evaporation cycle.
Mei, V.C.; Chen, F.C.
1997-04-22
A refrigeration system is described having a vapor compression cycle utilizing a liquid over-feeding operation with an integrated accumulator-expander-heat exchanger. Hot, high-pressure liquid refrigerant from the condenser passes through one or more lengths of capillary tubing substantially immersed in a pool liquid refrigerant in the accumulator-expander-heat exchanger for simultaneously sub-cooling and expanding the liquid refrigerant while vaporizing liquid refrigerant from the pool for the return thereof to the compressor as saturated vapor. The sub-cooling of the expanded liquid provides for the flow of liquid refrigerant into the evaporator for liquid over-feeding the evaporator and thereby increasing the efficiency of the evaporation cycle. 4 figs.
NASA Astrophysics Data System (ADS)
Niasar, Malek Shariati; Amidpour, Majid
2018-01-01
In this paper, utilizing absorption refrigeration system as an alternative to compression refrigeration system of MFC refrigeration cycle in an integrated superstructure with the main aim of reduction in required energy is investigated. High-energy consumption in such units is reduced because of the removal of a stage of the compression system, while the possibility of using waste energy through employing of absorption refrigeration system can be provided. A superstructure including cogeneration of heating, cooling and power for LNG production and liquid fuels using Fischer-Tropsch synthesis are investigated. Exergy analysis shows that the greatest amount of exergy destruction of equipment is related to the compressors by 28.99% and the lowest exergy destruction is related to the gas turbine by 0.17%. Integrated structure has overall thermal efficiency of 90% and specific power of 0.1988 kW h/(kg LNG)-1.
Chemical Safety Alert: Hazards of Ammonia Releases at Ammonia Refrigeration Facilities
Anhydrous ammonia is used as a refrigerant in mechanical compression systems, often liquefied under pressure which increases exposure risk due to potential for rapid release into the air as a toxic gas.
Performance Testing of Jefferson Lab 12 GeV Helium Screw Compressors
Knudsen, P.; Ganni, V.; Dixon, K.; ...
2015-08-10
Oil injected screw compressors have essentially superseded all other types of compressors in modern helium refrigeration systems due to their large displacement capacity, reliability, minimal vibration, and capability of handling helium's high heat of compression. At the present state of compressor system designs for helium refrigeration systems, typically two-thirds of the lost input power is due to the compression system. It is important to understand the isothermal and volumetric efficiencies of these machines to help properly design the compression system to match the refrigeration process. It is also important to identify those primary compressor skid exergetic loss mechanisms which maymore » be reduced, thereby offering the possibility of significantly reducing the input power to helium refrigeration processes which are extremely energy intensive. This paper summarizes the results collected during the commissioning of the new compressor system for Jefferson Lab's (JLab's) 12 GeV upgrade. The compressor skid packages were designed by JLab and built to print by industry. They incorporate a number of modifications not typical of helium screw compressor packages and most importantly allow a very wide range of operation so that JLab's patented Floating Pressure Process can be fully utilized. This paper also summarizes key features of the skid design that allow this process and facilitate the maintenance and reliability of these helium compressor systems.« less
Performance Testing of Jefferson Lab 12 GeV Helium Screw Compressors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knudsen, P.; Ganni, V.; Dixon, K.
Oil injected screw compressors have essentially superseded all other types of compressors in modern helium refrigeration systems due to their large displacement capacity, reliability, minimal vibration, and capability of handling helium's high heat of compression. At the present state of compressor system designs for helium refrigeration systems, typically two-thirds of the lost input power is due to the compression system. It is important to understand the isothermal and volumetric efficiencies of these machines to help properly design the compression system to match the refrigeration process. It is also important to identify those primary compressor skid exergetic loss mechanisms which maymore » be reduced, thereby offering the possibility of significantly reducing the input power to helium refrigeration processes which are extremely energy intensive. This paper summarizes the results collected during the commissioning of the new compressor system for Jefferson Lab's (JLab's) 12 GeV upgrade. The compressor skid packages were designed by JLab and built to print by industry. They incorporate a number of modifications not typical of helium screw compressor packages and most importantly allow a very wide range of operation so that JLab's patented Floating Pressure Process can be fully utilized. This paper also summarizes key features of the skid design that allow this process and facilitate the maintenance and reliability of these helium compressor systems.« less
REFRIGERATION ESPECIALLY FOR VERY LOW TEMPERATURES
Kennedy, P.B.; Smith, H.R. Jr.
1960-09-13
A refrigeration system for producing very low temperatures is described. The system of the invention employs a binary mixture refrigerant in a closed constant volume, e.g., Freon and ethylene. Such mixture is compressed in the gaseous state and is then separated in a fractionating column element of the system. Thenceforth, the first liquid to separate is employed stagewise to cool and liq uefy successive portions of the refrigerant at successively lower temperatures by means of heat exchangers coupled between the successive stages. When shut down, all of the volumes of the system are interconnected and a portion of the refrigerant remains liquid at ambient temperatures so that no dangerous overpressures develop. The system is therefore rugged, simple and dependable in operation.
THERMODYNAMIC EVALUATION OF FIVE ALTERNATIVE REFRIGERANTS IN VAPOR-COMPRESSION CYCLES
The paper gives results of a thermodynamic evaluation of five alternative refrigerants in a vapor-compression refrigeration cycle, utilizing throttling, super-heating, and combined throttling and superheating. ive alternative refrigerants (R32, R125, R134a, R143a, and R152a) were...
Apparatus and method for evaporator defrosting
Mei, Viung C.; Chen, Fang C.; Domitrovic, Ronald E.
2001-01-01
An apparatus and method for warm-liquid defrosting of the evaporator of a refrigeration system. The apparatus includes a first refrigerant expansion device that selectively expands refrigerant for cooling the evaporator, a second refrigerant expansion device that selectively expands the refrigerant after the refrigerant has passed through the evaporator, and a defrosting control for the first refrigerant expansion device and second refrigerant expansion device to selectively defrost the evaporator by causing warm refrigerant to flow through the evaporator. The apparatus is alternately embodied with a first refrigerant bypass and/or a second refrigerant bypass for selectively directing refrigerant to respectively bypass the first refrigerant expansion device and the second refrigerant expansion device, and with the defrosting control connected to the first refrigerant bypass and/or the second refrigerant bypass to selectively activate and deactivate the bypasses depending upon the current cycle of the refrigeration system. The apparatus alternately includes an accumulator for accumulating liquid and/or gaseous refrigerant that is then pumped either to a refrigerant receiver or the first refrigerant expansion device for enhanced evaporator defrosting capability. The inventive method of defrosting an evaporator in a refrigeration system includes the steps of compressing refrigerant in a compressor and cooling the refrigerant in the condenser such that the refrigerant is substantially in liquid form, passing the refrigerant substantially in liquid form through the evaporator, and expanding the refrigerant with a refrigerant expansion device after the refrigerant substantially passes through the evaporator.
The development of a performance-enhancing additive for vapor-compression heat pumps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grzyll, L.R.; Scaringe, R.P.; Gottschlich, J.M.
1997-12-31
This paper describes the testing results of a vapor-compression heat pump operating with HFC-134a refrigerant and a performance-enhancing additive. Preliminary bench-top testing of this additive, when added to polyolester (POE) lubricant and HFC-134a refrigerant, showed surprising enhancements to system COP. To further investigate this finding, the authors designed and fabricated a vapor-compression heat pump test stand for the 3--5 ton range. The authors investigated the effect of different concentrations of this additive on various system performance parameters such as cooling capacity, compressor power requirement, pressure ratio, compressor pressure difference, compressor isentropic efficiency, refrigerant flow rate, and heat exchanger performance. Themore » authors investigated various heat source and heat sink conditions to simulate air-conditioning and heat pump operating conditions. To investigate the effect of this additive on compressor lubrication and life, the authors performed compressor life tests (with scroll and reciprocating compressors), and had lubrication wear tests performed with various concentrations of the additive in the POE lubricant.« less
Heat reclaiming method and apparatus
Jardine, Douglas M.
1984-01-01
Method and apparatus to extract heat by transferring heat from hot compressed refrigerant to a coolant, such as water, without exceeding preselected temperatures in the coolant and avoiding boiling in a water system by removing the coolant from direct or indirect contact with the hot refrigerant.
Combined rankine and vapor compression cycles
Radcliff, Thomas D.; Biederman, Bruce P.; Brasz, Joost J.
2005-04-19
An organic rankine cycle system is combined with a vapor compression cycle system with the turbine generator of the organic rankine cycle generating the power necessary to operate the motor of the refrigerant compressor. The vapor compression cycle is applied with its evaporator cooling the inlet air into a gas turbine, and the organic rankine cycle is applied to receive heat from a gas turbine exhaust to heat its boiler within one embodiment, a common condenser is used for the organic rankine cycle and the vapor compression cycle, with a common refrigerant, R-245a being circulated within both systems. In another embodiment, the turbine driven generator has a common shaft connected to the compressor to thereby eliminate the need for a separate motor to drive the compressor. In another embodiment, an organic rankine cycle system is applied to an internal combustion engine to cool the fluids thereof, and the turbo charged air is cooled first by the organic rankine cycle system and then by an air conditioner prior to passing into the intake of the engine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beshr, Mohamed; Aute, Vikrant; Abdelaziz, Omar
2014-01-01
Vapor compression systems continuously leak a small fraction of their refrigerant charge to the environment, whether during operation or servicing. As a result of the slow leak rate occurring during operation, the refrigerant charge decreases until the system is serviced and recharged. This charge degradation, after a certain limit, begins to have a detrimental effect on system capacity, energy consumption, and coefficient of performance (COP). This paper presents a literature review and a summary of previous experimental work on the effect of undercharging or charge degradation of different vapor compression systems, especially those without a receiver. These systems include residentialmore » air conditioning and heat pump systems utilizing different components and refrigerants, and water chiller systems. Most of these studies show similar trends for the effect of charge degradation on system performance. However, it is found that although much experimental work exists on the effect of charge degradation on system performance, no correlation or comparison between charge degradation and system performance yet exists. Thus, based on the literature review, three different correlations that characterize the effect of charge on system capacity and energy consumption are developed for different systems as follows: one for air-conditioning systems, one for vapor compression water-to-water chiller systems, and one for heat pumps. These correlations can be implemented in vapor compression cycle simulation tools to obtain a better prediction of the system performance throughout its lifetime. In this paper, these correlations are implemented in an open source tool for life cycle climate performance (LCCP) based design of vapor compression systems. The LCCP of a residential air-source heat pump is evaluated using the tool and the effect of charge degradation on the results is studied. The heat pump is simulated using a validated component-based vapor compression system model and the LCCP results obtained using the three charge degradation correlations are compared.« less
Thermodynamic analysis of a new dual evaporator CO2 transcritical refrigeration cycle
NASA Astrophysics Data System (ADS)
Abdellaoui, Ezzaalouni Yathreb; Kairouani, Lakdar Kairouani
2017-03-01
In this work, a new dual-evaporator CO2 transcritical refrigeration cycle with two ejectors is proposed. In this new system, we proposed to recover the lost energy of condensation coming off the gas cooler and operate the refrigeration cycle ejector free and enhance the system performance and obtain dual-temperature refrigeration simultaneously. The effects of some key parameters on the thermodynamic performance of the modified cycle are theoretically investigated based on energetic and exergetic analysis. The simulation results for the modified cycle indicate more effective system performance improvement than the single ejector in the CO2 vapor compression cycle using ejector as an expander ranging up to 46%. The exergetic analysis for this system is made. The performance characteristics of the proposed cycle show its promise in dual-evaporator refrigeration system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bansal, Pradeep; Vineyard, Edward Allan; Abdelaziz, Omar
This paper presents a review of the next generation not-in-kind technologies to replace conventional vapor compression refrigeration technology for household applications. Such technologies are sought to provide energy savings or other environmental benefits for space conditioning, water heating and refrigeration for domestic use. These alternative technologies include: thermoacoustic refrigeration, thermoelectric refrigeration, thermotunneling, magnetic refrigeration, Stirling cycle refrigeration, pulse tube refrigeration, Malone cycle refrigeration, absorption refrigeration, adsorption refrigeration, and compressor driven metal hydride heat pumps. Furthermore, heat pump water heating and integrated heat pump systems are also discussed due to their significant energy saving potential for water heating and space conditioningmore » in households. The paper provides a snapshot of the future R&D needs for each of the technologies along with the associated barriers. Both thermoelectric and magnetic technologies look relatively attractive due to recent developments in the materials and prototypes being manufactured.« less
Solar-Powered Refrigeration System
NASA Technical Reports Server (NTRS)
Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)
2001-01-01
A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure. and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.
Solar-Powered Refrigeration System
NASA Technical Reports Server (NTRS)
Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)
2002-01-01
A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.
Solar Powered Refrigeration System
NASA Technical Reports Server (NTRS)
Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)
2002-01-01
A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdelaziz, Omar; Fricke, Brian A; Vineyard, Edward Allan
Commercial refrigeration systems are known to be prone to high leak rates and to consume large amounts of electricity. As such, direct emissions related to refrigerant leakage and indirect emissions resulting from primary energy consumption contribute greatly to their Life Cycle Climate Performance (LCCP). In this paper, an LCCP design tool is used to evaluate the performance of a typical commercial refrigeration system with alternative refrigerants and minor system modifications to provide lower Global Warming Potential (GWP) refrigerant solutions with improved LCCP compared to baseline systems. The LCCP design tool accounts for system performance, ambient temperature, and system load; systemmore » performance is evaluated using a validated vapor compression system simulation tool while ambient temperature and system load are devised from a widely used building energy modeling tool (EnergyPlus). The LCCP design tool also accounts for the change in hourly electricity emission rate to yield an accurate prediction of indirect emissions. The analysis shows that conventional commercial refrigeration system life cycle emissions are largely due to direct emissions associated with refrigerant leaks and that system efficiency plays a smaller role in the LCCP. However, as a transition occurs to low GWP refrigerants, the indirect emissions become more relevant. Low GWP refrigerants may not be suitable for drop-in replacements in conventional commercial refrigeration systems; however some mixtures may be introduced as transitional drop-in replacements. These transitional refrigerants have a significantly lower GWP than baseline refrigerants and as such, improved LCCP. The paper concludes with a brief discussion on the tradeoffs between refrigerant GWP, efficiency and capacity.« less
Performance Analysis of Stirling Engine-Driven Vapor Compression Heat Pump System
NASA Astrophysics Data System (ADS)
Kagawa, Noboru
Stirling engine-driven vapor compression systems have many unique advantages including higher thermal efficiencies, preferable exhaust gas characteristics, multi-fuel usage, and low noise and vibration which can play an important role in alleviating environmental and energy problems. This paper introduces a design method for the systems based on reliable mathematical methods for Stirling and Rankin cycles using reliable thermophysical information for refrigerants. The model deals with a combination of a kinematic Stirling engine and a scroll compressor. Some experimental coefficients are used to formulate the model. The obtained results show the performance behavior in detail. The measured performance of the actual system coincides with the calculated results. Furthermore, the calculated results clarify the performance using alternative refrigerants for R-22.
Heat pump employing optimal refrigerant compressor for low pressure ratio applications
Ecker, Amir L.
1982-01-01
What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler for circulating the fluid in heat exchange relationship with a refrigerant fluid; two refrigerant heat exchangers; one for effecting the heat exchange with the fluid and a second refrigerant-heat exchange fluid heat exchanger for effecting a low pressure ratio of compression of the refrigerant; a rotary compressor for compressing the refrigerant with low power consumption at the low pressure ratio; at least one throttling valve connecting at the inlet side of heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit serially connecting the above elements; refrigerant in the circuit; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant.
NASA Astrophysics Data System (ADS)
Gill, Jatinder; Singh, Jagdev
2018-07-01
In this work, an experimental investigation is carried out with R134a and LPG refrigerant mixture for depicting mass flow rate through straight and helical coil adiabatic capillary tubes in a vapor compression refrigeration system. Various experiments were conducted under steady-state conditions, by changing capillary tube length, inner diameter, coil diameter and degree of subcooling. The results showed that mass flow rate through helical coil capillary tube was found lower than straight capillary tube by about 5-16%. Dimensionless correlation and Artificial Neural Network (ANN) models were developed to predict mass flow rate. It was found that dimensionless correlation and ANN model predictions agreed well with experimental results and brought out an absolute fraction of variance of 0.961 and 0.988, root mean square error of 0.489 and 0.275 and mean absolute percentage error of 4.75% and 2.31% respectively. The results suggested that ANN model shows better statistical prediction than dimensionless correlation model.
NASA Astrophysics Data System (ADS)
Punia, Sanjeev Singh; Singh, Jagdev
2015-11-01
This paper presents an experimental investigation for the flow of liquefied petroleum gas (LPG) as a refrigerant inside an adiabatic helically coiled capillary tube in vapour compression refrigeration system. The effect of various geometric parameters and operating conditions like capillary tube inner diameter, length of capillary tube, coil diameter and different inlet subcoolings on the mass flow rate of LPG through the helical coiled capillary tube geometry has been investigated. It has been established that the coil diameter significantly influences the mass flow rate of LPG through the adiabatic helical capillary tube. It has been concluded that the effect of coiling of capillary tube reduces the mass flow rate by 5-12 % as compared to those of the straight capillary tube operating under similar conditions. The data obtained from the experiments are analyzed and a dimensionless correlation has been developed. The proposed correlation predicts that more than 90 % of experimental data which is in agreement with measured data in an error band of ±10 %.
Adsorption Refrigeration System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Kai; Vineyard, Edward Allan
Adsorption refrigeration is an environmentally friendly cooling technology which could be driven by recovered waste heat or low-grade heat such as solar energy. In comparison with absorption system, an adsorption system has no problems such as corrosion at high temperature and salt crystallization. In comparison with vapor compression refrigeration system, it has the advantages of simple control, no moving parts and less noise. This paper introduces the basic theory of adsorption cycle as well as the advanced adsorption cycles such as heat and mass recovery cycle, thermal wave cycle and convection thermal wave cycle. The types, characteristics, advantages and drawbacksmore » of different adsorbents used in adsorption refrigeration systems are also summarized. This article will increase the awareness of this emerging cooling technology among the HVAC engineers and help them select appropriate adsorption systems in energy-efficient building design.« less
Maximizing NGL recovery by refrigeration optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baldonedo H., A.H.
1999-07-01
PDVSA--Petroleo y Gas, S.A. has within its facilities in Lake Maracaibo two plants that extract liquids from natural gas (NGL), They use a combined mechanic refrigeration absorption with natural gasoline. Each of these plants processes 420 MMsccfd with a pressure of 535 psig and 95 F that comes from the compression plants PCTJ-2 and PCTJ-3 respectively. About 40 MMscfd of additional rich gas comes from the high pressure system. Under the present conditions these plants produce in the order of 16,800 and 23,800 b/d of NGL respectively, with a propane recovery percentage of approximately 75%, limited by the capacity ofmore » the refrigeration system. To optimize the operation and the design of the refrigeration system and to maximize the NGL recovery, a conceptual study was developed in which the following aspects about the process were evaluated: capacity of the refrigeration system, refrigeration requirements, identification of limitations and evaluation of the system improvements. Based on the results obtained it was concluded that by relocating some condensers, refurbishing the main refrigeration system turbines and using HIGH FLUX piping in the auxiliary refrigeration system of the evaporators, there will be an increase of 85% on the propane recovery, with an additional production of 25,000 b/d of NGL and 15 MMscfd of ethane rich gas.« less
Vapor Compression Cycle Design Program (CYCLE_D)
National Institute of Standards and Technology Data Gateway
SRD 49 NIST Vapor Compression Cycle Design Program (CYCLE_D) (PC database for purchase) The CYCLE_D database package simulates the vapor compression refrigeration cycles. It is fully compatible with REFPROP 9.0 and covers the 62 single-compound refrigerants . Fluids can be used in mixtures comprising up to five components.
Lucas, Timothy S.
1991-01-01
A compressor for compression-evaporation cooling systems, which requires no moving parts. A gaseous refrigerant inside a chamber is acoustically compressed and conveyed by means of a standing acoustic wave which is set up in the gaseous refrigerant. This standing acoustic wave can be driven either by a transducer, or by direct exposure of the gas to microwave and infrared sources, including solar energy. Input and output ports arranged along the chamber provide for the intake and discharge of the gaseous refrigerant. These ports can be provided with optional valve arrangements, so as to increase the compressor's pressure differential. The performance of the compressor in either of its transducer or electromagnetically driven configurations, can be optimized by a controlling circuit. This controlling circuit holds the wavelength of the standing acoustical wave constant, by changing the driving frequency in response to varying operating conditions.
ALTERNATIVE TECHNOLOGIES FOR REFRIGERATION AND AIR-CONDITIONING APPLICATIONS
The report gives results of an assessment of refrigeration technologies that are alternatives to vapor compression refrigeration for use in five application categories: domestic air conditioning, commercial air conditioning, mobile air conditioning, domestic refrigeration, and co...
Refrigeration system with a compressor-pump unit and a liquid-injection desuperheating line
Gaul, Christopher J.
2001-01-01
The refrigeration system includes a compressor-pump unit and/or a liquid-injection assembly. The refrigeration system is a vapor-compression refrigeration system that includes an expansion device, an evaporator, a compressor, a condenser, and a liquid pump between the condenser and the expansion device. The liquid pump improves efficiency of the refrigeration system by increasing the pressure of, thus subcooling, the liquid refrigerant delivered from the condenser to the expansion device. The liquid pump and the compressor are driven by a single driving device and, in this regard, are coupled to a single shaft of a driving device, such as a belt-drive, an engine, or an electric motor. While the driving device may be separately contained, in a preferred embodiment, the liquid pump, the compressor, and the driving device (i.e., an electric motor) are contained within a single sealable housing having pump and driving device cooling paths to subcool liquid refrigerant discharged from the liquid pump and to control the operating temperature of the driving device. In another aspect of the present invention, a liquid injection assembly is included in a refrigeration system to divert liquid refrigerant from the discharge of a liquid pressure amplification pump to a compressor discharge pathway within a compressor housing to desuperheat refrigerant vapor to the saturation point within the compressor housing. The liquid injection assembly includes a liquid injection pipe with a control valve to meter the volume of diverted liquid refrigerant. The liquid injection assembly may also include a feedback controller with a microprocessor responsive to a pressure sensor and a temperature sensor both positioned between the compressor to operate the control valve to maintain the refrigerant at or near saturation.
Stirling Air Conditioner for Compact Cooling
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-09-01
BEETIT Project: Infinia is developing a compact air conditioner that uses an unconventional high efficient Stirling cycle system (vs. conventional vapor compression systems) to produce cool air that is energy efficient and does not rely on polluting refrigerants. The Stirling cycle system is a type of air conditioning system that uses a motor with a piston to remove heat to the outside atmosphere using a gas refrigerant. To date, Stirling systems have been expensive and have not had the right kind of heat exchanger to help cool air efficiently. Infinia is using chip cooling technology from the computer industry tomore » make improvements to the heat exchanger and improve system performance. Infinia’s air conditioner uses helium gas as refrigerant, an environmentally benign gas that does not react with other chemicals and does not burn. Infinia’s improvements to the Stirling cycle system will enable the cost-effective mass production of high-efficiency air conditioners that use no polluting refrigerants.« less
The design and development of a vapor compression refrigerator/freezer for spacelab
NASA Technical Reports Server (NTRS)
Hye, A.
1983-01-01
A computer simulation was performed to determine the design criteria for a spacelab refrigerator/freezer using the test results of a vapor compression refrigerator/freezer which flew on STS-4 without problem. It has been established to have a vapor Reynolds number over 3000 at a vapor quality of 0.2 to maintain annular boiling in the evaporator and for the condenser to have a vapor Reynolds number over 15000 at its inlet to maintain annular condensation. These two constraints will virtually eliminate the effect of gravity on the performance of the refrigerator/freezer. These results are being used to build a refrigerator/freezer which will fly in Spacelab-4 scheduled for launch in December 1985.
Solar-powered compression-enhanced ejector air conditioner
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sokolov, M.; Hershgal, D.
1993-09-01
This article is an extension of an earlier investigation into the possibility of adaptation of the ejector refrigeration cycle to solar air-conditioning. In a previous work the ejector cycle has been proven a viable option only for a limited number of cases. These include systems with combined (heating, cooling, and hot water supply) loads where means for obtaining low condensing temperature are available. The purpose of this work is to extend the applicability of such systems by enhancing their efficiency and thereby improving their economical attractiveness. This is done by introducing the compression enhanced ejector system in which mechanical (rathermore » than thermal) energy is used to boost the pressure of the secondary stream into the ejector, Such a boost improves the performance of the whole system. Similar to the conventional ejector, the compression-enhanced ejector system utilizes practically the same hardware for solar heating during the winter and for solar cooling during the summer. Thus, it is capable of providing a year-round space air-conditioning. Optimization of the best combination in which the solar and refrigeration systems combine through the vapor generator working temperature is also presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sand, J.R.; Fischer, S.K.
1997-01-01
The Montreal Protocol phase-out of chlorofluorocarbons (CFCs) has required manufacturers to develop refrigeration and air-conditioning systems that use refrigerants that can not damage stratospheric ozone. Most refrigeration industries have adapted their designs to use hydrochlorofluorocarbon (HCFC) or hydrofluorocarbon (HFC) refrigerants; new automobile air- conditioning systems use HFC-134a. These industries are now being affected by scientific investigations of greenhouse warming and questions about the effects of refrigerants on global warming. Automobile air-conditioning has three separate impacts on global warming; (1) the effects of refrigerant inadvertently released to the atmosphere from accidents, servicing, and leakage; (2) the efficiency of the cooling equipmentmore » (due to the emission of C0{sub 2} from burning fuel to power the system); and (3) the emission of C0{sub 2} from burning fuel to transport the system. The Total Equivalent Warming Impact (TEWI) is an index that should be used to compare the global warming effects of alternative air-conditioning systems because it includes these contributions from the refrigerant, cooling efficiency, and weight. This paper compares the TEWI of current air-conditioning systems using HFC-134a with that of transcritical vapor compression system using carbon dioxide and systems using flammable refrigerants with secondary heat transfer loops. Results are found to depend on both climate and projected efficiency of C0{sub 2}systems. Performance data on manufacturing prototype systems are needed to verify the potential reductions in TEWI. Extensive field testing is also required to determine the performance, reliability, and ``serviceability`` of each alternative to HFC-134a to establish whether the potential reduction of TEWI can be achieved in a viable consumer product.« less
Integrated Heat Switch/Oxide Sorption Compressor
NASA Technical Reports Server (NTRS)
Bard, Steven
1989-01-01
Thermally-driven, nonmechanical compressor uses container filled with compressed praseodymium cerium oxide powder (PrCeOx) to provide high-pressure flow of oxygen gas for driving closed-cycle Joule-Thomson-expansion refrigeration unit. Integrated heat switch/oxide sorption compressor has no moving parts except check valves, which control flow of oxygen gas between compressor and closed-cycle Joule-Thomson refrigeration system. Oxygen expelled from sorbent at high pressure by evacuating heat-switch gap and turning on heater.
Treite, P.; Nuesslein, U.; Jia, Yi; ...
2015-07-15
The Fermilab Cryomodule Test Facility (CMTF) provides a test bed to measure the performance of superconducting radiofrequency (SRF) cryomodules (CM). These SRF components form the basic building blocks of future high intensity accelerators such as the International Linear Collider (ILC) and a Muon Collider. Linde Kryotechnik AG and Linde Cryogenics have designed, constructed and commissioned the superfluid helium refrigerator needed to support SRF component testing at the CMTF Facility. The hybrid refrigerator is designed to operate in a variety of modes and under a wide range of boundary conditions down to 1.8 Kelvin set by CM design. Special features ofmore » the refrigerator include the use of warm and cold compression and high efficiency turbo expanders.This paper gives an overview on the wide range of the challenging cooling requirements, the design, fabrication and the commissioning of the installed cryogenic system.« less
Mathematical model of an air-filled alpha stirling refrigerator
NASA Astrophysics Data System (ADS)
McFarlane, Patrick; Semperlotti, Fabio; Sen, Mihir
2013-10-01
This work develops a mathematical model for an alpha Stirling refrigerator with air as the working fluid and will be useful in optimizing the mechanical design of these machines. Two pistons cyclically compress and expand air while moving sinusoidally in separate chambers connected by a regenerator, thus creating a temperature difference across the system. A complete non-linear mathematical model of the machine, including air thermodynamics, and heat transfer from the walls, as well as heat transfer and fluid resistance in the regenerator, is developed. Non-dimensional groups are derived, and the mathematical model is numerically solved. The heat transfer and work are found for both chambers, and the coefficient of performance of each chamber is calculated. Important design parameters are varied and their effect on refrigerator performance determined. This sensitivity analysis, which shows what the significant parameters are, is a useful tool for the design of practical Stirling refrigeration systems.
THERMODYNAMIC EVALUATION OF FLUORINATED ETHERS, ETHANES, AND PROPANES AS ALTERNATIVE REFRIGERANTS
The visuals, part of a thermodynamic evaluation of fluorinated ethers, ethanes, and propanes as alternative refrigerants, are a useful tool in comparing new chemicals to existing refrigerants in vapor compression cycles. hey present the required suction superheat and the performa...
None
2018-06-13
Hydrofluorocarbons are the most common refrigerants found in vapor compression systems that heat and cool our homes. They are also thousands of times more potent than carbon dioxide. Learn about the Energy Department's efforts to help phase down these fluorinated gases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-11-28
Hydrofluorocarbons are the most common refrigerants found in vapor compression systems that heat and cool our homes. They are also thousands of times more potent than carbon dioxide. Learn about the Energy Department's efforts to help phase down these fluorinated gases.
NASA Astrophysics Data System (ADS)
Mishra, Shubham; Sarkar, Jahar
2016-12-01
Performance assessment of ejector-expansion vapor compression refrigeration system with eco-friendly R134a alternative refrigerants (R152a, R1234yf, R600a, R600, R290, R161, R32, and propylene) is presented for air-conditioning application. Ejector has been modeled by considering experimental data based correlations of component efficiencies to take care of all irreversibilities. Ejector area ratio has been optimized based on maximum coefficient of performance (COP) for typical air-conditioner operating temperatures. Selected refrigerants have been compared based on area ratio, pressure lift ratio, entrainment ratio, COP, COP improvement and volumetric cooling capacity. Effects of normal boiling point and critical point on the performances have been studied as well. Using ejector as an expansion device, maximum improvement in COP is noted in R1234yf (10.1%), which reduces the COP deviation with R134a (4.5% less in basic cycle and 2.5% less in ejector cycle). Hence, R1234yf seems to be best alternative for ejector expansion system due to its mild flammability and comparable volumetric capacity and cooling COP. refrigerant R161 is superior to R134a in terms of both COP and volumetric cooling capacity, although may be restricted for low capacity application due to its flammability.
NASA Astrophysics Data System (ADS)
Arya, Bheemsha; Nayak, B. Ramesh; Shivakumara, N. V.
2018-04-01
In practice the refrigerants are being used in the conventional refrigeration system to get the required cooling effect. These refrigerants produce Chlorofluorocarbons (CFCs) and Hydro chlorofluorocarbons (HCFCs) which are highly harmful to the environment, particularly depleting of ozone layers resulting in green house emissions. In order to overcome these effects, the research needs to be focused on the development of an ecofriendly refrigeration system. The thermoacoustic refrigeration system is one among such system where the sound waves are used to compress and expand the gas particles. This study focuses on the effect of dynamic pressure on the thermoacoustic refrigerator made of aluminium with overall length of 748.82 mm, and the entire inner surface of the resonator tube was coated with 2mm thickness of polyurethane to minimize the heat losses to the atmosphere. Experiments were conducted with different stack geometries i.e. parallel plates having 0.119 mm thick with spacing between the plates maintained at 0.358 mm, 1mm diameter pipes, 2mm diameter pipes and 4 mm diameter pipes. Experiments were also conducted with different drive ratios of 0.6%, 1% and 1.6% for a constant dynamic pressure of 2 bar and 10 bar for helium and air as working medium. The results were plotted with the help of graphs, the variation of coefficient of performance (COP) and the relative coefficient of performance (COPR) for the above said conditions were calculated.
The Development and Calculation of an Energy-saving Plant for Obtaining Water from Atmospheric Air
NASA Astrophysics Data System (ADS)
Uglanov, D. A.; Zheleznyak, K. E.; Chertykovsev, P. A.
2018-01-01
The article shows the calculation of characteristics of energy-efficient water generator from atmospheric air. This installation or the atmospheric water generator is the unique mechanism which produces safe drinking water by extraction it from air. The existing atmospheric generators allow to receive safe drinking water by means of process of condensation at air humidity at least equal to 35% and are capable to give to 25 liters of water in per day, and work from electricity. Authors offer to use instead of the condenser in the scheme of installation for increase volume of produced water by generator in per day, the following refrigerating machines: the vapor compression refrigerating machines (VCRM), the thermoelectric refrigerating machines (TRM) and the Stirling-cycle refrigerating machines (SRM). The paper describes calculation methods for each of refrigerating systems. Calculation of technical-and-economic indexes for the atmospheric water generator was carried out and the optimum system with the maximum volume of received water in per day was picked up. The atmospheric water generator which is considered in article will work from autonomous solar power station.
U.S. Residential Miscellaneous Refrigeration Products: Results from Amazon Mechanical Turk Surveys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenblatt, Jeffery B.; Young, Scott J.; Yang, Hung-Chia
Amazon Mechanical Turk was used, for the first time, to collect statistically representative survey data from U.S. households on the presence, number, type and usage of refrigerators, freezers, and various “miscellaneous” refrigeration products (wine/beverage coolers, residential icemakers and non-vapor compression refrigerators and freezers), along with household and demographic information. Such products have been poorly studied to date, with almost no information available about shipments, stocks, capacities, energy use, etc. A total of 9,981 clean survey responses were obtained from five distinct surveys deployed in 2012. General refrigeration product survey responses were weighted to demographics in the U.S. Energy Information Administration’smore » Residential Energy Consumption Survey 2009 dataset. Miscellaneous refrigeration product survey responses were weighted according to demographics of product ownership found in the general refrigeration product surveys. Model number matching for a portion of miscellaneous refrigeration product responses allowed validation of refrigeration product characteristics, which enabled more accurate estimates of the penetrations of these products in U.S. households. We estimated that there were 12.3±1.0 million wine/beverage coolers, 5.5(–3.5,+3.2) million residential icemakers and 4.4(–2.7,+2.3) million non-vapor compression refrigerators in U.S. households in 2012. (All numerical results are expressed with ranges indicating the 95% confidence interval.) No evidence was found for the existence of non-vapor compression freezers. Moreover, we found that 15% of wine/beverage coolers used vapor compression cooling technology, while 85% used thermoelectric cooling technology, with the vast majority of thermoelectric units having capacities of less than 30 wine bottles (approximately 3.5 cubic feet). No evidence was found for the existence of wine/beverage coolers with absorption cooling technology. Additionally, we estimated that there were 3.6±1.0 million hybrid refrigerator-wine/beverage coolers and 0.9±0.5 million hybrid freezer-wine/beverage coolers in U.S. households. We also obtained estimates of miscellaneous refrigeration product capacities, lifetimes, purchase and installation costs, repair frequencies and costs, and maintenance costs. For wine/beverage coolers, we also obtained information on the penetration of built-in units, AC/DC operating capability, the use of internal lights, and distributions of door opening frequencies. This information is essential to develop detailed estimates of national energy usage and life-cycle costs, and would be helpful in obtaining information on other plug-load appliances. Additional information not highlighted in the main report was presented in Appendices.« less
U.S. Residential Miscellaneous Refrigeration Products: Results from Amazon Mechanical Turk Surveys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenblatt, Jeffery B.; Young, Scott J.; Yang, Hung-Chia
Amazon Mechanical Turk was used, for the first time, to collect statistically representative survey data from U.S. households on the presence, number, type and usage of refrigerators, freezers, and various “miscellaneous” refrigeration products (wine/beverage coolers, residential icemakers and non-vapor compression refrigerators and freezers), along with household and demographic information. Such products have been poorly studied to date, with almost no information available about shipments, stocks, capacities, energy use, etc. A total of 9,820 clean survey responses were obtained from four distinct surveys deployed in 2012. General refrigeration product survey responses were weighted to demographics in the U.S. Energy Information Administration’smore » Residential Energy Consumption Survey 2009 dataset. Miscellaneous refrigeration product survey responses were weighted according to demographics of product ownership found in the general refrigeration product surveys. Model number matching for a portion of miscellaneous refrigeration product responses allowed validation of refrigeration product characteristics, which enabled more accurate estimates of the penetrations of these products in U.S. households. We estimated that there were 12.3±1.0 million wine/beverage coolers, 5.5(–3.5,+3.2) million residential icemakers and 2.9(–2.5,+4.5) million non-vapor compression refrigerators in U.S. households in 2012. (All numerical results are expressed with ranges indicating the 95% confidence interval.) No evidence was found for the existence of non-vapor compression freezers. Moreover, we found that 15% of wine/beverage coolers used vapor compression cooling technology, while 85% used thermoelectric cooling technology, with the vast majority of thermoelectric units having capacities of less than 30 wine bottles (approximately 3.5 cubic feet). No evidence was found for the existence of wine/beverage coolers with absorption cooling technology. Additionally, we estimated that there were 3.6±1.0 million hybrid refrigerator-wine/beverage coolers and 0.9±0.5 million hybrid freezer-wine/beverage coolers in U.S. households. We also obtained estimates of miscellaneous refrigeration product capacities, lifetimes, purchase and installation costs, repair frequencies and costs, and maintenance costs. For wine/beverage coolers, we also obtained information on the penetration of built-in units, AC/DC operating capability, the use of internal lights, and distributions of door opening frequencies. This information is essential to develop detailed estimates of national energy usage and life-cycle costs, and would be helpful in obtaining information on other plug-load appliances. Additional information not highlighted in the main report was presented in Appendices.« less
Design theory and performance of cryogenic molecular adsorption refrigeration systems
NASA Technical Reports Server (NTRS)
Hartwig, W. H.; Woltman, A. W.; Masson, J. P.
1978-01-01
Closed-cycle operation of molecular adsorption refrigeration systems (MARS) has been demonstrated by using thermally cycled zeolites to adsorb and desorb various gases under pressures of 20-60 atm. This paper develops three aspects of the design theory: the physical theory of molecular adsorption of small molecules such as A, N2, N2O and NH3, the design relations for closed-cycle flow for three or more compressors, and the coefficient of performance. This work is intended to demonstrate nonmechanical gas compression for various cryogenic gases than can compete with mechanical systems with a different mix of advantages and disadvantages.
NASA Astrophysics Data System (ADS)
Moon, Chang-Uk; Choi, Kwang-Hwan; Yoon, Jung-In; Kim, Young-Bok; Son, Chang-Hyo; Ha, Soo-Jung; Jeon, Min-Ju; An, Sang-Young; Lee, Joon-Hyuk
2018-04-01
In this study, to investigate the performance characteristics of vapor injection refrigeration system with an economizer at an intermediate pressure, the vapor injection refrigeration system was analyzed under various experiment conditions. As a result, the optimum design data of the vapor injection refrigeration system with an economizer were obtained. The findings from this study can be summarized as follows. The mass flow rate through the compressor increases with intermediate pressure. The compression power input showed an increasing trend under all the test conditions. The evaporation capacity increased and then decreased at the intermediate pressure, and as such, it became maximum at the given intermediate pressure. The increased mass flow rate of the by-passed refrigerant enhanced the evaporation capacity at the low medium pressure range, but the increased saturation temperature limited the subcooling degree of the liquid refrigerant after the application of the economizer when the intermediate pressure kept rising, and degenerated the evaporation capacity. The coefficient of performance (COP) increased and then decreased with respect to the intermediate pressures under all the experiment conditions. Nevertheless, there was an optimum intermediate pressure for the maximum COP under each experiment condition. Therefore, the optimum intermediate pressure in this study was found at -99.08 kPa, which is the theoretical standard medium pressure under all the test conditions.
Development of a hybrid chemical/mechanical heat pump
NASA Technical Reports Server (NTRS)
Grzyll, Lawrence R.; Silvestri, John J.; Scaringe, Robert P.
1991-01-01
The authors present the current development status of a hybrid chemical/mechanical heat pump for low-lift applications. The heat pump provides electronics cooling by evaporating a pure refrigerant from an absorbent/refrigerant mixture in a generator/cold plate. The current development focused on evaluation of absorbent/refrigerant pairs, corrosion testing, pump and compressor design, and electronic cold plate design. Two cycle configurations were considered. The first configuration utilized a standard mechanical compressor and pump. The second cycle configuration investigated pumps and compressors with non-moving parts. An innovative generator/cold plate design is also presented. The development to date shows that this cycle has about the same performance as standard vapor compression heat pumps with standard refrigerants but may have some performance and reliability advantages over vapor compression heat pumps.
Development of a Battery-Free Solar Refrigerator
NASA Technical Reports Server (NTRS)
Ewert, Michael K.; Bergeron, David J., III
2000-01-01
Recent technology developments and a systems engineering design approach have led to the development of a practical battery-free solar refrigerator as a spin-off of NASA's aerospace refrigeration research. Off-grid refrigeration is a good application of solar photovoltaic (PV) power if thermal storage is incorporated and a direct connection is made between the cooling system and the PV panel. This was accomplished by integrating water as a phase-change material into a well insulated refrigerator cabinet and by developing a microprocessor based control system that allows direct connection of a PV panel to a variable speed compressor. This second innovation also allowed peak power-point tracking from the PV panel and elimination of batteries from the system. First a laboratory unit was developed to prove the concept and then a commercial unit was produced and deployed in a field test. The laboratory unit was used to test many different configurations including thermoelectric, Stirling and vapor compression cooling systems. The final configuration used a vapor compression cooling cycle, vacuum insulation, a passive condenser, an integral evaporator/ thermal storage tank, two 77 watt PV panels and the novel controller mentioned above. The system's only moving part was the variable speed BD35 compressor made by Danfoss. The 365 liter cabinet stayed cold with as little as 274 watt-hours per day average PV power. Battery-free testing was conducted for several months with very good results. The amount of thermal storage, size of compressor and power of PV panels connected can all be adjusted to optimize the design for a given application and climate. In the commercial unit, the high cost of the vacuum insulated refrigerator cabinet and the stainless steel thermal storage tank were addressed in an effort to make the technology commercially viable. This unit started with a 142 liter, mass-produced chest freezer cabinet that had the evaporator integrated into its inner walls. Its compressor was replaced with a Danfoss DC compressor slightly larger than the one used in the laboratory unit. The control system was integrated onto a single electronics card and packaged with its starting capacitors. The water for thermal storage was placed behind a liner that was made to fit inside the original factory liner. The original condenser was also augmented with additional surface area to improve performance. PV panels with a total rated power of 180 watts were used. The unit was tested with very successful results in an outside ambient environment, demonstrating its potential for widespread use in many off-grid applications for solar refrigeration.
Experimental Results Obtained with Air Liquide Cold Compression System: CERN LHC and SNS Projects
NASA Astrophysics Data System (ADS)
Delcayre, F.; Courty, J.-C.; Hamber, F.; Hilbert, B.; Monneret, E.; Toia, J.-L.
2006-04-01
Large scale collider facilities will make intensive use of superconducting magnets, operating below 2.0 K. This dictates high-capacity refrigeration systems operating below 2.0 K. These systems, making use of cryogenic centrifugal compressors in a series arrangement with room temperature screw compressors will be coupled to a refrigerator, providing a certain power at 4.5 K. A first Air Liquide Cold Compression System (CCS) unit was built and delivered to CERN in 2001. Installed at the beginning of 2002, it was commissioned and tested successfully during year 2002. A series of four sets of identical CCS were then tested in 2004. Another set of four cryogenic centrifugal compressors (CCC) has been delivered to Thomas Jefferson National Accelerator Facility (JLAB) for the Spallation Neutron Source (SNS) in 2002. These compressors were tested and commissioned from December 2004 to July 2005. The experimental results obtained with these systems will be presented and discussed: the characteristics of the CCC will be detailed. The principles of control for the CCC in series will be detailed.
Analysis of household refrigerators for different testing standards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bansal, P.K.; McGill, I.
This study highlights the salient differences among various testing standards for household refrigerator-freezers and proposes a methodology for predicting the performance of a single evaporator-based vapor-compression refrigeration system (either refrigerator or freezer) from one test standard (where the test data are available-the reference case) to another (the alternative case). The standards studied during this investigation include the Australian-New Zealand Standard (ANZS), the International Standard (ISO), the American National Standard (ANSI), the Japanese Industrial Standard (JIS), and the Chinese National Standard (CNS). A simple analysis in conjunction with the BICYCLE model (Bansal and Rice 1993) is used to calculate the energymore » consumption of two refrigerator cabinets from the reference case to the alternative cases. The proposed analysis includes the effect of door openings (as required by the JIS) as well as defrost heaters. The analytical results are found to agree reasonably well with the experimental observations for translating energy consumption information from one standard to another.« less
NASA Astrophysics Data System (ADS)
Hu, Yong; Li, Zongbin; Yang, Bo; Qian, Suxin; Gan, Weimin; Gong, Yuanyuan; Li, Yang; Zhao, Dewei; Liu, Jian; Zhao, Xiang; Zuo, Liang; Wang, Dunhui; Du, Youwei
2017-04-01
Solid-state refrigeration based on the caloric effects is promising to replace the traditional vapor-compressing refrigeration technology due to environmental protection and high efficiency. However, the narrow working temperature region has hindered the application of these refrigeration technologies. In this paper, we propose a method of combined caloric, through which a broad refrigeration region can be realized in a multiferroic alloy, Ni-Mn-Ga, by combining its elastocaloric and magnetocaloric effects. Moreover, the materials' efficiency of elastocaloric effect has been greatly improved in our sample. These results illuminate a promising way to use multiferroic alloys for refrigeration with a broad refrigeration temperature region.
Chemically assisted mechanical refrigeration process
Vobach, Arnold R.
1987-01-01
There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer (11) at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer (11) to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator (10) to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator.
Chemically assisted mechanical refrigeration process
Vobach, Arnold R.
1987-01-01
There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer (11) at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer (11) to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator (10) to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing he evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator.
Chemically assisted mechanical refrigeration process
Vobach, A.R.
1987-06-23
There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator. 5 figs.
Chemically assisted mechanical refrigeration process
Vobach, A.R.
1987-11-24
There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator. 5 figs.
Energy Systems Training Programs and Certifications Survey White Paper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, Daryl; Nimbalkar, Sachin U.; Wenning, Thomas J.
2017-02-01
Compressed air system, industrial refrigeration system, chilled water system, pump system, fan system, steam system, process heating system, and combined heat and power system are the major industrial energy systems. By helping enhance knowledge and skills of workforce, training and certification programs on these systems are essential to improve energy efficiency of manufacturing facilities. A literature survey of currently available training and certification programs on these systems was conducted.
NASA Technical Reports Server (NTRS)
Goldman, Jeffrey H.; Harvey, A.; Lovell, T.; Walker, David H.
1994-01-01
This report describes the Phase 1 process and analysis used to select a refrigerant and thermodynamic cycle as the basis of a vapor compression heat pump requiring a high temperature lift, then to perform a preliminary design to implement the selected concept, including major component selection. Use of a vapor compression heat pump versus other types was based on prior work performed for the Electric Power Research Institute. A high lift heat pump is needed to enable a thermal control system to remove heat down to 275 K from a habitable volume when the external thermal environment is severe. For example, a long-term lunar base habitat will reject heat from a space radiator to a 325 K environment. The first step in the selection process was to perform an optimization trade study, quantifying the effect of radiator operating temperature and heat pump efficiency on total system mass; then, select the radiator operating temperature corresponding to the lowest system mass. Total system mass included radiators, all heat pump components, and the power supply system. The study showed that lunar night operation, with no temperature lift, dictated the radiator size. To operate otherwise would require a high mass penalty to store power. With the defined radiation surface, and heat pump performances assumed to be from 40 percent to 60 percent of the Carnot ideal, the optimum heat rejection temperature ranged from 387 K to 377 K, as a function of heat pump performance. Refrigerant and thermodynamic cycles were then selected to best meet the previously determined design conditions. The system was then adapted as a ground-based prototype lifting temperature to 360 K (versus 385 K for flight unit) and using readily available commercial-grade components. Over 40 refrigerants, separated into wet and dry compression behavioral types, were considered in the selection process. Refrigerants were initially screened for acceptable critical temperature. The acceptable refrigerants were analyzed in ideal single and two-stage thermodynamic cycles. Top candidates were analyzed assuming realistic component limits and system pressure drops, and were evaluated for other considerations such as safety, environmental impact, and commercial availability. A maximum coefficient of performance (COP) of 56 percent of the Carnot ideal was achievable for a three-stage CFC-11 cycle operating under the flight conditions above. The program was completed by defining a control scheme and by researching and selecting the major components, compressor and heat exchangers, that could be used to implement the thermodynamic cycle selected. Special attention was paid to using similar technologies for the SIRF and flight heat pumps resulting in the commercially available equivalent of the flight unit. A package concept was generated for the components selected and mass and volume estimated.
Energy Savings Potential and RD&D Opportunities for Non-Vapor-Compression HVAC Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
While vapor-compression technologies have served heating, ventilation, and air-conditioning (HVAC) needs very effectively, and have been the dominant HVAC technology for close to 100 years, the conventional refrigerants used in vapor-compression equipment contribute to global climate change when released to the atmosphere. This Building Technologies Office report: --Identifies alternatives to vapor-compression technology in residential and commercial HVAC applications --Characterizes these technologies based on their technical energy savings potential, development status, non-energy benefits, and other factors affecting end-user acceptance and their ability to compete with conventional vapor-compression systems --Makes specific research, development, and deployment (RD&D) recommendations to support further development ofmore » these technologies, should DOE choose to support non-vapor-compression technology further.« less
Stirling cycle engine and refrigeration systems
NASA Technical Reports Server (NTRS)
Higa, W. H. (Inventor)
1976-01-01
A Stirling cycle heat engine is disclosed in which displacer motion is controlled as a function of the working fluid pressure P sub 1 and a substantially constant pressure P sub 0. The heat engine includes an auxiliary chamber at the constant pressure P sub 0. An end surface of a displacer piston is disposed in the auxiliary chamber. During the compression portion of the engine cycle when P sub 1 rises above P sub 0 the displacer forces the working fluid to pass from the cold chamber to the hot chamber of the engine. During the expansion portion of the engine cycle the heated working fluid in the hot chamber does work by pushing down on the engine's drive piston. As the working fluid pressure P sub 1 drops below P sub 0 the displacer forces most of the working fluid in the hot chamber to pass through the regenerator to the cold chamber. The engine is easily combinable with a refrigeration section to provide a refrigeration system in which the engine's single drive piston serves both the engine and the refrigeration section.
Performance Measurements and Mapping of a R-407C Vapor Injection Scroll Compressor
NASA Astrophysics Data System (ADS)
Lumpkin, Domenique; Spielbauer, Niklas; Groll, Eckhard
2017-08-01
Environmental conditions significantly define the performance of HVAC&R systems. Vapor compression systems in hot climates tend to operate at higher pressure ratios, leading to increased discharge temperatures. Higher discharge temperatures can lead to higher irreversibilities in the compression process, lower specific enthalpies differences across the evaporator, and possibly a reduction in the compressor life due to the breakdown of the oil used for lubrication. To counter these effects, the use of economized, vapor injection compressors is proposed for vapor compression systems in high temperature climates. Such compressors are commercially available for refrigeration applications, in particular, supermarket refrigeration systems. However, compressor maps for vapor injection compressors are limited and none exist for R-407C. Through calorimeter testing, a compressor map for a single-port vapor injection compressor using R-407C was developed. A standard correlation for mapping single-port vapor injection compressors is proposed and validated using the compressor test results. The system and compressor performance with and without vapor injection was considered. As expected, with vapor injection there was a reduction in compressor discharge temperatures and an increase in the system coefficient of performance. The proposed dimensionless correlation is more accurate than the AHRI polynomial for mapping the injection ratio, discharge temperature, and compressor heat loss. The predicted volumetric efficiency values from the dimensionless correlation is within 1% of the measured valued. Similarly, the predicted isentropic efficiency values are within 2% of the measured values.
Influence of Oil on Refrigerant Evaporator Performance
NASA Astrophysics Data System (ADS)
Kim, Jong-Soo; Nagata, Karsuya; Katsuta, Masafumi; Tomosugi, Hiroyuki; Kikuchi, Kouichiro; Horichi, Toshiaki
In vapor compression refrigeration system using oil-lubricated compressors, some amount of oil is always circulated through the system. Oil circulation can have a significant influence on the evaporator performance of automotive air conditioner which is especially required to cool quickly the car interior after a period standing in the sun. An experimental investigation was carried out an electrically heated horizontal tube to measure local heat transfer coefficients for various flow rates and heat fluxes during forced convection boiling of pure refrigerant R12 and refrigerant-oil mixtures (0-11% oil concentration by weight) and the results were compared with oil free performance. Local heat transfer coefficients increased at the region of low vapor quality by the addition of oil. On the other hand, because the oil-rich liquid film was formed on the heat transfer surface, heat transfer coefficients gradually decreased as the vapor quality became higher. Average heat transfer coefficient reached a maximum at about 4% oil concentration and this trend agreed well with the results of Green and Furse. Previous correlations, using the properties of the refrigerant-oil mixture, could not predict satisfactorily the local heat transfer coefficients data. New correlation modified by oil concentration factor was developed for predicting the corresponding heat transfer coefficient for refrigerant-oil mixture convection boiling. The maximum percent deviation between predicted and measured heat transfer coefficient was within ±30%.
Reverse Brayton Cycle with Bladeless Turbo Compressor for Automotive Environmental Cooling
NASA Technical Reports Server (NTRS)
Ganapathi, Gani B. (Inventor); Cepeda-Rizo, Juan (Inventor)
2016-01-01
An automotive cabin cooling system uses a bladeless turbocompressor driven by automobile engine exhaust to compress incoming ambient air. The compressed air is directed to an intercooler where it is cooled and then to another bladeless turbine used as an expander where the air cools as it expands and is directed to the cabin interior. Excess energy may be captured by an alternator couple to the expander turbine. The system employs no chemical refrigerant and may be further modified to include another intercooler on the output of the expander turbine to isolate the cooled cabin environment.
Effect of Common Faults on the Performance of Different Types of Vapor Compression Systems
Du, Zhimin; Domanski, Piotr A.; Payne, W. Vance
2016-01-01
The effect of faults on the cooling capacity, coefficient of performance, and sensible heat ratio, was analyzed and compared for five split and rooftop systems, which use different types of expansion devices, compressors and refrigerants. The study applied multivariable polynomial and normalized performance models, which were developed for the studied systems for both fault-free and faulty conditions based on measurements obtained in a laboratory under controlled conditions. The analysis indicated differences in responses and trends between the studied systems, which underscores the challenge to devise a universal FDD algorithm for all vapor compression systems and the difficulty to develop a methodology for rating the performance of different FDD algorithms. PMID:26929732
Effect of Common Faults on the Performance of Different Types of Vapor Compression Systems.
Du, Zhimin; Domanski, Piotr A; Payne, W Vance
2016-04-05
The effect of faults on the cooling capacity, coefficient of performance, and sensible heat ratio, was analyzed and compared for five split and rooftop systems, which use different types of expansion devices, compressors and refrigerants. The study applied multivariable polynomial and normalized performance models, which were developed for the studied systems for both fault-free and faulty conditions based on measurements obtained in a laboratory under controlled conditions. The analysis indicated differences in responses and trends between the studied systems, which underscores the challenge to devise a universal FDD algorithm for all vapor compression systems and the difficulty to develop a methodology for rating the performance of different FDD algorithms.
Improving adsorption cryocoolers by multi-stage compression and reducing void volume
NASA Technical Reports Server (NTRS)
Bard, S.
1986-01-01
It is shown that the performance of gas adsorption cryocoolers is greatly improved by using adsorbents with low void volume within and between individual adsorbent particles (reducing void volumes in plumbing lines), and by compressing the working fluid in more than one stage. Refrigerator specific power requirements and compressor volumetric efficiencies are obtained in terms of adsorbent and plumbing line void volumes and operating pressures for various charcoal adsorbents using an analytical model. Performance optimization curves for 117.5 and 80 K charcoal/nitrogen adsorption cryocoolers are given for both single stage and multistage compressor systems, and compressing the nitrogen in two stages is shown to lower the specific power requirements by 18 percent for the 117.5 K system.
Ecker, Amir L.; Pietsch, Joseph A.
1982-01-01
What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.
The Freon loop double containment design for Spacelab refrigerator/freezer to protect environment
NASA Technical Reports Server (NTRS)
Hye, A.
1985-01-01
General Electric is building a vapor compression refrigerator/freezer for NASA-Johnson Space Center for the Spacelab mission SLS-1 for life sciences experiments. Freon R502 is used as refrigerant. As R502 is considered toxic, the whole Freon loop is enclosed in a second containment to avoid exposure to crewmen. A detailed description of the design and construction of the safety enclosure is presented.
Chainer, Timothy J; Dang, Hien P; Parida, Pritish R; Schultz, Mark D; Sharma, Arun
2015-03-17
A data center cooling system may include heat transfer equipment to cool a liquid coolant without vapor compression refrigeration, and the liquid coolant is used on a liquid cooled information technology equipment rack housed in the data center. The system may also include a controller-apparatus to regulate the liquid coolant flow to the liquid cooled information technology equipment rack through a range of liquid coolant flow values based upon information technology equipment temperature thresholds.
Solar Absorption Refrigeration System for Air-Conditioning of a Classroom Building in Northern India
NASA Astrophysics Data System (ADS)
Agrawal, Tanmay; Varun; Kumar, Anoop
2015-10-01
Air-conditioning is a basic tool to provide human thermal comfort in a building space. The primary aim of the present work is to design an air-conditioning system based on vapour absorption cycle that utilizes a renewable energy source for its operation. The building under consideration is a classroom of dimensions 18.5 m × 13 m × 4.5 m located in Hamirpur district of Himachal Pradesh in India. For this purpose, cooling load of the building was calculated first by using cooling load temperature difference method to estimate cooling capacity of the air-conditioning system. Coefficient of performance of the refrigeration system was computed for various values of strong and weak solution concentration. In this work, a solar collector is also designed to provide required amount of heat energy by the absorption system. This heat energy is taken from solar energy which makes this system eco-friendly and sustainable. A computer program was written in MATLAB to calculate the design parameters. Results were obtained for various values of solution concentrations throughout the year. Cost analysis has also been carried out to compare absorption refrigeration system with conventional vapour compression cycle based air-conditioners.
NASA Astrophysics Data System (ADS)
Napitupulu, F. H.; Daulay, F. A.; Dedy, P. M.; Denis; Jecson
2017-03-01
In order to recover the waste heat from the exhaust gas of a combustion engine, an adsorption refrigeration cycle is proposed. This is a preliminary study on design and testing of a prototype of absorption refrigeration cycle powered by an internal combustion engine. The heat source of the cycle is a compression ignition engine which generates 122.36 W of heat in generator of the cycle. The pairs of absorbent and refrigerant are water and ammonia. Here the generator is made of a shell and tube heat exchanger with number of tube and its length are 20 and 0.69 m, respectively. In the experiments the exhaust gas, with a mass flow rate of 0.00016 kg/s, enters the generator at 110°C and leaves it at 72°C. Here, the solution is heated from 30°C to 90°C. In the evaporator, the lowest temperature can be reached is 17.9°C and COP of the system is 0.45. The main conclusion can be drawn here is that the proposed system can be used to recycle the waste heat and produced cooling. However, the COP is still low.
Ecker, Amir L.
1983-01-01
A heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating a fluid in heat exchange relationship with a refrigerant fluid, at least three refrigerant heat exchangers, one for effecting heat exchange with the fluid, a second for effecting heat exchange with a heat exchange fluid, and a third for effecting heat exchange with ambient air; a compressor for compressing the refrigerant; at least one throttling valve connected at the inlet side of a heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circuit and pump for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and directional flow of refrigerant therethrough for selecting a particular mode of operation. Also disclosed are a variety of embodiments, modes of operation, and schematics therefor.
Magnetocaloric Materials Revolutionize Refrigeration Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Momen, Ayyoub
Researchers at Oak Ridge National Laboratory have partnered with General Electric (GE) Appliances on a building technologies project to revolutionize today’s 100-year-old home refrigeration technology. Using magnetocaloric materials (MCM), they’ve eliminated the need for a vapor compression cycle, associated refrigerants, and their negative environmental impacts. The research team is currently working to determine the most effective means to transfer heat from the solid MCM, and using fluid passed through high-resolution microchannels shows promise. This technology has the potential to reduce energy consumption by 25%, and GE hopes to commercialize magnetocaloric refrigerators for use in homes by 2020.
Heat pump with freeze-up prevention
Ecker, Amir L.
1981-01-01
What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid prevents freeze up of the second heat exchanger by keeping the temperature above the dew point; and, optionally, provides heat for efficient operation.
NASA Technical Reports Server (NTRS)
Bard, Steven (Inventor); Wu, Jiunn-Jeng (Inventor); Trimble, Curtis A. (Inventor)
1992-01-01
A Joule-Thomson cryogenic refrigeration system capable of achieving high temperature stabilities in the presence of varying temperature, atmospheric pressure, and heat load is provided. The Joule-Thomson cryogenic refrigeration system includes a demand flow Joule-Thomson expansion valve disposed in a cryostat of the refrigeration system. The expansion valve has an adjustable orifice that controls the flow of compressed gas therethrough and induces cooling and partial liquefaction of the gas. A recuperative heat exchanger is disposed in the cryostat and coupled to the expansion valve. A thermostatically self-regulating mechanism is disposed in the cryostat and coupled to the J-T expansion valve. The thermostatically self-regulating mechanism automatically adjusts the cross sectional area of the adjustable valve orifice in response to environmental temperature changes and changes in power dissipated at a cold head. A temperature sensing and adjusting mechanism is coupled to a cold head for adjusting the temperature of the cold head in response to the change in heat flow in the cold head. The temperature sensing and adjusting mechanism comprises a temperature sensitive diode, a wound wire heater, and an electrical feedback control circuit coupling the diode to the heater. An absolute pressure relief valve is interposed between the output of the cryostat and an exhaust port for maintaining a constant exhaust temperature in the refrigerating system, independent of the changes in atmospheric pressure.
NASA Astrophysics Data System (ADS)
Bard, Steven; Wu, Jiunn-Jeng; Trimble, Curtis A.
1992-06-01
A Joule-Thomson cryogenic refrigeration system capable of achieving high temperature stabilities in the presence of varying temperature, atmospheric pressure, and heat load is provided. The Joule-Thomson cryogenic refrigeration system includes a demand flow Joule-Thomson expansion valve disposed in a cryostat of the refrigeration system. The expansion valve has an adjustable orifice that controls the flow of compressed gas therethrough and induces cooling and partial liquefaction of the gas. A recuperative heat exchanger is disposed in the cryostat and coupled to the expansion valve. A thermostatically self-regulating mechanism is disposed in the cryostat and coupled to the J-T expansion valve. The thermostatically self-regulating mechanism automatically adjusts the cross sectional area of the adjustable valve orifice in response to environmental temperature changes and changes in power dissipated at a cold head. A temperature sensing and adjusting mechanism is coupled to a cold head for adjusting the temperature of the cold head in response to the change in heat flow in the cold head. The temperature sensing and adjusting mechanism comprises a temperature sensitive diode, a wound wire heater, and an electrical feedback control circuit coupling the diode to the heater. An absolute pressure relief valve is interposed between the output of the cryostat and an exhaust port for maintaining a constant exhaust temperature in the refrigerating system, independent of the changes in atmospheric pressure.
Commissioning of helium refrigeration system at JLab for 12 GeV upgrade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganni, Venkatarao; Dixon, Kelly D.; Knudsen, Peter N.
The new 4.5 K refrigerator system added to the Jefferson Lab (JLab) Central Helium Liquefier (CHL) for the 12 GeV upgrade will double its previous capacity. It includes a 4.5 K cold box system and compressor system with associated oil removal and gas management systems. At its maximum capacity condition, this new system supports an additional 238 g/s 30 K 1.16 bar cold compressor return flow, a 15 g/s 4.5 K liquefaction load and a 12.6 kW 35–55 K shield load. Five more design conditions, ranging from liquefaction to refrigeration and a stand-by/reduced load state, were specified for the sizingmore » and selection of its components. The cold box system is comprised of a 300–60 K vertical cold box that incorporates a liquid nitrogen pre-cooler and a 60–4.5 K horizontal cold box housing seven turbines that are configured in four expansion stages including one Joule-Thompson expander. The helium compression system has five compressors to support three pressure levels in the cold box. This paper will briefly review the salient 4.5 K system design features and discuss the recent commissioning results.« less
Cooling performance and evaluation of automotive refrigeration system for a passenger car
NASA Astrophysics Data System (ADS)
Prajitno, Deendarlianto, Majid, Akmal Irfan; Mardani, Mahardeka Dhias; Wicaksono, Wendi; Kamal, Samsul; Purwanto, Teguh Pudji; Fauzun
2016-06-01
A new design of automotive refrigeration system for a passenger car was proposed. To ensure less energy consumption and optimal thermal comfort, the performance of the system were evaluated. This current research was aimed to evaluate the refrigeration characteristics of the system for several types of cooling load. In this present study, a four-passenger wagon car with 1500 cc gasoline engine that equipped by a belt driven compressor (BDC) was used as the tested vehicle. To represent the tropical condition, a set of lamps and wind sources are installed around the vehicle. The blower capacity inside a car is varied from 0.015 m/s to 0.027 m/s and the compressor speed is varied at variable 820, 1400, and 2100 rpm at a set temperature of 22°C. A set of thermocouples that combined by data logger were used to measure the temperature distribution. The system uses R-134a as the refrigerant. In order to determine the cooling capacity of the vehicle, two conditions were presented: without passengers and full load conditions. As the results, cooling capacity from any possible heating sources and transient characteristics of temperature in both systems for the cabin, engine, compressor, and condenser are presented in this work. As the load increases, the outlet temperature of evaporator also increases due to the increase of condensed air. This phenomenon also causes the increase of compressor work and compression ratio which associated to the addition of specific volume in compressor inlet.
49 CFR 180.405 - Qualification of cargo tanks.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., refrigerated liquid; or hydrogen chloride, refrigerated liquid shall remove the exemption number stenciled on... after July 1, 2001, or July 1, 2003, whichever is earlier. (n) Thermal activation. No later than the... compressed gas, other than carbon dioxide and chlorine, that has a water capacity of 13,247.5 L (3,500...
49 CFR 180.405 - Qualification of cargo tanks.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., refrigerated liquid; or hydrogen chloride, refrigerated liquid shall remove the exemption number stenciled on... after July 1, 2001, or July 1, 2003, whichever is earlier. (n) Thermal activation. No later than the... compressed gas, other than carbon dioxide and chlorine, that has a water capacity of 13,247.5 L (3,500...
49 CFR 180.405 - Qualification of cargo tanks.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., refrigerated liquid; or hydrogen chloride, refrigerated liquid shall remove the exemption number stenciled on... after July 1, 2001, or July 1, 2003, whichever is earlier. (n) Thermal activation. No later than the... compressed gas, other than carbon dioxide and chlorine, that has a water capacity of 13,247.5 L (3,500...
49 CFR 180.405 - Qualification of cargo tanks.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., refrigerated liquid; or hydrogen chloride, refrigerated liquid shall remove the exemption number stenciled on... after July 1, 2001, or July 1, 2003, whichever is earlier. (n) Thermal activation. No later than the... compressed gas, other than carbon dioxide and chlorine, that has a water capacity of 13,247.5 L (3,500...
49 CFR 180.405 - Qualification of cargo tanks.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., refrigerated liquid; or hydrogen chloride, refrigerated liquid shall remove the exemption number stenciled on... after July 1, 2001, or July 1, 2003, whichever is earlier. (n) Thermal activation. No later than the... compressed gas, other than carbon dioxide and chlorine, that has a water capacity of 13,247.5 L (3,500...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-23
... refrigeration using compression technology, with all of the following characteristics: (1) The cabinet contains... interior plastic liner, (e) wiring, and (f) insulation; (2) any assembled external doors designed for use... metal shell, (b) an interior plastic liner, and (c) insulation; and (3) any assembled external drawers...
Multivariable control of vapor compression systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, X.D.; Liu, S.; Asada, H.H.
1999-07-01
This paper presents the results of a study of multi-input multi-output (MIMO) control of vapor compression cycles that have multiple actuators and sensors for regulating multiple outputs, e.g., superheat and evaporating temperature. The conventional single-input single-output (SISO) control was shown to have very limited performance. A low order lumped-parameter model was developed to describe the significant dynamics of vapor compression cycles. Dynamic modes were analyzed based on the low order model to provide physical insight of system dynamic behavior. To synthesize a MIMO control system, the Linear-Quadratic Gaussian (LQG) technique was applied to coordinate compressor speed and expansion valve openingmore » with guaranteed stability robustness in the design. Furthermore, to control a vapor compression cycle over a wide range of operating conditions where system nonlinearities become evident, a gain scheduling scheme was used so that the MIMO controller could adapt to changing operating conditions. Both analytical studies and experimental tests showed that the MIMO control could significantly improve the transient behavior of vapor compression cycles compared to the conventional SISO control scheme. The MIMO control proposed in this paper could be extended to the control of vapor compression cycles in a variety of HVAC and refrigeration applications to improve system performance and energy efficiency.« less
Simplified Helium Refrigerator Cycle Analysis Using the `Carnot Step'
DOE Office of Scientific and Technical Information (OSTI.GOV)
P. Knudsen; V. Ganni
2006-05-01
An analysis of the Claude form of an idealized helium liquefier for the minimum input work reveals the ''Carnot Step'' for helium refrigerator cycles. As the ''Carnot Step'' for a multi-stage polytropic compression process consists of equal pressure ratio stages; similarly for an idealized helium liquefier the ''Carnot Step'' consists of equal temperature ratio stages for a given number of expansion stages. This paper presents the analytical basis and some useful equations for the preliminary examination of existing and new Claude helium refrigeration cycles.
Experiments with a pressure-driven Stirling refrigerator with flexible chambers
NASA Astrophysics Data System (ADS)
McFarlane, Patrick; Suire, Jonathan; Sen, Mihir; Semperlotti, Fabio
2014-06-01
We report on the design and experimental testing of a Stirling refrigerator that uses air as the working fluid, and where the conventional piston-cylinder assemblies are replaced by pressure-driven flexible chambers. The two chambers are periodically compressed by pneumatic actuators resulting in airflow through the regenerator and in a net temperature difference between the chambers. An experimental setup is used to investigate the performance of the refrigerator under different operating conditions with particular attention to actuation frequencies, driving pressure differences, and phase angles between the two inputs. The time constant of the temperature difference between the two chambers is determined, and the temperature difference is measured as a function of the system parameters. The results of several tests conducted under different operating conditions show that the refrigerating effect is very robust and allows good performance even for modulated inputs. The frequency response is radically different from that of a traditional motion-driven device. This work suggests that mechanical to thermal energy conversion devices based on this principle can be successfully powered by human motion.
EC/LSS thermal control system study for the space shuttle
NASA Technical Reports Server (NTRS)
Howell, H. R.
1972-01-01
The results of a parametric weight analysis of heat rejection systems for the space shuttle orbiter are presented. Integrating the suborbital heat rejection system with the overall heat rejection system design and the possible use of a common system for both on-orbit and suborbital operations require an overall system and parametric analyses applicable to all mission phases. The concept of equivalent weights, with weight penalties assigned for power, induced aircraft drag and radiator area is used to determine weight estimates for the following candidate systems: vapor cycle refrigeration, gas cycle refrigeration, radiators (space and atmospheric convectors), expendable heat sinks, and ram air. The orbiter power penalty, ram air penalty, and radiator weight penalty are analyzed. The vapor compression system and an expendable fluid system utilizing a multifluid spraying flash evaporator are selected as the two most promising systems. These are used for maximum on-orbit heat rejection in combination with or as a supplement to a space radiator.
Magnetocaloric Materials Revolutionize Refrigeration Technology
Momen, Ayyoub
2018-06-25
Researchers at Oak Ridge National Laboratory have partnered with General Electric (GE) Appliances on a building technologies project to revolutionize todayâs 100-year-old home refrigeration technology. Using magnetocaloric materials (MCM), theyâve eliminated the need for a vapor compression cycle, associated refrigerants, and their negative environmental impacts. The research team is currently working to determine the most effective means to transfer heat from the solid MCM, and using fluid passed through high-resolution microchannels shows promise. This technology has the potential to reduce energy consumption by 25%, and GE hopes to commercialize magnetocaloric refrigerators for use in homes by 2020.
Continuous and Periodic Sorption Cryocoolers for 10 K and Below
NASA Technical Reports Server (NTRS)
Bard, S.; Wade, L.; Karlmann, P.
1996-01-01
A novel system is described for Sorption Cryocooling to 10 K, using hydrogen as refrigerant fluid, sorbent beds of metal hydride powders, and thermal compression and expansion. Current status is summarized of sorption cryocooler development for space applications requiring cooling of infrared and submillimeter sensors to 10 K and below. Several design variations, challenges, and predictions are discussed.
Experimental investigation of an alternating evaporator duty refrigerator/freezer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lavanis, M.; Haider, I.; Radermacher, R.
1998-12-31
A bistable solenoid valve has been used to build an alternating evaporator duty (AED) domestic refrigerator/freezer. This refrigerator has two vapor compression refrigeration loops that share a common compressor, condenser, and suction line heat exchanger. Each of the refrigeration loops has an expansion device and evaporator. One evaporator is located in the fresh food compartment and the other is located in the freezer compartment. The bistable solenoid valve directs the flow of the refrigerant through one loop at a time. Only one of the two compartments is cooled at any given time. With this configuration, the food compartment is cooledmore » at a higher evaporator temperature than the freezer. Due to this, the energy efficiency of the refrigerator is improved by 8.5% over a conventional domestic refrigerator/freezer. Also, this cycle allows for completely independent temperature control of the freezer and fresh food compartments. There may be a penalty because this cycle does not allow for both loops to be simultaneously optimized. Isobutane was the only refrigerant used in this investigation.« less
NASA Astrophysics Data System (ADS)
Nowak, Bernard; Życzkowski, Piotr; Łuczak, Rafał
2017-03-01
The authors of this article dealt with the issue of modeling the thermodynamic and thermokinetic properties (parameters) of refrigerants. The knowledge of these parameters is essential to design refrigeration equipment, to perform their energy efficiency analysis, or to compare the efficiency of air refrigerators using different refrigerants. One of the refrigerants used in mine air compression refrigerators is R407C. For this refrigerant, 23 dependencies were developed, determining its thermodynamic and thermokinetic parameters in the states of saturated liquid, dry saturated vapour, superheated vapor, subcooled liquid, and in the two-phase region. The created formulas have been presented in Tables 2, 5, 8, 10 and 12, respectively. It should be noted that the scope of application of these formulas is wider than the range of changes of that refrigerant during the normal operation of mine refrigeration equipment. The article ends with the statistical verification of the developed dependencies. For this purpose, for each model correlation coefficients and coefficients of determination were calculated, as well as absolute and relative deviations between the given values from the program REFPROP 7 (Lemmon et al., 2002) and the calculated ones. The results of these calculations have been contained in Tables 14 and 15.
Saleh, B
2016-09-01
The potential use of many common hydrofluorocarbons and hydrocarbons as well as new hydrofluoroolefins, i.e. R1234yf and R1234ze(E) working fluids for a combined organic Rankine cycle and vapor compression refrigeration (ORC-VCR) system activated by low-grade thermal energy is evaluated. The basic ORC operates between 80 and 40 °C typical for low-grade thermal energy power plants while the basic VCR cycle operates between 5 and 40 °C. The system performance is characterized by the overall system coefficient of performance (COPS) and the total mass flow rate of the working fluid for each kW cooling capacity ([Formula: see text]). The effects of different working parameters such as the evaporator, condenser, and boiler temperatures on the system performance are examined. The results illustrate that the maximum COPS values are attained using the highest boiling candidates with overhanging T-s diagram, i.e. R245fa and R600, while R600 has the lowest [Formula: see text] under the considered operating conditions. Among the proposed candidates, R600 is the best candidate for the ORC-VCR system from the perspectives of environmental issues and system performance. Nevertheless, its flammability should attract enough attention. The maximum COPS using R600 is found to reach up to 0.718 at a condenser temperature of 30 °C and the basic values for the remaining parameters.
NASA Astrophysics Data System (ADS)
Wong, Thiam
In vapor compression cycles, a small portion of the oil circulates with the refrigerant throughout the system components, while most of the oil stays in the compressors. In heat exchangers, the lubricant in excess penalizes the heat transfer and increases the pressure losses: both effects are highly undesired but yet unavoidable. Nanoparticles dispersed in the excess lubricant are expected to provide enhancements in heat transfer. While solubility and miscibility of refrigerants in polyolesters (POE) lubricant are well established knowledge, there is a lack of information regarding if and how nanoparticles dispersed in the lubricant affect these properties. This thesis presents experimental data of solubility of two types of Al2O3 nanolubricants with refrigerant R-410A. The nanoparticles were dispersed in POE lubricant by using different surfactants and dispersion methods. The nanolubricants appeared to have slightly lower solubility than that of R-410A but actually the solid nanoparticles did not really interfere with the POE oil solubility characteristics. A test facility and experimental methodology was developed for the investigation of heat transfer coefficient and pressure drop. The pressure drop of the refrigerant lubricant mixtures during flow boiling depended on the mass flux of the refrigerant. Greater augmentation was seen in the pressure drop results with decreasing mass flow rate. Pure refrigerant R410A showed the lowest pressure drop, addition of nanolubricants to the refrigerant showed a slightly higher pressure drop and POE-refrigerant mixture showed the highest pressure drop in the tests conducted. Enhancement or degradation in heat transfer coefficient during flow boiling depended on the nanoparticle concentration in the lubricant as well as the lubricant concentration in refrigerant. R410A showed the highest heat transfer coefficient for all conditions tested. For a concentration of 1% nanolubricant in refrigerant, the heat transfer coefficient showed more enhancement with increase in nanoparticle concentration compared to POE refrigerant mixtures. For a concentration of 3% nanolubricant in refrigerant mixtures there was little to no enhancement for tests conducted.
End to deficit of LPG. [Argentina] (in Spanish)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrich, V.
1980-03-01
In the Buenos Aires province of Argentina, Gas de Estado is constructing the future heart of the petrochemical complex, Bahia Blanca. The complex contains 2 absorption-refrigeration plants, a gas compressing plant, equipment maintenance shops and an important operations base for the Argentine truck gas pipelines. This will be the largest LPG plant in Latin America. The General Cerri plant, under construction, is located in an area of 40,000 sq m with new installations to extract ethane and higher hydrocarbons. The design optimizes the extraction of hydrocarbons from the natural gas and recovers 76% of the ethane. Selection of the processmore » resulted from an investigation that compared the system with processes that use water cooling and absorption with refrigerated oil.« less
Quest for absolute zero in the presence of external noise.
Torrontegui, E; Kosloff, R
2013-09-01
A reciprocating quantum refrigerator is analyzed with the intention to study the limitations imposed by external noise. In particular we focus on the behavior of the refrigerator when it approaches the absolute zero. The cooling cycle is based on the Otto cycle with a working medium constituted by an ensemble of noninteracting harmonic oscillators. The compression and expansion segments are generated by changing an external parameter in the Hamiltonian. In this case the force constant of the harmonic oscillators mω^{2} is modified from an initial to a final value. As a result, the kinetic and potential energy of the system do not commute causing frictional losses. By proper choice of scheduling function ω(t) frictionless solutions can be obtained in the noiseless case. We examine the performance of a refrigerator subject to noise. By expanding from the adiabatic limit we find that the external noise, Gaussian phase, and amplitude noises reduce the amount of heat that can be extracted but nevertheless the zero temperature can be approached.
Generalized equation of state for refrigerants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Y.; Sonntag, R.E.; Borgnakke, C.
1995-08-01
A new four-parameter generalized equation of state with three reference fluids has been developed for predicting thermodynamic properties of the methane and ethane-series refrigerants. The four chosen characteristic parameters are critical temperature, critical pressure, acentric factor, and the polarity factor proposed in this work. The three selected reference fluids are argon, n-butane and 1,1-difluoroethane (R-152a). When the results of this work are compared with the refrigerant experimental data, they show significant improvement over Lee and Kesler (1975) and Wu and Stiel (1985). If the characteristic parameters of the refrigerants of interest are not available, an estimation method based on themore » group contribution method is given. The ideal vapor-compression refrigeration cycle was studied using the newly developed generalized equation of state to verify the accuracy of this work.« less
Evaluation and analysis on the coupling performance of a high-speed turboexpander compressor
NASA Astrophysics Data System (ADS)
Chen, Shuangtao; Fan, Yufeng; Yang, Shanju; Chen, Xingya; Hou, Yu
2017-12-01
A high-speed turboexpander compressor (TEC) for small reverse Brayton air refrigerator is tested and analyzed in the present work. A TEC consists of an expander and a compressor, which are coupled together and interact with each other directly. Meanwhile, the expander and compressor have different effects on the refrigerator. The TEC overall efficiency, which contains effects of the expander's expansion, the compressor's pre-compression, and the pressure drop between them, was proved. It unifies influences of both compression and expansion processes on the COP of refrigerator and could be used to evaluate the TEC overall performance. Then, the coupling parameters were analyzed, which shows that for a TEC, the expander efficiency should be fully utilized first, followed by the compressor pressure ratio. Experiments were carried out to test the TEC coupling performances. The results indicated that, the TEC overall efficiency could reach 67.2%, and meanwhile 22.3% of the energy output was recycled.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenks, Jeromy WJ; TeGrotenhuis, Ward E.; Motkuri, Radha K.
2015-07-09
Metal-organic frameworks (MOFs) have recently attracted enormous interest over the past few years due to their potential applications in energy storage and gas separation. However, there have been few reports on MOFs for adsorption cooling applications. Adsorption cooling technology is an established alternative to mechanical vapor compression refrigeration systems. Adsorption cooling is an excellent alternative in industrial environments where waste heat is available. Applications also include hybrid systems, refrigeration, power-plant dry cooling, cryogenics, vehicular systems and building HVAC. Adsorption based cooling and refrigeration systems have several advantages including few moving parts and negligible power consumption. Key disadvantages include large thermalmore » mass, bulkiness, complex controls, and low COP (0.2-0.5). We explored the use of metal organic frameworks that have very high mass loading and relatively low heats of adsorption, with certain combinations of refrigerants to demonstrate a new type of highly efficient adsorption chiller. An adsorption chiller based on MOFs suggests that a thermally-driven COP>1 may be possible with these materials, which would represent a fundamental breakthrough in performance of adsorption chiller technology. Computational fluid dynamics combined with a system level lumped-parameter model have been used to project size and performance for chillers with a cooling capacity ranging from a few kW to several thousand kW. In addition, a cost model has been developed to project manufactured cost of entire systems. These systems rely on stacked micro/mini-scale architectures to enhance heat and mass transfer. Presented herein are computational and experimental results for hydrophyilic MOFs, fluorophilic MOFs and also flourophilic Covalent-organic frameworks (COFs).« less
Improvements to the ejector expansion refrigeration cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menegay, P.; Kornhauser, A.A.
1996-12-31
The ejector expansion refrigeration cycle (EERC) is a variant of the standard vapor compression cycle in which an ejector is used to recover part of the work that would otherwise be lost in the expansion valve. In initial testing EERC performance was poor, mainly due to thermodynamic non-equilibrium conditions in the ejector motive nozzle. Modifications were made to correct this problem, and significant performance improvements were found.
The Operating Principle of a Fully Solid State Active Magnetic Regenerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdelaziz, Omar
As an alternative refrigeration technology, magnetocaloric refrigeration has the potential to be safer, quieter, more efficient, and more environmentally friendly than the conventional vapor compression refrigeration technology. Most of the reported active magnetic regenerator (AMR) systems that operate based on the magnetocaloric effect use heat transfer fluid to exchange heat, which results in complicated mechanical subsystems and components such as rotating valves and hydraulic pumps. This paper presents an operating principle of a fully solid state AMR, in which an alternative mechanism for heat transfer between the AMR and the heat source/sink is proposed. The operating principle of the fullymore » solid state AMR is based on moving rods/sheets (e.g. copper, brass, iron or aluminum), which are employed to replace the heat transfer fluid. Such fully solid state AMR would provide a significantly higher heat transfer rate than a conventional AMR because the conductivity of moving solid rods/plates is high and it enables the increase in the machine operating frequency hence the cooling capacity. The details of operating principle are presented and discussed here. One of the key enabling features for this technology is the contact between the moving rods/sheets and magnetocaloric material, and heat exchange mechanism at the heat source/sink. This paper provides an overview of the design for a fully solid state magnetocaloric refrigeration system along with guidelines for their optimal design.« less
System and method for cooling a combustion gas charge
Massey, Mary Cecelia; Boberg, Thomas Earl
2010-05-25
The present invention relates to a system and method for cooling a combustion gas charge prior. The combustion gas charge may include compressed intake air, exhaust gas, or a mixture thereof. An evaporator is provided that may then receive a relatively high temperature combustion gas charge and discharge at a relatively lower temperature. The evaporator may be configured to operate with refrigeration cycle components and/or to receive a fluid below atmospheric pressure as the phase-change cooling medium.
Efficient electrochemical refrigeration power plant using natural gas with ∼100% CO2 capture
NASA Astrophysics Data System (ADS)
Al-musleh, Easa I.; Mallapragada, Dharik S.; Agrawal, Rakesh
2015-01-01
We propose an efficient Natural Gas (NG) based Solid Oxide Fuel Cell (SOFC) power plant equipped with ∼100% CO2 capture. The power plant uses a unique refrigeration based process to capture and liquefy CO2 from the SOFC exhaust. The capture of CO2 is carried out via condensation and purification using two rectifying columns operating at different pressures. The uncondensed gas mixture, comprising of relatively high purity unconverted fuel, is recycled to the SOFC and found to boost the power generation of the SOFC by 22%, when compared to a stand alone SOFC. If Liquefied Natural Gas (LNG) is available at the plant gate, then the refrigeration available from its evaporation is used for CO2 Capture and Liquefaction (CO2CL). If NG is utilized, then a Mixed Refrigerant (MR) vapor compression cycle is utilized for CO2CL. Alternatively, the necessary refrigeration can be supplied by evaporating the captured liquid CO2 at a lower pressure, which is then compressed to supercritical pressures for pipeline transportation. From rigorous simulations, the power generation efficiency of the proposed processes is found to be 70-76% based on lower heating value (LHV). The benefit of the proposed processes is evident when the efficiency of 73% for a conventional SOFC-Gas turbine power plant without CO2 capture is compared with an equivalent efficiency of 71.2% for the proposed process with CO2CL.
49 CFR 173.307 - Exceptions for compressed gases.
Code of Federal Regulations, 2011 CFR
2011-10-01
... subchapter. (3) Balls used for sports. (4) Refrigerating machines, including dehumidifiers and air... of a flammable, non-toxic liquefied gas. (5) Manufactured articles or apparatuses, each containing...
Preliminary Analysis of a Fully Solid State Magnetocaloric Refrigeration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdelaziz, Omar
Magnetocaloric refrigeration is an alternative refrigeration technology with significant potential energy savings compared to conventional vapor compression refrigeration technology. Most of the reported active magnetic regenerator (AMR) systems that operate based on the magnetocaloric effect use heat transfer fluid to exchange heat, which results in complicated mechanical subsystems and components such as rotating valves and hydraulic pumps. In this paper, we propose an alternative mechanism for heat transfer between the AMR and the heat source/sink. High-conductivity moving rods/sheets (e.g. copper, brass, iron, graphite, aluminum or composite structures from these) are utilized instead of heat transfer fluid significantly enhancing the heatmore » transfer rate hence cooling/heating capacity. A one-dimensional model is developed to study the solid state AMR. In this model, the heat exchange between the solid-solid interfaces is modeled via a contact conductance, which depends on the interface apparent pressure, material hardness, thermal conductivity, surface roughness, surface slope between the interfaces, and material filled in the gap between the interfaces. Due to the tremendous impact of the heat exchange on the AMR cycle performance, a sensitivity analysis is conducted employing a response surface method, in which the apparent pressure, effective surface roughness and grease thermal conductivity are the uncertainty factors. COP and refrigeration capacity are presented as the response in the sensitivity analysis to reveal the important factors influencing the fully solid state AMR and optimize the solid state AMR efficiency. The performances of fully solid state AMR and traditional AMR are also compared and discussed in present work. The results of this study will provide general guidelines for designing high performance solid state AMR systems.« less
Thermodynamic analysis of cascade microcryocoolers with low pressure ratios
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radebaugh, Ray
2014-01-29
The vapor-compression cycle for refrigeration near ambient temperature achieves high efficiency because the isenthalpic expansion of the condensed liquid is a rather efficient process. However, temperatures are limited to about 200 K with a single-stage system. Temperatures down to 77 K are possible with many stages. In the case of microcryocoolers using microcompressors, pressure ratios are usually limited to about 6 or less. As a result, even more stages are required to reach 77 K. If the microcompressors can be fabricated with low-cost wafer-level techniques, then the use of many stages with separate compressors may become a viable option formore » achieving temperatures of 77 K with high efficiency. We analyze the ideal thermodynamic efficiency of a cascade Joule-Thomson system for various temperatures down to 77 K and with low pressure ratios. About nine stages are required for 77 K, but fewer stages are also analyzed for operation at higher temperatures. For 77 K, an ideal second-law efficiency of 83 % of Carnot is possible with perfect recuperative heat exchangers and 65 % of Carnot is possible with no recuperative heat exchangers. The results are compared with calculated efficiencies in mixed-refrigerant cryocoolers over the range of 77 K to 200 K. Refrigeration at intermediate temperatures is also available. The use of single-component fluids in each of the stages is expected to eliminate the problem of pulsating flow and temperature oscillations experienced in microcryocoolers using mixed refrigerants.« less
High specific surface area aerogel cryoadsorber for vacuum pumping applications
Hill, Randal M.; Fought, Eric R.; Biltoft, Peter J.
2000-01-01
A cryogenic pumping system is provided, comprising a vacuum environment, an aerogel sorbent formed from a carbon aerogel disposed within the vacuum environment, and cooling means for cooling the aerogel sorbent sufficiently to adsorb molecules from the vacuum environment onto the aerogel sorbent. Embodiments of the invention include a liquid refrigerant cryosorption pump, a compressed helium cryogenic pump, a cryopanel and a Meissner coil, each of which uses carbon aerogel as a sorbent material.
NASA Astrophysics Data System (ADS)
Alabdulkarem, Abdullah
Liquefied natural gas (LNG) plants are energy intensive. As a result, the power plants operating these LNG plants emit high amounts of CO2 . To mitigate global warming that is caused by the increase in atmospheric CO2, CO2 capture and sequestration (CCS) using amine absorption is proposed. However, the major challenge of implementing this CCS system is the associated power requirement, increasing power consumption by about 15--25%. Therefore, the main scope of this work is to tackle this challenge by minimizing CCS power consumption as well as that of the entire LNG plant though system integration and rigorous optimization. The power consumption of the LNG plant was reduced through improving the process of liquefaction itself. In this work, a genetic algorithm (GA) was used to optimize a propane pre-cooled mixed-refrigerant (C3-MR) LNG plant modeled using HYSYS software. An optimization platform coupling Matlab with HYSYS was developed. New refrigerant mixtures were found, with savings in power consumption as high as 13%. LNG plants optimization with variable natural gas feed compositions was addressed and the solution was proposed through applying robust optimization techniques, resulting in a robust refrigerant which can liquefy a range of natural gas feeds. The second approach for reducing the power consumption is through process integration and waste heat utilization in the integrated CCS system. Four waste heat sources and six potential uses were uncovered and evaluated using HYSYS software. The developed models were verified against experimental data from the literature with good agreement. Net available power enhancement in one of the proposed CCS configuration is 16% more than the conventional CCS configuration. To reduce the CO2 pressurization power into a well for enhanced oil recovery (EOR) applications, five CO2 pressurization methods were explored. New CO2 liquefaction cycles were developed and modeled using HYSYS software. One of the developed liquefaction cycles using NH3 as a refrigerant resulted in 5% less power consumption than the conventional multi-stage compression cycle. Finally, a new concept of providing the CO2 regeneration heat is proposed. The proposed concept is using a heat pump to provide the regeneration heat as well as process heat and CO2 liquefaction heat. Seven configurations of heat pumps integrated with CCS were developed. One of the heat pumps consumes 24% less power than the conventional system or 59% less total equivalent power demand than the conventional system with steam extraction and CO2 compression.
Refrigeration generation using expander-generator units
NASA Astrophysics Data System (ADS)
Klimenko, A. V.; Agababov, V. S.; Koryagin, A. V.; Baidakova, Yu. O.
2016-05-01
The problems of using the expander-generator unit (EGU) to generate refrigeration, along with electricity were considered. It is shown that, on the level of the temperatures of refrigeration flows using the EGU, one can provide the refrigeration supply of the different consumers: ventilation and air conditioning plants and industrial refrigerators and freezers. The analysis of influence of process parameters on the cooling power of the EGU, which depends on the parameters of the gas expansion process in the expander and temperatures of cooled environment, was carried out. The schematic diagram of refrigeration generation plant based on EGU is presented. The features and advantages of EGU to generate refrigeration compared with thermotransformer of steam compressive and absorption types were shown, namely: there is no need to use the energy generated by burning fuel to operate the EGU; beneficial use of the heat delivered to gas from the flow being cooled in equipment operating on gas; energy production along with refrigeration generation, which makes it possible to create, using EGU, the trigeneration plants without using the energy power equipment. It is shown that the level of the temperatures of refrigeration flows, which can be obtained by using the EGU on existing technological decompression stations of the transported gas, allows providing the refrigeration supply of various consumers. The information that the refrigeration capacity of an expander-generator unit not only depends on the parameters of the process of expansion of gas flowing in the expander (flow rate, temperatures and pressures at the inlet and outlet) but it is also determined by the temperature needed for a consumer and the initial temperature of the flow of the refrigeration-carrier being cooled. The conclusion was made that the expander-generator units can be used to create trigeneration plants both at major power plants and at small energy.
Development of a turbine-compressor for 10 kW class neon turbo-Brayton refrigerator
NASA Astrophysics Data System (ADS)
Hirai, Hirokazu; Hirokawa, Masaki; Yoshida, Shigeru; Sano, Tomonobu; Ozaki, Shinsuke
2014-01-01
We are developing 10 kW class turbo-Brayton refrigerator whose working fluid is neon gas. Its high pressure value is 1 MPa and its low pressure value is 0.5 MPa. The refrigerator consists of two turbine-compressors and a heat exchanger. The turbine-compressor has a turbo-expander on one side of its shaft and a turbo-compressor on the other side of the shaft. Two turbo-compressors are connected in series and two turbo-expanders are set in parallel. So, all amount of neon gas is compressed by two stages and each half a mount of neon gas is expanded by one stage. Two turbinecompressors are the same machines and development cost and time are minimized. In this stage, we made one prototype turbine-compressor and installed it in a performance test facility. This paper shows details of the turbine-compressor and refrigerator cooling power simulation results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Zhiming; Abdelaziz, Omar; LaClair, Tim L.
A refrigerant charge meter and a method for determining the actual refrigerant charge in HVAC systems are described. The meter includes means for determining an optimum refrigerant charge from system subcooling and system component parameters. The meter also includes means for determining the ratio of the actual refrigerant charge to the optimum refrigerant charge. Finally, the meter includes means for determining the actual refrigerant charge from the optimum refrigerant charge and the ratio of the actual refrigerant charge to the optimum refrigerant charge.
Development of a Gravity-Insensitive Heat Pump for Lunar Applications
NASA Technical Reports Server (NTRS)
Cole, Gregory S.; Scaringe, Robert P.; Grzyll, Lawrence R.; Ewert, Michael K.
2006-01-01
Mainstream Engineering Corporation is developing a gravity-insensitive system that will allow a vapor-compression-cycle heat pump to be used in both microgravity (10(exp -6)g) and lunar (10(exp -6)g) environments. System capacity is 5 kW to 15 kW at design refrigerant operating conditions of 4.44 C and 60 C evaporating and condensing temperatures, respectively. The current program, performed for NASA Johnson Space Center (JSC) and presented in this paper, includes compressor performance analysis, detailed system design, and thermal analysis. Future efforts, including prototype fabrication, integration of a solar power source and controls, ground-testing, and flight-testing support, are also discussed.
Heat-pump cool storage in a clathrate of freon
NASA Astrophysics Data System (ADS)
Tomlinson, J. J.
Presented are the analytical description and assessment of a unique heat pump/storage system in which the conventional evaporator of the vapor compression cycle is replaced by a highly efficient direct contract crystallizer. The thermal storage technique requires the formation of a refrigerant gas hydrate (a clathrate) and exploits an enthalpy of reaction comparable to the heat of fusion of ice. Additional system operational benefits include cool storage at the favorable temperatures of 4 to 7 C (40 to 45 F), and highly efficient heat transfer ates afforded by he direct contact mechanism. In addition, the experimental approach underway at ORNL to study such a system is discussed.
NASA Technical Reports Server (NTRS)
Walker, D.; Fischbach, D.; Tetreault, R.
1996-01-01
The objective of this project was to investigate the feasibility of constructing a heat pump suitable for use as a heat rejection device in applications such as a lunar base. In this situation, direct heat rejection through the use of radiators is not possible at a temperature suitable for lde support systems. Initial analysis of a heat pump of this type called for a temperature lift of approximately 378 deg. K, which is considerably higher than is commonly called for in HVAC and refrigeration applications where heat pumps are most often employed. Also because of the variation of the rejection temperature (from 100 to 381 deg. K), extreme flexibility in the configuration and operation of the heat pump is required. A three-stage compression cycle using a refrigerant such as CFC-11 or HCFC-123 was formulated with operation possible with one, two or three stages of compression. Also, to meet the redundancy requirements, compression was divided up over multiple compressors in each stage. A control scheme was devised that allowed these multiple compressors to be operated as required so that the heat pump could perform with variable heat loads and rejection conditions. A prototype heat pump was designed and constructed to investigate the key elements of the high-lift heat pump concept. Control software was written and implemented in the prototype to allow fully automatic operation. The heat pump was capable of operation over a wide range of rejection temperatures and cooling loads, while maintaining cooling water temperature well within the required specification of 40 deg. C +/- 1.7 deg. C. This performance was verified through testing.
Commissioning and operational results of helium refrigeration system at JLab for the 12GeV upgrade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knudsen, Peter N.; Ganni, Venkatarao; Dixon, Kelly D.
The new 4.5 K refrigerator system at the Jefferson Lab (JLab) Central Helium Liquefier (CHL-2) for the 12 GeV upgrade was commissioned in late spring of 2013, following the commissioning of the new compressor system, and has been supporting 12 GeV LINAC commissioning since that time. Six design modes were tested during commissioning, consisting of a maximum capacity, nominal capacity, maximum liquefaction, maximum refrigeration, maximum fill and a stand-by/reduced load condition. The maximum capacity was designed to support a 238 g/s, 30 K and 1.16 bar cold compressor return flow, a 15 g/s, 4.5 K liquefaction load and a 12.6more » kW, 35-55 K shield load. The other modes were selected to ensure proper component sizing and selection to allow the cold box to operate over a wide range of conditions and capacities. The cold box system is comprised of two physically independent cold boxes with interconnecting transfer-lines. The outside (upper) 300-60 K vertical cold box has no turbines and incorporates a liquid nitrogen pre-cooler and 80-K beds. The inside (lower) 60-4.5 K horizontal cold box houses seven turbines that are configured in four expansion stages including one Joule-Thompson expander and a 20-K bed. The helium compression system has five compressors to support three pressure levels in the cold box. This paper will summarize the analysis of the test data obtained over the wide range of operating conditions and capacities which were tested.« less
49 CFR 173.307 - Exceptions for compressed gases.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) Carbonated beverages. (2) Tires when inflated to pressures not greater than their rated inflation pressures...) Except when offered or transported by air or vessel, 20 kg (44 pounds) or less of a Group A1 refrigerant...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Caleb; Reis, Chuck; Nelson, Eric
This report provides guidance for selecting and designing energy efficient commercial refrigeration systems using low global warming potential refrigerants. Refrigeration systems are generally the largest energy end use in a supermarket type building, often accounting for more than half of a building's energy consumption.
NASA Astrophysics Data System (ADS)
Kunugi, Yoshifumi; Kashiwagi, Takao
Various advanced absorption cycles are studied, developed and invented. In this paper, their cycles are classified and arranged using the three categories: effect, stage and loop, then an outline of the cycles are explained on the Duehring diagram. Their cycles include high COP cycles for refrigerations and heat pumps, high temperature lift cycles for heat transformer, absorption-compression hybrid cycles and heat pump transformer cycle. The highest COPi is attained by the seven effect cycle. In addition, the cycles for low temperature are invented and explained. Furthermore the power generation • refrigeration cycles are illustrated.
NASA Astrophysics Data System (ADS)
Venkataramanan, Arjun; Rios Perez, Carlos A.; Hidrovo, Carlos H.
2016-11-01
Electric vehicles (EVs) are the future of clean transportation and driving range is one of the important parameters which dictates its marketability. In order to increase driving range, electrical battery energy consumption should be minimized. Vapor-compression refrigeration systems currently employed in EVs for climate control consume a significant fraction of the battery charge. Thus, by replacing this traditional heating ventilation and air-conditioning system with an adsorption based climate control system one can have the capability of increasing the drive range of EVs.The Advanced Thermo-adsorptive Battery (ATB) for climate control is a water-based adsorption type refrigeration cycle. An essential component of the ATB is a low pressure evaporator/condenser unit (ECU) which facilitates both the evaporation and condensation processes. The thermal design of the ECU relies predominantly on the accurate prediction of evaporation/boiling heat transfer coefficients since the standard correlations for predicting boiling heat transfer coefficients have large uncertainty at the low operating pressures of the ATB. This work describes the design and development of a low pressure ECU as well as the thermal performance of the actual ECU prototype.
Performance of solar refrigerant ejector refrigerating machine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Khalidy, N.A.H.
1997-12-31
In this work a detailed analysis for the ideal, theoretical, and experimental performance of a solar refrigerant ejector refrigerating machine is presented. A comparison of five refrigerants to select a desirable one for the system is made. The theoretical analysis showed that refrigerant R-113 is more suitable for use in the system. The influence of the boiler, condenser, and evaporator temperatures on system performance is investigated experimentally in a refrigerant ejector refrigerating machine using R-113 as a working refrigerant.
High Efficiency, Low Emission Refrigeration System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fricke, Brian A.; Sharma, Vishaldeep
Supermarket refrigeration systems account for approximately 50% of supermarket energy use, placing this class of equipment among the highest energy consumers in the commercial building domain. In addition, the commonly used refrigeration system in supermarket applications is the multiplex direct expansion (DX) system, which is prone to refrigerant leaks due to its long lengths of refrigerant piping. This leakage reduces the efficiency of the system and increases the impact of the system on the environment. The high Global Warming Potential (GWP) of the hydrofluorocarbon (HFC) refrigerants commonly used in these systems, coupled with the large refrigerant charge and the highmore » refrigerant leakage rates leads to significant direct emissions of greenhouse gases into the atmosphere. Methods for reducing refrigerant leakage and energy consumption are available, but underutilized. Further work needs to be done to reduce costs of advanced system designs to improve market utilization. In addition, refrigeration system retrofits that result in reduced energy consumption are needed since the majority of applications address retrofits rather than new stores. The retrofit market is also of most concern since it involves large-volume refrigerant systems with high leak rates. Finally, alternative refrigerants for new and retrofit applications are needed to reduce emissions and reduce the impact on the environment. The objective of this Collaborative Research and Development Agreement (CRADA) between the Oak Ridge National Laboratory and Hill Phoenix is to develop a supermarket refrigeration system that reduces greenhouse gas emissions and has 25 to 30 percent lower energy consumption than existing systems. The outcomes of this project will include the design of a low emission, high efficiency commercial refrigeration system suitable for use in current U.S. supermarkets. In addition, a prototype low emission, high efficiency supermarket refrigeration system will be produced for laboratory and field testing. Laboratory and field testing will demonstrate the high energy efficiency and low environmental impact of the refrigeration system developed in this project.« less
Dilution cycle control for an absorption refrigeration system
Reimann, Robert C.
1984-01-01
A dilution cycle control system for an absorption refrigeration system is disclosed. The control system includes a time delay relay for sensing shutdown of the absorption refrigeration system and for generating a control signal only after expiration of a preselected time period measured from the sensed shutdown of the absorption refrigeration system, during which the absorption refrigeration system is not restarted. A dilution cycle for the absorption refrigeration system is initiated in response to generation of a control signal by the time delay relay. This control system is particularly suitable for use with an absorption refrigeration system which is frequently cycled on and off since the time delay provided by the control system prevents needless dilution of the absorption refrigeration system when the system is turned off for only a short period of time and then is turned back on.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fricke, Brian A; Abdelaziz, Omar; Vineyard, Edward Allan
In this paper, Life Cycle Climate Performance (LCCP) analysis is used to estimate lifetime direct and indirect carbon dioxide equivalent gas emissions of various refrigerant options and commercial refrigeration system designs, including the multiplex DX system with various hydrofluorocarbon (HFC) refrigerants, the HFC/R744 cascade system incorporating a medium-temperature R744 secondary loop, and the transcritical R744 booster system. The results of the LCCP analysis are presented, including the direct and indirect carbon dioxide equivalent emissions for each refrigeration system and refrigerant option. Based on the results of the LCCP analysis, recommendations are given for the selection of low GWP replacement refrigerantsmore » for use in existing commercial refrigeration systems, as well as for the selection of commercial refrigeration system designs with low carbon dioxide equivalent emissions, suitable for new installations.« less
Gonczy, John D.; Markley, Finley W.; McCaw, William R.; Niemann, Ralph C.
1992-01-01
An apparatus for evaluating the tensile and compressive properties of material samples at very low or cryogenic temperatures employs a stationary frame and a dewar mounted below the frame. A pair of coaxial cylindrical tubes extend downward towards the bottom of the dewar. A compressive or tensile load is generated hydraulically and is transmitted by the inner tube to the material sample. The material sample is located near the bottom of the dewar in a liquid refrigerant bath. The apparatus employs a displacement measuring device, such as a linear variable differential transformer, to measure the deformation of the material sample relative to the amount of compressive or tensile force applied to the sample.
NASA Astrophysics Data System (ADS)
Ryan, Sean Thomas
Off-grid refrigeration technologies are currently limited to either vapor-compression cycles driven by photovoltaics or solar thermal absorption cycles. Rebound Technologies has recently developed a novel off-grid refrigeration system called Sunchill(TM) for agricultural applications in humid environments in the developing world. The Sunchill(TM) refrigeration system utilizes the daily high and low temperatures to drive a 24 hour refrigeration cycle. Cooling is provided by the dissolution of an endothermic salt, sodium carbonate decahydrate. Once the salt is solvated and cooling is delivered to freshly harvest crops, the system is "recharged" in a multi-step process that relies on a solar collector, an air-gap membrane unit and a heat exchanger. The heat exchanger, which is the focus of this thesis, is required to remove 36.6 MJ of heat over a twelve hour period in order to "recharge" the system. The heat exchanger is also required to transfer heat from a fresh water stream to a cold brine solution to generate the cold water necessary to submerse and cool harvested crops. To provide a sustainable technology to the target community, the feasibility of fabricating the heat exchanger via the low cost 3-D printing method of fused filament fabrication (FFF) was examined. This thesis presents the design, development, and manufacturing considerations that were performed in support of developing a waterproof, counter-flow, 3-D printable heat exchanger. Initial geometries and performance were modeled by constructing a linear thermal resistance network with truncating temperatures of 30°C (saturated brine temperature) and 18°C (average daily low temperature). The required surface area of the heat exchanger was found to be 20.46 m2 to remove the required 36.6 MJ of heat. Iterative print tests were conducted to arrive at the wall thickness, hexagon shape, and double wall structure of the heat exchanger. A laboratory-scale heat exchanger was fabricated using a Lulzbot Taz 4 printer from acrylonitrile butadiene styrene (ABS) polymer. Performance was verified empirically for the laboratory-scale unit. A heat transfer rate of 22.8 W was obtained at a flow rate of 0.00075 kg/s. The results of this thesis demonstrate the feasibility of manufacturing low cost heat exchangers using additive manufacturing techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Francis
A team led by GE Global Research developed new magnetic refrigerant materials needed to enhance the commercialization potential of residential appliances such as refrigerators and air conditioners based on the magnetocaloric effect (a nonvapor compression cooling cycle). The new magnetic refrigerant materials have potentially better performance at lower cost than existing materials, increasing technology readiness level. The performance target of the new magnetocaloric material was to reduce the magnetic field needed to achieve 4 °C adiabatic temperature change from 1.5 Tesla to 0.75 Tesla. Such a reduction in field minimizes the cost of the magnet assembly needed for a magneticmore » refrigerator. Such a reduction in magnet assembly cost is crucial to achieving commercialization of magnetic refrigerator technology. This project was organized as an iterative alloy development effort with a parallel material modeling task being performed at George Washington University. Four families of novel magnetocaloric alloys were identified, screened, and assessed for their performance potential in a magnetic refrigeration cycle. Compositions from three of the alloy families were manufactured into regenerator components. At the beginning of the project a previously studied magnetocaloric alloy was selected for manufacturing into the first regenerator component. Each of the regenerators was tested in magnetic refrigerator prototypes at a subcontractor at at GE Appliances. The property targets for operating temperature range, operating temperature control, magnetic field sensitivity, and corrosion resistance were met. The targets for adiabatic temperature change and thermal hysteresis were not met. The high thermal hysteresis also prevented the regenerator components from displaying measurable cooling power when tested in prototype magnetic refrigerators. Magnetic refrigerant alloy compositions that were predicted to have low hysteresis were not attainable with conventional alloy processing methods. Preliminary experiments with rapid solidification methods showed a path towards attaining low hysteresis compositions should this alloy development effort be continued.« less
Low Global Warming Potential Refrigerants for Commercial Refrigeration Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fricke, Brian A.; Sharma, Vishaldeep; Abdelaziz, Omar
Supermarket refrigeration systems account for approximately 50% of supermarket energy use, placing this class of equipment among the highest energy consumers in the commercial building domain. In addition, the commonly used refrigeration system in supermarket applications is the multiplex direct expansion (DX) system, which is prone to refrigerant leaks due to its long lengths of refrigerant piping. This leakage reduces the efficiency of the system and increases the impact of the system on the environment. The high Global Warming Potential (GWP) of the hydrofluorocarbon (HFC) refrigerants commonly used in these systems, coupled with the large refrigerant charge and the highmore » refrigerant leakage rates leads to significant direct emissions of greenhouse gases into the atmosphere. Environmental concerns are driving regulations for the heating, ventilating, air-conditioning and refrigeration (HVAC&R) industry towards lower GWP alternatives to HFC refrigerants. Existing lower GWP refrigerant alternatives include hydrocarbons, such as propane (R-290) and isobutane (R-600a), as well as carbon dioxide (R-744), ammonia (R-717), and R-32. In addition, new lower GWP refrigerant alternatives are currently being developed by refrigerant manufacturers, including hydrofluoro-olefin (HFO) and unsaturated hydrochlorofluorocarbon (HCFO) refrigerants. The selection of an appropriate refrigerant for a given refrigeration application should be based on several factors, including the GWP of the refrigerant, the energy consumption of the refrigeration system over its operating lifetime, and leakage of refrigerant over the system lifetime. For example, focusing on energy efficiency alone may overlook the significant environmental impact of refrigerant leakage; while focusing on GWP alone might result in lower efficiency systems that result in higher indirect impact over the equipment lifetime. Thus, the objective of this Collaborative Research and Development Agreement (CRADA) between Honeywell and the Oak Ridge National Laboratory (ORNL) is to develop a Life Cycle Climate Performance (LCCP) modeling tool for optimally designing HVAC&R equipment with lower life cycle greenhouse gas emissions, and the selection of alternative working fluids that reduce the greenhouse gas emissions of HVAC&R equipment. In addition, an experimental evaluation program is used to measure the coefficient of performance (COP) and refrigerating capacity of various refrigerant candidates, which have differing GWP values, in commercial refrigeration equipment. Through a cooperative effort between industry and government, alternative working fluids will be chosen based on maximum reduction in greenhouse gases at minimal cost impact to the consumer. This project will ultimately result in advancing the goals of reducing greenhouse gas emissions through the use of low GWP working fluids and technologies for HVAC&R and appliance equipment, resulting in cost-competitive products and systems.« less
Simulation and Experimental Study of Metal Organic Frameworks Used in Adsorption Cooling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenks, Jeromy J.; Motkuri, Radha K.; TeGrotenhuis, Ward
2016-10-11
Metal-organic frameworks (MOFs) have recently attracted enormous interest over the past few years in energy storage and gas separation, yet there have been few reports for adsorption cooling applications. Adsorption cooling technology is an established alternative to mechanical vapor compression refrigeration systems and is an excellent alternative in industrial environments where waste heat is available. We explored the use of MOFs that have very high mass loading and relatively low heats of adsorption, with certain combinations of refrigerants to demonstrate a new type of highly efficient adsorption chiller. Computational fluid dynamics combined with a system level lumped-parameter model have beenmore » used to project size and performance for chillers with a cooling capacity ranging from a few kW to several thousand kW. These systems rely on stacked micro/mini-scale architectures to enhance heat and mass transfer. Recent computational studies of an adsorption chiller based on MOFs suggests that a thermally-driven coefficient of performance greater than one may be possible, which would represent a fundamental breakthrough in performance of adsorption chiller technology. Presented herein are computational and experimental results for hydrophyilic and fluorophilic MOFs.« less
Simulation of Transcritical CO2 Refrigeration System with Booster Hot Gas Bypass in Tropical Climate
NASA Astrophysics Data System (ADS)
Santosa, I. D. M. C.; Sudirman; Waisnawa, IGNS; Sunu, PW; Temaja, IW
2018-01-01
A Simulation computer becomes significant important for performance analysis since there is high cost and time allocation to build an experimental rig, especially for CO2 refrigeration system. Besides, to modify the rig also need additional cos and time. One of computer program simulation that is very eligible to refrigeration system is Engineering Equation System (EES). In term of CO2 refrigeration system, environmental issues becomes priority on the refrigeration system development since the Carbon dioxide (CO2) is natural and clean refrigerant. This study aims is to analysis the EES simulation effectiveness to perform CO2 transcritical refrigeration system with booster hot gas bypass in high outdoor temperature. The research was carried out by theoretical study and numerical analysis of the refrigeration system using the EES program. Data input and simulation validation were obtained from experimental and secondary data. The result showed that the coefficient of performance (COP) decreased gradually with the outdoor temperature variation increasing. The results show the program can calculate the performance of the refrigeration system with quick running time and accurate. So, it will be significant important for the preliminary reference to improve the CO2 refrigeration system design for the hot climate temperature.
Floating loop method for cooling integrated motors and inverters using hot liquid refrigerant
Hsu, John S.; Ayers, Curtis W.; Coomer, Chester; Marlino, Laura D.
2007-03-20
A method for cooling vehicle components using the vehicle air conditioning system comprising the steps of: tapping the hot liquid refrigerant of said air conditioning system, flooding a heat exchanger in the vehicle component with said hot liquid refrigerant, evaporating said hot liquid refrigerant into hot vapor refrigerant using the heat from said vehicle component, and returning said hot vapor refrigerant to the hot vapor refrigerant line in said vehicle air conditioning system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozubal, E.
2013-02-01
This presentation explains how liquid desiccant based coupled with an indirect evaporative cooler can efficiently produce cool, dry air, and how a liquid desiccant membrane air conditioner can efficiently provide cooling and dehumidification without the carryover problems of previous generations of liquid desiccant systems. It provides an overview to a liquid desiccant DX air conditioner that can efficiently provide cooling and dehumidification to high latent loads without the need for reheat, explains how liquid desiccant cooling and dehumidification systems can outperform vapor compression based air conditioning systems in hot and humid climates, explains how liquid desiccant cooling and dehumidification systemsmore » work, and describes a refrigerant free liquid desiccant based cooling system.« less
A regenerative elastocaloric heat pump
NASA Astrophysics Data System (ADS)
Tušek, Jaka; Engelbrecht, Kurt; Eriksen, Dan; Dall'Olio, Stefano; Tušek, Janez; Pryds, Nini
2016-10-01
A large fraction of global energy use is for refrigeration and air-conditioning, which could be decarbonized if efficient renewable energy technologies could be found. Vapour-compression technology remains the most widely used system to move heat up the temperature scale after more than 100 years; however, caloric-based technologies (those using the magnetocaloric, electrocaloric, barocaloric or elastocaloric effect) have recently shown a significant potential as alternatives to replace this technology due to high efficiency and the use of green solid-state refrigerants. Here, we report a regenerative elastocaloric heat pump that exhibits a temperature span of 15.3 K on the water side with a corresponding specific heating power up to 800 W kg-1 and maximum COP (coefficient-of-performance) values of up to 7. The efficiency and specific heating power of this device exceeds those of other devices based on caloric effects. These results open up the possibility of using the elastocaloric effect in various cooling and heat-pumping applications.
Linam Ranch cryogenic gas plant: A design and operating retrospective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harwell, L.J.; Kuscinski, J.
1999-07-01
GPM Gas Corporation's Linam Ranch Gas Plant is the processing hub of their southeastern New Mexico gathering system, producing a y-grade NGL product which is pipelined primarily to the Phillips petrochemical complex at Sweeney, Texas, GPM acquired the facility near Hobbs, N.M. late in 1994 when it was still operating as a refrigerated lean oil plant, renamed it, and commenced an upgrade project culminating in its conversion to a high recovery cryogenic facility in early 1996 with a processing capacity of 150 MMscfd. Facilities that were upgraded included inlet liquids receiving and handling, the amine system, mol sieve dehydration, themore » sulfur recovery unit, inlet compression, and the propane refrigeration system. A Foxboro I/A DCS was also placed into operation. The lean oil system was replaced with a high recovery turboexpander unit supplied by KTI Fish based on their Flash Vapor Reflux (FVR) process. Resulting ethane recovery was greater than 95% for the new facilities. New residue compression units were installed including steam generators on the turbine exhausts, which complemented the existing plant steam system. During the three years since conversion to cryogenic operation, GPM has steadily improved plant operations. Expansion of the mol sieve dehydration system and retrofit of evaporation combustion air cooling on gas turbines have expanded nameplate capacity to 170 MMscfd while maintaining ethane recovery at 95%. Future expansion to 200 MMscfd with high recovery is achievable. In addition, creative use of the Foxboro DCS has been employed to implement advanced control schemes for handling inlet liquid slugs, gas and amine balancing for parallel amine contactors, improved sulfur recovery unit (SRU) trim air control, and constraint-based process optimization to maximize horsepower utilization and ethane recovery. Some challenges remain, leaving room for additional improvements. However, GPM's progress so far has resulted in a current ethane recovery level in excess of 97% when processing gas at the original design throughput of 150 MMscfd.« less
Gonczy, J.D.; Markley, F.W.; McCaw, W.R.; Niemann, R.C.
1992-04-21
An apparatus for evaluating the tensile and compressive properties of material samples at very low or cryogenic temperatures employs a stationary frame and a dewar mounted below the frame. A pair of coaxial cylindrical tubes extend downward towards the bottom of the dewar. A compressive or tensile load is generated hydraulically and is transmitted by the inner tube to the material sample. The material sample is located near the bottom of the dewar in a liquid refrigerant bath. The apparatus employs a displacement measuring device, such as a linear variable differential transformer, to measure the deformation of the material sample relative to the amount of compressive or tensile force applied to the sample. 7 figs.
The Telecommunications and Data Acquisition Report
NASA Technical Reports Server (NTRS)
Posner, E. C. (Editor)
1987-01-01
Developments in programs managed by the Jet Propulsion Laboratory's Office of Telecommunications and Data Acquisition are discussed. Topics discussed include sorption compression/mechanical expanded hybrid refrigeration, calculated 70-meter antenna performance for offset L-band, systolic arrays and stack decoding, and calibrations of Deep Space Network antennas.
Refrigeration system oil measurement and sampling device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, J.A.
1989-09-19
This patent describes a sampling device for use with a refrigeration system having a refrigerant and oil entrained therein. It comprises: an elongated reservoir having a stepped bore therein for receiving refrigerant and oil carried thereby. The reservoir comprising a large bore diameter upper section having an index marking the fill level of the reservoir and a small bore diameter lower section having graduation marks for oil level measurement. The upper and lower sections comprising transparent material to allow observation of the contents, first valve means for coupling the reservoir to the refrigeration system to admit liquid refrigerant to themore » reservoir, second valve means for selectively coupling the reservoir to the low pressure side of the refrigeration system or to a vacuum line to evacuate vaporized refrigerant from the reservoir, and means for supplying heat to the refrigerant in the bore to facilitate vaporization of the refrigerant.« less
Preliminary Design and Investigation of Integrated Compressor with Composite Material Wheel
NASA Astrophysics Data System (ADS)
Wang, Jifeng; Müller, Norbert
2012-06-01
An integrated water vapor compressor with composite material wheel is developed and strength analysis using FEM is presented. The design of wound composite material allows for integrating all rotating parts of the drive that may simply reduce to only the rotor of the electrical motor, since no drive shaft is required anymore. This design can reduce the number of parts and mass, which is convenient for engineers to maintain the compressor. The electrical motors are brushless DC motors operating through a frequency drive and apply a torque on the wheels through the materials bonded in the wheel shrouds. This system allows a large amount of compression to be produced in a multi-stage compression setup. To determine the stress and vibration characteristics of this integrated compressor, numerical analysis is carried out using FEM. The simulation result shows that the integrated compressor with composite material wheel can be used in a chiller system where water as a refrigerant.
Refrigerant directly cooled capacitors
Hsu, John S [Oak Ridge, TN; Seiber, Larry E [Oak Ridge, TN; Marlino, Laura D [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN
2007-09-11
The invention is a direct contact refrigerant cooling system using a refrigerant floating loop having a refrigerant and refrigeration devices. The cooling system has at least one hermetic container disposed in the refrigerant floating loop. The hermetic container has at least one electronic component selected from the group consisting of capacitors, power electronic switches and gating signal module. The refrigerant is in direct contact with the electronic component.
Energy Efficient Commercial Refrigeration with Carbon Dioxide Refrigerant and Scroll Expanders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dieckmann, John
Current supermarket refrigeration systems are built around conventional fluorocarbon refrigerants – HFC-134a and the HFC blends R-507 and R404A, which replaced the CFC refrigerants, R-12 and R-502, respectively, used prior to the Montreal Protocol phase out of ozone depleting substances. While the HFC refrigerants are non-ozone depleting, they are strong greenhouse gases, so there has been continued interest in replacing them, particularly in applications with above average refrigerant leakage. Large supermarket refrigeration systems have proven to be particularly difficult to maintain in a leak-tight condition. Refrigerant charge losses of 15% of total charge per year are the norm, making themore » global warming impact of refrigerant emissions comparable to that associated with the energy consumption of these systems.« less
Non-intrusive refrigerant charge indicator
Mei, Viung C.; Chen, Fang C.; Kweller, Esher
2005-03-22
A non-intrusive refrigerant charge level indicator includes a structure for measuring at least one temperature at an outside surface of a two-phase refrigerant line section. The measured temperature can be used to determine the refrigerant charge status of an HVAC system, and can be converted to a pressure of the refrigerant in the line section and compared to a recommended pressure range to determine whether the system is under-charged, properly charged or over-charged. A non-intrusive method for assessing the refrigerant charge level in a system containing a refrigerant fluid includes the step of measuring a temperature at least one outside surface of a two-phase region of a refrigerant containing refrigerant line, wherein the temperature measured can be converted to a refrigerant pressure within the line section.
NASA Astrophysics Data System (ADS)
Antao, Dion Savio
Thermoacoustic refrigeration systems have gained increased importance in cryogenic cooling technologies and improvements are needed to increase the efficiency and effectiveness of the current cryogenic refrigeration devices. These improvements in performance require a re-examination of the fundamental acoustic and fluid dynamic interactions in the acoustic resonators that comprise a thermoacoustic refrigerator. A comprehensive research program of the pulse tube thermoacoustic refrigerator (PTR) and arbitrarily shaped, circular cross-section acoustic resonators was undertaken to develop robust computational models to design and predict the transport processes in these systems. This effort was divided into three main focus areas: (a) studying the acoustic and fluid dynamic interactions in consonant and dissonant acoustic resonators, (b) experimentally investigating thermoacoustic refrigeration systems attaining cryogenic levels and (c) computationally studying the transport processes and energy conversion through fluid-solid interactions in thermoacoustic pulse tube refrigeration devices. To investigate acoustic-fluid dynamic interactions in resonators, a high fidelity computational fluid dynamic model was developed and used to simulate the flow, pressure and temperature fields generated in consonant cylindrical and dissonant conical resonators. Excitation of the acoustic resonators produced high-amplitude standing waves in the conical resonator. The generated peak acoustic overpressures exceeded the initial undisturbed pressure by two to three times. The harmonic response in the conical resonator system was observed to be dependent on the piston amplitude. The resultant strong acoustic streaming structures in the cone resonator highlighted its potential over a cylindrical resonator as an efficient mixer. Two pulse tube cryogenic refrigeration (PTR) devices driven by a linear motor (a pressure wave generator) were designed, fabricated and tested. The characterization of the systems over a wide range of operating conditions helped to better understand the factors that govern and affect the performance of the PTR. The operating frequency of the linear motor driving the PTR affected the systems' performance the most. Other parameters that resulted in performance variations were the mean operating pressure, the pressure amplitude output from the linear motor, and the geometry of the inertance tube. The effect of the inertance tube's geometry was controlled by a single parameter labeled the "inertance". External/ambient conditions affected the performance of the cryocoolers too. To prevent the influence of the ambient conditions on the performance, a vacuum chamber was fabricated to isolate the low temperature regions of the PTR from the variable ambient atmosphere. The experiments provided important information and guidelines for the simulation studies of the PTR that were carried out concurrently. A time-dependent high fidelity computational fluid dynamic model of the entire PTR system was developed to gain a better understanding of internal interactions between the refrigerant fluid and the porous heat-exchangers in its various components and to facilitate better design of PTR systems based on the knowledge gained. The compressible forms of the conservation of mass, momentum and energy equations are solved in the gas and porous media (appropriate estimation of fluid dynamics in heat-exchangers) regions. The heat transfer in the porous regions is governed by a thermal non-equilibrium heat transfer model that calculates a separate gas and solid temperature and accounts for heat transfer between the two. The numerical model was validated using both temporal and quasi-steady state results obtained from the experimental studies. The validated model was applied to study the effects of different operating parameters (frequency, pressure and geometry of the components) on the PTR's performance. The simulations revealed interesting steady-periodic flow patterns that develop in the pulse tube due to the fluctuations caused by the piston and the presence of the inertance tube. Similar to the experiments, the simulations provided important information that help guide the design of efficient PTR systems.
NASA Astrophysics Data System (ADS)
Bonne, François; Alamir, Mazen; Bonnay, Patrick
2014-01-01
In this paper, a physical method to obtain control-oriented dynamical models of large scale cryogenic refrigerators is proposed, in order to synthesize model-based advanced control schemes. These schemes aim to replace classical user experience designed approaches usually based on many independent PI controllers. This is particularly useful in the case where cryoplants are submitted to large pulsed thermal loads, expected to take place in the cryogenic cooling systems of future fusion reactors such as the International Thermonuclear Experimental Reactor (ITER) or the Japan Torus-60 Super Advanced Fusion Experiment (JT-60SA). Advanced control schemes lead to a better perturbation immunity and rejection, to offer a safer utilization of cryoplants. The paper gives details on how basic components used in the field of large scale helium refrigeration (especially those present on the 400W @1.8K helium test facility at CEA-Grenoble) are modeled and assembled to obtain the complete dynamic description of controllable subsystems of the refrigerator (controllable subsystems are namely the Joule-Thompson Cycle, the Brayton Cycle, the Liquid Nitrogen Precooling Unit and the Warm Compression Station). The complete 400W @1.8K (in the 400W @4.4K configuration) helium test facility model is then validated against experimental data and the optimal control of both the Joule-Thompson valve and the turbine valve is proposed, to stabilize the plant under highly variable thermals loads. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonne, François; Bonnay, Patrick; Alamir, Mazen
2014-01-29
In this paper, a physical method to obtain control-oriented dynamical models of large scale cryogenic refrigerators is proposed, in order to synthesize model-based advanced control schemes. These schemes aim to replace classical user experience designed approaches usually based on many independent PI controllers. This is particularly useful in the case where cryoplants are submitted to large pulsed thermal loads, expected to take place in the cryogenic cooling systems of future fusion reactors such as the International Thermonuclear Experimental Reactor (ITER) or the Japan Torus-60 Super Advanced Fusion Experiment (JT-60SA). Advanced control schemes lead to a better perturbation immunity and rejection,more » to offer a safer utilization of cryoplants. The paper gives details on how basic components used in the field of large scale helium refrigeration (especially those present on the 400W @1.8K helium test facility at CEA-Grenoble) are modeled and assembled to obtain the complete dynamic description of controllable subsystems of the refrigerator (controllable subsystems are namely the Joule-Thompson Cycle, the Brayton Cycle, the Liquid Nitrogen Precooling Unit and the Warm Compression Station). The complete 400W @1.8K (in the 400W @4.4K configuration) helium test facility model is then validated against experimental data and the optimal control of both the Joule-Thompson valve and the turbine valve is proposed, to stabilize the plant under highly variable thermals loads. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.« less
Energy Efficiency and Environmental Impact Analyses of Supermarket Refrigeration Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fricke, Brian A; Bansal, Pradeep; Zha, Shitong
This paper presents energy and life cycle climate performance (LCCP) analyses of a variety of supermarket refrigeration systems to identify designs that exhibit low environmental impact and high energy efficiency. EnergyPlus was used to model refrigeration systems in a variety of climate zones across the United States. The refrigeration systems that were modeled include the traditional multiplex DX system, cascade systems with secondary loops and the transcritical CO2 system. Furthermore, a variety of refrigerants were investigated, including R-32, R-134a, R-404A, R-1234yf, R-717, and R-744. LCCP analysis was used to determine the direct and indirect carbon dioxide emissions resulting from themore » operation of the various refrigeration systems over their lifetimes. Our analysis revealed that high-efficiency supermarket refrigeration systems may result in up to 44% less energy consumption and 78% reduced carbon dioxide emissions compared to the baseline multiplex DX system. This is an encouraging result for legislators, policy makers and supermarket owners to select low emission, high-efficiency commercial refrigeration system designs for future retrofit and new projects.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beshr, M.; Aute, V.; Sharma, V.
Supermarket refrigeration systems have high environmental impact due to their large refrigerant charge and high leak rates. Consequently, the interest in using low GWP refrigerants such as carbon dioxide (CO 2) and new refrigerant blends is increasing. In this study, an open-source Life Cycle Climate Performance (LCCP) framework is presented and used to compare the environmental impact of four supermarket refrigeration systems: a transcritical CO 2 booster system, a cascade CO 2/N-40 system, a combined secondary circuit with central DX N-40/L-40 system, and a baseline multiplex direct expansion system utilizing R-404A and N-40. The study is performed for different climatesmore » within the USA using EnergyPlus to simulate the systems' hourly performance. Finally, further analyses are presented such as parametric, sensitivity, and uncertainty analyses to study the impact of different system parameters on the LCCP.« less
Beshr, M.; Aute, V.; Sharma, V.; ...
2015-04-09
Supermarket refrigeration systems have high environmental impact due to their large refrigerant charge and high leak rates. Consequently, the interest in using low GWP refrigerants such as carbon dioxide (CO 2) and new refrigerant blends is increasing. In this study, an open-source Life Cycle Climate Performance (LCCP) framework is presented and used to compare the environmental impact of four supermarket refrigeration systems: a transcritical CO 2 booster system, a cascade CO 2/N-40 system, a combined secondary circuit with central DX N-40/L-40 system, and a baseline multiplex direct expansion system utilizing R-404A and N-40. The study is performed for different climatesmore » within the USA using EnergyPlus to simulate the systems' hourly performance. Finally, further analyses are presented such as parametric, sensitivity, and uncertainty analyses to study the impact of different system parameters on the LCCP.« less
Superfluid thermodynamic cycle refrigerator
Swift, G.W.; Kotsubo, V.Y.
1992-12-22
A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of [sup 3]He in a single phase [sup 3]He-[sup 4]He solution. The [sup 3]He in superfluid [sup 4]He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid [sup 3]He at an initial concentration in superfluid [sup 4]He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of [sup 4]He while restricting passage of [sup 3]He. The [sup 3]He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K. 12 figs.
Superfluid thermodynamic cycle refrigerator
Swift, Gregory W.; Kotsubo, Vincent Y.
1992-01-01
A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of .sup.3 He in a single phase .sup.3 He-.sup.4 He solution. The .sup.3 He in superfluid .sup.4 He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid .sup.3 He at an initial concentration in superfluid .sup.4 He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of .sup.4 He while restricting passage of .sup.3 He. The .sup.3 He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K.
Refrigeration system having dual suction port compressor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Guolian
A cooling system for appliances, air conditioners, and other spaces includes a compressor, and a condenser that receives refrigerant from the compressor. The system also includes an evaporator that receives refrigerant from the condenser. Refrigerant received from the condenser flows through an upstream portion of the evaporator. A first portion of the refrigerant flows to the compressor without passing through a downstream portion of the evaporator, and a second portion of the refrigerant from the upstream portion of the condenser flows through the downstream portion of the evaporator after passing through the upstream portion of the evaporator. The second portionmore » of the refrigerant flows to the compressor after passing through the downstream portion of the evaporator. The refrigeration system may be configured to cool an appliance such as a refrigerator and/or freezer, or it may be utilized in air conditioners for buildings, motor vehicles, or other such spaces.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beshr, Mohamed; Aute, Vikrant; Abdelaziz, Omar
Commercial refrigeration systems consumed 1.21 Quads of primary energy in 2010 and are known to be a major source for refrigerant charge leakage into the environment. Thus, it is important to study the environmental impact of commercial supermarket refrigeration systems and improve their design to minimize any adverse impacts. The system s Life Cycle Climate Performance (LCCP) was presented as a comprehensive metric with the aim of calculating the equivalent mass of carbon dioxide released into the atmosphere throughout its lifetime, from construction to operation and destruction. In this paper, an open source tool for the evaluation of the LCCPmore » of different air-conditioning and refrigeration systems is presented and used to compare the environmental impact of a typical multiplex direct expansion (DX) supermarket refrigeration systems based on three different refrigerants as follows: two hydrofluorocarbon (HFC) refrigerants (R-404A, and R-407F), and a low global warming potential (GWP) refrigerant (N-40). The comparison is performed in 8 US cities representing different climates. The hourly energy consumption of the refrigeration system, required for the calculation of the indirect emissions, is calculated using a widely used building energy modeling tool (EnergyPlus). A sensitivity analysis is performed to determine the impact of system charge and power plant emission factor on the LCCP results. Finally, we performed an uncertainty analysis to determine the uncertainty in total emissions for both R-404A and N-40 operated systems. We found that using low GWP refrigerants causes a considerable drop in the impact of uncertainty in the inputs related to direct emissions on the uncertainty of the total emissions of the system.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-14
... Petition for Waiver of Panasonic Appliances Refrigeration Systems Corporation of America Corporation... Panasonic Appliances Refrigeration Systems Corporation of America (PAPRSA) seeking an exemption from... Refrigeration Systems Corporation of America, meaning that it is the same manufacturer to which DOE granted the...
Keeping Cool With Solar-Powered Refrigeration
NASA Technical Reports Server (NTRS)
2003-01-01
In the midst of developing battery-free, solar-powered refrigeration and air conditioning systems for habitats in space, David Bergeron, the team leader for NASA's Advanced Refrigerator Technology Team at Johnson Space Center, acknowledged the need for a comparable solar refrigerator that could operate in conjunction with the simple lighting systems already in place on Earth. Bergeron, a 20-year veteran in the aerospace industry, founded the company Solus Refrigeration, Inc., in 1999 to take the patented advanced refrigeration technology he co-developed with his teammate, Johnson engineer Michael Ewert, to commercial markets. Now known as SunDanzer Refrigeration, Inc., Bergeron's company is producing battery-free, photovoltaic (PV) refrigeration systems under license to NASA, and selling them globally.
NASA Astrophysics Data System (ADS)
Qyyum, Muhammad Abdul; Long, Nguyen Van Duc; Minh, Le Quang; Lee, Moonyong
2018-01-01
Design optimization of the single mixed refrigerant (SMR) natural gas liquefaction (LNG) process involves highly non-linear interactions between decision variables, constraints, and the objective function. These non-linear interactions lead to an irreversibility, which deteriorates the energy efficiency of the LNG process. In this study, a simple and highly efficient hybrid modified coordinate descent (HMCD) algorithm was proposed to cope with the optimization of the natural gas liquefaction process. The single mixed refrigerant process was modeled in Aspen Hysys® and then connected to a Microsoft Visual Studio environment. The proposed optimization algorithm provided an improved result compared to the other existing methodologies to find the optimal condition of the complex mixed refrigerant natural gas liquefaction process. By applying the proposed optimization algorithm, the SMR process can be designed with the 0.2555 kW specific compression power which is equivalent to 44.3% energy saving as compared to the base case. Furthermore, in terms of coefficient of performance (COP), it can be enhanced up to 34.7% as compared to the base case. The proposed optimization algorithm provides a deep understanding of the optimization of the liquefaction process in both technical and numerical perspectives. In addition, the HMCD algorithm can be employed to any mixed refrigerant based liquefaction process in the natural gas industry.
Method of dehydrating natural gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wells, R. E.
1985-01-01
A method for dehydration of natural gas is provided wherein well head gas is supplied to a three-phase inlet separator, the vapor mixture of natural gas and water removed from that inlet separator means is supplied to a turboexpander, and the resulting refrigerated mixture of natural gas and condensed water vapor is supplied to a multi-phase outlet separator. The turboexpander may have integral means for subsequent compression of the refrigerated mixture and may be coupled through reduction gears to a means for generating electricity. A portion of the refrigerated mixture may be connected to a heat exchanger for cooling themore » well head natural gas prior to entry into the inlet separator. The flow of refrigerated mixture to this heat exchanger may be controlled by a temperature sensitive valve downstream of the heat exchanger. Methanol may be injected into the vapor mixture prior to entry into the turboexpander. The flow of methanol into the vapor mixture may be controlled by a valve sensitive to the flow rate of the vapor mixture and the water vapor content of the refrigerated mixture. Natural gas vapor from the outlet separator may be recirculated through the turboexpander if the output water vapor content of the natural gas vapor stream is too high.« less
49 CFR 173.307 - Exceptions for compressed gases.
Code of Federal Regulations, 2010 CFR
2010-10-01
.... For transportation by air, tires and tire assemblies must meet the conditions in § 175.8(b)(4) of this subchapter. (3) Balls used for sports. (4) Refrigerating machines, including dehumidifiers and air conditioners, and components thereof, such as precharged tubing containing: (i) 12 kg (25 pounds) or less of a...
49 CFR 173.33 - Hazardous materials in cargo tank motor vehicles.
Code of Federal Regulations, 2010 CFR
2010-10-01
... the following conditions: (i) For compressed gases and certain refrigerated liquids that are not cryogenic liquids, the pressure prescribed in § 173.315 of this subchapter. (ii) For cryogenic liquids, the pressure prescribed in § 173.318 of this subchapter. (iii) For liquid hazardous materials loaded in DOT...
49 CFR 172.405 - Authorized label modifications.
Code of Federal Regulations, 2011 CFR
2011-10-01
... subsidiary label. (b) For a package containing Oxygen, compressed, or Oxygen, refrigerated liquid, the OXIDIZER label specified in § 172.426 of this subpart, modified to display the word “OXYGEN” instead of... OXIDIZER labels. Notwithstanding the provisions of paragraph (a) of this section, the word “OXYGEN” must...
Optimization of Regenerators for AMRR Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nellis, Gregory; Klein, Sanford; Brey, William
Active Magnetic Regenerative Refrigeration (AMRR) systems have no direct global warming potential or ozone depletion potential and hold the potential for providing refrigeration with efficiencies that are equal to or greater than the vapor compression systems used today. The work carried out in this project has developed and improved modeling tools that can be used to optimize and evaluate the magnetocaloric materials and geometric structure of the regenerator beds required for AMRR Systems. There has been an explosion in the development of magnetocaloric materials for AMRR systems over the past few decades. The most attractive materials, based on the magnitudemore » of the measured magnetocaloric effect, tend to also have large amounts of hysteresis. This project has provided for the first time a thermodynamically consistent method for evaluating these hysteretic materials in the context of an AMRR cycle. An additional, practical challenge that has been identified for AMRR systems is related to the participation of the regenerator wall in the cyclic process. The impact of housing heat capacity on both passive and active regenerative systems has been studied and clarified within this project. This report is divided into two parts corresponding to these two efforts. Part 1 describes the work related to modeling magnetic hysteresis while Part 2 discusses the modeling of the heat capacity of the housing. A key outcome of this project is the development of a publically available modeling tool that allows researchers to identify a truly optimal magnetocaloric refrigerant. Typically, the refrigeration potential of a magnetocaloric material is judged entirely based on the magnitude of the magnetocaloric effect and other properties of the material that are deemed unimportant. This project has shown that a material with a large magnetocaloric effect (as evidenced, for example, by a large adiabatic temperature change) may not be optimal when it is accompanied by a large hysteresis. The trade-off between these various material properties and the proper design of an AMRR system can only be evaluated correctly using the comprehensive, physics-based model developed by this project. The development of these modeling tools and optimization studies will provide the knowledge base that is required to achieve transformational discoveries. The widespread adoption of AMRR technology will change the character of energy demand in this country and provide manufacturing jobs as well as employment associated with retrofitting existing HVAC&R applications.« less
46 CFR 128.410 - Ship's service refrigeration systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Ship's service refrigeration systems. 128.410 Section 128.410 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS... service refrigeration systems. No self-contained unit either for air-conditioning or for refrigerated...
46 CFR 128.410 - Ship's service refrigeration systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Ship's service refrigeration systems. 128.410 Section 128.410 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS... service refrigeration systems. No self-contained unit either for air-conditioning or for refrigerated...
46 CFR 128.410 - Ship's service refrigeration systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Ship's service refrigeration systems. 128.410 Section 128.410 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS... service refrigeration systems. No self-contained unit either for air-conditioning or for refrigerated...
46 CFR 128.410 - Ship's service refrigeration systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Ship's service refrigeration systems. 128.410 Section 128.410 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS... service refrigeration systems. No self-contained unit either for air-conditioning or for refrigerated...
46 CFR 128.410 - Ship's service refrigeration systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Ship's service refrigeration systems. 128.410 Section 128.410 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS... service refrigeration systems. No self-contained unit either for air-conditioning or for refrigerated...
Beshr, Mohamed; Aute, Vikrant; Abdelaziz, Omar; ...
2016-08-24
Refrigeration and air conditioning systems have high, negative environmental impacts due to refrigerant charge leaks from the system and their corresponding high global warming potential. Thus, many efforts are in progress to obtain suitable low GWP alternative refrigerants and more environmentally friendly systems for the future. In addition, the system’s life cycle climate performance (LCCP) is a widespread metric proposed for the evaluation of the system’s environmental impact.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beshr, Mohamed; Aute, Vikrant; Abdelaziz, Omar
Refrigeration and air conditioning systems have high, negative environmental impacts due to refrigerant charge leaks from the system and their corresponding high global warming potential. Thus, many efforts are in progress to obtain suitable low GWP alternative refrigerants and more environmentally friendly systems for the future. In addition, the system’s life cycle climate performance (LCCP) is a widespread metric proposed for the evaluation of the system’s environmental impact.
Direct condensation refrigerant recovery and restoration system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grant, D.C.H.
1992-03-10
This patent describes a refrigerant recovery and purification system for removing gaseous refrigerant from a disabled refrigeration unit, cleaning the refrigerant of contaminants, and converting the gaseous refrigerant to a liquid state for storage. It comprises a low pressure inlet section; a high pressure storage section; the low pressure inlet section comprising: an oil and refrigerant gas separator, including a separated oil removal means, first conduit means for connecting an inlet of the separator to the disabled refrigerant unit, a slack-sided accumulator, second conduit means connecting the separator to the slack-sided accumulator, a reclaim condenser, third conduit means connecting themore » separator and the reclaim condenser in series, an evaporator coil in the reclaim condenser connectable to a conventional operating refrigeration system for receiving a liquid refrigerant under pressure for expansion therein, the evaporator coil forming a condensing surface for condensing the refrigerant gas at near atmospheric pressure in the condenser, a liquid receiver, a reclaimed refrigerant storage tank, fourth conduit means further connecting the liquid receiver in series with the reclaim condenser, downstream thereof, means between the reclaim condenser and the liquid receiver.« less
A Comparative Study on the Environmental Impact of CO2 Supermarket Refrigeration Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beshr, Mohamed; Aute, Vikrant; Sharma, Vishaldeep
Supermarket refrigeration systems have high environmental impact due to their large refrigerant charge and high leak rates. Accordingly, the interest in using natural refrigerants, such as carbon dioxide (CO2), and new refrigerant blends with low GWP in such systems is increasing. In this paper, an open-source Life Cycle Climate Performance (LCCP) framework is presented and used to compare the environmental impact of three supermarket refrigeration systems. These systems include a transcritical CO2 booster system, a cascade CO2/N-40 system, and a baseline R-404A multiplex direct expansion system. The study is performed for cities representing different climates within the USA using EnergyPlusmore » to simulate the systems' hourly performance. Finally, a parametric analysis is performed to study the impact of annual leak rate on the systems' LCCP.« less
Dual-circuit, multiple-effect refrigeration system and method
DeVault, Robert C.
1995-01-01
A dual circuit absorption refrigeration system comprising a high temperature single-effect refrigeration loop and a lower temperature double-effect refrigeration loop separate from one another and provided with a double-condenser coupling therebetween. The high temperature condenser of the single-effect refrigeration loop is double coupled to both of the generators in the double-effect refrigeration loop to improve internal heat recovery and a heat and mass transfer additive such as 2-ethyl-1-hexanol is used in the lower temperature double-effect refrigeration loop to improve the performance of the absorber in the double-effect refrigeration loop.
Sorption compressor/mechanical expander hybrid refrigeration
NASA Technical Reports Server (NTRS)
Jones, J. A.; Britcliffe, M.
1987-01-01
Experience with Deep Space Network (DSN) ground-based cryogenic refrigerators has proved the reliability of the basic two-stage Gifford-McMahon helium refrigerator. A very long life cryogenic refrigeration system appears possible by combining this expansion system or a turbo expansion system with a hydride sorption compressor in place of the usual motor driven piston compressor. To test the feasibility of this system, a commercial Gifford-McMahon refrigerator was tested using hydrogen gas as the working fluid. Although no attempt was made to optimize the system for hydrogen operation, the refrigerator developed 1.3 W at 30 K and 6.6 W at 60 K. The results of the test and of theoretical performances of the hybrid compressor coupled to these expansion systems are presented.
Cooling system having dual suction port compressor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Guolian
2017-08-29
A cooling system for appliances, air conditioners, and other spaces includes a compressor, and a condenser that receives refrigerant from the compressor. The system also includes an evaporator that receives refrigerant from the condenser. Refrigerant received from the condenser flows through an upstream portion of the evaporator. A first portion of the refrigerant flows to the compressor without passing through a downstream portion of the evaporator, and a second portion of the refrigerant from the upstream portion of the condenser flows through the downstream portion of the evaporator after passing through the upstream portion of the evaporator. The second portionmore » of the refrigerant flows to the compressor after passing through the downstream portion of the evaporator. The refrigeration system may be configured to cool an appliance such as a refrigerator and/or freezer, or it may be utilized in air conditioners for buildings, motor vehicles, or other such spaces.« less
NASA Astrophysics Data System (ADS)
Falsafioon, Mehdi; Aidoun, Zine; Poirier, Michel
2017-12-01
A wide range of industrial refrigeration systems are good candidates to benefit from the cooling and refrigeration potential of supersonic ejectors. These are thermally activated and can use waste heat recovery from industrial processes where it is abundantly generated and rejected to the environment. In other circumstances low cost heat from biomass or solar energy may also be used in order to produce a cooling effect. Ejector performance is however typically modest and needs to be maximized in order to take full advantage of the simplicity and low cost of the technology. In the present work, the behavior of ejectors with different nozzle exit positions has been investigated using a prototype as well as a CFD model. The prototype was used in order to measure the performance advantages of refrigerant (R-134a) flowing inside the ejector. For the CFD model, it is assumed that the ejectors are axi-symmetric along x-axis, thus the generated model is in 2D. The preliminary CFD results are validated with experimental data over a wide range of conditions and are in good accordance in terms of entrainment and compression ratios. Next, the flow patterns of four different topologies are studied in order to discuss the optimum geometry in term of ejector entrainment improvement. Finally, The numerical simulations were used to find an optimum value corresponding to maximized entrainment ratio for fixed operating conditions.
Luo, E C; Dai, W; Zhang, Y; Ling, H
2006-12-22
In this paper, a thermally-driven thermoacoustic refrigerator system without any moving part is reported. This refrigeration system consists of a thermoacoustic-Stirling heat engine and a thermoacoustic-Stirling refrigerator; that is, the former is the driving source for the latter. Both the subsystems are designed to operate on traveling-wave mode. In the experiment, it was found that the DC-flows had significant negative effect on the heat engine and the refrigerator. To suppress these DC-flows, two flexible membranes were inserted into the two subsystems and worked very well. Then extensive experiments were made to test the influence of different parameters on refrigeration performance of the whole system. The system has so far achieved a no-load temperature of -65 degrees C, a cooling capacity of about 270 W at -20 degrees C and 405 W at 0 degrees C; in fact, the result showed a good prospect of the refrigeration system in room-temperature cooling such as food refrigeration and air-conditioning.
Two-statge sorption type cryogenic refrigerator including heat regeneration system
NASA Technical Reports Server (NTRS)
Jones, Jack A. (Inventor); Wen, Liang-Chi (Inventor); Bard, Steven (Inventor)
1989-01-01
A lower stage chemisorption refrigeration system physically and functionally coupled to an upper stage physical adsorption refrigeration system. Waste heat generated by the lower stage cycle is regenerated to fuel the upper stage cycle thereby greatly improving the energy efficiency of a two-stage sorption refrigerator. The two stages are joined by disposing a first pressurization chamber providing a high pressure flow of a first refrigerant for the lower stage refrigeration cycle within a second pressurization chamber providing a high pressure flow of a second refrigerant for the upper stage refrigeration cycle. The first pressurization chamber is separated from the second pressurization chamber by a gas-gap thermal switch which at times is filled with a thermoconductive fluid to allow conduction of heat from the first pressurization chamber to the second pressurization chamber.
Self-actuating heat switches for redundant refrigeration systems
NASA Technical Reports Server (NTRS)
Chan, Chung K. (Inventor)
1988-01-01
A dual refrigeration system for cooling a sink device is described, which automatically thermally couples the cold refrigerator to the sink device while thermally isolating the warm refrigerator from the sink device. The system includes two gas gap heat switches that each thermally couples one of the refrigerators to the sink device, and a pair of sorption pumps that are coupled through tubes to the heat switches. When the first refrigerator is operated and therefore cold, the first pump which is thermally coupled to it is also cooled and adsorbs gas to withdraw it from the second heat switch, to thereby thermally isolate the sink device from the warm second refrigerator. With the second refrigerator being warm, the second pump is also warm and desorbs gas, so the gas lies in the first switch, to close that switch and therefore thermally couple the cold first refrigerator to the sink device. Thus, the heat switches are automatically switched according to the temperature of the corresponding refrigerator.
NASA Astrophysics Data System (ADS)
Deymi-Dashtebayaz, Mahdi; Farahnak, Mehdi; Moraffa, Mojtaba; Ghalami, Arash; Mohammadi, Nima
2018-03-01
In this paper the effects of refrigerant charge amount and ambient air temperature on performance and thermodynamic condition of refrigerating cycle in the split type air-conditioner have been investigated. Optimum mass charge is the point at which the energy efficiency ratio (EER) of refrigeration cycle becomes the maximum. Experiments have been conducted over a range of refrigerant mass charge from 540 to 840 g and a range of ambient temperature from 27 to 45 °C, in a 12,000 Btu/h split air-conditioner as case study. The various parameters have been considered to evaluate the cooling rate, energy efficiency ratio (EER), mass charge effect and thermodynamic cycle of refrigeration system with R22 refrigerant gas. Results confirmed that the lack of appropriate refrigerant mass charge causes the refrigeration system not to reach its maximum cooling capacity. The highest cooling capacity achieved was 3.2 kW (11,000 Btu/h). The optimum mass charge and corresponding EER of studied system have been obtained about 640 g and 2.5, respectively. Also, it is observed that EER decreases by 30% as ambient temperature increases from 27 °C to 45 °C. By optimization of the refrigerant mass charge in refrigerating systems, about 785 GWh per year of electric energy can be saved in Iran's residential sector.
49 CFR 173.5b - Portable and mobile refrigeration systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 2 2013-10-01 2013-10-01 false Portable and mobile refrigeration systems. 173.5b...-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS General § 173.5b Portable and mobile refrigeration... refrigeration systems, which may or may not be permanently mounted to a transport vehicle, used for agricultural...
10 CFR 431.302 - Definitions concerning walk-in coolers and walk-in freezers.
Code of Federal Regulations, 2013 CFR
2013-01-01
... walk-in cooler or walk-in freezer that are not part of its refrigeration system. K-factor means the... consumption, including, but not limited to, refrigeration, doors, lights, windows, or walls; or (2... temperature at or below 55 degrees Fahrenheit using a refrigeration system. Refrigeration system means the...
10 CFR 431.302 - Definitions concerning walk-in coolers and walk-in freezers.
Code of Federal Regulations, 2014 CFR
2014-01-01
... walk-in cooler or walk-in freezer that are not part of its refrigeration system. K-factor means the... consumption, including, but not limited to, refrigeration, doors, lights, windows, or walls; or (2... temperature at or below 55 degrees Fahrenheit using a refrigeration system. Refrigeration system means the...
49 CFR 173.5b - Portable and mobile refrigeration systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 2 2012-10-01 2012-10-01 false Portable and mobile refrigeration systems. 173.5b...-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS General § 173.5b Portable and mobile refrigeration... refrigeration systems, which may or may not be permanently mounted to a transport vehicle, used for agricultural...
10 CFR 431.302 - Definitions concerning walk-in coolers and walk-in freezers.
Code of Federal Regulations, 2012 CFR
2012-01-01
... walk-in cooler or walk-in freezer that are not part of its refrigeration system. K-factor means the... consumption, including, but not limited to, refrigeration, doors, lights, windows, or walls; or (2... temperature at or below 55 degrees Fahrenheit using a refrigeration system. Refrigeration system means the...
49 CFR 173.5b - Portable and mobile refrigeration systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Portable and mobile refrigeration systems. 173.5b...-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS General § 173.5b Portable and mobile refrigeration... refrigeration systems, which may or may not be permanently mounted to a transport vehicle, used for agricultural...
Heat exchanger bypass system for an absorption refrigeration system
Reimann, Robert C.
1984-01-01
A heat exchanger bypass system for an absorption refrigeration system is disclosed. The bypass system operates to pass strong solution from the generator around the heat exchanger to the absorber of the absorption refrigeration system when strong solution builds up in the generator above a selected level indicative of solidification of strong solution in the heat exchanger or other such blockage. The bypass system includes a bypass line with a gooseneck located in the generator for controlling flow of strong solution into the bypass line and for preventing refrigerant vapor in the generator from entering the bypass line during normal operation of the refrigeration system. Also, the bypass line includes a trap section filled with liquid for providing a barrier to maintain the normal pressure difference between the generator and the absorber even when the gooseneck of the bypass line is exposed to refrigerant vapor in the generator. Strong solution, which may accumulate in the trap section of the bypass line, is diluted, to prevent solidification, by supplying weak solution to the trap section from a purge system for the absorption refrigeration system.
Liquid over-feeding air conditioning system and method
Mei, Viung C.; Chen, Fang C.
1993-01-01
A refrigeration air conditioning system utilizing a liquid over-feeding operation is described. A liquid refrigerant accumulator-heat exchanger is placed in the system to provide a heat exchange relationship between hot liquid refrigerant discharged from condenser and a relatively cool mixture of liquid and vaporous refrigerant discharged from the evaporator. This heat exchange relationship substantially sub-cools the hot liquid refrigerant which undergoes little or no evaporation across the expansion device and provides a liquid over-feeding operation through the evaporator for effectively using 100 percent of evaporator for cooling purposes and for providing the aforementioned mixture of liquid and vaporous refrigerant.
49 CFR 173.33 - Hazardous materials in cargo tank motor vehicles.
Code of Federal Regulations, 2014 CFR
2014-10-01
... air-enriched mixture within the flammability range of the lading in the vapor space of the tank. (4... the following conditions: (i) For compressed gases and certain refrigerated liquids that are not cryogenic liquids, the pressure prescribed in § 173.315 of this subchapter. (ii) For cryogenic liquids, the...
Indirect-fired gas turbine bottomed with fuel cell
Micheli, P.L.; Williams, M.C.; Parsons, E.L.
1995-09-12
An indirect-heated gas turbine cycle is bottomed with a fuel cell cycle with the heated air discharged from the gas turbine being directly utilized at the cathode of the fuel cell for the electricity-producing electrochemical reaction occurring within the fuel cell. The hot cathode recycle gases provide a substantial portion of the heat required for the indirect heating of the compressed air used in the gas turbine cycle. A separate combustor provides the balance of the heat needed for the indirect heating of the compressed air used in the gas turbine cycle. Hot gases from the fuel cell are used in the combustor to reduce both the fuel requirements of the combustor and the NOx emissions therefrom. Residual heat remaining in the air-heating gases after completing the heating thereof is used in a steam turbine cycle or in an absorption refrigeration cycle. Some of the hot gases from the cathode can be diverted from the air-heating function and used in the absorption refrigeration cycle or in the steam cycle for steam generating purposes. 1 fig.
Indirect-fired gas turbine bottomed with fuel cell
Micheli, Paul L.; Williams, Mark C.; Parsons, Edward L.
1995-01-01
An indirect-heated gas turbine cycle is bottomed with a fuel cell cycle with the heated air discharged from the gas turbine being directly utilized at the cathode of the fuel cell for the electricity-producing electrochemical reaction occurring within the fuel cell. The hot cathode recycle gases provide a substantial portion of the heat required for the indirect heating of the compressed air used in the gas turbine cycle. A separate combustor provides the balance of the heat needed for the indirect heating of the compressed air used in the gas turbine cycle. Hot gases from the fuel cell are used in the combustor to reduce both the fuel requirements of the combustor and the NOx emissions therefrom. Residual heat remaining in the air-heating gases after completing the heating thereof is used in a steam turbine cycle or in an absorption refrigeration cycle. Some of the hot gases from the cathode can be diverted from the air-heating function and used in the absorption refrigeration cycle or in the steam cycle for steam generating purposes.
Refrigerant pressurization system with a two-phase condensing ejector
Bergander, Mark [Madison, CT
2009-07-14
A refrigerant pressurization system including an ejector having a first conduit for flowing a liquid refrigerant therethrough and a nozzle for accelerating a vapor refrigerant therethrough. The first conduit is positioned such that the liquid refrigerant is discharged from the first conduit into the nozzle. The ejector includes a mixing chamber for condensing the vapor refrigerant. The mixing chamber comprises at least a portion of the nozzle and transitions into a second conduit having a substantially constant cross sectional area. The condensation of the vapor refrigerant in the mixing chamber causes the refrigerant mixture in at least a portion of the mixing chamber to be at a pressure greater than that of the refrigerant entering the nozzle and greater than that entering the first conduit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Bo; Abdelaziz, Omar
R410A has no ozone depletion potential (ODP), and is the most commonly used refrigerant in vapor compression systems for space cooling and heating applications. However, it has significant global warming potential with GWP higher than 1900. To mitigate the global warming effect, industry and research institutes are actively pursuing a replacement for R-410A with the following attributes, much lower GWP along with similar or higher efficiency and capacity. DR-55 (aka R452B) is a design-compatible refrigerant replacement for R-410A. It decreases the GWP by 70%, and has lower working pressure, comparable discharge temperature, and uses the same lubricant, tubing, and valves.more » In this study, we experimentally evaluated the performance of DR-55 as a drop-in replacement for R-410A in a high efficiency rooftop air conditioning unit. The experimental results demonstrated that DR-55 led to 5% higher efficiency at the working conditions of Integrated Energy Efficiency Rating (IEER). DR-55 also showed significantly better high ambient performance from 95 F to 125 F. In addition to the experimental study, we used the DOE/ORNL Heat Pump Design Model to model the RTU using R-410A and DR-55, respectively. The model results were compared to the laboratory measurements. The model validation demonstrates that the refrigerant heat transfer and pressure drop correlations, developed for conventional refrigerants like R-410A, are usable for DR-55. Also, a converted compressor model for DR-55, i.e. reducing volumetric and isentropic efficiencies as a function of the suction and discharge pressures from an R-410A compressor map can predict the compressor mass flow rate and power accurately.« less
Refrigeration oils for low GWP refrigerants in various applications
NASA Astrophysics Data System (ADS)
Saito, R.; Sundaresan, S. G.
2017-08-01
The practical use of the refrigeration systems is considered as a methods to suppress global warming. The replacement of a refrigerant with a new one that has lower global warming potential (GWP) has been underway for several years. For the application fields of refrigerators, domestic air conditioners, automotive air conditioners and hot water dispensers, the investigation has almost finished. It is still underway for the application fields of commercial air conditioners and chillers, refrigeration facilities for cold storage, etc. And now, the refrigeration system is being applied in various ways to decrease global warming above the generation of electric power with organic Rankine cycle, the binary electric generation with ground source heat pump, and so on. In these situations, various refrigerants are developed and several kinds of suitable refrigeration oils are selected. This paper presents the consideration of suitable refrigeration oil for the various low GWP refrigerants.
Two stage sorption type cryogenic refrigerator including heat regeneration system
NASA Technical Reports Server (NTRS)
Jones, Jack A. (Inventor); Wen, Liang-Chi (Inventor); Bard, Steven (Inventor)
1989-01-01
A lower stage chemisorption refrigeration system physically and functionally coupled to an upper stage physical adsorption refrigeration system is disclosed. Waste heat generated by the lower stage cycle is regenerated to fuel the upper stage cycle thereby greatly improving the energy efficiency of a two-stage sorption refrigerator. The two stages are joined by disposing a first pressurization chamber providing a high pressure flow of a first refrigerant for the lower stage refrigeration cycle within a second pressurization chamber providing a high pressure flow of a second refrigerant for the upper stage refrigeration cycle. The first pressurization chamber is separated from the second pressurization chamber by a gas-gap thermal switch which at times is filled with a thermoconductive fluid to allow conduction of heat from the first pressurization chamber to the second pressurization chamber.
NASA Astrophysics Data System (ADS)
Chorowski, M.; Piotrowska, A.; Polinski, J.
2006-04-01
Low temperature medicine is becoming a widely appreciated method in surgery, dermatology, gynecology and rheumatology. The cryomedical equipment is usually supplied with liquid nitrogen LN2 stored in a dewar and transferred to a tip, where it is evaporated providing a cooling power. LN2 in quantities sufficient for cryo-surgical and cryo-therapeutical applications can be first separated from air and then liquefied using a system combining polymer membrane gas separation technology and a Joule-Thomson closed-cycle refrigerator filled with a nitrogen-hydrocarbons gas mixture. Nitrogen is separated from the compressed air, then liquefied and throttled to atmospheric pressure. The paper analyzes the demanded cooling capacity of the system resulting from cryomedical treatment requirements. Thermal design and flow scheme of the apparatus are given. The system is thermodynamically optimized.
NASA Technical Reports Server (NTRS)
1994-01-01
Early in the space program, NASA recognized the need to replace bulky coils, compressers, and motors for refrigeration purposes by looking at existing thermoelectric technology. This effort resulted in the development of miniaturized thermoelectric components and packaging to accommodate tight confines of spacecraft. Koolatron's portable electronic refrigerators incorporate this NASA technology. Each of the cooler/warmers employs one or two miniaturized thermoelectric modules. Although each module is only the size of a book of matches, it delivers the cooling power of a 10-pound block of ice. In some models, the cooler can be converted to a warmer. There are no moving parts. The Koolatrons can be plugged into auto cigarette lighters, recreational vehicles, boats or motel outlets.
NASA Astrophysics Data System (ADS)
Li, Zongbin; Zhang, Yudong; Sánchez-Valdés, C. F.; Sánchez Llamazares, J. L.; Esling, Claude; Zhao, Xiang; Zuo, Liang
2014-01-01
Magnetic refrigeration based on the magnetocaloric effect (MCE) may provide an energy-efficient and environment-friendly alternative to the conventional gas compression/expansion cooling technology. For potential applications, low-cost and high-performance magnetic refrigerants are in great need. Here, we demonstrate that giant MCE can be achieved in annealed Ni52Mn26Ga22 ribbons with magneto-multistructural transformation. It yields a maximum magnetic entropy change of -30.0 J kg-1 K-1 at the magnetic field change of 5 T, being almost three times as that of initial melt-spun ribbons and comparable to or even superior to that of polycrystalline bulk alloys.
Modeling of a Two-Phase Jet Pump with Phase Change, Shocks and Temperature-Dependent Properties
NASA Technical Reports Server (NTRS)
Sherif, S. A.
1998-01-01
One of the primary motivations behind this work is the attempt to understand the physics of a two-phase jet pump which constitutes part of a flow boiling test facility at NASA-Marshall. The flow boiling apparatus is intended to provide data necessary to design highly efficient two-phase thermal control systems for aerospace applications. The facility will also be capable of testing alternative refrigerants and evaluate their performance using various heat exchangers with enhanced surfaces. The test facility is also intended for use in evaluating single-phase performance of systems currently using CFC refrigerants. Literature dealing with jet pumps is abundant and covers a very wide array of application areas. Example application areas include vacuum pumps which are used in the food industry, power station work, and the chemical industry; ejector systems which have applications in the aircraft industry as cabin ventilators and for purposes of jet thrust augmentation; jet pumps which are used in the oil industry for oil well pumping; and steam-jet ejector refrigeration, to just name a few. Examples of work relevant to this investigation includes those of Fairuzov and Bredikhin (1995). While past researchers have been able to model the two-phase flow jet pump using the one-dimensional assumption with no shock waves and no phase change, there is no research known to the author apart from that of Anand (1992) who was able to account for condensation shocks. Thus, one of the objectives of this work is to model the dynamics of fluid interaction between a two-phase primary fluid and a subcooled liquid secondary fluid which is being injected employing atomizing spray injectors. The model developed accounts for phase transformations due to expansion, compression, and mixing. It also accounts for shock waves developing in the different parts of the jet pump as well as temperature and pressure dependencies of the fluid properties for both the primary two-phase mixture and the secondary subcooled liquid. The research effort on which this document partly reports described a relatively simple model capable of describing the performance of a two-phase flow jet pump. The model is based on the isentropic homogeneous expansion/compression hypothesis and is capable of fully incorporating the effects of shocks in both the mixing chamber and the throat/diffuser parts of the pump. The physical system chosen is identical to that experimentally tested by Fairuzov and Bredikhin (1995) and should therefore be relatively easy to validate.
Applicability of ASST-A helium refrigeration system for JLab End Station Refrigerator
NASA Astrophysics Data System (ADS)
Hasan, N.; Knudsen, P.; Ganni, V.
2017-12-01
The MØLLER experiment at Jefferson Lab (JLab) is a high power (5 kW) liquid hydrogen target scheduled to be operational in the 12 GeV-era. At present, cryogenic loads and targets at three of JLab’s four experimental halls are supported by the End Station Refrigerator (ESR) - a CTI/Helix 1.5 kW 4.5 K refrigerator. It is not capable of supporting the high power target load and a capacity upgrade of the ESR cryogenic system is essential. The ASST-A helium refrigeration system is a 4 kW 4.5 K refrigerator. It was designed and used for the Superconducting Super Collider Lab (SSCL) magnet string test and later obtained by JLab after the cancellation of that project. The modified ASST-A refrigeration system, which will be called ESR-II along with a support flow from JLab’s Central Helium Liquefier (CHL) is considered as an option for the End Station Refrigerator capacity upgrade. The applicability of this system for ESR-II under varying load conditions is investigated. The present paper outlines the findings of this process study.
Managing Refrigerant Emissions
Access information on EPA's efforts to address ozone layer depletion by reducing emissions of refrigerants from stationary refrigeration and air conditioning systems and motor vehicle air conditioning systems.
Liquid over-feeding air conditioning system and method
Mei, V.C.; Chen, F.C.
1993-09-21
A refrigeration air conditioning system utilizing a liquid over-feeding operation is described. A liquid refrigerant accumulator-heat exchanger is placed in the system to provide a heat exchange relationship between hot liquid refrigerant discharged from condenser and a relatively cool mixture of liquid and vaporous refrigerant discharged from the evaporator. This heat exchange relationship substantially sub-cools the hot liquid refrigerant which undergoes little or no evaporation across the expansion device and provides a liquid over-feeding operation through the evaporator for effectively using 100 percent of evaporator for cooling purposes and for providing the aforementioned mixture of liquid and vaporous refrigerant. 1 figure.
NASA Astrophysics Data System (ADS)
Song, Jinghui; Yuan, Hui; Xia, Yunfeng; Kan, Weimin; Deng, Xiaowen; Liu, Shi; Liang, Wanlong; Deng, Jianhua
2018-03-01
This paper introduces the working principle and system constitution of the linear Fresnel solar lithium bromide absorption refrigeration cycle, and elaborates several typical structures of absorption refrigeration cycle, including single-effect, two-stage cycle and double-effect lithium bromide absorption refrigeration cycle A 1.n effect absorption chiller system based on the best parameters was introduced and applied to a linear Fresnel solar absorption chiller system. Through the field refrigerator performance test, the results show: Based on this heat cycle design and processing 1.n lithium bromide absorption refrigeration power up to 35.2KW, It can meet the theoretical expectations and has good flexibility and reliability, provides guidance for the use of solar thermal energy.
Determination of properties of PVE lubricants with HFC refrigerants[PolyVinylEther
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaneko, Masato; Sakanoue, Shuichi; Tazaki, Toshihiro
1999-07-01
Polyalkyleneglycol (PAG) and polyol ester (POE) have been developed as refrigeration lubricants, used with HFC134a. PAG is used for automotive air conditioning systems and POE is used for domestic reciprocating refrigerators and for A/C systems. Although PAG exhibits good lubricity performance, it is difficult to use for domestic reciprocating refrigerators due to its low dielectric property. POE is difficult to use for automotive A/C systems, due to hydrolysis and poor lubricity performance. Polyvinylether (PVE) can be used in place of PAG and POE with HFC refrigerants. PVE is used for A/C systems as well as refrigerator and freezer applications. PVEmore » is an ideal lubricant for use with HFCs.« less
A general computer model for predicting the performance of gas sorption refrigerators
NASA Technical Reports Server (NTRS)
Sigurdson, K. B.
1983-01-01
Projected performance requirements for cryogenic spacecraft sensor cooling systems which demand higher reliability and longer lifetimes are outlined. The gas/solid sorption refrigerator is viewed as a potential solution to cryogenic cooling needs. A software model of an entire gas sorption refrigerator system was developed. The numerical model, evaluates almost any combination and order of refrigerator components and any sorbent-sorbate pair or which the sorption isotherm data are available. Parametric curves for predicting system performance were generated for two types of refrigerators, a LaNi5-H2 absorption cooler and a Charcoal-N2 adsorption cooler. It is found that precooling temperature and heat exchanger effectiveness affect the refrigerator performance. It is indicated that gas sorption refrigerators are feasible for a number of space applications.
Review of magnetic refrigeration system as alternative to conventional refrigeration system
NASA Astrophysics Data System (ADS)
Mezaal, N. A.; Osintsev, K. V.; Zhirgalova, T. B.
2017-10-01
The refrigeration system is one of the most important systems in industry. Developers are constantly seeking for how to avoid the damage to the environment. Magnetic refrigeration is an emerging, environment-friendly technology based on a magnetic solid that acts as a refrigerant by magneto-caloric effect (MCE). In the case of ferromagnetic materials, MCE warms as the magnetic moments of the atom are aligned by the application of a magnetic field. There are two types of magnetic phase changes that may occur at the Curie point: first order magnetic transition (FOMT) and second order magnetic transition (SOMT). The reference cycle for magnetic refrigeration is AMR (Active Magnetic Regenerative cycle), where the magnetic material matrix works both as a refrigerating medium and as a heat regenerating medium, while the fluid flowing in the porous matrix works as a heat transfer medium. Regeneration can be accomplished by blowing a heat transfer fluid in a reciprocating fashion through the regenerator made of magnetocaloric material that is alternately magnetized and demagnetized. Many magnetic refrigeration prototypes with different designs and software models have been built in different parts of the world. In this paper, the authors try to shed light on the magnetic refrigeration and show its effectiveness compared with conventional refrigeration methods.
Status Of Sorption Cryogenic Refrigeration
NASA Technical Reports Server (NTRS)
Jones, Jack A.
1988-01-01
Report reviews sorption refrigeration. Developed for cooling infrared detectors, cryogenic research, and other advanced applications, sorption refrigerators have few moving parts, little vibration, and lifetimes of 10 years or more. Describes types of sorption stages, multistage and hybrid refrigeration systems, power requirements, cooling capacities, and advantages and disadvantages of various stages and systems.
REDUCING REFRIGERANT EMISSIONS FROM SUPERMARKET SYSTEMS
Large refrigeration systems are found in several applications including supermarkets, cold storage warehouses, and industrial processes. The sizes of these systems are a contributing factor to their problems of high refrigerant leak rates because of the thousands of connections, ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hessell, Edward Thomas
The goal of this project is to develop and test new synthetic lubricants that possess high compatibility with new low ozone depleting (LOD) and low global warming potential (LGWP) refrigerants and offer improved lubricity and wear protection over current lubricant technologies. The improved compatibility of the lubricants with the refrigerants, along with improved lubricating properties, will resulted in lower energy consumption and longer service life of the refrigeration systems used in residential, commercial and industrial heating, ventilating and air-conditioning (HVAC) and refrigeration equipment.
The 1- to 4-K refrigeration techniques for cooling masers on a beam waveguide antenna
NASA Technical Reports Server (NTRS)
Johnson, D. L.
1986-01-01
The status of technology is reported for various 1- to 4-K commercially available refrigeration systems capable of producing 1.5-K refrigeration to cool masers and superconducting cavity oscillators on the proposed beam waveguide antenna. The design requirements for the refrigeration system and the cryostat are presented. A continuously operating evaporation refrigerator that uses capillary tubing to provide a continuous, self-regulating flow of helium at approximately 1.5 K has been selected as the first refrigerator design for the beam waveguide antenna.
Chainer, Timothy J.; Dang, Hien P.; Parida, Pritish R.; Schultz, Mark D.; Sharma, Arun
2015-08-11
A method aspect for removing heat from a data center may use liquid coolant cooled without vapor compression refrigeration on a liquid cooled information technology equipment rack. The method may also include regulating liquid coolant flow to the data center through a range of liquid coolant flow values with a controller-apparatus based upon information technology equipment temperature threshold of the data center.
Counterflow absorber for an absorption refrigeration system
Reimann, Robert C.
1984-01-01
An air-cooled, vertical tube absorber for an absorption refrigeration system is disclosed. Strong absorbent solution is supplied to the top of the absorber and refrigerant vapor is supplied to the bottom of the absorber to create a direct counterflow of refrigerant vapor and absorbent solution in the absorber. The refrigeration system is designed so that the volume flow rate of refrigerant vapor in the tubes of the absorber is sufficient to create a substantially direct counterflow along the entire length of each tube in the absorber. This provides several advantages for the absorber such as higher efficiency and improved heat transfer characteristics, and allows improved purging of non-condensibles from the absorber.
Code of Federal Regulations, 2014 CFR
2014-10-01
... SYSTEMS Refrigeration Machinery § 58.20-1 Scope. (a) The regulations in this subpart apply to fixed refrigeration systems for air conditioning, refrigerated spaces, cargo spaces, and reliquefaction of low...
Code of Federal Regulations, 2011 CFR
2011-10-01
... SYSTEMS Refrigeration Machinery § 58.20-1 Scope. (a) The regulations in this subpart apply to fixed refrigeration systems for air conditioning, refrigerated spaces, cargo spaces, and reliquefaction of low...
Code of Federal Regulations, 2012 CFR
2012-10-01
... SYSTEMS Refrigeration Machinery § 58.20-1 Scope. (a) The regulations in this subpart apply to fixed refrigeration systems for air conditioning, refrigerated spaces, cargo spaces, and reliquefaction of low...
Code of Federal Regulations, 2010 CFR
2010-10-01
... SYSTEMS Refrigeration Machinery § 58.20-1 Scope. (a) The regulations in this subpart apply to fixed refrigeration systems for air conditioning, refrigerated spaces, cargo spaces, and reliquefaction of low...
Code of Federal Regulations, 2013 CFR
2013-10-01
... SYSTEMS Refrigeration Machinery § 58.20-1 Scope. (a) The regulations in this subpart apply to fixed refrigeration systems for air conditioning, refrigerated spaces, cargo spaces, and reliquefaction of low...
Control system for thermoelectric refrigerator
NASA Technical Reports Server (NTRS)
Nelson, John L. (Inventor); Criscuolo, Lance (Inventor); Gilley, Michael D. (Inventor); Park, Brian V. (Inventor)
1996-01-01
Apparatus including a power supply (202) and control system is provided for maintaining the temperature within an enclosed structure (40) using thermoelectric devices (92). The apparatus may be particularly beneficial for use with a refrigerator (20) having superinsulation materials (46) and phase change materials (112) which cooperate with the thermoelectric device (92) to substantially enhance the overall operating efficiency of the refrigerator (20). The electrical power supply (202) and control system allows increasing the maximum power capability of the thermoelectric device (92) in response to increased heat loads within the refrigerator (20). The electrical power supply (202) and control system may also be used to monitor the performance of the cooling system (70) associated with the refrigerator (20).
Code of Federal Regulations, 2013 CFR
2013-10-01
... SYSTEMS Refrigeration Machinery § 58.20-5 Design. (a) Refrigeration machinery may be accepted for... with part 54 of this subchapter. (b) For refrigeration systems other than those for reliquefaction of...
Code of Federal Regulations, 2014 CFR
2014-10-01
... SYSTEMS Refrigeration Machinery § 58.20-5 Design. (a) Refrigeration machinery may be accepted for... with part 54 of this subchapter. (b) For refrigeration systems other than those for reliquefaction of...
Code of Federal Regulations, 2011 CFR
2011-10-01
... SYSTEMS Refrigeration Machinery § 58.20-5 Design. (a) Refrigeration machinery may be accepted for... with part 54 of this subchapter. (b) For refrigeration systems other than those for reliquefaction of...
Code of Federal Regulations, 2012 CFR
2012-10-01
... SYSTEMS Refrigeration Machinery § 58.20-5 Design. (a) Refrigeration machinery may be accepted for... with part 54 of this subchapter. (b) For refrigeration systems other than those for reliquefaction of...
Code of Federal Regulations, 2010 CFR
2010-10-01
... SYSTEMS Refrigeration Machinery § 58.20-5 Design. (a) Refrigeration machinery may be accepted for... with part 54 of this subchapter. (b) For refrigeration systems other than those for reliquefaction of...
Exergy analysis of large-scale helium liquefiers: Evaluating design trade-offs
NASA Astrophysics Data System (ADS)
Thomas, Rijo Jacob; Ghosh, Parthasarathi; Chowdhury, Kanchan
2014-01-01
It is known that higher heat exchanger area, more number of expanders with higher efficiency and more involved configuration with multi-pressure compression system increase the plant efficiency of a helium liquefier. However, they involve higher capital investment and larger size. Using simulation software Aspen Hysys v 7.0 and exergy analysis as the tool of analysis, authors have attempted to identify various trade-offs while selecting the number of stages, the pressure levels in compressor, the cold-end configuration, the heat exchanger surface area, the maximum allowable pressure drop in heat exchangers, the efficiency of expanders, the parallel/series connection of expanders etc. Use of more efficient cold ends reduces the number of refrigeration stages and the size of the plant. For achieving reliability along with performance, a configuration with a combination of expander and Joule-Thomson valve is found to be a better choice for cold end. Use of multi-pressure system is relevant only when the number of refrigeration stages is more than 5. Arrangement of expanders in series reduces the number of expanders as well as the heat exchanger size with slight expense of plant efficiency. Superior heat exchanger (having less pressure drop per unit heat transfer area) results in only 5% increase of plant performance even when it has 100% higher heat exchanger surface area.
Method of removing an immiscible lubricant from a refrigeration system and apparatus for same
Spauschus, Hans O.; Starr, Thomas L.
1999-01-01
A method of separating an immiscible lubricant from a liquid refrigerant in a refrigerating system including a compressor, a condenser, an expansion device and an evaporator, wherein the expansion device is connected to the condenser by a liquid refrigerant flow line for liquid refrigerant and immiscible lubricant. The method comprising slowing the rate of flow of the liquid refrigerant and immiscible lubricant between the condenser and the expansion device such that the liquid refrigerant and the immiscible lubricant separate based upon differences in density. The method also comprises collecting the separated immiscible lubricant in a collection chamber in fluid communication with the separated immiscible lubricant. Apparatus for performing the method is also disclosed.
Dehydrating and Sterilizing Wastes Using Supercritical CO2
NASA Technical Reports Server (NTRS)
Brown, Ian J.
2006-01-01
A relatively low-temperature process for dehydrating and sterilizing biohazardous wastes in an enclosed life-support system exploits (1) the superior mass-transport properties of supercritical fluids in general and (2) the demonstrated sterilizing property of supercritical CO2 in particular. The wastes to be treated are placed in a chamber. Liquid CO2, drawn from storage at a pressure of 850 psi (approx.=5.9 MPa) and temperature of 0 C, is compressed to pressure of 2 kpsi (approx.=14 MPa) and made to flow into the chamber. The compression raises the temperature to 10 C. The chamber and its contents are then further heated to 40 C, putting the CO2 into a supercritical state, in which it kills microorganisms in the chamber. Carrying dissolved water, the CO2 leaves the chamber through a back-pressure regulator, through which it is expanded back to the storage pressure. The expanded CO2 is refrigerated to extract the dissolved water as ice, and is then returned to the storage tank at 0 C
An experimental investigation of ejector performance based upon different refrigerants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, S.L.; Yen, J.Y.; Huang, M.C.
1998-12-31
This article experimentally compares the characteristics of different refrigerants as the working fluid in an ejector cooling system. The study covers common refrigerants including R-113, R-114, R-142b, and R-718. The critical choking conditions against the variation of condenser back pressure, the evaporator pressure, and the generator pressure are determined for each refrigerant. The results are compiled into a convenient performance curve and COP chart. These results can serve as an important reference for future design of ejector cooling systems. Finally, this paper presents a comparison of the performances of different refrigerants in an ejector cooling system.
The Thermodynamics of a Refrigeration System.
ERIC Educational Resources Information Center
Azevedo e Silva, J. F. M.
1991-01-01
An attempt to clarify the teaching of some of the concepts of thermodynamics through the observation of an experiment with an ordinary refrigeration system is presented. The cycle of operation in the refrigeration system and the individual processes in the cycle are described. (KR)
Triple-effect absorption refrigeration system with double-condenser coupling
DeVault, R.C.; Biermann, W.J.
1993-04-27
A triple effect absorption refrigeration system is provided with a double-condenser coupling and a parallel or series circuit for feeding the refrigerant-containing absorbent solution through the high, medium, and low temperature generators utilized in the triple-effect system. The high temperature condenser receiving vaporous refrigerant from the high temperature generator is double coupled to both the medium temperature generator and the low temperature generator to enhance the internal recovery of heat within the system and thereby increase the thermal efficiency thereof.
Triple-effect absorption refrigeration system with double-condenser coupling
DeVault, Robert C.; Biermann, Wendell J.
1993-01-01
A triple effect absorption refrigeration system is provided with a double-condenser coupling and a parallel or series circuit for feeding the refrigerant-containing absorbent solution through the high, medium, and low temperature generators utilized in the triple-effect system. The high temperature condenser receiving vaporous refrigerant from the high temperature generator is double coupled to both the medium temperature generator and the low temperature generator to enhance the internal recovery of heat within the system and thereby increase the thermal efficiency thereof.
Laboratory testing of a supercritical helium pump for a magnetic refrigerator
NASA Technical Reports Server (NTRS)
Wang, Pao-Lien
1988-01-01
A supercritical helium testing system for a magnetic refrigerator has been built. Details of the supercritical helium pump, the test system, and the test instrumentation are given. Actual pump tests were not run during this ASEE term because of delivery problems associated with the required pump flow meter. Consequently, efforts were directed on preliminary design of the magnetic refrigeration system for the pump. The first concern with the magnetic refrigerator design was determining how to effectively make use of the pump. A method to incorporate the supercritical helium pump into a magnetic refrigerator was determined by using a computer model. An illustrated example of this procedure is given to provide a tool for sizing the magnetic refrigerator system as a function of the pump size. The function of the computer model and its operation are also outlined and discussed.
NASA Astrophysics Data System (ADS)
Du, W. P.; Li, M.; Wang, Y. F.; He, J. H.; He, J. X.
2017-11-01
To overcome the problem that the heat source temperature is limited and the lower part of the adsorption tube cannot effectively absorb the solar radiation when solar radiation as the heat source of the adsorption refrigeration system. From the perspective of enhancing the adsorption refrigeration unit tube to absorb solar radiation, thereby strengthening the heat transfer characteristic of adsorption bed, which can improve the efficiency of the refrigeration unit refrigerating capacity and system refrigeration efficiency. Solar adsorption refrigeration system based on CPC was designed and constructed in this paper. The heat and mass transfer performance of the adsorption refrigeration system were studied. The experimental results show that the temperature of the adsorption bed with parabolic concentrating structure can rise to 100°C under low irradiation condition. When the irradiation intensity is 600 w/m2 and 400 w/m2, the average temperature rising to desorption temperature reaches 0.67°C and 0.50°C, respectively. It can effectively solve the problem that the conventional adsorption bed is difficult to reach the required desorption temperature due to the low power density of the sunlight. In the experiment, the system COP were 0.166 and 0.143 when the system in the irradiance of 600 w/m2 and 400 w/m2.
Energy Efficient Operation of Ammonia Refrigeration Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohammed, Abdul Qayyum; Wenning, Thomas J; Sever, Franc
Ammonia refrigeration systems typically offer many energy efficiency opportunities because of their size and complexity. This paper develops a model for simulating single-stage ammonia refrigeration systems, describes common energy saving opportunities, and uses the model to quantify those opportunities. The simulation model uses data that are typically available during site visits to ammonia refrigeration plants and can be calibrated to actual consumption and performance data if available. Annual electricity consumption for a base-case ammonia refrigeration system is simulated. The model is then used to quantify energy savings for six specific energy efficiency opportunities; reduce refrigeration load, increase suction pressure, employmore » dual suction, decrease minimum head pressure set-point, increase evaporative condenser capacity, and reclaim heat. Methods and considerations for achieving each saving opportunity are discussed. The model captures synergistic effects that result when more than one component or parameter is changed. This methodology represents an effective method to model and quantify common energy saving opportunities in ammonia refrigeration systems. The results indicate the range of savings that might be expected from common energy efficiency opportunities.« less
Helium refrigeration systems for super-conducting accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganni, V.
Many of the present day accelerators are based on superconducting technology which requires 4.5-K or 2-K helium refrigeration systems. These systems utilize superconducting radio frequency (SRF) cavities and/or superconducting magnets which are packaged into vacuum vessels known as cryo-modules (CM’s). Many of the present day accelerators are optimized to operate primarily at around 2-K, requiring specialized helium refrigeration systems which are cost intensive to produce and to operate. Some of the cryogenic refrigeration system design considerations for these challenging applications are discussed.
Fault detection and diagnosis for refrigerator from compressor sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keres, Stephen L.; Gomes, Alberto Regio; Litch, Andrew D.
A refrigerator, a sealed refrigerant system, and method are provided where the refrigerator includes at least a refrigerated compartment and a sealed refrigerant system including an evaporator, a compressor, a condenser, a controller, an evaporator fan, and a condenser fan. The method includes monitoring a frequency of the compressor, and identifying a fault condition in the at least one component of the refrigerant sealed system in response to the compressor frequency. The method may further comprise calculating a compressor frequency rate based upon the rate of change of the compressor frequency, wherein a fault in the condenser fan is identifiedmore » if the compressor frequency rate is positive and exceeds a condenser fan fault threshold rate, and wherein a fault in the evaporator fan is identified if the compressor frequency rate is negative and exceeds an evaporator fan fault threshold rate.« less
CO2 Supermarket Refrigeration Systems for Southeast Asia and the USA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Vishaldeep; Fricke, Brian A; Bansal, Pradeep
This paper presents a comparative analysis of the annual energy consumption of these refrigeration systems in eighty eight cities from all climate zones in Southeast Asia. Also, the performance of the CO2 refrigeration systems is compared to the baseline R404A multiplex direct expansion (DX) system. Finally, the overall performance of the CO2 refrigeration systems in various climatic conditions in Southeast Asia is compared to that in the United States. For the refrigeration systems investigated, it was found that the Transcritical Booster System with Bypass Compressor (TBS-BC) performs better or equivalent to the R404A multiplex DX system in the northern regionsmore » of Southeast Asia (China and Japan). In the southern regions of Southeast Asia (India, Bangladesh, Burma), the R404A multiplex DX system and the Combined Secondary Cascade (CSC) system performs better than the TBS-BC.« less
DESIGN AND OPTIMIZATION OF A REFRIGERATION SYSTEM
The paper discusses the design and optimization of a refrigeration system, using a mathematical model of a refrigeration system modified to allow its use with the optimization program. he model was developed using only algebraic equations so that it could be used with the optimiz...
Recirculating rotary gas compressor
Weinbrecht, John F.
1992-01-01
A positive displacement, recirculating Roots-type rotary gas compressor which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits (24 and 26) which return compressed discharge gas to the compressor housing (14), where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers (10 and 12) and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor.
Recirculating rotary gas compressor
Weinbrecht, J.F.
1992-02-25
A positive displacement, recirculating Roots-type rotary gas compressor is described which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits which return compressed discharge gas to the compressor housing, where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor. 12 figs.
Method of removing an immiscible lubricant from a refrigeration system and apparatus for same
Spauschus, H.O.; Starr, T.L.
1999-03-30
A method is described for separating an immiscible lubricant from a liquid refrigerant in a refrigerating system including a compressor, a condenser, an expansion device and an evaporator, wherein the expansion device is connected to the condenser by a liquid refrigerant flow line for liquid refrigerant and immiscible lubricant. The method comprising slowing the rate of flow of the liquid refrigerant and immiscible lubricant between the condenser and the expansion device such that the liquid refrigerant and the immiscible lubricant separate based upon differences in density. The method also comprises collecting the separated immiscible lubricant in a collection chamber in fluid communication with the separated immiscible lubricant. Apparatus for performing the method is also disclosed. 3 figs.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Refrigerants. 147.90 Section 147.90 Shipping COAST GUARD... Special Requirements for Particular Materials § 147.90 Refrigerants. (a) Only refrigerants listed in ANSI/ASHRAE 34-78 may be carried as ships' stores. (b) Refrigerants contained in a vessel's operating system...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Refrigerants. 147.90 Section 147.90 Shipping COAST GUARD... Special Requirements for Particular Materials § 147.90 Refrigerants. (a) Only refrigerants listed in ANSI/ASHRAE 34-78 may be carried as ships' stores. (b) Refrigerants contained in a vessel's operating system...
Farmer, Joseph C
2013-12-24
A solar-powered adsorption-desorption refrigeration and air conditioning system uses nanostructural materials made of high specific surface area adsorption aerogel as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material. A circulation system circulates refrigerant from the nanostructural material to a cooling unit.
46 CFR 130.230 - Protection from refrigerants.
Code of Federal Regulations, 2014 CFR
2014-10-01
... refrigerants. (a) For each refrigeration system that exceeds 0.6 cubic meters (20 cubic feet) of storage... refrigeration equipment. (c) A complete recharge in the form of a spare charge must be carried for each self...
46 CFR 130.230 - Protection from refrigerants.
Code of Federal Regulations, 2011 CFR
2011-10-01
... refrigerants. (a) For each refrigeration system that exceeds 0.6 cubic meters (20 cubic feet) of storage... refrigeration equipment. (c) A complete recharge in the form of a spare charge must be carried for each self...
46 CFR 130.230 - Protection from refrigerants.
Code of Federal Regulations, 2013 CFR
2013-10-01
... refrigerants. (a) For each refrigeration system that exceeds 0.6 cubic meters (20 cubic feet) of storage... refrigeration equipment. (c) A complete recharge in the form of a spare charge must be carried for each self...
46 CFR 130.230 - Protection from refrigerants.
Code of Federal Regulations, 2012 CFR
2012-10-01
... refrigerants. (a) For each refrigeration system that exceeds 0.6 cubic meters (20 cubic feet) of storage... refrigeration equipment. (c) A complete recharge in the form of a spare charge must be carried for each self...
46 CFR 130.230 - Protection from refrigerants.
Code of Federal Regulations, 2010 CFR
2010-10-01
... refrigerants. (a) For each refrigeration system that exceeds 0.6 cubic meters (20 cubic feet) of storage... refrigeration equipment. (c) A complete recharge in the form of a spare charge must be carried for each self...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calm, J.M.
1996-07-01
The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calm, J.M.
1996-11-15
The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdelaziz, Omar; West, David L; Mallow, Anne M
Heating, ventilation, air-conditioning and refrigeration (HVACR) account for approximately one- third of building energy consumption. Magnetic refrigeration presents an opportunity for significant energy savings and emissions reduction for serving the building heating, cooling, and refrigeration loads. In this paper, we have examined the magnet and MCE material requirements for scaling magnetic refrigeration systems for commercial building cooling applications. Scaling relationships governing the resources required for magnetic refrigeration systems have been developed. As system refrigeration capacity increases, the use of superconducting magnet systems becomes more applicable, and a comparison is presented of system requirements for permanent and superconducting (SC) magnetization systems.more » Included in this analysis is an investigation of the ability of superconducting magnet based systems to overcome the parasitic power penalty of the cryocooler used to keep SC windings at cryogenic temperatures. Scaling relationships were used to develop the initial specification for a SC magnet-based active magnetic regeneration (AMR) system. An optimized superconducting magnet was designed to support this system. In this analysis, we show that the SC magnet system consisting of two 0.38 m3 regenerators is capable of producing 285 kW of cooling power with a T of 28 K. A system COP of 4.02 including cryocooler and fan losses which illustrates that an SC magnet-based system can operate with efficiency comparable to traditional systems and deliver large cooling powers of 285.4 kW (81.2 Tons).« less
NASA Technical Reports Server (NTRS)
Westra, Douglas G.
1993-01-01
With the February, 1992 announcement by President Bush to move the deadline for outlawing CFC (chloro-fluoro-carbon) refrigerants from the year 2000 to the year 1996, the refrigeration and air-conditioning industries have been accelerating their efforts to find alternative refrigerants. Many of the alternative refrigerants being evaluated require synthetic lubricants, are less efficient, and have toxicity problems. One option to developing new, alternative refrigerants is to combine existing non-CFC refrigerants to form a nonazeotropic mixture, with the concentration optimized for the given application so that system COP (Coefficient Of Performance) may be maintained or even improved. This paper will discuss the dilemma that industry is facing regarding CFC phase-out and the problems associated with CFC alternatives presently under development. A definition of nonazeotropic mixtures will be provided, and the characteristics and COP benefits of nonazeotropic refrigerant mixtures will be explained using thermodynamic principles. Limitations and disadvantages of nonazeotropic mixtures will be discussed, and example systems using such mixtures will be reviewed.
The paper discusses a refrigerator/freezer (RF) system that has two complete and independent refrigeration cycles for the two compartments. It uses a non-azeotropic refrigerant mixture (NARM) in each cycle and countercurrent heat exchangers throughout. This RF is housed in a stan...
Keeping Your Compressor Healthy: Developing the Right Lubricant Formulation is the Key
NASA Astrophysics Data System (ADS)
Karnaz, Joseph A.; Kultgen, Derek W.
2015-08-01
Selecting the correct compressor lubricant is crucial to the duration of the compressor and the refrigerant systems’ useful life. However, developing an optimized lubricant for a refrigeration system requires a multitude of screenings and tests. The compatibility and stability of the lubricant with the refrigerant and compressor components needs to be examined at various accelerated conditions. The lubricant and refrigerant working viscosity must be determined at various refrigerant concentrations, temperatures and pressures as the diluted refrigerant in the lubricant has a significant effect on the viscosity. The correct lubricant formulation needs to be investigated for optimal performance. A compressor lubricant can provide many benefits to a refrigeration system such as bearing durability, sealing, and increased efficiency. Sometimes it is necessary to formulate the lubricant in order to optimize system performance. Specifically, this study investigated anti-wear properties of different oil additives to create a more robust refrigeration system. Many different additives and concentrations were considered and screened. Pending a successful screen test; these different additives’ anti-wear properties were analyzed using bench top tribology tests. To reduce uncertainty and provide more in-situ results the different additives were operated in a refrigerant compressor on a gas-loop testing apparatus. Oil samples were taken periodically during the test duration for analysis. Lastly, upon test completion the compressors were dismantled and the parts were examined to determine the effectiveness of the anti-wear additives.
NASA Astrophysics Data System (ADS)
Nowak, Bernard; Życzkowski, Piotr
2013-12-01
The article discusses the effect of the phenomenon of temperature glide of zeotropic refrigerants on thermal power of an evaporator in an air compression refrigerator. Zeotropic mixtures are subject to phase transitions, the process of which significantly differs from that of homogeneous refrigerants. In contrast to homogeneous refrigerants, where boiling and condensing processes take place at a constant temperature, for the zeotropic mixtures it is essential to know the vapor quality to unambiguously determine the temperature at which the evaporation process is initiated. The R407C refrigerant serves as an example to describe the method of determining the initial temperature of the evaporation process taking into account the effect of temperature glide. The developed formula (7) has been based on a proven linear course of isobars in the two-phase region (Fig. 5) and thus determining a polynomial describing their angle of inclination (8). In addition, temperature calculation formulas (9) and specific enthalpy (10) of dry saturated vapor of the R407C refrigerant have been presented as well. This approach allows to determine the temperature of the R407C refrigerant at the inlet to the evaporator without the required knowledge of its vapor quality. The previously used simplified methods for determining the temperature of a refrigerant at the inlet to the evaporator result in considerable deviations in calculated power of the evaporator compared with its actual value. The presented calculation example involving mine air compression refrigerator of TS-450P type shows that relative deviations of the evaporator thermal power may even exceed 20%. This example compares two simplified methods for determining zeotropic evaporating temperature of a refrigerant used in comparative calculations of refrigerants with the method presented in this article. W artykule przedstawiono wpływ zjawiska poślizgu temperatury zeotropowych czynników chłodniczych na moc cieplną parownika sprężarkowej chłodziarki powietrza. Mieszaniny zeotropowe podlegają przemianom fazowym, których przebieg znacznie różni się od czynników jednorodnych. W odróżnieniu od jednorodnych czynników chłodniczych, których procesy wrzenia i skraplania odbywają się przy stałej temperaturze, dla mieszanin zeotropowych do jednoznacznego określenia temperatury początku procesu parowania niezbędna jest znajomość stopnia suchości pary. Na przykładzie czynnika chłodniczego R407Copisano metodę wyznaczania temperatury początkowej procesu parowania uwzględniającą zjawisko poślizgu temperatury. Opracowana zależność (7) powstała w oparciu o udowodniony liniowy przebieg izobar w obszarze pary mokrej (rys. 5) i określeniu na tej podstawie wielomianu opisującego ich kąt nachylenia (8). Dodatkowo przedstawiono wzory obliczeniowe temperatury (9) oraz entalpii właściwej (10) pary nasyconej suchej czynnika chłodniczego R407C. Takie podejście do problemu pozwala na wyznaczenie temperatury czynnika chłodniczego R407C na wlocie do parownika bez wymaganej znajomości stopnia suchości pary czynnika. Dotychczas stosowane uproszczone metody wyznaczania temperatury czynnika chłodniczego na wlocie do parownika powodują znaczne odstępstwa obliczonej na ich podstawie mocy parownika od jego wartości rzeczywistej. Przedstawiony przykład obliczeniowy dotyczący górniczej sprężarkowej chłodziarki powietrza pośredniego działania typu TS-450P pokazuje, że odchyłki względne mocy cieplnej parownika mogą przekraczać nawet ponad 20%. W przykładzie obliczeniowym porównano dwie uproszczone metody określenia temperatury parowania zeotropowego czynnika chłodniczego stosowane w obliczeniach porównawczych czynników chłodniczych z metodą zaprezentowaną w niniejszym artykule.
Design and experimental investigation of an ejector in an air-conditioning and refrigeration system
DOE Office of Scientific and Technical Information (OSTI.GOV)
AL-Khalidy, N.; Zayonia, A.
1995-12-31
This paper discusses the conservation of energy in a refrigerant ejector refrigerating machine using heat driven from the concentrator collectors. The working refrigerant was R-113. The design of an ejector operating in an air-conditioning and refrigerating system with a low thermal source (70 C to 100 C) is presented. The influence of three major parameters--boiler, condenser, and evaporator temperature--on ejector efficiency is discussed. Experimental results show that the condenser temperature is the major influence at a low evaporator temperature. The maximum ejector efficiency was 31%.
Evaluation and selection of refrigeration systems for lunar surface and space applications
NASA Technical Reports Server (NTRS)
Copeland, R. J.; Blount, T. D.; Williams, J. L.
1971-01-01
Evaluated are the various refrigeration machines which could be used to provide heat rejection in environmental control systems for lunar surface and spacecraft applications, in order to select the best refrigeration machine for satisfying each individual application and the best refrigeration machine for satisfying all of the applications. The refrigeration machine considered include: (1) vapor comparison cycle (work-driven); (2) vapor adsorption cycle (heat-driven); (3) vapor absorption cycle (heat-driven); (4) thermoelectric (electrically-driven); (5) gas cycle (work driven); (6) steam-jet (heat-driven).
Refrigerant charge management in a heat pump water heater
Chen, Jie; Hampton, Justin W.
2016-07-05
Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, and methods of managing refrigerant charge. Various embodiments remove idle refrigerant from a heat exchanger that is not needed for transferring heat by opening a refrigerant recovery valve and delivering the idle refrigerant from the heat exchanger to an inlet port on the compressor. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled by controlling how much refrigerant is drawn from the heat exchanger, by letting some refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and various components can be interconnected with refrigerant conduit. Some embodiments deliver refrigerant gas to the heat exchanger and drive liquid refrigerant out prior to isolating the heat exchanger.
Eliminating Nonlinear Acoustical Effects From Thermoacoustic Refrigeration Systems
NASA Astrophysics Data System (ADS)
Garrett, Steven L.; Smith, Robert W. M.; Poese, Matthew E.
2006-05-01
Nonlinear acoustical effects dissipate energy that degrades thermoacoustic refrigerator performance. The largest of these effects occur in acoustic resonators and include shock formation; turbulence and boundary layer disruption; and entry/exit (minor) losses induced by changes in resonator cross-sectional area. Effects such as these also make the creation of accurate performance models more complicated. Suppression of shock formation by intentional introduction of resonator anharmonicity has been common practice for the past two decades. Recent attempts to increase cooling power density by increasing pressure amplitudes has required reduction of turbulence and minor loss by using an new acousto-mechanical resonator topology. The hybrid resonator still stores potential energy in the compressibility of the gaseous working fluid, but stores kinetic energy in the moving (solid) mass of the motor and piston. This talk will first present nonlinear acoustical loss measurements obtained in a "conventional" double-Helmholtz resonator geometry (TRITON) that dissipated four kilowatts of acoustic power. We will then describe the performance of the new "bellows bounce" resonator configuration and "vibromechanical multiplier" used in the first successful implementation of this approach that created an ice cream freezer produced at Penn State for Ben & Jerry's.
Farmer, Joseph C.
2015-07-28
A solar-powered adsorption-desorption refrigeration and air conditioning system that uses nanostructural materials such as aerogels, zeolites, and sol gels as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material while the material is at a relatively low temperature, perhaps at night. During daylight hours, when the nanostructural materials is heated by the sun, the refrigerant are thermally desorbed from the surface of the aerogel, thereby creating a pressurized gas phase in the vessel that contains the aerogel. This solar-driven pressurization forces the heated gaseous refrigerant through a condenser, followed by an expansion valve. In the condenser, heat is removed from the refrigerant, first by circulating air or water. Eventually, the cooled gaseous refrigerant expands isenthalpically through a throttle valve into an evaporator, in a fashion similar to that in more conventional vapor recompression systems.
Performance tests of a two phase ejector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrell, G.S.; Kornhauser, A.A.
1995-12-31
The ejector expansion refrigeration cycle is a modified vapor compression cycle in which a two phase ejector is used to recover a portion of the work otherwise lost in the expansion valve. The ejector improves cycle performance by increasing compressor inlet pressure and by lowering the quality of liquid entering the evaporator. Theoretically, a cooling COP improvement of approximately 23% is achievable for a typical refrigerating cycle and an ideal ejector. If the ejector performed as well as typical single phase ejectors an improvement of 12% could be achieved. Previous tests have demonstrated a smaller 3.7% improvement; the difference ismore » in the poor performance of the two phase ejector. The purpose of this research is to understand the operating characteristics of the two phase ejector and to devise design improvements. A two phase ejector test rig has been constructed and tested. Preliminary data show performance superior to previously tested two phase ejectors, but still inferior to single phase ejectors. Ejector performance corresponds to refrigeration cycle COP improvements ranging from 3.9% to 7.6%.« less
McCarney, Steve; Robertson, Joanie; Arnaud, Juliette; Lorenson, Kristina; Lloyd, John
2013-12-09
Large areas of many developing countries have no grid electricity. This is a serious challenge that threatens the continuity of the vaccine cold chain. The main alternatives to electrically powered refrigerators available for many years--kerosene- and gas-driven refrigerators--are plagued by problems with gas supply interruptions, low efficiency, poor temperature control, and frequent maintenance needs. There are currently no kerosene- or gas-driven refrigerators that qualify under the minimum standards established by the World Health Organization (WHO) Performance, Quality, and Safety (PQS) system. Solar refrigeration was a promising development in the early 1980s, providing an alternative to absorption technology to meet cold chain needs in remote areas. Devices generally had strong laboratory performance data; however, experience in the field over the years has been mixed. Traditional solar refrigerators relied on relatively expensive battery systems, which have demonstrated short lives compared to the refrigerator. There are now alternatives to the battery-based systems and a clear understanding that solar refrigerator systems need to be designed, installed, and maintained by technicians with the necessary knowledge and training. Thus, the technology is now poised to be the refrigeration method of choice for the cold chain in areas with no electricity or extremely unreliable electricity (less than 4h per average day) and sufficient sunlight. This paper highlights some lessons learned with solar-powered refrigeration, and discusses some critical factors for successful introduction of solar units into immunization programs in the future including: •Sustainable financing mechanisms and incentives for health workers and technicians are in place to support long-term maintenance, repair, and replacement parts. •System design is carried out by qualified solar refrigerator professionals taking into account the conditions at installation sites. •Installation and repair are conducted by well-trained technicians. •Temperature performance is continuously monitored and protocols are in place to act on data that indicate problems. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
CONTROL OF HYDROCARBON EMISSIONS FROM GASOLINE LOADING BY REFRIGERATION SYSTEMS
The report gives results of a study of the capabilities of refrigeration systems, operated at three temperatures, to control volatile organic compound (VOC) emissions from truck loading at bulk gasoline terminals. Achievable VOC emission rates were calculated for refrigeration sy...
24 CFR 3280.511 - Comfort cooling certificate and information.
Code of Federal Regulations, 2012 CFR
2012-04-01
... Refrigeration Institute Standards The central air conditioning system provided with this home has been sized... and Refrigeration Institute Standards. The central air conditioning system provided with this home has... the appropriate Air Conditioning and Refrigeration Institute Standards. When the air circulators of...
The Mechanical Performance of Subscale Candidate Elastomer Docking Seals
NASA Technical Reports Server (NTRS)
Bastrzyk, Marta B.; Daniels, Christopher C.
2010-01-01
The National Aeronautics and Space Administration is developing a Low Impact Docking System (LIDS) for future exploration missions. The mechanism is a new state-of-the-art device for in-space assembly of structures and rendezvous of vehicles. At the interface between two pressurized modules, each with a version of the LIDS attached, a composite elastomer-metal seal assembly prevents the breathable air from escaping into the vacuum of space. Attached to the active LIDS, this seal mates against the passive LIDS during docking operation. The main interface seal assembly must exhibit low leak and outgas values, must be able to withstand various harsh space environments, must remain operational over a range of temperatures from -50 C to 75 C, and perform after numerous docking cycles. This paper presents results from a comprehensive study of the mechanical performance of four candidate subscale seal assembly designs at -50, 23, 50, and 75 C test temperatures. In particular, the force required to fully compress the seal during docking, and that which is required for separation during the undocking operation were measured. The height of subscale main interface seal bulbs, as well as the test temperature, were shown to have a significant effect on the forces the main interface seal of the LIDS may experience during docking and undocking operations. The average force values required to fully compress each of the seal assemblies were shown to increase with test temperature by approximately 50% from -50 to 75 C. Also, the required compression forces were shown to increase as the height of the seal bulb was increased. The seal design with the tallest elastomer seal bulb, which was 31% taller than that with the shortest bulb, required force values approximately 45% higher than those for the shortest bulb, independent of the test temperature. The force required to separate the seal was shown to increase with decreasing temperature after 15 hours of simulated docking. No adhesion force was observed at 75 C, while magnitudes of up to 235 lbf were recorded at the refrigerated temperature. In addition, the adhesion force was observed to increase with bulb height. When compared with the LIDS program requirements, the measured compression force values were found to be below the maximum allowable load allotted to the main interface seal. However, the measured adhesion force values at the refrigerated test temperature were found to exceed the program limits.
Solar photovoltaic powered refrigerators/freezers for medical use in remote geographic locations
NASA Technical Reports Server (NTRS)
Darkazalli, G.; Hein, G. F.
1983-01-01
One of the obstacles preventing widespread immunication against disease is the virtual absence of reliable, low maintenance refrigeration systems for storage of vaccines in remote geographic locations. A system which consists of a solar photovoltaic cell array and an integrated refrigerator/freezer-energy storage unit is discussed herein. The array converts solar radiation into direct current (DC) electricity with no moving parts and no intermediate steps. A detailed description of the refrigeration system, its design and an analysis thereof, performance test procedures, and test results are presented. A system schematic is also provided.
The LSST Camera 500 watt -130 degC Mixed Refrigerant Cooling System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowden, Gordon B.; Langton, Brian J.; /SLAC
2014-05-28
The LSST Camera has a higher cryogenic heat load than previous CCD telescope cameras due to its large size (634 mm diameter focal plane, 3.2 Giga pixels) and its close coupled front-end electronics operating at low temperature inside the cryostat. Various refrigeration technologies are considered for this telescope/camera environment. MMR-Technology’s Mixed Refrigerant technology was chosen. A collaboration with that company was started in 2009. The system, based on a cluster of Joule-Thomson refrigerators running a special blend of mixed refrigerants is described. Both the advantages and problems of applying this technology to telescope camera refrigeration are discussed. Test results frommore » a prototype refrigerator running in a realistic telescope configuration are reported. Current and future stages of the development program are described. (auth)« less
Thermoelectric refrigerator having improved temperature stabilization means
Falco, Charles M.
1982-01-01
A control system for thermoelectric refrigerators is disclosed. The thermoelectric refrigerator includes at least one thermoelectric element that undergoes a first order change at a predetermined critical temperature. The element functions as a thermoelectric refrigerator element above the critical temperature, but discontinuously ceases to function as a thermoelectric refrigerator element below the critical temperature. One example of such an arrangement includes thermoelectric refrigerator elements which are superconductors. The transition temperature of one of the superconductor elements is selected as the temperature control point of the refrigerator. When the refrigerator attempts to cool below the point, the metals become superconductors losing their ability to perform as a thermoelectric refrigerator. An extremely accurate, first-order control is realized.
46 CFR 154.702 - Refrigerated carriage.
Code of Federal Regulations, 2013 CFR
2013-10-01
... FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.702 Refrigerated carriage. (a) Each refrigeration system must: (1... the purpose of this section, a “refrigeration unit” includes a compressor and its motors and controls...
46 CFR 154.702 - Refrigerated carriage.
Code of Federal Regulations, 2012 CFR
2012-10-01
... FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.702 Refrigerated carriage. (a) Each refrigeration system must: (1... the purpose of this section, a “refrigeration unit” includes a compressor and its motors and controls...
46 CFR 154.702 - Refrigerated carriage.
Code of Federal Regulations, 2011 CFR
2011-10-01
... FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.702 Refrigerated carriage. (a) Each refrigeration system must: (1... the purpose of this section, a “refrigeration unit” includes a compressor and its motors and controls...
46 CFR 154.702 - Refrigerated carriage.
Code of Federal Regulations, 2010 CFR
2010-10-01
... FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.702 Refrigerated carriage. (a) Each refrigeration system must: (1... the purpose of this section, a “refrigeration unit” includes a compressor and its motors and controls...
46 CFR 154.702 - Refrigerated carriage.
Code of Federal Regulations, 2014 CFR
2014-10-01
... FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.702 Refrigerated carriage. (a) Each refrigeration system must: (1... the purpose of this section, a “refrigeration unit” includes a compressor and its motors and controls...
The Refrigeration System; Appliance Repair--Advanced: 9027.01.
ERIC Educational Resources Information Center
Dade County Public Schools, Miami, FL.
This course outline provides students with an understanding of the observation of basic refrigeration system components, the techniques used in working with copper tubing, and practice demonstrations to show what they have learned. Course content includes specific block objectives, orientation, refrigeration components (evaporator, compressor,…
Redesign 3 R Machine as a Refrigerant Waste Treatment Alternative in Environmental Rescue
NASA Astrophysics Data System (ADS)
Negara, I. P. S.; Arsawan, I. M.
2018-01-01
Cooling machine technologies really affect nowadays’ modern life, not only limited in enhancement of life quality and comfort, but it has also reached the essential things of humans’ life supporter (Arora, 2001). Cooling machine technologies have direct contribution toward environmental damage such as depletion of ozone layer and global warming through synthetic refrigerant waste and leakage (CFC and HFC) to environment. The refrigerant release to the environment is 60% of the service sector. Destructive characteristics of ozone possessed by CFC were first proposed by Rowland and Molina which were then supported by yard measurement. It is estimated that ozone layer damage occurs for about 3% every decade. The ozone layer located in the stratosphere is functioned to prevent ultraviolet-B ray from entering into earth surface. This Ultraviolet-B is suspected to be the cause of health problem for humans and disorder for plants on earth. As for the purpose of this research is to obtain a product design of refrigerant waste processing system (recovery and recycle refrigerant) as well as to acknowledge the work method (COP) of cooling machines that use CFC refrigerant (R-12) as the result of recovery and recycle compared to CFC refrigerant (R-12)/pure R134a. One method that can be used is by redesigning existing equipment namely 3R machine that cannot be used anymore thus it can be reused. This research will be conducted through modifying the existing 3R machine therefore it can be reused and be easily operated as well as doing the maintenance, after that the refrigerant as the result of recovery will be tried on a refrigeration system and a test of refrigeration system work method will be conducted by using the refrigerant recycle product which is obtained and compared with the work method of the one with pure refrigeration.The result has been achieved that the redesign product of refrigerant waste processing equipment can be reused and able to perform the recovery, recycle and richarging process, although using semi-automatic control system. So the use of car air conditioning refrigerant can be more efficient. With the functioning of 3R mesi is expected wastes refrigerant is not wasted which is one of the efforts to save the environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calm, J.M.
The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilities access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calm, J.M.
1998-03-15
The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to thermophysical properties, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air conditioning and refrigeration equipment. It also references documents addressing compatibility ofmore » refrigerants and lubricants with other materials.« less
Solar Refrigerator/Freezers For Vaccines
NASA Technical Reports Server (NTRS)
Ratajczak, Anthony F.
1988-01-01
Report presents results of field tests of solar-cell-powered refrigerator/freezers for vaccines. Covers following topics: explanation of project; descriptions of refrigerator/freezer systems; account of installation experiences; performance data for 22 systems for which field-test data reported; summary of operational reliability; comments of users of some systems tested; and recommendations for design and future use. Photovoltaic systems store vaccines in remote regions where powerlines unavailable.
Thermodynamic design of hydrogen liquefaction systems with helium or neon Brayton refrigerator
NASA Astrophysics Data System (ADS)
Chang, Ho-Myung; Ryu, Ki Nam; Baik, Jong Hoon
2018-04-01
A thermodynamic study is carried out for the design of hydrogen liquefaction systems with helium (He) or neon (Ne) Brayton refrigerator. This effort is motivated by our immediate goal to develop a small-capacity (100 L/h) liquefier for domestic use in Korea. Eight different cycles are proposed and their thermodynamic performance is investigated in comparison with the existing liquefaction systems. The proposed cycles include the standard and modified versions of He Brayton refrigerators whose lowest temperature is below 20 K. The Brayton refrigerator is in direct thermal contact with the hydrogen flow at atmospheric pressure from ambient-temperature gas to cryogenic liquid. The Linde-Hampson system pre-cooled by a Ne Brayton refrigerator is also considered. Full cycle analysis is performed with the real properties of fluids to estimate the figure of merit (FOM) under an optimized operation condition. It is concluded that He Brayton refrigerators are feasible for this small-scale liquefaction, because a reasonably high efficiency can be achieved with simple and safe (low-pressure) operation. The complete cycles with He Brayton refrigerator are presented for the development of a prototype, including the ortho-to-para conversion.
Design of refrigeration system using refrigerant R134a for macro compartment
NASA Astrophysics Data System (ADS)
Rani, M. F. H.; Razlan, Z. M.; Shahriman, A. B.; Yong, C. K.; Harun, A.; Hashim, M. S. M.; Faizi, M. K.; Ibrahim, I.; Kamarrudin, N. S.; Saad, M. A. M.; Zunaidi, I.; Wan, W. K.; Desa, H.
2017-10-01
The main objective of this study is to analyse and design an optimum cooling system for macro compartment. Current product of the refrigerator is not specified for single function and not compact in size. Hence, a refrigeration system using refrigerant R134a is aimed to provide instant cooling in a macro compartment with sizing about 150 × 150 × 250 mm. The macro compartment is purposely designed to fit a bottle or drink can, which is then cooled to a desired drinking temperature of about 8°C within a period of 1 minute. The study is not only concerned with analysing of heat load of the macro compartment containing drink can, but also focused on determining suitable heat exchanger volume for both evaporator and condenser, calculating compressor displacement value and computing suitable resistance value of the expansion valve. Method of optimization is used to obtain the best solution of the problem. Mollier diagram is necessary in the process of developing the refrigeration system. Selection of blower is made properly to allow air circulation and to increase the flow rate for higher heat transfer rate. Property data are taken precisely from thermodynamic property tables. As the main four components, namely condenser, compressor, evaporator and expansion valve are fully developed, the refrigeration system is complete.
Ejector gas cooling. Phase 1. Final report, 1 April 1987-30 April 1988
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacCracken, C.D.; Silvetti, B.M.; Hrbek, R.
1988-11-01
Closed-circuit ejector cooling systems have never in the past achieved acceptable operating efficiencies in their vapor-compression cycle using standard refrigerants. Despite their long history, relative simplicity, quietness, rugged design, low maintenance and low cost, they could not compete with electric-motor-driven compressors. Phase I is an assessment of two immiscible fluids in an ejector cooling system with different latent heat capacity and molecular weights intended to require less heat in the boiler producing the propellant and taking more heat out in the evaporator cooling fluid. Actual tests corrected to standard conditions and neglecting thermal losses showed 0.5 closed-cycle thermal COP (excludingmore » stack losses), higher than ever previously achieved but below original expectations. Computer programs developed indicate higher COP values are attainable along with competitive first costs.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-05
... Commercial and Industrial commercial and industrial Refrigeration Equipment Manufacturing. refrigeration... commercial refrigeration installation; HVAC contractors. This table is not intended to be exhaustive, but... servicing of existing refrigeration and air-conditioning equipment), with a total phaseout in 2030. The...
46 CFR 98.25-35 - Refrigerated systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... temperature of the liquid below atmospheric, at least two complete refrigeration plants automatically... auxiliaries for proper operation. The capacity of each refrigeration compressor shall be sufficient to...
46 CFR 98.25-35 - Refrigerated systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... temperature of the liquid below atmospheric, at least two complete refrigeration plants automatically... auxiliaries for proper operation. The capacity of each refrigeration compressor shall be sufficient to...
46 CFR 98.25-35 - Refrigerated systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... temperature of the liquid below atmospheric, at least two complete refrigeration plants automatically... auxiliaries for proper operation. The capacity of each refrigeration compressor shall be sufficient to...
46 CFR 98.25-35 - Refrigerated systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... temperature of the liquid below atmospheric, at least two complete refrigeration plants automatically... auxiliaries for proper operation. The capacity of each refrigeration compressor shall be sufficient to...
46 CFR 98.25-35 - Refrigerated systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... temperature of the liquid below atmospheric, at least two complete refrigeration plants automatically... auxiliaries for proper operation. The capacity of each refrigeration compressor shall be sufficient to...
A novel system for organ and tissues preservation: the refrigerating hyperbaric chamber.
Guimarães, F A G; Taha, M O; Simões, M J; Moino, C A A; Santos, I V; Amador, J C; Santos, R A; Queiroz, R B; Amaro, R R; Jesus, M A S
2006-01-01
This study was designed to investigate the feasibility of building a simple and inexpensive device to preserve organs or tissues in hyperbaric and hypothermic conditions. The device was built on a 40-cm wide, 28-cm long, and 23-cm deep stainless steel chassis. The pressure vessel was built by a 7.8-cm bore stainless steel cylinder put inside another 12-cm cylinder welded together and closed by a steel plate on the top and bottom. The inferior plate was welded, and the superior one was fixed by manual clasp nut. The cooling system is made up of air compressor, condenser, expansion area, and cooling worm that is located between the cylinders. The temperature-controlling device is a computer processor contained in an integrated-circuit chip, with a on-off system to maintain the chamber temperature between 2 degrees to 4 degrees C. The compression of the chamber is performed by lateral coupling with the oxygen cylinder and is maintained at 5.5 absolute atmospheres and controlled by air pressure gauge. The maximal work pressure was evaluated by spreadsheet. Temperature or pressure changes were evaluated by 12- and 24-hour assays. The maximal work pressure permitted was 6.5 absolute atmospheres. Thus, the container was free from danger. The temperature inside the chamber was kept between 2 degrees and 4 degrees C. The production costs of the prototype was US$1000. The manufacture of the refrigerating hyperbaric chamber is viable, simple, and inexpensive.
Criterion-Referenced Test (CRT) Items for Air Conditioning, Heating and Refrigeration.
ERIC Educational Resources Information Center
Davis, Diane, Ed.
These criterion-referenced test (CRT) items for air conditioning, heating, and refrigeration are keyed to the Missouri Air Conditioning, Heating, and Refrigeration Competency Profile. The items are designed to work with both the Vocational Instructional Management System and Vocational Administrative Management System. For word processing and…
Magnetic refrigeration for maser amplifier cooling
NASA Technical Reports Server (NTRS)
Johnson, D. L.
1982-01-01
The development of a multifrequency upconverter-maser system for the DSN has created the need to develop a closed-cycle refrigerator (CCR) capable of providing more than 3 watts of refrigeration capability at 4.5 K. In addition, operating concerns such as the high cost of electrical power consumption and the loss of maser operation due to CCR failures require that improvements be made to increase the efficiency and reliability of the CCR. One refrigeration method considered is the replacement of the Joule-Thomson expansion circuit with a magnetic refrigeration. Magnetic refrigerators can provide potentially reliable and highly efficient refrigeration at a variety of temperature ranges and cooling power. The concept of magnetic refrigeration is summarized and a literature review of existing magnetic refrigerator designs which have been built and tested and that may also be considered as possibilities as a 4 K to 15 K magnetic refrigeration stage for the DSN closed-cycle refrigerator is provided.
Refrigerant charge management in a heat pump water heater
Chen, Jie; Hampton, Justin W.
2014-06-24
Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, methods of managing refrigerant charge, and methods for heating and cooling a space and heating water. Various embodiments deliver refrigerant gas to a heat exchanger that is not needed for transferring heat, drive liquid refrigerant out of that heat exchanger, isolate that heat exchanger against additional refrigerant flowing into it, and operate the heat pump while the heat exchanger is isolated. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled or adjusted by controlling how much liquid refrigerant is driven from the heat exchanger, by letting refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and segments of refrigerant conduit can be interconnected with various components.
Numerical analysis of the transient flow in a scroll refrigeration compressor
NASA Astrophysics Data System (ADS)
Sun, Shuaihui; Wu, Kai; Guo, Pengcheng; Luo, Xingqi
2017-08-01
In the present paper, the CFD technology is adopted to simulate the working process of a scroll refrigeration compressor with R22 as working fluid. The structural grids in the scroll compressor were updated continually during the solving process to cope with the movement boundaries of the fluid domain. The radial meshing clearance was 0.008 mm which was the same with that in the real prototype. The pressure, velocity and temperature distribution in chambers of compressor were computed. Also, the transient mass flux diagrams were calculated out. The results indicated that the pressure was asymmetrical in the two symmetrical suction chambers, because the suction port and passage were not absolutely symmetrical. The gradient of temperature was great in each working chamber due to leakage flow. Velocity vector distribution was asymmetrical in each pair of working chamber owing to the movement of orbiting scroll; the flow was complicated in the central working chamber. The movement of the orbiting scroll had different influence on the vortexes formation in each pair of compression chamber. The inlet and outlet mass flux fluctuated with the crank angle obviously. Because of the ‘cut-off’ of the refrigeration fluid in the suction chamber when the crank angle was larger than 220°, the inlet mass flux decreased remarkably. Finally, some useful advices were given to improve the performance of the scroll refrigeration compressor.
Modeling Two-Phase Flow and Vapor Cycles Using the Generalized Fluid System Simulation Program
NASA Technical Reports Server (NTRS)
Smith, Amanda D.; Majumdar, Alok K.
2017-01-01
This work presents three new applications for the general purpose fluid network solver code GFSSP developed at NASA's Marshall Space Flight Center: (1) cooling tower, (2) vapor-compression refrigeration system, and (3) vapor-expansion power generation system. These systems are widely used across engineering disciplines in a variety of energy systems, and these models expand the capabilities and the use of GFSSP to include fluids and features that are not part of its present set of provided examples. GFSSP provides pressure, temperature, and species concentrations at designated locations, or nodes, within a fluid network based on a finite volume formulation of thermodynamics and conservation laws. This paper describes the theoretical basis for the construction of the models, their implementation in the current GFSSP modeling system, and a brief evaluation of the usefulness of the model results, as well as their applicability toward a broader spectrum of analytical problems in both university teaching and engineering research.
Evaluation of absorption cycle for space station environmental control system application
NASA Technical Reports Server (NTRS)
Sims, W. H.; Oneill, M. J.; Reid, H. C.; Bisenius, P. M.
1972-01-01
The study to evaluate an absorption cycle refrigeration system to provide environmental control for the space stations is reported. A zero-gravity liquid/vapor separator was designed and tested. The results were used to design a light-weight, efficient generator for the absorption refrigeration system. It is concluded that absorption cycle refrigeration is feasible for providing space station environmental control.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-21
... Respect to the Purchase of a Variable Refrigerant Flow System AGENCY: National Science Foundation. ACTION... purchase of a variable refrigerant flow system that will be used in the renovation of the St. Anthony Falls...) with respect to the variable refrigerant flow (VRF) system that will be used in the renovation of the...
Sub-cooled liquid nitrogen cryogenic system with neon turbo-refrigerator for HTS power equipment
NASA Astrophysics Data System (ADS)
Yoshida, S.; Hirai, H.; Nara, N.; Ozaki, S.; Hirokawa, M.; Eguchi, T.; Hayashi, H.; Iwakuma, M.; Shiohara, Y.
2014-01-01
We developed a prototype sub-cooled liquid nitrogen (LN) circulation system for HTS power equipment. The system consists of a neon turbo-Brayton refrigerator with a LN sub-cooler and LN circulation pump unit. The neon refrigerator has more than 2 kW cooling power at 65 K. The LN sub-cooler is a plate-fin type heat exchanger and is installed in a refrigerator cold box. In order to carry out the system performance tests, a dummy cryostat having an electric heater was set instead of a HTS power equipment. Sub-cooled LN is delivered into the sub-cooler by the LN circulation pump and cooled within it. After the sub-cooler, sub-cooled LN goes out from the cold box to the dummy cryostat, and comes back to the pump unit. The system can control an outlet sub-cooled LN temperature by adjusting refrigerator cooling power. The refrigerator cooling power is automatically controlled by the turbo-compressor rotational speed. In the performance tests, we increased an electric heater power from 200 W to 1300 W abruptly. We confirmed the temperature fluctuation was about ±1 K. We show the cryogenic system details and performance test results in this paper.
Optimization of a Two Stage Pulse Tube Refrigerator for the Integrated Current Lead System
NASA Astrophysics Data System (ADS)
Maekawa, R.; Matsubara, Y.; Okada, A.; Takami, S.; Konno, M.; Tomioka, A.; Imayoshi, T.; Hayashi, H.; Mito, T.
2008-03-01
Implementation of a conventional current lead with a pulse tube refrigerator has been validated to be working as an Integrated Current Lead (ICL) system for the Superconducting Magnetic Energy Storage (SMES). Realization of the system is primarily accounted for the flexibility of a pulse tube refrigerator, which does not posses any mechanical piston and/or displacer. As for an ultimate version of the ICL system, a High Temperature Superconducting (HTS) lead links a superconducting coil with a conventional copper lead. To ensure the minimization of heat loads to the superconducting coil, a pulse tube refrigerator has been upgraded to have a second cooling stage. This arrangement reduces not only the heat loads to the superconducting coil but also the operating cost for a SMES system. A prototype two-stage pulse tube refrigerator, series connected arrangement, was designed and fabricated to satisfy the requirements for the ICL system. Operation of the first stage refrigerator is a four-valve mode, while the second stage utilizes a double inlet configuration to ensure its confined geometry. The paper discusses the optimization of second stage cooling to validate the conceptual design
48 CFR 52.223-12 - Refrigeration Equipment and Air Conditioners.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 2 2013-10-01 2013-10-01 false Refrigeration Equipment... Provisions and Clauses 52.223-12 Refrigeration Equipment and Air Conditioners. As prescribed in 23.804(b), insert the following clause: Refrigeration Equipment and Air Conditioners (MAY 1995) The Contractor shall...
48 CFR 52.223-12 - Refrigeration Equipment and Air Conditioners.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 2 2011-10-01 2011-10-01 false Refrigeration Equipment... Provisions and Clauses 52.223-12 Refrigeration Equipment and Air Conditioners. As prescribed in 23.804(b), insert the following clause: Refrigeration Equipment and Air Conditioners (MAY 1995) The Contractor shall...
48 CFR 52.223-12 - Refrigeration Equipment and Air Conditioners.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 2 2014-10-01 2014-10-01 false Refrigeration Equipment... Provisions and Clauses 52.223-12 Refrigeration Equipment and Air Conditioners. As prescribed in 23.804(b), insert the following clause: Refrigeration Equipment and Air Conditioners (MAY 1995) The Contractor shall...
48 CFR 52.223-12 - Refrigeration Equipment and Air Conditioners.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Refrigeration Equipment... Provisions and Clauses 52.223-12 Refrigeration Equipment and Air Conditioners. As prescribed in 23.804(b), insert the following clause: Refrigeration Equipment and Air Conditioners (MAY 1995) The Contractor shall...
48 CFR 52.223-12 - Refrigeration Equipment and Air Conditioners.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 2 2012-10-01 2012-10-01 false Refrigeration Equipment... Provisions and Clauses 52.223-12 Refrigeration Equipment and Air Conditioners. As prescribed in 23.804(b), insert the following clause: Refrigeration Equipment and Air Conditioners (MAY 1995) The Contractor shall...
NASA Technical Reports Server (NTRS)
Spain, I. L.
1983-01-01
Diamond cells were constructed for use to 1 Mbar. A refrigerator for cooling diamond cells was adapted for studies between 15 and 300 K. A cryostat for superconductivity studies between 1.5 to 300 K was constructed. Optical equipment was constructed for fluorescence, transmission, and reflectance studies. X-ray equipment was adapted for use with diamond cells. Experimental techniques were developed for X-ray diffraction studies using synchrotron radiation. AC susceptibility techniques were developed for detecting superconducting transitions. The following materials were studied: compressed solidified gases (Xe, Ar), semiconductors (Ge, Si, GaAs), superconductors (Nb3Ge, Nb3Si, Nb3As, CuCl), molecular crystals (I).
Precooling of a dilution refrigerator
NASA Astrophysics Data System (ADS)
Pavlov, Valentin N.
A non-trivial system for Precooling of the dilution refrigerator for low-temperatureexperiments on an ISOL-facility is described in detail. Neither exchange gas in the vacuum jacket of the cryostat nor a demantable window in the 4K shield are used in this system. Instead of that the dilution refrigerator is supplemented with two capillaries and a heater in order to cool all low-temperature parts of the refrigerator down to start conditions. The, time of cooling depends on the total impedance of the first heat exchanger. Such system has been developed and tested in Dubna, and it is in operation.
Space shuttle orbiter mechanical refrigeration system
NASA Technical Reports Server (NTRS)
Williams, J. L.
1974-01-01
A radiator/condenser was designed which is efficient in both condensation (refrigeration) and liquid phase (radiator) operating modes, including switchover from the refrigeration mode to the radiator mode and vice versa. A method for predicting the pressure drop of a condensing two-phase flow in zero-gravity was developed along with a method for predicting the flow regime which would prevail along the condensation path. The hybrid refrigeration system was assembled with the two radiator/condenser panels installed in a space environment simulator. The system was tested under both atmospheric and vacuum conditions. Results of the tests are presented.
Utilizing Thermal Mass in Refrigerated Display Cases to Reduce Peak Demand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fricke, Brian A; Kuruganti, Teja; Nutaro, James J
The potential to store energy within refrigerated food products presents convenience store and supermarket operators with an opportunity to participate in utility sponsored demand response programs, whereby electricity usage can be shifted or reduced during peak periods. To determine the feasibility of reducing peak demand by shifting the refrigeration load to off-peak times, experimental and analytical analyses were performed. Simulated product, consisting of one-pint containers filled with a 50% ethylene glycol and 50% water solution, were stored in a medium-temperature vertical open refrigerated display case. Product temperature rise as a function of time was determined by turning off the refrigerationmore » to the display case, while product temperature pull-down time was subsequently determined by turning on the refrigeration to the display case. It was found that the thermal mass of the product in a medium-temperature display case was such that during a 2.5 hour period with no refrigeration, the average product temperature increased by 5.5 C. In addition, it took approximately 3.5 hours for the product to recover to its initial temperature after the refrigeration was turned on. Transient heat conduction analyses for one-dimensional objects is in good agreement with the experimental results obtained in this study. From the analysis, it appears that the thermal mass of the stored product in refrigerated display cases is sufficient to allow product temperatures to safely drift for a significant time under reduced refrigeration system operation. Thus, strategies for shifting refrigeration system electrical demand can be developed. The use of an advanced refrigeration system controller that can respond to utility signals can enable demand shifting with minimal impact.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrestha, Som S; Vineyard, Edward Allan; Mumpower, Kevin
In response to environmental concerns raised by the use of refrigerants with high Global Warming Potential (GWP), the Air-Conditioning, Heating, and Refrigeration Institute (AHRI) has launched an industry-wide cooperative research program, referred to as the Low-GWP Alternative Refrigerants Evaluation Program (AREP), to identify and evaluate promising alternative refrigerants for major product categories. After successfully completing the first phase of the program in December 2013, AHRI launched a second phase of the Low-GWP AREP in 2014 to continue research in areas that were not previously addressed, including refrigerants in high ambient conditions, refrigerants in applications not tested in the first phase,more » and new refrigerants identified since testing for the program began. Although the Ozone Depletion Potential of R-410A is zero, this refrigerant is under scrutiny due to its high GWP. Several candidate alternative refrigerants have already demonstrated low global warming potential. Performance of these low-GWP alternative refrigerants is being evaluated for Air conditioning and heat pump applications to ensure acceptable system capacity and efficiency. This paper reports the results of a series of compressor calorimeter tests conducted for the second phase of the AREP to evaluate the performance of R-410A alternative refrigerants in a reciprocating compressor designed for air conditioning systems. It compares performance of alternative refrigerants ARM-71A, L41-1, DR-5A, D2Y-60, and R-32 to that of R-410A over a wide range of operating conditions. The tests showed that, in general, cooling capacities were slightly lower (except for the R-32), but energy efficiency ratios (EER) of the alternative refrigerants were comparable to that of R-410A.« less
Sorption cryogenic refrigeration - Status and future
NASA Technical Reports Server (NTRS)
Jones, Jack A.
1988-01-01
The operation principles of sorption cryogenic refrigeration are discussed. Sorption refrigerators have virtually no wear-related moving parts, have negligible vibration, and offer extremely long life (at least ten years), making it possible to obtain efficient, long life and low vibration cooling to as low as 7 K for cryogenic sensors. The physisorption and chemisorption systems recommended for various cooling ranges down to 7 K are described in detail. For long-life cooling at 4-5 K temperatures, a hybrid chemisorption-mechanical refrigeration system is recommended.
Refrigeration arrangement and methods for reducing charge migration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Litch, Andrew D.; Wu, Guolian
A refrigerator appliance including a refrigerant circuit between a condenser, an evaporator, and a compressor that includes two conduits and pressure reducing devices arranged in parallel between the evaporator and the condenser. The appliance also includes a valve system to direct refrigerant through one, both or none of the conduits and pressure reducing devices, and a heat exchanging member in thermal contact with either one pressure reducing device, or one conduit between the pressure reducing device and the valve system.
Enclosure for thermoelectric refrigerator and method
NASA Technical Reports Server (NTRS)
Park, Brian V. (Inventor); McGrath, Ralph D. (Inventor)
1997-01-01
An enclosed structure is provided for use with a refrigerator having a door assembly. The enclosed structure preferably contains superinsulation materials and a plurality of matching drawers. The enclosed structure preferably includes corner joints which minimize thermal energy transfer between adjacent superinsulation panels. The refrigerator may include a cooling system having a thermoelectric device for maintaining the temperature within the refrigerator at selected values. If desired, a fluid cooling system and an active gasket may also be provided between the door assembly and the enclosed structure. The fluid cooling system preferably includes a second thermoelectric device to maintain the temperature of fluid flowing through the active gasket at a selected value. The drawers associated with the refrigerator may be used for gathering, processing, shipping and storing food or other perishable items.
46 CFR 38.05-25 - Refrigerated systems-TB/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Refrigerated systems-TB/ALL. 38.05-25 Section 38.05-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS LIQUEFIED FLAMMABLE GASES Design and Installation § 38.05-25 Refrigerated systems—TB/ALL. (a) When a liquefied flammable gas is carried below...
46 CFR 38.05-25 - Refrigerated systems-TB/ALL.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 1 2013-10-01 2013-10-01 false Refrigerated systems-TB/ALL. 38.05-25 Section 38.05-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS LIQUEFIED FLAMMABLE GASES Design and Installation § 38.05-25 Refrigerated systems—TB/ALL. (a) When a liquefied flammable gas is carried below...
46 CFR 38.05-25 - Refrigerated systems-TB/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Refrigerated systems-TB/ALL. 38.05-25 Section 38.05-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS LIQUEFIED FLAMMABLE GASES Design and Installation § 38.05-25 Refrigerated systems—TB/ALL. (a) When a liquefied flammable gas is carried below...
46 CFR 38.05-25 - Refrigerated systems-TB/ALL.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 1 2014-10-01 2014-10-01 false Refrigerated systems-TB/ALL. 38.05-25 Section 38.05-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS LIQUEFIED FLAMMABLE GASES Design and Installation § 38.05-25 Refrigerated systems—TB/ALL. (a) When a liquefied flammable gas is carried below...
46 CFR 58.20-15 - Installation of refrigerating machinery.
Code of Federal Regulations, 2011 CFR
2011-10-01
... AND AUXILIARY MACHINERY AND RELATED SYSTEMS Refrigeration Machinery § 58.20-15 Installation of... refrigeration compressor spaces shall be effectively ventilated and drained and shall be separated from the...
46 CFR 58.20-15 - Installation of refrigerating machinery.
Code of Federal Regulations, 2012 CFR
2012-10-01
... AND AUXILIARY MACHINERY AND RELATED SYSTEMS Refrigeration Machinery § 58.20-15 Installation of... refrigeration compressor spaces shall be effectively ventilated and drained and shall be separated from the...
46 CFR 58.20-15 - Installation of refrigerating machinery.
Code of Federal Regulations, 2010 CFR
2010-10-01
... AND AUXILIARY MACHINERY AND RELATED SYSTEMS Refrigeration Machinery § 58.20-15 Installation of... refrigeration compressor spaces shall be effectively ventilated and drained and shall be separated from the...
46 CFR 58.20-15 - Installation of refrigerating machinery.
Code of Federal Regulations, 2013 CFR
2013-10-01
... AND AUXILIARY MACHINERY AND RELATED SYSTEMS Refrigeration Machinery § 58.20-15 Installation of... refrigeration compressor spaces shall be effectively ventilated and drained and shall be separated from the...
46 CFR 58.20-15 - Installation of refrigerating machinery.
Code of Federal Regulations, 2014 CFR
2014-10-01
... AND AUXILIARY MACHINERY AND RELATED SYSTEMS Refrigeration Machinery § 58.20-15 Installation of... refrigeration compressor spaces shall be effectively ventilated and drained and shall be separated from the...
Analysis of the Thermal Loads on the KSTAR Cryogenic System
NASA Astrophysics Data System (ADS)
Kim, Y. S.; Oh, Y. K.; Kim, W. C.; Park, Y. M.; Lee, Y. J.; Jin, S. B.; Sa, J. W.; Choi, C. H.; Cho, K. W.; Bak, J. S.; Lee, G. S.
2004-06-01
A large-scale helium refrigeration system is one of the key components for the KSTAR (Korea Superconducting Tokamak Advanced Research) device. In the design of the refrigeration system, an estimation of the thermal loads on the cold mass is an important issue according to the operation scenario. The cold mass of the KSTAR device is about 250 tons including 30 superconducting (SC) coils and the magnet structure. In addition to the static thermal loads, pulsed thermal loads to the refrigeration system have been considered in the operation stage. The main pulsed thermal loads on magnet system are AC losses in the SC coils and eddy current losses in the magnet structure that depend on the magnetic field variation rate. The nuclear radiation loss due to plasma pulse operation is also considered. The designed cooling capacity of the refrigeration system is estimated to be about 9 kW at 4.5 K isothermal. In this paper, calculation of the various kinds of thermal loads on KSTAR cryogenic system and design of the large-scale helium refrigeration system are presented.
Control method for mixed refrigerant based natural gas liquefier
Kountz, Kenneth J.; Bishop, Patrick M.
2003-01-01
In a natural gas liquefaction system having a refrigerant storage circuit, a refrigerant circulation circuit in fluid communication with the refrigerant storage circuit, and a natural gas liquefaction circuit in thermal communication with the refrigerant circulation circuit, a method for liquefaction of natural gas in which pressure in the refrigerant circulation circuit is adjusted to below about 175 psig by exchange of refrigerant with the refrigerant storage circuit. A variable speed motor is started whereby operation of a compressor is initiated. The compressor is operated at full discharge capacity. Operation of an expansion valve is initiated whereby suction pressure at the suction pressure port of the compressor is maintained below about 30 psig and discharge pressure at the discharge pressure port of the compressor is maintained below about 350 psig. Refrigerant vapor is introduced from the refrigerant holding tank into the refrigerant circulation circuit until the suction pressure is reduced to below about 15 psig, after which flow of the refrigerant vapor from the refrigerant holding tank is terminated. Natural gas is then introduced into a natural gas liquefier, resulting in liquefaction of the natural gas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biancardi, F.R.; Michels, H.; Sienel, T.
1996-01-01
As a means of complying with current and impending national and international environmental regulations restricting the use and disposal of conventional CFC and HCFC refrigerants which contribute to the global ozone depletion effects, the HVAC industry is vigorously evaluating and testing BFC refrigerant blends. While analyses and system performance tools have shown that BFC refrigerant blends offer certain performance, capacity and operational advantages, there are significant possible service and operational issues that are raised by the use of blends. Many of these issues occur due to the fractionation of the blends. Therefore, the objective of this program is to conductmore » analyses and experimental tests aimed at understanding these issues, develop approaches or techniques to predict these effects and convey to the industry safe and reliable approaches. As a result, analytical models, verified by laboratory data, have been developed that predict the fractionation effects of HFC refrigerant blends when (1) exposed to selected POE lubricants, (2) during the system charging process from large liquid containers, and (3) during system startup, operation and shutdown within various system components (where two-phase refrigerant exists), and during selected system and component leakage scenarios. Model predictions and experimental results are presented for HFC refrigerant blends containing HFC-32, HFC-134a, and HFC-125 and the data are generalized for various operating conditions and scenarios.« less
Thirty Years of Near Room Temperature Magnetic Cooling: Where we are Today and Future Prospects
DOE Office of Scientific and Technical Information (OSTI.GOV)
K.A. Gschneidner, Jr; V.K. Pecharsky'
2008-05-01
The seminal study by Brown in 1976 showed that it was possible to use the magnetocaloric effect to produce a substantial cooling effect near room temperature. About 15 years later Green et al. built a device which actually cooled a load other than the magnetocaloric material itself and the heat exchange fluid. The major breakthrough, however, occurred in 1997 when the Ames Laboratory/Astronautics proof-of-principle refrigerator showed that magnetic refrigeration was competitive with conventional gas compression cooling. Since then, over 25 magnetic cooling units have been built and tested throughout the world. The current status of near room temperature magnetic coolingmore » is reviewed, including a discussion of the major problems facing commercialization and potential solutions thereof. The future outlook for this revolutionary technology is discussed.« less
Optimum design on refrigeration system of high-repetition-frequency laser
NASA Astrophysics Data System (ADS)
Li, Gang; Li, Li; Jin, Yezhou; Sun, Xinhua; Mao, Shaojuan; Wang, Yuanbo
2014-12-01
A refrigeration system with fluid cycle, semiconductor cooler and air cooler is designed to solve the problems of thermal lensing effect and unstable output of high-repetition-frequency solid-state lasers. Utilizing a circulating water pump, water recycling system carries the water into laser cavity to absorb the heat then get to water cooling head. The water cooling head compacts cold spot of semiconductor cooling chips, so the heat is carried to hot spot which contacts the radiating fins, then is expelled through cooling fan. Finally, the cooled water return to tank. The above processes circulate to achieve the purposes of highly effective refrigeration in miniative solid-state lasers.The refrigeration and temperature control components are designed strictly to ensure refrigeration effect and practicability. we also set up a experiment to test the performances of this refrigeration system, the results show that the relationship between water temperature and cooling power of semiconductor cooling chip is linear at 20°C-30°C (operating temperature range of Nd:YAG), the higher of the water temperature, the higher of cooling power. According to the results, cooling power of single semiconductor cooling chip is above 60W, and the total cooling power of three semiconductor cooling chips achieves 200W that will satisfy the refrigeration require of the miniative solid-state lasers.The performance parameters of laser pulse are also tested, include pulse waveform, spectrogram and laser spot. All of that indicate that this refrigeration system can ensure the output of high-repetition-frequency pulse whit high power and stability.
1 ATM subcooled liquid nitrogen cryogenic system with GM-refrigerator for a HTS power transformer
NASA Astrophysics Data System (ADS)
Yoshida, S.; Ohashi, K.; Umeno, T.; Suzuki, Y.; Kamioka, Y.; Kimura, H.; Tsutsumi, K.; Iwakuma, M.; Funaki, K.; Bhono, T.; Yagi, Y.
2002-05-01
A subcooled liquid nitrogen cryogenic system with GM-refrigerators was developed. The system was operated successfully in a commercial distribution power grid for three consecutive weeks without additional liquid nitrogen supply. The system consists of two main units. One is a HTS transformer unit and the HTS transformer is installed in a G-FRP cryostat. The other one is a pump unit. The pump unit has a liquid nitrogen pump and two GM-refrigerators of 290 W at 64 K for 50 Hz operation in a stainless steel dewar. The refrigerator cold heads are immersed in liquid nitrogen and produce directly subcooled liquid nitrogen in the pump unit. Those two units are connected by transfer-tubes and 1 atmosphere (0.1 MPa) subcooled liquid nitrogen is circulated through the system. In the field test, the refrigerators were operated at 60 Hz and it took 12 hours to cool the transformer down to 70 K and 26 hours to 66 K. The refrigerator cold heads were controlled not to be below 64 K during operation. In spite of a heat generation by the HTS transformer, the subcooled liquid nitrogen temperature in the HTS transformer unit was kept lower than 68 K.
Cooling system for superconducting magnet
Gamble, Bruce B.; Sidi-Yekhlef, Ahmed
1998-01-01
A cooling system is configured to control the flow of a refrigerant by controlling the rate at which the refrigerant is heated, thereby providing an efficient and reliable approach to cooling a load (e.g., magnets, rotors). The cooling system includes a conduit circuit connected to the load and within which a refrigerant circulates; a heat exchanger, connected within the conduit circuit and disposed remotely from the load; a first and a second reservoir, each connected within the conduit, each holding at least a portion of the refrigerant; a heater configured to independently heat the first and second reservoirs. In a first mode, the heater heats the first reservoir, thereby causing the refrigerant to flow from the first reservoir through the load and heat exchanger, via the conduit circuit and into the second reservoir. In a second mode, the heater heats the second reservoir to cause the refrigerant to flow from the second reservoir through the load and heat exchanger via the conduit circuit and into the first reservoir.
Cooling system for superconducting magnet
Gamble, B.B.; Sidi-Yekhlef, A.
1998-12-15
A cooling system is configured to control the flow of a refrigerant by controlling the rate at which the refrigerant is heated, thereby providing an efficient and reliable approach to cooling a load (e.g., magnets, rotors). The cooling system includes a conduit circuit connected to the load and within which a refrigerant circulates; a heat exchanger, connected within the conduit circuit and disposed remotely from the load; a first and a second reservoir, each connected within the conduit, each holding at least a portion of the refrigerant; a heater configured to independently heat the first and second reservoirs. In a first mode, the heater heats the first reservoir, thereby causing the refrigerant to flow from the first reservoir through the load and heat exchanger, via the conduit circuit and into the second reservoir. In a second mode, the heater heats the second reservoir to cause the refrigerant to flow from the second reservoir through the load and heat exchanger via the conduit circuit and into the first reservoir. 3 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biancardi, F.R.; Pandy, D.R.; Sienel, T.H.
1997-12-31
The heating, ventilating, and air-conditioning (HVAC) industry is actively evaluating and testing hydrofluorocarbon (HFC) refrigerant blends as a means of complying with current and impending national and international environmental regulations restricting the use and disposal of conventional chlorofluorocarbon (CFC) and hydrochlorofluorocarbon (HCFC) refrigerants that contribute to the global ozone-depletion effects. While analyses and system performance tools have shown that HFC refrigerant blends offer certain performance, capacity, and operational advantages, there are significant possible service and operational issues that are raised by the use of blends. Many of these issues occur due to the fractionation of the blends. Therefore, the objectivemore » of this program was to conduct analyses and experimental tests aimed at understanding these issues, develop approaches or techniques to predict these effects, and convey to the industry safe and reliable approaches. As a result, analytical models verified by laboratory data have been developed that predict the fractionation effects of HFC refrigerant blends (1) when exposed to selected POE lubricants, (2) during the system charging process from large liquid containers, and (3) during system start-up, operation, and shutdown within various system components (where two-phase refrigerant exists) and during selected system and component leakage scenarios. Model predictions and experimental results are presented for HFC refrigerant blends containing R-32, R-134a, and R-125 and the data are generalized for various operating conditions and scenarios.« less
Refrigeration Compressors for the Altitude Wind Tunnel
1944-09-21
These compressors inside the Refrigeration Building at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory were used to generate cold temperatures in the Altitude Wind Tunnel (AWT) and Icing Research Tunnel. The AWT was a large facility that simulated actual flight conditions at high altitudes. The two primary aspects of altitude simulation are the reduction of the air pressure and the decrease of temperature. The Icing Research Tunnel was a smaller facility in which water droplets were added to the refrigerated air stream to simulate weather conditions that produced ice buildup on aircraft. The military pressured the NACA to complete the tunnels quickly so they could be of use during World War II. The NACA engineers struggled with the design of this refrigeration system, so Willis Carrier, whose Carrier Corporation had pioneered modern refrigeration, took on the project. The Carrier engineers devised the largest cooling system of its kind in the world. The system could lower the tunnels’ air temperature to –47⁰ F. The cooling system was powered by 14 Carrier and York compressors, seen in this photograph, which were housed in the Refrigeration Building between the two wind tunnels. The compressors converted the Freon 12 refrigerant into a liquid. The refrigerant was then pumped into zig-zag banks of cooling coils inside the tunnels’ return leg. The Freon absorbed heat from the airflow as it passed through the coils. The heat was transferred to the cooling water and sent to the cooling tower where it was dissipated into the atmosphere.
Automotive absorption air conditioner utilizing solar and motor waste heat
NASA Technical Reports Server (NTRS)
Popinski, Z. (Inventor)
1981-01-01
In combination with the ground vehicles powered by a waste heat generating electric motor, a cooling system including a generator for driving off refrigerant vapor from a strong refrigerant absorbant solution is described. A solar collector, an air-cooled condenser connected with the generator for converting the refrigerant vapor to its liquid state, an air cooled evaporator connected with the condenser for returning the liquid refrigerant to its vapor state, and an absorber is connected to the generator and to the evaporator for dissolving the refrigerant vapor in the weak refrigerant absorbant solution, for providing a strong refrigerant solution. A pump is used to establish a pressurized flow of strong refrigerant absorbant solution from the absorber through the electric motor, and to the collector.
A thermodynamic analysis of a solar-powered jet refrigeration system
NASA Technical Reports Server (NTRS)
Lansing, F. L.; Chai, V. W.
1980-01-01
The article describes and analyzes a method of using solar energy to drive a jet refrigeration system. A new technique is presented in the form of a performance nomogram combining the energy and momentum equations to determine the performance characteristics. A numerical example, using water as the working fluid, is given to illustrate the nomogram procedure. The resulting coefficient of performance was found comparable with other refrigeration systems such as the solar-absorption system or the solar-Rankine turbocompressor system.
Additional information for food processors, food distributors, refrigerated warehouses, and any other facility with ammonia refrigeration system. Includes guidance on exemptions, threshold quantity, offsite consequence analysis.
The Hall D solenoid helium refrigeration system at JLab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laverdure, Nathaniel A.; Creel, Jonathan D.; Dixon, Kelly d.
Hall D, the new Jefferson Lab experimental facility built for the 12GeV upgrade, features a LASS 1.85 m bore solenoid magnet supported by a 4.5 K helium refrigerator system. This system consists of a CTI 2800 4.5 K refrigerator cold box, three 150 hp screw compressors, helium gas management and storage, and liquid helium and nitrogen storage for stand-alone operation. The magnet interfaces with the cryo refrigeration system through an LN2-shielded distribution box and transfer line system, both designed and fabricated by JLab. The distribution box uses a thermo siphon design to respectively cool four magnet coils and shields withmore » liquid helium and nitrogen. We describe the salient design features of the cryo system and discuss our recent commissioning experience.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-21
..., and refrigeration systems. See 76 FR 21580 (April 15, 2011) (final rule prescribing walk-in test...-Conditioning, Heating, and Refrigeration Institute (AHRI) did not agree with DOE's proposal to set the test... manufacturers to provide the panel's U-factor if the panel manufacturer is not providing refrigeration systems...
R744 ejector technology future perspectives
NASA Astrophysics Data System (ADS)
Hafner, Armin; Banasiak, Krzysztof
2016-09-01
Carbon Dioxide, CO2 (R744) was one of the first commonly applied working fluids in the infancy of refrigeration more than 100 years ago. In contrast to ammonia it mainly disappeared after the first generation of synthetic refrigerants have been introduced to the market after 1930. One reason was that the transition from low-rpm belt driven compressors towards the direct electrical motor driven compressors (50-60 Hz) was not performed for CO2 compressors before the revival introduced by Gustav Lorentzen in the 90is of last century. Since 1988 an enormous R & D effort has been made to further develop CO2 refrigeration technology in spite of the opposition from the chemical industry. Today CO2 refrigeration and heat pumping technologies are accepted as viable and sustainable alternatives for several applications like commercial refrigeration, transport refrigeration, vehicle air conditioning & heat pumping, domestic hot water heat pumps and industrial applications. For some applications, the current threshold to introduce R744 technology can be overcome when the system design takes into account the advantage of the thermo dynamical- and fluid properties of CO2. I.e. the system is designed for transcritical operation with all it pros and cons and takes into consideration how to minimize the losses, and to apply the normally lost expansion work. Shortcut-designs, i.e. drop in solutions, just replacing the H(C)FC refrigeration unit with an CO2 systems adapted for higher system pressures will not result in energy efficient products. CO2 systems do offer the advantage of enabling flooded evaporators supported with adapted ejector technology. These units offer high system performances at low temperature differences and show low temperature air mal-distributions across evaporators. This work gives an overview for the development possibilities for several applications during the next years. Resulting in a further market share increase of CO2 refrigeration and heat pump systems, as energy efficient alternatives to current systems not applying natural working fluids.
A historical look at chlorofluorocarbon refrigerants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatti, M.S.
1999-07-01
A class of chemical compounds called chlorofluorocarbon refrigerants has been in widespread use since the 1930s in such diverse applications as refrigerants for refrigerating and air-conditioning systems, blowing agents for plastic foams, solvents for microelectronic circuitry and dry cleaning, sterilants for medical instruments, aerosol propellants for personal hygiene products and pesticides, and freezants for food. This paper describes the historical development of the chlorofluorocarbon refrigerants and gives brief biographical sketches of the inventors. 85 refs., 8 figs., 4 tabs.
Mixed Refrigerants for a Glass Capillary Micro Cryogenic Cooler
2010-08-01
refrigerant has the largest ðDhTÞmin 1.35 kJ/mol. To deliver 15 mW of gross refrigeration power, JT cryocoolers using mixed refrigerants only require 1.6...higher than 75 K. Pressure drop in heat exchangers can cause refrigeration loss in cryocooler systems. The minimum enthalpy difference and hence...micro- cryocoolers . They solved it by making the returning flow laminar through re-design- ing micro channels. Fig. 4 shows the relationship between the
Appendix E: Supplemental Risk Management Program Guidance for Ammonia Refrigeration Facilities
Additional information for food processors, food distributors, refrigerated warehouses, and any other facility that has an ammonia refrigeration system. Includes details on exemption for farms, threshold quantity, and offsite consequence analysis.
OPTIONS FOR REDUCING REFRIGERANT EMISSIONS FROM SUPERMARKET SYSTEMS
The report was prepared to assist personnel responsible for the design, construction, and maintenance of retail food refrigeration equipment in making knowledgeable decisions regarding the implementation of refrigerant-emissions-reducing practices and technologies. It characteriz...
NASA Technical Reports Server (NTRS)
Homan, Jonathan; Montz, Michael; Sidi-Yekhlef, Ahmed; Ganni, Venkatarao (Rao); Knudsen, Peter; Garcia, Sam; Linza, Robert; Meagher, Daniel; Lauterbauch, John
2008-01-01
NASA Johnson Space Center (JSC) in Houston is currently supplementing its 20K helium refrigeration system to meet the new requirements for testing the James Web Space Telescope in the environmental control Chamber-A (65 dia x 120 high) in Building 32. The new system is required to meet the various operating modes which include a high 20K heat load, a required temperature stability at the load, rapid (but controlled) cool down and warm up and bake out of the chamber. This paper will present the proposed modifications to the existing helium system(s) to incorporate the new requirements and the integration of the new helium refrigerator with the existing two 3.5KW 20K helium refrigerators. In addition, the floating pressure process control philosophy to achieve high efficiency over the operating range (40% to 100% of the refrigeration system capacity), and the required temperature stability of +/- 0.25 K at the load will be discussed. The refrigeration systems ability to naturally seek the operating conditions under various loads and thus minimizing operator involvement and the over all improvements to the system operability and the reliability will be explained.
ARTI refrigerant database. Quarterly report, March--May 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calm, J.M.
1997-05-01
The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information an older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included, though some maymore » be added at a later date.« less
Measurement of absorption rates of HFC single and blended refrigerants in POE oils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leung, M.; Jotshi, C.K.; Goswami, D.Y.
1999-07-01
Thermophysical properties of refrigerant/lubricant mixtures play an important role in refrigeration and air-conditioning system design. Therefore it is important to have a good understanding of the mixture composition in each system component such as the compressor or evaporator. Because the system operation is dynamic the rates of absorption and desorption become significant parameters. In this paper measured absorption rates of alternative refrigerants in polyolester (POE) oils are reported. An effective online mass gain method was designed and constructed to measure the absorption rates and solubility of refrigerants in lubricants. HFC single refrigerants (R-32, R-125, R-134a, and R-143a), and blended refrigerantsmore » (R-404A, R-407C, and R-410A) were tested with POE ISO 68 lubricant under various conditions. The experimental results showed that, at room temperature, R-134a is the most soluble in POE ISO 68 oil among all the refrigerants tested at pressures of 239 kPa (20 psig) to 446 kPa (70 psig). Among the blended refrigerants tested, R-407C was found to be the most soluble at room temperature and pressures of 239 kPa and 446 kPa. Experimental solubility data from this new measurement method were compared with data available in the literature. Good agreement between the two indicates the feasibility of the new method employed in this investigation.« less
NASA Astrophysics Data System (ADS)
Delucia, M.; Bronconi, R.; Carnevale, E.
1994-04-01
Gas turbine air cooling systems serve to raise performance to peak power levels during the hot months when high atmospheric temperatures cause reductions in net power output. This work describes the technical and economic advantages of providing a compressor inlet air cooling system to increase the gas turbine's power rating and reduce its heat rate. The pros and cons of state-of-the-art cooling technologies, i.e., absorption and compression refrigeration, with and without thermal energy storage, were examined in order to select the most suitable cooling solution. Heavy-duty gas turbine cogeneration systems with and without absorption units were modeled, as well as various industrial sectors, i.e., paper and pulp, pharmaceuticals, food processing, textiles, tanning, and building materials. The ambient temperature variations were modeled so the effects of climate could be accounted for in the simulation. The results validated the advantages of gas turbine cogeneration with absorption air cooling as compared to other systems without air cooling.
Load leveling on industrial refrigeration systems
NASA Astrophysics Data System (ADS)
Bierenbaum, H. S.; Kraus, A. D.
1982-01-01
A computer model was constructed of a brewery with a 2000 horsepower compressor/refrigeration system. The various conservation and load management options were simulated using the validated model. The savings available for implementing the most promising options were verified by trials in the brewery. Result show that an optimized methodology for implementing load leveling and energy conservation consisted of: (1) adjusting (or tuning) refrigeration systems controller variables to minimize unnecessary compressor starts, (2) The primary refrigeration system operating parameters, compressor suction pressure, and discharge pressure are carefully controlled (modulated) to satisfy product quality constraints (as well as in-process material cooling rates and temperature levels) and energy evaluating the energy cost savings associated with reject heat recovery, and (4) a decision is made to implement the reject heat recovery system based on a cost/benefits analysis.
Design and Manufacturing of the Kstar Tokamak Helium Refrigeration System
NASA Astrophysics Data System (ADS)
Dauguet, P.; Briend, P.; Abe, I.; Fauve, E.; Bernhardt, J. M.; Andrieu, F.; Beauvisage, J.
2008-03-01
The KSTAR (Korean Superconducting Tokamak Advanced Research) project makes intensive use of superconducting (SC) magnets operated at 4.4 K. The cold components of KSTAR require a forced flow of supercritical helium for magnets and structure, boiling liquid helium for current leads, and gaseous helium for thermal shields. A helium refrigeration system has been custom-designed for this project. The purpose of this paper is to give a brief overview of the proposed cryogenic system. The specified thermal loads for the different operating modes are presented. This specification results in the definition of a design mode for the refrigerator. The design and construction of the resulting 9 kW at 4.5-K Helium Refrigeration System (HSR) are presented.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., carbon bisulfide (disulfide), ethyl chloride, ethylene oxide, nickel carbonyl, spirits of nitroglycerin...; DOT-3B400; DOT-4AA480; DOT-4B400; DOT-4BA400; DOT-4BW400; DOT-3E1800; DOT-39; DOT-3AL400. Carbon...; DOT-3T1800; DOT-3HT2000; DOT-39; DOT-3AL1800. Carbon dioxide, refrigerated liquid (see paragraph (e...
Code of Federal Regulations, 2011 CFR
2011-10-01
..., carbon bisulfide (disulfide), ethyl chloride, ethylene oxide, nickel carbonyl, spirits of nitroglycerin...; DOT-3B400; DOT-4AA480; DOT-4B400; DOT-4BA400; DOT-4BW400; DOT-3E1800; DOT-39; DOT-3AL400. Carbon...; DOT-3T1800; DOT-3HT2000; DOT-39; DOT-3AL1800. Carbon dioxide, refrigerated liquid (see paragraph (e...
NASA Astrophysics Data System (ADS)
Abbasi, Bahman
2012-11-01
Owing to their manufacturability and reliability, capillary tubes are the most common expansion devices in household refrigerators. Therefore, investigating flow properties in the capillary tubes is of immense appeal in the said business. The models to predict pressure drop in two-phase internal flows invariably rely upon highly precise geometric information. The manner in which capillary tubes are manufactured makes them highly susceptible to geometric imprecisions, which renders geometry-based models unreliable to the point of obsoleteness. Aware of the issue, manufacturers categorize capillary tubes based on Nitrogen flow rate through them. This categorization method presents an opportunity to substitute geometric details with Nitrogen flow data as the basis for customized models. The simulation tools developed by implementation of this technique have the singular advantage of being applicable across flow regimes. Thus the error-prone process of identifying compatible correlations is eliminated. Equally importantly, compressibility and chocking effects can be incorporated in the same model. The outcome is a standalone correlation that provides accurate predictions, regardless of any particular fluid or flow regime. Thereby, exploratory investigations for capillary tube design and optimization are greatly simplified. Bahman Abbasi, Ph.D., is Lead Advanced Systems Engineer at General Electric Appliances in Louisville, KY. He conducts research projects across disciplines in the household refrigeration industry.
Combined cold compressor/ejector helium refrigerator
Brown, D.P.
1984-06-05
A refrigeration apparatus having an ejector operatively connected with a cold compressor to form a two-stage pumping system. This pumping system is used to lower the pressure, and thereby the temperature of a bath of boiling refrigerant (helium). The apparatus as thus arranged and operated has substantially improved operating efficiency when compared to other processes or arrangements for achieving a similar low pressure.
Combined cold compressor/ejector helium refrigerator
Brown, Donald P.
1985-01-01
A refrigeration apparatus having an ejector operatively connected with a cold compressor to form a two-stage pumping system. This pumping system is used to lower the pressure, and thereby the temperature of a bath of boiling refrigerant (helium). The apparatus as thus arranged and operated has substantially improved operating efficiency when compared to other processes or arrangements for achieving a similar low pressure.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the pressure in the system, and by connecting a separate line between the system liquid port and the... chamber consisting of a tank with a conical-shaped bottom, a bottom port and piping for delivering refrigerant to the equipment, various ports and valves for adding refrigerant to the chamber and stirring...
Code of Federal Regulations, 2011 CFR
2011-07-01
... the pressure in the system, and by connecting a separate line between the system liquid port and the... chamber consisting of a tank with a conical-shaped bottom, a bottom port and piping for delivering refrigerant to the equipment, various ports and valves for adding refrigerant to the chamber and stirring...
Super energy saver heat pump with dynamic hybrid phase change material
Ally, Moonis Raza [Oak Ridge, TN; Tomlinson, John Jager [Knoxville, TN; Rice, Clifford Keith [Clinton, TN
2010-07-20
A heat pump has a refrigerant loop, a compressor in fluid communication with the refrigerant loop, at least one indoor heat exchanger in fluid communication with the refrigerant loop, and at least one outdoor heat exchanger in fluid communication with the refrigerant loop. The at least one outdoor heat exchanger has a phase change material in thermal communication with the refrigerant loop and in fluid communication with an outdoor environment. Other systems, devices, and methods are described.
Photovoltaic refrigeration application: Assessment of the near-term market
NASA Technical Reports Server (NTRS)
Rosenblum, L.; Bifano, W. J.; Poley, W. A.; Scudder, L. R.
1977-01-01
This foreign and domestic market assessment was performed as part of the Tests and Applications Project being conducted by NASA-LeRC as part of the Department of Energy's (DOE) National Photovoltaic Program. One of the objectives of that program was to stimulate the demand for photovoltaic power systems so that appropriate markets would be developed in concert with the increasing photovoltaic production capacity. The refrigeration application represented a possible market for photovoltaics; hence, a brief survey of potential applications was conducted. Both refrigerators and refrigeration systems were considered in the assessment although the primary emphasis is on refrigerators of 9 cu ft of less. Three user sectors were examined: (1) government, (2) commercial/institutional, and (3) general public.
McColloster, Patrick J; Martin-de-Nicolas, Andres
2014-01-01
This commentary reviews recent changes in Centers for Disease Control (CDC) vaccine storage guidelines that were developed in response to an investigative report by the Office of the Inspector General. The use of temperature data loggers with probes residing in glycol vials is advised along with storing vaccines in pharmaceutical refrigerators. These refrigerators provide good thermal distribution but can warm to 8 °C in less than one hour after the power is discontinued. Consequently, electric grid instability influences appropriate refrigerator selection and the need for power back-up. System Average Interruption Duration Index (SAIDI) values quantify this instability and can be used to formulate region-specific guidelines. A novel aftermarket refrigerator regulator with a battery back-up power supply and microprocessor control system is also described. PMID:24442209
Vaccine refrigeration: thinking outside of the box.
McColloster, Patrick J; Martin-de-Nicolas, Andres
2014-01-01
This commentary reviews recent changes in Centers for Disease Control (CDC) vaccine storage guidelines that were developed in response to an investigative report by the Office of the Inspector General. The use of temperature data loggers with probes residing in glycol vials is advised along with storing vaccines in pharmaceutical refrigerators. These refrigerators provide good thermal distribution but can warm to 8 °C in less than one hour after the power is discontinued. Consequently, electric grid instability influences appropriate refrigerator selection and the need for power back-up. System Average Interruption Duration Index (SAIDI) values quantify this instability and can be used to formulate region-specific guidelines. A novel aftermarket refrigerator with a battery back-up power supply and microprocessor control system is also described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Fei; Shen, Shengqiang
2009-12-15
A novel solar bi-ejector refrigeration system was investigated, whose difference compared to the traditional system is that the circulation pump is replaced by a thermal injector. The new system works more stably and needs less maintenance work than the old one, and the whole system can more fully utilize the solar energy. The mathematical models for calculating the performance of the injector and the whole solar refrigeration system were established. The pressure rise performance of injector under different structure and operation parameters and the performance of solar bi-ejector refrigeration system were studied with R123. The results show that the dischargedmore » pressure of injector is affected by structure dimensions of injector and operation conditions. With increasing generation temperature, the entrainment ratio of ejector becomes better while that of injector becomes worse and the overall thermal efficiency of the solar bi-ejector refrigeration system first increases and then decreases with an optimum value of 0.132 at generation temperature of 105 C, condensation temperature of 35 C and evaporation temperature of 10 C. (author)« less
Superconducting cable cooling system by helium gas at two pressures
Dean, John W.
1977-01-01
Thermally contacting, oppositely streaming, cryogenic fluid streams in the same enclosure in a closed cycle that changes the fluid from a cool high pressure helium gas to a cooler reduced pressure helium gas in an expander so as to be at different temperature ranges and pressures respectively in go and return legs that are in thermal contact with each other and in thermal contact with a longitudinally extending superconducting transmission line enclosed in the same cable enclosure that insulates the line from the ambient at a temperature T.sub.1. By first circulating the fluid from a refrigerator at one end of the line as a cool gas at a temperature range T.sub.2 to T.sub.3 in the go leg, then circulating the gas through an expander at the other end of the line where the gas becomes a cooler gas at a reduced pressure and at a reduced temperature T.sub.4 and finally by circulating the cooler gas back again to the refrigerator in a return leg at a temperature range T.sub.4 to T.sub.5, while in thermal contact with the gas in the go leg, and in the same enclosure therewith for compression into a higher pressure gas at T.sub.2 in a closed cycle, where T.sub.2 >T.sub.3 and T.sub.5 >T.sub.4, the fluid leaves the enclosure in the go leg as a gas at its coldest point in the go leg, and the temperature distribution is such that the line temperature decreases along its length from the refrigerator due to the cooling from the gas in the return leg.
Superconducting cable cooling system by helium gas and a mixture of gas and liquid helium
Dean, John W.
1977-01-01
Thermally contacting, oppositely streaming cryogenic fluid streams in the same enclosure in a closed cycle that changes from a cool high pressure helium gas to a cooler reduced pressure helium fluid comprised of a mixture of gas and boiling liquid so as to be near the same temperature but at different pressures respectively in go and return legs that are in thermal contact with each other and in thermal contact with a longitudinally extending superconducting transmission line enclosed in the same cable enclosure that insulates the line from the ambient at a temperature T.sub.1. By first circulating the fluid in a go leg from a refrigerator at one end of the line as a high pressure helium gas near the normal boiling temperature of helium; then circulating the gas through an expander at the other end of the line where the gas becomes a mixture of reduced pressure gas and boiling liquid at its boiling temperature; then by circulating the mixture in a return leg that is separated from but in thermal contact with the gas in the go leg and in the same enclosure therewith; and finally returning the resulting low pressure gas to the refrigerator for compression into a high pressure gas at T.sub.2 is a closed cycle, where T.sub.1 >T.sub.2, the temperature distribution is such that the line temperature is nearly constant along its length from the refrigerator to the expander due to the boiling of the liquid in the mixture. A heat exchanger between the go and return lines removes the gas from the liquid in the return leg while cooling the go leg.
Vibration isolation and pressure compensation apparatus for sensitive instrumentation
NASA Technical Reports Server (NTRS)
Averill, R. D. (Inventor)
1983-01-01
A system for attenuating the inherent vibration associated with a mechanical refrigeration unit employed to cryogenically cool sensitive instruments used in measuring chemical constituents of the atmosphere is described. A modular system including an instrument housing and a reaction bracket with a refrigerator unit floated there between comprise the instrumentation system. A pair of evacuated bellows that "float' refrigerator unit and provide pressure compensation at all levels of pressure from seal level to the vacuum of space. Vibration isolators and when needed provide additional vibration damping for the refrigerator unit. A flexible thermal strap (20 K) serves to provide essentially vibration free thermal contact between cold tip of the refrigerator unit and the instrument component mounted on the IDL mount. Another flexible strap (77 K) serves to provide vibration free thermal contact between the TDL mount thermal shroud and a thermal shroud disposed about the thermal shaft.
GAS CHROMATOGRAPHIC RETENTION PARAMETERS DATABASE FOR REFRIGERANT MIXTURE COMPOSITION MANAGEMENT
Composition management of mixed refrigerant systems is a challenging problem in the laboratory, manufacturing facilities, and large refrigeration machinery. Ths issue of composition management is especially critical for the maintenance of machinery that utilizes zeotropic mixture...
Optimal design of gas adsorption refrigerators for cryogenic cooling
NASA Technical Reports Server (NTRS)
Chan, C. K.
1983-01-01
The design of gas adsorption refrigerators used for cryogenic cooling in the temperature range of 4K to 120K was examined. The functional relationships among the power requirement for the refrigerator, the system mass, the cycle time and the operating conditions were derived. It was found that the precool temperature, the temperature dependent heat capacities and thermal conductivities, and pressure and temperature variations in the compressors have important impacts on the cooling performance. Optimal designs based on a minimum power criterion were performed for four different gas adsorption refrigerators and a multistage system. It is concluded that the estimates of the power required and the system mass are within manageable limits in various spacecraft environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Domanski, P.A.
1995-03-01
The report presents a theoretical analysis of three vapor compression cycles which are derived from the Rankine cycle by incorporating a liquid-line/suction-line heat exchanger, economizer, or ejector. These addendums to the basic cycle reduce throttling losses using different principles, and they require different mechanical hardware of different complexity and cost. The theoretical merits of the three modified cycles were evaluated in relation to the reversed Carnot and Rankine cycle. Thirty-eight fluids were included in the study using the Carnahan-Starling-DeSantis equation of state. In general, the benefit of these addendums increases with the amount of the throttling losses realized by themore » refrigerant in the Rankine cycle.« less
The Influence of the Density of Coconut Fiber as Stack in Thermo-Acoustics Refrigeration System
NASA Astrophysics Data System (ADS)
Hartulistiyoso, E.; Yulianto, M.; Sucahyo, L.
2018-05-01
An experimental study of using coconut fiber as stack with varying density in thermo-acoustics refrigeration system has been done. Stack is a device which is described as the “heart” in thermo-acoustics refrigeration system. The length of stack is a fix parameter in this experiment. The performance of the coconut fiber was evaluated from the density of stack (varied from 30%, 50% and 70%), position of stack (varied from 0 to 34 cm from the sound generator), and frequency of sound generator (varied from 150 Hz, 200Hz, 250Hz and 300Hz). The inside, outside, and environment temperatures were collected every second using Data Acquisition (DAQ). The result showed that the increase of stack density will increase the performance of thermo-acoustics refrigeration system. The higher density produced temperature differences in cold side and hot side of 5.4°C. In addition, the position of stack and frequency of sound generator have an important role in the performance of thermo-acoustics refrigeration system for all variations of the density.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reis, Chuck; Nelson, Eric; Armer, James
The purpose of this playbook and accompanying spreadsheets is to generalize the detailed CBP analysis and to put tools in the hands of experienced refrigeration designers to evaluate multiple applications of refrigeration waste heat reclaim across the United States. Supermarkets with large portfolios of similar buildings can use these tools to assess the impact of large-scale implementation of heat reclaim systems. In addition, the playbook provides best practices for implementing heat reclaim systems to achieve the best long-term performance possible. It includes guidance on operations and maintenance as well as measurement and verification.
Code of Federal Regulations, 2011 CFR
2011-07-01
... conditioning system: 1. Each refrigerant may only be used with a set of fittings that is unique to that refrigerant. These fittings (male or female, as appropriate) must be used with all containers of the refrigerant, on can taps, on recovery, recycling, and charging equipment, and on all air conditioning system...
NASA Technical Reports Server (NTRS)
Byrne, E. J.
1979-01-01
Quantitative leak detector visually demonstrates refrigerant loss from precision volume of large refrigeration system over established period of time from single test point. Mechanical unit is less costly than electronic "sniffers" and is more reliable due to absence of electronic circuits that are susceptible to drift.
Optimal coupling and feasibility of a solar-powered year-round ejector air conditioner
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sokolov, M.; Hershgal, D.
1993-06-01
An ejector refrigeration system that uses a conventional refrigerant (R-114) is introduced as a possible mechanism for providing solar-based air-conditioning. Optimal coupling conditions between the collectors' energy output and energy requirements of the cooling system, are investigated. Operation at such optimal conditions assures maximized overall efficiency. Procedures leading to the evaluation of the performance of a real system are disclosed. Design curves for such a system with R-114 as refrigerant are provided. A multi-ejectors arrangement that provides an efficient adjustment for variations of ambient conditions, is described. Year-round air-conditioning is facilitated by rerouting the refrigerant flow through a heating modemore » of the system. Calculations are carried out for illustrative configurations in which relatively low condensing temperature (water reservoirs, cooling towers, or moderate climate) can be maintained.« less
NASA Astrophysics Data System (ADS)
Aziz, Azridjal; Mainil, Rahmat Iman; Mainil, Afdhal Kurniawan; Listiono, Hendra
2017-01-01
The aim of this work was to determine the effects of water temperature and air stream velocity on the performance of direct evaporative air cooler (DEAC) for thermal comfort. DEAC system requires the lower cost than using vapor compression refrigeration system (VCRS), because VCRS use a compressor to circulate refrigerant while DEAC uses a pump for circulating water in the cooling process to achieve thermal comfort. The study was conducted by varying the water temperature (10°C, 20°C, 30°C, 40°C, and 50°C) at different air stream velocity (2,93 m/s, 3.9 m/s and 4,57 m/s). The results show that the relative humidity (RH) in test room tends to increase with the increasing of water temperature, while on the variation of air stream velocity, RH remains constant at the same water temperature, because the amount of water that evaporates increase with the increasing water temperature. The cooling effectiveness (CE) increase with the increasing of air stream velocity where the higher CE was obtained at lower water temperature (10°C) with high air velocity (4,57m/s). The lower room temperature (26°C) was achieved at water temperature 10°C and air stream velocity 4.57 m/s with the relative humidity 85,87%. DEAC can be successfully used in rooms that have smoothly air circulation to fulfill the indoor thermal comfort.
Effects of hysteresis and Brayton cycle constraints on magnetocaloric refrigerant performance
NASA Astrophysics Data System (ADS)
Brown, T. D.; Buffington, T.; Shamberger, P. J.
2018-05-01
Despite promising proofs of concept, system-level implementation of magnetic refrigeration has been critically limited by history-dependent refrigerant losses that interact with governing thermodynamic cycles to adversely impact refrigeration performance. Future development demands a more detailed understanding of how hysteresis limits performance, and of how different types of cycles can mitigate these limitations, but without the extreme cost of experimental realization. Here, the utility of Brayton cycles for magnetic refrigeration is investigated via direct simulation, using a combined thermodynamic-hysteresis modeling framework to compute the path-dependent magnetization and entropy of a model alloy for a variety of feasible Brayton cycles between 0-1.5 T and 0-5 T. By simultaneously varying the model alloy's hysteresis properties and applying extensions of the thermodynamic laws to non-equilibrium systems, heat transfers and efficiencies are quantified throughout the space of hystereses and Brayton cycles and then compared with a previous investigation using Ericsson cycles. It is found that (1) hysteresis losses remain a critical obstacle to magnetic refrigeration implementation, with efficiencies >80% in the model system requiring hysteresis <0.5 K at 1.5 T; (2) optimal-efficiency Brayton cycles for given field and hysteresis constraints exist and are determined uniquely by the refrigerant transformation temperatures at the relevant fields; (3) for a given hysteresis and field constraint, Brayton and Ericsson-type cycles generate similar efficiencies; for a given temperature span, Ericsson cycles lift more heat per cycle, with the difference decreasing with the refrigerant heat capacity outside the phase transformation region.
MISCIBILITY, SOLUBILITY, AND VISCOSITY MEASUREMENTS FOR R-236EA WITH POTENTIAL LUBRICANTS
The report gives results of miscibility, solubility, and viscosity measurements of refrigerant R-236ea with three potential lubricants. (NOTE: The data were needed to determine the suitability of refrigerant/lubricant combinations for use in refrigeration systems.) The lubricants...
49 CFR 173.313 - UN Portable Tank Table for Liquefied Compressed Gases.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 28.0 Allowed Normal 0.43 24.5 22.0 20.0 1078 Refrigerant gas, n.o.s. See MAWP definition in § 178.276..., flammable, n.o.s. See MAWP definition in § 178.276(a) Allowed Normal § 173.32(f) 1958 1,2-Dichloro-1,1,2,2... liquefied, n.o.s. See MAWP definition in 178.276(a) Allowed Normal See § 173.32(f) 1969 Isobutane 8.5...
NASA Astrophysics Data System (ADS)
Yang, Sam
The dissertation presents the mathematical formulation, experimental validation, and application of a volume element model (VEM) devised for modeling, simulation, and optimization of energy systems in their early design stages. The proposed model combines existing modeling techniques and experimental adjustment to formulate a reduced-order model, while retaining sufficient accuracy to serve as a practical system-level design analysis and optimization tool. In the VEM, the physical domain under consideration is discretized in space using lumped hexahedral elements (i.e., volume elements), and the governing equations for the variable of interest are applied to each element to quantify diverse types of flows that cross it. Subsequently, a system of algebraic and ordinary differential equations is solved with respect to time and scalar (e.g., temperature, relative humidity, etc.) fields are obtained in both spatial and temporal domains. The VEM is capable of capturing and predicting dynamic physical behaviors in the entire system domain (i.e., at system level), including mutual interactions among system constituents, as well as with their respective surroundings and cooling systems, if any. The VEM is also generalizable; that is, the model can be easily adapted to simulate and optimize diverse systems of different scales and complexity and attain numerical convergence with sufficient accuracy. Both the capability and generalizability of the VEM are demonstrated in the dissertation via thermal modeling and simulation of an Off-Grid Zero Emissions Building, an all-electric ship, and a vapor compression refrigeration (VCR) system. Furthermore, the potential of the VEM as an optimization tool is presented through the integrative thermodynamic optimization of a VCR system, whose results are used to evaluate the trade-offs between various objective functions, namely, coefficient of performance, second law efficiency, pull-down time, and refrigerated space temperature, in both transient and steady-state operations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calm, J.M.
1997-02-01
The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alterative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included, though some maymore » be added at a later date. The database identifies sources of specific information on various refrigerants. It addresses lubricants including alkylbenzene, polyalkylene glycol, polyolester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents. They are included to accelerate availability of the information and will be completed or replaced in future updates.« less
Commissioning of cryogenic system for China Spallation Neutron Source
NASA Astrophysics Data System (ADS)
Ye, Bin; He, Chongchao; Li, Na; Ding, Meiying; Wang, Yaqiong; Yu, Zhang; He, Kun
2017-12-01
China Spallation Neutron Source(CSNS) cryogenic system provides supercritical cryogenic hydrogen to neutron moderators, including a helium refrigerator, hydrogen loop and hydrogen safety equipment. The helium refrigerator is provided by Linde with cooling capacity of 2200 W at 20 K. Hydrogen loop system mainly includes cryogenic hydrogen pipes, hydrogen circulator cold-box and accumulator cold-box. Cryogenic hydrogen pump, ortho-para convertor, helium-hydrogen heat-exchanger, hydrogen heater and accumulator are integrated in hydrogen circulation cold-box, and accumulator cold-box. Hydrogen safety equipment includes safety valves, rupture disk, hydrogen sensor, flame detector and other equipment to ensure that cryogenic system in dangerous situations will go down, vents, or takes other measures. The cryogenic system commissioning work includes four steps. First, in order to test the refrigerating capacity of refrigerator, when acceptance testing, refrigerator internal heater was used as thermal load. Second, using simulation load as heat load of moderator, hydrogen loop use helium instead of hydrogen, and cooled down to 20 K, then re-warming and test the leak detection of hydrogen loop system. Third, base on the step 2, using hydrogen as working medium, and optimized the control logic. Forth, cryogenic system with the moderators joint commissioning. Now, cryogenic system is connected with the moderators, and the forth step will be carried out in the near future.
46 CFR 111.79-15 - Receptacles for refrigerated containers.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Receptacles for refrigerated containers. 111.79-15 Section 111.79-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Receptacles § 111.79-15 Receptacles for refrigerated containers...
46 CFR 111.79-15 - Receptacles for refrigerated containers.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Receptacles for refrigerated containers. 111.79-15 Section 111.79-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Receptacles § 111.79-15 Receptacles for refrigerated containers...
46 CFR 111.79-15 - Receptacles for refrigerated containers.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Receptacles for refrigerated containers. 111.79-15 Section 111.79-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Receptacles § 111.79-15 Receptacles for refrigerated containers...
46 CFR 111.79-15 - Receptacles for refrigerated containers.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Receptacles for refrigerated containers. 111.79-15 Section 111.79-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Receptacles § 111.79-15 Receptacles for refrigerated containers...
MISCIBILITY, SOLUBILITY, VISCOSITY, AND DENSITY MEASUREMENTS FOR R-236FA WITH POTENTIAL LUBRICANTS
The report gives results of miscibility, solubility, viscosity, and density measurements for refrigerant R-236fa and two potential lubricants . (The data are needed to determine the suitability of refrigerant/lubricant combinations for use in refrigeration systems.) The tested oi...
40 CFR 82.36 - Approved refrigerant handling equipment.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Approved refrigerant handling equipment. (a)(1) Refrigerant recycling equipment must be certified by the...) Recovery/Recycling Equipment and Recovery/Recycling/Recharging for Mobile Air-Conditioning Systems. (5... Recycling Equipment Intended for Use with both CFC-12 and HFC-134a, Recommended Service Procedure for the...
40 CFR 82.36 - Approved refrigerant handling equipment.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Approved refrigerant handling equipment. (a)(1) Refrigerant recycling equipment must be certified by the...) Recovery/Recycling Equipment and Recovery/Recycling/Recharging for Mobile Air-Conditioning Systems. (5... Recycling Equipment Intended for Use with both CFC-12 and HFC-134a, Recommended Service Procedure for the...
40 CFR 82.36 - Approved refrigerant handling equipment.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Approved refrigerant handling equipment. (a)(1) Refrigerant recycling equipment must be certified by the...) Recovery/Recycling Equipment and Recovery/Recycling/Recharging for Mobile Air-Conditioning Systems. (5... Recycling Equipment Intended for Use with both CFC-12 and HFC-134a, Recommended Service Procedure for the...
40 CFR 82.36 - Approved refrigerant handling equipment.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Approved refrigerant handling equipment. (a)(1) Refrigerant recycling equipment must be certified by the...) Recovery/Recycling Equipment and Recovery/Recycling/Recharging for Mobile Air-Conditioning Systems. (5... Recycling Equipment Intended for Use with both CFC-12 and HFC-134a, Recommended Service Procedure for the...
40 CFR 82.36 - Approved refrigerant handling equipment.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Approved refrigerant handling equipment. (a)(1) Refrigerant recycling equipment must be certified by the...) Recovery/Recycling Equipment and Recovery/Recycling/Recharging for Mobile Air-Conditioning Systems. (5... Recycling Equipment Intended for Use with both CFC-12 and HFC-134a, Recommended Service Procedure for the...
Oxygen chemisorption compressor study for cryogenic J-T refrigeration
NASA Technical Reports Server (NTRS)
Jones, Jack A.; Blue, Gary D.
1987-01-01
Over twenty potentially reversible heat-powered oxide reactions have been studied and/or tested to determine their potential use as thermochemical oxygen compressors for cryogenic J-T LO2 refrigerators. One gas-solid compound family, Pr(1-n)Ce(n)O(x), proved to be completely reversible with fast kinetics for all pressure ranges tested below 650 C. With a heat-powered charcoal/methane physical adsorption upper stage and a Pr(1-n)Ce(n)O(x) chemisorption lower stage, temperatures should be attainable in the 55-80 K range for less power and over five times less weight than for charcoal/nitrogen sorption refrigeration systems. Total system power requirements with a hydride chemisorption lower stage (10 K to 7 K minimum) are about three times less than any mechanical refrigerator, and spacecraft refrigeration weights are about twenty times less. Due to the lack of wear-related moving parts in sorption refrigerators, life expectancy is at least ten years, and there essentially no vibration.
Magnetic cooling for microkelvin nanoelectronics on a cryofree platform.
Palma, M; Maradan, D; Casparis, L; Liu, T-M; Froning, F N M; Zumbühl, D M
2017-04-01
We present a parallel network of 16 demagnetization refrigerators mounted on a cryofree dilution refrigerator aimed to cool nanoelectronic devices to sub-millikelvin temperatures. To measure the refrigerator temperature, the thermal motion of electrons in a Ag wire-thermalized by a spot-weld to one of the Cu nuclear refrigerators-is inductively picked-up by a superconducting gradiometer and amplified by a SQUID mounted at 4 K. The noise thermometer as well as other thermometers are used to characterize the performance of the system, finding magnetic field independent heat-leaks of a few nW/mol, cold times of several days below 1 mK, and a lowest temperature of 150 μK of one of the nuclear stages in a final field of 80 mT, close to the intrinsic SQUID noise of about 100 μK. A simple thermal model of the system capturing the nuclear refrigerator, heat leaks, and thermal and Korringa links describes the main features very well, including rather high refrigerator efficiencies typically above 80%.
Weight Optimization of Active Thermal Management Using a Novel Heat Pump
NASA Technical Reports Server (NTRS)
Lear, William E.; Sherif, S. A.
2004-01-01
Efficient lightweight power generation and thermal management are two important aspects for space applications. Weight is added to the space platforms due to the inherent weight of the onboard power generation equipment and the additional weight of the required thermal management systems. Thermal management of spacecraft relies on rejection of heat via radiation, a process that can result in large radiator mass, depending upon the heat rejection temperature. For some missions, it is advantageous to incorporate an active thermal management system, allowing the heat rejection temperature to be greater than the load temperature. This allows a reduction of radiator mass at the expense of additional system complexity. A particular type of active thermal management system is based on a thermodynamic cycle, developed by the authors, called the Solar Integrated Thermal Management and Power (SITMAP) cycle. This system has been a focus of the authors research program in the recent past (see Fig. 1). One implementation of the system requires no moving parts, which decreases the vibration level and enhances reliability. Compression of the refrigerant working fluid is accomplished in this scheme via an ejector.
Selection of components for the IDEALHY preferred cycle for the large scale liquefaction of hydrogen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quack, H.; Seemann, I.; Klaus, M.
2014-01-29
In a future energy scenario, in which storage and transport of liquid hydrogen in large quantities will be used, the efficiency of the liquefaction of hydrogen will be of utmost importance. The goal of the IDEALHY working party is to identify the most promising process for a 50 t/d plant and to select the components, with which such a process can be realized. In the first stage the team has compared several processes, which have been proposed or realized in the past. Based on this information a process has been selected, which is thermodynamically most promising and for which itmore » could be assumed that good components already exist or can be developed in the foreseeable future. Main features of the selected process are the compression of the feed stream to a relatively high pressure level, o-p conversion inside plate-fin heat exchangers and expansion turbines in the supercritical region. Precooling to a temperature between 150 and 100 K will be obtained from a mixed refrigerant cycle similar to the systems used successfully in natural gas liquefaction plants. The final cooling will be produced by two Brayton cycles, both having several expansion turbines in series. The selected overall process has still a number of parameters, which can be varied. The optimum, i.e. the final choice will depend mainly on the quality of the available components. Key components are the expansion turbines of the two Brayton cycles and the main recycle compressor, which may be common to both Brayton cycles. A six-stage turbo-compressor with intercooling between the stages is expected to be the optimum choice here. Each stage may consist of several wheels in series. To make such a high efficient and cost-effective compressor feasible, one has to choose a refrigerant, which has a higher molecular weight than helium. The present preferred choice is a mixture of helium and neon with a molecular weight of about 8 kg/kmol. Such an expensive refrigerant requires that the whole refrigeration loop is extremely tight.« less
GreenChill Guide to Refrigeration Management for Small and Independent Grocers
Technical information, checklists, and questions to help small and independent supermarket (grocery) store owners and managers green their refrigeration systems by reducing leaks and/or designing a new advanced system.
Synchronous temperature rate control and apparatus for refrigeration with reduced energy consumption
Gomes, Alberto Regio; Keres, Stephen L.; Kuehl, Steven J.; Litch, Andrew D.; Richmond, Peter J.; Wu, Guolian
2015-09-22
A refrigerator appliance configuration, and associated methods of operation, for an appliance with a controller, a condenser, at least one evaporator, a compressor, and two refrigeration compartments. The configuration may be equipped with a variable-speed or variable-capacity compressor, variable speed evaporator or compartment fans, a damper, and/or a dual-temperature evaporator with a valve system to control flow of refrigerant through one or more pressure reduction devices. The controller, by operation of the compressor, fans, damper and/or valve system, depending on the appliance configuration, synchronizes alternating cycles of cooling each compartment to a temperature approximately equal to the compartment set point temperature.
Automatic control study of the icing research tunnel refrigeration system
NASA Technical Reports Server (NTRS)
Kieffer, Arthur W.; Soeder, Ronald H.
1991-01-01
The Icing Research Tunnel (IRT) at the NASA Lewis Research Center is a subsonic, closed-return atmospheric tunnel. The tunnel includes a heat exchanger and a refrigeration plant to achieve the desired air temperature and a spray system to generate the type of icing conditions that would be encountered by aircraft. At the present time, the tunnel air temperature is controlled by manual adjustment of freon refrigerant flow control valves. An upgrade of this facility calls for these control valves to be adjusted by an automatic controller. The digital computer simulation of the IRT refrigeration plant and the automatic controller that was used in the simulation are discussed.
Defrost Temperature Termination in Supermarket Refrigeration Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fricke, Brian A; Sharma, Vishaldeep
2011-11-01
The objective of this project was to determine the potential energy savings associated with implementing demand defrost strategies to defrost supermarket refrigerated display case evaporators, as compared to the widely accepted current practice of controlling display case defrost cycles with a preset timer. The defrost heater energy use of several representative display case types was evaluated. In addition, demand defrost strategies for refrigerated display cases as well as those used in residential refrigerator/freezers were evaluated. Furthermore, it is anticipated that future work will include identifying a preferred defrost strategy, with input from Retail Energy Alliance members. Based on this strategy,more » a demand defrost system will be designed which is suitable for supermarket refrigerated display cases. Limited field testing of the preferred defrost strategy will be performed in a supermarket environment.« less
Advances in refrigeration and heat transfer engineering
Bansal, Pradeep; Cremaschi, Prof. Lorenzo
2015-05-13
This special edition of Science and Technology for the Built Environment (STBE) presents selected high quality papers that were presented at the 15th International Refrigeration and Air Conditioning Conference held at Purdue University during July 14-17 2014. All papers went through the additional review before being finally accepted for publication in this special issue of Science and Technology and the Built Environment. Altogether 20 papers made to this special issue that cover a wide range of topics, including advancements in alternative refrigerants, heat exchangers/heat transfer, nano-fluids, systems design and optimization and modeling approaches. Although CO 2 may perhaps have beenmore » the most researched and popular refrigerant in the past decade, R32 is being seriously considered lately as an alternative and environmentally friendly refrigerant for small systems due to its low Global Warming Potential (GWP).« less
Advances in refrigeration and heat transfer engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bansal, Pradeep; Cremaschi, Prof. Lorenzo
This special edition of Science and Technology for the Built Environment (STBE) presents selected high quality papers that were presented at the 15th International Refrigeration and Air Conditioning Conference held at Purdue University during July 14-17 2014. All papers went through the additional review before being finally accepted for publication in this special issue of Science and Technology and the Built Environment. Altogether 20 papers made to this special issue that cover a wide range of topics, including advancements in alternative refrigerants, heat exchangers/heat transfer, nano-fluids, systems design and optimization and modeling approaches. Although CO 2 may perhaps have beenmore » the most researched and popular refrigerant in the past decade, R32 is being seriously considered lately as an alternative and environmentally friendly refrigerant for small systems due to its low Global Warming Potential (GWP).« less
NASA Astrophysics Data System (ADS)
Notardonato, W. U.; Swanger, A. M.; E Fesmire, J.; Jumper, K. M.; Johnson, W. L.; Tomsik, T. M.
2017-12-01
NASA has completed a series of tests at the Kennedy Space Center to demonstrate the capability of using integrated refrigeration and storage (IRAS) to remove energy from a liquid hydrogen (LH2) tank and control the state of the propellant. A primary test objective was the keeping and storing of the liquid in a zero boil-off state, so that the total heat leak entering the tank is removed by a cryogenic refrigerator with an internal heat exchanger. The LH2 is therefore stored and kept with zero losses for an indefinite period of time. The LH2 tank is a horizontal cylindrical geometry with a vacuum-jacketed, multilayer insulation system and a capacity of 125,000 liters. The closed-loop helium refrigeration system was a Linde LR1620 capable of 390W cooling at 20K (without any liquid nitrogen pre-cooling). Three different control methods were used to obtain zero boil-off: temperature control of the helium refrigerant, refrigerator control using the tank pressure sensor, and duty cycling (on/off) of the refrigerator as needed. Summarized are the IRAS design approach, zero boil-off control methods, and results of the series of zero boil-off tests.
Brignoli, Riccardo; Brown, J Steven; Skye, H; Domanski, Piotr A
2017-08-01
Preliminary refrigerant screenings typically rely on using cycle simulation models involving thermodynamic properties alone. This approach has two shortcomings. First, it neglects transport properties, whose influence on system performance is particularly strong through their impact on the performance of the heat exchangers. Second, the refrigerant temperatures in the evaporator and condenser are specified as input, while real-life equipment operates at imposed heat sink and heat source temperatures; the temperatures in the evaporator and condensers are established based on overall heat transfer resistances of these heat exchangers and the balance of the system. The paper discusses a simulation methodology and model that addresses the above shortcomings. This model simulates the thermodynamic cycle operating at specified heat sink and heat source temperature profiles, and includes the ability to account for the effects of thermophysical properties and refrigerant mass flux on refrigerant heat transfer and pressure drop in the air-to-refrigerant evaporator and condenser. Additionally, the model can optimize the refrigerant mass flux in the heat exchangers to maximize the Coefficient of Performance. The new model is validated with experimental data and its predictions are contrasted to those of a model based on thermodynamic properties alone.
NASA Technical Reports Server (NTRS)
Notardonato, W. U.; Swanger, A. M.; Fesmire, J. E.; Jumper, K. M.; Johnson, W. L.; Tomsik, T. M.
2017-01-01
NASA has completed a series of tests at the Kennedy Space Center to demonstrate the capability of using integrated refrigeration and storage (IRAS) to remove energy from a liquid hydrogen (LH2) tank and control the state of the propellant. A primary test objective was the keeping and storing of the liquid in a zero boil-off state, so that the total heat leak entering the tank is removed by a cryogenic refrigerator with an internal heat exchanger. The LH2 is therefore stored and kept with zero losses for an indefinite period of time. The LH2 tank is a horizontal cylindrical geometry with a vacuum-jacketed, multi-layer insulation system and a capacity of 125,000 liters. The closed-loop helium refrigeration system was a Linde LR1620 capable of 390W cooling at 20K (without any liquid nitrogen pre-cooling). Three different control methods were used to obtain zero boil-off: temperature control of the helium refrigerant, refrigerator control using the tank pressure sensor, and duty cycling (on/off) of the refrigerator as needed. Summarized are the IRAS design approach, zero boil-off control methods, and results of the series of zero boil-off tests.
NASA Astrophysics Data System (ADS)
Kumar, Ravinder; Singh, Jagdev; Kundal, Pankaj
2018-05-01
Refrigeration, Ventilation and Air Conditioning system is the largest reason behind the increasing demand of energy consumption in the world and saving that energy through some innovative methods becomes a large issue for the researchers. Compressor is a primary component of the refrigeration cycle. The application of nanoparticles in refrigeration cycle overcomes the energy consumption issue by improving the compressor suction and discharge characteristics. In this paper, an experimental study is carried out to investigate the effect of copper oxide (CuO) nanoparticles on different parameters of the refrigeration cycle. CuO particles are appended with the system refrigerant through lubricating oil of the compressor. Further, the viscosity measurements and friction coefficient analysis of compressor lubricant for different fractions of nanoparticles has been investigated. The results showed that both the suction and discharge characteristics of the compressor were enhanced with the utilization of nanolubricant in LPG based refrigeration cycle. Nanoparticles additive in lubricant increases the viscosity which lead to a significant decrease in friction coefficient. The COP of the cycle was improved by 46%, as the energy consumption of the compressor was decreased by 7%.
Improving Control in a Joule-Thomson Refrigerator
NASA Technical Reports Server (NTRS)
Borders, James; Pearson, David; Prina, Mauro
2005-01-01
A report discusses a modified design of a Joule-Thomson (JT) refrigerator under development to be incorporated into scientific instrumentation aboard a spacecraft. In most other JT refrigerators (including common household refrigerators), the temperature of the evaporator (the cold stage) is kept within a desired narrow range by turning a compressor on and off as needed. This mode of control is inadequate for the present refrigerator because a JT-refrigerator compressor performs poorly when the flow from its evaporator varies substantially, and this refrigerator is required to maintain adequate cooling power. The proposed design modifications include changes in the arrangement of heat exchangers, addition of a clamp that would afford a controlled heat leak from a warmer to a cooler stage to smooth out temperature fluctuations in the cooler stage, and incorporation of a proportional + integral + derivative (PID) control system that would regulate the heat leak to maintain the temperature of the evaporator within a desired narrow range while keeping the amount of liquid in the evaporator within a very narrow range in order to optimize the performance of the compressor. Novelty lies in combining the temperature- and cooling-power-regulating controls into a single control system.
Conceptual design of a 0.1 W magnetic refrigerator for operation between 10 K and 2 K
NASA Technical Reports Server (NTRS)
Helvensteijn, Ben P. M.; Kashani, Ali
1990-01-01
The design of a magnetic refrigerator for space applications is discussed. The refrigerator is to operate in the temperature range of 10 K-2 K, at a 2 K cooling power of 0.10 W. As in other magnetic refrigerators operating in this temperature range GGG has been selected as the refrigerant. Crucial to the design of the magnetic refrigerator are the heat switches at both the hot and cold ends of the GGG pill. The 2 K heat switch utilizes a narrow He II filled gap. The 10 K heat switch is based on a narrow helium gas gap. For each switch, the helium in the gap is cycled by means of activated carbon pumps. The design concentrates on reducing the switching times of the pumps and the switches as a whole. A single stage system (one magnet; one refrigerant pill) is being developed. Continuous cooling requires the fully stationary system to have at least two stages running parallel/out of phase with each other. In order to conserve energy, it is intended to recycle the magnetic energy between the magnets. To this purpose, converter networks designed for superconducting magnetic energy storage are being studied.
Comparative analysis of various CO 2 configurations in supermarket refrigeration systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Vishaldeep; Fricke, Brian; Bansal, Pradeep
Our paper presents an analysis of various CO 2 transcritical and cascade/secondary loop refrigeration systems that are becoming popular in supermarket applications with the objective of optimizing the operating parameters of these systems. In addition, the performance of selected CO 2-based refrigeration systems is compared to the baseline R404A multiplex direct expansion system using bin analyses in the eight climate zones of the United States. Moreover, for the refrigeration systems investigated, it was found that the Transcritical Booster System with Bypass Compressor (TBS-BC) had the lowest energy consumption for ambient temperatures (T amb) less than 8 °C, and for highermore » ambient temperatures the R404A direct expansion system was found to have the lowest energy consumption. Finally, the TBS-BC performs equivalent to or better than the R404A direct expansion system in the northern two-thirds of the US. For the southern portion of the US, the R404A multiplex DX system performs better than CO 2 systems.« less
Comparative analysis of various CO 2 configurations in supermarket refrigeration systems
Sharma, Vishaldeep; Fricke, Brian; Bansal, Pradeep
2014-07-09
Our paper presents an analysis of various CO 2 transcritical and cascade/secondary loop refrigeration systems that are becoming popular in supermarket applications with the objective of optimizing the operating parameters of these systems. In addition, the performance of selected CO 2-based refrigeration systems is compared to the baseline R404A multiplex direct expansion system using bin analyses in the eight climate zones of the United States. Moreover, for the refrigeration systems investigated, it was found that the Transcritical Booster System with Bypass Compressor (TBS-BC) had the lowest energy consumption for ambient temperatures (T amb) less than 8 °C, and for highermore » ambient temperatures the R404A direct expansion system was found to have the lowest energy consumption. Finally, the TBS-BC performs equivalent to or better than the R404A direct expansion system in the northern two-thirds of the US. For the southern portion of the US, the R404A multiplex DX system performs better than CO 2 systems.« less
NASA Technical Reports Server (NTRS)
Hansen, R. G.; Byrd, E. A.
1983-01-01
The primary development of cryogenically cooled infrared systems was accomplished by FLIR systems designed for airborne, passive night vision. Essential to the development of these FLIR systems was a family of closed cycle refrigerators which had to meet a limited envelope requirement, utilize a nonlubricated compressor module, and be light in weight. Closed cycle refrigerators accomplished the same cooling function, they use modified oil lubricated reciprocating compressors which are limited in their axis of orientation to an angle of approximately 15-20 degrees maximum from horizon.
Modifications to JLab 12 GeV Refrigerator and Wide Range Mix Mode Performance Testing Results
NASA Astrophysics Data System (ADS)
Knudsen, P.; Ganni, V.; Hasan, N.; Dixon, K.; Norton, R.; Creel, J.
2017-02-01
Analysis of data obtained during the spring 2013 commissioning of the new 4.5 K refrigeration system at Jefferson Lab (JLab) for the 12 GeV upgrade indicated a wide capacity range with good efficiency and minimal operator interaction. Testing also showed that the refrigerator required higher liquid nitrogen (LN) consumption for its pre-cooler than anticipated by the design. This does not affect the capacity of the refrigerator, but it does result in an increased LN utility cost. During the summer of 2015 the modifications were implemented by the cold box manufacturer, according to a design similar to the JLab 12 GeV cold box specification. Subsequently, JLab recommissioned the cold box and performed extensive performance testing, ranging from 20% to 100% of the design maximum capacity, and in various modes of operation, ranging from pure refrigeration, pure liquefaction, half-and-half mix mode and at selected design modes using the Floating Pressure - Ganni Cycle. The testing demonstrated that the refrigerator system has a good and fairly constant performance over a wide capacity range and different modes of operation. It also demonstrated the modifications resulted in a LN consumption that met the design for the pure refrigeration mode (which is the most demanding) and was lower than the design for the nominal and maximum capacity modes. In addition, a pulsed-load test, similar to what is expected for cryogenic systems supporting fusion experiments, was conducted to observe the response using the Floating Pressure - Ganni Cycle, which was stable and robust. This paper will discuss the results and analysis of this testing pertaining to the LN consumption, the system efficiency over a wide range of capacity and different modes and the behaviour of the system to a pulsed load.
NASA Astrophysics Data System (ADS)
Bonne, F.; Alamir, M.; Bonnay, P.
2017-02-01
This paper deals with multivariable constrained model predictive control for Warm Compression Stations (WCS). WCSs are subject to numerous constraints (limits on pressures, actuators) that need to be satisfied using appropriate algorithms. The strategy is to replace all the PID loops controlling the WCS with an optimally designed model-based multivariable loop. This new strategy leads to high stability and fast disturbance rejection such as those induced by a turbine or a compressor stop, a key-aspect in the case of large scale cryogenic refrigeration. The proposed control scheme can be used to achieve precise control of pressures in normal operation or to avoid reaching stopping criteria (such as excessive pressures) under high disturbances (such as a pulsed heat load expected to take place in future fusion reactors, expected in the cryogenic cooling systems of the International Thermonuclear Experimental Reactor ITER or the Japan Torus-60 Super Advanced fusion experiment JT-60SA). The paper details the simulator used to validate this new control scheme and the associated simulation results on the SBTs WCS. This work is partially supported through the French National Research Agency (ANR), task agreement ANR-13-SEED-0005.
Effect of Refrigeration on Inoculated Micro-ID Strips
Burdash, Nicholas M.; West, Marcia E.
1981-01-01
Since reading results after 4 h with the Micro-ID system is not always convenient, a study of 500 isolates indicated that identification at the species level is essentially unchanged when inoculated strips are refrigerated overnight and then incubated or incubated and then refrigerated overnight before reading. PMID:7026604
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-21
... recovery and/or recovery and recycling equipment (hereafter referred to as ``refrigerant handling equipment... systems for the purposes of collecting, validating, and verifying information, processing and maintaining... approved refrigerant reclaimed by owners of refrigerant recycling equipment certified under 40 CFR 82.36(a...
46 CFR 151.50-79 - Methyl acetylene-propadiene mixture.
Code of Federal Regulations, 2011 CFR
2011-10-01
... suction line. (c) The piping system, including the cargo refrigeration system, for tanks to be loaded with methyl acetylene-propadiene mixture must be completely separate from piping and refrigeration systems for other tanks. If the piping system for the tanks to be loaded with methyl acetylene-propadiene mixture is...
46 CFR 151.50-79 - Methyl acetylene-propadiene mixture.
Code of Federal Regulations, 2010 CFR
2010-10-01
... suction line. (c) The piping system, including the cargo refrigeration system, for tanks to be loaded with methyl acetylene-propadiene mixture must be completely separate from piping and refrigeration systems for other tanks. If the piping system for the tanks to be loaded with methyl acetylene-propadiene mixture is...
Industrial Energy Training and Certification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glatt, Sandy; Cox, Daryl; Nimbalkar, Sachin U.
Compressed air systems, ammonia refrigeration systems, chilled water systems, steam systems, process heating systems, combined heat and power systems, pump systems and fan systems are major industrial energy systems commonly found in manufacturing facilities. Efficiency of these systems contributes significantly to whole facilities' energy performance. On the national, even international level, well-structured training and highly recognized certification programs help develop a highly-skilled and qualified workforce to maintain and improve facilities' energy performance, particularly as technologies within these systems become more advanced. The purpose of this paper is to review currently available training and certification programs focusing on these systems andmore » to identify the gap between market's needs and currently available programs. Three major conclusions are: first, most training programs focus on operations, maintenance, safety and design although some briefly touch the energy performance aspect; second, except CRES by RETA and PSA Certificate and PSAP Master Certification by HI, no other certifications had been found emphasizing on knowledge and skills for improving and maintaining these systems' energy performance; third, developing energy efficiency focused training and ANSI accredited certification programs on these energy systems will fill the gap between market's needs and currently available programs.« less
Industrial Energy Training and Certification
Glatt, Sandy; Cox, Daryl; Nimbalkar, Sachin U.; ...
2017-11-01
Compressed air systems, ammonia refrigeration systems, chilled water systems, steam systems, process heating systems, combined heat and power systems, pump systems and fan systems are major industrial energy systems commonly found in manufacturing facilities. Efficiency of these systems contributes significantly to whole facilities' energy performance. On the national, even international level, well-structured training and highly recognized certification programs help develop a highly-skilled and qualified workforce to maintain and improve facilities' energy performance, particularly as technologies within these systems become more advanced. The purpose of this paper is to review currently available training and certification programs focusing on these systems andmore » to identify the gap between market's needs and currently available programs. Three major conclusions are: first, most training programs focus on operations, maintenance, safety and design although some briefly touch the energy performance aspect; second, except CRES by RETA and PSA Certificate and PSAP Master Certification by HI, no other certifications had been found emphasizing on knowledge and skills for improving and maintaining these systems' energy performance; third, developing energy efficiency focused training and ANSI accredited certification programs on these energy systems will fill the gap between market's needs and currently available programs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
BEETIT Project: UFL is improving a refrigeration system that uses low quality heat to provide the energy needed to drive cooling. This system, known as absorption refrigeration system (ARS), typically consists of large coils that transfer heat. Unfortunately, these large heat exchanger coils are responsible for bulkiness and high cost of ARS. UFL is using new materials as well as system design innovations to develop nanoengineered membranes to allow for enhanced heat exchange that reduces bulkiness. UFL’s design allows for compact, cheaper and more reliable use of ARS that use solar or waste heat.
Dynamic simulation of a reverse Brayton refrigerator
NASA Astrophysics Data System (ADS)
Peng, N.; Lei, L. L.; Xiong, L. Y.; Tang, J. C.; Dong, B.; Liu, L. Q.
2014-01-01
A test refrigerator based on the modified Reverse Brayton cycle has been developed in the Chinese Academy of Sciences recently. To study the behaviors of this test refrigerator, a dynamic simulation has been carried out. The numerical model comprises the typical components of the test refrigerator: compressor, valves, heat exchangers, expander and heater. This simulator is based on the oriented-object approach and each component is represented by a set of differential and algebraic equations. The control system of the test refrigerator is also simulated, which can be used to optimize the control strategies. This paper describes all the models and shows the simulation results. Comparisons between simulation results and experimental data are also presented. Experimental validation on the test refrigerator gives satisfactory results.
49 CFR 173.313 - UN Portable Tank Table for Liquefied Compressed Gases and Chemical Under Pressure.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 28.0 Allowed Normal 0.43 24.5 22.0 20.0 1078 Refrigerant gas, n.o.s. See MAWP definition in § 178.276..., flammable, n.o.s. See MAWP definition in § 178.276(a) Allowed Normal § 173.32(f) 1958 1,2-Dichloro-1,1,2,2... liquefied, n.o.s. See MAWP definition in 178.276(a) Allowed Normal See § 173.32(f) 1969 Isobutane 8.5...
49 CFR 173.313 - UN Portable Tank Table for Liquefied Compressed Gases and Chemical Under Pressure.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 28.0 Allowed Normal 0.43 24.5 22.0 20.0 1078 Refrigerant gas, n.o.s. See MAWP definition in § 178.276..., flammable, n.o.s. See MAWP definition in § 178.276(a) Allowed Normal § 173.32(f) 1958 1,2-Dichloro-1,1,2,2... liquefied, n.o.s. See MAWP definition in 178.276(a) Allowed Normal See § 173.32(f) 1969 Isobutane 8.5...
An Automatic System of Testing the Best Stress of Installation for Semiconductor Refrigeration Piece
NASA Astrophysics Data System (ADS)
Chen, Hongyan; Song, Ping
Concerning the problems of the impact on the factors of installation about semiconductor refrigeration piece are rarely studied in China and abroad, a reasonable structure of test device is designed, using stepper motor to test the temperature of the cold surface under different stress of installation to get the best stress of installation for the semiconductor refrigeration piece. Experiments shows that the system is of good noise immunity, high controlling and measuring precision.
Alternative refrigerants and refrigeration cycles for domestic refrigerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sand, J.R.; Rice, C.L.; Vineyard, E.A.
1992-12-01
This project initially focused on using nonazeotropic refrigerant mixtures (NARMs) in a two-evaporator refrigerator-freezer design using two stages of liquid refrigerant subcooling. This concept was proposed and tested in 1975. The work suggested that the concept was 20% more efficient than the conventional one-evaporator refrigerator-freezer (RF) design. After considerable planning and system modeling based on using a NARM in a Lorenz-Meutzner (L-M) RF, the program scope was broadened to include investigation of a ``dual-loop`` concept where energy savings result from exploiting the less stringent operating conditions needed to satisfy cooling, of the fresh food section. A steady-state computer model (CYCLE-Z)more » capable of simulating conventional, dual loop, and L-M refrigeration cycles was developed. This model was used to rank the performance of 20 ozone-safe NARMs in the L-M refrigeration cycle while key system parameters were systematically varied. The results indicated that the steady-state efficiency of the L-M design was up to 25% greater than that of a conventional cycle. This model was also used to calculate the performance of other pure refrigerants relative to that of dichlorodifluoromethane, R-12, in conventional and dual-loop RF designs. Projected efficiency gains for these cycles were more modest, ranging from 0 to 10%. Individual compressor calorimeter tests of nine combinations of evaporator and condenser temperatures usually used to map RF compressor performance were carried out with R-12 and two candidate L-M NARMs in several compressors. Several models of a commercially produced two-evaporator RF were obtained as test units. Two dual-loop RF designs were built and tested as part of this project.« less
Neon turbo-Brayton cycle refrigerator for HTS power machines
NASA Astrophysics Data System (ADS)
Hirai, Hirokazu; Hirokawa, M.; Yoshida, Shigeru; Nara, N.; Ozaki, S.; Hayashi, H.; Okamoto, H.; Shiohara, Y.
2012-06-01
We developed a prototype turbo-Brayton refrigerator whose working fluid is neon gas. The refrigerator is designed for a HTS (High Temperature Superconducting) power transformer and its cooling power is more than 2 kW at 65 K. The refrigerator has a turboexpander and a turbo-compressor, which utilize magnetic bearings. These rotational machines have no rubbing parts and no oil-components. Those make a long maintenance interval of the refrigerator. The refrigerator is very compact because our newly developed turbo-compressor is volumetrically smaller than a displacement type compressor in same operating specification. Another feature of the refrigerator is a wide range operation capability for various heat-loads. Cooling power is controlled by the input-power of the turbo-compressor instead of the conventional method of using an electric heater. The rotational speed of the compressor motor is adjusted by an inverter. This system is expected to be more efficient. We show design details, specification and cooling test results of the new refrigerator in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gomes, Alberto Regio; Keres, Stephen L.; Kuehl, Stephen J.
A refrigerator appliance configuration, and associated methods of operation, for an appliance with a controller, a condenser, at least one evaporator, a compressor, and two refrigeration compartments. The configuration may be equipped with a variable-speed or variable-capacity compressor, variable speed evaporator or compartment fans, a damper and/or a dual-temperature evaporator with a valve system to control flow of refrigerant through one or more pressure reduction devices. The controller, by operation of the compressor, fans, damper and/or valve system, depending on the appliance configuration, controls the cooling rate in one or both compartments to synchronize, alternating cycles of cooling the compartmentsmore » to their set point temperatures.« less
Refrigerated display case lighting with LEDs
NASA Astrophysics Data System (ADS)
Raghavan, Ramesh; Narendran, Nadarajah
2002-11-01
The rapid development of high brightness light emitting diodes (LEDs) has triggered many applications, especially in the area of display lighting. This paper focuses on the application of white LEDs in refrigerated display cases. The fluorescent lighting presently used in commercial refrigerators is inefficient in the application and also it provides poor lighting for merchandising. A laboratory human factors experiment was conducted to assess the preference for the different lighting systems, namely, fluorescent and LED. Two refrigerated display cases, one with the traditional fluorescent lighting system and the other with a prototype LED lighting system, were placed side-by-side in a laboratory setting. Illuminance measurements made within the two display cases showed that the lighting was more uniform with the LED system compared to the traditional fluorescent system. Sixteen human subjects participated in this study and rated their preference for the two lighting systems. The results show that human subjects strongly preferred the display case with the LED lighting. The authors of this manuscript believe a field study would be greatly beneficial to further confirm these results and to understand the relationship between preference and sales. Considering the luminous efficacy of white LEDs presently available in the marketplace, it is possible to develop a LED based lighting system for commercial refrigerators that is competitive with fluorescent lighting system in terms of energy use. The LED based lighting would provide better lighting than traditional fluorescent lighting.
Study on transport packages used for food freshness preservation based on thermal analysis
NASA Astrophysics Data System (ADS)
Yu, Ying
2016-12-01
In recent time, as the Chinese consumption level increases, the consumption quantity of high-value fruits, vegetables and seafood products have been increasing year by year. As a consequence, the traffic volume of refrigerated products also increases yearly and the popularization degree of the cold-chain transportation enhances. A low-temperature environment should be guaranteed during transportation, thus there is about 40% of diesel oil should be consumed by the refrigerating system and the cold-chain transportation becomes very costly. This study aimed to explore methods that could reduce the cost of transport packages of refrigerated products. On the basis of the heat transfer theory and the fluid mechanics theory, the heat exchanging process of corrugated cases during the operation of refrigerating system was analyzed, the heat transfer process of corrugated cases and refrigerator van was theoretically analyzed and the heat balance equation of corrugated cases was constructed.
Synchronous temperature rate control for refrigeration with reduced energy consumption
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gomes, Alberto Regio; Keres, Stephen L.; Kuehl, Steven J.
Methods of operation for refrigerator appliance configurations with a controller, a condenser, at least one evaporator, a compressor, and two refrigeration compartments. The configuration may be equipped with a variable-speed or variable-capacity compressor, variable speed evaporator or compartment fans, a damper, and/or a dual-temperature evaporator with a valve system to control flow of refrigerant through one or more pressure reduction devices. The methods may include synchronizing alternating cycles of cooling each compartment to a temperature approximately equal to the compartment set point temperature by operation of the compressor, fans, damper and/or valve system. The methods may also include controlling themore » cooling rate in one or both compartments. Refrigeration compartment cooling may begin at an interval before or after when the freezer compartment reaches its lower threshold temperature. Freezer compartment cooling may begin at an interval before or after when the freezer compartment reaches its upper threshold temperature.« less
Synchronous temperature rate control for refrigeration with reduced energy consumption
Gomes, Alberto Regio; Keres, Stephen L.; Kuehl, Steven J.; Litch, Andrew D.; Richmond, Peter J.; Wu, Guolian
2015-09-22
Methods of operation for refrigerator appliance configurations with a controller, a condenser, at least one evaporator, a compressor, and two refrigeration compartments. The configuration may be equipped with a variable-speed or variable-capacity compressor, variable speed evaporator or compartment fans, a damper, and/or a dual-temperature evaporator with a valve system to control flow of refrigerant through one or more pressure reduction devices. The methods may include synchronizing alternating cycles of cooling each compartment to a temperature approximately equal to the compartment set point temperature by operation of the compressor, fans, damper and/or valve system. The methods may also include controlling the cooling rate in one or both compartments. Refrigeration compartment cooling may begin at an interval before or after when the freezer compartment reaches its lower threshold temperature. Freezer compartment cooling may begin at an interval before or after when the freezer compartment reaches its upper threshold temperature.
High-Performance, Low Environmental Impact Refrigerants
NASA Technical Reports Server (NTRS)
McCullough, E. T.; Dhooge, P. M.; Glass, S. M.; Nimitz, J. S.
2001-01-01
Refrigerants used in process and facilities systems in the US include R-12, R-22, R-123, R-134a, R-404A, R-410A, R-500, and R-502. All but R-134a, R-404A, and R-410A contain ozone-depleting substances that will be phased out under the Montreal Protocol. Some of the substitutes do not perform as well as the refrigerants they are replacing, require new equipment, and have relatively high global warming potentials (GWPs). New refrigerants are needed that addresses environmental, safety, and performance issues simultaneously. In efforts sponsored by Ikon Corporation, NASA Kennedy Space Center (KSC), and the US Environmental Protection Agency (EPA), ETEC has developed and tested a new class of refrigerants, the Ikon (registered) refrigerants, based on iodofluorocarbons (IFCs). These refrigerants are nonflammable, have essentially zero ozone-depletion potential (ODP), low GWP, high performance (energy efficiency and capacity), and can be dropped into much existing equipment.
Magnetic refrigeration for low-temperature applications
NASA Technical Reports Server (NTRS)
Barclay, J. A.
1985-01-01
The application of refrigeration at low temperatures ranging from production of liquid helium for medical imaging systems to cooling of infrared sensors on surveillance satellites is discussed. Cooling below about 15 K with regenerative refrigerators is difficult because of the decreasing thermal mass of the regenerator compared to that of the working material. In order to overcome this difficulty with helium gas as the working material, a heat exchanger plus a Joule-Thomson or other exponder is used. Regenerative magnetic refrigerators with magnetic solids as the working material have the same regenerator problem as gas refrigerators. This problem provides motivation for the development of nonregenerative magnetic refrigerators that span approximately 1 K to approximately 0 K. Particular emphasis is placed on high reliability and high efficiency. Calculations indicate considerable promise in this area. The principles, the potential, the problems, and the progress towards development of successful 4 to 20 K magnetic refrigerators are discussed.
Investigation of two-phase heat transfer coefficients of argon-freon cryogenic mixed refrigerants
NASA Astrophysics Data System (ADS)
Baek, Seungwhan; Lee, Cheonkyu; Jeong, Sangkwon
2014-11-01
Mixed refrigerant Joule Thomson refrigerators are widely used in various kinds of cryogenic systems these days. Although heat transfer coefficient estimation for a multi-phase and multi-component fluid in the cryogenic temperature range is necessarily required in the heat exchanger design of mixed refrigerant Joule Thomson refrigerators, it has been rarely discussed so far. In this paper, condensation and evaporation heat transfer coefficients of argon-freon mixed refrigerant are measured in a microchannel heat exchanger. A Printed Circuit Heat Exchanger (PCHE) with 340 μm hydraulic diameter has been developed as a compact microchannel heat exchanger and utilized in the experiment. Several two-phase heat transfer coefficient correlations are examined to discuss the experimental measurement results. The result of this paper shows that cryogenic two-phase mixed refrigerant heat transfer coefficients can be estimated by conventional two-phase heat transfer coefficient correlations.
ERIC Educational Resources Information Center
Isik, Nurettin; Onat, Ayhan
2004-01-01
In this study of "Occupational Survey of Refrigeration Technicians" in which the "Task Inventory Questionnaires" have been developed, we aim at determining the vocational psychomotor competencies (skills) of refrigeration technicians for effectively carrying out the occupational duties in labor-life. In the first phase of the…
Refrigerated Warehouse Demand Response Strategy Guide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, Doug; Castillo, Rafael; Larson, Kyle
This guide summarizes demand response measures that can be implemented in refrigerated warehouses. In an appendix, it also addresses related energy efficiency opportunities. Reducing overall grid demand during peak periods and energy consumption has benefits for facility operators, grid operators, utility companies, and society. State wide demand response potential for the refrigerated warehouse sector in California is estimated to be over 22.1 Megawatts. Two categories of demand response strategies are described in this guide: load shifting and load shedding. Load shifting can be accomplished via pre-cooling, capacity limiting, and battery charger load management. Load shedding can be achieved by lightingmore » reduction, demand defrost and defrost termination, infiltration reduction, and shutting down miscellaneous equipment. Estimation of the costs and benefits of demand response participation yields simple payback periods of 2-4 years. To improve demand response performance, it’s suggested to install air curtains and another form of infiltration barrier, such as a rollup door, for the passageways. Further modifications to increase efficiency of the refrigeration unit are also analyzed. A larger condenser can maintain the minimum saturated condensing temperature (SCT) for more hours of the day. Lowering the SCT reduces the compressor lift, which results in an overall increase in refrigeration system capacity and energy efficiency. Another way of saving energy in refrigerated warehouses is eliminating the use of under-floor resistance heaters. A more energy efficient alternative to resistance heaters is to utilize the heat that is being rejected from the condenser through a heat exchanger. These energy efficiency measures improve efficiency either by reducing the required electric energy input for the refrigeration system, by helping to curtail the refrigeration load on the system, or by reducing both the load and required energy input.« less
Isac Sc-Linac Phase-II Helium Refrigerator Commissioning and First Operational Experience at Triumf
NASA Astrophysics Data System (ADS)
Sekachev, I.; Kishi, D.; Laxdal, R. E.
2010-04-01
ISAC Phase-II is an upgrade of the radioactive isotope superconducting linear accelerator, SC-linac, at TRIUMF. The Phase-I section of the accelerator, medium-beta, is operational and is cooled with a 600 W helium refrigerator, commissioned in March 2005. An identical refrigerator is being used with the Phase-II segment of the accelerator; which is now under construction. The second refrigerator has been commissioned and tested with the Phase-I section of the linac and is used for Phase-II linac development, including new SC-cavity performance tests. The commissioning of the Phase-II refrigeration system and recent operational experience is presented.
Gomes, Alberto Regio; Litch, Andrew D.; Wu, Guolian
2016-03-15
A refrigerator appliance (and associated method) that includes a condenser, evaporator and a multi-capacity compressor. The appliance also includes a pressure reducing device arranged within an evaporator-condenser refrigerant circuit, and a valve system for directing or restricting refrigerant flow through the device. The appliance further includes a controller for operating the compressor upon the initiation of a compressor ON-cycle at a priming capacity above a nominal capacity for a predetermined or calculated duration.
Stability and refrigeration of magnet cryosystems near 1.8 K using the thermomechanical effect
NASA Technical Reports Server (NTRS)
Frederking, T. H. K.; Chen, W. E. W.; Caspi, S.
1987-01-01
Magnet cryosystem options utilizing the thermomechanical effect of He II and the mechano-caloric effect for refrigeration (referred to as vortex refrigeration) are examined. The performance of the existing He II magnet refrigeration system is briefly reviewed, with attention given to superleak properties, vortex shedding, heat input, and thermodynamic cycle. It is concluded that the possibilities of magnet heat leak use for energetics and stability improvements are promising when He II is selected as magnet coolant.
Drop-in substitute for dichlorodifluoromethane refrigerant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goble, G.H.
1993-06-01
A method for producing refrigeration in a refrigeration system designed for a dichlorodifluoromethane refrigerant is described, comprising drop-in substituting for said dichlorodifluoromethane a ternary mixture of about 2 to 20 weight percent isobutane, about 21 to 51 weight percent 1-chloro-1,1-difluoroethane, and about 41 to 71 weight percent chlorodifluoromethane, with the weight percentages of said components being weight percentages of the overall mixture; condensing said ternary mixture; and thereafter evaporating said ternary mixture in the vicinity of a body to be cooled.
Alternatives to ozone depleting refrigerants in test equipment
NASA Technical Reports Server (NTRS)
Hall, Richard L.; Johnson, Madeleine R.
1995-01-01
This paper describes the initial results of a refrigerant retrofit project at the Aerospace Guidance and Metrology Center (AGMC) at Newark Air Force Base, Ohio. The objective is to convert selected types of test equipment to properly operate on hydrofluorocarbon (HFC) alternative refrigerants, having no ozone depleting potential, without compromising system reliability or durability. This paper discusses the primary technical issues and summarizes the test results for 17 different types of test equipment: ten environmental chambers, two ultralow temperature freezers, two coolant recirculators, one temperature control unit, one vapor degreaser, and one refrigerant recovery system. The postconversion performance test results have been very encouraging: system capacity and input power remained virtually unchanged. In some cases, the minimum operating temperature increased by a few degrees as a result of the conversion, but never beyond AGMC's functional requirements.
Magnet/cryocooler integration for thermal stability in conduction-cooled systems
NASA Astrophysics Data System (ADS)
Chang, H.-M.; Kwon, K. B.
2002-05-01
The stability conditions that take into accounts the size of superconducting magnets and the refrigeration capacity of cryocoolers are investigated for the conduction-cooled systems without liquid cryogens. The worst scenario in the superconducting systems is that the heat generation in the resistive state exceeds the refrigeration, causing a rise in the temperature of the magnet winding and leading to burnout. It is shown by an analytical solution that in the continuously resistive state, the temperature may increase indefinitely or a stable steady state may be reached, depending upon the relative size of the magnet with respect to the refrigeration capacity of the cryocooler. The stability criteria include the temperature-dependent properties of the magnet materials and the refrigeration characteristics of the cryocooler. A useful graphical scheme is presented and the design of the stable magnet/cryocooler interface is demonstrated.
Vibration Mitigation for a Cryogen-Free Dilution Refrigerator for the AMoRE-Pilot Experiment
NASA Astrophysics Data System (ADS)
Lee, C.; Jo, H. S.; Kang, C. S.; Kim, G. B.; Kim, I.; Kim, Y. H.; Lee, H. J.; So, J. H.
2018-06-01
The Advanced Mo-based Rare process Experiment utilizes a cryogen-free dilution refrigerator to operate its low-temperature detectors. Mechanical vibration originating from its pulse tube refrigerator can affect the detector performance. A mechanical filter system has been installed between the 4K and still plates with eddy current dampers in addition to a spring-loaded damping system previously installed below the mixing chamber plate of the cryostat. The filters significantly mitigated vibrations and improved the detector signals.
Final test results for the ground operations demonstration unit for liquid hydrogen
NASA Astrophysics Data System (ADS)
Notardonato, W. U.; Swanger, A. M.; Fesmire, J. E.; Jumper, K. M.; Johnson, W. L.; Tomsik, T. M.
2017-12-01
Described herein is a comprehensive project-a large-scale test of an integrated refrigeration and storage system called the Ground Operations and Demonstration Unit for Liquid Hydrogen (GODU LH2), sponsored by the Advanced Exploration Systems Program and constructed at Kennedy Space Center. A commercial cryogenic refrigerator interfaced with a 125,000 l liquid hydrogen tank and auxiliary systems in a manner that enabled control of the propellant state by extracting heat via a closed loop Brayton cycle refrigerator coupled to a novel internal heat exchanger. Three primary objectives were demonstrating zero-loss storage and transfer, gaseous liquefaction, and propellant densification. Testing was performed at three different liquid hydrogen fill-levels. Data were collected on tank pressure, internal tank temperature profiles, mass flow in and out of the system, and refrigeration system performance. All test objectives were successfully achieved during approximately two years of testing. A summary of the final results is presented in this paper.
NASA Astrophysics Data System (ADS)
Sobue, Atsushi; Watanabe, Koichi
In the present study, we quantitatively evaluated the global warming impact by refrigeration and air-conditioning systems in office buildings on the basis of reliable TEWI information. This paper proposes an improved TEWI evaluation procedure by considering regional heat demands and part load of air-conditioning systems. In the TEWI evaluation of commercial chillers, a percentage of the impact by refrigerant released to the atmosphere (direct effect) is less than 19.9% in TEWI values. Therefore, a reduction of the impact by CO2 released as a result of the energy consumed to drive the refrigeration or air-conditioning systems through out their lifetime (indirect effect) is the most effective measure in reducing the global warming impact. On the other hand, we have also pointed out energy loss that might be generated by an excess investment to the equipment. We have also showed a usefulness in dividing the heating / cooling system into several small-capacity units so as to improve the energy utilization efficiency.
An improved wave rotor refrigerator using an outside gas flow for recycling the expansion work
NASA Astrophysics Data System (ADS)
Zhao, J.; Hu, D.
2017-03-01
To overcome the bottleneck of traditional gas wave refrigeration, an improved wave rotor refrigerator (WRR) cycle has been proposed, in which the expansion work was recycled during the process of refrigeration. Thermodynamic analysis of the two cycles shows that the refrigeration efficiency of the improved WRR cycle has been greatly increased compared with the traditional WRR. The performance of an improved WRR was investigated by adjusting the major operational parameters, such as the rotational speed of the wave rotor, port size, and inflow overpressure. The experimental results show that pressure loss can be reduced by nearly 40 % in this improved refrigeration system. Meanwhile, a two-dimensional numerical simulation was performed to understand the wave interactions that take place inside the rotor channels.
Dynamic Characteristics of a Simple Brayton Cryocycle
NASA Astrophysics Data System (ADS)
Kutzschbach, A.; Kauschke, M.; Haberstroh, Ch.; Quack, H.
2006-04-01
The goal of the overall program is to develop a dynamic numerical model of helium refrigerators and the associated cooling systems based on commercial simulation software. The aim is to give system designers a tool to search for optimum control strategies during the construction phase of the refrigerator with the help of a plant "simulator". In a first step, a simple Brayton refrigerator has been investigated, which consists of a compressor, an after-cooler, a counter-current heat exchanger, a turboexpander and a heat source. Operating modes are "refrigeration" and "liquefaction". Whereas for the steady state design only component efficiencies are needed and mass and energy balances have to be calculated, for the dynamic calculation one needs also the thermal masses and the helium inventory. Transient mass and energy balances have to be formulated for many small elements and then solved simultaneously for all elements. Starting point of the simulation of the Brayton cycle is the steady state operation at design conditions. The response of the system to step and cyclic changes of the refrigeration or liquefaction rate are calculated and characterized.
Experimental performance study of a proposed desiccant based air conditioning system.
Bassuoni, M M
2014-01-01
An experimental investigation on the performance of a proposed hybrid desiccant based air conditioning system referred as HDBAC is introduced in this paper. HDBAC is mainly consisted of a liquid desiccant dehumidification unit integrated with a vapor compression system (VCS). The VCS unit has a cooling capacity of 5.27 kW and uses 134a as refrigerant. Calcium chloride (CaCl2) solution is used as the working desiccant material. HDBAC system is used to serve low sensible heat factor applications. The effect of different parameters such as, process air flow rate, desiccant solution flow rate, evaporator box and condenser box solution temperatures, strong solution concentration and regeneration temperature on the performance of the system is studied. The performance of the system is evaluated using some parameters such as: the coefficient of performance (COPa), specific moisture removal and energy saving percentage. A remarkable increase of about 54% in the coefficient of performance of the proposed system over VCS with reheat is achieved. A maximum overall energy saving of about 46% is observed which emphasizes the use of the proposed system as an energy efficient air conditioning system.
Experimental performance study of a proposed desiccant based air conditioning system
Bassuoni, M.M.
2013-01-01
An experimental investigation on the performance of a proposed hybrid desiccant based air conditioning system referred as HDBAC is introduced in this paper. HDBAC is mainly consisted of a liquid desiccant dehumidification unit integrated with a vapor compression system (VCS). The VCS unit has a cooling capacity of 5.27 kW and uses 134a as refrigerant. Calcium chloride (CaCl2) solution is used as the working desiccant material. HDBAC system is used to serve low sensible heat factor applications. The effect of different parameters such as, process air flow rate, desiccant solution flow rate, evaporator box and condenser box solution temperatures, strong solution concentration and regeneration temperature on the performance of the system is studied. The performance of the system is evaluated using some parameters such as: the coefficient of performance (COPa), specific moisture removal and energy saving percentage. A remarkable increase of about 54% in the coefficient of performance of the proposed system over VCS with reheat is achieved. A maximum overall energy saving of about 46% is observed which emphasizes the use of the proposed system as an energy efficient air conditioning system. PMID:25685475
Computational Investigation on the performance of thermo-acoustically driven pulse tube refrigerator
NASA Astrophysics Data System (ADS)
Skaria, Mathew; Rasheed, K. K. Abdul; Shafi, K. A.; Kasthurirengan, S.; Behera, Upendra
2017-02-01
A Thermoacoustic Pulse Tube Refrigeration (TAPTR) system employs a thermo acoustic engine as the pressure wave generator instead of mechanical compressor. Such refrigeration systems are highly reliable due to the absence of moving components, structural simplicity and the use of environmental friendly working fluids. In the present work, a traveling wave thermoacoustic primmover (TWTAPM) has been developed and it is coupled to a pulse tube cryocooler. The performance of TAPTR depends on the operating and working fluid parameters. Simulation studies of the system has been performed using ANSYS Fluent and compared with experimental results.
Analysis of a combined refrigerator-generator space power system
NASA Technical Reports Server (NTRS)
Klann, J. L.
1973-01-01
Description of a single-shaft and a two-shaft rotating machinery arrangements using neon for application in a combined refrigerator-generator power system for space missions. The arrangements consist of combined assemblies of a power turbine, alternator, compressor, and cry-turbine with a single-stage radial-flow design. A computer program was prepared to study the thermodynamics of the dual system in the evaluation of its cryocooling/electric capacity and appropriate weight. A preliminary analysis showed that a two-shaft arrangement of the power- and refrigeration-loop rotating machinery provided better output capacities than a single-shaft arrangement, without prohibitive operating compromises.
Photovoltaic-Powered Vaccine Refrigerator: Freezer Systems Field Test Results
NASA Technical Reports Server (NTRS)
Ratajczak, A. F.
1985-01-01
A project to develop and field test photovoltaic-powered refrigerator/freezers suitable for vaccine storage was undertaken. Three refrigerator/freezers were qualified; one by Solar Power Corp. and two by Solvolt. Follow-on contracts were awarded for 19 field test systems and for 10 field test systems. A total of 29 systems were installed in 24 countries between October 1981 and October 1984. The project, systems descriptions, installation experiences, performance data for the 22 systems for which field test data was reported, an operational reliability summary, and recommendations relative to system designs and future use of such systems are explained. Performance data indicate that the systems are highly reliable and are capable of maintaining proper vaccine storage temperatures in a wide range of climatological and user environments.
Intravenous hemostats: challenges in translation to patients
NASA Astrophysics Data System (ADS)
Lashof-Sullivan, Margaret; Shoffstall, Andrew; Lavik, Erin
2013-10-01
Excessive bleeding and the resulting complications are a leading killer of young people globally. There are many successful methods to halt bleeding in the extremities, including compression, tourniquets, and dressings. However, current treatments for internal hemorrhage (including from head or truncal injuries), termed non-compressible bleeding, are inadequate. For these non-compressible injuries, blood transfusions are the current treatment standard. However, they must be refrigerated, may potentially transfer disease, and are of limited supply. In addition, time is of the essence for halting hemorrhage, since more than a third of civilian deaths due to hemorrhage from trauma occur before the patient even reaches the hospital. As a result, particles that can cross-link activated platelets through the glycoprotein IIb/IIIa receptor expressed on activated platelets are being investigated as an alternative treatment for non-compressible bleeding. Ideally, these particles would interact specifically with platelets to stabilize the platelet plug. Initial designs used biologically derived microparticles with red blood cell fragment or albumin cores decorated with RGD or fibrinogen, which bind to GPIIb/IIIa. More recently there has been research into the use of fully synthetic nanoparticles with liposomal or polymer cores that crosslink platelets through a targeting peptide bound to the surface. Some of the challenges for the development of these particles include appropriate sizing to prevent blocking the capillaries of the lungs, immune system evasion to prevent strong reactions and increase circulation time, and storage and resuspension so that first responders can easily use the particles. In addition, the effectiveness of the variety of animal bleeding models in predicting outcomes must be examined before test results can be fully understood. Progress has been made in the development of particles to combat hemorrhage, but issues of immune sensitivity and storage must be resolved before these types of particles can be translated for human use.
40 CFR Appendix A to Subpart B of... - Standard for Recycle/Recover Equipment
Code of Federal Regulations, 2013 CFR
2013-07-01
... Standard of Purity for Use in Mobile Air-Conditioning Systems Foreword Due to the CFC's damaging effect on... recycled refrigerant 12 shall be limited to moisture, refrigerant oil, and noncondensable gases, which shall not exceed the following level: 3.1Moisture: 15 ppm by weight. 3.2Refrigerant Oil: 4000 ppm by...
40 CFR Appendix A to Subpart B of... - Standard for Recycle/Recover Equipment
Code of Federal Regulations, 2010 CFR
2010-07-01
... Standard of Purity for Use in Mobile Air-Conditioning Systems Foreword Due to the CFC's damaging effect on... recycled refrigerant 12 shall be limited to moisture, refrigerant oil, and noncondensable gases, which shall not exceed the following level: 3.1Moisture: 15 ppm by weight. 3.2Refrigerant Oil: 4000 ppm by...