NASA Astrophysics Data System (ADS)
Wong, Jessina; Jahn, David A.; Giovambattista, Nicolas
2015-08-01
We study the pressure-induced transformations between low-density amorphous (LDA) and high-density amorphous (HDA) ice by performing out-of-equilibrium molecular dynamics (MD) simulations. We employ the TIP4P/2005 water model and show that this model reproduces qualitatively the LDA-HDA transformations observed experimentally. Specifically, the TIP4P/2005 model reproduces remarkably well the (i) structure (OO, OH, and HH radial distribution functions) and (ii) densities of LDA and HDA at P = 0.1 MPa and T = 80 K, as well as (iii) the qualitative behavior of ρ(P) during compression-induced LDA-to-HDA and decompression-induced HDA-to-LDA transformations. At the rates explored, the HDA-to-LDA transformation is less pronounced than in experiments. By studying the LDA-HDA transformations for a broad range of compression/decompression temperatures, we construct a "P-T phase diagram" for glassy water that is consistent with experiments and remarkably similar to that reported previously for ST2 water. This phase diagram is not inconsistent with the possibility of TIP4P/2005 water exhibiting a liquid-liquid phase transition at low temperatures. A comparison with previous MD simulation studies of SPC/E and ST2 water as well as experiments indicates that, overall, the TIP4P/2005 model performs better than the SPC/E and ST2 models. The effects of cooling and compression rates as well as aging on our MD simulations results are also discussed. The MD results are qualitatively robust under variations of cooling/compression rates (accessible in simulations) and are not affected by aging the hyperquenched glass for at least 1 μs. A byproduct of this work is the calculation of TIP4P/2005 water's diffusion coefficient D(T) at P = 0.1 MPa. It is found that, for T ≥ 210 K, D(T) ≈ (T - TMCT)-γ as predicted by mode coupling theory and in agreement with experiments. For TIP4P/2005 water, TMCT = 209 K and γ = 2.14, very close to the corresponding experimental values TMCT = 221 K and γ = 2.2.
Scabone, Camila María; Frigerio, Lorenzo; Petruccelli, Silvana
2011-10-01
To develop a new strategy to target recombinant proteins to the vacuolar storage system in transgenic plants, the ability of the transmembrane and cytosolic domains of Arabidopsis receptor homology-transmembrane-RING H2-1 (AtRMR1) was evaluated. A secreted version of RFP (secRFP) and a fusion of it to the transmembrane and cytosolic domains of AtRMR1 (RFP-TMCT) were produced and studied both in transient and stable expression assays. Transient expression in leaves of Nicotiana tabacum showed that secRFP is secreted to the apoplast while its fusion to TMCT of AtRMR1 is sufficient to prevent secretion of the reporter. In tobacco leaves, RFP-TMCT reporter showed an endoplasmic reticulum pattern in early expression stages while in late expression stages, it was found in the vacuolar lumen. For the first time, the role of TM and CT domains of AtRMR1 in stable expression in Arabidopsis thaliana is presented; the fusion of TMCT to secRFP is sufficient to sort RFP to the lumen of the central vacuoles in leaves and roots and to the lumen of PSV in cotyledons of mature embryos. In addition, biochemical studies performed in extract from transgenic plants showed that RFP-TMCT is an integral membrane protein. Full-length RFP-TMCT was also found in the vacuolar lumen, suggesting internalization into destination vacuole. Not colocalization of RFP-TMCT with tonoplast and plasma membrane markers were observed. This membrane vacuolar determinant sorting signal could be used for future application in molecular pharming as an alternative means to sort proteins of interest to vacuoles.
Narumi, Takayuki; Tokuyama, Michio
2017-03-01
For short-range attractive colloids, the phase diagram of the kinetic glass transition is studied by time-convolutionless mode-coupling theory (TMCT). Using numerical calculations, TMCT is shown to recover all the remarkable features predicted by the mode-coupling theory for attractive colloids: the glass-liquid-glass reentrant, the glass-glass transition, and the higher-order singularities. It is also demonstrated through the comparisons with the results of molecular dynamics for the binary attractive colloids that TMCT improves the critical values of the volume fraction. In addition, a schematic model of three control parameters is investigated analytically. It is thus confirmed that TMCT can describe the glass-glass transition and higher-order singularities even in such a schematic model.
Wong, Jessina; Jahn, David A; Giovambattista, Nicolas
2015-08-21
We study the pressure-induced transformations between low-density amorphous (LDA) and high-density amorphous (HDA) ice by performing out-of-equilibrium molecular dynamics (MD) simulations. We employ the TIP4P/2005 water model and show that this model reproduces qualitatively the LDA-HDA transformations observed experimentally. Specifically, the TIP4P/2005 model reproduces remarkably well the (i) structure (OO, OH, and HH radial distribution functions) and (ii) densities of LDA and HDA at P = 0.1 MPa and T = 80 K, as well as (iii) the qualitative behavior of ρ(P) during compression-induced LDA-to-HDA and decompression-induced HDA-to-LDA transformations. At the rates explored, the HDA-to-LDA transformation is less pronounced than in experiments. By studying the LDA-HDA transformations for a broad range of compression/decompression temperatures, we construct a "P-T phase diagram" for glassy water that is consistent with experiments and remarkably similar to that reported previously for ST2 water. This phase diagram is not inconsistent with the possibility of TIP4P/2005 water exhibiting a liquid-liquid phase transition at low temperatures. A comparison with previous MD simulation studies of SPC/E and ST2 water as well as experiments indicates that, overall, the TIP4P/2005 model performs better than the SPC/E and ST2 models. The effects of cooling and compression rates as well as aging on our MD simulations results are also discussed. The MD results are qualitatively robust under variations of cooling/compression rates (accessible in simulations) and are not affected by aging the hyperquenched glass for at least 1 μs. A byproduct of this work is the calculation of TIP4P/2005 water's diffusion coefficient D(T) at P = 0.1 MPa. It is found that, for T ≥ 210 K, D(T) ≈ (T - T(MCT))(-γ) as predicted by mode coupling theory and in agreement with experiments. For TIP4P/2005 water, T(MCT) = 209 K and γ = 2.14, very close to the corresponding experimental values T(MCT) = 221 K and γ = 2.2.
Reformulation of time-convolutionless mode-coupling theory near the glass transition
NASA Astrophysics Data System (ADS)
Tokuyama, Michio
2017-10-01
The time-convolutionless mode-coupling theory (TMCT) recently proposed is reformulated under the condition that one of two approximations, which have been used to formulate the original TMCT in addition to the MCT approximations done on a derivation of nonlinear memory function in terms of the intermediate-scattering function, is not employed because it causes unphysical results for intermediate times. The improved TMCT equation is then derived consistently under another approximation. It is first checked that the ergodic to non-ergodic transition obtained by a new equation is exactly the same as that obtained by an old one because the long-time dynamics of both equations coincides with each other. However, it is emphasized that a difference between them appears in the intermediate-time dynamics of physical quantities. Such a difference is explored numerically in the dynamics of a non-Gaussian parameter by employing the Percus-Yevick static structure factor to calculate the nonlinear memory function.
2016-10-01
include 9 MT, 7 TMCT. Within the last 12-month study period, 8 patients were enrolled, 2 completed the study, 1 was withdrawn, and 11 are actively ...TMCT) are being actively followed, and their study courses are uneventful. There are 3 additional potentially eligible study patients identified...Uneventfully Subjects Actively Participating Subjects Removed from Trial Continuation Masquelet 9 2 6 1 Cage 7 0 5 2 Total: 16
Liu, Xiang; Liang, Bo; Ngwuta, Joan; Liu, Xueqiao; Surman, Sonja; Lingemann, Matthias; Kwong, Peter D.; Graham, Barney S.; Collins, Peter L.
2017-01-01
ABSTRACT Human respiratory syncytial virus (RSV) is the most prevalent worldwide cause of severe respiratory tract infection in infants and young children. Human parainfluenza virus type 1 (HPIV1) also causes severe pediatric respiratory illness, especially croup. Both viruses lack vaccines. Here, we describe the preclinical development of a bivalent RSV/HPIV1 vaccine based on a recombinant HPIV1 vector, attenuated by a stabilized mutation, that expresses RSV F protein modified for increased stability in the prefusion (pre-F) conformation by previously described disulfide bond (DS) and hydrophobic cavity-filling (Cav1) mutations. RSV F was expressed from the first or second gene position as the full-length protein or as a chimeric protein with its transmembrane and cytoplasmic tail (TMCT) domains substituted with those of HPIV1 F in an effort to direct packaging in the vector particles. All constructs were recovered by reverse genetics. The TMCT versions of RSV F were packaged in the rHPIV1 particles much more efficiently than their full-length counterparts. In hamsters, the presence of the RSV F gene, and in particular the TMCT versions, was attenuating and resulted in reduced immunogenicity. However, the vector expressing full-length RSV F from the pre-N position was immunogenic for RSV and HPIV1. It conferred complement-independent high-quality RSV-neutralizing antibodies at titers similar to those of wild-type RSV and provided protection against RSV challenge. The vectors exhibited stable RSV F expression in vitro and in vivo. In conclusion, an attenuated rHPIV1 vector expressing a pre-F-stabilized form of RSV F demonstrated promising immunogenicity and should be further developed as an intranasal pediatric vaccine. IMPORTANCE RSV and HPIV1 are major viral causes of acute pediatric respiratory illness for which no vaccines or suitable antiviral drugs are available. The RSV F glycoprotein is the major RSV neutralization antigen. We used a rHPIV1 vector, bearing a stabilized attenuating mutation, to express the RSV F glycoprotein bearing amino acid substitutions that increase its stability in the pre-F form, the most immunogenic form that elicits highly functional virus-neutralizing antibodies. RSV F was expressed from the pre-N or N-P gene position of the rHPIV1 vector as a full-length protein or as a chimeric form with its TMCT domain derived from HPIV1 F. TMCT modification greatly increased packaging of RSV F into the vector particles but also increased vector attenuation in vivo, resulting in reduced immunogenicity. In contrast, full-length RSV F expressed from the pre-N position was immunogenic, eliciting complement-independent RSV-neutralizing antibodies and providing protection against RSV challenge. PMID:28835504
Liu, Xiang; Liang, Bo; Ngwuta, Joan; Liu, Xueqiao; Surman, Sonja; Lingemann, Matthias; Kwong, Peter D; Graham, Barney S; Collins, Peter L; Munir, Shirin
2017-11-15
Human respiratory syncytial virus (RSV) is the most prevalent worldwide cause of severe respiratory tract infection in infants and young children. Human parainfluenza virus type 1 (HPIV1) also causes severe pediatric respiratory illness, especially croup. Both viruses lack vaccines. Here, we describe the preclinical development of a bivalent RSV/HPIV1 vaccine based on a recombinant HPIV1 vector, attenuated by a stabilized mutation, that expresses RSV F protein modified for increased stability in the prefusion (pre-F) conformation by previously described disulfide bond (DS) and hydrophobic cavity-filling (Cav1) mutations. RSV F was expressed from the first or second gene position as the full-length protein or as a chimeric protein with its transmembrane and cytoplasmic tail (TMCT) domains substituted with those of HPIV1 F in an effort to direct packaging in the vector particles. All constructs were recovered by reverse genetics. The TMCT versions of RSV F were packaged in the rHPIV1 particles much more efficiently than their full-length counterparts. In hamsters, the presence of the RSV F gene, and in particular the TMCT versions, was attenuating and resulted in reduced immunogenicity. However, the vector expressing full-length RSV F from the pre-N position was immunogenic for RSV and HPIV1. It conferred complement-independent high-quality RSV-neutralizing antibodies at titers similar to those of wild-type RSV and provided protection against RSV challenge. The vectors exhibited stable RSV F expression in vitro and in vivo In conclusion, an attenuated rHPIV1 vector expressing a pre-F-stabilized form of RSV F demonstrated promising immunogenicity and should be further developed as an intranasal pediatric vaccine. IMPORTANCE RSV and HPIV1 are major viral causes of acute pediatric respiratory illness for which no vaccines or suitable antiviral drugs are available. The RSV F glycoprotein is the major RSV neutralization antigen. We used a rHPIV1 vector, bearing a stabilized attenuating mutation, to express the RSV F glycoprotein bearing amino acid substitutions that increase its stability in the pre-F form, the most immunogenic form that elicits highly functional virus-neutralizing antibodies. RSV F was expressed from the pre-N or N-P gene position of the rHPIV1 vector as a full-length protein or as a chimeric form with its TMCT domain derived from HPIV1 F. TMCT modification greatly increased packaging of RSV F into the vector particles but also increased vector attenuation in vivo , resulting in reduced immunogenicity. In contrast, full-length RSV F expressed from the pre-N position was immunogenic, eliciting complement-independent RSV-neutralizing antibodies and providing protection against RSV challenge. Copyright © 2017 American Society for Microbiology.
Lingemann, Matthias; Liu, Xueqiao; Surman, Sonja; Liang, Bo; Herbert, Richard; Hackenberg, Ashley D; Buchholz, Ursula J; Collins, Peter L; Munir, Shirin
2017-05-15
The recent 2014-2016 Ebola virus (EBOV) outbreak prompted increased efforts to develop vaccines against EBOV disease. We describe the development and preclinical evaluation of an attenuated recombinant human parainfluenza virus type 1 (rHPIV1) expressing the membrane-anchored form of EBOV glycoprotein GP, as an intranasal (i.n.) EBOV vaccine. GP was codon optimized and expressed either as a full-length protein or as an engineered chimeric form in which its transmembrane and cytoplasmic tail (TMCT) domains were replaced with those of the HPIV1 F protein in an effort to enhance packaging into the vector particle and immunogenicity. GP was inserted either preceding the N gene (pre-N) or between the N and P genes (N-P) of rHPIV1 bearing a stabilized attenuating mutation in the P/C gene (C Δ170 ). The constructs grew to high titers and efficiently and stably expressed GP. Viruses were attenuated, replicating at low titers over several days, in the respiratory tract of African green monkeys (AGMs). Two doses of candidates expressing GP from the pre-N position elicited higher GP neutralizing serum antibody titers than the N-P viruses, and unmodified GP induced higher levels than its TMCT counterpart. Unmodified EBOV GP was packaged into the HPIV1 particle, and the TMCT modification did not increase packaging or immunogenicity but rather reduced the stability of GP expression during in vivo replication. In conclusion, we identified an attenuated and immunogenic i.n. vaccine candidate expressing GP from the pre-N position. It is expected to be well tolerated in humans and is available for clinical evaluation. IMPORTANCE EBOV hemorrhagic fever is one of the most lethal viral infections and lacks a licensed vaccine. Contact of fluids from infected individuals, including droplets or aerosols, with mucosal surfaces is an important route of EBOV spread during a natural outbreak, and aerosols also might be exploited for intentional virus spread. Therefore, vaccines that protect against mucosal as well as systemic inoculation are needed. We evaluated a version of human parainfluenza virus type 1 (HPIV1) bearing a stabilized attenuating mutation in the P/C gene (C Δ170 ) as an intranasal vaccine vector to express the EBOV glycoprotein GP. We evaluated expression from two different genome positions (pre-N and N-P) and investigated the use of vector packaging signals. African green monkeys immunized with two doses of the vector expressing GP from the pre-N position developed high titers of GP neutralizing serum antibodies. The attenuated vaccine candidate is expected to be safe and immunogenic and is available for clinical development. Copyright © 2017 American Society for Microbiology.
Shi, Jianyong; Qian, Xuede; Liu, Xiaodong; Sun, Long; Liao, Zhiqiang
2016-09-01
The total compression of municipal solid waste (MSW) consists of primary, secondary, and decomposition compressions. It is usually difficult to distinguish between the three parts of compressions. In this study, the odeometer test was used to distinguish between the primary and secondary compressions to determine the primary and secondary compression coefficient. In addition, the ending time of the primary compressions were proposed based on municipal solid waste compression tests in a degradation-inhibited condition by adding vinegar. The amount of the secondary compression occurring in the primary compression stage has a relatively high percentage to either the total compression or the total secondary compression. The relationship between the degradation ratio and time was obtained from the tests independently. Furthermore, a combined compression calculation method of municipal solid waste for all three parts of compressions including considering organics degradation is proposed based on a one-dimensional compression method. The relationship between the methane generation potential L0 of LandGEM model and degradation compression index was also discussed in the paper. A special column compression apparatus system, which can be used to simulate the whole compression process of municipal solid waste in China, was designed. According to the results obtained from 197-day column compression test, the new combined calculation method for municipal solid waste compression was analyzed. The degradation compression is the main part of the compression of MSW in the medium test period. Copyright © 2015 Elsevier Ltd. All rights reserved.
Compressive Properties and Anti-Erosion Characteristics of Foam Concrete in Road Engineering
NASA Astrophysics Data System (ADS)
Li, Jinzhu; Huang, Hongxiang; Wang, Wenjun; Ding, Yifan
2018-01-01
To analyse the compression properties and anti-erosion characteristics of foam concrete, one dimensional compression tests were carried out using ring specimens of foam concrete, and unconfined compression tests were carried out using foam concrete specimens cured in different conditions. The results of one dimensional compression tests show that the compression curve of foam concrete has two critical points and three stages, which has significant difference with ordinary geotechnical materials such as soil. Based on the compression curve the compression modulus of each stage were determined. The results of erosion tests show that sea water has a slight influence on the long-term strength of foam concrete, while the sulphate solution has a significant influence on the long-term strength of foam concrete, which needs to pay more attention.
Micromechanics of composite laminate compression failure
NASA Technical Reports Server (NTRS)
Guynn, E. Gail; Bradley, Walter L.
1986-01-01
The Dugdale analysis for metals loaded in tension was adapted to model the failure of notched composite laminates loaded in compression. Compression testing details, MTS alignment verification, and equipment needs were resolved. Thus far, only 2 ductile material systems, HST7 and F155, were selected for study. A Wild M8 Zoom Stereomicroscope and necessary attachments for video taping and 35 mm pictures were purchased. Currently, this compression test system is fully operational. A specimen is loaded in compression, and load vs shear-crippling zone size is monitored and recorded. Data from initial compression tests indicate that the Dugdale model does not accurately predict the load vs damage zone size relationship of notched composite specimens loaded in compression.
Compression After Impact Testing of Sandwich Structures Using the Four Point Bend Test
NASA Technical Reports Server (NTRS)
Nettles, Alan T.; Gregory, Elizabeth; Jackson, Justin; Kenworthy, Devon
2008-01-01
For many composite laminated structures, the design is driven by data obtained from Compression after Impact (CAI) testing. There currently is no standard for CAI testing of sandwich structures although there is one for solid laminates of a certain thickness and lay-up configuration. Most sandwich CAI testing has followed the basic technique of this standard where the loaded ends are precision machined and placed between two platens and compressed until failure. If little or no damage is present during the compression tests, the loaded ends may need to be potted to prevent end brooming. By putting a sandwich beam in a four point bend configuration, the region between the inner supports is put under a compressive load and a sandwich laminate with damage can be tested in this manner without the need for precision machining. Also, specimens with no damage can be taken to failure so direct comparisons between damaged and undamaged strength can be made. Data is presented that demonstrates the four point bend CAI test and is compared with end loaded compression tests of the same sandwich structure.
Compressed/reconstructed test images for CRAF/Cassini
NASA Technical Reports Server (NTRS)
Dolinar, S.; Cheung, K.-M.; Onyszchuk, I.; Pollara, F.; Arnold, S.
1991-01-01
A set of compressed, then reconstructed, test images submitted to the Comet Rendezvous Asteroid Flyby (CRAF)/Cassini project is presented as part of its evaluation of near lossless high compression algorithms for representing image data. A total of seven test image files were provided by the project. The seven test images were compressed, then reconstructed with high quality (root mean square error of approximately one or two gray levels on an 8 bit gray scale), using discrete cosine transforms or Hadamard transforms and efficient entropy coders. The resulting compression ratios varied from about 2:1 to about 10:1, depending on the activity or randomness in the source image. This was accomplished without any special effort to optimize the quantizer or to introduce special postprocessing to filter the reconstruction errors. A more complete set of measurements, showing the relative performance of the compression algorithms over a wide range of compression ratios and reconstruction errors, shows that additional compression is possible at a small sacrifice in fidelity.
NASA Astrophysics Data System (ADS)
Zhang, L.; Han, X. X.; Ge, J.; Wang, C. H.
2018-01-01
To determine the relationship between compressive strength and flexural strength of pavement geopolymer grouting material, 20 groups of geopolymer grouting materials were prepared, the compressive strength and flexural strength were determined by mechanical properties test. On the basis of excluding the abnormal values through boxplot, the results show that, the compressive strength test results were normal, but there were two mild outliers in 7days flexural strength test. The compressive strength and flexural strength were linearly fitted by SPSS, six regression models were obtained by linear fitting of compressive strength and flexural strength. The linear relationship between compressive strength and flexural strength can be better expressed by the cubic curve model, and the correlation coefficient was 0.842.
2014-03-31
dissimilar materials ( steel end fixtures and RMS). 2.6.4 Compression Tests To prevent the ends of the specimens from mushrooming during compression ...RMS cylinder. The compression test was modeled in ANSYS by applying a fixed displacement in the axial direction. The first ply to exceed the...four phases of loading: 1) a compressive acceleration during gun launch, 2) a tensile unloading on exit from the barrel , 3) a compressive decelera
Dynamic compressive behavior of Pr-Nd alloy at high strain rates and temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Huanran; Cai Canyuan; Chen Danian
2012-07-01
Based on compressive tests, static on 810 material test system and dynamic on the first compressive loading in split Hopkinson pressure bar (SHPB) tests for Pr-Nd alloy cylinder specimens at high strain rates and temperatures, this study determined a J-C type [G. R. Johnson and W. H. Cook, in Proceedings of Seventh International Symposium on Ballistics (The Hague, The Netherlands, 1983), pp. 541-547] compressive constitutive equation of Pr-Nd alloy. It was recorded by a high speed camera that the Pr-Nd alloy cylinder specimens fractured during the first compressive loading in SHPB tests at high strain rates and temperatures. From highmore » speed camera images, the critical strains of the dynamic shearing instability for Pr-Nd alloy in SHPB tests were determined, which were consistent with that estimated by using Batra and Wei's dynamic shearing instability criterion [R. C. Batra and Z. G. Wei, Int. J. Impact Eng. 34, 448 (2007)] and the determined compressive constitutive equation of Pr-Nd alloy. The transmitted and reflected pulses of SHPB tests for Pr-Nd alloy cylinder specimens computed with the determined compressive constitutive equation of Pr-Nd alloy and Batra and Wei's dynamic shearing instability criterion could be consistent with the experimental data. The fractured Pr-Nd alloy cylinder specimens of compressive tests were investigated by using 3D supper depth digital microscope and scanning electron microscope.« less
The effect of compression on individual pressure vessel nickel/hydrogen components
NASA Technical Reports Server (NTRS)
Manzo, Michelle A.; Perez-Davis, Marla E.
1988-01-01
Compression tests were performed on representative Individual Pressure Vessel (IPV) Nickel/Hydrogen cell components in an effort to better understand the effects of force on component compression and the interactions of components under compression. It appears that the separator is the most easily compressed of all of the stack components. It will typically partially compress before any of the other components begin to compress. The compression characteristics of the cell components in assembly differed considerably from what would be predicted based on individual compression characteristics. Component interactions played a significant role in the stack response to compression. The results of the compression tests were factored into the design and selection of Belleville washers added to the cell stack to accommodate nickel electrode expansion while keeping the pressure on the stack within a reasonable range of the original preset.
A test data compression scheme based on irrational numbers stored coding.
Wu, Hai-feng; Cheng, Yu-sheng; Zhan, Wen-fa; Cheng, Yi-fei; Wu, Qiong; Zhu, Shi-juan
2014-01-01
Test question has already become an important factor to restrict the development of integrated circuit industry. A new test data compression scheme, namely irrational numbers stored (INS), is presented. To achieve the goal of compress test data efficiently, test data is converted into floating-point numbers, stored in the form of irrational numbers. The algorithm of converting floating-point number to irrational number precisely is given. Experimental results for some ISCAS 89 benchmarks show that the compression effect of proposed scheme is better than the coding methods such as FDR, AARLC, INDC, FAVLC, and VRL.
Effects of Instantaneous Multiband Dynamic Compression on Speech Intelligibility
NASA Astrophysics Data System (ADS)
Herzke, Tobias; Hohmann, Volker
2005-12-01
The recruitment phenomenon, that is, the reduced dynamic range between threshold and uncomfortable level, is attributed to the loss of instantaneous dynamic compression on the basilar membrane. Despite this, hearing aids commonly use slow-acting dynamic compression for its compensation, because this was found to be the most successful strategy in terms of speech quality and intelligibility rehabilitation. Former attempts to use fast-acting compression gave ambiguous results, raising the question as to whether auditory-based recruitment compensation by instantaneous compression is in principle applicable in hearing aids. This study thus investigates instantaneous multiband dynamic compression based on an auditory filterbank. Instantaneous envelope compression is performed in each frequency band of a gammatone filterbank, which provides a combination of time and frequency resolution comparable to the normal healthy cochlea. The gain characteristics used for dynamic compression are deduced from categorical loudness scaling. In speech intelligibility tests, the instantaneous dynamic compression scheme was compared against a linear amplification scheme, which used the same filterbank for frequency analysis, but employed constant gain factors that restored the sound level for medium perceived loudness in each frequency band. In subjective comparisons, five of nine subjects preferred the linear amplification scheme and would not accept the instantaneous dynamic compression in hearing aids. Four of nine subjects did not perceive any quality differences. A sentence intelligibility test in noise (Oldenburg sentence test) showed little to no negative effects of the instantaneous dynamic compression, compared to linear amplification. A word intelligibility test in quiet (one-syllable rhyme test) showed that the subjects benefit from the larger amplification at low levels provided by instantaneous dynamic compression. Further analysis showed that the increase in intelligibility resulting from a gain provided by instantaneous compression is as high as from a gain provided by linear amplification. No negative effects of the distortions introduced by the instantaneous compression scheme in terms of speech recognition are observed.
Compression testing of thick-section composite materials
NASA Astrophysics Data System (ADS)
Camponeschi, Eugene T., Jr.
A compression test fixture suitable for testing of composites up to 1 inch in thickness has been developed with a view to the characterization of the effects of constituents, fiber orientation, and thickness, on the compressive response of composites for naval applications. The in-plane moduli, compression strength, failure mechanisms, and both in-plane and through-thickness Poisson's ratios are shown to be independent of material thickness. The predominant failure mechanisms for both materials, namely kink bands and delaminations, are identical to those reported for composite one-tenth the thickness of those presently tested.
A low cost method of testing compression-after-impact strength of composite laminates
NASA Technical Reports Server (NTRS)
Nettles, Alan T.
1991-01-01
A method was devised to test the compression strength of composite laminate specimens that are much thinner and wider than other tests require. The specimen can be up to 7.62 cm (3 in) wide and as thin as 1.02 mm (.04 in). The best features of the Illinois Institute of Technology Research Institute (IITRI) fixture are combined with an antibuckling jig developed and used at the University of Dayton Research Institute to obtain a method of compression testing thin, wide test coupons on any 20 kip (or larger) loading frame. Up to 83 pct. less composite material is needed for the test coupons compared to the most commonly used compression-after-impact (CAI) tests, which calls for 48 ply thick (approx. 6.12 mm) test coupons. Another advantage of the new method is that composite coupons of the exact lay-up and thickness of production parts can be tested for CAI strength, thus yielding more meaningful results. This new method was used to compression test 8 and 16 ply laminates of T300/934 carbon/epoxy. These results were compared to those obtained using ASTM standard D 3410-87 (Celanese compression test). CAI testing was performed on IM6/3501-6, IM7/SP500 and IM7/F3900. The new test method and associated fixture work well and is a valuable asset to MSFC's damage tolerance program.
Processing Maple Syrup with a Vapor Compression Distiller: An Economic Analysis
Lawrence D. Garrett
1977-01-01
A test of vapor compression distillers for processing maple syrup revealed that: (1) vapor compression equipment tested evaporated 1 pound of water with .047 pounds of steam equivalent (electrical energy); open-pan evaporators of similar capacity required 1.5 pounds of steam equivalent (oil energy) to produce 1 pound of water; (2) vapor compression evaporation produced...
Influence of temper condition on the nonlinear stress-strain behavior of boron-aluminum
NASA Technical Reports Server (NTRS)
Kennedy, J. M.; Herakovich, E. T.; Tenney, D. R.
1977-01-01
The influence of temper condition on the tensile and compressive stress-strain behavior for six boron-aluminum laminates was investigated. In addition to monotonic tension and compression tests, tension-tension, compression-compression, and tension--compression tests were conducted to study the effects of cyclic loading. Tensile strength results are a function of the laminate configuration; unidirectional laminates were affected considerably more than other laminates with some strength values increasing and others decreasing.
Method for testing the strength and structural integrity of nuclear fuel particles
Lessing, P.A.
1995-10-17
An accurate method for testing the strength of nuclear fuel particles is disclosed. Each particle includes an upper and lower portion, and is placed within a testing apparatus having upper and lower compression members. The upper compression member includes a depression therein which is circular and sized to receive only part of the upper portion of the particle. The lower compression member also includes a similar depression. The compression members are parallel to each other with the depressions therein being axially aligned. The fuel particle is then placed between the compression members and engaged within the depressions. The particle is then compressed between the compression members until it fractures. The amount of force needed to fracture the particle is thereafter recorded. This technique allows a broader distribution of forces and provides more accurate results compared with systems which distribute forces at singular points on the particle. 13 figs.
Method for testing the strength and structural integrity of nuclear fuel particles
Lessing, Paul A.
1995-01-01
An accurate method for testing the strength of nuclear fuel particles. Each particle includes an upper and lower portion, and is placed within a testing apparatus having upper and lower compression members. The upper compression member includes a depression therein which is circular and sized to receive only part of the upper portion of the particle. The lower compression member also includes a similar depression. The compression members are parallel to each other with the depressions therein being axially aligned. The fuel particle is then placed between the compression members and engaged within the depressions. The particle is then compressed between the compression members until it fractures. The amount of force needed to fracture the particle is thereafter recorded. This technique allows a broader distribution of forces and provides more accurate results compared with systems which distribute forces at singular points on the particle.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Test for Liquefied Compressed Gases A Appendix A to Part 180 Transportation Other Regulations Relating... Compressed Gases 1. In performing this test, all internal self-closing stop valves must be opened. Each.... 2. On pump-actuated pressure differential internal valves, the three-way toggle valve handle or its...
Pilot Field Test: Use of a Compression Garment During a Stand Test After Long-Duration Space Flight
NASA Technical Reports Server (NTRS)
Laurie, S. S.; Stenger, M. B.; Phillips, T. R.; Lee, S. M. C.; Cerisano, J.; Kofman, I.; Reschke, M.
2016-01-01
Orthostatic intolerance (OI) is a concern for astronauts returning from long-duration space flight. One countermeasure that has been used to protect against OI after short-duration bed rest and space flight is the use of lower body and abdominal compression garments. However, since the end of the Space Shuttle era we have not been able to test crewmembers during the first 24 hours after landing on Earth. NASA's Pilot Field Test provided us the opportunity to test cardiovascular responses of crewmembers wearing the Russian Kentavr compression garment during a stand test at multiple time points throughout the first 24 hours after landing. HYPOTHESIS We hypothesized that the Kentavr compression garment would prevent an increase in heart rate (HR) >15 bpm during a 3.5-min stand test. METHODS: The Pilot Field Test was conducted up to 3 times during the first 24 hours after crewmembers returned to Earth: (1) either in a tent adjacent to the Soyuz landing site in Kazakhstan (approx.1 hr) or after transportation to the Karaganda airport (approx. 4 hr); (2) during a refueling stop in Scotland (approx.12 hr); and (3) upon return to NASA Johnson Space Center (JSC) (approx.24 hr). We measured HR and arterial pressure (finger photoplethysmography) for 2 min while the crewmember was prone and throughout 3.5 min of quiet standing. Eleven crewmembers consented to participate; however, 2 felt too ill to start the test and 1 stopped 30 sec into the stand portion of the test. Of the remaining 8 crewmembers, 2 did not wear the Russian Kentavr compression garment. Because of inclement weather at the landing site, 5 crewmembers were flown by helicopter to the Karaganda airport before initial testing and received intravenous saline before completing the stand test. One of these crewmembers wore only the portion of the Russian Kentavr compression garment that covered the lower leg and thus lacked thigh and abdominal compression. All crewmembers continued wearing the Russian Kentavr compression garment during the second testing session in Scotland, but none wore it during testing at JSC. RESULTS: The mean Delta HR from the supine to standing position in the 8 crewmembers measured pre-flight or 60 days after return from long-duration space flight was 9.8 bpm. During the first few hours after landing from long-duration space flight, the mean Delta HR of the 6 crewmembers who wore the Russian Kentavr compression garment in Kazakhstan or Karaganda was +14 bpm and the change in mean arterial pressure (Delta MAP) was +0.8 mmHg, while the 2 crewmembers who did not wear the Russian Kentavr compression garment had a Delta HR of +38 bpm and a Delta MAP of +1.1 mmHg. In Scotland, 4 crewmembers wore the Russian Kentavr compression garment and had a Delta HR of +7.4 bpm while the 3 crewmembers who did not wear it had a Delta HR of +25.0 bpm. Seven crewmembers were tested upon return to JSC approx. 24 hr after landing, but none wore the Russian Kentavr compression garment and their Delta HR was 16.0 bpm. CONCLUSIONS: These are the first stand-test data to be collected from long-duration crewmembers during the first 24 hr of re-adaptation to gravity on Earth. The Delta HR measured in crewmembers who completed the stand-test while wearing Kentavr within the first approx.4 hours after returning to Earth was only slightly elevated from pre-flight Delta HR, while the few subjects who did not wear the Russian Kentavr compression garment had a much larger increase in HR in order to maintain arterial pressure throughout 3.5-min of standing. These data demonstrate the effectiveness of a compression garment in preventing large increases in HR during a 3.5 min stand test after long-duration space flight. However, the fact that three crewmembers were too ill to complete the test or was not able to complete 3.5 min of standing despite wearing the Russian Kentavr compression garment indicates that wearing a compression garment does not resolve all problems crewmembers face during the period of re-adaptation immediately after return to Earth's gravity.
High-quality JPEG compression history detection for fake uncompressed images
NASA Astrophysics Data System (ADS)
Zhang, Rong; Wang, Rang-Ding; Guo, Li-Jun; Jiang, Bao-Chuan
2017-05-01
Authenticity is one of the most important evaluation factors of images for photography competitions or journalism. Unusual compression history of an image often implies the illicit intent of its author. Our work aims at distinguishing real uncompressed images from fake uncompressed images that are saved in uncompressed formats but have been previously compressed. To detect the potential image JPEG compression, we analyze the JPEG compression artifacts based on the tetrolet covering, which corresponds to the local image geometrical structure. Since the compression can alter the structure information, the tetrolet covering indexes may be changed if a compression is performed on the test image. Such changes can provide valuable clues about the image compression history. To be specific, the test image is first compressed with different quality factors to generate a set of temporary images. Then, the test image is compared with each temporary image block-by-block to investigate whether the tetrolet covering index of each 4×4 block is different between them. The percentages of the changed tetrolet covering indexes corresponding to the quality factors (from low to high) are computed and used to form the p-curve, the local minimum of which may indicate the potential compression. Our experimental results demonstrate the advantage of our method to detect JPEG compressions of high quality, even the highest quality factors such as 98, 99, or 100 of the standard JPEG compression, from uncompressed-format images. At the same time, our detection algorithm can accurately identify the corresponding compression quality factor.
Compression Testing of Textile Composite Materials
NASA Technical Reports Server (NTRS)
Masters, John E.
1996-01-01
The applicability of existing test methods, which were developed primarily for laminates made of unidirectional prepreg tape, to textile composites is an area of concern. The issue is whether the values measured for the 2-D and 3-D braided, woven, stitched, and knit materials are accurate representations of the true material response. This report provides a review of efforts to establish a compression test method for textile reinforced composite materials. Experimental data have been gathered from several sources and evaluated to assess the effectiveness of a variety of test methods. The effectiveness of the individual test methods to measure the material's modulus and strength is determined. Data are presented for 2-D triaxial braided, 3-D woven, and stitched graphite/epoxy material. However, the determination of a recommended test method and specimen dimensions is based, primarily, on experimental results obtained by the Boeing Defense and Space Group for 2-D triaxially braided materials. They evaluated seven test methods: NASA Short Block, Modified IITRI, Boeing Open Hole Compression, Zabora Compression, Boeing Compression after Impact, NASA ST-4, and a Sandwich Column Test.
Elastic-Plastic Behaviour of Ultrasonic Assisted Compression of Polyvinyl Chloride (PVC) Foam
NASA Astrophysics Data System (ADS)
Muhalim, N. A. D.; Hassan, M. Z.; Daud, Y.
2018-04-01
The present study aims to investigate the elastic-plastic behaviour of ultrasonic assisted compression of PVC closed-cell foam. A series of static and ultrasonic compression test of PVC closed-cell foam were conducted at a constant cross head speed of 30 mm/min on dry surface condition. For quasi-static test, specimen was compressed between two rigid platens using universal testing machine. In order to evaluate the specimen behavior under ultrasonic condition, specimen was placed between a specifically design double-slotted block horn and rigid platen. The horn was designed and fabricated prior to the test as a medium to transmit the ultrasonic vibration from the ultrasonic transducer to the working specimen. It was tuned to a frequency of 19.89 kHz in longitudinal mode and provided an average oscillation amplitude at 6 µm on the uppermost surface. Following, the characteristics of stress-strain curves for quasi-static and ultrasonic compression tests were analyzed. It was found that the compressive stress was significantly reduced at the onset of superimposed ultrasonic vibration during plastic deformation.
Transverse compression of PPTA fibers
NASA Astrophysics Data System (ADS)
Singletary, James
2000-07-01
Results of single transverse compression testing of PPTA and PIPD fibers, using a novel test device, are presented and discussed. In the tests, short lengths of single fibers are compressed between two parallel, stiff platens. The fiber elastic deformation is analyzed as a Hertzian contact problem. The inelastic deformation is analyzed by elastic-plastic FE simulation and by laser-scanning confocal microscopy of the compressed fibers ex post facto. The results obtained are compared to those in the literature and to the theoretical predictions of PPTA fiber transverse elasticity based on PPTA crystal elasticity.
Prechamber Compression-Ignition Engine Performance
NASA Technical Reports Server (NTRS)
Moore, Charles S; Collins, John H , Jr
1938-01-01
Single-cylinder compression-ignition engine tests were made to investigate the performance characteristics of prechamber type of cylinder head. Certain fundamental variables influencing engine performance -- clearance distribution, size, shape, and direction of the passage connecting the cylinder and prechamber, shape of prechamber, cylinder clearance, compression ratio, and boosting -- were independently tested. Results of motoring and of power tests, including several typical indicator cards, are presented.
49 CFR Appendix D to Part 173 - Test Methods for Dynamite (Explosive, Blasting, Type A)
Code of Federal Regulations, 2011 CFR
2011-10-01
... weighed to determine the percent of weight loss. 3. Test method D-3—Compression Exudation Test The entire... from the glass tube and weighed to determine the percent of weight loss. EC02MR91.067 ... assembly is placed under the compression rod, and compression is applied by means of the weight on the...
[Research progress on mechanical performance evaluation of artificial intervertebral disc].
Li, Rui; Wang, Song; Liao, Zhenhua; Liu, Weiqiang
2018-03-01
The mechanical properties of artificial intervertebral disc (AID) are related to long-term reliability of prosthesis. There are three testing methods involved in the mechanical performance evaluation of AID based on different tools: the testing method using mechanical simulator, in vitro specimen testing method and finite element analysis method. In this study, the testing standard, testing equipment and materials of AID were firstly introduced. Then, the present status of AID static mechanical properties test (static axial compression, static axial compression-shear), dynamic mechanical properties test (dynamic axial compression, dynamic axial compression-shear), creep and stress relaxation test, device pushout test, core pushout test, subsidence test, etc. were focused on. The experimental techniques using in vitro specimen testing method and testing results of available artificial discs were summarized. The experimental methods and research status of finite element analysis were also summarized. Finally, the research trends of AID mechanical performance evaluation were forecasted. The simulator, load, dynamic cycle, motion mode, specimen and test standard would be important research fields in the future.
Partiprajak, Suphamas; Thongpo, Pichaya
2016-01-01
This study explored the retention of basic life support knowledge, self-efficacy, and chest compression performance among Thai nursing students at a university in Thailand. A one-group, pre-test and post-test design time series was used. Participants were 30 nursing students undertaking basic life support training as a care provider. Repeated measure analysis of variance was used to test the retention of knowledge and self-efficacy between pre-test, immediate post-test, and re-test after 3 months. A Wilcoxon signed-rank test was used to compare the difference in chest compression performance two times. Basic life support knowledge was measured using the Basic Life Support Standard Test for Cognitive Knowledge. Self-efficacy was measured using the Basic Life Support Self-Efficacy Questionnaire. Chest compression performance was evaluated using a data printout from Resusci Anne and Laerdal skillmeter within two cycles. The training had an immediate significant effect on the knowledge, self-efficacy, and skill of chest compression; however, the knowledge and self-efficacy significantly declined after post-training for 3 months. Chest compression performance after training for 3 months was positively retaining compared to the first post-test but was not significant. Therefore, a retraining program to maintain knowledge and self-efficacy for a longer period of time should be established after post-training for 3 months. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lee, Jinwoo; Kim, Se-Jong; Lee, Myoung-Gyu; Song, Jung Han; Choi, Seogou; Han, Heung Nam; Kim, Daeyong
2016-06-01
The uniaxial tensile and compressive stress-strain responses of AZ31B magnesium alloy sheet under pulsed electric current are reported. Tension and compression tests with pulsed electric current showed that flow stresses dropped instantaneously when the electric pulses were applied. Thermo-mechanical-electrical finite element analyses were also performed to investigate the effects of Joule heating and electro-plasticity on the flow responses of AZ31B sheets under electric-pulsed tension and compression tests. The proposed finite element simulations could reproduce the measured uniaxial tensile and compressive stress-strain curves under pulsed electric currents, when the temperature-dependent flow stress hardening model and thermal properties of AZ31B sheet were properly described in the simulations. In particular, the simulation results that fit best with experimental results showed that almost 100 pct of the electric current was subject to transform into Joule heating during electrically assisted tensile and compressive tests.
An Image Processing Technique for Achieving Lossy Compression of Data at Ratios in Excess of 100:1
1992-11-01
5 Lempel , Ziv , Welch (LZW) Compression ............... 7 Lossless Compression Tests Results ................. 9 Exact...since IBM holds the patent for this technique. Lempel , Ziv , Welch (LZW) Compression The LZW compression is related to two compression techniques known as... compression , using the input stream as data . This step is possible because the compression algorithm always outputs the phrase and character components of a
Kerrigan, Shannon M; Kapatkin, Amy S; Garcia, Tanya C; Robinson, Duane A; Guzman, David Sanchez-Migallon; Stover, Susan M
2018-04-01
OBJECTIVE To describe the torsional and axial compressive properties of tibiotarsal bones of red-tailed hawks (Buteo jamaicensis). SAMPLE 16 cadaveric tibiotarsal bones from 8 red-tailed hawks. PROCEDURES 1 tibiotarsal bone from each bird was randomly assigned to be tested in torsion, and the contralateral bone was tested in axial compression. Intact bones were monotonically loaded in either torsion (n = 8) or axial compression (8) to failure. Mechanical variables were derived from load-deformation curves. Fracture configurations were described. Effects of sex, limb side, and bone dimensions on mechanical properties were assessed with a mixed-model ANOVA. Correlations between equivalent torsional and compressive properties were determined. RESULTS Limb side and bone dimensions were not associated with any mechanical property. During compression tests, mean ultimate cumulative energy and postyield energy for female bones were significantly greater than those for male bones. All 8 bones developed a spiral diaphyseal fracture and a metaphyseal fissure or fracture during torsional tests. During compression tests, all bones developed a crushed metaphysis and a fissure or comminuted fracture of the diaphysis. Positive correlations were apparent between most yield and ultimate torsional and compressive properties. CONCLUSIONS AND CLINICAL RELEVANCE The torsional and axial compressive properties of tibiotarsal bones described in this study can be used as a reference for investigations into fixation methods for tibiotarsal fractures in red-tailed hawks. Although the comminuted and spiral diaphyseal fractures induced in this study were consistent with those observed in clinical practice, the metaphyseal disruption observed was not and warrants further research.
Visual acuity, contrast sensitivity, and range performance with compressed motion video
NASA Astrophysics Data System (ADS)
Bijl, Piet; de Vries, Sjoerd C.
2010-10-01
Video of visual acuity (VA) and contrast sensitivity (CS) test charts in a complex background was recorded using a CCD color camera mounted on a computer-controlled tripod and was fed into real-time MPEG-2 compression/decompression equipment. The test charts were based on the triangle orientation discrimination (TOD) test method and contained triangle test patterns of different sizes and contrasts in four possible orientations. In a perception experiment, observers judged the orientation of the triangles in order to determine VA and CS thresholds at the 75% correct level. Three camera velocities (0, 1.0, and 2.0 deg/s, or 0, 4.1, and 8.1 pixels/frame) and four compression rates (no compression, 4 Mb/s, 2 Mb/s, and 1 Mb/s) were used. VA is shown to be rather robust to any combination of motion and compression. CS, however, dramatically decreases when motion is combined with high compression ratios. The measured thresholds were fed into the TOD target acquisition model to predict the effect of motion and compression on acquisition ranges for tactical military vehicles. The effect of compression on static performance is limited but strong with motion video. The data suggest that with the MPEG2 algorithm, the emphasis is on the preservation of image detail at the cost of contrast loss.
Liang, Bo; Ngwuta, Joan O; Herbert, Richard; Swerczek, Joanna; Dorward, David W; Amaro-Carambot, Emerito; Mackow, Natalie; Kabatova, Barbora; Lingemann, Matthias; Surman, Sonja; Yang, Lijuan; Chen, Man; Moin, Syed M; Kumar, Azad; McLellan, Jason S; Kwong, Peter D; Graham, Barney S; Schaap-Nutt, Anne; Collins, Peter L; Munir, Shirin
2016-11-01
Human respiratory syncytial virus (RSV) and human parainfluenza virus type 3 (HPIV3) are major pediatric respiratory pathogens that lack vaccines. A chimeric bovine/human PIV3 (rB/HPIV3) virus expressing the unmodified, wild-type (wt) RSV fusion (F) protein from an added gene was previously evaluated in seronegative children as a bivalent intranasal RSV/HPIV3 vaccine, and it was well tolerated but insufficiently immunogenic for RSV F. We recently showed that rB/HPIV3 expressing a partially stabilized prefusion form (pre-F) of RSV F efficiently induced "high-quality" RSV-neutralizing antibodies, defined as antibodies that neutralize RSV in vitro without added complement (B. Liang et al., J Virol 89:9499-9510, 2015, doi:10.1128/JVI.01373-15). In the present study, we modified RSV F by replacing its cytoplasmic tail (CT) domain or its CT and transmembrane (TM) domains (TMCT) with counterparts from BPIV3 F, with or without pre-F stabilization. This resulted in RSV F being packaged in the rB/HPIV3 particle with an efficiency similar to that of RSV particles. Enhanced packaging was substantially attenuating in hamsters (10- to 100-fold) and rhesus monkeys (100- to 1,000-fold). Nonetheless, TMCT-directed packaging substantially increased the titers of high-quality RSV-neutralizing serum antibodies in hamsters. In rhesus monkeys, a strongly additive immunogenic effect of packaging and pre-F stabilization was observed, as demonstrated by 8- and 30-fold increases of RSV-neutralizing serum antibody titers in the presence and absence of added complement, respectively, compared to pre-F stabilization alone. Analysis of vaccine-induced F-specific antibodies by binding assays indicated that packaging conferred substantial stabilization of RSV F in the pre-F conformation. This provides an improved version of this well-tolerated RSV/HPIV3 vaccine candidate, with potently improved immunogenicity, which can be returned to clinical trials. Human respiratory syncytial virus (RSV) and human parainfluenza virus type 3 (HPIV3) are major viral agents of acute pediatric bronchiolitis and pneumonia worldwide that lack vaccines. A bivalent intranasal RSV/HPIV3 vaccine candidate consisting of a chimeric bovine/human PIV3 (rB/HPIV3) strain expressing the RSV fusion (F) protein was previously shown to be well tolerated by seronegative children but was insufficiently immunogenic for RSV F. In the present study, the RSV F protein was engineered to be packaged efficiently into vaccine virus particles. This resulted in a significantly enhanced quantity and quality of RSV-neutralizing antibodies in hamsters and nonhuman primates. In nonhuman primates, this effect was strongly additive to the previously described stabilization of the prefusion conformation of the F protein. The improved immunogenicity of RSV F by packaging appeared to involve prefusion stabilization. These findings provide a potently more immunogenic version of this well-tolerated vaccine candidate and should be applicable to other vectored vaccines. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Liang, Bo; Ngwuta, Joan O.; Herbert, Richard; Swerczek, Joanna; Dorward, David W.; Amaro-Carambot, Emerito; Mackow, Natalie; Kabatova, Barbora; Lingemann, Matthias; Surman, Sonja; Yang, Lijuan; Chen, Man; Moin, Syed M.; Kumar, Azad; McLellan, Jason S.; Kwong, Peter D.; Graham, Barney S.; Schaap-Nutt, Anne; Collins, Peter L.
2016-01-01
ABSTRACT Human respiratory syncytial virus (RSV) and human parainfluenza virus type 3 (HPIV3) are major pediatric respiratory pathogens that lack vaccines. A chimeric bovine/human PIV3 (rB/HPIV3) virus expressing the unmodified, wild-type (wt) RSV fusion (F) protein from an added gene was previously evaluated in seronegative children as a bivalent intranasal RSV/HPIV3 vaccine, and it was well tolerated but insufficiently immunogenic for RSV F. We recently showed that rB/HPIV3 expressing a partially stabilized prefusion form (pre-F) of RSV F efficiently induced “high-quality” RSV-neutralizing antibodies, defined as antibodies that neutralize RSV in vitro without added complement (B. Liang et al., J Virol 89:9499–9510, 2015, doi:10.1128/JVI.01373-15). In the present study, we modified RSV F by replacing its cytoplasmic tail (CT) domain or its CT and transmembrane (TM) domains (TMCT) with counterparts from BPIV3 F, with or without pre-F stabilization. This resulted in RSV F being packaged in the rB/HPIV3 particle with an efficiency similar to that of RSV particles. Enhanced packaging was substantially attenuating in hamsters (10- to 100-fold) and rhesus monkeys (100- to 1,000-fold). Nonetheless, TMCT-directed packaging substantially increased the titers of high-quality RSV-neutralizing serum antibodies in hamsters. In rhesus monkeys, a strongly additive immunogenic effect of packaging and pre-F stabilization was observed, as demonstrated by 8- and 30-fold increases of RSV-neutralizing serum antibody titers in the presence and absence of added complement, respectively, compared to pre-F stabilization alone. Analysis of vaccine-induced F-specific antibodies by binding assays indicated that packaging conferred substantial stabilization of RSV F in the pre-F conformation. This provides an improved version of this well-tolerated RSV/HPIV3 vaccine candidate, with potently improved immunogenicity, which can be returned to clinical trials. IMPORTANCE Human respiratory syncytial virus (RSV) and human parainfluenza virus type 3 (HPIV3) are major viral agents of acute pediatric bronchiolitis and pneumonia worldwide that lack vaccines. A bivalent intranasal RSV/HPIV3 vaccine candidate consisting of a chimeric bovine/human PIV3 (rB/HPIV3) strain expressing the RSV fusion (F) protein was previously shown to be well tolerated by seronegative children but was insufficiently immunogenic for RSV F. In the present study, the RSV F protein was engineered to be packaged efficiently into vaccine virus particles. This resulted in a significantly enhanced quantity and quality of RSV-neutralizing antibodies in hamsters and nonhuman primates. In nonhuman primates, this effect was strongly additive to the previously described stabilization of the prefusion conformation of the F protein. The improved immunogenicity of RSV F by packaging appeared to involve prefusion stabilization. These findings provide a potently more immunogenic version of this well-tolerated vaccine candidate and should be applicable to other vectored vaccines. PMID:27581977
NASA Astrophysics Data System (ADS)
Duplaga, M.; Leszczuk, M. I.; Papir, Z.; Przelaskowski, A.
2008-12-01
Wider dissemination of medical digital video libraries is affected by two correlated factors, resource effective content compression that directly influences its diagnostic credibility. It has been proved that it is possible to meet these contradictory requirements halfway for long-lasting and low motion surgery recordings at compression ratios close to 100 (bronchoscopic procedures were a case study investigated). As the main supporting assumption, it has been accepted that the content can be compressed as far as clinicians are not able to sense a loss of video diagnostic fidelity (a visually lossless compression). Different market codecs were inspected by means of the combined subjective and objective tests toward their usability in medical video libraries. Subjective tests involved a panel of clinicians who had to classify compressed bronchoscopic video content according to its quality under the bubble sort algorithm. For objective tests, two metrics (hybrid vector measure and hosaka Plots) were calculated frame by frame and averaged over a whole sequence.
Mechanical characteristics of the new BONE-LOK bi-cortical internal fixation device.
Cachia, Victor V; Shumway, Don; Culbert, Brad; Padget, Marty
2003-01-01
The purpose of this study was to evaluate the mechanical characteristics of a new and unique titanium compression anchor with BONE-LOK (Triage Medical, Inc, Irvine, CA) technology for compressive, bi-cortical internal fixation of bone. This device provides fixation through the use of a distal grasping anchor and an adjustable proximal collar that are joined by an axially movable pin and guide wire. The titanium compression anchor, in 2.0-, 2.7-, and 3.5-mm diameters, were compared with cortex screws (Synthes USA, Paoli, PA) of the same diameter and material for pullout strength in 20 lb/cu ft and 30 lb/cu ft solid rigid polyurethane foam; and for compression strength in 20 lb/cu ft foam. Retention strength of the collar was tested independently. The results showed significantly greater pullout strength of the 2.7-mm and 3.5-mm titanium compression anchor as compared with the 2.7-mm and 3.5-mm cortex screws in these test models. Pullout strength of the 2.0-mm titanium compression anchor was not statistically different in comparison with the 2.0-mm cortical screws. Compression strength of the titanium compression anchor was significantly greater than the cortical screws for all diameters tested. These differences represent a distinct advantage with the new device, which warrants further in vivo testing. Collar retention strength testing values were obtained for reference only and have no comparative significance.
An Evaluation of High Temperature Airframe Seals for Advanced Hypersonic Vehicles
NASA Technical Reports Server (NTRS)
DeMange, Jeffrey J.; Dunlap, Patrick H.; Steinetz, Bruce M.; Drlik, Gary J.
2007-01-01
High temperature seals are required for advanced hypersonic airframe applications. In this study, both spring tube thermal barriers and innovative wafer seal systems were evaluated under relevant hypersonic test conditions (temperatures, pressures, etc.) via high temperature compression testing and room temperature flow assessments. Thermal barriers composed of a Rene 41 spring tube filled with Saffil insulation and overbraided with a Nextel 312 sheath showed acceptable performance at 1500 F in both short term and longer term compression testing. Nextel 440 thermal barriers with Rene 41 spring tubes and Saffil insulation demonstrated good compression performance up to 1750 F. A silicon nitride wafer seal/compression spring system displayed excellent load performance at temperatures as high as 2200 F and exhibited room temperature leakage values that were only 1/3 those for the spring tube rope seals. For all seal candidates evaluated, no significant degradation in leakage resistance was noted after high temperature compression testing. In addition to these tests, a superalloy seal suitable for dynamic seal applications was optimized through finite element techniques.
Insights into the effects of tensile and compressive loadings on human femur bone.
Havaldar, Raviraj; Pilli, S C; Putti, B B
2014-01-01
Fragile fractures are most likely manifestations of fatigue damage that develop under repetitive loading conditions. Numerous microcracks disperse throughout the bone with the tensile and compressive loads. In this study, tensile and compressive load tests are performed on specimens of both the genders within 19 to 83 years of age and the failure strength is estimated. Fifty five human femur cortical samples are tested. They are divided into various age groups ranging from 19-83 years. Mechanical tests are performed on an Instron 3366 universal testing machine, according to American Society for Testing and Materials International (ASTM) standards. The results show that stress induced in the bone tissue depends on age and gender. It is observed that both tensile and compression strengths reduces as age advances. Compressive strength is more than tensile strength in both the genders. The compression and tensile strength of human femur cortical bone is estimated for both male and female subjecting in the age group of 19-83 years. The fracture toughness increases till 35 years in male and 30 years in female and reduces there after. Mechanical properties of bone are age and gender dependent.
Characterization of multiaxial warp knit composites
NASA Technical Reports Server (NTRS)
Dexter, H. Benson; Hasko, Gregory H.; Cano, Roberto J.
1991-01-01
The objectives were to characterize the mechanical behavior and damage tolerance of two multiaxial warp knit fabrics to determine the acceptability of these fabrics for high performance composite applications. The tests performed included compression, tension, open hole compression, compression after impact and compression-compression fatigue. Tests were performed on as-fabricated fabrics and on multi-layer fabrics that were stitched together with either carbon or Kevlar stitching yarn. Results of processing studies for vacuum impregnation with Hercules 3501-6 epoxy resin and pressure impregnation with Dow Tactix 138/H41 epoxy resin and British Petroleum BP E905L epoxy resin are presented.
Effect of load introduction on graphite epoxy compression specimens
NASA Technical Reports Server (NTRS)
Reiss, R.; Yao, T. M.
1981-01-01
Compression testing of modern composite materials is affected by the manner in which the compressive load is introduced. Two such effects are investigated: (1) the constrained edge effect which prevents transverse expansion and is common to all compression testing in which the specimen is gripped in the fixture; and (2) nonuniform gripping which induces bending into the specimen. An analytical model capable of quantifying these foregoing effects was developed which is based upon the principle of minimum complementary energy. For pure compression, the stresses are approximated by Fourier series. For pure bending, the stresses are approximated by Legendre polynomials.
NASA Astrophysics Data System (ADS)
Xu, Feng; Rao, Qiuhua; Ma, Wenbo
2018-03-01
The sinkage of a moving tracked mining vehicle is greatly affected by the combined compression-shear rheological properties of soft deep-sea sediments. For test purposes, the best sediment simulant is prepared based on soft deep-sea sediment from a C-C poly-metallic nodule mining area in the Pacific Ocean. Compressive creep tests and shear creep tests are combined to obtain compressive and shear rheological parameters to establish a combined compressive-shear rheological constitutive model and a compression-sinkage rheological constitutive model. The combined compression-shear rheological sinkage of the tracked mining vehicle at different speeds is calculated using the RecurDyn software with a selfprogrammed subroutine to implement the combined compression-shear rheological constitutive model. The model results are compared with shear rheological sinkage and ordinary sinkage (without consideration of rheological properties). These results show that the combined compression-shear rheological constitutive model must be taken into account when calculating the sinkage of a tracked mining vehicle. The combined compression-shear rheological sinkage decrease with vehicle speed and is the largest among the three types of sinkage. The developed subroutine in the RecurDyn software can be used to study the performance and structural optimization of moving tracked mining vehicles.
Compressive behavior of laminated neoprene bridge bearing pads under thermal aging condition
NASA Astrophysics Data System (ADS)
Jun, Xie; Zhang, Yannian; Shan, Chunhong
2017-10-01
The present study was conducted to obtain a better understanding of the variation rule of mechanical properties of laminated neoprene bridge bearing pads under thermal aging condition using compression tests. A total of 5 specimens were processed in a high-temperature chamber. After that, the specimens were tested subjected to axial load. The parameter mainly considered time of thermal aging processing for specimens. The results of compression tests show that the specimens after thermal aging processing are more probably brittle failure than the standard specimen. Moreover, the exposure of steel plate, cracks and other failure phenomena are more serious than the standard specimen. The compressive capacity, ultimate compressive strength, compressive elastic modulus of the laminated neoprene bridge bearing pads decreased dramatically with the increasing in the aging time of thermal aging processing. The attenuation trends of ultimate compressive strength, compressive elastic modulus of laminated neoprene bridge bearing pads under thermal aging condition accord with power function. The attenuation models are acquired by regressing data of experiment with the least square method. The attenuation models conform to reality well which shows that this model is applicable and has vast prospect in assessing the performance of laminated neoprene bridge bearing pads under thermal aging condition.
Mental Aptitude and Comprehension of Time-Compressed and Compressed-Expanded Listening Selections.
ERIC Educational Resources Information Center
Sticht, Thomas G.
The comprehensibility of materials compressed and then expanded by means of an electromechanical process was tested with 280 Army inductees divided into groups of high and low mental aptitude. Three short listening selections relating to military activities were subjected to compression and compression-expansion to produce seven versions. Data…
Permeability and compression characteristics of municipal solid waste samples
NASA Astrophysics Data System (ADS)
Durmusoglu, Ertan; Sanchez, Itza M.; Corapcioglu, M. Yavuz
2006-08-01
Four series of laboratory tests were conducted to evaluate the permeability and compression characteristics of municipal solid waste (MSW) samples. While the two series of tests were conducted using a conventional small-scale consolidometer, the two others were conducted in a large-scale consolidometer specially constructed for this study. In each consolidometer, the MSW samples were tested at two different moisture contents, i.e., original moisture content and field capacity. A scale effect between the two consolidometers with different sizes was investigated. The tests were carried out on samples reconsolidated to pressures of 123, 246, and 369 kPa. Time settlement data gathered from each load increment were employed to plot strain versus log-time graphs. The data acquired from the compression tests were used to back calculate primary and secondary compression indices. The consolidometers were later adapted for permeability experiments. The values of indices and the coefficient of compressibility for the MSW samples tested were within a relatively narrow range despite the size of the consolidometer and the different moisture contents of the specimens tested. The values of the coefficient of permeability were within a band of two orders of magnitude (10-6-10-4 m/s). The data presented in this paper agreed very well with the data reported by previous researchers. It was concluded that the scale effect in the compression behavior was significant. However, there was usually no linear relationship between the results obtained in the tests.
NASA Astrophysics Data System (ADS)
Nevskii, A. V.; Baldin, I. V.; Kudyakov, K. L.
2015-01-01
Adoption of modern building materials based on non-metallic fibers and their application in concrete structures represent one of the important issues in construction industry. This paper presents results of investigation of several types of raw materials selected: basalt fiber, carbon fiber and composite fiber rods based on glass and carbon. Preliminary testing has shown the possibility of raw materials to be effectively used in compressed concrete elements. Experimental program to define strength and deformability of compressed concrete elements with non-metallic fiber reinforcement and rod composite reinforcement included design, manufacture and testing of several types of concrete samples with different types of fiber and longitudinal rod reinforcement. The samples were tested under compressive static load. The results demonstrated that fiber reinforcement of concrete allows increasing carrying capacity of compressed concrete elements and reducing their deformability. Using composite longitudinal reinforcement instead of steel longitudinal reinforcement in compressed concrete elements insignificantly influences bearing capacity. Combined use of composite rod reinforcement and fiber reinforcement in compressed concrete elements enables to achieve maximum strength and minimum deformability.
Membrane filtration device for studying compression of fouling layers in membrane bioreactors
Bugge, Thomas Vistisen; Larsen, Poul; Nielsen, Per Halkjær; Christensen, Morten Lykkegaard
2017-01-01
A filtration devise was developed to assess compressibility of fouling layers in membrane bioreactors. The system consists of a flat sheet membrane with air scouring operated at constant transmembrane pressure to assess the influence of pressure on resistance of fouling layers. By fitting a mathematical model, three model parameters were obtained; a back transport parameter describing the kinetics of fouling layer formation, a specific fouling layer resistance, and a compressibility parameter. This stands out from other on-site filterability tests as model parameters to simulate filtration performance are obtained together with a characterization of compressibility. Tests on membrane bioreactor sludge showed high reproducibility. The methodology’s ability to assess compressibility was tested by filtrations of sludges from membrane bioreactors and conventional activated sludge wastewater treatment plants from three different sites. These proved that membrane bioreactor sludge showed higher compressibility than conventional activated sludge. In addition, detailed information on the underlying mechanisms of the difference in fouling propensity were obtained, as conventional activated sludge showed slower fouling formation, lower specific resistance and lower compressibility of fouling layers, which is explained by a higher degree of flocculation. PMID:28749990
NASA Technical Reports Server (NTRS)
Adams, Donald F.
1999-01-01
The attached data summarizes the work performed by the Composite Materials Research Group at the University of Wyoming funded by the NASA LaRC Research Grant NAG-1-1294. The work consisted primarily of tension, compression, open-hole compression and double cantilever beam fracture toughness testing performed an a variety of NASA LaRC composite materials. Tests were performed at various environmental conditions and pre-conditioning requirements. The primary purpose of this work was to support the LaRC material development efforts. The data summaries are arranged in chronological order from oldest to newest.
Compression of thick laminated composite beams with initial impact-like damage
NASA Technical Reports Server (NTRS)
Breivik, N. L.; Guerdal, Z.; Griffin, O. H., Jr.
1992-01-01
While the study of compression after impact of laminated composites has been under consideration for many years, the complexity of the damage initiated by low velocity impact has not lent itself to simple predictive models for compression strength. The damage modes due to non-penetrating, low velocity impact by large diameter objects can be simulated using quasi-static three-point bending. The resulting damage modes are less coupled and more easily characterized than actual impact damage modes. This study includes the compression testing of specimens with well documented initial damage states obtained from three-point bend testing. Compression strengths and failure modes were obtained for quasi-isotropic stacking sequences from 0.24 to 1.1 inches thick with both grouped and interspersed ply stacking. Initial damage prior to compression testing was divided into four classifications based on the type, extent, and location of the damage. These classifications are multiple through-thickness delaminations, isolated delamination, damage near the surface, and matrix cracks. Specimens from each classification were compared to specimens tested without initial damage in order to determine the effects of the initial damage on the final compression strength and failure modes. A finite element analysis was used to aid in the understanding and explanation of the experimental results.
Universal penetration test apparatus with fluid penetration sensor
Johnson, Phillip W.; Stampfer, Joseph F.; Bradley, Orvil D.
1999-01-01
A universal penetration test apparatus for measuring resistance of a material to a challenge fluid. The apparatus includes a pad saturated with the challenge fluid. The apparatus includes a compression assembly for compressing the material between the pad and a compression member. The apparatus also includes a sensor mechanism for automatically detecting when the challenge fluid penetrates the material.
A reassessment of the compressive strength properties of southern yellow pine bark
Thomas L. Eberhardt
2007-01-01
Samples of southern yellow pine outer bark and wood were tested in compression to determine values for modulus of elasticity, stress at proportional limit, and maximum crushing strength. Results reported here resolve inconsistencies in the compressive strength data previously reported by others for pine bark. Testing of solvent-treated bark blocks suggests that...
Moshina, Nataliia; Sebuødegård, Sofie; Hofvind, Solveig
2017-06-01
We aimed to investigate early performance measures in a population-based breast cancer screening program stratified by compression force and pressure at the time of mammographic screening examination. Early performance measures included recall rate, rates of screen-detected and interval breast cancers, positive predictive value of recall (PPV), sensitivity, specificity, and histopathologic characteristics of screen-detected and interval breast cancers. Information on 261,641 mammographic examinations from 93,444 subsequently screened women was used for analyses. The study period was 2007-2015. Compression force and pressure were categorized using tertiles as low, medium, or high. χ 2 test, t tests, and test for trend were used to examine differences between early performance measures across categories of compression force and pressure. We applied generalized estimating equations to identify the odds ratios (OR) of screen-detected or interval breast cancer associated with compression force and pressure, adjusting for fibroglandular and/or breast volume and age. The recall rate decreased, while PPV and specificity increased with increasing compression force (p for trend <0.05 for all). The recall rate increased, while rate of screen-detected cancer, PPV, sensitivity, and specificity decreased with increasing compression pressure (p for trend <0.05 for all). High compression pressure was associated with higher odds of interval breast cancer compared with low compression pressure (1.89; 95% CI 1.43-2.48). High compression force and low compression pressure were associated with more favorable early performance measures in the screening program.
Time-compressed speech test in the elderly.
Arceno, Rayana Silva; Scharlach, Renata Coelho
2017-09-28
The present study aimed to evaluate the performance of elderly people in the time-compressed speech test according to the variables ears and order of display, and analyze the types of errors presented by the volunteers. This is an observational, descriptive, quantitative, analytical and primary cross-sectional study involving 22 elderly with normal hearing or mild sensorineural hearing loss between the ages of 60 and 80. The elderly were submitted to the time-compressed speech test with compression ratio of 60%, through the electromechanical time compression method. A list of 50 disyllables was applied to each ear and the initial side was chosen at random. On what concerns to the performance in the test, the elderly fell short in relation to the adults and there was no statistical difference between the ears. It was found statistical evidence of better performance for the second ear in the test. The most mistaken words were the ones initiated with the phonemes /p/ and /d/. The presence of consonant combination in a word also increased the occurrence of mistakes. The elderly have worse performance in the auditory closure ability when assessed by the time-compressed speech test compared to adults. This result suggests that elderly people have difficulty in recognizing speech when this is pronounced in faster rates. Therefore, strategies must be used to facilitate the communicative process, regardless the presence of hearing loss.
Oh, Je Hyeok; Kim, Chan Woong; Kim, Sung Eun; Lee, Sang Jin; Lee, Dong Hoon
2014-07-01
When rescuers perform cardiopulmonary resuscitation (CPR) from a standing position, the height at which chest compressions are carried out is raised. To determine whether chest compressions delivered on a bed adjusted to rescuer's knee height are as effective as those delivered on the floor. A total of 20 fourth-year medical students participated in the study. The students performed chest compressions for 2 min each on a manikin lying on the floor (test 1) and on a manikin lying on a bed (test 2). The average compression rate (ACR) and the average compression depth (ACD) were compared between the two tests. The ACR was not significantly different between tests 1 and 2 (120.1 to 132.9 vs 115.7 to 131.2 numbers/min, 95% CI, p=0.324). The ACD was also not significantly different between tests 1 and 2 (51.2 to 56.6 vs 49.4 to 55.7 mm, 95% CI, p=0.058). The results suggest that there may be no significant differences in compression rate and depth between CPR performed on manikins placed on the floor and those placed at a rescuer's knee height. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Kim, Young-Gon; Song, Kuk-Hyun; Lee, Dong-Hoon; Joo, Sung-Min
2018-03-01
The demand of crack tip opening displacement (CTOD) test which evaluates fracture toughness of a cracked material is very important to ensure the stability of structure under severe service environment. The validity of the CTOD test result is judged using several criterions of the specification standards. One of them is the artificially generated fatigue pre-crack length inside the specimen. For acceptable CTOD test results, fatigue pre-crack must have a reasonable sharp crack front. The propagation of fatigue crack started from the tip of the machined notch, which might have propagated irregularly due to residual stress field. To overcome this problem, test codes suggest local compression method, reversed bending method and stepwise high-R ratio method to reduce the disparity of residual stress distribution inside the specimen. In this paper, the relation between the degree of local compression and distribution of welding residual stress has been analyzed by finite element analyses in order to determine the amount of effective local compression of the test piece. Analysis results show that initial welding residual stress is dramatically varied three-dimensionally while cutting, notch machining and local compressing due to the change of internal restraint force. From the simulation result, the authors find that there is an optimum amount of local compression to modify regularly for generating fatigue pre-crack propagation. In the case of 0.5% compressions of the model width is the most effective for uniforming residual stress distribution.
NASA Astrophysics Data System (ADS)
Song, Jun Hee; Kim, Hak Kun; Kim, Sam Yeon
2014-07-01
Laminated fiber-reinforced composites can be applied to an insulating structure of a nuclear fusion device. It is necessary to investigate the interlaminar fracture characteristics of the laminated composites for the assurance of design and structural integrity. The three methods used to prepare the glass fiber reinforced plastic composites tested in this study were vacuum pressure impregnation, high pressure laminate (HPL), and prepreg laminate. We discuss the design criteria for safe application of composites and the shear-compressive test methods for evaluating mechanical properties of the material. Shear-compressive tests could be performed successfully using series-type test jigs that were inclined 0°, 30°, 45°, 60°, and 75° to the normal axis. Shear strength depends strongly on the applied compressive stress. The design range of allowable shear stress was extended by use of the appropriate composite fabrication method. HPL had the largest design range, and the allowable interlaminar shear stress was 0.254 times the compressive stress.
Tensile and Compressive Constitutive Response of 316 Stainless Steel at Elevated Temperatures
NASA Technical Reports Server (NTRS)
Manson, S. S.; Muralidharan, U.; Halford, G. R.
1983-01-01
Creep rate in compression is lower by factors of 2 to 10 than in tension if the microstructure of the two specimens is the same and are tested at equal temperatures and equal but opposite stresses. Such behavior is characteristic for monotonic creep and conditions involving cyclic creep. In the latter case creep rate in both tension and compression progressively increases from cycle to cycle, rendering questionable the possibility of expressing a time stabilized constitutive relationship. The difference in creep rates in tension and compression is considerably reduced if the tension specimen is first subjected to cycles of tensile creep (reversed by compressive plasticity), while the compression specimen is first subjected to cycles of compressive creep (reversed by tensile plasticity). In both cases, the test temperature is the same and the stresses are equal and opposite. Such reduction is a reflection of differences in microstructure of the specimens resulting from different prior mechanical history.
MHD simulation of plasma compression experiments
NASA Astrophysics Data System (ADS)
Reynolds, Meritt; Barsky, Sandra; de Vietien, Peter
2017-10-01
General Fusion (GF) is working to build a magnetized target fusion (MTF) power plant based on compression of magnetically-confined plasma by liquid metal. GF is testing this compression concept by collapsing solid aluminum liners onto plasmas formed by coaxial helicity injection in a series of experiments called PCS (Plasma Compression, Small). We simulate the PCS experiments using the finite-volume MHD code VAC. The single-fluid plasma model includes temperature-dependent resistivity and anisotropic heat transport. The time-dependent curvilinear mesh for MHD simulation is derived from LS-DYNA simulations of actual field tests of liner implosion. We will discuss how 3D simulations reproduced instability observed in the PCS13 experiment and correctly predicted stabilization of PCS14 by ramping the shaft current during compression. We will also present a comparison of simulated Mirnov and x-ray diagnostics with experimental measurements indicating that PCS14 compressed well to a linear compression ratio of 2.5:1.
Prediction of compressibility parameters of the soils using artificial neural network.
Kurnaz, T Fikret; Dagdeviren, Ugur; Yildiz, Murat; Ozkan, Ozhan
2016-01-01
The compression index and recompression index are one of the important compressibility parameters to determine the settlement calculation for fine-grained soil layers. These parameters can be determined by carrying out laboratory oedometer test on undisturbed samples; however, the test is quite time-consuming and expensive. Therefore, many empirical formulas based on regression analysis have been presented to estimate the compressibility parameters using soil index properties. In this paper, an artificial neural network (ANN) model is suggested for prediction of compressibility parameters from basic soil properties. For this purpose, the input parameters are selected as the natural water content, initial void ratio, liquid limit and plasticity index. In this model, two output parameters, including compression index and recompression index, are predicted in a combined network structure. As the result of the study, proposed ANN model is successful for the prediction of the compression index, however the predicted recompression index values are not satisfying compared to the compression index.
Damage Tolerance of Pre-Stressed Composite Panels Under Impact Loads
NASA Astrophysics Data System (ADS)
Johnson, Alastair F.; Toso-Pentecôte, Nathalie; Schueler, Dominik
2014-02-01
An experimental test campaign studied the structural integrity of carbon fibre/epoxy panels preloaded in tension or compression then subjected to gas gun impact tests causing significant damage. The test programme used representative composite aircraft fuselage panels composed of aerospace carbon fibre toughened epoxy prepreg laminates. Preload levels in tension were representative of design limit loads for fuselage panels of this size, and maximum compression preloads were in the post-buckle region. Two main impact scenarios were considered: notch damage from a 12 mm steel cube projectile, at velocities in the range 93-136 m/s; blunt impact damage from 25 mm diameter glass balls, at velocities 64-86 m/s. The combined influence of preload and impact damage on panel residual strengths was measured and results analysed in the context of damage tolerance requirements for composite aircraft panels. The tests showed structural integrity well above design limit loads for composite panels preloaded in tension and compression with visible notch impact damage from hard body impact tests. However, blunt impact tests on buckled compression loaded panels caused large delamination damage regions which lowered plate bending stiffness and reduced significantly compression strengths in buckling.
Universal penetration test apparatus with fluid penetration sensor
Johnson, P.W.; Stampfer, J.F.; Bradley, O.D.
1999-02-02
A universal penetration test apparatus is described for measuring resistance of a material to a challenge fluid. The apparatus includes a pad saturated with the challenge fluid. The apparatus includes a compression assembly for compressing the material between the pad and a compression member. The apparatus also includes a sensor mechanism for automatically detecting when the challenge fluid penetrates the material. 23 figs.
de Castro, Denise Tornavoi; Lepri, César Penazzo; Valente, Mariana Lima da Costa; dos Reis, Andréa Cândido
2016-01-01
The aim of this study was to compare the compressive strength of a silorane-based composite resin (Filtek P90) to that of conventional composite resins (Charisma, Filtek Z250, Fill Magic, and NT Premium) before and after accelerated artificial aging (AAA). For each composite resin, 16 cylindrical specimens were prepared and divided into 2 groups. One group underwent analysis of compressive strength in a universal testing machine 24 hours after preparation, and the other was subjected first to 192 hours of AAA and then the compressive strength test. Data were analyzed by analysis of variance, followed by the Tukey HSD post hoc test (α = 0.05). Some statistically significant differences in compressive strength were found among the commercial brands (P < 0.001). The conventional composite resin Fill Magic presented the best performance before (P < 0.05) and after AAA (P < 0.05). Values for compressive strength of the silorane-based composite were among the lowest obtained, both before and after aging. Comparison of each material before and after AAA revealed that the aging process did not influence the compressive strength of the tested resins (P = 0.785).
Compressive Behavior of Fiber-Reinforced Concrete with End-Hooked Steel Fibers.
Lee, Seong-Cheol; Oh, Joung-Hwan; Cho, Jae-Yeol
2015-03-27
In this paper, the compressive behavior of fiber-reinforced concrete with end-hooked steel fibers has been investigated through a uniaxial compression test in which the variables were concrete compressive strength, fiber volumetric ratio, and fiber aspect ratio (length to diameter). In order to minimize the effect of specimen size on fiber distribution, 48 cylinder specimens 150 mm in diameter and 300 mm in height were prepared and then subjected to uniaxial compression. From the test results, it was shown that steel fiber-reinforced concrete (SFRC) specimens exhibited ductile behavior after reaching their compressive strength. It was also shown that the strain at the compressive strength generally increased along with an increase in the fiber volumetric ratio and fiber aspect ratio, while the elastic modulus decreased. With consideration for the effect of steel fibers, a model for the stress-strain relationship of SFRC under compression is proposed here. Simple formulae to predict the strain at the compressive strength and the elastic modulus of SFRC were developed as well. The proposed model and formulae will be useful for realistic predictions of the structural behavior of SFRC members or structures.
Compressive Testing of Stitched Frame and Stringer Alternate Configurations
NASA Technical Reports Server (NTRS)
Leone, Frank A., Jr.; Jegley, Dawn C.
2016-01-01
A series of single-frame and single-stringer compression tests were conducted at NASA Langley Research Center on specimens harvested from a large panel built using the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept. Different frame and stringer designs were used in fabrication of the PRSEUS panel. In this report, the details of the experimental testing of single-frame and single-stringer compression specimens are presented, as well as discussions on the performance of the various structural configurations included in the panel.
Koski, Antti; Tossavainen, Timo; Juhola, Martti
2004-01-01
Electrocardiogram (ECG) signals are the most prominent biomedical signal type used in clinical medicine. Their compression is important and widely researched in the medical informatics community. In the previous literature compression efficacy has been investigated only in the context of how much known or developed methods reduced the storage required by compressed forms of original ECG signals. Sometimes statistical signal evaluations based on, for example, root mean square error were studied. In previous research we developed a refined method for signal compression and tested it jointly with several known techniques for other biomedical signals. Our method of so-called successive approximation quantization used with wavelets was one of the most successful in those tests. In this paper, we studied to what extent these lossy compression methods altered values of medical parameters (medical information) computed from signals. Since the methods are lossy, some information is lost due to the compression when a high enough compression ratio is reached. We found that ECG signals sampled at 400 Hz could be compressed to one fourth of their original storage space, but the values of their medical parameters changed less than 5% due to compression, which indicates reliable results.
StirMark Benchmark: audio watermarking attacks based on lossy compression
NASA Astrophysics Data System (ADS)
Steinebach, Martin; Lang, Andreas; Dittmann, Jana
2002-04-01
StirMark Benchmark is a well-known evaluation tool for watermarking robustness. Additional attacks are added to it continuously. To enable application based evaluation, in our paper we address attacks against audio watermarks based on lossy audio compression algorithms to be included in the test environment. We discuss the effect of different lossy compression algorithms like MPEG-2 audio Layer 3, Ogg or VQF on a selection of audio test data. Our focus is on changes regarding the basic characteristics of the audio data like spectrum or average power and on removal of embedded watermarks. Furthermore we compare results of different watermarking algorithms and show that lossy compression is still a challenge for most of them. There are two strategies for adding evaluation of robustness against lossy compression to StirMark Benchmark: (a) use of existing free compression algorithms (b) implementation of a generic lossy compression simulation. We discuss how such a model can be implemented based on the results of our tests. This method is less complex, as no real psycho acoustic model has to be applied. Our model can be used for audio watermarking evaluation of numerous application fields. As an example, we describe its importance for e-commerce applications with watermarking security.
Friction of Compression-ignition Engines
NASA Technical Reports Server (NTRS)
Moore, Charles S; Collins, John H , Jr
1936-01-01
The cost in mean effective pressure of generating air flow in the combustion chambers of single-cylinder compression-ignition engines was determined for the prechamber and the displaced-piston types of combustion chamber. For each type a wide range of air-flow quantities, speeds, and boost pressures was investigated. Supplementary tests were made to determine the effect of lubricating-oil temperature, cooling-water temperature, and compression ratio on the friction mean effective pressure of the single-cylinder test engine. Friction curves are included for two 9-cylinder, radial, compression-ignition aircraft engines. The results indicate that generating the optimum forced air flow increased the motoring losses approximately 5 pounds per square inch mean effective pressure regardless of chamber type or engine speed. With a given type of chamber, the rate of increase in friction mean effective pressure with engine speed is independent of the air-flow speed. The effect of boost pressure on the friction cannot be predicted because the friction was decreased, unchanged, or increased depending on the combustion-chamber type and design details. High compression ratio accounts for approximately 5 pounds per square inch mean effective pressure of the friction of these single-cylinder compression-ignition engines. The single-cylinder test engines used in this investigation had a much higher friction mean effective pressure than conventional aircraft engines or than the 9-cylinder, radial, compression-ignition engines tested so that performance should be compared on an indicated basis.
Constitutive Soil Properties for Mason Sand and Kennedy Space Center
NASA Technical Reports Server (NTRS)
Thomas, Michael A.; Chitty, Daniel E.
2011-01-01
Accurate soil models are required for numerical simulations of land landings for the Orion Crew Exploration Vehicle (CEV). This report provides constitutive material models for two soil conditions at Kennedy Space Center (KSC) and four conditions of Mason Sand. The Mason Sand is the test sand for LaRC s drop tests and swing tests of the Orion. The soil models are based on mechanical and compressive behavior observed during geotechnical laboratory testing of remolded soil samples. The test specimens were reconstituted to measured in situ density and moisture content. Tests included: triaxial compression, hydrostatic compression, and uniaxial strain. A fit to the triaxial test results defines the strength envelope. Hydrostatic and uniaxial tests define the compressibility. The constitutive properties are presented in the format of LSDYNA Material Model 5: Soil and Foam. However, the laboratory test data provided can be used to construct other material models. The soil models are intended to be specific to the soil conditions they were tested at. The two KSC models represent two conditions at KSC: low density dry sand and high density in-situ moisture sand. The Mason Sand model was tested at four conditions which encompass measured conditions at LaRC s drop test site.
The Use of DNS in Turbulence Modeling
NASA Technical Reports Server (NTRS)
Mansour, Nagi N.; Merriam, Marshal (Technical Monitor)
1997-01-01
The use of Direct numerical simulations (DNS) data in developing and testing turbulence models is reviewed. The data is used to test turbulence models at all levels: algebraic, one-equation, two-equation and full Reynolds stress models were tested. Particular examples on the development of models for the dissipation rate equation are presented. Homogeneous flows are used to test new scaling arguments for the various terms in the dissipation rate equation. The channel flow data is used to develop modifications to the equation model that take into account near-wall effects. DNS of compressible flows under mean compression are used in testing new compressible modifications to the two-equation models.
The effects of compressive preloads on the compression-after-impact strength of carbon/epoxy
NASA Technical Reports Server (NTRS)
Nettles, A. T.; Lance, D. G.
1992-01-01
A preloading device was used to examine the effects of compressive prestress on the compression-after-impact (CAI) strength of 16-ply, quasi-isotropic carbon epoxy test coupons. T300/934 material was evaluated at preloads from 200 to 4000 lb at impact energies from 1 to 9 joules. IM7/8551-7 material was evaluated at preloads from 4000 to 10,000 lb at impact energies from 4 to 16 joules. Advanced design of experiments methodology was used to design and evaluate the test matrices. The results showed that no statistically significant change in CAI strength could be contributed to the amount of compressive preload applied to the specimen.
Service Lifetime Estimation of EPDM Rubber Based on Accelerated Aging Tests
NASA Astrophysics Data System (ADS)
Liu, Jie; Li, Xiangbo; Xu, Likun; He, Tao
2017-04-01
Service lifetime of ethylene propylene diene monomer (EPDM) rubber at room temperature (25 °C) was estimated based on accelerated aging tests. The study followed sealing stress loss on compressed cylinder samples by compression stress relaxation methods. The results showed that the cylinder samples of EPDM can quickly reach the physical relaxation equilibrium by using the over-compression method. The non-Arrhenius behavior occurred at the lowest aging temperature. A significant linear relationship was observed between compression set values and normalized stress decay results, and the relationship was not related to the ambient temperature of aging. It was estimated that the sealing stress loss in view of practical application would occur after around 86.8 years at 25 °C. The estimations at 25 °C based on the non-Arrhenius behavior were in agreement with compression set data from storage aging tests in natural environment.
Oak, Nikhil R; Lien, John R; Brunfeldt, Alexander; Lawton, Jeffrey N
2018-05-01
A fracture through the proximal radius is a theoretical concern after cortical button distal biceps fixation in an active patient. The permanent, nonossified cortical defect and medullary tunnel is at risk during a fall eliciting rotational and compressive forces. We hypothesized that during simulated torsion and compression, in comparison with unaltered specimens, the cortical button distal biceps repair model would have decreased torsional and compressive strength and would fracture in the vicinity of the bicipital tuberosity bone tunnel. Sixteen fourth-generation composite radius Sawbones models were used in this controlled laboratory study. A bone tunnel was created through the bicipital tuberosity to mimic the exact bone tunnel, 8 mm near cortex and 3.2 mm far cortex, made for the BicepsButton distal biceps tendon repair. The radius was then prepared and mounted on either a torsional or compression testing device and compared with undrilled control specimens. Compression tests resulted in average failure loads of 9015.2 N in controls versus 8253.25 N in drilled specimens ( P = .074). Torsional testing resulted in an average failure torque of 27.3 Nm in controls and 19.3 Nm in drilled specimens ( P = .024). Average fracture angle was 35.1° in controls versus 21.1° in drilled. Gross fracture patterns were similar in compression testing; however, in torsional testing all fractures occurred through the bone tunnel in the drilled group. There are weaknesses in the vicinity of the bone tunnel in the proximal radius during biomechanical stress testing which may not be clinically relevant in nature. In cortical button fixation, distal biceps repairs creates a permanent, nonossified cortical defect with tendon interposed in the bone tunnel, which can alter the biomechanical properties of the proximal radius during compressive and torsional loading.
Rapid-Rate Compression Testing of Sheet Materials at High Temperatures
NASA Technical Reports Server (NTRS)
Bernett, E. C.; Gerberich, W. W.
1961-01-01
This Report describes the test equipment that was developed and the procedures that were used to evaluate structural sheet-material compression properties at preselected constant strain rates and/or loads. Electrical self-resistance was used to achieve a rapid heating rate of 200 F/sec. Four materials were tested at maximum temperatures which ranged from 600 F for the aluminum alloy to 2000 F for the Ni-Cr-Co iron-base alloy. Tests at 0.1, 0.001, and 0.00001 in./in./sec showed that strain rate has a major effect on the measured strength, especially at the high temperatures. The tests, under conditions of constant temperature and constant compression stress, showed that creep deformation can be a critical factor even when the time involved is on the order of a few seconds or less. The theoretical and practical aspects of rapid-rate compression testing are presented, and suggestions are made regarding possible modifications of the equipment which would improve the over-all capabilities.
NASA Technical Reports Server (NTRS)
Raju, B. B.; Camarda, C. J.; Cooper, P. A.
1979-01-01
Seventy-nine graphite/polyimide compression specimens were tested to investigate experimentally the IITRI test method for determining compressive properties of composite materials at room and elevated temperatures (589 K (600 F)). Minor modifications were made to the standard IITRI fixture and a high degree of precision was maintained in specimen fabrication and load alignment. Specimens included four symmetric laminate orientations. Various widths were tested to evaluate the effect of width on measured modulus and strength. In most cases three specimens of each width were tested at room and elevated temperature and a polynomial regression analysis was used to reduce the data. Scatter of replicate tests and back-to-back strain variations were low, and no specimens failed by instability. Variation of specimen width had a negligible effect on the measured ultimate strengths and initial moduli of the specimens. Measured compressive strength and stiffness values were sufficiently high for the material to be considered a usable structural material at temperatures as high as 589 K (600 F).
Elevated temperature creep properties of NiAl cryomilled with and without Y2O3
NASA Technical Reports Server (NTRS)
Whittenberger, J. Daniel; Luton, Michael J.
1995-01-01
The creep properties of lots of NiAl cryomilled with and without Y2O3 have been determined in compression and tension. Although identical cryomilling procedures were used, differences in composition were found between the lot ground with 0.5 vol% yttria and the lot ground without Y2O3. Compression testing between 1000 and 1300 K yielded similar creep strengths for both materials, while tensile creep rupture testing indicated that the yttria-containing alloy was slightly stronger than the Y2O3-free version. Both compression and tensile testing showed two deformation regimes; whereas the stress state did not affect the high stress exponent (n approximately equals 10) mechanism, the low stress exponent regime n was approximately 6 in tension and approximately 2 in compression. The strengths in tension were somewhat less than those measured in compression, but the estimated activation energies (Q) of approximately 600 kJ/mol for tensile testing were closer to the previously measured values (approximately 700 kJ/mol) for NiAl-AlN and very different from the Q's of 400 and 200 kJ/mol for compression tests in the high and low stress exponent regimes, respectively. A Larson-Miller comparison indicated that cryomilling can produce an alloy with long-term, high-temperature strength at least equal to conventional superalloys.
NASA Technical Reports Server (NTRS)
Hodge, Andrew J.; Nettles, Alan T.; Jackson, Justin R.
2011-01-01
Notched (open hole) composite laminates were tested in compression. The effect on strength of various sizes of through holes was examined. Results were compared to the average stress criterion model. Additionally, laminated sandwich structures were damaged from low-velocity impact with various impact energy levels and different impactor geometries. The compression strength relative to damage size was compared to the notched compression result strength. Open-hole compression strength was found to provide a reasonable bound on compression after impact.
NASA Technical Reports Server (NTRS)
McGowan, David M.; Ambur, Damodar R.
1998-01-01
The results of an experimental study of the impact damage characteristics and residual strength of composite sandwich panels impacted with and without a compression loading are presented. Results of impact damage screening tests conducted to identify the impact-energy levels at which damage initiates and at which barely visible impact damage occurs in the impacted facesheet are discussed. Parametric effects studied in these tests include the impactor diameter, dropped-weight versus airgun-launched impactors, and the effect of the location of the impact site with respect to the panel boundaries. Residual strength results of panels tested in compression after impact are presented and compared with results of panels that are subjected to a compressive preload prior to being impacted.
46 CFR 188.10-21 - Compressed gas.
Code of Federal Regulations, 2010 CFR
2010-10-01
... PROVISIONS Definition of Terms Used in This Subchapter § 188.10-21 Compressed gas. This term includes any... by the Reid method covered by the American Society for Testing Materials Method of Test for Vapor...
An investigation of the compressive strength of PRD-49-3/Epoxy composites
NASA Technical Reports Server (NTRS)
Kulkarni, S. V.; Rice, J. S.; Rosen, B. W.
1973-01-01
The development of unidirectional fiber composite materials is discussed. The mechanical and physical properties of the materials are described. Emphasis is placed in analyzing the compressive behavior of composite materials and developing methods for increasing compressive strength. The test program for evaluating the various procedures for improving compressive strength are reported.
Mower, Timothy E.; Higgins, Jerry D.; Yang, In C.; Peters, Charles A.
1994-01-01
Study of the hydrologic system at Yucca Mountain, Nevada, requires the extraction of pore-water samples from welded and nonwelded, unsaturated tuffs. Two compression methods (triaxial compression and one-dimensional compression) were examined to develop a repeatable extraction technique and to investigate the effects of the extraction method on the original pore-fluid composition. A commercially available triaxial cell was modified to collect pore water expelled from tuff cores. The triaxial cell applied a maximum axial stress of 193 MPa and a maximum confining stress of 68 MPa. Results obtained from triaxial compression testing indicated that pore-water samples could be obtained from nonwelded tuff cores that had initial moisture contents as small as 13 percent (by weight of dry soil). Injection of nitrogen gas while the test core was held at the maximum axial stress caused expulsion of additional pore water and reduced the required initial moisture content from 13 to 11 percent. Experimental calculations, together with experience gained from testing moderately welded tuff cores, indicated that the triaxial cell used in this study could not apply adequate axial or confining stress to expel pore water from cores of densely welded tuffs. This concern led to the design, fabrication, and testing of a one-dimensional compression cell. The one-dimensional compression cell used in this study was constructed from hardened 4340-alloy and nickel-alloy steels and could apply a maximum axial stress of 552 MPa. The major components of the device include a corpus ring and sample sleeve to confine the sample, a piston and base platen to apply axial load, and drainage plates to transmit expelled water from the test core out of the cell. One-dimensional compression extracted pore water from nonwelded tuff cores that had initial moisture contents as small as 7.6 percent; pore water was expelled from densely welded tuff cores that had initial moisture contents as small as 7.7 percent. Injection of nitrogen gas at the maximum axial stress did not produce additional pore water from nonwelded tuff cores, but was critical to recovery of pore water from densely welded tuff cores. Gas injection reduced the required initial moisture content in welded tuff cores from 7.7 to 6.5 percent. Based on the mechanical ability of a pore-water extraction method to remove water from welded and nonwelded tuff cores, one-dimensional compression is a more effective extraction method than triaxial compression. However, because the effects that one-dimensional compression has on pore-water chemistry are not completely understood, additional testing will be needed to verify that this method is suitable for pore-water extraction from Yucca Mountain tuffs.
NASA Technical Reports Server (NTRS)
Tilton, James C.; Ramapriyan, H. K.
1989-01-01
A case study is presented where an image segmentation based compression technique is applied to LANDSAT Thematic Mapper (TM) and Nimbus-7 Coastal Zone Color Scanner (CZCS) data. The compression technique, called Spatially Constrained Clustering (SCC), can be regarded as an adaptive vector quantization approach. The SCC can be applied to either single or multiple spectral bands of image data. The segmented image resulting from SCC is encoded in small rectangular blocks, with the codebook varying from block to block. Lossless compression potential (LDP) of sample TM and CZCS images are evaluated. For the TM test image, the LCP is 2.79. For the CZCS test image the LCP is 1.89, even though when only a cloud-free section of the image is considered the LCP increases to 3.48. Examples of compressed images are shown at several compression ratios ranging from 4 to 15. In the case of TM data, the compressed data are classified using the Bayes' classifier. The results show an improvement in the similarity between the classification results and ground truth when compressed data are used, thus showing that compression is, in fact, a useful first step in the analysis.
Compressive Behavior of Fiber-Reinforced Concrete with End-Hooked Steel Fibers
Lee, Seong-Cheol; Oh, Joung-Hwan; Cho, Jae-Yeol
2015-01-01
In this paper, the compressive behavior of fiber-reinforced concrete with end-hooked steel fibers has been investigated through a uniaxial compression test in which the variables were concrete compressive strength, fiber volumetric ratio, and fiber aspect ratio (length to diameter). In order to minimize the effect of specimen size on fiber distribution, 48 cylinder specimens 150 mm in diameter and 300 mm in height were prepared and then subjected to uniaxial compression. From the test results, it was shown that steel fiber-reinforced concrete (SFRC) specimens exhibited ductile behavior after reaching their compressive strength. It was also shown that the strain at the compressive strength generally increased along with an increase in the fiber volumetric ratio and fiber aspect ratio, while the elastic modulus decreased. With consideration for the effect of steel fibers, a model for the stress–strain relationship of SFRC under compression is proposed here. Simple formulae to predict the strain at the compressive strength and the elastic modulus of SFRC were developed as well. The proposed model and formulae will be useful for realistic predictions of the structural behavior of SFRC members or structures. PMID:28788011
Locating Encrypted Data Hidden Among Non-Encrypted Data Using Statistical Tools
2007-03-01
length of a compressed sequence). If a bit sequence can be significantly compressed , then it is not random. Lempel - Ziv Compression Test This test...communication, targeting, and a host other of tasks. This software will most assuredly contain classified data or algorithms requiring protection in...containing the classified data and algorithms . As the program is executed the solider would have access to the common unclassified tasks, however, to
Effect of angle-ply orientation on compression strength of composite laminates
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeTeresa, S J; Hoppel, C P
1999-03-01
An experimental program was initiated to investigate the effect of angle-ply orientations on the compressive strength (X{sub 1C}) of 0{degree} plies in fiber reinforced composite laminates. Graphite fiber-reinforced epoxy test coupons with the generic architecture [0{sub 2}/{+-}{theta}] (where {theta} varied between 0{degree} and 90{degree}) and for the quasi-isotropic architecture were evaluated. The effective compressive strength of the 0{degree} plies varied considerably. The results were related to the Poisson's ratios of the laminates with high Poisson's ratios leading to high transverse tensile strains in the test coupons and lower than expected strengths. Specimens with the [O{sub 2}/{+-}30] architecture had both themore » highest Poisson's ratio and the lowest calculated ply-level compression strength for the 0{degree} plies. This work has implications in the selection of composite failure criterion for compression performance, design of test coupons for acceptance testing, and the selection of laminate architectures for optimum combinations of compressive and shear behavior. Two commonly used composite failure criteria, the maximum stress and the Tsai-Wu, predict significantly different laminate strengths depending on the Poisson's ratio of the laminate. This implies that the biaxial stress state in the laminate needs to be carefully considered before backing out unidirectional properties.« less
Preoperative Duplex Scanning is a Helpful Diagnostic Tool in Neurogenic Thoracic Outlet Syndrome.
Orlando, Megan S; Likes, Kendall C; Mirza, Serene; Cao, Yue; Cohen, Anne; Lum, Ying Wei; Freischlag, Julie A
2016-01-01
To evaluate the diagnostic role of venous and arterial duplex scanning in neurogenic thoracic outlet syndrome (NTOS). Retrospective review of patients who underwent duplex ultrasonography prior to first rib resection and scalenectomy (FRRS) for NTOS from 2005 to 2013. Abnormal scans included ipsilateral compression (IC) with abduction of the symptomatic extremity (>50% change in subclavian vessel flow), contralateral (asymptomatic side) compression (CC) or bilateral compression (BC). A total of 143 patients (76% female, average age 34, range 13-59) underwent bilateral preoperative duplex scanning. Ipsilateral compression was seen in 44 (31%), CC in 12 (8%), and BC in 14 (10%). Seventy-three (51%) patients demonstrated no compression. Patients with IC more often experienced intraoperative pneumothoraces (49% vs. 25%, P < .05) and had positive Adson tests (86% vs. 61%, P < .02). Compression of the subclavian vein or artery on duplex ultrasonography can assist in NTOS diagnosis. Ipsilateral compression on abduction often correlates with Adson testing. © The Author(s) 2016.
Tensile and compressive constitutive response of 316 stainless steel at elevated temperatures
NASA Technical Reports Server (NTRS)
Manson, S. S.; Muralidharan, U.; Halford, G. R.
1982-01-01
It is demonstrated that creep rate of 316 SS is lower by factors of 2 to 10 in compression than in tension if the microstructure is the same and tests are conducted at identical temperatures and equal but opposite stresses. Such behavior was observed for both monotonic creep and conditions involving cyclic creep. In the latter case creep rate in both tension and compression progressively increases from cycle to cycle, rendering questionable the possibility of expressing a time-stabilized constitutive relationship. The difference in creep rates in tension and compression is considerably reduced if the tension specimen is first subjected to cycles of tensile creep (reversed by compressive plasticity), while the compression specimen is first subjected to cycles of compressive creep (reversed by tensile plasticity). In both cases, the test temperature is the same and the stresses are equal and opposite. Such reduction is a reflection of differences in microstructure of the specimens resulting from different prior mechanical history.
Previous concrete as one of the technology to overcome the puddle
NASA Astrophysics Data System (ADS)
Agung Putra Handana, M.; Karolina, Rahmi; Syahputra, Eko; Zulfikar
2018-03-01
Some construction waste has been utilized as a material in certain concrete compositions for engineering building materials. One is a concrete that has been removed after testing at a laboratory called recycle concrete. Disposed concrete, crushed and filtered with filter number 50; 37.5; 19; 9.5; and 4.75 mm are subsequently converted into rough aggregate materials in the manufacture of pervious concrete to be tested for compressive strength and infiltration velocity to water. Pervious concrete test specimens in the form of cylinders with dimensions (15 x 30) cm and plate-shaped with dimension (100 x 100 x 10) cm with the quality plan Fc ' = 15 MPa at age 28 days. The research methodology consisted of testing of wear, test object preparation, periodic maintenance, visual inspection, compressive strength testing, and infiltration rate of specimens against water (based on ASTM C1701). Treatment of specimens by spraying periodically before the test time. From the results of the Los Angeles wear test, it appears that recycled aggregate has an average wear rate of 20.88% (based on SNI 03-2417-1991) on the Los Angeles test) and the visual test on the specimen is appropriate (based on SNI 03 -0691-1996 on paving block) as the basis for testing the specimens. The largest compressive strength was found in pervious concrete with 9.5 mm graded aggregates of 5.89 MPa, while the smallest compressive strength of 50 mm gradation was 2.15 MPa and had a compressive strength of 28% of pervious concrete compressive strength on generally (based on SNI 03-6805-2002). The fastest infiltration speed occurs in 50 mm pervious gradient concrete at 4.52 inc / hr and is late in 9.5 mm grading of 2.068 inc / hr or an inflation rate inflation rate of 54.25% for gradation of 9.5 mm to 50 mm gradation, So that in accordance with the purpose of pervious concrete use, concrete that can drain water to the bottom layer
A materials test system for static compression at elevated temperatures
NASA Astrophysics Data System (ADS)
Korellis, J. S.; Steinhaus, C. A.; Totten, J. J.
1992-06-01
This report documents modifications to our existing computer-controlled compression testing system to allow elevated temperature testing in an evacuated environment. We have adopted an 'inverse' design configuration where the evacuated test volume is located within the induction heating coil, eliminating the expense and minimizing the evacuation time of a much larger traditional vacuum chamber.
Research priorities and history of advanced composite compression testing
NASA Technical Reports Server (NTRS)
Baumann, K. J.
1981-01-01
Priorities for standard compression testing research in advanced laminated fibrous composite materials are presented along with a state of the art survey (completed in 1979) including history and commentary on industrial test methods. Historically apparent research priorities and consequent (lack of) progress are supporting evidence for newly derived priorities.
Cachia, Victor V; Culbert, Brad; Warren, Chris; Oka, Richard; Mahar, Andrew
2003-01-01
The purpose of this study was to evaluate the structural and mechanical characteristics of a new and unique titanium cortical-cancellous helical compression anchor with BONE-LOK (Triage Medical, Inc., Irvine, CA) technology for compressive internal fixation of fractures and osteotomies. This device provides fixation through the use of a distal helical anchor and a proximal retentive collar that are united by an axially movable pin (U.S. and international patents issued and pending). The helical compression anchor (2.7-mm diameter) was compared with 3.0-mm diameter titanium cancellous screws (Synthes, Paoli, PA) for pullout strength and compression in 7# and 12# synthetic rigid polyurethane foam (simulated bone matrix), and for 3-point bending stiffness. The following results (mean +/- standard deviation) were obtained: foam block pullout strength in 12# foam: 2.7-mm helical compression anchor 70 +/- 2.0 N and 3.0-mm titanium cancellous screws 37 +/- 11 N; in 7# foam: 2.7-mm helical compression anchor 33 +/- 3 N and 3.0-mm titanium cancellous screws 31 +/- 12 N. Three-point bending stiffness, 2.7-mm helical compression anchor 988 +/- 68 N/mm and 3.0-mm titanium cancellous screws 845 +/- 88 N/mm. Compression strength testing in 12# foam: 2.7-mm helical compression anchor 70.8 +/- 4.8 N and 3.0-mm titanium cancellous screws 23.0 +/- 3.1 N, in 7# foam: 2.7-mm helical compression anchor 42.6 +/- 3.2 N and 3.0-mm titanium cancellous screws 10.4 +/- 0.9 N. Results showed greater pullout strength, 3-point bending stiffness, and compression strength for the 2.7-mm helical compression anchor as compared with the 3.0-mm titanium cancellous screws in these testing models. This difference represents a distinct advantage in the new device that warrants further in vivo testing.
Knutsen, Ashleen R; Borkowski, Sean L; Ebramzadeh, Edward; Flanagan, Colleen L; Hollister, Scott J; Sangiorgio, Sophia N
2015-09-01
Recently, as an alternative to metal spinal fusion cages, 3D printed bioresorbable materials have been explored; however, the static and fatigue properties of these novel cages are not well known. Unfortunately, current ASTM testing standards used to determine these properties were designed prior to the advent of bioresorbable materials for cages. Therefore, the applicability of these standards for bioresorbable materials is unknown. In this study, an image-based topology and a conventional 3D printed bioresorbable poly(ε)-caprolactone (PCL) cervical cage design were tested in compression, compression-shear, and torsion, to establish their static and fatigue properties. Difficulties were in fact identified in establishing failure criteria and in particular determining compressive failure load. Given these limitations, under static loads, both designs withstood loads of over 650 N in compression, 395 N in compression-shear, and 0.25 Nm in torsion, prior to yielding. Under dynamic testing, both designs withstood 5 million (5M) cycles of compression at 125% of their respective yield forces. Geometry significantly affected both the static and fatigue properties of the cages. The measured compressive yield loads fall within the reported physiological ranges; consequently, these PCL bioresorbable cages would likely require supplemental fixation. Most importantly, supplemental testing methods may be necessary beyond the current ASTM standards, to provide more accurate and reliable results, ultimately improving preclinical evaluation of these devices. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lietaert, Karel; Cutolo, Antonio; Boey, Dries; Van Hooreweder, Brecht
2018-03-21
Mechanical performance of additively manufactured (AM) Ti6Al4V scaffolds has mostly been studied in uniaxial compression. However, in real-life applications, more complex load conditions occur. To address this, a novel sample geometry was designed, tested and analyzed in this work. The new scaffold geometry, with porosity gradient between the solid ends and scaffold middle, was successfully used for quasi-static tension, tension-tension (R = 0.1), tension-compression (R = -1) and compression-compression (R = 10) fatigue tests. Results show that global loading in tension-tension leads to a decreased fatigue performance compared to global loading in compression-compression. This difference in fatigue life can be understood fairly well by approximating the local tensile stress amplitudes in the struts near the nodes. Local stress based Haigh diagrams were constructed to provide more insight in the fatigue behavior. When fatigue life is interpreted in terms of local stresses, the behavior of single struts is shown to be qualitatively the same as bulk Ti6Al4V. Compression-compression and tension-tension fatigue regimes lead to a shorter fatigue life than fully reversed loading due to the presence of a mean local tensile stress. Fractographic analysis showed that most fracture sites were located close to the nodes, where the highest tensile stresses are located.
Strength of mortar containing rubber tire particle
NASA Astrophysics Data System (ADS)
Jusoh, M. A.; Abdullah, S. R.; Adnan, S. H.
2018-04-01
The main focus in this investigation is to determine the strength consist compressive and tensile strength of mortar containing rubber tire particle. In fact, from the previous study, the strength of mortar containing waste rubber tire in mortar has a slightly decreases compare to normal mortar. In this study, rubber tire particle was replacing on volume of fine aggregate with 6%. 9% and 12%. The sample were indicated M0 (0%), M6 (6%), M9 (9%) and M12 (12%). In this study, two different size of sample used with cube 100mm x 100mm x 100mm for compressive strength and 40mm x 40mm x 160mm for flexural strength. Morphology test was conducted by using Scanning electron microscopic (SEM) were done after testing compressive strength test. The concrete sample were cured for day 3, 7 and 28 before testing. Results compressive strength and flexural strength of rubber mortar shown improved compare to normal mortar.
Park, Joung-Man; Kim, Jin-Won; Yoon, Dong-Jin
2002-03-01
Interfacial and microfailure properties of carbon fiber/epoxy composites were evaluated using both tensile fragmentation and compressive Broutman tests with an aid of acoustic emission (AE). A monomeric and two polymeric coupling agents were applied via the electrodeposition (ED) and the dipping applications. A monomeric and a polymeric coupling agent showed significant and comparable improvements in interfacial shear strength (IFSS) compared to the untreated case under both tensile and compressive tests. Typical microfailure modes including cone-shaped fiber break, matrix cracking, and partial interlayer failure were observed under tension, whereas the diagonal slipped failure at both ends of the fractured fiber exhibited under compression. Adsorption and shear displacement mechanisms at the interface were described in terms of electrical attraction and primary and secondary bonding forces. For both the untreated and the treated cases AE distributions were separated well in tension, whereas AE distributions were rather closely overlapped in compression. It might be because of the difference in molecular failure energies and failure mechanisms between tension and compression. The maximum AE voltage for the waveform of either carbon or large-diameter basalt fiber breakages in tension exhibited much larger than that in compression. AE could provide more likely the quantitative information on the interfacial adhesion and microfailure.
The effect of sludge water treatment plant residuals on the properties of compressed brick
NASA Astrophysics Data System (ADS)
Shamsudin, Shamrul-Mar; Shahidan, S.; Azmi, M. A. M.; Ghaffar, S. A.; Ghani, M. B. Abdul; Saiful Bahari, N. A. A.; Zuki, S. S. M.
2017-11-01
The focus of this study is on the production of compressed bricks which contains sludge water treatment plant (SWTP) residuals obtained from SAJ. The main objective of this study is to utilise and incorporate discarded material (SWTP) in the form of residual solution to produce compressed bricks. This serves as one of the recycling efforts to conserve the environment. This study determined the optimum mix based on a mix ratio of 1:2:4 (cement: sand: soil) in the production of compressed bricks where 5 different mixes were investigated i. e. 0%, 5%, 10%, 20%, and 30% of water treatment plant residue solution. The production of the compressed bricks is in accordance with the Malaysian Standard MS 7.6: 1972 and British Standard BS 3921: 1985 - Compressive Strength & Water Absorption. After being moulded and air dried, the cured bricks were subjected to compression tests and water absorption tests. Based on the tests conducted, it was found that 20% of water treatment plant residue solution which is equivalent to 50% of soil content replacement with a mix composition of [10: cement] [20: sand] [20: soil] [20: water treatment plant residue solution] is the optimum mix. It was also observed that the bricks containing SWTP residuals were lighter in weight compared to the control specimens
Influence of bottom ash of palm oil on compressive strength of concrete
NASA Astrophysics Data System (ADS)
Saputra, Andika Ade Indra; Basyaruddin, Laksono, Muhamad Hasby; Muntaha, Mohamad
2017-11-01
The technological development of concrete demands innovation regarding the alternative material as a part of the effort in improving quality and minimizing reliance on currently used raw materials such as bottom ash of palm oil. Bottom ash known as domestic waste stemming from palm oil cultivation in East Kalimantan contains silica. Like cement in texture and size, bottom ash can be mixed with concrete in which the silica in concrete could help increase the compressive strength of concrete. This research was conducted by comparing between normal concrete and concrete containing bottom ash as which the materials were apart of cement replacement. The bottom ash used in this research had to pass sieve size (#200). The composition tested in this research involved ratio between cement and bottom ash with the following percentages: 100%: 0%, 90%: 10%, 85%: 15% and 80%: 20%. Planned to be within the same amount of compressive strength (fc 25 MPa), the compressive strength of concrete was tested at the age of 7, 14, and 28 days. Research result shows that the addition of bottom ash to concrete influenced workability in concrete, but it did not significantly influence the compressive strength of concrete. Based on the result of compressive strength test, the optimal compressive strength was obtained from the mixture of 100% cement and 0% bottom ash.
Analysis of the operation of the SCD Response intermittent compression system.
Morris, Rh J; Griffiths, H; Woodcock, J P
2002-01-01
The work assessed the performance of the Kendall SCD Response intermittent pneumatic compression system for deep vein thrombosis prophylaxis, which claimed to set its cycle according to the blood flow characteristics of individual patient limbs. A series of tests measured the system response in various situations, including application to the limbs of healthy volunteers, and to false limbs. Practical experimentation and theoretical analysis were used to investigate influences on the system functioning other than blood flow. The system tested did not seem to perform as claimed, being unable to distinguish between real and fake limbs. The intervals between compressions were set to times unrealistic for venous refill, with temperature changes in the cuff the greatest influence on performance. Combining the functions of compression and the measurement of the effects of compression in the same air bladder makes temperature artefacts unavoidable and can cause significant errors in the inter-compression interval.
Radiological Image Compression
NASA Astrophysics Data System (ADS)
Lo, Shih-Chung Benedict
The movement toward digital images in radiology presents the problem of how to conveniently and economically store, retrieve, and transmit the volume of digital images. Basic research into image data compression is necessary in order to move from a film-based department to an efficient digital -based department. Digital data compression technology consists of two types of compression technique: error-free and irreversible. Error -free image compression is desired; however, present techniques can only achieve compression ratio of from 1.5:1 to 3:1, depending upon the image characteristics. Irreversible image compression can achieve a much higher compression ratio; however, the image reconstructed from the compressed data shows some difference from the original image. This dissertation studies both error-free and irreversible image compression techniques. In particular, some modified error-free techniques have been tested and the recommended strategies for various radiological images are discussed. A full-frame bit-allocation irreversible compression technique has been derived. A total of 76 images which include CT head and body, and radiographs digitized to 2048 x 2048, 1024 x 1024, and 512 x 512 have been used to test this algorithm. The normalized mean -square-error (NMSE) on the difference image, defined as the difference between the original and the reconstructed image from a given compression ratio, is used as a global measurement on the quality of the reconstructed image. The NMSE's of total of 380 reconstructed and 380 difference images are measured and the results tabulated. Three complex compression methods are also suggested to compress images with special characteristics. Finally, various parameters which would effect the quality of the reconstructed images are discussed. A proposed hardware compression module is given in the last chapter.
NASA Technical Reports Server (NTRS)
Held, Louis F.; Pritchard, Ernest I.
1946-01-01
An investigation was conducted to evaluate the possibilities of utilizing the high-performance characteristics of triptane and xylidines blended with 28-R fuel in order to increase fuel economy by the use of high compression ratios and maximum-economy spark setting. Full-scale single-cylinder knock tests were run with 20 deg B.T.C. and maximum-economy spark settings at compression ratios of 6.9, 8.0, and 10.0, and with two inlet-air temperatures. The fuels tested consisted of triptane, four triptane and one xylidines blend with 28-R, and 28-R fuel alone. Indicated specific fuel consumption at lean mixtures was decreased approximately 17 percent at a compression ratio of 10.0 and maximum-economy spark setting, as compared to that obtained with a compression ratio of 6.9 and normal spark setting. When compression ratio was increased from 6.9 to 10.0 at an inlet-air temperature of 150 F, normal spark setting, and a fuel-air ratio of 0.065, 55-percent triptane was required with 28-R fuel to maintain the knock-limited brake power level obtained with 28-R fuel at a compression ratio of 6.9. Brake specific fuel consumption was decreased 17.5 percent at a compression ratio of 10.0 relative to that obtained at a compression ratio of 6.9. Approximately similar results were noted at an inlet-air temperature of 250 F. For concentrations up through at least 20 percent, triptane can be more efficiently used at normal than at maximum-economy spark setting to maintain a constant knock-limited power output over the range of compression ratios tested.
Safiuddin, Md.; Raman, Sudharshan N.; Abdus Salam, Md.; Jumaat, Mohd. Zamin
2016-01-01
Modeling is a very useful method for the performance prediction of concrete. Most of the models available in literature are related to the compressive strength because it is a major mechanical property used in concrete design. Many attempts were taken to develop suitable mathematical models for the prediction of compressive strength of different concretes, but not for self-consolidating high-strength concrete (SCHSC) containing palm oil fuel ash (POFA). The present study has used artificial neural networks (ANN) to predict the compressive strength of SCHSC incorporating POFA. The ANN model has been developed and validated in this research using the mix proportioning and experimental strength data of 20 different SCHSC mixes. Seventy percent (70%) of the data were used to carry out the training of the ANN model. The remaining 30% of the data were used for testing the model. The training of the ANN model was stopped when the root mean square error (RMSE) and the percentage of good patterns was 0.001 and ≈100%, respectively. The predicted compressive strength values obtained from the trained ANN model were much closer to the experimental values of compressive strength. The coefficient of determination (R2) for the relationship between the predicted and experimental compressive strengths was 0.9486, which shows the higher degree of accuracy of the network pattern. Furthermore, the predicted compressive strength was found very close to the experimental compressive strength during the testing process of the ANN model. The absolute and percentage relative errors in the testing process were significantly low with a mean value of 1.74 MPa and 3.13%, respectively, which indicated that the compressive strength of SCHSC including POFA can be efficiently predicted by the ANN. PMID:28773520
Safiuddin, Md; Raman, Sudharshan N; Abdus Salam, Md; Jumaat, Mohd Zamin
2016-05-20
Modeling is a very useful method for the performance prediction of concrete. Most of the models available in literature are related to the compressive strength because it is a major mechanical property used in concrete design. Many attempts were taken to develop suitable mathematical models for the prediction of compressive strength of different concretes, but not for self-consolidating high-strength concrete (SCHSC) containing palm oil fuel ash (POFA). The present study has used artificial neural networks (ANN) to predict the compressive strength of SCHSC incorporating POFA. The ANN model has been developed and validated in this research using the mix proportioning and experimental strength data of 20 different SCHSC mixes. Seventy percent (70%) of the data were used to carry out the training of the ANN model. The remaining 30% of the data were used for testing the model. The training of the ANN model was stopped when the root mean square error (RMSE) and the percentage of good patterns was 0.001 and ≈100%, respectively. The predicted compressive strength values obtained from the trained ANN model were much closer to the experimental values of compressive strength. The coefficient of determination ( R ²) for the relationship between the predicted and experimental compressive strengths was 0.9486, which shows the higher degree of accuracy of the network pattern. Furthermore, the predicted compressive strength was found very close to the experimental compressive strength during the testing process of the ANN model. The absolute and percentage relative errors in the testing process were significantly low with a mean value of 1.74 MPa and 3.13%, respectively, which indicated that the compressive strength of SCHSC including POFA can be efficiently predicted by the ANN.
Compression Fracture of CFRP Laminates Containing Stress Intensifications.
Leopold, Christian; Schütt, Martin; Liebig, Wilfried V; Philipkowski, Timo; Kürten, Jonas; Schulte, Karl; Fiedler, Bodo
2017-09-05
For brittle fracture behaviour of carbon fibre reinforced plastics (CFRP) under compression, several approaches exist, which describe different mechanisms during failure, especially at stress intensifications. The failure process is not only initiated by the buckling fibres, but a shear driven fibre compressive failure beneficiaries or initiates the formation of fibres into a kink-band. Starting from this kink-band further damage can be detected, which leads to the final failure. The subject of this work is an experimental investigation on the influence of ply thickness and stacking sequence in quasi-isotropic CFRP laminates containing stress intensifications under compression loading. Different effects that influence the compression failure and the role the stacking sequence has on damage development and the resulting compressive strength are identified and discussed. The influence of stress intensifications is investigated in detail at a hole in open hole compression (OHC) tests. A proposed interrupted test approach allows identifying the mechanisms of damage initiation and propagation from the free edge of the hole by causing a distinct damage state and examine it at a precise instant of time during fracture process. Compression after impact (CAI) tests are executed in order to compare the OHC results to a different type of stress intensifications. Unnotched compression tests are carried out for comparison as a reference. With this approach, a more detailed description of the failure mechanisms during the sudden compression failure of CFRP is achieved. By microscopic examination of single plies from various specimens, the different effects that influence the compression failure are identified. First damage of fibres occurs always in 0°-ply. Fibre shear failure leads to local microbuckling and the formation and growth of a kink-band as final failure mechanisms. The formation of a kink-band and finally steady state kinking is shifted to higher compressive strains with decreasing ply thickness. Final failure mode in laminates with stress intensification depends on ply thickness. In thick or inner plies, damage initiates as shear failure and fibre buckling into the drilled hole. The kink-band orientation angle is changing with increasing strain. In outer or thin plies shear failure of single fibres is observed as first damage and the kink-band orientation angle is constant until final failure. Decreasing ply thickness increases the unnotched compressive strength. When stress intensifications are present, the position of the 0°-layer is critical for stability under compression and is thus more important than the ply thickness. Central 0°-layers show best results for OHC and CAI strength due to higher bending stiffness and better supporting effect of the adjacent layers.
Compression Fracture of CFRP Laminates Containing Stress Intensifications
Schütt, Martin; Philipkowski, Timo; Kürten, Jonas; Schulte, Karl
2017-01-01
For brittle fracture behaviour of carbon fibre reinforced plastics (CFRP) under compression, several approaches exist, which describe different mechanisms during failure, especially at stress intensifications. The failure process is not only initiated by the buckling fibres, but a shear driven fibre compressive failure beneficiaries or initiates the formation of fibres into a kink-band. Starting from this kink-band further damage can be detected, which leads to the final failure. The subject of this work is an experimental investigation on the influence of ply thickness and stacking sequence in quasi-isotropic CFRP laminates containing stress intensifications under compression loading. Different effects that influence the compression failure and the role the stacking sequence has on damage development and the resulting compressive strength are identified and discussed. The influence of stress intensifications is investigated in detail at a hole in open hole compression (OHC) tests. A proposed interrupted test approach allows identifying the mechanisms of damage initiation and propagation from the free edge of the hole by causing a distinct damage state and examine it at a precise instant of time during fracture process. Compression after impact (CAI) tests are executed in order to compare the OHC results to a different type of stress intensifications. Unnotched compression tests are carried out for comparison as a reference. With this approach, a more detailed description of the failure mechanisms during the sudden compression failure of CFRP is achieved. By microscopic examination of single plies from various specimens, the different effects that influence the compression failure are identified. First damage of fibres occurs always in 0°-ply. Fibre shear failure leads to local microbuckling and the formation and growth of a kink-band as final failure mechanisms. The formation of a kink-band and finally steady state kinking is shifted to higher compressive strains with decreasing ply thickness. Final failure mode in laminates with stress intensification depends on ply thickness. In thick or inner plies, damage initiates as shear failure and fibre buckling into the drilled hole. The kink-band orientation angle is changing with increasing strain. In outer or thin plies shear failure of single fibres is observed as first damage and the kink-band orientation angle is constant until final failure. Decreasing ply thickness increases the unnotched compressive strength. When stress intensifications are present, the position of the 0°-layer is critical for stability under compression and is thus more important than the ply thickness. Central 0°-layers show best results for OHC and CAI strength due to higher bending stiffness and better supporting effect of the adjacent layers. PMID:28872623
Damage Tolerance of Sandwich Plates with Debonded Face Sheets
NASA Technical Reports Server (NTRS)
Avery, John L., III; Sankar, Bhavani V.
1998-01-01
Axial compression tests were performed on debonded sandwich composites made of graphite/epoxy face-sheets and aramid fiber honeycomb core. The sandwich beams were manufactured using a vacuum baccrin2 process. The face-sheet and the sandwich beam were co-cured. Delamination between one of the face sheets and the core was introduced by using a Teflon layer during the curing process. Axial compression tests were performed to determine the ultimate load carrying capacity of the debonded beams. Flatwise tension tests and Double Cantilever Beam tests were performed to determine. respectively, the strength and fracture toughness of the face-sheet/core interface. From the test results semi-empirical formulas were derived for the fracture toughness and ultimate compressive load carrying capacity in terms of the core density. core thickness. face-sheet thickness and debond length. Four different failure modes and their relation to the structural properties were identified. Linear buckling analysis was found to be inadequate in predicting the compressive load carrying capacity of the debonded sandwich composites.
Chest compression rates and survival following out-of-hospital cardiac arrest.
Idris, Ahamed H; Guffey, Danielle; Pepe, Paul E; Brown, Siobhan P; Brooks, Steven C; Callaway, Clifton W; Christenson, Jim; Davis, Daniel P; Daya, Mohamud R; Gray, Randal; Kudenchuk, Peter J; Larsen, Jonathan; Lin, Steve; Menegazzi, James J; Sheehan, Kellie; Sopko, George; Stiell, Ian; Nichol, Graham; Aufderheide, Tom P
2015-04-01
Guidelines for cardiopulmonary resuscitation recommend a chest compression rate of at least 100 compressions/min. A recent clinical study reported optimal return of spontaneous circulation with rates between 100 and 120/min during cardiopulmonary resuscitation for out-of-hospital cardiac arrest. However, the relationship between compression rate and survival is still undetermined. Prospective, observational study. Data is from the Resuscitation Outcomes Consortium Prehospital Resuscitation IMpedance threshold device and Early versus Delayed analysis clinical trial. Adults with out-of-hospital cardiac arrest treated by emergency medical service providers. None. Data were abstracted from monitor-defibrillator recordings for the first five minutes of emergency medical service cardiopulmonary resuscitation. Multiple logistic regression assessed odds ratio for survival by compression rate categories (<80, 80-99, 100-119, 120-139, ≥140), both unadjusted and adjusted for sex, age, witnessed status, attempted bystander cardiopulmonary resuscitation, location of arrest, chest compression fraction and depth, first rhythm, and study site. Compression rate data were available for 10,371 patients; 6,399 also had chest compression fraction and depth data. Age (mean±SD) was 67±16 years. Chest compression rate was 111±19 per minute, compression fraction was 0.70±0.17, and compression depth was 42±12 mm. Circulation was restored in 34%; 9% survived to hospital discharge. After adjustment for covariates without chest compression depth and fraction (n=10,371), a global test found no significant relationship between compression rate and survival (p=0.19). However, after adjustment for covariates including chest compression depth and fraction (n=6,399), the global test found a significant relationship between compression rate and survival (p=0.02), with the reference group (100-119 compressions/min) having the greatest likelihood for survival. After adjustment for chest compression fraction and depth, compression rates between 100 and 120 per minute were associated with greatest survival to hospital discharge.
Peck, Jonathan H; Sing, David C; Nagaraja, Srinidhi; Peck, Deepa G; Lotz, Jeffrey C; Dmitriev, Anton E
2017-03-21
Cervical intervertebral body fusion devices (IBFDs) are utilized to provide stability while fusion occurs in patients with cervical pathology. For a manufacturer to market a new cervical IBFD in the United States, substantial equivalence to a cervical IBFD previously cleared by FDA must be established through the 510(k) regulatory pathway. Mechanical performance data are typically provided as part of the 510(k) process for IBFDs. We reviewed all Traditional 510(k) submissions for cervical IBFDs deemed substantially equivalent and cleared for marketing from 2007 through 2014. To reduce sources of variability in test methods and results, analysis was restricted to cervical IBFD designs without integrated fixation, coatings, or expandable features. Mechanical testing reports were analyzed and results were aggregated for seven commonly performed tests (static and dynamic axial compression, compression-shear, and torsion testing per ASTM F2077, and subsidence testing per ASTM F2267), and percentile distributions of performance measurements were calculated. Eighty-three (83) submissions met the criteria for inclusion in this analysis. The median device yield strength was 10,117N for static axial compression, 3680N for static compression-shear, and 8.6Nm for static torsion. Median runout load was 2600N for dynamic axial compression, 1400N for dynamic compression-shear, and ±1.5Nm for dynamic torsion. In subsidence testing, median block stiffness (Kp) was 424N/mm. The mechanical performance data presented here will aid in the development of future cervical IBFDs by providing a means for comparison for design verification purposes. Published by Elsevier Ltd.
Permeability hysterisis of limestone during isotropic compression.
Selvadurai, A P S; Głowacki, A
2008-01-01
The evolution of permeability hysterisis in Indiana Limestone during application of isotropic confining pressures up to 60 MPa was measured by conducting one-dimensional constant flow rate tests. These tests were carried out either during monotonic application of the confining pressure or during loading-partial unloading cycles. Irreversible permeability changes occurred during both monotonic and repeated incremental compression of the limestone. Mathematical relationships are developed for describing the evolution of path-dependent permeability during isotropic compression.
The Quiescent-Chamber Type Compression-Ignition Engine
NASA Technical Reports Server (NTRS)
Foster, H H
1937-01-01
Report presents the results of performance tests of a single-cylinder 4-stroke-cycle compression-ignition engine having a vertical disk form of combustion chamber without air flow. The number, size, and direction of the orifices of the fuel-injection nozzles used were independently varied. A table and graphs are presented showing the performance of the engine with different nozzles; results of tests at different compression ratios, boost pressures, and coolant temperatures are also included.
The effect of strength training on quality of prolonged basic cardiopulmonary resuscitation.
Abelairas-Gómez, Cristian; Barcala-Furelos, Roberto; Szarpak, Łukasz; García-García, Óscar; Paz-Domínguez, Álvaro; López-García, Sergio; Rodríguez-Núñez, Antonio
2017-01-01
Providing high-quality chest compressions and rescue breaths are key elements in the effectiveness of cardio-pulmonary resuscitation. To investigate the effects of a strength training programme on the quality of prolonged basic cardiopulmonary resuscitation on a manikin. This was a quasi-experimental trial. Thirty-nine participants with prior basic life support knowledge were randomised to an experimental or control group. They then performed a test of 10 min of chest compressions and mouth-to-mouth ventilation on manikins equipped with a skill reporter tool (baseline or test 1). The experimental group participated in a four-week strength training programme focused on the muscles involved in chest compressions. Both groups were subsequently tested again (test 2). After training, the experimental group significantly increased the mean depth of compression (53.7 ± 2.3 mm vs. 49.9 ± 5.9 mm; p = 0.003) and the correct compression fraction (68.2 ± 21.0% vs. 46.4 ± 29.1%; p = 0.004). Trained subjects maintained chest compression quality over time better than the control group. The mean tidal volume delivered was higher in the experimental than in the control group (701.5 ± 187.0 mL vs. 584.8 ± 113.6 mL; p = 0.040) and above the current resuscitation guidelines. In test 2, the percentage of rescue breaths with excessive volume was higher in the experi-mental group than in the controls (31.5 ± 19.6% vs. 15.6 ± 13.0%; p = 0.007). A simple strength training programme has a significant impact on the quality of chest compressions and its maintenance over time. Additional training is needed to avoid over-ventilation of potential patients.
Lin, Leou-Chyr; Hedman, Thomas P; Wang, Shyu-Jye; Huoh, Michael; Chang, Shih-Youeng
2009-05-01
The goal of this study was to develop a nondestructive radial compression technique and to investigate the viscoelastic behavior of the rat tail disc under repeated radial compression. Rat tail intervertebral disc underwent radial compression relaxation testing and creep testing using a custom-made gravitational creep machine. The axisymmetric viscoelasticity and time-dependent recovery were determined. Different levels of hydration (with or without normal saline spray) were supplied to evaluate the effect of changes in viscoelastic properties. Viscoelasticity was found to be axisymmetric in rat-tail intervertebral discs at four equidistant locations. Complete relaxation recovery was found to take 20 min, whereas creep recovery required 25 min. Hydration was required for obtaining viscoelastic axisymmetry and complete viscoelastic recovery.
Mechanical testing of advanced coating system, volume 1
NASA Technical Reports Server (NTRS)
Cruse, T. A.; Nagy, A.; Popelar, C. F.
1990-01-01
The Electron Beam Physical Vapor Deposition (EBPVD) coating material has a highly columnar microstructure, and as a result it was expected to have very low tensile strength. To be able to fabricate the required compression and tensile specimens, a substrate was required to provide structural integrity for the specimens. Substrate and coating dimensions were adjusted to provide sufficient sensitivity to resolve the projected loads carried by the EBPVD coating. The use of two distinctively different strain transducer systems, for tension and compression loadings, mandated two vastly different specimen geometries. Compression specimen and tensile specimen geometries are given. Both compression and tensile test setups are described. Data reduction mathematical models are given and discussed in detail as is the interpretation of the results. Creep test data is also given and discussed.
The Pack Method for Compressive Tests of Thin Specimens of Materials Used in Thin-Wall Structures
NASA Technical Reports Server (NTRS)
Aitchison, C S; Tuckerman, L B
1939-01-01
The strength of modern lightweight thin-wall structures is generally limited by the strength of the compression members. An adequate design of these members requires a knowledge of the compressive stress-strain graph of the thin-wall material. The "pack" method was developed at the National Bureau of Standards with the support of the National Advisory Committee for Aeronautics to make possible a determination of compressive stress-strain graphs for such material. In the pack test an odd number of specimens are assembled into a relatively stable pack, like a "pack of cards." Additional lateral stability is obtained from lateral supports between the external sheet faces of the pack and outside reactions. The tests seems adequate for many problems in structural research.
Compression testing of flammable liquids
NASA Technical Reports Server (NTRS)
Briles, O. M.; Hollenbaugh, R. P.
1979-01-01
Small cylindrical test chamber determines catalytic effect of given container material on fuel that might contribute to accidental deflagration or detonation below expected temperature under adiabatic compression. Device is useful to producers and users of flammable liquids and to safety specialists.
Development and Evaluation of Stitched Sandwich Panels
NASA Technical Reports Server (NTRS)
Stanley, Larry E.; Adams, Daniel O.; Reeder, James R. (Technical Monitor)
2001-01-01
This study explored the feasibility and potential benefits provided by the addition of through-the-thickness reinforcement to sandwich structures. Through-the-thickness stitching is proposed to increase the interlaminar strength and damage tolerance of composite sandwich structures. A low-cost, out-of-autoclave processing method was developed to produce composite sandwich panels with carbon fiber face sheets, a closed-cell foam core, and through-the-thickness Kevlar stitching. The sandwich panels were stitched in a dry preform state, vacuum bagged, and infiltrated using Vacuum Assisted Resin Transfer Molding (VARTM) processing. For comparison purposes, unstitched sandwich panels were produced using the same materials and manufacturing methodology. Test panels were produced initially at the University of Utah and later at NASA Langley Research Center. Four types of mechanical tests were performed: flexural testing, flatwise tensile testing, core shear testing, and edgewise compression testing. Drop-weight impact testing followed by specimen sectioning was performed to characterize the damage resistance of stitched sandwich panels. Compression after impact (CAI) testing was performed to evaluate the damage tolerance of the sandwich panels. Results show significant increases in the flexural stiffness and strength, out-of-plane tensile strength, core shear strength, edgewise compression strength, and compression-after-impact strength of stitched sandwich structures.
Analysis of the Mechanical Behavior and Surface Rugosity of Different Dental Die Materials.
Niekawa, Ciro T; Kreve, Simone; A'vila, Gisseli Bertozzi; Godoy, Gilmar Gil; Eduardo Vieira da Silva, J R; Dias, Sergio Candido
2017-01-01
This work evaluated the mechanical and surface behavior of different die materials. The studied materials are polyurethane resin Exakto-Form (Bredent), Gypsum type IV, Fuji Rock EP (Gc), and Durone (Dentsply). Two metallic matrices molded in polyvinyl siloxane provided 30 cylindrical test specimens for the diametral compression test and 30 hemispherical test specimens for the surface rugosity test. The cylindrical test specimens were submitted to tests of diametral compression strength using a DL2000 universal assay machine, with a load cell of 2000 Kgf and constant speed of 1 mm/min connected to the software. Kruskal-Wallis and Dunn's nonparametric tests were used to analyze the results. The hemispheres were submitted to the surface rugosity assay using a SJ201-P rugosimeter with a sensitivity of 300 μm, speed of 0.5 mm/s, and cut-off of 0.8 mm, and the readings were taken on the convex surface of the test specimens and metallic matrix. Results were analyzed using with Fisher's least significant differences test (LSD) and Dunnett's test. Kruskal-Wallis test showed significant difference between die materials for diametral compression strength ( P = 0.002). Dunn's test showed significantly higher values for modified polyurethane resin (Exakto-Form). The gypsum type IV, which did not significantly differ regarding diametral compression strength, showed 34.0% (Durone) and 42.7% (Fuji Rock) lower values in comparison to Exakto-Form. Within the parameters adopted in this study, it is possible to conclude that Exakto-Form polyurethane resin showed higher resistance to compression and was closer to the metallic matrix rugosity, and, along with the gypsum type IV Durone, showed better reproducibility of details relative to the Fuji Rock.
Hardness and compression resistance of natural rubber and synthetic rubber mixtures
NASA Astrophysics Data System (ADS)
Arguello, J. M.; Santos, A.
2016-02-01
This project aims to mechanically characterize through compression resistance and shore hardness tests, the mixture of hevea brasiliensis natural rubber with butadiene synthetic rubber (BR), styrene-butadiene rubber (SBR) and ethylene-propylene-diene monomer rubber (EPDM). For each of the studied mixtures were performed 10 tests, each of which increased by 10% the content of synthetic rubber in the mixture; each test consisted of carrying out five tests of compression resistance and five tests of shore hardness. The specimens were vulcanized on a temperature of 160°C, during an approximate time of 15 minutes, and the equipment used in the performance of the mechanical tests were a Shimadzu universal machine and a digital durometer. The results show that the A shore hardness increases directly proportional, with a linear trend, with the content of synthetic BR, SBR or EPDM rubber present in the mixture, being the EPDM the most influential. With respect to the compression resistance is observed that the content of BR or SBR increase this property directly proportional through a linear trend; while the EPDM content also increases but with a polynomial trend.
Comparison of various contact algorithms for poroelastic tissues.
Galbusera, Fabio; Bashkuev, Maxim; Wilke, Hans-Joachim; Shirazi-Adl, Aboulfazl; Schmidt, Hendrik
2014-01-01
Capabilities of the commercial finite element package ABAQUS in simulating frictionless contact between two saturated porous structures were evaluated and compared with those of an open source code, FEBio. In ABAQUS, both the default contact implementation and another algorithm based on an iterative approach requiring script programming were considered. Test simulations included a patch test of two cylindrical slabs in a gapless contact and confined compression conditions; a confined compression test of a porous cylindrical slab with a spherical porous indenter; and finally two unconfined compression tests of soft tissues mimicking diarthrodial joints. The patch test showed almost identical results for all algorithms. On the contrary, the confined and unconfined compression tests demonstrated large differences related to distinct physical and boundary conditions considered in each of the three contact algorithms investigated in this study. In general, contact with non-uniform gaps between fluid-filled porous structures could be effectively simulated with either ABAQUS or FEBio. The user should be aware of the parameter definitions, assumptions and limitations in each case, and take into consideration the physics and boundary conditions of the problem of interest when searching for the most appropriate model.
Cardiopulmonary resuscitation duty cycle in out-of-hospital cardiac arrest.
Johnson, Bryce V; Johnson, Bryce; Coult, Jason; Fahrenbruch, Carol; Blackwood, Jennifer; Sherman, Larry; Kudenchuk, Peter; Sayre, Michael; Rea, Thomas
2015-02-01
Duty cycle is the portion of time spent in compression relative to total time of the compression-decompression cycle. Guidelines recommend a 50% duty cycle based largely on animal investigation. We undertook a descriptive evaluation of duty cycle in human resuscitation, and whether duty cycle correlates with other CPR measures. We calculated the duty cycle, compression depth, and compression rate during EMS resuscitation of 164 patients with out-of-hospital ventricular fibrillation cardiac arrest. We captured force recordings from a chest accelerometer to measure ten-second CPR epochs that preceded rhythm analysis. Duty cycle was calculated using two methods. Effective compression time (ECT) is the time from beginning to end of compression divided by total period for that compression-decompression cycle. Area duty cycle (ADC) is the ratio of area under the force curve divided by total area of one compression-decompression cycle. We evaluated the compression depth and compression rate according to duty cycle quartiles. There were 369 ten-second epochs among 164 patients. The median duty cycle was 38.8% (SD=5.5%) using ECT and 32.2% (SD=4.3%) using ADC. A relatively shorter compression phase (lower duty cycle) was associated with greater compression depth (test for trend <0.05 for ECT and ADC) and slower compression rate (test for trend <0.05 for ADC). Sixty-one of 164 patients (37%) survived to hospital discharge. Duty cycle was below the 50% recommended guideline, and was associated with compression depth and rate. These findings provider rationale to incorporate duty cycle into research aimed at understanding optimal CPR metrics. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Liu, Qi; Yang, Yu; Chen, Chun; Bu, Jiajun; Zhang, Yin; Ye, Xiuzi
2008-03-31
With the rapid emergence of RNA databases and newly identified non-coding RNAs, an efficient compression algorithm for RNA sequence and structural information is needed for the storage and analysis of such data. Although several algorithms for compressing DNA sequences have been proposed, none of them are suitable for the compression of RNA sequences with their secondary structures simultaneously. This kind of compression not only facilitates the maintenance of RNA data, but also supplies a novel way to measure the informational complexity of RNA structural data, raising the possibility of studying the relationship between the functional activities of RNA structures and their complexities, as well as various structural properties of RNA based on compression. RNACompress employs an efficient grammar-based model to compress RNA sequences and their secondary structures. The main goals of this algorithm are two fold: (1) present a robust and effective way for RNA structural data compression; (2) design a suitable model to represent RNA secondary structure as well as derive the informational complexity of the structural data based on compression. Our extensive tests have shown that RNACompress achieves a universally better compression ratio compared with other sequence-specific or common text-specific compression algorithms, such as Gencompress, winrar and gzip. Moreover, a test of the activities of distinct GTP-binding RNAs (aptamers) compared with their structural complexity shows that our defined informational complexity can be used to describe how complexity varies with activity. These results lead to an objective means of comparing the functional properties of heteropolymers from the information perspective. A universal algorithm for the compression of RNA secondary structure as well as the evaluation of its informational complexity is discussed in this paper. We have developed RNACompress, as a useful tool for academic users. Extensive tests have shown that RNACompress is a universally efficient algorithm for the compression of RNA sequences with their secondary structures. RNACompress also serves as a good measurement of the informational complexity of RNA secondary structure, which can be used to study the functional activities of RNA molecules.
Liu, Qi; Yang, Yu; Chen, Chun; Bu, Jiajun; Zhang, Yin; Ye, Xiuzi
2008-01-01
Background With the rapid emergence of RNA databases and newly identified non-coding RNAs, an efficient compression algorithm for RNA sequence and structural information is needed for the storage and analysis of such data. Although several algorithms for compressing DNA sequences have been proposed, none of them are suitable for the compression of RNA sequences with their secondary structures simultaneously. This kind of compression not only facilitates the maintenance of RNA data, but also supplies a novel way to measure the informational complexity of RNA structural data, raising the possibility of studying the relationship between the functional activities of RNA structures and their complexities, as well as various structural properties of RNA based on compression. Results RNACompress employs an efficient grammar-based model to compress RNA sequences and their secondary structures. The main goals of this algorithm are two fold: (1) present a robust and effective way for RNA structural data compression; (2) design a suitable model to represent RNA secondary structure as well as derive the informational complexity of the structural data based on compression. Our extensive tests have shown that RNACompress achieves a universally better compression ratio compared with other sequence-specific or common text-specific compression algorithms, such as Gencompress, winrar and gzip. Moreover, a test of the activities of distinct GTP-binding RNAs (aptamers) compared with their structural complexity shows that our defined informational complexity can be used to describe how complexity varies with activity. These results lead to an objective means of comparing the functional properties of heteropolymers from the information perspective. Conclusion A universal algorithm for the compression of RNA secondary structure as well as the evaluation of its informational complexity is discussed in this paper. We have developed RNACompress, as a useful tool for academic users. Extensive tests have shown that RNACompress is a universally efficient algorithm for the compression of RNA sequences with their secondary structures. RNACompress also serves as a good measurement of the informational complexity of RNA secondary structure, which can be used to study the functional activities of RNA molecules. PMID:18373878
Analysis and testing of axial compression in imperfect slender truss struts
NASA Technical Reports Server (NTRS)
Lake, Mark S.; Georgiadis, Nicholas
1990-01-01
The axial compression of imperfect slender struts for large space structures is addressed. The load-shortening behavior of struts with initially imperfect shapes and eccentric compressive end loading is analyzed using linear beam-column theory and results are compared with geometrically nonlinear solutions to determine the applicability of linear analysis. A set of developmental aluminum clad graphite/epoxy struts sized for application to the Space Station Freedom truss are measured to determine their initial imperfection magnitude, load eccentricity, and cross sectional area and moment of inertia. Load-shortening curves are determined from axial compression tests of these specimens and are correlated with theoretical curves generated using linear analysis.
Zhang, Tao; Jiang, Feng; Yan, Lan; Xu, Xipeng
2017-12-26
The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM) model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE) simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature.
Zhang, Tao; Jiang, Feng; Yan, Lan; Xu, Xipeng
2017-01-01
The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM) model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE) simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature. PMID:29278398
Further Investigations of Control Surface Seals for the X-38 Re-Entry Vehicle
NASA Technical Reports Server (NTRS)
Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; Curry, Donald M.; Newquist, Charles W.; Verzemnieks, Juris
2001-01-01
NASA is currently developing the X-38 vehicle that will be used to demonstrate the technologies required for a potential crew return vehicle (CRV) for the International Space Station. This vehicle would serve both as an ambulance for medical emergencies and as an evacuation vehicle for the Space Station. Control surfaces on the X-38 (body flaps and rudder/fin assemblies) require high temperature seals to limit hot gas ingestion and transfer of heat to underlying low-temperature structures to prevent over-temperature of these structures and possible loss of the vehicle. NASAs Johnson Space Center (JSC) and Glenn Research Center (GRC) are working together to develop and evaluate seals for these control surfaces. This paper presents results for compression. flow, scrub, and arc jet tests conducted on the baseline X-38 rudder/fin seal design. Room temperature seal compression tests were performed at low compression levels to determine load versus linear compression, preload. contact area, stiffness. and resiliency characteristics under low load conditions. For all compression levels that were tested, unit loads and contact pressures for the seals were below the 5 lb/in. and 10 psi limits required to limit the loads on the adjoining Shuttle thermal tiles that the seals will contact. Flow rates through an unloaded (i.e. 0% compression) double arrangement were twice those of a double seal compressed to the 20% design compression level. The seals survived an ambient temperature 1000 cycle scrub test over relatively rough Shuttle tile surfaces. The seals were able to disengage and re-engage the edges of the rub surface tiles while being scrubbed over them. Arc jet tests were performed to experimentally determine anticipated seal temperatures for representative flow boundary conditions (pressures and temperatures) under simulated vehicle re-entry conditions. Installation of a single seat in the gap of the test fixture caused a large temperature drop (1710 F) across the seal location as compared to an open gap condition (140 F) confirming the need for seals in the rudder/fin gap location. The seal acted as an effective thermal barrier limiting heat convection through the seal gap and minimizing temperature increases downstream of the seal during maximum heating conditions.
Preprototype Vapor Compression Distillation Subsystem development
NASA Technical Reports Server (NTRS)
Thompson, C. D.; Ellis, G. S.; Schubert, F. H.
1981-01-01
Vapor Compression Distillation (VCD) has evolved as the most promising approach to reclaim potable water from wastewater for future long-term manned space missions. Life Systems, Inc. (LSI), working with NASA, has developed a preprototype Vapor Compression Distillation Subsystem (VCDS) which processes wastewater at 1.4 kg/h. The preprototype unit weighs 143 kg, occupies a volume of 0.47 cu m, and will reclaim 96 percent of the available wastewater. This unit has been tested by LSI and is scheduled for further testing at NASA-JSC. This paper presents the preprototype VCDS design, configuration, performance data, test results and flight system projections.
Accelerated Testing of Polymeric Composites Using the Dynamic Mechanical Analyzer
NASA Technical Reports Server (NTRS)
Abdel-Magid, Becky M.; Gates, Thomas S.
2000-01-01
Creep properties of IM7/K3B composite material were obtained using three accelerated test methods at elevated temperatures. Results of flexural creep tests using the dynamic mechanical analyzer (DMA) were compared with results of conventional tensile and compression creep tests. The procedures of the three test methods are described and the results are presented. Despite minor differences in the time shift factor of the creep compliance curves, the DMA results compared favorably with the results from the tensile and compressive creep tests. Some insight is given into establishing correlations between creep compliance in flexure and creep compliance in tension and compression. It is shown that with careful consideration of the limitations of flexure creep, a viable and reliable accelerated test procedure can be developed using the DMA to obtain the viscoelastic properties of composites in extreme environments.
Impacts of compression on crystallization behavior of freeze-dried amorphous sucrose.
Imamura, Koreyoshi; Nomura, Mayo; Tanaka, Kazuhiro; Kataoka, Nobuhide; Oshitani, Jun; Imanaka, Hiroyuki; Nakanishi, Kazuhiro
2010-03-01
An amorphous matrix comprised of sugar molecules is used as excipient and stabilizing agent for labile ingredients in the pharmaceutical industry. The amorphous sugar matrix is often compressed into a tablet form to reduce the volume and improve handling. Herein, the effect of compression on the crystallization behavior of an amorphous sucrose matrix was investigated. Amorphous sucrose samples were prepared by freeze-drying and compressed under different conditions, followed by analyses by differential scanning calorimetry, isothermal crystallization tests, X-ray powder diffractometry, Fourier transform infrared spectroscopy (FTIR), and gas pycnometry. The compressed sample had a lower crystallization temperature and a shorter induction period for isothermal crystallization, indicating that compression facilitates the formation of the critical nucleus of a sucrose crystal. Based on FTIR and molecular dynamics simulation results, the conformational distortion of sucrose molecules due to the compression appears to contribute to the increase in the free energy of the system, which leads to the facilitation of critical nucleus formation. An isothermal crystallization test indicated an increase in the growth rate of sucrose crystals by the compression. This can be attributed to the transformation of the microstructure from porous to nonporous, as the result of compression. 2009 Wiley-Liss, Inc. and the American Pharmacists Association
Texture Studies and Compression Behaviour of Apple Flesh
NASA Astrophysics Data System (ADS)
James, Bryony; Fonseca, Celia
Compressive behavior of fruit flesh has been studied using mechanical tests and microstructural analysis. Apple flesh from two cultivars (Braeburn and Cox's Orange Pippin) was investigated to represent the extremes in a spectrum of fruit flesh types, hard and juicy (Braeburn) and soft and mealy (Cox's). Force-deformation curves produced during compression of unconstrained discs of apple flesh followed trends predicted from the literature for each of the "juicy" and "mealy" types. The curves display the rupture point and, in some cases, a point of inflection that may be related to the point of incipient juice release. During compression these discs of flesh generally failed along the centre line, perpendicular to the direction of loading, through a barrelling mechanism. Cryo-Scanning Electron Microscopy (cryo-SEM) was used to examine the behavior of the parenchyma cells during fracture and compression using a purpose designed sample holder and compression tester. Fracture behavior reinforced the difference in mechanical properties between crisp and mealy fruit flesh. During compression testing prior to cryo-SEM imaging the apple flesh was constrained perpendicular to the direction of loading. Microstructural analysis suggests that, in this arrangement, the material fails along a compression front ahead of the compressing plate. Failure progresses by whole lines of parenchyma cells collapsing, or rupturing, with juice filling intercellular spaces, before the compression force is transferred to the next row of cells.
Moore, Brian C J; Sęk, Aleksander
2016-09-07
Multichannel amplitude compression is widely used in hearing aids. The preferred compression speed varies across individuals. Moore (2008) suggested that reduced sensitivity to temporal fine structure (TFS) may be associated with preference for slow compression. This idea was tested using a simulated hearing aid. It was also assessed whether preferences for compression speed depend on the type of stimulus: speech or music. Twenty-two hearing-impaired subjects were tested, and the stimulated hearing aid was fitted individually using the CAM2A method. On each trial, a given segment of speech or music was presented twice. One segment was processed with fast compression and the other with slow compression, and the order was balanced across trials. The subject indicated which segment was preferred and by how much. On average, slow compression was preferred over fast compression, more so for music, but there were distinct individual differences, which were highly correlated for speech and music. Sensitivity to TFS was assessed using the difference limen for frequency at 2000 Hz and by two measures of sensitivity to interaural phase at low frequencies. The results for the difference limens for frequency, but not the measures of sensitivity to interaural phase, supported the suggestion that preference for compression speed is affected by sensitivity to TFS. © The Author(s) 2016.
Novel concepts for the compression of large volumes of carbon dioxide-phase III
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, J. Jeffrey; Allison, Timothy C.; Evans, Neal D.
In the effort to reduce the release of CO 2 greenhouse gases to the atmosphere, sequestration of CO 2 from Integrated Gasification Combined Cycle (IGCC) and Oxy-Fuel power plants is being pursued. This approach, however, requires significant compression power to boost the pressure to typical pipeline levels. The penalty can be as high as 8-12% on a typical IGCC plant. The goal of this research is to reduce this penalty through novel compression concepts and integration with existing IGCC processes. The primary objective of the study of novel CO 2 compression concepts is to reliably boost the pressure of COmore » 2 to pipeline pressures with the minimal amount of energy required. Fundamental thermodynamics were studied to explore pressure rise in both liquid and gaseous states. For gaseous compression, the project investigated novel methods to compress CO 2 while removing the heat of compression internal to the compressor. The highpressure ratio, due to the delivery pressure of the CO 2 for enhanced oil recovery, results in significant heat of compression. Since less energy is required to boost the pressure of a cooler gas stream, both upstream and inter-stage cooling is desirable. While isothermal compression has been utilized in some services, it has not been optimized for the IGCC environment. Phase I of this project determined the optimum compressor configuration and developed technology concepts for internal heat removal. Other compression options using liquefied CO 2 and cryogenic pumping were explored as well. Preliminary analysis indicated up to a 35% reduction in power is possible with the new concepts being considered. In the Phase II program, two experimental test rigs were developed to investigate the two concepts further. A new pump loop facility was constructed to qualify a cryogenic turbopump for use on liquid CO 2 . Also, an internally cooled compressor diaphragm was developed and tested in a closed loop compressor facility using CO 2 . Both test programs successfully demonstrated good performance and mechanical behavior. In Phase III, a pilot compression plant consisting of a multi-stage centrifugal compressor with cooled diaphragm technology has been designed, constructed, and tested. Comparative testing of adiabatic and cooled tests at equivalent inlet conditions shows that the cooled diaphragms reduce power consumption by 3-8% when the compressor is operated as a back-to-back unit and by up to 9% when operated as a straight-though compressor with no intercooler. The power savings, heat exchanger effectiveness, and temperature drops for the cooled diaphragm were all slightly higher than predicted values but showed the same trends.« less
1991-05-01
was received as bar stocks in the work hardened condition. Before machining, the copper rods were annealed at 400 °C in argon for one hour. This...ABSTRACT Large deformation uniaxial compression and fixed-end torsion (simple shear) experiments were conducted on annealed OFHC Copper to obtain its... annealing treatment produced an average grain diameter of 45 jim. Experimental Procedure Compression Tests All the compression tests were conducted with
2012-06-01
driven down the barrel , compressing the test gas in an approximately isentropic manner. A representative pressure history measured within in the barrel ...have shown that the isentropic compression is a good approximation for the test flow which is first discharged from the barrel . A survey of nozzle exit...of the craft, and air is delivered by an axi-symmetric, internal compression inlet. The external laser induced df’tnnation configuration
Vroomen, P; de Krom, M C T F M; Wilmink, J; Kester, A; Knottnerus, J
2002-01-01
Objective: To evaluate patient characteristics, symptoms, and examination findings in the clinical diagnosis of lumbosacral nerve root compression causing sciatica. Methods: The study involved 274 patients with pain radiating into the leg. All had a standardised clinical assessment and magnetic resonance (MR) imaging. The associations between patient characteristics, clinical findings, and lumbosacral nerve root compression on MR imaging were analysed. Results: Nerve root compression was associated with three patient characteristics, three symptoms, and four physical examination findings (paresis, absence of tendon reflexes, a positive straight leg raising test, and increased finger-floor distance). Multivariate analysis, analysing the independent diagnostic value of the tests, showed that nerve root compression was predicted by two patient characteristics, four symptoms, and two signs (increased finger-floor distance and paresis). The straight leg raise test was not predictive. The area under the curve of the receiver-operating characteristic was 0.80 for the history items. It increased to 0.83 when the physical examination items were added. Conclusions: Various clinical findings were found to be associated with nerve root compression on MR imaging. While this set of findings agrees well with those commonly used in daily practice, the tests tended to have lower sensitivity and specificity than previously reported. Stepwise multivariate analysis showed that most of the diagnostic information revealed by physical examination findings had already been revealed by the history items. PMID:11971050
Machine compliance in compression tests
NASA Astrophysics Data System (ADS)
Sousa, Pedro; Ivens, Jan; Lomov, Stepan V.
2018-05-01
The compression behavior of a material cannot be accurately determined if the machine compliance is not accounted prior to the measurements. This work discusses the machine compliance during a compressibility test with fiberglass fabrics. The thickness variation was measured during loading and unloading cycles with a relaxation stage of 30 minutes between them. The measurements were performed using an indirect technique based on the comparison between the displacement at a free compression cycle and the displacement with a sample. Relating to the free test, it has been noticed the nonexistence of machine relaxation during relaxation stage. Considering relaxation or not, the characteristic curves for a free compression cycle can be overlapped precisely in the majority of the points. For the compression test with sample, it was noticed a non-physical decrease of about 30 µm during the relaxation stage, what can be explained by the greater fabric relaxation in relation to the machine relaxation. Beyond the technique normally used, another technique was used which allows a constant thickness during relaxation. Within this second method, machine displacement with sample is simply subtracted to the machine displacement without sample being imposed as constant. If imposed as a constant it will remain constant during relaxation stage and it will suddenly decrease after relaxation. If constantly calculated it will decrease gradually during relaxation stage. Independently of the technique used the final result will remain unchanged. The uncertainty introduced by this imprecision is about ±15 µm.
Kelly, Terri-Ann N; Roach, Brendan L; Weidner, Zachary D; Mackenzie-Smith, Charles R; O'Connell, Grace D; Lima, Eric G; Stoker, Aaron M; Cook, James L; Ateshian, Gerard A; Hung, Clark T
2013-07-26
The tensile modulus of articular cartilage is much larger than its compressive modulus. This tension-compression nonlinearity enhances interstitial fluid pressurization and decreases the frictional coefficient. The current set of studies examines the tensile and compressive properties of cylindrical chondrocyte-seeded agarose constructs over different developmental stages through a novel method that combines osmotic loading, video microscopy, and uniaxial unconfined compression testing. This method was previously used to examine tension-compression nonlinearity in native cartilage. Engineered cartilage, cultured under free-swelling (FS) or dynamically loaded (DL) conditions, was tested in unconfined compression in hypertonic and hypotonic salt solutions. The apparent equilibrium modulus decreased with increasing salt concentration, indicating that increasing the bath solution osmolarity shielded the fixed charges within the tissue, shifting the measured moduli along the tension-compression curve and revealing the intrinsic properties of the tissue. With this method, we were able to measure the tensile (401±83kPa for FS and 678±473kPa for DL) and compressive (161±33kPa for FS and 348±203kPa for DL) moduli of the same engineered cartilage specimens. These moduli are comparable to values obtained from traditional methods, validating this technique for measuring the tensile and compressive properties of hydrogel-based constructs. This study shows that engineered cartilage exhibits tension-compression nonlinearity reminiscent of the native tissue, and that dynamic deformational loading can yield significantly higher tensile properties. Copyright © 2013 Elsevier Ltd. All rights reserved.
Lattimer, C R; Kalodiki, E; Azzam, M; Geroulakos, G
2016-07-01
To test the in vivo haemodynamic performance of graduated elastic compression (GEC) stockings using air-plethysmography (APG) in healthy volunteers (controls) and patients with varicose veins (VVs), post-thrombotic syndrome (PTS), or lymphoedema. Responsiveness data were used to determine which group benefited the most from GEC. There were 12 patients per group compared using no compression, knee-length Class 1 (18-21 mmHg) compression, and Class 2 (23-32 mmHg) compression. Stocking/leg interface pressures (mmHg) were measured supine in two places using an air-sensor transducer. Stocking performance parameters, investigated before and after GEC, included the standard APG tests (working venous volume [wVV], venous filling index [VFI], venous drainage index [VDI], ejection fraction [EF]) and the occlusion plethysmography tests (incremental pressure causing the maximal increase in calf volume [IPMIV], outflow fraction [OF]). Results were expressed as median and interquartile range. Significant graduated compression was achieved in all four groups with higher interface pressures at the ankle. Only the VVs patients had a significant reduction in their wVV (without: 133 [109-146] vs. class1: 93 [74-113] mL) and the VFI (without: 4.6 [3-7.1] vs. class1: 3.1 [1.9-5] mL/s), both at p <.05. The IPMIV improved significantly in all groups except in the PTS group (p <.05). The OF improved only in the controls (without: 43 [38-51] vs. class1: 50 [48-53] %) and the VVs patients (without: 47 [39-58] vs. class1: 56 [50-64] %), both at p <.05. There were no significant differences in the VDI or the EF with GEC. Compression dose-response relationships were not observed. Patients with varicose veins improved the most, whereas those with PTS improved the least. Performance seemed to depend more on disease pathophysiology than compression strength. However, the lack of responsiveness to compression strength may be related to the low external pressures used. Stocking performance tests may have value in selecting those patients who benefit most from compression. Copyright © 2016 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.
Song, Weimin; Yin, Jian
2016-01-01
Fiber reinforcement is an important method to enhance the performance of concrete. In this study, the compressive test and impact test were conducted, and then the hybrid effect between steel fiber (SF) and carbon fiber (CF) was evaluated by employing the hybrid effect index. Compressive toughness and impact toughness of steel fiber reinforced concrete (SFRC), carbon fiber reinforced concrete (CFRC) and hybrid fiber reinforced concrete (HFRC) were explored at steel fiber volume fraction 0.5%, 1%, 1.5% and carbon fiber 0.1%, 0.2%, 0.3%. Results showed that the addition of steel fiber and carbon fiber can increase the compressive strength. SF, CF and the hybridization between them could increase the compressive toughness significantly. The impact test results showed that as the volume of fiber increased, the impact number of the first visible crack and the ultimate failure also increased. The improvement of toughness mainly lay in improving the crack resistance after the first crack. Based on the test results, the positive hybrid effect of steel fiber and carbon fiber existed in hybrid fiber reinforced concrete. The relationship between the compressive toughness and impact toughness was also explored. PMID:28773824
Song, Weimin; Yin, Jian
2016-08-18
Fiber reinforcement is an important method to enhance the performance of concrete. In this study, the compressive test and impact test were conducted, and then the hybrid effect between steel fiber (SF) and carbon fiber (CF) was evaluated by employing the hybrid effect index. Compressive toughness and impact toughness of steel fiber reinforced concrete (SFRC), carbon fiber reinforced concrete (CFRC) and hybrid fiber reinforced concrete (HFRC) were explored at steel fiber volume fraction 0.5%, 1%, 1.5% and carbon fiber 0.1%, 0.2%, 0.3%. Results showed that the addition of steel fiber and carbon fiber can increase the compressive strength. SF, CF and the hybridization between them could increase the compressive toughness significantly. The impact test results showed that as the volume of fiber increased, the impact number of the first visible crack and the ultimate failure also increased. The improvement of toughness mainly lay in improving the crack resistance after the first crack. Based on the test results, the positive hybrid effect of steel fiber and carbon fiber existed in hybrid fiber reinforced concrete. The relationship between the compressive toughness and impact toughness was also explored.
Constitutive Soil Properties for Cuddeback Lake, California and Carson Sink, Nevada
NASA Technical Reports Server (NTRS)
Thomas, Michael A.; Chitty, Daniel E.; Gildea, Martin L.; T'Kindt, Casey M.
2008-01-01
Accurate soil models are required for numerical simulations of land landings for the Orion Crew Exploration Vehicle. This report provides constitutive material modeling properties for four soil models from two dry lakebeds in the western United States. The four soil models are based on mechanical and compressive behavior observed during geotechnical laboratory testing of remolded soil samples from the lakebeds. The test specimens were reconstituted to measured in situ density and moisture content. Tests included: triaxial compression, hydrostatic compression, and uniaxial strain. A fit to the triaxial test results defines the strength envelope. Hydrostatic and uniaxial tests define the compressibility. The constitutive properties are presented in the format of LS-DYNA Material Model 5: Soil and Foam. However, the laboratory test data provided can be used to construct other material models. The four soil models are intended to be specific only to the two lakebeds discussed in the report. The Cuddeback A and B models represent the softest and hardest soils at Cuddeback Lake. The Carson Sink Wet and Dry models represent different seasonal conditions. It is possible to approximate other clay soils with these models, but the results would be unverified without geotechnical tests to confirm similar soil behavior.
Brainstem removal using compressed air for subsequent bovine spongiform encephalopathy testing
2005-01-01
Abstract The use of compressed air to expel the obex through a hole in the skull generated using a captured bolt stunner. The obex is the part of the brain that is tested for bovine spongiform encephalopathy. PMID:16018564
Highly Loaded Composite Strut Test Results
NASA Technical Reports Server (NTRS)
Wu, K. C.; Jegley, Dawn C.; Barnard, Ansley; Phelps, James E.; McKeney, Martin J.
2011-01-01
Highly loaded composite struts from a proposed truss-based Altair lunar lander descent stage concept were selected for development under NASA's Advanced Composites Technology program. Predicted compressive member forces during launch and ascent of over -100,000 lbs were much greater than the tensile loads. Therefore, compressive failure modes, including structural stability, were primary design considerations. NASA's industry partner designed and built highly loaded struts that were delivered to NASA for testing. Their design, fabricated on a washout mandrel, had a uniform-diameter composite tube with composite tapered ends. Each tapered end contained a titanium end fitting with facing conical ramps that are overlaid and overwrapped with composite materials. The highly loaded struts were loaded in both tension and compression, with ultimate failure produced in compression. Results for the two struts tested are presented and discussed, along with measured deflections, strains and observed failure mechanisms.
Effects of Strain Rate on Compressive Properties in Bimodal 7075 Al-SiCp Composite
NASA Astrophysics Data System (ADS)
Lee, Hyungsoo; Choi, Jin Hyeok; Jo, Min Chul; Jo, Ilguk; Lee, Sang-Kwan; Lee, Sunghak
2018-07-01
A 7075 Al alloy matrix composite reinforced with SiC particulates (SiCps) whose sizes were 10 and 30 μm, i.e., a bimodal Al-SiCp composite, was made by a liquid pressing process, and its quasi-static and dynamic compressive properties were evaluated by using a universal testing machine and a split Hopkinson pressure bar, respectively. Mg-Si-, Al-Fe-, and Cu-rich intermetallic compounds existed inside the Al matrix, but might not deteriorate compressive properties because of their low volume fraction (about 2.6%) which was much lower than that of SiCp. The dynamic compressive strength was higher than the quasi-static strength, and was higher in the specimen tested at 2800 s-1 than in the specimen tested at 1400 s-1 according to the strain-rate hardening. For explaining the strain data, the blocking extent of crack propagation by the Al matrix was quantitatively examined. The melting of Al matrix occurred by adiabatic heating was favorable for the improvement in compressive strain because it favorably worked for activating the shear band formation and for blocking the crack propagation, thereby leading to the excellent compressive strain (10.9-11.6%) as well as maximum compressive strength (1057-1147 MPa). Thus, the present bimodal 7075 Al-SiCp composite provides a promise for new applications to high-performance armor plates.
Effects of Strain Rate on Compressive Properties in Bimodal 7075 Al-SiCp Composite
NASA Astrophysics Data System (ADS)
Lee, Hyungsoo; Choi, Jin Hyeok; Jo, Min Chul; Jo, Ilguk; Lee, Sang-Kwan; Lee, Sunghak
2018-03-01
A 7075 Al alloy matrix composite reinforced with SiC particulates (SiCps) whose sizes were 10 and 30 μm, i.e., a bimodal Al-SiCp composite, was made by a liquid pressing process, and its quasi-static and dynamic compressive properties were evaluated by using a universal testing machine and a split Hopkinson pressure bar, respectively. Mg-Si-, Al-Fe-, and Cu-rich intermetallic compounds existed inside the Al matrix, but might not deteriorate compressive properties because of their low volume fraction (about 2.6%) which was much lower than that of SiCp. The dynamic compressive strength was higher than the quasi-static strength, and was higher in the specimen tested at 2800 s-1 than in the specimen tested at 1400 s-1 according to the strain-rate hardening. For explaining the strain data, the blocking extent of crack propagation by the Al matrix was quantitatively examined. The melting of Al matrix occurred by adiabatic heating was favorable for the improvement in compressive strain because it favorably worked for activating the shear band formation and for blocking the crack propagation, thereby leading to the excellent compressive strain (10.9-11.6%) as well as maximum compressive strength (1057-1147 MPa). Thus, the present bimodal 7075 Al-SiCp composite provides a promise for new applications to high-performance armor plates.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Acceptable Internal Self-closing Stop Valve Leakage Tests for Cargo Tanks Transporting Liquefied Compressed Gases B Appendix B to Part 180... Leakage Tests for Cargo Tanks Transporting Liquefied Compressed Gases For internal self-closing stop valve...
49 CFR 238.315 - Class IA brake test.
Code of Federal Regulations, 2012 CFR
2012-10-01
.... (f) A Class IA brake test shall be performed at the air pressure at which the train's air brakes will... test; and (iii) The train has not been disconnected from a source of compressed air for more than four... has been off a source of compressed air for more than four hours. (b) A commuter or short-distance...
On the compressibility and temperature boundary of warm frozen soils
NASA Astrophysics Data System (ADS)
Qi, Jilin; Dang, Boxiang; Guo, Xueluan; Sun, Xiaoyu; Yan, Xu
2017-04-01
A silty-clay obtained along the Qinghai-Tibetan railway and a standard Chinese sand were taken as study objects. Saturated frozen soil samples were prepared for testing. Step-load was used and confined compression was carried out on the soils under different temperatures. Compression index and pseudo-preconsolidation pressure (PPC) were obtained. Unlike unfrozen soils, PPC is not associated with stress history. However, it is still the boundary of elastic and plastic deformations. Different compression indexes can be obtained from an individual compression curve under pressures before and after PPC. The parameters at different thermal and stress conditions were analyzed. It is found that temperature plays a critical role in mechanical behaviours of frozen soils. Efforts were then made on the silty-clay in order to suggest a convincing temperature boundary in defining warm frozen soil. Three groups of ice-rich samples with different ice contents were prepared and tested under confined compression. The samples were compressed under a constant load and with 5 stepped temperatures. Strain rates at different temperatures were examined. It was found that the strain rate at around -0.6°C increased abruptly. Analysis of compression index was performed on the data both from our own testing program and from the literature, which showed that at about -1°C was a turning point in the curves for compression index against temperature. Based on both our work and taking into account the unfrozen water content vs. temperature, the range of -1°C to -0.5°C seems to be the temperature where the mechanical properties change greatly. For convenience, -1.0°C can be defined as the boundary for warm frozen soils.
Eichhorn, S; Mendoza Garcia, A; Polski, M; Spindler, J; Stroh, A; Heller, M; Lange, R; Krane, M
2017-06-01
The provision of sufficient chest compression is among the most important factors influencing patient survival during cardiopulmonary resuscitation (CPR). One approach to optimize the quality of chest compressions is to use mechanical-resuscitation devices. The aim of this study was to compare a new device for chest compression (corpuls cpr) with an established device (LUCAS II). We used a mechanical thorax model consisting of a chest with variable stiffness and an integrated heart chamber which generated blood flow dependent on the compression depth and waveform. The method of blood-flow generation could be changed between direct cardiac-compression mode and thoracic-pump mode. Different chest-stiffness settings and compression modes were tested to generate various blood-flow profiles. Additionally, an endurance test at high stiffness was performed to measure overall performance and compression consistency. Both resuscitation machines were able to compress the model thorax with a frequency of 100/min and a depth of 5 cm, independent of the chosen chest stiffness. Both devices passed the endurance test without difficulty. The corpuls cpr device was able to generate about 10-40% more blood flow than the LUCAS II device, depending on the model settings. In most scenarios, the corpuls cpr device also generated a higher blood pressure than the LUCAS II. The peak compression forces during CPR were about 30% higher using the corpuls cpr device than with the LUCAS II. In this study, the corpuls cpr device had improved blood flow and pressure outcomes than the LUCAS II device. Further examination in an animal model is required to prove the findings of this preliminary study.
Observer detection of image degradation caused by irreversible data compression processes
NASA Astrophysics Data System (ADS)
Chen, Ji; Flynn, Michael J.; Gross, Barry; Spizarny, David
1991-05-01
Irreversible data compression methods have been proposed to reduce the data storage and communication requirements of digital imaging systems. In general, the error produced by compression increases as an algorithm''s compression ratio is increased. We have studied the relationship between compression ratios and the detection of induced error using radiologic observers. The nature of the errors was characterized by calculating the power spectrum of the difference image. In contrast with studies designed to test whether detected errors alter diagnostic decisions, this study was designed to test whether observers could detect the induced error. A paired-film observer study was designed to test whether induced errors were detected. The study was conducted with chest radiographs selected and ranked for subtle evidence of interstitial disease, pulmonary nodules, or pneumothoraces. Images were digitized at 86 microns (4K X 5K) and 2K X 2K regions were extracted. A full-frame discrete cosine transform method was used to compress images at ratios varying between 6:1 and 60:1. The decompressed images were reprinted next to the original images in a randomized order with a laser film printer. The use of a film digitizer and a film printer which can reproduce all of the contrast and detail in the original radiograph makes the results of this study insensitive to instrument performance and primarily dependent on radiographic image quality. The results of this study define conditions for which errors associated with irreversible compression cannot be detected by radiologic observers. The results indicate that an observer can detect the errors introduced by this compression algorithm for compression ratios of 10:1 (1.2 bits/pixel) or higher.
Kim, Bohyoung; Lee, Kyoung Ho; Kim, Kil Joong; Mantiuk, Rafal; Kim, Hye-ri; Kim, Young Hoon
2008-06-01
The objective of our study was to assess the effects of compressing source thin-section abdominal CT images on final transverse average-intensity-projection (AIP) images. At reversible, 4:1, 6:1, 8:1, 10:1, and 15:1 Joint Photographic Experts Group (JPEG) 2000 compressions, we compared the artifacts in 20 matching compressed thin sections (0.67 mm), compressed thick sections (5 mm), and AIP images (5 mm) reformatted from the compressed thin sections. The artifacts were quantitatively measured with peak signal-to-noise ratio (PSNR) and a perceptual quality metric (High Dynamic Range Visual Difference Predictor [HDR-VDP]). By comparing the compressed and original images, three radiologists independently graded the artifacts as 0 (none, indistinguishable), 1 (barely perceptible), 2 (subtle), or 3 (significant). Friedman tests and exact tests for paired proportions were used. At irreversible compressions, the artifacts tended to increase in the order of AIP, thick-section, and thin-section images in terms of PSNR (p < 0.0001), HDR-VDP (p < 0.0001), and the readers' grading (p < 0.01 at 6:1 or higher compressions). At 6:1 and 8:1, distinguishable pairs (grades 1-3) tended to increase in the order of AIP, thick-section, and thin-section images. Visually lossless threshold for the compression varied between images but decreased in the order of AIP, thick-section, and thin-section images (p < 0.0001). Compression artifacts in thin sections are significantly attenuated in AIP images. On the premise that thin sections are typically reviewed using an AIP technique, it is justifiable to compress them to a compression level currently accepted for thick sections.
Processing and characterization of unidirectional thermoplastic nanocomposites
NASA Astrophysics Data System (ADS)
Narasimhan, Kameshwaran
The manufacture of continuous fibre-reinforced thermoplastic nanocomposites is discussed for the case of E-Glass reinforced polypropylene (PP) matrix and for E-Glass reinforced Polyamide-6 (Nylon-6), with and without dispersed nanoclay (montmorillonite) platelets. The E-Glass/PP nanocomposite was manufactured using pultrusion, whereas the E-Glass/Nylon-6 nanocomposite was manufactured using compression molding. Mechanical characterization of nanocomposites were performed and compared with traditional microcomposites. Compressive as well as shear strength of nanocomposites was improved by improving the yield strength of the surrounding matrix through the dispersion of nanoclay. Significant improvements were achieved in compressive strength and shear strength with relatively low nanoclay loadings. Initially, polypropylene with and without nanoclay were melt intercalated using a single-screw extruder and the pultruded nanocomposite was fabricated using extruded pre-impregnated (pre-preg) tapes. Compression tests were performed as mandated by ASTM guidelines. SEM and TEM characterization revealed presence of nanoclay in an intercalated and partially exfoliated morphology. Mechanical tests confirmed significant improvements in compressive strength (˜122% at 10% nanoclay loading) and shear strength (˜60% at 3% nanoclay loading) in modified pultruded E-Glass/PP nanocomposites in comparison with baseline properties. Uniaxial tensile tests showed a small increase in tensile strength (˜3.4%) with 3% nanoclay loading. Subsequently, E-Glass/Nylon-6 nanocomposite panels were manufactured by compression molding. Compression tests were performed according to IITRI guidelines, whereas short beam shear and uni-axial tensile tests were performed according to ASTM standards. Mechanical tests confirmed strength enhancement with nanoclay addition, with a significant improvement in compressive strength (50% at 4% nanoclay loading) and shear strength (˜36% at 4% nanoclay loading) when compared with the baseline E-Glass/Nylon-6. Uni-axial tensile tests resulted in a small increase in tensile strength (˜3.2%) with 4% nanoclay loading. Also, hygrothermal aging (50°C and 100% RH) of baseline and nanoclay modified (4%) E-Glass/Nylon-6 was studied. It was observed that the moisture diffusion process followed Fickian diffusion. E-Glass/Nylon-6 modified with 4% nanoclay loading showed improved barrier performance with a significant reduction (˜30%) in moisture uptake compared to baseline E-Glass/Nylon-6 composites. Significant improvement in mechanical properties was also observed in hygrothermally aged nanocomposite specimens when compared with the aged baseline composite.
Nagai, Taro; Takahashi, Yasuhito; Endo, Kenji; Ikegami, Ryo; Ueno, Ryuichi; Yamamoto, Kengo
2018-01-01
Gait dysfunction associated with spasticity and hyperreflexia is a primary symptom in patients with compression of cervical spinal cord. The objective of this study was to link maximum compression ratio (CR) to spatiotemporal/pedobarographic parameters. Quantitative gait analysis was performed by using a pedobarograph in 75 elderly males with a wide range of cervical compression severity. CR values were characterized on T1-weighted magnetic resonance imaging (MRI). Statistical significances in gait analysis parameters (speed, cadence, stride length, step with, and toe-out angle) were evaluated among different CR groups by the non-parametric Kruskal-Wallis test followed by the Mann-Whitney U test using Bonferroni correction. The Spearman test was performed to verify correlations between CR and gait parameters. The Kruskal-Wallis test revealed significant decline in gait speed and stride length and significant increase in toe-out angle with progression of cervical compression myelopathy. The post-hoc Mann-Whitney U test showed significant differences in these parameters between the control group (0.45
McGarry, J P
2009-11-01
A substantial body of work has been reported in which the mechanical properties of adherent cells were characterized using compression testing in tandem with computational modeling. However, a number of important issues remain to be addressed. In the current study, using computational analyses, the effect of cell compressibility on the force required to deform spread cells is investigated and the possibility that stiffening of the cell cytoplasm occurs during spreading is examined based on published experimental compression test data. The effect of viscoelasticity on cell compression is considered and difficulties in performing a complete characterization of the viscoelastic properties of a cell nucleus and cytoplasm by this method are highlighted. Finally, a non-linear force-deformation response is simulated using differing linear viscoelastic properties for the cell nucleus and the cell cytoplasm.
Evaluation of BAUER UTILUS 10 and TRIPLEX Purification Systems
1993-08-01
of the test was to: A. Determine if the compressor and Purification System provides compressed air at the required pressures, flow rates, quality and...optimum filtering, moisture separation, third stage piston ring expansion/cylinder sealing and prevents compressed air return from the storage flasks to the...551 COMPRESSED AIR PLANTS AND SYSTEMS S9086-SY-STM-O0O PARA 551-4.2.2.1. 6. Navy Experimental Diving Unit Test Plan Number 93-01, Jan 93. 7. NAVSEAINST
Synthetic aperture radar signal data compression using block adaptive quantization
NASA Technical Reports Server (NTRS)
Kuduvalli, Gopinath; Dutkiewicz, Melanie; Cumming, Ian
1994-01-01
This paper describes the design and testing of an on-board SAR signal data compression algorithm for ESA's ENVISAT satellite. The Block Adaptive Quantization (BAQ) algorithm was selected, and optimized for the various operational modes of the ASAR instrument. A flexible BAQ scheme was developed which allows a selection of compression ratio/image quality trade-offs. Test results show the high quality of the SAR images processed from the reconstructed signal data, and the feasibility of on-board implementation using a single ASIC.
Freeing Space for NASA: Incorporating a Lossless Compression Algorithm into NASA's FOSS System
NASA Technical Reports Server (NTRS)
Fiechtner, Kaitlyn; Parker, Allen
2011-01-01
NASA's Fiber Optic Strain Sensing (FOSS) system can gather and store up to 1,536,000 bytes (1.46 megabytes) per second. Since the FOSS system typically acquires hours - or even days - of data, the system can gather hundreds of gigabytes of data for a given test event. To store such large quantities of data more effectively, NASA is modifying a Lempel-Ziv-Oberhumer (LZO) lossless data compression program to compress data as it is being acquired in real time. After proving that the algorithm is capable of compressing the data from the FOSS system, the LZO program will be modified and incorporated into the FOSS system. Implementing an LZO compression algorithm will instantly free up memory space without compromising any data obtained. With the availability of memory space, the FOSS system can be used more efficiently on test specimens, such as Unmanned Aerial Vehicles (UAVs) that can be in flight for days. By integrating the compression algorithm, the FOSS system can continue gathering data, even on longer flights.
Experimental Study of the Compression Response of Fluted-Core Composite Panels with Joints
NASA Technical Reports Server (NTRS)
Schultz, Marc R.; Rose, Cheryl A.; Guzman, J. Carlos; McCarville, Douglas; Hilburger, Mark W.
2012-01-01
Fluted-core sandwich composites consist of integral angled web members spaced between laminate face sheets, and may have the potential to provide benefits over traditional sandwich composites for certain aerospace applications. However, fabrication of large autoclave-cured fluted-core cylindrical shells with existing autoclaves will require that the shells be fabricated in segments, and joined longitudinally to form a complete barrel. Two different longitudinal fluted-core joint designs were considered experimentally in this study. In particular, jointed fluted-core-composite panels were tested in longitudinal compression because longitudinal compression is the primary loading condition in dry launch-vehicle barrel sections. One of the joint designs performed well in comparison with unjointed test articles, and the other joint design failed at loads approximately 14% lower than unjointed test articles. The compression-after-impact (CAI) performance of jointed fluted-core composites was also investigated by testing test articles that had been subjected to 6 ft-lb impacts. It was found that such impacts reduced the load-carrying capability by 9% to 40%. This reduction is dependent on the joint concept, component flute size, and facesheet thickness.
Damage mechanisms in alloy 800H under creep-fatigue conditions
NASA Astrophysics Data System (ADS)
Mu, Z.; Bothe, K.; Gerold, V.
1994-05-01
The interaction between fatigue damage (i.e., fatigue crack propagation) and internal grain boundary damage (i.e., cavity formation at grain boundaries) has been studied for the Alloy 800H at 750 C for constant plastic strain ranges but different experimental conditions. Most experiments were performed at constant ranges of alternating tensile/compression stresses. Symmetrical as well as asymmetrical tests (with larger compression stresses) were performed. In comparison to the former tests, asymmetrical tests led to shorter cyclic lifetimes mainly due to cavity formation which was not observed for symmetrical tests. It could be shown that a fast compressive and a slow tensile half cycle (at large compressive and low tensile stresses) are ideal conditions for the nucleation and growth of cavities. Based on quantitative measurements of the cavity density from interrupted fatigue tests, a physical model is presented which can predict the number of cycles to failure. This cycle number is determined only by fatigue crack growth which is controlled by (1) athermal plastic deformation, (2) creep deformation and (3) rate enhancement by cavitation.
NASA Technical Reports Server (NTRS)
Baker, Donald J.
2004-01-01
The experimental results from two stitched VARTM composite panels tested under uni-axial compression loading are presented. The curved panels are divided by frames and stringers into five or six bays with a column of three bays along the compressive loading direction. The frames are supported at the ends to resist out-of-plane translation. Back-to-back strain gages are used to record the strain and displacement transducers were used to record the out-of-plane displacements. In addition a full-field measurement technique that utilizes a camera-based-stero-vision system was used to record displacements. The panels were loaded in increments to determine the first bay to buckle. Loading was discontinued at limit load and the panels were removed from the test machine for impact testing. After impacting at 20 ft-lbs to 25 ft-lbs of energy with a spherical indenter, the panels were loaded in compression until failure. Impact testing reduced the axial stiffness 4 percent and less than 1 percent. Postbuckled axial panel stiffness was 52 percent and 70 percent of the pre-buckled stiffness.
NASA Technical Reports Server (NTRS)
Guynn, E. Gail; Bradley, Walter L.
1989-01-01
Measurements of the stress supported by the crush zone in open hole specimens loaded in compression were carried out on two composite laminates, AS4/PEEK and IM6/HST-7, containing circular holes of three different diameters. Compression tests were conducted in a specially designed high-axial-alignment material test system machine. Results indicated that the local stress supported in the crush zone is much less than the stress required to initiate the crush, providing the reason for the finding of Guynn et al. (1987) that the Dugdale model does not accurately predict the load-damage size relationship of open hole composite specimens loaded in compression.
Constitutive Soil Properties for Unwashed Sand and Kennedy Space Center
NASA Technical Reports Server (NTRS)
Thomas, Michael A.; Chitty, Daniel E.; Gildea, Martin L.; T'Kindt, Casey M.
2008-01-01
Accurate soil models are required for numerical simulations of land landings for the Orion Crew Exploration Vehicle. This report provides constitutive material models for one soil, unwashed sand, from NASA Langley's gantry drop test facility and three soils from Kennedy Space Center (KSC). The four soil models are based on mechanical and compressive behavior observed during geotechnical laboratory testing of remolded soil samples. The test specimens were reconstituted to measured in situ density and moisture content. Tests included: triaxial compression, hydrostatic compression, and uniaxial strain. A fit to the triaxial test results defines the strength envelope. Hydrostatic and uniaxial tests define the compressibility. The constitutive properties are presented in the format of LS-DYNA Material Model 5: Soil and Foam. However, the laboratory test data provided can be used to construct other material models. The four soil models are intended to be specific to the soil conditions discussed in the report. The unwashed sand model represents clayey sand at high density. The KSC models represent three distinct coastal sand conditions: low density dry sand, high density in-situ moisture sand, and high density flooded sand. It is possible to approximate other sands with these models, but the results would be unverified without geotechnical tests to confirm similar soil behavior.
Finite element modeling as a tool for predicting the fracture behavior of robocast scaffolds.
Miranda, Pedro; Pajares, Antonia; Guiberteau, Fernando
2008-11-01
The use of finite element modeling to calculate the stress fields in complex scaffold structures and thus predict their mechanical behavior during service (e.g., as load-bearing bone implants) is evaluated. The method is applied to identifying the fracture modes and estimating the strength of robocast hydroxyapatite and beta-tricalcium phosphate scaffolds, consisting of a three-dimensional lattice of interpenetrating rods. The calculations are performed for three testing configurations: compression, tension and shear. Different testing orientations relative to the calcium phosphate rods are considered for each configuration. The predictions for the compressive configurations are compared to experimental data from uniaxial compression tests.
Test Methods for Composites: A Status Report. Volume 2. Compression Test Methods
1993-06-01
glass and Kevlar fibers in a phenolic matrix) were relatively thick (24 plies), and more importantly, failed at very low compressive strength levels...ICH LAMINATE SPECIMEN TEST METHOD ........................................ 29 2.4 RECOMMENDATIONS...Thickness in the Middle of the Gage Section, for Four Laminate Thicknesses [711 ................... 143 52. Axial Stress Distributions in an AS4/3502 Carbon
Code of Federal Regulations, 2011 CFR
2011-10-01
... Part 180—Internal Self-closing Stop Valve Emergency Closure Test for Liquefied Compressed Gases 1. In performing this test, all internal self-closing stop valves must be opened. Each emergency discharge control... 49 Transportation 3 2011-10-01 2011-10-01 false Internal Self-closing Stop Valve Emergency Closure...
Composite Grids for Reinforcement of Concrete Structures.
1998-06-01
to greater compressive loads before induced shear failure occurs. Concrete columns were tested in compression to explore alter- native... columns were tested on the same day as the fiber-reinforced concrete columns . Load /deflection readings were taken with the load cell to determine the...ln) Figure 78. Ultimate load vs toughness for the different beam types tested . USACERLTR-98/81 141 £\\
Code of Federal Regulations, 2010 CFR
2010-07-01
... to maintain torches in a safe operating condition. (d) Tests for leaks on the hose valves or gages of liquefied and nonliquefied compressed gas cylinders shall only be made with a soft brush and soapy water or...
NASA Technical Reports Server (NTRS)
Turner, James E.; Mccluney, D. Scott
1991-01-01
Fixture tests O-rings for sealing ability under dynamic conditions after extended periods of compression. Hydraulic cylinder moves plug in housing. Taper of 15 degrees on plug and cavity of housing ensures that gap created between O-ring under test and wall of cavity. Secondary O-rings above and below test ring maintain pressure applied to test ring. Evaluates effects of variety of parameters, including temperature, pressure, rate of pressurization, rate and magnitude of radial gap movement, and pretest compression time.
Fracture Property of Y-Shaped Cracks of Brittle Materials under Compression
Zhang, Xiaoyan; Zhu, Zheming; Liu, Hongjie
2014-01-01
In order to investigate the properties of Y-shaped cracks of brittle materials under compression, compression tests by using square cement mortar specimens with Y-shaped crack were conducted. A true triaxial loading device was applied in the tests, and the major principle stresses or the critical stresses were measured. The results show that as the branch angle θ between the branch crack and the stem crack is 75°, the cracked specimen has the lowest strength. In order to explain the test results, numerical models of Y-shaped cracks by using ABAQUS code were established, and the J-integral method was applied in calculating crack tip stress intensity factor (SIF). The results show that when the branch angle θ increases, the SIF K I of the branch crack increases from negative to positive and the absolute value K II of the branch crack first increases, and as θ is 50°, it is the maximum, and then it decreases. Finally, in order to further investigate the stress distribution around Y-shaped cracks, photoelastic tests were conducted, and the test results generally agree with the compressive test results. PMID:25013846
Gradient Compression Stockings may Prevent Recovery after Bed Rest Deconditioning
NASA Technical Reports Server (NTRS)
Stenger, Michael B.; Lee, Stuart M.; Westby, Christian M.; Willig, Michael C.; Platts, Steven H.
2011-01-01
Introduction: Astronauts continue to wear a compression garment during and immediately after landing to prevent orthostatic intolerance (OI). We recently developed a custom-fitted, 3-piece garment that consists of thigh-high stockings with biker-style shorts that provides continuous, gradient compression: 55 mmHg at the ankle that decreases to approximately 20 mmHg at the top of the leg and 15 mmHg over the abdomen. This garment has been shown to be effective in preventing symptoms of OI during a short stand test after Space Shuttle missions, but symptoms may persist for several days after a long-duration mission in some astronauts. The purpose of this study was to confirm the effectiveness of wearing these elastic, gradient compression garments during orthostatic testing after 2 weeks of 6 degree head-down tilt bed rest as a model of spaceflight and to determine whether they would impact recovery after bed rest. Methods: Eight (5 treatment, 3 control) of 16 subjects have completed this study to-date. All subjects wore the 3-piece garment from waking until tilt testing (3 h) as a simulation of the timeline for astronauts on landing day (BR+0). Control subjects removed the garment after the tilt test. Treatment subjects wore the garment for the remainder of the day and wore lower compression thigh-high only garments on the day after bed rest (BR+1). Blood pressure, heart rate, and stroke volume responses to a 15-min 80 degree head-up tilt test were determined before 2 weeks of 6 degree head-down tilt, and on BR+0 and BR+1. Plasma volume (PV) was measured before each of these test sessions. Data are mean SE. Results: Compression garments prevented signs of OI on BR+0; all subjects in both groups completed the full 15-min test. Heart rate responses to tilt were lower on BR+0 than all other test days. Control subjects demonstrated a marginal PV decrease after bed rest, but showed typical recovery the day after bed rest (BR+0: 2.32 plus or minus 0.15 L to BR+1: 2.79 plus or minus 0.15 L). Treatment subjects did not recover PV the day after bed rest (BR+0: 2.61 plus or minus 0.23 L to BR+1: 2.61 plus or minus 0.23 L). Conclusion: Abdomen-high compression garments, which are effective in preventing post-bed rest orthostatic intolerance, may slow recovery of PV. Modified garments with reduced compression may be necessary to prevent prolonging recovery.
Bezci, Semih E; Klineberg, Eric O; O'Connell, Grace D
2018-01-01
The intervertebral disc is a complex joint that acts to support and transfer large multidirectional loads, including combinations of compression, tension, bending, and torsion. Direct comparison of disc torsion mechanics across studies has been difficult, due to differences in loading protocols. In particular, the lack of information on the combined effect of multiple parameters, including axial compressive preload and rotation angle, makes it difficult to discern whether disc torsion mechanics are sensitive to the variables used in the test protocol. Thus, the objective of this study was to evaluate compression-torsion mechanical behavior of healthy discs under a wide range of rotation angles. Bovine caudal discs were tested under a range of compressive preloads (150, 300, 600, and 900N) and rotation angles (± 1, 2, 3, 4, or 5°) applied at a rate of 0.5°/s. Torque-rotation data were used to characterize shape changes in the hysteresis loop and to calculate disc torsion mechanics. Torsional mechanical properties were described using multivariate regression models. The rate of change in torsional mechanical properties with compression depended on the maximum rotation angle applied, indicating a strong interaction between compressive stress and maximum rotation angle. The regression models reported here can be used to predict disc torsion mechanics under axial compression for a given disc geometry, compressive preload, and rotation angle. Copyright © 2017 Elsevier Ltd. All rights reserved.
Creep and cracking of concrete hinges: insight from centric and eccentric compression experiments.
Schlappal, Thomas; Schweigler, Michael; Gmainer, Susanne; Peyerl, Martin; Pichler, Bernhard
2017-01-01
Existing design guidelines for concrete hinges consider bending-induced tensile cracking, but the structural behavior is oversimplified to be time-independent. This is the motivation to study creep and bending-induced tensile cracking of initially monolithic concrete hinges systematically. Material tests on plain concrete specimens and structural tests on marginally reinforced concrete hinges are performed. The experiments characterize material and structural creep under centric compression as well as bending-induced tensile cracking and the interaction between creep and cracking of concrete hinges. As for the latter two aims, three nominally identical concrete hinges are subjected to short-term and to longer-term eccentric compression tests. Obtained material and structural creep functions referring to centric compression are found to be very similar. The structural creep activity under eccentric compression is significantly larger because of the interaction between creep and cracking, i.e. bending-induced cracks progressively open and propagate under sustained eccentric loading. As for concrete hinges in frame-like integral bridge construction, it is concluded (i) that realistic simulation of variable loads requires consideration of the here-studied time-dependent behavior and (ii) that permanent compressive normal forces shall be limited by 45% of the ultimate load carrying capacity, in order to avoid damage of concrete hinges under sustained loading.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Shao, J. F.; Xu, W. Y.; Zhao, H. B.; Wang, W.
2015-05-01
This work is devoted to characterization of the deformation and strength properties of cataclastic sandstones. Before conducting mechanical tests, the physical properties were first examined. These sandstones are characterized by a loose damaged microstructure and poorly cemented contacts. Then, a series of mechanical tests including hydrostatic, uniaxial, and triaxial compression tests were performed to study the mechanical strength and deformation of the sandstones. The results obtained show nonlinear stress-strain responses. The initial microcracks are closed at hydrostatic stress of 2.6 MPa, and the uniaxial compressive strength is about 0.98 MPa. Under triaxial compression, there is a clear transition from volumetric compressibility to dilatancy and a strong dependency on confining pressure. Based on the experimental evidence, an elastoplastic model is proposed using a linear yield function and a nonassociated plastic potential. There is good agreement between numerical results and experimental data.
Thomas, Tony C; K, Aswini Kumar; Mohamed, Shamaz; Krishnan, Vinod; Mathew, Anil; V, Manju
2015-03-01
The aim of this in vitro study was to compare the flexural strength, the flexural modulus and compressive strength of the acrylic polymer reinforced with glass, carbon, polyethylene and Kevlar fibres with that of plain unfilled resin. A total of 50 specimens were prepared and divided into 10 specimens each under 5 groups namely group 1- control group without any fibres, group 2 - carbon fibres, group 3- glass fibres, group 4 - polyethylene, group 5- Kevlar. Universal testing machine (Tinius olsen, USA) was used for the testing of these specimens. Out of each group, 5 specimens were randomly selected and testing was done for flexural strength using a three point deflection test and three point bending test for compressive strength and the modulus was plotted using a graphical method. Statistical analysis was done using statistical software. The respective mean values for samples in regard to their flexural strength for PMMA plain, PMMA+ glass fibre, PMMA+ carbon, PMMA+ polyethylene and PMMA+ Kevlar were 90.64, 100.79, 102.58, 94.13 and 96.43 respectively. Scheffes post hoc test clearly indicated that only mean flexural strength values of PMMA + Carbon, has the highest mean value. One-way ANOVA revealed a non-significant difference among the groups in regard to their compressive strength. The study concludes that carbon fibre reinforced samples has the greatest flexural strength and greatest flexural modulus, however the compressive strength remains unchanged.
Chen, Xingyu; Zhou, Yilu; Wang, Liyun; Santare, Michael H; Wan, Leo Q; Lu, X Lucas
2016-04-01
The indentation test is widely used to determine the in situ biomechanical properties of articular cartilage. The mechanical parameters estimated from the test depend on the constitutive model adopted to analyze the data. Similar to most connective tissues, the solid matrix of cartilage displays different mechanical properties under tension and compression, termed tension-compression nonlinearity (TCN). In this study, cartilage was modeled as a porous elastic material with either a conewise linear elastic matrix with cubic symmetry or a solid matrix reinforced by a continuous fiber distribution. Both models are commonly used to describe the TCN of cartilage. The roles of each mechanical property in determining the indentation response of cartilage were identified by finite element simulation. Under constant loading, the equilibrium deformation of cartilage is mainly dependent on the compressive modulus, while the initial transient creep behavior is largely regulated by the tensile stiffness. More importantly, altering the permeability does not change the shape of the indentation creep curves, but introduces a parallel shift along the horizontal direction on a logarithmic time scale. Based on these findings, a highly efficient curve-fitting algorithm was designed, which can uniquely determine the three major mechanical properties of cartilage (compressive modulus, tensile modulus, and permeability) from a single indentation test. The new technique was tested on adult bovine knee cartilage and compared with results from the classic biphasic linear elastic curve-fitting program.
Jawień, Arkadiusz; Cierzniakowska, Katarzyna; Cwajda-Białasik, Justyna; Mościcka, Paulina
2010-01-01
Introduction The aim of the research was to compare the dynamics of venous ulcer healing when treated with the use of compression stockings as well as original two- and four-layer bandage systems. Material and methods A group of 46 patients suffering from venous ulcers was studied. This group consisted of 36 (78.3%) women and 10 (21.70%) men aged between 41 and 88 years (the average age was 66.6 years and the median was 67). Patients were randomized into three groups, for treatment with the ProGuide two-layer system, Profore four-layer compression, and with the use of compression stockings class II. In the case of multi-layer compression, compression ensuring 40 mmHg blood pressure at ankle level was used. Results In all patients, independently of the type of compression therapy, a few significant statistical changes of ulceration area in time were observed (Student’s t test for matched pairs, p < 0.05). The largest loss of ulceration area in each of the successive measurements was observed in patients treated with the four-layer system – on average 0.63 cm2/per week. The smallest loss of ulceration area was observed in patients using compression stockings – on average 0.44 cm2/per week. However, the observed differences were not statistically significant (Kruskal-Wallis test H = 4.45, p > 0.05). Conclusions A systematic compression therapy, applied with preliminary blood pressure of 40 mmHg, is an effective method of conservative treatment of venous ulcers. Compression stockings and prepared systems of multi-layer compression were characterized by similar clinical effectiveness. PMID:22419941
Cravens, Matthew G; Behn, Anthony W; Dragoo, Jason L
2017-11-01
Fibrin glues are widely used in orthopedic surgery as adhesives and hemostatic agents. We evaluated the compressive properties of selected fibrin glues in order to identify which are appropriate for tissue regeneration applications subject to compression. Uniaxial unconfined compression tests were performed on fibrin gels prepared from commercial and autologous products: (1) Evicel (Ethicon), (2) Tisseel (Baxter), (3) Angel (Arthrex), and (4) ProPlaz (Biorich). Cyclic loads were applied from 0 to 30% strain for 100cycles at 0.5Hz. Following cyclic testing, specimens were subjected to ramp displacement of 1% strain per second to 80% strain. Throughout cyclic loading, Evicel and Tisseel deformed (shortened) less than Angel at all but one time point, and deformed less than ProPlaz at cycles 10 and 20. The dynamic moduli, peak stress, and strain energy were significantly greater in Tisseel than all other groups. Evicel displayed significantly greater dynamic moduli, peak stress, and strain energy than Angel and ProPlaz. Following cyclic testing, Tisseel and Evicel were significantly less deformed than Angel. No specimens exhibited gross failure during ramp loading to 80% strain. Ramp loading trends mirrored those of cyclic loading. The tested commercial glues were significantly more resistant to compression than the autologous products. The compressive properties of Tisseel were approximately twice those of Evicel. All preparations displayed moduli multiple orders of magnitude less than that of native articular cartilage. We conclude that in knee surgeries requiring fibrin glue to undergo compression of daily activity, commercial products are preferable to autologous preparations from platelet-poor plasma, though both will deform significantly. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hopkins, Kathryn; King, Andrew; Moore, Brian C J
2012-09-01
Hearing aids use amplitude compression to compensate for the effects of loudness recruitment. The compression speed that gives the best speech intelligibility varies among individuals. Moore [(2008). Trends Amplif. 12, 300-315] suggested that an individual's sensitivity to temporal fine structure (TFS) information may affect which compression speed gives most benefit. This hypothesis was tested using normal-hearing listeners with a simulated hearing loss. Sentences in a competing talker background were processed using multi-channel fast or slow compression followed by a simulation of threshold elevation and loudness recruitment. Signals were either tone vocoded with 1-ERB(N)-wide channels (where ERB(N) is the bandwidth of normal auditory filters) to remove the original TFS information, or not processed further. In a second experiment, signals were vocoded with either 1 - or 2-ERB(N)-wide channels, to test whether the available spectral detail affects the optimal compression speed. Intelligibility was significantly better for fast than slow compression regardless of vocoder channel bandwidth. The results suggest that the availability of original TFS or detailed spectral information does not affect the optimal compression speed. This conclusion is tentative, since while the vocoder processing removed the original TFS information, listeners may have used the altered TFS in the vocoded signals.
Zhao, Caiqi; Zheng, Weidong; Ma, Jun; Zhao, Yangjian
2016-01-01
To solve the problem of critical buckling in the structural analysis and design of the new long-span hollow core roof architecture proposed in this paper (referred to as a “honeycomb panel structural system” (HSSS)), lateral compression tests and finite element analyses were employed in this study to examine the lateral compressive buckling performance of this new type of honeycomb panel with different length-to-thickness ratios. The results led to two main conclusions: (1) Under the experimental conditions that were used, honeycomb panels with the same planar dimensions but different thicknesses had the same compressive stiffness immediately before buckling, while the lateral compressive buckling load-bearing capacity initially increased rapidly with an increasing honeycomb core thickness and then approached the same limiting value; (2) The compressive stiffnesses of test pieces with the same thickness but different lengths were different, while the maximum lateral compressive buckling loads were very similar. Overall instability failure is prone to occur in long and flexible honeycomb panels. In addition, the errors between the lateral compressive buckling loads from the experiment and the finite element simulations are within 6%, which demonstrates the effectiveness of the nonlinear finite element analysis and provides a theoretical basis for future analysis and design for this new type of spatial structure. PMID:28773567
Finite Element Analysis and Experimentation of an Icosahedron Frame under Compression
2015-09-17
Century of Flight. Jules Henri Gi_ard (1825 - 1882), January 2014. URL [Online]. Available: http://www.century-of-flight.net/Aviation%20history/to...20reality/ Jules % 20Henri%20Gi_ard.htm. [4] Compression test. [Online]. Available: http://en.wikipedia.org/wiki/Compressive_strength [5
Compression failure of composite laminates
NASA Technical Reports Server (NTRS)
Pipes, R. B.
1983-01-01
This presentation attempts to characterize the compressive behavior of Hercules AS-1/3501-6 graphite-epoxy composite. The effect of varying specimen geometry on test results is examined. The transition region is determined between buckling and compressive failure. Failure modes are defined and analytical models to describe these modes are presented.
Determine the Compressive Strength of Calcium Silicate Bricks by Combined Nondestructive Method
2014-01-01
The paper deals with the application of combined nondestructive method for assessment of compressive strength of calcium silicate bricks. In this case, it is a combination of the rebound hammer method and ultrasonic pulse method. Calibration relationships for determining compressive strength of calcium silicate bricks obtained from nondestructive parameter testing for the combined method as well as for the L-type Schmidt rebound hammer and ultrasonic pulse method are quoted here. Calibration relationships are known for their close correlation and are applicable in practice. The highest correlation between parameters from nondestructive measurement and predicted compressive strength is obtained using the SonReb combined nondestructive method. Combined nondestructive SonReb method was proved applicable for determination of compressive strength of calcium silicate bricks at checking tests in a production plant and for evaluation of bricks built in existing masonry structures. PMID:25276864
NASA Astrophysics Data System (ADS)
Yokozeki, Tomohiro; Aoki, Yuichiro; Ogasawara, Toshio
It has been recognized that damage resistance and strength properties of CFRP laminates can be improved by using thin-ply prepregs. This study investigates the damage behaviors and compressive strength of CFRP laminates using thin-ply and standard prepregs subjected to out-of-plane impact loadings. CFRP laminates used for the evaluation are prepared using the standard prepregs, thin-ply prepregs, and combinations of the both. Weight-drop impact test and post-impact compression test of quasi-isotropic laminates are performed. It is shown that the damage behaviors are different between the thin-ply and the standard laminates, and the compression-after-impact strength is improved by using thin-ply prepregs. Effects of the use of thin-ply prepregs and the layout of thin-ply layers on the damage behaviors and compression-after-impact properties are discussed based on the experimental results.
[Evaluation of mechanical properties of four kinds of composite resins for inlay].
Jiang, Ling-ling; Liu, Hong; Wang, Jin-rui
2011-04-01
To evaluate the compressive strength, wear resistance, hardness, and soaking fatigue of four composite resins for inlay, which were Ceramage, Surefil, Solitaire 2, and Filtek(TM) Z350. Scanning electron microscope (SEM) was used to analyze the microstructures of the wear surface of the samples. The samples for the compression test, hardness test and wear were prepared. The samples were respectively immersed in the artificial saliva for 2 months for immersed test. The electronic universal testing machine was used to test the compression strength. Hardness was quantified by micro-Vickers hardness test. The wear tester was used for the wear test. SEM was used to analyze the microstructures of the wear surface of samples. All the data was analyzed by using SPSS17.0 software package. The compressive strength of Surefil was the biggest which was significantly higher than the other three resins before soaking (P<0.05). After soaking, there was no significant difference between the composite resins (P>0.05). The hardness of Surefil was the best, and significant difference was found between the hardness of the materials before soaking (P<0.05). After soaking, no significant difference was obtained between the hardness of Surefil and Filtek(TM) Z350 (P>0.05).The compressive strength and hardness of 4 materials decreased after soaking in artificial saliva. But only the compressive strength of Filtek(TM) Z350 had no significant change after immersion (P>0.05). Except Filtek(TM) Z350, there was significant difference between the other three materials (P<0.05). Significant relationship was observed between wear and hardness of three materials (P<0.05). According to SEM observation, abrasive wear occurred in four materials. In addition to Ceramage, other composite resins had adhesive wear. The mechanical property of Surefil is the best, and it is suitable for fabrication of posterior inlay. Filtek(TM) Z350's ability to resist fatigue is the best.
DOT National Transportation Integrated Search
2015-04-01
The overall goal of this project is the experimental evaluation and design of unfilled and concrete-filled FRP : composite piles for load-bearing in bridges. This report covers Task 6, FRP Composite Pile Axial Compression : Testing. : Hollow and conc...
NASA Technical Reports Server (NTRS)
1972-01-01
The assembly drawings of the receiver unit are presented for the data compression/error correction digital test system. Equipment specifications are given for the various receiver parts, including the TV input buffer register, delta demodulator, TV sync generator, memory devices, and data storage devices.
Diatomite based ceramics macro- and microscopic characterization
NASA Astrophysics Data System (ADS)
Aderdour, H.; Bentayeb, A.; Nadiri, A.; Ouammou, A.; Sangleboeuf, J.-C.; Lucas-Girot, A.; Carel, C.
2005-03-01
A Moroccan diatomite is characterized chemically and physically. Mechanical properties of ceramics prepared by sintering at different temperatures ranging from 1050 to 1350° C are studied. Compressive strength and Young modulus are determined by compression tests. Densification and evolution of the microstructure are followed by SEM and other tests.
Contributions on the Study of the Compressive Strength of the Light-Cured Composite Resins
Manolea, H.; Degeratu, Sonia; Deva, V.; Coles, Evantia; Draghici, Emma
2009-01-01
The mechanical properties of the light-cured composite resins are related to the material composition, but also vary according to the light-source characteristics used for polymerization. In this study we followed the compressive strength variation for a light-cured composite resin according to the time of exposure to the curing light. With that end in view,18 test pieces were made from a light-cured hybrid composite material (Filtek Z250). The test pieces where then submitted to a compressive force by a mechanical properties universal testing machine. Our results didn’t show an increase of the compressive strength according to the light-curing time increasing, than only in the light-curing time limit indicated by the manufacturer. A longer light-curing time may induce a shrinkage polymerization growth with the formation of internal tensions inside the material. The composite materials light-curing in short layers as long as there is indicated by the manufacturer seems to be a safer method to make the best from a resin qualities, then an exaggerated increase of the light-curing time. The light-curing is indicated to be done in the direction of the compressive forces. To confirm this supposition other mechanical tests are also necessary PMID:24778814
NASA Astrophysics Data System (ADS)
Pesin, A.; Pustovoytov, D.; Lokotunina, N.
2017-12-01
The mechanism of severe plastic deformation comes from very significant shear strain. Shear-compression testing of materials is complicated by the fact that a state of large equivalent strain with dominant shear strain is not easily achievable. This paper presents the novel technique of laboratory simulation of severe plastic deformation by multi-cycle shear-compression testing at room temperature with equivalent strain e=1…5. The specimen consisted of a parallelepiped having an inclined gauge section created by two diametrically opposed semi-circular slots which were machined at 45°. Height of the specimen was 50 mm, section dimensions were 25×25 mm, gauge thickness was 5.0 mm and gauge width was 6.0 mm. The specimen provided dominant shear strain in an inclined gauge-section. The level of shear strain and equivalent strain was controlled through adjustment of the height reduction of the specimen, load application direction and number of cycles of shear-compression. Aluminium alloy Al-6.2Mg-0.7Mn was used as a material for specimen. FE simulation and analysis of the stress-strain state were performed. The microstructure of the specimen after multi-cycle shear-compression testing with equivalent strain e=1…5 was examined by optical and scanning electron microscope.
Alvarez, Guillermo Dufort Y; Favaro, Federico; Lecumberry, Federico; Martin, Alvaro; Oliver, Juan P; Oreggioni, Julian; Ramirez, Ignacio; Seroussi, Gadiel; Steinfeld, Leonardo
2018-02-01
This work presents a wireless multichannel electroencephalogram (EEG) recording system featuring lossless and near-lossless compression of the digitized EEG signal. Two novel, low-complexity, efficient compression algorithms were developed and tested in a low-power platform. The algorithms were tested on six public EEG databases comparing favorably with the best compression rates reported up to date in the literature. In its lossless mode, the platform is capable of encoding and transmitting 59-channel EEG signals, sampled at 500 Hz and 16 bits per sample, at a current consumption of 337 A per channel; this comes with a guarantee that the decompressed signal is identical to the sampled one. The near-lossless mode allows for significant energy savings and/or higher throughputs in exchange for a small guaranteed maximum per-sample distortion in the recovered signal. Finally, we address the tradeoff between computation cost and transmission savings by evaluating three alternatives: sending raw data, or encoding with one of two compression algorithms that differ in complexity and compression performance. We observe that the higher the throughput (number of channels and sampling rate) the larger the benefits obtained from compression.
Dynamic compressive properties obtained from a split Hopkinson pressure bar test of Boryeong shale
NASA Astrophysics Data System (ADS)
Kang, Minju; Cho, Jung-Woo; Kim, Yang Gon; Park, Jaeyeong; Jeong, Myeong-Sik; Lee, Sunghak
2016-09-01
Dynamic compressive properties of a Boryeong shale were evaluated by using a split Hopkinson pressure bar, and were compared with those of a Hwangdeung granite which is a typical hard rock. The results indicated that the dynamic compressive loading reduced the resistance to fracture. The dynamic compressive strength was lower in the shale than in the granite, and was raised with increasing strain rate by microcracking effect as well as strain rate strengthening effect. Since the number of microcracked fragments increased with increasing strain rate in the shale having laminated weakness planes, the shale showed the better fragmentation performance than the granite at high strain rates. The effect of transversely isotropic plane on compressive strength decreased with increasing strain rate, which was desirable for increasing the fragmentation performance. Thus, the shale can be more reliably applied to industrial areas requiring good fragmentation performance as the striking speed of drilling or hydraulic fracturing machines increased. The present dynamic compressive test effectively evaluated the fragmentation performance as well as compressive strength and strain energy density by controlling the air pressure, and provided an important idea on which rock was more readily fragmented under dynamically processing conditions such as high-speed drilling and blasting.
Compressibility characteristics of Sabak Bernam Marine Clay
NASA Astrophysics Data System (ADS)
Lat, D. C.; Ali, N.; Jais, I. B. M.; Baharom, B.; Yunus, N. Z. M.; Salleh, S. M.; Azmi, N. A. C.
2018-04-01
This study is carried out to determine the geotechnical properties and compressibility characteristics of marine clay collected at Sabak Bernam. The compressibility characteristics of this soil are determined from 1-D consolidation test and verified by existing correlations by other researchers. No literature has been found on the compressibility characteristics of Sabak Bernam Marine Clay. It is important to carry out this study since this type of marine clay covers large coastal area of west coast Malaysia. This type of marine clay was found on the main road connecting Klang to Perak and the road keeps experiencing undulation and uneven settlement which jeopardise the safety of the road users. The soil is indicated in the Generalised Soil Map of Peninsular Malaysia as a CLAY with alluvial soil on recent marine and riverine alluvium. Based on the British Standard Soil Classification and Plasticity Chart, the soil is classified as a CLAY with very high plasticity (CV). Results from laboratory test on physical properties and compressibility parameters show that Sabak Bernam Marine Clay (SBMC) is highly compressible, has low permeability and poor drainage characteristics. The compressibility parameters obtained for SBMC is in a good agreement with other researchers in the same field.
Toomey, D E; Yang, K H; Van Ee, C A
2014-01-01
Physical biomechanical surrogates are critical for testing the efficacy of injury-mitigating safety strategies. The interpretation of measured Hybrid III neck loads in test scenarios resulting in compressive loading modes would be aided by a further understanding of the correlation between the mechanical responses in the Hybrid III neck and the probability of injury in the human cervical spine. The anthropomorphic test device (ATD) peak upper and lower neck responses were measured during dynamic compressive loading conditions comparable to those of postmortem human subject (PMHS) experiments. The peak ATD response could then be compared to the PMHS injury outcomes. A Hybrid III 50th percentile ATD head and neck assembly was tested under conditions matching those of male PMHS tests conducted on an inverted drop track. This includes variation in impact plate orientation (4 sagittal plane and 2 frontal plane orientations), impact plate surface friction, and ATD initial head/neck orientation. This unique matched data with known injury outcomes were used to evaluate existing ATD neck injury criteria. The Hybrid III ATD head and neck assembly was found to be robust and repeatable under severe loading conditions. The initial axial force response of the ATD head and neck is very comparable to PMHS experiments up to the point of PMHS cervical column buckle or material failure. An ATD lower neck peak compressive force as low as 6,290 N was associated with an unstable orthopedic cervical injury in a PMHS under equivalent impact conditions. ATD upper neck peak compressive force associated with a 5% probability of unstable cervical orthopedic injury ranged from as low as 3,708 to 3,877 N depending on the initial ATD neck angle. The correlation between peak ATD compressive neck response and PMHS test outcome in the current study resulted in a relationship between axial load and injury probability consistent with the current Hybrid III injury assessment reference values. The results add to the current understanding of cervical injury probability based on ATD neck compressive loading in that it is the only known study, in addition to Mertz et al. (1978), formulated directly from ATD compressive loading scenarios with known human injury outcomes.
Breaking of rod-shaped model material during compression
NASA Astrophysics Data System (ADS)
Lukas, Kulaviak; Vera, Penkavova; Marek, Ruzicka; Miroslav, Puncochar; Petr, Zamostny; Zdenek, Grof; Frantisek, Stepanek; Marek, Schongut; Jaromir, Havlica
2017-06-01
The breakage of a model anisometric dry granular material caused by uniaxial compression was studied. The bed of uniform rod-like pasta particles (8 mm long, aspect ratio 1:8) was compressed (Gamlen Tablet Press) and their size distribution was measured after each run (Dynamic Image Analysing). The compression dynamics was recorded and the effect of several parameters was tested (rate of compression, volume of granular bed, pressure magnitude and mode of application). Besides the experiments, numerical modelling of the compressed breakable material was performed as well, employing the DEM approach (Discrete Element Method). The comparison between the data and the model looks promising.
Determination of friction coefficient in unconfined compression of brain tissue.
Rashid, Badar; Destrade, Michel; Gilchrist, Michael D
2012-10-01
Unconfined compression tests are more convenient to perform on cylindrical samples of brain tissue than tensile tests in order to estimate mechanical properties of the brain tissue because they allow homogeneous deformations. The reliability of these tests depends significantly on the amount of friction generated at the specimen/platen interface. Thus, there is a crucial need to find an approximate value of the friction coefficient in order to predict a possible overestimation of stresses during unconfined compression tests. In this study, a combined experimental-computational approach was adopted to estimate the dynamic friction coefficient μ of porcine brain matter against metal platens in compressive tests. Cylindrical samples of porcine brain tissue were tested up to 30% strain at variable strain rates, both under bonded and lubricated conditions in the same controlled environment. It was established that μ was equal to 0.09±0.03, 0.18±0.04, 0.18±0.04 and 0.20±0.02 at strain rates of 1, 30, 60 and 90/s, respectively. Additional tests were also performed to analyze brain tissue under lubricated and bonded conditions, with and without initial contact of the top platen with the brain tissue, with different specimen aspect ratios and with different lubricants (Phosphate Buffer Saline (PBS), Polytetrafluoroethylene (PTFE) and Silicone). The test conditions (lubricant used, biological tissue, loading velocity) adopted in this study were similar to the studies conducted by other research groups. This study will help to understand the amount of friction generated during unconfined compression of brain tissue for strain rates of up to 90/s. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yin, Peng-Fei; Yang, Sheng-Qi
2018-05-01
As a typical inherently anisotropic rock, layered sandstones can differ from each other in several aspects, including grain size, type of material, type of cementation, and degree of compaction. An experimental study is essential to obtain and convictive evidence to characterize the mechanical behavior of such rock. In this paper, the mechanical behavior of a layered sandstone from Xuzhou, China, is investigated under uniaxial compression and Brazilian test conditions. The loading tests are conducted on 7 sets of bedding inclinations, which are defined as the angle between the bedding plane and horizontal direction. The uniaxial compression strength (UCS) and elastic modulus values show an undulatory variation when the bedding inclination increases. The overall trend of the UCS and elastic modulus values with bedding inclination is decreasing. The BTS value decreases with respect to the bedding inclination and the overall trend of it is approximating a linear variation. The 3D digital high-speed camera images reveal that the failure and fracture of a specimen are related to the surface deformation. Layered sandstone tested under uniaxial compression does not show a typical failure mode, although shear slip along the bedding plane occurs at high bedding inclinations. Strain gauge readings during the Brazilian tests indicate that the normal stress on the bedding plane transforms from compression to tension as the bedding inclination increases. The stress parallel to the bedding plane in a rock material transforms from tension to compression and agrees well with the fracture patterns; "central fractures" occur at bedding inclinations of 0°-75°, "layer activation" occurs at high bedding inclinations of 75°-90°, and a combination of the two occurs at 75°.
Testing, Selection, and Implementation of Random Number Generators
2008-07-01
Complexity and Lempel - Ziv Compression tests. This causes concern for cryptographic use but is not relevant for our applications. In fact, the features of...Linear Complexity, Lempel - Ziv Compression , and Matrix Rank test failures excluded. The Mersenne Twister is widely accepted by the community; in fact...searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection information. Send comments
The FBI compression standard for digitized fingerprint images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brislawn, C.M.; Bradley, J.N.; Onyshczak, R.J.
1996-10-01
The FBI has formulated national standards for digitization and compression of gray-scale fingerprint images. The compression algorithm for the digitized images is based on adaptive uniform scalar quantization of a discrete wavelet transform subband decomposition, a technique referred to as the wavelet/scalar quantization method. The algorithm produces archival-quality images at compression ratios of around 15 to 1 and will allow the current database of paper fingerprint cards to be replaced by digital imagery. A compliance testing program is also being implemented to ensure high standards of image quality and interchangeability of data between different implementations. We will review the currentmore » status of the FBI standard, including the compliance testing process and the details of the first-generation encoder.« less
FBI compression standard for digitized fingerprint images
NASA Astrophysics Data System (ADS)
Brislawn, Christopher M.; Bradley, Jonathan N.; Onyshczak, Remigius J.; Hopper, Thomas
1996-11-01
The FBI has formulated national standards for digitization and compression of gray-scale fingerprint images. The compression algorithm for the digitized images is based on adaptive uniform scalar quantization of a discrete wavelet transform subband decomposition, a technique referred to as the wavelet/scalar quantization method. The algorithm produces archival-quality images at compression ratios of around 15 to 1 and will allow the current database of paper fingerprint cards to be replaced by digital imagery. A compliance testing program is also being implemented to ensure high standards of image quality and interchangeability of data between different implementations. We will review the current status of the FBI standard, including the compliance testing process and the details of the first-generation encoder.
Investigation of compression behavior of PE/EVA foam injection molded parts
NASA Astrophysics Data System (ADS)
Spina, Roberto
2017-10-01
The main objective of the presented work is to evaluate the compression behavior of a polymeric foam blend by using a robust framework for the testing sequence of foaming injection molded parts, with the aim of establishing a standard testing cycle for the evaluation of new matrix material. The research purpose is to assess parameters influencing compression behavior and give useful suggestions for the implementation of a finite element analysis. The polymeric blend consisted of a mixture of low density polyethylenes (LDPEs), a high-density polyethylene (HDPE), an ethylene-vinyl acetate (EVA) and an azodicarbonamide (ADC). The thermal, rheological and compression properties of the blend are fully described, as well as the injection molding process for two specimen types.
Distribution analysis for F100(3) engine
NASA Technical Reports Server (NTRS)
Walter, W. A.; Shaw, M.
1980-01-01
The F100(3) compression system response to inlet circumferential distortion was investigated using an analytical compressor flow model. Compression system response to several types of distortion, including pressure, temperature, and combined pressure/temperature distortions, was investigated. The predicted response trends were used in planning future F100(3) distortion tests. Results show that compression system response to combined temperature and pressure distortions depends upon the relative orientation, as well as the individual amplitudes and circumferential extents of the distortions. Also the usefulness of the analytical predictions in planning engine distortion tests is indicated.
NASA Technical Reports Server (NTRS)
Rotem, Assa
1990-01-01
Laminated composite materials tend to fail differently under tensile or compressive load. Under tension, the material accumulates cracks and fiber fractures, while under compression, the material delaminates and buckles. Tensile-compressive fatigue may cause either of these failure modes depending on the specific damage occurring in the laminate. This damage depends on the stress ratio of the fatigue loading. Analysis of the fatigue behavior of the composite laminate under tension-tension, compression-compression, and tension-compression had led to the development of a fatigue envelope presentation of the failure behavior. This envelope indicates the specific failure mode for any stress ratio and number of loading cycles. The construction of the fatigue envelope is based on the applied stress-cycles to failure (S-N) curves of both tensile-tensile and compressive-compressive fatigue. Test results are presented to verify the theoretical analysis.
NASA Technical Reports Server (NTRS)
Reif, John H.
1987-01-01
A parallel compression algorithm for the 16,384 processor MPP machine was developed. The serial version of the algorithm can be viewed as a combination of on-line dynamic lossless test compression techniques (which employ simple learning strategies) and vector quantization. These concepts are described. How these concepts are combined to form a new strategy for performing dynamic on-line lossy compression is discussed. Finally, the implementation of this algorithm in a massively parallel fashion on the MPP is discussed.
A new display stream compression standard under development in VESA
NASA Astrophysics Data System (ADS)
Jacobson, Natan; Thirumalai, Vijayaraghavan; Joshi, Rajan; Goel, James
2017-09-01
The Advanced Display Stream Compression (ADSC) codec project is in development in response to a call for technologies from the Video Electronics Standards Association (VESA). This codec targets visually lossless compression of display streams at a high compression rate (typically 6 bits/pixel) for mobile/VR/HDR applications. Functionality of the ADSC codec is described in this paper, and subjective trials results are provided using the ISO 29170-2 testing protocol.
NASA Astrophysics Data System (ADS)
Khan, Z. M.; Adams, D. O.; Anas, S.
2016-01-01
As advanced composite materials having superior physical and mechanical properties are being developed, the optimization of their processing techniques is eagerly sought. One of the most common defects arising during processing of structural composites is layer waviness. The layer waviness is more pronounced in thick-section flat and cylindrical laminates, which are extensively used in large wind turbine blades, submersibles, and space platforms. The layer waviness undulates the entire layer of a multidirectional laminate in the throughthe-thickness direction, leading to a gross deterioration of its compressive strength. This research investigates the influence of multiple layer waviness in a double nest formation on the compression strength of a composite laminate. Different wave fractions of wavy 0° layers were fabricated in an IM/8551-7 carbon-epoxy composite laminate on a steel mold by using a single-step fabrication procedure. The test laminates were cured on a heated press according to the specific curing cycle of epoxy. Their static compression testing was performed using a NASA short block compression fixture on an MTS servohydraulic machine. The purpose of these tests was to determine the effects of multiple layer wave regions on the compression strength of the composite laminate. The experimental and analytical results obtained revealed that the reduction in the compression strength of composite laminate was constant after the fraction of the wavy 0° layers exceeded 35%. This analysis indicated that the percentage of the 0° wavy layer may be used to estimate the reduction in the compression strength of a double nested wave formation in a composite laminate.
Patil, Suneel G; Sajjan, MC Suresh; Patil, Rekha
2015-01-01
Background: The luting cements must withstand masticatory and parafunctional stresses in the warm and wet oral environment. Mouth temperature and the temperature of the ingested foods may induce thermal variation and plastic deformation within the cements and might affect the strength properties. The objectives of this study were to evaluate the effect of temperature on the compressive and diametral tensile strengths of two polycarboxylate, a conventional glass ionomer and a resin modified glass ionomer luting cements and, to compare the compressive strength and the diametral tensile strength of the selected luting cements at varying temperatures. Materials and Methods: In this study, standardized specimens were prepared. The temperature of the specimens was regulated prior to testing them using a universal testing machine at a crosshead speed of 1 mm/min. Six specimens each were tested at 23°C, 37°C and 50°C for both the compressive and diametral tensile strengths, for all the luting cements. Results: All the luting cements showed a marginal reduction in their compressive and diametral tensile strengths at raised temperatures. Fuji Plus was strongest in compression, followed by Fuji I > Poly F > Liv Carbo. Fuji Plus had the highest diametral tensile strength values, followed by Poly F = Fuji I = Liv Carbo, at all temperatures. Conclusion: An increase in the temperature caused no significant reduction in the compressive and diametral tensile strengths of the cements evaluated. The compressive strength of the luting cements differed significantly from one another at all temperatures. The diametral tensile strength of resin modified glass ionomers differed considerably from the other cements, whereas there was no significant difference between the other cements, at all the temperatures. PMID:25859100
Patil, Suneel G; Sajjan, Mc Suresh; Patil, Rekha
2015-02-01
The luting cements must withstand masticatory and parafunctional stresses in the warm and wet oral environment. Mouth temperature and the temperature of the ingested foods may induce thermal variation and plastic deformation within the cements and might affect the strength properties. The objectives of this study were to evaluate the effect of temperature on the compressive and diametral tensile strengths of two polycarboxylate, a conventional glass ionomer and a resin modified glass ionomer luting cements and, to compare the compressive strength and the diametral tensile strength of the selected luting cements at varying temperatures. In this study, standardized specimens were prepared. The temperature of the specimens was regulated prior to testing them using a universal testing machine at a crosshead speed of 1 mm/min. Six specimens each were tested at 23°C, 37°C and 50°C for both the compressive and diametral tensile strengths, for all the luting cements. All the luting cements showed a marginal reduction in their compressive and diametral tensile strengths at raised temperatures. Fuji Plus was strongest in compression, followed by Fuji I > Poly F > Liv Carbo. Fuji Plus had the highest diametral tensile strength values, followed by Poly F = Fuji I = Liv Carbo, at all temperatures. An increase in the temperature caused no significant reduction in the compressive and diametral tensile strengths of the cements evaluated. The compressive strength of the luting cements differed significantly from one another at all temperatures. The diametral tensile strength of resin modified glass ionomers differed considerably from the other cements, whereas there was no significant difference between the other cements, at all the temperatures.
Evaluation of the Properties Magnesium Phosphate Cement with Emulsified Asphalt
NASA Astrophysics Data System (ADS)
Du, Jia-Chong; Shen, Ruei-Siang; Zhou, Yu-Zhun
2017-10-01
Three type mixtures of magnesium phosphate cement with emulsified asphalt for evaluation their properties. The mixtures of the samples were fabricated and allowed them 2 hours, seven and twenty eight days curing before tested by compressive strength, Marshall stability and indirect tensile strength to probe into their engineering properties. The test results show that all tests have the greatest values at the 28 days curing and too much asphalt emulsion may cause too soft as result of low stability. The compressive strength of Type-III mixture has the greatest value, no matter what curing time is. The Marshall stability test and indirect tensile strength of the Type-III mixture are qualified by the specification required for fast maintenance. The more asphalt emulsion added, the less compressive strength has.
Warm Water Compress as an Alternative for Decreasing the Degree of Phlebitis.
Annisa, Fitri; Nurhaeni, Nani; Wanda, Dessie
Intravenous fluid therapy is an invasive procedure which may increase the risk of patient complications. One of the most common of these is phlebitis, which may cause discomfort and tissue damage. Therefore, a nursing intervention is needed to effectively treat phlebitis. The purpose of this study was to investigate the effectiveness of applying a warm compression intervention to reduce the degree of phlebitis. A quasi-experimental pre-test and post-test design was used, with a non-equivalent control group. The total sample size was 32 patients with degrees of phlebitis ranging from 1 to 4. The total sample was divided into 2 interventional groups: those patients that were given 0.9% NaCl compresses and those given warm water compresses. The results showed that both compresses were effective in reducing the degree of phlebitis, with similar p values (p = .000). However, there was no difference in the average reduction score between the two groups (p = .18). Therefore, a warm water compress is valuable in the treatment of phlebitis, and could decrease the degree of phlebitis both effectively and inexpensively.
Experimental Characteristics of Dry Stack Masonry under Compression and Shear Loading
Lin, Kun; Totoev, Yuri Zarevich; Liu, Hongjun; Wei, Chunli
2015-01-01
The behavior of dry stack masonry (DSM) is influenced by the interaction of the infill with the frame (especially the joints between bricks), which requires further research. This study investigates the compression and shear behaviors of DSM. First, a series of compression tests were carried out on both masonry prism with mortar (MP_m) and DSM prism (MP_ds). The failure mode of each prism was determined. Different from the MP_m, the stress-strain relationship of the MP_ds was characterized by an upward concavity at the initial stage. The compression strength of the MP_ds was slightly reduced by 15%, while the elastic modulus was reduced by over 62%. In addition, 36 shear-compression tests were carried out under cyclic loads to emphasize the influence of various loads on the shear-compression behavior of DSM. The results showed that the Mohr-Coulomb friction law adequately represents the failure of dry joints at moderate stress levels, and the varying friction coefficients under different load amplitudes cannot be neglected. The experimental setup and results are valuable for further research. PMID:28793741
Experimental Characteristics of Dry Stack Masonry under Compression and Shear Loading.
Lin, Kun; Totoev, Yuri Zarevich; Liu, Hongjun; Wei, Chunli
2015-12-12
The behavior of dry stack masonry (DSM) is influenced by the interaction of the infill with the frame (especially the joints between bricks), which requires further research. This study investigates the compression and shear behaviors of DSM. First, a series of compression tests were carried out on both masonry prism with mortar (MP_m) and DSM prism (MP_ds). The failure mode of each prism was determined. Different from the MP_m, the stress-strain relationship of the MP_ds was characterized by an upward concavity at the initial stage. The compression strength of the MP_ds was slightly reduced by 15%, while the elastic modulus was reduced by over 62%. In addition, 36 shear-compression tests were carried out under cyclic loads to emphasize the influence of various loads on the shear-compression behavior of DSM. The results showed that the Mohr-Coulomb friction law adequately represents the failure of dry joints at moderate stress levels, and the varying friction coefficients under different load amplitudes cannot be neglected. The experimental setup and results are valuable for further research.
Characterization of commercial rigid polyurethane foams used as bone analogs for implant testing.
Calvert, Kayla L; Trumble, Kevin P; Webster, Thomas J; Kirkpatrick, Lynn A
2010-05-01
Mechanical properties and microstructure characterization of a series of graded commercial rigid polyurethane foams commonly used to mimic trabecular bone in testing orthopaedic devices is reported. Compressive testing conducted according to ASTM standard F1839-08, which requires large specimens (50.8 mm x 50.8 mm x 25.4 mm blocks) gave elastic modulus and compressive strength values ranging from 115 to 794 MPa and 4.7 to 24.7 MPa, respectively, for foams having densities of 0.240-0.641 g/cm(3). All these results were within the requirements of the specification for the corresponding grades. Compression testing using smaller specimens (7.5 mm diameter x 15 mm) typical of testing bone, gave results in good agreement with those obtained in the standard tests. Microstructural measurements showed the average pore size ranged from 125 to 234 microm for densities ranging from 0.641 to 0.159 g/cm(3), respectively. The relative modulus as a function of relative density of the foams fit well to the model of Gibson and Ashby. Cyclic testing revealed hysteresis in the lower density foams with a loading modulus statistically equivalent to that measured in monotonic testing. Shore DO durometry (hardness) measurements show good correlations to elastic modulus and compressive strength. The results suggest additional parameters to consider for the evaluation of polyurethane foams for bone analog applications.
NASA Technical Reports Server (NTRS)
Royster, D. M.; Davis, R. C.; Shinn, J. M., Jr.; Bales, T. T.; Wiant, H. R.
1985-01-01
A study was made to investigate the feasibility of superplastically forming corrugated panels with beaded webs and to demonstrate the structural integrity of these panels by testing. The test panels in the study consist of superplastically formed titanium alloy Ti-6Al-4V half-hat elements that are joined by weld-brazing to titanium alloy Ti-6Al-4V caps to form either single-corrugation compression panels or multiple-corrugation compression panels. Stretching and subsequent thinning of the titanium sheet during superplastic forming is reduced by approximately 35 percent with a shallow half-hat die concept instead of a deep die concept and results in a more uniform thickness across the beaded webs. The complete panels are tested in end compression at room temperature and the results compared with analysis. The heavily loaded panels failed at loads approaching the yield strength of the titanium material. At maximum load, the caps wrinkled locally accompanied with separation of the weld-braze joint in the wrinkle. None of the panels tested, however, failed catastrophically in the weld-braze joint. Experimental test results are in good agreement with structural analysis of the panels.
Contribution of actin filaments to the global compressive properties of fibroblasts.
Ujihara, Yoshihiro; Nakamura, Masanori; Miyazaki, Hiroshi; Wada, Shigeo
2012-10-01
Actin filaments are often regarded as tension-bearing components. Here, we examined the effects of actin filaments on global compressive properties of cells experimentally and numerically. Fibroblasts were harvested from the patellar tendon of a mature Japanese white rabbit and treated with cytochalasin D to depolymerize the actin filaments. Intact cells and cells with disrupted actin filaments were subjected to the compressive tests. Each floating cell was held between the cantilever and compressive plates and compressed by moving the compressive plate with a linear actuator to obtain a load-deformation curve under quasi-static conditions. The experimental results demonstrated that the initial stiffness of a cell with disrupted actin filaments decreased by 51%. After the experiments, we simulated the compressive test of cells with/without bundles of actin filaments. A bundle of actin filaments was modeled as a tension-bearing component that generates a force based on Hooke's law only when it was elongated. By contrast, if it was shortened, it was assumed to exert no force. The computational results revealed that the alignment of bundles of actin filaments significantly affected the cell stiffness. In addition, the passive reorientation of bundles of actin filaments perpendicular to the compression induced an increase in the resistance to the vertical elongation of a cell and thereby increased the cell stiffness. These results clearly indicated that bundles of actin filaments contribute to the compressive properties of a cell, even if they are tension-bearing components. Copyright © 2012 Elsevier Ltd. All rights reserved.
29 CFR 1926.752 - Site layout, site-specific erection plan and construction sequence.
Code of Federal Regulations, 2011 CFR
2011-07-01
... standard test method of field-cured samples, either 75 percent of the intended minimum compressive design... the basis of an appropriate ASTM standard test method of field-cured samples, either 75 percent of the intended minimum compressive design strength or sufficient strength to support the loads imposed during...
29 CFR 1926.752 - Site layout, site-specific erection plan and construction sequence.
Code of Federal Regulations, 2013 CFR
2013-07-01
... standard test method of field-cured samples, either 75 percent of the intended minimum compressive design... the basis of an appropriate ASTM standard test method of field-cured samples, either 75 percent of the intended minimum compressive design strength or sufficient strength to support the loads imposed during...
29 CFR 1926.752 - Site layout, site-specific erection plan and construction sequence.
Code of Federal Regulations, 2012 CFR
2012-07-01
... standard test method of field-cured samples, either 75 percent of the intended minimum compressive design... the basis of an appropriate ASTM standard test method of field-cured samples, either 75 percent of the intended minimum compressive design strength or sufficient strength to support the loads imposed during...
29 CFR 1926.752 - Site layout, site-specific erection plan and construction sequence.
Code of Federal Regulations, 2010 CFR
2010-07-01
... standard test method of field-cured samples, either 75 percent of the intended minimum compressive design... the basis of an appropriate ASTM standard test method of field-cured samples, either 75 percent of the intended minimum compressive design strength or sufficient strength to support the loads imposed during...
29 CFR 1926.752 - Site layout, site-specific erection plan and construction sequence.
Code of Federal Regulations, 2014 CFR
2014-07-01
... standard test method of field-cured samples, either 75 percent of the intended minimum compressive design... the basis of an appropriate ASTM standard test method of field-cured samples, either 75 percent of the intended minimum compressive design strength or sufficient strength to support the loads imposed during...
Analysis-Preserving Video Microscopy Compression via Correlation and Mathematical Morphology
Shao, Chong; Zhong, Alfred; Cribb, Jeremy; Osborne, Lukas D.; O’Brien, E. Timothy; Superfine, Richard; Mayer-Patel, Ketan; Taylor, Russell M.
2015-01-01
The large amount video data produced by multi-channel, high-resolution microscopy system drives the need for a new high-performance domain-specific video compression technique. We describe a novel compression method for video microscopy data. The method is based on Pearson's correlation and mathematical morphology. The method makes use of the point-spread function (PSF) in the microscopy video acquisition phase. We compare our method to other lossless compression methods and to lossy JPEG, JPEG2000 and H.264 compression for various kinds of video microscopy data including fluorescence video and brightfield video. We find that for certain data sets, the new method compresses much better than lossless compression with no impact on analysis results. It achieved a best compressed size of 0.77% of the original size, 25× smaller than the best lossless technique (which yields 20% for the same video). The compressed size scales with the video's scientific data content. Further testing showed that existing lossy algorithms greatly impacted data analysis at similar compression sizes. PMID:26435032
Thomas, Tony C; K, Aswini Kumar; Krishnan, Vinod; Mathew, Anil; V, Manju
2015-01-01
Aim: The aim of this in vitro study was to compare the flexural strength, the flexural modulus and compressive strength of the acrylic polymer reinforced with glass, carbon, polyethylene and Kevlar fibres with that of plain unfilled resin. Materials and Methods: A total of 50 specimens were prepared and divided into 10 specimens each under 5 groups namely group 1- control group without any fibres, group 2 – carbon fibres, group 3- glass fibres, group 4 – polyethylene, group 5- Kevlar. Universal testing machine (Tinius olsen, USA) was used for the testing of these specimens. Out of each group, 5 specimens were randomly selected and testing was done for flexural strength using a three point deflection test and three point bending test for compressive strength and the modulus was plotted using a graphical method. Statistical analysis was done using statistical software. Results: The respective mean values for samples in regard to their flexural strength for PMMA plain, PMMA+ glass fibre, PMMA+ carbon, PMMA+ polyethylene and PMMA+ Kevlar were 90.64, 100.79, 102.58, 94.13 and 96.43 respectively. Scheffes post hoc test clearly indicated that only mean flexural strength values of PMMA + Carbon, has the highest mean value. One-way ANOVA revealed a non-significant difference among the groups in regard to their compressive strength. Conclusion: The study concludes that carbon fibre reinforced samples has the greatest flexural strength and greatest flexural modulus, however the compressive strength remains unchanged. PMID:25954696
Chest compression rate measurement from smartphone video.
Engan, Kjersti; Hinna, Thomas; Ryen, Tom; Birkenes, Tonje S; Myklebust, Helge
2016-08-11
Out-of-hospital cardiac arrest is a life threatening situation where the first person performing cardiopulmonary resuscitation (CPR) most often is a bystander without medical training. Some existing smartphone apps can call the emergency number and provide for example global positioning system (GPS) location like Hjelp 113-GPS App by the Norwegian air ambulance. We propose to extend functionality of such apps by using the built in camera in a smartphone to capture video of the CPR performed, primarily to estimate the duration and rate of the chest compression executed, if any. All calculations are done in real time, and both the caller and the dispatcher will receive the compression rate feedback when detected. The proposed algorithm is based on finding a dynamic region of interest in the video frames, and thereafter evaluating the power spectral density by computing the fast fourier transform over sliding windows. The power of the dominating frequencies is compared to the power of the frequency area of interest. The system is tested on different persons, male and female, in different scenarios addressing target compression rates, background disturbances, compression with mouth-to-mouth ventilation, various background illuminations and phone placements. All tests were done on a recording Laerdal manikin, providing true compression rates for comparison. Overall, the algorithm is seen to be promising, and it manages a number of disturbances and light situations. For target rates at 110 cpm, as recommended during CPR, the mean error in compression rate (Standard dev. over tests in parentheses) is 3.6 (0.8) for short hair bystanders, and 8.7 (6.0) including medium and long haired bystanders. The presented method shows that it is feasible to detect the compression rate of chest compressions performed by a bystander by placing the smartphone close to the patient, and using the built-in camera combined with a video processing algorithm performed real-time on the device.
Loturco, Irineu; Winckler, Ciro; Lourenço, Thiago F; Veríssimo, Amaury; Kobal, Ronaldo; Kitamura, Katia; Pereira, Lucas A; Nakamura, Fábio Y
2016-01-01
Compression garments are thought to aid performance in some selected speed-power activities owing to improved sensory feedback and proprioception. The aim of this study was to test the effects of using compression garments on speed and power-related performances in elite sprinters with visual impairment, who rely more on proprioception to perform than their Olympic peers. Eight top-level Paralympic sprinters competing in 100- and 200-m races performed, in the following order: unloaded squat jump (SJ), loaded jump squat (JS) and sprint tests over 20- and 70-m distances; using or not the compression garment. The maximum mean propulsive power value obtained during the JS attempts (starting at 40 % of their body mass, after which a load of 10 % of body mass was progressively added) was considered for data analysis purposes. The athletes executed the SJ and JS attempts without any help from their guides. Magnitude-based inference was used to analyze the results. The unloaded SJ was possibly higher in the compression than the placebo condition (41.19 ± 5.09 vs. 39.49 ± 5.75 cm). Performance differences in the loaded JS and sprint tests were all rated as unclear. It was concluded that the acute enhancement in vertical jump ability should be explored in the preparation of Paralympic sprinters during power-related training sessions. However, chronic effects in Paralympic athletes wearing compression garments need to be further tested, in order to support its use as a specific training aid.
Davies, C E; Woolfrey, G; Hogg, N; Dyer, J; Cooper, A; Waldron, J; Bulbulia, R; Whyman, M R; Poskitt, K R
2015-12-01
Slough in chronic venous leg ulcers may be associated with delayed healing. The purpose of this study was to assess larval debridement in chronic venous leg ulcers and to assess subsequent effect on healing. All patients with chronic leg ulcers presenting to the leg ulcer service were evaluated for the study. Exclusion criteria were: ankle brachial pressure indices <0.85 or >1.25, no venous reflux on duplex and <20% of ulcer surface covered with slough. Participants were randomly allocated to either 4-layer compression bandaging alone or 4-layer compression bandaging + larvae. Surface areas of ulcer and slough were assessed on day 4; 4-layer compression bandaging was then continued and ulcer size was measured every 2 weeks for up to 12 weeks. A total of 601 patients with chronic leg ulcers were screened between November 2008 and July 2012. Of these, 20 were randomised to 4-layer compression bandaging and 20 to 4-layer compression bandaging + larvae. Median (range) ulcer size was 10.8 (3-21.3) cm(2) and 8.1 (4.3-13.5) cm(2) in the 4-layer compression bandaging and 4-layer compression bandaging + larvae groups, respectively (Mann-Whitney U test, P = 0.184). On day 4, median reduction in slough area was 3.7 cm(2) in the 4-layer compression bandaging group (P < 0.05) and 4.2 cm(2) (P < 0.001) in the 4-layer compression bandaging + larvae group. Median percentage area reduction of slough was 50% in the 4-layer compression bandaging group and 84% in the 4-layer compression bandaging + larvae group (Mann-Whitney U test, P < 0.05). The 12-week healing rate was 73% and 68% in the 4-layer compression bandaging and 4-layer compression bandaging + larvae groups, respectively (Kaplan-Meier analysis, P = 0.664). Larval debridement therapy improves wound debridement in chronic venous leg ulcers treated with multilayer compression bandages. However, no subsequent improvement in ulcer healing was demonstrated. © The Author(s) 2014.
Plasma Studies in the SPECTOR Experiment as Target Development for MTF
NASA Astrophysics Data System (ADS)
Ivanov, Russ; Young, William; the Fusion Team, General
2016-10-01
General Fusion (GF) is developing a Magnetized Target Fusion (MTF) concept in which magnetized plasmas are adiabatically compressed to fusion conditions by the collapse of a liquid metal vortex. To study and optimize the plasma compression process, GF has a field test program in which subscale plasma targets are rapidly compressed with a moving flux conserver. GF has done many field tests to date on plasmas with sufficient thermal confinement but with a compression geometry that is not nearly self-similar. GF has a new design for our subscale plasma injectors called SPECTOR (for SPhErical Compact TORoid) capable of generating and compressing plasmas with a more spherical form factor. SPECTOR forms spherical tokamak plasmas by coaxial helicity injection into a flux conserver (a = 9 cm, R = 19 cm) with a pre-existing toroidal field created by 0.5 MA current in an axial shaft. The toroidal plasma current of 100 - 300 kA resistively decays over a time period of 1.5 msec. SPECTOR1 has an extensive set of plasma diagnostics including Thomson scattering and polarimetry. MHD stability and lifetime of the plasma was explored in different magnetic configurations with a variable safety factor q(Ψ) . Relatively hot (Te >= 350 eV) and dense ( 1020 m-3) plasmas have achieved energy confinement times τE >= 100 μsec and are now ready for field compression tests. russ.ivanov@generalfusion.com.
Use of phase change materials during compressed air expansion for isothermal CAES plants
NASA Astrophysics Data System (ADS)
Castellani, B.; Presciutti, A.; Morini, E.; Filipponi, M.; Nicolini, A.; Rossi, F.
2017-11-01
Compressed air energy storage (CAES) plants are designed to store compressed air into a vessel or in an underground cavern and to expand it in an expansion turbine when energy demand is high. An innovative CAES configuration recently proposed is the isothermal process. Several methods to implement isothermal CAES configuration are under investigation. In this framework, the present paper deals with the experimental testing of phase change materials (PCM) during compressed air expansion phase. The experimental investigation was carried out by means of an apparatus constituted by a compression section, a steel pressure vessel, to which an expansion valve is connected. The initial internal absolute pressure was equal to 5 bar to avoid moisture condensation and the experimental tests were carried out with two paraffin-based PCM amounts (0.05 kg and 0.1 kg). Results show that the temperature change during air expansion decreases with increasing the PCM amount inside the vessel. With the use of PCM during expansions an increase of the expansion work occurs. The increase is included in the range from 9.3% to 18.2%. In every test there is an approach to the isothermal values, which represent the maximum theoretical value of the obtainable expansion work.
Overview of CEV Thermal Protection System Seal Development
NASA Technical Reports Server (NTRS)
DeMange, Jeff; Taylor, Shawn; Dunlap, Patrick; Steinetz, Bruce; Delgado, Irebert; Finkbeiner, Josh; Mayer, John
2009-01-01
NASA GRC supporting design, development, and implementation of numerous seal systems for the Orion CEV: a) HS-to-BS interface. b) Compression pad. HS-to-BS Interface Seal System: a) design has evolved as a result of changes with the CEV TPS. b) Seal system is currently under development/evaluation. Coupon level tests, Arc jet tests, and Validation test development. Compression Pad: a) Finalizing design options. b) Evaluating material candidates.
The Effect of Grain Size on the Strain Hardening Behavior for Extruded ZK61 Magnesium Alloy
NASA Astrophysics Data System (ADS)
Zhang, Lixin; Zhang, Wencong; Chen, Wenzhen; Duan, Junpeng; Wang, Wenke; Wang, Erde
2017-12-01
The effects of grain size on the tensile and compressive strain hardening behaviors for extruded ZK61 alloys have been investigated by uniaxial tensile and compressive tests along the extrusion directions. Cylindrical tension and compression specimens of extruded ZK61 alloys with various sized grain were fabricated by annealing treatments. Tensile and compressive tests at ambient temperature were conducted at a strain rate of 0.5 × 10-3 s-1. The results indicate that both tensile strain hardening and compressive strain hardening of ZK61 alloys with different grain sizes have an athermal regime of dislocation accumulation in early deformation. The threshold stress value caused dynamic recovery is predominantly related to grain size in tensile strain hardening, but the threshold stress values for different grain sizes are almost identical in compressive strain hardening. There are obvious transition points on the tensile strain hardening curves which indicate the occurrence of dynamic recrystallization (DRX). The tensile strain hardening rate of the coarse-grained alloy obviously decreases faster than that of fine-grained alloys before DRX and the tensile strain hardening curves of different grain sizes basically tend to parallel after DRX. The compressive strain hardening rate of the fine-grained alloy obviously increases faster than that of coarse-grained alloy for twin-induced strain hardening, but compressive strain hardening curves also tend to parallel after twinning is exhausted.
Observer performance assessment of JPEG-compressed high-resolution chest images
NASA Astrophysics Data System (ADS)
Good, Walter F.; Maitz, Glenn S.; King, Jill L.; Gennari, Rose C.; Gur, David
1999-05-01
The JPEG compression algorithm was tested on a set of 529 chest radiographs that had been digitized at a spatial resolution of 100 micrometer and contrast sensitivity of 12 bits. Images were compressed using five fixed 'psychovisual' quantization tables which produced average compression ratios in the range 15:1 to 61:1, and were then printed onto film. Six experienced radiologists read all cases from the laser printed film, in each of the five compressed modes as well as in the non-compressed mode. For comparison purposes, observers also read the same cases with reduced pixel resolutions of 200 micrometer and 400 micrometer. The specific task involved detecting masses, pneumothoraces, interstitial disease, alveolar infiltrates and rib fractures. Over the range of compression ratios tested, for images digitized at 100 micrometer, we were unable to demonstrate any statistically significant decrease (p greater than 0.05) in observer performance as measured by ROC techniques. However, the observers' subjective assessments of image quality did decrease significantly as image resolution was reduced and suggested a decreasing, but nonsignificant, trend as the compression ratio was increased. The seeming discrepancy between our failure to detect a reduction in observer performance, and other published studies, is likely due to: (1) the higher resolution at which we digitized our images; (2) the higher signal-to-noise ratio of our digitized films versus typical CR images; and (3) our particular choice of an optimized quantization scheme.
Study on the application of the time-compressed speech in children.
Padilha, Fernanda Yasmin Odila Maestri Miguel; Pinheiro, Maria Madalena Canina
2017-11-09
To analyze the performance of children without alteration of central auditory processing in the Time-compressed Speech Test. This is a descriptive, observational, cross-sectional study. Study participants were 22 children aged 7-11 years without central auditory processing disorders. The following instruments were used to assess whether these children presented central auditory processing disorders: Scale of Auditory Behaviors, simplified evaluation of central auditory processing, and Dichotic Test of Digits (binaural integration stage). The Time-compressed Speech Test was applied to the children without auditory changes. The participants presented better performance in the list of monosyllabic words than in the list of disyllabic words, but with no statistically significant difference. No influence on test performance was observed with respect to order of presentation of the lists and the variables gender and ear. Regarding age, difference in performance was observed only in the list of disyllabic words. The mean score of children in the Time-compressed Speech Test was lower than that of adults reported in the national literature. Difference in test performance was observed only with respect to the age variable for the list of disyllabic words. No difference was observed in the order of presentation of the lists or in the type of stimulus.
NASA Technical Reports Server (NTRS)
Tecza, J. A.; Darlow, M. S.; Smalley, A. J.
1979-01-01
Tests were performed on elastomer specimens of the material polybutadiene to determine the performance limitations imposed by strain, temperature, and frequency. Three specimens were tested: a shear specimen, a compression specimen, and a second compression specimen in which thermocouples were embedded in the elastomer buttons. Stiffness and damping were determined from all tests, and internal temperatures were recorded for the instrumented compression specimen. Measured results are presented together with comparisons between predictions of a thermo-viscoelastic analysis and the measured results. Dampers of polybutadiene and Viton were designed, built, and tested. Vibration measurements were made and sensitivity of vibration to change in unbalance was also determined. Values for log decrement were extracted from the synchronous response curves. Comparisons were made between measured sensitivity to unbalance and log decrement and predicted values for these quantities.
Trainor, Kate; Pinnington, Mark A
2011-03-01
It has been proposed that neurodynamic examination can assist differential diagnosis of upper/mid lumbar nerve root compression; however, the diagnostic validity of many of these tests has yet to be established. This pilot study aimed to establish the diagnostic validity of the slump knee bend neurodynamic test for upper/mid lumbar nerve root compression in subjects with suspected lumbosacral radicular pain. Two independent examiners performed the slump knee bend test on subjects with radicular leg pain. Inter-tester reliability was calculated using the kappa coefficient. Slump knee bend test results were compared with magnetic resonance imaging findings, and diagnostic accuracy measures were calculated including sensitivity, specificity, predictive values and likelihood ratios. Orthopaedic spinal clinic, secondary care. Sixteen patients with radicular leg pain. All four subjects with mid lumbar nerve root compression on magnetic resonance imaging were correctly identified with the slump knee bend test; however, it was falsely positive in two individuals without the condition. Inter-tester reliability for the slump knee bend test using the kappa coefficient was 0.71 (95% confidence interval 0.33 to 1.0). Diagnostic validity calculations for the slump knee bend test (95% confidence intervals) were: sensitivity, 100% (40 to 100%); specificity, 83% (52 to 98%); positive predictive value, 67% (22 to 96%); negative predictive value, 100% (69 to 100%); positive likelihood ratio, 6.0 (1.58 to 19.4); and negative likelihood ratio, 0 (0 to 0.6). Results indicate good inter-tester reliability and suggest that the slump knee bend test has potential to be a useful clinical test for identifying patients with mid lumbar nerve root compression. Further investigation is needed on larger numbers of patients to confirm these findings. Copyright © 2010 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.
Hyperspectral data compression using a Wiener filter predictor
NASA Astrophysics Data System (ADS)
Villeneuve, Pierre V.; Beaven, Scott G.; Stocker, Alan D.
2013-09-01
The application of compression to hyperspectral image data is a significant technical challenge. A primary bottleneck in disseminating data products to the tactical user community is the limited communication bandwidth between the airborne sensor and the ground station receiver. This report summarizes the newly-developed "Z-Chrome" algorithm for lossless compression of hyperspectral image data. A Wiener filter prediction framework is used as a basis for modeling new image bands from already-encoded bands. The resulting residual errors are then compressed using available state-of-the-art lossless image compression functions. Compression performance is demonstrated using a large number of test data collected over a wide variety of scene content from six different airborne and spaceborne sensors .
Joint image encryption and compression scheme based on IWT and SPIHT
NASA Astrophysics Data System (ADS)
Zhang, Miao; Tong, Xiaojun
2017-03-01
A joint lossless image encryption and compression scheme based on integer wavelet transform (IWT) and set partitioning in hierarchical trees (SPIHT) is proposed to achieve lossless image encryption and compression simultaneously. Making use of the properties of IWT and SPIHT, encryption and compression are combined. Moreover, the proposed secure set partitioning in hierarchical trees (SSPIHT) via the addition of encryption in the SPIHT coding process has no effect on compression performance. A hyper-chaotic system, nonlinear inverse operation, Secure Hash Algorithm-256(SHA-256), and plaintext-based keystream are all used to enhance the security. The test results indicate that the proposed methods have high security and good lossless compression performance.
Compression socks and functional recovery following marathon running: a randomized controlled trial.
Armstrong, Stuart A; Till, Eloise S; Maloney, Stephen R; Harris, Gregory A
2015-02-01
Compression socks have become a popular recovery aid for distance running athletes. Although some physiological markers have been shown to be influenced by wearing these garments, scant evidence exists on their effects on functional recovery. This research aims to shed light onto whether the wearing of compression socks for 48 hours after marathon running can improve functional recovery, as measured by a timed treadmill test to exhaustion 14 days following marathon running. Athletes (n = 33, age, 38.5 ± 7.2 years) participating in the 2012 Melbourne, 2013 Canberra, or 2013 Gold Coast marathons were recruited and randomized into the compression sock or placebo group. A graded treadmill test to exhaustion was performed 2 weeks before and 2 weeks after each marathon. Time to exhaustion, average and maximum heart rates were recorded. Participants were asked to wear their socks for 48 hours immediately after completion of the marathon. The change in treadmill times (seconds) was recorded for each participant. Thirty-three participants completed the treadmill protocols. In the compression group, average treadmill run to exhaustion time 2 weeks after the marathon increased by 2.6% (52 ± 103 seconds). In the placebo group, run to exhaustion time decreased by 3.4% (-62 ± 130 seconds), P = 0.009. This shows a significant beneficial effect of compression socks on recovery compared with placebo. The wearing of below-knee compression socks for 48 hours after marathon running has been shown to improve functional recovery as measured by a graduated treadmill test to exhaustion 2 weeks after the event.
Inductively Driven, 3D Liner Compression of a Magnetized Plasma to Megabar Energy Densities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slough, John
To take advantage of the smaller scale, higher density regime of fusion an efficient method for achieving the compressional heating required to reach fusion gain conditions must be found. What is proposed is a more flexible metallic liner compression scheme that minimizes the kinetic energy required to reach fusion. It is believed that it is possible to accomplish this at sub-megajoule energies. This however will require operation at very small scale. To have a realistic hope of inexpensive, repetitive operation, it is essential to have the liner kinetic energy under a megajoule which allows for the survivability of the vacuummore » and power systems. At small scale the implosion speed must be reasonably fast to maintain the magnetized plasma (FRC) equilibrium during compression. For limited liner kinetic energy, it becomes clear that the thinnest liner imploded to the smallest radius consistent with the requirements for FRC equilibrium lifetime is desired. The proposed work is directed toward accomplishing this goal. Typically an axial (Z) current is employed for liner compression. There are however several advantages to using a θ-pinch coil. With the θ-pinch the liner currents are inductively driven which greatly simplifies the apparatus and vacuum system, and avoids difficulties with the post implosion vacuum integrity. With fractional flux leakage, the foil liner automatically provides for the seed axial compression field. To achieve it with optimal switching techniques, and at an accelerated pace however will require additional funding. This extra expense is well justified as the compression technique that will be enabled by this funding is unique in the ability to implode individual segments of the liner at different times. This is highly advantageous as the liner can be imploded in a manner that maximizes the energy transfer to the FRC. Production of shaped liner implosions for additional axial compression can thus be readily accomplished with the modified power modules. The additional energy and switching capability proposed will thus provide for optimal utilization of the liner energy. The following tasks were outlined for the three year effort: (1) Design and assemble the foil liner compression test structure and chamber including the compression bank and test foils [Year 1]. (2) Perform foil liner compression experiments and obtain performance data over a range on liner dimensions and bank parameters [Year 2]. (3) Carry out compression experiments of the FRC plasma to Megagauss fields and measure key fusion parameters [Year 3]. (4) Develop numerical codes and analyze experimental results, and determine the physics and scaling for future work [Year 1-3]. The principle task of the project was to design and assemble the foil liner FRC formation chamber, the full compression test structure and chamber including the compression bank. This task was completed successfully. The second task was to test foils in the test facility constructed in year one and characterize the performance obtained from liner compression. These experimental measurements were then compared with analytical predictions, and numerical code results. The liner testing was completed and compared with both the analytical results as well as the code work performed with the 3D structural dynamics package of ANSYS Metaphysics®. This code is capable of modeling the dynamic behavior of materials well into the non-linear regime (e.g. a bullet hit plate glass). The liner dynamic behavior was found to be remarkably close to that predicted by the 3D structural dynamics results. Incorporating a code that can also include the magnetics and plasma physics has also made significant progress at the UW. The remaining test bed construction and assembly task is was completed, and the FRC formation and merging experiments were carried out as planned. The liner compression of the FRC to Megagauss fields was not performed due to not obtaining a sufficiently long lived FRC during the final year of the grant. Modifications planned to correct this deficiency included a larger FRC source as well as a much larger liner driver energy storage system. Due to discontinuation of the grant neither of these improvements were carried out.« less
Effect of Impact Damage and Open Hole on Compressive Strength of Hybrid Composite Laminates
NASA Technical Reports Server (NTRS)
Hiel, Clement; Brinson, H. F.
1993-01-01
Impact damage tolerance is a frequently listed design requirement for composites hardware. The effect of impact damage and open hole size on laminate compressive strength was studied on sandwich beam specimens which combine CFRP-GFRP hybrid skins and a syntactic foam core. Three test specimen configurations have been investigated for this study. The first two were sandwich beams which were loaded in pure bending (by four point flexure). One series had a skin damaged by impact, and the second series had a circular hole machined through one of the skins. The reduction of compressive strength with increasing damage (hole) size was compared. Additionally a third series of uniaxially loaded open hole compression coupons were tested to generate baseline data for comparison with both series of sandwich beams.
Experimental studies of graphite-epoxy and boron-epoxy angle ply laminates in compression
NASA Technical Reports Server (NTRS)
Weller, T.
1977-01-01
A test program aimed at studying the nonlinear/inelastic response under axial compression across a wide range of angle ply was graphite-epoxy and boron-epoxy laminates was presented and described. The strength allowables corresponding to the various laminate configurations were defined and the failure mechanisms which dictate their mode of failure were detected. The program involved two types of specimens for each laminate configuration: compression sandwich coupons and compression tubes. The test results indicate that the coupons perform better than the tubes displaying considerably high stress-strain allowables and mechanical properties relative to the tubes. Also, it is observed that depending on their dimensions the coupons are susceptible to very pronounced edge effects. This sensitivity results in assigning to the laminate conservative mechanical properties rather than the actual ones.
Systems aspects of COBE science data compression
NASA Technical Reports Server (NTRS)
Freedman, I.; Boggess, E.; Seiler, E.
1993-01-01
A general approach to compression of diverse data from large scientific projects has been developed and this paper addresses the appropriate system and scientific constraints together with the algorithm development and test strategy. This framework has been implemented for the COsmic Background Explorer spacecraft (COBE) by retrofitting the existing VAS-based data management system with high-performance compression software permitting random access to the data. Algorithms which incorporate scientific knowledge and consume relatively few system resources are preferred over ad hoc methods. COBE exceeded its planned storage by a large and growing factor and the retrieval of data significantly affects the processing, delaying the availability of data for scientific usage and software test. Embedded compression software is planned to make the project tractable by reducing the data storage volume to an acceptable level during normal processing.
Spatially Targeted Activation of a Shape Memory, Polymer-Based, Reconfigurable Skin System
2014-02-01
bone samples described in ASTM Standard D638 using a CNC router. Compression test samples were cured in an aluminum cylinder mold treated with mold...release with Teflon end plugs and cut to length with a small lathe . 2.2 Tensile/Compressive Tests Tensile tests were conducted on a MTS QTest/1L...fixture with a CNC mill and a decal applied to the front surface for tracking by the DIC system. Figure 10: Shear Test Sample with DIC Decal 10
ERIC Educational Resources Information Center
Marks, William J.; Jones, W. Paul; Loe, Scott A.
2013-01-01
This study investigated the use of compressed speech as a modality for assessment of the simultaneous processing function for participants with visual impairment. A 24-item compressed speech test was created using a sound editing program to randomly remove sound elements from aural stimuli, holding pitch constant, with the objective to emulate the…
Jaidka, Shipra; Somani, Rani; Singh, Deepti J; Shafat, Shazia
2016-04-01
To comparatively evaluate the compressive strength, diametral tensile strength, and shear bond strength of glass ionomer cement type IX, chlorhexidine-incorporated glass ionomer cement, and triclosan-incorporated glass ionomer cement. In this study, glass ionomer cement type IX was used as a control. Chlorhexidine diacetate, and triclosan were added to glass ionomer cement type IX powder, respectively, in order to obtain 0.5, 1.25, and 2.5% concentrations of the respective experimental groups. Compressive strength, diametral tensile strength, and shear bond strength were evaluated after 24 h using Instron Universal Testing Machine. The results obtained were statistically analyzed using the independent t-test, Dunnett test, and Tukey test. There was no statistical difference in the compressive strength, diametral tensile strength, and shear bond strength of glass ionomer cement type IX (control), 0.5% triclosan-glass ionomer cement, and 0.5% chlorhexidine-glass ionomer cement. The present study suggests that the compressive strength, diametral tensile strength, and shear bond strength of 0.5% triclosan-glass ionomer cement and 0.5% chlorhexidine-glass ionomer cement were similar to those of the glass ionomer cement type IX, discernibly signifying that these can be considered as viable options for use in pediatric dentistry with the additional value of antimicrobial property along with physical properties within the higher acceptable range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olivier, Franck; Gourc, Jean-Pierre
2007-07-01
The paper presents the results of a laboratory experiment on Municipal Solid Waste (MSW) subjected to one-dimensional compression in a 1 m{sup 3} instrumented cell. The focus was on the hydro-mechanical behavior of the material under conditions of confinement and leachate percolation that replicate those found in real-scale landfills. The operation of the apparatus is detailed together with the testing methodology and the monitoring program. Two samples of waste were tested: the first extended over a period of 10 months ('Control Test') and the second for 22 months ('Enhanced Test' with leachate recirculation). Consolidation data is reported with regard tomore » both short-term (stress-dependent) and long-term (time-dependent) settlements. A discussion follows based on the derived values of primary and secondary compression ratios. Correlations between compression parameters and the biodegradation process are presented. In particular, results clearly highlight the effect of leachate recirculation on waste settlement: 24% secondary deformation reached after slightly less than 2 years (equivalent to a 5-fold increase in compressibility) and 17.9% loss of dry matter. Comparisons are proposed considering the results derived from the few monitoring programs conducted on experimental bioreactors worldwide. Finally, the hydraulic characterization of waste is discussed with regard to the evaluation of effective porosity and permeability.« less
Song, B.; Nelson, K.; Lipinski, R.; ...
2014-08-21
Iridium alloys have superior strength and ductility at elevated temperatures, making them useful as structural materials for certain high-temperature applications. However, experimental data on their high-strain -rate performance are needed for understanding high-speed impacts in severe environments. Kolsky bars (also called split Hopkinson bars) have been extensively employed for high-strain -rate characterization of materials at room temperature, but it has been challenging to adapt them for the measurement of dynamic properties at high temperatures. In our study, we analyzed the difficulties encountered in high-temperature Kolsky bar testing of thin iridium alloy specimens in compression. We made appropriate modifications using themore » current high-temperature Kolsky bar technique in order to obtain reliable compressive stress–strain response of an iridium alloy at high-strain rates (300–10 000 s -1) and temperatures (750 and 1030°C). The compressive stress–strain response of the iridium alloy showed significant sensitivity to both strain rate and temperature.« less
Fatigue degradation in compressively loaded composite laminates. [graphite-epoxy composites
NASA Technical Reports Server (NTRS)
Ramkumar, R. L.
1981-01-01
The effect of imbedded delaminations on the compression fatigue behavior of quasi-isotropic, T300/5208, graphite/epoxy laminates was investigated. Teflon imbedments were introduced during panel layup to create delaminations. Static and constant amplitude (R=10, omega = 10 Hz) fatigue tests were conducted. S-N data and half life residual strength data were obtained. During static compression loading, the maximum deflection of the buckled delaminated region was recorded. Under compression fatigue, growth of the imbedded delamination was identified as the predominant failure mode in most of the test cases. Specimens that exhibited others failures had a single low stiffness ply above the Teflon imbedment. Delamination growth during fatigue was monitored using DIB enhanced radiography. In specimens with buried delaminations, the dye penetrant (DIB) was introduced into the delaminated region through a minute laser drilled hole, using a hypodermic needle. A low kV, microfocus, X-ray unit was mounted near the test equipment to efficiently record the cyclic growth of buried delaminations on Polaroid film.
NASA Technical Reports Server (NTRS)
Bowles, Kenneth J.; Roberts, Gary D.; Kamvouris, John E.
1996-01-01
A study was conducted to determine the effects of long-term isothermal thermo-oxidative aging on the compressive properties of T-650-35 fabric reinforced PMR-15 composites. The temperatures that were studied were 204, 260, 288, 316, and 343 C. Specimens of different geometries were evaluated. Cut edge-to-surface ratios of 0.03 to 0.89 were fabricated and aged. Aging times extended to a period in excess of 15,000 hours for the lower temperature runs. The unaged and aged specimens were tested in compression in accordance with ASTM D-695. Both thin and thick (plasma) specimens were tested. Three specimens were tested at each time/temperature/geometry condition. The failure modes appeared to be initiated by fiber kinking with longitudinal, interlaminar splitting. In general, it appears that the thermo-oxidative degradation of the compression strength of the composite material may occur by both thermal (time-dependent) and oxidative (weight-loss) mechanisms. Both mechanisms appear to be specimen-thickness dependent.
JPEG vs. JPEG 2000: an objective comparison of image encoding quality
NASA Astrophysics Data System (ADS)
Ebrahimi, Farzad; Chamik, Matthieu; Winkler, Stefan
2004-11-01
This paper describes an objective comparison of the image quality of different encoders. Our approach is based on estimating the visual impact of compression artifacts on perceived quality. We present a tool that measures these artifacts in an image and uses them to compute a prediction of the Mean Opinion Score (MOS) obtained in subjective experiments. We show that the MOS predictions by our proposed tool are a better indicator of perceived image quality than PSNR, especially for highly compressed images. For the encoder comparison, we compress a set of 29 test images with two JPEG encoders (Adobe Photoshop and IrfanView) and three JPEG2000 encoders (JasPer, Kakadu, and IrfanView) at various compression ratios. We compute blockiness, blur, and MOS predictions as well as PSNR of the compressed images. Our results show that the IrfanView JPEG encoder produces consistently better images than the Adobe Photoshop JPEG encoder at the same data rate. The differences between the JPEG2000 encoders in our test are less pronounced; JasPer comes out as the best codec, closely followed by IrfanView and Kakadu. Comparing the JPEG- and JPEG2000-encoding quality of IrfanView, we find that JPEG has a slight edge at low compression ratios, while JPEG2000 is the clear winner at medium and high compression ratios.
Fuzzy Relational Compression Applied on Feature Vectors for Infant Cry Recognition
NASA Astrophysics Data System (ADS)
Reyes-Galaviz, Orion Fausto; Reyes-García, Carlos Alberto
Data compression is always advisable when it comes to handling and processing information quickly and efficiently. There are two main problems that need to be solved when it comes to handling data; store information in smaller spaces and processes it in the shortest possible time. When it comes to infant cry analysis (ICA), there is always the need to construct large sound repositories from crying babies. Samples that have to be analyzed and be used to train and test pattern recognition algorithms; making this a time consuming task when working with uncompressed feature vectors. In this work, we show a simple, but efficient, method that uses Fuzzy Relational Product (FRP) to compresses the information inside a feature vector, building with this a compressed matrix that will help us recognize two kinds of pathologies in infants; Asphyxia and Deafness. We describe the sound analysis, which consists on the extraction of Mel Frequency Cepstral Coefficients that generate vectors which will later be compressed by using FRP. There is also a description of the infant cry database used in this work, along with the training and testing of a Time Delay Neural Network with the compressed features, which shows a performance of 96.44% with our proposed feature vector compression.
Aging and compressibility of municipal solid wastes.
Chen, Y M; Zhan, Tony L T; Wei, H Y; Ke, H
2009-01-01
The expansion of a municipal solid waste (MSW) landfill requires the ability to predict settlement behavior of the existing landfill. The practice of using a single compressibility value when performing a settlement analysis may lead to inaccurate predictions. This paper gives consideration to changes in the mechanical compressibility of MSW as a function of the fill age of MSW as well as the embedding depth of MSW. Borehole samples representative of various fill ages were obtained from five boreholes drilled to the bottom of the Qizhishan landfill in Suzhou, China. Thirty-one borehole samples were used to perform confined compression tests. Waste composition and volume-mass properties (i.e., unit weight, void ratio, and water content) were measured on all the samples. The test results showed that the compressible components of the MSW (i.e., organics, plastics, paper, wood and textiles) decreased with an increase in the fill age. The in situ void ratio of the MSW was shown to decrease with depth into the landfill. The compression index, Cc, was observed to decrease from 1.0 to 0.3 with depth into the landfill. Settlement analyses were performed on the existing landfill, demonstrating that the variation of MSW compressibility with fill age or depth should be taken into account in the settlement prediction.
Abelairas-Gómez, Cristian; Rodríguez-Núñez, Antonio; Vilas-Pintos, Elisardo; Prieto Saborit, José Antonio; Barcala-Furelos, Roberto
2015-06-01
To describe the quality of chest compressions performed by secondary-school students trained with a realtime audiovisual feedback system. The learners were 167 students aged 12 to 15 years who had no prior experience with cardiopulmonary resuscitation (CPR). They received an hour of instruction in CPR theory and practice and then took a 2-minute test, performing hands-only CPR on a child mannequin (Prestan Professional Child Manikin). Lights built into the mannequin gave learners feedback about how many compressions they had achieved and clicking sounds told them when compressions were deep enough. All the learners were able to maintain a steady enough rhythm of compressions and reached at least 80% of the targeted compression depth. Fewer correct compressions were done in the second minute than in the first (P=.016). Real-time audiovisual feedback helps schoolchildren aged 12 to 15 years to achieve quality chest compressions on a mannequin.
Extended testing of compression distillation.
NASA Technical Reports Server (NTRS)
Bambenek, R. A.; Nuccio, P. P.
1972-01-01
During the past eight years, the NASA Manned Spacecraft Center has supported the development of an integrated water and waste management system which includes the compression distillation process for recovering useable water from urine, urinal flush water, humidity condensate, commode flush water, and concentrated wash water. This paper describes the design of the compression distillation unit, developed for this system, and the testing performed to demonstrate its reliability and performance. In addition, this paper summarizes the work performed on pretreatment and post-treatment processes, to assure the recovery of sterile potable water from urine and treated urinal flush water.
Compressive Loading and Modeling of Stitched Composite Stiffeners
NASA Technical Reports Server (NTRS)
Leone, Frank A., Jr.; Jegley, Dawn C.; Linton, Kim A.
2016-01-01
A series of single-frame and single-stringer compression tests were conducted at NASA Langley Research Center on specimens harvested from a large panel built using the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept. Different frame and stringer designs were used in fabrication of the PRSEUS panel. In this paper, the details of the experimental testing of single-frame and single-stringer compression specimens are presented, as well as discussions on the performance of the various structural configurations included in the panel. Nonlinear finite element models were developed to further understand the failure processes observed during the experimental campaign.
Studies of fiber-matrix adhesion on compression strength
NASA Technical Reports Server (NTRS)
Bascom, Willard D.; Nairn, John A.; Boll, D. J.
1991-01-01
A study was initiated on the effect of the matrix polymer and the fiber matrix bond strength of carbon fiber polymer matrix composites. The work includes tests with micro-composites, single ply composites, laminates, and multi-axial loaded cylinders. The results obtained thus far indicate that weak fiber-matrix adhesion dramatically reduces 0 degree compression strength. Evidence is also presented that the flaws in the carbon fiber that govern compression strength differ from those that determine fiber tensile strength. Examination of post-failure damage in the single ply tests indicates kink banding at the crack tip.
A Visual Basic program for analyzing oedometer test results and evaluating intergranular void ratio
NASA Astrophysics Data System (ADS)
Monkul, M. Murat; Önal, Okan
2006-06-01
A visual basic program (POCI) is proposed and explained in order to analyze oedometer test results. Oedometer test results have vital importance from geotechnical point of view, since settlement requirements usually control the design of foundations. The software POCI is developed in order perform the necessary calculations for convential oedometer test. The change of global void ratio and stress-strain characteristics can be observed both numerically and graphically. It enables the users to calculate some parameters such as coefficient of consolidation, compression index, recompression index, and preconsolidation pressure depending on the type and stress history of the soil. Moreover, it adopts the concept of intergranular void ratio which may be important especially in the compression behavior of sandy soils. POCI shows the variation of intergranular void ratio and also enables the users to calculate granular compression index.
Test of superplastically formed corrugated aluminum compression specimens with beaded webs
NASA Technical Reports Server (NTRS)
Davis, Randall C.; Royster, Dick M.; Bales, Thomas T.; James, William F.; Shinn, Joseph M., Jr.
1991-01-01
Corrugated wall sections provide a highly efficient structure for carrying compressive loads in aircraft and spacecraft fuselages. The superplastic forming (SPF) process offers a means to produce complex shells and panels with corrugated wall shapes. A study was made to investigate the feasibility of superplastically forming 7475-T6 aluminum sheet into a corrugated wall configuration and to demonstrate the structural integrity of the construction by testing. The corrugated configuration selected has beaded web segments separating curved-cap segments. Eight test specimens were fabricated. Two specimens were simply a single sheet of aluminum superplastically formed to a beaded-web, curved-cap corrugation configuration. Six specimens were single-sheet corrugations modified by adhesive bonding additional sheet material to selectively reinforce the curved-cap portion of the corrugation. The specimens were tested to failure by crippling in end compression at room temperature.
Compressive Properties of Metal Matrix Syntactic Foams in Free and Constrained Compression
NASA Astrophysics Data System (ADS)
Orbulov, Imre Norbert; Májlinger, Kornél
2014-06-01
Metal matrix syntactic foam (MMSF) blocks were produced by an inert gas-assisted pressure infiltration technique. MMSFs are advanced hollow sphere reinforced-composite materials having promising application in the fields of aviation, transport, and automotive engineering, as well as in civil engineering. The produced blocks were investigated in free and constrained compression modes, and besides the characteristic mechanical properties, their deformation mechanisms and failure modes were studied. In the tests, the chemical composition of the matrix material, the size of the reinforcing ceramic hollow spheres, the applied heat treatment, and the compression mode were considered as investigation parameters. The monitored mechanical properties were the compressive strength, the fracture strain, the structural stiffness, the fracture energy, and the overall absorbed energy. These characteristics were strongly influenced by the test parameters. By the proper selection of the matrix and the reinforcement and by proper design, the mechanical properties of the MMSFs can be effectively tailored for specific and given applications.
NASA Astrophysics Data System (ADS)
Shahrabadi, Hamid; Sayareh, Sina; Sarkardeh, Hamed
2017-12-01
In the present research, effect of silica fume as an additive and oil polluted sands as aggregates on compressive strength of concrete were investigated experimentally. The amount of oil in the designed mixtures was assumed to be constant and equal to 2% of the sand weight. Silica fume accounting for 10%, 15% and 20% of the weight is added to the designed mixture. After preparation and curing, concrete specimens were placed into the three different conditions: fresh, brackish and saltwater environments (submerged in fresh water, alternation of exposed in air & submerged in sea water and submerged in sea water). The result of compressive strength tests shows that the compressive strength of the specimens consisting of silica fume increases significantly in comparison with the control specimens in all three environments. The compressive strength of the concrete with 15% silica fume content was about 30% to 50% higher than that of control specimens in all tested environments under the condition of using polluted aggregates in the designed mixture.
Strength development of pervious concrete containing engineered biomass aggregate
NASA Astrophysics Data System (ADS)
Sharif, A. A. M.; Shahidan, S.; Koh, H. B.; Kandash, A.; Zuki, S. S. Mohd
2017-11-01
Pervious concrete with high porosity has good permeability and low mechanical strengths are commonly used in controlling storm water management. It is different from normal concrete. It is only containing single size of coarse aggregate and has lower density compared with normal concrete. This study was focused on the effect of Engineered Biomass Aggregate (EBA) on the compressive strength, void ratio and water permeability of pervious concrete. EBA was prepared by coating the biomass aggregate with epoxy resin. EBA was used to replace natural coarse aggregate ranging from 0% to 25%. 150 mm cube specimens were prepared and used to study the compressive strength, void ratio and water permeability. Compressive strength was tested at 7, 14 and 28 days. Meanwhile, void ratio and permeability tests were carried out on 28 days. The experimental results showed that pervious concrete containing EBA gained lower compressive strength. The compressive strength was reduced gradually by increasing the percentage of EBA. Overall, Pervious concrete containing EBA achieved higher void ratio and permeability.
Effects of Compression, Staging, and Braid Angle on Braided Rope Seal Performance
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.; Dunlap, Patrick H.; Adams, Michael L.
2006-01-01
This viewgraph presentation describes the effects of compression, staging and braid angle on braided rope seals. The contents include: 1) Test Fixture Schematics; 2) Comparison of Hybrid Seal Braid Architecture; 3) Residual Interference After Compression Cycling; 4) Effect of Compression, Braid, and Staging on Seal Flow; 5) Effect of Staging on Seal Pressure Drop; 6) Three Stag Seal Durability; 7) P&W Turbine Vane Seal Requirements; and 8) Next Generation Fighter F-22 P&W F119 Engines.
Characterization of Shear Properties for APO/MBI Syntactic Foam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reser, Patrick M.; Lewis, Matthew W.; Clark, Jarod
Triaxial compression testing is a means for mechanical characterization of a material. A unique feature of the triaxial compression test is the application of two different magnitudes of compressive pressures on the material simultaneously. The material behavior under these different compressive pressures can be monitored over time. Several important characteristics of the material, such as stress yield values and the shear failure envelope may then be determined. Also mechanical properties such as Poisson’s ratio, Young’s modulus and bulk modulus can be determined from the triaxial compression test. The triaxial compression test was employed in this investigation to characterize the shearmore » behavior, shear failure envelope, and mechanical properties of a syntactic foam. Los Alamos National Laboratory (LANL) supplied a total of 36 samples of APO-BMI syntactic foam to the University of New Mexico, Department of Civil Engineering for testing between December 2003 and May 2004. Each sample had a diameter of 1.395±0.005 in. (3.543±0.013cm.) and a length of 2.796±0.004 in. (7.102±0.010 cm.). The samples had an average density of 0.295 g/cm3. Additional information about the material tested in this investigation can be found in the “Specimen Description” section contained in Chapter 1. The nomenclatures used in this study is presented in Chapter 1. In addition to designing and implementing triaxial compression tests capable of up to 2,000 psi. confining pressure (minor principal stress) and roughly 13,000 psi. in axial pressure (major principal stress), a pure tension test was designed and conducted on the foam material. The purpose of this pure tension test was to obtain maximum tensile stress values to enhance the characterization of the shear envelope in the stress space. The sampling procedure and specimen preparation for a standard test can be found in the American Society for Testing Materials (ASTM) D 5379/ D 5379 – 93. The above tests mentioned and their procedures are discussed in Chapter 2. Chapter 2 contains the types of tests performed and the apparatus used for testing the material. Chapter 2 also has a brief explanation of the equipment and the procedures used for conducting the tests. In Chapter 3, the material characteristics and mechanical properties obtained from the tests are described; composite plots of deviatoric vs. mean stress and deviatoric stress vs. longitudinal strain are also included. The plots of deviatoric stress vs. mean stress clearly identify the shear envelope for the material. Chapter 4 summarizes the vital information obtained from the tests and the conclusions made. All the necessary plots and the data generated during the testing have been included in the Appendix. The information in the appendix includes plots of: Strain vs. Time, Stress vs. Time, Stress vs. Strain, Mean Stress vs. Volumetric Strain, Lateral Strain vs. Longitudinal Strain, and q vs. p. Bulk modulus, Poisson’s ratio, and Young’s modulus are displayed in the appropriate plots in each appendix.« less
Evaluation of the mechanical properties of class-F fly ash.
Kim, Bumjoo; Prezzi, Monica
2008-01-01
Coal-burning power plants in the United States (US) generate more than 70 million tons of fly ash as a by-product annually. Recycling large volumes of fly ash in geotechnical applications may offer an attractive alternative to the disposal problem as most of it is currently dumped in ponds or landfills. Class-F fly ash, resulting from burning of bituminous or anthracite coals, is the most common type of fly ash in the US. In the present study, the mechanical characteristics (compaction response, compressibility, and shear strength) of class-F fly ash were investigated by performing various laboratory tests (compaction test, one-dimensional compression test, direct shear test and consolidated-drained triaxial compression test) on fly ash samples collected from three power plants in the state of Indiana (US). Test results have shown that despite some morphological differences, class-F fly ash exhibits mechanical properties that are, in general, comparable to those observed in natural sandy soils.
2016-08-21
less pronounced for pelvis velocity • Seat velocity and dynamic displacement not recorded for this test series – Would provide key information for...effectiveness of seat – Displacement /time history data should be recorded for all future test series UNCLASSIFIED UNCLASSIFIED Conclusions/Future...interfacing with seat manufacturers to broaden occupant protection range – Record dynamic stroke on all drop tower tests to evaluate correlation between displacement rate and lumbar compression UNCLASSIFIED UNCLASSIFIED 17
PACE: Power-Aware Computing Engines
2005-02-01
more costly than compu- tation on our test platform, and it is memory access that dominates most lossless data compression algorithms . In fact, even...Performance and implementation concerns A compression algorithm may be implemented with many different, yet reasonable, data structures (including...Related work This section discusses data compression for low- bandwidth devices and optimizing algorithms for low energy. Though much work has gone
Characterization of Impact Initiation of Aluminum-Based Intermetallic-Forming Reactive Materials
2011-12-01
compressed intermetallic-forming aluminum-based reactive materials upon impact initiation, consisting of equi-volumetric tantalum-aluminum, tungsten-aluminum...18 2.3.4 Dynamic Energy Release Characterization using Pig Test . . . . . . 21 2.3.5 Shock Compression of Reactive Powder Mixtures...is to evaluate the reaction initiation characteristics of quasi-statically compressed intermetallic-forming aluminum-based reactive materials upon
Testing compression strength of wood logs by drilling resistance
NASA Astrophysics Data System (ADS)
Kalny, Gerda; Rados, Kristijan; Rauch, Hans Peter
2017-04-01
Soil bioengineering is a construction technique using biological components for hydraulic and civil engineering solutions, based on the application of living plants and other auxiliary materials including among others log wood. Considering the reliability of the construction it is important to know about the durability and the degradation process of the wooden logs to estimate and retain the integral performance of a soil bioengineering system. An important performance indicator is the compression strength, but this parameter is not easy to examine by non-destructive methods. The Rinntech Resistograph is an instrument to measure the drilling resistance by a 3 mm wide needle in a wooden log. It is a quasi-non-destructive method as the remaining hole has no weakening effects to the wood. This is an easy procedure but result in values, hard to interpret. To assign drilling resistance values to specific compression strengths, wooden specimens were tested in an experiment and analysed with the Resistograph. Afterwards compression tests were done at the same specimens. This should allow an easier interpretation of drilling resistance curves in future. For detailed analyses specimens were investigated by means of branch inclusions, cracks and distances between annual rings. Wood specimens are tested perpendicular to the grain. First results show a correlation between drilling resistance and compression strength by using the mean drilling resistance, average width of the annual rings and the mean range of the minima and maxima values as factors for the drilling resistance. The extended limit of proportionality, the offset yield strength and the maximum strength were taken as parameters for compression strength. Further investigations at a second point in time strengthen these results.
Failure of flight feathers under uniaxial compression.
Schelestow, Kristina; Troncoso, Omar P; Torres, Fernando G
2017-09-01
Flight feathers are light weight engineering structures. They have a central shaft divided in two parts: the calamus and the rachis. The rachis is a thinly walled conical shell filled with foam, while the calamus is a hollow tube-like structure. Due to the fact that bending loads are produced during birds' flight, the resistance to bending of feathers has been reported in different studies. However, the analysis of bent feathers has shown that compression could induce failure by buckling. Here, we have studied the compression of feathers in order to assess the failure mechanisms involved. Axial compression tests were carried out on the rachis and the calamus of dove and pelican feathers. The failure mechanisms and folding structures that resulted from the compression tests were observed from images obtained by scanning electron microscopy (SEM). The rachis and calamus fail due to structural instability. In the case of the calamus, this instability leads to a progressive folding process. In contrast, the rachis undergoes a typical Euler column-type buckling failure. The study of failed specimens showed that delamination buckling, cell collapse and cell densification are the primary failure mechanisms of the rachis structure. The role of the foam is also discussed with regard to the mechanical response of the samples and the energy dissipated during the compression tests. Critical stress values were calculated using delamination buckling models and were found to be in very good agreement with the experimental values measured. Failure analysis and mechanical testing have confirmed that flight feathers are complex thin walled structures with mechanical adaptations that allow them to fulfil their functions. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhou, Shuwei; Xia, Caichu; Zhou, Yu
2018-06-01
Cracks have a significant effect on the uniaxial compression of rocks. Thus, a theoretically analytical approach was proposed to assess the effects of randomly distributed cracks on the effective Young’s modulus during the uniaxial compression of rocks. Each stage of the rock failure during uniaxial compression was analyzed and classified. The analytical approach for the effective Young’s modulus of a rock with only a single crack was derived while considering the three crack states under stress, namely, opening, closure-sliding, and closure-nonsliding. The rock was then assumed to have many cracks with randomly distributed direction, and the effect of crack shape and number during each stage of the uniaxial compression on the effective Young’s modulus was considered. Thus, the approach for the effective Young’s modulus was used to obtain the whole stress-strain process of uniaxial compression. Afterward, the proposed approach was employed to analyze the effects of related parameters on the whole stress-stain curve. The proposed approach was eventually compared with some existing rock tests to validate its applicability and feasibility. The proposed approach has clear physical meaning and shows favorable agreement with the rock test results.
Novel Data Reduction Based on Statistical Similarity
Lee, Dongeun; Sim, Alex; Choi, Jaesik; ...
2016-07-18
Applications such as scientific simulations and power grid monitoring are generating so much data quickly that compression is essential to reduce storage requirement or transmission capacity. To achieve better compression, one is often willing to discard some repeated information. These lossy compression methods are primarily designed to minimize the Euclidean distance between the original data and the compressed data. But this measure of distance severely limits either reconstruction quality or compression performance. In this paper, we propose a new class of compression method by redefining the distance measure with a statistical concept known as exchangeability. This approach reduces the storagemore » requirement and captures essential features, while reducing the storage requirement. In this paper, we report our design and implementation of such a compression method named IDEALEM. To demonstrate its effectiveness, we apply it on a set of power grid monitoring data, and show that it can reduce the volume of data much more than the best known compression method while maintaining the quality of the compressed data. Finally, in these tests, IDEALEM captures extraordinary events in the data, while its compression ratios can far exceed 100.« less
Applications of data compression techniques in modal analysis for on-orbit system identification
NASA Technical Reports Server (NTRS)
Carlin, Robert A.; Saggio, Frank; Garcia, Ephrahim
1992-01-01
Data compression techniques have been investigated for use with modal analysis applications. A redundancy-reduction algorithm was used to compress frequency response functions (FRFs) in order to reduce the amount of disk space necessary to store the data and/or save time in processing it. Tests were performed for both single- and multiple-degree-of-freedom (SDOF and MDOF, respectively) systems, with varying amounts of noise. Analysis was done on both the compressed and uncompressed FRFs using an SDOF Nyquist curve fit as well as the Eigensystem Realization Algorithm. Significant savings were realized with minimal errors incurred by the compression process.
NASA Technical Reports Server (NTRS)
Grunes, Mitchell R.; Choi, Junho
1995-01-01
We are in the preliminary stages of creating an operational system for losslessly compressing packet data streams. The end goal is to reduce costs. Real world constraints include transmission in the presence of error, tradeoffs between the costs of compression and the costs of transmission and storage, and imperfect knowledge of the data streams to be transmitted. The overall method is to bring together packets of similar type, split the data into bit fields, and test a large number of compression algorithms. Preliminary results are very encouraging, typically offering compression factors substantially higher than those obtained with simpler generic byte stream compressors, such as Unix Compress and HA 0.98.
Failure analysis of composite laminates including biaxial compression
NASA Technical Reports Server (NTRS)
Tennyson, R. C.; Elliott, W. G.
1983-01-01
This report describes a continued effort on the development and application of the tensor polynomial failure criterion for composite laminate analysis. In particular, emphasis is given to the design, construction and testing of a cross-beam laminate configuration to obtain "pure' biaxial compression failure. The purpose of this test case was to provide to permit "closure' of the cubic form of the failure surface in the 1-2 compression-compression quadrant. This resulted in a revised set of interaction strength parameters and the construction of a failure surface which can be used with confidence for strength predictions, assuming a plane stress state exists. Furthermore, the problem of complex conjugate roots which can occur in some failure regions is addressed and an "engineering' interpretation is provided. Results are presented illustrating this behavior and the methodology for overcoming this problem is discussed.
Apparatus and method for fatigue testing of a material specimen in a high-pressure fluid environment
Wang, Jy-An; Feng, Zhili; Anovitz, Lawrence M; Liu, Kenneth C
2013-06-04
The invention provides fatigue testing of a material specimen while the specimen is disposed in a high pressure fluid environment. A specimen is placed between receivers in an end cap of a vessel and a piston that is moveable within the vessel. Pressurized fluid is provided to compression and tension chambers defined between the piston and the vessel. When the pressure in the compression chamber is greater than the pressure in the tension chamber, the specimen is subjected to a compression force. When the pressure in the tension chamber is greater than the pressure in the compression chamber, the specimen is subjected to a tension force. While the specimen is subjected to either force, it is also surrounded by the pressurized fluid in the tension chamber. In some examples, the specimen is surrounded by hydrogen.
NASA Technical Reports Server (NTRS)
McQuigg, Thomas D.; Kapania, Rakesh K.; Scotti, Stephen J.; Walker, Sandra P.
2011-01-01
A compression after impact study has been conducted to determine the residual strength of three sandwich panel constructions with two types of thin glass fiber reinforced polymer face-sheets and two hexagonal honeycomb Nomex core densities. Impact testing is conducted to first determine the characteristics of damage resulting from various impact energy levels. Two modes of failure are found during compression after impact tests with the density of the core precipitating the failure mode present for a given specimen. A finite element analysis is presented for prediction of the residual compressive strength of the impacted specimens. The analysis includes progressive damage modeling in the face-sheets. Preliminary analysis results were similar to the experimental results; however, a higher fidelity core material model is expected to improve the correlation.
Monitoring fatigue damage in carbon fiber composites using an acoustic impact technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haque, A.; Raju, P.K.
1998-06-01
The acoustic impact technique (AIT) of nondestructive testing (NDT) has been used to identify the damage that results from the compressive and tension-compression cycle loading around a circular notch of quasiisotropic carbon-fiber composites. This method involves applying a low velocity impact to the test specimen and evaluating the resulting localized acoustic response. Results indicate that AIT can be applied for identification of both compressive and fatigue damage in composite laminates. The gross area of compressive and fatigue damage is detected through an increase in the pulse width, and a decrease in the amplitude, of the force-time signal. The response obtainedmore » in AIT is sensitive to the frequency of the impactor and the amplitude of the impact force and requires careful monitoring of these values to achieve repeatability of results.« less
The influence of the compression interface on the failure behavior and size effect of concrete
NASA Astrophysics Data System (ADS)
Kampmann, Raphael
The failure behavior of concrete materials is not completely understood because conventional test methods fail to assess the material response independent of the sample size and shape. To study the influence of strength and strain affecting test conditions, four typical concrete sample types were experimentally evaluated in uniaxial compression and analyzed for strength, deformational behavior, crack initiation/propagation, and fracture patterns under varying boundary conditions. Both low friction and conventional compression interfaces were assessed. High-speed video technology was used to monitor macrocracking. Inferential data analysis proved reliably lower strength results for reduced surface friction at the compression interfaces, regardless of sample shape. Reciprocal comparisons revealed statistically significant strength differences between most sample shapes. Crack initiation and propagation was found to differ for dissimilar compression interfaces. The principal stress and strain distributions were analyzed, and the strain domain was found to resemble the experimental results, whereas the stress analysis failed to explain failure for reduced end confinement. Neither stresses nor strains indicated strength reductions due to reduced friction, and therefore, buckling effects were considered. The high-speed video analysis revealed localize buckling phenomena, regardless of end confinement. Slender elements were the result of low friction, and stocky fragments developed under conventional confinement. The critical buckling load increased accordingly. The research showed that current test methods do not reflect the "true'' compressive strength and that concrete failure is strain driven. Ultimate collapse results from buckling preceded by unstable cracking.
The effect of changes in compression ratio upon engine performance
NASA Technical Reports Server (NTRS)
Sparrow, Stanwood W
1925-01-01
This report is based upon engine tests made at the Bureau of Standards during 1920, 1921, 1922, and 1923. The majority of these tests were of aviation engines and were made in the Altitude Laboratory. For a small portion of the work a single cylinder experimental engine was used. This, however, was operated only at sea-level pressures. The report shows that an increase in break horsepower and a decrease in the pounds of fuel used per brake horsepower hour usually results from an increase in compression ratio. This holds true at least up to the highest ratio investigated, 14 to 1, provided there is no serious preignition or detonation at any ratio. To avoid preignition and detonation when employing high-compression ratios, it is often necessary to use some fuel other than gasoline. It has been found that the consumption of some of these fuels in pounds per brake horsepower hour is so much greater than the consumption of gasoline that it offsets the decrease derived from the use of the high-compression ratio. The changes in indicated thermal efficiency with changes in compression ratio are in close agreement with what would be anticipated from a consideration of the air cycle efficiencies at the various ratios. In so far as these tests are concerned there is no evidence that a change in compression ratio produces an appreciable, consistent change in friction horsepower, volumetric efficiency, or in the range of fuel-air ratios over which the engine can operate. The ratio between the heat loss to the jacket water and the heat converted into brake horsepower or indicated horsepower decreases with increase in compression ratio. (author)
2012-06-01
MISP) COMPLIANT ARCHITECTURE WHITE SANDS MISSILE RANGE REAGAN TEST SITE YUMA PROVING GROUND DUGWAY PROVING GROUND ABERDEEN TEST CENTER...DIGITAL MOTION IMAGERY COMPRESSION BEST PRACTICES GUIDE – A MOTION IMAGERY STANDARDS PROFILE (MISP) COMPLIANT ARCHITECTURE ...delivery, and archival purposes. These practices are based on a Motion Imagery Standards Profile (MISP) compliant architecture , which has been defined
New rapid method for determining edgewise compressive strength of corrugated fiberboard
John W. Koning
1986-01-01
The objective of this study was to determine if corrugated fiberboard specimens that had been necked down with a common router would yield acceptable edgewise compressive strength values. Tests were conducted on specimens prepared using a circular saw and router, and the results were compared with those obtained on specimens prepared according to TAPPI Test Method T...
COMPRESSIVE FATIGUE IN TITANIUM DENTAL IMPLANTS SUBMITTED TO FLUORIDE IONS ACTION
Ribeiro, Ana Lúcia Roselino; Noriega, Jorge Roberto; Dametto, Fábio Roberto; Vaz, Luís Geraldo
2007-01-01
The aim of this study was to assess the influence of a fluoridated medium on the mechanical properties of an internal hexagon implant-abutment set, by means of compression, mechanical cycling and metallographic characterization by scanning electronic microscopy. Five years of regular use of oral hygiene with a sodium fluoride solution content of 1500 ppm were simulated, immersing the samples in this medium for 184 hours, with the solutions being changed every 12 hours. Data were analyzed at a 95% confidence level with Fisher's exact test. After the action of fluoride ions, a negative influence occurred in the mechanical cycling test performed in a servohydraulic machine (Material Test System-810) set to a frequency of 15 Hz with 100,000 cycles and programmed to 60% of the maximum resistance of static compression test. The sets tended to fracture by compression on the screw, characterized by mixed ruptures with predominance of fragile fracture, as observed by microscopy. An evidence of corrosion by pitting on sample surfaces was found after the fluoride ions action. It may be concluded that prolonged contact with fluoride ions is harmful to the mechanical properties of commercially pure titanium structures. PMID:19089148
Özbilen, Sedat; Liebert, Daniela; Beck, Tilmann; Bram, Martin
2016-03-01
Porous titanium cylinders were produced with a constant amount of temporary space holder (70 vol.%). Different interstitial contents were achieved by varying the starting powders (HDH vs. gas atomized) and manufacturing method (cold compaction without organic binders vs. warm compaction of MIM feedstocks). Interstitial contents (O, C, and N) as a function of manufacturing were measured by chemical analysis. Samples contained 0.34-0.58 wt.% oxygen, which was found to have the greatest effect on mechanical properties. Quasi-static mechanical tests under compression at low strain rate were used for reference and to define parameters for cyclic compression tests. Not unexpectedly, increased oxygen content increased the yield strength of the porous titanium. Cyclic compression fatigue tests were conducted using sinusoidal loading in a servo-hydraulic testing machine. Increased oxygen content was concomitant with embrittlement of the titanium matrix, resulting in significant reduction of compression cycles before failure. For samples with 0.34 wt.% oxygen, R, σ(min) and σ(max) were varied systematically to estimate the fatigue limit (~4 million cycles). Microstructural changes induced by cyclic loading were then characterized by optical microscopy, SEM and EBSD. Copyright © 2015 Elsevier B.V. All rights reserved.
Experimental investigation of graphite/polyimide sandwich panels in edgewise compression
NASA Technical Reports Server (NTRS)
Camarda, C. J.
1980-01-01
The local and general buckling behavior of graphite/polyimide sandwich panels simply supported along all four edges and loaded in uniaxial edgewise compression was investigated. Material properties of adhesive and facings were determined from flatwise tension and sandwich beam flexure tests. Tensile and compressive material properties of the facings were determined at 116, R.T., and 589 K (-250, R.T., and 600 F) using the sandwich beam flexure test method. Results indicate that Gr/PI is a usable structural material for short term use at temperatures as high as 589 K (600 F). Buckling specimens were 30.5 X 33.0 cm (12 x 13 in.), had quasi-isotropic symmetric facings and a glass/polyimide honeycomb core. Core thicknesses varied and three panels of each thickness were tested in edgewise compression at room temperature to investigate failure modes and corresponding buckling formulas. Specimens 0.635 cm (0.25 in.) thick failed by overall buckling at loads close to the analytically predicted buckling load; all other panels failed by face wrinkling. Results of the winkling tests indicate that several buckling formulas were unconservative and therefore not suitable for design purposes; recommended wrinkling equations are presented.
Compressive and Flexural Tests on Adobe Samples Reinforced with Wire Mesh
NASA Astrophysics Data System (ADS)
Jokhio, G. A.; Al-Tawil, Y. M. Y.; Syed Mohsin, S. M.; Gul, Y.; Ramli, N. I.
2018-03-01
Adobe is an economical, naturally available, and environment friendly construction material that offers excellent thermal and sound insulations as well as indoor air quality. It is important to understand and enhance the mechanical properties of this material, where a high degree of variation is reported in the literature owing to lack of research and standardization in this field. The present paper focuses first on the understanding of mechanical behaviour of adobe subjected to compressive stresses as well as flexure and then on enhancing the same with the help of steel wire mesh as reinforcement. A total of 22 samples were tested out of which, 12 cube samples were tested for compressive strength, whereas 10 beams samples were tested for modulus of rupture. Half of the samples in each category were control samples i.e. without wire mesh reinforcement, whereas the remaining half were reinforced with a single layer of wire mesh per sample. It has been found that the compressive strength of adobe increases by about 43% after adding a single layer of wire mesh reinforcement. The flexural response of adobe has also shown improvement with the addition of wire mesh reinforcement.
Experimental Study of Nonassociated Flow and Instability of Frictional Materials. Attachment No. 1
1993-04-01
pressure range of 0.25 to 68.9 MPa. One-dimensional compression tests up to 900 MPa axial stress level were also performed. U Strain localization was studied... range of confining pressures. Vesic and Clough (1968) performed a series of drained, triaxial compression tests on Chattahoochee River sand at confining...realization resulted in many investigators developing cubical triaxial testing apparatus, in which the full range of the effect of the intermediate I principal
Seal material development test program
NASA Technical Reports Server (NTRS)
1971-01-01
A program designed to characterize an experimental fluoroelastomer material designated AF-E-124D, is examined. Tests conducted include liquid nitrogen load compression tests, flexure tests and valve seal tests, ambient and elevated temperature compression set tests, and cleaning and flushing fluid exposure tests. The results of these tests indicate the AF-E-124D is a good choice for a cryogenic seal, since it exhibits good low temperature sealing characteristics and resistance to permanent set. The status of this material as an experimental fluorelastomer is stressed and recommended. Activity includes definition and control of critical processing to ensure consistent material properties. Design, fabrication and test of this and other materials is recommended in valve and static seal applications.
Wanner, Gregory K; Osborne, Arayel; Greene, Charlotte H
2016-11-29
Cardiopulmonary resuscitation (CPR) training has traditionally involved classroom-based courses or, more recently, home-based video self-instruction. These methods typically require preparation and purchase fee; which can dissuade many potential bystanders from receiving training. This study aimed to evaluate the effectiveness of teaching compression-only CPR to previously untrained individuals using our 6-min online CPR training video and skills practice on a homemade mannequin, reproduced by viewers with commonly available items (towel, toilet paper roll, t-shirt). Participants viewed the training video and practiced with the homemade mannequin. This was a parallel-design study with pre and post training evaluations of CPR skills (compression rate, depth, hand position, release), and hands-off time (time without compressions). CPR skills were evaluated using a sensor-equipped mannequin and two blinded CPR experts observed testing of participants. Twenty-four participants were included: 12 never-trained and 12 currently certified in CPR. Comparing pre and post training, the never-trained group had improvements in average compression rate per minute (64.3 to 103.9, p = 0.006), compressions with correct hand position in 1 min (8.3 to 54.3, p = 0.002), and correct compression release in 1 min (21.2 to 76.3, p < 0.001). The CPR-certified group had adequate pre and post-test compression rates (>100/min), but an improved number of compressions with correct release (53.5 to 94.7, p < 0.001). Both groups had significantly reduced hands-off time after training. Achieving adequate compression depths (>50 mm) remained problematic in both groups. Comparisons made between groups indicated significant improvements in compression depth, hand position, and hands-off time in never-trained compared to CPR-certified participants. Inter-rater agreement values were also calculated between the CPR experts and sensor-equipped mannequin. A brief internet-based video coupled with skill practice on a homemade mannequin improved compression-only CPR skills, especially in the previously untrained participants. This training method allows for widespread compression-only CPR training with a tactile learning component, without fees or advance preparation.
Aksakal, Bunyamin; Gurger, Murat; Say, Yakup; Yilmaz, Erhan
2014-01-01
Biomechanical comparison of straight DCP and helical plates for fixation of transversal and oblique tibial bone fractures were analyzed and compared to each other by axial compression, bending and torsion tests. An in vitro osteosynthesis of transverse (TF) and oblique bone fracture (OF) fixations have been analysed on fresh sheep tibias by using the DCP and helical compression plates (HP). Statistically significant differences were found for both DCP and helical plate fixations under axial compression, bending and torsional loads. The strength of fixation systems was in favor of DC plating with exception of the TF-HP fixation group under compression loads and torsional moments. The transvers fracture (TF) stability was found to be higher than that found in oblique fracture (OF) fixed by helical plates (HP). However, under torsional testing, compared to conventional plating, the helical plate fixations provided a higher torsional resistance and strength. The maximum stiffness at axial compression loading and maximum torsional strength was achieved in torsional testing for the TF-HP fixations. From in vitro biomechanical analysis, fracture type and plate fixation system groups showed different responses under different loadings. Consequently, current biomechanical analyses may encourage the usage of helical HP fixations in near future during clinical practice for transverse bone fractures.
Behavior of reinforcement SCC beams under elevated temperatures
NASA Astrophysics Data System (ADS)
Fathi, Hamoon; Farhang, Kianoosh
2015-09-01
This experimental study focuses on the behavior of heated reinforced concrete beams. Four types of concrete mixtures were used for the tested self-compacting concrete beams. A total of 72 reinforced concrete beams and 72 standard cylindrical specimens were tested. The compressive strength under uniaxial loading at 23 °C ranged from 30 to 45 MPa. The specimens were exposed to different temperatures. The test parameters of interest were the compressive strength and the temperature of the specimens. The effect of changes in the parameters was examined so as to control the behavior of the tested concrete and that of the reinforced concrete beam. The results indicated that flexibility and compressive strength of the reinforced concrete beams decreased at higher temperatures. Furthermore, heating beyond 400 °C produced greater variations in the structural behavior of the materials in both the cylindrical samples and the reinforced concrete beams.
Fabrication and evaluation of cold/formed/weldbrazed beta-titanium skin-stiffened compression panels
NASA Technical Reports Server (NTRS)
Royster, D. M.; Bales, T. T.; Davis, R. C.; Wiant, H. R.
1983-01-01
The room temperature and elevated temperature buckling behavior of cold formed beta titanium hat shaped stiffeners joined by weld brazing to alpha-beta titanium skins was determined. A preliminary set of single stiffener compression panels were used to develop a data base for material and panel properties. These panels were tested at room temperature and 316 C (600 F). A final set of multistiffener compression panels were fabricated for room temperature tests by the process developed in making the single stiffener panels. The overall geometrical dimensions for the multistiffener panels were determined by the structural sizing computer code PASCO. The data presented from the panel tests include load shortening curves, local buckling strengths, and failure loads. Experimental buckling loads are compared with the buckling loads predicted by the PASCO code. Material property data obtained from tests of ASTM standard dogbone specimens are also presented.
Laboratory Testing of Silica Sol Grout in Coal Measure Mudstones.
Pan, Dongjiang; Zhang, Nong; Xie, Zhengzheng; Feng, Xiaowei; Kong, Yong
2016-11-22
The effectiveness of silica sol grout on mudstones is reported in this paper. Using X-ray diffraction (XRD), the study investigates how the silica sol grout modifies mudstone mineralogy. Micropore sizes and mechanical properties of the mudstone before and after grouting with four different materials were determined with a surface area/porosity analyser and by uniaxial compression. Tests show that, after grouting, up to 50% of the mesopore volumes can be filled with grout, the dominant pore diameter decreases from 100 nm to 10 nm, and the sealing capacity is increased. Uniaxial compression tests of silica sol grouted samples shows that their elastic modulus is 21%-38% and their uniaxial compressive strength is 16%-54% of the non-grouted samples. Peak strain, however, is greater by 150%-270%. After grouting, the sample failure mode changes from brittle to ductile. This paper provides an experimental test of anti-seepage and strengthening properties of silica sol.
Test and Analyses of a Composite Multi-Bay Fuselage Panel Under Uni-Axial Compression
NASA Technical Reports Server (NTRS)
Li, Jian; Baker, Donald J.
2004-01-01
A composite panel containing three stringers and two frames cut from a vacuum-assisted resin transfer molded (VaRTM) stitched fuselage article was tested under uni-axial compression loading. The stringers and frames divided the panel into six bays with two columns of three bays each along the compressive loading direction. The two frames were supported at the ends with pins to restrict the out-of-plane translation. The free edges of the panel were constrained by knife-edges. The panel was modeled with shell finite elements and analyzed with ABAQUS nonlinear solver. The nonlinear predictions were compared with the test results in out-of-plane displacements, back-to-back surface strains on stringer flanges and back-to-back surface strains at the centers of the skin-bays. The analysis predictions were in good agreement with the test data up to post-buckling.
Design and Testing of CO 2 Compression Using Supersonic Shock Wave Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koopman, Aaron
This report summarizes work performed by Ramgen and subcontractors in pursuit of the design and construction of a 10 MW supersonic CO2 compressor and supporting facility. The compressor will demonstrate application of Ramgen’s supersonic compression technology at an industrial scale using CO2 in a closed-loop. The report includes details of early feasibility studies, CFD validation and comparison to experimental data, static test experimental results, compressor and facility design and analyses, and development of aerodynamic tools. A summary of Ramgen's ISC Engine program activity is also included. This program will demonstrate the adaptation of Ramgen's supersonic compression and advanced vortex combustionmore » technology to result in a highly efficient and cost effective alternative to traditional gas turbine engines. The build out of a 1.5 MW test facility to support the engine and associated subcomponent test program is summarized.« less
Felderhof, B U
2013-08-01
Recently, a critical test of the Navier-Stokes-Fourier equations for compressible fluid continua was proposed [H. Brenner, Phys. Rev. E 87, 013014 (2013)]. It was shown that the equations of bivelocity hydrodynamics imply that a compressible fluid in an isolated rotating circular cylinder attains a nonequilibrium steady state with a nonuniform temperature increasing radially with distance from the axis. We demonstrate that statistical mechanical arguments, involving Hamiltonian dynamics and ergodicity due to irregularity of the wall, lead instead to a thermal equilibrium state with uniform temperature. This is the situation to be expected in experiment.
Toughening of PMR composites by semi-interpenetrating networks
NASA Technical Reports Server (NTRS)
Tiwari, S. N.; Srinivansan, K.
1991-01-01
Polymerization of monomer reactants (PMR-15) type polyimide and RP46 prepregs were drum wound using IM-7 fibers. Prepregging and processing conditions were optimized to yield good quality laminates with fiber volume fractions of 60 percent (+/- 2 percent). Samples were fabricated and tested to determine comprehensive engineering properties of both systems. These included 0 deg flexure, short beam shear, transverse flexure and tension, 0 deg tension and compression, intralaminar shear, short block compression, mode 1 and 2 fracture toughness, and compression after impact properties. Semi-2-IPN (interpenetrating polymer networks) toughened PMR-15 and RP46 laminates were also fabricated and tested for the same properties.
The Effects of Bottom Ash on Setting Time and Compressive Strength of Fly Ash Geopolymer Paste
NASA Astrophysics Data System (ADS)
Affandhie, B. A.; Kurniasari, P. T.; Darmawan, M. S.; Subekti, S.; Wibowo, B.; Husin, N. A.; Bayuaji, R.; Irawan, S.
2017-11-01
This research is to find out the contribution of waste energy utilization of fly ash and bottom ash coal as binding agent of geopolymer concrete. This research methodology uses experimental approach in laboratory by making cylinder paste test object with dimension diameter of 2.5 cm x height 5 cm with some combination of fly ash and bottom ash mix with time setting test (ASTM C 191-04a) and compressive strength (ASTM C 39-04a). The research concludes that the effect of bottom ash on fly ash-based geopolymer paste shows good results in setting time and compressive strength.
Determination of elastomeric foam parameters for simulations of complex loading.
Petre, M T; Erdemir, A; Cavanagh, P R
2006-08-01
Finite element (FE) analysis has shown promise for the evaluation of elastomeric foam personal protection devices. Although appropriate representation of foam materials is necessary in order to obtain realistic simulation results, material definitions used in the literature vary widely and often fail to account for the multi-mode loading experienced by these devices. This study aims to provide a library of elastomeric foam material parameters that can be used in FE simulations of complex loading scenarios. Twelve foam materials used in footwear were tested in uni-axial compression, simple shear and volumetric compression. For each material, parameters for a common compressible hyperelastic material model used in FE analysis were determined using: (a) compression; (b) compression and shear data; and (c) data from all three tests. Material parameters and Drucker stability limits for the best fits are provided with their associated errors. The material model was able to reproduce deformation modes for which data was provided during parameter determination but was unable to predict behavior in other deformation modes. Simulation results were found to be highly dependent on the extent of the test data used to determine the parameters in the material definition. This finding calls into question the many published results of simulations of complex loading that use foam material parameters obtained from a single mode of testing. The library of foam parameters developed here presents associated errors in three deformation modes that should provide for a more informed selection of material parameters.
NASA Astrophysics Data System (ADS)
Noor, Nurazuwa Md; Xiang-ONG, Jun; Noh, Hamidun Mohd; Hamid, Noor Azlina Abdul; Kuzaiman, Salsabila; Ali, Adiwijaya
2017-11-01
Effect of inclusion of palm oil kernel shell (PKS) and palm oil fibre (POF) in concrete was investigated on the compressive strength and flexural strength. In addition, investigation of palm oil kernel shell on concrete water absorption was also conducted. Total of 48 concrete cubes and 24 concrete prisms with the size of 100mm × 100mm × 100mm and 100mm × 100mm × 500mm were prepared, respectively. Four (4) series of concrete mix consists of coarse aggregate was replaced by 0%, 25%, 50% and 75% palm kernel shell and each series were divided into two (2) main group. The first group is without POF, while the second group was mixed with the 5cm length of 0.25% of the POF volume fraction. All specimen were tested after 7 and 28 days of water curing for a compression test, and flexural test at 28 days of curing period. Water absorption test was conducted on concrete cube age 28 days. The results showed that the replacement of PKS achieves lower compressive and flexural strength in comparison with conventional concrete. However, the 25% replacement of PKS concrete showed acceptable compressive strength which within the range of requirement for structural concrete. Meanwhile, the POF which should act as matrix reinforcement showed no enhancement in flexural strength due to the balling effect in concrete. As expected, water absorption was increasing with the increasing of PKS in the concrete cause by the porous characteristics of PKS
Hossain, M S; Gabr, M A; Asce, F
2009-09-01
In many situations, MSW components are processed and shredded before use in laboratory experiments using conventional soil testing apparatus. However, shredding MSW material may affect the target property to be measured. The objective of this study is to contribute to the understanding of the effect of shredding of MSW on the measured compressibility and strength properties. It is hypothesized that measured properties can be correlated to an R-value, the ratio of waste particle size to apparatus size. Results from oedometer tests, conducted on 63.5 mm, 100 mm, 200 mm diameter apparatus, indicated the dependency of the compressibility parameters on R-value. The compressibility parameters are similar for the same R-value even though the apparatus size varies. The results using same apparatus size with variable R-values indicated that shredding of MSW mainly affects initial compression. Creep and biological strain rate of the tested MSW are not significantly affected by R-value. The shear strength is affected by shredding as the light-weight reinforcing materials are shredded into smaller pieces during specimen preparation. For example, the measured friction angles are 32 degrees and 27 degrees for maximum particle sizes of 50 mm and 25 mm, respectively. The larger MSW components in the specimen provide better reinforcing contribution. This conclusion is however dependent on comparing specimen at the same level of degradation since shear strength is also a function of extent of degradation.
Bilaterally Abnormal Head Impulse Tests Indicate a Large Cerebellopontine Angle Tumor.
Kim, Hyo Jung; Park, Seong Ho; Kim, Ji Soo; Koo, Ja Won; Kim, Chae Yong; Kim, Young Hoon; Han, Jung Ho
2016-01-01
Tumors involving the cerebellopontine angle (CPA) pose a diagnostic challenge due to their diverse manifestations. Head impulse tests (HITs) have been used to evaluate vestibular function, but few studies have explored the head impulse gain of the vestibulo-ocular reflex (VOR) in patients with a vestibular schwannoma. This study tested whether the head impulse gain of the VOR is an indicator of the size of a unilateral CPA tumor. Twenty-eight patients (21 women; age=64±12 years, mean±SD) with a unilateral CPA tumor underwent a recording of the HITs using a magnetic search coil technique. Patients were classified into non-compressing (T1-T3) and compressing (T4) groups according to the Hannover classification. Most (23/28, 82%) of the patients showed abnormal HITs for the semicircular canals on the lesion side. The bilateral abnormality in HITs was more common in the compressing group than the non-compressing group (80% vs. 8%, Pearson's chi-square test: p<0.001). The tumor size was inversely correlated with the head impulse gain of the VOR in either direction. Bilaterally abnormal HITs indicate that a patient has a large unilateral CPA tumor. The abnormal HITs in the contralesional direction may be explained either by adaptation or by compression and resultant dysfunction of the cerebellar and brainstem structures. The serial evaluation of HITs may provide information on tumor growth, and thereby reduce the number of costly brain scans required when following up patients with CPA tumors.
Comparison of Artificial Compressibility Methods
NASA Technical Reports Server (NTRS)
Kiris, Cetin; Housman, Jeffrey; Kwak, Dochan
2004-01-01
Various artificial compressibility methods for calculating the three-dimensional incompressible Navier-Stokes equations are compared. Each method is described and numerical solutions to test problems are conducted. A comparison based on convergence behavior, accuracy, and robustness is given.
Li, Yang; Chen, Zhangxing; Xu, Hongyi; ...
2017-01-02
Compression molded SMC composed of chopped carbon fiber and resin polymer which balances the mechanical performance and manufacturing cost presents a promising solution for vehicle lightweight strategy. However, the performance of the SMC molded parts highly depends on the compression molding process and local microstructure, which greatly increases the cost for the part level performance testing and elongates the design cycle. ICME (Integrated Computational Material Engineering) approaches are thus necessary tools to reduce the number of experiments required during part design and speed up the deployment of the SMC materials. As the fundamental stage of the ICME workflow, commercial softwaremore » packages for SMC compression molding exist yet remain not fully validated especially for chopped fiber systems. In this study, SMC plaques are prepared through compression molding process. The corresponding simulation models are built in Autodesk Moldflow with the same part geometry and processing conditions as in the molding tests. The output variables of the compression molding simulations, including press force history and fiber orientation of the part, are compared with experimental data. Influence of the processing conditions to the fiber orientation of the SMC plaque is also discussed. It is found that generally Autodesk Moldflow can achieve a good simulation of the compression molding process for chopped carbon fiber SMC, yet quantitative discrepancies still remain between predicted variables and experimental results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyum, E.A.
1993-12-01
This research, the first load-controlled tension-compression fatigue testing to be performed on a MMC, extends the existing knowledge of MMC fatigue damage mechanisms to include the tension compression loading condition. To accomplish this, a (0/90)2, SCS-6/Ti-15-3 laminate was subjected to tension-tension fatigue at room temperature, and tension-compression fatigue at both room temperature and 427 deg C. Stress and strain data was taken to evaluate the macro-mechanic behavior of the material. Microscopy and fractography were performed to characterize the damage on a micro-mechanic level. On a maximum applied stress basis, the room temperature tension-tension specimens had longer fatigue lives than themore » room temperature tension-compression specimens. The room and high temperature tension-compression fatigue lives were nearly identical in the fiber-dominated high stress region of the SN curve. However, the increased ductility and diffused plasticity of the titanium matrix at 427 deg C delayed the onset and severity of matrix cracking, and thus increased the elevated temperature fatigue lives in the matrix dominated region of the SN curve. In all cases, matrix damage initiated at reaction zone cracks which nucleated both matrix plasticity and matrix cracking. Metal matrix composite, Elevated temperature, Fatigue testing, Compression, Fully-reversed, Titanium, Silicon carbide.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yang; Chen, Zhangxing; Xu, Hongyi
Compression molded SMC composed of chopped carbon fiber and resin polymer which balances the mechanical performance and manufacturing cost presents a promising solution for vehicle lightweight strategy. However, the performance of the SMC molded parts highly depends on the compression molding process and local microstructure, which greatly increases the cost for the part level performance testing and elongates the design cycle. ICME (Integrated Computational Material Engineering) approaches are thus necessary tools to reduce the number of experiments required during part design and speed up the deployment of the SMC materials. As the fundamental stage of the ICME workflow, commercial softwaremore » packages for SMC compression molding exist yet remain not fully validated especially for chopped fiber systems. In this study, SMC plaques are prepared through compression molding process. The corresponding simulation models are built in Autodesk Moldflow with the same part geometry and processing conditions as in the molding tests. The output variables of the compression molding simulations, including press force history and fiber orientation of the part, are compared with experimental data. Influence of the processing conditions to the fiber orientation of the SMC plaque is also discussed. It is found that generally Autodesk Moldflow can achieve a good simulation of the compression molding process for chopped carbon fiber SMC, yet quantitative discrepancies still remain between predicted variables and experimental results.« less
Role of large-scale slip in mode II fracture of bimaterial interface produced by diffusion bonding
NASA Astrophysics Data System (ADS)
Fox, M. R.; Ghosh, A. K.
2001-08-01
Bimaterial interfaces present in diffusion-bonded (and in-situ) composites are often not flat interfaces. The unevenness of the interface can result not only from interface reaction products but also from long-range waviness associated with the surfaces of the component phases bonded together. Experimental studies aimed at determining interface mechanical properties generally ignore the departure in the local stress due to waviness and assume a theoretically flat interface. Furthermore, the commonly used testing methods involving superimposed tension often renders the interface so extremely brittle that if microplastic effects were present it becomes impossible to perceive them. This article examines the role of waviness of the interface and microplastic effects on crack initiation. To do this, a test was selected that provides significant stability against crack growth by superimposing compressive stresses. Mode II interface fracture was studied for NiAl/Mo model laminates using a recently developed asymmetrically loaded shear (ALS) interface shear test. The ALS test may be viewed as opposite of the laminate bend test. In the bend test, shear at the interface is created via tension on one surface of the bend, while in the ALS test, shear is created by compression on one side of the interface relative to the other. Normal to the interface, near the crack tip, an initially compressive state is replaced by slight tension due to Poisson’s expansion of the unbonded part of the compressed beam.
NASA Technical Reports Server (NTRS)
Hilburger, Mark W.; Waters, W. Allen, Jr.; Haynie, Waddy T.
2015-01-01
Results from the testing of cylinder test article SBKF-P2-CYLTA01 (referred to herein as TA01) are presented. The testing was conducted at the Marshall Space Flight Center (MSFC), November 19?21, 2008, in support of the Shell Buckling Knockdown Factor (SBKF) Project.i The test was used to verify the performance of a newly constructed buckling test facility at MSFC and to verify the test article design and analysis approach used by the SBKF project researchers. TA01 is an 8-foot-diameter (96-inches), 78.0-inch long, aluminum-lithium (Al-Li), orthogrid-stiffened cylindrical shell similar to those used in current state-of-the-art launch vehicle structures and was designed to exhibit global buckling when subjected to compression loads. Five different load sequences were applied to TA01 during testing and included four sub-critical load sequences, i.e., loading conditions that did not cause buckling or material failure, and one final load sequence to buckling and collapse. The sub-critical load sequences consisted of either uniform axial compression loading or combined axial compression and bending and the final load sequence subjected TA01 to uniform axial compression. Traditional displacement transducers and strain gages were used to monitor the test article response at nearly 300 locations and an advanced digital image correlation system was used to obtain low-speed and high-speed full-field displacement measurements of the outer surface of the test article. Overall, the test facility and test article performed as designed. In particular, the test facility successfully applied all desired load combinations to the test article and was able to test safely into the postbuckling range of loading, and the test article failed by global buckling. In addition, the test results correlated well with initial pretest predictions.
Understanding High Rate Behavior Through Low Rate Analog
2014-04-28
uni- axial compression over all rates tested at 20 °C; (b) True yield stress as a function of strain rate...of temperature. (a) (b) Figure 11. Representative behaviour of PPVC-2. (a) True stress-true strain response in uni- axial compression over all...pages 33 of 78 (a) (b) Figure 15. Representative behaviour of PPVC-6. (a) True stress-true strain response in uni- axial compression
Thermoplastic composites for veneering posterior teeth-a feasibility study.
Gegauff, Anthony G; Garcia, Jose L; Koelling, Kurt W; Seghi, Robert R
2002-09-01
This pilot study was conducted to explore selected commercially-available thermoplastic composites that potentially had physical properties superior to currently available dental systems for restoring esthetic posterior crowns. Polyurethane, polycarbonate, and poly(ethylene/tetrafluoroethylene) (ETFE) composites and unfilled polyurethane specimens were injection molded to produce shapes adaptive to five standardized mechanical tests. The mechanical testing included abrasive wear rate, yield strength, apparent fracture toughness (strength ratio), flexural strength, and compressive strength. Compared to commercially available dental composites, abrasion wear rates were lower for all materials tested, yield strength was greater for the filled polycarbonates and filled polyurethane resins, fracture toughness testing was invalid (strength ratios were calculated for comparison of the pilot test materials), flexural strength was roughly similar except for the filled ETFE which was significantly greater, and compressive strength was lower. Commercially available thermoplastic resin composites, such as polyurethane, demonstrate the potential for development of an artificial crown material which exceeds the mechanical properties of currently available esthetic systems, if compressive strength can be improved.
Galetz, Mathias Christian; Glatzel, Uwe
2010-05-01
The deformation behavior of ultrahigh molecular polyethylene (UHMWPE) is studied in the temperature range of 23-80 degrees C. Samples are examined in quasi-static compression, tensile and creep tests to determine the accelerated deformation of UHMWPE at elevated temperatures. The deformation mechanisms under compression load can be described by one strain rate and temperature dependent Eyring process. The activation energy and volume of that process do not change between 23 degrees C and 50 degrees C. This suggests that the deformation mechanism under compression remains stable within this temperature range. Tribological tests are conducted to transfer this activated energy approach to the deformation behavior under loading typical for artificial knee joints. While this approach does not cover the wear mechanisms close to the surface, testing at higher temperatures is shown to have a significant potential to reduce the testing time for lifetime predictions in terms of the macroscopic creep and deformation behavior of artificial joints. Copyright 2010. Published by Elsevier Ltd.
The development of a performance-enhancing additive for vapor-compression heat pumps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grzyll, L.R.; Scaringe, R.P.; Gottschlich, J.M.
1997-12-31
This paper describes the testing results of a vapor-compression heat pump operating with HFC-134a refrigerant and a performance-enhancing additive. Preliminary bench-top testing of this additive, when added to polyolester (POE) lubricant and HFC-134a refrigerant, showed surprising enhancements to system COP. To further investigate this finding, the authors designed and fabricated a vapor-compression heat pump test stand for the 3--5 ton range. The authors investigated the effect of different concentrations of this additive on various system performance parameters such as cooling capacity, compressor power requirement, pressure ratio, compressor pressure difference, compressor isentropic efficiency, refrigerant flow rate, and heat exchanger performance. Themore » authors investigated various heat source and heat sink conditions to simulate air-conditioning and heat pump operating conditions. To investigate the effect of this additive on compressor lubrication and life, the authors performed compressor life tests (with scroll and reciprocating compressors), and had lubrication wear tests performed with various concentrations of the additive in the POE lubricant.« less
Mückley, Thomas; Hoffmeier, Konrad; Klos, Kajetan; Petrovitch, Alexander; von Oldenburg, Geert; Hofmann, Gunther O
2008-03-01
Retrograde intramedullary nailing is an established procedure for tibiotalocalcaneal arthrodesis. The goal of this study was to evaluate the effects of angle-stable locking or compressed angle-stable locking on the initial stability of the nails and on the behavior of the constructs under cyclic loading conditions. Tibiotalocalcaneal arthrodesis was performed in fifteen third-generation synthetic bones and twenty-four fresh-frozen cadaver legs with use of retrograde intramedullary nailing with three different locking modes: a Stryker nail with compressed angle-stable locking, a Stryker nail with angle-stable locking, and a statically locked Biomet nail. Analyses were performed of the initial stability of the specimens (range of motion) and the laxity of the constructs (neutral zone) in dorsiflexion/plantar flexion, varus/valgus, and external rotation/internal rotation. Cyclic testing up to 100,000 cycles was also performed. The range of motion and the neutral zone in dorsiflexion/plantar flexion at specific cycle increments were determined. In both bone models, the intramedullary nails with compressed angle-stable locking and those with angle-stable locking were significantly superior, in terms of a smaller range of motion and neutral zone, to the statically locked nails. The compressed angle-stable nails were superior to the angle-stable nails only in the synthetic bone model, in external/internal rotation. Cyclic testing showed the nails with angle-stable locking and those with compressed angle-stable locking to have greater stability in both models. In the synthetic bone model, compressed angle-stable locking was significantly better than angle-stable locking; in the cadaver bone model, there was no significant difference between these two locking modes. During cyclic testing, five statically locked nails in the cadaver bone model failed, whereas one nail with angle-stable locking and one with compressed angle-stable locking failed. Regardless of the bone model, the nails with angle-stable or compressed angle-stable locking had better initial stability and better stability following cycling than did the nails with static locking.
Piippo-Huotari, Oili; Norrman, Eva; Anderzén-Carlsson, Agneta; Geijer, Håkan
2018-05-01
The radiation dose for patients can be reduced with many methods and one way is to use abdominal compression. In this study, the radiation dose and image quality for a new patient-controlled compression device were compared with conventional compression and compression in the prone position . To compare radiation dose and image quality of patient-controlled compression compared with conventional and prone compression in general radiography. An experimental design with quantitative approach. After obtaining the approval of the ethics committee, a consecutive sample of 48 patients was examined with the standard clinical urography protocol. The radiation doses were measured as dose-area product and analyzed with a paired t-test. The image quality was evaluated by visual grading analysis. Four radiologists evaluated each image individually by scoring nine criteria modified from the European quality criteria for diagnostic radiographic images. There was no significant difference in radiation dose or image quality between conventional and patient-controlled compression. Prone position resulted in both higher dose and inferior image quality. Patient-controlled compression gave similar dose levels as conventional compression and lower than prone compression. Image quality was similar with both patient-controlled and conventional compression and was judged to be better than in the prone position.
Van Toen, Carolyn; Carter, Jarrod W; Oxland, Thomas R; Cripton, Peter A
2014-12-01
The tolerance of the spine to bending moments, used for evaluation of injury prevention devices, is often determined through eccentric axial compression experiments using segments of the cadaver spine. Preliminary experiments in our laboratory demonstrated that eccentric axial compression resulted in "unexpected" (artifact) moments. The aim of this study was to evaluate the static and dynamic effects of test configuration on bending moments during eccentric axial compression typical in cadaver spine segment testing. Specific objectives were to create dynamic equilibrium equations for the loads measured inferior to the specimen, experimentally verify these equations, and compare moment responses from various test configurations using synthetic (rubber) and human cadaver specimens. The equilibrium equations were verified by performing quasi-static (5 mm/s) and dynamic experiments (0.4 m/s) on a rubber specimen and comparing calculated shear forces and bending moments to those measured using a six-axis load cell. Moment responses were compared for hinge joint, linear slider and hinge joint, and roller joint configurations tested at quasi-static and dynamic rates. Calculated shear force and bending moment curves had similar shapes to those measured. Calculated values in the first local minima differed from those measured by 3% and 15%, respectively, in the dynamic test, and these occurred within 1.5 ms of those measured. In the rubber specimen experiments, for the hinge joint (translation constrained), quasi-static and dynamic posterior eccentric compression resulted in flexion (unexpected) moments. For the slider and hinge joints and the roller joints (translation unconstrained), extension ("expected") moments were measured quasi-statically and initial flexion (unexpected) moments were measured dynamically. In the cadaver experiments with roller joints, anterior and posterior eccentricities resulted in extension moments, which were unexpected and expected, for those configurations, respectively. The unexpected moments were due to the inertia of the superior mounting structures. This study has shown that eccentric axial compression produces unexpected moments due to translation constraints at all loading rates and due to the inertia of the superior mounting structures in dynamic experiments. It may be incorrect to assume that bending moments are equal to the product of compression force and eccentricity, particularly where the test configuration involves translational constraints and where the experiments are dynamic. In order to reduce inertial moment artifacts, the mass, and moment of inertia of any loading jig structures that rotate with the specimen should be minimized. Also, the distance between these structures and the load cell should be reduced.
Lossless Astronomical Image Compression and the Effects of Random Noise
NASA Technical Reports Server (NTRS)
Pence, William
2009-01-01
In this paper we compare a variety of modern image compression methods on a large sample of astronomical images. We begin by demonstrating from first principles how the amount of noise in the image pixel values sets a theoretical upper limit on the lossless compression ratio of the image. We derive simple procedures for measuring the amount of noise in an image and for quantitatively predicting how much compression will be possible. We then compare the traditional technique of using the GZIP utility to externally compress the image, with a newer technique of dividing the image into tiles, and then compressing and storing each tile in a FITS binary table structure. This tiled-image compression technique offers a choice of other compression algorithms besides GZIP, some of which are much better suited to compressing astronomical images. Our tests on a large sample of images show that the Rice algorithm provides the best combination of speed and compression efficiency. In particular, Rice typically produces 1.5 times greater compression and provides much faster compression speed than GZIP. Floating point images generally contain too much noise to be effectively compressed with any lossless algorithm. We have developed a compression technique which discards some of the useless noise bits by quantizing the pixel values as scaled integers. The integer images can then be compressed by a factor of 4 or more. Our image compression and uncompression utilities (called fpack and funpack) that were used in this study are publicly available from the HEASARC web site.Users may run these stand-alone programs to compress and uncompress their own images.
Image quality (IQ) guided multispectral image compression
NASA Astrophysics Data System (ADS)
Zheng, Yufeng; Chen, Genshe; Wang, Zhonghai; Blasch, Erik
2016-05-01
Image compression is necessary for data transportation, which saves both transferring time and storage space. In this paper, we focus on our discussion on lossy compression. There are many standard image formats and corresponding compression algorithms, for examples, JPEG (DCT -- discrete cosine transform), JPEG 2000 (DWT -- discrete wavelet transform), BPG (better portable graphics) and TIFF (LZW -- Lempel-Ziv-Welch). The image quality (IQ) of decompressed image will be measured by numerical metrics such as root mean square error (RMSE), peak signal-to-noise ratio (PSNR), and structural Similarity (SSIM) Index. Given an image and a specified IQ, we will investigate how to select a compression method and its parameters to achieve an expected compression. Our scenario consists of 3 steps. The first step is to compress a set of interested images by varying parameters and compute their IQs for each compression method. The second step is to create several regression models per compression method after analyzing the IQ-measurement versus compression-parameter from a number of compressed images. The third step is to compress the given image with the specified IQ using the selected compression method (JPEG, JPEG2000, BPG, or TIFF) according to the regressed models. The IQ may be specified by a compression ratio (e.g., 100), then we will select the compression method of the highest IQ (SSIM, or PSNR). Or the IQ may be specified by a IQ metric (e.g., SSIM = 0.8, or PSNR = 50), then we will select the compression method of the highest compression ratio. Our experiments tested on thermal (long-wave infrared) images (in gray scales) showed very promising results.
Phase 1 Space Fission Propulsion Energy Source Design
NASA Technical Reports Server (NTRS)
Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbud, Ivana; Carter, Robert; Rodgers, Stephen L. (Technical Monitor)
2002-01-01
Fission technology can enable rapid, affordable access to any point in the solar system. If fission propulsion systems are to be developed to their full potential; however, near-term customers must be identified and initial fission systems successfully developed, launched, and operated. Studies conducted in fiscal year 2001 (IISTP, 2001) show that fission electric propulsion (FEP) systems with a specific mass at or below 50 kg/kWjet could enhance or enable numerous robotic outer solar system missions of interest. At the required specific mass, it is possible to develop safe, affordable systems that meet mission requirements. To help select the system design to pursue, eight evaluation criteria were identified: system integration, safety, reliability, testability, specific mass, cost, schedule, and programmatic risk. A top-level comparison of four potential concepts was performed: a Testable, Passive, Redundant Reactor (TPRR), a Testable Multi-Cell In-Core Thermionic Reactor (TMCT), a Direct Gas Cooled Reactor (DGCR), and a Pumped Liquid Metal Reactor.(PLMR). Development of any of the four systems appears feasible. However, for power levels up to at least 500 kWt (enabling electric power levels of 125-175 kWe, given 25-35% power conversion efficiency) the TPRR has advantages related to several criteria and is competitive with respect to all. Hardware-based research and development has further increased confidence in the TPRR approach. Successful development and utilization of a "Phase I" fission electric propulsion system will enable advanced Phase 2 and Phase 3 systems capable of providing rapid, affordable access to any point in the solar system.
Assessing the Effects of Data Compression in Simulations Using Physically Motivated Metrics
Laney, Daniel; Langer, Steven; Weber, Christopher; ...
2014-01-01
This paper examines whether lossy compression can be used effectively in physics simulations as a possible strategy to combat the expected data-movement bottleneck in future high performance computing architectures. We show that, for the codes and simulations we tested, compression levels of 3–5X can be applied without causing significant changes to important physical quantities. Rather than applying signal processing error metrics, we utilize physics-based metrics appropriate for each code to assess the impact of compression. We evaluate three different simulation codes: a Lagrangian shock-hydrodynamics code, an Eulerian higher-order hydrodynamics turbulence modeling code, and an Eulerian coupled laser-plasma interaction code. Wemore » compress relevant quantities after each time-step to approximate the effects of tightly coupled compression and study the compression rates to estimate memory and disk-bandwidth reduction. We find that the error characteristics of compression algorithms must be carefully considered in the context of the underlying physics being modeled.« less
Bae, Jinkun; Chung, Tae Nyoung; Je, Sang Mo
2016-01-01
Objectives To assess how the quality of metronome-guided cardiopulmonary resuscitation (CPR) was affected by the chest compression rate familiarised by training before the performance and to determine a possible mechanism for any effect shown. Design Prospective crossover trial of a simulated, one-person, chest-compression-only CPR. Setting Participants were recruited from a medical school and two paramedic schools of South Korea. Participants 42 senior students of a medical school and two paramedic schools were enrolled but five dropped out due to physical restraints. Intervention Senior medical and paramedic students performed 1 min of metronome-guided CPR with chest compressions only at a speed of 120 compressions/min after training for chest compression with three different rates (100, 120 and 140 compressions/min). Friedman's test was used to compare average compression depths based on the different rates used during training. Results Average compression depths were significantly different according to the rate used in training (p<0.001). A post hoc analysis showed that average compression depths were significantly different between trials after training at a speed of 100 compressions/min and those at speeds of 120 and 140 compressions/min (both p<0.001). Conclusions The depth of chest compression during metronome-guided CPR is affected by the relative difference between the rate of metronome guidance and the chest compression rate practised in previous training. PMID:26873050
Displaying radiologic images on personal computers: image storage and compression--Part 2.
Gillespy, T; Rowberg, A H
1994-02-01
This is part 2 of our article on image storage and compression, the third article of our series for radiologists and imaging scientists on displaying, manipulating, and analyzing radiologic images on personal computers. Image compression is classified as lossless (nondestructive) or lossy (destructive). Common lossless compression algorithms include variable-length bit codes (Huffman codes and variants), dictionary-based compression (Lempel-Ziv variants), and arithmetic coding. Huffman codes and the Lempel-Ziv-Welch (LZW) algorithm are commonly used for image compression. All of these compression methods are enhanced if the image has been transformed into a differential image based on a differential pulse-code modulation (DPCM) algorithm. The LZW compression after the DPCM image transformation performed the best on our example images, and performed almost as well as the best of the three commercial compression programs tested. Lossy compression techniques are capable of much higher data compression, but reduced image quality and compression artifacts may be noticeable. Lossy compression is comprised of three steps: transformation, quantization, and coding. Two commonly used transformation methods are the discrete cosine transformation and discrete wavelet transformation. In both methods, most of the image information is contained in a relatively few of the transformation coefficients. The quantization step reduces many of the lower order coefficients to 0, which greatly improves the efficiency of the coding (compression) step. In fractal-based image compression, image patterns are stored as equations that can be reconstructed at different levels of resolution.
Optimized satellite image compression and reconstruction via evolution strategies
NASA Astrophysics Data System (ADS)
Babb, Brendan; Moore, Frank; Peterson, Michael
2009-05-01
This paper describes the automatic discovery, via an Evolution Strategy with Covariance Matrix Adaptation (CMA-ES), of vectors of real-valued coefficients representing matched forward and inverse transforms that outperform the 9/7 Cohen-Daubechies-Feauveau (CDF) discrete wavelet transform (DWT) for satellite image compression and reconstruction under conditions subject to quantization error. The best transform evolved during this study reduces the mean squared error (MSE) present in reconstructed satellite images by an average of 33.78% (1.79 dB), while maintaining the average information entropy (IE) of compressed images at 99.57% in comparison to the wavelet. In addition, this evolved transform achieves 49.88% (3.00 dB) average MSE reduction when tested on 80 images from the FBI fingerprint test set, and 42.35% (2.39 dB) average MSE reduction when tested on a set of 18 digital photographs, while achieving average IE of 104.36% and 100.08%, respectively. These results indicate that our evolved transform greatly improves the quality of reconstructed images without substantial loss of compression capability over a broad range of image classes.
Tensile and compressive stress-strain behavior of heat treated boron-aluminum
NASA Technical Reports Server (NTRS)
Kennedy, J. M.; Tenney, D. R.; Herakovich, C. T.
1978-01-01
An experimental study was conducted to assess the effects of heat treatment and cyclic mechanical loading on the tensile and compressive stress-strain behavior of six boron-aluminum composites having different laminate orientations and being subjected to different heat treatments. The heat treatments were as-fabricated, T6, and T6N consisting of T6 treatment followed by cryogenic quench in liquid nitrogen prior to testing. All laminates were tested in monotonic and cyclic compression, while the tensile-test data are taken from the literature for comparison purposes. It is shown that the linear elastic range of the T6- and T6N-condition specimens is larger than that of the as-fabricated specimens, and that cyclic loading in tension or compression strain hardens the specimens and extends the linear elastic range. For laminates containing 0-deg plies, the stress-strain behavior upon unloading is found to be nonlinear, whereas the other laminates exhibit a linear behavior upon unloading. Specimens in the T6 and T6N conditions show higher strain hardening than the as-fabricated specimens.
Drying Shrinkage of Mortar Incorporating High Volume Oil Palm Biomass Waste
NASA Astrophysics Data System (ADS)
Shukor Lim, Nor Hasanah Abdul; Samadi, Mostafa; Rahman Mohd. Sam, Abdul; Khalid, Nur Hafizah Abd; Nabilah Sarbini, Noor; Farhayu Ariffin, Nur; Warid Hussin, Mohd; Ismail, Mohammed A.
2018-03-01
This paper studies the drying shrinkage of mortar incorporating oil palm biomass waste including Palm Oil Fuel Ash, Oil Palm Kernel Shell and Oil Palm Fibre. Nano size of palm oil fuel ash was used up to 80 % as cement replacement by weight. The ash has been treated to improve the physical and chemical properties of mortar. The mass ratio of sand to blended ashes was 3:1. The test was carried out using 25 × 25 × 160 mm prism for drying shrinkage tests and 70 × 70 ×70 mm for compressive strength test. The results show that the shrinkage value of biomass mortar is reduced by 31% compared with OPC mortar thus, showing better performance in restraining deformation of the mortar while the compressive strength increased by 24% compared with OPC mortar at later age. The study gives a better understanding of how the biomass waste affect on mortar compressive strength and drying shrinkage behaviour. Overall, the oil palm biomass waste can be used to produce a better performance mortar at later age in terms of compressive strength and drying shrinkage.
Image splitting and remapping method for radiological image compression
NASA Astrophysics Data System (ADS)
Lo, Shih-Chung B.; Shen, Ellen L.; Mun, Seong K.
1990-07-01
A new decomposition method using image splitting and gray-level remapping has been proposed for image compression, particularly for images with high contrast resolution. The effects of this method are especially evident in our radiological image compression study. In our experiments, we tested the impact of this decomposition method on image compression by employing it with two coding techniques on a set of clinically used CT images and several laser film digitized chest radiographs. One of the compression techniques used was full-frame bit-allocation in the discrete cosine transform domain, which has been proven to be an effective technique for radiological image compression. The other compression technique used was vector quantization with pruned tree-structured encoding, which through recent research has also been found to produce a low mean-square-error and a high compression ratio. The parameters we used in this study were mean-square-error and the bit rate required for the compressed file. In addition to these parameters, the difference between the original and reconstructed images will be presented so that the specific artifacts generated by both techniques can be discerned by visual perception.
Compression of regions in the global advanced very high resolution radiometer 1-km data set
NASA Technical Reports Server (NTRS)
Kess, Barbara L.; Steinwand, Daniel R.; Reichenbach, Stephen E.
1994-01-01
The global advanced very high resolution radiometer (AVHRR) 1-km data set is a 10-band image produced at USGS' EROS Data Center for the study of the world's land surfaces. The image contains masked regions for non-land areas which are identical in each band but vary between data sets. They comprise over 75 percent of this 9.7 gigabyte image. The mask is compressed once and stored separately from the land data which is compressed for each of the 10 bands. The mask is stored in a hierarchical format for multi-resolution decompression of geographic subwindows of the image. The land for each band is compressed by modifying a method that ignores fill values. This multi-spectral region compression efficiently compresses the region data and precludes fill values from interfering with land compression statistics. Results show that the masked regions in a one-byte test image (6.5 Gigabytes) compress to 0.2 percent of the 557,756,146 bytes they occupy in the original image, resulting in a compression ratio of 89.9 percent for the entire image.
MP3 compression of Doppler ultrasound signals.
Poepping, Tamie L; Gill, Jeremy; Fenster, Aaron; Holdsworth, David W
2003-01-01
The effect of lossy, MP3 compression on spectral parameters derived from Doppler ultrasound (US) signals was investigated. Compression was tested on signals acquired from two sources: 1. phase quadrature and 2. stereo audio directional output. A total of 11, 10-s acquisitions of Doppler US signal were collected from each source at three sites in a flow phantom. Doppler signals were digitized at 44.1 kHz and compressed using four grades of MP3 compression (in kilobits per second, kbps; compression ratios in brackets): 1400 kbps (uncompressed), 128 kbps (11:1), 64 kbps (22:1) and 32 kbps (44:1). Doppler spectra were characterized by peak velocity, mean velocity, spectral width, integrated power and ratio of spectral power between negative and positive velocities. The results suggest that MP3 compression on digital Doppler US signals is feasible at 128 kbps, with a resulting 11:1 compression ratio, without compromising clinically relevant information. Higher compression ratios led to significant differences for both signal sources when compared with the uncompressed signals. Copyright 2003 World Federation for Ultrasound in Medicine & Biology
A New Compression Method for FITS Tables
NASA Technical Reports Server (NTRS)
Pence, William; Seaman, Rob; White, Richard L.
2010-01-01
As the size and number of FITS binary tables generated by astronomical observatories increases, so does the need for a more efficient compression method to reduce the amount disk space and network bandwidth required to archive and down1oad the data tables. We have developed a new compression method for FITS binary tables that is modeled after the FITS tiled-image compression compression convention that has been in use for the past decade. Tests of this new method on a sample of FITS binary tables from a variety of current missions show that on average this new compression technique saves about 50% more disk space than when simply compressing the whole FITS file with gzip. Other advantages of this method are (1) the compressed FITS table is itself a valid FITS table, (2) the FITS headers remain uncompressed, thus allowing rapid read and write access to the keyword values, and (3) in the common case where the FITS file contains multiple tables, each table is compressed separately and may be accessed without having to uncompress the whole file.
Image compression evaluation for digital cinema: the case of Star Wars: Episode II
NASA Astrophysics Data System (ADS)
Schnuelle, David L.
2003-05-01
A program of evaluation of compression algorithms proposed for use in a digital cinema application is described and the results presented in general form. The work was intended to aid in the selection of a compression system to be used for the digital cinema release of Star Wars: Episode II, in May 2002. An additional goal was to provide feedback to the algorithm proponents on what parameters and performance levels the feature film industry is looking for in digital cinema compression. The primary conclusion of the test program is that any of the current digital cinema compression proponents will work for digital cinema distribution to today's theaters.
Ported jacket for use in deformation measurement apparatus
Wagner, L.A.; Senseny, P.E.; Mellegard, K.D.; Olsberg, S.B.
1990-03-06
A device for allowing deformation measurement of a jacketed specimen when the specimen is loaded includes an elastomeric specimen container or jacket surrounding a specimen while the specimen is being loaded by a test apparatus. The specimen jacket wall is compressible, and the wall follows and allows deformation of the specimen. The jacket wall of compressible material is provided with at least one opening and a thin layer or shim of substantially non-compressible (metal) material which covers and seals this opening. An extensometer is then positioned with its specimen engaging contact members engaging the substantially non-compressible material to measure the deformation of the specimen when the specimen is loaded, without compressibility effects of the jacket. 9 figs.
Generation new MP3 data set after compression
NASA Astrophysics Data System (ADS)
Atoum, Mohammed Salem; Almahameed, Mohammad
2016-02-01
The success of audio steganography techniques is to ensure imperceptibility of the embedded secret message in stego file and withstand any form of intentional or un-intentional degradation of secret message (robustness). Crucial to that using digital audio file such as MP3 file, which comes in different compression rate, however research studies have shown that performing steganography in MP3 format after compression is the most suitable one. Unfortunately until now the researchers can not test and implement their algorithm because no standard data set in MP3 file after compression is generated. So this paper focuses to generate standard data set with different compression ratio and different Genre to help researchers to implement their algorithms.
NASA Technical Reports Server (NTRS)
Bowles, Kenneth J.; Tsuji, Luis; Kamvouris, John; Roberts, Gary D.
2003-01-01
A cooperative program was conducted with the General Electric Aircraft Engines plant in Evendale, Ohio, to study the effects of long-term isothermal aging at elevated temperatures on compression and thermal durability properties of T650 35 fabric-reinforced PMR 15 composites. This degradation study was conducted over an approximate time period of 3 1/2 yr. The aging temperatures were 204, 260, 288, 316, and 343 C. Specimens of different dimensions were evaluated. Specimens with ratios of the cut edge to total surface area of 0.03 to 0.89 were fabricated and aged. The aged and unaged specimens were tested in compression as specified in Test Method for Compressive Properties of Rigid Plastics (ASTM D695M). Thickness changes, degraded surface layer growth, weight loss, and failure modes were monitored and recorded. All property changes were thickness dependent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corona, Edmundo; Song, Bo
This memo concerns the transmission of mechanical signals through silicone foam pads in a compression Kolsky bar set-up. The results of numerical simulations for four levels of pad pre-compression and two striker velocities were compared directly to test measurements to assess the delity of the simulations. The nite element model simulated the Kolsky tests in their entirety and used the hyperelastic `hyperfoam' model for the silicone foam pads. Calibration of the hyperfoam model was deduced from quasi-static compression data. It was necessary, however, to augment the material model by adding sti ness proportional damping in order to generate results thatmore » resembled the experimental measurements. Based on the results presented here, it is important to account for the dynamic behavior of polymeric foams in numerical simulations that involve high loading rates.« less
Temperature Measurements in Compressed and Uncompressed SPECTOR Plasmas at General Fusion
NASA Astrophysics Data System (ADS)
Young, William; Carter, Neil; Howard, Stephen; Carle, Patrick; O'Shea, Peter; Fusion Team, General
2017-10-01
Accurate temperature measurements are critical to establishing the behavior of General Fusion's SPECTOR plasma injector, both before and during compression. As compression tests impose additional constraints on diagnostic access to the plasma, a two-color, filter-based soft x-ray electron temperature diagnostic has been implemented. Ion Doppler spectroscopy measurements also provide impurity ion temperatures on compression tests. The soft x-ray and ion Doppler spectroscopy measurements are being validated against a Thomson scattering system on an uncompressed version of SPECTOR with more diagnostic access. The multipoint Thomson scattering diagnostic also provides up to a six point temperature and density profile, with the density measurements validated against a far infrared interferometer. Temperatures above 300 eV have been demonstrated to be sustained for over 500 microseconds in uncompressed plasmas. Optimization of soft x-ray filters is ongoing, in order to balance blocking of impurity line radiation with signal strength.
Subjective evaluation of compressed image quality
NASA Astrophysics Data System (ADS)
Lee, Heesub; Rowberg, Alan H.; Frank, Mark S.; Choi, Hyung-Sik; Kim, Yongmin
1992-05-01
Lossy data compression generates distortion or error on the reconstructed image and the distortion becomes visible as the compression ratio increases. Even at the same compression ratio, the distortion appears differently depending on the compression method used. Because of the nonlinearity of the human visual system and lossy data compression methods, we have evaluated subjectively the quality of medical images compressed with two different methods, an intraframe and interframe coding algorithms. The evaluated raw data were analyzed statistically to measure interrater reliability and reliability of an individual reader. Also, the analysis of variance was used to identify which compression method is better statistically, and from what compression ratio the quality of a compressed image is evaluated as poorer than that of the original. Nine x-ray CT head images from three patients were used as test cases. Six radiologists participated in reading the 99 images (some were duplicates) compressed at four different compression ratios, original, 5:1, 10:1, and 15:1. The six readers agree more than by chance alone and their agreement was statistically significant, but there were large variations among readers as well as within a reader. The displacement estimated interframe coding algorithm is significantly better in quality than that of the 2-D block DCT at significance level 0.05. Also, 10:1 compressed images with the interframe coding algorithm do not show any significant differences from the original at level 0.05.
Properties of Foamed Mortar Prepared with Granulated Blast-Furnace Slag.
Zhao, Xiao; Lim, Siong-Kang; Tan, Cher-Siang; Li, Bo; Ling, Tung-Chai; Huang, Runqiu; Wang, Qingyuan
2015-01-30
Foamed mortar with a density of 1300 kg/m³ was prepared. In the initial laboratory trials, water-to-cement (w/c) ratios ranging from 0.54 to 0.64 were tested to determine the optimal value for foamed mortar corresponding to the highest compressive strength without compromising its fresh state properties. With the obtained optimal w/c ratio of 0.56, two types of foamed mortar were prepared, namely cement-foamed mortar (CFM) and slag-foamed mortar (SFM, 50% cement was replaced by slag weight). Four different curing conditions were adopted for both types of foamed mortar to assess their compressive strength, ultrasonic pulse velocity (UPV) and thermal insulation performance. The test results indicated that utilizing 50% of slag as cement replacement in the production of foamed mortar improved the compressive strength, UPV and thermal insulation properties. Additionally, the initial water curing of seven days gained higher compressive strength and increased UPV values as compared to the air cured and natural weather curing samples. However, this positive effect was more pronounced in the case of compressive strength than in the UPV and thermal conductivity of foamed mortar.
Additivity of nonsimultaneous masking for short Gaussian-shaped sinusoids.
Laback, Bernhard; Balazs, Peter; Necciari, Thibaud; Savel, Sophie; Ystad, Solvi; Meunier, Sabine; Kronland-Martinet, Richard
2011-02-01
The additivity of nonsimultaneous masking was studied using Gaussian-shaped tone pulses (referred to as Gaussians) as masker and target stimuli. Combinations of up to four temporally separated Gaussian maskers with an equivalent rectangular bandwidth of 600 Hz and an equivalent rectangular duration of 1.7 ms were tested. Each masker was level-adjusted to produce approximately 8 dB of masking. Excess masking (exceeding linear additivity) was generally stronger than reported in the literature for longer maskers and comparable target levels. A model incorporating a compressive input/output function, followed by a linear summation stage, underestimated excess masking when using an input/output function derived from literature data for longer maskers and comparable target levels. The data could be predicted with a more compressive input/output function. Stronger compression may be explained by assuming that the Gaussian stimuli were too short to evoke the medial olivocochlear reflex (MOCR), whereas for longer maskers tested previously the MOCR caused reduced compression. Overall, the interpretation of the data suggests strong basilar membrane compression for very short stimuli.
Iwase, Satoshi; Inukai, Yoko; Nishimura, Naoki; Sato, Maki; Sugenoya, Junichi
2014-01-01
Summary Sweating is an important mechanism for ensuring constant thermoregulation, but hyperhidrosis may be disturbing. We present five cases of hemifacial hyperhidrosis as a compensatory response to an/hypohidrosis caused by cervical disc herniation. All the patients complained of hemifacial hyperhidrosis, without anisocoria or blepharoptosis. Sweat function testing and thermography confirmed hyperhidrosis of hemifacial and adjacent areas. Neck MRI showed cervical disc herniation. Three of the patients had lateral compression with well-demarcated hypohidrosis below the hyperhidrosis on the same side as the cervical lesion. The rest had paramedian compression with poorly demarcated hyperhidrosis and hypohidrosis on the contralateral side. Although MRI showed no intraspinal pathological signal intensity, lateral dural compression might influence the circulation to the sudomotor pathway, and paramedian compression might influence the ipsilateral sulcal artery, which perfuses the sympathetic descending pathway and the intermediolateral nucleus. Sweat function testing and thermography should be performed to determine the focus of the hemifacial hyperhidrosis, and the myelopathy should be investigated on both sides. PMID:25014051
Mužíková, Jitka; Srbová, Alena; Svačinová, Petra
2017-12-01
This paper deals with a study of the novel coprocessed dry binder Combilac®, which contains 70% of α-lactose monohydrate, 20% of microcrystalline cellulose and 10% of native corn starch. These tests include flow properties, compressibility, lubricant sensitivity, tensile strength and disintegration time of tablets. Compressibility is evaluated by means of the energy profile of compression process, test of stress relaxation and tablet strength. The above-mentioned parameters are also evaluated in the physical mixture of α-lactose monohydrate, microcrystalline cellulose and native corn starch and compared with Combilac. Combilac shows much better flowability than the physical mixture of the used dry binders. Its compressibility is better, tablets possess a higher tensile strength. Neither Combilac, nor the physical mixture can be compressed without lubricants due to high friction and sticking to the matrix. Combilac has a higher lubricant sensitivity than the physical mixture of the dry binders. Disintegration time of Combilac tablets is comparable with the disintegration time of tablets made from the physical mixture.
Lossless Compression of Stromatolite Images: A Biogenicity Index?
NASA Astrophysics Data System (ADS)
Corsetti, Frank A.; Storrie-Lombardi, Michael C.
2003-12-01
It has been underappreciated that inorganic processes can produce stromatolites (laminated macroscopic constructions commonly attributed to microbiological activity), thus calling into question the long-standing use of stromatolites as de facto evidence for ancient life. Using lossless compression on unmagnified reflectance red-green-blue (RGB) images of matched stromatolite-sediment matrix pairs as a complexity metric, the compressibility index (δc, the log of the ratio of the compressibility of the matrix versus the target) of a putative abiotic test stromatolite is significantly less than the δc of a putative biotic test stromatolite. There is a clear separation in δc between the different stromatolites discernible at the outcrop scale. In terms of absolute compressibility, the sediment matrix between the stromatolite columns was low in both cases, the putative abiotic stromatolite was similar to the intracolumnar sediment, and the putative biotic stromatolite was much greater (again discernible at the outcrop scale). We propose that this metric would be useful for evaluating the biogenicity of images obtained by the camera systems available on every Mars surface probe launched to date including Viking, Pathfinder, Beagle, and the two Mars Exploration Rovers.
NASA Astrophysics Data System (ADS)
Lv, Jiuming; Hu, Fangyi; Cao, Quoc Dinh; Yuan, Renshu; Wu, Zhilin; Cai, Hongming; Zhao, Lei; Zhang, Xinping
2017-03-01
Hydrostatic extrusion integrated with circular equal channel angular pressing has been previously proposed for fabricating AZ80 magnesium alloy tubes as a method to obtain high-strength tubes for industrial applications. In order to axial tensile strength, circumferential mechanical properties are also important for tubular structures. The tensile properties of AZ80 tubes have been previously studied; however, the circumferential properties have not been examined. In this work, circumferential mechanical properties of these tubes were studied using lateral compression tests. An analytical model is proposed to evaluate the circumferential elongation, which is in good agreement with finite element results. The effects of the extrusion ratio and conical mandrel angle on the circumferential elongation and lateral compression strength are discussed. The strain distribution in the sample during lateral compression testing was found to be inhomogeneous, and cracks initially appeared on the inner surface of the sample vertex. The circumferential elongation and lateral compression strength increased with the extrusion ratio and conical mandrel angle. The anisotropy of the tube's mechanical properties was insignificant when geometric effects were ignored.
Lossless compression of stromatolite images: a biogenicity index?
Corsetti, Frank A; Storrie-Lombardi, Michael C
2003-01-01
It has been underappreciated that inorganic processes can produce stromatolites (laminated macroscopic constructions commonly attreibuted to microbiological activity), thus calling into question the long-standing use of stromatolites as de facto evidence for ancient life. Using lossless compression on unmagnified reflectance red-green-blue (RGB) images of matched stromatolite-sediment matrix pairs as a complexity metric, the compressibility index (delta(c), the log ratio of the ratio of the compressibility of the matrix versus the target) of a putative abiotic test stromatolite is significantly less than the delta(c) of a putative biotic test stromatolite. There is a clear separation in delta(c) between the different stromatolites discernible at the outcrop scale. In terms of absolute compressibility, the sediment matrix between the stromatolite columns was low in both cases, the putative abiotic stromatolite was similar to the intracolumnar sediment, and the putative biotic stromatolite was much greater (again discernible at the outcrop scale). We propose tht this metric would be useful for evaluating the biogenicity of images obtained by the camera systems available on every Mars surface probe launched to date including Viking, Pathfinder, Beagle, and the two Mars Exploration Rovers.
Effect of Impact Compression on the Age-Hardening of Rapidly Solidified Al-Zn-Mg Base Alloys
NASA Astrophysics Data System (ADS)
Horikawa, Keitaro; Kobayashi, Hidetoshi
Effect of impact compression on the age-hardening behavior and the mechanical properties of Mesoalite aluminum alloy was examined by means of the high-velocity plane collision between a projectile and Mesoalite by using a single powder gun. By imposing the impact compression to the Meso10 and Meso20 alloys in the state of quenching after the solution heat treatment, the following age-hardening at 110 °C was highly increased, comparing with the Mesoalite without the impact compression. XRD results revealed that high plastic strain was introduced on the specimen inside after the impact compression. Compression test results also clarified that both Meso10 and Meso20 alloy specimens imposed the impact compressive stresses more than 5 GPa after the peak-aging at 110°C showed higher yield stresses, comparing with the alloys without the impact compression. It was also shown that the Meso10 and Meso20 specimens after the solution heat treatment, followed by the high-velocity impact compression (12 GPa) and the peak-aging treatment indicated the highest compressive yield stresses such as 994 GPa in Meso10 and 1091 GPa in Meso20.
Reinforced cementitous composite with in situ shrinking microfibers
NASA Astrophysics Data System (ADS)
Kim, Eric S.; Lee, Jason K.; Lee, Patrick C.; Huston, Dryver R.; Tan, Ting; Al-Ghamdi, Saleh
2017-03-01
This paper describes an innovative fiber reinforcement technology for cementitious composite structures that employs in situ shrinking microfibers to provide supplemental strength-enhancing compressive stresses. Reinforced concrete is one of the most commonly used structural materials in construction industry, primarily due to its cost, durability, ability to be easily fabricated into a variety of shapes on site, and locally abundant raw material availability almost everywhere. Unlike incumbent passive reinforcing microfiber technology, in situ shrinking microfibers that respond to an in situ stimulus such as heat, pH, or moisture variations can induce pre-compression to matrix and create additional resistance from external loads, creating stronger composite structures. In this paper, heat-activated-shrinking (HAS) microfibers made from polyolefin, and pH-activated-shrinking (pHAS) microfibers made from chitosan powder were used to study effects of shrinking microfiber reinforcing in concrete. Shrinking ratios and tensile strengths of both microfibers were measured. Cementitious specimens with active shrinking microfibers, passive non shrinking fibers, as well as control samples were made. Mechanical properties of the samples were compared with compression and three-point bending tests. The optimum microfiber weight percentages for HAS microfibers were 0.5 wt% in compression tests, and 1.0 wt% in three-point bending tests. For pHAS microfibers, the optimum weight percentages were 0.5 wt% in three-point bending tests. Compared to heat passive microfibers specimens, 45% increase in the maximum compression strengths, and 124% increase in the maximum bending strengths were achieved at the optimum weight percentages of HAS microfibers. In addition, with 0.5 wt% of pHAS microfibers, 145% increase in the maximum bending strengths of three-point bending tests resulted compared to pH passive microfibers specimens.
Investigating the effect of compression on solute transport through degrading municipal solid waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodman, N.D., E-mail: n.d.woodman@soton.ac.uk; Rees-White, T.C.; Stringfellow, A.M.
2014-11-15
Highlights: • The influence of compression on MSW flushing was evaluated using 13 tracer tests. • Compression has little effect on solute diffusion times in MSW. • Lithium tracer was conservative in non-degrading waste but not in degrading waste. • Bromide tracer was conservative, but deuterium was not. - Abstract: The effect of applied compression on the nature of liquid flow and hence the movement of contaminants within municipal solid waste was examined by means of thirteen tracer tests conducted on five separate waste samples. The conservative nature of bromide, lithium and deuterium tracers was evaluated and linked to themore » presence of degradation in the sample. Lithium and deuterium tracers were non-conservative in the presence of degradation, whereas the bromide remained effectively conservative under all conditions. Solute diffusion times into and out of less mobile blocks of waste were compared for each test under the assumption of dominantly dual-porosity flow. Despite the fact that hydraulic conductivity changed strongly with applied stress, the block diffusion times were found to be much less sensitive to compression. A simple conceptual model, whereby flow is dominated by sub-parallel low permeability obstructions which define predominantly horizontally aligned less mobile zones, is able to explain this result. Compression tends to narrow the gap between the obstructions, but not significantly alter the horizontal length scale. Irrespective of knowledge of the true flow pattern, these results show that simple models of solute flushing from landfill which do not include depth dependent changes in solute transport parameters are justified.« less
NASA Astrophysics Data System (ADS)
Niitsu, G. T.; Lopes, C. M. A.
2013-08-01
The purpose of this work is to evaluate the influences of fatigue and environmental conditions (-55 °C, 23 °C, and 82 °C/Wet) on the ultimate compression strength of notched carbon-fiber-reinforced poly(phenylene sulfide) composites by performing open-hole compression (OHC) tests. Analysis of the fatigue effect showed that at temperatures of -55 and 23 °C, the ultimate OHC strengths were higher for fatigued than for not-fatigued specimens; this could be attributed to fiber splitting and delamination during fatigue cycling, which reduces the stress concentration at the hole edge, thus increasing the composite strength. This effect of increasing strength for fatigued specimens was not observed under the 82 °C/Wet conditions, since the test temperature near the matrix glass transition temperature ( T g) together with moisture content resulted in matrix softening, suggesting a reduction in fiber splitting during cycling; similar OHC strengths were verified for fatigued and not-fatigued specimens tested at 82 °C/Wet. Analysis of the temperature effect showed that the ultimate OHC strengths decreased with increasing temperature. A high temperature together with moisture content (82 °C/Wet condition) reduced the composite compressive strengths, since a temperature close to the matrix T g resulted in matrix softening, which reduced the lateral support provided by the resin to the 0° fibers, leading to fiber instability failure at reduced applied loads. On the other hand, a low temperature (-55 °C) improved the compressive strength because of possible fiber-matrix interfacial strengthening, increasing the fiber contribution to compressive strength.
NASA Technical Reports Server (NTRS)
Sandifer, J. P.; Denny, A.; Wood, M. A.
1985-01-01
Technical issues associated with fuel containment and damage tolerance of composite wing structures for transport aircraft were investigated. Material evaluation tests were conducted on two toughened resin composites: Celion/HX1504 and Celion/5245. These consisted of impact, tension, compression, edge delamination, and double cantilever beam tests. Another test series was conducted on graphite/epoxy box beams simulating a wing cover to spar cap joint configuration of a pressurized fuel tank. These tests evaluated the effectiveness of sealing methods with various fastener types and spacings under fatigue loading and with pressurized fuel. Another test series evaluated the ability of the selected coatings, film, and materials to prevent fuel leakage through 32-ply AS4/2220-1 laminates at various impact energy levels. To verify the structural integrity of the technology demonstration article structural details, tests were conducted on blade stiffened panels and sections. Compression tests were performed on undamaged and impacted stiffened AS4/2220-1 panels and smaller element tests to evaluate stiffener pull-off, side load and failsafe properties. Compression tests were also performed on panels subjected to Zone 2 lightning strikes. All of these data were integrated into a demonstration article representing a moderately loaded area of a transport wing. This test combined lightning strike, pressurized fuel, impact, impact repair, fatigue and residual strength.
Genetic programs can be compressed and autonomously decompressed in live cells
NASA Astrophysics Data System (ADS)
Lapique, Nicolas; Benenson, Yaakov
2018-04-01
Fundamental computer science concepts have inspired novel information-processing molecular systems in test tubes1-13 and genetically encoded circuits in live cells14-21. Recent research has shown that digital information storage in DNA, implemented using deep sequencing and conventional software, can approach the maximum Shannon information capacity22 of two bits per nucleotide23. In nature, DNA is used to store genetic programs, but the information content of the encoding rarely approaches this maximum24. We hypothesize that the biological function of a genetic program can be preserved while reducing the length of its DNA encoding and increasing the information content per nucleotide. Here we support this hypothesis by describing an experimental procedure for compressing a genetic program and its subsequent autonomous decompression and execution in human cells. As a test-bed we choose an RNAi cell classifier circuit25 that comprises redundant DNA sequences and is therefore amenable for compression, as are many other complex gene circuits15,18,26-28. In one example, we implement a compressed encoding of a ten-gene four-input AND gate circuit using only four genetic constructs. The compression principles applied to gene circuits can enable fitting complex genetic programs into DNA delivery vehicles with limited cargo capacity, and storing compressed and biologically inert programs in vivo for on-demand activation.
Recognizable or Not: Towards Image Semantic Quality Assessment for Compression
NASA Astrophysics Data System (ADS)
Liu, Dong; Wang, Dandan; Li, Houqiang
2017-12-01
Traditionally, image compression was optimized for the pixel-wise fidelity or the perceptual quality of the compressed images given a bit-rate budget. But recently, compressed images are more and more utilized for automatic semantic analysis tasks such as recognition and retrieval. For these tasks, we argue that the optimization target of compression is no longer perceptual quality, but the utility of the compressed images in the given automatic semantic analysis task. Accordingly, we propose to evaluate the quality of the compressed images neither at pixel level nor at perceptual level, but at semantic level. In this paper, we make preliminary efforts towards image semantic quality assessment (ISQA), focusing on the task of optical character recognition (OCR) from compressed images. We propose a full-reference ISQA measure by comparing the features extracted from text regions of original and compressed images. We then propose to integrate the ISQA measure into an image compression scheme. Experimental results show that our proposed ISQA measure is much better than PSNR and SSIM in evaluating the semantic quality of compressed images; accordingly, adopting our ISQA measure to optimize compression for OCR leads to significant bit-rate saving compared to using PSNR or SSIM. Moreover, we perform subjective test about text recognition from compressed images, and observe that our ISQA measure has high consistency with subjective recognizability. Our work explores new dimensions in image quality assessment, and demonstrates promising direction to achieve higher compression ratio for specific semantic analysis tasks.
NASA Technical Reports Server (NTRS)
Hoffman, Eric K.; Hafley, Robert A.; Wagner, John A.; Jegley, Dawn C.; Pecquet, Robert W.; Blum, Celia M.; Arbegast, William J.
2002-01-01
To evaluate the potential of friction stir welding (FSW) as a replacement for traditional rivet fastening for launch vehicle dry bay construction, a large-scale friction stir welded 2090-T83 aluminum-lithium (Al-Li) alloy skin-stiffener panel was designed and fabricated by Lockheed-Martin Space Systems Company - Michoud Operations (LMSS) as part of NASA Space Act Agreement (SAA) 446. The friction stir welded panel and a conventional riveted panel were tested to failure in compression at the NASA Langley Research Center (LaRC). The present paper describes the compression test results, stress analysis, and associated failure behavior of these panels. The test results provide useful data to support future optimization of FSW processes and structural design configurations for launch vehicle dry bay structures.
End-to-end communication test on variable length packet structures utilizing AOS testbed
NASA Technical Reports Server (NTRS)
Miller, Warner H.; Sank, V.; Fong, Wai; Miko, J.; Powers, M.; Folk, John; Conaway, B.; Michael, K.; Yeh, Pen-Shu
1994-01-01
This paper describes a communication test, which successfully demonstrated the transfer of losslessly compressed images in an end-to-end system. These compressed images were first formatted into variable length Consultative Committee for Space Data Systems (CCSDS) packets in the Advanced Orbiting System Testbed (AOST). The CCSDS data Structures were transferred from the AOST to the Radio Frequency Simulations Operations Center (RFSOC), via a fiber optic link, where data was then transmitted through the Tracking and Data Relay Satellite System (TDRSS). The received data acquired at the White Sands Complex (WSC) was transferred back to the AOST where the data was captured and decompressed back to the original images. This paper describes the compression algorithm, the AOST configuration, key flight components, data formats, and the communication link characteristics and test results.
Effect of simulated sampling disturbance on creep behaviour of rock salt
NASA Astrophysics Data System (ADS)
Guessous, Z.; Gill, D. E.; Ladanyi, B.
1987-10-01
This article presents the results of an experimental study of creep behaviour of a rock salt under uniaxial compression as a function of prestrain, simulating sampling disturbance. The prestrain was produced by radial compressive loading of the specimens prior to creep testing. The tests were conducted on an artifical salt to avoid excessive scattering of the results. The results obtained from several series of single-stage creep tests show that, at short-term, the creep response of salt is strongly affected by the preloading history of samples. The nature of this effect depends upon the intensity of radial compressive preloading, and its magnitude is a function of the creep stress level. The effect, however, decreases with increasing plastic deformation, indicating that large creep strains may eventually lead to a complete loss of preloading memory.
NASA Technical Reports Server (NTRS)
Dunlap, Patrick H., Jr.
2014-01-01
NASA is developing advanced space-rated elastomeric seals to support future space exploration missions to low Earth orbit, the Moon, near Earth asteroids, and other destinations. This includes seals for a new docking system and vehicle hatches. These seals must exhibit extremely low leak rates to ensure that astronauts have sufficient breathable air for extended missions. Seal compression loads must be below prescribed limits so as not to overload the mechanisms that compress them, and seal adhesion forces must be low to allow the sealed interface to be separated when required (e.g., during undocking or hatch opening). NASA Glenn Research Center has developed a number of unique test fixtures to measure the leak rates and compression and adhesion loads of candidate seal designs under simulated thermal, vacuum, and engagement conditions. Tests can be performed on fullscale seals with diameters on the order of 50 in., subscale seals that are about 12 in. in diameter, and smaller specimens such as O-rings. Test conditions include temperatures ranging from -238 to 662degF (-150 to 350degC), operational pressure gradients, and seal-on-seal or seal-on-flange mating configurations. Nominal and off-nominal conditions (e.g., incomplete seal compression) can also be simulated. This paper describes the main design features and capabilities of each type of test apparatus and provides an overview of advanced seal development activities at NASA Glenn.
NASA Technical Reports Server (NTRS)
Dunlap, Patrick H.
2014-01-01
NASA is developing advanced space-rated elastomeric seals to support future space exploration missions to low Earth orbit, the Moon, near Earth asteroids, and other destinations. This includes seals for a new docking system and vehicle hatches. These seals must exhibit extremely low leak rates to ensure that astronauts have sufficient breathable air for extended missions. Seal compression loads must be below prescribed limits so as not to overload the mechanisms that compress them, and seal adhesion forces must be low to allow the sealed interface to be separated when required (e.g., during undocking or hatch opening). NASA Glenn Research Center has developed a number of unique test fixtures to measure the leak rates and compression and adhesion loads of candidate seal designs under simulated thermal, vacuum, and engagement conditions. Tests can be performed on full-scale seals with diameters on the order of 50 in., subscale seals that are about 12 in. in diameter, and smaller specimens such as O-rings. Test conditions include temperatures ranging from -238 to 662 F (-150 to 350 C), operational pressure gradients, and seal-on-seal or seal-on-flange mating configurations. Nominal and off-nominal conditions (e.g., incomplete seal compression) can also be simulated. This paper describes the main design features and capabilities of each type of test apparatus and provides an overview of advanced seal development activities at NASA Glenn.
Effect of pH on compressive strength of some modification of mineral trioxide aggregate
Saghiri, Mohammad A.; Garcia-Godoy, Franklin; Asatourian, Armen; Lotfi, Mehrdad; Khezri-Boukani, Kaveh
2013-01-01
Objectives: Recently, it was shown that NanoMTA improved the setting time and promoted a better hydration process which prevents washout and the dislodgment of this novel biomaterial in comparison with WTMA. This study analyzed the compressive strength of ProRoot WMTA (Dentsply), a NanoWMTA (Kamal Asgar Research Center), and Bioaggregate (Innovative Bioceramix) after its exposure to a range of environmental pH conditions during hydration. Study Design: After mixing the cements under aseptic condition and based on the manufacturers` recommendations, the cements were condensed with moderate force using plugger into 9 × 6 mm split molds. Each type of cement was then randomly divided into three groups (n=10). Specimens were exposed to environments with pH values of 4.4, 7.4, or 10.4 for 3 days. Cement pellets were compressed by using an Instron testing machine. Values were recorded and compared. Data were analyzed by using one-way analysis of variance and a post hoc Tukey’s test. Results: After 3 days, the samples were solid when probed with an explorer before removing them from the molds. The greatest mean compressive strength 133.19±11.14 MPa was observed after exposure to a pH value of 10.4 for NanoWMTA. The values decreased to 111.41±8.26 MPa after exposure to a pH value of 4.4. Increasing of pH had a significant effect on the compressive strength of the groups (p<0.001). The mean compressive strength for the NanoWMTA was statistically higher than for ProRoot WMTA and Bioaggregate (p<0.001). Moreover, increasing of pH values had a significant effect on compressive strength of the experimental groups (p<0.001). Conclusion: The compressive strength of NanoWMTA was significantly higher than WMTA and Bioaggregate; the more acidic the environmental pH, the lower was the compressive strength. Key words:Compressive strength, mineral trioxide aggregate, Nano. PMID:23722137
A bioinspired study on the compressive resistance of helicoidal fibre structures
NASA Astrophysics Data System (ADS)
Tan, Ting; Ribbans, Brian
2017-10-01
Helicoidal fibre structures are widely observed in natural materials. In this paper, an integrated experimental and analytical approach was used to investigate the compressive resistance of helicoidal fibre structures. First, helicoidal fibre-reinforced composites were created using three-dimensionally printed helicoids and polymeric matrices, including plain, ring-reinforced and helix-reinforced helicoids. Then, load-displacement curves under monotonic compression tests were collected to measure the compressive strengths of helicoidal fibre composites. Fractographic characterization was performed using an X-ray microtomographer and scanning electron microscope, through which crack propagations in helicoidal structures were illustrated. Finally, mathematical modelling was performed to reveal the essential fibre architectures in the compressive resistance of helicoidal fibre structures. This work reveals that fibre-matrix ratios, helix pitch angles and interlayer rotary angles are critical to the compressive resistance of helicoidal structures.
Ge, Chao; Maimaitituersun, Wubuliaisan; Dong, Yongxiang; Tian, Chao
2017-04-26
Polytetrafluoroethylene/aluminum/tungsten (PTFE/Al/W) reactive materials of three different component mass ratios (73.5/26.5/0, 68.8/24.2/7 and 63.6/22.4/14) were studied in this research. Different from the PTFE/Al/W composites published elsewhere, the materials in our research were fabricated under a much lower sintering temperature and for a much shorter duration to achieve a brittle property, which aims to provide more sufficient energy release upon impact. Quasi-static compression tests, dynamic compression tests at room and elevated temperatures, and drop weight tests were conducted to evaluate the mechanical and impact-induced initiation characteristics of the materials. The materials before and after compression tests were observed by a scanning electron microscope to relate the mesoscale structural characteristics to their macro properties. All the three types of materials fail at very low strains during both quasi-static and dynamic compression. The stress-strain curves for quasi-static tests show obvious deviations while that for the dynamic tests consist of only linear-elastic and failure stages typically. The materials were also found to exhibit thermal softening at elevated temperatures and were strain-rate sensitive during dynamic tests, which were compared using dynamic increase factors (DIFs). Drop-weight test results show that the impact-initiation sensitivity increases with the increase of W content due to the brittle mechanical property. The high-speed video sequences and recovered sample residues of the drop-weight tests show that the reaction is initiated at two opposite positions near the edges of the samples, where the shear force concentrates the most intensively, indicating a shear-induced initiation mechanism.
Ge, Chao; Maimaitituersun, Wubuliaisan; Dong, Yongxiang; Tian, Chao
2017-01-01
Polytetrafluoroethylene/aluminum/tungsten (PTFE/Al/W) reactive materials of three different component mass ratios (73.5/26.5/0, 68.8/24.2/7 and 63.6/22.4/14) were studied in this research. Different from the PTFE/Al/W composites published elsewhere, the materials in our research were fabricated under a much lower sintering temperature and for a much shorter duration to achieve a brittle property, which aims to provide more sufficient energy release upon impact. Quasi-static compression tests, dynamic compression tests at room and elevated temperatures, and drop weight tests were conducted to evaluate the mechanical and impact-induced initiation characteristics of the materials. The materials before and after compression tests were observed by a scanning electron microscope to relate the mesoscale structural characteristics to their macro properties. All the three types of materials fail at very low strains during both quasi-static and dynamic compression. The stress-strain curves for quasi-static tests show obvious deviations while that for the dynamic tests consist of only linear-elastic and failure stages typically. The materials were also found to exhibit thermal softening at elevated temperatures and were strain-rate sensitive during dynamic tests, which were compared using dynamic increase factors (DIFs). Drop-weight test results show that the impact-initiation sensitivity increases with the increase of W content due to the brittle mechanical property. The high-speed video sequences and recovered sample residues of the drop-weight tests show that the reaction is initiated at two opposite positions near the edges of the samples, where the shear force concentrates the most intensively, indicating a shear-induced initiation mechanism. PMID:28772812
Test and analysis results for composite transport fuselage and wing structures
NASA Technical Reports Server (NTRS)
Deaton, Jerry W.; Kullerd, Susan M.; Madan, Ram C.; Chen, Victor L.
1992-01-01
Automated tow placement (ATP) and stitching of dry textile composite preforms followed by resin transfer molding (RTM) are being studied as cost effective manufacturing processes for obtaining damage tolerant fuselage and wing structures for transport aircraft. Data are presented to assess the damage tolerance of ATP and RTM fuselage elements with stitched-on stiffeners from compression tests of impacted three J-stiffened panels and from stiffener pull-off tests. Data are also presented to assess the damage tolerance of RTM wing elements which had stitched skin and stiffeners from impacted single stiffener and three blade stiffened compression tests and stiffener pull-off tests.
High-Speed Photography of Detonation Propagation in Dynamically Precompressed Liquid Explosives
NASA Astrophysics Data System (ADS)
Petel, O. E.; Higgins, A. J.; Yoshinaka, A. C.; Zhang, F.
2007-12-01
The propagation of detonation in shock-compressed nitromethane was observed with a high-speed framing camera. The test explosive, nitromethane, was compressed by a reverberating shock wave to pressures as high as 10 GPa prior to being detonated by a secondary detonation event. The pressure and density in the test explosive prior to detonation were determined using two methods: manganin stress gauge measurements and LS-DYNA simulations. The velocity of the detonation front was determined from consecutive frames and correlated to the density of the reverberating shock-compressed explosive prior to detonation. Observing detonation propagation under these non-ambient conditions provides data which can be useful in the validation of equation of state models.
Gamma Radiation Aging Study of a Dow Corning SE 1700 Porous Structure Made by Direct Ink Writing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Small, Ward; Alviso, Cindy T.; Metz, Tom R.
Dow Corning SE 1700 (reinforced polydimethylsiloxane) porous structures were made by direct ink writing (DIW). The specimens (~50% porosity) were subjected to a compressive strain of ~25% while exposed to a gamma radiation dose of 1, 5, or 10 Mrad under vacuum. Compression set and load retention of the aged specimens were measured after a ~24 h relaxation period. Compression set (relative to deflection) increased with radiation dose: 11, 35, and 51% after 1, 5, and 10 Mrad, respectively. Load retention was 96-97% for the doses tested. The SE 1700 compared favorably to M9763 cellular silicone tested under the samemore » conditions.« less
Characterising ductility of 6xxx-series aluminium sheet alloys at combined loading conditions
NASA Astrophysics Data System (ADS)
Henn, Philipp; Liewald, Mathias; Sindel, Manfred
2017-10-01
This paper presents a new approach to characterise material ductility when combined, three dimensional loading conditions occurring during vehicle crash are applied. So called "axial crush test" of closed hat sections is simplified by reducing it down to a two-dimensional testing procedure. This newly developed edge-compression test (ECT) provides the opportunity to investigate a defined characteristic axial folding behaviour of a profile edge. The potential to quantify and to differentiate crashworthiness of material by use of new edge-compression test is investigated by carrying out experimental studies with two different 6xxx-aluminium sheet alloys.
Jang, Jae-Kyeong; Kim, Hong-Gi; Kim, Jun-Hyeong; Ryou, Jae-Suk
2018-05-14
Concrete systems exposed to deicers are damaged in physical and chemical ways. In mitigating the damage from CaCl₂ deicers, the usage of ground slag cement and MgO are investigated. Ordinary Portland cement (OPC) and slag cement are used in different proportions as the binding material, and MgO in doses of 0%, 5%, 7%, and 10% are added to the systems. After 28 days of water-curing, the specimens are immersed in 30% CaCl₂ solution by mass for 180 days. Compressive strength test, carbonation test, chloride penetration test, chloride content test, XRD analysis, and SEM-EDAX analysis are conducted to evaluate the damage effects of the deicing solution. Up to 28 days, plain specimens with increasing MgO show a decrease in compressive strength, an increase in carbonation resistance, and a decrease in chloride penetration resistance, whereas the S30- and S50- specimens show a slight increase in compressive strength, an increase in carbonation resistance, and a slight increase in chloride penetration resistance. After 180 days of immersion in deicing solution, specimens with MgO retain their compressive strength longer and show improved durability. Furthermore, the addition of MgO to concrete systems with slag cement induces the formation of magnesium silicate hydrate (M-S-H) phases.
Mechanical properties of metal-ceramic nanolaminates: Effect of constraint and temperature
Yang, Ling Wei; Mayer, Carl; Li, Nan; ...
2017-09-21
Al/SiC nanolaminates with equal nominal thicknesses of the Al and SiC layers (10, 25, 50 and 100 nm) were manufactured by magnetron sputtering. The mechanical properties were measured at 25 °C and 100 °C by means of nanoindentation and micropillar compression tests and the deformation mechanisms were analyzed by in situ micropillar compression tests in the transmission electron microscope. In addition, finite element simulations of both tests were carried out to ascertain the role played by the strength of the Al layers and by the elastic constraint of the ceramic layers on the plastic flow of Al in the mechanicalmore » response. It was found that the mechanical response was mainly controlled by the constraint during nanoindentation or micropillar compression tests of very thin layered (≈10 nm) laminates, while the influence of the strength of Al layers was not as critical. This behavior was reversed, however, for thick layered laminates (100 nm). Here, these mechanisms point to the different effects of layer thickness during nanoindentation and micropillar compression, at both temperatures, and showed the critical role played by constraint on the mechanical response of nanolaminates made of materials with a very large difference in the elasto-plastic properties.« less
Ramsey, Scott D.; Ivancic, Philip R.; Lilieholm, Jennifer F.
2015-12-10
This work is concerned with the use of similarity solutions of the compressible flow equations as benchmarks or verification test problems for finite-volume compressible flow simulation software. In practice, this effort can be complicated by the infinite spatial/temporal extent of many candidate solutions or “test problems.” Methods can be devised with the intention of ameliorating this inconsistency with the finite nature of computational simulation; the exact strategy will depend on the code and problem archetypes under investigation. For example, self-similar shock wave propagation can be represented in Lagrangian compressible flow simulations as rigid boundary-driven flow, even if no such “piston”more » is present in the counterpart mathematical similarity solution. The purpose of this work is to investigate in detail the methodology of representing self-similar shock wave propagation as a piston-driven flow in the context of various test problems featuring simple closed-form solutions of infinite spatial/temporal extent. The closed-form solutions allow for the derivation of similarly closed-form piston boundary conditions (BCs) for use in Lagrangian compressible flow solvers. Finally, the consequences of utilizing these BCs (as opposed to directly initializing the self-similar solution in a computational spatial grid) are investigated in terms of common code verification analysis metrics (e.g., shock strength/position errors and global convergence rates).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramsey, Scott D.; Ivancic, Philip R.; Lilieholm, Jennifer F.
This work is concerned with the use of similarity solutions of the compressible flow equations as benchmarks or verification test problems for finite-volume compressible flow simulation software. In practice, this effort can be complicated by the infinite spatial/temporal extent of many candidate solutions or “test problems.” Methods can be devised with the intention of ameliorating this inconsistency with the finite nature of computational simulation; the exact strategy will depend on the code and problem archetypes under investigation. For example, self-similar shock wave propagation can be represented in Lagrangian compressible flow simulations as rigid boundary-driven flow, even if no such “piston”more » is present in the counterpart mathematical similarity solution. The purpose of this work is to investigate in detail the methodology of representing self-similar shock wave propagation as a piston-driven flow in the context of various test problems featuring simple closed-form solutions of infinite spatial/temporal extent. The closed-form solutions allow for the derivation of similarly closed-form piston boundary conditions (BCs) for use in Lagrangian compressible flow solvers. Finally, the consequences of utilizing these BCs (as opposed to directly initializing the self-similar solution in a computational spatial grid) are investigated in terms of common code verification analysis metrics (e.g., shock strength/position errors and global convergence rates).« less
Bae, Jinkun; Chung, Tae Nyoung; Je, Sang Mo
2016-02-12
To assess how the quality of metronome-guided cardiopulmonary resuscitation (CPR) was affected by the chest compression rate familiarised by training before the performance and to determine a possible mechanism for any effect shown. Prospective crossover trial of a simulated, one-person, chest-compression-only CPR. Participants were recruited from a medical school and two paramedic schools of South Korea. 42 senior students of a medical school and two paramedic schools were enrolled but five dropped out due to physical restraints. Senior medical and paramedic students performed 1 min of metronome-guided CPR with chest compressions only at a speed of 120 compressions/min after training for chest compression with three different rates (100, 120 and 140 compressions/min). Friedman's test was used to compare average compression depths based on the different rates used during training. Average compression depths were significantly different according to the rate used in training (p<0.001). A post hoc analysis showed that average compression depths were significantly different between trials after training at a speed of 100 compressions/min and those at speeds of 120 and 140 compressions/min (both p<0.001). The depth of chest compression during metronome-guided CPR is affected by the relative difference between the rate of metronome guidance and the chest compression rate practised in previous training. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Structural efficiencies of various aluminum, titanium, and steel alloys at elevated temperatures
NASA Technical Reports Server (NTRS)
Heimerl, George J; Hughes, Philip J
1953-01-01
Efficient temperature ranges are indicated for two high-strength aluminum alloys, two titanium alloys, and three steels for some short-time compression-loading applications at elevated temperatures. Only the effects of constant temperatures and short exposure to temperature are considered, and creep is assumed not to be a factor. The structural efficiency analysis is based upon preliminary results of short-time elevated-temperature compressive stress-strain tests of the materials. The analysis covers strength under uniaxial compression, elastic stiffness, column buckling, and the buckling of long plates in compression or in shear.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jing, Yichao; Fedurin, Mikhail; Stratakis, Diktys
2015-05-03
One of the operation modes for Accelerator Test Facility (ATF) upgrade is to provide high peak current, high quality electron beam for users. Such operation requires a bunch compressing system with a very large compression ratio. The CSR originating from the strong compressors generally could greatly degrade the quality of the electron beam. In this paper, we present our design for the entire bunch compressing system that will limit the effect of CSR on the e-beam’s quality. We discuss and detail the performance from the start to end simulation of such a compressor for ATF.
Assessment of compressive failure process of cortical bone materials using damage-based model.
Ng, Theng Pin; R Koloor, S S; Djuansjah, J R P; Abdul Kadir, M R
2017-02-01
The main failure factors of cortical bone are aging or osteoporosis, accident and high energy trauma or physiological activities. However, the mechanism of damage evolution coupled with yield criterion is considered as one of the unclear subjects in failure analysis of cortical bone materials. Therefore, this study attempts to assess the structural response and progressive failure process of cortical bone using a brittle damaged plasticity model. For this reason, several compressive tests are performed on cortical bone specimens made of bovine femur, in order to obtain the structural response and mechanical properties of the material. Complementary finite element (FE) model of the sample and test is prepared to simulate the elastic-to-damage behavior of the cortical bone using the brittle damaged plasticity model. The FE model is validated in a comparative method using the predicted and measured structural response as load-compressive displacement through simulation and experiment. FE results indicated that the compressive damage initiated and propagated at central region where maximum equivalent plastic strain is computed, which coincided with the degradation of structural compressive stiffness followed by a vast amount of strain energy dissipation. The parameter of compressive damage rate, which is a function dependent on damage parameter and the plastic strain is examined for different rates. Results show that considering a similar rate to the initial slope of the damage parameter in the experiment would give a better sense for prediction of compressive failure. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cen, Duofeng; Huang, Da
2017-06-01
Tension-shear failure is a typical failure mode in the rock masses in unloading zones induced by excavation or river incision, etc., such as in excavation-disturbed zone of deep underground caverns and superficial rocks of high steep slopes. However, almost all the current shear failure criteria for rock are usually derived on the basis of compression-shear failure. This paper proposes a simple device for use with a servo-controlled compression-shear testing machine to conduct the tension-shear tests of cuboid rock specimens, to test the direct shear behavior of sandstone under different constant normal tensile stress conditions ( σ = -1, -1.5, -2, -2.5 and -3 MPa) as well as the uniaxial tension behavior. Generally, the fracture surface roughness decreases and the proportion of comminution areas in fracture surface increases as the change of stress state from tension to tension-shear and to compression-shear. Stepped fracture is a primary fracture pattern in the tension-shear tests. The shear stiffness, shear deformation and normal deformation (except the normal deformation for σ = -1 MPa) decrease during shearing, while the total normal deformation containing the pre-shearing portion increases as the normal tensile stress level (| σ|) goes up. Shear strength is more sensitive to the normal tensile stress than to the normal compressive stress, and the power function failure criterion (or Mohr envelope form of Hoek-Brown criterion) is examined to be the optimal criterion for the tested sandstone in the full region of tested normal stress in this study.
Estimating JPEG2000 compression for image forensics using Benford's Law
NASA Astrophysics Data System (ADS)
Qadir, Ghulam; Zhao, Xi; Ho, Anthony T. S.
2010-05-01
With the tremendous growth and usage of digital images nowadays, the integrity and authenticity of digital content is becoming increasingly important, and a growing concern to many government and commercial sectors. Image Forensics, based on a passive statistical analysis of the image data only, is an alternative approach to the active embedding of data associated with Digital Watermarking. Benford's Law was first introduced to analyse the probability distribution of the 1st digit (1-9) numbers of natural data, and has since been applied to Accounting Forensics for detecting fraudulent income tax returns [9]. More recently, Benford's Law has been further applied to image processing and image forensics. For example, Fu et al. [5] proposed a Generalised Benford's Law technique for estimating the Quality Factor (QF) of JPEG compressed images. In our previous work, we proposed a framework incorporating the Generalised Benford's Law to accurately detect unknown JPEG compression rates of watermarked images in semi-fragile watermarking schemes. JPEG2000 (a relatively new image compression standard) offers higher compression rates and better image quality as compared to JPEG compression. In this paper, we propose the novel use of Benford's Law for estimating JPEG2000 compression for image forensics applications. By analysing the DWT coefficients and JPEG2000 compression on 1338 test images, the initial results indicate that the 1st digit probability of DWT coefficients follow the Benford's Law. The unknown JPEG2000 compression rates of the image can also be derived, and proved with the help of a divergence factor, which shows the deviation between the probabilities and Benford's Law. Based on 1338 test images, the mean divergence for DWT coefficients is approximately 0.0016, which is lower than DCT coefficients at 0.0034. However, the mean divergence for JPEG2000 images compression rate at 0.1 is 0.0108, which is much higher than uncompressed DWT coefficients. This result clearly indicates a presence of compression in the image. Moreover, we compare the results of 1st digit probability and divergence among JPEG2000 compression rates at 0.1, 0.3, 0.5 and 0.9. The initial results show that the expected difference among them could be used for further analysis to estimate the unknown JPEG2000 compression rates.
Fiber-reinforced silicone for tracheobronchial stents: An experimental study.
Vearick, Samanta Bianchi; Demétrio, Kétner Bendo; Xavier, Rogério Gastal; Moreschi, Alexandre Heitor; Muller, André Frotta; Sanches, Paulo Roberto Stefani; Dos Santos, Luis Alberto Loureiro
2018-01-01
A trachea is a tubular structure composed of smooth muscle that is reinforced with cartilage rings. Some diseases can cause sagging in smooth muscle and cartilaginous tissue. The end result is reduction (narrowing) of the trachea diameter. A solution to this problem is the use of tracheal stents, which are small tubular devices made of silicone. One is inserted into the trachea to prevent or correct its constriction. The purpose of tracheal stent use is to maintain cartilage support that would otherwise be lost in the airway. Current tracheal stent models present limitations in terms of shape and characteristics of the silicone used in their production. One of the most important is the large thickness of the wall, which makes its placement difficult; this mainly applies to pediatric patients. The wall thickness of the stent is closely related to the mechanical properties of the material. This study aims to test the reinforcement of silicone with three kinds of fibers, and then stents that were produced using fiber with the best compressive strength characteristics. Silicone samples were reinforced with polypropylene (PP), polyamide (PA), and carbon fiber (CF) at concentrations of 2% and 4% (vol%), which then underwent tensile strength and Shore A hardness testing. Samples with fiber showed good characteristics; surface analyses were carried out and they were used to produce stents with an internal diameter of 11 or 13mm and a length of 50mm. Stents underwent compression tests for qualitative evaluation. Samples with 2% and 4% CF blends showed the best mechanical performance, and they were used to produce stents. These samples presented similar compressive strengths at low deformation, but stents with a 4% CF blend exhibited improved compressive strength at deformations greater than 30-50% of their diameter (P ≤ 0.05). The addition of 2% and 4% CF blends conferred greater mechanical strength and resistance to the silicone matrix. This is particularly true at low deformation, which is the condition where the stent is used when implanted. In the finite element compression strength tests, the stent composite showed greater compression strength with the addition of fiber, and the results were in accordance with mechanical compression tests performed on the stents. In vivo tests showed that, after 30 days of post-implantation in sheep trachea, an inflammatory process occurred in the region of the trachea in contact with the stent composite and with the stent without fiber (WF). This response is a common process during the first few days of implantation. Copyright © 2017 Elsevier Ltd. All rights reserved.
The Unsupervised Acquisition of a Lexicon from Continuous Speech.
1995-11-01
Com- munication, 2(1):57{89, 1982. [42] J. Ziv and A. Lempel . Compression of individual sequences by variable rate coding. IEEE Trans- actions on...parameters of the compression algorithm , in a never-ending attempt to identify and eliminate the predictable. They lead us to a class of grammars in...the rst 10 sentences of the test set, previously unseen by the algorithm . Vertical bars indicate word boundaries. 7.1 Text Compression and Language
Becquaert, Mathias; Cristofani, Edison; Van Luong, Huynh; Vandewal, Marijke; Stiens, Johan; Deligiannis, Nikos
2018-05-31
This work explores an innovative strategy for increasing the efficiency of compressed sensing applied on mm-wave SAR sensing using multiple weighted side information. The approach is tested on synthetic and on real non-destructive testing measurements performed on a 3D-printed object with defects while taking advantage of multiple previous SAR images of the object with different degrees of similarity. The tested algorithm attributes autonomously weights to the side information at two levels: (1) between the components inside the side information and (2) between the different side information. The reconstruction is thereby almost immune to poor quality side information while exploiting the relevant components hidden inside the added side information. The presented results prove that, in contrast to common compressed sensing, good SAR image reconstruction is achieved at subsampling rates far below the Nyquist rate. Moreover, the algorithm is shown to be much more robust for low quality side information compared to coherent background subtraction.
Laboratory Testing of Silica Sol Grout in Coal Measure Mudstones
Pan, Dongjiang; Zhang, Nong; Xie, Zhengzheng; Feng, Xiaowei; Kong, Yong
2016-01-01
The effectiveness of silica sol grout on mudstones is reported in this paper. Using X-ray diffraction (XRD), the study investigates how the silica sol grout modifies mudstone mineralogy. Micropore sizes and mechanical properties of the mudstone before and after grouting with four different materials were determined with a surface area/porosity analyser and by uniaxial compression. Tests show that, after grouting, up to 50% of the mesopore volumes can be filled with grout, the dominant pore diameter decreases from 100 nm to 10 nm, and the sealing capacity is increased. Uniaxial compression tests of silica sol grouted samples shows that their elastic modulus is 21%–38% and their uniaxial compressive strength is 16%–54% of the non-grouted samples. Peak strain, however, is greater by 150%–270%. After grouting, the sample failure mode changes from brittle to ductile. This paper provides an experimental test of anti-seepage and strengthening properties of silica sol. PMID:28774061
NASA Astrophysics Data System (ADS)
Giusi, Giovanni; Liu, Scige J.; Galli, Emanuele; Di Giorgio, Anna M.; Farina, Maria; Vertolli, Nello; Di Lellis, Andrea M.
2016-07-01
In this paper we present the results of a series of performance tests carried out on a prototype board mounting the Cobham Gaisler GR712RC Dual Core LEON3FT processor. The aim was the characterization of the performances of the dual core processor when used for executing a highly demanding lossless compression task, acting on data segments continuously copied from the static memory to the processor RAM. The selection of the compression activity to evaluate the performances was driven by the possibility of a comparison with previously executed tests on the Cobham/Aeroflex Gaisler UT699 LEON3FT SPARC™ V8. The results of the test activity have shown a factor 1.6 of improvement with respect to the previous tests, which can easily be improved by adopting a faster onboard board clock, and provided indications on the best size of the data chunks to be used in the compression activity.
NASA Astrophysics Data System (ADS)
Hangai, Yoshihiko; Nakano, Yukiko; Utsunomiya, Takao; Kuwazuru, Osamu; Yoshikawa, Nobuhiro
2017-02-01
In this study, Al-Si-Cu alloy ADC12 foam-filled thin-walled stainless steel pipes, which exhibit metal bonding between the ADC12 foam and steel pipe, were fabricated by friction stir back extrusion. Drop weight impact tests were conducted to investigate the deformation behavior and mechanical properties of the foam-filled pipes during dynamic compression tests, which were compared with the results of static compression tests. From x-ray computed tomography observation, it was confirmed that the fabricated foam-filled pipes had almost uniform porosity and pore size distributions. It was found that no scattering of the fragments of collapsed ADC12 foam occurred for the foam-filled pipes owing to the existence of the pipe surrounding the ADC12 foam. Preventing the scattering of the ADC12 foam decreases the drop in stress during dynamic compression tests and therefore improves the energy absorption properties of the foam.
Survivability characteristics of composite compression structure
NASA Technical Reports Server (NTRS)
Avery, John G.; Allen, M. R.; Sawdy, D.; Avery, S.
1990-01-01
Test and evaluation was performed to determine the compression residual capability of graphite reinforced composite panels following perforation by high-velocity fragments representative of combat threats. Assessments were made of the size of the ballistic damage, the effect of applied compression load at impact, damage growth during cyclic loading and residual static strength. Several fiber/matrix systems were investigated including high-strain fibers, tough epoxies, and APC-2 thermoplastic. Additionally, several laminate configurations were evaluated including hard and soft laminates and the incorporation of buffer strips and stitching for improved damage resistance of tolerance. Both panels (12 x 20-inches) and full scale box-beam components were tested to assure scalability of results. The evaluation generally showed small differences in the responses of the material systems tested. The soft laminate configurations with concentrated reinforcement exhibited the highest residual strength. Ballistic damage did not grow or increase in severity as a result of cyclic loading, and the effects of applied load at impact were not significant under the conditions tested.
TEM in situ micropillar compression tests of ion irradiated oxide dispersion strengthened alloy
NASA Astrophysics Data System (ADS)
Yano, K. H.; Swenson, M. J.; Wu, Y.; Wharry, J. P.
2017-01-01
The growing role of charged particle irradiation in the evaluation of nuclear reactor candidate materials requires the development of novel methods to assess mechanical properties in near-surface irradiation damage layers just a few micrometers thick. In situ transmission electron microscopic (TEM) mechanical testing is one such promising method. In this work, microcompression pillars are fabricated from a Fe2+ ion irradiated bulk specimen of a model Fe-9%Cr oxide dispersion strengthened (ODS) alloy. Yield strengths measured directly from TEM in situ compression tests are within expected values, and are consistent with predictions based on the irradiated microstructure. Measured elastic modulus values, once adjusted for the amount of deformation and deflection in the base material, are also within the expected range. A pillar size effect is only observed in samples with minimum dimension ≤100 nm due to the low inter-obstacle spacing in the as received and irradiated material. TEM in situ micropillar compression tests hold great promise for quantitatively determining mechanical properties of shallow ion-irradiated layers.
Daniels, Alan H; Paller, David J; Koruprolu, Sarath; McDonnell, Matthew; Palumbo, Mark A; Crisco, Joseph J
2012-11-01
Biomechanical cadaver investigation. To examine dynamic bending stiffness and energy absorption of the lumbar spine with and without implanted total disc replacement (TDR) under simulated physiological motion. The pendulum testing system is capable of applying physiological compressive loads without constraining motion of functional spinal units (FSUs). The number of cycles to equilibrium observed under pendulum testing is a measure of the energy absorbed by the FSU. Five unembalmed, frozen human lumbar FSUs were tested on the pendulum system with axial compressive loads of 181 N, 282 N, 385 N, and 488 N before and after Synthes ProDisc-L TDR implantation. Testing in flexion, extension, and lateral bending began by rotating the pendulum to 5º resulting in unconstrained oscillatory motion. The number of rotations to equilibrium was recorded and bending stiffness (N·m/º) was calculated and compared for each testing mode. In flexion/extension, the TDR constructs reached equilibrium with significantly (P < 0.05) fewer cycles than the intact FSU with compressive loads of 282 N, 385 N, and 488 N. Mean dynamic bending stiffness in flexion, extension, and lateral bending increased significantly with increasing load for both the intact FSU and TDR constructs (P < 0.001). In flexion, with increasing compressive loading from 181 N to 488 N, the bending stiffness of the intact FSUs increased from 4.0 N·m/º to 5.5 N·m/º, compared with 2.1 N·m/º to 3.6 N·m/º after TDR implantation. At each compressive load, the intact FSU was significantly stiffer than the TDR (P < 0.05). Lumbar FSUs with implanted TDR were found to be less stiff, but absorbed more energy during cyclic loading with an unconstrained pendulum system. Although the effects on clinical performance of motion-preserving devices are not fully known, these results provide further insight into the biomechanical behavior of these devices under approximated physiological loading conditions.
Loaded delay lines for future RF pulse compression systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, R.M.; Wilson, P.B.; Kroll, N.M.
1995-05-01
The peak power delivered by the klystrons in the NLCRA (Next Linear Collider Test Accelerator) now under construction at SLAC is enhanced by a factor of four in a SLED-II type of R.F. pulse compression system (pulse width compression ratio of six). To achieve the desired output pulse duration of 250 ns, a delay line constructed from a 36 m length of circular waveguide is used. Future colliders, however, will require even higher peak power and larger compression factors, which favors a more efficient binary pulse compression approach. Binary pulse compression, however, requires a line whose delay time is approximatelymore » proportional to the compression factor. To reduce the length of these lines to manageable proportions, periodically loaded delay lines are being analyzed using a generalized scattering matrix approach. One issue under study is the possibility of propagating two TE{sub o} modes, one with a high group velocity and one with a group velocity of the order 0.05c, for use in a single-line binary pulse compression system. Particular attention is paid to time domain pulse degradation and to Ohmic losses.« less
NASA Technical Reports Server (NTRS)
Kamman, J. H.; Hall, C. L.
1975-01-01
Two inlet performance tests and one inlet/airframe drag test were conducted in 1969 at the NASA-Ames Research Center. The basic inlet system was two-dimensional, three ramp (overhead), external compression, with variable capture area. The data from these tests were analyzed to show the effects of selected design variables on the performance of this type of inlet system. The inlet design variables investigated include inlet bleed, bypass, operating mass flow ratio, inlet geometry, and variable capture area.
Design and fabrication of composite wing panels containing a production splice
NASA Technical Reports Server (NTRS)
Reed, D. L.
1975-01-01
Bolted specimens representative of both upper and lower wing surface splices of a transport aircraft were designed and manufactured for static and random load tension and compression fatigue testing including ground-air-ground load reversals. The specimens were fabricated with graphite-epoxy composite material. Multiple tests were conducted at various load levels and the results were used as input to a statistical wearout model. The statically designed specimens performed very well under highly magnified fatigue loadings. Two large panels, one tension and compression, were fabricated for testing by NASA-LRC.
Yao, Bibo; Zhou, Zhaoyao; Duan, Liuyang; Xiao, Zhiyu
2016-01-01
Powder metallurgy (P/M) technique is usually used for manufacturing porous metal materials. However, some P/M materials are limitedly used in engineering for their performance deficiency. A novel 304 stainless steel P/M material was produced by a solid-state sintering of 304 stainless steel powders and 304 short stainless steel fibers, which were alternately laid in layers according to mass ratio. In this paper, the compressive properties of the P/M materials were characterized by a series of uniaxial compression tests. The effects of fiber content, compaction pressure and high temperature nitriding on compressive properties were investigated. The results indicated that, without nitriding, the samples changed from cuboid to cydariform without damage in the process of compression. The compressive stress was enhanced with increasing fiber content ranging from 0 to 8 wt.%. For compaction pressure from 55 to 75 MPa, greater compaction pressure improved compressive stress. Moreover, high temperature nitriding was able to significantly improve the yield stress, but collapse failure eventually occurred. PMID:28773285
Modeling of video compression effects on target acquisition performance
NASA Astrophysics Data System (ADS)
Cha, Jae H.; Preece, Bradley; Espinola, Richard L.
2009-05-01
The effect of video compression on image quality was investigated from the perspective of target acquisition performance modeling. Human perception tests were conducted recently at the U.S. Army RDECOM CERDEC NVESD, measuring identification (ID) performance on simulated military vehicle targets at various ranges. These videos were compressed with different quality and/or quantization levels utilizing motion JPEG, motion JPEG2000, and MPEG-4 encoding. To model the degradation on task performance, the loss in image quality is fit to an equivalent Gaussian MTF scaled by the Structural Similarity Image Metric (SSIM). Residual compression artifacts are treated as 3-D spatio-temporal noise. This 3-D noise is found by taking the difference of the uncompressed frame, with the estimated equivalent blur applied, and the corresponding compressed frame. Results show good agreement between the experimental data and the model prediction. This method has led to a predictive performance model for video compression by correlating various compression levels to particular blur and noise input parameters for NVESD target acquisition performance model suite.
Effects of video compression on target acquisition performance
NASA Astrophysics Data System (ADS)
Espinola, Richard L.; Cha, Jae; Preece, Bradley
2008-04-01
The bandwidth requirements of modern target acquisition systems continue to increase with larger sensor formats and multi-spectral capabilities. To obviate this problem, still and moving imagery can be compressed, often resulting in greater than 100 fold decrease in required bandwidth. Compression, however, is generally not error-free and the generated artifacts can adversely affect task performance. The U.S. Army RDECOM CERDEC Night Vision and Electronic Sensors Directorate recently performed an assessment of various compression techniques on static imagery for tank identification. In this paper, we expand this initial assessment by studying and quantifying the effect of various video compression algorithms and their impact on tank identification performance. We perform a series of controlled human perception tests using three dynamic simulated scenarios: target moving/sensor static, target static/sensor static, sensor tracking the target. Results of this study will quantify the effect of video compression on target identification and provide a framework to evaluate video compression on future sensor systems.
NASA Astrophysics Data System (ADS)
Yue, Xian-hua; Liu, Chun-fang; Liu, Hui-hua; Xiao, Su-fen; Tang, Zheng-hua; Tang, Tian
2018-02-01
The main goal of this study is to investigate the microstructure and electrical properties of Al-Zr-La alloys under different hot compression deformation temperatures. In particular, a Gleeble 3500 thermal simulator was used to carry out multi-pass hot compression tests. For five-pass hot compression deformation, the last-pass deformation temperatures were 240, 260, 300, 340, 380, and 420°C, respectively, where the first-pass deformation temperature was 460°C. The experimental results indicated that increasing the hot compression deformation temperature with each pass resulted in improved electrical conductivity of the alloy. Consequently, the flow stress was reduced after deformation of the samples subjected to the same number of passes. In addition, the dislocation density gradually decreased and the grain size increased after hot compression deformation. Furthermore, the dynamic recrystallization behavior was effectively suppressed during the hot compression process because spherical Al3Zr precipitates pinned the dislocation movement effectively and prevented grain boundary sliding.
Yao, Bibo; Zhou, Zhaoyao; Duan, Liuyang; Xiao, Zhiyu
2016-03-04
Powder metallurgy (P/M) technique is usually used for manufacturing porous metal materials. However, some P/M materials are limitedly used in engineering for their performance deficiency. A novel 304 stainless steel P/M material was produced by a solid-state sintering of 304 stainless steel powders and 304 short stainless steel fibers, which were alternately laid in layers according to mass ratio. In this paper, the compressive properties of the P/M materials were characterized by a series of uniaxial compression tests. The effects of fiber content, compaction pressure and high temperature nitriding on compressive properties were investigated. The results indicated that, without nitriding, the samples changed from cuboid to cydariform without damage in the process of compression. The compressive stress was enhanced with increasing fiber content ranging from 0 to 8 wt.%. For compaction pressure from 55 to 75 MPa, greater compaction pressure improved compressive stress. Moreover, high temperature nitriding was able to significantly improve the yield stress, but collapse failure eventually occurred.
Mixed raster content (MRC) model for compound image compression
NASA Astrophysics Data System (ADS)
de Queiroz, Ricardo L.; Buckley, Robert R.; Xu, Ming
1998-12-01
This paper will describe the Mixed Raster Content (MRC) method for compressing compound images, containing both binary test and continuous-tone images. A single compression algorithm that simultaneously meets the requirements for both text and image compression has been elusive. MRC takes a different approach. Rather than using a single algorithm, MRC uses a multi-layered imaging model for representing the results of multiple compression algorithms, including ones developed specifically for text and for images. As a result, MRC can combine the best of existing or new compression algorithms and offer different quality-compression ratio tradeoffs. The algorithms used by MRC set the lower bound on its compression performance. Compared to existing algorithms, MRC has some image-processing overhead to manage multiple algorithms and the imaging model. This paper will develop the rationale for the MRC approach by describing the multi-layered imaging model in light of a rate-distortion trade-off. Results will be presented comparing images compressed using MRC, JPEG and state-of-the-art wavelet algorithms such as SPIHT. MRC has been approved or proposed as an architectural model for several standards, including ITU Color Fax, IETF Internet Fax, and JPEG 2000.
smallWig: parallel compression of RNA-seq WIG files.
Wang, Zhiying; Weissman, Tsachy; Milenkovic, Olgica
2016-01-15
We developed a new lossless compression method for WIG data, named smallWig, offering the best known compression rates for RNA-seq data and featuring random access functionalities that enable visualization, summary statistics analysis and fast queries from the compressed files. Our approach results in order of magnitude improvements compared with bigWig and ensures compression rates only a fraction of those produced by cWig. The key features of the smallWig algorithm are statistical data analysis and a combination of source coding methods that ensure high flexibility and make the algorithm suitable for different applications. Furthermore, for general-purpose file compression, the compression rate of smallWig approaches the empirical entropy of the tested WIG data. For compression with random query features, smallWig uses a simple block-based compression scheme that introduces only a minor overhead in the compression rate. For archival or storage space-sensitive applications, the method relies on context mixing techniques that lead to further improvements of the compression rate. Implementations of smallWig can be executed in parallel on different sets of chromosomes using multiple processors, thereby enabling desirable scaling for future transcriptome Big Data platforms. The development of next-generation sequencing technologies has led to a dramatic decrease in the cost of DNA/RNA sequencing and expression profiling. RNA-seq has emerged as an important and inexpensive technology that provides information about whole transcriptomes of various species and organisms, as well as different organs and cellular communities. The vast volume of data generated by RNA-seq experiments has significantly increased data storage costs and communication bandwidth requirements. Current compression tools for RNA-seq data such as bigWig and cWig either use general-purpose compressors (gzip) or suboptimal compression schemes that leave significant room for improvement. To substantiate this claim, we performed a statistical analysis of expression data in different transform domains and developed accompanying entropy coding methods that bridge the gap between theoretical and practical WIG file compression rates. We tested different variants of the smallWig compression algorithm on a number of integer-and real- (floating point) valued RNA-seq WIG files generated by the ENCODE project. The results reveal that, on average, smallWig offers 18-fold compression rate improvements, up to 2.5-fold compression time improvements, and 1.5-fold decompression time improvements when compared with bigWig. On the tested files, the memory usage of the algorithm never exceeded 90 KB. When more elaborate context mixing compressors were used within smallWig, the obtained compression rates were as much as 23 times better than those of bigWig. For smallWig used in the random query mode, which also supports retrieval of the summary statistics, an overhead in the compression rate of roughly 3-17% was introduced depending on the chosen system parameters. An increase in encoding and decoding time of 30% and 55% represents an additional performance loss caused by enabling random data access. We also implemented smallWig using multi-processor programming. This parallelization feature decreases the encoding delay 2-3.4 times compared with that of a single-processor implementation, with the number of processors used ranging from 2 to 8; in the same parameter regime, the decoding delay decreased 2-5.2 times. The smallWig software can be downloaded from: http://stanford.edu/~zhiyingw/smallWig/smallwig.html, http://publish.illinois.edu/milenkovic/, http://web.stanford.edu/~tsachy/. zhiyingw@stanford.edu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Weng, Tsai-Lung; Cheng, An; Chao, Sao-Jeng; Hsu, Hui-Mi
2018-01-01
This study aims to investigate the effect of adding circulating fluidized bed combustion (CFBC) ash, desulfurization slag, air-cooled blast-furnace slag and coal bottom ash to the controlled low-strength material (CLSM). Test methods include slump flow test, ball drop test, water soluble chloride ion content measurement, compressive strength and length change measurement. The results show that (1) the use of CFBC hydration ash with desulfurization slag of slump flow is the best, and the use of CFBC hydration ash with coal bottom ash and slump flow is the worst; (2) CFBC hydration ash with desulfurization slag and chloride ion content is the highest; (3) 24 h ball drop test (diameter ≤ 76 mm), and test results are 70 mm to 76 mm; (4) CFBC hydration ash with desulfurization slag and compression strength is the highest, with the coal bottom ash being the lowest; increase of CFBC hydration ash can reduce compressive strength; and (5) the water-quenched blast furnace slag and CFBC hydration ash would expand, which results in length changes of CLSM specimens. PMID:29724055
NASA Astrophysics Data System (ADS)
Schneider, Konrad
2007-01-01
Over the years different tests are established to characterise the compressive properties of composites in the in-plane direction. The international standard ISO 14126 (2000) (Fibre-reinforced plastic composites — determination of compressive properties in the in-plane direction, ISO 14126: 1999 (E), Faserverstärkte Kunststoffe, Bestimmung der Druckeigenschaften in der Laminatebene, DIN EN ISO 14126: 2000-12) tries to standardise these tests. The described wide range of arrangements enables to continue with the present practice to a large extent. But the standard doesn’t say anything about the precision of the method. Four labs performed a round robin test to check the precision and reproducibility of the Celanese-type arrangement for different composite materials, structures and dimensions. The test procedure is critically discussed and some proposals for the applicability of the method are derived. Mainly the advantages of optical monitoring the overall as well as the local strain of the specimen are demonstrated for the characterisation the failure process. By this method some of the reasons of unsatisfying reproducibility can be cleared up.
Hobbs, Brian; Tchoketch Kebir, Mohamed
2007-04-11
This study describes in detail the results of a laboratory investigation where the compressive strength of 150mm side-length cubes was evaluated. Non-destructive testing (NDT) was carried out using ultrasonic pulse velocity (UPV) and impact rebound hammer (IRH) techniques to establish a correlation with the compressive strengths of compression tests. To adapt the Schmidt hammer apparatus and the ultrasonic pulse velocity tester to the type of concrete used in Algeria, concrete mix proportions that are recommended by the Algerian code were chosen. The resulting correlation curve for each test is obtained by changing the level of compaction, water/cement ratio and concrete age of specimens. Unlike other works, the research highlights the significant effect of formwork material on surface hardness of concrete where two different mould materials for specimens were used (plastic and wood). A combined method for the above two tests, reveals an improvement in the strength estimation of concrete. The latter shows more improvement by including the concrete density. The resulting calibration curves for strength estimation were compared with others from previous published literature.
NASA Astrophysics Data System (ADS)
Harlapur, M. D.; Mallapur, D. G.; Udupa, K. Rajendra
2018-04-01
In the current study, an experimental analysis of volumetric wear behaviour and mechanical properties of aluminium (Al-25Mg2Si2Cu4Ni) alloy in as cast and 1Hr homogenized with T6 heat treatment is carried out at constant load. Pin-on-disc apparatus was used to carry out sliding wear test. Mechanical properties such as tensile, hardness and compression test on as-cast and 1 hr homogenized samples are measured. Universal testing machine was used to conduct the tensile and compressive test at room temperature. Brinell hardness tester was used to conduct the hardness test. The scanning electron microscope was used to analyze the worn-out wear surfaces. Wear results and mechanical properties shows that 1Hr homogenized Al-25Mg2Si2Cu4Ni alloy samples with T6 treated had better volumetric wear resistance, hardness, tensile and compressive strength as compared to as cast samples.
Robinson, K. Sue; Anderson, David R.; Gross, Michael; Petrie, David; Leighton, Ross; Stanish, William; Alexander, David; Mitchell, Michael; Mason, William; Flemming, Bruce; Fairhurst-Vaughan, Marlene; Gent, Michael
1998-01-01
Objective To determine whether compression ultrasonography or clinical examination should be considered as screening tests for the diagnosis of deep vein thrombosis (DVT) after total hip or knee arthroplasty in patients receiving warfarin prophylaxis postoperatively. Design A prospective cohort study. Setting A single tertiary care orthopedic centre. Patients One hundred and eleven patients who underwent elective total hip or knee arthroplasty were enrolled. Postoperatively the warfarin dose was adjusted daily to maintain the international normalized ratio between 1.8 and 2.5. Eighty-six patients successfully completed the study protocol. Intervention Before they were discharged from hospital, patients were assessed for DVT by clinical examination, bilateral compression ultrasonography of the proximal venous system and bilateral contrast venography. Results DVT was found in 29 patients (34%; 95% confidence interval [CI] 24% to 45%), and 6 patients (7%; 95% CI 3% to 15%) had proximal DVT. DVT developed in 18 (40%) of 45 patients who underwent total knee arthroplasty and in 11 (27%) of 41 patients who underwent total hip arthroplasty. The sensitivity of compression ultrasonography for the diagnosis of proximal DVT was 83% (95% CI 36% to 99%) and the specificity was 98% (95% CI 91% to 99%). The positive predictive value of compression ultrasonography was 71%. In contrast, clinical examination for DVT had a sensitivity of 11% (95% CI 2% to 28%) and a positive predictive value of 25%. Conclusions DVT is a common complication after total hip or knee arthroplasty. Compression ultrasonography appears to be a relatively accurate noninvasive test for diagnosing postoperative proximal DVT. In contrast, clinical examination is a very insensitive test. Whether routine use of screening compression ultrasonography will reduce the morbidity of venous thromboembolism after joint arthroplasty requires confirmation in a prospective trial involving long-term follow-up of patients. PMID:9793503
Brown, Todd B; Saini, Devashish; Pepper, Tracy; Mirza, Muzna; Nandigam, Hari Krishna; Kaza, Niroop; Cofield, Stacey S
2008-02-01
The quality of early bystander CPR appears important in maximizing survival. This trial tests whether explicit instructions to "put the phone down" improve the quality of bystander initiated dispatch-assisted CPR. In a randomized, double-blinded, controlled trial, subjects were randomized to a modified version of the Medical Priority Dispatch System (MPDS) version 11.2 protocol or a simplified protocol, each with or without instruction to "put the phone down" during CPR. Data were recorded from a Laerdal Resusci Anne Skillreporter manikin. A simulated emergency medical dispatcher, contacted by cell phone, delivered standardized instructions. Primary outcome measures included chest compression rate, depth, and the proportion of compressions without error, with correct hand position, adequate depth, and total release. Time was measured in two distinct ways: time required for initiation of CPR and total amount of time hands were off the chest during CPR. Proportions were analyzed by Wilcoxon rank sum tests and time variables with ANOVA. All tests used a two-sided alpha-level of 0.05. Two hundred and fifteen subjects were randomized-107 in the "put the phone down" instruction group and 108 in the group without "put the phone down" instructions. The groups were comparable across demographic and experiential variables. The additional instruction to "put the phone down" had no effect on the proportion of compressions administered without error, with the correct depth, and with the correct hand position. Likewise, "put the phone down" did not affect the average compression depth, the average compression rate, the total hands-off-chest time, or the time to initiate chest compressions. A statistically significant, yet trivial, effect was found in the proportion of compressions with total release of the chest wall. Instructions to "put the phone down" had no effect on the quality of bystander initiated dispatcher-assisted CPR in this trial.
Optimization of the dynamic behavior of strongly nonlinear heterogeneous materials
NASA Astrophysics Data System (ADS)
Herbold, Eric B.
New aspects of strongly nonlinear wave and structural phenomena in granular media are developed numerically, theoretically and experimentally. One-dimensional chains of particles and compressed powder composites are the two main types of materials considered here. Typical granular assemblies consist of linearly elastic spheres or layers of masses and effective nonlinear springs in one-dimensional columns for dynamic testing. These materials are highly sensitive to initial and boundary conditions, making them useful for acoustic and shock-mitigating applications. One-dimensional assemblies of spherical particles are examples of strongly nonlinear systems with unique properties. For example, if initially uncompressed, these materials have a sound speed equal to zero (sonic vacuum), supporting strongly nonlinear compression solitary waves with a finite width. Different types of assembled metamaterials will be presented with a discussion of the material's response to static compression. The acoustic diode effect will be presented, which may be useful in shock mitigation applications. Systems with controlled dissipation will also be discussed from an experimental and theoretical standpoint emphasizing the critical viscosity that defines the transition from an oscillatory to monotonous shock profile. The dynamic compression of compressed powder composites may lead to self-organizing mesoscale structures in two and three dimensions. A reactive granular material composed of a compressed mixture of polytetrafluoroethylene (PTFE), tungsten (W) and aluminum (Al) fine-grain powders exhibit this behavior. Quasistatic, Hopkinson bar, and drop-weight experiments show that composite materials with a high porosity and fine metallic particles exhibit a higher strength than less porous mixtures with larger particles, given the same mass fraction of constituents. A two-dimensional Eulerian hydrocode is implemented to investigate the mechanical deformation and failure of the compressed powder samples in simulated drop-weight tests. The calculations indicate that the dynamic formation of mesoscale force chains increase the strength of the sample. This is also apparent in three-dimensional finite element calculations of drop-weight test simulations using LS-Dyna despite a higher granular bulk coordination number, and an increased mobility of individual grains.
40 CFR 94.12 - Interim provisions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... differences in testing will not affect NOX emission rates. (g) Flexibility for engines over 560kW... EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.12 Interim provisions. This section contains provisions that apply...
40 CFR 94.12 - Interim provisions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... differences in testing will not affect NOX emission rates. (g) Flexibility for engines over 560kW...) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.12 Interim provisions. This section contains provisions...
40 CFR 94.12 - Interim provisions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... differences in testing will not affect NOX emission rates. (g) Flexibility for engines over 560kW...) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.12 Interim provisions. This section contains provisions...
40 CFR 94.12 - Interim provisions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... differences in testing will not affect NOX emission rates. (g) Flexibility for engines over 560kW...) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.12 Interim provisions. This section contains provisions...
40 CFR 94.12 - Interim provisions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... differences in testing will not affect NOX emission rates. (g) Flexibility for engines over 560kW...) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.12 Interim provisions. This section contains provisions...
Electromechanical Apparatus Measures Residual Stress
NASA Technical Reports Server (NTRS)
Chern, Engmin J.; Flom, Yury
1993-01-01
Nondestructive test exploits relationship between stress and eddy-current-probe resistance. Yields data on residual stress or strain in metal tension/compression specimen (stress or strain remaining in specimen when no stress applied from without). Apparatus is assembly of commercial equipment: tension-or-compression testing machine, eddy-current probe, impedance gain-and-phase analyzer measuring impedance of probe coil, and desktop computer, which controls other equipment and processes data received from impedance gain-and-phase analyzer.
Evaluation of Ceramic Honeycomb Core Compression Behavior at Room Temperature
NASA Technical Reports Server (NTRS)
Bird, Richard K.; Lapointe, Thomas S.
2013-01-01
Room temperature flatwise compression tests were conducted on two varieties of ceramic honeycomb core specimens that have potential for high-temperature structural applications. One set of specimens was fabricated using strips of a commercially-available thin-gage "ceramic paper" sheet molded into a hexagonal core configuration. The other set was fabricated by machining honeycomb core directly from a commercially available rigid insulation tile material. This paper summarizes the results from these tests.
The Effect of Compressive Loading on the Fatigue Lifetime of Graphite/ Epoxy Laminates
1979-10-01
Un-notched 11 3 Specimen Configuration, Notched 12 4 Location of Thickness and Width Measurements 14 5 Overall View of Composite Compression Test...Grips in Universal Testing Machine 24 8 Specimen Positioning Device 26 9 "Full-Fixity" Apparatus, Showing Auxiliary Platens 26 10 Specimen and Restraint...the accumu- lation of a statistically significant data base. * IA previous research study [11 showed that graphite/epoxy composites under constant
Material Compatability with Threshold Limit Value Levels of Monomethyl Hydrazine
1988-10-26
supply was house- compressed air conditioned by passing through a series of demisters, a hot Hopcalite catalyst bed, a reciprocating dual-tower...recorded. At the end of a test, the tubing was rinsed with methanol and dried with compressed breathing air . Cleaning the tubing material between tests had...niecessary and identify by block wbr -’Materials were evaluated for potential use as ambient air sample lines for hydrazines. Fluorinated poly- mers
Column strength of magnesium alloy AM-57S
NASA Technical Reports Server (NTRS)
Holt, M
1942-01-01
Tests were made to determine the column strength of extruded magnesium alloy AM-57S. Column specimens were tested with round ends and with flat ends. It was found that the compressive properties should be used in computations for column strengths rather than the tensile properties because the compressive yield strength was approximately one-half the tensile yield strength. A formula for the column strength of magnesium alloy AM-57S is given.
Feasibility and Economics Study of the Treatment, Recycling and Disposal of Spent Abrasives
1999-04-09
compression, and film stripping. The recycling performance testing plan is summarized in Table 2. (The test plan is discussed in detail in Appendix B: Law...D1188 Yes Yes Immersion Compression ................... ASTM C4867 Yes Yes Film Stripping................................... CalTrans 302 Yes Yes...from 10% to 20% for aluminum oxide abrasives, and 15% to 30% for garnet abrasives. 9 Data Intepretation SSPC-AB 1 requires that the conductivitiy of
Nonlinear Inelastic Mechanical Behavior Of Epoxy Resin Polymeric Materials
NASA Astrophysics Data System (ADS)
Yekani Fard, Masoud
Polymer and polymer matrix composites (PMCs) materials are being used extensively in different civil and mechanical engineering applications. The behavior of the epoxy resin polymers under different types of loading conditions has to be understood before the mechanical behavior of Polymer Matrix Composites (PMCs) can be accurately predicted. In many structural applications, PMC structures are subjected to large flexural loadings, examples include repair of structures against earthquake and engine fan cases. Therefore it is important to characterize and model the flexural mechanical behavior of epoxy resin materials. In this thesis, a comprehensive research effort was undertaken combining experiments and theoretical modeling to investigate the mechanical behavior of epoxy resins subject to different loading conditions. Epoxy resin E 863 was tested at different strain rates. Samples with dog-bone geometry were used in the tension tests. Small sized cubic, prismatic, and cylindrical samples were used in compression tests. Flexural tests were conducted on samples with different sizes and loading conditions. Strains were measured using the digital image correlation (DIC) technique, extensometers, strain gauges, and actuators. Effects of triaxiality state of stress were studied. Cubic, prismatic, and cylindrical compression samples undergo stress drop at yield, but it was found that only cubic samples experience strain hardening before failure. Characteristic points of tensile and compressive stress strain relation and load deflection curve in flexure were measured and their variations with strain rate studied. Two different stress strain models were used to investigate the effect of out-of-plane loading on the uniaxial stress strain response of the epoxy resin material. The first model is a strain softening with plastic flow for tension and compression. The influence of softening localization on material behavior was investigated using the DIC system. It was found that compression plastic flow has negligible influence on flexural behavior in epoxy resins, which are stronger in pre-peak and post-peak softening in compression than in tension. The second model was a piecewise-linear stress strain curve simplified in the post-peak response. Beams and plates with different boundary conditions were tested and analytically studied. The flexural over-strength factor for epoxy resin polymeric materials were also evaluated.
Sod, Gary A; Riggs, Laura M; Mitchell, Colin F; Hubert, Jeremy D; Martin, George S
2010-01-01
To compare in vitro monotonic biomechanical properties of an axial 3-hole, 4.5 mm narrow dynamic compression plate (DCP) using 5.5 mm cortical screws in conjunction with 2 abaxial transarticular 5.5 mm cortical screws inserted in lag fashion (DCP-TLS) with 3 parallel transarticular 5.5 mm cortical screws inserted in lag fashion (3-TLS) for the equine proximal interphalangeal (PIP) joint arthrodesis. Paired in vitro biomechanical testing of 2 methods of stabilizing cadaveric adult equine forelimb PIP joints. Cadaveric adult equine forelimbs (n=15 pairs). For each forelimb pair, 1 PIP joint was stabilized with an axial 3-hole narrow DCP (4.5 mm) using 5.5 mm cortical screws in conjunction with 2 abaxial transarticular 5.5 mm cortical screws inserted in lag fashion and 1 with 3 parallel transarticular 5.5 mm cortical screws inserted in lag fashion. Five matching pairs of constructs were tested in single cycle to failure under axial compression, 5 construct pairs were tested for cyclic fatigue under axial compression, and 5 construct pairs were tested in single cycle to failure under torsional loading. Mean values for each fixation method were compared using a paired t-test within each group with statistical significance set at P<.05. Mean yield load, yield stiffness, and failure load under axial compression and torsion, single cycle to failure, of the DCP-TLS fixation were significantly greater than those of the 3-TLS fixation. Mean cycles to failure in axial compression of the DCP-TLS fixation was significantly greater than that of the 3-TLS fixation. The DCP-TLS was superior to the 3-TLS in resisting the static overload forces and in resisting cyclic fatigue. The results of this in vitro study may provide information to aid in the selection of a treatment modality for arthrodesis of the equine PIP joint.
Study of the influence of hole quality on composite materials
NASA Technical Reports Server (NTRS)
Pengra, J. J.
1980-01-01
The influence of hole quality on the structural behavior of composite materials was investigated. From an industry survey it was determined that the most frequent imperfections encountered during hole fabrication are chipout, delamination, and oversize conditions. These hole flaw types were generated in critical areas of static, compression, and fatigue specimens fabricated from T300/5208 graphite/epoxy system. The specimens were tested in static and cyclic pin bearing modes in addition to compression loading. Results of these tests are presented and discussed. The hole chipout defect reduced the static and cyclic endurance characteristics. Oversize holes also lowered the cyclic pin bearing endurance, but had no influence of the static pin bearing characteristics. Delamination had no insignificant influence on the static tension and cyclic pin bearing characteristics. Compression tests demonstrated a deleterious effect for chipout of delamination defects. Hole quality requirements proposed are discussed.
NASA Technical Reports Server (NTRS)
Reveley, W. F.; Nuccio, P. P.
1975-01-01
Potable water for the Space Station Prototype life support system is generated by the vapor compression technique of vacuum distillation. A description of a complete three-man modular vapor compression water renovation loop that was built and tested is presented; included are all of the pumps, tankage, chemical post-treatment, instrumentation, and controls necessary to make the loop representative of an automatic, self-monitoring, null gravity system. The design rationale is given and the evolved configuration is described. Presented next are the results of an extensive parametric test during which distilled water was generated from urine and urinal flush water with concentration of solids in the evaporating liquid increasing progressively to 60 percent. Water quality, quantity and production rate are shown together with measured energy consumption rate in terms of watt-hours per kilogram of distilled water produced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belte, D.; Stratton, M.V.
1982-08-01
The United States Army Aviation Engineering Flight Activity conducted level flight performance tests of the OH-58C helicopter at Edwards AFB, California from 22 September to 20 November 1981, and at St. Paul, Minnesota, from 12 January to 9 February 1982. Nondimensional methods were used to identify effects of compressibility and blade stall on performance, and increased referred rotor speeds were used to supplement the range of currently available level flight data. Maximum differences in nondimensional power required attributed to compressibility effects varied from 6.5 to 11%. However, high actual rotor speed at a given condition can result in less powermore » required than at low rotor speed even with the compressibility penalty. The power required characteristics determined by these tests can be combined with engine performance to determine the most fuel efficient operating conditions.« less
Digital mammography, cancer screening: Factors important for image compression
NASA Technical Reports Server (NTRS)
Clarke, Laurence P.; Blaine, G. James; Doi, Kunio; Yaffe, Martin J.; Shtern, Faina; Brown, G. Stephen; Winfield, Daniel L.; Kallergi, Maria
1993-01-01
The use of digital mammography for breast cancer screening poses several novel problems such as development of digital sensors, computer assisted diagnosis (CAD) methods for image noise suppression, enhancement, and pattern recognition, compression algorithms for image storage, transmission, and remote diagnosis. X-ray digital mammography using novel direct digital detection schemes or film digitizers results in large data sets and, therefore, image compression methods will play a significant role in the image processing and analysis by CAD techniques. In view of the extensive compression required, the relative merit of 'virtually lossless' versus lossy methods should be determined. A brief overview is presented here of the developments of digital sensors, CAD, and compression methods currently proposed and tested for mammography. The objective of the NCI/NASA Working Group on Digital Mammography is to stimulate the interest of the image processing and compression scientific community for this medical application and identify possible dual use technologies within the NASA centers.
Wavelet/scalar quantization compression standard for fingerprint images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brislawn, C.M.
1996-06-12
US Federal Bureau of Investigation (FBI) has recently formulated a national standard for digitization and compression of gray-scale fingerprint images. Fingerprints are scanned at a spatial resolution of 500 dots per inch, with 8 bits of gray-scale resolution. The compression algorithm for the resulting digital images is based on adaptive uniform scalar quantization of a discrete wavelet transform subband decomposition (wavelet/scalar quantization method). The FBI standard produces archival-quality images at compression ratios of around 15 to 1 and will allow the current database of paper fingerprint cards to be replaced by digital imagery. The compression standard specifies a class ofmore » potential encoders and a universal decoder with sufficient generality to reconstruct compressed images produced by any compliant encoder, allowing flexibility for future improvements in encoder technology. A compliance testing program is also being implemented to ensure high standards of image quality and interchangeability of data between different implementations.« less
Optimisation algorithms for ECG data compression.
Haugland, D; Heber, J G; Husøy, J H
1997-07-01
The use of exact optimisation algorithms for compressing digital electrocardiograms (ECGs) is demonstrated. As opposed to traditional time-domain methods, which use heuristics to select a small subset of representative signal samples, the problem of selecting the subset is formulated in rigorous mathematical terms. This approach makes it possible to derive algorithms guaranteeing the smallest possible reconstruction error when a bounded selection of signal samples is interpolated. The proposed model resembles well-known network models and is solved by a cubic dynamic programming algorithm. When applied to standard test problems, the algorithm produces a compressed representation for which the distortion is about one-half of that obtained by traditional time-domain compression techniques at reasonable compression ratios. This illustrates that, in terms of the accuracy of decoded signals, existing time-domain heuristics for ECG compression may be far from what is theoretically achievable. The paper is an attempt to bridge this gap.
NASA Technical Reports Server (NTRS)
Sanders, J. C.; Mendelson, Alexander
1945-01-01
Small high-speed single-cylinder compression-ignition engines were tested to determine their performance characteristics under high supercharging. Calculations were made on the energy available in the exhaust gas of the compression-ignition engines. The maximum power at any given maximum cylinder pressure was obtained when the compression pressure was equal to the maximum cylinder pressure. Constant-pressure combustion was found possible at an engine speed of 2200 rpm. Exhaust pressures and temperatures were determined from an analysis of indicator cards. The analysis showed that, at rich mixtures with the exhaust back pressure equal to the inlet-air pressure, there is excess energy available for driving a turbine over that required for supercharging. The presence of this excess energy indicates that a highly supercharged compression-ignition engine might be desirable as a compressor and combustion chamber for a turbine.
Fatigue Characterization of Fire Resistant Syntactic Foam Core Material
NASA Astrophysics Data System (ADS)
Hossain, Mohammad Mynul
Eco-Core is a fire resistant material for sandwich structural application; it was developed at NC A&T State University. The Eco-Core is made of very small amount of phenolic resin and large volume of flyash by a syntactic process. The process development, static mechanical and fracture, fire and toxicity safety and water absorption properties and the design of sandwich structural panels with Eco-Core material was established and published in the literature. One of the important properties that is needed for application in transportation vehicles is the fatigue performance under different stress states. Fatigue data are not available even for general syntactic foams. The objective of this research is to investigate the fatigue performance of Eco-Core under three types of stress states, namely, cyclic compression, shear and flexure, then document failure modes, and develop empherical equations for predicting fatigue life of Eco-Core under three stress states. Compression-Compression fatigue was performed directly on Eco-Core cylindrical specimen, whereas shear and flexure fatigue tests were performed using sandwich beam made of E glass-Vinyl Ester face sheet and Eco-Core material. Compression-compression fatigue test study was conducted at two values of stress ratios (R=10 and 5), for the maximum compression stress (sigmamin) range of 60% to 90% of compression strength (sigmac = 19.6 +/- 0.25 MPa) for R=10 and 95% to 80% of compression strength for R=5. The failure modes were characterized by the material compliance change: On-set (2% compliance change), propagation (5%) and ultimate failure (7%). The number of load cycles correspond to each of these three damages were characterized as on-set, propagation and total lives. A similar approach was used in shear and flexure fatigue tests with stress ratio of R=0.1. The fatigue stress-number of load cycles data followed the standard power law equation for all three stress states. The constant of the equation were established for the three stress states and three types of the failure modes. This equation was used to estimate endurance limit (106 cycles) of the material. Like metallic materials, the compression fatigue life of Eco-Core was found to be dependent on the stress range instead of maximum or mean cyclic stress. Furthermore shear and flexural ultimate failure of the core material was found to be due to a combination of shear and tensile stress.
Nguyen, An M; Levenston, Marc E
2012-01-01
Although the contribution of the circumferential collagen bundles to the anisotropic tensile stiffness of meniscal tissue has been well described, the implications of interactions between tissue components for other mechanical properties have not been as widely examined. This study compared the effects of the proteoglycan-associated osmotic swelling stress on meniscal fibrocartilage and articular cartilage (AC) mechanics by manipulating the osmotic environment and tissue compressive offset. Cylindrical samples were obtained from the menisci and AC of bovine stifles, equilibrated in phosphate-buffered saline solutions ranging from 0.1× to 10×, and tested in oscillatory torsional shear and unconfined compression. Biochemical analysis indicated that treatments and testing did not substantially alter tissue composition. Mechanical testing revealed tissue-specific responses to both increasing compressive offset and decreasing bath salinity. Most notably, reduced salinity dramatically increased the shear modulus of both axially and circumferentially oriented meniscal tissue explants to a much greater extent than for cartilage samples. Combined with previous studies, these findings suggest that meniscal proteoglycans have a distinct structural role, stabilizing, and stiffening the matrix surrounding the primary circumferential collagen bundles. Copyright © 2011 Orthopaedic Research Society.
Full-Scale System for Quantifying Loads and Leak Rates of Seals for Space Applications
NASA Technical Reports Server (NTRS)
Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; Daniels, Christopher C.; Wasowski, Janice L.; Robbie, Malcolm G.; Erker, Arthur H.; Drlik, Gary J.; Mayer, John J.
2010-01-01
NASA is developing advanced space-rated vacuum seals in support of future space exploration missions to low-Earth orbit and other destinations. These seals may be 50 to 60 in. (127 to 152 cm) in diameter and must exhibit extremely low leak rates to ensure that astronauts have sufficient breathable air for extended missions to the International Space Station or the Moon. Seal compression loads must be below prescribed limits so as not to overload the mechanisms that compress them during docking or mating, and seal adhesion forces must be low to allow two mated systems to separate when required. NASA Glenn Research Center has developed a new test apparatus to measure leak rates and compression and adhesion loads of candidate full-scale seals under simulated thermal, vacuum, and engagement conditions. Tests can be performed in seal-on-seal or seal-on-flange configurations at temperatures from -76 to 140 F (-60 to 60 C) under operational pressure gradients. Nominal and off-nominal mating conditions (e.g., incomplete seal compression) can also be simulated. This paper describes the main design features of the test apparatus as well as techniques used to overcome some of the design challenges.
Mechanical behaviour of fibre reinforced concrete using soft - drink can
NASA Astrophysics Data System (ADS)
Ilya, J.; Cheow Chea, C.
2017-11-01
This research was carried out to study the behaviour of concrete, specifically compressive and flexural strength, by incorporating recycled soft drink aluminium can as fibre reinforcement in the concrete. Another aim of the research is to determine the maximum proportion of fibres to be added in the concrete. By following standard mix design, Ordinary Portland Cement (OPC) concrete was made to have a target mean strength of 30 N/mm2 with not more than 30 mm of slump. Having the same workability, OPC concrete with 0%, 1% and 2% of soft drink can aluminium fibre was prepared based on weight of cement. The specimens were tested for compressive strength and flexural strength. Laboratory test results based on short term investigation reveals that the compressive strength and flexural strength of concrete containing fibre are higher than of normal OPC concrete. Among two volume fractions, concrete with 1% of soft drink can fibre have performed better result in compressive strength and flexural strength compared with 2% amount of soft drink can fibre. The optimum proportion of aluminium fibre to be added in the concrete as fibre reinforcement is 1% fibre content by weight of cement which gave all the positive response from all the tests conducted.
Developing the elastic modulus measurement of asphalt concrete using the compressive strength test
NASA Astrophysics Data System (ADS)
Setiawan, Arief; Suparma, Latif Budi; Mulyono, Agus Taufik
2017-11-01
Elastic modulus is a fundamental property of an asphalt mixture. An analytical method of the elastic modulus is needed to determine the thickness of flexible pavement. It has a role as one of the input values on a stress-strain analysis in the finite element method. The aim of this study was to develop the measurement of the elastic modulus by using compressive strength testing. This research used a set of specimen mold tool and Delta Dimensi software to record strain changes occurring in the proving ring of compression machine and the specimens. The elastic modulus of the five types of aggregate gradation and 2 types of asphalt were measured at optimum asphalt content. Asphalt Cement 60/70 and Elastomer Modified Asphalt (EMA) were used as a binder. Manufacturing success indicators of the specimens used void-in-the-mix (VIM) 3-5 % criteria. The success rate of the specimen manufacturing was more than 76%. Thus, the procedure and the compressive strength test equipment could be used for the measurement of the elastic modulus. The aggregate gradation and asphalt types significantly affected the elastic modulus of the asphalt concrete.
NASA Astrophysics Data System (ADS)
Karimi, Mohammad M.; Tabatabaee, Nader; Jahanbakhsh, H.; Jahangiri, Behnam
2017-08-01
Asphalt binder is responsible for the thermo-viscoelastic mechanical behavior of asphalt concrete. Upon application of pure compressive stress to an asphalt concrete specimen, the stress is transferred by mechanisms such as aggregate interlock and the adhesion/cohesion properties of asphalt mastic. In the pure tensile stress mode, aggregate interlock plays a limited role in stress transfer, and the mastic phase plays the dominant role through its adhesive/cohesive and viscoelastic properties. Under actual combined loading patterns, any coordinate direction may experience different stress modes; therefore, the mechanical behavior is not the same in the different directions and the asphalt specimen behaves as an anisotropic material. The present study developed an anisotropic nonlinear viscoelastic constitutive relationship that is sensitive to the tension/compression stress mode by extending Schapery's nonlinear viscoelastic model. The proposed constitutive relationship was implemented in Abaqus using a user material (UMAT) subroutine in an implicit scheme. Uniaxial compression and indirect tension (IDT) testing were used to characterize the viscoelastic properties of the bituminous materials and to calibrate and validate the proposed constitutive relationship. Compressive and tensile creep compliances were calculated using uniaxial compression, as well as IDT test results, for different creep-recovery loading patterns at intermediate temperature. The results showed that both tensile creep compliance and its rate were greater than those of compression. The calculated deflections based on these IDT test simulations were compared with experimental measurements and were deemed acceptable. This suggests that the proposed viscoelastic constitutive relationship correctly demonstrates the viscoelastic response and is more accurate for analysis of asphalt concrete in the laboratory or in situ.
Kelly, Nicola; McGarry, J Patrick
2012-05-01
The inelastic pressure dependent compressive behaviour of bovine trabecular bone is investigated through experimental and computational analysis. Two loading configurations are implemented, uniaxial and confined compression, providing two distinct loading paths in the von Mises-pressure stress plane. Experimental results reveal distinctive yielding followed by a constant nominal stress plateau for both uniaxial and confined compression. Computational simulation of the experimental tests using the Drucker-Prager and Mohr-Coulomb plasticity models fails to capture the confined compression behaviour of trabecular bone. The high pressure developed during confined compression does not result in plastic deformation using these formulations, and a near elastic response is computed. In contrast, the crushable foam plasticity models provide accurate simulation of the confined compression tests, with distinctive yield and plateau behaviour being predicted. The elliptical yield surfaces of the crushable foam formulations in the von Mises-pressure stress plane accurately characterise the plastic behaviour of trabecular bone. Results reveal that the hydrostatic yield stress is equal to the uniaxial yield stress for trabecular bone, demonstrating the importance of accurate characterisation and simulation of the pressure dependent plasticity. It is also demonstrated in this study that a commercially available trabecular bone analogue material, cellular rigid polyurethane foam, exhibits similar pressure dependent yield behaviour, despite having a lower stiffness and strength than trabecular bone. This study provides a novel insight into the pressure dependent yield behaviour of trabecular bone, demonstrating the inadequacy of uniaxial testing alone. For the first time, crushable foam plasticity formulations are implemented for trabecular bone. The enhanced understanding of the inelastic behaviour of trabecular bone established in this study will allow for more realistic simulation of orthopaedic device implantation and failure. Copyright © 2011 Elsevier Ltd. All rights reserved.
Properties of Foamed Mortar Prepared with Granulated Blast-Furnace Slag
Zhao, Xiao; Lim, Siong-Kang; Tan, Cher-Siang; Li, Bo; Ling, Tung-Chai; Huang, Runqiu; Wang, Qingyuan
2015-01-01
Foamed mortar with a density of 1300 kg/m3 was prepared. In the initial laboratory trials, water-to-cement (w/c) ratios ranging from 0.54 to 0.64 were tested to determine the optimal value for foamed mortar corresponding to the highest compressive strength without compromising its fresh state properties. With the obtained optimal w/c ratio of 0.56, two types of foamed mortar were prepared, namely cement-foamed mortar (CFM) and slag-foamed mortar (SFM, 50% cement was replaced by slag weight). Four different curing conditions were adopted for both types of foamed mortar to assess their compressive strength, ultrasonic pulse velocity (UPV) and thermal insulation performance. The test results indicated that utilizing 50% of slag as cement replacement in the production of foamed mortar improved the compressive strength, UPV and thermal insulation properties. Additionally, the initial water curing of seven days gained higher compressive strength and increased UPV values as compared to the air cured and natural weather curing samples. However, this positive effect was more pronounced in the case of compressive strength than in the UPV and thermal conductivity of foamed mortar. PMID:28787950
Compression response of thick layer composite laminates with through-the-thickness reinforcement
NASA Technical Reports Server (NTRS)
Farley, Gary L.; Smith, Barry T.; Maiden, Janice
1992-01-01
Compression and compression-after-impact (CAI) tests were conducted on seven different AS4-3501-6 (0/90) 0.64-cm thick composite laminates. Four of the seven laminates had through-the-thickness (TTT) reinforcement fibers. Two TTT reinforcement methods, stitching and integral weaving, and two reinforcement fibers, Kevlar and carbon, were used. The remaining three laminates were made without TTT reinforcements and were tested to establish a baseline for comparison with the laminates having TTT reinforcement. Six of the seven laminates consisted of nine thick layers whereas the seventh material was composed of 46 thin plies. The use of thick-layer material has the potential for reducing structural part cost because of the reduced part count (layers of material). The compression strengths of the TTT reinforced laminates were approximately one half those of the materials without TTT reinforcements. However, the CAI strengths of the TTT reinforced materials were approximately twice those of materials without TTT reinforcements. The improvement in CAI strength is due to an increase in interlaminar strength produced by the TTT reinforcement. Stitched laminates had slightly higher compression and CAI strengths than the integrally woven laminates.
Material Capability for Transport of Unsymmetrical Dimethylhydrazine
1990-07-13
is shown in Figure 1. The air supply was house compressed air conditioned by passing it through a series of demisters, a hot Hopcalite catalyst bed...required to reach that value was recorded. At the end of a test, the tubing was rinsed with methanol and dried with compressed breathing air or filtered... compressed house air . Solvents such as acetone were not used as they react with hydrazines (8]. Table 2 lists the combinations of tubing length, UDMH or
The Compressive Failure of Aluminum Nitride Considered as a Model Advanced Ceramic
2012-06-01
and fragmentation of hot-pressed silicon carbide under uniaxial compression. Acta Materialia 52 (2), 355–367. Xia, Q., Xia, H., Ruoff, A.L., 1993...Orphal et al., 1996) both as a standalone material and as part of ceramic composites (particularly with SiC ). Much of the literature on bulk...compression experiments. Tungsten carbide platens jacketed by the Ti-6Al-4V titanium alloy were used to protect the loading surfaces of the testing
Vlasov, A A; Vazhenin, A V; Plotnikov, V V; Spirev, V V; Chinarev, Iu B
2010-01-01
The study is concerned with development of equipment for forming circular compression intestinal anastomosis using the "form memory" effect and super-elasticity of titanium nickelide. A sequence of technological operations is suggested, experimental tests and clinical trials carried out and immediate and end-results for anterior resection in rectal cancer are evaluated. Compression equipment for forming colorectal anastomosis proved reliable in long-term operation.
NASA Astrophysics Data System (ADS)
Hashim, M. F. Abu; Abdullah, M. M. A.; Ghazali, C. M. R.; Hussin, K.; Binhussain, M.
2017-04-01
This study investigated the use of a novel white clay geopolymer as a filler to produce high strength glass reinforced epoxy pipe. It was found that using white clay geopolymer as filler gives better compressive strength to the glass reinforced epoxy pipe. The disadvantages of current glass reinforced epoxy pipes such low compressive strength which can be replaced by the composite pipes. Geopolymerization is an innovative technology that can transform several aluminosilicate materials into useful products called geopolymers or inorganic polymers. A series of glass reinforced epoxy pipe and glass reinforced epoxy pipe filled with 10 - 40 weight percentages white clay geopolymer filler with 4 Molarity and 8 Molarity were prepared. Morphology of white clay geopolymer filler surface was indicates using scanning electron microscopy. The additions of white clay geopolymer filler for both 4 Molarity and 8 Molarity show higher compressive strength than glass reinforced epoxy pipe without any geopolymer filler. The compressive test of these epoxy geopolymer pipe samples was determined using Instron Universal Testing under compression mode. Nonetheless, the compressive strength of glass reinforced epoxy pipe with white clay geopolymer filler continues to drop when added to 40 wt% of the geopolymer filler loading for both 4 Molarity and 8 Molarity. These outcomes showed that the mixing of geopolymer materials in epoxy system can be attained in this research.
Vapor Compression Distillation Urine Processor Lessons Learned from Development and Life Testing
NASA Technical Reports Server (NTRS)
Hutchens, Cindy F.; Long, David A.
1999-01-01
Vapor Compression Distillation (VCD) is the chosen technology for urine processing aboard the International Space Station (155). Development and life testing over the past several years have brought to the forefront problems and solutions for the VCD technology. Testing between 1992 and 1998 has been instrumental in developing estimates of hardware life and reliability. It has also helped improve the hardware design in ways that either correct existing problems or enhance the existing design of the hardware. The testing has increased the confidence in the VCD technology and reduced technical and programmatic risks. This paper summarizes the test results and changes that have been made to the VCD design.
Collaborative analysis of wheat endosperm compressive material properties
USDA-ARS?s Scientific Manuscript database
The objective measurement of cereal endosperm texture, for wheat (Triticum L.) in particular, is relevant to the milling, processing and utilization of grain. The objective of this study was to evaluate the inter-laboratory results of compression failure testing of wheat endosperm specimens of defi...
Dhillon, A; Schneider, P; Kuhn, G; Reinwald, Y; White, L J; Levchuk, A; Rose, F R A J; Müller, R; Shakesheff, K M; Rahman, C V
2011-12-01
The mechanical behaviour of polymer scaffolds plays a vital role in their successful use in bone tissue engineering. The present study utilised novel sintered polymer scaffolds prepared using temperature-sensitive poly(DL-lactic acid-co-glycolic acid)/poly(ethylene glycol) particles. The microstructure of these scaffolds was monitored under compressive strain by image-guided failure assessment (IGFA), which combined synchrotron radiation computed tomography (SR CT) and in situ micro-compression. Three-dimensional CT data sets of scaffolds subjected to a strain rate of 0.01%/s illustrated particle movement within the scaffolds with no deformation or cracking. When compressed using a higher strain rate of 0.02%/s particle movement was more pronounced and cracks between sintered particles were observed. The results from this study demonstrate that IGFA based on simultaneous SR CT imaging and micro-compression testing is a useful tool for assessing structural and mechanical scaffold properties, leading to further insight into structure-function relationships in scaffolds for bone tissue engineering applications.
Si, Guo-Ning; Chen, Lan; Li, Bao-Guo
2014-04-01
Base on the Kawakita powder compression equation, a general theoretical model for predicting the compression characteristics of multi-components pharmaceutical powders with different mass ratios was developed. The uniaxial flat-face compression tests of powder lactose, starch and microcrystalline cellulose were carried out, separately. Therefore, the Kawakita equation parameters of the powder materials were obtained. The uniaxial flat-face compression tests of the powder mixtures of lactose, starch, microcrystalline cellulose and sodium stearyl fumarate with five mass ratios were conducted, through which, the correlation between mixture density and loading pressure and the Kawakita equation curves were obtained. Finally, the theoretical prediction values were compared with experimental results. The analysis showed that the errors in predicting mixture densities were less than 5.0% and the errors of Kawakita vertical coordinate were within 4.6%, which indicated that the theoretical model could be used to predict the direct compaction characteristics of multi-component pharmaceutical powders.
NASA Astrophysics Data System (ADS)
Schwiedrzik, Jakob; Raghavan, Rejin; Bürki, Alexander; Lenader, Victor; Wolfram, Uwe; Michler, Johann; Zysset, Philippe
2014-07-01
Ageing societies suffer from an increasing incidence of bone fractures. Bone strength depends on the amount of mineral measured by clinical densitometry, but also on the micromechanical properties of the hierarchical organization of bone. Here, we investigate the mechanical response under monotonic and cyclic compression of both single osteonal lamellae and macroscopic samples containing numerous osteons. Micropillar compression tests in a scanning electron microscope, microindentation and macroscopic compression tests were performed on dry ovine bone to identify the elastic modulus, yield stress, plastic deformation, damage accumulation and failure mechanisms. We found that isolated lamellae exhibit a plastic behaviour, with higher yield stress and ductility but no damage. In agreement with a proposed rheological model, these experiments illustrate a transition from a ductile mechanical behaviour of bone at the microscale to a quasi-brittle response driven by the growth of cracks along interfaces or in the vicinity of pores at the macroscale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Setyawan, Paryanto Dwi, E-mail: paryanto-ds@yahoo.com; Sugiman,; Saputra, Yudhi
The paper presents the compressive and the short beam shear strength of a sandwich composite with opened cell foam made of bamboo fiber as the core and plywood as the skins. The core thickness was varied from 10 mm to 40 mm keeping the volume fraction of fiber constant. Several test s were carried out including the core density, flatwise compressive and the short beam shear testing in three point bending. The results show that the density of bamboo opened cell foam is comparable with commercial plastic foam, such as polyurethane foam. The compressive strength tends to increase linearly with increasing themore » core thickness. The short beam shear failure load of the sandwich composite increases with the increase of core thickness, however on the contrary, the short beam shear strength which tends to sharply decrease from the thickness of 10 mm to 30 mm and then becomes flat.« less
Kim, TaeJoo; Sim, CheulMuu; Kim, MooHwan
2008-05-01
An investigation into the water discharge characteristics of proton exchange membrane (PEM) fuel cells is carried out by using a feasibility test apparatus and the Neutron Radiography Facility (NRF) at HANARO. The feasibility test apparatus was composed of a distilled water supply line, a compressed air supply line, heating systems, and single PEM fuel cells, which were a 1-parallel serpentine type with a 100 cm(2) active area. Three kinds of methods were used: compressed air supply-only; heating-only; and a combination of the methods of a compressed air supply and heating, respectively. The resultant water discharge characteristics are different according to the applied methods. The compressed air supply only is suitable for removing the water at a flow field and a heating only is suitable for water at the MEA. Therefore, in order to remove all the water at PEM fuel cells, the combination method is needed at the moment.
Edwards nXDS15iC Vacuum Scroll Pump Pressure Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sessions, H.; Morgan, G. A.
2013-07-17
The SRNL High Pressure Laboratory performed testing on an Edwards Model nXDS15iC Vacuum Scroll Pump on July 10th and 11th of 2013 at 723-A. This testing was done in an attempt to obtain initial compression ratio information for the nXDS15iC pump, with compression ratio defined as discharge pressure of the pump divided by suction pressure. Pressure burst testing was also done on the pump to determine its design pressure for pressure safety reasons. The Edwards nXDS15iC pump is being evaluated by SRNL for use part of the SHINE project being executed by SRNL.
Development of a preprototype vapor compression distillation water recovery subsystem
NASA Technical Reports Server (NTRS)
Johnson, K. L.
1978-01-01
The activities involved in the design, development, and test of a preprototype vapor compression distillation water recovery subsystem are described. This subsystem, part of a larger regenerative life support evaluation system, is designed to recover usable water from urine, urinal rinse water, and concentrated shower and laundry brine collected from three space vehicle crewmen for a period of 180 days without resupply. Details of preliminary design and testing as well as component developments are included. Trade studies, considerations leading to concept selections, problems encountered, and test data are also presented. The rework of existing hardware, subsystem development including computer programs, assembly verification, and comprehensive baseline test results are discussed.
Saliba, E; Abbassi-Ghadi, S; Vowles, R; Camilleri, J; Hooper, S; Camilleri, J
2009-04-01
To study the effect of addition of various proportions of bismuth oxide on compressive strength and radiopacity of Portland cement. The compressive strength of white Portland cement and cement replaced with 10, 15, 20, 25 and 30% bismuth oxide was evaluated by testing cylinders 6 mm in diameter and 12 mm high. Twelve cylinders were tested for each material under study. The radiopacity of the cements tested was evaluated using an aluminium step-wedge and densitometer. The optical density was compared with the relevant thickness of aluminium (Al). Statistical analysis was performed using Analysis of Variance (ANOVA) with P = 0.05 and Tukey test to perform multiple comparison tests. Various additions of bismuth oxide had no significant effect on the strength of the material when compared with the unmodified Portland cement (P > 0.05). The radiopacity of the cements tested ranged from 2.02 mm Al for Portland cement to 9.79 mm Al for the highest bismuth replacement. Addition of bismuth oxide did not affect the compressive strength of Portland cement. All the bismuth oxide cement mixtures had radio-opacities higher than 3 mm thickness of aluminium.
Xhepa, Erion; Byrne, Robert A; Schulz, Stefanie; Helde, Sandra; Gewalt, Senta; Cassese, Salvatore; Linhardt, Maryam; Ibrahim, Tareq; Mehilli, Julinda; Hoppe, Katharina; Grupp, Katharina; Kufner, Sebastian; Böttiger, Corinna; Hoppmann, Petra; Burgdorf, Christof; Fusaro, Massimiliano; Ott, Ilka; Schneider, Simon; Hengstenberg, Christian; Schunkert, Heribert; Laugwitz, Karl-Ludwig; Kastrati, Adnan
2014-06-01
Vascular closure devices (VCD) have been introduced into clinical practice with the aim of increasing the procedural efficiency and clinical safety of coronary angiography. However, clinical studies comparing VCD and manual compression have yielded mixed results, and large randomised clinical trials comparing the two strategies are missing. Moreover, comparative efficacy studies between different VCD in routine clinical use are lacking. The Instrumental Sealing of ARterial puncture site - CLOSURE device versus manual compression (ISAR-CLOSURE) trial is a prospective, randomised clinical trial designed to compare the outcomes associated with the use of VCD or manual compression to achieve femoral haemostasis. The test hypothesis is that femoral haemostasis after coronary angiography achieved using VCD is not inferior to manual compression in terms of access-site-related vascular complications. Patients undergoing coronary angiography via the common femoral artery will be randomised in a 1:1:1 fashion to receive FemoSeal VCD, EXOSEAL VCD or manual compression. The primary endpoint is the incidence of the composite of arterial access-related complications (haematoma ≥5 cm, pseudoaneurysm, arteriovenous fistula, access-site-related bleeding, acute ipsilateral leg ischaemia, the need for vascular surgical/interventional treatment or documented local infection) at 30 days after randomisation. According to power calculations based on non-inferiority hypothesis testing, enrolment of 4,500 patients is planned. The trial is registered at www.clinicaltrials.gov (study identifier: NCT01389375). The safety of VCD as compared to manual compression in patients undergoing transfemoral coronary angiography remains an issue of clinical equipoise. The aim of the ISAR-CLOSURE trial is to assess whether femoral haemostasis achieved through the use of VCD is non-inferior to manual compression in terms of access-site-related vascular complications.
An ECG signals compression method and its validation using NNs.
Fira, Catalina Monica; Goras, Liviu
2008-04-01
This paper presents a new algorithm for electrocardiogram (ECG) signal compression based on local extreme extraction, adaptive hysteretic filtering and Lempel-Ziv-Welch (LZW) coding. The algorithm has been verified using eight of the most frequent normal and pathological types of cardiac beats and an multi-layer perceptron (MLP) neural network trained with original cardiac patterns and tested with reconstructed ones. Aspects regarding the possibility of using the principal component analysis (PCA) to cardiac pattern classification have been investigated as well. A new compression measure called "quality score," which takes into account both the reconstruction errors and the compression ratio, is proposed.
NASA Astrophysics Data System (ADS)
Ouyang, Bing; Hou, Weilin; Caimi, Frank M.; Dalgleish, Fraser R.; Vuorenkoski, Anni K.; Gong, Cuiling
2017-07-01
The compressive line sensing imaging system adopts distributed compressive sensing (CS) to acquire data and reconstruct images. Dynamic CS uses Bayesian inference to capture the correlated nature of the adjacent lines. An image reconstruction technique that incorporates dynamic CS in the distributed CS framework was developed to improve the quality of reconstructed images. The effectiveness of the technique was validated using experimental data acquired in an underwater imaging test facility. Results that demonstrate contrast and resolution improvements will be presented. The improved efficiency is desirable for unmanned aerial vehicles conducting long-duration missions.
Multi-rate, real time image compression for images dominated by point sources
NASA Technical Reports Server (NTRS)
Huber, A. Kris; Budge, Scott E.; Harris, Richard W.
1993-01-01
An image compression system recently developed for compression of digital images dominated by point sources is presented. Encoding consists of minimum-mean removal, vector quantization, adaptive threshold truncation, and modified Huffman encoding. Simulations are presented showing that the peaks corresponding to point sources can be transmitted losslessly for low signal-to-noise ratios (SNR) and high point source densities while maintaining a reduced output bit rate. Encoding and decoding hardware has been built and tested which processes 552,960 12-bit pixels per second at compression rates of 10:1 and 4:1. Simulation results are presented for the 10:1 case only.
A Real-Time High Performance Data Compression Technique For Space Applications
NASA Technical Reports Server (NTRS)
Yeh, Pen-Shu; Venbrux, Jack; Bhatia, Prakash; Miller, Warner H.
2000-01-01
A high performance lossy data compression technique is currently being developed for space science applications under the requirement of high-speed push-broom scanning. The technique is also error-resilient in that error propagation is contained within a few scan lines. The algorithm is based on block-transform combined with bit-plane encoding; this combination results in an embedded bit string with exactly the desirable compression rate. The lossy coder is described. The compression scheme performs well on a suite of test images typical of images from spacecraft instruments. Hardware implementations are in development; a functional chip set is expected by the end of 2001.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlanderer, Stefan C., E-mail: stefan.schlanderer@unimelb.edu.au; Weymouth, Gabriel D., E-mail: G.D.Weymouth@soton.ac.uk; Sandberg, Richard D., E-mail: richard.sandberg@unimelb.edu.au
This paper introduces a virtual boundary method for compressible viscous fluid flow that is capable of accurately representing moving bodies in flow and aeroacoustic simulations. The method is the compressible extension of the boundary data immersion method (BDIM, Maertens & Weymouth (2015), ). The BDIM equations for the compressible Navier–Stokes equations are derived and the accuracy of the method for the hydrodynamic representation of solid bodies is demonstrated with challenging test cases, including a fully turbulent boundary layer flow and a supersonic instability wave. In addition we show that the compressible BDIM is able to accurately represent noise radiation frommore » moving bodies and flow induced noise generation without any penalty in allowable time step.« less
The Influence of Compression Stocking on Jumping Performance of Athlete
NASA Astrophysics Data System (ADS)
Salleh, M. N.; Lazim, H. M.; Lamsali, H.; Salleh, A. F.
2018-05-01
Evidence of compression stocking effectiveness are mixed, with some researchers suggests that the stocking can enhance performance while others dispute the finding. One of the factors that are thought to cause the mixed results is level of pressure used in their studies. This research had organized a test on fourteen athletes. Their body was scanned and a customized compression stocking which can exert pressure correspond to the intended one was developed. An experiment was conducted to measure the effect of wearing compression stocking on jumping performance. The results show mixed outcomes. For the female athlete, there is a significant difference between wearing and not wearing compression stocking (p<0.05) on knee power. However, there is no significant difference for male athletes whether wearing or not.
NASA Technical Reports Server (NTRS)
Rodi, Patrick E.
1993-01-01
Forward swept sidewall compression inlets have been tested in the Mach 4 Blowdown Facility at the NASA Langley Research Center to study the effects of bodyside compression surfaces on inlet performance in the presence of an incoming turbulent boundary layer. The measurements include mass flow capture and mean surface pressure distributions obtained during simulated combustion pressure increases downstream of the inlet. The kerosene-lampblack surface tracer technique has been used to obtain patterns of the local wall shear stress direction. Inlet performance is evaluated using starting and unstarting characteristics, mass capture, mean surface pressure distributions and permissible back pressure limits. The results indicate that inlet performance can be improved with selected bodyside compression surfaces placed between the inlet sidewalls.
CURRENT CONCEPTS AND TREATMENT OF PATELLOFEMORAL COMPRESSIVE ISSUES.
Mullaney, Michael J; Fukunaga, Takumi
2016-12-01
Patellofemoral disorders, commonly encountered in sports and orthopedic rehabilitation settings, may result from dysfunction in patellofemoral joint compression. Osseous and soft tissue factors, as well as the mechanical interaction of the two, contribute to increased patellofemoral compression and pain. Treatment of patellofemoral compressive issues is based on identification of contributory impairments. Use of reliable tests and measures is essential in detecting impairments in hip flexor, quadriceps, iliotibial band, hamstrings, and gastrocnemius flexibility, as well as in joint mobility, myofascial restrictions, and proximal muscle weakness. Once relevant impairments are identified, a combination of manual techniques, instrument-assisted methods, and therapeutic exercises are used to address the impairments and promote functional improvements. The purpose of this clinical commentary is to describe the clinical presentation, contributory considerations, and interventions to address patellofemoral joint compressive issues.
CURRENT CONCEPTS AND TREATMENT OF PATELLOFEMORAL COMPRESSIVE ISSUES
Fukunaga, Takumi
2016-01-01
Patellofemoral disorders, commonly encountered in sports and orthopedic rehabilitation settings, may result from dysfunction in patellofemoral joint compression. Osseous and soft tissue factors, as well as the mechanical interaction of the two, contribute to increased patellofemoral compression and pain. Treatment of patellofemoral compressive issues is based on identification of contributory impairments. Use of reliable tests and measures is essential in detecting impairments in hip flexor, quadriceps, iliotibial band, hamstrings, and gastrocnemius flexibility, as well as in joint mobility, myofascial restrictions, and proximal muscle weakness. Once relevant impairments are identified, a combination of manual techniques, instrument-assisted methods, and therapeutic exercises are used to address the impairments and promote functional improvements. The purpose of this clinical commentary is to describe the clinical presentation, contributory considerations, and interventions to address patellofemoral joint compressive issues. PMID:27904792
A High Performance Image Data Compression Technique for Space Applications
NASA Technical Reports Server (NTRS)
Yeh, Pen-Shu; Venbrux, Jack
2003-01-01
A highly performing image data compression technique is currently being developed for space science applications under the requirement of high-speed and pushbroom scanning. The technique is also applicable to frame based imaging data. The algorithm combines a two-dimensional transform with a bitplane encoding; this results in an embedded bit string with exact desirable compression rate specified by the user. The compression scheme performs well on a suite of test images acquired from spacecraft instruments. It can also be applied to three-dimensional data cube resulting from hyper-spectral imaging instrument. Flight qualifiable hardware implementations are in development. The implementation is being designed to compress data in excess of 20 Msampledsec and support quantization from 2 to 16 bits. This paper presents the algorithm, its applications and status of development.
The efficacy of the new SCD response compression system in the prevention of venous stasis.
Kakkos, S K; Szendro, G; Griffin, M; Daskalopoulou, S S; Nicolaides, A N
2000-11-01
The current commercially available sequential intermittent pneumatic compression device used for the prevention of deep venous thrombosis has a constant cycle of 11 seconds' compression and 60 seconds' deflation. This deflation period ensures that the veins are filled before the subsequent cycle begins. It has been suggested that in some positions (eg, semirecumbent or sitting) and with different patients (eg, those with venous reflux), refilling of the veins may occur much earlier than 60 seconds, and thus a more frequent cycle may be more effective in expelling blood proximally. The aim of the study was to test the effectiveness of a new sequential compression system (the SCD Response Compression System), which has the ability to detect the change in the venous volume and to respond by initiating the subsequent cycle when the veins are substantially full. In an open controlled trial at an academic vascular laboratory, the SCD Response Compression System was tested against the existing SCD Sequel Compression System in 12 healthy volunteers who were in supine, semirecumbent, and sitting positions. The refilling time sensed by the device was compared with that determined from recordings of femoral vein flow velocity by the use of duplex ultrasound scan. The total volume of blood expelled per hour during compression was compared with that produced by the existing SCD system in the same volunteers and positions. The refilling time determined automatically by the SCD Response Compression System varied from 24 to 60 seconds in the subjects tested, demonstrating individual patient variation. The refilling time (mean +/- SD) in the sitting position was 40.6 +/- 10. 0 seconds, which was significantly longer (P <.001) than that measured in the supine and semirecumbent positions, 33.8 +/- 4.1 and 35.6 +/- 4.9 seconds, respectively. There was a linear relationship between the duplex scan-derived refill time (mean of 6 readings per leg) and the SCD Response device-derived refill time (r = 0.85, P <. 001). The total volume of blood (mean +/- SD) expelled per hour by the existing SCD Sequel device in the supine, semirecumbent, and sitting positions was 2.23 +/- 0.90 L/h, 2.47 +/- 0.86 L/h, and 3.28 +/- 1.24 L/h, respectively. The SCD Response device increased the volume expelled to 3.92 +/- 1.60 L/h or a 76% increase (P =.001) in the supine position, to 3.93 +/- 1.55 L/h or a 59% increase (P =. 001) in the semirecumbent position, and to 3.97 +/- 1.42 L/h or a 21% increase (P =.026) in the sitting position. By achieving more appropriately timed compression cycles over time, the new SCD Response System is effective in preventing venous stasis by means of a new method that improves on the clinically documented effectiveness of the existing SCD system. Further studies testing its potential for improved efficacy in preventing deep venous thrombosis are justified.
Importance of Tensile Strength on the Shear Behavior of Discontinuities
NASA Astrophysics Data System (ADS)
Ghazvinian, A. H.; Azinfar, M. J.; Geranmayeh Vaneghi, R.
2012-05-01
In this study, the shear behavior of discontinuities possessing two different rock wall types with distinct separate compressive strengths was investigated. The designed profiles consisted of regular artificial joints molded by five types of plaster mortars, each representing a distinct uniaxial compressive strength. The compressive strengths of plaster specimens ranged from 5.9 to 19.5 MPa. These specimens were molded considering a regular triangular asperity profile and were designed so as to achieve joint walls with different strength material combinations. The results showed that the shear behavior of discontinuities possessing different joint wall compressive strengths (DDJCS) tested under constant normal load (CNL) conditions is the same as those possessing identical joint wall strengths, but the shear strength of DDJCS is governed by minor joint wall compressive strength. In addition, it was measured that the predicted values obtained by Barton's empirical criterion are greater than the experimental results. The finding indicates that there is a correlation between the joint roughness coefficient (JRC), normal stress, and mechanical strength. It was observed that the mode of failure of asperities is either pure tensile, pure shear, or a combination of both. Therefore, Barton's strength criterion, which considers the compressive strength of joint walls, was modified by substituting the compressive strength with the tensile strength. The validity of the modified criterion was examined by the comparison of the predicted shear values with the laboratory shear test results reported by Grasselli (Ph.D. thesis n.2404, Civil Engineering Department, EPFL, Lausanne, Switzerland, 2001). These comparisons infer that the modified criterion can predict the shear strength of joints more precisely.
Progress with lossy compression of data from the Community Earth System Model
NASA Astrophysics Data System (ADS)
Xu, H.; Baker, A.; Hammerling, D.; Li, S.; Clyne, J.
2017-12-01
Climate models, such as the Community Earth System Model (CESM), generate massive quantities of data, particularly when run at high spatial and temporal resolutions. The burden of storage is further exacerbated by creating large ensembles, generating large numbers of variables, outputting at high frequencies, and duplicating data archives (to protect against disk failures). Applying lossy compression methods to CESM datasets is an attractive means of reducing data storage requirements, but ensuring that the loss of information does not negatively impact science objectives is critical. In particular, test methods are needed to evaluate whether critical features (e.g., extreme values and spatial and temporal gradients) have been preserved and to boost scientists' confidence in the lossy compression process. We will provide an overview on our progress in applying lossy compression to CESM output and describe our unique suite of metric tests that evaluate the impact of information loss. Further, we will describe our processes how to choose an appropriate compression algorithm (and its associated parameters) given the diversity of CESM data (e.g., variables may be constant, smooth, change abruptly, contain missing values, or have large ranges). Traditional compression algorithms, such as those used for images, are not necessarily ideally suited for floating-point climate simulation data, and different methods may have different strengths and be more effective for certain types of variables than others. We will discuss our progress towards our ultimate goal of developing an automated multi-method parallel approach for compression of climate data that both maximizes data reduction and minimizes the impact of data loss on science results.
Enhancing the compressive strength of landfill soil using cement and bagasse ash
NASA Astrophysics Data System (ADS)
Azim, M. A. M.; Azhar, A. T. S.; Tarmizi, A. K. A.; Shahidan, S.; Nabila, A. T. A.
2017-11-01
The stabilisation of contaminated soil with cement and agricultural waste is a widely applied method which contributes to the sustainability of the environment. Soil may be stabilised to increase strength and durability or to prevent erosion and other geotechnical failure. This study was carried out to evaluate the compressive strength of ex-landfill soil when cement and bagasse ash (BA) are added to it. Different proportions of cement (5%, 10%, 15% and 20%) was added to sample weights without BA. On the other hand, the cement in a different batch of sample weights was replaced by 2.5%, 5%, 7.5% and 10% of BA. All samples were allowed to harden and were cured at room temperature for 7, 14 and 28 days respectively. The strength of the contaminated soil was assessed using an unconfined compressive strength test (UCS). The laboratory tests also included the index properties of soil, cement and bagasse ash in raw form. The results indicated that the samples with cement achieved the highest compressive strength measuring 4.39 MPa. However, this study revealed that the use of bagasse ash produced low quality products with a reduction in strength. For example, when 5% of cement was replaced with 5% ash, the compressive strength decreased by about 54% from 0.72 MPa to 0.33 MPa. Similarly, the compressive strength of each sample after a curing period of 28 days was higher compared to samples cured for 7 and 14 days respectively. This is proved that a longer curing period is needed to increase the compressive strength of the samples.
Clinical evaluation of JPEG2000 compression for digital mammography
NASA Astrophysics Data System (ADS)
Sung, Min-Mo; Kim, Hee-Joung; Kim, Eun-Kyung; Kwak, Jin-Young; Yoo, Jae-Kyung; Yoo, Hyung-Sik
2002-06-01
Medical images, such as computed radiography (CR), and digital mammographic images will require large storage facilities and long transmission times for picture archiving and communications system (PACS) implementation. American College of Radiology and National Equipment Manufacturers Association (ACR/NEMA) group is planning to adopt a JPEG2000 compression algorithm in digital imaging and communications in medicine (DICOM) standard to better utilize medical images. The purpose of the study was to evaluate the compression ratios of JPEG2000 for digital mammographic images using peak signal-to-noise ratio (PSNR), receiver operating characteristic (ROC) analysis, and the t-test. The traditional statistical quality measures such as PSNR, which is a commonly used measure for the evaluation of reconstructed images, measures how the reconstructed image differs from the original by making pixel-by-pixel comparisons. The ability to accurately discriminate diseased cases from normal cases is evaluated using ROC curve analysis. ROC curves can be used to compare the diagnostic performance of two or more reconstructed images. The t test can be also used to evaluate the subjective image quality of reconstructed images. The results of the t test suggested that the possible compression ratios using JPEG2000 for digital mammographic images may be as much as 15:1 without visual loss or with preserving significant medical information at a confidence level of 99%, although both PSNR and ROC analyses suggest as much as 80:1 compression ratio can be achieved without affecting clinical diagnostic performance.
NASA Astrophysics Data System (ADS)
Usman, Aliyu; Ibrahim, Muhammad B.; Bala, Nura
2018-04-01
This research is aimed at investigating the effect of using amorphous silica ash (ASA) obtained from rice husk as a partial replacement of ordinary Portland cement (OPC) on the compressive and flexural strength of mortar. ASA was used in partial replacement of ordinary Portland cement in the following percentages 2.5 percent, 5 percent, 7.5 percent and 10 percent. These partial replacements were used to produce Cement-ASA mortar. ASA was found to contain all major chemical compounds found in cement with the exception of alumina, which are SiO2 (91.5%), CaO (2.84%), Fe2O3 (1.96%), and loss on ignition (LOI) was found to be 9.18%. It also contains other minor oxides found in cement. The test on hardened mortar were destructive in nature which include flexural strength test on prismatic beam (40mm x 40mm x 160mm) and compressive strength test on the cube size (40mm x 40mm, by using the auxiliary steel plates) at 2,7,14 and 28 days curing. The Cement-ASA mortar flexural and compressive strengths were found to be increasing with curing time and decreases with cement replacement by ASA. It was observed that 5 percent replacement of cement with ASA attained the highest strength for all the curing ages and all the percentage replacements attained the targeted compressive strength of 6N/mm2 for 28 days for the cement mortar
Parmar, Suresh; Khodasevych, Iryna; Troynikov, Olga
2017-08-21
The recent use of graduated compression therapy for treatment of chronic venous disorders such as leg ulcers and oedema has led to considerable research interest in flexible and low-cost force sensors. Properly applied low pressure during compression therapy can substantially improve the treatment of chronic venous disorders. However, achievement of the recommended low pressure levels and its accurate determination in real-life conditions is still a challenge. Several thin and flexible force sensors, which can also function as pressure sensors, are commercially available, but their real-life sensing performance has not been evaluated. Moreover, no researchers have reported information on sensor performance during static and dynamic loading within the realistic test conditions required for compression therapy. This research investigated the sensing performance of five low-cost commercial pressure sensors on a human-leg-like test apparatus and presents quantitative results on the accuracy and drift behaviour of these sensors in both static and dynamic conditions required for compression therapy. Extensive experimental work on this new human-leg-like test setup demonstrated its utility for evaluating the sensors. Results showed variation in static and dynamic sensing performance, including accuracy and drift characteristics. Only one commercially available pressure sensor was found to reliably deliver accuracy of 95% and above for all three test pressure points of 30, 50 and 70 mmHg.
NASA Astrophysics Data System (ADS)
Behrens, B.-A.; Bouguecha, A.; Bonk, C.; Dykiert, M.
2017-09-01
Magnesium sheet alloys have a great potential as a construction material in the aerospace and automotive industry. However, the current state of research regarding temperature dependent material parameters for the description of the plastic behaviour of magnesium sheet alloys is scarce in literature and accurate statements concerning yield criteria and appropriate characterization tests to describe the plastic behaviour of a magnesium sheet alloy at elevated temperatures in deep drawing processes are to define. Hence, in this paper the plastic behaviour of the well-established magnesium sheet alloy AZ31 has been characterized by means of convenient mechanical tests (e. g. tension, compression and biaxial tests) at temperatures between 180 and 230 °C. In this manner, anisotropic and hardening behaviour as well as differences between the tension-compression asymmetry of the yield locus have been estimated. Furthermore, using the evaluated data from the above mentioned tests, two different yield criteria have been parametrized; the commonly used Hill’48 and an orthotropic yield criterion, CPB2006, which was developed especially for materials with hexagonal close packed lattice structure and is able to describe an asymmetrical yielding behaviour regarding tensile and compressive stress states. Numerical simulations have been finally carried out with both yield functions in order to assess the accuracy of the material models.
Parmar, Suresh; Khodasevych, Iryna; Troynikov, Olga
2017-01-01
The recent use of graduated compression therapy for treatment of chronic venous disorders such as leg ulcers and oedema has led to considerable research interest in flexible and low-cost force sensors. Properly applied low pressure during compression therapy can substantially improve the treatment of chronic venous disorders. However, achievement of the recommended low pressure levels and its accurate determination in real-life conditions is still a challenge. Several thin and flexible force sensors, which can also function as pressure sensors, are commercially available, but their real-life sensing performance has not been evaluated. Moreover, no researchers have reported information on sensor performance during static and dynamic loading within the realistic test conditions required for compression therapy. This research investigated the sensing performance of five low-cost commercial pressure sensors on a human-leg-like test apparatus and presents quantitative results on the accuracy and drift behaviour of these sensors in both static and dynamic conditions required for compression therapy. Extensive experimental work on this new human-leg-like test setup demonstrated its utility for evaluating the sensors. Results showed variation in static and dynamic sensing performance, including accuracy and drift characteristics. Only one commercially available pressure sensor was found to reliably deliver accuracy of 95% and above for all three test pressure points of 30, 50 and 70 mmHg. PMID:28825672
Jang, Jae-Kyeong; Kim, Hong-Gi; Kim, Jun-Hyeong
2018-01-01
Concrete systems exposed to deicers are damaged in physical and chemical ways. In mitigating the damage from CaCl2 deicers, the usage of ground slag cement and MgO are investigated. Ordinary Portland cement (OPC) and slag cement are used in different proportions as the binding material, and MgO in doses of 0%, 5%, 7%, and 10% are added to the systems. After 28 days of water-curing, the specimens are immersed in 30% CaCl2 solution by mass for 180 days. Compressive strength test, carbonation test, chloride penetration test, chloride content test, XRD analysis, and SEM-EDAX analysis are conducted to evaluate the damage effects of the deicing solution. Up to 28 days, plain specimens with increasing MgO show a decrease in compressive strength, an increase in carbonation resistance, and a decrease in chloride penetration resistance, whereas the S30- and S50- specimens show a slight increase in compressive strength, an increase in carbonation resistance, and a slight increase in chloride penetration resistance. After 180 days of immersion in deicing solution, specimens with MgO retain their compressive strength longer and show improved durability. Furthermore, the addition of MgO to concrete systems with slag cement induces the formation of magnesium silicate hydrate (M-S-H) phases. PMID:29758008
Guerreiro-Tanomaru, Juliane Maria; Trindade-Junior, Adinael; Cesar Costa, Bernardo; da Silva, Guilherme Ferreira; Drullis Cifali, Leonardo; Basso Bernardi, Maria Inês
2014-01-01
The aim of the present study was to evaluate the antibiofilm activity against Enterococcus faecalis, compressive strength. and radiopacity of Portland cement (PC) added to zirconium oxide (ZrO2), as radiopacifier, with or without nanoparticulated zinc oxide (ZnO). The following experimental materials were evaluated: PC, PC + ZrO2, PC + ZrO2 + ZnO (5%), and PC + ZrO2 + ZnO (10%). Antibiofilm activity was analyzed by using direct contact test (DCT) on Enterococcus faecalis biofilm, for 5 h or 15 h. The analysis was conducted by using the number of colony-forming units (CFU/mL). The compressive strength was performed in a mechanical testing machine. For the radiopacity tests, the specimens were radiographed together with an aluminium stepwedge. The results were submitted to ANOVA and Tukey tests, with level of significance at 5%. The results showed that all materials presented similar antibiofilm activity (P > 0.05). The addition of nanoparticulated ZnO decreased the compressive strength of PC. All materials presented higher radiopacity than pure PC. It can be concluded that the addition of ZrO2 and ZnO does not interfere with the antibiofilm activity and provides radiopacity to Portland cement. However, the presence of ZnO (5% or 10%) significantly decreased the compressive strength of the materials. PMID:25431798
Applications of Taylor-Galerkin finite element method to compressible internal flow problems
NASA Technical Reports Server (NTRS)
Sohn, Jeong L.; Kim, Yongmo; Chung, T. J.
1989-01-01
A two-step Taylor-Galerkin finite element method with Lapidus' artificial viscosity scheme is applied to several test cases for internal compressible inviscid flow problems. Investigations for the effect of supersonic/subsonic inlet and outlet boundary conditions on computational results are particularly emphasized.
Code of Federal Regulations, 2014 CFR
2014-10-01
... using liquefied petroleum gas (LPG) and compressed natural gas (CNG) must meet the following... design, installation and testing of each CNG system must meet ABYC A-22, “Marine Compressed Natural Gas (CNG) Systems,” Chapter 6 of NFPA 302, or other standard specified by the Commandant. (c) Cooking...
Effect of compressive force on PEM fuel cell performance
NASA Astrophysics Data System (ADS)
MacDonald, Colin Stephen
Polymer electrolyte membrane (PEM) fuel cells possess the potential, as a zero-emission power source, to replace the internal combustion engine as the primary option for transportation applications. Though there are a number of obstacles to vast PEM fuel cell commercialization, such as high cost and limited durability, there has been significant progress in the field to achieve this goal. Experimental testing and analysis of fuel cell performance has been an important tool in this advancement. Experimental studies of the PEM fuel cell not only identify unfiltered performance response to manipulation of variables, but also aid in the advancement of fuel cell modelling, by allowing for validation of computational schemes. Compressive force used to contain a fuel cell assembly can play a significant role in how effectively the cell functions, the most obvious example being to ensure proper sealing within the cell. Compression can have a considerable impact on cell performance beyond the sealing aspects. The force can manipulate the ability to deliver reactants and the electrochemical functions of the cell, by altering the layers in the cell susceptible to this force. For these reasons an experimental study was undertaken, presented in this thesis, with specific focus placed on cell compression; in order to study its effect on reactant flow fields and performance response. The goal of the thesis was to develop a consistent and accurate general test procedure for the experimental analysis of a PEM fuel cell in order to analyse the effects of compression on performance. The factors potentially affecting cell performance, which were a function of compression, were identified as: (1) Sealing and surface contact; (2) Pressure drop across the flow channel; (3) Porosity of the GDL. Each factor was analysed independently in order to determine the individual contribution to changes in performance. An optimal degree of compression was identified for the cell configuration in question and the performance gains from the aforementioned compression factors were quantified. The study provided a considerable amount of practical and analytical knowledge in the area of cell compression and shed light on the importance of precision compressive control within the PEM fuel cell.
Park, Jin-Woo; Kim, Kyoung-Tae; Sung, Joo-Kyung; Park, Seong-Hyun; Seong, Ki-Woong; Cho, Dae-Chul
2017-09-01
The purpose of the present study was to compare inter-fragmentary compression pressures after fixation of a simulated type II odontoid fracture with the headless compression Herbert screw and a half threaded cannulated lag screw. We compared inter-fragmentary compression pressures between 40- and 45-mm long 4.5-mm Herbert screws (n=8 and n=9, respectively) and 40- and 45-mm long 4.0-mm cannulated lag screws (n=7 and n=10, respectively) after insertion into rigid polyurethane foam test blocks (Sawbones, Vashon, WA, USA). A washer load cell was placed between the two segments of test blocks to measure the compression force. Because the total length of each foam block was 42 mm, the 40-mm screws were embedded in the cancellous foam, while the 45-mm screws penetrated the denser cortical foam at the bottom. This enabled us to compare inter-fragmentary compression pressures as they are affected by the penetration of the apical dens tip by the screws. The mean compression pressures of the 40- and 45-mm long cannulated lag screws were 50.48±1.20 N and 53.88±1.02 N, respectively, which was not statistically significant (p=0.0551). The mean compression pressures of the 40-mm long Herbert screw was 52.82±2.17 N, and was not statistically significant compared with the 40-mm long cannulated lag screw (p=0.3679). However, 45-mm Herbert screw had significantly higher mean compression pressure (60.68±2.03 N) than both the 45-mm cannulated lag screw and the 40-mm Herbert screw (p=0.0049 and p=0.0246, respectively). Our results showed that inter-fragmentary compression pressures of the Herbert screw were significantly increased when the screw tip penetrated the opposite dens cortical foam. This can support the generally recommended surgical technique that, in order to facilitate maximal reduction of the fracture gap using anterior odontoid screws, it is essential to penetrate the apical dens tip with the screw.
Compression and fast retrieval of SNP data.
Sambo, Francesco; Di Camillo, Barbara; Toffolo, Gianna; Cobelli, Claudio
2014-11-01
The increasing interest in rare genetic variants and epistatic genetic effects on complex phenotypic traits is currently pushing genome-wide association study design towards datasets of increasing size, both in the number of studied subjects and in the number of genotyped single nucleotide polymorphisms (SNPs). This, in turn, is leading to a compelling need for new methods for compression and fast retrieval of SNP data. We present a novel algorithm and file format for compressing and retrieving SNP data, specifically designed for large-scale association studies. Our algorithm is based on two main ideas: (i) compress linkage disequilibrium blocks in terms of differences with a reference SNP and (ii) compress reference SNPs exploiting information on their call rate and minor allele frequency. Tested on two SNP datasets and compared with several state-of-the-art software tools, our compression algorithm is shown to be competitive in terms of compression rate and to outperform all tools in terms of time to load compressed data. Our compression and decompression algorithms are implemented in a C++ library, are released under the GNU General Public License and are freely downloadable from http://www.dei.unipd.it/~sambofra/snpack.html. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
An efficient coding algorithm for the compression of ECG signals using the wavelet transform.
Rajoub, Bashar A
2002-04-01
A wavelet-based electrocardiogram (ECG) data compression algorithm is proposed in this paper. The ECG signal is first preprocessed, the discrete wavelet transform (DWT) is then applied to the preprocessed signal. Preprocessing guarantees that the magnitudes of the wavelet coefficients be less than one, and reduces the reconstruction errors near both ends of the compressed signal. The DWT coefficients are divided into three groups, each group is thresholded using a threshold based on a desired energy packing efficiency. A binary significance map is then generated by scanning the wavelet decomposition coefficients and outputting a binary one if the scanned coefficient is significant, and a binary zero if it is insignificant. Compression is achieved by 1) using a variable length code based on run length encoding to compress the significance map and 2) using direct binary representation for representing the significant coefficients. The ability of the coding algorithm to compress ECG signals is investigated, the results were obtained by compressing and decompressing the test signals. The proposed algorithm is compared with direct-based and wavelet-based compression algorithms and showed superior performance. A compression ratio of 24:1 was achieved for MIT-BIH record 117 with a percent root mean square difference as low as 1.08%.
Compression and fast retrieval of SNP data
Sambo, Francesco; Di Camillo, Barbara; Toffolo, Gianna; Cobelli, Claudio
2014-01-01
Motivation: The increasing interest in rare genetic variants and epistatic genetic effects on complex phenotypic traits is currently pushing genome-wide association study design towards datasets of increasing size, both in the number of studied subjects and in the number of genotyped single nucleotide polymorphisms (SNPs). This, in turn, is leading to a compelling need for new methods for compression and fast retrieval of SNP data. Results: We present a novel algorithm and file format for compressing and retrieving SNP data, specifically designed for large-scale association studies. Our algorithm is based on two main ideas: (i) compress linkage disequilibrium blocks in terms of differences with a reference SNP and (ii) compress reference SNPs exploiting information on their call rate and minor allele frequency. Tested on two SNP datasets and compared with several state-of-the-art software tools, our compression algorithm is shown to be competitive in terms of compression rate and to outperform all tools in terms of time to load compressed data. Availability and implementation: Our compression and decompression algorithms are implemented in a C++ library, are released under the GNU General Public License and are freely downloadable from http://www.dei.unipd.it/~sambofra/snpack.html. Contact: sambofra@dei.unipd.it or cobelli@dei.unipd.it. PMID:25064564
Lee, Donghee; Erickson, Alek; You, Taesun; Dudley, Andrew T; Ryu, Sangjin
2018-06-13
Hyaline cartilage is a specialized type of connective tissue that lines many moveable joints (articular cartilage) and contributes to bone growth (growth plate cartilage). Hyaline cartilage is composed of a single cell type, the chondrocyte, which produces a unique hydrated matrix to resist compressive stress. Although compressive stress has profound effects on transcriptional networks and matrix biosynthesis in chondrocytes, mechanistic relationships between strain, signal transduction, cell metabolism, and matrix production remain superficial. Here, we describe development and validation of a polydimethylsiloxane (PDMS)-based pneumatic microfluidic cell compression device which generates multiple compression conditions in a single platform. The device contained an array of PDMS balloons of different sizes which were actuated by pressurized air, and the balloons compressed chondrocytes cells in alginate hydrogel constructs. Our characterization and testing of the device showed that the developed platform could compress chondrocytes with various magnitudes simultaneously with negligible effect on cell viability. Also, the device is compatible with live cell imaging to probe early effects of compressive stress, and it can be rapidly dismantled to facilitate molecular studies of compressive stress on transcriptional networks. Therefore, the proposed device will enhance the productivity of chondrocyte mechanobiology studies, and it can be applied to study mechanobiology of other cell types.
Highly Loaded Composite Strut Test Development
NASA Technical Reports Server (NTRS)
Wu, K. Chauncey; Phelps, James E.; McKenney, Martin J.; Jegley, Dawn C.
2011-01-01
Highly loaded composite struts, representative of structural elements of a proposed truss-based lunar lander descent stage concept, were selected for design, development, fabrication and testing under NASA s Advanced Composites Technology program. The focus of this paper is the development of a capability for experimental evaluation of the structural performance of these struts. Strut lengths range from 60 to over 120 inches, and compressive launch and ascent loads can exceed -100,000 lbs, or approximately two times the corresponding tensile loads. Allowing all possible compressive structural responses, including elastic buckling, were primary considerations for designing the test hardware.
NASA Technical Reports Server (NTRS)
Hshieh, Fu-Yu; Beeson, Harold D.
2004-01-01
One likely cause of polymer ignition in a high-pressure oxygen system is adiabatic-compression heating of polymers caused by pneumatic impact. Oxidative _ pyrolysis or combustion of polymers in a high-pressure oxygen system could generate toxic gases. This paper reports the preliminary results of toxic combustion product testing of selected polymers in a pneumatic-impact test system. Five polymers commonly used in high-pressure oxygen systems, Nylon 6/6, polychlorotrifluoroethylene (CTFE), polytetrafluoroethylene (PTFE), fluoroelastomer (Viton(TradeMark) A), and nitrile rubber (Buna N), were tested in a pneumatic-impact test system at 2500- or 3500-psia oxygen pressure. The polymers were ignited and burned, then combustion products were collected in a stainless-steel sample bottle and analyzed by GC/MS/IRD, GC/FID, and GC/Methanizer/FID. The results of adiabatic-compression tests show that combustion of hydrocarbon polymers, nitrogen-containing polymers, and halogenated polymers in high-pressure oxygen systems are relatively complete. Toxicity of the combustion product gas is presumably much lower than the combustion product gas generated from ambient-pressure oxygen (or air) environments. The NASA-Lewis equilibrium code was used to determine the composition of combustion product gas generated from a simulated, adiabatic-compression test of nine polymers. The results are presented and discussed.
Fractured Rock Permeability as a Function of Temperature and Confining Pressure
NASA Astrophysics Data System (ADS)
Alam, A. K. M. Badrul; Fujii, Yoshiaki; Fukuda, Daisuke; Kodama, Jun-ichi; Kaneko, Katsuhiko
2015-10-01
Triaxial compression tests were carried out on Shikotsu welded tuff, Kimachi sandstone, and Inada granite under confining pressures of 1-15 MPa at 295 and 353 K. The permeability of the tuff declined monotonically with axial compression. The post-compression permeability became smaller than that before axial compression. The permeability of Kimachi sandstone and Inada granite declined at first, then began to increase before the peak load, and showed values that were almost constant in the residual strength state. The post-compression permeability of Kimachi sandstone was higher than that before axial compression under low confining pressures, but lower under higher confining pressures. On the other hand, the permeability of Inada granite was higher than that before axial compression regardless of the confining pressure values. For the all rock types, the post-compression permeability at 353 K was lower than at 295 K and the influence of the confining pressure was less at 353 K than at 295 K. The above temperature effects were observed apparently for Inada granite, only the latter effect was apparent for Shikotsu welded tuff, and they were not so obvious for Kimachi sandstone. The mechanisms causing the variation in rock permeability and sealability of underground openings were discussed.
Magnetized Target Fusion At General Fusion: An Overview
NASA Astrophysics Data System (ADS)
Laberge, Michel; O'Shea, Peter; Donaldson, Mike; Delage, Michael; Fusion Team, General
2017-10-01
Magnetized Target Fusion (MTF) involves compressing an initial magnetically confined plasma on a timescale faster than the thermal confinement time of the plasma. If near adiabatic compression is achieved, volumetric compression of 350X or more of a 500 eV target plasma would achieve a final plasma temperature exceeding 10 keV. Interesting fusion gains could be achieved provided the compressed plasma has sufficient density and dwell time. General Fusion (GF) is developing a compression system using pneumatic pistons to collapse a cavity formed in liquid metal containing a magnetized plasma target. Low cost driver, straightforward heat extraction, good tritium breeding ratio and excellent neutron protection could lead to a practical power plant. GF (65 employees) has an active plasma R&D program including both full scale and reduced scale plasma experiments and simulation of both. Although pneumatic driven compression of full scale plasmas is the end goal, present compression studies use reduced scale plasmas and chemically accelerated aluminum liners. We will review results from our plasma target development, motivate and review the results of dynamic compression field tests and briefly describe the work to date on the pneumatic driver front.
Barbier, Paolo; Alimento, Marina; Berna, Giovanni; Cavoretto, Dario; Celeste, Fabrizio; Muratori, Manuela; Guazzi, Maurizio D
2004-01-01
Tele-echocardiography is not widely used because of lengthy transmission times when using standard Motion Pictures Expert Groups (MPEG)-2 lossy compression algorythms, unless expensive high bandwidth lines are used. We sought to validate the newer MPEG-4 algorythms to allow further reduction in echocardiographic motion video file size. Four cardiologists expert in echocardiography read blindly 165 randomized uncompressed and compressed 2D and color Doppler normal and pathologic motion images. One Digital Video and 3 MPEG-4 compression algorythms were tested, the latter at 3 decreasing compression quality levels (100%, 65% and 40%). Mean diagnostic and image quality scores were computed for each file and compared across the 3 compression levels using uncompressed files as controls. File dimensions decreased from a range of uncompressed 12-83 MB to MPEG-4 0.03-2.3 MB. All algorythms showed mean scores that were not significantly different from uncompressed source, except the MPEG-4 DivX algorythm at the highest selected compression (40%, p=.002). These data support the use of MPEG-4 compression to reduce echocardiographic motion image size for transmission purposes, allowing cost reduction through use of low bandwidth lines.
Multispectral Image Compression Based on DSC Combined with CCSDS-IDC
Li, Jin; Xing, Fei; Sun, Ting; You, Zheng
2014-01-01
Remote sensing multispectral image compression encoder requires low complexity, high robust, and high performance because it usually works on the satellite where the resources, such as power, memory, and processing capacity, are limited. For multispectral images, the compression algorithms based on 3D transform (like 3D DWT, 3D DCT) are too complex to be implemented in space mission. In this paper, we proposed a compression algorithm based on distributed source coding (DSC) combined with image data compression (IDC) approach recommended by CCSDS for multispectral images, which has low complexity, high robust, and high performance. First, each band is sparsely represented by DWT to obtain wavelet coefficients. Then, the wavelet coefficients are encoded by bit plane encoder (BPE). Finally, the BPE is merged to the DSC strategy of Slepian-Wolf (SW) based on QC-LDPC by deep coupling way to remove the residual redundancy between the adjacent bands. A series of multispectral images is used to test our algorithm. Experimental results show that the proposed DSC combined with the CCSDS-IDC (DSC-CCSDS)-based algorithm has better compression performance than the traditional compression approaches. PMID:25110741
Strength properties of interlocking compressed earth brick units
NASA Astrophysics Data System (ADS)
Saari, S.; Bakar, B. H. Abu; Surip, N. A.
2017-10-01
This study presents a laboratory investigation on the properties of interlocking compressed earth brick (ICEB) units. Compressive strength, which is one of the most important properties in masonry structures, is used to determine masonry performance. The compressive strength of the ICEB units was determined by applying a compressive strength test for 340 units from four types of ICEB. To analyze the strength of the ICEB units, each unit was capped by a steel plate at the top and bottom to create a flat surface, and then ICEB was loaded until failure. The average compressive strength of the corresponding ICEB units are as follows: wall brick, 19.15 N/mm2; beam brick, 16.99 N/mm2; column brick, 13.18 N/mm2; and half brick, 11.79 N/mm2. All the ICEB units had compressive strength of over 5 N/mm2, which is the minimum strength for a load-bearing brick. This study proves that ICEB units may be used as load-bearing bricks. The strength of ICEBs is equal to that of other common bricks and blocks that are currently available in the market.
Multispectral image compression based on DSC combined with CCSDS-IDC.
Li, Jin; Xing, Fei; Sun, Ting; You, Zheng
2014-01-01
Remote sensing multispectral image compression encoder requires low complexity, high robust, and high performance because it usually works on the satellite where the resources, such as power, memory, and processing capacity, are limited. For multispectral images, the compression algorithms based on 3D transform (like 3D DWT, 3D DCT) are too complex to be implemented in space mission. In this paper, we proposed a compression algorithm based on distributed source coding (DSC) combined with image data compression (IDC) approach recommended by CCSDS for multispectral images, which has low complexity, high robust, and high performance. First, each band is sparsely represented by DWT to obtain wavelet coefficients. Then, the wavelet coefficients are encoded by bit plane encoder (BPE). Finally, the BPE is merged to the DSC strategy of Slepian-Wolf (SW) based on QC-LDPC by deep coupling way to remove the residual redundancy between the adjacent bands. A series of multispectral images is used to test our algorithm. Experimental results show that the proposed DSC combined with the CCSDS-IDC (DSC-CCSDS)-based algorithm has better compression performance than the traditional compression approaches.
Simulating compressible-incompressible two-phase flows
NASA Astrophysics Data System (ADS)
Denner, Fabian; van Wachem, Berend
2017-11-01
Simulating compressible gas-liquid flows, e.g. air-water flows, presents considerable numerical issues and requires substantial computational resources, particularly because of the stiff equation of state for the liquid and the different Mach number regimes. Treating the liquid phase (low Mach number) as incompressible, yet concurrently considering the gas phase (high Mach number) as compressible, can improve the computational performance of such simulations significantly without sacrificing important physical mechanisms. A pressure-based algorithm for the simulation of two-phase flows is presented, in which a compressible and an incompressible fluid are separated by a sharp interface. The algorithm is based on a coupled finite-volume framework, discretised in conservative form, with a compressive VOF method to represent the interface. The bulk phases are coupled via a novel acoustically-conservative interface discretisation method that retains the acoustic properties of the compressible phase and does not require a Riemann solver. Representative test cases are presented to scrutinize the proposed algorithm, including the reflection of acoustic waves at the compressible-incompressible interface, shock-drop interaction and gas-liquid flows with surface tension. Financial support from the EPSRC (Grant EP/M021556/1) is gratefully acknowledged.
30 CFR 7.506 - Breathable air components.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Breathable air components. 7.506 Section 7.506... APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Refuge Alternatives § 7.506 Breathable air components. (a) Breathable air shall be supplied by compressed air cylinders, compressed breathable-oxygen...
30 CFR 7.506 - Breathable air components.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Breathable air components. 7.506 Section 7.506... APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Refuge Alternatives § 7.506 Breathable air components. (a) Breathable air shall be supplied by compressed air cylinders, compressed breathable-oxygen...
30 CFR 7.506 - Breathable air components.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Breathable air components. 7.506 Section 7.506... APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Refuge Alternatives § 7.506 Breathable air components. (a) Breathable air shall be supplied by compressed air cylinders, compressed breathable-oxygen...
1979-08-28
11 EXPERIMENTAL PROGRAM .......................................*16 SHEAR TESTS ON THICK DISBONDED LAMINATES .... ....... 16 COMPRESSIVE BUCKLING OF...DISBONDED LAMINATES ...... .. 17 MECHANICAL CHARACTERIZATION FOR MOISTURE CONDITIONING EFFECTS .................................. 19 ULTRASONIC WAVE...SHEAR OF THICK LAMINATED BEAMS . . . ....... 24 PROPAGATION OF DISBOND IN FATIGUE ..... ............ .. 26 BUCKLING OF DISBONDED COMPRESSION SKIN
Fast and accurate face recognition based on image compression
NASA Astrophysics Data System (ADS)
Zheng, Yufeng; Blasch, Erik
2017-05-01
Image compression is desired for many image-related applications especially for network-based applications with bandwidth and storage constraints. The face recognition community typical reports concentrate on the maximal compression rate that would not decrease the recognition accuracy. In general, the wavelet-based face recognition methods such as EBGM (elastic bunch graph matching) and FPB (face pattern byte) are of high performance but run slowly due to their high computation demands. The PCA (Principal Component Analysis) and LDA (Linear Discriminant Analysis) algorithms run fast but perform poorly in face recognition. In this paper, we propose a novel face recognition method based on standard image compression algorithm, which is termed as compression-based (CPB) face recognition. First, all gallery images are compressed by the selected compression algorithm. Second, a mixed image is formed with the probe and gallery images and then compressed. Third, a composite compression ratio (CCR) is computed with three compression ratios calculated from: probe, gallery and mixed images. Finally, the CCR values are compared and the largest CCR corresponds to the matched face. The time cost of each face matching is about the time of compressing the mixed face image. We tested the proposed CPB method on the "ASUMSS face database" (visible and thermal images) from 105 subjects. The face recognition accuracy with visible images is 94.76% when using JPEG compression. On the same face dataset, the accuracy of FPB algorithm was reported as 91.43%. The JPEG-compressionbased (JPEG-CPB) face recognition is standard and fast, which may be integrated into a real-time imaging device.
Contribution of collagen fibers to the compressive stiffness of cartilaginous tissues.
Römgens, Anne M; van Donkelaar, Corrinus C; Ito, Keita
2013-11-01
Cartilaginous tissues such as the intervertebral disk are predominantly loaded under compression. Yet, they contain abundant collagen fibers, which are generally assumed to contribute to tensile loading only. Fiber tension is thought to originate from swelling of the proteoglycan-rich nucleus. However, in aged or degenerate disk, proteoglycans are depleted, whereas collagen content changes little. The question then rises to which extend the collagen may contribute to the compressive stiffness of the tissue. We hypothesized that this contribution is significant at high strain magnitudes and that the effect depends on fiber orientation. In addition, we aimed to determine the compression of the matrix. Bovine inner and outer annulus fibrosus specimens were subjected to incremental confined compression tests up to 60 % strain in radial and circumferential direction. The compressive aggregate modulus was determined per 10 % strain increment. The biochemical composition of the compressed specimens and uncompressed adjacent tissue was determined to compute solid matrix compression. The stiffness of all specimens increased nonlinearly with strain. The collagen-rich outer annulus was significantly stiffer than the inner annulus above 20 % compressive strain. Orientation influenced the modulus in the collagen-rich outer annulus. Finally, it was shown that the solid matrix was significantly compressed above 30 % strain. Therefore, we concluded that collagen fibers significantly contribute to the compressive stiffness of the intervertebral disk at high strains. This is valuable for understanding the compressive behavior of collagen-reinforced tissues in general, and may be particularly relevant for aging or degenerate disks, which become more fibrous and less hydrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Dongsheng; Ahzi, Said; M'Guil, S. M.
2014-01-06
The viscoplastic intermediate phi-model was applied in this work to predict the deformation behavior and texture evolution in a magnesium alloy, an HCP material. We simulated the deformation behavior with different intergranular interaction strengths and compared the predicted results with available experimental results. In this approach, elasticity is neglected and the plastic deformation mechanisms are assumed as a combination of crystallographic slip and twinning systems. Tests are performed for rolling (plane strain compression) of random textured Mg polycrystal as well as for tensile and compressive tests on rolled Mg sheets. Simulated texture evolutions agree well with experimental data. Activities of twinning and slip, predicted by the intermediatemore » $$\\phi$$-model, reveal the strong anisotropic behavior during tension and compression of rolled sheets.« less
Neurologic outcome of controlled compressed-air diving.
Cordes, P; Keil, R; Bartsch, T; Tetzlaff, K; Reuter, M; Hutzelmann, A; Friege, L; Meyer, T; Bettinghausen, E; Deuschl, G
2000-12-12
The authors compared the neurologic, neuropsychological, and neuroradiologic status of military compressed-air divers without a history of neurologic decompression illness and controls. No gross differences in the neuropsychometric test results or abnormal neurologic findings were found. There was no correlation between test results, diving experience, and number and size of cerebral MRI lesions. Prevalence of cerebral lesions was not increased in divers. These results suggest that there are no long-term CNS sequelae in military divers if diving is performed under controlled conditions.
NASA Astrophysics Data System (ADS)
Zhang, Miao; Tong, Xiaojun
2017-07-01
This paper proposes a joint image encryption and compression scheme based on a new hyperchaotic system and curvelet transform. A new five-dimensional hyperchaotic system based on the Rabinovich system is presented. By means of the proposed hyperchaotic system, a new pseudorandom key stream generator is constructed. The algorithm adopts diffusion and confusion structure to perform encryption, which is based on the key stream generator and the proposed hyperchaotic system. The key sequence used for image encryption is relation to plain text. By means of the second generation curvelet transform, run-length coding, and Huffman coding, the image data are compressed. The joint operation of compression and encryption in a single process is performed. The security test results indicate the proposed methods have high security and good compression effect.
Compression failure mechanisms of single-ply, unidirectional, carbon-fiber composites
NASA Technical Reports Server (NTRS)
Ha, Jong-Bae; Nairn, John A.
1992-01-01
A single-ply composite compression test was used to study compression failure mechanisms as a function of fiber type, matrix type, and interfacial strength. Composites made with low- and intermediate-modulus fibers (Hercules AS4 and IM7) in either an epoxy (Hercules 3501-6) or a thermoplastic (ULTEM and LARC-TPI) matrix failed by kink banding and out-of-plane slip. The failures proceeded by rapid and catastrophic damage propagation across the specimen width. Composites made with high-modulus fibers (Hercules HMS4/3501-6) had a much lower compression strength. Their failures were characterized by kink banding and longitudinal splitting. The damage propagated slowly across the specimen width. Composites made with fibers treated to give low interfacial strength had low compression strength. These composites typically failed near the specimen ends and had long kink bands.
Evaluation of Braided Stiffener Concepts for Transport Aircraft Wing Structure Applications
NASA Technical Reports Server (NTRS)
Deaton, Jerry W.; Dexter, H. Benson (Editor); Markus, Alan; Rohwer, Kim
1995-01-01
Braided composite materials have potential for application in aircraft structures. Stiffeners, wing spars, floor beams, and fuselage frames are examples where braided composites could find application if cost effective processing and damage requirements are met. Braiding is an automated process for obtaining near-net shape preforms for fabrication of components for structural applications. Previous test results on braided composite materials obtained at NASA Langley indicate that damage tolerance requirements can be met for some applications. In addition, the braiding industry is taking steps to increase the material through-put to be more competitive with other preform fabrication processes. Data are presented on the compressive behavior of three braided stiffener preform fabric constructions as determined from individual stiffener crippling test and three stiffener wide panel tests. Stiffener and panel fabrication are described and compression data presented for specimens tested with and without impact damage. In addition, data are also presented on the compressive behavior of the stitched stiffener preform construction currently being used by McDonnell Douglas Aerospace in the NASA ACT wing development program.
Ply-level failure analysis of a graphite/epoxy laminate under bearing-bypass loading
NASA Technical Reports Server (NTRS)
Naik, R. A.; Crews, J. H., Jr.
1988-01-01
A combined experimental and analytical study was conducted to investigate and predict the failure modes of a graphite/epoxy laminate subjected to combined bearing and bypass loading. Tests were conducted in a test machine that allowed the bearing-bypass load ratio to be controlled while a single-fastener coupon was loaded to failure in either tension or compression. Onset and ultimate failure modes and strengths were determined for each test case. The damage-onset modes were studied in detail by sectioning and micrographing the damaged specimens. A two-dimensional, finite-element analysis was conducted to determine lamina strains around the bolt hole. Damage onset consisted of matrix cracks, delamination, and fiber failures. Stiffness loss appeared to be caused by fiber failures rather than by matrix cracking and delamination. An unusual offset-compression mode was observed for compressive bearing-bypass laoding in which the specimen failed across its width along a line offset from the hole. The computed lamina strains in the fiber direction were used in a combined analytical and experimental approach to predict bearing-bypass diagrams for damage onset from a few simple tests.
Ply-level failure analysis of a graphite/epoxy laminate under bearing-bypass loading
NASA Technical Reports Server (NTRS)
Naik, R. A.; Crews, J. H., Jr.
1990-01-01
A combined experimental and analytical study was conducted to investigate and predict the failure modes of a graphite/epoxy laminate subjected to combined bearing and bypass loading. Tests were conducted in a test machine that allowed the bearing-bypass load ratio to be controlled while a single-fastener coupon was loaded to failure in either tension or compression. Onset and ultimate failure modes and strengths were determined for each test case. The damage-onset modes were studied in detail by sectioning and micrographing the damaged specimens. A two-dimensional, finite-element analysis was conducted to determine lamina strains around the bolt hole. Damage onset consisted of matrix cracks, delamination, and fiber failures. Stiffness loss appeared to be caused by fiber failures rather than by matrix cracking and delamination. An unusual offset-compression mode was observed for compressive bearing-bypass loading in which the specimen failed across its width along a line offset from the hole. The computed lamina strains in the fiber direction were used in a combined analytical and experimental approach to predict bearing-bypass diagrams for damage onset from a few simple tests.
Kemper, Andrew R; Beeman, Stephanie M; Madigan, Michael L; Duma, Stefan M
2014-01-01
The purpose of this study was to investigate the effects of pre-impact bracing on the chest compression, reaction forces, and accelerations experienced by human occupants during low-speed frontal sled tests. A total of twenty low-speed frontal sled tests, ten low severity (∼2.5g, Δv=5 kph) and ten medium severity (∼5g, Δv=10 kph), were performed on five 50th-percentile male human volunteers. Each volunteer was exposed to two impulses at each severity, one relaxed and the other braced prior to the impulse. A 59-channel chestband, aligned at the nipple line, was used to quantify the chest contour and anterior-posterior sternum deflection. Three-axis accelerometer cubes were attached to the sternum, 7th cervical vertebra, and sacrum of each subject. In addition, three linear accelerometers and a three-axis angular rate sensor were mounted to a metal mouthpiece worn by each subject. Seatbelt tension load cells were attached to the retractor, shoulder, and lap portions of the standard three-point driver-side seatbelt. In addition, multi-axis load cells were mounted to each interface between the subject and the test buck to quantify reaction forces. For relaxed tests, the higher test severity resulted in significantly larger peak values for all resultant accelerations, all belt forces, and three resultant reaction forces (right foot, seatpan, and seatback). For braced tests, the higher test severity resulted in significantly larger peak values for all resultant accelerations, and two resultant reaction forces (right foot and seatpan). Bracing did not have a significant effect on the occupant accelerations during the low severity tests, but did result in a significant decrease in peak resultant sacrum linear acceleration during the medium severity tests. Bracing was also found to significantly reduce peak shoulder and retractor belt forces for both test severities, and peak lap belt force for the medium test severity. In contrast, bracing resulted in a significant increase in the peak resultant reaction force for the right foot and steering column at both test severities. Chest compression due to belt loading was observed for all relaxed subjects at both test severities, and was found to increase significantly with increasing severity. Conversely, chest compression due to belt loading was essentially eliminated during the braced tests for all but one subject, who sustained minor chest compression due to belt loading during the medium severity braced test. Overall, the data from this study illustrate that muscle activation has a significant effect on the biomechanical response of human occupants in low-speed frontal impacts.
Compression of the Global Land 1-km AVHRR dataset
Kess, B. L.; Steinwand, D.R.; Reichenbach, S.E.
1996-01-01
Large datasets, such as the Global Land 1-km Advanced Very High Resolution Radiometer (AVHRR) Data Set (Eidenshink and Faundeen 1994), require compression methods that provide efficient storage and quick access to portions of the data. A method of lossless compression is described that provides multiresolution decompression within geographic subwindows of multi-spectral, global, 1-km, AVHRR images. The compression algorithm segments each image into blocks and compresses each block in a hierarchical format. Users can access the data by specifying either a geographic subwindow or the whole image and a resolution (1,2,4, 8, or 16 km). The Global Land 1-km AVHRR data are presented in the Interrupted Goode's Homolosine map projection. These images contain masked regions for non-land areas which comprise 80 per cent of the image. A quadtree algorithm is used to compress the masked regions. The compressed region data are stored separately from the compressed land data. Results show that the masked regions compress to 0·143 per cent of the bytes they occupy in the test image and the land areas are compressed to 33·2 per cent of their original size. The entire image is compressed hierarchically to 6·72 per cent of the original image size, reducing the data from 9·05 gigabytes to 623 megabytes. These results are compared to the first order entropy of the residual image produced with lossless Joint Photographic Experts Group predictors. Compression results are also given for Lempel-Ziv-Welch (LZW) and LZ77, the algorithms used by UNIX compress and GZIP respectively. In addition to providing multiresolution decompression of geographic subwindows of the data, the hierarchical approach and the use of quadtrees for storing the masked regions gives a marked improvement over these popular methods.
Fuels for high-compression engines
NASA Technical Reports Server (NTRS)
Sparrow, Stanwood W
1926-01-01
From theoretical considerations one would expect an increase in power and thermal efficiency to result from increasing the compression ratio of an internal combustion engine. In reality it is upon the expansion ratio that the power and thermal efficiency depend, but since in conventional engines this is equal to the compression ratio, it is generally understood that a change in one ratio is accompanied by an equal change in the other. Tests over a wide range of compression ratios (extending to ratios as high as 14.1) have shown that ordinarily an increase in power and thermal efficiency is obtained as expected provided serious detonation or preignition does not result from the increase in ratio.
A Comparison of LBG and ADPCM Speech Compression Techniques
NASA Astrophysics Data System (ADS)
Bachu, Rajesh G.; Patel, Jignasa; Barkana, Buket D.
Speech compression is the technology of converting human speech into an efficiently encoded representation that can later be decoded to produce a close approximation of the original signal. In all speech there is a degree of predictability and speech coding techniques exploit this to reduce bit rates yet still maintain a suitable level of quality. This paper is a study and implementation of Linde-Buzo-Gray Algorithm (LBG) and Adaptive Differential Pulse Code Modulation (ADPCM) algorithms to compress speech signals. In here we implemented the methods using MATLAB 7.0. The methods we used in this study gave good results and performance in compressing the speech and listening tests showed that efficient and high quality coding is achieved.
A Brief Study on Toxic Combustion Products of the Polymers Used in High-Pressure Oxygen Systems
NASA Technical Reports Server (NTRS)
Hshieh, Fu-Yu; Beeson, Harold D.
2005-01-01
One likely cause of polymer ignition in a high-pressure oxygen system is the adiabatic-compression heating of polymers caused by pneumatic impact. Oxidative pyrolysis or combustion of polymers in a high-pressure oxygen system could generate toxic gases. This paper investigates the feasibility of using the NASA pneumatic-impact system to conduct adiabatic-compression combustion tests and determines the toxic combustion products produced from the burning of five selected polymers. Five polymers commonly used in high-pressure oxygen systems, Zytel(Registered TradeMark) 42 (Nylon 6/6), Buna N (nitrile rubber), Witon(Registered TradeMark) A (copolymer of vinylidene fluoride and hexafluoropropylene), Neoflon(Registered TradeMark) (polychlorotrifluoroethylene), and Teflon(Registered TradeMark) (polytetrafluoroethylene), were tested in the NASA pneumatic-impact test system at 17.2-MPa oxygen pressure. The polymers were ignited and burned; combustion products were collected in a stainless-steel sample bottle and analyzed using various methods. The results show that the NASA pneumatic-impact system is an appropriate test system to conduct adiabatic-compression combustion tests and to collect combustion products for further chemical analysis. The composition of the combustion product gas generated from burning the five selected polymers are presented and discussed.
Effect of Microstructure on the Mechanical Properties of Extruded Magnesium and a Magnesium Alloy
NASA Astrophysics Data System (ADS)
McGhee, Paul
The main objective of this research was to investigate the relationship between the fatigue behavior and crystallographic texture evolution of magnesium (Mg) alloys with a range of microalloying element content processed under various extrusion conditions. Several Mg alloys were processed under a range of extrusion temperatures, extrusion ratios, and alloying content and tested under monotonic and cyclic fatigue loading conditions: fully-reversed condition tested at strain amplitudes of 0.15% - 1.00% in strain-control mode. After fatigue testing, Mg microstructural analysis was performed using SEM, TEM, optical microscopy, and X-ray diffraction techniques. Microstructural observations revealed significant grain refinement through a combination of zirconium (Zr) addition and hot-extrusion, producing fine equiaxed grain structure with grain sizes ranging between 1-5 microm. Texture analysis and partial compression testing results showed that the initial texture of the extruded alloy gradually evolved upon compressive loading along the c-axes inducing extension twinning creating a strong basal texture along the extrusion direction. Full tensile and compression testing at room temperature showed that the combination of hot extrusion and Zr addition can further refine the grains of the Mg alloys microstructure and enhance the texture while simultaneously enhancing the mechanical properties.