Sample records for compressive phase retrieval

  1. Optical image transformation and encryption by phase-retrieval-based double random-phase encoding and compressive ghost imaging

    NASA Astrophysics Data System (ADS)

    Yuan, Sheng; Yang, Yangrui; Liu, Xuemei; Zhou, Xin; Wei, Zhenzhuo

    2018-01-01

    An optical image transformation and encryption scheme is proposed based on double random-phase encoding (DRPE) and compressive ghost imaging (CGI) techniques. In this scheme, a secret image is first transformed into a binary image with the phase-retrieval-based DRPE technique, and then encoded by a series of random amplitude patterns according to the ghost imaging (GI) principle. Compressive sensing, corrosion and expansion operations are implemented to retrieve the secret image in the decryption process. This encryption scheme takes the advantage of complementary capabilities offered by the phase-retrieval-based DRPE and GI-based encryption techniques. That is the phase-retrieval-based DRPE is used to overcome the blurring defect of the decrypted image in the GI-based encryption, and the CGI not only reduces the data amount of the ciphertext, but also enhances the security of DRPE. Computer simulation results are presented to verify the performance of the proposed encryption scheme.

  2. Secret shared multiple-image encryption based on row scanning compressive ghost imaging and phase retrieval in the Fresnel domain

    NASA Astrophysics Data System (ADS)

    Li, Xianye; Meng, Xiangfeng; Wang, Yurong; Yang, Xiulun; Yin, Yongkai; Peng, Xiang; He, Wenqi; Dong, Guoyan; Chen, Hongyi

    2017-09-01

    A multiple-image encryption method is proposed that is based on row scanning compressive ghost imaging, (t, n) threshold secret sharing, and phase retrieval in the Fresnel domain. In the encryption process, after wavelet transform and Arnold transform of the target image, the ciphertext matrix can be first detected using a bucket detector. Based on a (t, n) threshold secret sharing algorithm, the measurement key used in the row scanning compressive ghost imaging can be decomposed and shared into two pairs of sub-keys, which are then reconstructed using two phase-only mask (POM) keys with fixed pixel values, placed in the input plane and transform plane 2 of the phase retrieval scheme, respectively; and the other POM key in the transform plane 1 can be generated and updated by the iterative encoding of each plaintext image. In each iteration, the target image acts as the input amplitude constraint in the input plane. During decryption, each plaintext image possessing all the correct keys can be successfully decrypted by measurement key regeneration, compression algorithm reconstruction, inverse wavelet transformation, and Fresnel transformation. Theoretical analysis and numerical simulations both verify the feasibility of the proposed method.

  3. Optical information authentication using compressed double-random-phase-encoded images and quick-response codes.

    PubMed

    Wang, Xiaogang; Chen, Wen; Chen, Xudong

    2015-03-09

    In this paper, we develop a new optical information authentication system based on compressed double-random-phase-encoded images and quick-response (QR) codes, where the parameters of optical lightwave are used as keys for optical decryption and the QR code is a key for verification. An input image attached with QR code is first optically encoded in a simplified double random phase encoding (DRPE) scheme without using interferometric setup. From the single encoded intensity pattern recorded by a CCD camera, a compressed double-random-phase-encoded image, i.e., the sparse phase distribution used for optical decryption, is generated by using an iterative phase retrieval technique with QR code. We compare this technique to the other two methods proposed in literature, i.e., Fresnel domain information authentication based on the classical DRPE with holographic technique and information authentication based on DRPE and phase retrieval algorithm. Simulation results show that QR codes are effective on improving the security and data sparsity of optical information encryption and authentication system.

  4. Grid-Independent Compressive Imaging and Fourier Phase Retrieval

    ERIC Educational Resources Information Center

    Liao, Wenjing

    2013-01-01

    This dissertation is composed of two parts. In the first part techniques of band exclusion(BE) and local optimization(LO) are proposed to solve linear continuum inverse problems independently of the grid spacing. The second part is devoted to the Fourier phase retrieval problem. Many situations in optics, medical imaging and signal processing call…

  5. Texture characterization for joint compression and classification based on human perception in the wavelet domain.

    PubMed

    Fahmy, Gamal; Black, John; Panchanathan, Sethuraman

    2006-06-01

    Today's multimedia applications demand sophisticated compression and classification techniques in order to store, transmit, and retrieve audio-visual information efficiently. Over the last decade, perceptually based image compression methods have been gaining importance. These methods take into account the abilities (and the limitations) of human visual perception (HVP) when performing compression. The upcoming MPEG 7 standard also addresses the need for succinct classification and indexing of visual content for efficient retrieval. However, there has been no research that has attempted to exploit the characteristics of the human visual system to perform both compression and classification jointly. One area of HVP that has unexplored potential for joint compression and classification is spatial frequency perception. Spatial frequency content that is perceived by humans can be characterized in terms of three parameters, which are: 1) magnitude; 2) phase; and 3) orientation. While the magnitude of spatial frequency content has been exploited in several existing image compression techniques, the novel contribution of this paper is its focus on the use of phase coherence for joint compression and classification in the wavelet domain. Specifically, this paper describes a human visual system-based method for measuring the degree to which an image contains coherent (perceptible) phase information, and then exploits that information to provide joint compression and classification. Simulation results that demonstrate the efficiency of this method are presented.

  6. Terahertz imaging with compressed sensing and phase retrieval.

    PubMed

    Chan, Wai Lam; Moravec, Matthew L; Baraniuk, Richard G; Mittleman, Daniel M

    2008-05-01

    We describe a novel, high-speed pulsed terahertz (THz) Fourier imaging system based on compressed sensing (CS), a new signal processing theory, which allows image reconstruction with fewer samples than traditionally required. Using CS, we successfully reconstruct a 64 x 64 image of an object with pixel size 1.4 mm using a randomly chosen subset of the 4096 pixels, which defines the image in the Fourier plane, and observe improved reconstruction quality when we apply phase correction. For our chosen image, only about 12% of the pixels are required for reassembling the image. In combination with phase retrieval, our system has the capability to reconstruct images with only a small subset of Fourier amplitude measurements and thus has potential application in THz imaging with cw sources.

  7. Compressive self-interference Fresnel digital holography with faithful reconstruction

    NASA Astrophysics Data System (ADS)

    Wan, Yuhong; Man, Tianlong; Han, Ying; Zhou, Hongqiang; Wang, Dayong

    2017-05-01

    We developed compressive self-interference digital holographic approach that allows retrieving three-dimensional information of the spatially incoherent objects from single-shot captured hologram. The Fresnel incoherent correlation holography is combined with parallel phase-shifting technique to instantaneously obtain spatial-multiplexed phase-shifting holograms. The recording scheme is regarded as compressive forward sensing model, thus the compressive-sensing-based reconstruction algorithm is implemented to reconstruct the original object from the under sampled demultiplexed sub-holograms. The concept was verified by simulations and experiments with simulating use of the polarizer array. The proposed technique has great potential to be applied in 3D tracking of spatially incoherent samples.

  8. Complete chirp analysis of a gain-switched pulse using an interferometric two-photon absorption autocorrelation.

    PubMed

    Chin, Sang Hoon; Kim, Young Jae; Song, Ho Seong; Kim, Dug Young

    2006-10-10

    We propose a simple but powerful scheme for the complete analysis of the frequency chirp of a gain-switched optical pulse using a fringe-resolved interferometric two-photon absorption autocorrelator. A frequency chirp imposed on the gain-switched pulse from a laser diode was retrieved from both the intensity autocorrelation trace and the envelope of the second-harmonic interference fringe pattern. To verify the accuracy of the proposed phase retrieval method, we have performed an optical pulse compression experiment by using dispersion-compensating fibers with different lengths. We have obtained close agreement by less than a 1% error between the compressed pulse widths and numerically calculated pulse widths.

  9. Data Compression in Full-Text Retrieval Systems.

    ERIC Educational Resources Information Center

    Bell, Timothy C.; And Others

    1993-01-01

    Describes compression methods for components of full-text systems such as text databases on CD-ROM. Topics discussed include storage media; structures for full-text retrieval, including indexes, inverted files, and bitmaps; compression tools; memory requirements during retrieval; and ranking and information retrieval. (Contains 53 references.)…

  10. Intelligent fuzzy approach for fast fractal image compression

    NASA Astrophysics Data System (ADS)

    Nodehi, Ali; Sulong, Ghazali; Al-Rodhaan, Mznah; Al-Dhelaan, Abdullah; Rehman, Amjad; Saba, Tanzila

    2014-12-01

    Fractal image compression (FIC) is recognized as a NP-hard problem, and it suffers from a high number of mean square error (MSE) computations. In this paper, a two-phase algorithm was proposed to reduce the MSE computation of FIC. In the first phase, based on edge property, range and domains are arranged. In the second one, imperialist competitive algorithm (ICA) is used according to the classified blocks. For maintaining the quality of the retrieved image and accelerating algorithm operation, we divided the solutions into two groups: developed countries and undeveloped countries. Simulations were carried out to evaluate the performance of the developed approach. Promising results thus achieved exhibit performance better than genetic algorithm (GA)-based and Full-search algorithms in terms of decreasing the number of MSE computations. The number of MSE computations was reduced by the proposed algorithm for 463 times faster compared to the Full-search algorithm, although the retrieved image quality did not have a considerable change.

  11. A manual carotid compression technique to overcome difficult filter protection device retrieval during carotid artery stenting.

    PubMed

    Nii, Kouhei; Nakai, Kanji; Tsutsumi, Masanori; Aikawa, Hiroshi; Iko, Minoru; Sakamoto, Kimiya; Mitsutake, Takafumi; Eto, Ayumu; Hanada, Hayatsura; Kazekawa, Kiyoshi

    2015-01-01

    We investigated the incidence of embolic protection device retrieval difficulties at carotid artery stenting (CAS) with a closed-cell stent and demonstrated the usefulness of a manual carotid compression assist technique. Between July 2010 and October 2013, we performed 156 CAS procedures using self-expandable closed-cell stents. All procedures were performed with the aid of a filter design embolic protection device. We used FilterWire EZ in 118 procedures and SpiderFX in 38 procedures. The embolic protection device was usually retrieved by the accessory retrieval sheath after CAS. We applied a manual carotid compression technique when it was difficult to navigate the retrieval sheath through the deployed stent. We compared clinical outcomes in patients where simple retrieval was possible with patients where the manual carotid compression assisted technique was used for retrieval. Among the 156 CAS procedures, we encountered 12 (7.7%) where embolic protection device retrieval was hampered at the proximal stent terminus. Our manual carotid compression technique overcame this difficulty without eliciting neurologic events, artery dissection, or stent deformity. In patients undergoing closed-cell stent placement, embolic protection device retrieval difficulties may be encountered at the proximal stent terminus. Manual carotid compression assisted retrieval is an easy, readily available solution to overcome these difficulties. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  12. Compressed domain indexing of losslessly compressed images

    NASA Astrophysics Data System (ADS)

    Schaefer, Gerald

    2001-12-01

    Image retrieval and image compression have been pursued separately in the past. Only little research has been done on a synthesis of the two by allowing image retrieval to be performed directly in the compressed domain of images without the need to uncompress them first. In this paper methods for image retrieval in the compressed domain of losslessly compressed images are introduced. While most image compression techniques are lossy, i.e. discard visually less significant information, lossless techniques are still required in fields like medical imaging or in situations where images must not be changed due to legal reasons. The algorithms in this paper are based on predictive coding methods where a pixel is encoded based on the pixel values of its (already encoded) neighborhood. The first method is based on an understanding that predictively coded data is itself indexable and represents a textural description of the image. The second method operates directly on the entropy encoded data by comparing codebooks of images. Experiments show good image retrieval results for both approaches.

  13. Indexing and retrieval of MPEG compressed video

    NASA Astrophysics Data System (ADS)

    Kobla, Vikrant; Doermann, David S.

    1998-04-01

    To keep pace with the increased popularity of digital video as an archival medium, the development of techniques for fast and efficient analysis of ideo streams is essential. In particular, solutions to the problems of storing, indexing, browsing, and retrieving video data from large multimedia databases are necessary to a low access to these collections. Given that video is often stored efficiently in a compressed format, the costly overhead of decompression can be reduced by analyzing the compressed representation directly. In earlier work, we presented compressed domain parsing techniques which identified shots, subshots, and scenes. In this article, we present efficient key frame selection, feature extraction, indexing, and retrieval techniques that are directly applicable to MPEG compressed video. We develop a frame type independent representation which normalizes spatial and temporal features including frame type, frame size, macroblock encoding, and motion compensation vectors. Features for indexing are derived directly from this representation and mapped to a low- dimensional space where they can be accessed using standard database techniques. Spatial information is used as primary index into the database and temporal information is used to rank retrieved clips and enhance the robustness of the system. The techniques presented enable efficient indexing, querying, and retrieval of compressed video as demonstrated by our system which typically takes a fraction of a second to retrieve similar video scenes from a database, with over 95 percent recall.

  14. Music information retrieval in compressed audio files: a survey

    NASA Astrophysics Data System (ADS)

    Zampoglou, Markos; Malamos, Athanasios G.

    2014-07-01

    In this paper, we present an organized survey of the existing literature on music information retrieval systems in which descriptor features are extracted directly from the compressed audio files, without prior decompression to pulse-code modulation format. Avoiding the decompression step and utilizing the readily available compressed-domain information can significantly lighten the computational cost of a music information retrieval system, allowing application to large-scale music databases. We identify a number of systems relying on compressed-domain information and form a systematic classification of the features they extract, the retrieval tasks they tackle and the degree in which they achieve an actual increase in the overall speed-as well as any resulting loss in accuracy. Finally, we discuss recent developments in the field, and the potential research directions they open toward ultra-fast, scalable systems.

  15. Compressed-domain video indexing techniques using DCT and motion vector information in MPEG video

    NASA Astrophysics Data System (ADS)

    Kobla, Vikrant; Doermann, David S.; Lin, King-Ip; Faloutsos, Christos

    1997-01-01

    Development of various multimedia applications hinges on the availability of fast and efficient storage, browsing, indexing, and retrieval techniques. Given that video is typically stored efficiently in a compressed format, if we can analyze the compressed representation directly, we can avoid the costly overhead of decompressing and operating at the pixel level. Compressed domain parsing of video has been presented in earlier work where a video clip is divided into shots, subshots, and scenes. In this paper, we describe key frame selection, feature extraction, and indexing and retrieval techniques that are directly applicable to MPEG compressed video. We develop a frame-type independent representation of the various types of frames present in an MPEG video in which al frames can be considered equivalent. Features are derived from the available DCT, macroblock, and motion vector information and mapped to a low-dimensional space where they can be accessed with standard database techniques. The spatial information is used as primary index while the temporal information is used to enhance the robustness of the system during the retrieval process. The techniques presented enable fast archiving, indexing, and retrieval of video. Our operational prototype typically takes a fraction of a second to retrieve similar video scenes from our database, with over 95% success.

  16. Compression and fast retrieval of SNP data.

    PubMed

    Sambo, Francesco; Di Camillo, Barbara; Toffolo, Gianna; Cobelli, Claudio

    2014-11-01

    The increasing interest in rare genetic variants and epistatic genetic effects on complex phenotypic traits is currently pushing genome-wide association study design towards datasets of increasing size, both in the number of studied subjects and in the number of genotyped single nucleotide polymorphisms (SNPs). This, in turn, is leading to a compelling need for new methods for compression and fast retrieval of SNP data. We present a novel algorithm and file format for compressing and retrieving SNP data, specifically designed for large-scale association studies. Our algorithm is based on two main ideas: (i) compress linkage disequilibrium blocks in terms of differences with a reference SNP and (ii) compress reference SNPs exploiting information on their call rate and minor allele frequency. Tested on two SNP datasets and compared with several state-of-the-art software tools, our compression algorithm is shown to be competitive in terms of compression rate and to outperform all tools in terms of time to load compressed data. Our compression and decompression algorithms are implemented in a C++ library, are released under the GNU General Public License and are freely downloadable from http://www.dei.unipd.it/~sambofra/snpack.html. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Compression and fast retrieval of SNP data

    PubMed Central

    Sambo, Francesco; Di Camillo, Barbara; Toffolo, Gianna; Cobelli, Claudio

    2014-01-01

    Motivation: The increasing interest in rare genetic variants and epistatic genetic effects on complex phenotypic traits is currently pushing genome-wide association study design towards datasets of increasing size, both in the number of studied subjects and in the number of genotyped single nucleotide polymorphisms (SNPs). This, in turn, is leading to a compelling need for new methods for compression and fast retrieval of SNP data. Results: We present a novel algorithm and file format for compressing and retrieving SNP data, specifically designed for large-scale association studies. Our algorithm is based on two main ideas: (i) compress linkage disequilibrium blocks in terms of differences with a reference SNP and (ii) compress reference SNPs exploiting information on their call rate and minor allele frequency. Tested on two SNP datasets and compared with several state-of-the-art software tools, our compression algorithm is shown to be competitive in terms of compression rate and to outperform all tools in terms of time to load compressed data. Availability and implementation: Our compression and decompression algorithms are implemented in a C++ library, are released under the GNU General Public License and are freely downloadable from http://www.dei.unipd.it/~sambofra/snpack.html. Contact: sambofra@dei.unipd.it or cobelli@dei.unipd.it. PMID:25064564

  18. Performance analysis of algorithms for retrieval of magnetic resonance images for interactive teleradiology

    NASA Astrophysics Data System (ADS)

    Atkins, M. Stella; Hwang, Robert; Tang, Simon

    2001-05-01

    We have implemented a prototype system consisting of a Java- based image viewer and a web server extension component for transmitting Magnetic Resonance Images (MRI) to an image viewer, to test the performance of different image retrieval techniques. We used full-resolution images, and images compressed/decompressed using the Set Partitioning in Hierarchical Trees (SPIHT) image compression algorithm. We examined the SPIHT decompression algorithm using both non- progressive and progressive transmission, focusing on the running times of the algorithm, client memory usage and garbage collection. We also compared the Java implementation with a native C++ implementation of the non- progressive SPIHT decompression variant. Our performance measurements showed that for uncompressed image retrieval using a 10Mbps Ethernet, a film of 16 MR images can be retrieved and displayed almost within interactive times. The native C++ code implementation of the client-side decoder is twice as fast as the Java decoder. If the network bandwidth is low, the high communication time for retrieving uncompressed images may be reduced by use of SPIHT-compressed images, although the image quality is then degraded. To provide diagnostic quality images, we also investigated the retrieval of up to 3 images on a MR film at full-resolution, using progressive SPIHT decompression. The Java-based implementation of progressive decompression performed badly, mainly due to the memory requirements for maintaining the image states, and the high cost of execution of the Java garbage collector. Hence, in systems where the bandwidth is high, such as found in a hospital intranet, SPIHT image compression does not provide advantages for image retrieval performance.

  19. Multi-frame X-ray Phase Contrast Imaging (MPCI) for Dynamic Experiments

    NASA Astrophysics Data System (ADS)

    Iverson, Adam; Carlson, Carl; Sanchez, Nathaniel; Jensen, Brian

    2017-06-01

    Recent advances in coupling synchrotron X-ray diagnostics to dynamic experiments are providing new information about the response of materials at extremes. For example, propagation based X-ray Phase Contrast Imaging (PCI) which is sensitive to differences in density has been successfully used to study a wide range of phenomena, e.g. jet-formation, compression of additive manufactured (AM) materials, and detonator dynamics. In this talk, we describe the current multi-frame X-ray phase contrast imaging (MPCI) system which allows up to eight frames per experiment, remote optimization, and an improved optical design that increases optical efficiency and accommodates dual-magnification during a dynamic event. Data will be presented that used the dual-magnification feature to obtain multiple images of an exploding foil initiator. In addition, results from static testing will be presented that used a multiple scintillator configuration required to extend the density retrieval to multi-constituent, or heterogeneous systems. The continued development of this diagnostic is fundamentally important to capabilities at the APS including IMPULSE and the Dynamic Compression Sector (DCS), and will benefit future facilities such as MaRIE at Los Alamos National Laboratory.

  20. Cued Memory Retrieval Exhibits Reinstatement of High Gamma Power on a Faster Timescale in the Left Temporal Lobe and Prefrontal Cortex

    PubMed Central

    Shaikhouni, Ammar

    2017-01-01

    Converging evidence suggests that reinstatement of neural activity underlies our ability to successfully retrieve memories. However, the temporal dynamics of reinstatement in the human cortex remain poorly understood. One possibility is that neural activity during memory retrieval, like replay of spiking neurons in the hippocampus, occurs at a faster timescale than during encoding. We tested this hypothesis in 34 participants who performed a verbal episodic memory task while we recorded high gamma (62–100 Hz) activity from subdural electrodes implanted for seizure monitoring. We show that reinstatement of distributed patterns of high gamma activity occurs faster than during encoding. Using a time-warping algorithm, we quantify the timescale of the reinstatement and identify brain regions that show significant timescale differences between encoding and retrieval. Our data suggest that temporally compressed reinstatement of cortical activity is a feature of cued memory retrieval. SIGNIFICANCE STATEMENT We show that cued memory retrieval reinstates neural activity on a faster timescale than was present during encoding. Our data therefore provide a link between reinstatement of neural activity in the cortex and spontaneous replay of cortical and hippocampal spiking activity, which also exhibits temporal compression, and suggest that temporal compression may be a universal feature of memory retrieval. PMID:28336569

  1. Experimental Studies on a Compact Storage Scheme for Wavelet-based Multiresolution Subregion Retrieval

    NASA Technical Reports Server (NTRS)

    Poulakidas, A.; Srinivasan, A.; Egecioglu, O.; Ibarra, O.; Yang, T.

    1996-01-01

    Wavelet transforms, when combined with quantization and a suitable encoding, can be used to compress images effectively. In order to use them for image library systems, a compact storage scheme for quantized coefficient wavelet data must be developed with a support for fast subregion retrieval. We have designed such a scheme and in this paper we provide experimental studies to demonstrate that it achieves good image compression ratios, while providing a natural indexing mechanism that facilitates fast retrieval of portions of the image at various resolutions.

  2. Simultaneous Retrieval of Temperature, Water Vapor and Ozone Atmospheric Profiles from IASI: Compression, De-noising, First Guess Retrieval and Inversion Algorithms

    NASA Technical Reports Server (NTRS)

    Aires, F.; Rossow, W. B.; Scott, N. A.; Chedin, A.; Hansen, James E. (Technical Monitor)

    2001-01-01

    A fast temperature water vapor and ozone atmospheric profile retrieval algorithm is developed for the high spectral resolution Infrared Atmospheric Sounding Interferometer (IASI) space-borne instrument. Compression and de-noising of IASI observations are performed using Principal Component Analysis. This preprocessing methodology also allows, for a fast pattern recognition in a climatological data set to obtain a first guess. Then, a neural network using first guess information is developed to retrieve simultaneously temperature, water vapor and ozone atmospheric profiles. The performance of the resulting fast and accurate inverse model is evaluated with a large diversified data set of radiosondes atmospheres including rare events.

  3. Cued Memory Retrieval Exhibits Reinstatement of High Gamma Power on a Faster Timescale in the Left Temporal Lobe and Prefrontal Cortex.

    PubMed

    Yaffe, Robert B; Shaikhouni, Ammar; Arai, Jennifer; Inati, Sara K; Zaghloul, Kareem A

    2017-04-26

    Converging evidence suggests that reinstatement of neural activity underlies our ability to successfully retrieve memories. However, the temporal dynamics of reinstatement in the human cortex remain poorly understood. One possibility is that neural activity during memory retrieval, like replay of spiking neurons in the hippocampus, occurs at a faster timescale than during encoding. We tested this hypothesis in 34 participants who performed a verbal episodic memory task while we recorded high gamma (62-100 Hz) activity from subdural electrodes implanted for seizure monitoring. We show that reinstatement of distributed patterns of high gamma activity occurs faster than during encoding. Using a time-warping algorithm, we quantify the timescale of the reinstatement and identify brain regions that show significant timescale differences between encoding and retrieval. Our data suggest that temporally compressed reinstatement of cortical activity is a feature of cued memory retrieval. SIGNIFICANCE STATEMENT We show that cued memory retrieval reinstates neural activity on a faster timescale than was present during encoding. Our data therefore provide a link between reinstatement of neural activity in the cortex and spontaneous replay of cortical and hippocampal spiking activity, which also exhibits temporal compression, and suggest that temporal compression may be a universal feature of memory retrieval. Copyright © 2017 the authors 0270-6474/17/374472-09$15.00/0.

  4. A privacy-preserving solution for compressed storage and selective retrieval of genomic data.

    PubMed

    Huang, Zhicong; Ayday, Erman; Lin, Huang; Aiyar, Raeka S; Molyneaux, Adam; Xu, Zhenyu; Fellay, Jacques; Steinmetz, Lars M; Hubaux, Jean-Pierre

    2016-12-01

    In clinical genomics, the continuous evolution of bioinformatic algorithms and sequencing platforms makes it beneficial to store patients' complete aligned genomic data in addition to variant calls relative to a reference sequence. Due to the large size of human genome sequence data files (varying from 30 GB to 200 GB depending on coverage), two major challenges facing genomics laboratories are the costs of storage and the efficiency of the initial data processing. In addition, privacy of genomic data is becoming an increasingly serious concern, yet no standard data storage solutions exist that enable compression, encryption, and selective retrieval. Here we present a privacy-preserving solution named SECRAM (Selective retrieval on Encrypted and Compressed Reference-oriented Alignment Map) for the secure storage of compressed aligned genomic data. Our solution enables selective retrieval of encrypted data and improves the efficiency of downstream analysis (e.g., variant calling). Compared with BAM, the de facto standard for storing aligned genomic data, SECRAM uses 18% less storage. Compared with CRAM, one of the most compressed nonencrypted formats (using 34% less storage than BAM), SECRAM maintains efficient compression and downstream data processing, while allowing for unprecedented levels of security in genomic data storage. Compared with previous work, the distinguishing features of SECRAM are that (1) it is position-based instead of read-based, and (2) it allows random querying of a subregion from a BAM-like file in an encrypted form. Our method thus offers a space-saving, privacy-preserving, and effective solution for the storage of clinical genomic data. © 2016 Huang et al.; Published by Cold Spring Harbor Laboratory Press.

  5. A privacy-preserving solution for compressed storage and selective retrieval of genomic data

    PubMed Central

    Huang, Zhicong; Ayday, Erman; Lin, Huang; Aiyar, Raeka S.; Molyneaux, Adam; Xu, Zhenyu; Hubaux, Jean-Pierre

    2016-01-01

    In clinical genomics, the continuous evolution of bioinformatic algorithms and sequencing platforms makes it beneficial to store patients’ complete aligned genomic data in addition to variant calls relative to a reference sequence. Due to the large size of human genome sequence data files (varying from 30 GB to 200 GB depending on coverage), two major challenges facing genomics laboratories are the costs of storage and the efficiency of the initial data processing. In addition, privacy of genomic data is becoming an increasingly serious concern, yet no standard data storage solutions exist that enable compression, encryption, and selective retrieval. Here we present a privacy-preserving solution named SECRAM (Selective retrieval on Encrypted and Compressed Reference-oriented Alignment Map) for the secure storage of compressed aligned genomic data. Our solution enables selective retrieval of encrypted data and improves the efficiency of downstream analysis (e.g., variant calling). Compared with BAM, the de facto standard for storing aligned genomic data, SECRAM uses 18% less storage. Compared with CRAM, one of the most compressed nonencrypted formats (using 34% less storage than BAM), SECRAM maintains efficient compression and downstream data processing, while allowing for unprecedented levels of security in genomic data storage. Compared with previous work, the distinguishing features of SECRAM are that (1) it is position-based instead of read-based, and (2) it allows random querying of a subregion from a BAM-like file in an encrypted form. Our method thus offers a space-saving, privacy-preserving, and effective solution for the storage of clinical genomic data. PMID:27789525

  6. Oblivious image watermarking combined with JPEG compression

    NASA Astrophysics Data System (ADS)

    Chen, Qing; Maitre, Henri; Pesquet-Popescu, Beatrice

    2003-06-01

    For most data hiding applications, the main source of concern is the effect of lossy compression on hidden information. The objective of watermarking is fundamentally in conflict with lossy compression. The latter attempts to remove all irrelevant and redundant information from a signal, while the former uses the irrelevant information to mask the presence of hidden data. Compression on a watermarked image can significantly affect the retrieval of the watermark. Past investigations of this problem have heavily relied on simulation. It is desirable not only to measure the effect of compression on embedded watermark, but also to control the embedding process to survive lossy compression. In this paper, we focus on oblivious watermarking by assuming that the watermarked image inevitably undergoes JPEG compression prior to watermark extraction. We propose an image-adaptive watermarking scheme where the watermarking algorithm and the JPEG compression standard are jointly considered. Watermark embedding takes into consideration the JPEG compression quality factor and exploits an HVS model to adaptively attain a proper trade-off among transparency, hiding data rate, and robustness to JPEG compression. The scheme estimates the image-dependent payload under JPEG compression to achieve the watermarking bit allocation in a determinate way, while maintaining consistent watermark retrieval performance.

  7. Compressive Strength of Cometary Surfaces Derived from Radar Observations

    NASA Astrophysics Data System (ADS)

    ElShafie, A.; Heggy, E.

    2014-12-01

    Landing on a comet nucleus and probing it, mechanically using harpoons, penetrometers and drills, and electromagnetically using low frequency radar waves is a complex task that will be tackled by the Rosetta mission for Comet 67P/Churyumov-Gerasimenko. The mechanical properties (i.e. density, porosity and compressive strength) and the electrical properties (i.e. the real and imaginary parts of the dielectric constant) of the comet nucleus, constrain both the mechanical and electromagnetic probing capabilities of Rosetta, as well as the choice of landing site, the safety of the landing, and subsurface data interpretation. During landing, the sounding radar data that will be collected by Rosetta's CONSERT experiment can be used to probe the comet's upper regolith layer by assessing its dielectric properties, which are then inverted to retrieve the surface mechanical properties. These observations can help characterize the mechanical properties of the landing site, which will optimize the operation of the anchor system. In this effort, we correlate the mechanical and electrical properties of cometary analogs to each other, and derive an empirical model that can be used to retrieve density, porosity and compressive strength from the dielectric properties of the upper regolith inverted from CONSERT observations during the landing phase. In our approach we consider snow as a viable cometary material analog due to its low density and its porous nature. Therefore, we used the compressive strength and dielectric constant measurements conducted on snow at a temperature of 250 K and a density range of 0.4-0.9 g/cm3 in order to investigate the relation between compressive strength and dielectric constant under cometary-relevant density range. Our results suggest that compressive strength increases linearly as function of the dielectric constant over the observed density range mentioned above. The minimum and maximum compressive strength of 0.5 and 4.5 MPa corresponded to a dielectric constant of 2.2 and 3.4 over the density range of 0.4-0.9 g/cm3. This preliminary correlation will be applied to the case of porous and dust contaminated snow under different temperatures to assess the surface mechanical properties for Comet 67P.

  8. Accelerated radial Fourier-velocity encoding using compressed sensing.

    PubMed

    Hilbert, Fabian; Wech, Tobias; Hahn, Dietbert; Köstler, Herbert

    2014-09-01

    Phase Contrast Magnetic Resonance Imaging (MRI) is a tool for non-invasive determination of flow velocities inside blood vessels. Because Phase Contrast MRI only measures a single mean velocity per voxel, it is only applicable to vessels significantly larger than the voxel size. In contrast, Fourier Velocity Encoding measures the entire velocity distribution inside a voxel, but requires a much longer acquisition time. For accurate diagnosis of stenosis in vessels on the scale of spatial resolution, it is important to know the velocity distribution of a voxel. Our aim was to determine velocity distributions with accelerated Fourier Velocity Encoding in an acquisition time required for a conventional Phase Contrast image. We imaged the femoral artery of healthy volunteers with ECG-triggered, radial CINE acquisition. Data acquisition was accelerated by undersampling, while missing data were reconstructed by Compressed Sensing. Velocity spectra of the vessel were evaluated by high resolution Phase Contrast images and compared to spectra from fully sampled and undersampled Fourier Velocity Encoding. By means of undersampling, it was possible to reduce the scan time for Fourier Velocity Encoding to the duration required for a conventional Phase Contrast image. Acquisition time for a fully sampled data set with 12 different Velocity Encodings was 40 min. By applying a 12.6-fold retrospective undersampling, a data set was generated equal to 3:10 min acquisition time, which is similar to a conventional Phase Contrast measurement. Velocity spectra from fully sampled and undersampled Fourier Velocity Encoded images are in good agreement and show the same maximum velocities as compared to velocity maps from Phase Contrast measurements. Compressed Sensing proved to reliably reconstruct Fourier Velocity Encoded data. Our results indicate that Fourier Velocity Encoding allows an accurate determination of the velocity distribution in vessels in the order of the voxel size. Thus, compared to normal Phase Contrast measurements delivering only mean velocities, no additional scan time is necessary to retrieve meaningful velocity spectra in small vessels. Copyright © 2013. Published by Elsevier GmbH.

  9. Compression-based integral curve data reuse framework for flow visualization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Fan; Bi, Chongke; Guo, Hanqi

    Currently, by default, integral curves are repeatedly re-computed in different flow visualization applications, such as FTLE field computation, source-destination queries, etc., leading to unnecessary resource cost. We present a compression-based data reuse framework for integral curves, to greatly reduce their retrieval cost, especially in a resource-limited environment. In our design, a hierarchical and hybrid compression scheme is proposed to balance three objectives, including high compression ratio, controllable error, and low decompression cost. Specifically, we use and combine digitized curve sparse representation, floating-point data compression, and octree space partitioning to adaptively achieve the objectives. Results have shown that our data reusemore » framework could acquire tens of times acceleration in the resource-limited environment compared to on-the-fly particle tracing, and keep controllable information loss. Moreover, our method could provide fast integral curve retrieval for more complex data, such as unstructured mesh data.« less

  10. A hierarchical storage management (HSM) scheme for cost-effective on-line archival using lossy compression.

    PubMed

    Avrin, D E; Andriole, K P; Yin, L; Gould, R G; Arenson, R L

    2001-03-01

    A hierarchical storage management (HSM) scheme for cost-effective on-line archival of image data using lossy compression is described. This HSM scheme also provides an off-site tape backup mechanism and disaster recovery. The full-resolution image data are viewed originally for primary diagnosis, then losslessly compressed and sent off site to a tape backup archive. In addition, the original data are wavelet lossy compressed (at approximately 25:1 for computed radiography, 10:1 for computed tomography, and 5:1 for magnetic resonance) and stored on a large RAID device for maximum cost-effective, on-line storage and immediate retrieval of images for review and comparison. This HSM scheme provides a solution to 4 problems in image archiving, namely cost-effective on-line storage, disaster recovery of data, off-site tape backup for the legal record, and maximum intermediate storage and retrieval through the use of on-site lossy compression.

  11. (BARS) -- Bibliographic Retrieval System Sandia Shock Compression (SSC) database Shock Physics Index (SPHINX) database. Volume 1: UNIX version query guide customized application for INGRES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrmann, W.; von Laven, G.M.; Parker, T.

    1993-09-01

    The Bibliographic Retrieval System (BARS) is a data base management system specially designed to retrieve bibliographic references. Two databases are available, (i) the Sandia Shock Compression (SSC) database which contains over 5700 references to the literature related to stress waves in solids and their applications, and (ii) the Shock Physics Index (SPHINX) which includes over 8000 further references to stress waves in solids, material properties at intermediate and low rates, ballistic and hypervelocity impact, and explosive or shock fabrication methods. There is some overlap in the information in the two data bases.

  12. Compact Representation of High-Dimensional Feature Vectors for Large-Scale Image Recognition and Retrieval.

    PubMed

    Zhang, Yu; Wu, Jianxin; Cai, Jianfei

    2016-05-01

    In large-scale visual recognition and image retrieval tasks, feature vectors, such as Fisher vector (FV) or the vector of locally aggregated descriptors (VLAD), have achieved state-of-the-art results. However, the combination of the large numbers of examples and high-dimensional vectors necessitates dimensionality reduction, in order to reduce its storage and CPU costs to a reasonable range. In spite of the popularity of various feature compression methods, this paper shows that the feature (dimension) selection is a better choice for high-dimensional FV/VLAD than the feature (dimension) compression methods, e.g., product quantization. We show that strong correlation among the feature dimensions in the FV and the VLAD may not exist, which renders feature selection a natural choice. We also show that, many dimensions in FV/VLAD are noise. Throwing them away using feature selection is better than compressing them and useful dimensions altogether using feature compression methods. To choose features, we propose an efficient importance sorting algorithm considering both the supervised and unsupervised cases, for visual recognition and image retrieval, respectively. Combining with the 1-bit quantization, feature selection has achieved both higher accuracy and less computational cost than feature compression methods, such as product quantization, on the FV and the VLAD image representations.

  13. Intelligent transportation systems data compression using wavelet decomposition technique.

    DOT National Transportation Integrated Search

    2009-12-01

    Intelligent Transportation Systems (ITS) generates massive amounts of traffic data, which posts : challenges for data storage, transmission and retrieval. Data compression and reconstruction technique plays an : important role in ITS data procession....

  14. Antiamnesic effect of acyl-prolyl-containing dipeptide (GVS-111) in compression-induced damage to frontal cortex.

    PubMed

    Romanova, G A; Mirzoev, T K; Barskov, I V; Victorov, I V; Gudasheva, T A; Ostrovskaya, R U

    2000-09-01

    Antiamnestic effect of acyl-prolyl-containing dipeptide GVS-111 was demonstrated in rats with bilateral compression-induced damage to the frontal cortex. Both intraperitoneal and oral administration of the dipeptide improved retrieval of passive avoidance responses in rats with compression-induced cerebral ischemia compared to untreated controls.

  15. Storage and retrieval of large digital images

    DOEpatents

    Bradley, J.N.

    1998-01-20

    Image compression and viewing are implemented with (1) a method for performing DWT-based compression on a large digital image with a computer system possessing a two-level system of memory and (2) a method for selectively viewing areas of the image from its compressed representation at multiple resolutions and, if desired, in a client-server environment. The compression of a large digital image I(x,y) is accomplished by first defining a plurality of discrete tile image data subsets T{sub ij}(x,y) that, upon superposition, form the complete set of image data I(x,y). A seamless wavelet-based compression process is effected on I(x,y) that is comprised of successively inputting the tiles T{sub ij}(x,y) in a selected sequence to a DWT routine, and storing the resulting DWT coefficients in a first primary memory. These coefficients are periodically compressed and transferred to a secondary memory to maintain sufficient memory in the primary memory for data processing. The sequence of DWT operations on the tiles T{sub ij}(x,y) effectively calculates a seamless DWT of I(x,y). Data retrieval consists of specifying a resolution and a region of I(x,y) for display. The subset of stored DWT coefficients corresponding to each requested scene is determined and then decompressed for input to an inverse DWT, the output of which forms the image display. The repeated process whereby image views are specified may take the form an interaction with a computer pointing device on an image display from a previous retrieval. 6 figs.

  16. Storage and retrieval of large digital images

    DOEpatents

    Bradley, Jonathan N.

    1998-01-01

    Image compression and viewing are implemented with (1) a method for performing DWT-based compression on a large digital image with a computer system possessing a two-level system of memory and (2) a method for selectively viewing areas of the image from its compressed representation at multiple resolutions and, if desired, in a client-server environment. The compression of a large digital image I(x,y) is accomplished by first defining a plurality of discrete tile image data subsets T.sub.ij (x,y) that, upon superposition, form the complete set of image data I(x,y). A seamless wavelet-based compression process is effected on I(x,y) that is comprised of successively inputting the tiles T.sub.ij (x,y) in a selected sequence to a DWT routine, and storing the resulting DWT coefficients in a first primary memory. These coefficients are periodically compressed and transferred to a secondary memory to maintain sufficient memory in the primary memory for data processing. The sequence of DWT operations on the tiles T.sub.ij (x,y) effectively calculates a seamless DWT of I(x,y). Data retrieval consists of specifying a resolution and a region of I(x,y) for display. The subset of stored DWT coefficients corresponding to each requested scene is determined and then decompressed for input to an inverse DWT, the output of which forms the image display. The repeated process whereby image views are specified may take the form an interaction with a computer pointing device on an image display from a previous retrieval.

  17. Advances in high throughput DNA sequence data compression.

    PubMed

    Sardaraz, Muhammad; Tahir, Muhammad; Ikram, Ataul Aziz

    2016-06-01

    Advances in high throughput sequencing technologies and reduction in cost of sequencing have led to exponential growth in high throughput DNA sequence data. This growth has posed challenges such as storage, retrieval, and transmission of sequencing data. Data compression is used to cope with these challenges. Various methods have been developed to compress genomic and sequencing data. In this article, we present a comprehensive review of compression methods for genome and reads compression. Algorithms are categorized as referential or reference free. Experimental results and comparative analysis of various methods for data compression are presented. Finally, key challenges and research directions in DNA sequence data compression are highlighted.

  18. Propagation based phase retrieval of simulated intensity measurements using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Kemp, Z. D. C.

    2018-04-01

    Determining the phase of a wave from intensity measurements has many applications in fields such as electron microscopy, visible light optics, and medical imaging. Propagation based phase retrieval, where the phase is obtained from defocused images, has shown significant promise. There are, however, limitations in the accuracy of the retrieved phase arising from such methods. Sources of error include shot noise, image misalignment, and diffraction artifacts. We explore the use of artificial neural networks (ANNs) to improve the accuracy of propagation based phase retrieval algorithms applied to simulated intensity measurements. We employ a phase retrieval algorithm based on the transport-of-intensity equation to obtain the phase from simulated micrographs of procedurally generated specimens. We then train an ANN with pairs of retrieved and exact phases, and use the trained ANN to process a test set of retrieved phase maps. The total error in the phase is significantly reduced using this method. We also discuss a variety of potential extensions to this work.

  19. Data compression and information retrieval via symbolization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, X.Z.; Tracy, E.R.

    Converting a continuous signal into a multisymbol stream is a simple method of data compression which preserves much of the dynamical information present in the original signal. The retrieval of selected types of information from symbolic data involves binary operations and is therefore optimal for digital computers. For example, correlation time scales can be easily recovered, even at high noise levels, by varying the time delay for symbolization. Also, the presence of periodicity in the signal can be reliably detected even if it is weak and masked by a dominant chaotic/stochastic background. {copyright} {ital 1998 American Institute of Physics.}

  20. Transcatheter Retrieval of Embolized Atrial Septal Defect Occluder Device by Waist Capture Technique.

    PubMed

    Her, Ae-Young; Lim, Kyung-Hun; Shin, Eun-Seok

    2018-01-27

    This case study describes the successful percutaneous transcatheter retrieval of an embolized Amplatzer occluder device using the "waist capture technique" in a patient with an atrial septal defect. This technique allowed for stability of the Amplatzer device, compression of the atrial discs for easier removal, prevention of further embolization, and minimal injury to vasculature during device retrieval. This novel and effective technique can be used safely for the retrieval of Amplatzer devices in the venous system.

  1. Optical phase analysis in drilled cortical porcine bones using digital holographic interferometry

    NASA Astrophysics Data System (ADS)

    Tavera R., César G.; De la Torre I., Manuel H.; Flores M., J. Mauricio; Luna H., Juan M.; Briones R., Manuel de J.; Mendoza S., Fernando

    2016-03-01

    A study in porcine femoral bones with and without the presence of cortical drilling is presented. An out of plane digital holographic interferometer is used to retrieve the optical phase during the controlled compression tests. These tests try to simulate physiological deformations in postmortem healthy bones and compare their mechanical response with those having a cortical hole. The cortical drilling technique is widely used in medical procedures to fix plaques and metallic frames to a bone recovering from a fracture. Several materials and drilling techniques are used for this purpose. In this work we analyze the superficial variations of the bone when different drilling diameters are used. By means of the optical phase it is possible to recover the superficial deformation of the tissue during a controlled deformation with high resolution. This information could give a better understand about the micro structural variations of the bone instead of a bulk response. As proof of principle, several tests were performed to register the modes and ranges of the displacements for compressive loads. From these tests notorious differences are observed between both groups of bones, having less structural stiffness the drilled ones as expected. However, the bone's characteristic to absorb and adjust itself due the load is also highly affected according to the number of holes. Results from different kind of samples (undrilled and drilled) are presented and discussed in this work.

  2. Inverted File Compression through Document Identifier Reassignment.

    ERIC Educational Resources Information Center

    Shieh, Wann-Yun; Chen, Tien-Fu; Shann, Jean Jyh-Jiun; Chung, Chung-Ping

    2003-01-01

    Discusses the use of inverted files in information retrieval systems and proposes a document identifier reassignment method to reduce the average gap values in an inverted file. Highlights include the d-gap technique; document similarity; heuristic algorithms; file compression; and performance evaluation from a simulation environment. (LRW)

  3. Content-based video retrieval by example video clip

    NASA Astrophysics Data System (ADS)

    Dimitrova, Nevenka; Abdel-Mottaleb, Mohamed

    1997-01-01

    This paper presents a novel approach for video retrieval from a large archive of MPEG or Motion JPEG compressed video clips. We introduce a retrieval algorithm that takes a video clip as a query and searches the database for clips with similar contents. Video clips are characterized by a sequence of representative frame signatures, which are constructed from DC coefficients and motion information (`DC+M' signatures). The similarity between two video clips is determined by using their respective signatures. This method facilitates retrieval of clips for the purpose of video editing, broadcast news retrieval, or copyright violation detection.

  4. FastBit Reference Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Kesheng

    2007-08-02

    An index in a database system is a data structure that utilizes redundant information about the base data to speed up common searching and retrieval operations. Most commonly used indexes are variants of B-trees, such as B+-tree and B*-tree. FastBit implements a set of alternative indexes call compressed bitmap indexes. Compared with B-tree variants, these indexes provide very efficient searching and retrieval operations by sacrificing the efficiency of updating the indexes after the modification of an individual record. In addition to the well-known strengths of bitmap indexes, FastBit has a special strength stemming from the bitmap compression scheme used. Themore » compression method is called the Word-Aligned Hybrid (WAH) code. It reduces the bitmap indexes to reasonable sizes and at the same time allows very efficient bitwise logical operations directly on the compressed bitmaps. Compared with the well-known compression methods such as LZ77 and Byte-aligned Bitmap code (BBC), WAH sacrifices some space efficiency for a significant improvement in operational efficiency. Since the bitwise logical operations are the most important operations needed to answer queries, using WAH compression has been shown to answer queries significantly faster than using other compression schemes. Theoretical analyses showed that WAH compressed bitmap indexes are optimal for one-dimensional range queries. Only the most efficient indexing schemes such as B+-tree and B*-tree have this optimality property. However, bitmap indexes are superior because they can efficiently answer multi-dimensional range queries by combining the answers to one-dimensional queries.« less

  5. 1D-VAR Retrieval Using Superchannels

    NASA Technical Reports Server (NTRS)

    Liu, Xu; Zhou, Daniel; Larar, Allen; Smith, William L.; Schluessel, Peter; Mango, Stephen; SaintGermain, Karen

    2008-01-01

    Since modern ultra-spectral remote sensors have thousands of channels, it is difficult to include all of them in a 1D-var retrieval system. We will describe a physical inversion algorithm, which includes all available channels for the atmospheric temperature, moisture, cloud, and surface parameter retrievals. Both the forward model and the inversion algorithm compress the channel radiances into super channels. These super channels are obtained by projecting the radiance spectra onto a set of pre-calculated eigenvectors. The forward model provides both super channel properties and jacobian in EOF space directly. For ultra-spectral sensors such as Infrared Atmospheric Sounding Interferometer (IASI) and the NPOESS Airborne Sounder Testbed Interferometer (NAST), a compression ratio of more than 80 can be achieved, leading to a significant reduction in computations involved in an inversion process. Results will be shown applying the algorithm to real IASI and NAST data.

  6. Phase Imaging: A Compressive Sensing Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, Sebastian; Stevens, Andrew; Browning, Nigel D.

    Since Wolfgang Pauli posed the question in 1933, whether the probability densities |Ψ(r)|² (real-space image) and |Ψ(q)|² (reciprocal space image) uniquely determine the wave function Ψ(r) [1], the so called Pauli Problem sparked numerous methods in all fields of microscopy [2, 3]. Reconstructing the complete wave function Ψ(r) = a(r)e-iφ(r) with the amplitude a(r) and the phase φ(r) from the recorded intensity enables the possibility to directly study the electric and magnetic properties of the sample through the phase. In transmission electron microscopy (TEM), electron holography is by far the most established method for phase reconstruction [4]. Requiring a highmore » stability of the microscope, next to the installation of a biprism in the TEM, holography cannot be applied to any microscope straightforwardly. Recently, a phase retrieval approach was proposed using conventional TEM electron diffractive imaging (EDI). Using the SAD aperture as reciprocal-space constraint, a localized sample structure can be reconstructed from its diffraction pattern and a real-space image using the hybrid input-output algorithm [5]. We present an alternative approach using compressive phase-retrieval [6]. Our approach does not require a real-space image. Instead, random complimentary pairs of checkerboard masks are cut into a 200 nm Pt foil covering a conventional TEM aperture (cf. Figure 1). Used as SAD aperture, subsequently diffraction patterns are recorded from the same sample area. Hereby every mask blocks different parts of gold particles on a carbon support (cf. Figure 2). The compressive sensing problem has the following formulation. First, we note that the complex-valued reciprocal-space wave-function is the Fourier transform of the (also complex-valued) real-space wave-function, Ψ(q) = F[Ψ(r)], and subsequently the diffraction pattern image is given by |Ψ(q)|2 = |F[Ψ(r)]|2. We want to find Ψ(r) given a few differently coded diffraction pattern measurements yn = |F[HnΨ(r)]|2, where the matrices Hn encode the mask structure of the aperture. This is a nonlinear inverse problem, but has been shown to be solvable even in the underdetermined case [6]. Since each diffraction pattern yn contains diffraction information from selected regions of the same sample, the differences in each pattern contain local phase information, which can be combined to form a full estimate of the real-space wave-function[7]. References: [1] W. Pauli in “Die allgemeinen Prinzipien der Wellenmechanik“, ed. H Geiger and W Scheel, (Julius Springer, Berlin). [2] A. Tonomura, Rev. Mod. Phys. 59 (1987), p. 639. [3] J. Miao et al, Nature 400 (1999), p. 342. [4] H. Lichte et al, Annu. Rev. Mater. Res. 37 (2007), p. 539. [5] J. Yamasaki et al, Appl. Phys. Lett. 101 (2012), 234105. [6] P Schniter and S Rangan. Signal Proc., IEEE Trans. on. 64(4), (2015), pp. 1043. [7] Supported by the Chemical Imaging, Signature Discovery, and Analytics in Motion initiatives at PNNL. PNNL is operated by Battelle Memorial Inst. for the US DOE; contract DE-AC05-76RL01830.« less

  7. Status on Iterative Transform Phase Retrieval Applied to the GBT Data

    NASA Technical Reports Server (NTRS)

    Dean, Bruce; Aronstein, David; Smith, Scott; Shiri, Ron; Hollis, Jan M.; Lyons, Richard; Prestage, Richard; Hunter, Todd; Ghigo, Frank; Nikolic, Bojan

    2007-01-01

    This slide presentation reviews the use of iterative transform phase retrieval in the analysis of the Green Bank Radio Telescope (GBT) Data. It reviews the NASA projects that have used phase retrieval, and the testbed for the algorithm to be used for the James Webb Space Telescope. It shows the comparison of phase retrieval with an interferometer, and reviews the two approaches used for phase retrieval, iterative transform (ITA) or parametric (non-linear least squares model fitting). The concept of ITA Phase Retrieval is reviewed, and the application to Radio Antennas is reviewed. The presentation also examines the National Radio Astronomy Observatory (NRAO) data from the GBT, and the Fourier model that NRAO uses to analyze the data. The challenge for ITA phase retrieval is reviewed, and the coherent approximation for incoherent data is shown. The validity of the approximation is good for a large tilt. There is a review of the proof of concept of the Phase Review simulation using the input wavefront, and the initial sampling parameters estimate from the focused GBT data.

  8. Broadband Phase Retrieval for Image-Based Wavefront Sensing

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H.

    2007-01-01

    A focus-diverse phase-retrieval algorithm has been shown to perform adequately for the purpose of image-based wavefront sensing when (1) broadband light (typically spanning the visible spectrum) is used in forming the images by use of an optical system under test and (2) the assumption of monochromaticity is applied to the broadband image data. Heretofore, it had been assumed that in order to obtain adequate performance, it is necessary to use narrowband or monochromatic light. Some background information, including definitions of terms and a brief description of pertinent aspects of image-based phase retrieval, is prerequisite to a meaningful summary of the present development. Phase retrieval is a general term used in optics to denote estimation of optical imperfections or aberrations of an optical system under test. The term image-based wavefront sensing refers to a general class of algorithms that recover optical phase information, and phase-retrieval algorithms constitute a subset of this class. In phase retrieval, one utilizes the measured response of the optical system under test to produce a phase estimate. The optical response of the system is defined as the image of a point-source object, which could be a star or a laboratory point source. The phase-retrieval problem is characterized as image-based in the sense that a charge-coupled-device camera, preferably of scientific imaging quality, is used to collect image data where the optical system would normally form an image. In a variant of phase retrieval, denoted phase-diverse phase retrieval [which can include focus-diverse phase retrieval (in which various defocus planes are used)], an additional known aberration (or an equivalent diversity function) is superimposed as an aid in estimating unknown aberrations by use of an image-based wavefront-sensing algorithm. Image-based phase-retrieval differs from such other wavefront-sensing methods, such as interferometry, shearing interferometry, curvature wavefront sensing, and Shack-Hartmann sensing, all of which entail disadvantages in comparison with image-based methods. The main disadvantages of these non-image based methods are complexity of test equipment and the need for a wavefront reference.

  9. Digital micromirror device as amplitude diffuser for multiple-plane phase retrieval

    NASA Astrophysics Data System (ADS)

    Abregana, Timothy Joseph T.; Hermosa, Nathaniel P.; Almoro, Percival F.

    2017-06-01

    Previous implementations of the phase diffuser used in the multiple-plane phase retrieval method included a diffuser glass plate with fixed optical properties or a programmable yet expensive spatial light modulator. Here a model for phase retrieval based on a digital micromirror device as amplitude diffuser is presented. The technique offers programmable, convenient and low-cost amplitude diffuser for a non-stagnating iterative phase retrieval. The technique is demonstrated in the reconstructions of smooth object wavefronts.

  10. Combined Industry, Space and Earth Science Data Compression Workshop

    NASA Technical Reports Server (NTRS)

    Kiely, Aaron B. (Editor); Renner, Robert L. (Editor)

    1996-01-01

    The sixth annual Space and Earth Science Data Compression Workshop and the third annual Data Compression Industry Workshop were held as a single combined workshop. The workshop was held April 4, 1996 in Snowbird, Utah in conjunction with the 1996 IEEE Data Compression Conference, which was held at the same location March 31 - April 3, 1996. The Space and Earth Science Data Compression sessions seek to explore opportunities for data compression to enhance the collection, analysis, and retrieval of space and earth science data. Of particular interest is data compression research that is integrated into, or has the potential to be integrated into, a particular space or earth science data information system. Preference is given to data compression research that takes into account the scien- tist's data requirements, and the constraints imposed by the data collection, transmission, distribution and archival systems.

  11. Retrieval of Cement Embolus from Inferior Vena Cava After Percutaneous Vertebroplasty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Athreya, S., E-mail: sathreya@stjoes.c; Mathias, N.; Rogers, P.

    Percutaneous vertebroplasty is an accepted treatment for painful vertebral compression fractures caused by osteoporosis and malignant disease. Venous leakage of cement and pulmonary cement embolism have been reported complications. We describe a paravertebral venous cement leak resulting in the deposition of a cement cast in the inferior vena cava and successful retrieval of the cement embolus.

  12. Phase retrieval using a modified Shack-Hartmann wavefront sensor with defocus.

    PubMed

    Li, Changwei; Li, Bangming; Zhang, Sijiong

    2014-02-01

    This paper proposes a modified Shack-Hartmann wavefront sensor for phase retrieval. The sensor is revamped by placing a detector at a defocused plane before the focal plane of the lenslet array of the Shack-Hartmann sensor. The algorithm for phase retrieval is an optimization with initial Zernike coefficients calculated by the conventional phase reconstruction of the Shack-Hartmann sensor. Numerical simulations show that the proposed sensor permits sensitive, accurate phase retrieval. Furthermore, experiments tested the feasibility of phase retrieval using the proposed sensor. The surface irregularity for a flat mirror was measured by the proposed method and a Veeco interferometer, respectively. The irregularity for the mirror measured by the proposed method is in very good agreement with that measured using the Veeco interferometer.

  13. Quantification of signal detection performance degradation induced by phase-retrieval in propagation-based x-ray phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    Chou, Cheng-Ying; Anastasio, Mark A.

    2016-04-01

    In propagation-based X-ray phase-contrast (PB XPC) imaging, the measured image contains a mixture of absorption- and phase-contrast. To obtain separate images of the projected absorption and phase (i.e., refractive) properties of a sample, phase retrieval methods can be employed. It has been suggested that phase-retrieval can always improve image quality in PB XPC imaging. However, when objective (task-based) measures of image quality are employed, this is not necessarily true and phase retrieval can be detrimental. In this work, signal detection theory is utilized to quantify the performance of a Hotelling observer (HO) for detecting a known signal in a known background. Two cases are considered. In the first case, the HO acts directly on the measured intensity data. In the second case, the HO acts on either the retrieved phase or absorption image. We demonstrate that the performance of the HO is superior when acting on the measured intensity data. The loss of task-specific information induced by phase-retrieval is quantified by computing the efficiency of the HO as the ratio of the test statistic signal-to-noise ratio (SNR) for the two cases. The effect of the system geometry on this efficiency is systematically investigated. Our findings confirm that phase-retrieval can impair signal detection performance in XPC imaging.

  14. Phase unwinding for dictionary compression with multiple channel transmission in magnetic resonance fingerprinting.

    PubMed

    Lattanzi, Riccardo; Zhang, Bei; Knoll, Florian; Assländer, Jakob; Cloos, Martijn A

    2018-06-01

    Magnetic Resonance Fingerprinting reconstructions can become computationally intractable with multiple transmit channels, if the B 1 + phases are included in the dictionary. We describe a general method that allows to omit the transmit phases. We show that this enables straightforward implementation of dictionary compression to further reduce the problem dimensionality. We merged the raw data of each RF source into a single k-space dataset, extracted the transceiver phases from the corresponding reconstructed images and used them to unwind the phase in each time frame. All phase-unwound time frames were combined in a single set before performing SVD-based compression. We conducted synthetic, phantom and in-vivo experiments to demonstrate the feasibility of SVD-based compression in the case of two-channel transmission. Unwinding the phases before SVD-based compression yielded artifact-free parameter maps. For fully sampled acquisitions, parameters were accurate with as few as 6 compressed time frames. SVD-based compression performed well in-vivo with highly under-sampled acquisitions using 16 compressed time frames, which reduced reconstruction time from 750 to 25min. Our method reduces the dimensions of the dictionary atoms and enables to implement any fingerprint compression strategy in the case of multiple transmit channels. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Phase Retrieval on Undersampled Data from the Thermal Infrared Sensor (TIRS)

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Mentzell, Eric

    2011-01-01

    Phase retrieval was applied to under-sampled data from a thermal infrared imaging system to estimate defocus across the field of view (FOV). We compare phase retrieval estimated values to those obtained using an independent technique.

  16. Induction of a shorter compression phase is correlated with a deeper chest compression during metronome-guided cardiopulmonary resuscitation: a manikin study.

    PubMed

    Chung, Tae Nyoung; Bae, Jinkun; Kim, Eui Chung; Cho, Yun Kyung; You, Je Sung; Choi, Sung Wook; Kim, Ok Jun

    2013-07-01

    Recent studies have shown that there may be an interaction between duty cycle and other factors related to the quality of chest compression. Duty cycle represents the fraction of compression phase. We aimed to investigate the effect of shorter compression phase on average chest compression depth during metronome-guided cardiopulmonary resuscitation. Senior medical students performed 12 sets of chest compressions following the guiding sounds, with three down-stroke patterns (normal, fast and very fast) and four rates (80, 100, 120 and 140 compressions/min) in random sequence. Repeated-measures analysis of variance was used to compare the average chest compression depth and duty cycle among the trials. The average chest compression depth increased and the duty cycle decreased in a linear fashion as the down-stroke pattern shifted from normal to very fast (p<0.001 for both). Linear increase of average chest compression depth following the increase of the rate of chest compression was observed only with normal down-stroke pattern (p=0.004). Induction of a shorter compression phase is correlated with a deeper chest compression during metronome-guided cardiopulmonary resuscitation.

  17. Logarithmic compression methods for spectral data

    DOEpatents

    Dunham, Mark E.

    2003-01-01

    A method is provided for logarithmic compression, transmission, and expansion of spectral data. A log Gabor transformation is made of incoming time series data to output spectral phase and logarithmic magnitude values. The output phase and logarithmic magnitude values are compressed by selecting only magnitude values above a selected threshold and corresponding phase values to transmit compressed phase and logarithmic magnitude values. A reverse log Gabor transformation is then performed on the transmitted phase and logarithmic magnitude values to output transmitted time series data to a user.

  18. Revising the lower statistical limit of x-ray grating-based phase-contrast computed tomography.

    PubMed

    Marschner, Mathias; Birnbacher, Lorenz; Willner, Marian; Chabior, Michael; Herzen, Julia; Noël, Peter B; Pfeiffer, Franz

    2017-01-01

    Phase-contrast x-ray computed tomography (PCCT) is currently investigated as an interesting extension of conventional CT, providing high soft-tissue contrast even if examining weakly absorbing specimen. Until now, the potential for dose reduction was thought to be limited compared to attenuation CT, since meaningful phase retrieval fails for scans with very low photon counts when using the conventional phase retrieval method via phase stepping. In this work, we examine the statistical behaviour of the reverse projection method, an alternative phase retrieval approach and compare the results to the conventional phase retrieval technique. We investigate the noise levels in the projections as well as the image quality and quantitative accuracy of the reconstructed tomographic volumes. The results of our study show that this method performs better in a low-dose scenario than the conventional phase retrieval approach, resulting in lower noise levels, enhanced image quality and more accurate quantitative values. Overall, we demonstrate that the lower statistical limit of the phase stepping procedure as proposed by recent literature does not apply to this alternative phase retrieval technique. However, further development is necessary to overcome experimental challenges posed by this method which would enable mainstream or even clinical application of PCCT.

  19. In situ X-Ray Diffraction of Shock-Compressed Fused Silica

    NASA Astrophysics Data System (ADS)

    Tracy, Sally June; Turneaure, Stefan J.; Duffy, Thomas S.

    2018-03-01

    Because of its widespread applications in materials science and geophysics, SiO2 has been extensively examined under shock compression. Both quartz and fused silica transform through a so-called "mixed-phase region" to a dense, low compressibility high-pressure phase. For decades, the nature of this phase has been a subject of debate. Proposed structures include crystalline stishovite, another high-pressure crystalline phase, or a dense amorphous phase. Here we use plate-impact experiments and pulsed synchrotron x-ray diffraction to examine the structure of fused silica shock compressed to 63 GPa. In contrast to recent laser-driven compression experiments, we find that fused silica adopts a dense amorphous structure at 34 GPa and below. When compressed above 34 GPa, fused silica transforms to untextured polycrystalline stishovite. Our results can explain previously ambiguous features of the shock-compression behavior of fused silica and are consistent with recent molecular dynamics simulations. Stishovite grain sizes are estimated to be ˜5 - 30 nm for compression over a few hundred nanosecond time scale.

  20. DELIMINATE--a fast and efficient method for loss-less compression of genomic sequences: sequence analysis.

    PubMed

    Mohammed, Monzoorul Haque; Dutta, Anirban; Bose, Tungadri; Chadaram, Sudha; Mande, Sharmila S

    2012-10-01

    An unprecedented quantity of genome sequence data is currently being generated using next-generation sequencing platforms. This has necessitated the development of novel bioinformatics approaches and algorithms that not only facilitate a meaningful analysis of these data but also aid in efficient compression, storage, retrieval and transmission of huge volumes of the generated data. We present a novel compression algorithm (DELIMINATE) that can rapidly compress genomic sequence data in a loss-less fashion. Validation results indicate relatively higher compression efficiency of DELIMINATE when compared with popular general purpose compression algorithms, namely, gzip, bzip2 and lzma. Linux, Windows and Mac implementations (both 32 and 64-bit) of DELIMINATE are freely available for download at: http://metagenomics.atc.tcs.com/compression/DELIMINATE. sharmila@atc.tcs.com Supplementary data are available at Bioinformatics online.

  1. Compression embedding

    DOEpatents

    Sandford, M.T. II; Handel, T.G.; Bradley, J.N.

    1998-03-10

    A method of embedding auxiliary information into the digital representation of host data created by a lossy compression technique is disclosed. The method applies to data compressed with lossy algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as integer indices having redundancy and uncertainty in value by one unit. Indices which are adjacent in value are manipulated to encode auxiliary data. By a substantially reverse process, the embedded auxiliary data can be retrieved easily by an authorized user. Lossy compression methods use loss-less compressions known also as entropy coding, to reduce to the final size the intermediate representation as indices. The efficiency of the compression entropy coding, known also as entropy coding is increased by manipulating the indices at the intermediate stage in the manner taught by the method. 11 figs.

  2. Compression embedding

    DOEpatents

    Sandford, II, Maxwell T.; Handel, Theodore G.; Bradley, Jonathan N.

    1998-01-01

    A method of embedding auxiliary information into the digital representation of host data created by a lossy compression technique. The method applies to data compressed with lossy algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as integer indices having redundancy and uncertainty in value by one unit. Indices which are adjacent in value are manipulated to encode auxiliary data. By a substantially reverse process, the embedded auxiliary data can be retrieved easily by an authorized user. Lossy compression methods use loss-less compressions known also as entropy coding, to reduce to the final size the intermediate representation as indices. The efficiency of the compression entropy coding, known also as entropy coding is increased by manipulating the indices at the intermediate stage in the manner taught by the method.

  3. Complex amplitude reconstruction by iterative amplitude-phase retrieval algorithm with reference

    NASA Astrophysics Data System (ADS)

    Shen, Cheng; Guo, Cheng; Tan, Jiubin; Liu, Shutian; Liu, Zhengjun

    2018-06-01

    Multi-image iterative phase retrieval methods have been successfully applied in plenty of research fields due to their simple but efficient implementation. However, there is a mismatch between the measurement of the first long imaging distance and the sequential interval. In this paper, an amplitude-phase retrieval algorithm with reference is put forward without additional measurements or priori knowledge. It gets rid of measuring the first imaging distance. With a designed update formula, it significantly raises the convergence speed and the reconstruction fidelity, especially in phase retrieval. Its superiority over the original amplitude-phase retrieval (APR) method is validated by numerical analysis and experiments. Furthermore, it provides a conceptual design of a compact holographic image sensor, which can achieve numerical refocusing easily.

  4. Simulating compressible-incompressible two-phase flows

    NASA Astrophysics Data System (ADS)

    Denner, Fabian; van Wachem, Berend

    2017-11-01

    Simulating compressible gas-liquid flows, e.g. air-water flows, presents considerable numerical issues and requires substantial computational resources, particularly because of the stiff equation of state for the liquid and the different Mach number regimes. Treating the liquid phase (low Mach number) as incompressible, yet concurrently considering the gas phase (high Mach number) as compressible, can improve the computational performance of such simulations significantly without sacrificing important physical mechanisms. A pressure-based algorithm for the simulation of two-phase flows is presented, in which a compressible and an incompressible fluid are separated by a sharp interface. The algorithm is based on a coupled finite-volume framework, discretised in conservative form, with a compressive VOF method to represent the interface. The bulk phases are coupled via a novel acoustically-conservative interface discretisation method that retains the acoustic properties of the compressible phase and does not require a Riemann solver. Representative test cases are presented to scrutinize the proposed algorithm, including the reflection of acoustic waves at the compressible-incompressible interface, shock-drop interaction and gas-liquid flows with surface tension. Financial support from the EPSRC (Grant EP/M021556/1) is gratefully acknowledged.

  5. High speed phase retrieval of in-line holograms by the assistance of corresponding off-axis holograms.

    PubMed

    Orzó, László

    2015-06-29

    Retrieving correct phase information from an in-line hologram is difficult as the object wave field and the diffractions of the zero order and the conjugate object term overlap. The existing iterative numerical phase retrieval methods are slow, especially in the case of high Fresnel number systems. Conversely, the reconstruction of the object wave field from an off-axis hologram is simple, but due to the applied spatial frequency filtering the achievable resolution is confined. Here, a new, high-speed algorithm is introduced that efficiently incorporates the data of an auxiliary off-axis hologram in the phase retrieval of the corresponding in-line hologram. The efficiency of the introduced combined phase retrieval method is demonstrated by simulated and measured holograms.

  6. Phase modulated high density collinear holographic data storage system with phase-retrieval reference beam locking and orthogonal reference encoding.

    PubMed

    Liu, Jinpeng; Horimai, Hideyoshi; Lin, Xiao; Huang, Yong; Tan, Xiaodi

    2018-02-19

    A novel phase modulation method for holographic data storage with phase-retrieval reference beam locking is proposed and incorporated into an amplitude-encoding collinear holographic storage system. Unlike the conventional phase retrieval method, the proposed method locks the data page and the corresponding phase-retrieval interference beam together at the same location with a sequential recording process, which eliminates piezoelectric elements, phase shift arrays and extra interference beams, making the system more compact and phase retrieval easier. To evaluate our proposed phase modulation method, we recorded and then recovered data pages with multilevel phase modulation using two spatial light modulators experimentally. For 4-level, 8-level, and 16-level phase modulation, we achieved the bit error rate (BER) of 0.3%, 1.5% and 6.6% respectively. To further improve data storage density, an orthogonal reference encoding multiplexing method at the same position of medium is also proposed and validated experimentally. We increased the code rate of pure 3/16 amplitude encoding method from 0.5 up to 1.0 and 1.5 using 4-level and 8-level phase modulation respectively.

  7. Phase and Pupil Amplitude Recovery for JWST Space-Optics Control

    NASA Technical Reports Server (NTRS)

    Dean, B. H.; Zielinski, T. P.; Smith, J. S.; Bolcar, M. R.; Aronstein, D. L.; Fienup, J. R.

    2010-01-01

    This slide presentation reviews the phase and pupil amplitude recovery for the James Webb Space Telescope (JWST) Near Infrared Camera (NIRCam). It includes views of the Integrated Science Instrument Module (ISIM), the NIRCam, examples of Phase Retrieval Data, Ghost Irradiance, Pupil Amplitude Estimation, Amplitude Retrieval, Initial Plate Scale Estimation using the Modulation Transfer Function (MTF), Pupil Amplitude Estimation vs lambda, Pupil Amplitude Estimation vs. number of Images, Pupil Amplitude Estimation vs Rotation (clocking), and Typical Phase Retrieval Results Also included is information about the phase retrieval approach, Non-Linear Optimization (NLO) Optimized Diversity Functions, and Least Square Error vs. Starting Pupil Amplitude.

  8. Temporal compression in episodic memory for real-life events.

    PubMed

    Jeunehomme, Olivier; Folville, Adrien; Stawarczyk, David; Van der Linden, Martial; D'Argembeau, Arnaud

    2018-07-01

    Remembering an event typically takes less time than experiencing it, suggesting that episodic memory represents past experience in a temporally compressed way. Little is known, however, about how the continuous flow of real-life events is summarised in memory. Here we investigated the nature and determinants of temporal compression by directly comparing memory contents with the objective timing of events as measured by a wearable camera. We found that episodic memories consist of a succession of moments of prior experience that represent events with varying compression rates, such that the density of retrieved information is modulated by goal processing and perceptual changes. Furthermore, the results showed that temporal compression rates remain relatively stable over one week and increase after a one-month delay, particularly for goal-related events. These data shed new light on temporal compression in episodic memory and suggest that compression rates are adaptively modulated to maintain current goal-relevant information.

  9. Hybrid-drive implosion system for ICF targets

    DOEpatents

    Mark, James W.

    1988-08-02

    Hybrid-drive implosion systems (20,40) for ICF targets (10,22,42) are described which permit a significant increase in target gain at fixed total driver energy. The ICF target is compressed in two phases, an initial compression phase and a final peak power phase, with each phase driven by a separate, optimized driver. The targets comprise a hollow spherical ablator (12) surroundingly disposed around fusion fuel (14). The ablator is first compressed to higher density by a laser system (24), or by an ion beam system (44), that in each case is optimized for this initial phase of compression of the target. Then, following compression of the ablator, energy is directly delivered into the compressed ablator by an ion beam driver system (30,48) that is optimized for this second phase of operation of the target. The fusion fuel (14) is driven, at high gain, to conditions wherein fusion reactions occur. This phase separation allows hydrodynamic efficiency and energy deposition uniformity to be individually optimized, thereby securing significant advantages in energy gain. In additional embodiments, the same or separate drivers supply energy for ICF target implosion.

  10. Hybrid-drive implosion system for ICF targets

    DOEpatents

    Mark, James W.

    1988-01-01

    Hybrid-drive implosion systems (20,40) for ICF targets (10,22,42) are described which permit a significant increase in target gain at fixed total driver energy. The ICF target is compressed in two phases, an initial compression phase and a final peak power phase, with each phase driven by a separate, optimized driver. The targets comprise a hollow spherical ablator (12) surroundingly disposed around fusion fuel (14). The ablator is first compressed to higher density by a laser system (24), or by an ion beam system (44), that in each case is optimized for this initial phase of compression of the target. Then, following compression of the ablator, energy is directly delivered into the compressed ablator by an ion beam driver system (30,48) that is optimized for this second phase of operation of the target. The fusion fuel (14) is driven, at high gain, to conditions wherein fusion reactions occur. This phase separation allows hydrodynamic efficiency and energy deposition uniformity to be individually optimized, thereby securing significant advantages in energy gain. In additional embodiments, the same or separate drivers supply energy for ICF target implosion.

  11. Hybrid-drive implosion system for ICF targets

    DOEpatents

    Mark, J.W.K.

    1987-10-14

    Hybrid-drive implosion systems for ICF targets are described which permit a significant increase in target gain at fixed total driver energy. The ICF target is compressed in two phases, an initial compression phase and a final peak power phase, with each phase driven by a separate, optimized driver. The targets comprise a hollow spherical ablator surroundingly disposed around fusion fuel. The ablator is first compressed to higher density by a laser system, or by an ion beam system, that in each case is optimized for this initial phase of compression of the target. Then, following compression of the ablator, energy is directly delivered into the compressed ablator by an ion beam driver system that is optimized for this second phase of operation of the target. The fusion fuel is driven, at high gain, to conditions wherein fusion reactions occur. This phase separation allows hydrodynamic efficiency and energy deposition uniformity to be individually optimized, thereby securing significant advantages in energy gain. In additional embodiments, the same or separate drivers supply energy for ICF target implosion. 3 figs.

  12. Atomically resolved structural determination of graphene and its point defects via extrapolation assisted phase retrieval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latychevskaia, Tatiana; Fink, Hans-Werner

    Previously reported crystalline structures obtained by an iterative phase retrieval reconstruction of their diffraction patterns seem to be free from displaying any irregularities or defects in the lattice, which appears to be unrealistic. We demonstrate here that the structure of a nanocrystal including its atomic defects can unambiguously be recovered from its diffraction pattern alone by applying a direct phase retrieval procedure not relying on prior information of the object shape. Individual point defects in the atomic lattice are clearly apparent. Conventional phase retrieval routines assume isotropic scattering. We show that when dealing with electrons, the quantitatively correct transmission functionmore » of the sample cannot be retrieved due to anisotropic, strong forward scattering specific to electrons. We summarize the conditions for this phase retrieval method and show that the diffraction pattern can be extrapolated beyond the original record to even reveal formerly not visible Bragg peaks. Such extrapolated wave field pattern leads to enhanced spatial resolution in the reconstruction.« less

  13. Phase retrieval with the reverse projection method in the presence of object's scattering

    NASA Astrophysics Data System (ADS)

    Wang, Zhili; Gao, Kun; Wang, Dajiang

    2017-08-01

    X-ray grating interferometry can provide substantially increased contrast over traditional attenuation-based techniques in biomedical applications, and therefore novel and complementary information. Recently, special attention has been paid to quantitative phase retrieval in X-ray grating interferometry, which is mandatory to perform phase tomography, to achieve material identification, etc. An innovative approach, dubbed ;Reverse Projection; (RP), has been developed for quantitative phase retrieval. The RP method abandons grating scanning completely, and is thus advantageous in terms of higher efficiency and reduced radiation damage. Therefore, it is expected that this novel method would find its potential in preclinical and clinical implementations. Strictly speaking, the reverse projection method is applicable for objects exhibiting only absorption and refraction. In this contribution, we discuss the phase retrieval with the reverse projection method for general objects with absorption, refraction and scattering simultaneously. Especially, we investigate the influence of the object's scattering on the retrieved refraction signal. Both theoretical analysis and numerical experiments are performed. The results show that the retrieved refraction signal is the product of object's refraction and scattering signals for small values. In the case of a strong scattering, the reverse projection method cannot provide reliable phase retrieval. Those presented results will guide the use of the reverse projection method for future practical applications, and help to explain some possible artifacts in the retrieved images and/or reconstructed slices.

  14. Genetic Algorithm Phase Retrieval for the Systematic Image-Based Optical Alignment Testbed

    NASA Technical Reports Server (NTRS)

    Taylor, Jaime; Rakoczy, John; Steincamp, James

    2003-01-01

    Phase retrieval requires calculation of the real-valued phase of the pupil fimction from the image intensity distribution and characteristics of an optical system. Genetic 'algorithms were used to solve two one-dimensional phase retrieval problem. A GA successfully estimated the coefficients of a polynomial expansion of the phase when the number of coefficients was correctly specified. A GA also successfully estimated the multiple p h e s of a segmented optical system analogous to the seven-mirror Systematic Image-Based Optical Alignment (SIBOA) testbed located at NASA s Marshall Space Flight Center. The SIBOA testbed was developed to investigate phase retrieval techniques. Tiphilt and piston motions of the mirrors accomplish phase corrections. A constant phase over each mirror can be achieved by an independent tip/tilt correction: the phase Conection term can then be factored out of the Discrete Fourier Tranform (DFT), greatly reducing computations.

  15. Probing myocardium biomechanics using quantitative optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Wang, Shang; Lopez, Andrew L.; Morikawa, Yuka; Tao, Ge; Li, Jiasong; Larina, Irina V.; Martin, James F.; Larin, Kirill V.

    2015-03-01

    We present a quantitative optical coherence elastographic method for noncontact assessment of the myocardium elasticity. The method is based on shear wave imaging optical coherence tomography (SWI-OCT), where a focused air-puff system is used to induce localized tissue deformation through a low-pressure short-duration air stream and a phase-sensitive OCT system is utilized to monitor the propagation of the induced tissue displacement with nanoscale sensitivity. The 1-D scanning of M-mode OCT imaging and the application of optical phase retrieval and mapping techniques enable the reconstruction and visualization of 2-D depth-resolved shear wave propagation in tissue with ultra-high frame rate. The feasibility of this method in quantitative elasticity measurement is demonstrated on tissue-mimicking phantoms with the estimated Young's modulus compared with uniaxial compression tests. We also performed pilot experiments on ex vivo mouse cardiac muscle tissues with normal and genetically altered cardiomyocytes. Our results indicate this noncontact quantitative optical coherence elastographic method can be a useful tool for the cardiac muscle research and studies.

  16. A humming retrieval system based on music fingerprint

    NASA Astrophysics Data System (ADS)

    Han, Xingkai; Cao, Baiyu

    2011-10-01

    In this paper, we proposed an improved music information retrieval method utilizing the music fingerprint. The goal of this method is to represent the music with compressed musical information. Based on the selected MIDI files, which are generated automatically as our music target database, we evaluate the accuracy, effectiveness, and efficiency of this method. In this research we not only extract the feature sequence, which can represent the file effectively, from the query and melody database, but also make it possible for retrieving the results in an innovative way. We investigate on the influence of noise to the performance of our system. As experimental result shows, the retrieval accuracy arriving at up to91% without noise is pretty well

  17. Content-based retrieval of historical Ottoman documents stored as textual images.

    PubMed

    Saykol, Ediz; Sinop, Ali Kemal; Güdükbay, Ugur; Ulusoy, Ozgür; Cetin, A Enis

    2004-03-01

    There is an accelerating demand to access the visual content of documents stored in historical and cultural archives. Availability of electronic imaging tools and effective image processing techniques makes it feasible to process the multimedia data in large databases. In this paper, a framework for content-based retrieval of historical documents in the Ottoman Empire archives is presented. The documents are stored as textual images, which are compressed by constructing a library of symbols occurring in a document, and the symbols in the original image are then replaced with pointers into the codebook to obtain a compressed representation of the image. The features in wavelet and spatial domain based on angular and distance span of shapes are used to extract the symbols. In order to make content-based retrieval in historical archives, a query is specified as a rectangular region in an input image and the same symbol-extraction process is applied to the query region. The queries are processed on the codebook of documents and the query images are identified in the resulting documents using the pointers in textual images. The querying process does not require decompression of images. The new content-based retrieval framework is also applicable to many other document archives using different scripts.

  18. Memory as Perception of the Past: Compressed Time inMind and Brain.

    PubMed

    Howard, Marc W

    2018-02-01

    In the visual system retinal space is compressed such that acuity decreases further from the fovea. Different forms of memory may rely on a compressed representation of time, manifested as decreased accuracy for events that happened further in the past. Neurophysiologically, "time cells" show receptive fields in time. Analogous to the compression of visual space, time cells show less acuity for events further in the past. Behavioral evidence suggests memory can be accessed by scanning a compressed temporal representation, analogous to visual search. This suggests a common computational language for visual attention and memory retrieval. In this view, time functions like a scaffolding that organizes memories in much the same way that retinal space functions like a scaffolding for visual perception. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Fast perceptual image hash based on cascade algorithm

    NASA Astrophysics Data System (ADS)

    Ruchay, Alexey; Kober, Vitaly; Yavtushenko, Evgeniya

    2017-09-01

    In this paper, we propose a perceptual image hash algorithm based on cascade algorithm, which can be applied in image authentication, retrieval, and indexing. Image perceptual hash uses for image retrieval in sense of human perception against distortions caused by compression, noise, common signal processing and geometrical modifications. The main disadvantage of perceptual hash is high time expenses. In the proposed cascade algorithm of image retrieval initializes with short hashes, and then a full hash is applied to the processed results. Computer simulation results show that the proposed hash algorithm yields a good performance in terms of robustness, discriminability, and time expenses.

  20. Retrieval of Aerosol Phase Function and Polarized Phase Function from Polarization of Skylight for Different Observation Geometries

    NASA Astrophysics Data System (ADS)

    Li, L.; Qie, L. L.; Xu, H.; Li, Z. Q.

    2018-04-01

    The phase function and polarized phase function are important optical parameters, which describe scattering properties of atmospheric aerosol particles. Polarization of skylight induced by the scattering processes is sensitive to the scattering properties of aerosols. The Stokes parameters I, Q, U and the polarized radiance Lp of skylight measured by the CIMEL dual-polar sun-sky radiometer CE318- DP can be use to retrieve the phase function and polarized phase function, respectively. Two different observation geometries (i.e., the principal plane and almucantar) are preformed by the CE318-DP to detect skylight polarization. Polarization of skylight depends on the illumination and observation geometries. For the same solar zenith angle, retrievals of the phase function and the polarized phase function are still affected by the observation geometry. The performance of the retrieval algorithm for the principal plane and almucantar observation geometries was assessed by the numerical experiments at two typical high and low sun's positions (i.e. solar zenith angles are equal to 45° and 65°). Comparing the results for the principal plane and almucantar geometries, it is recommended to utilize the principal plane observations to retrieve the phase function when the solar zenith angle is small. The Stokes parameter U and the polarized radiance Lp from the almucantar observations are suggested to retrieve the polarized phase function, especially for short wavelength channels (e.g., 440 and 500 nm).

  1. An introduction to the theory of ptychographic phase retrieval methods

    NASA Astrophysics Data System (ADS)

    Konijnenberg, Sander

    2017-12-01

    An overview of several ptychographic phase retrieval methods and the theory behind them is presented. By looking into the theory behind more basic single-intensity pattern phase retrieval methods, a theoretical framework is provided for analyzing ptychographic algorithms. Extensions of ptychographic algorithms that deal with issues such as partial coherence, thick samples, or uncertainties of the probe or probe positions are also discussed. This introduction is intended for scientists and students without prior experience in the field of phase retrieval or ptychography to quickly get introduced to the theory, so that they can put the more specialized literature in context more easily.

  2. Experimental investigation of dynamic compression and spallation of Cerium at pressures up to 6 GPa

    NASA Astrophysics Data System (ADS)

    Zubareva, A. N.; Kolesnikov, S. A.; Utkin, A. V.

    2014-05-01

    In this study the experiments on one-dimensional dynamic compression of Cerium (Ce) samples to pressures of 0.5 to 6 GPa using various types of explosively driven generators were conducted. VISAR laser velocimeter was used to obtain Ce free surface velocity profiles. The isentropic compression wave was registered for γ-phase of Ce at pressures lower than 0.76 GPa that corresponds to γ-α phase transition pressure in Ce. Shock rarefaction waves were also registered in several experiments. Both observations were the result of the anomalous compressibility of γ-phase of Ce. On the basis of our experimental results the compression isentrope of Ce γ-phase was constructed. Its comparison with volumetric compression curves allowed to estimate the magnitude of shear stress at dynamic compression conditions for Ce. Spall strength measurements were also conducted for several samples. They showed a strong dependence of the spall strength of Ce on the strain rate.

  3. Phase-step retrieval for tunable phase-shifting algorithms

    NASA Astrophysics Data System (ADS)

    Ayubi, Gastón A.; Duarte, Ignacio; Perciante, César D.; Flores, Jorge L.; Ferrari, José A.

    2017-12-01

    Phase-shifting (PS) is a well-known technique for phase retrieval in interferometry, with applications in deflectometry and 3D-profiling, which requires a series of intensity measurements with certain phase-steps. Usually the phase-steps are evenly spaced, and its knowledge is crucial for the phase retrieval. In this work we present a method to extract the phase-step between consecutive interferograms. We test the proposed technique with images corrupted by additive noise. The results were compared with other known methods. We also present experimental results showing the performance of the method when spatial filters are applied to the interferograms and the effect that they have on their relative phase-steps.

  4. Acute stress negatively affects object recognition early memory consolidation and memory retrieval unrelated to state-dependency.

    PubMed

    Nelissen, Ellis; Prickaerts, Jos; Blokland, Arjan

    2018-06-01

    It is well known that stress affects memory performance. However, there still appears to be inconstancy in literature about how acute stress affects the different stages of memory: acquisition, consolidation and retrieval. In this study, we exposed rats to acute stress and measured the effect on memory performance in the object recognition task as a measure for episodic memory. Stress was induced 30 min prior to the learning phase to affect acquisition, directly after the learning phase to affect consolidation, or 30 min before the retrieval phase to affect retrieval. Additionally, we induced stress both 30 min prior to the learning phase and 30 min prior to the retrieval phase to test whether the effects were related to state-dependency. As expected, we found that acute stress did not affect acquisition but had a negative impact on retrieval. To our knowledge, we are the first to show that early consolidation was negatively affected by acute stress. We also show that stress does not have a state-dependent effect on memory. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Linear information retrieval method in X-ray grating-based phase contrast imaging and its interchangeability with tomographic reconstruction

    NASA Astrophysics Data System (ADS)

    Wu, Z.; Gao, K.; Wang, Z. L.; Shao, Q. G.; Hu, R. F.; Wei, C. X.; Zan, G. B.; Wali, F.; Luo, R. H.; Zhu, P. P.; Tian, Y. C.

    2017-06-01

    In X-ray grating-based phase contrast imaging, information retrieval is necessary for quantitative research, especially for phase tomography. However, numerous and repetitive processes have to be performed for tomographic reconstruction. In this paper, we report a novel information retrieval method, which enables retrieving phase and absorption information by means of a linear combination of two mutually conjugate images. Thanks to the distributive law of the multiplication as well as the commutative law and associative law of the addition, the information retrieval can be performed after tomographic reconstruction, thus simplifying the information retrieval procedure dramatically. The theoretical model of this method is established in both parallel beam geometry for Talbot interferometer and fan beam geometry for Talbot-Lau interferometer. Numerical experiments are also performed to confirm the feasibility and validity of the proposed method. In addition, we discuss its possibility in cone beam geometry and its advantages compared with other methods. Moreover, this method can also be employed in other differential phase contrast imaging methods, such as diffraction enhanced imaging, non-interferometric imaging, and edge illumination.

  6. Compression of computer generated phase-shifting hologram sequence using AVC and HEVC

    NASA Astrophysics Data System (ADS)

    Xing, Yafei; Pesquet-Popescu, Béatrice; Dufaux, Frederic

    2013-09-01

    With the capability of achieving twice the compression ratio of Advanced Video Coding (AVC) with similar reconstruction quality, High Efficiency Video Coding (HEVC) is expected to become the newleading technique of video coding. In order to reduce the storage and transmission burden of digital holograms, in this paper we propose to use HEVC for compressing the phase-shifting digital hologram sequences (PSDHS). By simulating phase-shifting digital holography (PSDH) interferometry, interference patterns between illuminated three dimensional( 3D) virtual objects and the stepwise phase changed reference wave are generated as digital holograms. The hologram sequences are obtained by the movement of the virtual objects and compressed by AVC and HEVC. The experimental results show that AVC and HEVC are efficient to compress PSDHS, with HEVC giving better performance. Good compression rate and reconstruction quality can be obtained with bitrate above 15000kbps.

  7. Talbot-Lau x-ray deflectometry phase-retrieval methods for electron density diagnostics in high-energy density experiments.

    PubMed

    Valdivia, Maria Pia; Stutman, Dan; Stoeckl, Christian; Mileham, Chad; Begishev, Ildar A; Bromage, Jake; Regan, Sean P

    2018-01-10

    Talbot-Lau x-ray interferometry uses incoherent x-ray sources to measure refraction index changes in matter. These measurements can provide accurate electron density mapping through phase retrieval. An adaptation of the interferometer has been developed in order to meet the specific requirements of high-energy density experiments. This adaptation is known as a moiré deflectometer, which allows for single-shot capabilities in the form of interferometric fringe patterns. The moiré x-ray deflectometry technique requires a set of object and reference images in order to provide electron density maps, which can be costly in the high-energy density environment. In particular, synthetic reference phase images obtained ex situ through a phase-scan procedure, can provide a feasible solution. To test this procedure, an object phase map was retrieved from a single-shot moiré image obtained from a plasma-produced x-ray source. A reference phase map was then obtained from phase-stepping measurements using a continuous x-ray tube source in a small laboratory setting. The two phase maps were used to retrieve an electron density map. A comparison of the moiré and phase-stepping phase-retrieval methods was performed to evaluate single-exposure plasma electron density mapping for high-energy density and other transient plasma experiments. It was found that a combination of phase-retrieval methods can deliver accurate refraction angle mapping. Once x-ray backlighter quality is optimized, the ex situ method is expected to deliver electron density mapping with improved resolution. The steps necessary for improved diagnostic performance are discussed.

  8. Phase retrieval of singular scalar light fields using a two-dimensional directional wavelet transform and a spatial carrier.

    PubMed

    Federico, Alejandro; Kaufmann, Guillermo H

    2008-10-01

    We evaluate a method based on the two-dimensional directional wavelet transform and the introduction of a spatial carrier to retrieve optical phase distributions in singular scalar light fields. The performance of the proposed phase-retrieval method is compared with an approach based on Fourier transform. The advantages and limitations of the proposed method are discussed.

  9. Variable Sampling Mapping

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey, S.; Aronstein, David L.; Dean, Bruce H.; Lyon, Richard G.

    2012-01-01

    The performance of an optical system (for example, a telescope) is limited by the misalignments and manufacturing imperfections of the optical elements in the system. The impact of these misalignments and imperfections can be quantified by the phase variations imparted on light traveling through the system. Phase retrieval is a methodology for determining these variations. Phase retrieval uses images taken with the optical system and using a light source of known shape and characteristics. Unlike interferometric methods, which require an optical reference for comparison, and unlike Shack-Hartmann wavefront sensors that require special optical hardware at the optical system's exit pupil, phase retrieval is an in situ, image-based method for determining the phase variations of light at the system s exit pupil. Phase retrieval can be used both as an optical metrology tool (during fabrication of optical surfaces and assembly of optical systems) and as a sensor used in active, closed-loop control of an optical system, to optimize performance. One class of phase-retrieval algorithms is the iterative transform algorithm (ITA). ITAs estimate the phase variations by iteratively enforcing known constraints in the exit pupil and at the detector, determined from modeled or measured data. The Variable Sampling Mapping (VSM) technique is a new method for enforcing these constraints in ITAs. VSM is an open framework for addressing a wide range of issues that have previously been considered detrimental to high-accuracy phase retrieval, including undersampled images, broadband illumination, images taken at or near best focus, chromatic aberrations, jitter or vibration of the optical system or detector, and dead or noisy detector pixels. The VSM is a model-to-data mapping procedure. In VSM, fully sampled electric fields at multiple wavelengths are modeled inside the phase-retrieval algorithm, and then these fields are mapped to intensities on the light detector, using the properties of the detector and optical system, for comparison with measured data. Ultimately, this model-to-data mapping procedure enables a more robust and accurate way of incorporating the exit-pupil and image detector constraints, which are fundamental to the general class of ITA phase retrieval algorithms.

  10. Three-dimensional propagation in near-field tomographic X-ray phase retrieval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruhlandt, Aike, E-mail: aruhlan@gwdg.de; Salditt, Tim

    An extension of phase retrieval algorithms for near-field X-ray (propagation) imaging to three dimensions is presented, enhancing the quality of the reconstruction by exploiting previously unused three-dimensional consistency constraints. This paper presents an extension of phase retrieval algorithms for near-field X-ray (propagation) imaging to three dimensions, enhancing the quality of the reconstruction by exploiting previously unused three-dimensional consistency constraints. The approach is based on a novel three-dimensional propagator and is derived for the case of optically weak objects. It can be easily implemented in current phase retrieval architectures, is computationally efficient and reduces the need for restrictive prior assumptions, resultingmore » in superior reconstruction quality.« less

  11. Adiabatic compressibility of an immiscible molten NaCl-AgI salt mixture

    NASA Astrophysics Data System (ADS)

    Stepanov, V. P.; Tkachev, N. K.; Kulik, N. P.; Peshkina, K. G.

    2016-08-01

    Adiabatic compressibility β of an immiscible 0.5NaCl + 0.5AgI liquid mixture in the immiscibility range is studied experimentally and theoretically using the model of charged hard spheres. The compressibility is calculated by the relationship β = 1/ u 2ρ studied using sound velocity u measured by a pulse method and density ρ determined by hydrostatic weighing. It is shown that the compressibility of the upper phase decreases and that of the lower phase increases when the temperature increases because of the superposition of the effects of the thermal motion of ions and the phase compositions. The temperature dependence of the difference between the compressibilities of the equilibrium phases is described using the empirical equation Δβ = ( T c- T)0.442, which is close to the mean-field theory description. The results of the model calculations adequately reproduce the experimentally observed temperature dependence of the compressibility of the coexisting phases. However, the theoretically predicted critical exponent (1/2) differs from the experimentally determined exponent by 13%. These results are discussed in terms of the nature of chemical bond in silver iodide.

  12. Phase contrast X-ray microtomography of the Rhodnius prolixus head: Comparison of direct reconstruction and phase retrieval approach

    NASA Astrophysics Data System (ADS)

    Almeida, A. P.; Braz, D.; Nogueira, L. P.; Colaço, M. V.; Soares, J.; Cardoso, S. C.; Garcia, E. S.; Azambuja, P.; Gonzalez, M. S.; Mohammadi, S.; Tromba, G.; Barroso, R. C.

    2014-02-01

    We have used phase-contrast X-ray microtomography (PPC-μCT) to study the head of the blood-feeding bug, Rhodnius prolixus, which is one of the most important insect vector of Trypanosoma cruzi, ethiologic agent of Chagas disease in Latin America. Images reconstructed from phase-retrieved projections processed by ANKA phase are compared to those obtained through direct tomographic reconstruction of the flat-field-corrected transmission radiographs. It should be noted that the relative locations of the important morphological internal structures are observable with a precision that is difficult to obtain without the phase retrieval approach.

  13. Proton spectra diagnostics for shock-compression studies

    NASA Astrophysics Data System (ADS)

    Welch, D. R.; Harris, D. B.; Bennish, A. H.; Miley, G. H.

    1984-12-01

    The energy spectra of fusion products escaping long-pulse-length laser-imploded deuterium-tritium filled glass microballoons have been measured with a time-of-flight spectrometer. The D(d,p)T reaction proton energy spectra showed two distinct peaks, indicating two burn phases in the target. The first burn phase is attributed to a spherically converging shock, while the second is attributed to subsequent compression heating. The analysis of these spectra provides the first conclusive proof of significant compression yields in these targets, where approximately half of the yield occurs during the compression burn phase.

  14. Two-level image authentication by two-step phase-shifting interferometry and compressive sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Xue; Meng, Xiangfeng; Yin, Yongkai; Yang, Xiulun; Wang, Yurong; Li, Xianye; Peng, Xiang; He, Wenqi; Dong, Guoyan; Chen, Hongyi

    2018-01-01

    A two-level image authentication method is proposed; the method is based on two-step phase-shifting interferometry, double random phase encoding, and compressive sensing (CS) theory, by which the certification image can be encoded into two interferograms. Through discrete wavelet transform (DWT), sparseness processing, Arnold transform, and data compression, two compressed signals can be generated and delivered to two different participants of the authentication system. Only the participant who possesses the first compressed signal attempts to pass the low-level authentication. The application of Orthogonal Match Pursuit CS algorithm reconstruction, inverse Arnold transform, inverse DWT, two-step phase-shifting wavefront reconstruction, and inverse Fresnel transform can result in the output of a remarkable peak in the central location of the nonlinear correlation coefficient distributions of the recovered image and the standard certification image. Then, the other participant, who possesses the second compressed signal, is authorized to carry out the high-level authentication. Therefore, both compressed signals are collected to reconstruct the original meaningful certification image with a high correlation coefficient. Theoretical analysis and numerical simulations verify the feasibility of the proposed method.

  15. Phase retrieval without unwrapping by single-shot dual-wavelength digital holography

    NASA Astrophysics Data System (ADS)

    Min, Junwei; Yao, Baoli; Zhou, Meiling; Guo, Rongli; Lei, Ming; Yang, Yanlong; Dan, Dan; Yan, Shaohui; Peng, Tong

    2014-12-01

    A phase retrieval method by using single-shot dual-wavelength digital holography is proposed. Each single wavelength hologram is extracted from the color CCD recorded hologram at one exposure, and the unwrapped phase image of object can be reconstructed directly. Different from the traditional multiple wavelength phase unwrapping techniques, any single complex wave-fronts at different wavelengths have no need to be calculated any more. Thus, the phase retrieval is computationally fast and straightforward, and the limitations on the total optical path difference are significantly relaxed. The practicability of the proposed method is demonstrated by both simulated and experimental results.

  16. Develop advanced nonlinear signal analysis topographical mapping system

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Space Shuttle Main Engine (SSME) has been undergoing extensive flight certification and developmental testing, which involves some 250 health monitoring measurements. Under the severe temperature, pressure, and dynamic environments sustained during operation, numerous major component failures have occurred, resulting in extensive engine hardware damage and scheduling losses. To enhance SSME safety and reliability, detailed analysis and evaluation of the measurements signal are mandatory to assess its dynamic characteristics and operational condition. Efficient and reliable signal detection techniques will reduce catastrophic system failure risks and expedite the evaluation of both flight and ground test data, and thereby reduce launch turn-around time. The basic objective of this contract are threefold: (1) develop and validate a hierarchy of innovative signal analysis techniques for nonlinear and nonstationary time-frequency analysis. Performance evaluation will be carried out through detailed analysis of extensive SSME static firing and flight data. These techniques will be incorporated into a fully automated system; (2) develop an advanced nonlinear signal analysis topographical mapping system (ATMS) to generate a Compressed SSME TOPO Data Base (CSTDB). This ATMS system will convert tremendous amount of complex vibration signals from the entire SSME test history into a bank of succinct image-like patterns while retaining all respective phase information. High compression ratio can be achieved to allow minimal storage requirement, while providing fast signature retrieval, pattern comparison, and identification capabilities; and (3) integrate the nonlinear correlation techniques into the CSTDB data base with compatible TOPO input data format. Such integrated ATMS system will provide the large test archives necessary for quick signature comparison. This study will provide timely assessment of SSME component operational status, identify probable causes of malfunction, and indicate feasible engineering solutions. The final result of this program will yield an ATMS system of nonlinear and nonstationary spectral analysis software package integrated with the Compressed SSME TOPO Data Base (CSTDB) on the same platform. This system will allow NASA engineers to retrieve any unique defect signatures and trends associated with different failure modes and anomalous phenomena over the entire SSME test history across turbo pump families.

  17. Develop advanced nonlinear signal analysis topographical mapping system

    NASA Technical Reports Server (NTRS)

    Jong, Jen-Yi

    1993-01-01

    The SSME has been undergoing extensive flight certification and developmental testing, which involves some 250 health monitoring measurements. Under the severe temperature pressure, and dynamic environments sustained during operation, numerous major component failures have occurred, resulting in extensive engine hardware damage and scheduling losses. To enhance SSME safety and reliability, detailed analysis and evaluation of the measurements signal are mandatory to assess its dynamic characteristics and operational condition. Efficient and reliable signal detection techniques will reduce catastrophic system failure risks and expedite the evaluation of both flight and ground test data, and thereby reduce launch turn-around time. The basic objective of this contract are threefold: (1) Develop and validate a hierarchy of innovative signal analysis techniques for nonlinear and nonstationary time-frequency analysis. Performance evaluation will be carried out through detailed analysis of extensive SSME static firing and flight data. These techniques will be incorporated into a fully automated system. (2) Develop an advanced nonlinear signal analysis topographical mapping system (ATMS) to generate a Compressed SSME TOPO Data Base (CSTDB). This ATMS system will convert tremendous amounts of complex vibration signals from the entire SSME test history into a bank of succinct image-like patterns while retaining all respective phase information. A high compression ratio can be achieved to allow the minimal storage requirement, while providing fast signature retrieval, pattern comparison, and identification capabilities. (3) Integrate the nonlinear correlation techniques into the CSTDB data base with compatible TOPO input data format. Such integrated ATMS system will provide the large test archives necessary for a quick signature comparison. This study will provide timely assessment of SSME component operational status, identify probable causes of malfunction, and indicate feasible engineering solutions. The final result of this program will yield an ATMS system of nonlinear and nonstationary spectral analysis software package integrated with the Compressed SSME TOPO Data Base (CSTDB) on the same platform. This system will allow NASA engineers to retrieve any unique defect signatures and trends associated with different failure modes and anomalous phenomena over the entire SSME test history across turbo pump families.

  18. Multi-sensor measurements of mixed-phase clouds above Greenland

    NASA Astrophysics Data System (ADS)

    Stillwell, Robert A.; Shupe, Matthew D.; Thayer, Jeffrey P.; Neely, Ryan R.; Turner, David D.

    2018-04-01

    Liquid-only and mixed-phase clouds in the Arctic strongly affect the regional surface energy and ice mass budgets, yet much remains unknown about the nature of these clouds due to the lack of intensive measurements. Lidar measurements of these clouds are challenged by very large signal dynamic range, which makes even seemingly simple tasks, such as thermodynamic phase classification, difficult. This work focuses on a set of measurements made by the Clouds Aerosol Polarization and Backscatter Lidar at Summit, Greenland and its retrieval algorithms, which use both analog and photon counting as well as orthogonal and non-orthogonal polarization retrievals to extend dynamic range and improve overall measurement quality and quantity. Presented here is an algorithm for cloud parameter retrievals that leverages enhanced dynamic range retrievals to classify mixed-phase clouds. This best guess retrieval is compared to co-located instruments for validation.

  19. Document retrieval on repetitive string collections.

    PubMed

    Gagie, Travis; Hartikainen, Aleksi; Karhu, Kalle; Kärkkäinen, Juha; Navarro, Gonzalo; Puglisi, Simon J; Sirén, Jouni

    2017-01-01

    Most of the fastest-growing string collections today are repetitive, that is, most of the constituent documents are similar to many others. As these collections keep growing, a key approach to handling them is to exploit their repetitiveness, which can reduce their space usage by orders of magnitude. We study the problem of indexing repetitive string collections in order to perform efficient document retrieval operations on them. Document retrieval problems are routinely solved by search engines on large natural language collections, but the techniques are less developed on generic string collections. The case of repetitive string collections is even less understood, and there are very few existing solutions. We develop two novel ideas, interleaved LCPs and precomputed document lists , that yield highly compressed indexes solving the problem of document listing (find all the documents where a string appears), top- k document retrieval (find the k documents where a string appears most often), and document counting (count the number of documents where a string appears). We also show that a classical data structure supporting the latter query becomes highly compressible on repetitive data. Finally, we show how the tools we developed can be combined to solve ranked conjunctive and disjunctive multi-term queries under the simple [Formula: see text] model of relevance. We thoroughly evaluate the resulting techniques in various real-life repetitiveness scenarios, and recommend the best choices for each case.

  20. Experiments on sparsity assisted phase retrieval of phase objects

    NASA Astrophysics Data System (ADS)

    Gaur, Charu; Lochab, Priyanka; Khare, Kedar

    2017-05-01

    Iterative phase retrieval algorithms such as the Gerchberg-Saxton method and the Fienup hybrid input-output method are known to suffer from the twin image stagnation problem, particularly when the solution to be recovered is complex valued and has centrosymmetric support. Recently we showed that the twin image stagnation problem can be addressed using image sparsity ideas (Gaur et al 2015 J. Opt. Soc. Am. A 32 1922). In this work we test this sparsity assisted phase retrieval method with experimental single shot Fourier transform intensity data frames corresponding to phase objects displayed on a spatial light modulator. The standard iterative phase retrieval algorithms are combined with an image sparsity based penalty in an adaptive manner. Illustrations for both binary and continuous phase objects are provided. It is observed that image sparsity constraint has an important role to play in obtaining meaningful phase recovery without encountering the well-known stagnation problems. The results are valuable for enabling single shot coherent diffraction imaging of phase objects for applications involving illumination wavelengths over a wide range of electromagnetic spectrum.

  1. Phase Retrieval Using a Genetic Algorithm on the Systematic Image-Based Optical Alignment Testbed

    NASA Technical Reports Server (NTRS)

    Taylor, Jaime R.

    2003-01-01

    NASA s Marshall Space Flight Center s Systematic Image-Based Optical Alignment (SIBOA) Testbed was developed to test phase retrieval algorithms and hardware techniques. Individuals working with the facility developed the idea of implementing phase retrieval by breaking the determination of the tip/tilt of each mirror apart from the piston motion (or translation) of each mirror. Presented in this report is an algorithm that determines the optimal phase correction associated only with the piston motion of the mirrors. A description of the Phase Retrieval problem is first presented. The Systematic Image-Based Optical Alignment (SIBOA) Testbeb is then described. A Discrete Fourier Transform (DFT) is necessary to transfer the incoming wavefront (or estimate of phase error) into the spatial frequency domain to compare it with the image. A method for reducing the DFT to seven scalar/matrix multiplications is presented. A genetic algorithm is then used to search for the phase error. The results of this new algorithm on a test problem are presented.

  2. Structure function monitor

    DOEpatents

    McGraw, John T [Placitas, NM; Zimmer, Peter C [Albuquerque, NM; Ackermann, Mark R [Albuquerque, NM

    2012-01-24

    Methods and apparatus for a structure function monitor provide for generation of parameters characterizing a refractive medium. In an embodiment, a structure function monitor acquires images of a pupil plane and an image plane and, from these images, retrieves the phase over an aperture, unwraps the retrieved phase, and analyzes the unwrapped retrieved phase. In an embodiment, analysis yields atmospheric parameters measured at spatial scales from zero to the diameter of a telescope used to collect light from a source.

  3. Optical image encryption using chaos-based compressed sensing and phase-shifting interference in fractional wavelet domain

    NASA Astrophysics Data System (ADS)

    Liu, Qi; Wang, Ying; Wang, Jun; Wang, Qiong-Hua

    2018-02-01

    In this paper, a novel optical image encryption system combining compressed sensing with phase-shifting interference in fractional wavelet domain is proposed. To improve the encryption efficiency, the volume data of original image are decreased by compressed sensing. Then the compacted image is encoded through double random phase encoding in asymmetric fractional wavelet domain. In the encryption system, three pseudo-random sequences, generated by three-dimensional chaos map, are used as the measurement matrix of compressed sensing and two random-phase masks in the asymmetric fractional wavelet transform. It not only simplifies the keys to storage and transmission, but also enhances our cryptosystem nonlinearity to resist some common attacks. Further, holograms make our cryptosystem be immune to noises and occlusion attacks, which are obtained by two-step-only quadrature phase-shifting interference. And the compression and encryption can be achieved in the final result simultaneously. Numerical experiments have verified the security and validity of the proposed algorithm.

  4. Dynamic storage in resource-scarce browsing multimedia applications

    NASA Astrophysics Data System (ADS)

    Elenbaas, Herman; Dimitrova, Nevenka

    1998-10-01

    In the convergence of information and entertainment there is a conflict between the consumer's expectation of fast access to high quality multimedia content through narrow bandwidth channels versus the size of this content. During the retrieval and information presentation of a multimedia application there are two problems that have to be solved: the limited bandwidth during transmission of the retrieved multimedia content and the limited memory for temporary caching. In this paper we propose an approach for latency optimization in information browsing applications. We proposed a method for flattening hierarchically linked documents in a manner convenient for network transport over slow channels to minimize browsing latency. Flattening of the hierarchy involves linearization, compression and bundling of the document nodes. After the transfer, the compressed hierarchy is stored on a local device where it can be partly unbundled to fit the caching limits at the local site while giving the user availability to the content.

  5. Interactive Terascale Particle Visualization

    NASA Technical Reports Server (NTRS)

    Ellsworth, David; Green, Bryan; Moran, Patrick

    2004-01-01

    This paper describes the methods used to produce an interactive visualization of a 2 TB computational fluid dynamics (CFD) data set using particle tracing (streaklines). We use the method introduced by Bruckschen et al. [2001] that pre-computes a large number of particles, stores them on disk using a space-filling curve ordering that minimizes seeks, and then retrieves and displays the particles according to the user's command. We describe how the particle computation can be performed using a PC cluster, how the algorithm can be adapted to work with a multi-block curvilinear mesh, and how the out-of-core visualization can be scaled to 296 billion particles while still achieving interactive performance on PG hardware. Compared to the earlier work, our data set size and total number of particles are an order of magnitude larger. We also describe a new compression technique that allows the lossless compression of the particles by 41% and speeds the particle retrieval by about 30%.

  6. Slow, Fast and Mixed Compressible Modes near the Magnetopause

    NASA Astrophysics Data System (ADS)

    Scudder, J. D.; Maynard, N. C.; Burke, W. J.

    2003-12-01

    We motivate and illustrate a new technique to certify time variations, observed in spacecraft frame of reference, as compressible slow or fast magnetosonic waves. Like the Walén test for Alfvén waves, our method for identifying compressible modes requires no Galilean transformation. Unlike the Walén test, we use covariance techniques with magnetic field time series to select three special projections of B(t). The projections of magnetic fluctuations are associated with three, usually non-orthogonal, wavevectors that, in principle, contribute to the locally sampled density fluctuations. Wavevector directions ({\\hat k}(CoV)) are derived from eigenvectors of covariance matrices and mean field directions, Bo. Linear theory for compressible modes indicates that these projections are proportional to the density fluctuations. Regression techniques are then applied to observed density and magnetic field profiles to specify coefficients of proportionality. Signs of proportionality constants, connecting the three projections of δ B and δ ρ , determine whether the compressional modes are of the fast (+) or slow (-) type. Within a polytropic-closure framework, the proportionality between magnetic and density fluctuations can be computed by relating {\\hat k}, the polytropic index, γ , and the plasma β . Our certification program validates the direct interpretation of proportionality constants comparing their best-fit and error values with the directions of wavevectors required by the dispersion relation, {\\hat k}(Disp) inferred from experimental measurements of β and γ . Final certification requires that for each mode retained in the correlation, the scalar product of wavevectors determined through covariance and dispersion-relation analyses are approximately unity \\hat k (CoV)\\cdot \\hat k (Disp)≈ 1. This quality check is the compressible-mode analogue to slope-one tests in the Walén test expressed in Elsässer [1950] variables. By products of completed certification include the assignment of various portions of time-domain data streams to the compression or rarefaction phases of fast/slow modes structures, the directions of wave-power propagation in the plasma frame and relative to the magnetic field direction as well as their phase speeds with respect to the background plasma. These certifications also imply temporal trains of electric fields of the ambipolar type, including spatially varying E∥ (t), that may be the cause of some of the structured observations of E∥ that have recently been detected near the diffusion region. Along with Walén tests the new procedures enable surveys for the presence and roles of non-dispersive fast, intermediate, and slow MHD waves in geospace. Geophysical examples from the Polar satellite illustrate fast, slow and even admixtures of fast and slow magnetosonic waves retrieved through our analysis. On this experimental basis, we discuss the roles of compressible-mode structures in boundary layers associated with the magnetopause.

  7. Encoding and immediate retrieval tasks in patients with epilepsy: A functional MRI study of verbal and visual memory.

    PubMed

    Saddiki, Najat; Hennion, Sophie; Viard, Romain; Ramdane, Nassima; Lopes, Renaud; Baroncini, Marc; Szurhaj, William; Reyns, Nicolas; Pruvo, Jean Pierre; Delmaire, Christine

    2018-05-01

    Medial lobe temporal structures and more specifically the hippocampus play a decisive role in episodic memory. Most of the memory functional magnetic resonance imaging (fMRI) studies evaluate the encoding phase; the retrieval phase being performed outside the MRI. We aimed to determine the ability to reveal greater hippocampal fMRI activations during retrieval phase. Thirty-five epileptic patients underwent a two-step memory fMRI. During encoding phase, subjects were requested to identify the feminine or masculine gender of faces and words presented, in order to encourage stimulus encoding. One hour after, during retrieval phase, subjects had to recognize the word and face. We used an event-related design to identify hippocampal activations. There was no significant difference between patients with left temporal lobe epilepsy, patients with right temporal lobe epilepsy and patients with extratemporal lobe epilepsy on verbal and visual learning task. For words, patients demonstrated significantly more bilateral hippocampal activation for retrieval task than encoding task and when the tasks were associated than during encoding alone. Significant difference was seen between face-encoding alone and face retrieval alone. This study demonstrates the essential contribution of the retrieval task during a fMRI memory task but the number of patients with hippocampal activations was greater when the two tasks were taken into account. Copyright © 2018. Published by Elsevier Masson SAS.

  8. Prediction of the compression ratio for municipal solid waste using decision tree.

    PubMed

    Heshmati R, Ali Akbar; Mokhtari, Maryam; Shakiba Rad, Saeed

    2014-01-01

    The compression ratio of municipal solid waste (MSW) is an essential parameter for evaluation of waste settlement and landfill design. However, no appropriate model has been proposed to estimate the waste compression ratio so far. In this study, a decision tree method was utilized to predict the waste compression ratio (C'c). The tree was constructed using Quinlan's M5 algorithm. A reliable database retrieved from the literature was used to develop a practical model that relates C'c to waste composition and properties, including dry density, dry weight water content, and percentage of biodegradable organic waste using the decision tree method. The performance of the developed model was examined in terms of different statistical criteria, including correlation coefficient, root mean squared error, mean absolute error and mean bias error, recommended by researchers. The obtained results demonstrate that the suggested model is able to evaluate the compression ratio of MSW effectively.

  9. Phase Transition and Structure of Silver Azide at High Pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D Hou; F Zhang; C Ji

    2011-12-31

    Silver azide (AgN{sub 3}) was compressed up to 51.3 GPa. The results reveal a reversible second-order orthorhombic-to-tetragonal phase transformation starting from ambient pressure and completing at 2.7 GPa. The phase transition is accompanied by a proximity of cell parameters a and b, a 3{sup o} rotation of azide anions, and a change of coordination number from 4-4 (four short, four long) to eight fold. The crystal structure of the high pressure phase is determined to be in I4/mcm space group, with Ag at 4a, N{sub 1} at 4d, and N{sub 2} at 8h Wyckoff positions. Both of the two phasesmore » have anisotropic compressibility: the orthorhombic phase exhibits an anomalous expansion under compression along a-axis and is more compressive along b-axis than c-axis; the tetragonal phase is more compressive along the interlayer direction than the intralayer directions. The bulk moduli of the orthorhombic and tetragonal phases are determined to be K{sub OT} = 39{+-}5 GPa with K{sub OT'} = 10{+-}7 and K{sub OT} = 57 {+-}2 GPa with K{sub OT'} = 6.6{+-}0.2, respectively.« less

  10. Systems aspects of COBE science data compression

    NASA Technical Reports Server (NTRS)

    Freedman, I.; Boggess, E.; Seiler, E.

    1993-01-01

    A general approach to compression of diverse data from large scientific projects has been developed and this paper addresses the appropriate system and scientific constraints together with the algorithm development and test strategy. This framework has been implemented for the COsmic Background Explorer spacecraft (COBE) by retrofitting the existing VAS-based data management system with high-performance compression software permitting random access to the data. Algorithms which incorporate scientific knowledge and consume relatively few system resources are preferred over ad hoc methods. COBE exceeded its planned storage by a large and growing factor and the retrieval of data significantly affects the processing, delaying the availability of data for scientific usage and software test. Embedded compression software is planned to make the project tractable by reducing the data storage volume to an acceptable level during normal processing.

  11. Hanford tank initiative vehicle/based waste retrieval demonstration report phase II, track 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berglin, E.J.

    1997-07-31

    Using the versatile TracPUMpTm, Environmental Specialties Group, LLC (ES) performed a successful Phase 11 demonstration of a Vehicle- Based Waste Retrieval System (VWRS) for removal of waste material and residual liquid found in the Hanford Underground Storage Tanks (ousts). The purpose of this demonstration was to address issues pertaining to the use of a VWRS in OUSTS. The demonstration also revealed the waste removal capabilities of the TracPumpTm and the most effective techniques and equipment to safely and effectively remove waste simulants. ES successfully addressed the following primary issues: I . Dislodge and convey the waste forms present in themore » Hanford OUSTS; 2. Access the UST through tank openings as small as twenty-four inches in diameter; 3. Traverse a variety of terrains including slopes, sludges, rocks and hard, slippery surfaces without becoming mired; 4. Dislodge and convey waste within the confinement of the Decontamination Containment Capture Vessel (DCCV) and with minimal personnel exposure; 5. Decontaminate equipment to acceptable limits during retrieval from the UST; 6. Perform any required maintenance within the confinement of the DCCV; and 7. Maintain contaminate levels ``as low as reasonably achievable`` (ALARA) within the DCCV due to its crevice and comer-free design. The following materials were used to simulate the physical characteristics of wastes found in Hanford`s OUSTS: (1) Hardpan: a clay-type material that has high shear strength; (2) Saltcake: a fertilizer-based material that has high compressive strength; and (3) Wet Sludge.- a sticky, peanut- butter- like material with low shear strength. Four test beds were constructed of plywood and filled with a different simulant to a depth of eight to ten inches. Three of the test beds were of homogenous simulant material, while the fourth bed consisted of a mixture of all three simulant types.« less

  12. Fast non-interferometric iterative phase retrieval for holographic data storage.

    PubMed

    Lin, Xiao; Huang, Yong; Shimura, Tsutomu; Fujimura, Ryushi; Tanaka, Yoshito; Endo, Masao; Nishimoto, Hajimu; Liu, Jinpeng; Li, Yang; Liu, Ying; Tan, Xiaodi

    2017-12-11

    Fast non-interferometric phase retrieval is a very important technique for phase-encoded holographic data storage and other phase based applications due to its advantage of easy implementation, simple system setup, and robust noise tolerance. Here we present an iterative non-interferometric phase retrieval for 4-level phase encoded holographic data storage based on an iterative Fourier transform algorithm and known portion of the encoded data, which increases the storage code rate to two-times that of an amplitude based method. Only a single image at the Fourier plane of the beam is captured for the iterative reconstruction. Since beam intensity at the Fourier plane of the reconstructed beam is more concentrated than the reconstructed beam itself, the requirement of diffractive efficiency of the recording media is reduced, which will improve the dynamic range of recording media significantly. The phase retrieval only requires 10 iterations to achieve a less than 5% phase data error rate, which is successfully demonstrated by recording and reconstructing a test image data experimentally. We believe our method will further advance the holographic data storage technique in the era of big data.

  13. Parietal EEG alpha suppression time of memory retrieval reflects memory load while the alpha power of memory maintenance is a composite of the visual process according to simultaneous and successive Sternberg memory tasks.

    PubMed

    Okuhata, Shiho; Kusanagi, Takuya; Kobayashi, Tetsuo

    2013-10-25

    The present study investigated EEG alpha activity during visual Sternberg memory tasks using two different stimulus presentation modes to elucidate how the presentation mode affected parietal alpha activity. EEGs were recorded from 10 healthy adults during the Sternberg tasks in which memory items were presented simultaneously and successively. EEG power and suppression time (ST) in the alpha band (8-13Hz) were computed for the memory maintenance and retrieval phases. The alpha activity differed according to the presentation mode during the maintenance phase but not during the retrieval phase. Results indicated that parietal alpha power recorded during the maintenance phase did not reflect the memory load alone. In contrast, ST during the retrieval phase increased with the memory load for both presentation modes, indicating a serial memory scanning process, regardless of the presentation mode. These results indicate that there was a dynamic transition in the memory process from the maintenance phase, which was sensitive to external factors, toward the retrieval phase, during which the process converged on the sequential scanning process, the Sternberg task essentially required. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Phase retrieval by coherent modulation imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fucai; Chen, Bo; Morrison, Graeme R.

    Phase retrieval is a long-standing problem in imaging when only the intensity of the wavefield can be recorded. Coherent diffraction imaging (CDI) is a lensless technique that uses iterative algorithms to recover amplitude and phase contrast images from diffraction intensity data. For general samples, phase retrieval from a single diffraction pattern has been an algorithmic and experimental challenge. Here we report a method of phase retrieval that uses a known modulation of the sample exit-wave. This coherent modulation imaging (CMI) method removes inherent ambiguities of CDI and uses a reliable, rapidly converging iterative algorithm involving three planes. It works formore » extended samples, does not require tight support for convergence, and relaxes dynamic range requirements on the detector. CMI provides a robust method for imaging in materials and biological science, while its single-shot capability will benefit the investigation of dynamical processes with pulsed sources, such as X-ray free electron laser.« less

  15. Phase retrieval by coherent modulation imaging

    DOE PAGES

    Zhang, Fucai; Chen, Bo; Morrison, Graeme R.; ...

    2016-11-18

    Phase retrieval is a long-standing problem in imaging when only the intensity of the wavefield can be recorded. Coherent diffraction imaging (CDI) is a lensless technique that uses iterative algorithms to recover amplitude and phase contrast images from diffraction intensity data. For general samples, phase retrieval from a single diffraction pattern has been an algorithmic and experimental challenge. Here we report a method of phase retrieval that uses a known modulation of the sample exit-wave. This coherent modulation imaging (CMI) method removes inherent ambiguities of CDI and uses a reliable, rapidly converging iterative algorithm involving three planes. It works formore » extended samples, does not require tight support for convergence, and relaxes dynamic range requirements on the detector. CMI provides a robust method for imaging in materials and biological science, while its single-shot capability will benefit the investigation of dynamical processes with pulsed sources, such as X-ray free electron laser.« less

  16. Phase retrieval by coherent modulation imaging.

    PubMed

    Zhang, Fucai; Chen, Bo; Morrison, Graeme R; Vila-Comamala, Joan; Guizar-Sicairos, Manuel; Robinson, Ian K

    2016-11-18

    Phase retrieval is a long-standing problem in imaging when only the intensity of the wavefield can be recorded. Coherent diffraction imaging is a lensless technique that uses iterative algorithms to recover amplitude and phase contrast images from diffraction intensity data. For general samples, phase retrieval from a single-diffraction pattern has been an algorithmic and experimental challenge. Here we report a method of phase retrieval that uses a known modulation of the sample exit wave. This coherent modulation imaging method removes inherent ambiguities of coherent diffraction imaging and uses a reliable, rapidly converging iterative algorithm involving three planes. It works for extended samples, does not require tight support for convergence and relaxes dynamic range requirements on the detector. Coherent modulation imaging provides a robust method for imaging in materials and biological science, while its single-shot capability will benefit the investigation of dynamical processes with pulsed sources, such as X-ray free-electron lasers.

  17. DOLPHIn—Dictionary Learning for Phase Retrieval

    NASA Astrophysics Data System (ADS)

    Tillmann, Andreas M.; Eldar, Yonina C.; Mairal, Julien

    2016-12-01

    We propose a new algorithm to learn a dictionary for reconstructing and sparsely encoding signals from measurements without phase. Specifically, we consider the task of estimating a two-dimensional image from squared-magnitude measurements of a complex-valued linear transformation of the original image. Several recent phase retrieval algorithms exploit underlying sparsity of the unknown signal in order to improve recovery performance. In this work, we consider such a sparse signal prior in the context of phase retrieval, when the sparsifying dictionary is not known in advance. Our algorithm jointly reconstructs the unknown signal - possibly corrupted by noise - and learns a dictionary such that each patch of the estimated image can be sparsely represented. Numerical experiments demonstrate that our approach can obtain significantly better reconstructions for phase retrieval problems with noise than methods that cannot exploit such "hidden" sparsity. Moreover, on the theoretical side, we provide a convergence result for our method.

  18. High pressure phase transitions and compressibilities of Er2Zr2O7 and Ho2Zr2O7

    NASA Astrophysics Data System (ADS)

    Zhang, F. X.; Lang, M.; Becker, U.; Ewing, R. C.; Lian, J.

    2008-01-01

    Phase stability and compressibility of rare earth zirconates with the defect-fluorite structure were investigated by in situ synchrotron x-ray diffraction. A sluggish defect-fluorite to a cotunnitelike phase transformation occurred at pressures of ˜22 and ˜30GPa for Er2Zr2O7 and Ho2Zr2O7, respectively. Enhanced compressibility was found for the high pressure phase as a result of increasing cation coordination number and cation-anion bond length.

  19. Phase retrieval using regularization method in intensity correlation imaging

    NASA Astrophysics Data System (ADS)

    Li, Xiyu; Gao, Xin; Tang, Jia; Lu, Changming; Wang, Jianli; Wang, Bin

    2014-11-01

    Intensity correlation imaging(ICI) method can obtain high resolution image with ground-based low precision mirrors, in the imaging process, phase retrieval algorithm should be used to reconstituted the object's image. But the algorithm now used(such as hybrid input-output algorithm) is sensitive to noise and easy to stagnate. However the signal-to-noise ratio of intensity interferometry is low especially in imaging astronomical objects. In this paper, we build the mathematical model of phase retrieval and simplified it into a constrained optimization problem of a multi-dimensional function. New error function was designed by noise distribution and prior information using regularization method. The simulation results show that the regularization method can improve the performance of phase retrieval algorithm and get better image especially in low SNR condition

  20. Phase transitions during compression and decompression of clots from platelet-poor plasma, platelet-rich plasma and whole blood.

    PubMed

    Liang, Xiaojun; Chernysh, Irina; Purohit, Prashant K; Weisel, John W

    2017-09-15

    Blood clots are required to stem bleeding and are subject to a variety of stresses, but they can also block blood vessels and cause heart attacks and ischemic strokes. We measured the compressive response of human platelet-poor plasma (PPP) clots, platelet-rich plasma (PRP) clots and whole blood clots and correlated these measurements with confocal and scanning electron microscopy to track changes in clot structure. Stress-strain curves revealed four characteristic regions, for compression-decompression: (1) linear elastic region; (2) upper plateau or softening region; (3) non-linear elastic region or re-stretching of the network; (4) lower plateau in which dissociation of some newly made connections occurs. Our experiments revealed that compression proceeds by the passage of a phase boundary through the clot separating rarefied and densified phases. This observation motivates a model of fibrin mechanics based on the continuum theory of phase transitions, which accounts for the pre-stress caused by platelets, the adhesion of fibrin fibers in the densified phase, the compression of red blood cells (RBCs), and the pumping of liquids through the clot during compression/decompression. Our experiments and theory provide insights into the mechanical behavior of blood clots that could have implications clinically and in the design of fibrin-based biomaterials. The objective of this paper is to measure and mathematically model the compression behavior of various human blood clots. We show by a combination of confocal and scanning electron microscopy that compression proceeds by the passage of a front through the sample that separates a densified region of the clot from a rarefied region, and that the compression/decompression response is reversible with hysteresis. These observations form the basis of a model for the compression response of clots based on the continuum theory of phase transitions. Our studies may reveal how clot rheology under large compression in vivo due to muscle contraction, platelet retraction and hydrodynamic flow varies under various pathophysiological conditions and could inform the design of fibrin based biomaterials. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Prefrontal responses to digit span memory phases in patients with post-traumatic stress disorder (PTSD): a functional near infrared spectroscopy study.

    PubMed

    Tian, Fenghua; Yennu, Amarnath; Smith-Osborne, Alexa; Gonzalez-Lima, F; North, Carol S; Liu, Hanli

    2014-01-01

    Neuroimaging studies of post-traumatic stress disorder (PTSD)-related memory impairments have consistently implicated abnormal activities in the frontal and parietal lobes. However, most studies have used block designs and could not dissociate the multiple phases of working memory. In this study, the involvement of the prefrontal cortex in working memory phases was assessed among veterans with PTSD and age-/gender-matched healthy controls. Multichannel functional near infrared spectroscopy (fNIRS) was utilized to measure prefrontal cortex hemodynamic activations during memory of neutral (i.e., not trauma-related) forward and backward digit span tasks. An event-related experimental design was utilized to dissociate the different phases (i.e., encoding, maintenance and retrieval) of working memory. The healthy controls showed robust hemodynamic activations during the encoding and retrieval processes. In contrast, the veterans with PTSD were found to have activations during the encoding process, but followed by distinct deactivations during the retrieval process. The PTSD participants, but not the controls, appeared to suppress prefrontal activity during memory retrieval. This deactivation was more pronounced in the right dorsolateral prefrontal cortex during the retrieval phase. These deactivations in PTSD patients might implicate an active inhibition of dorsolateral prefrontal neural activity during retrieval of working memory.

  2. Bilateral Saccadic Eye Movements and Tactile Stimulation, but Not Auditory Stimulation, Enhance Memory Retrieval

    ERIC Educational Resources Information Center

    Nieuwenhuis, Sander; Elzinga, Bernet M.; Ras, Priscilla H.; Berends, Floris; Duijs, Peter; Samara, Zoe; Slagter, Heleen A.

    2013-01-01

    Recent research has shown superior memory retrieval when participants make a series of horizontal saccadic eye movements between the memory encoding phase and the retrieval phase compared to participants who do not move their eyes or move their eyes vertically. It has been hypothesized that the rapidly alternating activation of the two hemispheres…

  3. Structural transitions and hysteresis in clump- and stripe-forming systems under dynamic compression.

    PubMed

    McDermott, Danielle; Olson Reichhardt, Cynthia J; Reichhardt, Charles

    2016-11-28

    Using numerical simulations, we study the dynamical evolution of particles interacting via competing long-range repulsion and short-range attraction in two dimensions. The particles are compressed using a time-dependent quasi-one dimensional trough potential that controls the local density, causing the system to undergo a series of structural phase transitions from a low density clump lattice to stripes, voids, and a high density uniform state. The compression proceeds via slow elastic motion that is interrupted with avalanche-like bursts of activity as the system collapses to progressively higher densities via plastic rearrangements. The plastic events vary in magnitude from small rearrangements of particles, including the formation of quadrupole-like defects, to large-scale vorticity and structural phase transitions. In the dense uniform phase, the system compresses through row reduction transitions mediated by a disorder-order process. We characterize the rearrangement events by measuring changes in the potential energy, the fraction of sixfold coordinated particles, the local density, and the velocity distribution. At high confinements, we find power law scaling of the velocity distribution during row reduction transitions. We observe hysteresis under a reversal of the compression when relatively few plastic rearrangements occur. The decompressing system exhibits distinct phase morphologies, and the phase transitions occur at lower compression forces as the system expands compared to when it is compressed.

  4. Structural transitions and hysteresis in clump- and stripe-forming systems under dynamic compression

    DOE PAGES

    McDermott, Danielle; Olson Reichhardt, Cynthia J.; Reichhardt, Charles

    2016-11-11

    In using numerical simulations, we study the dynamical evolution of particles interacting via competing long-range repulsion and short-range attraction in two dimensions. The particles are compressed using a time-dependent quasi-one dimensional trough potential that controls the local density, causing the system to undergo a series of structural phase transitions from a low density clump lattice to stripes, voids, and a high density uniform state. The compression proceeds via slow elastic motion that is interrupted with avalanche-like bursts of activity as the system collapses to progressively higher densities via plastic rearrangements. The plastic events vary in magnitude from small rearrangements ofmore » particles, including the formation of quadrupole-like defects, to large-scale vorticity and structural phase transitions. In the dense uniform phase, the system compresses through row reduction transitions mediated by a disorder-order process. We also characterize the rearrangement events by measuring changes in the potential energy, the fraction of sixfold coordinated particles, the local density, and the velocity distribution. At high confinements, we find power law scaling of the velocity distribution during row reduction transitions. We observe hysteresis under a reversal of the compression when relatively few plastic rearrangements occur. The decompressing system exhibits distinct phase morphologies, and the phase transitions occur at lower compression forces as the system expands compared to when it is compressed.« less

  5. Visualizing and improving the robustness of phase retrieval algorithms

    DOE PAGES

    Tripathi, Ashish; Leyffer, Sven; Munson, Todd; ...

    2015-06-01

    Coherent x-ray diffractive imaging is a novel imaging technique that utilizes phase retrieval and nonlinear optimization methods to image matter at nanometer scales. We explore how the convergence properties of a popular phase retrieval algorithm, Fienup's HIO, behave by introducing a reduced dimensionality problem allowing us to visualize and quantify convergence to local minima and the globally optimal solution. We then introduce generalizations of HIO that improve upon the original algorithm's ability to converge to the globally optimal solution.

  6. Visualizing and improving the robustness of phase retrieval algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, Ashish; Leyffer, Sven; Munson, Todd

    Coherent x-ray diffractive imaging is a novel imaging technique that utilizes phase retrieval and nonlinear optimization methods to image matter at nanometer scales. We explore how the convergence properties of a popular phase retrieval algorithm, Fienup's HIO, behave by introducing a reduced dimensionality problem allowing us to visualize and quantify convergence to local minima and the globally optimal solution. We then introduce generalizations of HIO that improve upon the original algorithm's ability to converge to the globally optimal solution.

  7. Phase retrieval from local measurements in two dimensions

    NASA Astrophysics Data System (ADS)

    Iwen, Mark; Preskitt, Brian; Saab, Rayan; Viswanathan, Aditya

    2017-08-01

    The phase retrieval problem has appeared in a multitude of applications for decades. While ad hoc solutions have existed since the early 1970s, recent developments have provided algorithms that offer promising theoretical guarantees under increasingly realistic assumptions. Motivated by ptychographic imaging, we generalize a recent result on phase retrieval of a one dimensional objective vector x ∈ ℂd to recover a two dimensional sample Q ∈ ℂd x d from phaseless measurements, using a tensor product formulation to extend the previous work.

  8. Emotional memory retrieval. rTMS stimulation on left DLPFC increases the positive memories.

    PubMed

    Balconi, Michela; Ferrari, Chiara

    2012-09-01

    A suggestive hypothesis proposed that the lateral prefrontal cortex (LPFC) may be identified as the site of emotion-memory integration, since it was shown to be sensitive to the encoding and retrieval of emotional content. In the present research we explored the role of the dorsolateral prefrontal cortex (DLPFC) in memory retrieval of positive vs. negative emotional stimuli. This effect was analyzed by using an rTMS paradigm that induced a cortical activation of the left DLPFC. Subjects were required to perform a task consisting of two experimental phases: an encoding phase, where some lists composed by positive and negative emotional words were presented to the subjects; a retrieval phase, where the old stimuli and the new stimuli were presented for a recognition performance. The rTMS stimulation was provided during the retrieval phase over the left DLPFC. We found that the rTMS stimulation over this area affects the memory retrieval of positive emotional material, with higher memory efficiency (reduced RTs). This result suggested that left DLPFC activation promotes the memory retrieval of emotional information. Secondly, the valence model of emotional cue processing may explain decreasing of RTs, by pointing out the distinct role the left hemisphere has in positive emotional cue processing.

  9. Theory of the amplitude-phase retrieval in any linear-transform system and its applications

    NASA Astrophysics Data System (ADS)

    Yang, Guozhen; Gu, Ben-Yuan; Dong, Bi-Zhen

    1992-12-01

    This paper is a summary of the theory of the amplitude-phase retrieval problem in any linear transform system and its applications based on our previous works in the past decade. We describe the general statement on the amplitude-phase retrieval problem in an imaging system and derive a set of equations governing the amplitude-phase distribution in terms of the rigorous mathematical derivation. We then show that, by using these equations and an iterative algorithm, a variety of amplitude-phase problems can be successfully handled. We carry out the systematic investigations and comprehensive numerical calculations to demonstrate the utilization of this new algorithm in various transform systems. For instance, we have achieved the phase retrieval from two intensity measurements in an imaging system with diffraction loss (non-unitary transform), both theoretically and experimentally, and the recovery of model real image from its Hartley-transform modulus only in one and two dimensional cases. We discuss the achievement of the phase retrieval problem from a single intensity only based on the sampling theorem and our algorithm. We also apply this algorithm to provide an optimal design of the phase-adjusted plate for a phase-adjustment focusing laser accelerator and a design approach of single phase-only element for implementing optical interconnect. In order to closely simulate the really measured data, we examine the reconstruction of image from its spectral modulus corrupted by a random noise in detail. The results show that the convergent solution can always be obtained and the quality of the recovered image is satisfactory. We also indicated the relationship and distinction between our algorithm and the original Gerchberg- Saxton algorithm. From these studies, we conclude that our algorithm shows great capability to deal with the comprehensive phase-retrieval problems in the imaging system and the inverse problem in solid state physics. It may open a new way to solve important inverse source problems extensively appearing in physics.

  10. Forced phase-locked states and information retrieval in a two-layer network of oscillatory neurons with directional connectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kazantsev, Victor; Pimashkin, Alexey; Department of Neurodynamics and Neurobiology, Nizhny Novgorod State University, 23 Gagarin Ave., 603950 Nizhny Novgorod

    We propose two-layer architecture of associative memory oscillatory network with directional interlayer connectivity. The network is capable to store information in the form of phase-locked (in-phase and antiphase) oscillatory patterns. The first (input) layer takes an input pattern to be recognized and their units are unidirectionally connected with all units of the second (control) layer. The connection strengths are weighted using the Hebbian rule. The output (retrieved) patterns appear as forced-phase locked states of the control layer. The conditions are found and analytically expressed for pattern retrieval in response on incoming stimulus. It is shown that the system is capablemore » to recover patterns with a certain level of distortions or noises in their profiles. The architecture is implemented with the Kuramoto phase model and using synaptically coupled neural oscillators with spikes. It is found that the spiking model is capable to retrieve patterns using the spiking phase that translates memorized patterns into the spiking phase shifts at different time scales.« less

  11. NASA Tech Briefs, June 2011

    NASA Technical Reports Server (NTRS)

    2011-01-01

    Topics covered include: Wind and Temperature Spectrometry of the Upper Atmosphere in Low-Earth Orbit; Health Monitor for Multitasking, Safety-Critical, Real-Time Software; Stereo Imaging Miniature Endoscope; Early Oscillation Detection Technique for Hybrid DC/DC Converters; Parallel Wavefront Analysis for a 4D Interferometer; Schottky Heterodyne Receivers With Full Waveguide Bandwidth; Carbon Nanofiber-Based, High-Frequency, High-Q, Miniaturized Mechanical Resonators; Ultracapacitor-Based Uninterrupted Power Supply System; Coaxial Cables for Martian Extreme Temperature Environments; Using Spare Logic Resources To Create Dynamic Test Points; Autonomous Coordination of Science Observations Using Multiple Spacecraft; Autonomous Phase Retrieval Calibration; EOS MLS Level 1B Data Processing Software, Version 3; Cassini Tour Atlas Automated Generation; Software Development Standard Processes (SDSP); Graphite Composite Panel Polishing Fixture; Material Gradients in Oxygen System Components Improve Safety; Ridge Waveguide Structures in Magnesium-Doped Lithium Niobate; Modifying Matrix Materials to Increase Wetting and Adhesion; Lightweight Magnetic Cooler With a Reversible Circulator; The Invasive Species Forecasting System; Method for Cleanly and Precisely Breaking Off a Rock Core Using a Radial Compressive Force; Praying Mantis Bending Core Breakoff and Retention Mechanism; Scoring Dawg Core Breakoff and Retention Mechanism; Rolling-Tooth Core Breakoff and Retention Mechanism; Vibration Isolation and Stabilization System for Spacecraft Exercise Treadmill Devices; Microgravity-Enhanced Stem Cell Selection; Diagnosis and Treatment of Neurological Disorders by Millimeter-Wave Stimulation; Passive Vaporizing Heat Sink; Remote Sensing and Quantization of Analog Sensors; Phase Retrieval for Radio Telescope and Antenna Control; Helium-Cooled Black Shroud for Subscale Cryogenic Testing; Receive Mode Analysis and Design of Microstrip Reflectarrays; and Chance-Constrained Guidance With Non-Convex Constraints.

  12. In situ observation of stishovite formation in shock-compressed fused silica

    NASA Astrophysics Data System (ADS)

    Tracy, Sally June; Turneaure, Stefan; Duffy, Thomas

    2017-06-01

    Silica, SiO2, has widespread applications ranging from optical components to refractory materials and is of geological importance as one of the major oxide components of the Earth's crust and mantle. The response of silica phases to dynamic loading has long been of interest for understanding the structural evolution of this fundamental oxide. Under shock compression both crystalline quartz and fused silica are characterized by the occurrence of a broad `mixed-phase region' (15-40 GPa) and a dense, high-pressure phase with much lower compressibility. Despite decades of study, the nature of this transformation and the identity of the high-pressure phase(s) remain poorly understood. In situ x-ray diffraction experiments on shock-compressed fused silica were conducted at the Dynamic Compression Sector of the Advanced Photon Source. The lattice-level structure was investigated through time-resolved x-ray diffraction measurements on samples reaching peak stress ranging from 12 to 47 GPa. Our results demonstrate that SiO2 adopts a dense amorphous structure in the `mixed-phase region' and abruptly transforms to stishovite above 34 GPa. These results provide clear evidence that high-pressure crystalline silicate phases can form from amorphous starting materials on the time-scale of laboratory shock experiments.

  13. 1994 Science Information Management and Data Compression Workshop

    NASA Technical Reports Server (NTRS)

    Tilton, James C. (Editor)

    1994-01-01

    This document is the proceedings from the 'Science Information Management and Data Compression Workshop,' which was held on September 26-27, 1994, at the NASA Goddard Space Flight Center, Greenbelt, Maryland. The Workshop explored promising computational approaches for handling the collection, ingestion, archival and retrieval of large quantities of data in future Earth and space science missions. It consisted of eleven presentations covering a range of information management and data compression approaches that are being or have been integrated into actual or prototypical Earth or space science data information systems, or that hold promise for such an application. The workshop was organized by James C. Tilton and Robert F. Cromp of the NASA Goddard Space Flight Center.

  14. The 1995 Science Information Management and Data Compression Workshop

    NASA Technical Reports Server (NTRS)

    Tilton, James C. (Editor)

    1995-01-01

    This document is the proceedings from the 'Science Information Management and Data Compression Workshop,' which was held on October 26-27, 1995, at the NASA Goddard Space Flight Center, Greenbelt, Maryland. The Workshop explored promising computational approaches for handling the collection, ingestion, archival, and retrieval of large quantities of data in future Earth and space science missions. It consisted of fourteen presentations covering a range of information management and data compression approaches that are being or have been integrated into actual or prototypical Earth or space science data information systems, or that hold promise for such an application. The Workshop was organized by James C. Tilton and Robert F. Cromp of the NASA Goddard Space Flight Center.

  15. Solving the jitter problem in microwave compressed ultrafast electron diffraction instruments: Robust sub-50 fs cavity-laser phase stabilization

    PubMed Central

    Otto, M. R.; René de Cotret, L. P.; Stern, M. J.; Siwick, B. J.

    2017-01-01

    We demonstrate the compression of electron pulses in a high-brightness ultrafast electron diffraction instrument using phase-locked microwave signals directly generated from a mode-locked femtosecond oscillator. Additionally, a continuous-wave phase stabilization system that accurately corrects for phase fluctuations arising in the compression cavity from both power amplification and thermal drift induced detuning was designed and implemented. An improvement in the microwave timing stability from 100 fs to 5 fs RMS is measured electronically, and the long-term arrival time stability (>10 h) of the electron pulses improves to below our measurement resolution of 50 fs. These results demonstrate sub-relativistic ultrafast electron diffraction with compressed pulses that is no longer limited by laser-microwave synchronization. PMID:28852686

  16. Compressible Heating in the Condense Phase due to Pore Collapse in HMX

    NASA Astrophysics Data System (ADS)

    Zhang, Ju; Jackson, Thomas

    Axisymmetric pore collapse in HMX is studied numerically by solving multi-phase reactive Euler equations. The generation of hot spots in the condense phase due to compressible heating is examined. The motivation is to improve the understanding of the role of embedded cavities in the initiation of reaction in explosives, and to investigate the effect of hot spots in the condense phase due to compressible heating alone, complementing previous study on hot spots due to the reaction in the gas phase and at the interface. It is found that the shock-cavity interaction results in pressures and thus temperatures that are substantially higher than the post-shock values in the condense phase. However, these hot spots in the condense phase due to compressible heating alone do not seem to be sufficiently hot to lead to ignition at shock pressures of 1-3 GPa. Thus, compressible heating in the condense phase may be excluded as a mechanism for initiation of explosives. It should be pointed out that the ignition threshold for the temperature, the so-called ``switch-on'' temperature, of hot spots depend on chemistry kinetics parameters. Switch-on temperature is lower for faster reaction rate. The current chemistry kinetics parameters are based on previous experimental work. This work was supported in part by the Defense Threat Reduction Agency and by the U.S. Department of Energy.

  17. Phase diagram of restricted Boltzmann machines and generalized Hopfield networks with arbitrary priors.

    PubMed

    Barra, Adriano; Genovese, Giuseppe; Sollich, Peter; Tantari, Daniele

    2018-02-01

    Restricted Boltzmann machines are described by the Gibbs measure of a bipartite spin glass, which in turn can be seen as a generalized Hopfield network. This equivalence allows us to characterize the state of these systems in terms of their retrieval capabilities, both at low and high load, of pure states. We study the paramagnetic-spin glass and the spin glass-retrieval phase transitions, as the pattern (i.e., weight) distribution and spin (i.e., unit) priors vary smoothly from Gaussian real variables to Boolean discrete variables. Our analysis shows that the presence of a retrieval phase is robust and not peculiar to the standard Hopfield model with Boolean patterns. The retrieval region becomes larger when the pattern entries and retrieval units get more peaked and, conversely, when the hidden units acquire a broader prior and therefore have a stronger response to high fields. Moreover, at low load retrieval always exists below some critical temperature, for every pattern distribution ranging from the Boolean to the Gaussian case.

  18. Recognizable or Not: Towards Image Semantic Quality Assessment for Compression

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Wang, Dandan; Li, Houqiang

    2017-12-01

    Traditionally, image compression was optimized for the pixel-wise fidelity or the perceptual quality of the compressed images given a bit-rate budget. But recently, compressed images are more and more utilized for automatic semantic analysis tasks such as recognition and retrieval. For these tasks, we argue that the optimization target of compression is no longer perceptual quality, but the utility of the compressed images in the given automatic semantic analysis task. Accordingly, we propose to evaluate the quality of the compressed images neither at pixel level nor at perceptual level, but at semantic level. In this paper, we make preliminary efforts towards image semantic quality assessment (ISQA), focusing on the task of optical character recognition (OCR) from compressed images. We propose a full-reference ISQA measure by comparing the features extracted from text regions of original and compressed images. We then propose to integrate the ISQA measure into an image compression scheme. Experimental results show that our proposed ISQA measure is much better than PSNR and SSIM in evaluating the semantic quality of compressed images; accordingly, adopting our ISQA measure to optimize compression for OCR leads to significant bit-rate saving compared to using PSNR or SSIM. Moreover, we perform subjective test about text recognition from compressed images, and observe that our ISQA measure has high consistency with subjective recognizability. Our work explores new dimensions in image quality assessment, and demonstrates promising direction to achieve higher compression ratio for specific semantic analysis tasks.

  19. Uncertainties in Cloud Phase and Optical Thickness Retrievals from the Earth Polychromatic Imaging Camera (EPIC)

    NASA Technical Reports Server (NTRS)

    Meyer, Kerry; Yang, Yuekui; Platnick, Steven

    2016-01-01

    This paper presents an investigation of the expected uncertainties of a single channel cloud optical thickness (COT) retrieval technique, as well as a simple cloud-temperature-threshold-based thermodynamic phase approach, in support of the Deep Space Climate Observatory (DSCOVR) mission. DSCOVR cloud products will be derived from Earth Polychromatic Imaging Camera (EPIC) observations in the ultraviolet and visible spectra. Since EPIC is not equipped with a spectral channel in the shortwave or mid-wave infrared that is sensitive to cloud effective radius (CER), COT will be inferred from a single visible channel with the assumption of appropriate CER values for liquid and ice phase clouds. One month of Aqua MODIS daytime granules from April 2005 is selected for investigating cloud phase sensitivity, and a subset of these granules that has similar EPIC sun-view geometry is selected for investigating COT uncertainties. EPIC COT retrievals are simulated with the same algorithm as the operational MODIS cloud products (MOD06), except using fixed phase-dependent CER values. Uncertainty estimates are derived by comparing the single channel COT retrievals with the baseline bi-spectral MODIS retrievals. Results show that a single channel COT retrieval is feasible for EPIC. For ice clouds, single channel retrieval errors are minimal (less than 2 percent) due to the particle- size insensitivity of the assumed ice crystal (i.e., severely roughened aggregate of hexagonal columns) scattering properties at visible wavelengths, while for liquid clouds the error is mostly limited to within 10 percent, although for thin clouds (COT less than 2) the error can be higher. Potential uncertainties in EPIC cloud masking and cloud temperature retrievals are not considered in this study.

  20. Uncertainties in cloud phase and optical thickness retrievals from the Earth Polychromatic Imaging Camera (EPIC)

    PubMed Central

    Meyer, Kerry; Yang, Yuekui; Platnick, Steven

    2018-01-01

    This paper presents an investigation of the expected uncertainties of a single channel cloud optical thickness (COT) retrieval technique, as well as a simple cloud temperature threshold based thermodynamic phase approach, in support of the Deep Space Climate Observatory (DSCOVR) mission. DSCOVR cloud products will be derived from Earth Polychromatic Imaging Camera (EPIC) observations in the ultraviolet and visible spectra. Since EPIC is not equipped with a spectral channel in the shortwave or mid-wave infrared that is sensitive to cloud effective radius (CER), COT will be inferred from a single visible channel with the assumption of appropriate CER values for liquid and ice phase clouds. One month of Aqua MODIS daytime granules from April 2005 is selected for investigating cloud phase sensitivity, and a subset of these granules that has similar EPIC sun-view geometry is selected for investigating COT uncertainties. EPIC COT retrievals are simulated with the same algorithm as the operational MODIS cloud products (MOD06), except using fixed phase-dependent CER values. Uncertainty estimates are derived by comparing the single channel COT retrievals with the baseline bi-spectral MODIS retrievals. Results show that a single channel COT retrieval is feasible for EPIC. For ice clouds, single channel retrieval errors are minimal (< 2%) due to the particle size insensitivity of the assumed ice crystal (i.e., severely roughened aggregate of hexagonal columns) scattering properties at visible wavelengths, while for liquid clouds the error is mostly limited to within 10%, although for thin clouds (COT < 2) the error can be higher. Potential uncertainties in EPIC cloud masking and cloud temperature retrievals are not considered in this study. PMID:29619116

  1. Uncertainties in cloud phase and optical thickness retrievals from the Earth Polychromatic Imaging Camera (EPIC).

    PubMed

    Meyer, Kerry; Yang, Yuekui; Platnick, Steven

    2016-01-01

    This paper presents an investigation of the expected uncertainties of a single channel cloud optical thickness (COT) retrieval technique, as well as a simple cloud temperature threshold based thermodynamic phase approach, in support of the Deep Space Climate Observatory (DSCOVR) mission. DSCOVR cloud products will be derived from Earth Polychromatic Imaging Camera (EPIC) observations in the ultraviolet and visible spectra. Since EPIC is not equipped with a spectral channel in the shortwave or mid-wave infrared that is sensitive to cloud effective radius (CER), COT will be inferred from a single visible channel with the assumption of appropriate CER values for liquid and ice phase clouds. One month of Aqua MODIS daytime granules from April 2005 is selected for investigating cloud phase sensitivity, and a subset of these granules that has similar EPIC sun-view geometry is selected for investigating COT uncertainties. EPIC COT retrievals are simulated with the same algorithm as the operational MODIS cloud products (MOD06), except using fixed phase-dependent CER values. Uncertainty estimates are derived by comparing the single channel COT retrievals with the baseline bi-spectral MODIS retrievals. Results show that a single channel COT retrieval is feasible for EPIC. For ice clouds, single channel retrieval errors are minimal (< 2%) due to the particle size insensitivity of the assumed ice crystal (i.e., severely roughened aggregate of hexagonal columns) scattering properties at visible wavelengths, while for liquid clouds the error is mostly limited to within 10%, although for thin clouds (COT < 2) the error can be higher. Potential uncertainties in EPIC cloud masking and cloud temperature retrievals are not considered in this study.

  2. Uncertainties in cloud phase and optical thickness retrievals from the Earth Polychromatic Imaging Camera (EPIC)

    NASA Astrophysics Data System (ADS)

    Meyer, Kerry; Yang, Yuekui; Platnick, Steven

    2016-04-01

    This paper presents an investigation of the expected uncertainties of a single-channel cloud optical thickness (COT) retrieval technique, as well as a simple cloud-temperature-threshold-based thermodynamic phase approach, in support of the Deep Space Climate Observatory (DSCOVR) mission. DSCOVR cloud products will be derived from Earth Polychromatic Imaging Camera (EPIC) observations in the ultraviolet and visible spectra. Since EPIC is not equipped with a spectral channel in the shortwave or mid-wave infrared that is sensitive to cloud effective radius (CER), COT will be inferred from a single visible channel with the assumption of appropriate CER values for liquid and ice phase clouds. One month of Aqua MODerate-resolution Imaging Spectroradiometer (MODIS) daytime granules from April 2005 is selected for investigating cloud phase sensitivity, and a subset of these granules that has similar EPIC Sun-view geometry is selected for investigating COT uncertainties. EPIC COT retrievals are simulated with the same algorithm as the operational MODIS cloud products (MOD06), except using fixed phase-dependent CER values. Uncertainty estimates are derived by comparing the single-channel COT retrievals with the baseline bi-spectral MODIS retrievals. Results show that a single-channel COT retrieval is feasible for EPIC. For ice clouds, single-channel retrieval errors are minimal (< 2 %) due to the particle size insensitivity of the assumed ice crystal (i.e., severely roughened aggregate of hexagonal columns) scattering properties at visible wavelengths, while for liquid clouds the error is mostly limited to within 10 %, although for thin clouds (COT < 2) the error can be higher. Potential uncertainties in EPIC cloud masking and cloud temperature retrievals are not considered in this study.

  3. Compressive sampling by artificial neural networks for video

    NASA Astrophysics Data System (ADS)

    Szu, Harold; Hsu, Charles; Jenkins, Jeffrey; Reinhardt, Kitt

    2011-06-01

    We describe a smart surveillance strategy for handling novelty changes. Current sensors seem to keep all, redundant or not. The Human Visual System's Hubel-Wiesel (wavelet) edge detection mechanism pays attention to changes in movement, which naturally produce organized sparseness because a stagnant edge is not reported to the brain's visual cortex by retinal neurons. Sparseness is defined as an ordered set of ones (movement or not) relative to zeros that could be pseudo-orthogonal among themselves; then suited for fault tolerant storage and retrieval by means of Associative Memory (AM). The firing is sparse at the change locations. Unlike purely random sparse masks adopted in medical Compressive Sensing, these organized ones have an additional benefit of using the image changes to make retrievable graphical indexes. We coined this organized sparseness as Compressive Sampling; sensing but skipping over redundancy without altering the original image. Thus, we turn illustrate with video the survival tactics which animals that roam the Earth use daily. They acquire nothing but the space-time changes that are important to satisfy specific prey-predator relationships. We have noticed a similarity between the mathematical Compressive Sensing and this biological mechanism used for survival. We have designed a hardware implementation of the Human Visual System's Compressive Sampling scheme. To speed up further, our mixedsignal circuit design of frame differencing is built in on-chip processing hardware. A CMOS trans-conductance amplifier is designed here to generate a linear current output using a pair of differential input voltages from 2 photon detectors for change detection---one for the previous value and the other the subsequent value, ("write" synaptic weight by Hebbian outer products; "read" by inner product & pt. NL threshold) to localize and track the threat targets.

  4. Interfering effects of retrieval in learning new information.

    PubMed

    Finn, Bridgid; Roediger, Henry L

    2013-11-01

    In 7 experiments, we explored the role of retrieval in associative updating, that is, in incorporating new information into an associative memory. We tested the hypothesis that retrieval would facilitate incorporating a new contextual detail into a learned association. Participants learned 3 pieces of information-a person's face, name, and profession (in Experiments 1-5). In the 1st phase, participants in all conditions learned faces and names. In the 2nd phase, participants either restudied the face-name pair (the restudy condition) or were given the face and asked to retrieve the name (the test condition). In the 3rd phase, professions were presented for study just after restudy or testing. Our prediction was that the new information (the profession) would be more readily learned following retrieval of the face-name association compared to restudy of the face-name association. However, we found that the act of retrieval generally undermined acquisition of new associations rather than facilitating them. This detrimental effect emerged on both immediate and delayed tests. Further, the effect was not due to selective attention to feedback because we found impairment whether or not feedback was provided after the Phase 2 test. The data are novel in showing that the act of retrieving information can inhibit the ability to learn new information shortly thereafter. The results are difficult to accommodate within current theories that mostly emphasize benefits of retrieval for learning. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  5. Phase Retrieval for Radio Telescope and Antenna Control

    NASA Technical Reports Server (NTRS)

    Dean, Bruce

    2011-01-01

    Phase-retrieval is a general term used in optics to describe the estimation of optical imperfections or "aberrations." The purpose of this innovation is to develop the application of phase retrieval to radio telescope and antenna control in the millimeter wave band. Earlier techniques do not approximate the incoherent subtraction process as a coherent propagation. This approximation reduces the noise in the data and allows a straightforward application of conventional phase retrieval techniques for radio telescope and antenna control. The application of iterative-transform phase retrieval to radio telescope and antenna control is made by approximating the incoherent subtraction process as a coherent propagation. Thus, for systems utilizing both positive and negative polarity feeds, this approximation allows both surface and alignment errors to be assessed without the use of additional hardware or laser metrology. Knowledge of the antenna surface profile allows errors to be corrected at a given surface temperature and observing angle. In addition to imperfections of the antenna surface figure, the misalignment of multiple antennas operating in unison can reduce or degrade the signal-to-noise ratio of the received or broadcast signals. This technique also has application to the alignment of antenna array configurations.

  6. Phase retrieval on broadband and under-sampled images for the JWST testbed telescope

    NASA Astrophysics Data System (ADS)

    Smith, J. Scott; Aronstein, David L.; Dean, Bruce H.; Acton, D. Scott

    2009-08-01

    The James Webb Space Telescope (JWST) consists of an optical telescope element (OTE) that sends light to five science instruments. The initial steps for commissioning the telescope are performed with the Near-Infrared Camera (NIRCam) instrument, but low-order optical aberrations in the remaining science instruments must be determined (using phase retrieval) in order to ensure good performance across the entire field of view. These remaining instruments were designed to collect science data, and not to serve as wavefront sensors. Thus, the science cameras are not ideal phase-retrieval imagers for several reasons: they record under-sampled data and have a limited range of diversity defocus, and only one instrument has an internal, narrowband filter. To address these issues, we developed the capability of sensing these aberrations using an extension of image-based iterative-transform phase retrieval called Variable Sampling Mapping (VSM). The results show that VSM-based phase retrieval is capable of sensing low-order aberrations to a few nm RMS from images that are consistent with the non-ideal conditions expected during JWST multi-field commissioning. The algorithm is validated using data collected from the JWST Testbed Telescope (TBT).

  7. An L1-norm phase constraint for half-Fourier compressed sensing in 3D MR imaging.

    PubMed

    Li, Guobin; Hennig, Jürgen; Raithel, Esther; Büchert, Martin; Paul, Dominik; Korvink, Jan G; Zaitsev, Maxim

    2015-10-01

    In most half-Fourier imaging methods, explicit phase replacement is used. In combination with parallel imaging, or compressed sensing, half-Fourier reconstruction is usually performed in a separate step. The purpose of this paper is to report that integration of half-Fourier reconstruction into iterative reconstruction minimizes reconstruction errors. The L1-norm phase constraint for half-Fourier imaging proposed in this work is compared with the L2-norm variant of the same algorithm, with several typical half-Fourier reconstruction methods. Half-Fourier imaging with the proposed phase constraint can be seamlessly combined with parallel imaging and compressed sensing to achieve high acceleration factors. In simulations and in in-vivo experiments half-Fourier imaging with the proposed L1-norm phase constraint enables superior performance both reconstruction of image details and with regard to robustness against phase estimation errors. The performance and feasibility of half-Fourier imaging with the proposed L1-norm phase constraint is reported. Its seamless combination with parallel imaging and compressed sensing enables use of greater acceleration in 3D MR imaging.

  8. Optically secured information retrieval using two authenticated phase-only masks.

    PubMed

    Wang, Xiaogang; Chen, Wen; Mei, Shengtao; Chen, Xudong

    2015-10-23

    We propose an algorithm for jointly designing two phase-only masks (POMs) that allow for the encryption and noise-free retrieval of triple images. The images required for optical retrieval are first stored in quick-response (QR) codes for noise-free retrieval and flexible readout. Two sparse POMs are respectively calculated from two different images used as references for authentication based on modified Gerchberg-Saxton algorithm (GSA) and pixel extraction, and are then used as support constraints in a modified double-phase retrieval algorithm (MPRA), together with the above-mentioned QR codes. No visible information about the target images or the reference images can be obtained from each of these authenticated POMs. This approach allows users to authenticate the two POMs used for image reconstruction without visual observation of the reference images. It also allows user to friendly access and readout with mobile devices.

  9. Optically secured information retrieval using two authenticated phase-only masks

    PubMed Central

    Wang, Xiaogang; Chen, Wen; Mei, Shengtao; Chen, Xudong

    2015-01-01

    We propose an algorithm for jointly designing two phase-only masks (POMs) that allow for the encryption and noise-free retrieval of triple images. The images required for optical retrieval are first stored in quick-response (QR) codes for noise-free retrieval and flexible readout. Two sparse POMs are respectively calculated from two different images used as references for authentication based on modified Gerchberg-Saxton algorithm (GSA) and pixel extraction, and are then used as support constraints in a modified double-phase retrieval algorithm (MPRA), together with the above-mentioned QR codes. No visible information about the target images or the reference images can be obtained from each of these authenticated POMs. This approach allows users to authenticate the two POMs used for image reconstruction without visual observation of the reference images. It also allows user to friendly access and readout with mobile devices. PMID:26494213

  10. Validation of MODIS Dust Aerosol Retrieval and Development Ambient Dust Phase Function using PRIDE Data

    NASA Technical Reports Server (NTRS)

    Remer, Lorraine A.; Lau, William (Technical Monitor)

    2002-01-01

    The PRIDE data set of MODIS aerosol retrievals co-located with sunphotometer measurements provides the basis of MODIS validation in a dust environment. The sunphotometer measurements include AERONET automatic instruments, land-based Microtops instruments, ship-board Microtops instruments and the AATS-6 aboard the Navajo aircraft. Analysis of these data indicate that the MODIS retrieval is within pre-launch estimates of uncertainty within the spectral range of 600-900 nm. However, the MODIS algorithm consistently retrieves smaller particles than reality thus leading to incorrect spectral response outside of the 600-900 nm range and improper size information. Further analysis of MODIS retrievals in other dust environments shows the inconsistencies are due to nonspherical effects in the phase function. These data are used to develop an ambient phase function for dust aerosol to be used for remote sensing purposes.

  11. Optically secured information retrieval using two authenticated phase-only masks

    NASA Astrophysics Data System (ADS)

    Wang, Xiaogang; Chen, Wen; Mei, Shengtao; Chen, Xudong

    2015-10-01

    We propose an algorithm for jointly designing two phase-only masks (POMs) that allow for the encryption and noise-free retrieval of triple images. The images required for optical retrieval are first stored in quick-response (QR) codes for noise-free retrieval and flexible readout. Two sparse POMs are respectively calculated from two different images used as references for authentication based on modified Gerchberg-Saxton algorithm (GSA) and pixel extraction, and are then used as support constraints in a modified double-phase retrieval algorithm (MPRA), together with the above-mentioned QR codes. No visible information about the target images or the reference images can be obtained from each of these authenticated POMs. This approach allows users to authenticate the two POMs used for image reconstruction without visual observation of the reference images. It also allows user to friendly access and readout with mobile devices.

  12. Fusion of Deep Learning and Compressed Domain features for Content Based Image Retrieval.

    PubMed

    Liu, Peizhong; Guo, Jing-Ming; Wu, Chi-Yi; Cai, Danlin

    2017-08-29

    This paper presents an effective image retrieval method by combining high-level features from Convolutional Neural Network (CNN) model and low-level features from Dot-Diffused Block Truncation Coding (DDBTC). The low-level features, e.g., texture and color, are constructed by VQ-indexed histogram from DDBTC bitmap, maximum, and minimum quantizers. Conversely, high-level features from CNN can effectively capture human perception. With the fusion of the DDBTC and CNN features, the extended deep learning two-layer codebook features (DL-TLCF) is generated using the proposed two-layer codebook, dimension reduction, and similarity reweighting to improve the overall retrieval rate. Two metrics, average precision rate (APR) and average recall rate (ARR), are employed to examine various datasets. As documented in the experimental results, the proposed schemes can achieve superior performance compared to the state-of-the-art methods with either low- or high-level features in terms of the retrieval rate. Thus, it can be a strong candidate for various image retrieval related applications.

  13. Assessment of imaging quality in magnified phase CT of human bone tissue at the nanoscale

    NASA Astrophysics Data System (ADS)

    Yu, Boliang; Langer, Max; Pacureanu, Alexandra; Gauthier, Remy; Follet, Helene; Mitton, David; Olivier, Cecile; Cloetens, Peter; Peyrin, Francoise

    2017-10-01

    Bone properties at all length scales have a major impact on the fracture risk in disease such as osteoporosis. However, quantitative 3D data on bone tissue at the cellular scale are still rare. Here we propose to use magnified X-ray phase nano-CT to quantify bone ultra-structure in human bone, on the new setup developed on the beamline ID16A at the ESRF, Grenoble. Obtaining 3D images requires the application of phase retrieval prior to tomographic reconstruction. Phase retrieval is an ill-posed problem for which various approaches have been developed. Since image quality has a strong impact on the further quantification of bone tissue, our aim here is to evaluate different phase retrieval methods for imaging bone samples at the cellular scale. Samples from femurs of female donors were scanned using magnified phase nano-CT at voxel sizes of 120 and 30 nm with an energy of 33 keV. Four CT scans at varying sample-to-detector distances were acquired for each sample. We evaluated three phase retrieval methods adapted to these conditions: Paganin's method at single distance, Paganin's method extended to multiple distances, and the contrast transfer function (CTF) approach for pure phase objects. These methods were used as initialization to an iterative refinement step. Our results based on visual and quantitative assessment show that the use of several distances (as opposed to single one) clearly improves image quality and the two multi-distance phase retrieval methods give similar results. First results on the segmentation of osteocyte lacunae and canaliculi from such images are presented.

  14. Characterizing the information content of cloud thermodynamic phase retrievals from the notional PACE OCI shortwave reflectance measurements

    NASA Astrophysics Data System (ADS)

    Coddington, O. M.; Vukicevic, T.; Schmidt, K. S.; Platnick, S.

    2017-08-01

    We rigorously quantify the probability of liquid or ice thermodynamic phase using only shortwave spectral channels specific to the National Aeronautics and Space Administration's Moderate Resolution Imaging Spectroradiometer, Visible Infrared Imaging Radiometer Suite, and the notional future Plankton, Aerosol, Cloud, ocean Ecosystem imager. The results show that two shortwave-infrared channels (2135 and 2250 nm) provide more information on cloud thermodynamic phase than either channel alone; in one case, the probability of ice phase retrieval increases from 65 to 82% by combining 2135 and 2250 nm channels. The analysis is performed with a nonlinear statistical estimation approach, the GEneralized Nonlinear Retrieval Analysis (GENRA). The GENRA technique has previously been used to quantify the retrieval of cloud optical properties from passive shortwave observations, for an assumed thermodynamic phase. Here we present the methodology needed to extend the utility of GENRA to a binary thermodynamic phase space (i.e., liquid or ice). We apply formal information content metrics to quantify our results; two of these (mutual and conditional information) have not previously been used in the field of cloud studies.

  15. Evidence for encoding versus retrieval scheduling in the hippocampus by theta phase and acetylcholine

    PubMed Central

    Douchamps, Vincent; Jeewajee, Ali; Blundell, Pam; Burgess, Neil; Lever, Colin

    2013-01-01

    The formation of new memories requires new information to be encoded in the face of proactive interference from the past. Two solutions have been proposed for hippocampal region CA1: 1) acetylcholine, released in novelty, selectively suppresses excitatory projections to CA1 from CA3 (mediating the products of retrieval), while sparing entorhinal inputs (mediating novel sensory information); 2) encoding preferentially occurs at the pyramidal-layer theta peak, coincident with input from entorhinal cortex, and retrieval occurs at the trough, coincident with input from CA3, consistent with theta-phase-dependent synaptic plasticity. We examined three predictions of these models: 1) In novel environments, the preferred theta phase of CA1 place cell firing should shift closer to the CA1 pyramidal-layer theta peak, shifting the encoding-retrieval balance towards encoding; 2) The encoding-related shift in novel environments should be disrupted by cholinergic antagonism; 3) In familiar environments, cholinergic antagonism should shift the preferred theta firing phase closer to the theta trough, shifting the encoding-retrieval balance even further towards retrieval. We tested these predictions by recording from CA1 pyramidal cells in freely moving rats as they foraged in open field environments under the influence of scopolamine (an amnestic cholinergic antagonist) or vehicle (saline). Results confirmed all three predictions, supporting both the theta phase and cholinergic models of encoding-vs-retrieval dynamics. Also consistent with cholinergic enhancement of encoding, scopolamine attenuated the formation of distinct spatial representations in a new environment, reducing the extent of place cell “remapping”. PMID:23678113

  16. Retrieval of the atomic displacements in the crystal from the coherent X-ray diffraction pattern.

    PubMed

    Minkevich, A A; Köhl, M; Escoubas, S; Thomas, O; Baumbach, T

    2014-07-01

    The retrieval of spatially resolved atomic displacements is investigated via the phases of the direct(real)-space image reconstructed from the strained crystal's coherent X-ray diffraction pattern. It is demonstrated that limiting the spatial variation of the first- and second-order spatial displacement derivatives improves convergence of the iterative phase-retrieval algorithm for displacements reconstructions to the true solution. This approach is exploited to retrieve the displacement in a periodic array of silicon lines isolated by silicon dioxide filled trenches.

  17. X-Ray Phase Imaging for Breast Cancer Detection

    DTIC Science & Technology

    2012-09-01

    the Gerchberg-Saxton algorithm in the Fresnel diffraction regime, and is much more robust against image noise than the TIE-based method. For details...developed efficient coding with the software modules for the image registration, flat-filed correction , and phase retrievals. In addition, we...X, Liu H. 2010. Performance analysis of the attenuation-partition based iterative phase retrieval algorithm for in-line phase-contrast imaging

  18. Ultrafast X-Ray Diffraction Studies of the Phase Transitions and Equation of State of Scandium Shock Compressed to 82 GPa

    DOE PAGES

    Briggs, R.; Gorman, M. G.; Coleman, A. L.; ...

    2017-01-09

    Using x-ray diffraction at the Linac Coherent Light Source x-ray free-electron laser, we have determined simultaneously and self-consistently the phase transitions and equation of state (EOS) of the lightest transition metal, scandium, under shock compression. On compression scandium undergoes a structural phase transition between 32 and 35 GPa to the same bcc structure seen at high temperatures at ambient pressures, and then a further transition at 46 GPa to the incommensurate host-guest polymorph found above 21 GPa in static compression at room temperature. Furthermore, shock melting of the host-guest phase is observed between 53 and 72 GPa with the disappearancemore » of Bragg scattering and the growth of a broad asymmetric diffraction peak from the high-density liquid.« less

  19. Ultrafast X-Ray Diffraction Studies of the Phase Transitions and Equation of State of Scandium Shock Compressed to 82 GPa.

    PubMed

    Briggs, R; Gorman, M G; Coleman, A L; McWilliams, R S; McBride, E E; McGonegle, D; Wark, J S; Peacock, L; Rothman, S; Macleod, S G; Bolme, C A; Gleason, A E; Collins, G W; Eggert, J H; Fratanduono, D E; Smith, R F; Galtier, E; Granados, E; Lee, H J; Nagler, B; Nam, I; Xing, Z; McMahon, M I

    2017-01-13

    Using x-ray diffraction at the Linac Coherent Light Source x-ray free-electron laser, we have determined simultaneously and self-consistently the phase transitions and equation of state (EOS) of the lightest transition metal, scandium, under shock compression. On compression scandium undergoes a structural phase transition between 32 and 35 GPa to the same bcc structure seen at high temperatures at ambient pressures, and then a further transition at 46 GPa to the incommensurate host-guest polymorph found above 21 GPa in static compression at room temperature. Shock melting of the host-guest phase is observed between 53 and 72 GPa with the disappearance of Bragg scattering and the growth of a broad asymmetric diffraction peak from the high-density liquid.

  20. Storage and retrieval of digital images in dermatology.

    PubMed

    Bittorf, A; Krejci-Papa, N C; Diepgen, T L

    1995-11-01

    Differential diagnosis in dermatology relies on the interpretation of visual information in the form of clinical and histopathological images. Up until now, reference images have had to be retrieved from textbooks and/or appropriate journals. To overcome inherent limitations of those storage media with respect to the number of images stored, display, and search parameters available, we designed a computer-based database of digitized dermatologic images. Images were taken from the photo archive of the Dermatological Clinic of the University of Erlangen. A database was designed using the Entity-Relationship approach. It was implemented on a PC-Windows platform using MS Access* and MS Visual Basic®. As WWW-server a Sparc 10 workstation was used with the CERN Hypertext-Transfer-Protocol-Daemon (httpd) 3.0 pre 6 software running. For compressed storage on a hard drive, a quality factor of 60 allowed on-screen differential diagnosis and corresponded to a compression factor of 1:35 for clinical images and 1:40 for histopathological images. Hierarchical keys of clinical or histopathological criteria permitted multi-criteria searches. A script using the Common Gateway Interface (CGI) enabled remote search and image retrieval via the World-Wide-Web (W3). A dermatologic image database, featurig clinical and histopathological images was constructed which allows for multi-parameter searches and world-wide remote access.

  1. Open-source Software for Exoplanet Atmospheric Modeling

    NASA Astrophysics Data System (ADS)

    Cubillos, Patricio; Blecic, Jasmina; Harrington, Joseph

    2018-01-01

    I will present a suite of self-standing open-source tools to model and retrieve exoplanet spectra implemented for Python. These include: (1) a Bayesian-statistical package to run Levenberg-Marquardt optimization and Markov-chain Monte Carlo posterior sampling, (2) a package to compress line-transition data from HITRAN or Exomol without loss of information, (3) a package to compute partition functions for HITRAN molecules, (4) a package to compute collision-induced absorption, and (5) a package to produce radiative-transfer spectra of transit and eclipse exoplanet observations and atmospheric retrievals.

  2. Quantized phase coding and connected region labeling for absolute phase retrieval.

    PubMed

    Chen, Xiangcheng; Wang, Yuwei; Wang, Yajun; Ma, Mengchao; Zeng, Chunnian

    2016-12-12

    This paper proposes an absolute phase retrieval method for complex object measurement based on quantized phase-coding and connected region labeling. A specific code sequence is embedded into quantized phase of three coded fringes. Connected regions of different codes are labeled and assigned with 3-digit-codes combining the current period and its neighbors. Wrapped phase, more than 36 periods, can be restored with reference to the code sequence. Experimental results verify the capability of the proposed method to measure multiple isolated objects.

  3. Exploring the high-pressure behavior of the three known polymorphs of BiPO{sub 4}: Discovery of a new polymorph

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Errandonea, D., E-mail: daniel.errandonea@uv.es; García-Domene, B.; Gomis, O.

    We have studied the structural behavior of bismuth phosphate under compression. We performed x-ray powder diffraction measurements up to 31.5 GPa and ab initio calculations. Experiments were carried out on different polymorphs: trigonal (phase I) and monoclinic (phases II and III). Phases I and III, at low pressure (P < 0.2–0.8 GPa), transform into phase II, which has a monazite-type structure. At room temperature, this polymorph is stable up to 31.5 GPa. Calculations support these findings and predict the occurrence of an additional transition from the monoclinic monazite-type to a tetragonal scheelite-type structure (phase IV). This transition was experimentally found after the simultaneous applicationmore » of pressure (28 GPa) and temperature (1500 K), suggesting that at room temperature the transition might by hindered by kinetic barriers. Calculations also predict an additional phase transition at 52 GPa, which exceeds the maximum pressure achieved in the experiments. This transition is from phase IV to an orthorhombic barite-type structure (phase V). We also studied the axial and bulk compressibility of BiPO{sub 4}. Room-temperature pressure-volume equations of state are reported. BiPO{sub 4} was found to be more compressible than isomorphic rare-earth phosphates. The discovered phase IV was determined to be the less compressible polymorph of BiPO{sub 4}. On the other hand, the theoretically predicted phase V has a bulk modulus comparable with that of monazite-type BiPO{sub 4}. Finally, the isothermal compressibility tensor for the monazite-type structure is reported at 2.4 GPa showing that the direction of maximum compressibility is in the (0 1 0) plane at approximately 15° (21°) to the a axis for the case of our experimental (theoretical) study.« less

  4. High-performance compression and double cryptography based on compressive ghost imaging with the fast Fourier transform

    NASA Astrophysics Data System (ADS)

    Leihong, Zhang; Zilan, Pan; Luying, Wu; Xiuhua, Ma

    2016-11-01

    To solve the problem that large images can hardly be retrieved for stringent hardware restrictions and the security level is low, a method based on compressive ghost imaging (CGI) with Fast Fourier Transform (FFT) is proposed, named FFT-CGI. Initially, the information is encrypted by the sender with FFT, and the FFT-coded image is encrypted by the system of CGI with a secret key. Then the receiver decrypts the image with the aid of compressive sensing (CS) and FFT. Simulation results are given to verify the feasibility, security, and compression of the proposed encryption scheme. The experiment suggests the method can improve the quality of large images compared with conventional ghost imaging and achieve the imaging for large-sized images, further the amount of data transmitted largely reduced because of the combination of compressive sensing and FFT, and improve the security level of ghost images through ciphertext-only attack (COA), chosen-plaintext attack (CPA), and noise attack. This technique can be immediately applied to encryption and data storage with the advantages of high security, fast transmission, and high quality of reconstructed information.

  5. Data compression strategies for ptychographic diffraction imaging

    NASA Astrophysics Data System (ADS)

    Loetgering, Lars; Rose, Max; Treffer, David; Vartanyants, Ivan A.; Rosenhahn, Axel; Wilhein, Thomas

    2017-12-01

    Ptychography is a computational imaging method for solving inverse scattering problems. To date, the high amount of redundancy present in ptychographic data sets requires computer memory that is orders of magnitude larger than the retrieved information. Here, we propose and compare data compression strategies that significantly reduce the amount of data required for wavefield inversion. Information metrics are used to measure the amount of data redundancy present in ptychographic data. Experimental results demonstrate the technique to be memory efficient and stable in the presence of systematic errors such as partial coherence and noise.

  6. Spaced-antenna wind estimation using an X-band active phased-array weather radar

    NASA Astrophysics Data System (ADS)

    Venkatesh, Vijay

    Over the past few decades, several single radar methods have been developed to probe the kinematic structure of storms. All these methods trade angular-resolution to retrieve the wind-field. To date, the spaced-antenna method has been employed for profiling the ionosphere and the precipitation free lower atmosphere. This work focuses on applying the spaced-antenna method on an X-band active phased-array radar for high resolution horizontal wind-field retrieval from precipitation echoes. The ability to segment the array face into multiple displaced apertures allows for flexible spaced-antenna implementations. The methodology employed herein comprises of Monte-Carlo simulations to optimize the spaced-antenna system design and analysis of real data collected with the designed phased-array system. The contribution that underpins this dissertation is the demonstration of qualitative agreement between spaced-antenna and Doppler beam swinging retrievals based on real data. First, simulations of backscattered electric fields at the antenna array elements are validated using theoretical expressions. Based on the simulations, the degrees of freedom in the spaced-antenna system design are optimized for retrieval of mean baseline wind. We show that the designed X-band spaced-antenna system has lower retrieval uncertainty than the existing S-band spaced-antenna implementation on the NWRT. This is because of the flexibility to synthesize small overlapping apertures and the ability to obtain statistically independent samples at a faster rate at X-band. We then demonstrate a technique to make relative phase-center displacement measurements based on simulations and real data from the phased-array spaced-antenna system. This simple method uses statistics of precipitation echoes and apriori beamwidth measurements to make field repeatable phase-center displacement measurements. Finally, we test the hypothesis that wind-field curvature effects are common to both the spaced-antenna and Doppler beam swinging methods. Based on a close-range winter storm data set, we find that the spaced-antenna and fine-resolution Doppler beam swinging retrievals are in qualitative agreement. The correlation between the spaced-antenna and fine-resolution Doppler beam swinging retrievals was 0.57. The lowered correlation coefficient was, in part, due to the high standard deviation of the DBS retrievals. At high wind-speeds, the spaced-antenna retrievals significantly departed from variational retrievals of mean baseline wind.

  7. Hippocampal replay in the awake state: a potential physiological substrate of memory consolidation and retrieval

    PubMed Central

    Carr, Margaret F.; Jadhav, Shantanu P.; Frank, Loren M.

    2011-01-01

    The hippocampus is required for the encoding, consolidation, and retrieval of event memories. While the neural mechanisms that underlie these processes are only partially understood, a series of recent papers point to awake memory replay as a potential contributor to both consolidation and retrieval. Replay is the sequential reactivation of hippocampal place cells that represent previously experienced behavioral trajectories and occurs frequently in the awake state, particularly during periods of relative immobility. Awake replay may reflect trajectories through either the current environment or previously visited environments that are spatially remote. The repetition of learned sequences on a compressed time scale is well suited to promote memory consolidation in distributed circuits beyond the hippocampus, suggesting that consolidation occurs in both the awake and sleeping animal. Moreover, sensory information can influence the content of awake replay, suggesting a role for awake replay in memory retrieval. PMID:21270783

  8. Where Is ELSA? The Early to Late Shift in Aging

    PubMed Central

    Buchler, Norbou; Dobbins, Ian G.; Cabeza, Roberto

    2012-01-01

    Studies of cognitive and neural aging have recently provided evidence of a shift from an early- to late-onset cognitive control strategy, linked with temporally extended activity in the prefrontal cortex (PFC). It has been uncertain, however, whether this age-related shift is unique to PFC and executive control tasks or whether the functional location might vary depending on the particular cognitive processes that are altered. The present study tested whether an early-to-late shift in aging (ELSA) might emerge in the medial temporal lobes (MTL) during a protracted context memory task comprising both anticipatory cue (retrieval preparation) and retrieval probe (retrieval completion) phases. First, we found reduced MTL activity in older adults during the early retrieval preparation phase coupled with increased MTL activity during the late retrieval completion phase. Second, we found that functional connectivity between MTL and PFC regions was higher during retrieval preparation in young adults but higher during retrieval completion in older adults, suggesting an important interactive relationship between the ELSA pattern in MTL and PFC. Taken together, these results critically suggest that aging results in temporally lagged activity even in regions not typically associated with cognitive control, such as the MTL. PMID:22114083

  9. Phase-retrieval attack free cryptosystem based on cylindrical asymmetric diffraction and double-random phase encoding

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Li, Xiaowei; Hu, Yuhen; Wang, Qiong-Hua

    2018-03-01

    A phase-retrieval attack free cryptosystem based on the cylindrical asymmetric diffraction and double-random phase encoding (DRPE) is proposed. The plaintext is abstract as a cylinder, while the observed diffraction and holographic surfaces are concentric cylinders. Therefore, the plaintext can be encrypted through a two-step asymmetric diffraction process with double pseudo random phase masks located on the object surface and the first diffraction surface. After inverse diffraction from a holographic surface to an object surface, the plaintext can be reconstructed using a decryption process. Since the diffraction propagated from the inner cylinder to the outer cylinder is different from that of the reversed direction, the proposed cryptosystem is asymmetric and hence is free of phase-retrieval attack. Numerical simulation results demonstrate the flexibility and effectiveness of the proposed cryptosystem.

  10. Determination of wavefront structure for a Hartmann wavefront sensor using a phase-retrieval method.

    PubMed

    Polo, A; Kutchoukov, V; Bociort, F; Pereira, S F; Urbach, H P

    2012-03-26

    We apply a phase retrieval algorithm to the intensity pattern of a Hartmann wavefront sensor to measure with enhanced accuracy the phase structure of a Hartmann hole array. It is shown that the rms wavefront error achieved by phase reconstruction is one order of magnitude smaller than the one obtained from a typical centroid algorithm. Experimental results are consistent with a phase measurement performed independently using a Shack-Hartmann wavefront sensor.

  11. Effects of Emotion and Emotional Valence on the Neural Correlates of Episodic Memory Search and Elaboration

    PubMed Central

    Ford, Jaclyn H.; Morris, John A.; Kensinger, Elizabeth A.

    2015-01-01

    Successful retrieval of an event includes an initial search phase in which the information is accessed and a subsequent elaboration phase in which an individual expands on event details. Traditionally, functional neuroimaging studies examining episodic memory retrieval either have not made a distinction between these two phases or have focused on the initial search process. The current study used an extended retrieval trial to compare the neural correlates of search and elaboration and to examine the effects of emotion on each phase. Prior to scanning, participants encoded positive, negative, and neutral images paired with neutral titles. After a thirty-minute delay, participants engaged in a scanned recognition task in which they viewed the neutral titles and indicated whether the title had been presented with an image during the study phase. Retrieval was divided into an initial memory search and a subsequent five-second elaboration phase. The current study identified neural differences between the search and elaboration phases, with search being associated with widespread bilateral activations across the entire cortex and elaboration primarily being associated with increased activity in the medial prefrontal cortex. The emotionality of the retrieval target was more influential during search relative to elaboration. However, valence influenced when the effect of emotion was greatest, with search engaging many more regions for positive events than negative ones, but elaboration engaging the dorsomedial prefrontal cortex more for negative events than positive events. PMID:24283491

  12. Hybrid diversity method utilizing adaptive diversity function for recovering unknown aberrations in an optical system

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H. (Inventor)

    2009-01-01

    A method of recovering unknown aberrations in an optical system includes collecting intensity data produced by the optical system, generating an initial estimate of a phase of the optical system, iteratively performing a phase retrieval on the intensity data to generate a phase estimate using an initial diversity function corresponding to the intensity data, generating a phase map from the phase retrieval phase estimate, decomposing the phase map to generate a decomposition vector, generating an updated diversity function by combining the initial diversity function with the decomposition vector, generating an updated estimate of the phase of the optical system by removing the initial diversity function from the phase map. The method may further include repeating the process beginning with iteratively performing a phase retrieval on the intensity data using the updated estimate of the phase of the optical system in place of the initial estimate of the phase of the optical system, and using the updated diversity function in place of the initial diversity function, until a predetermined convergence is achieved.

  13. Retrieval of past and future positive and negative autobiographical experiences.

    PubMed

    García-Bajos, Elvira; Migueles, Malen

    2017-09-01

    We studied retrieval-induced forgetting for past or future autobiographical experiences. In the study phase, participants were given cues to remember past autobiographical experiences or to think about experiences that may occur in the future. In both conditions, half of the experiences were positive and half negative. In the retrieval-practice phase, for past and future experiences, participants retrieved either half of the positive or negative experiences using cued recall, or capitals of the world (control groups). Retrieval practice produced recall facilitation and enhanced memory for the practised positive and negative past and future experiences. While retrieval practice on positive experiences did not impair the recall of other positive experiences, we found inhibition for negative past and future experiences when participants practised negative experiences. Furthermore, retrieval practice on positive future experiences inhibited negative future experiences. These positivity biases for autobiographical memory may have practical implications for treatment of emotional disorders.

  14. TMS evidence for a selective role of the precuneus in source memory retrieval.

    PubMed

    Bonnì, Sonia; Veniero, Domenica; Mastropasqua, Chiara; Ponzo, Viviana; Caltagirone, Carlo; Bozzali, Marco; Koch, Giacomo

    2015-04-01

    The posteromedial cortex including the precuneus (PC) is thought to be involved in episodic memory retrieval. Here we used continuous theta burst stimulation (cTBS) to disentangle the role of the precuneus in the recognition memory process in a sample of healthy subjects. During the encoding phase, subjects were presented with a series of colored pictures. Afterwards, during the retrieval phase, all previously presented items and a sample of new pictures were presented in black, and subjects were asked to indicate whether each item was new or old, and in the latter case to indicate the associated color. cTBS was delivered over PC, posterior parietal cortex (PPC) and vertex before the retrieval phase. The data were analyzed in terms of hits, false alarms, source errors and omissions. cTBS over the precuneus, but not over the PPC or the vertex, induced a selective decrease in source memory errors, indicating an improvement in context retrieval. All the other accuracy measurements were unchanged. These findings suggest a direct implication of the precuneus in successful context-dependent retrieval. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Lensfree Computational Microscopy Tools and their Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Sencan, Ikbal

    Conventional microscopy has been a revolutionary tool for biomedical applications since its invention several centuries ago. Ability to non-destructively observe very fine details of biological objects in real time enabled to answer many important questions about their structures and functions. Unfortunately, most of these advance microscopes are complex, bulky, expensive, and/or hard to operate, so they could not reach beyond the walls of well-equipped laboratories. Recent improvements in optoelectronic components and computational methods allow creating imaging systems that better fulfill the specific needs of clinics or research related biomedical applications. In this respect, lensfree computational microscopy aims to replace bulky and expensive optical components with compact and cost-effective alternatives through the use of computation, which can be particularly useful for lab-on-a-chip platforms as well as imaging applications in low-resource settings. Several high-throughput on-chip platforms are built with this approach for applications including, but not limited to, cytometry, micro-array imaging, rare cell analysis, telemedicine, and water quality screening. The lack of optical complexity in these lensfree on-chip imaging platforms is compensated by using computational techniques. These computational methods are utilized for various purposes in coherent, incoherent and fluorescent on-chip imaging platforms e.g. improving the spatial resolution, to undo the light diffraction without using lenses, localization of objects in a large volume and retrieval of the phase or the color/spectral content of the objects. For instance, pixel super resolution approaches based on source shifting are used in lensfree imaging platforms to prevent under sampling, Bayer pattern, and aliasing artifacts. Another method, iterative phase retrieval, is utilized to compensate the lack of lenses by undoing the diffraction and removing the twin image noise of in-line holograms. This technique enables recovering the complex optical field from its intensity measurement(s) by using additional constraints in iterations, such as spatial boundaries and other known properties of objects. Another computational tool employed in lensfree imaging is compressive sensing (or decoding), which is a novel method taking advantage of the fact that natural signals/objects are mostly sparse or compressible in known bases. This inherent property of objects enables better signal recovery when the number of measurement is low, even below the Nyquist rate, and increases the additive noise immunity of the system.

  16. Extended capture range for focus-diverse phase retrieval in segmented aperture systems using geometrical optics.

    PubMed

    Jurling, Alden S; Fienup, James R

    2014-03-01

    Extending previous work by Thurman on wavefront sensing for segmented-aperture systems, we developed an algorithm for estimating segment tips and tilts from multiple point spread functions in different defocused planes. We also developed methods for overcoming two common modes for stagnation in nonlinear optimization-based phase retrieval algorithms for segmented systems. We showed that when used together, these methods largely solve the capture range problem in focus-diverse phase retrieval for segmented systems with large tips and tilts. Monte Carlo simulations produced a rate of success better than 98% for the combined approach.

  17. Facing the phase problem in Coherent Diffractive Imaging via Memetic Algorithms.

    PubMed

    Colombo, Alessandro; Galli, Davide Emilio; De Caro, Liberato; Scattarella, Francesco; Carlino, Elvio

    2017-02-09

    Coherent Diffractive Imaging is a lensless technique that allows imaging of matter at a spatial resolution not limited by lens aberrations. This technique exploits the measured diffraction pattern of a coherent beam scattered by periodic and non-periodic objects to retrieve spatial information. The diffracted intensity, for weak-scattering objects, is proportional to the modulus of the Fourier Transform of the object scattering function. Any phase information, needed to retrieve its scattering function, has to be retrieved by means of suitable algorithms. Here we present a new approach, based on a memetic algorithm, i.e. a hybrid genetic algorithm, to face the phase problem, which exploits the synergy of deterministic and stochastic optimization methods. The new approach has been tested on simulated data and applied to the phasing of transmission electron microscopy coherent electron diffraction data of a SrTiO 3 sample. We have been able to quantitatively retrieve the projected atomic potential, and also image the oxygen columns, which are not directly visible in the relevant high-resolution transmission electron microscopy images. Our approach proves to be a new powerful tool for the study of matter at atomic resolution and opens new perspectives in those applications in which effective phase retrieval is necessary.

  18. Electrical conductivity of MgH2 at multiple shock compression

    NASA Astrophysics Data System (ADS)

    Shakhray, Denis; Molodets, Alexander; Fortov, Vladimir

    2011-06-01

    The electrical conductivity of MgH2 has been studied under multishock compression. Earlier we had been experimentally studied metallization possibility of alane at high pressures in conditions quasiisentropic compression up to 100 GPa. A study of thermodynamic properties of MgH2 under multishock compression has been carried out also. High pressures and temperatures were obtained with an explosive device, which accelerates the metallic impactor up to 3 km/s. Identification of the hydride in experiments was made on the basis of calculations of phase trajectories loading a material in the area of existence of polymorphic phases including high-pressure phases of magnesium hydride (α and γ MgH2, hP1 and hP2). It is shown that occurrence of magnesium hydride electrical conductivity occurs in the field of existence of high-pressure hP2 phase This work was partially supported by the Presidium of the Russian Academy of Sciences within the Program of Basic Research ``Thermal Physics and Mechanics of Extreme Energy Effects and Physics of Strongly Compressed Matter and Russian Foundation for Basic Research Grant No. 10-02-01078.''

  19. Penalized maximum likelihood reconstruction for x-ray differential phase-contrast tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brendel, Bernhard, E-mail: bernhard.brendel@philips.com; Teuffenbach, Maximilian von; Noël, Peter B.

    2016-01-15

    Purpose: The purpose of this work is to propose a cost function with regularization to iteratively reconstruct attenuation, phase, and scatter images simultaneously from differential phase contrast (DPC) acquisitions, without the need of phase retrieval, and examine its properties. Furthermore this reconstruction method is applied to an acquisition pattern that is suitable for a DPC tomographic system with continuously rotating gantry (sliding window acquisition), overcoming the severe smearing in noniterative reconstruction. Methods: We derive a penalized maximum likelihood reconstruction algorithm to directly reconstruct attenuation, phase, and scatter image from the measured detector values of a DPC acquisition. The proposed penaltymore » comprises, for each of the three images, an independent smoothing prior. Image quality of the proposed reconstruction is compared to images generated with FBP and iterative reconstruction after phase retrieval. Furthermore, the influence between the priors is analyzed. Finally, the proposed reconstruction algorithm is applied to experimental sliding window data acquired at a synchrotron and results are compared to reconstructions based on phase retrieval. Results: The results show that the proposed algorithm significantly increases image quality in comparison to reconstructions based on phase retrieval. No significant mutual influence between the proposed independent priors could be observed. Further it could be illustrated that the iterative reconstruction of a sliding window acquisition results in images with substantially reduced smearing artifacts. Conclusions: Although the proposed cost function is inherently nonconvex, it can be used to reconstruct images with less aliasing artifacts and less streak artifacts than reconstruction methods based on phase retrieval. Furthermore, the proposed method can be used to reconstruct images of sliding window acquisitions with negligible smearing artifacts.« less

  20. Lossless and lossy compression of quantitative phase images of red blood cells obtained by digital holographic imaging.

    PubMed

    Jaferzadeh, Keyvan; Gholami, Samaneh; Moon, Inkyu

    2016-12-20

    In this paper, we evaluate lossless and lossy compression techniques to compress quantitative phase images of red blood cells (RBCs) obtained by an off-axis digital holographic microscopy (DHM). The RBC phase images are numerically reconstructed from their digital holograms and are stored in 16-bit unsigned integer format. In the case of lossless compression, predictive coding of JPEG lossless (JPEG-LS), JPEG2000, and JP3D are evaluated, and compression ratio (CR) and complexity (compression time) are compared against each other. It turns out that JP2k can outperform other methods by having the best CR. In the lossy case, JP2k and JP3D with different CRs are examined. Because some data is lost in a lossy way, the degradation level is measured by comparing different morphological and biochemical parameters of RBC before and after compression. Morphological parameters are volume, surface area, RBC diameter, sphericity index, and the biochemical cell parameter is mean corpuscular hemoglobin (MCH). Experimental results show that JP2k outperforms JP3D not only in terms of mean square error (MSE) when CR increases, but also in compression time in the lossy compression way. In addition, our compression results with both algorithms demonstrate that with high CR values the three-dimensional profile of RBC can be preserved and morphological and biochemical parameters can still be within the range of reported values.

  1. Phase retrieval for crystalline specimens

    NASA Astrophysics Data System (ADS)

    Arnal, Romain A.; Millane, Rick P.

    2017-09-01

    The recent availability of ultra-bright and ultra-short X-rays pulses from new sources called x-ray free-electron lasers (XFELs) has introduced a new paradigm in X-ray crystallography. Called "diffraction-before-destruction," this paradigm addresses the main problems that plague crystallography using synchrotron sources. However, the phase problem of coherent diffraction imaging remains: one has to retrieve the phase of the measured diffraction amplitude in order to reconstruct the object. Fibrous and membrane proteins that crystallize in 1D and 2D crystals can now potentially be used for data collection with free-electron lasers. The crystallographic phase problem with such crystalline specimens is eased as the Fourier amplitude can be sampled more finely than at the Bragg sampling along one or two directions. Here we characterise uniqueness of the phase problem for different types of crystalline specimen. Simulated ab initio phase retrieval using iterative projection algorithms for 2D crystals is presented.

  2. Investigation of the Iterative Phase Retrieval Algorithm for Interferometric Applications

    NASA Astrophysics Data System (ADS)

    Gombkötő, Balázs; Kornis, János

    2010-04-01

    Sequentially recorded intensity patterns reflected from a coherently illuminated diffuse object can be used to reconstruct the complex amplitude of the scattered beam. Several iterative phase retrieval algorithms are known in the literature to obtain the initially unknown phase from these longitudinally displaced intensity patterns. When two sequences are recorded in two different states of a centimeter sized object in optical setups that are similar to digital holographic interferometry-but omitting the reference wave-, displacement, deformation, or shape measurement is theoretically possible. To do this, the retrieved phase pattern should contain information not only about the intensities and locations of the point sources of the object surface, but their relative phase as well. Not only experiments require strict mechanical precision to record useful data, but even in simulations several parameters influence the capabilities of iterative phase retrieval, such as object to camera distance range, uniform or varying camera step sequence, speckle field characteristics, and sampling. Experiments were done to demonstrate this principle with an as large as 5×5 cm sized deformable object as well. Good initial results were obtained in an imaging setup, where the intensity pattern sequences were recorded near the image plane.

  3. Compressing a spinodal surface at fixed area: bijels in a centrifuge.

    PubMed

    Rumble, Katherine A; Thijssen, Job H J; Schofield, Andrew B; Clegg, Paul S

    2016-05-11

    Bicontinuous interfacially jammed emulsion gels (bijels) are solid-stabilised emulsions with two inter-penetrating continuous phases. Employing the method of centrifugal compression we find that macroscopically the bijel yields at relatively low angular acceleration. Both continuous phases escape from the top of the structure, making any compression immediately irreversible. Microscopically, the bijel becomes anisotropic with the domains aligned perpendicular to the compression direction which inhibits further liquid expulsion; this contrasts strongly with the sedimentation behaviour of colloidal gels. The original structure can, however, be preserved close to the top of the sample and thus the change to an anisotropic structure suggests internal yielding. Any air bubbles trapped in the bijel are found to aid compression by forming channels aligned parallel to the compression direction which provide a route for liquid to escape.

  4. Radiological Image Compression

    NASA Astrophysics Data System (ADS)

    Lo, Shih-Chung Benedict

    The movement toward digital images in radiology presents the problem of how to conveniently and economically store, retrieve, and transmit the volume of digital images. Basic research into image data compression is necessary in order to move from a film-based department to an efficient digital -based department. Digital data compression technology consists of two types of compression technique: error-free and irreversible. Error -free image compression is desired; however, present techniques can only achieve compression ratio of from 1.5:1 to 3:1, depending upon the image characteristics. Irreversible image compression can achieve a much higher compression ratio; however, the image reconstructed from the compressed data shows some difference from the original image. This dissertation studies both error-free and irreversible image compression techniques. In particular, some modified error-free techniques have been tested and the recommended strategies for various radiological images are discussed. A full-frame bit-allocation irreversible compression technique has been derived. A total of 76 images which include CT head and body, and radiographs digitized to 2048 x 2048, 1024 x 1024, and 512 x 512 have been used to test this algorithm. The normalized mean -square-error (NMSE) on the difference image, defined as the difference between the original and the reconstructed image from a given compression ratio, is used as a global measurement on the quality of the reconstructed image. The NMSE's of total of 380 reconstructed and 380 difference images are measured and the results tabulated. Three complex compression methods are also suggested to compress images with special characteristics. Finally, various parameters which would effect the quality of the reconstructed images are discussed. A proposed hardware compression module is given in the last chapter.

  5. Internal loading of an inhomogeneous compressible Earth with phase boundaries

    NASA Technical Reports Server (NTRS)

    Defraigne, P.; Dehant, V.; Wahr, J. M.

    1996-01-01

    The geoid and the boundary topography caused by mass loads inside the earth were estimated. It is shown that the estimates are affected by compressibility, by a radially varying density distribution, and by the presence of phase boundaries with density discontinuities. The geoid predicted in the chemical boundary case is 30 to 40 percent smaller than that predicted in the phase case. The effects of compressibility and radially varying density are likely to be small. The inner core-outer core topography for loading inside the mantle and for loading inside the inner core were computed.

  6. Feasibility study: Assess the feasibility of siting a monitored retrievable storage facility. Phase 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, J.W.

    1993-08-01

    The purpose of phase one of this study are: To understand the waste management system and a monitored retrievable storage facility; and to determine whether the applicant has real interest in pursuing the feasibility assessment process. Contents of this report are: Generating electric power; facts about exposure to radiation; handling storage, and transportation techniques; description of a proposed monitored retrievable storage facility; and benefits to be received by host jurisdiction.

  7. Grating-based x-ray differential phase contrast imaging with twin peaks in phase-stepping curves—phase retrieval and dewrapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yi; Xie, Huiqiao; Tang, Xiangyang, E-mail: xiangyang.tang@emory.edu

    Purpose: X-ray differential phase contrast CT implemented with Talbot interferometry employs phase-stepping to extract information of x-ray attenuation, phase shift, and small-angle scattering. Since inaccuracy may exist in the absorption grating G{sub 2} due to an imperfect fabrication, the effective period of G{sub 2} can be as large as twice the nominal period, leading to a phenomenon of twin peaks that differ remarkably in their heights. In this work, the authors investigate how to retrieve and dewrap the phase signal from the phase-stepping curve (PSC) with the feature of twin peaks for x-ray phase contrast imaging. Methods: Based on themore » paraxial Fresnel–Kirchhoff theory, the analytical formulae to characterize the phenomenon of twin peaks in the PSC are derived. Then an approach to dewrap the retrieved phase signal by jointly using the phases of the first- and second-order Fourier components is proposed. Through an experimental investigation using a prototype x-ray phase contrast imaging system implemented with Talbot interferometry, the authors evaluate and verify the derived analytic formulae and the proposed approach for phase retrieval and dewrapping. Results: According to theoretical analysis, the twin-peak phenomenon in PSC is a consequence of combined effects, including the inaccuracy in absorption grating G{sub 2}, mismatch between phase grating and x-ray source spectrum, and finite size of x-ray tube’s focal spot. The proposed approach is experimentally evaluated by scanning a phantom consisting of organic materials and a lab mouse. The preliminary data show that compared to scanning G{sub 2} over only one single nominal period and correcting the measured phase signal with an intuitive phase dewrapping method that is being used in the field, stepping G{sub 2} over twice its nominal period and dewrapping the measured phase signal with the proposed approach can significantly improve the quality of x-ray differential phase contrast imaging in both radiograph and CT. Conclusions: Using the phase retrieval and dewrapping methods proposed to deal with the phenomenon of twin peaks in PSCs and phase wrapping, the performance of grating-based x-ray differential phase contrast radiography and CT can be significantly improved.« less

  8. Observation of a pretransitional effect near a virtual smectic-A--smectic-C* transition.

    PubMed

    Shibahara, S; Takanishi, Y; Yamamoto, J; Ogasawara, T; Ishikawa, K; Yokoyama, H; Takezoe, H

    2001-06-01

    Unusual softening of the layer compression modulus B has been observed near the phase boundary where the smectic-C* phase vanishes in a naphtalene-based liquid crystal mixture. From the systematic study of x-ray and layer compression measurements, this unusual effect is attributed to the pretransitional softening near a virtual smectic-A-smectic-C* phase transition in the smectic-A phase, which no longer appears on the thermoequilibrium phase diagram. This phenomenon is similar but not equivalent to supercritical behavior.

  9. Iterative-Transform Phase Retrieval Using Adaptive Diversity

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H.

    2007-01-01

    A phase-diverse iterative-transform phase-retrieval algorithm enables high spatial-frequency, high-dynamic-range, image-based wavefront sensing. [The terms phase-diverse, phase retrieval, image-based, and wavefront sensing are defined in the first of the two immediately preceding articles, Broadband Phase Retrieval for Image-Based Wavefront Sensing (GSC-14899-1).] As described below, no prior phase-retrieval algorithm has offered both high dynamic range and the capability to recover high spatial-frequency components. Each of the previously developed image-based phase-retrieval techniques can be classified into one of two categories: iterative transform or parametric. Among the modifications of the original iterative-transform approach has been the introduction of a defocus diversity function (also defined in the cited companion article). Modifications of the original parametric approach have included minimizing alternative objective functions as well as implementing a variety of nonlinear optimization methods. The iterative-transform approach offers the advantage of ability to recover low, middle, and high spatial frequencies, but has disadvantage of having a limited dynamic range to one wavelength or less. In contrast, parametric phase retrieval offers the advantage of high dynamic range, but is poorly suited for recovering higher spatial frequency aberrations. The present phase-diverse iterative transform phase-retrieval algorithm offers both the high-spatial-frequency capability of the iterative-transform approach and the high dynamic range of parametric phase-recovery techniques. In implementation, this is a focus-diverse iterative-transform phaseretrieval algorithm that incorporates an adaptive diversity function, which makes it possible to avoid phase unwrapping while preserving high-spatial-frequency recovery. The algorithm includes an inner and an outer loop (see figure). An initial estimate of phase is used to start the algorithm on the inner loop, wherein multiple intensity images are processed, each using a different defocus value. The processing is done by an iterative-transform method, yielding individual phase estimates corresponding to each image of the defocus-diversity data set. These individual phase estimates are combined in a weighted average to form a new phase estimate, which serves as the initial phase estimate for either the next iteration of the iterative-transform method or, if the maximum number of iterations has been reached, for the next several steps, which constitute the outerloop portion of the algorithm. The details of the next several steps must be omitted here for the sake of brevity. The overall effect of these steps is to adaptively update the diversity defocus values according to recovery of global defocus in the phase estimate. Aberration recovery varies with differing amounts as the amount of diversity defocus is updated in each image; thus, feedback is incorporated into the recovery process. This process is iterated until the global defocus error is driven to zero during the recovery process. The amplitude of aberration may far exceed one wavelength after completion of the inner-loop portion of the algorithm, and the classical iterative transform method does not, by itself, enable recovery of multi-wavelength aberrations. Hence, in the absence of a means of off-loading the multi-wavelength portion of the aberration, the algorithm would produce a wrapped phase map. However, a special aberration-fitting procedure can be applied to the wrapped phase data to transfer at least some portion of the multi-wavelength aberration to the diversity function, wherein the data are treated as known phase values. In this way, a multiwavelength aberration can be recovered incrementally by successively applying the aberration-fitting procedure to intermediate wrapped phase maps. During recovery, as more of the aberration is transferred to the diversity function following successive iterations around the ter loop, the estimated phase ceases to wrap in places where the aberration values become incorporated as part of the diversity function. As a result, as the aberration content is transferred to the diversity function, the phase estimate resembles that of a reference flat.

  10. Pressure-induced phase transitions of exposed curved surface nano-TiO{sub 2} with high photocatalytic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yanwei, E-mail: yanwei.huang@hpstar.ac.cn, E-mail: wangling@hpstar.ac.cn; College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018; Chen, Fengjiao

    We report a unique phase transition in compressed exposed curved surface nano-TiO{sub 2} with high photocatalytic activity using in situ synchrotron X-ray diffraction and Raman Spectroscopy. High-pressure studies indicate that the anatase phase starts to transform into baddeleyite phase upon compression at 19.4 GPa, and completely transforms into the baddeleyite phase above 24.6 GPa. Upon decompression, the baddeleyite phase was maintained until the pressure was released to 6.4 GPa and then transformed into the α-PbO{sub 2} phase at 2.7 GPa. Together with the results of high-resolution transmission electron microscopy and the pressure-volume relationship, this phase transition's characteristics during the compression-decompression cycle demonstrate that themore » truncated biconic morphology possessed excellent stability. This study may provide an insight to the mechanisms of stability for high photocatalytic activity of nano-TiO{sub 2}.« less

  11. Curvelet-based compressive sensing for InSAR raw data

    NASA Astrophysics Data System (ADS)

    Costa, Marcello G.; da Silva Pinho, Marcelo; Fernandes, David

    2015-10-01

    The aim of this work is to evaluate the compression performance of SAR raw data for interferometry applications collected by airborne from BRADAR (Brazilian SAR System operating in X and P bands) using the new approach based on compressive sensing (CS) to achieve an effective recovery with a good phase preserving. For this framework is desirable a real-time capability, where the collected data can be compressed to reduce onboard storage and bandwidth required for transmission. In the CS theory, a sparse unknown signals can be recovered from a small number of random or pseudo-random measurements by sparsity-promoting nonlinear recovery algorithms. Therefore, the original signal can be significantly reduced. To achieve the sparse representation of SAR signal, was done a curvelet transform. The curvelets constitute a directional frame, which allows an optimal sparse representation of objects with discontinuities along smooth curves as observed in raw data and provides an advanced denoising optimization. For the tests were made available a scene of 8192 x 2048 samples in range and azimuth in X-band with 2 m of resolution. The sparse representation was compressed using low dimension measurements matrices in each curvelet subband. Thus, an iterative CS reconstruction method based on IST (iterative soft/shrinkage threshold) was adjusted to recover the curvelets coefficients and then the original signal. To evaluate the compression performance were computed the compression ratio (CR), signal to noise ratio (SNR), and because the interferometry applications require more reconstruction accuracy the phase parameters like the standard deviation of the phase (PSD) and the mean phase error (MPE) were also computed. Moreover, in the image domain, a single-look complex image was generated to evaluate the compression effects. All results were computed in terms of sparsity analysis to provides an efficient compression and quality recovering appropriated for inSAR applications, therefore, providing a feasibility for compressive sensing application.

  12. Phase reconstruction using compressive two-step parallel phase-shifting digital holography

    NASA Astrophysics Data System (ADS)

    Ramachandran, Prakash; Alex, Zachariah C.; Nelleri, Anith

    2018-04-01

    The linear relationship between the sample complex object wave and its approximated complex Fresnel field obtained using single shot parallel phase-shifting digital holograms (PPSDH) is used in compressive sensing framework and an accurate phase reconstruction is demonstrated. It is shown that the accuracy of phase reconstruction of this method is better than that of compressive sensing adapted single exposure inline holography (SEOL) method. It is derived that the measurement model of PPSDH method retains both the real and imaginary parts of the Fresnel field but with an approximation noise and the measurement model of SEOL retains only the real part exactly equal to the real part of the complex Fresnel field and its imaginary part is completely not available. Numerical simulation is performed for CS adapted PPSDH and CS adapted SEOL and it is demonstrated that the phase reconstruction is accurate for CS adapted PPSDH and can be used for single shot digital holographic reconstruction.

  13. Ionizing laser propagation and spectral phase determination

    NASA Astrophysics Data System (ADS)

    Mittelberger, D. E.; Nakamura, K.; Lehe, R.; Gonsalves, A. J.; Benedetti, C.; Mao, H.-S.; Daniels, J.; Dale, N.; Swanson, K. K.; Esarey, E.; Leemans, W. P.

    2017-03-01

    Ionization-induced blueshifting is investigated through INF&RNO simulations and experimental studies at the Berkeley Laboratory Laser Accelerator (BELLA) Center. The effects of spectral phase and optical compression are explored. An in-situ method for verifying the spectral phase of an intense laser pulse at focus is presented, based on the effects of optical compression on the morphology of the blueshifted laser spectra.

  14. Qualification of a Null Lens Using Image-Based Phase Retrieval

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Aronstein, David L.; Hill, Peter C.; Smith, J. Scott; Zielinski, Thomas P.

    2012-01-01

    In measuring the figure error of an aspheric optic using a null lens, the wavefront contribution from the null lens must be independently and accurately characterized in order to isolate the optical performance of the aspheric optic alone. Various techniques can be used to characterize such a null lens, including interferometry, profilometry and image-based methods. Only image-based methods, such as phase retrieval, can measure the null-lens wavefront in situ - in single-pass, and at the same conjugates and in the same alignment state in which the null lens will ultimately be used - with no additional optical components. Due to the intended purpose of a Dull lens (e.g., to null a large aspheric wavefront with a near-equal-but-opposite spherical wavefront), characterizing a null-lens wavefront presents several challenges to image-based phase retrieval: Large wavefront slopes and high-dynamic-range data decrease the capture range of phase-retrieval algorithms, increase the requirements on the fidelity of the forward model of the optical system, and make it difficult to extract diagnostic information (e.g., the system F/#) from the image data. In this paper, we present a study of these effects on phase-retrieval algorithms in the context of a null lens used in component development for the Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission. Approaches for mitigation are also discussed.

  15. Treatment of Proper Name Retrieval Deficits in an Individual with Temporal Lobe Epilepsy

    ERIC Educational Resources Information Center

    Minkina, Irene; Ojemann, Jeffrey G.; Grabowski, Thomas J.; Silkes, JoAnn P.; Phatak, Vaishali; Kendall, Diane L.

    2013-01-01

    Purpose: Studies investigating language deficits in individuals with left temporal-lobe epilepsy have consistently demonstrated impairments in proper name retrieval. The aim of this Phase I rehabilitation study was to investigate the effects of a linguistically distributed word retrieval treatment on proper name retrieval in an individual with…

  16. Cloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals

    DOE Data Explorer

    Shupe, Matthew

    2013-05-22

    Time-height fields of retrieved in-cloud vertical wind velocity and turbulent dissipation rate, both retrieved primarily from vertically-pointing, Ka-band cloud radar measurements. Files are available for manually-selected, stratiform, mixed-phase cloud cases observed at the North Slope of Alaska (NSA) site during periods covering the Mixed-Phase Arctic Cloud Experiment (MPACE, late September through early November 2004) and the Indirect and Semi-Direct Aerosol Campaign (ISDAC, April-early May 2008). These time periods will be expanded in a future submission.

  17. X-Ray Phase Imaging for Breast Cancer Detection

    DTIC Science & Technology

    2010-09-01

    regularization seeks the minimum- norm , least squares solution for phase retrieval. The retrieval result with Tikhonov regularization is still unsatisfactory...of norm , that can effectively reflect the accuracy of the retrieved data as an image, if ‖δ Ik+1−δ Ik‖ is less than a predefined threshold value β...pointed out that the proper norm for images is the total variation (TV) norm , which is the L1 norm of the gradient of the image function, and not the

  18. Highly noise-tolerant hybrid algorithm for phase retrieval from a single-shot spatial carrier fringe pattern

    NASA Astrophysics Data System (ADS)

    Dong, Zhichao; Cheng, Haobo

    2018-01-01

    A highly noise-tolerant hybrid algorithm (NTHA) is proposed in this study for phase retrieval from a single-shot spatial carrier fringe pattern (SCFP), which effectively combines the merits of spatial carrier phase shift method and two dimensional continuous wavelet transform (2D-CWT). NTHA firstly extracts three phase-shifted fringe patterns from the SCFP with one pixel malposition; then calculates phase gradients by subtracting the reference phase from the other two target phases, which are retrieved respectively from three phase-shifted fringe patterns by 2D-CWT; finally, reconstructs the phase map by a least square gradient integration method. Its typical characters include but not limited to: (1) doesn't require the spatial carrier to be constant; (2) the subtraction mitigates edge errors of 2D-CWT; (3) highly noise-tolerant, because not only 2D-CWT is noise-insensitive, but also the noise in the fringe pattern doesn't directly take part in the phase reconstruction as in previous hybrid algorithm. Its feasibility and performances are validated extensively by simulations and contrastive experiments to temporal phase shift method, Fourier transform and 2D-CWT methods.

  19. Distribution to the Astronomy Community of the Compressed Digitized Sky Survey

    NASA Astrophysics Data System (ADS)

    Postman, Marc

    1996-03-01

    The Space Telescope Science Institute has compressed an all-sky collection of ground-based images and has printed the data on a two volume, 102 CD-ROM disc set. The first part of the survey (containing images of the southern sky) was published in May 1994. The second volume (containing images of the northern sky) was published in January 1995. Software which manages the image retrieval is included with each volume. The Astronomical Society of the Pacific (ASP) is handling the distribution of the lOx compressed data and has sold 310 sets as of October 1996. ASP is also handling the distribution of the recently published 100x version of the northern sky survey which is publicly available at a low cost. The target markets for the 100x compressed data set are the amateur astronomy community, educational institutions, and the general public. During the next year, we plan to publish the first version of a photometric calibration database which will allow users of the compressed sky survey to determine the brightness of stars in the images.

  20. Distribution to the Astronomy Community of the Compressed Digitized Sky Survey

    NASA Technical Reports Server (NTRS)

    Postman, Marc

    1996-01-01

    The Space Telescope Science Institute has compressed an all-sky collection of ground-based images and has printed the data on a two volume, 102 CD-ROM disc set. The first part of the survey (containing images of the southern sky) was published in May 1994. The second volume (containing images of the northern sky) was published in January 1995. Software which manages the image retrieval is included with each volume. The Astronomical Society of the Pacific (ASP) is handling the distribution of the lOx compressed data and has sold 310 sets as of October 1996. ASP is also handling the distribution of the recently published 100x version of the northern sky survey which is publicly available at a low cost. The target markets for the 100x compressed data set are the amateur astronomy community, educational institutions, and the general public. During the next year, we plan to publish the first version of a photometric calibration database which will allow users of the compressed sky survey to determine the brightness of stars in the images.

  1. Phase retrieval with the transport-of-intensity equation in an arbitrarily-shaped aperture by iterative discrete cosine transforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Lei; Zuo, Chao; Idir, Mourad

    A novel transport-of-intensity equation (TIE) based phase retrieval method is proposed with putting an arbitrarily-shaped aperture into the optical wavefield. In this arbitrarily-shaped aperture, the TIE can be solved under non-uniform illuminations and even non-homogeneous boundary conditions by iterative discrete cosine transforms with a phase compensation mechanism. Simulation with arbitrary phase, arbitrary aperture shape, and non-uniform intensity distribution verifies the effective compensation and high accuracy of the proposed method. Experiment is also carried out to check the feasibility of the proposed method in real measurement. Comparing to the existing methods, the proposed method is applicable for any types of phasemore » distribution under non-uniform illumination and non-homogeneous boundary conditions within an arbitrarily-shaped aperture, which enables the technique of TIE with hard aperture become a more flexible phase retrieval tool in practical measurements.« less

  2. Denoised Wigner distribution deconvolution via low-rank matrix completion

    DOE PAGES

    Lee, Justin; Barbastathis, George

    2016-08-23

    Wigner distribution deconvolution (WDD) is a decades-old method for recovering phase from intensity measurements. Although the technique offers an elegant linear solution to the quadratic phase retrieval problem, it has seen limited adoption due to its high computational/memory requirements and the fact that the technique often exhibits high noise sensitivity. Here, we propose a method for noise suppression in WDD via low-rank noisy matrix completion. Our technique exploits the redundancy of an object’s phase space to denoise its WDD reconstruction. We show in model calculations that our technique outperforms other WDD algorithms as well as modern iterative methods for phasemore » retrieval such as ptychography. Here, our results suggest that a class of phase retrieval techniques relying on regularized direct inversion of ptychographic datasets (instead of iterative reconstruction techniques) can provide accurate quantitative phase information in the presence of high levels of noise.« less

  3. Phase retrieval with the transport-of-intensity equation in an arbitrarily-shaped aperture by iterative discrete cosine transforms

    DOE PAGES

    Huang, Lei; Zuo, Chao; Idir, Mourad; ...

    2015-04-21

    A novel transport-of-intensity equation (TIE) based phase retrieval method is proposed with putting an arbitrarily-shaped aperture into the optical wavefield. In this arbitrarily-shaped aperture, the TIE can be solved under non-uniform illuminations and even non-homogeneous boundary conditions by iterative discrete cosine transforms with a phase compensation mechanism. Simulation with arbitrary phase, arbitrary aperture shape, and non-uniform intensity distribution verifies the effective compensation and high accuracy of the proposed method. Experiment is also carried out to check the feasibility of the proposed method in real measurement. Comparing to the existing methods, the proposed method is applicable for any types of phasemore » distribution under non-uniform illumination and non-homogeneous boundary conditions within an arbitrarily-shaped aperture, which enables the technique of TIE with hard aperture become a more flexible phase retrieval tool in practical measurements.« less

  4. Denoised Wigner distribution deconvolution via low-rank matrix completion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Justin; Barbastathis, George

    Wigner distribution deconvolution (WDD) is a decades-old method for recovering phase from intensity measurements. Although the technique offers an elegant linear solution to the quadratic phase retrieval problem, it has seen limited adoption due to its high computational/memory requirements and the fact that the technique often exhibits high noise sensitivity. Here, we propose a method for noise suppression in WDD via low-rank noisy matrix completion. Our technique exploits the redundancy of an object’s phase space to denoise its WDD reconstruction. We show in model calculations that our technique outperforms other WDD algorithms as well as modern iterative methods for phasemore » retrieval such as ptychography. Here, our results suggest that a class of phase retrieval techniques relying on regularized direct inversion of ptychographic datasets (instead of iterative reconstruction techniques) can provide accurate quantitative phase information in the presence of high levels of noise.« less

  5. Measurement of phase function of aerosol at different altitudes by CCD Lidar

    NASA Astrophysics Data System (ADS)

    Sun, Peiyu; Yuan, Ke'e.; Yang, Jie; Hu, Shunxing

    2018-02-01

    The aerosols near the ground are closely related to human health and climate change, the study on which has important significance. As we all know, the aerosol is inhomogeneous at different altitudes, of which the phase function is also different. In order to simplify the retrieval algorithm, it is usually assumed that the aerosol is uniform at different altitudes, which will bring measurement error. In this work, an experimental approach is demonstrated to measure the scattering phase function of atmospheric aerosol particles at different heights by CCD lidar system, which could solve the problem of the traditional CCD lidar system in assumption of phase function. The phase functions obtained by the new experimental approach are used to retrieve the aerosol extinction coefficient profiles. By comparison of the aerosol extinction coefficient retrieved by Mie-scattering aerosol lidar and CCD lidar at night, the reliability of new experimental approach is verified.

  6. Three-step interferometric method with blind phase shifts by use of interframe correlation between interferograms

    NASA Astrophysics Data System (ADS)

    Muravsky, Leonid I.; Kmet', Arkady B.; Stasyshyn, Ihor V.; Voronyak, Taras I.; Bobitski, Yaroslav V.

    2018-06-01

    A new three-step interferometric method with blind phase shifts to retrieve phase maps (PMs) of smooth and low-roughness engineering surfaces is proposed. Evaluating of two unknown phase shifts is fulfilled by using the interframe correlation between interferograms. The method consists of two stages. The first stage provides recording of three interferograms of a test object and their processing including calculation of unknown phase shifts, and retrieval of a coarse PM. The second stage implements firstly separation of high-frequency and low-frequency PMs and secondly producing of a fine PM consisting of areal surface roughness and waviness PMs. Extraction of the areal surface roughness and waviness PMs is fulfilled by using a linear low-pass filter. The computer simulation and experiments fulfilled to retrieve a gauge block surface area and its areal surface roughness and waviness have confirmed the reliability of the proposed three-step method.

  7. Effects of temperature and void on the dynamics and microstructure of structural transition in single crystal iron

    NASA Astrophysics Data System (ADS)

    Shao, Jian-Li; Wang, Pei; Zhang, Feng-Guo; He, An-Min

    2018-06-01

    With classic molecular dynamics simulations, we investigate the effects of temperature and void on the bcc to hcp/fcc structural transition in single crystal iron driven by 1D ([0 0 1]) and 3D (uniform) compressions. The results show that the pressure threshold does not reduce monotonously with temperature. The pressure threshold firstly increases and then decreases in the range of 60–360 K under 1D compression, while the variation trend is just opposite under 3D compression. As expected, the initial defect may lower the pressure threshold via heterogenous nucleation. This effect is found to be more distinct at lower temperature, and the heterogenous nucleation mainly results in hcp structure. Under the condition of strain constraint, the products of structural transition will respectively form flaky hcp twin structure ((1 0 0) or (0 1 0)) and lamellar structure ({1 1 0}) of mixed phases under 1D and 3D compressions. During the structural transition, we find the shear stress (1D compression) of hcp phase is always lower than that of bcc phase. The cold energy calculations indicate that the hcp phase is the most stable under high pressure. However, we observe the evident metastable state of bcc phase, whose energy will be much higher than both hcp and fcc phases, and then provides the possibility for the occurrence of fcc nucleation.

  8. 56. The Role of Prefrontal Cortex in Self-Referential Memory Retrieval in Schizophrenia

    PubMed Central

    Jimenez, Amy; Lee, Junghee; Wynn, Jonathan K.; Horan, William; Iglesias, Julio; Hoy, Jennifer; Green, Michael F.

    2017-01-01

    Abstract Background: Enhanced memory for self-oriented information is known as the self-referential memory (SRM) effect. fMRI studies of the SRM effect have largely focused on encoding, revealing selective engagement of medial prefrontal cortex (mPFC) during “self” relative to other semantic processing conditions. Other areas typically activated during self-processing include the ventrolateral prefrontal cortex (vlPFC) and temporo-parietal junction (TPJ). Previous imaging work by our group indicated that patients with schizophrenia activate regions similar to controls during encoding of self-referential information. However, little is known about activation patterns during retrieval, or how activation during encoding relates to retrieval behaviorally. The current study utilized an SRM task to examine: (1) the neural correlates of the retrieval of previously encoded self-oriented information, and (2) the relationship between behavioral data from the retrieval phase and fMRI data at encoding. Methods: 20 clinically stable schizophrenia outpatients and 16 demographically matched healthy controls completed an SRM task modified for event-related fMRI. During the encoding phase, trait adjectives were judged in terms of structural features (“case” condition), social desirability (“other” condition), or as self-referential (“self” condition). Following a 12-minute delay comprised of distractor tasks, memory for trait adjectives was tested during an unexpected yes–no recognition test (retrieval phase). Voxel-wise whole-brain BOLD signal analysis of retrieval phase data was used to examine contrasts of interest with a cluster-threshold of Z = 2.3, P < .05, corrected for multiple comparisons. Results: During retrieval, both groups demonstrated better recognition discriminability (d-prime) for adjectives from the “self” and “other” conditions compared to the “case” condition; d-prime scores were greater for the “self” condition compared to the “other” condition at the trend level. During retrieval, controls showed greater activation than patients in several areas of lateral prefrontal cortex including inferior frontal gyrus (Brodmann Area, BA, 44/45) and middle frontal gyrus (BA 9) for words from the “self” condition. Further, level of activation of mPFC (BA 10) during encoding was positively correlated with d-prime for the “self” condition in controls, but not patients. Conclusion: Although the groups demonstrated comparable behavioral performance during the retrieval phase of an SRM task, regional BOLD activation of prefrontal regions discriminated patients from controls during the retrieval of self-oriented information. The current findings add to a growing body of literature highlighting the critical role of disrupted mPFC activity in self-oriented processing in schizophrenia.

  9. Advantages of phase retrieval for fast x-ray tomographic microscopy

    NASA Astrophysics Data System (ADS)

    Mokso, R.; Marone, F.; Irvine, S.; Nyvlt, M.; Schwyn, D.; Mader, K.; Taylor, G. K.; Krapp, H. G.; Skeren, M.; Stampanoni, M.

    2013-12-01

    In near-field imaging with partially coherent x-rays, the phase shifting properties of the sample are encoded in the diffraction fringes that appear as an additional intensity modulation in the x-ray projection images. These Fresnel fringes are often regarded as purely an enhancement of the visibility at the interfaces. We show that retrieving the phase information contained in these patterns significantly advances the developments in fast micro-tomography. Improving temporal resolution without intensifying radiation damage implies a shortening of the exposure time rather than increasing the photon flux on the sample. Phase retrieval, to a large extent, compensates the consequent photon count moderation in the images, by fully exploiting the stronger refraction effect as compared with absorption. Two single-distance phase retrieval methods are evaluated for the case of an in situ 3 Hz micro-tomography of a rapidly evolving liquid foam, and an in vivo 6 Hz micro-tomography of a blowfly. A new dual-detector setup is introduced for simultaneous acquisition of two near-field diffraction patterns. Our goal is to couple high temporal, spatial and density resolution in a single imaging system in a dose-efficient manner, opening further options for dynamic four-dimensional studies.

  10. Buckling failure of square ice-nanotube arrays constrained in graphene nanocapillaries.

    PubMed

    Zhu, YinBo; Wang, FengChao; Wu, HengAn

    2016-08-07

    Graphene confinement provides a new physical and mechanical environment with ultrahigh van der Waals pressure, resulting in new quasi-two-dimensional phases of few-layer ice. Polymorphic transition can occur in bilayer constrained water/ice system. Here, we perform a comprehensive study of the phase transition of AA-stacked bilayer water constrained within a graphene nanocapillary. The compression-limit and superheating-limit (phase) diagrams are obtained, based on the extensive molecular-dynamics simulations at numerous thermodynamic states. Liquid-to-solid, solid-to-solid, and solid-to-liquid-to-solid phase transitions are observed in the compression and superheating of bilayer water. Interestingly, there is a temperature threshold (∼275 K) in the compression-limit diagram, which indicates that the first-order and continuous-like phase transitions of bilayer water depend on the temperature. Two obviously different physical processes, compression and superheating, display similar structural evolution; that is, square ice-nanotube arrays (BL-VHDI) will bend first and then transform into bilayer triangular AA stacking ice (BL-AAI). The superheating limit of BL-VHDI exhibits local maxima, while that of BL-AAI increases monotonically. More importantly, from a mechanics point of view, we propose a novel mechanism of the transformation from BL-VHDI to BL-AAI, both for the compression and superheating limits. This structural transformation can be regarded as the "buckling failure" of the square-ice-nanotube columns, which is dominated by the lateral pressure.

  11. Subsampling phase retrieval for rapid thermal measurements of heated microstructures.

    PubMed

    Taylor, Lucas N; Talghader, Joseph J

    2016-07-15

    A subsampling technique for real-time phase retrieval of high-speed thermal signals is demonstrated with heated metal lines such as those found in microelectronic interconnects. The thermal signals were produced by applying a current through aluminum resistors deposited on soda-lime-silica glass, and the resulting refractive index changes were measured using a Mach-Zehnder interferometer with a microscope objective and high-speed camera. The temperatures of the resistors were measured both by the phase-retrieval method and by monitoring the resistance of the aluminum lines. The method used to analyze the phase is at least 60× faster than the state of the art but it maintains a small spatial phase noise of 16 nm, remaining comparable to the state of the art. For slowly varying signals, the system is able to perform absolute phase measurements over time, distinguishing temperature changes as small as 2 K. With angular scanning or structured illumination improvements, the system could also perform fast thermal tomography.

  12. 2D and 3D X-ray phase retrieval of multi-material objects using a single defocus distance.

    PubMed

    Beltran, M A; Paganin, D M; Uesugi, K; Kitchen, M J

    2010-03-29

    A method of tomographic phase retrieval is developed for multi-material objects whose components each has a distinct complex refractive index. The phase-retrieval algorithm, based on the Transport-of-Intensity equation, utilizes propagation-based X-ray phase contrast images acquired at a single defocus distance for each tomographic projection. The method requires a priori knowledge of the complex refractive index for each material present in the sample, together with the total projected thickness of the object at each orientation. The requirement of only a single defocus distance per projection simplifies the experimental setup and imposes no additional dose compared to conventional tomography. The algorithm was implemented using phase contrast data acquired at the SPring-8 Synchrotron facility in Japan. The three-dimensional (3D) complex refractive index distribution of a multi-material test object was quantitatively reconstructed using a single X-ray phase-contrast image per projection. The technique is robust in the presence of noise, compared to conventional absorption based tomography.

  13. Web image retrieval using an effective topic and content-based technique

    NASA Astrophysics Data System (ADS)

    Lee, Ching-Cheng; Prabhakara, Rashmi

    2005-03-01

    There has been an exponential growth in the amount of image data that is available on the World Wide Web since the early development of Internet. With such a large amount of information and image available and its usefulness, an effective image retrieval system is thus greatly needed. In this paper, we present an effective approach with both image matching and indexing techniques that improvise on existing integrated image retrieval methods. This technique follows a two-phase approach, integrating query by topic and query by example specification methods. In the first phase, The topic-based image retrieval is performed by using an improved text information retrieval (IR) technique that makes use of the structured format of HTML documents. This technique consists of a focused crawler that not only provides for the user to enter the keyword for the topic-based search but also, the scope in which the user wants to find the images. In the second phase, we use query by example specification to perform a low-level content-based image match in order to retrieve smaller and relatively closer results of the example image. From this, information related to the image feature is automatically extracted from the query image. The main objective of our approach is to develop a functional image search and indexing technique and to demonstrate that better retrieval results can be achieved.

  14. Anisotropic phases of superfluid ^{3}he in compressed aerogel.

    PubMed

    Li, J I A; Zimmerman, A M; Pollanen, J; Collett, C A; Halperin, W P

    2015-03-13

    It has been shown that the relative stabilities of various superfluid states of ^{3}He can be influenced by anisotropy in a silica aerogel framework. We prepared a suite of aerogel samples compressed up to 30% for which we performed pulsed NMR on ^{3}He imbibed within the aerogel. We identified A and B phases and determined their magnetic field-temperature phase diagrams as a function of strain. From these results, we infer that the B phase is distorted by negative strain forming an anisotropic superfluid state more stable than the A phase.

  15. Santa Ana Winds Over Los Angeles

    NASA Image and Video Library

    2003-01-08

    High-resolution ocean surface wind data from NASA's Quick Scatterometer (QuikScat) illustrate the strength of Santa Ana winds that pounded Southern California this week, causing damage and spreading brush fires. The colored arrows represent various ranges of wind speed, which were still well in excess of 30 knots (34 miles per hour), even after reaching the ocean and weakening. Santa Ana winds are offshore and down-slope winds unique to Southern California that are usually channeled through mountain gaps. These Santa Ana winds extend more than 500 kilometers (310 miles) offshore before changing direction to flow along the shore. The wind speeds and directions are retrieved from range-compressed backscatter data measured by QuikScat that has much higher spatial resolution than QuikScat's standard data products. Useful applications of high-resolution science-quality wind products derived from range-compressed backscatter have been demonstrated in two scientific papers: one on Hurricane Floyd and the other on Catalina Eddies. This is the first demonstration on near-real-time retrieval applications. http://photojournal.jpl.nasa.gov/catalog/PIA03892

  16. Reactive Material Structures

    DTIC Science & Technology

    2014-03-31

    dissimilar materials ( steel end fixtures and RMS). 2.6.4 Compression Tests To prevent the ends of the specimens from mushrooming during compression ...RMS cylinder. The compression test was modeled in ANSYS by applying a fixed displacement in the axial direction. The first ply to exceed the...four phases of loading: 1) a compressive acceleration during gun launch, 2) a tensile unloading on exit from the barrel , 3) a compressive decelera

  17. Single-intensity-recording optical encryption technique based on phase retrieval algorithm and QR code

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-peng; Zhang, Shuai; Liu, Hong-zhao; Qin, Yi

    2014-12-01

    Based on phase retrieval algorithm and QR code, a new optical encryption technology that only needs to record one intensity distribution is proposed. In this encryption process, firstly, the QR code is generated from the information to be encrypted; and then the generated QR code is placed in the input plane of 4-f system to have a double random phase encryption. For only one intensity distribution in the output plane is recorded as the ciphertext, the encryption process is greatly simplified. In the decryption process, the corresponding QR code is retrieved using phase retrieval algorithm. A priori information about QR code is used as support constraint in the input plane, which helps solve the stagnation problem. The original information can be recovered without distortion by scanning the QR code. The encryption process can be implemented either optically or digitally, and the decryption process uses digital method. In addition, the security of the proposed optical encryption technology is analyzed. Theoretical analysis and computer simulations show that this optical encryption system is invulnerable to various attacks, and suitable for harsh transmission conditions.

  18. Novel Fourier-domain constraint for fast phase retrieval in coherent diffraction imaging.

    PubMed

    Latychevskaia, Tatiana; Longchamp, Jean-Nicolas; Fink, Hans-Werner

    2011-09-26

    Coherent diffraction imaging (CDI) for visualizing objects at atomic resolution has been realized as a promising tool for imaging single molecules. Drawbacks of CDI are associated with the difficulty of the numerical phase retrieval from experimental diffraction patterns; a fact which stimulated search for better numerical methods and alternative experimental techniques. Common phase retrieval methods are based on iterative procedures which propagate the complex-valued wave between object and detector plane. Constraints in both, the object and the detector plane are applied. While the constraint in the detector plane employed in most phase retrieval methods requires the amplitude of the complex wave to be equal to the squared root of the measured intensity, we propose a novel Fourier-domain constraint, based on an analogy to holography. Our method allows achieving a low-resolution reconstruction already in the first step followed by a high-resolution reconstruction after further steps. In comparison to conventional schemes this Fourier-domain constraint results in a fast and reliable convergence of the iterative reconstruction process. © 2011 Optical Society of America

  19. Giant electric-field-induced strain in lead-free piezoelectric materials

    PubMed Central

    Chen, Lan; Yang, Yurong; Meng, X. K.

    2016-01-01

    First-principles calculations are performed to investigate the structures, electrical, and magnetic properties of compressive BiFeO3 films under electric-field and pressure perpendicular to the films. A reversible electric-field-induced strain up 10% is achieved in the compressive BiFeO3 films. The giant strain originates from rhombohedral-tetragonal (R-T) phase transition under electric-filed, and is recoverable from tetragonal-rhombohedral (T-R) phase transition by compressive stress. Additionally, the weak ferromagnetism in BiFeO3 films is largely changed in R-T phase transition under electric-filed and T-R phase transition under pressure – reminiscent of magnetoelectric effect and magnetoelastic effect. These results suggest exciting device opportunities arising from the giant filed-induced strain, large magnetoelectric effect and magnetoelastic effect. PMID:27139526

  20. Characterizing inner-shell with spectral phase interferometry for direct electric-field reconstruction

    PubMed Central

    Mashiko, Hiroki; Yamaguchi, Tomohiko; Oguri, Katsuya; Suda, Akira; Gotoh, Hideki

    2014-01-01

    In many atomic, molecular and solid systems, Lorentzian and Fano profiles are commonly observed in a broad research fields throughout a variety of spectroscopies. As the profile structure is related to the phase of the time-dependent dipole moment, it plays an important role in the study of quantum properties. Here we determine the dipole phase in the inner-shell transition using spectral phase interferometry for direct electric-field reconstruction (SPIDER) with isolated attosecond pulses (IAPs). In addition, we propose a scheme for pulse generation and compression by manipulating the inner-shell transition. The electromagnetic radiation generated by the transition is temporally compressed to a few femtoseconds in the extreme ultraviolet (XUV) region. The proposed pulse-compression scheme may provide an alternative route to producing attosecond pulses of light. PMID:25510971

  1. Changes in the modulation of brain activity during context encoding vs. context retrieval across the adult lifespan.

    PubMed

    Ankudowich, E; Pasvanis, S; Rajah, M N

    2016-10-01

    Age-related deficits in context memory may arise from neural changes underlying both encoding and retrieval of context information. Although age-related functional changes in the brain regions supporting context memory begin at midlife, little is known about the functional changes with age that support context memory encoding and retrieval across the adult lifespan. We investigated how age-related functional changes support context memory across the adult lifespan by assessing linear changes with age during successful context encoding and retrieval. Using functional magnetic resonance imaging (fMRI), we compared young, middle-aged and older adults during both encoding and retrieval of spatial and temporal details of faces. Multivariate behavioral partial least squares (B-PLS) analysis of fMRI data identified a pattern of whole-brain activity that correlated with a linear age term and a pattern of whole-brain activity that was associated with an age-by-memory phase (encoding vs. retrieval) interaction. Further investigation of this latter effect identified three main findings: 1) reduced phase-related modulation in bilateral fusiform gyrus, left superior/anterior frontal gyrus and right inferior frontal gyrus that started at midlife and continued to older age, 2) reduced phase-related modulation in bilateral inferior parietal lobule that occurred only in older age, and 3) changes in phase-related modulation in older but not younger adults in left middle frontal gyrus and bilateral parahippocampal gyrus that was indicative of age-related over-recruitment. We conclude that age-related reductions in context memory arise in midlife and are related to changes in perceptual recollection and changes in fronto-parietal retrieval monitoring. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  2. Phase imaging using shifted wavefront sensor images.

    PubMed

    Zhang, Zhengyun; Chen, Zhi; Rehman, Shakil; Barbastathis, George

    2014-11-01

    We propose a new approach to the complete retrieval of a coherent field (amplitude and phase) using the same hardware configuration as a Shack-Hartmann sensor but with two modifications: first, we add a transversally shifted measurement to resolve ambiguities in the measured phase; and second, we employ factored form descent (FFD), an inverse algorithm for coherence retrieval, with a hard rank constraint. We verified the proposed approach using both numerical simulations and experiments.

  3. Rotary internal combustion engine with integrated supercharged fuel-air induction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Southard, A.A.

    This patent describes an improved method of operating a rotary internal combustion engine of the type wherein a multicusped rotor rotatable upon a rotatable eccentric rotates within a cavity bounded by a wall of lobed trochoidal configuration. The rotor cusps have sealing engagement separating and defining operating chambers in the cavity about the rotor between adjacent pairs of cusps. Such chambers are angularly spaced about and orbit the center of the cavity as the rotor rotates while each chamber alternately expands and contracts in volume. The method comprises cylindrically operating each chamber through a sequence of six phases that aremore » synchronized with three successive increases and decreases in the volume of such chamber, with the first four phases being an internal combustion engine power cycle comprising an air intake phase, a compression phase, a combustion phase and an exhaust phase. The fifth phase comprises inducting air into the chamber, and the sixth phase comprises compressing the inducted air in such chamber and passing such inducted and compressed air through an elongated transfer zone.« less

  4. Broadband CARS spectral phase retrieval using a time-domain Kramers–Kronig transform

    PubMed Central

    Liu, Yuexin; Lee, Young Jong; Cicerone, Marcus T.

    2014-01-01

    We describe a closed-form approach for performing a Kramers–Kronig (KK) transform that can be used to rapidly and reliably retrieve the phase, and thus the resonant imaginary component, from a broadband coherent anti-Stokes Raman scattering (CARS) spectrum with a nonflat background. In this approach we transform the frequency-domain data to the time domain, perform an operation that ensures a causality criterion is met, then transform back to the frequency domain. The fact that this method handles causality in the time domain allows us to conveniently account for spectrally varying nonresonant background from CARS as a response function with a finite rise time. A phase error accompanies KK transform of data with finite frequency range. In examples shown here, that phase error leads to small (<1%) errors in the retrieved resonant spectra. PMID:19412273

  5. 3D-shape of objects with straight line-motion by simultaneous projection of color coded patterns

    NASA Astrophysics Data System (ADS)

    Flores, Jorge L.; Ayubi, Gaston A.; Di Martino, J. Matías; Castillo, Oscar E.; Ferrari, Jose A.

    2018-05-01

    In this work, we propose a novel technique to retrieve the 3D shape of dynamic objects by the simultaneous projection of a fringe pattern and a homogeneous light pattern which are both coded in two of the color channels of a RGB image. The fringe pattern, red channel, is used to retrieve the phase by phase-shift algorithms with arbitrary phase-step, while the homogeneous pattern, blue channel, is used to match pixels from the test object in consecutive images, which are acquired at different positions, and thus, to determine the speed of the object. The proposed method successfully overcomes the standard requirement of projecting fringes of two different frequencies; one frequency to extract object information and the other one to retrieve the phase. Validation experiments are presented.

  6. Frequency and causes of failed MODIS cloud property retrievals for liquid phase clouds over global oceans.

    PubMed

    Cho, Hyoun-Myoung; Zhang, Zhibo; Meyer, Kerry; Lebsock, Matthew; Platnick, Steven; Ackerman, Andrew S; Di Girolamo, Larry; C-Labonnote, Laurent; Cornet, Céline; Riedi, Jerome; Holz, Robert E

    2015-05-16

    Moderate Resolution Imaging Spectroradiometer (MODIS) retrieves cloud droplet effective radius ( r e ) and optical thickness ( τ ) by projecting observed cloud reflectances onto a precomputed look-up table (LUT). When observations fall outside of the LUT, the retrieval is considered "failed" because no combination of τ and r e within the LUT can explain the observed cloud reflectances. In this study, the frequency and potential causes of failed MODIS retrievals for marine liquid phase (MLP) clouds are analyzed based on 1 year of Aqua MODIS Collection 6 products and collocated CALIOP and CloudSat observations. The retrieval based on the 0.86 µm and 2.1 µm MODIS channel combination has an overall failure rate of about 16% (10% for the 0.86 µm and 3.7 µm combination). The failure rates are lower over stratocumulus regimes and higher over the broken trade wind cumulus regimes. The leading type of failure is the " r e too large" failure accounting for 60%-85% of all failed retrievals. The rest is mostly due to the " r e too small" or τ retrieval failures. Enhanced retrieval failure rates are found when MLP cloud pixels are partially cloudy or have high subpixel inhomogeneity, are located at special Sun-satellite viewing geometries such as sunglint, large viewing or solar zenith angles, or cloudbow and glory angles, or are subject to cloud masking, cloud overlapping, and/or cloud phase retrieval issues. The majority (more than 84%) of failed retrievals along the CALIPSO track can be attributed to at least one or more of these potential reasons. The collocated CloudSat radar reflectivity observations reveal that the remaining failed retrievals are often precipitating. It remains an open question whether the extremely large r e values observed in these clouds are the consequence of true cloud microphysics or still due to artifacts not included in this study.

  7. Frequency and causes of failed MODIS cloud property retrievals for liquid phase clouds over global oceans

    PubMed Central

    Cho, Hyoun‐Myoung; Meyer, Kerry; Lebsock, Matthew; Platnick, Steven; Ackerman, Andrew S.; Di Girolamo, Larry; C.‐Labonnote, Laurent; Cornet, Céline; Riedi, Jerome; Holz, Robert E.

    2015-01-01

    Abstract Moderate Resolution Imaging Spectroradiometer (MODIS) retrieves cloud droplet effective radius (r e) and optical thickness (τ) by projecting observed cloud reflectances onto a precomputed look‐up table (LUT). When observations fall outside of the LUT, the retrieval is considered “failed” because no combination of τ and r e within the LUT can explain the observed cloud reflectances. In this study, the frequency and potential causes of failed MODIS retrievals for marine liquid phase (MLP) clouds are analyzed based on 1 year of Aqua MODIS Collection 6 products and collocated CALIOP and CloudSat observations. The retrieval based on the 0.86 µm and 2.1 µm MODIS channel combination has an overall failure rate of about 16% (10% for the 0.86 µm and 3.7 µm combination). The failure rates are lower over stratocumulus regimes and higher over the broken trade wind cumulus regimes. The leading type of failure is the “r e too large” failure accounting for 60%–85% of all failed retrievals. The rest is mostly due to the “r e too small” or τ retrieval failures. Enhanced retrieval failure rates are found when MLP cloud pixels are partially cloudy or have high subpixel inhomogeneity, are located at special Sun‐satellite viewing geometries such as sunglint, large viewing or solar zenith angles, or cloudbow and glory angles, or are subject to cloud masking, cloud overlapping, and/or cloud phase retrieval issues. The majority (more than 84%) of failed retrievals along the CALIPSO track can be attributed to at least one or more of these potential reasons. The collocated CloudSat radar reflectivity observations reveal that the remaining failed retrievals are often precipitating. It remains an open question whether the extremely large r e values observed in these clouds are the consequence of true cloud microphysics or still due to artifacts not included in this study. PMID:27656330

  8. A new technique in reference based DNA sequence compression algorithm: Enabling partial decompression

    NASA Astrophysics Data System (ADS)

    Banerjee, Kakoli; Prasad, R. A.

    2014-10-01

    The whole gamut of Genetic data is ever increasing exponentially. The human genome in its base format occupies almost thirty terabyte of data and doubling its size every two and a half year. It is well-know that computational resources are limited. The most important resource which genetic data requires in its collection, storage and retrieval is its storage space. Storage is limited. Computational performance is also dependent on storage and execution time. Transmission capabilities are also directly dependent on the size of the data. Hence Data compression techniques become an issue of utmost importance when we confront with the task of handling such giganticdatabases like GenBank. Decompression is also an issue when such huge databases are being handled. This paper is intended not only to provide genetic data compression but also partially decompress the genetic sequences.

  9. Experimental determination of pore shapes using phase retrieval from q -space NMR diffraction

    NASA Astrophysics Data System (ADS)

    Demberg, Kerstin; Laun, Frederik Bernd; Bertleff, Marco; Bachert, Peter; Kuder, Tristan Anselm

    2018-05-01

    This paper presents an approach to solving the phase problem in nuclear magnetic resonance (NMR) diffusion pore imaging, a method that allows imaging the shape of arbitrary closed pores filled with an NMR-detectable medium for investigation of the microstructure of biological tissue and porous materials. Classical q -space imaging composed of two short diffusion-encoding gradient pulses yields, analogously to diffraction experiments, the modulus squared of the Fourier transform of the pore image which entails an inversion problem: An unambiguous reconstruction of the pore image requires both magnitude and phase. Here the phase information is recovered from the Fourier modulus by applying a phase retrieval algorithm. This allows omitting experimentally challenging phase measurements using specialized temporal gradient profiles. A combination of the hybrid input-output algorithm and the error reduction algorithm was used with dynamically adapting support (shrinkwrap extension). No a priori knowledge on the pore shape was fed to the algorithm except for a finite pore extent. The phase retrieval approach proved successful for simulated data with and without noise and was validated in phantom experiments with well-defined pores using hyperpolarized xenon gas.

  10. Experimental determination of pore shapes using phase retrieval from q-space NMR diffraction.

    PubMed

    Demberg, Kerstin; Laun, Frederik Bernd; Bertleff, Marco; Bachert, Peter; Kuder, Tristan Anselm

    2018-05-01

    This paper presents an approach to solving the phase problem in nuclear magnetic resonance (NMR) diffusion pore imaging, a method that allows imaging the shape of arbitrary closed pores filled with an NMR-detectable medium for investigation of the microstructure of biological tissue and porous materials. Classical q-space imaging composed of two short diffusion-encoding gradient pulses yields, analogously to diffraction experiments, the modulus squared of the Fourier transform of the pore image which entails an inversion problem: An unambiguous reconstruction of the pore image requires both magnitude and phase. Here the phase information is recovered from the Fourier modulus by applying a phase retrieval algorithm. This allows omitting experimentally challenging phase measurements using specialized temporal gradient profiles. A combination of the hybrid input-output algorithm and the error reduction algorithm was used with dynamically adapting support (shrinkwrap extension). No a priori knowledge on the pore shape was fed to the algorithm except for a finite pore extent. The phase retrieval approach proved successful for simulated data with and without noise and was validated in phantom experiments with well-defined pores using hyperpolarized xenon gas.

  11. Two-stage Raman compression of laser pulses with controllable phase fronts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balakin, A. A.; Fraiman, G. M.; State University of Nizhny Novgorod, Nizhny Novgorod

    2015-05-15

    The phase front of an ultrashort laser pulse undergoing Raman amplification and compression in inhomogeneous plasma can be controlled such that it is unaffected by density gradients and thus remains focusable. This is achieved by performing the Raman backscattering in two stages. At the first stage, the standard nonlinear Raman compression of a seed wave takes place and produces a short ultraintense pulse, which yet may be poorly focusable. At the second stage, this amplified pulse is scattered again, now serving as a pump, off a second copy of the initial seed. This stage, which utilizes a denser and shortermore » plasma, is intended not for compression but rather for passing a significant fraction of the energy to the second seed quickly. Then, the output pulse that is produced is not just short and ultraintense, but also has the smooth phase front of the original seed.« less

  12. Phase retrieval by constrained power inflation and signum flipping

    NASA Astrophysics Data System (ADS)

    Laganà, A. R.; Morabito, A. F.; Isernia, T.

    2016-12-01

    In this paper we consider the problem of retrieving a signal from the modulus of its Fourier transform (or other suitable transformations) and some additional information, which is also known as "Phase Retrieval" problem. The problem arises in many areas of applied Sciences such as optics, electron microscopy, antennas, and crystallography. In particular, we introduce a new approach, based on power inflation and tunneling, allowing an increased robustness with respect to the possible occurrence of false solutions. Preliminary results are presented for the simple yet relevant case of one-dimensional arrays and noisy data.

  13. Phase retrieval based wavefront sensing experimental implementation and wavefront sensing accuracy calibration

    NASA Astrophysics Data System (ADS)

    Mao, Heng; Wang, Xiao; Zhao, Dazun

    2009-05-01

    As a wavefront sensing (WFS) tool, Baseline algorithm, which is classified as the iterative-transform algorithm of phase retrieval, estimates the phase distribution at pupil from some known PSFs at defocus planes. By using multiple phase diversities and appropriate phase unwrapping methods, this algorithm can accomplish reliable unique solution and high dynamic phase measurement. In the paper, a Baseline algorithm based wavefront sensing experiment with modification of phase unwrapping has been implemented, and corresponding Graphical User Interfaces (GUI) software has also been given. The adaptability and repeatability of Baseline algorithm have been validated in experiments. Moreover, referring to the ZYGO interferometric results, the WFS accuracy of this algorithm has been exactly calibrated.

  14. Robust phase recovery in temporal speckle pattern interferometry using a 3D directional wavelet transform.

    PubMed

    Federico, Alejandro; Kaufmann, Guillermo H

    2009-08-01

    We propose an approach based on a 3D directional wavelet transform to retrieve optical phase distributions in temporal speckle pattern interferometry. We show that this approach can effectively recover phase distributions in time series of speckle interferograms that are affected by sets of adjacent nonmodulated pixels. The performance of this phase retrieval approach is analyzed by introducing a temporal carrier in the out-of-plane interferometer setup and assuming modulation loss and noise effects. The advantages and limitations of this approach are finally discussed.

  15. Retrieval-Induced vs. Context-Induced Forgetting: Does Retrieval-Induced Forgetting Depend on Context Shifts?

    PubMed Central

    Soares, Julia S.; Polack, Cody W.; Miller, Ralph R.

    2015-01-01

    Retrieval-induced forgetting (RIF) is the observation that retrieval of target information causes forgetting of related non-target information. A number of accounts of this phenomenon have been proposed, including a context-shift based account (Jonker, Seli, & Macleod, 2013). This account proposes that RIF occurs due to the context shift from study to retrieval practice, provided there is little context shift between retrieval practice and test phases. We tested both claims put forth by this context account. In Experiment 1, we degraded the context shift between study and retrieval practice by implementing a generative study condition that was highly similar to retrieval practice. We observed no degradation of RIF for these generated exemplars relative to a conventional study control. In Experiment 2, we conceptually replicated the finding of RIF following generative study, and tested whether context differences between each of the three phases affected the size of RIF. Our findings were again contrary to the predictions of the context account. Conjointly, the two experiments refute arguments about the potential inadequacy of our context shifts that could be used to explain either result alone. Overall, our results are most consistent with an inhibitory account of RIF (e.g., Anderson, 2003). PMID:26389628

  16. Ground-based remote sensing of thin clouds in the Arctic

    NASA Astrophysics Data System (ADS)

    Garrett, T. J.; Zhao, C.

    2012-11-01

    This paper describes a method for using interferometer measurements of downwelling thermal radiation to retrieve the properties of single-layer clouds. Cloud phase is determined from ratios of thermal emission in three "micro-windows" where absorption by water vapor is particularly small. Cloud microphysical and optical properties are retrieved from thermal emission in two micro-windows, constrained by the transmission through clouds of stratospheric ozone emission. Assuming a cloud does not approximate a blackbody, the estimated 95% confidence retrieval errors in effective radius, visible optical depth, number concentration, and water path are, respectively, 10%, 20%, 38% (55% for ice crystals), and 16%. Applied to data from the Atmospheric Radiation Measurement program (ARM) North Slope of Alaska - Adjacent Arctic Ocean (NSA-AAO) site near Barrow, Alaska, retrievals show general agreement with ground-based microwave radiometer measurements of liquid water path. Compared to other retrieval methods, advantages of this technique include its ability to characterize thin clouds year round, that water vapor is not a primary source of retrieval error, and that the retrievals of microphysical properties are only weakly sensitive to retrieved cloud phase. The primary limitation is the inapplicability to thicker clouds that radiate as blackbodies.

  17. Thermodynamics of the relativistic Fermi gas in D dimensions

    NASA Astrophysics Data System (ADS)

    Sevilla, Francisco J.; Piña, Omar

    2017-09-01

    The influence of spatial dimensionality and particle-antiparticle pair production on the thermodynamic properties of the relativistic Fermi gas, at finite chemical potential, is studied. Resembling a "phase transition", qualitatively different behaviors of the thermodynamic susceptibilities, namely the isothermal compressibility and the specific heat, are markedly observed at different temperature regimes as function of the system dimensionality and of the rest mass of the particles. A minimum in the temperature dependence of the isothermal compressibility marks a characteristic temperature, in the range of tenths of the Fermi temperature, at which the system transit from a "normal" phase, to a phase where the gas compressibility grows as a power law of the temperature.

  18. Temperature-dependent phase-specific deformation mechanisms in a directionally solidified NiAl-Cr(Mo) lamellar composite

    DOE PAGES

    Yu, Dunji; An, Ke; Chen, Xu; ...

    2015-10-09

    Phase-specific thermal expansion and mechanical deformation behaviors of a directionally solidified NiAl–Cr(Mo) lamellar in situ composite were investigated by using real-time in situ neutron diffraction during compression at elevated temperatures up to 800 °C. Tensile and compressive thermal residual stresses were found to exist in the NiAl phase and Crss (solid solution) phase, respectively. Then, based on the evolution of lattice spacings and phase stresses, the phase-specific deformation behavior was analyzed qualitatively and quantitatively. Moreover, estimates of phase stresses were derived by Hooke's law on the basis of a simple method for the determination of stress-free lattice spacing in inmore » situ composites. During compressive loading, the NiAl phase yields earlier than the Crss phase. The Crss phase carries much higher stress than the NiAl phase, and displays consistent strain hardening at all temperatures. The NiAl phase exhibits strain hardening at relatively low temperatures and softening at high temperatures. During unloading, the NiAl phase yields in tension whereas the Crss phase unloads elastically. Additionally, post-test microstructural observations show phase-through cracks at room temperature, micro cracks along phase interfaces at 600 °C and intact lamellae kinks at 800 °C, which is due to the increasing deformability of both phases as temperature rises.« less

  19. Density and Adiabatic Compressibility of the Immiscible Molten AgBr+LiCl Mixture

    NASA Astrophysics Data System (ADS)

    Stepanov, Victor P.; Kulik, Nina P.

    2017-04-01

    The adiabatic compressibility, β, of the immiscible liquid mixture 0.52 LiCl+0.48 AgBr (the top of the miscibility gap) was experimentally investigated in the temperature range from the melting point to the critical mixing temperature using the sound velocity values, u, measured by the pulse method, and the density quantities, ρ, which were determined using the hydrostatic weight procedure based on the relationship β=u- 2ρ- 1. It is shown that the coefficients of the temperature dependencies for the compressibility and density of the upper and lower equilibrium phases have opposite signs because of the superposition of the intensity of the thermal motion of the ions and the change in the composition of the phases. The differences, ∆β and ∆ρ, in the magnitudes of the compressibility and density for the equilibrium phases decrease with temperature elevation. The temperature dependencies of the compressibility and density difference are described using the empirical equations ∆β≈(Tc-T)0.438 and ∆ρ≈(Tc-T)0.439.

  20. Waveform Retrieval and Phase Identification for Seismic Data from the CASS Experiment

    NASA Astrophysics Data System (ADS)

    Li, Zhiwei; You, Qingyu; Ni, Sidao; Hao, Tianyao; Wang, Hongti; Zhuang, Cantao

    2013-05-01

    The little destruction to the deployment site and high repeatability of the Controlled Accurate Seismic Source (CASS) shows its potential for investigating seismic wave velocities in the Earth's crust. However, the difficulty in retrieving impulsive seismic waveforms from the CASS data and identifying the seismic phases substantially prevents its wide applications. For example, identification of the seismic phases and accurate measurement of travel times are essential for resolving the spatial distribution of seismic velocities in the crust. Until now, it still remains a challenging task to estimate the accurate travel times of different seismic phases from the CASS data which features extended wave trains, unlike processing of the waveforms from impulsive events such as earthquakes or explosive sources. In this study, we introduce a time-frequency analysis method to process the CASS data, and try to retrieve the seismic waveforms and identify the major seismic phases traveling through the crust. We adopt the Wigner-Ville Distribution (WVD) approach which has been used in signal detection and parameter estimation for linear frequency modulation (LFM) signals, and proves to feature the best time-frequency convergence capability. The Wigner-Hough transform (WHT) is applied to retrieve the impulsive waveforms from multi-component LFM signals, which comprise seismic phases with different arrival times. We processed the seismic data of the 40-ton CASS in the field experiment around the Xinfengjiang reservoir with the WVD and WHT methods. The results demonstrate that these methods are effective in waveform retrieval and phase identification, especially for high frequency seismic phases such as PmP and SmS with strong amplitudes in large epicenter distance of 80-120 km. Further studies are still needed to improve the accuracy on travel time estimation, so as to further promote applicability of the CASS for and imaging the seismic velocity structure.

  1. Phase retrieval of images using Gaussian radial bases.

    PubMed

    Trahan, Russell; Hyland, David

    2013-12-20

    Here, the possibility of a noniterative solution to the phase retrieval problem is explored. A new look is taken at the phase retrieval problem that reveals that knowledge of a diffraction pattern's frequency components is enough to recover the image without projective iterations. This occurs when the image is formed using Gaussian bases that give the convenience of a continuous Fourier transform existing in a compact form where square pixels do not. The Gaussian bases are appropriate when circular apertures are used to detect the diffraction pattern because of their optical transfer functions, as discussed briefly. An algorithm is derived that is capable of recovering an image formed by Gaussian bases from only the Fourier transform's modulus, without background constraints. A practical example is shown.

  2. Enhanced x-ray imaging for a thin film cochlear implant with metal artefacts using phase retrieval tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arhatari, B. D.; ARC Centre of Excellence for Coherent X-ray Science, Melbourne; Harris, A. R.

    Phase retrieval tomography has been successfully used to enhance imaging in systems that exhibit poor absorption contrast. However, when highly absorbing regions are present in a sample, so-called metal artefacts can appear in the tomographic reconstruction. We demonstrate that straightforward approaches for metal artefact reconstruction, developed in absorption contrast tomography, can be applied when using phase retrieval. Using a prototype thin film cochlear implant that has high and low absorption components made from iridium (or platinum) and plastic, respectively, we show that segmentation of the various components is possible and hence measurement of the electrode geometry and relative location tomore » other regions of interest can be achieved.« less

  3. Phase recovery in temporal speckle pattern interferometry using the generalized S-transform.

    PubMed

    Federico, Alejandro; Kaufmann, Guillermo H

    2008-04-15

    We propose a novel approach based on the generalized S-transform to retrieve optical phase distributions in temporal speckle pattern interferometry. The performance of the proposed approach is compared with those given by well-known techniques based on the continuous wavelet, the Hilbert transforms, and a smoothed time-frequency distribution by analyzing interferometric data degraded by noise, nonmodulating pixels, and modulation loss. The advantages and limitations of the proposed phase retrieval approach are discussed.

  4. A protocol for searching the most probable phase-retrieved maps in coherent X-ray diffraction imaging by exploiting the relationship between convergence of the retrieved phase and success of calculation.

    PubMed

    Sekiguchi, Yuki; Hashimoto, Saki; Kobayashi, Amane; Oroguchi, Tomotaka; Nakasako, Masayoshi

    2017-09-01

    Coherent X-ray diffraction imaging (CXDI) is a technique for visualizing the structures of non-crystalline particles with size in the submicrometer to micrometer range in material sciences and biology. In the structural analysis of CXDI, the electron density map of a specimen particle projected along the direction of the incident X-rays can be reconstructed only from the diffraction pattern by using phase-retrieval (PR) algorithms. However, in practice, the reconstruction, relying entirely on the computational procedure, sometimes fails because diffraction patterns miss the data in small-angle regions owing to the beam stop and saturation of the detector pixels, and are modified by Poisson noise in X-ray detection. To date, X-ray free-electron lasers have allowed us to collect a large number of diffraction patterns within a short period of time. Therefore, the reconstruction of correct electron density maps is the bottleneck for efficiently conducting structure analyses of non-crystalline particles. To automatically address the correctness of retrieved electron density maps, a data analysis protocol to extract the most probable electron density maps from a set of maps retrieved from 1000 different random seeds for a single diffraction pattern is proposed. Through monitoring the variations of the phase values during PR calculations, the tendency for the PR calculations to succeed when the retrieved phase sets converged on a certain value was found. On the other hand, if the phase set was in persistent variation, the PR calculation tended to fail to yield the correct electron density map. To quantify this tendency, here a figure of merit for the variation of the phase values during PR calculation is introduced. In addition, a PR protocol to evaluate the similarity between a map of the highest figure of merit and other independently reconstructed maps is proposed. The protocol is implemented and practically examined in the structure analyses for diffraction patterns from aggregates of gold colloidal particles. Furthermore, the feasibility of the protocol in the structure analysis of organelles from biological cells is examined.

  5. Evaluating cloud retrieval algorithms with the ARM BBHRP framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mlawer,E.; Dunn,M.; Mlawer, E.

    2008-03-10

    Climate and weather prediction models require accurate calculations of vertical profiles of radiative heating. Although heating rate calculations cannot be directly validated due to the lack of corresponding observations, surface and top-of-atmosphere measurements can indirectly establish the quality of computed heating rates through validation of the calculated irradiances at the atmospheric boundaries. The ARM Broadband Heating Rate Profile (BBHRP) project, a collaboration of all the working groups in the program, was designed with these heating rate validations as a key objective. Given the large dependence of radiative heating rates on cloud properties, a critical component of BBHRP radiative closure analysesmore » has been the evaluation of cloud microphysical retrieval algorithms. This evaluation is an important step in establishing the necessary confidence in the continuous profiles of computed radiative heating rates produced by BBHRP at the ARM Climate Research Facility (ACRF) sites that are needed for modeling studies. This poster details the continued effort to evaluate cloud property retrieval algorithms within the BBHRP framework, a key focus of the project this year. A requirement for the computation of accurate heating rate profiles is a robust cloud microphysical product that captures the occurrence, height, and phase of clouds above each ACRF site. Various approaches to retrieve the microphysical properties of liquid, ice, and mixed-phase clouds have been processed in BBHRP for the ACRF Southern Great Plains (SGP) and the North Slope of Alaska (NSA) sites. These retrieval methods span a range of assumptions concerning the parameterization of cloud location, particle density, size, shape, and involve different measurement sources. We will present the radiative closure results from several different retrieval approaches for the SGP site, including those from Microbase, the current 'reference' retrieval approach in BBHRP. At the NSA, mixed-phase clouds and cloud with a low optical depth are prevalent; the radiative closure studies using Microbase demonstrated significant residuals. As an alternative to Microbase at NSA, the Shupe-Turner cloud property retrieval algorithm, aimed at improving the partitioning of cloud phase and incorporating more constrained, conditional microphysics retrievals, also has been evaluated using the BBHRP data set.« less

  6. Buckling failure of square ice-nanotube arrays constrained in graphene nanocapillaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, YinBo; Wang, FengChao, E-mail: wangfc@ustc.edu.cn; Wu, HengAn

    Graphene confinement provides a new physical and mechanical environment with ultrahigh van der Waals pressure, resulting in new quasi-two-dimensional phases of few-layer ice. Polymorphic transition can occur in bilayer constrained water/ice system. Here, we perform a comprehensive study of the phase transition of AA-stacked bilayer water constrained within a graphene nanocapillary. The compression-limit and superheating-limit (phase) diagrams are obtained, based on the extensive molecular-dynamics simulations at numerous thermodynamic states. Liquid-to-solid, solid-to-solid, and solid-to-liquid-to-solid phase transitions are observed in the compression and superheating of bilayer water. Interestingly, there is a temperature threshold (∼275 K) in the compression-limit diagram, which indicates thatmore » the first-order and continuous-like phase transitions of bilayer water depend on the temperature. Two obviously different physical processes, compression and superheating, display similar structural evolution; that is, square ice-nanotube arrays (BL-VHDI) will bend first and then transform into bilayer triangular AA stacking ice (BL-AAI). The superheating limit of BL-VHDI exhibits local maxima, while that of BL-AAI increases monotonically. More importantly, from a mechanics point of view, we propose a novel mechanism of the transformation from BL-VHDI to BL-AAI, both for the compression and superheating limits. This structural transformation can be regarded as the “buckling failure” of the square-ice-nanotube columns, which is dominated by the lateral pressure.« less

  7. Information Retrieval and Criticality in Parity-Time-Symmetric Systems.

    PubMed

    Kawabata, Kohei; Ashida, Yuto; Ueda, Masahito

    2017-11-10

    By investigating information flow between a general parity-time (PT-)symmetric non-Hermitian system and an environment, we find that the complete information retrieval from the environment can be achieved in the PT-unbroken phase, whereas no information can be retrieved in the PT-broken phase. The PT-transition point thus marks the reversible-irreversible criticality of information flow, around which many physical quantities such as the recurrence time and the distinguishability between quantum states exhibit power-law behavior. Moreover, by embedding a PT-symmetric system into a larger Hilbert space so that the entire system obeys unitary dynamics, we reveal that behind the information retrieval lies a hidden entangled partner protected by PT symmetry. Possible experimental situations are also discussed.

  8. Improvements to GPS Airborne Radio Occultation in the Lower Troposphere Through Implementation of the Phase Matching Method

    NASA Astrophysics Data System (ADS)

    Wang, K.-N.; Garrison, J. L.; Haase, J. S.; Murphy, B. J.

    2017-10-01

    Airborne radio occultation (ARO) is a remote sensing technique for atmospheric sounding using Global Positioning System signals received by an airborne instrument. The atmospheric refractivity profile, which depends on pressure, temperature, and water vapor, can be retrieved by measuring the signal delay due to the refractive medium through which the signal traverses. The ARO system was developed to make repeated observations within an individual meteorological event such as a tropical storm, regardless of the presence of clouds and precipitation, and complements existing observation techniques such as dropsondes and satellite remote sensing. RO systems can suffer multipath ray propagation in the lower troposphere if there are strong refractivity gradients, for example, due to a highly variable moisture distribution or a sharp boundary layer, interfering with continuous carrier phase tracking as well as complicating retrievals. The phase matching method has now been adapted for ARO and is shown to reduce negative biases in the refractivity retrieval by providing robust retrievals of bending angle in the presence of multipath. The retrieval results are presented for a flight campaign in September 2010 for Hurricane Karl in the Caribbean Sea. The accuracy is assessed through comparison with the European Centre for Medium Range Weather Forecasts Interim Reanalysis. The fractional difference in refractivity can be maintained at a standard deviation of 2% from flight level down to a height of 2 km. The phase matching method decreases the negative refractivity bias by as much as 4% over the classical geometrical optics retrieval method.

  9. Destination Entry And Retrieval With The Ali-Scout Navigation System Fast-Trac Phase Iib Deliverable

    DOT National Transportation Integrated Search

    1996-12-01

    AFTER TRAINING, 36 DRIVERS RETRIEVED AND ENTERED A TOTAL OF 20 DESTINATIONS USING AN ALI-SCOUT NAVIGATION COMPUTER AND 10 DESTINATIONS USING A TOUCHSCREEN SIMULATION WHILE SITTING IN A VEHICLE MOCKUP. RETRIEVAL INVOLVED KEYING IN PART OF THE DESTINAT...

  10. Implementation of a thesaurus in an electronic photograph imaging system

    NASA Astrophysics Data System (ADS)

    Partlow, Denise

    1995-11-01

    A photograph imaging system presents a unique set of requirements for indexing and retrieving images, unlike a standard imaging system for written documents. This paper presents the requirements, technical design, and development results for a hierarchical ANSI standard thesaurus embedded into a photograph archival system. The thesaurus design incorporates storage reduction techniques, permits fast searches, and contains flexible indexing methods. It can be extended to many applications other than the retrieval of photographs. When photographic images are indexed into an electronic system, they are subject to a variety of indexing problems based on what the indexer `sees.' For instance, the indexer may categorize an image as a boat when others might refer to it as a ship, sailboat, or raft. The thesaurus will allow a user to locate images containing any synonym for boat, regardless of how the image was actually indexed. In addition to indexing problems, photos may need to be retrieved based on a broad category, for instance, flowers. The thesaurus allows a search for `flowers' to locate all images containing a rose, hibiscus, or daisy, yet still allow a specific search for an image containing only a rose. The technical design and method of implementation for such a thesaurus is presented. The thesaurus is implemented using an SQL relational data base management system that supports blobs, binary large objects. The design incorporates unique compression methods for storing the thesaurus words. Words are indexed to photographs using the compressed word and allow for very rapid searches, eliminating lengthy string matches.

  11. Automatic Retrieval of Newly Instructed Cue-Task Associations Seen in Task-Conflict Effects in the First Trial after Cue-Task Instructions.

    PubMed

    Meiran, Nachshon; Pereg, Maayan

    2017-01-01

    Novel stimulus-response associations are retrieved automatically even without prior practice. Is this true for novel cue-task associations? The experiment involved miniblocks comprising three phases and task switching. In the INSTRUCTION phase, two new stimuli (or familiar cues) were arbitrarily assigned as cues for up-down/right-left tasks performed on placeholder locations. In the UNIVALENT phase, there was no task cue since placeholder's location afforded one task but the placeholders were the stimuli that we assigned as task cues for the following BIVALENT phase (involving target locations affording both tasks). Thus, participants held the novel cue-task associations in memory while executing the UNIVALENT phase. Results show poorer performance in the first univalent trial when the placeholder was associated with the opposite task (incompatible) than when it was compatible, an effect that was numerically larger with newly instructed cues than with familiar cues. These results indicate automatic retrieval of newly instructed cue-task associations.

  12. Phase retrieval in annulus sector domain by non-iterative methods

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Mao, Heng; Zhao, Da-zun

    2008-03-01

    Phase retrieval could be achieved by solving the intensity transport equation (ITE) under the paraxial approximation. For the case of uniform illumination, Neumann boundary condition is involved and it makes the solving process more complicated. The primary mirror is usually designed segmented in the telescope with large aperture, and the shape of a segmented piece is often like an annulus sector. Accordingly, It is necessary to analyze the phase retrieval in the annulus sector domain. Two non-iterative methods are considered for recovering the phase. The matrix method is based on the decomposition of the solution into a series of orthogonalized polynomials, while the frequency filtering method depends on the inverse computation process of ITE. By the simulation, it is found that both methods can eliminate the effect of Neumann boundary condition, save a lot of computation time and recover the distorted phase well. The wavefront error (WFE) RMS can be less than 0.05 wavelength, even when some noise is added.

  13. Spatial-area selective retrieval of multiple object-place associations in a hierarchical cognitive map formed by theta phase coding.

    PubMed

    Sato, Naoyuki; Yamaguchi, Yoko

    2009-06-01

    The human cognitive map is known to be hierarchically organized consisting of a set of perceptually clustered landmarks. Patient studies have demonstrated that these cognitive maps are maintained by the hippocampus, while the neural dynamics are still poorly understood. The authors have shown that the neural dynamic "theta phase precession" observed in the rodent hippocampus may be capable of forming hierarchical cognitive maps in humans. In the model, a visual input sequence consisting of object and scene features in the central and peripheral visual fields, respectively, results in the formation of a hierarchical cognitive map for object-place associations. Surprisingly, it is possible for such a complex memory structure to be formed in a few seconds. In this paper, we evaluate the memory retrieval of object-place associations in the hierarchical network formed by theta phase precession. The results show that multiple object-place associations can be retrieved with the initial cue of a scene input. Importantly, according to the wide-to-narrow unidirectional connections among scene units, the spatial area for object-place retrieval can be controlled by the spatial area of the initial cue input. These results indicate that the hierarchical cognitive maps have computational advantages on a spatial-area selective retrieval of multiple object-place associations. Theta phase precession dynamics is suggested as a fundamental neural mechanism of the human cognitive map.

  14. Three-dimensional single-cell imaging with X-ray waveguides in the holographic regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krenkel, Martin; Toepperwien, Mareike; Alves, Frauke

    X-ray tomography at the level of single biological cells is possible in a low-dose regime, based on full-field holographic recordings, with phase contrast originating from free-space wave propagation. Building upon recent progress in cellular imaging based on the illumination by quasi-point sources provided by X-ray waveguides, here this approach is extended in several ways. First, the phase-retrieval algorithms are extended by an optimized deterministic inversion, based on a multi-distance recording. Second, different advanced forms of iterative phase retrieval are used, operational for single-distance and multi-distance recordings. Results are compared for several different preparations of macrophage cells, for different staining andmore » labelling. As a result, it is shown that phase retrieval is no longer a bottleneck for holographic imaging of cells, and how advanced schemes can be implemented to cope also with high noise and inconsistencies in the data.« less

  15. Three-dimensional single-cell imaging with X-ray waveguides in the holographic regime

    DOE PAGES

    Krenkel, Martin; Toepperwien, Mareike; Alves, Frauke; ...

    2017-06-29

    X-ray tomography at the level of single biological cells is possible in a low-dose regime, based on full-field holographic recordings, with phase contrast originating from free-space wave propagation. Building upon recent progress in cellular imaging based on the illumination by quasi-point sources provided by X-ray waveguides, here this approach is extended in several ways. First, the phase-retrieval algorithms are extended by an optimized deterministic inversion, based on a multi-distance recording. Second, different advanced forms of iterative phase retrieval are used, operational for single-distance and multi-distance recordings. Results are compared for several different preparations of macrophage cells, for different staining andmore » labelling. As a result, it is shown that phase retrieval is no longer a bottleneck for holographic imaging of cells, and how advanced schemes can be implemented to cope also with high noise and inconsistencies in the data.« less

  16. Multi-event waveform-retrieved distributed optical fiber acoustic sensor using dual-pulse heterodyne phase-sensitive OTDR.

    PubMed

    He, Xiangge; Xie, Shangran; Liu, Fei; Cao, Shan; Gu, Lijuan; Zheng, Xiaoping; Zhang, Min

    2017-02-01

    We demonstrate a novel type of distributed optical fiber acoustic sensor, with the ability to detect and retrieve actual temporal waveforms of multiple vibration events that occur simultaneously at different positions along the fiber. The system is realized via a dual-pulse phase-sensitive optical time-domain reflectometry, and the actual waveform is retrieved by heterodyne phase demodulation. Experimental results show that the system has a background noise level as low as 8.91×10-4  rad/√Hz with a demodulation signal-to-noise ratio of 49.17 dB at 1 kHz, and can achieve a dynamic range of ∼60  dB at 1 kHz (0.1 to 104 rad) for phase demodulation, as well as a detection frequency range from 20 Hz to 25 kHz.

  17. Every factor helps: Rapid Ptychographic Reconstruction

    NASA Astrophysics Data System (ADS)

    Nashed, Youssef

    2015-03-01

    Recent advances in microscopy, specifically higher spatial resolution and data acquisition rates, require faster and more robust phase retrieval reconstruction methods. Ptychography is a phase retrieval technique for reconstructing the complex transmission function of a specimen from a sequence of diffraction patterns in visible light, X-ray, and electron microscopes. As technical advances allow larger fields to be imaged, computational challenges arise for reconstructing the correspondingly larger data volumes. Waiting to postprocess datasets offline results in missed opportunities. Here we present a parallel method for real-time ptychographic phase retrieval. It uses a hybrid parallel strategy to divide the computation between multiple graphics processing units (GPUs). A final specimen reconstruction is then achieved by different techniques to merge sub-dataset results into a single complex phase and amplitude image. Results are shown on a simulated specimen and real datasets from X-ray experiments conducted at a synchrotron light source.

  18. Method for utilizing properties of the sinc(x) function for phase retrieval on nyquist-under-sampled data

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H. (Inventor); Smith, Jeffrey Scott (Inventor); Aronstein, David L. (Inventor)

    2012-01-01

    Disclosed herein are systems, methods, and non-transitory computer-readable storage media for simulating propagation of an electromagnetic field, performing phase retrieval, or sampling a band-limited function. A system practicing the method generates transformed data using a discrete Fourier transform which samples a band-limited function f(x) without interpolating or modifying received data associated with the function f(x), wherein an interval between repeated copies in a periodic extension of the function f(x) obtained from the discrete Fourier transform is associated with a sampling ratio Q, defined as a ratio of a sampling frequency to a band-limited frequency, and wherein Q is assigned a value between 1 and 2 such that substantially no aliasing occurs in the transformed data, and retrieves a phase in the received data based on the transformed data, wherein the phase is used as feedback to an optical system.

  19. Stability of retained austenite in high carbon steel under compressive stress: an investigation from macro to nano scale

    PubMed Central

    Hossain, R.; Pahlevani, F.; Quadir, M. Z.; Sahajwalla, V.

    2016-01-01

    Although high carbon martensitic steels are well known for their industrial utility in high abrasion and extreme operating environments, due to their hardness and strength, the compressive stability of their retained austenite, and the implications for the steels’ performance and potential uses, is not well understood. This article describes the first investigation at both the macro and nano scale of the compressive stability of retained austenite in high carbon martensitic steel. Using a combination of standard compression testing, X-ray diffraction, optical microstructure, electron backscattering diffraction imaging, electron probe micro-analysis, nano-indentation and micro-indentation measurements, we determined the mechanical stability of retained austenite and martensite in high carbon steel under compressive stress and identified the phase transformation mechanism, from the macro to the nano level. We found at the early stage of plastic deformation hexagonal close-packed (HCP) martensite formation dominates, while higher compression loads trigger body-centred tetragonal (BCT) martensite formation. The combination of this phase transformation and strain hardening led to an increase in the hardness of high carbon steel of around 30%. This comprehensive characterisation of stress induced phase transformation could enable the precise control of the microstructures of high carbon martensitic steels, and hence their properties. PMID:27725722

  20. The Strengthening Effect of Ice on Two Extraterrestrial Analogs: A Cautionary Tale

    NASA Astrophysics Data System (ADS)

    Atkinson, J.; Durham, W. B.; Seager, S.

    2016-12-01

    Sample retrieval from extraterrestrial bodies and in situ resource utilization (ISRU) activities have been identified as some of the most important scientific endeavors of the coming decade. With the failure of Rosetta's Philae lander to penetrate the surface of comet 67P and obtain a sample due to the high compressive strength of the surface, it is becoming obvious that knowledge of the mechanical properties of materials that might be encountered in such environments and under such conditions is critical to future mission success. Two comet/asteroid analogs (Indiana limestone and Bishop tuff), selected based on their contrasting mechanical properties and porosities, were tested under constant displacement to failure (in most cases) at low temperatures (295 K to 77 K) and low confining pressures (1 to 5 MPa). The compressive strength of both materials was determined under varied conditions of saturation, from oven-dried ( 0% water content) to fully saturated, and both brittle and ductile behavior was observed. The saturated limestone increased in strength from 30 MPa (at 295 K) to >200 MPa (at 77 K), while the Bishop tuff increased in strength from 13 MPa at 295 K to 165 MPa at 150 K. The results of this study will be useful to future sample retrieval missions or ISRU maneuvers. The large increase in compressive strength of these saturated materials at cryogenic temperatures means that future missions will need to prepare technology that has the energetic and mechanical capability to penetrate very hard substrates as they are likely to encounter.

  1. Using Simulation as an Investigational Methodology to Explore the Impact of Technology on Team Communication and Patient Management: A Pilot Evaluation of the Effect of an Automated Compression Device.

    PubMed

    Gittinger, Matthew; Brolliar, Sarah M; Grand, James A; Nichol, Graham; Fernandez, Rosemarie

    2017-06-01

    This pilot study used a simulation-based platform to evaluate the effect of an automated mechanical chest compression device on team communication and patient management. Four-member emergency department interprofessional teams were randomly assigned to perform manual chest compressions (control, n = 6) or automated chest compressions (intervention, n = 6) during a simulated cardiac arrest with 2 phases: phase 1 baseline (ventricular tachycardia), followed by phase 2 (ventricular fibrillation). Patient management was coded using an Advanced Cardiovascular Life Support-based checklist. Team communication was categorized in the following 4 areas: (1) teamwork focus; (2) huddle events, defined as statements focused on re-establishing situation awareness, reinforcing existing plans, and assessing the need to adjust the plan; (3) clinical focus; and (4) profession of team member. Statements were aggregated for each team. At baseline, groups were similar with respect to total communication statements and patient management. During cardiac arrest, the total number of communication statements was greater in teams performing manual compressions (median, 152.3; interquartile range [IQR], 127.6-181.0) as compared with teams using an automated compression device (median, 105; IQR, 99.5-123.9). Huddle events were more frequent in teams performing automated chest compressions (median, 4.0; IQR, 3.1-4.3 vs. 2.0; IQR, 1.4-2.6). Teams randomized to the automated compression intervention had a delay to initial defibrillation (median, 208.3 seconds; IQR, 153.3-222.1 seconds) as compared with control teams (median, 63.2 seconds; IQR, 30.1-397.2 seconds). Use of an automated compression device may impact both team communication and patient management. Simulation-based assessments offer important insights into the effect of technology on healthcare teams.

  2. Phase Retrieval from Modulus Using Homeomorphic Signal Processing and the Complex Cepstrum: An Algorithm for Lightning Protection Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, G A

    2004-06-08

    In general, the Phase Retrieval from Modulus problem is very difficult. In this report, we solve the difficult, but somewhat more tractable case in which we constrain the solution to a minimum phase reconstruction. We exploit the real-and imaginary part sufficiency properties of the Fourier and Hilbert Transforms of causal sequences to develop an algorithm for reconstructing spectral phase given only spectral modulus. The algorithm uses homeomorphic signal processing methods with the complex cepstrum. The formal problem of interest is: Given measurements of only the modulus {vert_bar}H(k){vert_bar} (no phase) of the Discrete Fourier Transform (DFT) of a real, finite-length, stable,more » causal time domain signal h(n), compute a minimum phase reconstruction {cflx h}(n) of the signal. Then compute the phase of {cflx h}(n) using a DFT, and exploit the result as an estimate of the phase of h(n). The development of the algorithm is quite involved, but the final algorithm and its implementation are very simple. This work was motivated by a Phase Retrieval from Modulus Problem that arose in LLNL Defense Sciences Engineering Division (DSED) projects in lightning protection for buildings. The measurements are limited to modulus-only spectra from a spectrum analyzer. However, it is desired to perform system identification on the building to compute impulse responses and transfer functions that describe the amount of lightning energy that will be transferred from the outside of the building to the inside. This calculation requires knowledge of the entire signals (both modulus and phase). The algorithm and software described in this report are proposed as an approach to phase retrieval that can be used for programmatic needs. This report presents a brief tutorial description of the mathematical problem and the derivation of the phase retrieval algorithm. The efficacy of the theory is demonstrated using simulated signals that meet the assumptions of the algorithm. We see that for the noiseless case, the reconstructions are extremely accurate. When moderate to heavy simulated white Gaussian noise was added, the algorithm performance remained reasonably robust, especially in the low frequency part of the spectrum, which is the part of most interest for lightning protection. Limitations of the algorithm include the following: (1) It does not account for noise in the given spectral modulus. Fortunately, the lightning protection signals of interest generally have a reasonably high signal-to-noise ratio (SNR). (2) The DFT length N must be even and larger than the length of the nonzero part of the measured signals. These constraints are simple to meet in practice. (3) Regardless of the properties of the actual signal h(n), the phase retrieval results are constrained to have the minimum phase property. In most problems of practical interest, these assumptions are very reasonable and probably valid. They are reasonable assumptions for Lightning Protection applications. Proposed future work includes (a) Evaluating the efficacy of the algorithm with real Lightning Protection signals from programmatic applications, (b) Performing a more rigorous analysis of noise effects, (c) Using the algorithm along with advanced system identification algorithms to estimate impulse responses and transfer functions, (d) Developing algorithms to deal with measured partial (truncated) spectral moduli, and (e) R & D of phase retrieval algorithms that specifically deal with general (not necessarily minimum phase) signals, and noisy spectral moduli.« less

  3. Phase retrieval in generalized optical interferometry systems.

    PubMed

    Farriss, Wesley E; Fienup, James R; Malhotra, Tanya; Vamivakas, A Nick

    2018-02-05

    Modal analysis of an optical field via generalized interferometry (GI) is a novel technique that treats said field as a linear superposition of transverse modes and recovers the amplitudes of modal weighting coefficients. We use phase retrieval by nonlinear optimization to recover the phase of these modal weighting coefficients. Information diversity increases the robustness of the algorithm by better constraining the solution. Additionally, multiple sets of random starting phase values assist the algorithm in overcoming local minima. The algorithm was able to recover nearly all coefficient phases for simulated fields consisting of up to 21 superpositioned Hermite Gaussian modes from simulated data and proved to be resilient to shot noise.

  4. Atomic resolved phase map of monolayer MoS2 retrieved by spherical aberration-corrected transport of intensity equation.

    PubMed

    Zhang, Xiaobin; Oshima, Yoshifumi

    2016-10-01

    An atomic resolution phase map, which enables us to observe charge distribution or magnetic properties at an atomic scale, has been pointed out to be retrieved by transport of intensity equation (TIE) when taking two atomic-resolved transmission electron microscope (TEM) images of small defocus difference. In this work, we firstly obtained the atomic-resolved phase maps of an exfoliated molybdenum disulfide sheet using spherical aberration-corrected transmission electron microscope. We successfully observed 60° grain boundary of mechanically exfoliated monolayer molybdenum disulfide sheet. The relative phase shift of a single molybdenum atomic column to the column consisting of two sulfur atoms was obtained to be about 0.01 rad on average, which was about half lower than the simulated TIE phase map, indicating that the individual atomic sites can be distinguished qualitatively. The appropriate condition for retrieving atomic-resolved TIE phase maps was briefly discussed. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Phase object retrieval through scattering medium

    NASA Astrophysics Data System (ADS)

    Zhao, Ming; Zhao, Meijing; Wu, Houde; Xu, Wenhai

    2018-05-01

    Optical imaging through a scattering medium has been an interesting and important research topic, especially in the field of biomedical imaging. However, it is still a challenging task due to strong scattering. This paper proposes to recover the phase object behind the scattering medium from one single-shot speckle intensity image using calibrated transmission matrices (TMs). We construct the forward model as a non-linear mapping, since the intensity image loses the phase information, and then a generalized phase retrieval algorithm is employed to recover the hidden object. Moreover, we show that a phase object can be reconstructed with a small portion of the speckle image captured by the camera. The simulation is performed to demonstrate our scheme and test its performance. Finally, a real experiment is set up, we measure the TMs from the scattering medium, and then use it to reconstruct the hidden object. We show that a phase object of size 32 × 32 is retrieved from 150 × 150 speckle grains, which is only 1/50 of the speckles area. We believe our proposed method can benefit the community of imaging through the scattering medium.

  6. Storage, retrieval, and edit of digital video using Motion JPEG

    NASA Astrophysics Data System (ADS)

    Sudharsanan, Subramania I.; Lee, D. H.

    1994-04-01

    In a companion paper we describe a Micro Channel adapter card that can perform real-time JPEG (Joint Photographic Experts Group) compression of a 640 by 480 24-bit image within 1/30th of a second. Since this corresponds to NTSC video rates at considerably good perceptual quality, this system can be used for real-time capture and manipulation of continuously fed video. To facilitate capturing the compressed video in a storage medium, an IBM Bus master SCSI adapter with cache is utilized. Efficacy of the data transfer mechanism is considerably improved using the System Control Block architecture, an extension to Micro Channel bus masters. We show experimental results that the overall system can perform at compressed data rates of about 1.5 MBytes/second sustained and with sporadic peaks to about 1.8 MBytes/second depending on the image sequence content. We also describe mechanisms to access the compressed data very efficiently through special file formats. This in turn permits creation of simpler sequence editors. Another advantage of the special file format is easy control of forward, backward and slow motion playback. The proposed method can be extended for design of a video compression subsystem for a variety of personal computing systems.

  7. Effects of Tunable Data Compression on Geophysical Products Retrieved from Surface Radar Observations with Applications to Spaceborne Meteorological Radars

    NASA Technical Reports Server (NTRS)

    Gabriel, Philip M.; Yeh, Penshu; Tsay, Si-Chee

    2013-01-01

    This paper presents results and analyses of applying an international space data compression standard to weather radar measurements that can easily span 8 orders of magnitude and typically require a large storage capacity as well as significant bandwidth for transmission. By varying the degree of the data compression, we analyzed the non-linear response of models that relate measured radar reflectivity and/or Doppler spectra to the moments and properties of the particle size distribution characterizing clouds and precipitation. Preliminary results for the meteorologically important phenomena of clouds and light rain indicate that for a 0.5 dB calibration uncertainty, typical for the ground-based pulsed-Doppler 94 GHz (or 3.2 mm, W-band) weather radar used as a proxy for spaceborne radar in this study, a lossless compression ratio of only 1.2 is achievable. However, further analyses of the non-linear response of various models of rainfall rate, liquid water content and median volume diameter show that a lossy data compression ratio exceeding 15 is realizable. The exploratory analyses presented are relevant to future satellite missions, where the transmission bandwidth is premium and storage requirements of vast volumes of data, potentially problematic.

  8. Fundamental aspects of the phase retrieval problem

    NASA Astrophysics Data System (ADS)

    Ferwerda, H. A.

    1980-12-01

    A review is given of the fundamental aspects of the phase retrieval problem in optical imaging for one dimension. The phase problem is treated using the fact that the wavefunction in the image-plane is a band-limited entire function of order 1. The ambiguity of the phase reconstruction is formulated in terms of the complex zeros of entire functions. Procedures are given how the relevant zeros might be determined. When the zeros are known one can derive dispersion relations which relate the phase of the wavefunction to the intensity distribution. The phase problem of coherence theory is similar to the previously discussed problem and is briefly touched upon. The extension of the phase problem to two dimensions is not straight-forward and still remains to be solved.

  9. Effect of raw material ratios on the compressive strength of magnesium potassium phosphate chemically bonded ceramics.

    PubMed

    Wang, Ai-juan; Yuan, Zhi-long; Zhang, Jiao; Liu, Lin-tao; Li, Jun-ming; Liu, Zheng

    2013-12-01

    The compressive strength of magnesium potassium phosphate chemically bonded ceramics is important in biomedical field. In this work, the compressive strength of magnesium potassium phosphate chemically bonded ceramics was investigated with different liquid-to-solid and MgO-to-KH2PO4 ratios. X-ray diffractometer was applied to characterize its phase composition. The microstructure was imaged using a scanning electron microscope. The results showed that the compressive strength of the chemically bonded ceramics increased with the decrease of liquid-to-solid ratio due to the change of the packing density and the crystallinity of hydrated product. However, with the increase of MgO-to-KH2PO4 weight ratio, its compressive strength increased firstly and then decreased. The low compressive strength in lower MgO-to-KH2PO4 ratio might be explained by the existence of the weak phase KH2PO4. However, the low value of compressive strength with the higher MgO-to-KH2PO4 ratio might be caused by lack of the joined phase in the hydrated product. Besides, it has been found that the microstructures were different in these two cases by the scanning electron microscope. Colloidal structure appeared for the samples with lower liquid-to-solid and higher MgO-to-KH2PO4 ratios possibly because of the existence of amorphous hydrated products. The optimization of both liquid-to-solid and MgO-to-KH2PO4 ratios was important to improve the compressive strength of magnesium potassium phosphate chemically bonded ceramics. © 2013.

  10. Handling the data management needs of high-throughput sequencing data: SpeedGene, a compression algorithm for the efficient storage of genetic data

    PubMed Central

    2012-01-01

    Background As Next-Generation Sequencing data becomes available, existing hardware environments do not provide sufficient storage space and computational power to store and process the data due to their enormous size. This is and will be a frequent problem that is encountered everyday by researchers who are working on genetic data. There are some options available for compressing and storing such data, such as general-purpose compression software, PBAT/PLINK binary format, etc. However, these currently available methods either do not offer sufficient compression rates, or require a great amount of CPU time for decompression and loading every time the data is accessed. Results Here, we propose a novel and simple algorithm for storing such sequencing data. We show that, the compression factor of the algorithm ranges from 16 to several hundreds, which potentially allows SNP data of hundreds of Gigabytes to be stored in hundreds of Megabytes. We provide a C++ implementation of the algorithm, which supports direct loading and parallel loading of the compressed format without requiring extra time for decompression. By applying the algorithm to simulated and real datasets, we show that the algorithm gives greater compression rate than the commonly used compression methods, and the data-loading process takes less time. Also, The C++ library provides direct-data-retrieving functions, which allows the compressed information to be easily accessed by other C++ programs. Conclusions The SpeedGene algorithm enables the storage and the analysis of next generation sequencing data in current hardware environment, making system upgrades unnecessary. PMID:22591016

  11. Clinical assessment of heart chamber size and valve motion during cardiopulmonary resuscitation by two-dimensional echocardiography.

    PubMed

    Rich, S; Wix, H L; Shapiro, E P

    1981-09-01

    It has been generally accepted that enhanced blood flow during closed-chest CPR is generated from compression of the heart between the sternum and the spine. To visualize the heart during closed-chest massage, we performed two-dimensional echocardiography (2DE) during resuscitation efforts in four patients who had cardiac arrest. 2DE analysis showed that (1) the LV internal dimensions did not change appreciably with chest compression; (2) the mitral and aortic valves were open simultaneously during the compression phase; (3) blood flow into the right heart, as evidenced by saline bubble contrast, occurred during the relaxation phase; and (4) compression of the right ventricle and LA occurred in varying amounts in all patients. We conclude that stroke volume from the heart during CPR does not result from compression of the LV. Rather, CPR-induced improved cardiocirculatory dynamics appear to be principally the result of changes in intrathoracic pressure created by sternal compression.

  12. A two-step method for retrieving the longitudinal profile of an electron bunch from its coherent radiation

    NASA Astrophysics Data System (ADS)

    Pelliccia, Daniele; Sen, Tanaji

    2014-11-01

    The coherent radiation emitted by an electron bunch provides a diagnostic signal that can be used to estimate its longitudinal distribution. Commonly only the amplitude of the intensity spectrum can be measured and the associated phase must be calculated to obtain the bunch profile. Very recently an iterative method was proposed to retrieve this phase. However ambiguities associated with non-uniqueness of the solution are always present in the phase retrieval procedure. Here we present a method to overcome the ambiguity problem by first performing multiple independent runs of the phase retrieval procedure and then second, sorting the good solutions by means of cross-correlation analysis. Results obtained with simulated bunches of various shapes and experimental measured spectra are presented, discussed and compared with the established Kramers-Kronig method. It is shown that even when the effect of the ambiguities is strong, as is the case for a double peak in the profile, the cross-correlation post-processing is able to filter out unwanted solutions. We show that, unlike the Kramers-Kronig method, the combined approach presented is able to faithfully reconstruct complicated bunch profiles.

  13. Metal dioxides as analogue of SiO2 under strong compression studied by synchrotron XRD and simulations

    NASA Astrophysics Data System (ADS)

    Liu, H.; Liu, L. L.

    2017-12-01

    The phase transition sequence of SiO2 inducing by high pressure was theoretically predicted as coordination number (CN=6) structures (rutile, pyrite), CN=8 (Pnma) and CN=9 (P-62m) structures, but only the phases up to pyrite structure in SiO2 were observed experimentally up to now. The CN8 phase and CN9 phases of SiO2 were predicted to be stable at least 650 GPa, which is challenging to achieve in the static DAC experiment at present. In other metal dioxide systems, such as TiO2, the ambient rutile and anatase phases first transform to pyrite (CN6), then to the baddeleyite (CN7) phase, to a Pnma (CN8) phase and P-62m(CN9) phase. In this report, under strong compression at room temperature, several metal dioxides were studied experimentally and theoretically, to verify whether this theoretical predicted trend is common transition path under strong compression. This work was supported by Natural Science Foundation of China (11374075), Heilongjiang Province Science Fund for Distinguished Young Scholars (JC201005), Longjiang Scholar, the Fundamental Research Funds for the Central Universities (HIT. BRET1.2010002, HIT. IBRSEM.A.201403).

  14. Roadmap on optical security

    NASA Astrophysics Data System (ADS)

    Javidi, Bahram; Carnicer, Artur; Yamaguchi, Masahiro; Nomura, Takanori; Pérez-Cabré, Elisabet; Millán, María S.; Nishchal, Naveen K.; Torroba, Roberto; Fredy Barrera, John; He, Wenqi; Peng, Xiang; Stern, Adrian; Rivenson, Yair; Alfalou, A.; Brosseau, C.; Guo, Changliang; Sheridan, John T.; Situ, Guohai; Naruse, Makoto; Matsumoto, Tsutomu; Juvells, Ignasi; Tajahuerce, Enrique; Lancis, Jesús; Chen, Wen; Chen, Xudong; Pinkse, Pepijn W. H.; Mosk, Allard P.; Markman, Adam

    2016-08-01

    Information security and authentication are important challenges facing society. Recent attacks by hackers on the databases of large commercial and financial companies have demonstrated that more research and development of advanced approaches are necessary to deny unauthorized access to critical data. Free space optical technology has been investigated by many researchers in information security, encryption, and authentication. The main motivation for using optics and photonics for information security is that optical waveforms possess many complex degrees of freedom such as amplitude, phase, polarization, large bandwidth, nonlinear transformations, quantum properties of photons, and multiplexing that can be combined in many ways to make information encryption more secure and more difficult to attack. This roadmap article presents an overview of the potential, recent advances, and challenges of optical security and encryption using free space optics. The roadmap on optical security is comprised of six categories that together include 16 short sections written by authors who have made relevant contributions in this field. The first category of this roadmap describes novel encryption approaches, including secure optical sensing which summarizes double random phase encryption applications and flaws [Yamaguchi], the digital holographic encryption in free space optical technique which describes encryption using multidimensional digital holography [Nomura], simultaneous encryption of multiple signals [Pérez-Cabré], asymmetric methods based on information truncation [Nishchal], and dynamic encryption of video sequences [Torroba]. Asymmetric and one-way cryptosystems are analyzed by Peng. The second category is on compression for encryption. In their respective contributions, Alfalou and Stern propose similar goals involving compressed data and compressive sensing encryption. The very important area of cryptanalysis is the topic of the third category with two sections: Sheridan reviews phase retrieval algorithms to perform different attacks, whereas Situ discusses nonlinear optical encryption techniques and the development of a rigorous optical information security theory. The fourth category with two contributions reports how encryption could be implemented at the nano- or micro-scale. Naruse discusses the use of nanostructures in security applications and Carnicer proposes encoding information in a tightly focused beam. In the fifth category, encryption based on ghost imaging using single-pixel detectors is also considered. In particular, the authors [Chen, Tajahuerce] emphasize the need for more specialized hardware and image processing algorithms. Finally, in the sixth category, Mosk and Javidi analyze in their corresponding papers how quantum imaging can benefit optical encryption systems. Sources that use few photons make encryption systems much more difficult to attack, providing a secure method for authentication.

  15. Autobiographical memory in Parkinson's disease: a retrieval deficit.

    PubMed

    Souchay, Celine; Smith, Sarah Jane

    2013-09-01

    This study examined the effects of providing cues to facilitate autobiographical memory retrieval in Parkinson's disease. Previous findings have shown that individuals with Parkinson's disease retrieve fewer specific autobiographical memories than older adult controls. These findings are clinically significant since the quality of autobiographical memory is linked to identity and sense of self. In the current study, 16 older adults with Parkinson's disease without dementia and 16 matched older adult controls were given 3 min in which to recall autobiographical memories associated with five different time periods and to give each memory a short title. Participants were later asked to retrieve the memories in three phases: firstly in a free recall phase; secondly in response to general cues (time periods) and finally in response to specific cues (the short titles previously given). The number of memories and the quality of the memory (general or specific) was recorded in each condition. Compared with matched older adult controls, the Parkinson's disease group was impaired in retrieving the memories that they had previously given in the free recall phase and in response to general cues. The performance of the group with Parkinson's disease was only equivalent to the older adults when they retrieved memories in response to self-generated cues. The findings are discussed in relation to theories of autobiographical memory and the neuropsychology of Parkinson's disease. © 2013 The British Psychological Society.

  16. A review of the hemodynamic effects of external leg and lower body compression.

    PubMed

    Helmi, M; Gommers, D; Groeneveld, A B J

    2014-03-01

    External leg and lower body compression (ELC) has been used for decades in the prevention of deep vein thrombosis and the treatment of leg ischemia. Because of systemic effects, the methods have regained interest in anesthesia, surgery and critical care. This review intends to summarize hemodynamic effects and their mechanisms. Compilation of relevant literature published in English as full paper and retrieved from Medline. By compressing veins, venous stasis is diminished and venous return and arterial blood flow are increased. ELC has been suggested to improve systemic hemodynamics, in different clinical settings, such as postural hypotension, anesthesia, surgery, shock, cardiopulmonary resuscitation and mechanical ventilation. However, the hemodynamic alterations depend upon the magnitude, extent, cycle, duration and thus the modality of ELC, when applied in a static or intermittent fashion (by pneumatic inflation), respectively. ELC may help future research and optimizing treatment of hemodynamically unstable, surgical or critically ill patients, independent of plasma volume expansion.

  17. Observation of Phase Objects by Using an X-ray Microscope with a Foucault Knife-Edge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, N.; Sasaya, T.; Imai, Y.

    2011-09-09

    An x-ray microscope with a zone plate was assembled at the synchrotron radiation source of BL3C, Photon Factory. A Foucault knife-edge was set at the back focal plate of the objective zone plate and phase retrieval was tested by scanning the knife-edge. A preliminary result shows that scanning the knife-edge during exposure was effective for phase retrieval. Phase-contrast tomography was investigated using differential projection images calculated from two Schlieren images with the oppositely oriented knife-edges. Fairly good reconstruction images of polystyrene beads and spores could be obtained.

  18. Theoretical extension and experimental demonstration of spectral compression in second-harmonic generation by Fresnel-inspired binary phase shaping

    NASA Astrophysics Data System (ADS)

    Li, Baihong; Dong, Ruifang; Zhou, Conghua; Xiang, Xiao; Li, Yongfang; Zhang, Shougang

    2018-05-01

    Selective two-photon microscopy and high-precision nonlinear spectroscopy rely on efficient spectral compression at the desired frequency. Previously, a Fresnel-inspired binary phase shaping (FIBPS) method was theoretically proposed for spectral compression of two-photon absorption and second-harmonic generation (SHG) with a square-chirped pulse. Here, we theoretically show that the FIBPS can introduce a negative quadratic frequency phase (negative chirp) by analogy with the spatial-domain phase function of Fresnel zone plate. Thus, the previous theoretical model can be extended to the case where the pulse can be transformed limited and in any symmetrical spectral shape. As an example, we experimentally demonstrate spectral compression in SHG by FIBPS for a Gaussian transform-limited pulse and show good agreement with the theory. Given the fundamental pulse bandwidth, a narrower SHG bandwidth with relatively high intensity can be obtained by simply increasing the number of binary phases. The experimental results also verify that our method is superior to that proposed in [Phys. Rev. A 46, 2749 (1992), 10.1103/PhysRevA.46.2749]. This method will significantly facilitate the applications of selective two-photon microscopy and spectroscopy. Moreover, as it can introduce negative dispersion, hence it can also be generalized to other applications in the field of dispersion compensation.

  19. Laser Shock Compression Studies of Phase Changes in Ce3 Al Metallic Glass

    NASA Astrophysics Data System (ADS)

    Bryant, Alex; Wehrenberg, Christopher; Alamgir, Faisal; Remington, Bruce; Thadhani, Naresh

    2017-06-01

    Laser shock-compression of Ce3 Al metallic glass (MG) was performed to probe pressure-induced phase transitions. Ce3 Al MG has been previously shown to crystallize into a single crystal FCC phase during static compression at 25 GPa. In the present work, experiments were performed using the 3J Nd:YAG pulse laser at Georgia Tech and the high energy laser at the OMEGA facility. Characterization of shock compressed samples recovered from the OMEGA laser experiments were performed using XRD and PDF measurements at the NSLS-2 synchrotron at Brookhaven National Lab. The results showed evidence of a permanent polyamorphous phase change at pressures > 10 GPa and crystallization at pressures > 75 GPa. Particle velocities were measured using VISAR in experiments performed at Georgia Tech and simulated using Hyades and Abaqus to create an empirical equation of state and correlate with results obtained from XRD and PDF characterization. The results attained to-date in terms of the evolution of the high pressure amorphous and crystalline phases and their correlations with the shock conditions will be presented. This work is supported in part by ARO Grant No. W9HNF-09-1-0403 and the National Science Foundation Graduate Research Fellowship Program awarded to Alex Bryant under Grant No. 0946809.

  20. Compression driven 2D nematic phase in a columnar Langmuir monolayer

    NASA Astrophysics Data System (ADS)

    El Abed, A.; Goldmann, M.

    2012-08-01

    Langmuir films of pyramidic liquid crystals were studied using surface pressure versus molecular area isotherms and synchrotron grazing incidence X-ray diffraction. The used molecule, named 3BCN/14, consists of a pyramidal central core to which are bound symmetrically six lateral C14 alkyl chains. These molecules spread spontaneously at the air-water interface in a metastable side-on phase which relax rapidly upon compression towards a stable edge-on phase. Our results suggest that the new edge-on phase consists of an in-plane organization of columns which are made of about 11 stacked edge-on molecules. This structure remains stable after several expansion-compression cycles. Comparing these results with those obtained previously on two other pyramidic liquid crystals with shorter and longer lateral alkyl chains, C9 and C15 respectively, we attribute the formation of the obtained 2D nematic phase to a suitable lateral chains length which allow for the establishing of strong short smectic order within of the 3BCN/14 columns.

  1. Radiation-induced disorder in compressed lanthanide zirconates.

    PubMed

    Park, Sulgiye; Tracy, Cameron L; Zhang, Fuxiang; Park, Changyong; Trautmann, Christina; Tkachev, Sergey N; Lang, Maik; Mao, Wendy L; Ewing, Rodney C

    2018-02-28

    The effects of swift heavy ion irradiation-induced disordering on the behavior of lanthanide zirconate compounds (Ln 2 Zr 2 O 7 where Ln = Sm, Er, or Nd) at high pressures are investigated. After irradiation with 2.2 GeV 197 Au ions, the initial ordered pyrochlore structure (Fd3[combining macron]m) transformed to a defect-fluorite structure (Fm3[combining macron]m) in Sm 2 Zr 2 O 7 and Nd 2 Zr 2 O 7 . For irradiated Er 2 Zr 2 O 7 , which has a defect-fluorite structure, ion irradiation induces local disordering by introducing Frenkel defects despite retention of the initial structure. When subjected to high pressures (>29 GPa) in the absence of irradiation, all of these compounds transform to a cotunnite-like (Pnma) phase, followed by sluggish amorphization with further compression. However, if these compounds are irradiated prior to compression, the high pressure cotunnite-like phase is not formed. Rather, they transform directly from their post-irradiation defect-fluorite structure to an amorphous structure upon compression (>25 GPa). Defects and disordering induced by swift heavy ion irradiation alter the transformation pathways by raising the energetic barriers for the transformation to the high pressure cotunnite-like phase, rendering it inaccessible. As a result, the high pressure stability field of the amorphous phase is expanded to lower pressures when irradiation is coupled with compression. The responses of materials in the lanthanide zirconate system to irradiation and compression, both individually and in tandem, are strongly influenced by the specific lanthanide composition, which governs the defect energetics at extreme conditions.

  2. Performance of a Space-Based Wavelet Compressor for Plasma Count Data on the MMS Fast Plasma Investigation

    NASA Technical Reports Server (NTRS)

    Barrie, A. C.; Smith, S. E.; Dorelli, J. C.; Gershman, D. J.; Yeh, P.; Schiff, C.; Avanov, L. A.

    2017-01-01

    Data compression has been a staple of imaging instruments for years. Recently, plasma measurements have utilized compression with relatively low compression ratios. The Fast Plasma Investigation (FPI) on board the Magnetospheric Multiscale (MMS) mission generates data roughly 100 times faster than previous plasma instruments, requiring a higher compression ratio to fit within the telemetry allocation. This study investigates the performance of a space-based compression standard employing a Discrete Wavelet Transform and a Bit Plane Encoder (DWT/BPE) in compressing FPI plasma count data. Data from the first 6 months of FPI operation are analyzed to explore the error modes evident in the data and how to adapt to them. While approximately half of the Dual Electron Spectrometer (DES) maps had some level of loss, it was found that there is little effect on the plasma moments and that errors present in individual sky maps are typically minor. The majority of Dual Ion Spectrometer burst sky maps compressed in a lossless fashion, with no error introduced during compression. Because of induced compression error, the size limit for DES burst images has been increased for Phase 1B. Additionally, it was found that the floating point compression mode yielded better results when images have significant compression error, leading to floating point mode being used for the fast survey mode of operation for Phase 1B. Despite the suggested tweaks, it was found that wavelet-based compression, and a DWT/BPE algorithm in particular, is highly suitable to data compression for plasma measurement instruments and can be recommended for future missions.

  3. Interferogram conditioning for improved Fourier analysis and application to X-ray phase imaging by grating interferometry.

    PubMed

    Montaux-Lambert, Antoine; Mercère, Pascal; Primot, Jérôme

    2015-11-02

    An interferogram conditioning procedure, for subsequent phase retrieval by Fourier demodulation, is presented here as a fast iterative approach aiming at fulfilling the classical boundary conditions imposed by Fourier transform techniques. Interference fringe patterns with typical edge discontinuities were simulated in order to reveal the edge artifacts that classically appear in traditional Fourier analysis, and were consecutively used to demonstrate the correction efficiency of the proposed conditioning technique. Optimization of the algorithm parameters is also presented and discussed. Finally, the procedure was applied to grating-based interferometric measurements performed in the hard X-ray regime. The proposed algorithm enables nearly edge-artifact-free retrieval of the phase derivatives. A similar enhancement of the retrieved absorption and fringe visibility images is also achieved.

  4. Preferred Compression Speed for Speech and Music and Its Relationship to Sensitivity to Temporal Fine Structure.

    PubMed

    Moore, Brian C J; Sęk, Aleksander

    2016-09-07

    Multichannel amplitude compression is widely used in hearing aids. The preferred compression speed varies across individuals. Moore (2008) suggested that reduced sensitivity to temporal fine structure (TFS) may be associated with preference for slow compression. This idea was tested using a simulated hearing aid. It was also assessed whether preferences for compression speed depend on the type of stimulus: speech or music. Twenty-two hearing-impaired subjects were tested, and the stimulated hearing aid was fitted individually using the CAM2A method. On each trial, a given segment of speech or music was presented twice. One segment was processed with fast compression and the other with slow compression, and the order was balanced across trials. The subject indicated which segment was preferred and by how much. On average, slow compression was preferred over fast compression, more so for music, but there were distinct individual differences, which were highly correlated for speech and music. Sensitivity to TFS was assessed using the difference limen for frequency at 2000 Hz and by two measures of sensitivity to interaural phase at low frequencies. The results for the difference limens for frequency, but not the measures of sensitivity to interaural phase, supported the suggestion that preference for compression speed is affected by sensitivity to TFS. © The Author(s) 2016.

  5. Static and moving solid/gas interface modeling in a hybrid rocket engine

    NASA Astrophysics Data System (ADS)

    Mangeot, Alexandre; William-Louis, Mame; Gillard, Philippe

    2018-07-01

    A numerical model was developed with CFD-ACE software to study the working condition of an oxygen-nitrogen/polyethylene hybrid rocket combustor. As a first approach, a simplified numerical model is presented. It includes a compressible transient gas phase in which a two-step combustion mechanism is implemented coupled to a radiative model. The solid phase from the fuel grain is a semi-opaque material with its degradation process modeled by an Arrhenius type law. Two versions of the model were tested. The first considers the solid/gas interface with a static grid while the second uses grid deformation during the computation to follow the asymmetrical regression. The numerical results are obtained with two different regression kinetics originating from ThermoGravimetry Analysis and test bench results. In each case, the fuel surface temperature is retrieved within a range of 5% error. However, good results are only found using kinetics from the test bench. The regression rate is found within 0.03 mm s-1 and average combustor pressure and its variation over time have the same intensity than the measurements conducted on the test bench. The simulation that uses grid deformation to follow the regression shows a good stability over a 10 s simulated time simulation.

  6. Measurements of the thickness compressibility of an n-octadecyltriethoxysilane monolayer self-assembled on mica.

    PubMed

    Kim, Sungsoo; Cho, Kilwon; Curry, Joan E

    2005-08-30

    The surface forces apparatus technique and the Johnson-Kendall-Roberts theory were used to study the elastic properties of an n-octadecyltriethoxysilane self-assembled monolayer (OTE-SAM) on both untreated and plasma-treated mica. Our aim was to measure the thickness compressibilities of OTE monolayers on untreated and plasma-treated mica and to estimate their surface densities and phase-states from the film compressibility. The compressibility moduli of OTE are (0.96 +/- 0.02) x 10(8) N/m(2) on untreated mica and (1.24 +/- 0.06) x 10(8) N/m(2) on plasma-treated mica. This work suggests that the OTE phase-state is pseudocrystalline. In addition, the results from the compressibility measurements in water vapor suggest that the OTE-SAM on both untreated and plasma-treated mica is not homogeneous but rather contains both crystalline polymerized OTE domains and somewhat hydrophilic gaseous regions.

  7. Information Retrieval and Criticality in Parity-Time-Symmetric Systems

    NASA Astrophysics Data System (ADS)

    Kawabata, Kohei; Ashida, Yuto; Ueda, Masahito

    2017-11-01

    By investigating information flow between a general parity-time (P T -)symmetric non-Hermitian system and an environment, we find that the complete information retrieval from the environment can be achieved in the P T -unbroken phase, whereas no information can be retrieved in the P T -broken phase. The P T -transition point thus marks the reversible-irreversible criticality of information flow, around which many physical quantities such as the recurrence time and the distinguishability between quantum states exhibit power-law behavior. Moreover, by embedding a P T -symmetric system into a larger Hilbert space so that the entire system obeys unitary dynamics, we reveal that behind the information retrieval lies a hidden entangled partner protected by P T symmetry. Possible experimental situations are also discussed.

  8. Pressure-induced phase transitions and templating effect in three-dimensional organic-inorganic hybrid perovskites

    NASA Astrophysics Data System (ADS)

    Lee, Yongjae; Mitzi, David; Barnes, Paris; Vogt, Thomas

    2003-07-01

    Pressure-induced structural changes of conducting halide perovskites (CH3NH3)SnI3, (CH3NH3)0.5(NH2CH=NH2)0.5SnI3, and (NH2CH=NH2)SnI3, have been investigated using synchrotron x-ray powder diffraction. In contrast to low-temperature structural changes, no evidence of an increased ordering of the organic cations was observed under pressure. Instead, increase in pressure results first in a ReO3-type doubling of the primitive cubic unit cell, followed by a symmetry distortion, and a subsequent amorphization above 4 GPa. This process is reversible and points towards a pressure-induced templating role of the organic cation. Bulk compressions are continuous across the phase boundaries. The compressibilities identify these hybrids as the most compressible perovskite system ever reported. However, the Sn-I bond compressibility in (CH3NH3)SnI3 shows a discontinuity within the supercell phase. This is possibly due to an electronic localization.

  9. Method for nanoencapsulation of aerogels and nanoencapsulated aerogels produced by such method

    NASA Technical Reports Server (NTRS)

    Sullivan, Thomas A. (Inventor)

    2007-01-01

    A method for increasing the compressive modulus of aerogels comprising: providing aerogel substrate comprising a bubble matrix in a chamber; providing monomer to the chamber, the monomer comprising vapor phase monomer which polymerizes substantially free of polymerization byproducts; depositing monomer from the vapor phase onto the surface of the aerogel substrate under deposition conditions effective to produce a vapor pressure sufficient to cause the vapor phase monomer to penetrate into the bubble matrix and deposit onto the surface of the aerogel substrate, producing a substantially uniform monomer film; and, polymerizing the substantially uniform monomer film under polymerization conditions effective to produce polymer coated aerogel comprising a substantially uniform polymer coating substantially free of polymerization byproducts.Polymer coated aerogel comprising aerogel substrate comprising a substantially uniform polymer coating, said polymer coated aerogel comprising porosity and having a compressive modulus greater than the compressive modulus of the aerogel substrate, as measured by a 100 lb. load cell at 1 mm/minute in the linear range of 20% to 40% compression.

  10. Phase-Retrieval Uncertainty Estimation and Algorithm Comparison for the JWST-ISIM Test Campaign

    NASA Technical Reports Server (NTRS)

    Aronstein, David L.; Smith, J. Scott

    2016-01-01

    Phase retrieval, the process of determining the exitpupil wavefront of an optical instrument from image-plane intensity measurements, is the baseline methodology for characterizing the wavefront for the suite of science instruments (SIs) in the Integrated Science Instrument Module (ISIM) for the James Webb Space Telescope (JWST). JWST is a large, infrared space telescope with a 6.5-meter diameter primary mirror. JWST is currently NASA's flagship mission and will be the premier space observatory of the next decade. ISIM contains four optical benches with nine unique instruments, including redundancies. ISIM was characterized at the Goddard Space Flight Center (GSFC) in Greenbelt, MD in a series of cryogenic vacuum tests using a telescope simulator. During these tests, phase-retrieval algorithms were used to characterize the instruments. The objective of this paper is to describe the Monte-Carlo simulations that were used to establish uncertainties (i.e., error bars) for the wavefronts of the various instruments in ISIM. Multiple retrieval algorithms were used in the analysis of ISIM phase-retrieval focus-sweep data, including an iterativetransform algorithm and a nonlinear optimization algorithm. These algorithms emphasize the recovery of numerous optical parameters, including low-order wavefront composition described by Zernike polynomial terms and high-order wavefront described by a point-by-point map, location of instrument best focus, focal ratio, exit-pupil amplitude, the morphology of any extended object, and optical jitter. The secondary objective of this paper is to report on the relative accuracies of these algorithms for the ISIM instrument tests, and a comparison of their computational complexity and their performance on central and graphical processing unit clusters. From a phase-retrieval perspective, the ISIM test campaign includes a variety of source illumination bandwidths, various image-plane sampling criteria above and below the Nyquist- Shannon critical sampling value, various extended object sizes, and several other impactful effects.

  11. Nanocrystals in compression: unexpected structural phase transition and amorphization due to surface impurities.

    PubMed

    Liu, Gang; Kong, Lingping; Yan, Jinyuan; Liu, Zhenxian; Zhang, Hengzhong; Lei, Pei; Xu, Tao; Mao, Ho-Kwang; Chen, Bin

    2016-06-09

    We report an unprecedented surface doping-driven anomaly in the compression behaviors of nanocrystals demonstrating that the change of surface chemistry can lead to an interior bulk structure change in nanoparticles. In the synchrotron-based X-ray diffraction experiments, titania nanocrystals with low concentration yttrium dopants at the surface are found to be less compressible than undoped titania nanocrystals. More surprisingly, an unexpected TiO2(ii) phase (α-PbO2 type) is induced and obvious anisotropy is observed in the compression of yttrium-doped TiO2, in sharp contrast to the compression behavior of undoped TiO2. In addition, the undoped brookite nanocrystals remain with the same structure up to 30 GPa, whereas the yttrium-doped brookite amorphizes above 20 GPa. The abnormal structural evolution observed in yttrium-doped TiO2 does not agree with the reported phase stability of nano titania polymorphs, thus suggesting that the physical properties of the interior of nanocrystals can be controlled by the surface, providing an unconventional and new degree of freedom in search for nanocrystals with novel tunable properties that can trigger applications in multiple areas of industry and provoke more related basic science research.

  12. Surface-initiated phase transition in solid hydrogen under the high-pressure compression

    NASA Astrophysics Data System (ADS)

    Lei, Haile; Lin, Wei; Wang, Kai; Li, Xibo

    2018-03-01

    The large-scale molecular dynamics simulations have been performed to understand the microscopic mechanism governing the phase transition of solid hydrogen under the high-pressure compression. These results demonstrate that the face-centered-cubic-to-hexagonal close-packed phase transition is initiated first at the surfaces at a much lower pressure than in the volume and then extends gradually from the surface to volume in the solid hydrogen. The infrared spectra from the surface are revealed to exhibit a different pressure-dependent feature from those of the volume during the high-pressure compression. It is thus deduced that the weakening intramolecular H-H bonds are always accompanied by hardening surface phonons through strengthening the intermolecular H2-H2 coupling at the surfaces with respect to the counterparts in the volume at high pressures. This is just opposite to the conventional atomic crystals, in which the surface phonons are softening. The high-pressure compression has further been predicted to force the atoms or molecules to spray out of surface to degrade the pressure. These results provide a glimpse of structural properties of solid hydrogen at the early stage during the high-pressure compression.

  13. Use of phase change materials during compressed air expansion for isothermal CAES plants

    NASA Astrophysics Data System (ADS)

    Castellani, B.; Presciutti, A.; Morini, E.; Filipponi, M.; Nicolini, A.; Rossi, F.

    2017-11-01

    Compressed air energy storage (CAES) plants are designed to store compressed air into a vessel or in an underground cavern and to expand it in an expansion turbine when energy demand is high. An innovative CAES configuration recently proposed is the isothermal process. Several methods to implement isothermal CAES configuration are under investigation. In this framework, the present paper deals with the experimental testing of phase change materials (PCM) during compressed air expansion phase. The experimental investigation was carried out by means of an apparatus constituted by a compression section, a steel pressure vessel, to which an expansion valve is connected. The initial internal absolute pressure was equal to 5 bar to avoid moisture condensation and the experimental tests were carried out with two paraffin-based PCM amounts (0.05 kg and 0.1 kg). Results show that the temperature change during air expansion decreases with increasing the PCM amount inside the vessel. With the use of PCM during expansions an increase of the expansion work occurs. The increase is included in the range from 9.3% to 18.2%. In every test there is an approach to the isothermal values, which represent the maximum theoretical value of the obtainable expansion work.

  14. Experimental evidences of the Gardner phase in a granular glass

    NASA Astrophysics Data System (ADS)

    Dauchot, Olivier; Seguin, Antoine

    The constituent particles of a glass are caged by their neighbors and thus cannot relax density fluctuations. This is also true for hard particles under compression. The associated slowing down of the dynamics is related to a complex free energy landscape. It was recently shown theoretically that the hard sphere glass in infinite dimension undergoes a Gardner transition, at which the glass basin breaks into a hierarchy of marginally stable sub-basins. This was very recently confirmed in simulations of 2d and 3d hard sphere (HS) glasses. We present the first direct experimental evidences of the Gardner phase, taking advantage of a well controlled granular experiment, which has already proven to successfully probe the vicinity of the jamming transition in a bi-dimensional granular glass former. More precisely, we perform independent compressions of a carefully prepared granular glass and show that for large enough compression, the final state differs from one compression to another. To do so we compare the average cage size within one state, and the average distance separating the cages of the same particles across successive compression cycles. The latter plateaus to a constant value, when entering the Gardner phase.

  15. ENVISAT Land Surface Processes. Phase 2

    NASA Technical Reports Server (NTRS)

    vandenHurk, B. J. J. M.; Su, Z.; Verhoef, W.; Menenti, M.; Li, Z.-L.; Wan, Z.; Moene, A. F.; Roerink, G.; Jia, I.

    2002-01-01

    This is a progress report of the 2nd phase of the project ENVISAT- Land Surface Processes, which has a 3-year scope. In this project, preparative research is carried out aiming at the retrieval of land surface characteristics from the ENVISAT sensors MERIS and AATSR, for assimilation into a system for Numerical Weather Prediction (NWP). Where in the 1st phase a number of first shot experiments were carried out (aiming at gaining experience with the retrievals and data assimilation procedures), the current 2nd phase has put more emphasis on the assessment and improvement of the quality of the retrieved products. The forthcoming phase will be devoted mainly to the data assimilation experiments and the assessment of the added value of the future ENVISAT products for NWP forecast skill. Referring to the retrieval of albedo, leaf area index and atmospheric corrections, preliminary radiative transfer calculations have been carried out that should enable the retrieval of these parameters once AATSR and MERIS data become available. However, much of this work is still to be carried out. An essential part of work in this area is the design and implementation of software that enables an efficient use of MODTRAN(sub 4) radiative transfer code, and during the current project phase familiarization with these new components has been achieved. Significant progress has been made with the retrieval of component temperatures from directional ATSR-images, and the calculation of surface turbulent heat fluxes from these data. The impact of vegetation cover on the retrieved component temperatures appears manageable, and preliminary comparison of foliage temperature to air temperatures were encouraging. The calculation of surface fluxes using the SEBI concept,which includes a detailed model of the surface roughness ratio, appeared to give results that were in reasonable agreement with local measurements with scintillometer devices. The specification of the atmospheric boundary conditions appears a crucial component, and the use of first guess estimates from the RACMO models partially explains the success. Earlier data assimilation experiments with directional surface temperatures have been analysed a bit further and were also compared to results obtained from directly modeling the surface roughness ratio. Results between these calculations and the data assimilation results appeared well comparable, but a full test in which the surface roughness model is allowed to play a free role during the data assimilation process has yet to be carried out. A considerable number of tasks that have yet to be carried out during Phase 3 has been formulated.

  16. Altered object exploration but not temporal order memory retrieval in an object recognition test following treatment of rats with the group II metabotropic glutamate receptor agonist LY379268.

    PubMed

    Lins, Brittney R; Ballendine, Stephanie A; Howland, John G

    2014-02-07

    Temporal order memory refers to the ability to distinguish past experiences in the order that they occurred. Temporal order memory for objects is often tested in rodents using spontaneous object recognition paradigms. The circuitry mediating memory in these tests is distributed and involves ionotropic glutamate receptors in the perirhinal cortex and medial prefrontal cortex. It is unknown what role, if any, metabotropic glutamate receptors have in temporal order memory for objects. The present experiment examined the role of metabotropic glutamate receptors in temporal memory retrieval using the group II metabotropic glutamate receptor selective agonist LY379268. Rats were trained on a temporal memory test with three phases: two sample phases (60 min between them) in which rats explored two novel objects and a test phase (60 min after the second sample phase) which included a copy of each object previously encountered. Under these conditions, we confirmed that rats showed a significant exploratory preference for the object presented during the first sample phase. In a second experiment, we found that LY379268 (0.3, 1.0, or 3.0mg/kg; i.p.; 30 min before the test phase) had no effect on temporal memory retrieval but dose-dependently reduced time spent exploring the objects. Our results show that enhancing mGluR2 activity under conditions when TM is intact does not influence memory retrieval. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. A Retrieved Context Account of Spacing and Repetition Effects in Free Recall

    ERIC Educational Resources Information Center

    Siegel, Lynn L.; Kahana, Michael J.

    2014-01-01

    Repeating an item in a list benefits recall performance, and this benefit increases when the repetitions are spaced apart (Madigan, 1969; Melton, 1970). Retrieved context theory incorporates 2 mechanisms that account for these effects: contextual variability and study-phase retrieval. Specifically, if an item presented at position "i" is…

  18. Redefining the lower statistical limit in x-ray phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    Marschner, M.; Birnbacher, L.; Willner, M.; Chabior, M.; Fehringer, A.; Herzen, J.; Noël, P. B.; Pfeiffer, F.

    2015-03-01

    Phase-contrast x-ray computed tomography (PCCT) is currently investigated and developed as a potentially very interesting extension of conventional CT, because it promises to provide high soft-tissue contrast for weakly absorbing samples. For data acquisition several images at different grating positions are combined to obtain a phase-contrast projection. For short exposure times, which are necessary for lower radiation dose, the photon counts in a single stepping position are very low. In this case, the currently used phase-retrieval does not provide reliable results for some pixels. This uncertainty results in statistical phase wrapping, which leads to a higher standard deviation in the phase-contrast projections than theoretically expected. For even lower statistics, the phase retrieval breaks down completely and the phase information is lost. New measurement procedures rely on a linear approximation of the sinusoidal phase stepping curve around the zero crossings. In this case only two images are acquired to obtain the phase-contrast projection. The approximation is only valid for small phase values. However, typically nearly all pixels are within this regime due to the differential nature of the signal. We examine the statistical properties of a linear approximation method and illustrate by simulation and experiment that the lower statistical limit can be redefined using this method. That means that the phase signal can be retrieved even with very low photon counts and statistical phase wrapping can be avoided. This is an important step towards enhanced image quality in PCCT with very low photon counts.

  19. The Operational MODIS Cloud Optical and Microphysical Property Product: Overview of the Collection 6 Algorithm and Preliminary Results

    NASA Technical Reports Server (NTRS)

    Platnick, Steven; King, Michael D.; Wind, Galina; Amarasinghe, Nandana; Marchant, Benjamin; Arnold, G. Thomas

    2012-01-01

    Operational Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals of cloud optical and microphysical properties (part of the archived products MOD06 and MYD06, for MODIS Terra and Aqua, respectively) are currently being reprocessed along with other MODIS Atmosphere Team products. The latest "Collection 6" processing stream, which is expected to begin production by summer 2012, includes updates to the previous cloud retrieval algorithm along with new capabilities. The 1 km retrievals, based on well-known solar reflectance techniques, include cloud optical thickness, effective particle radius, and water path, as well as thermodynamic phase derived from a combination of solar and infrared tests. Being both global and of high spatial resolution requires an algorithm that is computationally efficient and can perform over all surface types. Collection 6 additions and enhancements include: (i) absolute effective particle radius retrievals derived separately from the 1.6 and 3.7 !-lm bands (instead of differences relative to the standard 2.1 !-lm retrieval), (ii) comprehensive look-up tables for cloud reflectance and emissivity (no asymptotic theory) with a wind-speed interpolated Cox-Munk BRDF for ocean surfaces, (iii) retrievals for both liquid water and ice phases for each pixel, and a subsequent determination of the phase based, in part, on effective radius retrieval outcomes for the two phases, (iv) new ice cloud radiative models using roughened particles with a specified habit, (v) updated spatially-complete global spectral surface albedo maps derived from MODIS Collection 5, (vi) enhanced pixel-level uncertainty calculations incorporating additional radiative error sources including the MODIS L1 B uncertainty index for assessing band and scene-dependent radiometric uncertainties, (v) and use of a new 1 km cloud top pressure/temperature algorithm (also part of MOD06) for atmospheric corrections and low cloud non-unity emissivity temperature adjustments.

  20. FPGA implementation of sparse matrix algorithm for information retrieval

    NASA Astrophysics Data System (ADS)

    Bojanic, Slobodan; Jevtic, Ruzica; Nieto-Taladriz, Octavio

    2005-06-01

    Information text data retrieval requires a tremendous amount of processing time because of the size of the data and the complexity of information retrieval algorithms. In this paper the solution to this problem is proposed via hardware supported information retrieval algorithms. Reconfigurable computing may adopt frequent hardware modifications through its tailorable hardware and exploits parallelism for a given application through reconfigurable and flexible hardware units. The degree of the parallelism can be tuned for data. In this work we implemented standard BLAS (basic linear algebra subprogram) sparse matrix algorithm named Compressed Sparse Row (CSR) that is showed to be more efficient in terms of storage space requirement and query-processing timing over the other sparse matrix algorithms for information retrieval application. Although inverted index algorithm is treated as the de facto standard for information retrieval for years, an alternative approach to store the index of text collection in a sparse matrix structure gains more attention. This approach performs query processing using sparse matrix-vector multiplication and due to parallelization achieves a substantial efficiency over the sequential inverted index. The parallel implementations of information retrieval kernel are presented in this work targeting the Virtex II Field Programmable Gate Arrays (FPGAs) board from Xilinx. A recent development in scientific applications is the use of FPGA to achieve high performance results. Computational results are compared to implementations on other platforms. The design achieves a high level of parallelism for the overall function while retaining highly optimised hardware within processing unit.

  1. Radiative Transfer Modeling and Retrievals for Advanced Hyperspectral Sensors

    NASA Technical Reports Server (NTRS)

    Liu, Xu; Zhou, Daniel K.; Larar, Allen M.; Smith, William L., Sr.; Mango, Stephen A.

    2009-01-01

    A novel radiative transfer model and a physical inversion algorithm based on principal component analysis will be presented. Instead of dealing with channel radiances, the new approach fits principal component scores of these quantities. Compared to channel-based radiative transfer models, the new approach compresses radiances into a much smaller dimension making both forward modeling and inversion algorithm more efficient.

  2. Tiny videos: a large data set for nonparametric video retrieval and frame classification.

    PubMed

    Karpenko, Alexandre; Aarabi, Parham

    2011-03-01

    In this paper, we present a large database of over 50,000 user-labeled videos collected from YouTube. We develop a compact representation called "tiny videos" that achieves high video compression rates while retaining the overall visual appearance of the video as it varies over time. We show that frame sampling using affinity propagation-an exemplar-based clustering algorithm-achieves the best trade-off between compression and video recall. We use this large collection of user-labeled videos in conjunction with simple data mining techniques to perform related video retrieval, as well as classification of images and video frames. The classification results achieved by tiny videos are compared with the tiny images framework [24] for a variety of recognition tasks. The tiny images data set consists of 80 million images collected from the Internet. These are the largest labeled research data sets of videos and images available to date. We show that tiny videos are better suited for classifying scenery and sports activities, while tiny images perform better at recognizing objects. Furthermore, we demonstrate that combining the tiny images and tiny videos data sets improves classification precision in a wider range of categories.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Li; Thompson, Gregory, E-mail: gthompson@eng.ua.edu

    A series of 40–2 nm bilayer spacing Ti/Fe multilayers were sputter-deposited. As the length scale of individual Ti layers equaled to 2 nm, Ti phase transforms from a hexagonal close packed (hcp)-to-body centered cubic (bcc) crystal structures for equal layer thicknesses in Ti/Fe multilayers. Further equal reductions in bilayer spacing to less than 1 nm resulted in an additional transformation from a crystalline to amorphous structure. Atom probe tomography reveals significant intermixing between layers which contributes to the observed phase transformations. Real-time, intrinsic growth stress measurements were also performed to relate the adatom mobility to these phase transformations. For the hcp Ti/bcc Femore » multilayers of equivalent volume fractions, the multilayers undergo an overall tensile stress state to a compressive stress state with decreasing bilayer thickness for the multilayers. When the above phase transformations occurred, a modest reduction in the overall compressive stress of the multilayer was noted. Depending on the Fe thickness, the Ti growth was observed to be a tensile to compressive growth change to a purely compressive growth for thinner bilayer spacing. Fe retained a tensile growth stress regardless of the bilayer spacing studied.« less

  4. The national coal-resources data system of the U.S. geological survey

    USGS Publications Warehouse

    Carter, M.D.

    1976-01-01

    The National Coal Resources Data System (NCRDS) was designed by the U.S. Geological Survey (USGS) to meet the increasing demands for rapid retrieval of information on coal location, quantity, quality, and accessibility. An interactive conversational query system devised by the USGS retrieves information from the data bank through a standard computer terminal. The system is being developed in two phases. Phase I, which currently is available on a limited basis, contains published areal resource and chemical data. The primary objective of this phase is to retrieve, calculate, and tabulate coal-resource data by area on a local, regional, or national scale. Factors available for retrieval include: state, county, quadrangle, township, coal field, coal bed, formation, geologic age, source and reliability of data, and coal-bed rank, thickness, overburden, and tonnage, or any combinations of variables. In addition, the chemical data items include individual values for proximate and ultimate analyses, BTU value, and several other physical and chemical tests. Information will be validated and deleted or updated as needed. Phase II is being developed to store, retrieve, and manipulate basic point source coal data (e.g., field observations, drill-hole logs), including geodetic location; bed thickness; depth of burial; moisture; ash; sulfur; major-, minor-, and trace-element content; heat value; and characteristics of overburden, roof rocks, and floor rocks. The computer system may be used to generate interactively structure-contour or isoline maps of the physical and chemical characteristics of a coal bed or to calculate coal resources. ?? 1976.

  5. A compressive sensing-based computational method for the inversion of wide-band ground penetrating radar data

    NASA Astrophysics Data System (ADS)

    Gelmini, A.; Gottardi, G.; Moriyama, T.

    2017-10-01

    This work presents an innovative computational approach for the inversion of wideband ground penetrating radar (GPR) data. The retrieval of the dielectric characteristics of sparse scatterers buried in a lossy soil is performed by combining a multi-task Bayesian compressive sensing (MT-BCS) solver and a frequency hopping (FH) strategy. The developed methodology is able to benefit from the regularization capabilities of the MT-BCS as well as to exploit the multi-chromatic informative content of GPR measurements. A set of numerical results is reported in order to assess the effectiveness of the proposed GPR inverse scattering technique, as well as to compare it to a simpler single-task implementation.

  6. Non-interferometric phase retrieval using refractive index manipulation.

    PubMed

    Chen, Chyong-Hua; Hsu, Hsin-Feng; Chen, Hou-Ren; Hsieh, Wen-Feng

    2017-04-07

    We present a novel, inexpensive and non-interferometric technique to retrieve phase images by using a liquid crystal phase shifter without including any physically moving parts. First, we derive a new equation of the intensity-phase relation with respect to the change of refractive index, which is similar to the transport of the intensity equation. The equation indicates that this technique is unneeded to consider the variation of magnifications between optical images. For proof of the concept, we use a liquid crystal mixture MLC 2144 to manufacture a phase shifter and to capture the optical images in a rapid succession by electrically tuning the applied voltage of the phase shifter. Experimental results demonstrate that this technique is capable of reconstructing high-resolution phase images and to realize the thickness profile of a microlens array quantitatively.

  7. Parallel phase-shifting self-interference digital holography with faithful reconstruction using compressive sensing

    NASA Astrophysics Data System (ADS)

    Wan, Yuhong; Man, Tianlong; Wu, Fan; Kim, Myung K.; Wang, Dayong

    2016-11-01

    We present a new self-interference digital holographic approach that allows single-shot capturing three-dimensional intensity distribution of the spatially incoherent objects. The Fresnel incoherent correlation holographic microscopy is combined with parallel phase-shifting technique to instantaneously obtain spatially multiplexed phase-shifting holograms. The compressive-sensing-based reconstruction algorithm is implemented to reconstruct the original object from the under sampled demultiplexed holograms. The scheme is verified with simulations. The validity of the proposed method is experimentally demonstrated in an indirectly way by simulating the use of specific parallel phase-shifting recording device.

  8. Actinic imaging and evaluation of phase structures on EUV lithography masks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mochi, Iacopo; Goldberg, Kenneth; Huh, Sungmin

    2010-09-28

    The authors describe the implementation of a phase-retrieval algorithm to reconstruct phase and complex amplitude of structures on EUV lithography masks. Many native defects commonly found on EUV reticles are difficult to detect and review accurately because they have a strong phase component. Understanding the complex amplitude of mask features is essential for predictive modeling of defect printability and defect repair. Besides printing in a stepper, the most accurate way to characterize such defects is with actinic inspection, performed at the design, EUV wavelength. Phase defect and phase structures show a distinct through-focus behavior that enables qualitative evaluation of themore » object phase from two or more high-resolution intensity measurements. For the first time, phase of structures and defects on EUV masks were quantitatively reconstructed based on aerial image measurements, using a modified version of a phase-retrieval algorithm developed to test optical phase shifting reticles.« less

  9. Symmetric and asymmetric hybrid cryptosystem based on compressive sensing and computer generated holography

    NASA Astrophysics Data System (ADS)

    Ma, Lihong; Jin, Weimin

    2018-01-01

    A novel symmetric and asymmetric hybrid optical cryptosystem is proposed based on compressive sensing combined with computer generated holography. In this method there are six encryption keys, among which two decryption phase masks are different from the two random phase masks used in the encryption process. Therefore, the encryption system has the feature of both symmetric and asymmetric cryptography. On the other hand, because computer generated holography can flexibly digitalize the encrypted information and compressive sensing can significantly reduce data volume, what is more, the final encryption image is real function by phase truncation, the method favors the storage and transmission of the encryption data. The experimental results demonstrate that the proposed encryption scheme boosts the security and has high robustness against noise and occlusion attacks.

  10. Developing the Pulsed Fission-Fusion (PuFF) Engine

    NASA Technical Reports Server (NTRS)

    Adams, Robert B.; Cassibry, Jason; Bradley, David; Fabisinski, Leo; Statham, Geoffrey

    2014-01-01

    In September 2013 the NASA Innovative Advanced Concept (NIAC) organization awarded a phase I contract to the PuFF team. Our phase 1 proposal researched a pulsed fission-fusion propulsion system that compressed a target of deuterium (D) and tritium (T) as a mixture in a column, surrounded concentrically by Uranium. The target is surrounded by liquid lithium. A high power current would flow down the liquid lithium and the resulting Lorentz force would compress the column by roughly a factor of 10. The compressed column would reach criticality and a combination of fission and fusion reactions would occur. Our Phase I results, summarized herein, review our estimates of engine and vehicle performance, our work to date to model the fission-fusion reaction, and our initial efforts in experimental analysis.

  11. Enhanced densification under shock compression in porous silicon

    NASA Astrophysics Data System (ADS)

    Lane, J. Matthew D.; Thompson, Aidan P.; Vogler, Tracy J.

    2014-10-01

    Under shock compression, most porous materials exhibit lower densities for a given pressure than that of a full-dense sample of the same material. However, some porous materials exhibit an anomalous, or enhanced, densification under shock compression. We demonstrate a molecular mechanism that drives this behavior. We also present evidence from atomistic simulation that silicon belongs to this anomalous class of materials. Atomistic simulations indicate that local shear strain in the neighborhood of collapsing pores nucleates a local solid-solid phase transformation even when bulk pressures are below the thermodynamic phase transformation pressure. This metastable, local, and partial, solid-solid phase transformation, which accounts for the enhanced densification in silicon, is driven by the local stress state near the void, not equilibrium thermodynamics. This mechanism may also explain the phenomenon in other covalently bonded materials.

  12. Practicing more retrieval routes leads to greater memory retention.

    PubMed

    Zheng, Jun; Zhang, Wei; Li, Tongtong; Liu, Zhaomin; Luo, Liang

    2016-09-01

    A wealth of research has shown that retrieval practice plays a significant role in improving memory retention. The current study focused on one simple yet rarely examined question: would repeated retrieval using two different retrieval routes or using the same retrieval route twice lead to greater long-term memory retention? Participants elaborately learned 22 Japanese-Chinese translation word pairs using two different mediators. Half an hour after the initial study phase, the participants completed two retrieval sessions using either one mediator (Tm1Tm1) or two different mediators (Tm1Tm2). On the final test, which was performed 1week after the retrieval practice phase, the participants received only the cue with a request to report the mediator (M1 or M2) followed by the target (Experiment 1) or only the mediator (M1 or M2) with a request to report the target (Experiment 2). The results of Experiment 1 indicated that the participants who practiced under the Tm1Tm2 condition exhibited greater target retention than those who practiced under the Tm1Tm1 condition. This difference in performance was due to the significant disadvantage in mediator retrieval and decoding of the unpracticed mediator under the Tm1Tm1 condition. Although mediators were provided to participants on the final test in Experiment 2, decoding of the unpracticed mediators remained less effective than decoding of the practiced mediators. We conclude that practicing multiple retrieval routes leads to greater memory retention than focusing on a single retrieval route. Thus, increasing retrieval variability during repeated retrieval practice indeed significantly improves long-term retention in a delay test. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Determination of the stacking fault density in highly defective single GaAs nanowires by means of coherent diffraction imaging

    NASA Astrophysics Data System (ADS)

    Davtyan, Arman; Biermanns, Andreas; Loffeld, Otmar; Pietsch, Ullrich

    2016-06-01

    Coherent x-ray diffraction imaging is used to measure diffraction patterns from individual highly defective nanowires, showing a complex speckle pattern instead of well-defined Bragg peaks. The approach is tested for nanowires of 500 nm diameter and 500 nm height predominately composed by zinc-blende (ZB) and twinned zinc-blende (TZB) phase domains. Phase retrieval is used to reconstruct the measured 2-dimensional intensity patterns recorded from single nanowires with 3.48 nm and 0.98 nm spatial resolution. Whereas the speckle amplitudes and distribution are perfectly reconstructed, no unique solution could be obtained for the phase structure. The number of phase switches is found to be proportional to the number of measured speckles and follows a narrow number distribution. Using data with 0.98 nm spatial resolution the mean number of phase switches is in reasonable agreement with estimates taken from TEM. However, since the resolved phase domain still is 3-4 times larger than a single GaAs bilayer we explain the non-ambiguous phase reconstruction by the fact that depending on starting phase and sequence of subroutines used during the phase retrieval the retrieved phase domain host a different sequence of randomly stacked bilayers. Modelling possible arrangements of bilayer sequences within a phase domain demonstrate that the complex speckle patterns measured can indeed be explained by the random arrangement of the ZB and TZB phase domains.

  14. Measurement Matrix Design for Phase Retrieval Based on Mutual Information

    NASA Astrophysics Data System (ADS)

    Shlezinger, Nir; Dabora, Ron; Eldar, Yonina C.

    2018-01-01

    In phase retrieval problems, a signal of interest (SOI) is reconstructed based on the magnitude of a linear transformation of the SOI observed with additive noise. The linear transform is typically referred to as a measurement matrix. Many works on phase retrieval assume that the measurement matrix is a random Gaussian matrix, which, in the noiseless scenario with sufficiently many measurements, guarantees invertability of the transformation between the SOI and the observations, up to an inherent phase ambiguity. However, in many practical applications, the measurement matrix corresponds to an underlying physical setup, and is therefore deterministic, possibly with structural constraints. In this work we study the design of deterministic measurement matrices, based on maximizing the mutual information between the SOI and the observations. We characterize necessary conditions for the optimality of a measurement matrix, and analytically obtain the optimal matrix in the low signal-to-noise ratio regime. Practical methods for designing general measurement matrices and masked Fourier measurements are proposed. Simulation tests demonstrate the performance gain achieved by the proposed techniques compared to random Gaussian measurements for various phase recovery algorithms.

  15. Shape Measurement by Means of Phase Retrieval using a Spatial Light Modulator

    NASA Astrophysics Data System (ADS)

    Agour, Mostafa; Huke, Philipp; Kopylow, Christoph V.; Falldorf, Claas

    2010-04-01

    We present a novel approach to investigate the shape of a diffusely reflecting technical object. It is based on a combination of a multiple-illumination contouring procedure and phase retrieval from a set of intensity measurements. Special consideration is given to the design of the experimental configuration for phase retrieval and the iterative algorithm to extract the 3D phase map. It is mainly based on a phase-only spatial light modulator (SLM) in the Fourier domain of a 4f-imaging system. The SLM is used to modulate the light incident in the Fourier plane with the transfer function of propagation. Thus, a set of consecutive intensity measurements of the wave field scattered by the investigated object in various propagation states can be realized in a common recording plane. In contrast to already existing methods, no mechanical adjustment is required during the recording process and thus the measuring time is considerably reduced. The method is applied to investigate the shape of micro-objects obtained from a metalforming process. Finally, the experimental results are compared to those provided by a standard interferometric contouring procedure.

  16. Dynamic Experiments and Constitutive Model Performance for Polycarbonate

    DTIC Science & Technology

    2014-07-01

    phase disabled. Note, positive stress is tensile and negative is compressive ....28 Figure 23. Parameter sensitivity showing numerical contours of axial ... compressive . For the no alpha and no beta cases shown in the axial stress plots of figure 23 at 40 s, an increase in radial compression as compared...traditional Taylor cylinder impact experiment, which achieves large strain and high-strain-rate deformation but under hydrostatic compression

  17. Retrieval of Ice Cloud Properties Using Variable Phase Functions

    NASA Astrophysics Data System (ADS)

    Heck, Patrick W.; Minnis, Patrick; Yang, Ping; Chang, Fu-Lung; Palikonda, Rabindra; Arduini, Robert F.; Sun-Mack, Sunny

    2009-03-01

    An enhancement to NASA Langley's Visible Infrared Solar-infrared Split-window Technique (VISST) is developed to identify and account for situations when errors are induced by using smooth ice crystals. The retrieval scheme incorporates new ice cloud phase functions that utilize hexagonal crystals with roughened surfaces. In some situations, cloud optical depths are reduced, hence, cloud height is increased. Cloud effective particle size also changes with the roughened ice crystal models which results in varied effects on the calculation of ice water path. Once validated and expanded, the new approach will be integrated in the CERES MODIS algorithm and real-time retrievals at Langley.

  18. A Bunch Compression Method for Free Electron Lasers that Avoids Parasitic Compressions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benson, Stephen V.; Douglas, David R.; Tennant, Christopher D.

    2015-09-01

    Virtually all existing high energy (>few MeV) linac-driven FELs compress the electron bunch length though the use of off-crest acceleration on the rising side of the RF waveform followed by transport through a magnetic chicane. This approach has at least three flaws: 1) it is difficult to correct aberrations--particularly RF curvature, 2) rising side acceleration exacerbates space charge-induced distortion of the longitudinal phase space, and 3) all achromatic "negative compaction" compressors create parasitic compression during the final compression process, increasing the CSR-induced emittance growth. One can avoid these deficiencies by using acceleration on the falling side of the RF waveformmore » and a compressor with M 56>0. This approach offers multiple advantages: 1) It is readily achieved in beam lines supporting simple schemes for aberration compensation, 2) Longitudinal space charge (LSC)-induced phase space distortion tends, on the falling side of the RF waveform, to enhance the chirp, and 3) Compressors with M 56>0 can be configured to avoid spurious over-compression. We will discuss this bunch compression scheme in detail and give results of a successful beam test in April 2012 using the JLab UV Demo FEL« less

  19. Coding of cognitive magnitude: compressed scaling of numerical information in the primate prefrontal cortex.

    PubMed

    Nieder, Andreas; Miller, Earl K

    2003-01-09

    Whether cognitive representations are better conceived as language-based, symbolic representations or perceptually related, analog representations is a subject of debate. If cognitive processes parallel perceptual processes, then fundamental psychophysical laws should hold for each. To test this, we analyzed both behavioral and neuronal representations of numerosity in the prefrontal cortex of rhesus monkeys. The data were best described by a nonlinearly compressed scaling of numerical information, as postulated by the Weber-Fechner law or Stevens' law for psychophysical/sensory magnitudes. This nonlinear compression was observed on the neural level during the acquisition phase of the task and maintained through the memory phase with no further compression. These results suggest that certain cognitive and perceptual/sensory representations share the same fundamental mechanisms and neural coding schemes.

  20. Phase transitions in restricted Boltzmann machines with generic priors

    NASA Astrophysics Data System (ADS)

    Barra, Adriano; Genovese, Giuseppe; Sollich, Peter; Tantari, Daniele

    2017-10-01

    We study generalized restricted Boltzmann machines with generic priors for units and weights, interpolating between Boolean and Gaussian variables. We present a complete analysis of the replica symmetric phase diagram of these systems, which can be regarded as generalized Hopfield models. We underline the role of the retrieval phase for both inference and learning processes and we show that retrieval is robust for a large class of weight and unit priors, beyond the standard Hopfield scenario. Furthermore, we show how the paramagnetic phase boundary is directly related to the optimal size of the training set necessary for good generalization in a teacher-student scenario of unsupervised learning.

  1. Analyser-based phase contrast image reconstruction using geometrical optics.

    PubMed

    Kitchen, M J; Pavlov, K M; Siu, K K W; Menk, R H; Tromba, G; Lewis, R A

    2007-07-21

    Analyser-based phase contrast imaging can provide radiographs of exceptional contrast at high resolution (<100 microm), whilst quantitative phase and attenuation information can be extracted using just two images when the approximations of geometrical optics are satisfied. Analytical phase retrieval can be performed by fitting the analyser rocking curve with a symmetric Pearson type VII function. The Pearson VII function provided at least a 10% better fit to experimentally measured rocking curves than linear or Gaussian functions. A test phantom, a hollow nylon cylinder, was imaged at 20 keV using a Si(1 1 1) analyser at the ELETTRA synchrotron radiation facility. Our phase retrieval method yielded a more accurate object reconstruction than methods based on a linear fit to the rocking curve. Where reconstructions failed to map expected values, calculations of the Takagi number permitted distinction between the violation of the geometrical optics conditions and the failure of curve fitting procedures. The need for synchronized object/detector translation stages was removed by using a large, divergent beam and imaging the object in segments. Our image acquisition and reconstruction procedure enables quantitative phase retrieval for systems with a divergent source and accounts for imperfections in the analyser.

  2. Implicit proactive interference, age, and automatic versus controlled retrieval strategies.

    PubMed

    Ikier, Simay; Yang, Lixia; Hasher, Lynn

    2008-05-01

    We assessed the extent to which implicit proactive interference results from automatic versus controlled retrieval among younger and older adults. During a study phase, targets (e.g., "ALLERGY") either were or were not preceded by nontarget competitors (e.g., "ANALOGY"). After a filled interval, the participants were asked to complete word fragments, some of which cued studied words (e.g., "A_L_ _GY"). Retrieval strategies were identified by the difference in response speed between a phase containing fragments that cued only new words and a phase that included a mix of fragments cuing old and new words. Previous results were replicated: Proactive interference was found in implicit memory, and the negative effects were greater for older than for younger adults. Novel findings demonstrate two retrieval processes that contribute to interference: an automatic one that is age invariant and a controlled process that can reduce the magnitude of the automatic interference effects. The controlled process, however, is used effectively only by younger adults. This pattern of findings potentially explains age differences in susceptibility to proactive interference.

  3. Phase retrieval in digital speckle pattern interferometry by application of two-dimensional active contours called snakes.

    PubMed

    Federico, Alejandro; Kaufmann, Guillermo H

    2006-03-20

    We propose a novel approach to retrieving the phase map coded by a single closed-fringe pattern in digital speckle pattern interferometry, which is based on the estimation of the local sign of the quadrature component. We obtain the estimate by calculating the local orientation of the fringes that have previously been denoised by a weighted smoothing spline method. We carry out the procedure of sign estimation by determining the local abrupt jumps of size pi in the orientation field of the fringes and by segmenting the regions defined by these jumps. The segmentation method is based on the application of two-dimensional active contours (snakes), with which one can also estimate absent jumps, i.e., those that cannot be detected from the local orientation of the fringes. The performance of the proposed phase-retrieval technique is evaluated for synthetic and experimental fringes and compared with the results obtained with the spiral-phase- and Fourier-transform methods.

  4. Using Radar, Lidar, and Radiometer measurements to Classify Cloud Type and Study Middle-Level Cloud Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhien

    2010-06-29

    The project is mainly focused on the characterization of cloud macrophysical and microphysical properties, especially for mixed-phased clouds and middle level ice clouds by combining radar, lidar, and radiometer measurements available from the ACRF sites. First, an advanced mixed-phase cloud retrieval algorithm will be developed to cover all mixed-phase clouds observed at the ACRF NSA site. The algorithm will be applied to the ACRF NSA observations to generate a long-term arctic mixed-phase cloud product for model validations and arctic mixed-phase cloud processes studies. To improve the representation of arctic mixed-phase clouds in GCMs, an advanced understanding of mixed-phase cloud processesmore » is needed. By combining retrieved mixed-phase cloud microphysical properties with in situ data and large-scale meteorological data, the project aim to better understand the generations of ice crystals in supercooled water clouds, the maintenance mechanisms of the arctic mixed-phase clouds, and their connections with large-scale dynamics. The project will try to develop a new retrieval algorithm to study more complex mixed-phase clouds observed at the ACRF SGP site. Compared with optically thin ice clouds, optically thick middle level ice clouds are less studied because of limited available tools. The project will develop a new two wavelength radar technique for optically thick ice cloud study at SGP site by combining the MMCR with the W-band radar measurements. With this new algorithm, the SGP site will have a better capability to study all ice clouds. Another area of the proposal is to generate long-term cloud type classification product for the multiple ACRF sites. The cloud type classification product will not only facilitates the generation of the integrated cloud product by applying different retrieval algorithms to different types of clouds operationally, but will also support other research to better understand cloud properties and to validate model simulations. The ultimate goal is to improve our cloud classification algorithm into a VAP.« less

  5. A novel methodology for querying web images

    NASA Astrophysics Data System (ADS)

    Prabhakara, Rashmi; Lee, Ching Cheng

    2005-01-01

    Ever since the advent of Internet, there has been an immense growth in the amount of image data that is available on the World Wide Web. With such a magnitude of image availability, an efficient and effective image retrieval system is required to make use of this information. This research presents an effective image matching and indexing technique that improvises on existing integrated image retrieval methods. The proposed technique follows a two-phase approach, integrating query by topic and query by example specification methods. The first phase consists of topic-based image retrieval using an improved text information retrieval (IR) technique that makes use of the structured format of HTML documents. It consists of a focused crawler that not only provides for the user to enter the keyword for the topic-based search but also, the scope in which the user wants to find the images. The second phase uses the query by example specification to perform a low-level content-based image match for the retrieval of smaller and relatively closer results of the example image. Information related to the image feature is automatically extracted from the query image by the image processing system. A technique that is not computationally intensive based on color feature is used to perform content-based matching of images. The main goal is to develop a functional image search and indexing system and to demonstrate that better retrieval results can be achieved with this proposed hybrid search technique.

  6. A novel methodology for querying web images

    NASA Astrophysics Data System (ADS)

    Prabhakara, Rashmi; Lee, Ching Cheng

    2004-12-01

    Ever since the advent of Internet, there has been an immense growth in the amount of image data that is available on the World Wide Web. With such a magnitude of image availability, an efficient and effective image retrieval system is required to make use of this information. This research presents an effective image matching and indexing technique that improvises on existing integrated image retrieval methods. The proposed technique follows a two-phase approach, integrating query by topic and query by example specification methods. The first phase consists of topic-based image retrieval using an improved text information retrieval (IR) technique that makes use of the structured format of HTML documents. It consists of a focused crawler that not only provides for the user to enter the keyword for the topic-based search but also, the scope in which the user wants to find the images. The second phase uses the query by example specification to perform a low-level content-based image match for the retrieval of smaller and relatively closer results of the example image. Information related to the image feature is automatically extracted from the query image by the image processing system. A technique that is not computationally intensive based on color feature is used to perform content-based matching of images. The main goal is to develop a functional image search and indexing system and to demonstrate that better retrieval results can be achieved with this proposed hybrid search technique.

  7. How Often and Why MODIS Cloud Property Retrievals Fail for Liquid-Phase Clouds over Ocean? a Comprehensive Analysis Based on a-Train Observations

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Cho, H. M.; Platnick, S. E.; Meyer, K.; Lebsock, M. D.

    2014-12-01

    The cloud optical thickness (τ) and droplet effective radius (re) are two key cloud parameters retrieved by MODIS (Moderate Resolution Imaging Spectroradiometer). These MODIS cloud products are widely used in a broad range of earth system science applications. In this paper, we present a comprehensive analysis of the failed cloud τ and/or re retrievals for liquid-phase clouds over ocean in the Collection 6 MODIS cloud product. The main findings from this study are summarized as follows: MODIS retrieval failure rates for marine boundary layer (MBL) clouds have a strong dependence on the spectral combination used for retrieval (e.g., 0.86 + 2.1 µm vs. 0.8 + 3.7 µm) and the cloud morphology (i.e., "good" pixels vs. partly cloudy (PCL) pixels). Combining all clear-sky-restoral (CSR) categories (CSR=0,1 and 3), the 0.86 + 2.1 µm and 0.86 + 3.7 µm spectral combinations have an overall failure rate of about 20% and 12%, respectively (See figure below). The PCL pixels (CSR=1 & 3) have significantly higher failure rates and contribute more to the total failure population than the "good" (CSR=0) pixels. The majority of the failed retrievals are caused by the re too large failure, which explains about 85% and 70% of the failed 0.86 + 2.1 µm and 0.86 + 3.7 µm retrievals, respectively. The remaining failures are either due to the re too small failure or τ retrieval failure. The geographical distribution of failure rates has a significant dependence on cloud regime, lower over the coastal stratocumulus cloud regime and higher over the broken trade-wind cumulus cloud regime over open oceans. Enhanced retrieval failure rates are found when MBL clouds have high sub-pixel inhomogeneity , or are located at special Sun-satellite viewing geometries, such as sunglint, large viewing or solar zenith angle, or cloudbow and glory angles, or subject to cloud masking, cloud overlapping and/or cloud phase retrieval issues. About 80% of the failure retrievals can be attributed to at least one or more potential reasons mentioned above. Collocated radar reflectivity observations from CloudSat suggest that the remaining 20% are unlikely to be retrieval artifacts, but reflection of true cloud microphysics, i.e., the true is either truly very small or very large.

  8. Method for removing solid particulate material from within liquid fuel injector assemblies

    DOEpatents

    Simandl, R.F.; Brown, J.D.; Andriulli, J.B.; Strain, P.D.

    1998-09-08

    A method is described for removing residual solid particulate material from the interior of liquid fuel injectors and other fluid flow control mechanisms having or being operatively associated with a flow-regulating fixed or variable orifice. The method comprises the sequential and alternate introduction of columns of a non-compressible liquid phase and columns of a compressed gas phase into the body of a fuel injector whereby the expansion of each column of the gas phase across the orifice accelerates the liquid phase in each trailing column of the liquid phase and thereby generates turbulence in each liquid phase for lifting and entraining the solid particulates for the subsequent removal thereof from the body of the fuel injector. 1 fig.

  9. Method for removing solid particulate material from within liquid fuel injector assemblies

    DOEpatents

    Simandl, Ronald F.; Brown, John D.; Andriulli, John B.; Strain, Paul D.

    1998-01-01

    A method for removing residual solid particulate material from the interior of liquid fuel injectors and other fluid flow control mechanisms having or being operatively associated with a flow-regulating fixed or variable orifice. The method comprises the sequential and alternate introduction of columns of a non-compressible liquid phase and columns of a compressed gas phase into the body of a fuel injector whereby the expansion of each column of the gas phase across the orifice accelerates the liquid phase in each trailing column of the liquid phase and thereby generates turbulence in each liquid phase for lifting and entraining the solid particulates for the subsequent removal thereof from the body of the fuel injector.

  10. Using Compression Isotherms of Phospholipid Monolayers to Explore Critical Phenomena: A Biophysical Chemistry Experiment

    ERIC Educational Resources Information Center

    Gragson, Derek E.; Beaman, Dan; Porter, Rhiannon

    2008-01-01

    Two experiments are described in which students explore phase transitions and critical phenomena by obtaining compression isotherms of phospholipid monolayers using a Langmuir trough. Through relatively simple analysis of their data students gain a better understanding of compression isotherms, the application of the Clapeyron equation, the…

  11. Time-dependent phase shift of a retrieved pulse in off-resonant electromagnetically-induced-transparency-based light storage

    NASA Astrophysics Data System (ADS)

    Maynard, M.-A.; Bouchez, R.; Lugani, J.; Bretenaker, F.; Goldfarb, F.; Brion, E.

    2015-11-01

    We report measurements of the time-dependent phases of the leak and retrieved pulses obtained in electromagnetically-induced-transparency storage experiments with metastable helium vapor at room temperature. In particular, we investigate the influence of the optical detuning at two-photon resonance and provide numerical simulations of the full dynamical Maxwell-Bloch equations, which allow us to account for the experimental results.

  12. High Resolution Imaging Using Phase Retrieval. Volume 2

    DTIC Science & Technology

    1991-10-01

    aberrations of the telescope. It will also correct aberrations due to atmospheric turbulence for a ground- based telescope, and can be used with several other...retrieval algorithm, based on the Ayers/Dainty blind deconvolution algorithm, was also developed. A new methodology for exploring the uniqueness of phase...Simulation Experiments ..................... 42 3.3.1 Initial Simulations with Noisy Modulus Data ..... 45 3.3.2 Simulations of a Space- Based Amplitude

  13. Effect of phase lag on cyclic durability of laminated composite

    NASA Astrophysics Data System (ADS)

    Andersons, Janis; Limonov, V.; Tamuzs, Vitants

    1992-07-01

    Theoretical and experimental results on fatigue of laminated fiber reinforced composites under out-of-phase, biaxial cyclic loading are presented. Experiments were carried out on tubular filament wound samples of epoxy matrix/organic (Kevlar type) fiber composites. Fatigue strength under two different loading modes, namely cyclic torsion combined with axial tension or compression, was investigated for phase lags psi = 0, pi/2, and pi. Durability was shown to decrease with increasing phase shift both for axial tension (R = 0.1) and compression (R = 10). A matrix failure criterion was proposed for a unidirectionally reinforced ply, and the ply discount method was modified to account for phase lag. Calculated S-N curves agree reasonably well with experimental data.

  14. Ground-based remote sensing of thin clouds in the Arctic

    NASA Astrophysics Data System (ADS)

    Garrett, T. J.; Zhao, C.

    2013-05-01

    This paper describes a method for using interferometer measurements of downwelling thermal radiation to retrieve the properties of single-layer clouds. Cloud phase is determined from ratios of thermal emission in three "micro-windows" at 862.5 cm-1, 935.8 cm-1, and 988.4 cm-1 where absorption by water vapour is particularly small. Cloud microphysical and optical properties are retrieved from thermal emission in the first two of these micro-windows, constrained by the transmission through clouds of primarily stratospheric ozone emission at 1040 cm-1. Assuming a cloud does not approximate a blackbody, the estimated 95% confidence retrieval errors in effective radius re, visible optical depth τ, number concentration N, and water path WP are, respectively, 10%, 20%, 38% (55% for ice crystals), and 16%. Applied to data from the Atmospheric Radiation Measurement programme (ARM) North Slope of Alaska - Adjacent Arctic Ocean (NSA-AAO) site near Barrow, Alaska, retrievals show general agreement with both ground-based microwave radiometer measurements of liquid water path and a method that uses combined shortwave and microwave measurements to retrieve re, τ and N. Compared to other retrieval methods, advantages of this technique include its ability to characterise thin clouds year round, that water vapour is not a primary source of retrieval error, and that the retrievals of microphysical properties are only weakly sensitive to retrieved cloud phase. The primary limitation is the inapplicability to thicker clouds that radiate as blackbodies and that it relies on a fairly comprehensive suite of ground based measurements.

  15. Low-Speed Fingerprint Image Capture System User`s Guide, June 1, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitus, B.R.; Goddard, J.S.; Jatko, W.B.

    1993-06-01

    The Low-Speed Fingerprint Image Capture System (LS-FICS) uses a Sun workstation controlling a Lenzar ElectroOptics Opacity 1000 imaging system to digitize fingerprint card images to support the Federal Bureau of Investigation`s (FBI`s) Automated Fingerprint Identification System (AFIS) program. The system also supports the operations performed by the Oak Ridge National Laboratory- (ORNL-) developed Image Transmission Network (ITN) prototype card scanning system. The input to the system is a single FBI fingerprint card of the agreed-upon standard format and a user-specified identification number. The output is a file formatted to be compatible with the National Institute of Standards and Technology (NIST)more » draft standard for fingerprint data exchange dated June 10, 1992. These NIST compatible files contain the required print and text images. The LS-FICS is designed to provide the FBI with the capability of scanning fingerprint cards into a digital format. The FBI will replicate the system to generate a data base of test images. The Host Workstation contains the image data paths and the compression algorithm. A local area network interface, disk storage, and tape drive are used for the image storage and retrieval, and the Lenzar Opacity 1000 scanner is used to acquire the image. The scanner is capable of resolving 500 pixels/in. in both x and y directions. The print images are maintained in full 8-bit gray scale and compressed with an FBI-approved wavelet-based compression algorithm. The text fields are downsampled to 250 pixels/in. and 2-bit gray scale. The text images are then compressed using a lossless Huffman coding scheme. The text fields retrieved from the output files are easily interpreted when displayed on the screen. Detailed procedures are provided for system calibration and operation. Software tools are provided to verify proper system operation.« less

  16. Kinetics of the B1-B2 phase transition in KCl under rapid compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Chuanlong; Smith, Jesse S.; Sinogeikin, Stanislav V.

    2016-01-28

    Kinetics of the B1-B2 phase transition in KCl has been investigated under various compression rates (0.03–13.5 GPa/s) in a dynamic diamond anvil cell using time-resolved x-ray diffraction and fast imaging. Our experimental data show that the volume fraction across the transition generally gives sigmoidal curves as a function of pressure during rapid compression. Based upon classical nucleation and growth theories (Johnson-Mehl-Avrami-Kolmogorov theories), we propose a model that is applicable for studying kinetics for the compression rates studied. The fit of the experimental volume fraction as a function of pressure provides information on effective activation energy and average activation volume at amore » given compression rate. The resulting parameters are successfully used for interpreting several experimental observables that are compression-rate dependent, such as the transition time, grain size, and over-pressurization. The effective activation energy (Q{sub eff}) is found to decrease linearly with the logarithm of compression rate. When Q{sub eff} is applied to the Arrhenius equation, this relationship can be used to interpret the experimentally observed linear relationship between the logarithm of the transition time and logarithm of the compression rates. The decrease of Q{sub eff} with increasing compression rate results in the decrease of the nucleation rate, which is qualitatively in agreement with the observed change of the grain size with compression rate. The observed over-pressurization is also well explained by the model when an exponential relationship between the average activation volume and the compression rate is assumed.« less

  17. The α-γ-ɛ triple point and phase boundaries of iron under shock compression

    NASA Astrophysics Data System (ADS)

    Li, Jun; Wu, Qiang; Xue, Tao; Geng, Huayun; Yu, Jidong; Jin, Ke; Li, Jiabo; Tan, Ye; Xi, Feng

    2017-07-01

    The phase transition of iron under shock compression has attracted much attention in recent decades because of its importance in fields such as condensed matter physics, geophysics, and metallurgy. At room temperature, the transition of iron from the α-phase (bcc) to the ɛ-phase (hpc) occurs at a stress of 13 GPa. At high temperature, a triple point followed by transformation to the γ-phase (fcc) is expected. However, the details of the high-temperature phase transitions of iron are still under debate. Here, we investigate the phase-transition behavior of polycrystalline iron under compression from room temperature to 820 K. The results show that the shock-induced phase transition is determined unequivocally from the measured three-wave-structure profiles, which clearly consist of an elastic wave, a plastic wave, and a phase-transition wave. The phase transition is temperature-dependent, with an average rate Δσtr/ΔT of -6.91 MPa/K below 700 K and -34.7 MPa/K at higher temperatures. The shock α-ɛ and α-γ phase boundaries intersect at 10.6 ± 0.53 GPa and 763 K, which agrees with the α-ɛ-γ triple point from early shock wave experiments and recent laser-heated diamond-anvil cell resistivity and in situ X-ray diffraction data but disagrees with the shock pressure-temperature phase diagram reported in 2009 by Zaretsky [J. Appl. Phys. 106, 023510 (2009)].

  18. Non-interferometric phase retrieval using refractive index manipulation

    PubMed Central

    Chen, Chyong-Hua; Hsu, Hsin-Feng; Chen, Hou-Ren; Hsieh, Wen-Feng

    2017-01-01

    We present a novel, inexpensive and non-interferometric technique to retrieve phase images by using a liquid crystal phase shifter without including any physically moving parts. First, we derive a new equation of the intensity-phase relation with respect to the change of refractive index, which is similar to the transport of the intensity equation. The equation indicates that this technique is unneeded to consider the variation of magnifications between optical images. For proof of the concept, we use a liquid crystal mixture MLC 2144 to manufacture a phase shifter and to capture the optical images in a rapid succession by electrically tuning the applied voltage of the phase shifter. Experimental results demonstrate that this technique is capable of reconstructing high-resolution phase images and to realize the thickness profile of a microlens array quantitatively. PMID:28387382

  19. Influence of controlled encoding and retrieval facilitation on memory performance in patients with different profiles of mild cognitive impairment.

    PubMed

    Perri, Roberta; Monaco, Marco; Fadda, Lucia; Serra, Laura; Marra, Camillo; Caltagirone, Carlo; Bruni, Amalia C; Curcio, Sabrina; Bozzali, M; Carlesimo, Giovanni A

    2015-01-01

    Memory tests able to differentiate encoding and retrieval processes from the memoranda storing ones should be used to differentiate patients in a very early phase of AD. In fact, individuals with mild cognitive impairment (MCI) can be characterized by two different memory profiles: a pure amnestic one (with poor learning and retrieval and poor improvement when encoding is assisted and retrieval is facilitated) and a dysexecutive one (with inefficient encoding and/or poor retrieval strategies and improvement with assisted encoding and retrieval). The amnestic profile characterizes subjects affected by medio-temporal atrophy typical of AD. In this study, a Grober-Buschke memory procedure was used to evaluate normal controls and MCI patients with different cognitive profiles: pure amnestic (aMCIsd), amnestic plus other cognitive impairments (aMCImd) and non-amnestic (naMCI). An index of sensitivity of cueing (ISC) measured the advantage passing from free to cued recall. Results showed that both strategic and consolidation abilities were impaired in the aMCIsd and aMCImd groups and were preserved in the naMCI group. aMCImd, however, compensated the memory deficit with assisted encoding and retrieval, but aMCIsd performed very poorly. When MCI subjects were defined according to the ISC value, subjects with poor ISC were primarily in the aMCIsd group and, to a lesser extent, in the aMCImd group and the naMCI group. Finally, patients with a poor ISC showed cerebral atrophy documented in the precocious phase of AD and the retrosplenial cerebral areas seemed to be the most useful areas for identifying patients in the early phase of AD.

  20. High sensitivity phase retrieval method in grating-based x-ray phase contrast imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Zhao; Gao, Kun; Chen, Jian

    2015-02-15

    Purpose: Grating-based x-ray phase contrast imaging is considered as one of the most promising techniques for future medical imaging. Many different methods have been developed to retrieve phase signal, among which the phase stepping (PS) method is widely used. However, further practical implementations are hindered, due to its complex scanning mode and high radiation dose. In contrast, the reverse projection (RP) method is a novel fast and low dose extraction approach. In this contribution, the authors present a quantitative analysis of the noise properties of the refraction signals retrieved by the two methods and compare their sensitivities. Methods: Using themore » error propagation formula, the authors analyze theoretically the signal-to-noise ratios (SNRs) of the refraction images retrieved by the two methods. Then, the sensitivities of the two extraction methods are compared under an identical exposure dose. Numerical experiments are performed to validate the theoretical results and provide some quantitative insight. Results: The SNRs of the two methods are both dependent on the system parameters, but in different ways. Comparison between their sensitivities reveals that for the refraction signal, the RP method possesses a higher sensitivity, especially in the case of high visibility and/or at the edge of the object. Conclusions: Compared with the PS method, the RP method has a superior sensitivity and provides refraction images with a higher SNR. Therefore, one can obtain highly sensitive refraction images in grating-based phase contrast imaging. This is very important for future preclinical and clinical implementations.« less

  1. Numerical phase retrieval from beam intensity measurements in three planes

    NASA Astrophysics Data System (ADS)

    Bruel, Laurent

    2003-05-01

    A system and method have been developed at CEA to retrieve phase information from multiple intensity measurements along a laser beam. The device has been patented. Commonly used devices for beam measurement provide phase and intensity information separately or with a rather poor resolution whereas the MIROMA method provides both at the same time, allowing direct use of the results in numerical models. Usual phase retrieval algorithms use two intensity measurements, typically the image plane and the focal plane (Gerschberg-Saxton algorithm) related by a Fourier transform, or the image plane and a lightly defocus plane (D.L. Misell). The principal drawback of such iterative algorithms is their inability to provide unambiguous convergence in all situations. The algorithms can stagnate on bad solutions and the error between measured and calculated intensities remains unacceptable. If three planes rather than two are used, the data redundancy created confers to the method good convergence capability and noise immunity. It provides an excellent agreement between intensity determined from the retrieved phase data set in the image plane and intensity measurements in any diffraction plane. The method employed for MIROMA is inspired from GS algorithm, replacing Fourier transforms by a beam-propagating kernel with gradient search accelerating techniques and special care for phase branch cuts. A fast one dimensional algorithm provides an initial guess for the iterative algorithm. Applications of the algorithm on synthetic data find out the best reconstruction planes that have to be chosen. Robustness and sensibility are evaluated. Results on collimated and distorted laser beams are presented.

  2. In-situ high-pressure x-ray diffraction study of zinc ferrite nanoparticles

    DOE PAGES

    Ferrari, S.; Kumar, R. S.; Grinblat, F.; ...

    2016-04-23

    We have studied the high-pressure structural behavior of zinc ferrite (ZnFe 2O 4) nanoparticles by powder X-ray diffraction measurements up to 47 GPa. We found that the cubic spinel structure of ZnFe 2O 4 remains up to 33 GPa and a phase transition is induced beyond this pressure. The high-pressure phase is indexed to an orthorhombic CaMn 2O 4-type structure. Upon decompression the low- and high-pressure phases coexist. The compressibility of both structures was also investigated. We have observed that the lattice parameters of the high-pressure phase behave anisotropically upon compression. Further, we predict possible phase transition around 55 GPa.more » For comparison, we also studied the compression behavior of magnetite (Fe 3O 4) nanoparticles by X-ray diffraction up to 23 GPa. Spinel-type ZnFe 2O 4 and Fe 3O 4 nanoparticles have a bulk modulus of 172 (20) GPa and 152 (9) GPa, respectively. Lastly, this indicates that in both cases the nanoparticles do not undergo a Hall-Petch strengthening.« less

  3. In-situ high-pressure x-ray diffraction study of zinc ferrite nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrari, S.; Kumar, R. S.; Grinblat, F.

    We have studied the high-pressure structural behavior of zinc ferrite (ZnFe 2O 4) nanoparticles by powder X-ray diffraction measurements up to 47 GPa. We found that the cubic spinel structure of ZnFe 2O 4 remains up to 33 GPa and a phase transition is induced beyond this pressure. The high-pressure phase is indexed to an orthorhombic CaMn 2O 4-type structure. Upon decompression the low- and high-pressure phases coexist. The compressibility of both structures was also investigated. We have observed that the lattice parameters of the high-pressure phase behave anisotropically upon compression. Further, we predict possible phase transition around 55 GPa.more » For comparison, we also studied the compression behavior of magnetite (Fe 3O 4) nanoparticles by X-ray diffraction up to 23 GPa. Spinel-type ZnFe 2O 4 and Fe 3O 4 nanoparticles have a bulk modulus of 172 (20) GPa and 152 (9) GPa, respectively. Lastly, this indicates that in both cases the nanoparticles do not undergo a Hall-Petch strengthening.« less

  4. Phase accumulation tracking algorithm for effective index retrieval of fishnet metamaterials and other resonant guided wave networks

    NASA Astrophysics Data System (ADS)

    Feigenbaum, Eyal; Hiszpanski, Anna M.

    2017-07-01

    A phase accumulation tracking (PAT) algorithm is proposed and demonstrated for the retrieval of the effective index of fishnet metamaterials (FMMs) in order to avoid the multi-branch uncertainty problem. This algorithm tracks the phase and amplitude of the dominant propagation mode across the FMM slab. The suggested PAT algorithm applies to resonant guided wave networks having only one mode that carries the light between the two slab ends, where the FMM is one example of this metamaterials sub-class. The effective index is a net effect of positive and negative accumulated phase in the alternating FMM metal and dielectric layers, with a negative effective index occurring when negative phase accumulation dominates.

  5. Application of phase-diverse phase retrieval to wavefront sensing in non-connected complicated pupil optics

    NASA Astrophysics Data System (ADS)

    Mao, Heng; Wang, Xiao; Zhao, Dazun

    2007-07-01

    Baseline algorithm, as a tool in wavefront sensing (WFS), incorporates the phase-diverse phase retrieval (PDPR) method with hybrid-unwrapping approach to ensure a unique pupil phase estimate with high WFS accuracy even in the case of high dynamic range aberration, as long as the pupil shape is of a convex set. However, for a complicated pupil, such as that in obstructed pupil optics, the said unwrapping approach would fail owing to the fake values at points located in obstructed areas of the pupil. Thus a modified unwrapping approach that can minimize the negative effects of the obstructed areas is proposed. Simulations have shown the validity of this unwrapping approach when it is embedded in Baseline algorithm.

  6. Impact of monaural frequency compression on binaural fusion at the brainstem level.

    PubMed

    Klauke, Isabelle; Kohl, Manuel C; Hannemann, Ronny; Kornagel, Ulrich; Strauss, Daniel J; Corona-Strauss, Farah I

    2015-08-01

    A classical objective measure for binaural fusion at the brainstem level is the so-called β-wave of the binaural interaction component (BIC) in the auditory brainstem response (ABR). However, in some cases it appeared that a reliable detection of this component still remains a challenge. In this study, we investigate the wavelet phase synchronization stability (WPSS) of ABR data for the analysis of binaural fusion and compare it to the BIC. In particular, we examine the impact of monaural nonlinear frequency compression on binaural fusion. As the auditory system is tonotopically organized, an interaural frequency mismatch caused by monaural frequency compression could negatively effect binaural fusion. In this study, only few subjects showed a detectable β-wave and in most cases only for low ITDs. However, we present a novel objective measure for binaural fusion that outperforms the current state-of-the-art technique (BIC): the WPSS analysis showed a significant difference between the phase stability of the sum of the monaurally evoked responses and the phase stability of the binaurally evoked ABR. This difference could be an indicator for binaural fusion in the brainstem. Furthermore, we observed that monaural frequency compression could indeed effect binaural fusion, as the WPSS results for this condition vary strongly from the results obtained without frequency compression.

  7. Crystallographic phases in heavy rare earth metals under megabar pressures

    NASA Astrophysics Data System (ADS)

    Samudrala, G. K.; Vohra, Y. K.

    2012-07-01

    Experiments aimed at understanding the crystallographic phases of heavy rare earth metals were carried out in a diamond anvil cell at the Advanced Photon Source, Argonne National Laboratory. Heavy rare earth metals dysprosium (Dy), holmium (Ho), erbium (Er) and thulium (Tm) were compressed to multi-megabar pressures. The rare earth crystal sequence hcp→Sm-type→dhcp→distorted-fcc (dfcc) is observed in all four elements. Upon further compression, a structural transformation to a monoclinic C2/m phase has been observed. We summarize the results from these experiments and present Rietveld structural refinements on high pressure phases for the specific case of dysprosium.

  8. Evaluation of Subgrid-Scale Models for Large Eddy Simulation of Compressible Flows

    NASA Technical Reports Server (NTRS)

    Blaisdell, Gregory A.

    1996-01-01

    The objective of this project was to evaluate and develop subgrid-scale (SGS) turbulence models for large eddy simulations (LES) of compressible flows. During the first phase of the project results from LES using the dynamic SGS model were compared to those of direct numerical simulations (DNS) of compressible homogeneous turbulence. The second phase of the project involved implementing the dynamic SGS model in a NASA code for simulating supersonic flow over a flat-plate. The model has been successfully coded and a series of simulations has been completed. One of the major findings of the work is that numerical errors associated with the finite differencing scheme used in the code can overwhelm the SGS model and adversely affect the LES results. Attached to this overview are three submitted papers: 'Evaluation of the Dynamic Model for Simulations of Compressible Decaying Isotropic Turbulence'; 'The effect of the formulation of nonlinear terms on aliasing errors in spectral methods'; and 'Large-Eddy Simulation of a Spatially Evolving Compressible Boundary Layer Flow'.

  9. Shear wave pulse compression for dynamic elastography using phase-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Nguyen, Thu-Mai; Song, Shaozhen; Arnal, Bastien; Wong, Emily Y.; Huang, Zhihong; Wang, Ruikang K.; O'Donnell, Matthew

    2014-01-01

    Assessing the biomechanical properties of soft tissue provides clinically valuable information to supplement conventional structural imaging. In the previous studies, we introduced a dynamic elastography technique based on phase-sensitive optical coherence tomography (PhS-OCT) to characterize submillimetric structures such as skin layers or ocular tissues. Here, we propose to implement a pulse compression technique for shear wave elastography. We performed shear wave pulse compression in tissue-mimicking phantoms. Using a mechanical actuator to generate broadband frequency-modulated vibrations (1 to 5 kHz), induced displacements were detected at an equivalent frame rate of 47 kHz using a PhS-OCT. The recorded signal was digitally compressed to a broadband pulse. Stiffness maps were then reconstructed from spatially localized estimates of the local shear wave speed. We demonstrate that a simple pulse compression scheme can increase shear wave detection signal-to-noise ratio (>12 dB gain) and reduce artifacts in reconstructing stiffness maps of heterogeneous media.

  10. Structural phase transitions of (Bi 1$-$xSb x ) 2(Te 1$-$y Se y) 3 compounds under high pressure and the influence of the atomic radius on the compression processes of tetradymites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Jinggeng; Yu, Zhenhai; Hu, Qingyang

    Recently, A 2B 3-type tetradymites have developed into a hot topic in physical and material research fields, where the A and B atoms represent V and VI group elements, respectively. In this study, in situ angle-dispersive X-ray diffraction measurements were performed on Bi 2Te 2Se, BiSbTeSe 2, and Sb 2Te 2Se tetradymites under high pressure. Bi 2Te 2Se transforms from a layered rhombohedral structure (phase I) into 7-fold monoclinic (phase II) and body-centered tetragonal (phase IV) structures at about 8.0 and 14.3 GPa, respectively, without an 8-fold monoclinic structure (phase III) similar to that in Bi 2Te 3. Thus, themore » compression behavior of Bi 2Te 2Se is the same as that of Bi 2Se 3, which could also be obtained from first-principles calculations and in situ high-pressure electrical resistance measurements. Under high pressure, BiSbTeSe 2 and Sb 2Te 2Se undergo similar structural phase transitions to Bi 2Te 2Se, which indicates that the compression process of tellurides can be modulated by doping Se in Te sites. According to these high-pressure investigations of A 2B 3-type tetradymites, the decrease of the B-site atomic radius shrinks the stable pressure range of phase III and expands that of phase II, whereas the decrease of the A-site atomic radius induces a different effect, i.e. expanding the stable pressure range of phase III and shrinking that of phase II. Lastly, the influence of the atomic radius on the compression process of tetradymites is closely related to the chemical composition and the atom arrangement in the quintuple layer.« less

  11. Structural phase transitions of (Bi 1$-$xSb x ) 2(Te 1$-$y Se y) 3 compounds under high pressure and the influence of the atomic radius on the compression processes of tetradymites

    DOE PAGES

    Zhao, Jinggeng; Yu, Zhenhai; Hu, Qingyang; ...

    2016-12-14

    Recently, A 2B 3-type tetradymites have developed into a hot topic in physical and material research fields, where the A and B atoms represent V and VI group elements, respectively. In this study, in situ angle-dispersive X-ray diffraction measurements were performed on Bi 2Te 2Se, BiSbTeSe 2, and Sb 2Te 2Se tetradymites under high pressure. Bi 2Te 2Se transforms from a layered rhombohedral structure (phase I) into 7-fold monoclinic (phase II) and body-centered tetragonal (phase IV) structures at about 8.0 and 14.3 GPa, respectively, without an 8-fold monoclinic structure (phase III) similar to that in Bi 2Te 3. Thus, themore » compression behavior of Bi 2Te 2Se is the same as that of Bi 2Se 3, which could also be obtained from first-principles calculations and in situ high-pressure electrical resistance measurements. Under high pressure, BiSbTeSe 2 and Sb 2Te 2Se undergo similar structural phase transitions to Bi 2Te 2Se, which indicates that the compression process of tellurides can be modulated by doping Se in Te sites. According to these high-pressure investigations of A 2B 3-type tetradymites, the decrease of the B-site atomic radius shrinks the stable pressure range of phase III and expands that of phase II, whereas the decrease of the A-site atomic radius induces a different effect, i.e. expanding the stable pressure range of phase III and shrinking that of phase II. Lastly, the influence of the atomic radius on the compression process of tetradymites is closely related to the chemical composition and the atom arrangement in the quintuple layer.« less

  12. Three-dimensional direct observation of Gouy phase shift in a terajet produced by a dielectric cuboid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen Pham, Hai Huy, E-mail: haihuynguyenpham135@s.ee.es.osaka-u.ac.jp; Hisatake, Shintaro, E-mail: hisatake@ee.es.osaka-u.ac.jp; Nagatsuma, Tadao, E-mail: nagatuma@ee.es.osaka-u.ac.jp

    2016-05-09

    The generation of the terajet at the terahertz (THz) frequency with the capability of subwavelength beam-compression has been attracting increasing research interest, as did the generation of the nanojet at the optical frequency. In particular, a terajet generated from a dielectric cuboid was not previously studied experimentally in the THz region. We here experimentally demonstrate three-dimensional visualizations and characterization of a terajet generated from a dielectric cuboid with a refractive index of n = 1.46 at 125 GHz. The subwavelength compressed beam and the Gouy phase shift phenomena of the terajet are directly observed. It is also found out that a calculation modelmore » of Gouy phase shift based on focused Gaussian beam by a lens cannot explain the Gouy phase shift of compressed beam by the terajet. The intensity enhancement of about 7.4 dB and full width at half maximum of 0.6λ are obtained at the distance 0.5λ from the cuboid.« less

  13. Nucleus incertus inactivation impairs spatial learning and memory in rats.

    PubMed

    Nategh, Mohsen; Nikseresht, Sara; Khodagholi, Fariba; Motamedi, Fereshteh

    2015-02-01

    Nucleus incertus (NI) is a pontine nucleus which releases mainly GABA and relaxin-3 in rats. Its suggested functions include response to stress, arousal, and modulation of hippocampal theta rhythm. Since the role of NI in learning and memory has not been well characterized, therefore the involvement of this nucleus in spatial learning and memory and the aftermath hippocampal levels of c-fos and pCREB were evaluated. NI was targeted by implanting cannula in male rats. For reference memory, NI was inactivated by lidocaine (0.4 μl, 4%) at three stages of acquisition, consolidation and retrieval in Morris water maze paradigm. For working memory, NI was inactivated in acquisition and retrieval phases. Injection of lidocaine prior to the first training session of reference memory significantly increased the distance moved, suggesting that inactivation of NI delays acquisition in this spatial task. Inactivation also interfered with the retrieval phase of spatial reference memory, as the time in target quadrant for lidocaine group was less, and the escape latency was higher compared to the control group. However, no difference was observed in the consolidation phase. In the working memory task, with inter-trial intervals of 75 min, the escape latency was higher when NI was inactivated in the retrieval phase. In addition, c-fos and pCREB/CREB levels decreased in NI-inhibited rats. This study suggests that nucleus incertus might participate in acquisition of spatial reference, and retrieval of both spatial reference and working memory. Further studies should investigate possible roles of NI in the hippocampal plasticity. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Rapid distortion analysis of high speed homogeneous turbulence subject to periodic shear

    DOE PAGES

    Bertsch, Rebecca L.; Girimaji, Sharath S.

    2015-12-30

    The effect of unsteady shear forcing on small perturbation growth in compressible flow is investigated. In particular, flow-thermodynamic field interaction and the resulting effect on the phase-lag between applied shear and Reynolds stress are examined. Simplified linear analysis of the perturbation pressure equation reveals crucial differences between steady and unsteady shear effects. The analytical findings are validated with numerical simulations of inviscid rapid distortion theory (RDT) equations. In contrast to steadily sheared compressible flows, perturbations in the unsteady (periodic) forcing case do not experience an asymptotic growth phase. Further, the resonance growth phenomenon found in incompressible unsteady shear turbulence ismore » absent in the compressible case. Overall, the stabilizing influence of both unsteadiness and compressibility is compounded leading to suppression of all small perturbations. As a result, the underlying mechanisms are explained.« less

  15. Rapid distortion analysis of high speed homogeneous turbulence subject to periodic shear

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertsch, Rebecca L., E-mail: rlb@lanl.gov; Girimaji, Sharath S., E-mail: girimaji@aero.tamu.edu

    2015-12-15

    The effect of unsteady shear forcing on small perturbation growth in compressible flow is investigated. In particular, flow-thermodynamic field interaction and the resulting effect on the phase-lag between applied shear and Reynolds stress are examined. Simplified linear analysis of the perturbation pressure equation reveals crucial differences between steady and unsteady shear effects. The analytical findings are validated with numerical simulations of inviscid rapid distortion theory (RDT) equations. In contrast to steadily sheared compressible flows, perturbations in the unsteady (periodic) forcing case do not experience an asymptotic growth phase. Further, the resonance growth phenomenon found in incompressible unsteady shear turbulence ismore » absent in the compressible case. Overall, the stabilizing influence of both unsteadiness and compressibility is compounded leading to suppression of all small perturbations. The underlying mechanisms are explained.« less

  16. System and method for phase retrieval for radio telescope and antenna control

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H. (Inventor)

    2013-01-01

    Disclosed herein are systems, methods, and non-transitory computer-readable storage media for radio phase retrieval. A system practicing the method gathers first data from radio waves associated with an object observed via a first aperture, gathers second data from radio waves associated with the object observed via an introduced second aperture associated with the first aperture, generates reduced noise data by incoherently subtracting the second data from the first data, and performs phase retrieval for the radio waves by modeling the reduced noise data using a single Fourier transform. The first and second apertures are at different positions, such as side by side. This approach can include determining a value Q which represents a ratio of wavelength times a focal ratio divided by pixel spacing. This information can be used to accurately measure and correct alignment errors or other optical system flaws in the apertures.

  17. Three-dimensional imaging using phase retrieval with two focus planes

    NASA Astrophysics Data System (ADS)

    Ilovitsh, Tali; Ilovitsh, Asaf; Weiss, Aryeh; Meir, Rinat; Zalevsky, Zeev

    2016-03-01

    This work presents a technique for a full 3D imaging of biological samples tagged with gold-nanoparticles (GNPs) using only two images, rather than many images per volume as is currently needed for 3D optical sectioning microscopy. The proposed approach is based on the Gerchberg-Saxton (GS) phase retrieval algorithm. The reconstructed field is free space propagated to all other focus planes using post processing, and the 2D z-stack is merged to create a 3D image of the sample with high fidelity. Because we propose to apply the phase retrieving on nano particles, the regular ambiguities typical to the Gerchberg-Saxton algorithm, are eliminated. In addition, since the method requires the capturing of two images only, it can be suitable for 3D live cell imaging. The proposed concept is presented and validated both on simulated data as well as experimentally.

  18. Image encryption using fingerprint as key based on phase retrieval algorithm and public key cryptography

    NASA Astrophysics Data System (ADS)

    Zhao, Tieyu; Ran, Qiwen; Yuan, Lin; Chi, Yingying; Ma, Jing

    2015-09-01

    In this paper, a novel image encryption system with fingerprint used as a secret key is proposed based on the phase retrieval algorithm and RSA public key algorithm. In the system, the encryption keys include the fingerprint and the public key of RSA algorithm, while the decryption keys are the fingerprint and the private key of RSA algorithm. If the users share the fingerprint, then the system will meet the basic agreement of asymmetric cryptography. The system is also applicable for the information authentication. The fingerprint as secret key is used in both the encryption and decryption processes so that the receiver can identify the authenticity of the ciphertext by using the fingerprint in decryption process. Finally, the simulation results show the validity of the encryption scheme and the high robustness against attacks based on the phase retrieval technique.

  19. Fourier phase retrieval with a single mask by Douglas-Rachford algorithms.

    PubMed

    Chen, Pengwen; Fannjiang, Albert

    2018-05-01

    The Fourier-domain Douglas-Rachford (FDR) algorithm is analyzed for phase retrieval with a single random mask. Since the uniqueness of phase retrieval solution requires more than a single oversampled coded diffraction pattern, the extra information is imposed in either of the following forms: 1) the sector condition on the object; 2) another oversampled diffraction pattern, coded or uncoded. For both settings, the uniqueness of projected fixed point is proved and for setting 2) the local, geometric convergence is derived with a rate given by a spectral gap condition. Numerical experiments demonstrate global, power-law convergence of FDR from arbitrary initialization for both settings as well as for 3 or more coded diffraction patterns without oversampling. In practice, the geometric convergence can be recovered from the power-law regime by a simple projection trick, resulting in highly accurate reconstruction from generic initialization.

  20. Three dimensional single molecule localization using a phase retrieved pupilfunction

    PubMed Central

    Liu, Sheng; Kromann, Emil B.; Krueger, Wesley D.; Bewersdorf, Joerg; Lidke, Keith A.

    2013-01-01

    Localization-based superresolution imaging is dependent on finding the positions of individualfluorophores in a sample by fitting the observed single-molecule intensity pattern to the microscopepoint spread function (PSF). For three-dimensional imaging, system-specific aberrations of theoptical system can lead to inaccurate localizations when the PSF model does not account for theseaberrations. Here we describe the use of phase-retrieved pupil functions to generate a more accuratePSF and therefore more accurate 3D localizations. The complex-valued pupil function containsinformation about the system-specific aberrations and can thus be used to generate the PSF forarbitrary defocus. Further, it can be modified to include depth dependent aberrations. We describethe phase retrieval process, the method for including depth dependent aberrations, and a fastfitting algorithm using graphics processing units. The superior localization accuracy of the pupilfunction generated PSF is demonstrated with dual focal plane 3D superresolution imaging ofbiological structures. PMID:24514501

  1. Compressive and flexural strength of high strength phase change mortar

    NASA Astrophysics Data System (ADS)

    Qiao, Qingyao; Fang, Changle

    2018-04-01

    High-strength cement produces a lot of hydration heat when hydrated, it will usually lead to thermal cracks. Phase change materials (PCM) are very potential thermal storage materials. Utilize PCM can help reduce the hydration heat. Research shows that apply suitable amount of PCM has a significant effect on improving the compressive strength of cement mortar, and can also improve the flexural strength to some extent.

  2. Time-dependence of the alpha to epsilon phase transformation in iron

    DOE PAGES

    Smith, R. F.; Eggert, J. H.; Swift, D. C.; ...

    2013-12-11

    Here, iron was ramp-compressed over timescales of 3 ≤ t(ns) ≤ 300 to study the time-dependence of the α→ε (bcc→hcp) phase transformation. Onset stresses (σ α→ε) for the transformation ~14.8-38.4 GPa were determined through laser and magnetic ramp-compression techniques where the transition strain-rate was varied between 10 6 ≤more » $$\\dot{μ}$$ α→ε(s ₋1) ≤ 5×10 8. We find σ α→ε= 10.8 + 0.55 ln($$\\dot{μ}$$ α→ε) for $$\\dot{μ}$$ α→ε < 10 6/s and σ α→ε= 1.15($$\\dot{μ}$$ α→ε) 0.18 for $$\\dot{μ}$$ α→ε > 10 6/s. This $$\\dot{μ}$$ response is quite similar to recent results on incipient plasticity in Fe suggesting that under high rate ramp compression the α→ε phase transition and plastic deformation occur through similar mechanisms, e.g., the rate limiting step for $$\\dot{μ}$$ > 10 6/s is due to phonon scattering from defects moving to relieve strain. We show that over-pressurization of equilibrium phase boundaries is a common feature exhibited under high strain-rate compression of many materials encompassing many orders of magnitude of strain-rate.« less

  3. The influence of scenario-based training and real-time audiovisual feedback on out-of-hospital cardiopulmonary resuscitation quality and survival from out-of-hospital cardiac arrest.

    PubMed

    Bobrow, Bentley J; Vadeboncoeur, Tyler F; Stolz, Uwe; Silver, Annemarie E; Tobin, John M; Crawford, Scott A; Mason, Terence K; Schirmer, Jerome; Smith, Gary A; Spaite, Daniel W

    2013-07-01

    We assess whether an initiative to optimize out-of-hospital provider cardiopulmonary resuscitation (CPR) quality is associated with improved CPR quality and increased survival from out-of-hospital cardiac arrest. This was a before-after study of consecutive adult out-of-hospital cardiac arrest. Data were obtained from out-of-hospital forms and defibrillators. Phase 1 included 18 months with real-time audiovisual feedback disabled (October 2008 to March 2010). Phase 2 included 16 months (May 2010 to September 2011) after scenario-based training of 373 professional rescuers and real-time audiovisual feedback enabled. The effect of interventions on survival to hospital discharge was assessed with multivariable logistic regression. Multiple imputation of missing data was used to analyze the effect of interventions on CPR quality. Analysis included 484 out-of-hospital cardiac arrest patients (phase 1 232; phase 2 252). Median age was 68 years (interquartile range 56-79); 66.5% were men. CPR quality measures improved significantly from phase 1 to phase 2: Mean chest compression rate decreased from 128 to 106 chest compressions per minute (difference -23 chest compressions; 95% confidence interval [CI] -26 to -19 chest compressions); mean chest compression depth increased from 1.78 to 2.15 inches (difference 0.38 inches; 95% CI 0.28 to 0.47 inches); median chest compression fraction increased from 66.2% to 83.7% (difference 17.6%; 95% CI 15.0% to 20.1%); median preshock pause decreased from 26.9 to 15.5 seconds (difference -11.4 seconds; 95% CI -15.7 to -7.2 seconds), and mean ventilation rate decreased from 11.7 to 9.5/minute (difference -2.2/minute; 95% CI -3.9 to -0.5/minute). All-rhythms survival increased from phase 1 to phase 2 (20/231, 8.7% versus 35/252, 13.9%; difference 5.2%; 95% CI -0.4% to 10.8%), with an adjusted odds ratio of 2.72 (95% CI 1.15 to 6.41), controlling for initial rhythm, witnessed arrest, age, minimally interrupted cardiac resuscitation protocol compliance, and provision of therapeutic hypothermia. Witnessed arrests/shockable rhythms survival was 26.3% (15/57) for phase 1 and 55.6% (20/36) for phase 2 (difference 29.2%; 95% CI 9.4% to 49.1%). Implementation of resuscitation training combined with real-time audiovisual feedback was independently associated with improved CPR quality, an increase in survival, and favorable functional outcomes after out-of-hospital cardiac arrest. Copyright © 2013 American College of Emergency Physicians. Published by Mosby, Inc. All rights reserved.

  4. Columnar aerosol properties over oceans by combining surface and aircraft measurements: sensitivity analysis.

    PubMed

    Zhang, T; Gordon, H R

    1997-04-20

    We report a sensitivity analysis for the algorithm presented by Gordon and Zhang [Appl. Opt. 34, 5552 (1995)] for inverting the radiance exiting the top and bottom of the atmosphere to yield the aerosol-scattering phase function [P(?)] and single-scattering albedo (omega(0)). The study of the algorithm's sensitivity to radiometric calibration errors, mean-zero instrument noise, sea-surface roughness, the curvature of the Earth's atmosphere, the polarization of the light field, and incorrect assumptions regarding the vertical structure of the atmosphere, indicates that the retrieved omega(0) has excellent stability even for very large values (~2) of the aerosol optical thickness; however, the error in the retrieved P(?) strongly depends on the measurement error and on the assumptions made in the retrieval algorithm. The retrieved phase functions in the blue are usually poor compared with those in the near infrared.

  5. Leaf cuticle topography retrieved by using fringe projection

    NASA Astrophysics Data System (ADS)

    Martínez, Amalia; Rayas, J. A.; Cordero, Raúl R.; Balieiro, Daniela; Labbe, Fernando

    2012-02-01

    The combination (often referred to as phase-stepping profilometry, PSP) of the fringe projection technique and the phase-stepping method allowed us to retrieve topographic maps of cuticles isolated from the abaxial surface of leaves; these were in turn sampled from an apple tree ( Malus domestica) of the variety Golden Delicious. The topographic maps enabled us to assess the natural features on the illuminated surface and also to detect the whole-field spatial variations in the thickness of the cuticle. Most of our attention was paid to retrieve the highly-resolved elevation information from the cuticle surface, which included the trace (in the order of tens of micrometers) left by ribs and veins. We expect that the PSP application for retrieving the cuticle topography will facilitate further studies on the dispersion and coverage of state-of-the-art agrochemical compounds meant to improve the defending properties of the cuticle. Methodological details are provided below.

  6. Robust phase retrieval of complex-valued object in phase modulation by hybrid Wirtinger flow method

    NASA Astrophysics Data System (ADS)

    Wei, Zhun; Chen, Wen; Yin, Tiantian; Chen, Xudong

    2017-09-01

    This paper presents a robust iterative algorithm, known as hybrid Wirtinger flow (HWF), for phase retrieval (PR) of complex objects from noisy diffraction intensities. Numerical simulations indicate that the HWF method consistently outperforms conventional PR methods in terms of both accuracy and convergence rate in multiple phase modulations. The proposed algorithm is also more robust to low oversampling ratios, loose constraints, and noisy environments. Furthermore, compared with traditional Wirtinger flow, sample complexity is largely reduced. It is expected that the proposed HWF method will find applications in the rapidly growing coherent diffractive imaging field for high-quality image reconstruction with multiple modulations, as well as other disciplines where PR is needed.

  7. Noise robustness of a combined phase retrieval and reconstruction method for phase-contrast tomography.

    PubMed

    Kongskov, Rasmus Dalgas; Jørgensen, Jakob Sauer; Poulsen, Henning Friis; Hansen, Per Christian

    2016-04-01

    Classical reconstruction methods for phase-contrast tomography consist of two stages: phase retrieval and tomographic reconstruction. A novel algebraic method combining the two was suggested by Kostenko et al. [Opt. Express21, 12185 (2013)OPEXFF1094-408710.1364/OE.21.012185], and preliminary results demonstrated improved reconstruction compared with a given two-stage method. Using simulated free-space propagation experiments with a single sample-detector distance, we thoroughly compare the novel method with the two-stage method to address limitations of the preliminary results. We demonstrate that the novel method is substantially more robust toward noise; our simulations point to a possible reduction in counting times by an order of magnitude.

  8. Ultra-high resolution coded wavefront sensor.

    PubMed

    Wang, Congli; Dun, Xiong; Fu, Qiang; Heidrich, Wolfgang

    2017-06-12

    Wavefront sensors and more general phase retrieval methods have recently attracted a lot of attention in a host of application domains, ranging from astronomy to scientific imaging and microscopy. In this paper, we introduce a new class of sensor, the Coded Wavefront Sensor, which provides high spatio-temporal resolution using a simple masked sensor under white light illumination. Specifically, we demonstrate megapixel spatial resolution and phase accuracy better than 0.1 wavelengths at reconstruction rates of 50 Hz or more, thus opening up many new applications from high-resolution adaptive optics to real-time phase retrieval in microscopy.

  9. Compressible bubbles in Stokes flow

    NASA Astrophysics Data System (ADS)

    Crowdy, Darren G.

    2003-02-01

    The problem of a two-dimensional inviscid compressible bubble evolving in Stokes flow is considered. By generalizing the work of Tanveer & Vasconcelos (1995) it is shown that for certain classes of initial condition the quasi-steady free boundary problem for the bubble shape evolution is reducible to a finite set of coupled nonlinear ordinary differential equations, the form of which depends on the equation of state governing the relationship between the bubble pressure and its area. Recent numerical calculations by Pozrikidis (2001) using boundary integral methods are retrieved and extended. If the ambient pressures are small enough, it is shown that bubbles can expand significantly. It is also shown that a bubble evolving adiabatically is less likely to expand than an isothermal bubble.

  10. A comprehensive simulation framework for imaging single particles and biomolecules at the European X-ray Free-Electron Laser

    NASA Astrophysics Data System (ADS)

    Yoon, Chun Hong; Yurkov, Mikhail V.; Schneidmiller, Evgeny A.; Samoylova, Liubov; Buzmakov, Alexey; Jurek, Zoltan; Ziaja, Beata; Santra, Robin; Loh, N. Duane; Tschentscher, Thomas; Mancuso, Adrian P.

    2016-04-01

    The advent of newer, brighter, and more coherent X-ray sources, such as X-ray Free-Electron Lasers (XFELs), represents a tremendous growth in the potential to apply coherent X-rays to determine the structure of materials from the micron-scale down to the Angstrom-scale. There is a significant need for a multi-physics simulation framework to perform source-to-detector simulations for a single particle imaging experiment, including (i) the multidimensional simulation of the X-ray source; (ii) simulation of the wave-optics propagation of the coherent XFEL beams; (iii) atomistic modelling of photon-material interactions; (iv) simulation of the time-dependent diffraction process, including incoherent scattering; (v) assembling noisy and incomplete diffraction intensities into a three-dimensional data set using the Expansion-Maximisation-Compression (EMC) algorithm and (vi) phase retrieval to obtain structural information. We demonstrate the framework by simulating a single-particle experiment for a nitrogenase iron protein using parameters of the SPB/SFX instrument of the European XFEL. This exercise demonstrably yields interpretable consequences for structure determination that are crucial yet currently unavailable for experiment design.

  11. Fast angular synchronization for phase retrieval via incomplete information

    NASA Astrophysics Data System (ADS)

    Viswanathan, Aditya; Iwen, Mark

    2015-08-01

    We consider the problem of recovering the phase of an unknown vector, x ∈ ℂd, given (normalized) phase difference measurements of the form xjxk*/|xjxk*|, j,k ∈ {1,...,d}, and where xj* denotes the complex conjugate of xj. This problem is sometimes referred to as the angular synchronization problem. This paper analyzes a linear-time-in-d eigenvector-based angular synchronization algorithm and studies its theoretical and numerical performance when applied to a particular class of highly incomplete and possibly noisy phase difference measurements. Theoretical results are provided for perfect (noiseless) measurements, while numerical simulations demonstrate the robustness of the method to measurement noise. Finally, we show that this angular synchronization problem and the specific form of incomplete phase difference measurements considered arise in the phase retrieval problem - where we recover an unknown complex vector from phaseless (or magnitude) measurements.

  12. Computational wavelength resolution for in-line lensless holography: phase-coded diffraction patterns and wavefront group-sparsity

    NASA Astrophysics Data System (ADS)

    Katkovnik, Vladimir; Shevkunov, Igor; Petrov, Nikolay V.; Egiazarian, Karen

    2017-06-01

    In-line lensless holography is considered with a random phase modulation at the object plane. The forward wavefront propagation is modelled using the Fourier transform with the angular spectrum transfer function. The multiple intensities (holograms) recorded by the sensor are random due to the random phase modulation and noisy with Poissonian noise distribution. It is shown by computational experiments that high-accuracy reconstructions can be achieved with resolution going up to the two thirds of the wavelength. With respect to the sensor pixel size it is a super-resolution with a factor of 32. The algorithm designed for optimal superresolution phase/amplitude reconstruction from Poissonian data is based on the general methodology developed for phase retrieval with a pixel-wise resolution in V. Katkovnik, "Phase retrieval from noisy data based on sparse approximation of object phase and amplitude", http://www.cs.tut.fi/ lasip/DDT/index3.html.

  13. Color image encryption by using Yang-Gu mixture amplitude-phase retrieval algorithm in gyrator transform domain and two-dimensional Sine logistic modulation map

    NASA Astrophysics Data System (ADS)

    Sui, Liansheng; Liu, Benqing; Wang, Qiang; Li, Ye; Liang, Junli

    2015-12-01

    A color image encryption scheme is proposed based on Yang-Gu mixture amplitude-phase retrieval algorithm and two-coupled logistic map in gyrator transform domain. First, the color plaintext image is decomposed into red, green and blue components, which are scrambled individually by three random sequences generated by using the two-dimensional Sine logistic modulation map. Second, each scrambled component is encrypted into a real-valued function with stationary white noise distribution in the iterative amplitude-phase retrieval process in the gyrator transform domain, and then three obtained functions are considered as red, green and blue channels to form the color ciphertext image. Obviously, the ciphertext image is real-valued function and more convenient for storing and transmitting. In the encryption and decryption processes, the chaotic random phase mask generated based on logistic map is employed as the phase key, which means that only the initial values are used as private key and the cryptosystem has high convenience on key management. Meanwhile, the security of the cryptosystem is enhanced greatly because of high sensitivity of the private keys. Simulation results are presented to prove the security and robustness of the proposed scheme.

  14. Involvement of hippocampal NMDA receptors in encoding and consolidation, but not retrieval, processes of spontaneous object location memory in rats.

    PubMed

    Yamada, Kazuo; Arai, Misaki; Suenaga, Toshiko; Ichitani, Yukio

    2017-07-28

    The hippocampus is thought to be involved in object location recognition memory, yet the contribution of hippocampal NMDA receptors to the memory processes, such as encoding, retention and retrieval, is unknown. First, we confirmed that hippocampal infusion of a competitive NMDA receptor antagonist, AP5 (2-amino-5-phosphonopentanoic acid, 20-40nmol), impaired performance of spontaneous object location recognition test but not that of novel object recognition test in Wistar rats. Next, the effects of hippocampal AP5 treatment on each process of object location recognition memory were examined with three different injection times using a 120min delay-interposed test: 15min before the sample phase (Time I), immediately after the sample phase (Time II), and 15min before the test phase (Time III). The blockade of hippocampal NMDA receptors before and immediately after the sample phase, but not before the test phase, markedly impaired performance of object location recognition test, suggesting that hippocampal NMDA receptors play an important role in encoding and consolidation/retention, but not retrieval, of spontaneous object location memory. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Complex dark-field contrast and its retrieval in x-ray phase contrast imaging implemented with Talbot interferometry.

    PubMed

    Yang, Yi; Tang, Xiangyang

    2014-10-01

    Under the existing theoretical framework of x-ray phase contrast imaging methods implemented with Talbot interferometry, the dark-field contrast refers to the reduction in interference fringe visibility due to small-angle x-ray scattering of the subpixel microstructures of an object to be imaged. This study investigates how an object's subpixel microstructures can also affect the phase of the intensity oscillations. Instead of assuming that the object's subpixel microstructures distribute in space randomly, the authors' theoretical derivation starts by assuming that an object's attenuation projection and phase shift vary at a characteristic size that is not smaller than the period of analyzer grating G₂ and a characteristic length dc. Based on the paraxial Fresnel-Kirchhoff theory, the analytic formulae to characterize the zeroth- and first-order Fourier coefficients of the x-ray irradiance recorded at each detector cell are derived. Then the concept of complex dark-field contrast is introduced to quantify the influence of the object's microstructures on both the interference fringe visibility and the phase of intensity oscillations. A method based on the phase-attenuation duality that holds for soft tissues and high x-ray energies is proposed to retrieve the imaginary part of the complex dark-field contrast for imaging. Through computer simulation study with a specially designed numerical phantom, they evaluate and validate the derived analytic formulae and the proposed retrieval method. Both theoretical analysis and computer simulation study show that the effect of an object's subpixel microstructures on x-ray phase contrast imaging method implemented with Talbot interferometry can be fully characterized by a complex dark-field contrast. The imaginary part of complex dark-field contrast quantifies the influence of the object's subpixel microstructures on the phase of intensity oscillations. Furthermore, at relatively high energies, for soft tissues it can be retrieved for imaging with a method based on the phase-attenuation duality. The analytic formulae derived in this work to characterize the complex dark-field contrast in x-ray phase contrast imaging method implemented with Talbot interferometry are of significance, which may initiate more activities in the research and development of x-ray differential phase contrast imaging for extensive biomedical applications.

  16. Binary image encryption in a joint transform correlator scheme by aid of run-length encoding and QR code

    NASA Astrophysics Data System (ADS)

    Qin, Yi; Wang, Zhipeng; Wang, Hongjuan; Gong, Qiong

    2018-07-01

    We propose a binary image encryption method in joint transform correlator (JTC) by aid of the run-length encoding (RLE) and Quick Response (QR) code, which enables lossless retrieval of the primary image. The binary image is encoded with RLE to obtain the highly compressed data, and then the compressed binary image is further scrambled using a chaos-based method. The compressed and scrambled binary image is then transformed into one QR code that will be finally encrypted in JTC. The proposed method successfully, for the first time to our best knowledge, encodes a binary image into a QR code with the identical size of it, and therefore may probe a new way for extending the application of QR code in optical security. Moreover, the preprocessing operations, including RLE, chaos scrambling and the QR code translation, append an additional security level on JTC. We present digital results that confirm our approach.

  17. Neural bases of prospective memory: a meta-analysis and the "Attention to Delayed Intention" (AtoDI) model.

    PubMed

    Cona, Giorgia; Scarpazza, Cristina; Sartori, Giuseppe; Moscovitch, Morris; Bisiacchi, Patrizia Silvia

    2015-05-01

    Remembering to realize delayed intentions is a multi-phase process, labelled as prospective memory (PM), and involves a plurality of neural networks. The present study utilized the activation likelihood estimation method of meta-analysis to provide a complete overview of the brain regions that are consistently activated in each PM phase. We formulated the 'Attention to Delayed Intention' (AtoDI) model to explain the neural dissociation found between intention maintenance and retrieval phases. The dorsal frontoparietal network is involved mainly in the maintenance phase and seems to mediate the strategic monitoring processes, such as the allocation of top-down attention both towards external stimuli, to monitor for the occurrence of the PM cues, and to internal memory contents, to maintain the intention active in memory. The ventral frontoparietal network is recruited in the retrieval phase and might subserve the bottom-up attention captured externally by the PM cues and, internally, by the intention stored in memory. Together with other brain regions (i.e., insula and posterior cingulate cortex), the ventral frontoparietal network would support the spontaneous retrieval processes. The functional contribution of the anterior prefrontal cortex is discussed extensively for each PM phase. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Effect of a core-softened O-O interatomic interaction on the shock compression of fused silica

    NASA Astrophysics Data System (ADS)

    Izvekov, Sergei; Weingarten, N. Scott; Byrd, Edward F. C.

    2018-03-01

    Isotropic soft-core potentials have attracted considerable attention due to their ability to reproduce thermodynamic, dynamic, and structural anomalies observed in tetrahedral network-forming compounds such as water and silica. The aim of the present work is to assess the relevance of effective core-softening pertinent to the oxygen-oxygen interaction in silica to the thermodynamics and phase change mechanisms that occur in shock compressed fused silica. We utilize the MD simulation method with a recently published numerical interatomic potential derived from an ab initio MD simulation of liquid silica via force-matching. The resulting potential indicates an effective shoulder-like core-softening of the oxygen-oxygen repulsion. To better understand the role of the core-softening we analyze two derivative force-matching potentials in which the soft-core is replaced with a repulsive core either in the three-body potential term or in all the potential terms. Our analysis is further augmented by a comparison with several popular empirical models for silica that lack an explicit core-softening. The first outstanding feature of shock compressed glass reproduced with the soft-core models but not with the other models is that the shock compression values at pressures above 20 GPa are larger than those observed under hydrostatic compression (an anomalous shock Hugoniot densification). Our calculations indicate the occurrence of a phase transformation along the shock Hugoniot that we link to the O-O repulsion core-softening. The phase transformation is associated with a Hugoniot temperature reversal similar to that observed experimentally. With the soft-core models, the phase change is an isostructural transformation between amorphous polymorphs with no associated melting event. We further examine the nature of the structural transformation by comparing it to the Hugoniot calculations for stishovite. For stishovite, the Hugoniot exhibits temperature reversal and associated phase transformation, which is a transition to a disordered phase (liquid or dense amorphous), regardless of whether or not the model accounts for core-softening. The onset pressures of the transformation predicted by different models show a wide scatter within 60-110 GPa; for potentials without core-softening, the onset pressure is much higher than 110 GPa. Our results show that the core-softening of the interaction in the oxygen subsystem of silica is the key mechanism for the structural transformation and thermodynamics in shock compressed silica. These results may provide an important contribution to a unified picture of anomalous response to shock compression observed in other network-forming oxides and single-component systems with core-softening of effective interactions.

  19. Methods for coherent lensless imaging and X-ray wavefront measurements

    NASA Astrophysics Data System (ADS)

    Guizar Sicairos, Manuel

    X-ray diffractive imaging is set apart from other high-resolution imaging techniques (e.g. scanning electron or atomic force microscopy) for its high penetration depth, which enables tomographic 3D imaging of thick samples and buried structures. Furthermore, using short x-ray pulses, it enables the capability to take ultrafast snapshots, giving a unique opportunity to probe nanoscale dynamics at femtosecond time scales. In this thesis we present improvements to phase retrieval algorithms, assess their performance through numerical simulations, and develop new methods for both imaging and wavefront measurement. Building on the original work by Faulkner and Rodenburg, we developed an improved reconstruction algorithm for phase retrieval with transverse translations of the object relative to the illumination beam. Based on gradient-based nonlinear optimization, this algorithm is capable of estimating the object, and at the same time refining the initial knowledge of the incident illumination and the object translations. The advantages of this algorithm over the original iterative transform approach are shown through numerical simulations. Phase retrieval has already shown substantial success in wavefront sensing at optical wavelengths. Although in principle the algorithms can be used at any wavelength, in practice the focus-diversity mechanism that makes optical phase retrieval robust is not practical to implement for x-rays. In this thesis we also describe the novel application of phase retrieval with transverse translations to the problem of x-ray wavefront sensing. This approach allows the characterization of the complex-valued x-ray field in-situ and at-wavelength and has several practical and algorithmic advantages over conventional focused beam measurement techniques. A few of these advantages include improved robustness through diverse measurements, reconstruction from far-field intensity measurements only, and significant relaxation of experimental requirements over other beam characterization approaches. Furthermore, we show that a one-dimensional version of this technique can be used to characterize an x-ray line focus produced by a cylindrical focusing element. We provide experimental demonstrations of the latter at hard x-ray wavelengths, where we have characterized the beams focused by a kinoform lens and an elliptical mirror. In both experiments the reconstructions exhibited good agreement with independent measurements, and in the latter a small mirror misalignment was inferred from the phase retrieval reconstruction. These experiments pave the way for the application of robust phase retrieval algorithms for in-situ alignment and performance characterization of x-ray optics for nanofocusing. We also present a study on how transverse translations help with the well-known uniqueness problem of one-dimensional phase retrieval. We also present a novel method for x-ray holography that is capable of reconstructing an image using an off-axis extended reference in a non-iterative computation, greatly generalizing an earlier approach by Podorov et al. The approach, based on the numerical application of derivatives on the field autocorrelation, was developed from first mathematical principles. We conducted a thorough theoretical study to develop technical and intuitive understanding of this technique and derived sufficient separation conditions required for an artifact-free reconstruction. We studied the effects of missing information in the Fourier domain, and of an imperfect reference, and we provide a signal-to-noise ratio comparison with the more traditional approach of Fourier transform holography. We demonstrated this new holographic approach through proof-of-principle optical experiments and later experimentally at soft x-ray wavelengths, where we compared its performance to Fourier transform holography, iterative phase retrieval and state-of-the-art zone-plate x-ray imaging techniques (scanning and full-field). Finally, we present a demonstration of the technique using a single 20 fs pulse from a high-harmonic table-top source. Holography with an extended reference is shown to provide fast, good quality images that are robust to noise and artifacts that arise from missing information due to a beam stop. (Abstract shortened by UMI.)

  20. The Effects of Emotional Visual Context on the Encoding and Retrieval of Body Odor Information.

    PubMed

    Parma, Valentina; Macedo, Stephanie; Rocha, Marta; Alho, Laura; Ferreira, Jacqueline; Soares, Sandra C

    2018-04-01

    Conditions during information encoding and retrieval are known to influence the sensory material stored and its recapitulation. However, little is known about such processes in olfaction. Here, we capitalized on the uniqueness of body odors (BOs) which, similar to fingerprints, allow for the identification of a specific person, by associating their presentation to a negative or a neutral emotional context. One hundred twenty-five receivers (68 F) were exposed to a male BO while watching either criminal or neutral videos (encoding phase) and were subsequently asked to recognize the target BO within either a congruent or an incongruent visual context (retrieval phase). The results showed that criminal videos were rated as more vivid, unpleasant, and arousing than neutral videos both at encoding and retrieval. Moreover, in terms of BO ratings, we found that odor intensity and arousal allow to distinguish the target from the foils when congruent criminal information is presented at encoding and retrieval. Finally, the accuracy performance was not significantly different from chance level for either condition. These findings provide insights on how olfactory memories are processed in emotional situations.

  1. Above-Cloud Precipitable Water Retrievals using the MODIS 0.94 micron Band with Applications for Multi-Layer Cloud Detection

    NASA Technical Reports Server (NTRS)

    Platnick, S.; Wind, G.

    2004-01-01

    In order to perform satellite retrievals of cloud properties, it is important to account for the effect of the above-cloud atmosphere on the observations. The solar bands used in the operational MODIS Terra and Aqua cloud optical and microphysical algorithms (visible, NIR, and SWIR spectral windows) are primarily affected by water vapor, and to a lesser extent by well-mixed gases. For water vapor, the above-cloud column amount, or precipitable water, provides adequate information for an atmospheric correction; details of the vertical vapor distribution are not typically necessary for the level of correction required. Cloud-top pressure has a secondary effect due to pressure broadening influences. For well- mixed gases, cloud-top pressure is also required for estimates of above-cloud abundances. We present a method for obtaining above-cloud precipitable water over dark Ocean surfaces using the MODIS 0.94 pm vapor absorption band. The retrieval includes an iterative procedure for establishing cloud-top temperature and pressure, and is useful for both single layer water and ice clouds. Knowledge of cloud thermodynamic phase is fundamental in retrieving cloud optical and microphysical properties. However, in cases of optically thin cirrus overlapping lower water clouds, the concept of a single unique phase is ill- defined and depends, at least, on the spectral region of interest. We will present a method for multi-layer and multi-phase cloud detection which uses above-cloud precipitable water retrievals along with several existing MODIS operational cloud products (cloud-top pressure derived from a C02 slicing algorithm, IR and SWIR phase retrievals). Results are catagorized by whether the radiative signature in the MODIS solar bands is primarily that of a water cloud with ice cloud contamination, or visa-versa. Examples in polar and mid-latitude regions will be shown.

  2. Novel concepts for the compression of large volumes of carbon dioxide-phase III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, J. Jeffrey; Allison, Timothy C.; Evans, Neal D.

    In the effort to reduce the release of CO 2 greenhouse gases to the atmosphere, sequestration of CO 2 from Integrated Gasification Combined Cycle (IGCC) and Oxy-Fuel power plants is being pursued. This approach, however, requires significant compression power to boost the pressure to typical pipeline levels. The penalty can be as high as 8-12% on a typical IGCC plant. The goal of this research is to reduce this penalty through novel compression concepts and integration with existing IGCC processes. The primary objective of the study of novel CO 2 compression concepts is to reliably boost the pressure of COmore » 2 to pipeline pressures with the minimal amount of energy required. Fundamental thermodynamics were studied to explore pressure rise in both liquid and gaseous states. For gaseous compression, the project investigated novel methods to compress CO 2 while removing the heat of compression internal to the compressor. The highpressure ratio, due to the delivery pressure of the CO 2 for enhanced oil recovery, results in significant heat of compression. Since less energy is required to boost the pressure of a cooler gas stream, both upstream and inter-stage cooling is desirable. While isothermal compression has been utilized in some services, it has not been optimized for the IGCC environment. Phase I of this project determined the optimum compressor configuration and developed technology concepts for internal heat removal. Other compression options using liquefied CO 2 and cryogenic pumping were explored as well. Preliminary analysis indicated up to a 35% reduction in power is possible with the new concepts being considered. In the Phase II program, two experimental test rigs were developed to investigate the two concepts further. A new pump loop facility was constructed to qualify a cryogenic turbopump for use on liquid CO 2 . Also, an internally cooled compressor diaphragm was developed and tested in a closed loop compressor facility using CO 2 . Both test programs successfully demonstrated good performance and mechanical behavior. In Phase III, a pilot compression plant consisting of a multi-stage centrifugal compressor with cooled diaphragm technology has been designed, constructed, and tested. Comparative testing of adiabatic and cooled tests at equivalent inlet conditions shows that the cooled diaphragms reduce power consumption by 3-8% when the compressor is operated as a back-to-back unit and by up to 9% when operated as a straight-though compressor with no intercooler. The power savings, heat exchanger effectiveness, and temperature drops for the cooled diaphragm were all slightly higher than predicted values but showed the same trends.« less

  3. Corrugated Waveguide Mode Content Analysis Using Irradiance Moments

    PubMed Central

    Jawla, Sudheer K.; Shapiro, Michael A.; Idei, Hiroshi; Temkin, Richard J.

    2015-01-01

    We present a novel, relatively simple method for determining the mode content of the linearly polarized modes of a corrugated waveguide using the moments of the intensity pattern of the field radiated from the end of the waveguide. This irradiance moment method is based on calculating the low-order irradiance moments, using measured intensity profiles only, of the radiated field from the waveguide aperture. Unlike the phase retrieval method, this method does not use or determine the phase distribution at the waveguide aperture. The new method was benchmarked numerically by comparison with sample mode mixtures. The results predict less than ±0.7% error bar in the retrieval of the mode content. The method was also tested using high-resolution experimental data from beams radiated from 63.5 mm and 19 mm corrugated waveguides at 170 and 250 GHz, respectively. The results showed a very good agreement of the mode content retrieved using the irradiance moment method versus the phase retrieval technique. The irradiance moment method is most suitable for cases where the modal power is primarily in the fundamental HE11 mode, with <8% of the power in high-order modes. PMID:25821260

  4. Electromechanical Apparatus Measures Residual Stress

    NASA Technical Reports Server (NTRS)

    Chern, Engmin J.; Flom, Yury

    1993-01-01

    Nondestructive test exploits relationship between stress and eddy-current-probe resistance. Yields data on residual stress or strain in metal tension/compression specimen (stress or strain remaining in specimen when no stress applied from without). Apparatus is assembly of commercial equipment: tension-or-compression testing machine, eddy-current probe, impedance gain-and-phase analyzer measuring impedance of probe coil, and desktop computer, which controls other equipment and processes data received from impedance gain-and-phase analyzer.

  5. Lone-pair interactions and photodissociation of compressed nitrogen trifluoride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurzydłowski, D., E-mail: dkurzydlowski@uw.edu.pl; Department of Biogeochemistry, Max Planck Institute for Chemistry, 55128 Mainz; Wang, H. B.

    2014-08-14

    High-pressure behavior of nitrogen trifluoride (NF{sub 3}) was investigated by Raman and IR spectroscopy at pressures up to 55 GPa and room temperature, as well as by periodic calculations up to 100 GPa. Experimentally, we find three solid-solid phase transitions at 9, 18, and 39.5 GPa. Vibrational spectroscopy indicates that in all observed phases NF{sub 3} remains in the molecular form, in contrast to the behavior of compressed ammonia. This finding is confirmed by density functional theory calculations, which also indicate that the phase transitions of compressed NF{sub 3} are governed by the interplay between lone‑pair interactions and efficient moleculemore » packing. Although nitrogen trifluoride is molecular in the whole pressure range studied, we show that it can be photodissociated by mid-IR laser radiation. This finding paves the way for the use of NF{sub 3} as an oxidizing and fluorinating agent in high-pressure reactions.« less

  6. Enhanced densification under shock compression in porous silicon

    DOE PAGES

    Lane, J. Matthew; Thompson, Aidan Patrick; Vogler, Tracy

    2014-10-27

    Under shock compression, most porous materials exhibit lower densities for a given pressure than that of a full-dense sample of the same material. However, some porous materials exhibit an anomalous, or enhanced, densification under shock compression. The mechanism driving this behavior was not completely determined. We present evidence from atomistic simulation that pure silicon belongs to this anomalous class of materials and demonstrate the associated mechanisms responsible for the effect in porous silicon. Atomistic response indicates that local shear strain in the neighborhood of collapsing pores catalyzes a local solid-solid phase transformation even when bulk pressures are below the thermodynamicmore » phase transformation pressure. This metastable, local, and partial, solid-solid phase transformation, which accounts for the enhanced densification in silicon, is driven by the local stress state near the void, not equilibrium thermodynamics. This mechanism may also explain the phenomenon in other covalently bonded materials.« less

  7. Dynamic XRD, Shock and Static Compression of CaF2

    NASA Astrophysics Data System (ADS)

    Kalita, Patricia; Specht, Paul; Root, Seth; Sinclair, Nicholas; Schuman, Adam; White, Melanie; Cornelius, Andrew; Smith, Jesse; Sinogeikin, Stanislav

    2017-06-01

    The high-pressure behavior of CaF2 is probed with x-ray diffraction (XRD) combined with both dynamic compression, using a two-stage light gas gun, and static compression, using diamond anvil cells. We use XRD to follow the unfolding of a shock-driven, fluorite to cotunnite phase transition, on the timescale of nanoseconds. The dynamic behavior of CaF2 under shock loading is contrasted with that under static compression. This work leverages experimental capabilities at the Advanced Photon Source: dynamic XRD and shock experiments at the Dynamic Compression Sector, as well as XRD and static compression in diamond anvil cell at the High-Pressure Collaborative Access Team. These experiments and cross-platform comparisons, open the door to an unprecedented understanding of equations of state and phase transitions at the microstructural level and at different time scales and will ultimately improve our capability to simulate the behavior of materials at extreme conditions. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  8. Hybrid Architecture Active Wavefront Sensing and Control

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee; Dean, Bruce; Hyde, Tupper

    2010-01-01

    A method was developed for performing relatively high-speed wavefront sensing and control to overcome thermal instabilities in a segmented primary mirror telescope [e.g., James Webb Space Telescope (JWST) at L2], by using the onboard fine guidance sensor (FGS) to minimize expense and complexity. This FGS performs centroiding on a bright star to feed the information to the pointing and control system. The proposed concept is to beam split the image of the guide star (or use a single defocused guide star image) to perform wavefront sensing using phase retrieval techniques. Using the fine guidance sensor star image for guiding and fine phasing eliminates the need for other, more complex ways of achieving very accurate sensing and control that is needed for UV-optical applications. The phase retrieval occurs nearly constantly, so passive thermal stability over fourteen days is not required. Using the FGS as the sensor, one can feed segment update information to actuators on the primary mirror that can update the primary mirror segment fine phasing with this frequency. Because the thermal time constants of the primary mirror are very slow compared to this duration, the mirror will appear extremely stable during observations (to the level of accuracy of the sensing and control). The sensing can use the same phase retrieval techniques as the JWST by employing an additional beam splitter, and having each channel go through a weak lens (one positive and one negative). The channels can use common or separate detectors. Phase retrieval can be performed onboard. The actuation scheme would include a coarse stage able to achieve initial alignment of several millimeters of range (similar to JWST and can use a JWST heritage sensing approach in the science camera) and a fine stage capable of continual updates.

  9. Technical Note: Synchrotron-based high-energy x-ray phase sensitive microtomography for biomedical research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Huiqiang; Wu, Xizeng, E-mail: xwu@uabmc.edu, E-mail: tqxiao@sinap.ac.cn; Xiao, Tiqiao, E-mail: xwu@uabmc.edu, E-mail: tqxiao@sinap.ac.cn

    Purpose: Propagation-based phase-contrast CT (PPCT) utilizes highly sensitive phase-contrast technology applied to x-ray microtomography. Performing phase retrieval on the acquired angular projections can enhance image contrast and enable quantitative imaging. In this work, the authors demonstrate the validity and advantages of a novel technique for high-resolution PPCT by using the generalized phase-attenuation duality (PAD) method of phase retrieval. Methods: A high-resolution angular projection data set of a fish head specimen was acquired with a monochromatic 60-keV x-ray beam. In one approach, the projection data were directly used for tomographic reconstruction. In two other approaches, the projection data were preprocessed bymore » phase retrieval based on either the linearized PAD method or the generalized PAD method. The reconstructed images from all three approaches were then compared in terms of tissue contrast-to-noise ratio and spatial resolution. Results: The authors’ experimental results demonstrated the validity of the PPCT technique based on the generalized PAD-based method. In addition, the results show that the authors’ technique is superior to the direct PPCT technique as well as the linearized PAD-based PPCT technique in terms of their relative capabilities for tissue discrimination and characterization. Conclusions: This novel PPCT technique demonstrates great potential for biomedical imaging, especially for applications that require high spatial resolution and limited radiation exposure.« less

  10. Image inversion analysis of the HST OTA (Hubble Space Telescope Optical Telescope Assembly), phase A

    NASA Technical Reports Server (NTRS)

    Litvak, M. M.

    1991-01-01

    Technical work during September-December 1990 consisted of: (1) analyzing HST point source images obtained from JPL; (2) retrieving phase information from the images by a direct (noniterative) technique; and (3) characterizing the wavefront aberration due to the errors in the Hubble Space Telescope (HST) mirrors, in a preliminary manner. This work was in support of JPL design of compensating optics for the next generation wide-field planetary camera on HST. This digital technique for phase retrieval from pairs of defocused images, is based on the energy transport equation between these image planes. In addition, an end-to-end wave optics routine, based on the JPL Code 5 prescription of the unaberrated HST and WFPC, was derived for output of the reference phase front when mirror error is absent. Also, the Roddier routine unwrapped the retrieved phase by inserting the required jumps of +/- 2(pi) radians for the sake of smoothness. A least-squares fitting routine, insensitive to phase unwrapping, but nonlinear, was used to obtain estimates of the Zernike polynomial coefficients that describe the aberration. The phase results were close to, but higher than, the expected error in conic constant of the primary mirror suggested by the fossil evidence. The analysis of aberration contributed by the camera itself could be responsible for the small discrepancy, but was not verified by analysis.

  11. Compressing interpreted satellite imagery for geographic information systems applications over extensive regions

    USGS Publications Warehouse

    Miller, Stephan W.

    1981-01-01

    A second set of related problems deals with how this format and other representations of spatial entities, such as vector formats for point and line features, can be interrelated for manipulation, retrieval, and analysis by a spatial database management subsystem. Methods have been developed for interrelating areal data sets in the raster format with point and line data in a vector format and these are described.

  12. Compressed quantum simulation of the Ising model.

    PubMed

    Kraus, B

    2011-12-16

    Jozsa et al. [Proc. R. Soc. A 466, 809 2009)] have shown that a match gate circuit running on n qubits can be compressed to a universal quantum computation on log(n)+3 qubits. Here, we show how this compression can be employed to simulate the Ising interaction of a 1D chain consisting of n qubits using a universal quantum computer running on log(n) qubits. We demonstrate how the adiabatic evolution can be realized on this exponentially smaller system and how the magnetization, which displays a quantum phase transition, can be measured. This shows that the quantum phase transition of very large systems can be observed experimentally with current technology. © 2011 American Physical Society

  13. Hanford's Simulated Low Activity Waste Cast Stone Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Young

    2013-08-20

    Cast Stone is undergoing evaluation as the supplemental treatment technology for Hanford’s (Washington) high activity waste (HAW) and low activity waste (LAW). This report will only cover the LAW Cast Stone. The programs used for this simulated Cast Stone were gradient density change, compressive strength, and salt waste form phase identification. Gradient density changes show a favorable outcome by showing uniformity even though it was hypothesized differently. Compressive strength exceeded the minimum strength required by Hanford and greater compressive strength increase seen between the uses of different salt solution The salt waste form phase is still an ongoing process asmore » this time and could not be concluded.« less

  14. Model-based VQ for image data archival, retrieval and distribution

    NASA Technical Reports Server (NTRS)

    Manohar, Mareboyana; Tilton, James C.

    1995-01-01

    An ideal image compression technique for image data archival, retrieval and distribution would be one with the asymmetrical computational requirements of Vector Quantization (VQ), but without the complications arising from VQ codebooks. Codebook generation and maintenance are stumbling blocks which have limited the use of VQ as a practical image compression algorithm. Model-based VQ (MVQ), a variant of VQ described here, has the computational properties of VQ but does not require explicit codebooks. The codebooks are internally generated using mean removed error and Human Visual System (HVS) models. The error model assumed is the Laplacian distribution with mean, lambda-computed from a sample of the input image. A Laplacian distribution with mean, lambda, is generated with uniform random number generator. These random numbers are grouped into vectors. These vectors are further conditioned to make them perceptually meaningful by filtering the DCT coefficients from each vector. The DCT coefficients are filtered by multiplying by a weight matrix that is found to be optimal for human perception. The inverse DCT is performed to produce the conditioned vectors for the codebook. The only image dependent parameter used in the generation of codebook is the mean, lambda, that is included in the coded file to repeat the codebook generation process for decoding.

  15. Direct Observations of a Dynamically Driven Phase Transition with in situ X-Ray Diffraction in a Simple Ionic Crystal

    NASA Astrophysics Data System (ADS)

    Kalita, Patricia; Specht, Paul; Root, Seth; Sinclair, Nicholas; Schuman, Adam; White, Melanie; Cornelius, Andrew L.; Smith, Jesse; Sinogeikin, Stanislav

    2017-12-01

    We report real-time observations of a phase transition in the ionic solid CaF2 , a model A B2 structure in high-pressure physics. Synchrotron x-ray diffraction coupled with dynamic loading to 27.7 GPa, and separately with static compression, follows, in situ, the fluorite to cotunnite structural phase transition, both on nanosecond and on minute time scales. Using Rietveld refinement techniques, we examine the kinetics and hysteresis of the transition. Our results give insight into the kinetic time scale of the fluorite-cotunnite phase transition under shock compression, which is relevant to a number of isomorphic compounds.

  16. Direct Observations of a Dynamically Driven Phase Transition with in situ X-Ray Diffraction in a Simple Ionic Crystal

    DOE PAGES

    Kalita, Patricia E.; Specht, Paul Elliot; Root, Seth; ...

    2017-12-21

    Here, we report real-time observations of a phase transition in the ionic solid CaF 2, a model AB 2 structure in high-pressure physics. Synchrotron x-ray diffraction coupled with dynamic loading to 27.7 GPa, and separately with static compression, follows, in situ, the fluorite to cotunnite structural phase transition, both on nanosecond and on minute time scales. Using Rietveld refinement techniques, we examine the kinetics and hysteresis of the transition. Our results give insight into the kinetic time scale of the fluorite-cotunnite phase transition under shock compression, which is relevant to a number of isomorphic compounds.

  17. Compressible-Incompressible Two-Phase Flows with Phase Transition: Model Problem

    NASA Astrophysics Data System (ADS)

    Watanabe, Keiichi

    2017-12-01

    We study the compressible and incompressible two-phase flows separated by a sharp interface with a phase transition and a surface tension. In particular, we consider the problem in R^N , and the Navier-Stokes-Korteweg equations is used in the upper domain and the Navier-Stokes equations is used in the lower domain. We prove the existence of R -bounded solution operator families for a resolvent problem arising from its model problem. According to Göts and Shibata (Asymptot Anal 90(3-4):207-236, 2014), the regularity of ρ _+ is W^1_q in space, but to solve the kinetic equation: u_Γ \\cdot n_t = [[ρ u

  18. Perceptual Learning of Time-Compressed Speech: More than Rapid Adaptation

    PubMed Central

    Banai, Karen; Lavner, Yizhar

    2012-01-01

    Background Time-compressed speech, a form of rapidly presented speech, is harder to comprehend than natural speech, especially for non-native speakers. Although it is possible to adapt to time-compressed speech after a brief exposure, it is not known whether additional perceptual learning occurs with further practice. Here, we ask whether multiday training on time-compressed speech yields more learning than that observed during the initial adaptation phase and whether the pattern of generalization following successful learning is different than that observed with initial adaptation only. Methodology/Principal Findings Two groups of non-native Hebrew speakers were tested on five different conditions of time-compressed speech identification in two assessments conducted 10–14 days apart. Between those assessments, one group of listeners received five practice sessions on one of the time-compressed conditions. Between the two assessments, trained listeners improved significantly more than untrained listeners on the trained condition. Furthermore, the trained group generalized its learning to two untrained conditions in which different talkers presented the trained speech materials. In addition, when the performance of the non-native speakers was compared to that of a group of naïve native Hebrew speakers, performance of the trained group was equivalent to that of the native speakers on all conditions on which learning occurred, whereas performance of the untrained non-native listeners was substantially poorer. Conclusions/Significance Multiday training on time-compressed speech results in significantly more perceptual learning than brief adaptation. Compared to previous studies of adaptation, the training induced learning is more stimulus specific. Taken together, the perceptual learning of time-compressed speech appears to progress from an initial, rapid adaptation phase to a subsequent prolonged and more stimulus specific phase. These findings are consistent with the predictions of the Reverse Hierarchy Theory of perceptual learning and suggest constraints on the use of perceptual-learning regimens during second language acquisition. PMID:23056592

  19. Molecular dynamics simulation of the plastic behavior anisotropy of shock-compressed monocrystal nickel

    NASA Astrophysics Data System (ADS)

    Chen, Ya-Zhou; Zhou, Liu-Cheng; He, Wei-Feng; Sun, Yu; Li, Ying-Hong; Jiao, Yang; Luo, Si-Hai

    2017-01-01

    Molecular dynamics simulations were used to study the plastic behavior of monocrystalline nickel under shock compression along the [100] and [110] orientations. The shock Hugoniot relation, local stress curve, and process of microstructure development were determined. Results showed the apparent anisotropic behavior of monocrystalline nickel under shock compression. The separation of elastic and plastic waves was also obvious. Plastic deformation was more severely altered along the [110] direction than the [100] direction. The main microstructure phase transformed from face-centered cubic to body-centered cubic and generated a large-scale and low-density stacking fault along the family of { 111 } crystal planes under shock compression along the [100] direction. By contrast, the main mechanism of plastic deformation in the [110] direction was the nucleation of the hexagonal, close-packed phase, which generated a high density of stacking faults along the [110] and [1̅10] directions.

  20. Effect of Aging Treatment on the Compressibility and Recovery of NiTi Shape Memory Alloys as Static Seals

    NASA Astrophysics Data System (ADS)

    Lu, Xiaofeng; Li, Gang; Liu, Luwei; Zhu, Xiaolei; Tu, Shan-Tung

    2017-07-01

    The improvement of the compressibility and recovery of the gaskets can decrease the leakage occurrence in bolted flange connections. In this study, the effect of aging treatment on the compressibility and recovery of NiTi shape memory alloys is investigated as static seals together with thermal analysis. The experimental results indicate that different phase transformations of NiTi alloys are exhibited in the DSC curves during aging treatment. The recovery coefficient of NiTi alloys aged at 500 °C for 2 h is quite low accompanied with a large residual strain. With increasing aging time at the aging temperature of 400 °C, the residual strain and area of hysteresis loop of NiTi alloys are both increased, whereas the recovery coefficient is decreased. Since the deformation associates the phase transformation behavior, aging treatment could improve the compressibility and recovery of NiTi alloys as static seals.

  1. Strangeness driven phase transitions in compressed baryonic matter and their relevance for neutron stars and core collapsing supernovae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raduta, Ad. R.; Gulminelli, F.; Oertel, M.

    2015-02-24

    We discuss the thermodynamics of compressed baryonic matter with strangeness within non-relativistic mean-field models with effective interactions. The phase diagram of the full baryonic octet under strangeness equilibrium is built and discussed in connection with its relevance for core-collapse supernovae and neutron stars. A simplified framework corresponding to (n, p, Λ)(+e)-mixtures is employed in order to test the sensitivity of the existence of a phase transition on the (poorely constrained) interaction coupling constants and the compatibility between important hyperonic abundances and 2M{sub ⊙} neutron stars.

  2. Petalite under pressure: Elastic behavior and phase stability

    DOE PAGES

    Ross, Nancy L.; Zhao, Jing; Slebodnick, Carla; ...

    2015-04-01

    The lithium aluminosilicate mineral petalite (LiAlSi 4O 10) has been studied using high-pressure single-crystal X-ray diffraction (HP-XRD) up to 5 GPa. Petalite undergoes two pressure-induced first-order phase transitions, never reported in the literature, at ca. 1.5 and 2.5 GPa. The first of these transforms the low-pressure α-phase of petalite (P2/c) to an intermediate β-phase that then fully converts to the high-pressure β-phase at ca. 2.5 GPa. The α→β transition is isomorphic and is associated with a commensurate modulation that triples the unit cell volume. Analysis of the HP-XRD data show that although the fundamental features of the petalite structure aremore » retained through this transition, there are subtle alterations in the internal structure of the silicate double-layers in the β-phase relative to the α-phase. Measurement of the unit cell parameters of petalite as a function of pressure, and fitting of the data with 3rd order Birch-Murnaghan equations of state, has provided revised elastic constants for petalite. The bulk moduli of the α and β-phases are 49(1) and 35(3) GPa, respectively. These values indicate that the compressibility of the- phase of petalite lies between the alkali feldpsars and alkali feldspathoids, whereas the β-phase has a compressibility more comparable with layered silicates. Structure analysis has shown that the compression of the -phase is facilitated by the rigid body movement of the Si 2O 7 units from which the silicate double-layers are constructed.« less

  3. Circadian waveform bifurcation, but not phase-shifting, leaves cued fear memory intact.

    PubMed

    Harrison, E M; Carmack, S A; Block, C L; Sun, J; Anagnostaras, S G; Gorman, M R

    2017-02-01

    In mammals, memory acquisition and retrieval can be affected by time of day, as well as by manipulations of the light/dark cycle. Under bifurcation, a manipulation of circadian waveform, two subjective days and nights are experimentally induced in rodents. We examined the effect of bifurcation on Pavlovian fear conditioning, a prominent model of learning and memory. Here we demonstrate that bifurcation of the circadian waveform produces a small deficit in acquisition, but not on retrieval of fear memory. In contrast, repeated phase-shifting in a simulated jet-lag protocol impairs retrieval of memory for cued fear. The results have implications for those attempting to adjust to shift-work or other challenging schedules. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. A compressive-sensing Fourier-transform on-chip Raman spectrometer

    NASA Astrophysics Data System (ADS)

    Podmore, Hugh; Scott, Alan; Lee, Regina

    2018-02-01

    We demonstrate a novel compressive sensing Fourier-transform spectrometer (FTS) for snapshot Raman spectroscopy in a compact format. The on-chip FTS consists of a set of planar-waveguide Mach-Zehnder interferometers (MZIs) arrayed on a photonic chip, effecting a discrete Fourier-transform of the input spectrum. Incoherence between the sampling domain (time), and the spectral domain (frequency) permits compressive sensing retrieval using undersampled interferograms for sparse spectra such as Raman emission. In our fabricated device we retain our chosen bandwidth and resolution while reducing the number of MZIs, e.g. the size of the interferogram, to 1/4th critical sampling. This architecture simultaneously reduces chip footprint and concentrates the interferogram in fewer pixels to improve the signal to noise ratio. Our device collects interferogram samples simultaneously, therefore a time-gated detector may be used to separate Raman peaks from sample fluorescence. A challenge for FTS waveguide spectrometers is to achieve multi-aperture high throughput broadband coupling to a large number of single-mode waveguides. A multi-aperture design allows one to increase the bandwidth and spectral resolution without sacrificing optical throughput. In this device, multi-aperture coupling is achieved using an array of microlenses bonded to the surface of the chip, and aligned with a grid of vertically illuminated waveguide apertures. The microlens array accepts a collimated beam with near 100% fill-factor, and the resulting spherical wavefronts are coupled into the single-mode waveguides using 45& mirrors etched into the waveguide layer via focused ion-beam (FIB). The interferogram from the waveguide outputs is imaged using a CCD, and inverted via l1-norm minimization to correctly retrieve a sparse input spectrum.

  5. Effect of Extrusion Temperature on the Plastic Deformation of an Mg-Y-Zn Alloy Containing LPSO Phase Using In Situ Neutron Diffraction

    NASA Astrophysics Data System (ADS)

    Garces, G.; Perez, P.; Cabeza, S.; Kabra, S.; Gan, W.; Adeva, P.

    2017-11-01

    The evolution of the internal strains during in situ tension and compression tests has been measured in an MgY2Zn1 alloy containing long-period stacking ordered (LPSO) phase using neutron diffraction. The alloy was extruded at two different temperatures to study the influence of the microstructure and texture of the magnesium and the LPSO phases on the deformation mechanisms. The alloy extruded at 623 K (350 °C) exhibits a strong fiber texture with the basal plane parallel to the extrusion direction due to the presence of areas of coarse non-recrystallised grains. However, at 723 K (450 °C), the magnesium phase is fully recrystallised with grains randomly oriented. On the other hand, at the two extrusion temperatures, the LPSO phase orients their basal plane parallel to the extrusion direction. Yield stress is always slightly higher in compression than in tension. Independently on the stress sign and the extrusion temperature, the beginning of plasticity is controlled by the activation of the basal slip system in the dynamic recrystallized grains. Therefore, the elongated fiber-shaped LPSO phase which behaves as the reinforcement in a metal matrix composite is responsible for this tension-compression asymmetry.

  6. Forty-photon-per-pulse spectral phase retrieval by shaper-assisted modified interferometric field autocorrelation.

    PubMed

    Hsu, Chen-Shao; Chiang, Hsin-Chien; Chuang, Hsiu-Po; Huang, Chen-Bin; Yang, Shang-Da

    2011-07-15

    We retrieve the spectral phase of 400 fs pulses at 1560 nm with 5.2 aJ coupled pulse energy (40 photons) by the modified interferometric field autocorrelation method, using a pulse shaper and a 5 cm long periodically poled lithium niobate waveguide. The carrier-envelope phase control of the shaper can reduce the fringe density of the interferometric trace and permits longer lock-in time constants, achieving a sensitivity of 2.7×10(-9) mW(2) (40 times better than the previous record for self-referenced nonlinear pulse measurement). The high stability of the pulse shaper allows for accurate and reproducible measurements of complicated spectral phases. © 2011 Optical Society of America

  7. Conjugate gradient method for phase retrieval based on the Wirtinger derivative.

    PubMed

    Wei, Zhun; Chen, Wen; Qiu, Cheng-Wei; Chen, Xudong

    2017-05-01

    A conjugate gradient Wirtinger flow (CG-WF) algorithm for phase retrieval is proposed in this paper. It is shown that, compared with recently reported Wirtinger flow and its modified methods, the proposed CG-WF algorithm is able to dramatically accelerate the convergence rate while keeping the dominant computational cost of each iteration unchanged. We numerically illustrate the effectiveness of our method in recovering 1D Gaussian signals and 2D natural color images under both Gaussian and coded diffraction pattern models.

  8. Phase retrieval with Fourier-weighted projections.

    PubMed

    Guizar-Sicairos, Manuel; Fienup, James R

    2008-03-01

    In coherent lensless imaging, the presence of image sidelobes, which arise as a natural consequence of the finite nature of the detector array, was early recognized as a convergence issue for phase retrieval algorithms that rely on an object support constraint. To mitigate the problem of truncated far-field measurement, a controlled analytic continuation by means of an iterative transform algorithm with weighted projections is proposed and tested. This approach avoids the use of sidelobe reduction windows and achieves full-resolution reconstructions.

  9. Image multiplexing and authentication based on double phase retrieval in fresnel transform domain

    NASA Astrophysics Data System (ADS)

    Chang, Hsuan-Ting; Lin, Che-Hsian; Chen, Chien-Yue

    2017-04-01

    An image multiplexing and authentication method based on the double-phase retrieval algorithm (DPRA) with the manipulations of wavelength and position in the Fresnel transform (FrT) domain is proposed in this study. The DPRA generates two matched phase-only functions (POFs) in the different planes so that the corresponding image can be reconstructed at the output plane. Given a number of target images, all the sets of matched POFs are used to generate the phase-locked system through the phase modulation and synthesis to achieve the multiplexing purpose. To reconstruct a target image, the corresponding phase key and all the correct parameters in the FrT are required. Therefore, the authentication system with high-level security can be achieved. The computer simulation verifies the validity of the proposed method and also shows good resistance to the crosstalk among the reconstructed images.

  10. Compression induced phase transition of nematic brush: A mean-field theory study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Jiuzhou; Zhang, Xinghua, E-mail: zhangxh@bjtu.edu.cn; Yan, Dadong, E-mail: yandd@bnu.edu.cn

    2015-11-28

    Responsive behavior of polymer brush to the external compression is one of the most important characters for its application. For the flexible polymer brush, in the case of low grafting density, which is widely studied by the Gaussian chain model based theory, the compression leads to a uniform deformation of the chain. However, in the case of high grafting density, the brush becomes anisotropic and the nematic phase will be formed. The normal compression tends to destroy the nematic order, which leads to a complex responsive behaviors. Under weak compression, chains in the nematic brush are buckled, and the bendingmore » energy and Onsager interaction give rise to the elasticity. Under deep compression, the responsive behaviors of the nematic polymer brush depend on the chain rigidity. For the compressed rigid polymer brush, the chains incline to re-orientate randomly to maximize the orientational entropy and its nematic order is destroyed. For the compressed flexible polymer brush, the chains incline to fold back to keep the nematic order. A buckling-folding transition takes place during the compressing process. For the compressed semiflexible brush, the chains are collectively tilted to a certain direction, which leads to the breaking of the rotational symmetry in the lateral plane. These responsive behaviors of nematic brush relate to the properties of highly frustrated worm-like chain, which is hard to be studied by the traditional self-consistent field theory due to the difficulty to solve the modified diffusion equation. To overcome this difficulty, a single chain in mean-field theory incorporating Monte Carlo simulation and mean-field theory for the worm-like chain model is developed in present work. This method shows high performance for entire region of chain rigidity in the confined condition.« less

  11. Using sparsity information for iterative phase retrieval in x-ray propagation imaging.

    PubMed

    Pein, A; Loock, S; Plonka, G; Salditt, T

    2016-04-18

    For iterative phase retrieval algorithms in near field x-ray propagation imaging experiments with a single distance measurement, it is indispensable to have a strong constraint based on a priori information about the specimen; for example, information about the specimen's support. Recently, Loock and Plonka proposed to use the a priori information that the exit wave is sparsely represented in a certain directional representation system, a so-called shearlet system. In this work, we extend this approach to complex-valued signals by applying the new shearlet constraint to amplitude and phase separately. Further, we demonstrate its applicability to experimental data.

  12. High-pressure phase transitions of α-quartz under nonhydrostatic dynamic conditions: A reconnaissance study at PETRA III

    NASA Astrophysics Data System (ADS)

    Carl, Eva-Regine; Mansfeld, Ulrich; Liermann, Hanns-Peter; Danilewsky, Andreas; Langenhorst, Falko; Ehm, Lars; Trullenque, Ghislain; Kenkmann, Thomas

    2017-07-01

    Hypervelocity collisions of solid bodies occur frequently in the solar system and affect rocks by shock waves and dynamic loading. A range of shock metamorphic effects and high-pressure polymorphs in rock-forming minerals are known from meteorites and terrestrial impact craters. Here, we investigate the formation of high-pressure polymorphs of α-quartz under dynamic and nonhydrostatic conditions and compare these disequilibrium states with those predicted by phase diagrams derived from static experiments under equilibrium conditions. We create highly dynamic conditions utilizing a mDAC and study the phase transformations in α-quartz in situ by synchrotron powder X-ray diffraction. Phase transitions of α-quartz are studied at pressures up to 66.1 and different loading rates. At compression rates between 0.14 and 1.96 GPa s-1, experiments reveal that α-quartz is amorphized and partially converted to stishovite between 20.7 GPa and 28.0 GPa. Therefore, coesite is not formed as would be expected from equilibrium conditions. With the increasing compression rate, a slight increase in the transition pressure occurs. The experiments show that dynamic compression causes an instantaneous formation of structures consisting only of SiO6 octahedra rather than the rearrangement of the SiO4 tetrahedra to form a coesite. Although shock compression rates are orders of magnitude faster, a similar mechanism could operate in impact events.

  13. Successful treatment of deep vein thrombosis caused by iliac vein compression syndrome with a single-dose direct oral anti-coagulant.

    PubMed

    Nakashima, Naoya; Sueta, Daisuke; Kanemaru, Yusuke; Takashio, Seiji; Yamamoto, Eiichiro; Hanatani, Shinsuke; Kanazawa, Hisanori; Izumiya, Yasuhiro; Kojima, Sunao; Kaikita, Koichi; Hokimoto, Seiji; Tsujita, Kenichi

    2017-01-01

    Although vein stenting is popular for treatment for venous thromboembolism due to mechanical compression, some cases are forced to avoid inserting align agents because of immunodeficiency. An 82-year-old man with left extremity redness and swelling presented to a hospital for a medical evaluation. The patient was immunodeficient because of the adverse effects of his treatment for Castleman's disease. A contrast-enhanced computed tomography scan revealed a venous thromboembolism in inferior vena cava and the left lower extremity. Magnetic resonance venography showed that the iliac artery was compressing the iliac vein. We were reluctant to place a stent in the iliac vein has because of the patient's immunodeficient status. Three months of treatment using single-dose edoxaban (30 mg daily) resulted in complete resolution of the thrombus. This is the first report demonstrating that single-dose edoxaban without acute-phase parenteral anticoagulation is effective in the treatment of iliac vein compression. A single-dose direct oral anti-coagulant without acute-phase parenteral anticoagulation is effective for mechanical compression.

  14. A Re-examination of the Effect of Masker Phase Curvature on Non-simultaneous Masking.

    PubMed

    Carlyon, Robert P; Flanagan, Sheila; Deeks, John M

    2017-12-01

    Forward masking of a sinusoidal signal is determined not only by the masker's power spectrum but also by its phase spectrum. Specifically, when the phase spectrum is such that the output of an auditory filter centred on the signal has a highly modulated ("peaked") envelope, there is less masking than when that envelope is flat. This finding has been attributed to non-linearities, such as compression, reducing the average neural response to maskers that produce more peaked auditory filter outputs (Carlyon and Datta, J Acoust Soc Am 101:3636-3647, 1997). Here we evaluate an alternative explanation proposed by Wotcjzak and Oxenham (Wojtczak and Oxenham, J Assoc Res Otolaryngol 10:595-607, 2009). They reported a masker phase effect for 6-kHz signals when the masker components were at least an octave below the signal frequency. Wotcjzak and Oxenham argued that this effect was inconsistent with cochlear compression, and, because it did not occur at lower signal frequencies, was also inconsistent with more central compression. It was instead attributed to activation of the efferent system reducing the response to the subsequent probe. Here, experiment 1 replicated their main findings. Experiment 2 showed that the phase effect on off-frequency forward masking is similar at signal frequencies of 2 and 6 kHz, provided that one equates the number of components likely to interact within an auditory filter centred on the signal, thereby roughly equating the effect of masker phase on the peakiness of that filter output. Experiment 3 showed that for some subjects, masker phase also had a strong influence on off-frequency backward masking of the signal, and that the size of this effect correlated across subjects with that observed in forward masking. We conclude that the masker phase effect is mediated mainly by cochlear non-linearities, with a possible additional effect of more central compression. The data are not consistent with a role for the efferent system.

  15. Laser shock compression experiments on precompressed water in ``SG-II'' laser facility

    NASA Astrophysics Data System (ADS)

    Shu, Hua; Huang, Xiuguang; Ye, Junjian; Fu, Sizu

    2017-06-01

    Laser shock compression experiments on precompressed samples offer the possibility to obtain new hugoniot data over a significantly broader range of density-temperature phase than was previously achievable. This technique was developed in ``SG-II'' laser facility. Hugoniot data were obtained for water in 300 GPa pressure range by laser-driven shock compression of samples statically precompressed in diamond-anvil cells.

  16. On-Line Retrieval II.

    ERIC Educational Resources Information Center

    Kurtz, Peter; And Others

    This report is concerned with the implementation of two interrelated computer systems: an automatic document analysis and classification package, and an on-line interactive information retrieval system which utilizes the information gathered during the automatic classification phase. Well-known techniques developed by Salton and Dennis have been…

  17. A Ground-Based Doppler Radar and Micropulse Lidar Forward Simulator for GCM Evaluation of Arctic Mixed-Phase Clouds: Moving Forward Towards an Apples-to-apples Comparison of Hydrometeor Phase

    NASA Astrophysics Data System (ADS)

    Lamer, K.; Fridlind, A. M.; Ackerman, A. S.; Kollias, P.; Clothiaux, E. E.

    2017-12-01

    An important aspect of evaluating Artic cloud representation in a general circulation model (GCM) consists of using observational benchmarks which are as equivalent as possible to model output in order to avoid methodological bias and focus on correctly diagnosing model dynamical and microphysical misrepresentations. However, current cloud observing systems are known to suffer from biases such as limited sensitivity, and stronger response to large or small hydrometeors. Fortunately, while these observational biases cannot be corrected, they are often well understood and can be reproduced in forward simulations. Here a ground-based millimeter wavelength Doppler radar and micropulse lidar forward simulator able to interface with output from the Goddard Institute for Space Studies (GISS) ModelE GCM is presented. ModelE stratiform hydrometeor fraction, mixing ratio, mass-weighted fall speed and effective radius are forward simulated to vertically-resolved profiles of radar reflectivity, Doppler velocity and spectrum width as well as lidar backscatter and depolarization ratio. These forward simulated fields are then compared to Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) ground-based observations to assess cloud vertical structure (CVS). Model evalution of Arctic mixed-phase cloud would also benefit from hydrometeor phase evaluation. While phase retrieval from synergetic observations often generates large uncertainties, the same retrieval algorithm can be applied to observed and forward-simulated radar-lidar fields, thereby producing retrieved hydrometeor properties with potentially the same uncertainties. Comparing hydrometeor properties retrieved in exactly the same way aims to produce the best apples-to-apples comparisons between GCM ouputs and observations. The use of a comprenhensive ground-based forward simulator coupled with a hydrometeor classification retrieval algorithm provides a new perspective for GCM evaluation of Arctic mixed-phase clouds from the ground where low-level supercooled liquid layer are more easily observed and where additional environmental properties such as cloud condensation nuclei are quantified. This should help assist in choosing between several possible diagnostic ice nucleation schemes for ModelE stratiform cloud.

  18. Theoretical exploration of competing phases of lattice Bose gases in a cavity

    NASA Astrophysics Data System (ADS)

    Liao, Renyuan; Chen, Huang-Jie; Zheng, Dong-Chen; Huang, Zhi-Gao

    2018-01-01

    We consider bosonic atoms loaded into optical lattices with cavity-mediated infinite-range interactions. Competing short- and global-range interactions cultivate a rich phase diagram. With a systematic field-theoretical perspective, we present an analytical construction of a global ground-state phase diagram. We find that the infinite-range interaction enhances the fluctuation of the number density. In the strong-coupling regime, we find four branches of elementary excitations, with two being "particlelike" and two being "holelike," and that the excitation gap becomes soft at the phase boundary between compressible phases and incompressible phases. We derive an effective theory describing compressible superfluid and supersolid states. To complement this perturbative study, we construct a self-consistent mean-field theory and find numerical results consistent with our theoretical analysis. We map out the phase diagram and find that a charge density wave may undergo a structure phase transition to a different charge density wave before it finally enters into the supersolid phase driven by increasing the hopping amplitude.

  19. Phase Transitions in Aluminum Under Shockless Compression at the Z Machine

    NASA Astrophysics Data System (ADS)

    Davis, Jean-Paul; Brown, Justin; Shulenburger, Luke; Knudson, Marcus

    2017-06-01

    Aluminum 6061 alloy has been used extensively as an electrode material in shockless ramp-wave experiments at the Z Machine. Previous theoretical work suggests that the principal quasi-isentrope in aluminum should pass through two phase transitions at multi-megabar pressures, first from the ambient fcc phase to hcp at around 200 GPa, then to bcc at around 320 GPa. Previous static measurements in a diamond-anvil cell have detected the hcp phase above 200 GPa along the room-temperature isentherm. Recent laser-based dynamic compression experiments have observed both the hcp and bcc phases using X-ray diffraction. Here we present high-accuracy velocity waveform data taken on pure and alloy aluminum materials at the Z Machine under shockless compression with 200-ns rise-time to 400 GPa using copper electrodes and lithium-fluoride windows. These are compared to recent EOS tables developed at Los Alamos National Laboratory, to our own results from diffusion quantum Monte-Carlo calculations, and to multi-phase EOS models with phase-transition kinetics. We find clear evidence of a fast transition around 200 GPa as expected, and a possible suggestion of a slower transition at higher pressure. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE AC04-94AL85000.

  20. Modeling compressible multiphase flows with dispersed particles in both dense and dilute regimes

    NASA Astrophysics Data System (ADS)

    McGrath, T.; St. Clair, J.; Balachandar, S.

    2018-05-01

    Many important explosives and energetics applications involve multiphase formulations employing dispersed particles. While considerable progress has been made toward developing mathematical models and computational methodologies for these flows, significant challenges remain. In this work, we apply a mathematical model for compressible multiphase flows with dispersed particles to existing shock and explosive dispersal problems from the literature. The model is cast in an Eulerian framework, treats all phases as compressible, is hyperbolic, and satisfies the second law of thermodynamics. It directly applies the continuous-phase pressure gradient as a forcing function for particle acceleration and thereby retains relaxed characteristics for the dispersed particle phase that remove the constituent material sound velocity from the eigenvalues. This is consistent with the expected characteristics of dispersed particle phases and can significantly improve the stable time-step size for explicit methods. The model is applied to test cases involving the shock and explosive dispersal of solid particles and compared to data from the literature. Computed results compare well with experimental measurements, providing confidence in the model and computational methods applied.

  1. Hugoniot equation of state and dynamic strength of boron carbide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grady, Dennis E.

    Boron carbide ceramics have been particularly problematic in attempts to develop adequate constitutive model descriptions for purposes of analysis of dynamic response in the shock and impact environment. Dynamic strength properties of boron carbide ceramic differ uniquely from comparable ceramics. Furthermore, boron carbide is suspected, but not definitely shown, to undergoing polymorphic phase transformation under shock compression. In the present paper, shock-wave compression measurements conducted over the past 40 years are assessed for the purpose of achieving improved understanding of the dynamic equation of state and strength of boron carbide. In particular, attention is focused on the often ignored Losmore » Alamos National Laboratory (LANL) Hugoniot measurements performed on porous sintered boron carbide ceramic. The LANL data are shown to exhibit two compression anomalies on the shock Hugoniot within the range of 20–60 GPa that may relate to crystallographic structure transitions. More recent molecular dynamics simulations on the compressibility of the boron carbide crystal lattice reveal compression transitions that bear similarities to the LANL Hugoniot results. The same Hugoniot data are complemented with dynamic isentropic compression data for boron carbide extracted from Hugoniot measurements on boron carbide and copper granular mixtures. Other Hugoniot measurements, however, performed on near-full-density boron carbide ceramic differ markedly from the LANL Hugoniot data. These later data exhibit markedly less compressibility and tend not to show comparable anomalies in compressibility. Alternative Hugoniot anomalies, however, are exhibited by the near-full-density data. Experimental uncertainty, Hugoniot strength, and phase transformation physics are all possible explanations for the observed discrepancies. It is reasoned that experimental uncertainty and Hugoniot strength are not likely explanations for the observed differences. The notable mechanistic difference in the processes of shock compression between the LANL data and that of the other studies is the markedly larger inelastic deformation and dissipation experienced in the shock event brought about by compaction of the substantially larger porosity LANL test ceramics. High-pressure diamond anvil cell experiments reveal extensive amorphization, reasoned to be a reversion product of a higher-pressure crystallographic phase, which is a consequence of application of both high pressure and shear deformation to the boron carbide crystal structure. A dependence of shock-induced high-pressure phase transformation in boron carbide on the extent of shear deformation experienced in the shock process offers a plausible explanation for the differences observed in the LANL Hugoniot data on porous ceramic and that of other shock data on near-full-density boron carbide.« less

  2. High-pressure phases transitions in SnO2 to 117 GPa: Implications for silica

    NASA Astrophysics Data System (ADS)

    Shieh, S. R.; Kubo, A.; Duffy, T. S.; Prakapenka, V. B.; Shen, G.

    2005-12-01

    Cassiterite (SnO2) is regarded to be a good analog material for silica as both SnO2 and SiO2 are group IV-B metal dioxides. The high-pressure behavior of SnO2 has been the subject of many previous investigations extending up to 49 GPa and in addition to the rutile structure, three high-pressure phases, CaCl2-type, α-PbO2-type, and pyrite-type were observed. Better knowledge of high-pressure phases of SnO2 will be useful to understand the behavior of silica at deep mantle conditions. In addition, high-pressure metal dioxide phases may qualify as superhard solids. Our study will also provide insights into interpretation of shock compression data. Pure natural cassiterite (SnO2) powder was compressed in a diamond anvil cell using an argon medium. Pressure was determined from the equation of state of platinum. In situ monochromatic x-ray diffraction at high pressure was carried out at the GSECARS, Advanced Photon Source. High temperatures were achieved using double-sided laser heating . Three heating cycles were conducted with total heating times up to 30 minutes. Our diffraction results on SnO2 demonstrate the existence of four phase transitions to 117 GPa. The observed sequence of high-pressure phases for SnO2 is rutile-type, CaCl2-type, pyrite-type, ZrO2 orthorhombic phase I (Pbca), cotunnite-type. Our observations of the first three phases are generally in agreement with earlier studies. The orthorhombic phase I and cotunnite-type structures were observed in SnO2 for the first time. The Pbca phase is found at 50-74 GPa during room-temperature compression. The cotunnite-type structure was synthesized when SnO2 was heated at 74 GPa and 1200 K. The cotunnite-type form was observed during compression between 54-117 GPa. Fitting the pressure-volume data for the high-pressure phases to the second-order Birch-Murnaghan equation of state yields a bulk modulus of 259(26) GPa for the Pbca phase and 417(7) GPa for the cotunnite-type phase. Rietveld profile refinements were also carried out successfully for these two phases.

  3. Self control of when and how much to test face-name pairs in a novel spaced retrieval paradigm: an examination of age-related differences.

    PubMed

    Maddox, Geoffrey B; Balota, David A

    2012-09-01

    Although the mnemonic benefit of spaced retrieval is well established, the way in which participants naturally space their own retrieval is relatively unexplored. To examine this question, a novel experimental paradigm was developed in which young and healthy older adults were given control over the frequency and timing of retrieval practice in the context of an ongoing reading task. Results showed that both age groups naturally expanded the intervals of their retrieval practice. When instructed, younger adults but not older adults were better able to employ equal spaced retrieval during retrieval practice. However, even under equal spaced retrieval instructions, young adults included an early retrieval attempt prior to equally spacing their retrieval. Although memory performance was equivalent, secondary task performance was reduced in the experimenter-instructed condition compared with the participant-selected condition. The results overall indicate that both younger and older participants naturally monitor their memory and efficiently use testing to titrate the number and timing of retrieval attempts used during the acquisition phase.

  4. Effect of Compression on the Molecular Arrangement of Itraconazole-Soluplus Solid Dispersions: Induction of Liquid Crystals or Exacerbation of Phase Separation?

    PubMed

    Singh, Abhishek; Bharati, Avanish; Frederiks, Pauline; Verkinderen, Olivier; Goderis, Bart; Cardinaels, Ruth; Moldenaers, Paula; Van Humbeeck, Jan; Van den Mooter, Guy

    2016-06-06

    Predensification and compression are unit operations imperative to the manufacture of tablets and capsules. Such stress-inducing steps can cause destabilization of solid dispersions which can alter their molecular arrangement and ultimately affect dissolution rate and bioavailability. In this study, itraconazole-Soluplus solid dispersions with 50% (w/w) drug loading prepared by hot-melt extrusion (HME) were investigated. Compression was performed at both pharmaceutically relevant and extreme compression pressures and dwell times. The starting materials, powder, and compressed solid dispersions were analyzed using modulated differential scanning calorimetry (MDSC), X-ray diffraction (XRD), small- and wide-angle X-ray scattering (SWAXS), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), and broadband dielectric spectroscopy (BDS). MDSC analysis revealed that compression promotes phase separation of solid dispersions as indicated by an increase in glass transition width, occurrence of a peak in the nonreversing heat flow signal, and an increase in the net heat of fusion indicating crystallinity in the systems. SWAXS analysis ruled out the presence of mesophases. BDS measurements elucidated an increase in the Soluplus-rich regions of the solid dispersion upon compression. FTIR indicated changes in the spatiotemporal architecture of the solid dispersions mediated via disruption in hydrogen bonding and ultimately altered dynamics. These changes can have significant consequences on the final stability and performance of the solid dispersions.

  5. rTMS stimulation on left DLPFC affects emotional cue retrieval as a function of anxiety level and gender.

    PubMed

    Balconi, Michela; Ferrari, Chiara

    2012-11-01

    Anxiety behaviour showed a consistent attentional bias toward negative and aversive memories, induced by a right dorsolateral prefrontal cortex (DLPFC) hyperactivation. In the present research, we explored the possible effect of rTMS (repeated transcranial magnetic stimulation) on the left DLPFC in memory retrieval of positive versus negative emotional words, to induce a balanced response between the two hemispheres. Moreover, the gender effect in emotional memory processing was verified as a function of the stimulus valence. Thirty subjects, who were divided in two different groups depending on their anxiety level (high/low anxiety, State-Trait-Anxiety Inventory (STAI)), were required to perform a task consisting of two experimental phases: an encoding phase (lists composed by positive and negative emotional words); and a retrieval phase (old stimuli and new stimuli to be recognized). We found that the rTMS stimulation over left DLPFC affects the memory retrieval. Specifically, high-anxiety subjects benefitted in greater measure to the frontal left stimulation with a reduced negative bias (increased accuracy and reduced response time (RT) for the positive stimuli). Whereas females showed a significant bias toward the negative memories, they did not benefit in greater measure to the TMS stimulation on the left hemisphere. These results suggested that left DLPFC activation favors the memory retrieval of positive emotional information and may limit the "unbalance effect" induced by a right frontal hemispheric superiority in high levels of anxiety. © 2012 Wiley Periodicals, Inc.

  6. Initial retrieval shields against retrieval-induced forgetting.

    PubMed

    Racsmány, Mihály; Keresztes, Attila

    2015-01-01

    Testing, as a form of retrieval, can enhance learning but it can also induce forgetting of related memories, a phenomenon known as retrieval-induced forgetting (RIF). In four experiments we explored whether selective retrieval and selective restudy of target memories induce forgetting of related memories with or without initial retrieval of the entire learning set. In Experiment 1, subjects studied category-exemplar associations, some of which were then either restudied or retrieved. RIF occurred on a delayed final test only when memories were retrieved and not when they were restudied. In Experiment 2, following the study phase of category-exemplar associations, subjects attempted to recall all category-exemplar associations, then they selectively retrieved or restudied some of the exemplars. We found that, despite the huge impact on practiced items, selective retrieval/restudy caused no decrease in final recall of related items. In Experiment 3, we replicated the main result of Experiment 2 by manipulating initial retrieval as a within-subject variable. In Experiment 4 we replicated the main results of the previous experiments with non-practiced (Nrp) baseline items. These findings suggest that initial retrieval of the learning set shields against the forgetting effect of later selective retrieval. Together, our results support the context shift theory of RIF.

  7. Retrieval-practice task affects relationship between working memory capacity and retrieval-induced forgetting.

    PubMed

    Storm, Benjamin C; Bui, Dung C

    2016-11-01

    Retrieving a subset of items from memory can cause forgetting of other items in memory, a phenomenon referred to as retrieval-induced forgetting (RIF). Individuals who exhibit greater amounts of RIF have been shown to also exhibit superior working memory capacity (WMC) and faster stop-signal reaction times (SSRTs), results which have been interpreted as suggesting that RIF reflects an inhibitory process that is mediated by the processes of executive control. Across four experiments, we sought to further elucidate this issue by manipulating the way in which participants retrieved items during retrieval practice and examining how the resulting effects of forgetting correlated with WMC (Experiments 1-3) and SSRT (Experiment 4). Significant correlations were observed when participants retrieved items from an earlier study phase (within-list retrieval practice), but not when participants generated items from semantic memory (extra-list retrieval practice). These results provide important new insight into the role of executive-control processes in RIF.

  8. Visual content highlighting via automatic extraction of embedded captions on MPEG compressed video

    NASA Astrophysics Data System (ADS)

    Yeo, Boon-Lock; Liu, Bede

    1996-03-01

    Embedded captions in TV programs such as news broadcasts, documentaries and coverage of sports events provide important information on the underlying events. In digital video libraries, such captions represent a highly condensed form of key information on the contents of the video. In this paper we propose a scheme to automatically detect the presence of captions embedded in video frames. The proposed method operates on reduced image sequences which are efficiently reconstructed from compressed MPEG video and thus does not require full frame decompression. The detection, extraction and analysis of embedded captions help to capture the highlights of visual contents in video documents for better organization of video, to present succinctly the important messages embedded in the images, and to facilitate browsing, searching and retrieval of relevant clips.

  9. Phase Stability of Epsilon and Gamma HNIW (CL-20) at High-Pressure and Temperature

    NASA Astrophysics Data System (ADS)

    Gump, Jared

    2007-06-01

    Hexanitrohexaazaisowurtzitane (CL-20) is one of the few ingredients developed since World War II to be considered for transition to military use. Five polymorphs have been identified for CL-20 by FTIR measurements (α, β, γ, ɛ, and ζ). As CL-20 is transitioned into munitions it will become necessary to predict its response under conditions of detonation, for performance evaluation. Such predictive modeling requires a phase diagram and basic thermodynamic properties of the various phases at high pressure and temperature. Theoretical calculations have been performed for a variety of explosive ingredients including CL-20, but it was noted that no experimental measurements existed for comparison with the theoretical bulk modulus calculated for CL-20. Therefore, the phase stabilities of epsilon and gamma CL-20 at static high-pressure and temperature were investigated using synchrotron angle-dispersive x-ray diffraction experiments. The samples were compressed and heated using diamond anvil cells (DAC). Pressures and temperatures achieved were around 5GPa and 175^oC, respectively. No phase change (from the starting epsilon phase) was observed under hydrostatic compression up to 6.3 GPa at ambient temperature. Under ambient pressure the epsilon phase was determined to be stable to a temperature of 120^oC. When heating above 125^oC the gamma phase appeared and it remained stable until thermal decomposition occurred above 150^oC. The gamma phase exhibits a phase change upon compression at both ambient temperature and 140^oC. Pressure -- volume data for the epsilon and gamma phase at ambient temperature and the epsilon phase at 75^oC were fit to the Birch-Murnaghan formalism to obtain isothermal equations of state.

  10. Observation of a New High-Pressure Solid Phase in Dynamically Compressed Aluminum

    NASA Astrophysics Data System (ADS)

    Polsin, D. N.

    2017-10-01

    Aluminum is ideal for testing theoretical first-principles calculations because of the relative simplicity of its atomic structure. Density functional theory (DFT) calculations predict that Al transforms from an ambient-pressure, face-centered-cubic (fcc) crystal to the hexagonal close-packed (hcp) and body-centered-cubic (bcc) structures as it is compressed. Laser-driven experiments performed at the University of Rochester's Laboratory for Laser Energetics and the National Ignition Facility (NIF) ramp compressed Al samples to pressures up to 540 GPa without melting. Nanosecond in-situ x-ray diffraction was used to directly measure the crystal structure at pressures where the solid-solid phase transformations of Al are predicted to occur. Laser velocimetry provided the pressure in the Al. Our results show clear evidence of the fcc-hcp and hpc-bcc transformations at 216 +/- 9 GPa and 321 +/- 12 GPa, respectively. This is the first experimental in-situ observation of the bcc phase in compressed Al and a confirmation of the fcc-hcp transition previously observed under static compression at 217 GPa. The observations indicate these solid-solid phase transitions occur on the order of tens of nanoseconds time scales. In the fcc-hcp transition we find the original texture of the sample is preserved; however, the hcp-bcc transition diminishes that texture producing a structure that is more polycrystalline. The importance of this dynamic is discussed. The NIF results are the first demonstration of x-ray diffraction measurements at two different pressures in a single laser shot. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  11. Phase Retrieval System for Assessing Diamond Turning and Optical Surface Defects

    NASA Technical Reports Server (NTRS)

    Dean, Bruce; Maldonado, Alex; Bolcar, Matthew

    2011-01-01

    An optical design is presented for a measurement system used to assess the impact of surface errors originating from diamond turning artifacts. Diamond turning artifacts are common by-products of optical surface shaping using the diamond turning process (a diamond-tipped cutting tool used in a lathe configuration). Assessing and evaluating the errors imparted by diamond turning (including other surface errors attributed to optical manufacturing techniques) can be problematic and generally requires the use of an optical interferometer. Commercial interferometers can be expensive when compared to the simple optical setup developed here, which is used in combination with an image-based sensing technique (phase retrieval). Phase retrieval is a general term used in optics to describe the estimation of optical imperfections or aberrations. This turnkey system uses only image-based data and has minimal hardware requirements. The system is straightforward to set up, easy to align, and can provide nanometer accuracy on the measurement of optical surface defects.

  12. Noniterative approach to the missing data problem in coherent diffraction imaging by phase retrieval.

    PubMed

    Nakajima, Nobuharu

    2010-07-20

    When a very intense beam is used for illuminating an object in coherent x-ray diffraction imaging, the intensities at the center of the diffraction pattern for the object are cut off by a beam stop that is utilized to block the intense beam. Until now, only iterative phase-retrieval methods have been applied to object reconstruction from a single diffraction pattern with a deficiency of central data due to a beam stop. As an alternative method, I present a noniterative solution in which an interpolation method based on the sampling theorem for the missing data is used for object reconstruction with our previously proposed phase-retrieval method using an aperture-array filter. Computer simulations demonstrate the reconstruction of a complex-amplitude object from a single diffraction pattern with a missing data area, which is generally difficult to treat with the iterative methods because a nonnegativity constraint cannot be used for such an object.

  13. Phase transition studies of Na3Bi system under uniaxial strain

    NASA Astrophysics Data System (ADS)

    Nie, Tiaoping; Meng, Lijun; Li, Yanru; Luan, Yanhua; Yu, Jun

    2018-03-01

    We investigated the electronic properties and phase transitions of Na3Bi in four structural phases (space groups P63/mmc, P \\overline{3} c1, Fm \\overline{3} m and Cmcm) under constant-volume uniaxial strain using the first-principles method. For P63/mmc and P \\overline{3} c1-Na3Bi, an important phase transition from a topological Dirac semimetal (TDS) to a topological insulator appears under compression strain around 4.5%. The insulating gap increases with the increasing compressive strain and up to around 0.1 eV at a strain of 10%. However, both P63/mmc and P \\overline{3} c1-Na3Bi still keep the properties of a TDS within a tensile strain of 0-10%, although the Dirac points move away from the Γ point along Γ-A in reciprocal space as the tensile strain increases. The Na3Bi with space group Fm \\overline{3} m is identified as a topological semimetal with the inverted bands between Na-3s and Bi-6p and a parabolic dispersion in the vicinity of Γ point. Interestingly, for Fm \\overline{3} m-Na3Bi, both compression and tensile strain lead to a TDS which is identified by calculating surface Fermi arcs and topological invariants at time-reversal planes (k z   =  0 and k z   =  π/c) in reciprocal space. Additionally, we confirmed the high pressure phase Cmcm-Na3Bi is an ordinary insulator with a gap of about 0.62 eV. It is noteworthy that its gap almost keeps constant around 0.60 eV within a compression strain of 0-10%. In contrast, a remarkable phase transition from an insulator to a metal phase appears under tensile strain. Moreover, this phase transition is highly sensitive to tensile strain and takes place only at a strain 1.0%. These strain-induced electronic structures and phase transitions of the Na3Bi system in various phases are important due to their possible applications under high pressure in future electronic devices.

  14. Analysis-Preserving Video Microscopy Compression via Correlation and Mathematical Morphology

    PubMed Central

    Shao, Chong; Zhong, Alfred; Cribb, Jeremy; Osborne, Lukas D.; O’Brien, E. Timothy; Superfine, Richard; Mayer-Patel, Ketan; Taylor, Russell M.

    2015-01-01

    The large amount video data produced by multi-channel, high-resolution microscopy system drives the need for a new high-performance domain-specific video compression technique. We describe a novel compression method for video microscopy data. The method is based on Pearson's correlation and mathematical morphology. The method makes use of the point-spread function (PSF) in the microscopy video acquisition phase. We compare our method to other lossless compression methods and to lossy JPEG, JPEG2000 and H.264 compression for various kinds of video microscopy data including fluorescence video and brightfield video. We find that for certain data sets, the new method compresses much better than lossless compression with no impact on analysis results. It achieved a best compressed size of 0.77% of the original size, 25× smaller than the best lossless technique (which yields 20% for the same video). The compressed size scales with the video's scientific data content. Further testing showed that existing lossy algorithms greatly impacted data analysis at similar compression sizes. PMID:26435032

  15. Gram-Schmidt orthonormalization for retrieval of amplitude images under sinusoidal patterns of illumination

    USDA-ARS?s Scientific Manuscript database

    Structured illumination using sinusoidal patterns has been utilized for optical imaging of biological tissues in biomedical research and, of horticultural products. Implementation of structured-illumination imaging relies on retrieval of amplitude images, which is conventionally achieved by a phase-...

  16. Brain Activity During the Encoding, Retention, and Retrieval of Stimulus Representations

    PubMed Central

    de Zubicaray, Greig I.; McMahon, Katie; Wilson, Stephen J.; Muthiah, Santhi

    2001-01-01

    Studies of delayed nonmatching-to-sample (DNMS) performance following lesions of the monkey cortex have revealed a critical circuit of brain regions involved in forming memories and retaining and retrieving stimulus representations. Using event-related functional magnetic resonance imaging (fMRI), we measured brain activity in 10 healthy human participants during performance of a trial-unique visual DNMS task using novel barcode stimuli. The event-related design enabled the identification of activity during the different phases of the task (encoding, retention, and retrieval). Several brain regions identified by monkey studies as being important for successful DNMS performance showed selective activity during the different phases, including the mediodorsal thalamic nucleus (encoding), ventrolateral prefrontal cortex (retention), and perirhinal cortex (retrieval). Regions showing sustained activity within trials included the ventromedial and dorsal prefrontal cortices and occipital cortex. The present study shows the utility of investigating performance on tasks derived from animal models to assist in the identification of brain regions involved in human recognition memory. PMID:11584070

  17. Reliability of Eustachian tube function measurements in a hypobaric and hyperbaric pressure chamber.

    PubMed

    Meyer, M F; Jansen, S; Mordkovich, O; Hüttenbrink, K-B; Beutner, D

    2017-12-01

    Measurement of the Eustachian tube (ET) function is a challenge. The demand for a precise and meaningful diagnostic tool increases-especially because more and more operative therapies are being offered without objective evidence. The measurement of the ET function by continuous impedance recording in a pressure chamber is an established method, although the reliability of the measurements is still unclear. Twenty-five participants (50 ears) were exposed to phases of compression and decompression in a hypo- and hyperbaric pressure chamber. The ET function reflecting parameters-ET opening pressure (ETOP), ET opening duration (ETOD) and ET opening frequency (ETOF)-were determined under exactly the same preconditions three times in a row. The intraclass correlation coefficient (ICC) and Bland and Altman plot were used to assess test-retest reliability. ICCs revealed a high correlation for ETOP and ETOF in phases of decompression (passive equalisation) as well as ETOD and ETOP in phases of compression (active induced equalisation). Very high correlation could be shown for ETOD in decompression and ETOF in compression phases. The Bland and Altman graphs could show that measurements provide results within a 95 % confidence interval in compression and decompression phases. We conclude that measurements in a pressure chamber are a very valuable tool in terms of estimating the ET opening and closing function. Measurements show some variance comparing participants, but provide reliable results within a 95 % confidence interval in retest. This study is the basis for enabling efficacy measurements of ET treatment modalities. © 2017 John Wiley & Sons Ltd.

  18. Gold-based electrical interconnections for microelectronic devices

    DOEpatents

    Peterson, Kenneth A.; Garrett, Stephen E.; Reber, Cathleen A.; Watson, Robert D.

    2002-01-01

    A method of making an electrical interconnection from a microelectronic device to a package, comprising ball or wedge compression bonding a gold-based conductor directly to a silicon surface, such as a polysilicon bonding pad in a MEMS or IMEMS device, without using layers of aluminum or titanium disposed in-between the conductor and the silicon surface. After compression bonding, optional heating of the bond above 363 C. allows formation of a liquid gold-silicon eutectic phase containing approximately 3% (by weight) silicon, which significantly improves the bond strength by reforming and enhancing the initial compression bond. The same process can be used for improving the bond strength of Au--Ge bonds by forming a liquid Au-12Ge eutectic phase.

  19. Spatio-temporal phase retrieval in speckle interferometry with Hilbert transform and two-dimensional phase unwrapping

    NASA Astrophysics Data System (ADS)

    Li, Xiangyu; Huang, Zhanhua; Zhu, Meng; He, Jin; Zhang, Hao

    2014-12-01

    Hilbert transform (HT) is widely used in temporal speckle pattern interferometry, but errors from low modulations might propagate and corrupt the calculated phase. A spatio-temporal method for phase retrieval using temporal HT and spatial phase unwrapping is presented. In time domain, the wrapped phase difference between the initial and current states is directly determined by using HT. To avoid the influence of the low modulation intensity, the phase information between the two states is ignored. As a result, the phase unwrapping is shifted from time domain to space domain. A phase unwrapping algorithm based on discrete cosine transform is adopted by taking advantage of the information in adjacent pixels. An experiment is carried out with a Michelson-type interferometer to study the out-of-plane deformation field. High quality whole-field phase distribution maps with different fringe densities are obtained. Under the experimental conditions, the maximum number of fringes resolvable in a 416×416 frame is 30, which indicates a 15λ deformation along the direction of loading.

  20. Evaluation of Efficient XML Interchange (EXI) for Large Datasets and as an Alternative to Binary JSON Encodings

    DTIC Science & Technology

    2015-03-01

    fall in the lossy category (Gonzalez, Woods , & Eddins, 2009, p. 420). For the textual or numeric data in XML, however, lossy compression is...7/1,337 > Professional Notes Being Efficient with Bandwidth By Lieutenant Commander Steve Debich, Lieutenant Bruce Hill, Captain Scot Miller (Retired...2005). XML Binary Characterization. Retrieved from http://www.w3.org/TR/xbc-characterization/ Gonzalez, R., Woods , R., & Eddins, S. (2009

  1. Superconductivity in multiple phases of compressed GeS b2T e4

    NASA Astrophysics Data System (ADS)

    Greenberg, E.; Hen, B.; Layek, Samar; Pozin, I.; Friedman, R.; Shelukhin, V.; Rosenberg, Y.; Karpovski, M.; Pasternak, M. P.; Sterer, E.; Dagan, Y.; Rozenberg, G. Kh.; Palevski, A.

    2017-02-01

    Here we report the discovery of superconductivity in multiple phases of the compressed GeS b2T e4 (GST) phase change memory alloy, which has attracted considerable attention for the last decade due to its unusual physical properties with many potential applications. Superconductivity is observed through electrical transport measurements, both for the amorphous (a -GST) and for the crystalline (c -GST) phases. The superconducting critical temperature Tc continuously increases with applied pressure, reaching a maximum Tc=6 K at P =20 GPa for a -GST, whereas the critical temperature of the cubic phase reaches a maximum Tc=8 K at 30 GPa. This material system, exhibiting a superconductor-insulator quantum phase transition, has an advantage over disordered metals since it has a continuous control of the crystal structure and the electronic properties using pressure as an external stimulus.

  2. Stress within a Restricted Time Window Selectively Affects the Persistence of Long-Term Memory

    PubMed Central

    Fang, Qin; Chai, Ning; Zhao, Li-Yan; Xue, Yan-Xue; Luo, Yi-Xiao; Jian, Min; Han, Ying; Shi, Hai-Shui; Lu, Lin; Wu, Ping; Wang, Ji-Shi

    2013-01-01

    The effects of stress on emotional memory are distinct and depend on the stages of memory. Memory undergoes consolidation and reconsolidation after acquisition and retrieval, respectively. Stress facilitates the consolidation but disrupts the reconsolidation of emotional memory. Previous research on the effects of stress on memory have focused on long-term memory (LTM) formation (tested 24 h later), but the effects of stress on the persistence of LTM (tested at least 1 week later) are unclear. Recent findings indicated that the persistence of LTM requires late-phase protein synthesis in the dorsal hippocampus. The present study investigated the effect of stress (i.e., cold water stress) during the late phase after the acquisition and retrieval of contextual fear memory in rats. We found that stress and corticosterone administration during the late phase (12 h) after acquisition, referred to as late consolidation, selectively enhanced the persistence of LTM, whereas stress during the late phase (12 h) after retrieval, referred to as late reconsolidation, selectively disrupted the restabilized persistence of LTM. Moreover, the effects of stress on the persistence of LTM were blocked by the corticosterone synthesis inhibitor metyrapone, which was administered before stress, suggesting that the glucocorticoid system is involved in the effects of stress on the persistence of LTM. We conclude that stress within a restricted time window after acquisition or retrieval selectively affects the persistence of LTM and depends on the glucocorticoid system. PMID:23544051

  3. GTRAC: fast retrieval from compressed collections of genomic variants

    PubMed Central

    Tatwawadi, Kedar; Hernaez, Mikel; Ochoa, Idoia; Weissman, Tsachy

    2016-01-01

    Motivation: The dramatic decrease in the cost of sequencing has resulted in the generation of huge amounts of genomic data, as evidenced by projects such as the UK10K and the Million Veteran Project, with the number of sequenced genomes ranging in the order of 10 K to 1 M. Due to the large redundancies among genomic sequences of individuals from the same species, most of the medical research deals with the variants in the sequences as compared with a reference sequence, rather than with the complete genomic sequences. Consequently, millions of genomes represented as variants are stored in databases. These databases are constantly updated and queried to extract information such as the common variants among individuals or groups of individuals. Previous algorithms for compression of this type of databases lack efficient random access capabilities, rendering querying the database for particular variants and/or individuals extremely inefficient, to the point where compression is often relinquished altogether. Results: We present a new algorithm for this task, called GTRAC, that achieves significant compression ratios while allowing fast random access over the compressed database. For example, GTRAC is able to compress a Homo sapiens dataset containing 1092 samples in 1.1 GB (compression ratio of 160), while allowing for decompression of specific samples in less than a second and decompression of specific variants in 17 ms. GTRAC uses and adapts techniques from information theory, such as a specialized Lempel-Ziv compressor, and tailored succinct data structures. Availability and Implementation: The GTRAC algorithm is available for download at: https://github.com/kedartatwawadi/GTRAC Contact: kedart@stanford.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27587665

  4. GTRAC: fast retrieval from compressed collections of genomic variants.

    PubMed

    Tatwawadi, Kedar; Hernaez, Mikel; Ochoa, Idoia; Weissman, Tsachy

    2016-09-01

    The dramatic decrease in the cost of sequencing has resulted in the generation of huge amounts of genomic data, as evidenced by projects such as the UK10K and the Million Veteran Project, with the number of sequenced genomes ranging in the order of 10 K to 1 M. Due to the large redundancies among genomic sequences of individuals from the same species, most of the medical research deals with the variants in the sequences as compared with a reference sequence, rather than with the complete genomic sequences. Consequently, millions of genomes represented as variants are stored in databases. These databases are constantly updated and queried to extract information such as the common variants among individuals or groups of individuals. Previous algorithms for compression of this type of databases lack efficient random access capabilities, rendering querying the database for particular variants and/or individuals extremely inefficient, to the point where compression is often relinquished altogether. We present a new algorithm for this task, called GTRAC, that achieves significant compression ratios while allowing fast random access over the compressed database. For example, GTRAC is able to compress a Homo sapiens dataset containing 1092 samples in 1.1 GB (compression ratio of 160), while allowing for decompression of specific samples in less than a second and decompression of specific variants in 17 ms. GTRAC uses and adapts techniques from information theory, such as a specialized Lempel-Ziv compressor, and tailored succinct data structures. The GTRAC algorithm is available for download at: https://github.com/kedartatwawadi/GTRAC CONTACT: : kedart@stanford.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Raman Spectroscopy of Rdx Single Crystals Under Static Compression

    NASA Astrophysics Data System (ADS)

    Dreger, Zbigniew A.; Gupta, Yogendra M.

    2007-12-01

    To gain insight into the high pressure response of energetic crystal of RDX, Raman measurements were performed under hydrostatic compression up to 15 GPa. Several distinct changes in the spectra were found at 4.0±0.3 GPa, confirming the α-γ phase transition previously observed in polycrystalline samples. Symmetry correlation analyses indicate that the γ-polymorph may assume a space group isomorphous with a point group D2h with eight molecules occupying the C1 symmetry sites, similar to the α-phase. It is proposed that factor group coupling can account for the observed increase in the number of modes in the γ-phase.

  6. Filling-driven Mott transition in SU(N ) Hubbard models

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Sup B.; von Delft, Jan; Weichselbaum, Andreas

    2018-04-01

    We study the filling-driven Mott transition involving the metallic and paramagnetic insulating phases in SU (N ) Fermi-Hubbard models, using the dynamical mean-field theory and the numerical renormalization group as its impurity solver. The compressibility shows a striking temperature dependence: near the critical end-point temperature, it is strongly enhanced in the metallic phase close to the insulating phase. We demonstrate that this compressibility enhancement is associated with the thermal suppression of the quasiparticle peak in the local spectral functions. We also explain that the asymmetric shape of the quasiparticle peak originates from the asymmetry in the dynamics of the generalized doublons and holons.

  7. In situ neutron diffraction study of micromechanical interactions and phase transformation in Ni-Mn-Ga alloy under uniaxial and hydrostatic stress.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, R. L.; Wang, Y. D.; Nie, Z. H.

    2008-01-01

    This paper deals with the experimental study of stress-induced phase transformation in a polycrystalline Ni-Mn-Ga alloy under uniaxial compression and its powder under hydrostatic compression. In situ neutron diffraction experiments were employed to follow changes in the structure and lattice strains caused by the applied stresses. Large lattice strains that are dependent on the lattice planes or grain orientations were observed in the parent Heusler phase for both the bulk material and the powder sample. The development of such anisotropic strains and the influence of external load conditions are discussed in the paper.

  8. Pressure-dependence of the phase transitions and thermal expansion in zirconium and hafnium pyrovanadate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallington, Leighanne C.; Hester, Brett R.; Kaplan, Benjamin S.

    Low or negative thermal expansion (NTE) has been previously observed in members of the ZrP 2O 7 family at temperatures higher than their order-disorder phase transitions. The thermoelastic properties and phase behavior of the low temperature superstructure and high temperature negative thermal expansion phases of ZrV 2O 7 and HfV 2O 7 were explored via in situ variable temperature/pressure powder x-ray diffraction measurements. The phase transition temperatures of ZrV 2O 7 and HfV 2O 7 exhibited a very strong dependence on pressure (~700 K GPa), with moderate compression suppressing the formation of their NTE phases below 513 K. Compression alsomore » reduced the magnitude of the coefficients of thermal expansion in both the positive and negative thermal expansion phases. Additionally, the high temperature NTE phase of ZrV 2O 7 was found to be twice as stiff as the low temperature positive thermal expansion superstructure (24 and 12 GPa respectively).« less

  9. A statistical retrieval of cloud parameters for the millimeter wave Ice Cloud Imager on board MetOp-SG

    NASA Astrophysics Data System (ADS)

    Prigent, Catherine; Wang, Die; Aires, Filipe; Jimenez, Carlos

    2017-04-01

    The meteorological observations from satellites in the microwave domain are currently limited to below 190 GHz. However, the next generation of European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Polar System-Second Generation-EPS-SG will carry an instrument, the Ice Cloud Imager (ICI), with frequencies up to 664 GHz, to improve the characterization of the cloud frozen phase. In this paper, a statistical retrieval of cloud parameters for ICI is developed, trained on a synthetic database derived from the coupling of a mesoscale cloud model and radiative transfer calculations. The hydrometeor profiles simulated with the Weather Research and Forecasting model (WRF) for twelve diverse European mid-latitude situations are used to simulate the brightness temperatures with the Atmospheric Radiative Transfer Simulator (ARTS) to prepare the retrieval database. The WRF+ARTS simulations have been compared to the Special Sensor Microwave Imager/Sounder (SSMIS) observations up to 190 GHz: this successful evaluation gives us confidence in the simulations at the ICI channels from 183 to 664 GHz. Statistical analyses have been performed on this simulated retrieval database, showing that it is not only physically realistic but also statistically satisfactory for retrieval purposes. A first Neural Network (NN) classifier is used to detect the cloud presence. A second NN is developed to retrieve the liquid and ice integrated cloud quantities over sea and land separately. The detection and retrieval of the hydrometeor quantities (i.e., ice, snow, graupel, rain, and liquid cloud) are performed with ICI-only, and with ICI combined with observations from the MicroWave Imager (MWI, with frequencies from 19 to 190 GHz, also on board MetOp-SG). The ICI channels have been optimized for the detection and quantification of the cloud frozen phases: adding the MWI channels improves the performance of the vertically integrated hydrometeor contents, especially for the cloud liquid phases. The relative error for the retrieved integrated frozen water content (FWP, i.e., ice+snow+graupel) is below 40% for 0.1kg/m2 < FWP < 0.5kg/m2 and below 20% for FWP > 0.5 kg/m2.

  10. Echo-Planar Imaging-Based, J-Resolved Spectroscopic Imaging for Improved Metabolite Detection in Prostate Cancer

    DTIC Science & Technology

    2016-12-01

    tiple dimensions (20). Hu et al. employed pseudo-random phase-encoding blips during the EPSI readout to create nonuniform sampling along the spatial...resolved MRSI with Nonuniform Undersampling and Compressed Sensing 514 30.5 Prior-knowledge Fitting for Metabolite Quantitation 515 30.6 Future Directions... NONUNIFORM UNDERSAMPLING AND COMPRESSED SENSING Nonuniform undersampling (NUS) of k-space and subsequent reconstruction using compressed sensing (CS

  11. Wave phenomena in a high Reynolds number compressible boundary layer

    NASA Technical Reports Server (NTRS)

    Bayliss, A.; Maestrello, L.; Parikh, P.; Turkel, E.

    1985-01-01

    Growth of unstable disturbances in a high Reynolds number compressible boundary layer is numerically simulated. Localized periodic surface heating and cooling as a means of active control of these disturbances is studied. It is shown that compressibility in itself stabilizes the flow but at a lower Mach number, significant nonlinear distortions are produced. Phase cancellation is shown to be an effective mechanism for active boundary layer control.

  12. Transition-metal alloying of γ'-Ni3Al : Effects on the ideal uniaxial compressive strength from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Wen, Minru; Wang, Chong-Yu

    2018-01-01

    The addition of transition-metal (TM) elements into the γ' precipitate phase of a Ni-based single-crystal superalloy can significantly affect its mechanical properties, including the intrinsic mechanical property of compressive strength. Using first-principles density functional calculations, the effects of 3 d (Sc-Zn), 4 d (Y-Cd), and 5 d (Hf-Au) TM alloying elements on the ideal uniaxial compressive strength of γ'-Ni3Al were investigated. The stress-strain relationships of pure Ni3Al under [100], [110], and [111] compressive loads and the site occupancy behavior of TM elements in Ni3Al were previously studied using a total-energy method based on density functional theory. Our results showed that the capacity of TM elements for strengthening the ideal compressive strength was associated with the d -electron number. The alloying elements with half-filled d bands (i.e., Cr, Mo, W, Tc, and Re) manifested the greatest efficacy for improving the ideal strength of Ni3Al under a deformation along the weakest compressive direction. Furthermore, the charge redistribution of Ni3Al doped with 5 d elements were also analyzed to understand the strengthening mechanisms of TM elements in the γ'-Ni3Al phase.

  13. Glass and liquid phase diagram of a polyamorphic monatomic system

    NASA Astrophysics Data System (ADS)

    Reisman, Shaina; Giovambattista, Nicolas

    2013-02-01

    We perform out-of-equilibrium molecular dynamics (MD) simulations of a monatomic system with Fermi-Jagla (FJ) pair potential interactions. This model system exhibits polyamorphism both in the liquid and glass state. The two liquids, low-density (LDL) and high-density liquid (HDL), are accessible in equilibrium MD simulations and can form two glasses, low-density (LDA) and high-density amorphous (HDA) solid, upon isobaric cooling. The FJ model exhibits many of the anomalous properties observed in water and other polyamorphic liquids and thus, it is an excellent model system to explore qualitatively the thermodynamic properties of such substances. The liquid phase behavior of the FJ model system has been previously characterized. In this work, we focus on the glass behavior of the FJ system. Specifically, we perform systematic isothermal compression and decompression simulations of LDA and HDA at different temperatures and determine "phase diagrams" for the glass state; these phase diagrams varying with the compression/decompression rate used. We obtain the LDA-to-HDA and HDA-to-LDA transition pressure loci, PLDA-HDA(T) and PHDA-LDA(T), respectively. In addition, the compression-induced amorphization line, at which the low-pressure crystal (LPC) transforms to HDA, PLPC-HDA(T), is determined. As originally proposed by Poole et al. [Phys. Rev. E 48, 4605 (1993)], 10.1103/PhysRevE.48.4605 simulations suggest that the PLDA-HDA(T) and PHDA-LDA(T) loci are extensions of the LDL-to-HDL and HDL-to-LDL spinodal lines into the glass domain. Interestingly, our simulations indicate that the PLPC-HDA(T) locus is an extension, into the glass domain, of the LPC metastability limit relative to the liquid. We discuss the effects of compression/decompression rates on the behavior of the PLDA-HDA(T), PHDA-LDA(T), PLPC-HDA(T) loci. The competition between glass polyamorphism and crystallization is also addressed. At our "fast rate," crystallization can be partially suppressed and the glass phase diagram can be related directly with the liquid phase diagram. However, at our "slow rate," crystallization cannot be prevented at intermediate temperatures, within the glass region. In these cases, multiple crystal-crystal transformations are found upon compression/decompression (polymorphism).

  14. Glass and liquid phase diagram of a polyamorphic monatomic system.

    PubMed

    Reisman, Shaina; Giovambattista, Nicolas

    2013-02-14

    We perform out-of-equilibrium molecular dynamics (MD) simulations of a monatomic system with Fermi-Jagla (FJ) pair potential interactions. This model system exhibits polyamorphism both in the liquid and glass state. The two liquids, low-density (LDL) and high-density liquid (HDL), are accessible in equilibrium MD simulations and can form two glasses, low-density (LDA) and high-density amorphous (HDA) solid, upon isobaric cooling. The FJ model exhibits many of the anomalous properties observed in water and other polyamorphic liquids and thus, it is an excellent model system to explore qualitatively the thermodynamic properties of such substances. The liquid phase behavior of the FJ model system has been previously characterized. In this work, we focus on the glass behavior of the FJ system. Specifically, we perform systematic isothermal compression and decompression simulations of LDA and HDA at different temperatures and determine "phase diagrams" for the glass state; these phase diagrams varying with the compression/decompression rate used. We obtain the LDA-to-HDA and HDA-to-LDA transition pressure loci, P(LDA-HDA)(T) and P(HDA-LDA)(T), respectively. In addition, the compression-induced amorphization line, at which the low-pressure crystal (LPC) transforms to HDA, P(LPC-HDA)(T), is determined. As originally proposed by Poole et al. [Phys. Rev. E 48, 4605 (1993)] simulations suggest that the P(LDA-HDA)(T) and P(HDA-LDA)(T) loci are extensions of the LDL-to-HDL and HDL-to-LDL spinodal lines into the glass domain. Interestingly, our simulations indicate that the P(LPC-HDA)(T) locus is an extension, into the glass domain, of the LPC metastability limit relative to the liquid. We discuss the effects of compression/decompression rates on the behavior of the P(LDA-HDA)(T), P(HDA-LDA)(T), P(LPC-HDA)(T) loci. The competition between glass polyamorphism and crystallization is also addressed. At our "fast rate," crystallization can be partially suppressed and the glass phase diagram can be related directly with the liquid phase diagram. However, at our "slow rate," crystallization cannot be prevented at intermediate temperatures, within the glass region. In these cases, multiple crystal-crystal transformations are found upon compression/decompression (polymorphism).

  15. Optimal Design for Hetero-Associative Memory: Hippocampal CA1 Phase Response Curve and Spike-Timing-Dependent Plasticity

    PubMed Central

    Miyata, Ryota; Ota, Keisuke; Aonishi, Toru

    2013-01-01

    Recently reported experimental findings suggest that the hippocampal CA1 network stores spatio-temporal spike patterns and retrieves temporally reversed and spread-out patterns. In this paper, we explore the idea that the properties of the neural interactions and the synaptic plasticity rule in the CA1 network enable it to function as a hetero-associative memory recalling such reversed and spread-out spike patterns. In line with Lengyel’s speculation (Lengyel et al., 2005), we firstly derive optimally designed spike-timing-dependent plasticity (STDP) rules that are matched to neural interactions formalized in terms of phase response curves (PRCs) for performing the hetero-associative memory function. By maximizing object functions formulated in terms of mutual information for evaluating memory retrieval performance, we search for STDP window functions that are optimal for retrieval of normal and doubly spread-out patterns under the constraint that the PRCs are those of CA1 pyramidal neurons. The system, which can retrieve normal and doubly spread-out patterns, can also retrieve reversed patterns with the same quality. Finally, we demonstrate that purposely designed STDP window functions qualitatively conform to typical ones found in CA1 pyramidal neurons. PMID:24204822

  16. Spatial and temporal dynamics of cortical networks engaged in memory encoding and retrieval

    PubMed Central

    Miller, Brian T.; D'Esposito, Mark

    2012-01-01

    Memory operations such as encoding and retrieval require the coordinated interplay of cortical regions with distinct functional contributions. The mechanistic nature of these interactions, however, remains unspecified. During the performance of a face memory task during fMRI scanning, we measured the magnitude (a measure of the strength of coupling between areas) and phase (a measure of the relative timing across areas) of coherence between regions of interest and the rest of the brain. The fusiform face area (FFA) showed robust coherence with a distributed network of subregions in the prefrontal cortex (PFC), posterior parietal cortex (PPC), precuneus, and hippocampus across both memory operations. While these findings reveal significant overlap in the cortical networks underlying mnemonic encoding and retrieval, coherence phase analyses revealed context-dependent differences in cortical dynamics. During both encoding and retrieval, PFC and PPC exhibited earlier activity than in the FFA and hippocampus. Also, during retrieval, PFC activity preceded PPC activity. These findings are consistent with prior physiology studies suggesting an early contribution of PFC and PPC in mnemonic control. Together, these findings contribute to the growing literature exploring the spatio-temporal dynamics of basic memory operations. PMID:22557959

  17. Evaluation of AIRS cloud properties using MPACE data

    NASA Astrophysics Data System (ADS)

    Wu, Xuebao; Li, Jun; Menzel, W. Paul; Huang, Allen; Baggett, Kevin; Revercomb, Henry

    2005-12-01

    Retrieval of cloud properties from the Atmospheric Infrared Sounder (AIRS) aboard the NASA Aqua satellite has been investigated. The cloud products from the collocated MODerate resolution Imaging Spectroradiometer (MODIS) data are used to characterize the AIRS sub-pixel cloud information such as cloud phase, cloud coverage, and cloud layer information. A Minimum Residual (MR) approach is used to retrieve cloud microphysical properties once the cloud top pressure (CTP) and effective cloud amount (ECA) are determined from AIRS CO2 absorption channels between 720 and 790 cm-1. The cloud microphysical properties can be retrieved by minimizing the differences between the observations and the calculations using AIRS longwave window channels between 790 and 1130 cm-1. AIRS is used to derive cloud properties during the Mixed Phase Arctic Cloud Experiment (MPACE) field campaign. Comparison with measurements obtained from lidar data is made for a test day, showing that AIRS cloud property retrievals agree with in situ lidar observations. Due to the large solar zenith angle, the MODIS operational retrieval approach is not able to provide cloud microphysics north of Barrow, Alaska; however, AIRS provides cloud microphysical properties with its high spectral resolution IR measurements.

  18. Strength Measurements of Archive K Basin Sludge Using a Soil Penetrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delegard, Calvin H.; Schmidt, Andrew J.; Chenault, Jeffrey W.

    2011-12-06

    Spent fuel radioactive sludge present in the K East and K West spent nuclear fuel storage basins now resides in the KW Basin in six large underwater engineered containers. The sludge will be dispositioned in two phases under the Sludge Treatment Project: (1) hydraulic retrieval into sludge transport and storage containers (STSCs) and transport to interim storage in Central Plateau and (2) retrieval from the STSCs, treatment, and packaging for shipment to the Waste Isolation Pilot Plant. In the years the STSCs are stored, sludge strength is expected to increase through chemical reaction, intergrowth of sludge crystals, and compaction andmore » dewatering by settling. Increased sludge strength can impact the type and operation of the retrieval equipment needed prior to final sludge treatment and packaging. It is important to determine whether water jetting, planned for sludge retrieval from STSCs, will be effective. Shear strength is a property known to correlate with the effectiveness of water jetting. Accordingly, the unconfined compressive strengths (UCS) of archive K Basin sludge samples and sludge blends were measured using a pocket penetrometer modified for hot cell use. Based on known correlations, UCS values can be converted to shear strengths. Twenty-six sludge samples, stored in hot cells for a number of years since last being disturbed, were identified as potential candidates for UCS measurement and valid UCS measurements were made for twelve, each of which was found as moist or water-immersed solids at least 1/2-inch deep. Ten of the twelve samples were relatively weak, having consistencies described as 'very soft' to 'soft'. Two of the twelve samples, KE Pit and KC-4 P250, were strong with 'very stiff' and 'stiff' consistencies described, respectively, as 'can be indented by a thumb nail' or 'can be indented by thumb'. Both of these sludge samples are composites collected from KE Basin floor and Weasel Pit locations. Despite both strong sludges having relatively high iron concentrations, attribution of their high strengths to this factor could not be made with confidence as other measured sludge samples, also from the KE Basin floor and of high iron concentration, were relatively weak. The observed UCS and shear strengths for the two strong sludges were greater than observed in any prior testing of K Basin sludge except for sludge processed at 185 C under hydrothermal conditions.« less

  19. Effects of cue focality on the neural mechanisms of prospective memory: A meta-analysis of neuroimaging studies.

    PubMed

    Cona, Giorgia; Bisiacchi, Patrizia Silvia; Sartori, Giuseppe; Scarpazza, Cristina

    2016-05-17

    Remembering to execute pre-defined intentions at the appropriate time in the future is typically referred to as Prospective Memory (PM). Studies of PM showed that distinct cognitive processes underlie the execution of delayed intentions depending on whether the cue associated with such intentions is focal to ongoing activity processing or not (i.e., cue focality). The present activation likelihood estimation (ALE) meta-analysis revealed several differences in brain activity as a function of focality of the PM cue. The retrieval of intention is supported mainly by left anterior prefrontal cortex (Brodmann Area, BA 10) in nonfocal tasks, and by cerebellum and ventral parietal regions in focal tasks. Furthermore, the precuneus showed increased activation during the maintenance phase of intentions compared to the retrieval phase in nonfocal tasks, whereas the inferior parietal lobule showed increased activation during the retrieval of intention compared to maintenance phase in the focal tasks. Finally, the retrieval of intention relies more on the activity in anterior cingulate cortex for nonfocal tasks, and on posterior cingulate cortex for focal tasks. Such focality-related pattern of activations suggests that prospective remembering is mediated mainly by top-down and stimulus-independent processes in nonfocal tasks, whereas by more automatic, bottom-up, processes in focal tasks.

  20. Effects of cue focality on the neural mechanisms of prospective memory: A meta-analysis of neuroimaging studies

    PubMed Central

    Cona, Giorgia; Bisiacchi, Patrizia Silvia; Sartori, Giuseppe; Scarpazza, Cristina

    2016-01-01

    Remembering to execute pre-defined intentions at the appropriate time in the future is typically referred to as Prospective Memory (PM). Studies of PM showed that distinct cognitive processes underlie the execution of delayed intentions depending on whether the cue associated with such intentions is focal to ongoing activity processing or not (i.e., cue focality). The present activation likelihood estimation (ALE) meta-analysis revealed several differences in brain activity as a function of focality of the PM cue. The retrieval of intention is supported mainly by left anterior prefrontal cortex (Brodmann Area, BA 10) in nonfocal tasks, and by cerebellum and ventral parietal regions in focal tasks. Furthermore, the precuneus showed increased activation during the maintenance phase of intentions compared to the retrieval phase in nonfocal tasks, whereas the inferior parietal lobule showed increased activation during the retrieval of intention compared to maintenance phase in the focal tasks. Finally, the retrieval of intention relies more on the activity in anterior cingulate cortex for nonfocal tasks, and on posterior cingulate cortex for focal tasks. Such focality-related pattern of activations suggests that prospective remembering is mediated mainly by top-down and stimulus-independent processes in nonfocal tasks, whereas by more automatic, bottom-up, processes in focal tasks. PMID:27185531

  1. Robust information encryption diffractive-imaging-based scheme with special phase retrieval algorithm for a customized data container

    NASA Astrophysics Data System (ADS)

    Qin, Yi; Wang, Zhipeng; Wang, Hongjuan; Gong, Qiong; Zhou, Nanrun

    2018-06-01

    The diffractive-imaging-based encryption (DIBE) scheme has aroused wide interesting due to its compact architecture and low requirement of conditions. Nevertheless, the primary information can hardly be recovered exactly in the real applications when considering the speckle noise and potential occlusion imposed on the ciphertext. To deal with this issue, the customized data container (CDC) into DIBE is introduced and a new phase retrieval algorithm (PRA) for plaintext retrieval is proposed. The PRA, designed according to the peculiarity of the CDC, combines two key techniques from previous approaches, i.e., input-support-constraint and median-filtering. The proposed scheme can guarantee totally the reconstruction of the primary information despite heavy noise or occlusion and its effectiveness and feasibility have been demonstrated with simulation results.

  2. NASA's GeneLab Phase II: Federated Search and Data Discovery

    NASA Technical Reports Server (NTRS)

    Berrios, Daniel C.; Costes, Sylvain V.; Tran, Peter B.

    2017-01-01

    GeneLab is currently being developed by NASA to accelerate 'open science' biomedical research in support of the human exploration of space and the improvement of life on earth. Phase I of the four-phase GeneLab Data Systems (GLDS) project emphasized capabilities for submission, curation, search, and retrieval of genomics, transcriptomics and proteomics ('omics') data from biomedical research of space environments. The focus of development of the GLDS for Phase II has been federated data search for and retrieval of these kinds of data across other open-access systems, so that users are able to conduct biological meta-investigations using data from a variety of sources. Such meta-investigations are key to corroborating findings from many kinds of assays and translating them into systems biology knowledge and, eventually, therapeutics.

  3. NASAs GeneLab Phase II: Federated Search and Data Discovery

    NASA Technical Reports Server (NTRS)

    Berrios, Daniel C.; Costes, Sylvain; Tran, Peter

    2017-01-01

    GeneLab is currently being developed by NASA to accelerate open science biomedical research in support of the human exploration of space and the improvement of life on earth. Phase I of the four-phase GeneLab Data Systems (GLDS) project emphasized capabilities for submission, curation, search, and retrieval of genomics, transcriptomics and proteomics (omics) data from biomedical research of space environments. The focus of development of the GLDS for Phase II has been federated data search for and retrieval of these kinds of data across other open-access systems, so that users are able to conduct biological meta-investigations using data from a variety of sources. Such meta-investigations are key to corroborating findings from many kinds of assays and translating them into systems biology knowledge and, eventually, therapeutics.

  4. Information verification and encryption based on phase retrieval with sparsity constraints and optical inference

    NASA Astrophysics Data System (ADS)

    Zhong, Shenlu; Li, Mengjiao; Tang, Xiajie; He, Weiqing; Wang, Xiaogang

    2017-01-01

    A novel optical information verification and encryption method is proposed based on inference principle and phase retrieval with sparsity constraints. In this method, a target image is encrypted into two phase-only masks (POMs), which comprise sparse phase data used for verification. Both of the two POMs need to be authenticated before being applied for decrypting. The target image can be optically reconstructed when the two authenticated POMs are Fourier transformed and convolved by the correct decryption key, which is also generated in encryption process. No holographic scheme is involved in the proposed optical verification and encryption system and there is also no problem of information disclosure in the two authenticable POMs. Numerical simulation results demonstrate the validity and good performance of this new proposed method.

  5. A control approach for robots with flexible links and rigid end-effectors

    NASA Technical Reports Server (NTRS)

    Barbieri, Enrique; Ozguner, Umit

    1989-01-01

    Multiarm flexible robots with dexterous end effectors are currently being considered in such tasks as satellite retrieval, servicing and repair where a two phase problem can be identified: Phase 1, robot positioning in space; Phase 2, object retrieval. Some issues in Phase 1 regarding modelling and control strategies for a robotic system comprised of along flexible arm and a rigid three-link end effector are presented. The control objective is to maintain the last (rigid) link stationary in space in the presence of an additive disturbance caused by the flexible energy in the first link after a positioning maneuver has been accomplished. Several configuration strategies can be considered, and optimal decentralized servocompensators can be designed. Preliminary computer simulations are included for a simple proportional controller to illustrate the approach.

  6. Effect of microstructural parameters on the mechanical behavior of TiAlNb(Cr,Mo) alloys with γ+σ microstructure at ambient temperature

    DOE PAGES

    Kesler, Michael S.; Goyel, Sonalika; Ebrahimi, Fereshteh; ...

    2016-11-15

    The mechanical properties of novel alloys with two-phase γ-TiAl + σ-Nb 2Al microstructures were evaluated under compression at room temperature. Microstructures of varying scales were developed through solutionizing and aging heat treatments and the volume fraction of phases were varied with changes in composition. Ultra-fine, aged γ+σ microstructures were achieved for the alloys which affectively retained high volume fractions of the parent β-phase upon quenching from the solutionizing temperature. The yield strength and compressive strain to failure of these alloys show a strong dependence on the relative scale and volume fraction of phases. Surprisingly, the hard brittle σ-phase particles weremore » not found to control fracture in the refined microstructures.« less

  7. Frequency–specific network connectivity increases underlie accurate spatiotemporal memory retrieval

    PubMed Central

    Watrous, Andrew J.; Tandon, Nitin; Connor, Chris; Pieters, Thomas; Ekstrom, Arne D.

    2013-01-01

    The medial temporal lobes, prefrontal cortex, and parts of parietal cortex form the neural underpinnings of episodic memory, which includes remembering both where and when an event occurred. Yet how these three key regions interact during retrieval of spatial and temporal context remains largely untested. Here, we employed simultaneous electrocorticographical recordings across multiple lobular regions, employing phase synchronization as a measure of network functional connectivity, while patients retrieved spatial and temporal context associated with an episode. Successful memory retrieval was characterized by greater global connectivity compared to incorrect retrieval, with the MTL acting as a convergence hub for these interactions. Spatial vs. temporal context retrieval resulted in prominent differences in both the spectral and temporal patterns of network interactions. These results emphasize dynamic network interactions as central to episodic memory retrieval, providing novel insight into how multiple contexts underlying a single event can be recreated within the same network. PMID:23354333

  8. Validation of Cloud Properties From Multiple Satellites Using CALIOP Data

    NASA Technical Reports Server (NTRS)

    Yost, Christopher R.; Minnis, Patrick; Bedka, Kristopher M.; Heck, Patrick W.; Palikonda, Rabindra; Sun-Mack, Sunny; Trepte, Qing

    2016-01-01

    The NASA Langley Satellite ClOud and Radiative Property retrieval System (SatCORPS) is routinely applied to multispectral imagery from several geostationary and polar-orbiting imagers to retrieve cloud properties for weather and climate applications. Validation of the retrievals with independent datasets is continuously ongoing in order to understand differences caused by calibration, spatial resolution, viewing geometry, and other factors. The CALIOP instrument provides a decade of detailed cloud observations which can be used to evaluate passive imager retrievals of cloud boundaries, thermodynamic phase, cloud optical depth, and water path on a global scale. This paper focuses on comparisons of CALIOP retrievals to retrievals from MODIS, VIIRS, AVHRR, GOES, SEVIRI, and MTSAT. CALIOP is particularly skilled at detecting weakly-scattering cirrus clouds with optical depths less than approx. 0.5. These clouds are often undetected by passive imagers and the effect this has on the property retrievals is discussed.

  9. Development, Validation, and Potential Enhancements to the Second-Generation Operational Aerosol Product at the National Environmental Satellite, Data, and Information Service of the National Oceanic and Atmospheric Administration

    NASA Technical Reports Server (NTRS)

    Stowe, Larry L.; Ignatov, Alexander M.; Singh, Ramdas R.

    1997-01-01

    A revised (phase 2) single-channel algorithm for aerosol optical thickness, tau(sup A)(sub SAT), retrieval over oceans from radiances in channel 1 (0.63 microns) of the Advanced Very High Resolution Radiometer (AVHRR) has been implemented at the National Oceanic and Atmospheric Administration's National Environmental Satellite Data and Information Service for the NOAA 14 satellite launched December 30, 1994. It is based on careful validation of its operational predecessor (phase 1 algorithm), implemented for NOAA 14 in 1989. Both algorithms scale the upward satellite radiances in cloud-free conditions to aerosol optical thickness using an updated radiative transfer model of the ocean and atmosphere. Application of the phase 2 algorithm to three matchup Sun-photometer and satellite data sets, one with NOAA 9 in 1988 and two with NOAA 11 in 1989 and 1991, respectively, show systematic error is less than 10%, with a random error of sigma(sub tau) approx. equal 0.04. First results of tau(sup A)(sub SAT) retrievals from NOAA 14 using the phase 2 algorithm, and from checking its internal consistency, are presented. The potential two-channel (phase 3) algorithm for the retrieval of an aerosol size parameter, such as the Junge size distribution exponent, by adding either channel 2 (0.83 microns) from the current AVHRR instrument, or a 1.6-microns channel to be available on the Tropical Rainfall Measurement Mission and the NOAA-KLM satellites by 1997 is under investigation. The possibility of using this additional information in the retrieval of a more accurate estimate of aerosol optical thickness is being explored.

  10. Role of dorsal hippocampal orexin-1 receptors in memory restoration induced by morphine sensitization phenomenon.

    PubMed

    Alijanpour, S; Tirgar, F; Zarrindast, M-R

    2016-01-15

    The present study was examined the blockade of CA1 orexin-1 receptors (OX1Rs) of the dorsal hippocampus in the induction or expression phase on morphine sensitization-induced memory restoration using the Morris water maze (MWM) apparatus. Results showed that pre-training administration of morphine (5mg/kg, s.c.) increases escape latency and traveled distance, while does not alter swimming speed. This supports the impairing effect of morphine on the spatial memory acquisition in male adult rats. Also, in the retrieval session (probe trial) this treatment decreased the time spent in the target quadrant. Moreover, morphine-induced sensitization (15 or 20mg/kg, s.c.; once daily for 3days and followed by 5days no drug treatment) restored the memory acquisition/retrieval deficit which had been induced by pre-training administration of morphine (5mg/kg, s.c.). Intra-CA1 microinjection of subthreshold doses of SB-334867 (OX1Rs antagonist; 10, 20 and 40nmol/rat), 5min before morphine (20mg/kg/day×3days, s.c.; induction phase for morphine sensitization) did not alter restoration of memory acquisition/retrieval produced by the morphine sensitization phenomenon. In contrast, microinjection of subthreshold doses of SB-334867 (10, 20 and 40nmol/rat) into the CA1 region in the training session, 5min prior to morphine (5mg/kg, s.c.; expression phase for morphine sensitization) blocked the spatial memory acquisition/retrieval in morphine-sensitized rats. In conclusion, these findings show that morphine sensitization reverses morphine-induced amnesia. Furthermore, the blockade of CA1 OX1Rs in the expression phase, but not in the induction phase, disrupts memory restoration induced by morphine sensitization. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. The fate of completed intentions.

    PubMed

    Anderson, Francis T; Einstein, Gilles O

    2017-04-01

    The goal of this research was to determine whether and how people deactivate prospective memory (PM) intentions after they have been completed. One view proposes that PM intentions can be deactivated after completion, such that they no longer come to mind and interfere with current tasks. Another view is that now irrelevant completed PM intentions exhibit persisting activation, and continue to be retrieved. In Experiment 1, participants were given a PM intention embedded within the ongoing task during Phase 1, after which participants were told either that the PM task had been completed or suspended until later. During Phase 2, participants were instructed to perform only the ongoing task and were periodically prompted to report their thoughts. Critically, the PM targets from Phase 1 reappeared in Phase 2. All of our measures, including thoughts reported about the PM task, supported the existence of persisting activation. In Experiment 2, we varied conditions that were expected to mitigate persisting activation. Despite our best attempts to promote deactivation, we found evidence for the persistence of spontaneous retrieval in all groups after intentions were completed. The theoretical and practical implications of this potential dark side to spontaneous retrieval are discussed.

  12. Fabrication of calcium phosphate–calcium sulfate injectable bone substitute using hydroxy-propyl-methyl-cellulose and citric acid

    PubMed Central

    Thai, Van Viet

    2010-01-01

    In this study, an injectable bone substitute (IBS) consisting of citric acid, chitosan, and hydroxyl propyl methyl cellulose (HPMC) as the liquid phase and tetra calcium phosphate (TTCP), dicalcium phosphate dihydrate (DCPD) and calcium sulfate dehydrate (CSD, CaSO4·2H2O) powders as the solid phase, were fabricated. Two groups were classified based on the percent of citric acid in the liquid phase (20, 40 wt%). In each groups, the HPMC percentage was 0, 2, and 4 wt%. An increase in compressive strength due to changes in morphology was confirmed by scanning electron microscopy images. A good conversion rate of HAp at 20% citric acid was observed in the XRD profiles. In addition, HPMC was not obviously affected by apatite formation. However, both HPMC and citric acid increased the compressive strength of IBS. The maximum compressive strength for IBS was with 40% citric acid and 4% HPMC after 14 days of incubation in 100% humidity at 37°C. PMID:20333539

  13. Hydrocode and Molecular Dynamics modelling of uniaxial shock wave experiments on Silicon

    NASA Astrophysics Data System (ADS)

    Stubley, Paul; McGonegle, David; Patel, Shamim; Suggit, Matthew; Wark, Justin; Higginbotham, Andrew; Comley, Andrew; Foster, John; Rothman, Steve; Eggert, Jon; Kalantar, Dan; Smith, Ray

    2015-06-01

    Recent experiments have provided further evidence that the response of silicon to shock compression has anomalous properties, not described by the usual two-wave elastic-plastic response. A recent experimental campaign on the Orion laser in particular has indicated a complex multi-wave response. While Molecular Dynamics (MD) simulations can offer a detailed insight into the response of crystals to uniaxial compression, they are extremely computationally expensive. For this reason, we are adapting a simple quasi-2D hydrodynamics code to capture phase change under uniaxial compression, and the intervening mixed phase region, keeping track of the stresses and strains in each of the phases. This strain information is of such importance because a large number of shock experiments use diffraction as a key diagnostic, and these diffraction patterns depend solely on the elastic strains in the sample. We present here a comparison of the new hydrodynamics code with MD simulations, and show that the simulated diffraction taken from the code agrees qualitatively with measured diffraction from our recent Orion campaign.

  14. Coherent diffractive imaging using randomly coded masks

    DOE PAGES

    Seaberg, Matthew H.; d'Aspremont, Alexandre; Turner, Joshua J.

    2015-12-07

    We experimentally demonstrate an extension to coherent diffractive imaging that encodes additional information through the use of a series of randomly coded masks, removing the need for typical object-domain constraints while guaranteeing a unique solution to the phase retrieval problem. Phase retrieval is performed using a numerical convex relaxation routine known as “PhaseCut,” an iterative algorithm known for its stability and for its ability to find the global solution, which can be found efficiently and which is robust to noise. As a result, the experiment is performed using a laser diode at 532.2 nm, enabling rapid prototyping for future X-raymore » synchrotron and even free electron laser experiments.« less

  15. Coherent diffractive imaging using randomly coded masks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seaberg, Matthew H., E-mail: seaberg@slac.stanford.edu; Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025; D'Aspremont, Alexandre

    2015-12-07

    We experimentally demonstrate an extension to coherent diffractive imaging that encodes additional information through the use of a series of randomly coded masks, removing the need for typical object-domain constraints while guaranteeing a unique solution to the phase retrieval problem. Phase retrieval is performed using a numerical convex relaxation routine known as “PhaseCut,” an iterative algorithm known for its stability and for its ability to find the global solution, which can be found efficiently and which is robust to noise. The experiment is performed using a laser diode at 532.2 nm, enabling rapid prototyping for future X-ray synchrotron and even freemore » electron laser experiments.« less

  16. Role of Compressibility on Tsunami Propagation

    NASA Astrophysics Data System (ADS)

    Abdolali, Ali; Kirby, James T.

    2017-12-01

    In the present paper, we aim to reduce the discrepancies between tsunami arrival times evaluated from tsunami models and real measurements considering the role of ocean compressibility. We perform qualitative studies to reveal the phase speed reduction rate via a modified version of the Mild Slope Equation for Weakly Compressible fluid (MSEWC) proposed by Sammarco et al. (2013). The model is validated against a 3-D computational model. Physical properties of surface gravity waves are studied and compared with those for waves evaluated from an incompressible flow solver over realistic geometry for 2011 Tohoku-oki event, revealing reduction in phase speed.Plain Language SummarySubmarine earthquakes and submarine mass failures (SMFs), can generate long gravitational waves (or tsunamis) that propagate at the free surface. Tsunami waves can travel long distances and are known for their dramatic effects on coastal areas. Nowadays, numerical models are used to reconstruct the tsunamigenic events for many scientific and socioeconomic aspects i.e. Tsunami Early Warning Systems, inundation mapping, risk and hazard analysis, etc. A number of typically neglected parameters in these models cause discrepancies between model outputs and observations. Most of the tsunami models predict tsunami arrival times at distant stations slightly early in comparison to observations. In this study, we show how ocean compressibility would affect the tsunami wave propagation speed. In this framework, an efficient two-dimensional model equation for the weakly compressible ocean has been developed, validated and tested for simplified and real cases against three dimensional and incompressible solvers. Taking the effect of compressibility, the phase speed of surface gravity waves is reduced compared to that of an incompressible fluid. Then, we used the model for the case of devastating Tohoku-Oki 2011 tsunami event, improving the model accuracy. This study sheds light for future model development to include ocean compressibility among other typically neglected parameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/14674652','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/14674652"><span>Phase retrieval in digital speckle pattern interferometry by use of a smoothed space-frequency distribution.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Federico, Alejandro; Kaufmann, Guillermo H</p> <p>2003-12-10</p> <p>We evaluate the use of a smoothed space-frequency distribution (SSFD) to retrieve optical phase maps in digital speckle pattern interferometry (DSPI). The performance of this method is tested by use of computer-simulated DSPI fringes. Phase gradients are found along a pixel path from a single DSPI image, and the phase map is finally determined by integration. This technique does not need the application of a phase unwrapping algorithm or the introduction of carrier fringes in the interferometer. It is shown that a Wigner-Ville distribution with a smoothing Gaussian kernel gives more-accurate results than methods based on the continuous wavelet transform. We also discuss the influence of filtering on smoothing of the DSPI fringes and some additional limitations that emerge when this technique is applied. The performance of the SSFD method for processing experimental data is then illustrated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4569796','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4569796"><span>Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Gleason, A. E.; Bolme, C. A.; Lee, H. J.; Nagler, B.; Galtier, E.; Milathianaki, D.; Hawreliak, J.; Kraus, R. G.; Eggert, J. H.; Fratanduono, D. E.; Collins, G. W.; Sandberg, R.; Yang, W.; Mao, W. L.</p> <p>2015-01-01</p> <p>Pressure- and temperature-induced phase transitions have been studied for more than a century but very little is known about the non-equilibrium processes by which the atoms rearrange. Shock compression generates a nearly instantaneous propagating high-pressure/temperature condition while in situ X-ray diffraction (XRD) probes the time-dependent atomic arrangement. Here we present in situ pump–probe XRD measurements on shock-compressed fused silica, revealing an amorphous to crystalline high-pressure stishovite phase transition. Using the size broadening of the diffraction peaks, the growth of nanocrystalline stishovite grains is resolved on the nanosecond timescale just after shock compression. At applied pressures above 18 GPa the nuclueation of stishovite appears to be kinetically limited to 1.4±0.4 ns. The functional form of this grain growth suggests homogeneous nucleation and attachment as the growth mechanism. These are the first observations of crystalline grain growth in the shock front between low- and high-pressure states via XRD. PMID:26337754</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1234196-ray-scattering-measurements-dissociation-induced-metallization-dynamically-compressed-deuterium','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1234196-ray-scattering-measurements-dissociation-induced-metallization-dynamically-compressed-deuterium"><span>X-ray scattering measurements of dissociation-induced metallization of dynamically compressed deuterium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Davis, P.; Döppner, T.; Rygg, J. R.; ...</p> <p>2016-04-18</p> <p>Hydrogen, the simplest element in the universe, has a surprisingly complex phase diagram. Because of applications to planetary science, inertial confinement fusion and fundamental physics, its high-pressure properties have been the subject of intense study over the past two decades. While sophisticated static experiments have probed hydrogen’s structure at ever higher pressures, studies examining the higher-temperature regime using dynamic compression have mostly been limited to optical measurement techniques. Here we present spectrally resolved x-ray scattering measurements from plasmons in dynamically compressed deuterium. Combined with Compton scattering, and velocity interferometry to determine shock pressure and mass density, this allows us tomore » extract ionization state as a function of compression. Furthermore, the onset of ionization occurs close in pressure to where density functional theory-molecular dynamics (DFT-MD) simulations show molecular dissociation, suggesting hydrogen transitions from a molecular and insulating fluid to a conducting state without passing through an intermediate atomic phase.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24276612','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24276612"><span>Formation of Nanofoam carbon and re-emergence of Superconductivity in compressed CaC6.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Yan-Ling; Luo, Wei; Chen, Xiao-Jia; Zeng, Zhi; Lin, Hai-Qing; Ahuja, Rajeev</p> <p>2013-11-26</p> <p>Pressure can tune material's electronic properties and control its quantum state, making some systems present disconnected superconducting region as observed in iron chalcogenides and heavy fermion CeCu2Si2. For CaC6 superconductor (Tc of 11.5 K), applying pressure first Tc increases and then suppresses and the superconductivity of this compound is eventually disappeared at about 18 GPa. Here, we report a theoretical finding of the re-emergence of superconductivity in heavily compressed CaC6. The predicted phase III (space group Pmmn) with formation of carbon nanofoam is found to be stable at wide pressure range with a Tc up to 14.7 K at 78 GPa. Diamond-like carbon structure is adhered to the phase IV (Cmcm) for compressed CaC6 after 126 GPa, which has bad metallic behavior, indicating again departure from superconductivity. Re-emerged superconductivity in compressed CaC6 paves a new way to design new-type superconductor by inserting metal into nanoporous host lattice.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1227897-ultrafast-visualization-crystallization-grain-growth-shock-compressed-sio2','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1227897-ultrafast-visualization-crystallization-grain-growth-shock-compressed-sio2"><span>Ultrafast visualization of crystallization and grain growth in shock-compressed SiO 2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Gleason, A. E.; Bolme, C. A.; Lee, H. J.; ...</p> <p>2015-09-04</p> <p>Pressure- and temperature-induced phase transitions have been studied for more than a century but very little is known about the non-equilibrium processes by which the atoms rearrange. Shock compression generates a nearly instantaneous propagating high-pressure/temperature condition while in situ X-ray diffraction (XRD) probes the time-dependent atomic arrangement. Here we present in situ pump–probe XRD measurements on shock-compressed fused silica, revealing an amorphous to crystalline high-pressure stishovite phase transition. Using the size broadening of the diffraction peaks, the growth of nanocrystalline stishovite grains is resolved on the nanosecond timescale just after shock compression. At applied pressures above 18 GPa the nuclueationmore » of stishovite appears to be kinetically limited to 1.4 ± 0.4 ns. The functional form of this grain growth suggests homogeneous nucleation and attachment as the growth mechanism. As a result, these are the first observations of crystalline grain growth in the shock front between low- and high-pressure states via XRD.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1817b0007A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1817b0007A"><span>Effect of freezing temperature in thermally induced phase separation method in hydroxyapatite/chitosan-based bone scaffold biomaterial</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Albab, Muh Fadhil; Yuwono, Akhmad Herman; Sofyan, Nofrijon; Ramahdita, Ghiska</p> <p>2017-02-01</p> <p>In the current study, hydroxyapatite (HA)/chitosan-based bone scaffold has been fabricated using Thermally Induced Phase Separation (TIPS) method under freezing temperature variation of -20, -30, -40 and -80 °C. The samples with weight percent ratio of 70% HA and 30% chitosan were homogeneously mixed and subsequently dissolved in 2% acetic acid. The synthesized samples were further characterized using Fourier transform infrared (FTIR), compressive test and scanning electron microscope (SEM). The investigation results showed that low freezing temperature reduced the pore size and increased the compressive strength of the scaffold. In the freezing temperature of -20 °C, the pore size was 133.93 µm with the compressive strength of 5.9 KPa, while for -80 °C, the pore size declined to 60.55 µm with the compressive strength 29.8 KPa. Considering the obtained characteristics, HA/chitosan obtained in this work has potential to be applied as a bone scaffold.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4672827','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4672827"><span>Anomalous anisotropic compression behavior of superconducting CrAs under high pressure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Yu, Zhenhai; Wu, Wei; Hu, Qingyang; Zhao, Jinggeng; Li, Chunyu; Yang, Ke; Cheng, Jinguang; Luo, Jianlin; Wang, Lin; Mao, Ho-kwang</p> <p>2015-01-01</p> <p>CrAs was observed to possess the bulk superconductivity under high-pressure conditions. To understand the superconducting mechanism and explore the correlation between the structure and superconductivity, the high-pressure structural evolution of CrAs was investigated using the angle-dispersive X-ray diffraction (XRD) method. The structure of CrAs remains stable up to 1.8 GPa, whereas the lattice parameters exhibit anomalous compression behaviors. With increasing pressure, the lattice parameters a and c both demonstrate a nonmonotonic change, and the lattice parameter b undergoes a rapid contraction at ∼0.18−0.35 GPa, which suggests that a pressure-induced isostructural phase transition occurs in CrAs. Above the phase transition pressure, the axial compressibilities of CrAs present remarkable anisotropy. A schematic band model was used to address the anomalous compression behavior of CrAs. The present results shed light on the structural and related electronic responses to high pressure, which play a key role toward understanding the superconductivity of CrAs. PMID:26627230</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23938532','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23938532"><span>Linear optical pulse compression based on temporal zone plates.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Bo; Li, Ming; Lou, Shuqin; Azaña, José</p> <p>2013-07-15</p> <p>We propose and demonstrate time-domain equivalents of spatial zone plates, namely temporal zone plates, as alternatives to conventional time lenses. Both temporal intensity zone plates, based on intensity-only temporal modulation, and temporal phase zone plates, based on phase-only temporal modulation, are introduced and studied. Temporal zone plates do not exhibit the limiting tradeoff between temporal aperture and frequency bandwidth (temporal resolution) of conventional linear time lenses. As a result, these zone plates can be ideally designed to offer a time-bandwidth product (TBP) as large as desired, practically limited by the achievable temporal modulation bandwidth (limiting the temporal resolution) and the amount of dispersion needed in the target processing systems (limiting the temporal aperture). We numerically and experimentally demonstrate linear optical pulse compression by using temporal zone plates based on linear electro-optic temporal modulation followed by fiber-optics dispersion. In the pulse-compression experiment based on temporal phase zone plates, we achieve a resolution of ~25.5 ps over a temporal aperture of ~5.77 ns, representing an experimental TBP larger than 226 using a phase-modulation amplitude of only ~0.8π rad. We also numerically study the potential of these devices to achieve temporal imaging of optical waveforms and present a comparative analysis on the performance of different temporal intensity and phase zone plates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..SHK.V6005R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..SHK.V6005R"><span>Shock Compression Response of Calcium Fluoride (CaF2)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Root, Seth</p> <p>2017-06-01</p> <p>The fluorite crystal structure is a textbook lattice that is observed for many systems, such as CaF2, Mg2 Si, and CeO2. Specifically, CaF2 is a useful material for studying the fluorite system because it is readily available as a single crystal. Under static compression, CaF2 is known to have at least three solid phases: fluorite, cotunnite, and a Ni2 In phase. Along the Hugoniot CaF2 undergoes a fluorite to cotunnite phase transition, however, at higher shock pressures it is unknown whether CaF2 undergoes another solid phase transition or melts directly from the cotunnite phase. In this work, we conducted planar shock compression experiments on CaF2 using Sandia's Z-machine and a two-stage light gun up to 900 GPa. In addition, we use density functional theory (DFT) based quantum molecular dynamics (QMD) simulations to provide insight into the CaF2 state along the Hugoniot. In collaboration with: Michael Desjarlais, Ray Lemke, Patricia Kalita, Scott Alexander, Sandia National Laboratories. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL850.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MMTA...49.1313Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MMTA...49.1313Z"><span>Influence of Annealing on Microstructure and Mechanical Properties of Refractory CoCrMoNbTi0.4 High-Entropy Alloy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Mina; Zhou, Xianglin; Zhu, Wuzhi; Li, Jinghao</p> <p>2018-04-01</p> <p>A novel refractory CoCrMoNbTi0.4 high-entropy alloy (HEA) was prepared via vacuum arc melting. After annealing treatment at different temperatures, the microstructure evolution, phase stability, and mechanical properties of the alloy were investigated. The alloy was composed of two primary body-centered cubic structures (BCC1 and BCC2) and a small amount of (Co, Cr)2Nb-type Laves phase under different annealing conditions. The microhardness and compressive strength of the heat-treated alloy was significantly enhanced by the solid-solution strengthening of the BCC phase matrix and newborn Laves phase. Especially, the alloy annealed at 1473 K (1200 °C) achieved the maximum hardness and compressive strength values of 959 ± 2 HV0.5 and 1790 MPa, respectively, owing to the enhanced volume fraction of the dispersed Laves phase. In particular, the HEAs exhibited promising high-temperature mechanical performance, when heated to an elevated temperature of 1473 K (1200 °C), with a compressive fracture strength higher than 580 MPa without fracture at a strain of more than 20 pct. This study suggests that the present refractory HEAs have immense potential for engineering applications as a new class of high-temperature structural materials.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1003734','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1003734"><span>Retrieval of Droplet size Density Distribution from Multiple field of view Cross polarized Lidar Signals: Theory and Experimental Validation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2016-06-02</p> <p>Retrieval of droplet-size density distribution from multiple-field-of-view cross-polarized lidar signals: theory and experimental validation...theoretical and experimental studies of mul- tiple scattering and multiple-field-of-view (MFOV) li- dar detection have made possible the retrieval of cloud...droplet cloud are typical of Rayleigh scattering, with a signature close to a dipole (phase function quasi -flat and a zero-depolarization ratio</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OptCo.403..245Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OptCo.403..245Z"><span>Embedding intensity image into a binary hologram with strong noise resistant capability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhuang, Zhaoyong; Jiao, Shuming; Zou, Wenbin; Li, Xia</p> <p>2017-11-01</p> <p>A digital hologram can be employed as a host image for image watermarking applications to protect information security. Past research demonstrates that a gray level intensity image can be embedded into a binary Fresnel hologram by error diffusion method or bit truncation coding method. However, the fidelity of the retrieved watermark image from binary hologram is generally not satisfactory, especially when the binary hologram is contaminated with noise. To address this problem, we propose a JPEG-BCH encoding method in this paper. First, we employ the JPEG standard to compress the intensity image into a binary bit stream. Next, we encode the binary bit stream with BCH code to obtain error correction capability. Finally, the JPEG-BCH code is embedded into the binary hologram. By this way, the intensity image can be retrieved with high fidelity by a BCH-JPEG decoder even if the binary hologram suffers from serious noise contamination. Numerical simulation results show that the image quality of retrieved intensity image with our proposed method is superior to the state-of-the-art work reported.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.S41A2709K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.S41A2709K"><span>Retrieving both phase and amplitude information of Green's functions by ambient seismic wave field cross-correlation: A case study with a limestone mine induced seismic event</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kwak, S.; Song, S. G.; Kim, G.; Shin, J. S.</p> <p>2015-12-01</p> <p>Recently many seismologists have paid attention to ambient seismic field, which is no more referred as noise and called as Earth's hum, but as useful signal to understand subsurface seismic velocity structure. It has also been demonstrated that empirical Green's functions can be constructed by retrieving both phase and amplitude information from ambient seismic field (Prieto and Beroza 2008). The constructed empirical Green's functions can be used to predict strong ground motions after focal depth and double-couple mechanism corrections (Denolle et al. 2013). They do not require detailed subsurface velocity model and intensive computation for ground motion simulation. In this study, we investigate the capability of predicting long period surface waves by the ambient seismic wave field with a seismic event of Mw 4.0, which occurred with a limestone mine collapse in South Korea on January 31, 2015. This limestone-mine event provides an excellent opportunity to test the efficiency of the ambient seismic wave field in retrieving both phase and amplitude information of Green's functions due to the single force mechanism of the collapse event. In other words, both focal depth and double-couple mechanism corrections are not required for this event. A broadband seismic station, which is about 5.4 km away from the mine event, is selected as a source station. Then surface waves retrieved from the ambient seismic wave field cross-correlation are compared with those generated by the event. Our preliminary results show some potential of the ambient seismic wave field in retrieving both phase and amplitude of Green's functions from a single force impulse source at the Earth's surface. More comprehensive analysis by increasing the time length of stacking may improve the results in further studies. We also aim to investigate the efficiency of retrieving the full empirical Green's functions with the 2007 Mw 4.6 Odaesan earthquake, which is one of the strongest earthquakes occurred in South Korea in the last decade.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25325372','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25325372"><span>Making Behavior Change Interventions Available to Young African American Women: Development and Feasibility of an eHealth Lifestyle Program.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Staffileno, Beth A; Tangney, Christy C; Fogg, Louis; Darmoc, Rebecca</p> <p>2015-01-01</p> <p>Less is known about young African American (AA) women, largely because the young are hard to reach. Traditional approaches to behavior changes interventions impose several challenges, especially for AA women at risk for developing hypertension. This feasibility study describes the process of transforming a face-to-face lifestyle change intervention into a Web-based platform (eHealth) accessible by iPads, iPhones, smartphones, and personal computers. Four sequential phases were conducted using elements of formative evaluation and quantitative analysis. A convenience sample of AA women, aged 18 to 45 years, with self-reported prehypertension and regular access to the Internet were eligible to participate. Eleven women involved in phase 1 expressed that they (1) currently use the Internet to retrieve health-related information, (2) prefer to use the Internet rather than face-to-face contact for nonserious conditions, (3) need convenience and easily accessible health-related interventions, and (4) are amenable to the idea of an eHealth lifestyle modification program. During phase 2, learning modules derived from printed manuals were adapted and compressed for a Web audience. The modules were designed to present evidence-based content but allowed for tailoring and individualization according to the needs of the target population. During phase 3, 8 women provided formative information concerning appeal and usability of the eHealth program in relation to delivery, visual quality, interactivity, and engagement. Phase 4 involved 8 women beta testing the 12-week program, with a 63% completion rate. Most of the women agreed that the program and screens opened with ease, the functions on the screens did what they were supposed to do, and the discussion board was easy to access. Program completion was greater for physical activity compared with dietary content. This study outlines a step-by-step process for transforming face-to-face content into a Web-based platform, which, importantly, can serve as a template for promoting other health behaviors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015APS..DPPYI2006K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015APS..DPPYI2006K"><span>Nanometer-scale characterization of laser-driven plasmas, compression, shocks and phase transitions, by coherent small angle x-ray scattering</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kluge, Thomas</p> <p>2015-11-01</p> <p>Combining ultra-intense short-pulse and high-energy long-pulse lasers, with brilliant coherent hard X-ray FELs, such as the Helmholtz International Beamline for Extreme Fields (HIBEF) under construction at the HED Instrument of European XFEL, or MEC at LCLS, holds the promise to revolutionize our understanding of many High Energy Density Physics phenomena. Examples include the relativistic electron generation, transport, and bulk plasma response, and ionization dynamics and heating in relativistic laser-matter interactions, or the dynamics of laser-driven shocks, quasi-isentropic compression, and the kinetics of phase transitions at high pressure. A particularly promising new technique is the use of coherent X-ray diffraction to characterize electron density correlations, and by resonant scattering to characterize the distribution of specific charge-state ions, either on the ultrafast time scale of the laser interaction, or associated with hydrodynamic motion. As well one can image slight density changes arising from phase transitions inside of shock-compressed high pressure matter. The feasibility of coherent diffraction techniques in laser-driven matter will be discussed. including recent results from demonstration experiments at MEC. Among other things, very sharp density changes from laser-driven compression are observed, having an effective step width of 10 nm or smaller. This compares to a resolution of several hundred nm achievedpreviously with phase contrast imaging. and on behalf of HIBEF User Consortium, for the Helmholtz International Beamline for Extreme Fields at the European XFEL.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JPSJ...81l4703N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JPSJ...81l4703N"><span>Uniaxial-Strain-Orientation Dependence of the Competition between Mott and Charge Ordered Phases and their Corresponding Superconductivity of β-(BDA-TTP)2I3</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nuruzzaman, Md.; Yokogawa, Keiichi; Yoshino, Harukazu; Yoshimoto, Haruo; Kikuchi, Koichi; Kaihatsu, Takayuki; Yamada, Jun-ichi; Murata, Keizo</p> <p>2012-12-01</p> <p>We studied the electronic transport properties of the charge transfer salt β-(BDA-TTP)2I3 [BDA-TTP: 2,5-bis(1,3-dithian-2-ylidene)-1,3,4,6-tetrathiapentalene] by applying uniaxial strains along the three crystallographic axes, and obtained three corresponding temperature-pressure phase diagrams. Three phase diagrams were quite dependent on the direction of compression. Following the preceding paper by Kikuchi et al., we speculate that the insulating states are of 1/2-filled Mott insulators for the a- and b-axes compressions, and of 1/4-filled charge ordered states for the c-axis compression as well as hydrostatic pressure. The superconducting phase under uniaxial strain was realized with Tc = 5 K at 1.9 GPa along the a-axis and with Tc = 5.6 K at 1.75 GPa along the b-axis. Superconductivity was also reproduced with a Tc of 9.5 K at 1.0 GPa for the c-axis compressions in the range of 0.85 to 1.53 GPa as previously reported. We studied tentative measurement on upper critical fields, Bc2's of these superconductivities and found that the extrapolated values, Bc2(0)'s, exceeded Pauli-limit by about 2--3 times. However, at least in terms of Bc2, the difference in superconductivity associated with two different insulating states was not clear.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27115759','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27115759"><span>Analysis of Clinicians' Perceptual Cough Evaluation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Laciuga, Helena; Brandimore, Alexandra E; Troche, Michelle S; Hegland, Karen W</p> <p>2016-08-01</p> <p>This study examined the relationships between subjective descriptors and objective airflow measures of cough. We hypothesized that coughs with specific airflow characteristics would share common subjective perceptual descriptions. Thirty clinicians (speech-language pathologists, otolaryngologists, and neurologists) perceptually evaluated ten cough audio samples with specific airflow characteristics determined by peak expiratory flow rate, cough expired volume, cough duration, and number of coughs in the cough epoch. Participants rated coughs by strength, duration, quality, quantity, and overall potential effectiveness for airway protection. Perception of cough strength and effectiveness was determined by the combination of presence of pre-expulsive compression phase, short peak expiratory airflow rate rise time, high peak expiratory flow rates, and high cough volume acceleration. Perception of cough abnormality was defined predominantly by descriptors of breathiness and strain. Breathiness was characteristic for coughs with either absent compression phases and relatively high expiratory airflow rates or coughs with significantly low expired volumes and reduced peak flow rates. In contrast, excessive strain was associated with prolonged compression phases and low expiratory airflow rates or the absence of compression phase with high peak expiratory rates. The study participants reached greatest agreement in distinguishing between single and multiple coughs. Their assessment of cough strength and effectiveness was less consistent. Finally, the least agreement was shown in determining the quality categories. Modifications of cough airflow can influence perceptual cough evaluation outcomes. However, the inconsistency of cough ratings among our participants suggests that a uniform cough rating system is required.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1433951','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1433951"><span>High-pressure phase transitions of α-quartz under nonhydrostatic dynamic conditions: A reconnaissance study at PETRA III</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Carl, Eva-Regine; Mansfeld, Ulrich; Liermann, Hanns-Peter</p> <p></p> <p>Hypervelocity collisions of solid bodies occur frequently in the solar system and affect rocks by shock waves and dynamic loading. A range of shock metamorphic effects and high-pressure polymorphs in rock-forming minerals are known from meteorites and terrestrial impact craters. In this paper, we investigate the formation of high-pressure polymorphs of α-quartz under dynamic and nonhydrostatic conditions and compare these disequilibrium states with those predicted by phase diagrams derived from static experiments under equilibrium conditions. We create highly dynamic conditions utilizing a mDAC and study the phase transformations in α-quartz in situ by synchrotron powder X-ray diffraction. Phase transitions ofmore » α-quartz are studied at pressures up to 66.1 and different loading rates. At compression rates between 0.14 and 1.96 GPa s -1, experiments reveal that α-quartz is amorphized and partially converted to stishovite between 20.7 GPa and 28.0 GPa. Therefore, coesite is not formed as would be expected from equilibrium conditions. With the increasing compression rate, a slight increase in the transition pressure occurs. The experiments show that dynamic compression causes an instantaneous formation of structures consisting only of SiO 6 octahedra rather than the rearrangement of the SiO 4 tetrahedra to form a coesite. Although shock compression rates are orders of magnitude faster, a similar mechanism could operate in impact events.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1433951-high-pressure-phase-transitions-quartz-under-nonhydrostatic-dynamic-conditions-reconnaissance-study-petra-iii','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1433951-high-pressure-phase-transitions-quartz-under-nonhydrostatic-dynamic-conditions-reconnaissance-study-petra-iii"><span>High-pressure phase transitions of α-quartz under nonhydrostatic dynamic conditions: A reconnaissance study at PETRA III</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Carl, Eva-Regine; Mansfeld, Ulrich; Liermann, Hanns-Peter; ...</p> <p>2017-03-27</p> <p>Hypervelocity collisions of solid bodies occur frequently in the solar system and affect rocks by shock waves and dynamic loading. A range of shock metamorphic effects and high-pressure polymorphs in rock-forming minerals are known from meteorites and terrestrial impact craters. In this paper, we investigate the formation of high-pressure polymorphs of α-quartz under dynamic and nonhydrostatic conditions and compare these disequilibrium states with those predicted by phase diagrams derived from static experiments under equilibrium conditions. We create highly dynamic conditions utilizing a mDAC and study the phase transformations in α-quartz in situ by synchrotron powder X-ray diffraction. Phase transitions ofmore » α-quartz are studied at pressures up to 66.1 and different loading rates. At compression rates between 0.14 and 1.96 GPa s -1, experiments reveal that α-quartz is amorphized and partially converted to stishovite between 20.7 GPa and 28.0 GPa. Therefore, coesite is not formed as would be expected from equilibrium conditions. With the increasing compression rate, a slight increase in the transition pressure occurs. The experiments show that dynamic compression causes an instantaneous formation of structures consisting only of SiO 6 octahedra rather than the rearrangement of the SiO 4 tetrahedra to form a coesite. Although shock compression rates are orders of magnitude faster, a similar mechanism could operate in impact events.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=impairs+AND+memory&id=EJ1056014','ERIC'); return false;" href="https://eric.ed.gov/?q=impairs+AND+memory&id=EJ1056014"><span>The Negative Testing Effect and Multifactor Account</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Peterson, Daniel J.; Mulligan, Neil W.</p> <p>2013-01-01</p> <p>Across 3 experiments, we investigated the factors that dictate when taking a test improves subsequent memory performance (the "testing effect"). In Experiment 1, participants retrieving a set of targets during a retrieval practice phase ultimately recalled fewer of those targets compared with a group of participants who studied the…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29390815','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29390815"><span>Kinetic boundaries and phase transformations of ice i at high pressure.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Yu; Zhang, Huichao; Yang, Xue; Jiang, Shuqing; Goncharov, Alexander F</p> <p>2018-01-28</p> <p>Raman spectroscopy in diamond anvil cells has been employed to study phase boundaries and transformation kinetics of H 2 O ice at high pressures up to 16 GPa and temperatures down to 15 K. Ice i formed at nearly isobaric cooling of liquid water transforms on compression to high-density amorphous (HDA) ice at 1.1-3 GPa at 15-100 K and then crystallizes in ice vii with the frozen-in disorder (ice vii') which remains stable up to 14.1 GPa at 80 K and 15.9 GPa at 100 K. Unexpectedly, on decompression of ice vii', it transforms to ice viii in its domain of metastability, and then it relaxes into low-density amorphous (LDA) ice on a subsequent pressure release and warming up. On compression of ice i at 150-170 K, ice ix is crystallized and no HDA ice is found; further compression of ice ix results in the sequential phase transitions to stable ices vi and viii. Cooling ice i to 210 K at 0.3 GPa transforms it to a stable ice ii. Our extensive investigations provide previously missing information on the phase diagram of water, especially on the kinetic paths that result in formation of phases which otherwise are not accessible; these results are keys for understanding the phase relations including the formation of metastable phases. Our observations inform on the ice modifications that can occur naturally in planetary environments and are not accessible for direct observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JChPh.148d4508W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JChPh.148d4508W"><span>Kinetic boundaries and phase transformations of ice i at high pressure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Yu; Zhang, Huichao; Yang, Xue; Jiang, Shuqing; Goncharov, Alexander F.</p> <p>2018-01-01</p> <p>Raman spectroscopy in diamond anvil cells has been employed to study phase boundaries and transformation kinetics of H2O ice at high pressures up to 16 GPa and temperatures down to 15 K. Ice i formed at nearly isobaric cooling of liquid water transforms on compression to high-density amorphous (HDA) ice at 1.1-3 GPa at 15-100 K and then crystallizes in ice vii with the frozen-in disorder (ice vii') which remains stable up to 14.1 GPa at 80 K and 15.9 GPa at 100 K. Unexpectedly, on decompression of ice vii', it transforms to ice viii in its domain of metastability, and then it relaxes into low-density amorphous (LDA) ice on a subsequent pressure release and warming up. On compression of ice i at 150-170 K, ice ix is crystallized and no HDA ice is found; further compression of ice ix results in the sequential phase transitions to stable ices vi and viii. Cooling ice i to 210 K at 0.3 GPa transforms it to a stable ice ii. Our extensive investigations provide previously missing information on the phase diagram of water, especially on the kinetic paths that result in formation of phases which otherwise are not accessible; these results are keys for understanding the phase relations including the formation of metastable phases. Our observations inform on the ice modifications that can occur naturally in planetary environments and are not accessible for direct observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060041214&hterms=CPM&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DCPM','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060041214&hterms=CPM&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DCPM"><span>Enhanced Pulse Compression in Nonlinear Fiber by a WDM Optical Pulse</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Yeh, C.; Bergman, L.</p> <p>1997-01-01</p> <p>A new way to compress an optical pulse in a single-mode fiber is presented in this paper. By the use of the cross phase modulation (CPM) effect caused by the nonlinearity of the optical fiber, a shepherd pulse propagating on a different wavelength beam in a wavelength division multiplexed (WDM) single-mode fiber system can be used to enhance the pulse compression of a co-propagating primary pulse.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20010100556&hterms=gift+bribe&qs=Ntx%3Dmode%2Bmatchany%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dgift%2Bbribe','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20010100556&hterms=gift+bribe&qs=Ntx%3Dmode%2Bmatchany%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dgift%2Bbribe"><span>Geostationary Imaging FTS (GIFTS) Data Processing: Measurement Simulation and Compression</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Huang, Hung-Lung; Revercomb, H. E.; Thom, J.; Antonelli, P. B.; Osborne, B.; Tobin, D.; Knuteson, R.; Garcia, R.; Dutcher, S.; Li, J.</p> <p>2001-01-01</p> <p>GIFTS (Geostationary Imaging Fourier Transform Spectrometer), a forerunner of next generation geostationary satellite weather observing systems, will be built to fly on the NASA EO-3 geostationary orbit mission in 2004 to demonstrate the use of large area detector arrays and readouts. Timely high spatial resolution images and quantitative soundings of clouds, water vapor, temperature, and pollutants of the atmosphere for weather prediction and air quality monitoring will be achieved. GIFTS is novel in terms of providing many scientific returns that traditionally can only be achieved by separate advanced imaging and sounding systems. GIFTS' ability to obtain half-hourly high vertical density wind over the full earth disk is revolutionary. However, these new technologies bring forth many challenges for data transmission, archiving, and geophysical data processing. In this paper, we will focus on the aspect of data volume and downlink issues by conducting a GIFTS data compression experiment. We will discuss the scenario of using principal component analysis as a foundation for atmospheric data retrieval and compression of uncalibrated and un-normalized interferograms. The effects of compression on the degradation of the signal and noise reduction in interferogram and spectral domains will be highlighted. A simulation system developed to model the GIFTS instrument measurements is described in detail.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>