DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S. Y.; Sun, Yinan; An, Ke
2010-01-01
Neutron diffraction was employed to investigate the crack-growth retardation phenomenon after a single tensile overload by mapping both one-dimensional and two-dimensional residual-strain distributions around the crack tip in a series of compact-tension specimens representing various crack-growth stages through an overload-induced retardation period. The results clearly show a large compressive residual-strain field near the crack tip immediately after the overload. As the fatigue crack propagates through the overload-induced plastic zone, the compressive residual strains are gradually relaxed, and a new compressive residual-strain field is developed around the propagating crack tip, illustrating that the subsequent fatigue-induced plastic zone grows out of themore » large plastic zone caused by the overloading. The relationship between the overload-induced plastic zone and subsequent fatigue-induced plastic zone, and its influence on the residual-strain distributions in the perturbed plastic zone are discussed.« less
Molecular dynamics study of strain-induced diffusivity of nitrogen in pure iron nanocrystalline
NASA Astrophysics Data System (ADS)
Mohammadzadeh, Roghayeh; Razmara, Naiyer; Razmara, Fereshteh
2016-12-01
In the present study, the self-diffusion process of nitrogen in pure iron nanocrystalline under strain conditions has been investigated by Molecular Dynamics (MD). The interactions between particles are modeled using Modified Embedded Atom Method (MEAM). Mean Square Displacement (MSD) of nitrogen in iron structure under strain is calculated. Strain is applied along [ 11 2 ¯ 0 ] and [ 0001 ] directions in both tensile and compression conditions. The activation energy and pre-exponential diffusion factor for nitrogen diffusion is comparatively high along [ 0001 ] direction of compressed structure of iron. The strain-induced diffusion coefficient at 973 K under the compression rate of 0.001 Å/ps along [ 0001 ] direction is about 6.72E-14 m2/s. The estimated activation energy of nitrogen under compression along [ 0001 ] direction is equal to 12.39 kcal/mol. The higher activation energy might be due to the fact that the system transforms into a more dense state when compressive stress is applied.
Giant electric-field-induced strain in lead-free piezoelectric materials
Chen, Lan; Yang, Yurong; Meng, X. K.
2016-01-01
First-principles calculations are performed to investigate the structures, electrical, and magnetic properties of compressive BiFeO3 films under electric-field and pressure perpendicular to the films. A reversible electric-field-induced strain up 10% is achieved in the compressive BiFeO3 films. The giant strain originates from rhombohedral-tetragonal (R-T) phase transition under electric-filed, and is recoverable from tetragonal-rhombohedral (T-R) phase transition by compressive stress. Additionally, the weak ferromagnetism in BiFeO3 films is largely changed in R-T phase transition under electric-filed and T-R phase transition under pressure – reminiscent of magnetoelectric effect and magnetoelastic effect. These results suggest exciting device opportunities arising from the giant filed-induced strain, large magnetoelectric effect and magnetoelastic effect. PMID:27139526
The Effect of Grain Size on the Strain Hardening Behavior for Extruded ZK61 Magnesium Alloy
NASA Astrophysics Data System (ADS)
Zhang, Lixin; Zhang, Wencong; Chen, Wenzhen; Duan, Junpeng; Wang, Wenke; Wang, Erde
2017-12-01
The effects of grain size on the tensile and compressive strain hardening behaviors for extruded ZK61 alloys have been investigated by uniaxial tensile and compressive tests along the extrusion directions. Cylindrical tension and compression specimens of extruded ZK61 alloys with various sized grain were fabricated by annealing treatments. Tensile and compressive tests at ambient temperature were conducted at a strain rate of 0.5 × 10-3 s-1. The results indicate that both tensile strain hardening and compressive strain hardening of ZK61 alloys with different grain sizes have an athermal regime of dislocation accumulation in early deformation. The threshold stress value caused dynamic recovery is predominantly related to grain size in tensile strain hardening, but the threshold stress values for different grain sizes are almost identical in compressive strain hardening. There are obvious transition points on the tensile strain hardening curves which indicate the occurrence of dynamic recrystallization (DRX). The tensile strain hardening rate of the coarse-grained alloy obviously decreases faster than that of fine-grained alloys before DRX and the tensile strain hardening curves of different grain sizes basically tend to parallel after DRX. The compressive strain hardening rate of the fine-grained alloy obviously increases faster than that of coarse-grained alloy for twin-induced strain hardening, but compressive strain hardening curves also tend to parallel after twinning is exhausted.
Compressive strain induced dynamical stability of monolayer 1T-MX2 (M = Mo, W; X = S, Se)
NASA Astrophysics Data System (ADS)
Li, Xiaoyong; Wu, Musheng; Xu, Bo; Liu, Ruifan; Ouyang, Chuying
2017-11-01
The lattice dynamical properties of 1T-MX2 (M = Mo, W; X = S, Se) under different strains were studied by using density functional perturbation theory method. Our results show that all MX2 with 1T phase in our calculations are dynamical instable under zero strain or tensile strain as obvious imaginary frequencies (soft modes) exist. When 3% biaxial compressive strains are applied, the imaginary frequencies remain except that the absolute values of maximum imaginary frequency decrease. With the increase of compressive strain to be 6%, 1T-MoS2, 1T-MoSe2, 1T-WS2 become stable, whereas 1T-WSe2 has small imaginary frequencies. When biaxial compressive strain reaches 9%, all 1T-MX2 are dynamical stable without imaginary frequencies in the phonon dispersion curves. Energy band structures show that all 1T-MX2 are metallic, regardless of zero strain or compressive strain. Therefore, compressive strain could be a practical approach to enhance the stability of 1T-MX2 while maintaining the metallic property.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inaoka, Takeshi, E-mail: inaoka@phys.u-ryukyu.ac.jp; Furukawa, Takuro; Toma, Ryo
By means of a hybrid density-functional method, we investigate the tensile-strain effect of inducing the indirect-to-direct band-gap transition and reducing the band-gap energy of Ge. We consider [001], [111], and [110] uniaxial tensility and (001), (111), and (110) biaxial tensility. Under the condition of no normal stress, we determine both normal compression and internal strain, namely, relative displacement of two atoms in the primitive unit cell, by minimizing the total energy. We identify those strain types which can induce the band-gap transition, and evaluate the critical strain coefficient where the gap transition occurs. Either normal compression or internal strain operatesmore » unfavorably to induce the gap transition, which raises the critical strain coefficient or even blocks the transition. We also examine how each type of tensile strain decreases the band-gap energy, depending on its orientation. Our analysis clearly shows that synergistic operation of strain orientation and band anisotropy has a great influence on the gap transition and the gap energy.« less
Compressive strain induced enhancement in thermoelectric-power-factor in monolayer MoS2 nanosheet
NASA Astrophysics Data System (ADS)
Dimple; Jena, Nityasagar; De Sarkar, Abir
2017-06-01
Strain and temperature induced tunability in the thermoelectric properties in monolayer MoS2 (ML-MoS2) has been demonstrated using density functional theory coupled to semi-classical Boltzmann transport theory. Compressive strain, in general and uniaxial compressive strain (along the zig-zag direction), in particular, is found to be most effective in enhancing the thermoelectric power factor, owing to the higher electronic mobility and its sensitivity to lattice compression along this direction. Variation in the Seebeck coefficient and electronic band gap with strain is found to follow the Goldsmid-Sharp relation. n-type doping is found to raise the relaxation time-scaled thermoelectric power factor higher than p-type doping and this divide widens with increasing temperature. The relaxation time-scaled thermoelectric power factor in optimally n-doped ML-MoS2 is found to undergo maximal enhancement under the application of 3% uniaxial compressive strain along the zig-zag direction, when both the (direct) electronic band gap and the Seebeck coefficient reach their maximum, while the electron mobility drops down drastically from 73.08 to 44.15 cm2 V-1 s-1. Such strain sensitive thermoelectric responses in ML-MoS2 could open doorways for a variety of applications in emerging areas in 2D-thermoelectrics, such as on-chip thermoelectric power generation and waste thermal energy harvesting.
Direct and continuous strain control of catalysts with tunable battery electrode materials
Wang, Haotian; Xu, Shicheng; Tsai, Charlie; ...
2016-11-24
We report a method for using battery electrode materials to directly and continuously control the lattice strain of platinum (Pt) catalyst and thus tune its catalytic activity for the oxygen reduction reaction (ORR). Whereas the common approach of using metal overlayers introduces ligand effects in addition to strain, by electrochemically switching between the charging and discharging status of battery electrodes the change in volume can be precisely controlled to induce either compressive or tensile strain on supported catalysts. Lattice compression and tension induced by the lithium cobalt oxide substrate of ~5% were directly observed in individual Pt nanoparticles with aberration-correctedmore » transmission electron microscopy. As a result, we observed 90% enhancement or 40% suppression in Pt ORR activity under compression or tension, respectively, which is consistent with theoretical predictions.« less
Mechanisms Inducing Jet Rotation in Shear-Formed Shaped-Charge Liners.
1990-03-01
of deviatoric strain, and compressibility affects only the equation of state , not the deviatoric stress /strain relation. An anisotropic formulation is...strains, a more accurate scalar equation of state should simultaneously be employed to account for non-linear compressibility effects . A4 A.3 Elastic... obtainable knowing the previous and present cycles’ average stress . However, many non-linear equations
Strain Manipulated Magnetic Properties in ZnO and GaN Induced by Cation Vacancy
NASA Astrophysics Data System (ADS)
Gai, Yanqin; Jiang, Jiaping; Wu, Yuxi; Tang, Gang
2016-07-01
The effects of isotropic strains on the magnetic properties in ZnO and GaN induced by cation vacancies are comparatively investigated by density functional theory calculations. The magnetic moments and the couplings between vacancies in different charged states are calculated as a function of strains. The modulation of strain on the magnetic properties relies on the materials and the charge states of cation vacancies in them. As the occurrence of charge transfer in ZnO: V Zn under compression, the coupling between V_{{Zn}}0 is antiferromagnetic (AFM) and it could be stabilized by strains. Tensions can strengthen the ferromagnetic (FM) coupling between V_{{Zn}}0 but weaken that of V_{{Ga}}^{ - } . The neutral V Ga are always AFM coupling under strains from -6 to +6% and could be stabilized by compressions. The interactions between V_{{Ga}}^{ - } are always FM with ignorable variations under strains; however, the FM couplings between V_{{Ga}}^{2 - } could be strengthened by compressions. These varying trends of magnetic coupling under strains are interpreted by the band coupling models. Therefore, strain-engineering provides a route to manipulate and design high Curie temperature ferromagnetism derived and mediated by intrinsic defect for spintronic applications.
A knitted glove sensing system with compression strain for finger movements
NASA Astrophysics Data System (ADS)
Ryu, Hochung; Park, Sangki; Park, Jong-Jin; Bae, Jihyun
2018-05-01
Development of a fabric structure strain sensor has received considerable attention due to its broad application in healthcare monitoring and human–machine interfaces. In the knitted textile structure, it is critical to understand the surface structural deformation from a different body motion, inducing the electrical signal characteristics. Here, we report the electromechanical properties of the knitted glove sensing system focusing on the compressive strain behavior. Compared with the electrical response of the tensile strain, the compressive strain shows much higher sensitivity, stability, and linearity via different finger motions. Additionally, the sensor exhibits constant electrical properties after repeated cyclic tests and washing processes. The proposed knitted glove sensing system can be readily extended to a scalable and cost-effective production due to the use of a commercialized manufacturing system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paggi, A., E-mail: alpaggi@tenaris.com; Angella, G.; Donnini, R.
Static and metadynamic recrystallization of an AISI 304L austenitic stainless steel was investigated at 1100 °C and 10{sup −} {sup 2} s{sup −} {sup 1} strain rate. The kinetics of recrystallization was determined through double hit compression tests. Two strain levels were selected for the first compression hit: ε{sub f} = 0.15 for static recrystallization (SRX) and 0.25 for metadynamic recrystallization (MDRX). Both the as-deformed and the recrystallized microstructures were investigated through optical microscopy and electron back-scattered diffraction (EBSD) technique. During deformation, strain induced grain boundary migration appeared to be significant, producing a square-like grain boundary structure aligned along themore » directions of the maximum shear stresses in compression. EBSD analysis revealed to be as a fundamental technique that the dislocation density was distributed heterogeneously in the deformed grains. Grain growth driven by surface energy reduction was also investigated, finding that it was too slow to explain the experimental data. Based on microstructural results, it was concluded that saturation of the nucleation sites occurred in the first stages of recrystallization, while grain growth driven by strain induced grain boundary migration (SIGBM) dominated the subsequent stages. - Highlights: • Recrystallization behavior of a stainless steel was investigated at 1100 °C. • EBSD revealed that the dislocation density distribution was heterogeneous during deformation. • Saturation of nucleation sites occurred in the first stages of recrystallization. • Strain induced grain boundary migration (SIGBM) effects were significant. • Grain growth driven by SIGBM dominated the subsequent stages.« less
Peng, Shoujian; Fang, Zhiming; Shen, Jian; Xu, Jiang; Wang, Geoff
2017-10-30
The cleat compressibility of coal is a key parameter that is extensively used in modeling the coal reservoir permeability for Coal Bed Methane (CBM) recovery. Cleat compressibility is often determined from the permeability measurement made at different confining pressures but with a constant pore pressure. Hence, this parameter ignores the sorption strain effects on the cleat compressibility. By using the transient pulse decay (TPD) technique, this study presents the results from a laboratory characterization program using coal core drilled from different bedding directions to estimate gas permeability and coal cleat compressibility under different pore pressures while maintaining effective stress constant. Cleat compressibility was determined from permeability and sorption strain measurements that are made at different pore pressures under an effective stress constant. Results show that the cleat compressibility of coal increases slightly with the increase of pore pressure. Moreover, the cleat compressibility of Sample P (representing the face cleats in coal) is larger than that of Sample C (representing the butt cleats in coal). This result suggests that cleat compressibility should not be regarded as constant in the modeling of the CBM recovery. Furthermore, the compressibility of face cleats is considerably sensitive to the sorption-induced swelling/shrinkage and offers significant effects on the coal permeability.
Measurement of vibration-induced volumetric strain in the human lung.
Hirsch, Sebastian; Posnansky, Oleg; Papazoglou, Sebastian; Elgeti, Thomas; Braun, Jürgen; Sack, Ingolf
2013-03-01
Noninvasive image-based measurement of intrinsic tissue pressure is of great interest in the diagnosis and characterization of diseases. Therefore, we propose to exploit the capability of phase-contrast MRI to measure three-dimensional vector fields of tissue motion for deriving volumetric strain induced by external vibration. Volumetric strain as given by the divergence of mechanical displacement fields is related to tissue compressibility and is thus sensitive to the state of tissue pressure. This principle is demonstrated by the measurement of three-dimensional vector fields of 50-Hz oscillations in a compressible agarose phantom and in the lungs of nine healthy volunteers. In the phantom, the magnitude of the oscillating divergence increased by about 400% with 4.8 bar excess air pressure, corresponding to an effective-medium compression modulus of 230 MPa. In lungs, the averaged divergence magnitude increased in all volunteers (N = 9) between 7 and 78% from expiration to inspiration. Measuring volumetric strain by MRI provides a compression-sensitive parameter of tissue mechanics, which varies with the respiratory state in the lungs. In future clinical applications for diagnosis and characterization of lung emphysema, fibrosis, or cancer, divergence-sensitive MRI may serve as a noninvasive marker sensitive to disease-related alterations of regional elastic recoil pressure in the lungs. Copyright © 2012 Wiley Periodicals, Inc.
Chondron curvature mapping in growth plate cartilage under compressive loading.
Vendra, Bhavya B; Roan, Esra; Williams, John L
2018-05-18
The physis, or growth plate, is a layer of cartilage responsible for long bone growth. It is organized into reserve, proliferative and hypertrophic zones. Unlike the reserve zone where chondrocytes are randomly arranged, either singly or in pairs, the proliferative and hypertrophic chondrocytes are arranged within tubular structures called chondrons. In previous studies, the strain patterns within the compressed growth plate have been reported to be nonuniform and inhomogeneous, with an apparent random pattern in compressive strains and a localized appearance of tensile strains. In this study we measured structural deformations along the entire lengths of chondrons when the physis was subjected to physiological (20%) and hyper-physiological (30% and 40%) levels of compression. This provided a means to interpret the apparent random strain patterns seen in texture correlation maps in terms of bending deformations of chondron structures and provided a physical explanation for the inhomogeneous and nonuniform strain patterns reported in previous studies. We observed relatively large bending deformations (kinking) of the chondron structures at the interface of the reserve and proliferative zones during compression. Bending in this region may induce dividing cells to align longitudinally to maintain column formation and drive longitudinal growth. Copyright © 2018 Elsevier Ltd. All rights reserved.
Stoddart, Martin; Lezuo, Patrick; Forkmann, Christoph; Wimmmer, Markus A.; Alini, Mauro; Van Oosterwyck, Hans
2014-01-01
Fibrin–polyurethane composite scaffolds support chondrogenesis of human mesenchymal stem cells (hMSCs) derived from bone marrow and due to their robust mechanical properties allow mechanical loading in dynamic bioreactors, which has been shown to increase the chondrogenic differentiation of MSCs through the transforming growth factor beta pathway. The aim of this study was to use the finite element method, mechanical testing, and dynamic in vitro cell culture experiments on hMSC-enriched fibrin–polyurethane composite scaffolds to quantitatively decipher the mechanoregulation of chondrogenesis within these constructs. The study identified compressive principal strains as the key regulator of chondrogenesis in the constructs. Although dynamic uniaxial compression did not induce chondrogenesis, multiaxial loading by combined application of dynamic compression and interfacial shear induced significant chondrogenesis at locations where all the three principal strains were compressive and had a minimum magnitude of 10%. In contrast, no direct correlation was identified between the level of pore fluid velocity and chondrogenesis. Due to the high permeability of the constructs, the pore fluid pressures could not be increased sufficiently by mechanical loading, and instead, chondrogenesis was induced by triaxial compressive deformations of the matrix with a minimum magnitude of 10%. Thus, it can be concluded that dynamic triaxial compressive deformations of the matrix is sufficient to induce chondrogenesis in a threshold-dependent manner, even where the pore fluid pressure is negligible. PMID:24199606
NASA Astrophysics Data System (ADS)
Shibata, Goro; Kitamura, Miho; Minohara, Makoto; Yoshimatsu, Kohei; Kadono, Toshiharu; Ishigami, Keisuke; Harano, Takayuki; Takahashi, Yukio; Sakamoto, Shoya; Nonaka, Yosuke; Ikeda, Keisuke; Chi, Zhendong; Furuse, Mitsuho; Fuchino, Shuichiro; Okano, Makoto; Fujihira, Jun-ichi; Uchida, Akira; Watanabe, Kazunori; Fujihira, Hideyuki; Fujihira, Seiichi; Tanaka, Arata; Kumigashira, Hiroshi; Koide, Tsuneharu; Fujimori, Atsushi
2018-01-01
Magnetic anisotropies of ferromagnetic thin films are induced by epitaxial strain from the substrate via strain-induced anisotropy in the orbital magnetic moment and that in the spatial distribution of spin-polarized electrons. However, the preferential orbital occupation in ferromagnetic metallic La1-xSrxMnO3 (LSMO) thin films studied by x-ray linear dichroism (XLD) has always been found out-of-plane for both tensile and compressive epitaxial strain and hence irrespective of the magnetic anisotropy. In order to resolve this mystery, we directly probed the preferential orbital occupation of spin-polarized electrons in LSMO thin films under strain by angle-dependent x-ray magnetic circular dichroism (XMCD). Anisotropy of the spin-density distribution was found to be in-plane for the tensile strain and out-of-plane for the compressive strain, consistent with the observed magnetic anisotropy. The ubiquitous out-of-plane preferential orbital occupation seen by XLD is attributed to the occupation of both spin-up and spin-down out-of-plane orbitals in the surface magnetic dead layer.
NASA Astrophysics Data System (ADS)
Sclauzero, Gabriele; Dymkowski, Krzysztof; Ederer, Claude
2016-12-01
We investigate the effect of epitaxial strain on the Mott metal-insulator transition (MIT) in perovskite systems with d1 and d2 electron configurations of the transition metal (TM) cation. We first discuss the general trends expected from the changes in the crystal-field splitting and in the hopping parameters that are induced by epitaxial strain. We argue that the strain-induced crystal-field splitting generally favors the Mott-insulating state, whereas the strain-induced changes in the hopping parameters favor the metallic state under compressive strain and the insulating state under tensile strain. Thus the two effects can effectively cancel each other under compressive strain, while they usually cooperate under tensile strain, in this case favoring the insulating state. We then validate these general considerations by performing electronic structure calculations for several d1 and d2 perovskites, using a combination of density functional theory (DFT) and dynamical mean-field theory (DMFT). We isolate the individual effects of strain-induced changes in either hopping or crystal-field by performing DMFT calculations where we fix one type of parameter to the corresponding unstrained DFT values. These calculations confirm our general considerations for SrVO3 (d1) and LaVO3 (d2), whereas the case of LaTiO3 (d1) is distinctly different, due to the strong effect of the octahedral tilt distortion in the underlying perovskite crystal structure. Our results demonstrate the possibility to tune the electronic properties of correlated TM oxides by using epitaxial strain, which allows to control the strength of electronic correlations and the vicinity to the Mott MIT.
Synthesis and viscoelastic characterization of microstructurally aligned Silk fibroin sponges.
Panda, Debojyoti; Konar, Subhajit; Bajpai, Saumendra K; Arockiarajan, A
2017-07-01
Silk fibroin (SF) is a model candidate for use in tissue engineering and regenerative medicine owing to its bio-compatible mechanochemical properties. Despite numerous advances made in the fabrication of various biomimetic substrates using SF, relatively few clinical applications have been designed, primarily due to the lack of complete understanding of its constitutive properties. Here we fabricate microstructurally aligned SF sponge using the unidirectional freezing technique wherein a novel solvent-processing technique involving Acetic acid is employed, which obviates the post-treatment of the sponges to induce their water-stability. Subsequently, we quantify the anisotropic, viscoelastic response of the bulk SF sponge samples by performing a series of mechanical tests under uniaxial compression over a wide range of strain rates. Results for these uniaxial compression tests in the finite strain regime through ramp strain and ramp-relaxation loading histories applied over two orders of strain rate magnitude show that microstructural anisotropy is directly manifested in the bulk viscoelastic solid-like response. Furthermore, the experiments reveal a high degree of volume compressibility of the sponges during deformation, and also evince for their remarkable strain recovery capacity under large compressive strains during strain recovery tests. Finally, in order to predict the bulk viscoelastic material properties of the fabricated and pre-characterized SF sponges, a finite strain kinematics-based, nonlinear, continuum model developed within a thermodynamically-consistent framework in a parallel investigation, was successfully employed to capture the viscoelastic solid-like, transversely isotropic, and compressible response of the sponges macroscopically. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kabirian, Farhoud
Mechanical responses and texture evolution of extruded AZ31 Mg are measured under uniaxial (tension-compression) and multiaxial (free-end torsion) loadings. Compression loading is carried out in three different directions at temperature and strain rate ranges of 77-423 K and 10-4 -3000 s -1, respectively. Texture evolution at different intermediate strains reveals that crystal reorientation is exhausted at smaller strains with increase in strain rate while increase in temperature retards twinning. In addition to the well-known tension-compression yield asymmetry, a strong anisotropy in strain hardening response is observed. Strain hardening during the compression experiment is intensified with decreasing and increasing temperature and strain rate, respectively. This complex behavior is explained through understanding the roles of deformation mechanisms using the Visco-Plastic Self Consistent (VPSC) model. In order to calibrate the VPSC model's constants as accurate as possible, a vast number of mechanical responses including stress-strain curves in tension, compression in three directions, and free-end torsion, texture evolution at different strains, lateral strains of compression samples, twin volume fraction, and axial strain during the torsion experiment. Modeling results show that depending on the number of measurements used for calibration, roles of different mechanisms in plastic deformation change significantly. In addition, a precise definition of yield is established for the extruded AZ31magnesium alloy after it is subjected to different loading conditions (uniaxial to multiaxial) at four different plastic strains. The yield response is measured in ?-? space. Several yield criteria are studied to predict yield response of extruded AZ31. This study proposes an asymmetrical fourth-order polynomial yield function. Material constants in this model can be directly calculated using mechanical measurements. Convexity of the proposed model is discussed, and domains of constants where convexity holds are determined. Effects of grain refinement induced by Equal Channel Angular Pressing, ECAP, on mechanical responses and texture evolution are investigated. Yield strength in compression increases after ECAP, however, strain-hardening rate drops with number of ECAP passes while failure strain increases. Texture measurements reveal the higher propensity to twinning in the extruded material compared with ECAPed magnesium. Calculated Schmid factor maps are utilized to connect the observed mechanical responses to the texture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, R. L.; Wang, Y. D.; Nie, Z. H.
2008-01-01
This paper deals with the experimental study of stress-induced phase transformation in a polycrystalline Ni-Mn-Ga alloy under uniaxial compression and its powder under hydrostatic compression. In situ neutron diffraction experiments were employed to follow changes in the structure and lattice strains caused by the applied stresses. Large lattice strains that are dependent on the lattice planes or grain orientations were observed in the parent Heusler phase for both the bulk material and the powder sample. The development of such anisotropic strains and the influence of external load conditions are discussed in the paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayashi, T; Morokuma, Keiji; Meunier, Vincent
We have used in-situ current-voltage measurements of cup-stacked carbon nanotubes (CSCNTs) to establish a reversible strain induced (compressive bending) semiconducting to metallic behavior. The corresponding electrical resistance decreases by two orders of magnitude during the process, and reaches values comparable to those of highly crystalline multi-walled carbon nanotube (MWCNT) and graphite. Joule heating experiments on the same CSCNTs showed that the edges of individual cups merge to form loops induced by the heating process. The resistance of these looped CSCNTs was close to that of highly deformed CSCNTs (and crystalline MWCNTs), thus suggesting that a similar conduction mechanism took placemore » in both cases. Using a combination of molecular dynamics and first-principles calculations based on density functional theory, we conclude that an edge-to-edge interlayer transport mechanism results in conduction channels at the compressed side of the CSCNTs due to electronic density overlap between individual cups, thus making CSCNT more conducting. This strain-induced CSCNT semiconductor to metal transition could potentially be applied to enabling functional composite materials (e.g. mechanical sensors) with enhanced and tunable conducting properties upon compression.« less
A model for compression-weakening materials and the elastic fields due to contractile cells
NASA Astrophysics Data System (ADS)
Rosakis, Phoebus; Notbohm, Jacob; Ravichandran, Guruswami
2015-12-01
We construct a homogeneous, nonlinear elastic constitutive law that models aspects of the mechanical behavior of inhomogeneous fibrin networks. Fibers in such networks buckle when in compression. We model this as a loss of stiffness in compression in the stress-strain relations of the homogeneous constitutive model. Problems that model a contracting biological cell in a finite matrix are solved. It is found that matrix displacements and stresses induced by cell contraction decay slower (with distance from the cell) in a compression weakening material than linear elasticity would predict. This points toward a mechanism for long-range cell mechanosensing. In contrast, an expanding cell would induce displacements that decay faster than in a linear elastic matrix.
High Strain Rate and Shock-Induced Deformation in Metals
NASA Astrophysics Data System (ADS)
Ravelo, Ramon
2012-02-01
Large-scale non-equilibrium molecular Dynamics (MD) simulations are now commonly used to study material deformation at high strain rates (10^9-10^12 s-1). They can provide detailed information-- such as defect morphology, dislocation densities, and temperature and stress profiles, unavailable or hard to measure experimentally. Computational studies of shock-induced plasticity and melting in fcc and bcc single, mono-crystal metals, exhibit generic characteristics: high elastic limits, large directional anisotropies in the yield stress and pre-melting much below the equilibrium melt temperature for shock wave propagation along specific crystallographic directions. These generic features in the response of single crystals subjected to high strain rates of deformation can be explained from the changes in the energy landscape of the uniaxially compressed crystal lattice. For time scales relevant to dynamic shock loading, the directional-dependence of the yield strength in single crystals is shown to be due to the onset of instabilities in elastic-wave propagation velocities. The elastic-plastic transition threshold can accurately be predicted by a wave-propagation stability analysis. These strain-induced instabilities create incipient defect structures, which can be quite different from the ones, which characterize the long-time, asymptotic state of the compressed solid. With increase compression and strain rate, plastic deformation via extended defects gives way to amorphization associated with the loss in shear rigidity along specific deformation paths. The hot amorphous or (super-cooled liquid) metal re-crystallizes at rates, which depend on the temperature difference between the amorphous solid and the equilibrium melt line. This plastic-amorphous transition threshold can be computed from shear-waves stability analyses. Examples from selected fcc and bcc metals will be presented employing semi-empirical potentials of the embedded atom method (EAM) type as well as results from density functional theory calculations.
Strain effects on the work function of an organic semiconductor
Wu, Yanfei; Chew, Annabel R.; Rojas, Geoffrey A.; Sini, Gjergji; Haugstad, Greg; Belianinov, Alex; Kalinin, Sergei V.; Li, Hong; Risko, Chad; Brédas, Jean-Luc; Salleo, Alberto; Frisbie, C. Daniel
2016-01-01
Establishing fundamental relationships between strain and work function (WF) in organic semiconductors is important not only for understanding electrical properties of organic thin films, which are subject to both intrinsic and extrinsic strains, but also for developing flexible electronic devices. Here we investigate tensile and compressive strain effects on the WF of rubrene single crystals. Mechanical strain induced by thermal expansion mismatch between the substrate and rubrene is quantified by X-ray diffraction. The corresponding WF change is measured by scanning Kelvin probe microscopy. The WF of rubrene increases (decreases) significantly with in-plane tensile (compressive) strain, which agrees qualitatively with density functional theory calculations. An elastic-to-plastic transition, characterized by a steep rise of the WF, occurs at ∼0.05% tensile strain along the rubrene π-stacking direction. The results provide the first concrete link between mechanical strain and WF of an organic semiconductor and have important implications for understanding the connection between structural and electronic disorder in soft organic electronic materials. PMID:26831362
Strain effects on the work function of an organic semiconductor
NASA Astrophysics Data System (ADS)
Wu, Yanfei; Chew, Annabel R.; Rojas, Geoffrey A.; Sini, Gjergji; Haugstad, Greg; Belianinov, Alex; Kalinin, Sergei V.; Li, Hong; Risko, Chad; Brédas, Jean-Luc; Salleo, Alberto; Frisbie, C. Daniel
2016-02-01
Establishing fundamental relationships between strain and work function (WF) in organic semiconductors is important not only for understanding electrical properties of organic thin films, which are subject to both intrinsic and extrinsic strains, but also for developing flexible electronic devices. Here we investigate tensile and compressive strain effects on the WF of rubrene single crystals. Mechanical strain induced by thermal expansion mismatch between the substrate and rubrene is quantified by X-ray diffraction. The corresponding WF change is measured by scanning Kelvin probe microscopy. The WF of rubrene increases (decreases) significantly with in-plane tensile (compressive) strain, which agrees qualitatively with density functional theory calculations. An elastic-to-plastic transition, characterized by a steep rise of the WF, occurs at ~0.05% tensile strain along the rubrene π-stacking direction. The results provide the first concrete link between mechanical strain and WF of an organic semiconductor and have important implications for understanding the connection between structural and electronic disorder in soft organic electronic materials.
Strain effects on the work function of an organic semiconductor.
Wu, Yanfei; Chew, Annabel R; Rojas, Geoffrey A; Sini, Gjergji; Haugstad, Greg; Belianinov, Alex; Kalinin, Sergei V; Li, Hong; Risko, Chad; Brédas, Jean-Luc; Salleo, Alberto; Frisbie, C Daniel
2016-02-01
Establishing fundamental relationships between strain and work function (WF) in organic semiconductors is important not only for understanding electrical properties of organic thin films, which are subject to both intrinsic and extrinsic strains, but also for developing flexible electronic devices. Here we investigate tensile and compressive strain effects on the WF of rubrene single crystals. Mechanical strain induced by thermal expansion mismatch between the substrate and rubrene is quantified by X-ray diffraction. The corresponding WF change is measured by scanning Kelvin probe microscopy. The WF of rubrene increases (decreases) significantly with in-plane tensile (compressive) strain, which agrees qualitatively with density functional theory calculations. An elastic-to-plastic transition, characterized by a steep rise of the WF, occurs at ∼0.05% tensile strain along the rubrene π-stacking direction. The results provide the first concrete link between mechanical strain and WF of an organic semiconductor and have important implications for understanding the connection between structural and electronic disorder in soft organic electronic materials.
Strain effects on the work function of an organic semiconductor
Wu, Yanfei; Chew, Annabel R.; Rojas, Geoffrey A.; ...
2016-02-01
Establishing fundamental relationships between strain and work function (WF) in organic semiconductors is important not only for understanding the electrical properties of organic thin films, which are subject to both intrinsic and extrinsic strains, but also for developing flexible electronic devices. Here we investigate tensile and compressive strain effects on the WF of rubrene single crystals. Mechanical strain induced by thermal expansion mismatch between the substrate and rubrene is quantified by X-ray diffraction. The corresponding WF change is measured by scanning Kelvin probe microscopy. The WF of rubrene increases (decreases) significantly with in-plane tensile (compressive) strain, which agrees qualitatively withmore » density functional theory calculations. An elastic-to-plastic transition, characterized by a steep rise of the WF, occurs at ~0.05% tensile strain along the rubrene -stacking direction. The results provide the first concrete link between mechanical strain and the WF of an organic semiconductor and have important implications for understanding the connection between structural and electronic disorder (charge traps) in soft organic electronic materials.« less
Han, Hyeon; Kim, Donghoon; Chu, Kanghyun; Park, Jucheol; Nam, Sang Yeol; Heo, Seungyang; Yang, Chan-Ho; Jang, Hyun Myung
2018-01-17
Ferroelectric photovoltaics (FPVs) are being extensively investigated by virtue of switchable photovoltaic responses and anomalously high photovoltages of ∼10 4 V. However, FPVs suffer from extremely low photocurrents due to their wide band gaps (E g ). Here, we present a promising FPV based on hexagonal YbFeO 3 (h-YbFO) thin-film heterostructure by exploiting its narrow E g . More importantly, we demonstrate enhanced FPV effects by suitably exploiting the substrate-induced film strain in these h-YbFO-based photovoltaics. A compressive-strained h-YbFO/Pt/MgO heterojunction device shows ∼3 times enhanced photovoltaic efficiency than that of a tensile-strained h-YbFO/Pt/Al 2 O 3 device. We have shown that the enhanced photovoltaic efficiency mainly stems from the enhanced photon absorption over a wide range of the photon energy, coupled with the enhanced polarization under a compressive strain. Density functional theory studies indicate that the compressive strain reduces E g substantially and enhances the strength of d-d transitions. This study will set a new standard for determining substrates toward thin-film photovoltaics and optoelectronic devices.
Ferromagnetism induced by point defect in Janus monolayer MoSSe regulated by strain engineering
NASA Astrophysics Data System (ADS)
Meng, Ming; Li, Tinghui; Li, Shaofeng; Liu, Kuili
2018-03-01
The formation and regulation of magnetism dependent on introduced defects in the Janus MoSSe monolayer has attracted much attention because of its potential application in spintronics. Here, we present a theoretical study of defect formation in the MoSSe monolayer and its introduced magnetism under external strain. The tensile deformation induced by external strain not only leads to decreases in defect formation energy, but also enhances magnetic characteristics. However, as compressed deformation increases, the magnetism in the structure induced by Se or S defects remains unchanged because this microstructural deformation adequately spin polarizes unpaired electrons of neighboring Mo atoms. Our results suggest the use of point defect and strain engineering in the Janus MoSSe monolayer for spintronics applications.
Ultrasensitive tunability of the direct bandgap of 2D InSe flakes via strain engineering
NASA Astrophysics Data System (ADS)
Li, Yang; Wang, Tianmeng; Wu, Meng; Cao, Ting; Chen, Yanwen; Sankar, Raman; Ulaganathan, Rajesh K.; Chou, Fangcheng; Wetzel, Christian; Xu, Cheng-Yan; Louie, Steven G.; Shi, Su-Fei
2018-04-01
InSe, a member of the layered materials family, is a superior electronic and optical material which retains a direct bandgap feature from the bulk to atomically thin few-layers and high electronic mobility down to a single layer limit. We, for the first time, exploit strain to drastically modify the bandgap of two-dimensional (2D) InSe nanoflakes. We demonstrated that we could decrease the bandgap of a few-layer InSe flake by 160 meV through applying an in-plane uniaxial tensile strain to 1.06% and increase the bandgap by 79 meV through applying an in-plane uniaxial compressive strain to 0.62%, as evidenced by photoluminescence (PL) spectroscopy. The large reversible bandgap change of ~239 meV arises from a large bandgap change rate (bandgap strain coefficient) of few-layer InSe in response to strain, ~154 meV/% for uniaxial tensile strain and ~140 meV/% for uniaxial compressive strain, representing the most pronounced uniaxial strain-induced bandgap strain coefficient experimentally reported in 2D materials. We developed a theoretical understanding of the strain-induced bandgap change through first-principles DFT and GW calculations. We also confirmed the bandgap change by photoconductivity measurements using excitation light with different photon energies. The highly tunable bandgap of InSe in the infrared regime should enable a wide range of applications, including electro-mechanical, piezoelectric and optoelectronic devices.
Optical Measurement Technique for Space Column Characterization
NASA Technical Reports Server (NTRS)
Barrows, Danny A.; Watson, Judith J.; Burner, Alpheus W.; Phelps, James E.
2004-01-01
A simple optical technique for the structural characterization of lightweight space columns is presented. The technique is useful for determining the coefficient of thermal expansion during cool down as well as the induced strain during tension and compression testing. The technique is based upon object-to-image plane scaling and does not require any photogrammetric calibrations or computations. Examples of the measurement of the coefficient of thermal expansion are presented for several lightweight space columns. Examples of strain measured during tension and compression testing are presented along with comparisons to results obtained with Linear Variable Differential Transformer (LVDT) position transducers.
Anomalous tensoelectric effects in gallium arsenide tunnel diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alekseeva, Z.M.; Vyatkin, A.P.; Krivorotov, N.P.
Anomalous tensoelectric phenomena induced in a tunnel p-n junction by a concentrated load and by hydrostatic compression were studied. The anomalous tensoelectric effects are caused by the action of concentrators of mechanical stresses in the vicinity of the p-n junction, giving rise to local microplastic strain. Under the conditions of hydrostatic compression prolate inclusions approx.100-200 A long play the role of concentrators. Analysis of irreversible changes in the current-voltage characteristics of tunnel p-n junctions made it possible to separate the energy levels of the defects produced with plastic strain of gallium arsenide.
Evolution of dealloying induced strain in nanoporous gold crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen-Wiegart, Yu-chen Karen; Harder, Ross; Dunand, David C.
For this paper, we studied the evolution of dealloying-induced strain along the {111} in a Ag-Au nano-crystal in situ, during formation of nanoporous gold at the initial stage of dealloying using Bragg coherent x-ray diffractive imaging. The maximum strain magnitude in the crystal doubled in 10 s of dealloying. Although formation of nano-pores just began at the surface, the greatest strain is located 60-80 nm deep within the crystal. Dealloying induced a compressive strain in this region, indicating volume shrinkage occurred during pore formation. The crystal interior showed a small tensile strain, which can be explained by 'pulling' of themore » dealloyed region by the non-dealloyed region during volume reduction. A surface strain relaxation developed, attributed to atomic rearrangement during dealloying. This clearer understanding of the role of strain in the initial stages of formation of nanoporous gold by dealloying can be exploited for development of new sensors, battery electrodes, and materials for catalysis.« less
Evolution of dealloying induced strain in nanoporous gold crystals
Chen-Wiegart, Yu-chen Karen; Harder, Ross; Dunand, David C.; ...
2017-04-10
For this paper, we studied the evolution of dealloying-induced strain along the {111} in a Ag-Au nano-crystal in situ, during formation of nanoporous gold at the initial stage of dealloying using Bragg coherent x-ray diffractive imaging. The maximum strain magnitude in the crystal doubled in 10 s of dealloying. Although formation of nano-pores just began at the surface, the greatest strain is located 60-80 nm deep within the crystal. Dealloying induced a compressive strain in this region, indicating volume shrinkage occurred during pore formation. The crystal interior showed a small tensile strain, which can be explained by 'pulling' of themore » dealloyed region by the non-dealloyed region during volume reduction. A surface strain relaxation developed, attributed to atomic rearrangement during dealloying. This clearer understanding of the role of strain in the initial stages of formation of nanoporous gold by dealloying can be exploited for development of new sensors, battery electrodes, and materials for catalysis.« less
Suppressing molecular vibrations in organic semiconductors by inducing strain
Kubo, Takayoshi; Häusermann, Roger; Tsurumi, Junto; Soeda, Junshi; Okada, Yugo; Yamashita, Yu; Akamatsu, Norihisa; Shishido, Atsushi; Mitsui, Chikahiko; Okamoto, Toshihiro; Yanagisawa, Susumu; Matsui, Hiroyuki; Takeya, Jun
2016-01-01
Organic molecular semiconductors are solution processable, enabling the growth of large-area single-crystal semiconductors. Improving the performance of organic semiconductor devices by increasing the charge mobility is an ongoing quest, which calls for novel molecular and material design, and improved processing conditions. Here we show a method to increase the charge mobility in organic single-crystal field-effect transistors, by taking advantage of the inherent softness of organic semiconductors. We compress the crystal lattice uniaxially by bending the flexible devices, leading to an improved charge transport. The mobility increases from 9.7 to 16.5 cm2 V−1 s−1 by 70% under 3% strain. In-depth analysis indicates that compressing the crystal structure directly restricts the vibration of the molecules, thus suppresses dynamic disorder, a unique mechanism in organic semiconductors. Since strain can be easily induced during the fabrication process, we expect our method to be exploited to build high-performance organic devices. PMID:27040501
Suppressing molecular vibrations in organic semiconductors by inducing strain.
Kubo, Takayoshi; Häusermann, Roger; Tsurumi, Junto; Soeda, Junshi; Okada, Yugo; Yamashita, Yu; Akamatsu, Norihisa; Shishido, Atsushi; Mitsui, Chikahiko; Okamoto, Toshihiro; Yanagisawa, Susumu; Matsui, Hiroyuki; Takeya, Jun
2016-04-04
Organic molecular semiconductors are solution processable, enabling the growth of large-area single-crystal semiconductors. Improving the performance of organic semiconductor devices by increasing the charge mobility is an ongoing quest, which calls for novel molecular and material design, and improved processing conditions. Here we show a method to increase the charge mobility in organic single-crystal field-effect transistors, by taking advantage of the inherent softness of organic semiconductors. We compress the crystal lattice uniaxially by bending the flexible devices, leading to an improved charge transport. The mobility increases from 9.7 to 16.5 cm(2) V(-1) s(-1) by 70% under 3% strain. In-depth analysis indicates that compressing the crystal structure directly restricts the vibration of the molecules, thus suppresses dynamic disorder, a unique mechanism in organic semiconductors. Since strain can be easily induced during the fabrication process, we expect our method to be exploited to build high-performance organic devices.
Ge, Chao; Maimaitituersun, Wubuliaisan; Dong, Yongxiang; Tian, Chao
2017-04-26
Polytetrafluoroethylene/aluminum/tungsten (PTFE/Al/W) reactive materials of three different component mass ratios (73.5/26.5/0, 68.8/24.2/7 and 63.6/22.4/14) were studied in this research. Different from the PTFE/Al/W composites published elsewhere, the materials in our research were fabricated under a much lower sintering temperature and for a much shorter duration to achieve a brittle property, which aims to provide more sufficient energy release upon impact. Quasi-static compression tests, dynamic compression tests at room and elevated temperatures, and drop weight tests were conducted to evaluate the mechanical and impact-induced initiation characteristics of the materials. The materials before and after compression tests were observed by a scanning electron microscope to relate the mesoscale structural characteristics to their macro properties. All the three types of materials fail at very low strains during both quasi-static and dynamic compression. The stress-strain curves for quasi-static tests show obvious deviations while that for the dynamic tests consist of only linear-elastic and failure stages typically. The materials were also found to exhibit thermal softening at elevated temperatures and were strain-rate sensitive during dynamic tests, which were compared using dynamic increase factors (DIFs). Drop-weight test results show that the impact-initiation sensitivity increases with the increase of W content due to the brittle mechanical property. The high-speed video sequences and recovered sample residues of the drop-weight tests show that the reaction is initiated at two opposite positions near the edges of the samples, where the shear force concentrates the most intensively, indicating a shear-induced initiation mechanism.
Ge, Chao; Maimaitituersun, Wubuliaisan; Dong, Yongxiang; Tian, Chao
2017-01-01
Polytetrafluoroethylene/aluminum/tungsten (PTFE/Al/W) reactive materials of three different component mass ratios (73.5/26.5/0, 68.8/24.2/7 and 63.6/22.4/14) were studied in this research. Different from the PTFE/Al/W composites published elsewhere, the materials in our research were fabricated under a much lower sintering temperature and for a much shorter duration to achieve a brittle property, which aims to provide more sufficient energy release upon impact. Quasi-static compression tests, dynamic compression tests at room and elevated temperatures, and drop weight tests were conducted to evaluate the mechanical and impact-induced initiation characteristics of the materials. The materials before and after compression tests were observed by a scanning electron microscope to relate the mesoscale structural characteristics to their macro properties. All the three types of materials fail at very low strains during both quasi-static and dynamic compression. The stress-strain curves for quasi-static tests show obvious deviations while that for the dynamic tests consist of only linear-elastic and failure stages typically. The materials were also found to exhibit thermal softening at elevated temperatures and were strain-rate sensitive during dynamic tests, which were compared using dynamic increase factors (DIFs). Drop-weight test results show that the impact-initiation sensitivity increases with the increase of W content due to the brittle mechanical property. The high-speed video sequences and recovered sample residues of the drop-weight tests show that the reaction is initiated at two opposite positions near the edges of the samples, where the shear force concentrates the most intensively, indicating a shear-induced initiation mechanism. PMID:28772812
Cooper, Valentino R.; Lee, Jun Hee; Krogel, Jaron T.; ...
2015-08-06
Multiferroic BiFeO 3 exhibits excellent magnetoelectric coupling critical for magnetic information processing with minimal power consumption. Thus, the degenerate nature of the easy spin axis in the (111) plane presents roadblocks for real world applications. Here, we explore the stabilization and switchability of the weak ferromagnetic moments under applied epitaxial strain using a combination of first-principles calculations and group-theoretic analyses. We demonstrate that the antiferromagnetic moment vector can be stabilized along unique crystallographic directions ([110] and [-110]) under compressive and tensile strains. A direct coupling between the anisotropic antiferrodistortive rotations and Dzyaloshinskii-Moria interactions drives the stabilization of weak ferromagnetism. Furthermore,more » energetically competing C- and G-type magnetic orderings are observed at high compressive strains, suggesting that it may be possible to switch the weak ferromagnetism on and off under application of strain. These findings emphasize the importance of strain and antiferrodistortive rotations as routes to enhancing induced weak ferromagnetism in multiferroic oxides.« less
Stress-induced magnetic properties of PLD-grown high-quality ultrathin YIG films
NASA Astrophysics Data System (ADS)
Bhoi, Biswanath; Kim, Bosung; Kim, Yongsub; Kim, Min-Kwan; Lee, Jae-Hyeok; Kim, Sang-Koog
2018-05-01
Yttrium iron garnet (YIG:Y3Fe5O12) thin films were grown on (111) gadolinium gallium garnet (Gd3Ga5O12, GGG) substrates using pulsed-laser deposition under several different deposition and annealing conditions. X-ray diffraction measurements revealed that the crystallographical orientation of the YIG films is pseudomorphic to and the same as that of the GGG substrate, with a slight rhombohedral distortion along the surface normal. Furthermore, X-ray reciprocal space mapping evidenced that in-situ annealed YIG films during film growth are under compressive strain, whereas ex-situ annealed films have two different regions under compressive and tensile strain. The saturation magnetization ( 4 π M S ) of the films was found to vary, according to the deposition conditions, within the range of 1350 to 1740 G, with a very low coercivity of H C < 5 Oe. From ferromagnetic resonance (FMR) measurements, we estimated the effective saturation magnetization ( 4 π M e f f ) to be 1810 to 2530 G, which are larger than that of single crystalline bulk YIG (˜1750 G). Such high values of 4 π M e f f are attributable to the negative anisotropy field ( H U ) that increases in size with increasing compressive in-plane strain induced in YIG films. The damping constant ( α G ) of the grown YIG films was found to be quite sensitive to the strain employed. The lowest value of α G obtained was 2.8 × 10-4 for the case of negligible strain. These results suggest a means of tailoring H U and α G in the grown YIG films by the engineering of strain for applications in spintronics and magneto-optical devices.
6% magnetic-field-induced strain by twin-boundary motion in ferromagnetic Ni-Mn-Ga
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, S. J.; Marioni, M.; Allen, S. M.
2000-08-07
Field-induced strains of 6% are reported in ferromagnetic Ni-Mn-Ga martensites at room temperature. The strains are the result of twin boundary motion driven largely by the Zeeman energy difference across the twin boundary. The strain measured parallel to the applied magnetic field is negative in the sample/field geometry used here. The strain saturates in fields of order 400 kA/m and is blocked by a compressive stress of order 2 MPa applied orthogonal to the magnetic field. The strain versus field curves exhibit appreciable hysteresis associated with the motion of the twin boundaries. A simple model accounts quantitatively for the dependencemore » of strain on magnetic field and external stress using as input parameters only measured quantities. (c) 2000 American Institute of Physics.« less
Wajahat, Muhammad; Lee, Sanghyeon; Kim, Jung Hyun; Chang, Won Suk; Pyo, Jaeyeon; Cho, Sung Ho; Seol, Seung Kwon
2018-06-13
Printed strain sensors have promising potential as a human-machine interface (HMI) for health-monitoring systems, human-friendly wearable interactive systems, and smart robotics. Herein, flexible strain sensors based on carbon nanotube (CNT)-polymer composites were fabricated by meniscus-guided printing using a CNT ink formulated from multiwall nanotubes (MWNTs) and polyvinylpyrrolidone (PVP); the ink was suitable for micropatterning on nonflat (or curved) substrates and even three-dimensional structures. The printed strain sensors exhibit a reproducible response to applied tensile and compressive strains, having gauge factors of 13.07 under tensile strain and 12.87 under compressive strain; they also exhibit high stability during ∼1500 bending cycles. Applied strains induce a contact rearrangement of the MWNTs and a change in the tunneling distance between them, resulting in a change in the resistance (Δ R/ R 0 ) of the sensor. Printed MWNT-PVP sensors were used in gloves for finger movement detection; these can be applied to human motion detection and remote control of robotic equipment. Our results demonstrate that meniscus-guided printing using CNT inks can produce highly flexible, sensitive, and inexpensive HMI devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Jingli; Chen, Cun; Wang, Gang
This study explores the temporal scaling behavior induced shear-branching structure in response to variant temperatures and strain rates during plastic deformation of Zr-based bulk metallic glass (BMG). The data analysis based on the compression tests suggests that there are two states of shear-branching structures: the fractal structure with a long-range order at an intermediate temperature of 223 K and a larger strain rate of 2.5 × 10 –2 s –1; the disordered structure dominated at other temperature and strain rate. It can be deduced from the percolation theory that the compressive ductility, ec, can reach the maximum value at themore » intermediate temperature. Furthermore, a dynamical model involving temperature is given for depicting the shear-sliding process, reflecting the plastic deformation has fractal structure at the temperature of 223 K and strain rate of 2.5 × 10 –2 s –1.« less
NASA Astrophysics Data System (ADS)
Sahatiya, Parikshit; Jones, S. Solomon; Thanga Gomathi, P.; Badhulika, Sushmee
2017-06-01
Strain modulation is considered to be an effective way to modulate the electronic structure and carrier behavior in flexible semiconductors heterojunctions. In this work, 2D Graphene (Gr)/ZnO junction was successfully fabricated on flexible eraser substrate using simple, low-cost solution processed hydrothermal method and has been utilized for broadband photodetection in the UV to visible range at room temperature. Optimization in terms of process parameters were done to obtain 2D ZnO over 2D graphene which shows decrease in bandgap and broad absorption range from UV to visible. Under compressive strain piezopotential induced by the atoms displacements in 2D ZnO, 87% enhanced photosensing for UV light was observed under 30% strain. This excellent performance improvement can be attributed to piezopotential induced under compressive strain in 2D ZnO which results in lowering of conduction band energy and raising the schottky barrier height thereby facilitating electron-hole pair separation in 2D Gr/ZnO junction. Detailed mechanism studies in terms of density of surface states and energy band diagram is presented to understand the proposed phenomena. Results provide an excellent approach for improving the optoelectronic performance of 2D Gr/ZnO interface which can also be applied to similar semiconductor heterojunctions.
NASA Astrophysics Data System (ADS)
Matveenko, V. P.; Kosheleva, N. A.; Shardakov, I. N.; Voronkov, A. A.
2018-04-01
The presence of process-induced strains induced by various manufacturing and operational factors is one of the characteristics of polymer composite materials (PCM). Conventional methods of registration and evaluation of process-induced strains can be laborious, time-consuming and demanding in terms of technical applications. The employment of embedded fibre-optic strain sensors (FOSS) offers a real prospect of measuring residual strains. This paper demonstrates the potential for using embedded FOSS for recording technological strains in a PCM plate. The PCM plate is manufactured from prepreg, using the direct compression-moulding method. In this method, the prepared reinforcing package is placed inside a mould, heated, and then exposed to compaction pressure. The examined technology can be used for positioning FOSS between the layers of the composite material. Fibre-optic sensors, interacting with the material of the examined object, make it possible to register the evolution of the strain process during all stages of polymer-composite formation. FOSS data were recorded with interrogator ASTRO X 327. The obtained data were processed using specially developed algorithms.
Effects of lattice deformation on magnetic properties of electron-doped La0.8Hf0.2MnO3 thin films
NASA Astrophysics Data System (ADS)
Wu, Z. P.; Jiang, Y. C.; Gao, J.
2013-05-01
The lattice deformation effects on electric and magnetic properties of electron-doped La0.8Hf0.2MnO3 (LHMO) thin films have been systematically investigated. LHMO films with various thicknesses (15 nm, 40 nm, and 80 nm) were grown on (001) SrTiO3 and (001) LaAlO3 substrates, which induces in-plane tensile and compressive biaxial stress, respectively. The metal-insulator phase transition temperature (TP) and magnetoresistance (MR) effect show a strong dependence on film thickness. TP increases with a decrease in thickness and is enhanced as the lattice strain rises, regardless of whether it is tensile or compressive. The maximum MR ratio is suppressed by reduction of the film thickness. These anomalous phenomena may be attributed to the competition between the strain induced modification of the Mn-O bond length and the eg orbital stability.
NASA Technical Reports Server (NTRS)
Paraska, Peter J.
1993-01-01
This report documents an analytical study of the response of unsymmetrically laminated cylinders subjected to thermally-induced preloading effects and compressive axial load. Closed-form solutions are obtained for the displacements and intralaminar stresses and recursive relations for the interlaminar shear stress were obtained using the closed-form intralaminar stress solutions. For the cylinder geometries and stacking sequence examples analyzed, several important and as yet undocumented effects of including thermally-induced preloading in the analysis are observed. It should be noted that this work is easily extended to include uniform internal and/or external pressure loadings and the application of strain and stress failure theories.
Nguyen, Ngoc-Trung; Seo, Oh Suk; Lee, Chung An; Lee, Myoung-Gyu; Kim, Ji-hoon; Kim, Heon Young
2014-01-01
Large-strain monotonic and cyclic loading tests of AZ31B magnesium alloy sheets were performed with a newly developed testing system, at different temperatures, ranging from room temperature to 250 °C. Behaviors showing significant twinning during initial in-plane compression and untwinning in subsequent tension at and slightly above room temperature were recorded. Strong yielding asymmetry and nonlinear hardening behavior were also revealed. Considerable Bauschinger effects, transient behavior, and variable permanent softening responses were observed near room temperature, but these were reduced and almost disappeared as the temperature increased. Different stress–strain responses were inherent to the activation of twinning at lower temperatures and non-basal slip systems at elevated temperatures. A critical temperature was identified to account for the transition between the twinning-dominant and slip-dominant deformation mechanisms. Accordingly, below the transition point, stress–strain curves of cyclic loading tests exhibited concave-up shapes for compression or compression following tension, and an unusual S-shape for tension following compression. This unusual shape disappeared when the temperature was above the transition point. Shrinkage of the elastic range and variation in Young’s modulus due to plastic strain deformation during stress reversals were also observed. The texture-induced anisotropy of both the elastic and plastic behaviors was characterized experimentally. PMID:28788514
Refinement of Ferrite Grain Size near the Ultrafine Range by Multipass, Thermomechanical Compression
NASA Astrophysics Data System (ADS)
Patra, S.; Neogy, S.; Kumar, Vinod; Chakrabarti, D.; Haldar, A.
2012-11-01
Plane-strain compression testing was carried out on a Nb-Ti-V microalloyed steel, in a GLEEBLE3500 simulator using a different amount of roughing, intermediate, and finishing deformation over the temperature range of 1373 K to 1073 K (1100 °C to 800 °C). A decrease in soaking temperature from 1473 K to 1273 K (1200 °C to 1000 °C) offered marginal refinement in the ferrite ( α) grain size from 7.8 to 6.6 μm. Heavy deformation using multiple passes between A e3 and A r3 with true strain of 0.8 to 1.2 effectively refined the α grain size (4.1 to 3.2 μm) close to the ultrafine size by dynamic-strain-induced austenite ( γ) → ferrite ( α) transformation (DSIT). The intensities of microstructural banding, pearlite fraction in the microstructure (13 pct), and fraction of the harmful "cube" texture component (5 pct) were reduced with the increase in finishing deformation. Simultaneously, the fractions of high-angle (>15 deg misorientation) boundaries (75 to 80 pct), beneficial gamma-fiber (ND//<111>) texture components, along with {332}<133> and {554}<225> components were increased. Grain refinement and the formation of small Fe3C particles (50- to 600-nm size) increased the hardness of the deformed samples (184 to 192 HV). For the same deformation temperature [1103 K (830 °C)], the difference in α-grain sizes obtained after single-pass (2.7 μm) and multipass compression (3.2 μm) can be explained in view of the static- and dynamic-strain-induced γ → α transformation, strain partitioning between γ and α, dynamic recovery and dynamic recrystallization of the deformed α, and α-grain growth during interpass intervals.
Phase transition studies of Na3Bi system under uniaxial strain
NASA Astrophysics Data System (ADS)
Nie, Tiaoping; Meng, Lijun; Li, Yanru; Luan, Yanhua; Yu, Jun
2018-03-01
We investigated the electronic properties and phase transitions of Na3Bi in four structural phases (space groups P63/mmc, P \\overline{3} c1, Fm \\overline{3} m and Cmcm) under constant-volume uniaxial strain using the first-principles method. For P63/mmc and P \\overline{3} c1-Na3Bi, an important phase transition from a topological Dirac semimetal (TDS) to a topological insulator appears under compression strain around 4.5%. The insulating gap increases with the increasing compressive strain and up to around 0.1 eV at a strain of 10%. However, both P63/mmc and P \\overline{3} c1-Na3Bi still keep the properties of a TDS within a tensile strain of 0-10%, although the Dirac points move away from the Γ point along Γ-A in reciprocal space as the tensile strain increases. The Na3Bi with space group Fm \\overline{3} m is identified as a topological semimetal with the inverted bands between Na-3s and Bi-6p and a parabolic dispersion in the vicinity of Γ point. Interestingly, for Fm \\overline{3} m-Na3Bi, both compression and tensile strain lead to a TDS which is identified by calculating surface Fermi arcs and topological invariants at time-reversal planes (k z = 0 and k z = π/c) in reciprocal space. Additionally, we confirmed the high pressure phase Cmcm-Na3Bi is an ordinary insulator with a gap of about 0.62 eV. It is noteworthy that its gap almost keeps constant around 0.60 eV within a compression strain of 0-10%. In contrast, a remarkable phase transition from an insulator to a metal phase appears under tensile strain. Moreover, this phase transition is highly sensitive to tensile strain and takes place only at a strain 1.0%. These strain-induced electronic structures and phase transitions of the Na3Bi system in various phases are important due to their possible applications under high pressure in future electronic devices.
Strain-induced metal-insulator transitions in d1 perovskites within DFT+DMFT
NASA Astrophysics Data System (ADS)
Dymkowski, Krzysztof; Ederer, Claude
2014-03-01
We present results of combined density functional theory plus dynamical mean-field theory (DFT+DMFT) calculations, assessing the effect of epitaxial strain on the electronic properties of the Mott insulator LaTiO3 and the correlated metal SrVO3. In particular, we take into account the effect of strain on the collective tilts and rotations of the oxygen octahedra in the orthorhombically distorted Pbnm perovskite structure of LaTiO3. We find that LaTiO3 undergoes an insulator-to-metal transition under a compressive strain of about - 2 %, consistent with recent experimental observations. We show that this transition is driven mainly by strain-induced changes in the crystal-field splitting between the Ti t2 g orbitals, which in turn are related to changes in the octahedral tilt distortion. We compare this with the case of SrVO3, without octahedral tilts, where we find a metal-to-insulator transition under tensile epitaxial strain. Similar to LaTiO3, this metal-insulator transition is linked to the strain-induced change in the crystal-field splitting within the t2 g orbitals.
NASA Astrophysics Data System (ADS)
Cunha, Renato; Perea-López, Néstor; Elías, Ana Laura; Fujisawa, Kazunori; Carozo, Victor; Feng, Simin; Lv, Ruitao; dos Santos, Maria Cristina; Terrones, Mauricio; Araujo, Paulo T.
2018-05-01
The interactions of adsorbates with graphene have received increasing attention due to its importance in the development of applications involving graphene-based coatings. Here, we present a study of the adsorption of noble gases on pristine and nitrogen-doped graphene. Single-layer graphene samples were synthesized by chemical vapor deposition (CVD) and transferred to transmission electron microscopy (TEM) grids. Several noble gases were allowed to adsorb on the suspended graphene substrate at very low temperatures. Raman spectra show distinct frequency blue shifts in both the 2D and G bands, which are induced by gas adsorption onto high quality single layer graphene (1LG). These shifts, which we associate with compressive biaxial strain in the graphene layers induced by the noble gases, are negligible for nitrogen-doped graphene. Additionally, a thermal depinning transition, which is related to the desorption of a noble gas layer from the graphene surface at low temperatures (ranging from 20 to 35 K), was also observed at different transition temperatures for different noble gases. These transition temperatures were found to be 25 K for argon and 35 K for xenon. Moreover, we were able to obtain values for the compressive biaxial strain in graphene induced by the adsorbed layer of noble gases, using Raman spectroscopy. Ab initio calculations confirmed the correlation between the noble gas-induced strain and the changes in the Raman features observed.
Ren, Xiuyan; Huang, Chang; Duan, Lijie; Liu, Baijun; Bu, Lvjun; Guan, Shuang; Hou, Jiliang; Zhang, Huixuan; Gao, Guanghui
2017-05-14
Toughness, strechability and compressibility for hydrogels were ordinarily balanced for their use as mechanically responsive materials. For example, macromolecular microsphere composite hydrogels with chemical crosslinking exhibited excellent compression strength and strechability, but poor tensile stress. Here, a novel strategy for the preparation of a super-tough, ultra-stretchable and strongly compressive hydrogel was proposed by introducing core-shell latex particles (LPs) as crosslinking centers for inducing efficient aggregation of hydrophobic chains. The core-shell LPs always maintained a spherical shape due to the presence of a hard core even by an external force and the soft shell could interact with hydrophobic chains due to hydrophobic interactions. As a result, the hydrogels reinforced by core-shell LPs exhibited not only a high tensile strength of 1.8 MPa and dramatic elongation of over 20 times, but also an excellent compressive performance of 13.5 MPa at a strain of 90%. The Mullins effect was verified for the validity of core-shell LP-reinforced hydrogels by inducing aggregation of hydrophobic chains. The novel strategy strives to provide a better avenue for designing and developing a new generation of hydrophobic association tough hydrogels with excellent mechanical properties.
Electric-field-induced strain effects on the magnetization of a Pr 0.67Sr 0.33MnO 3 film
Zhang, B.; Sun, C. -J.; Lu, W.; ...
2015-05-26
The electric-field control of magnetic properties of Pr 0.67Sr 0.33MnO 3 (PSMO) film on piezoelectric Pb(Mg 1/3Nb 2/3)O 3-PbTiO 3 (PMNT) substrate was investigated. The piezoelectric response of the PMNT substrate to the electric field produced strain that was coupled to the PSMO film. The in-plane compressive (tensile) strain increased (decreased) the magnetization. The change of magnetic moment was associated with the Mn ions. First principle simulations showed that the strain-induced electronic redistribution of the two e g orbitals (3d z 2 and 3d x 2 -y 2) of Mn ions was responsible for the change of magnetic moment. Thismore » work demonstrates that the magnetoelectric effect in manganite/piezoelectric hetero-structures originates from the change in eg orbital occupancy of Mn ions induced by strain rather than the interfacial effect.« less
High strength, low stiffness, porous NiTi with superelastic properties.
Greiner, Christian; Oppenheimer, Scott M; Dunand, David C
2005-11-01
Near-stoichiometric NiTi with up to 18% closed porosity was produced by expansion at 1200 degrees C of argon-filled pores trapped by powder metallurgy within a NiTi billet. When optimally heat-treated, NiTi with 6-16% porosity exhibits superelasticity, with recoverable compressive strains up to 6% at a maximum compressive stress up to 1700 MPa. The apparent Young's modulus of NiTi with 16% porosity, measured during uniaxial compression, is in the range of 15-25 GPa (similar to human bone), but is much lower than measured ultrasonically (approximately 40 GPa), or predicted from continuum elastic mechanics. This effect is attributed to the reversible stress-induced transformation contributing to the linear elastic deformation of porous NiTi. The unique combination of low stiffness, high strength, high recoverable strains and large energy absorption of porous superelastic NiTi, together with the known biocompatibility of NiTi, makes this material attractive for bone-implant applications.
The effects of elastocapillary length on the surface creasing instability of hydrogels
NASA Astrophysics Data System (ADS)
Ouchi, Tetsu; Liu, Qihan; Suo, Zhigang; Hayward, Ryan
Creasing is a mode of surface instability induced by compressing elastomers or gels. Formation of creases is known to proceed by a nucleation and growth process, and the critical nucleus size is thought to be determined by the elastocapillary length (defined by the ratio of surface tension to elastic modulus). Here, we vary the elastocapillary length over the range of 0.008 to 0.4 mm by preparing a series of soft hydrogels with different compositions and contacting them with humidified air. By rapidly applying compression, we are able to achieve strains that exceed the Maxwell strain (where creases become favorable compared to a flat surface) by more than 0.10, and which approach Biot's prediction for linear instability of a compressed half-space. Regardless of the conditions, however, we observe formation of creases only by nucleation and growth, although the density of nucleation sites is found to be sensitive to elastocapillary length. Interestingly, fast propagation of creases (at velocities similar to the speed of sound in the material) are found at strains approaching Biot's point.
Strain-Engineered Multiferroicity in Pnma NaMnF_{3} Fluoroperovskite.
Garcia-Castro, A C; Romero, A H; Bousquet, E
2016-03-18
In this study we show from first principles calculations the possibility to induce multiferroic and magnetoelectric functional properties in the Pnma NaMnF_{3} fluoroperovskite by means of epitaxial strain engineering. Surprisingly, we found a very strong nonlinear polarization-strain coupling that drives an atypical amplification of the ferroelectric polarization for either compression or expansion of the cell. This property is associated with a noncollinear antiferromagnetic ordering, which induces a weak ferromagnetism phase and makes the strained NaMnF_{3} fluoroperovskite multiferroic. The magnetoelectric response was calculated and it was found to be composed of linear and nonlinear components with amplitudes similar to the ones of Cr_{2}O_{3}. These findings show that it is possible to move the fluoride family toward functional applications with unique responses.
Inelastic response of silicon to shock compression.
Higginbotham, A; Stubley, P G; Comley, A J; Eggert, J H; Foster, J M; Kalantar, D H; McGonegle, D; Patel, S; Peacock, L J; Rothman, S D; Smith, R F; Suggit, M J; Wark, J S
2016-04-13
The elastic and inelastic response of [001] oriented silicon to laser compression has been a topic of considerable discussion for well over a decade, yet there has been little progress in understanding the basic behaviour of this apparently simple material. We present experimental x-ray diffraction data showing complex elastic strain profiles in laser compressed samples on nanosecond timescales. We also present molecular dynamics and elasticity code modelling which suggests that a pressure induced phase transition is the cause of the previously reported 'anomalous' elastic waves. Moreover, this interpretation allows for measurement of the kinetic timescales for transition. This model is also discussed in the wider context of reported deformation of silicon to rapid compression in the literature.
A simple approach for the modeling of an ODS steel mechanical behavior in pilgering conditions
NASA Astrophysics Data System (ADS)
Vanegas-Márquez, E.; Mocellin, K.; Toualbi, L.; de Carlan, Y.; Logé, R. E.
2012-01-01
The optimization of the forming of ODS tubes is linked to the choice of an appropriated constitutive model for modeling the metal forming process. In the framework of a unified plastic constitutive theory, the strain-controlled cyclic characteristics of a ferritic ODS steel were analyzed and modeled with two different tests. The first test is a classical tension-compression test, and leads to cyclic softening at low to intermediate strain amplitudes. The second test consists in alternated uniaxial compressions along two perpendicular axes, and is selected based on the similarities with the loading path induced by the Fe-14Cr-1W-Ti ODS cladding tube pilgering process. This second test exhibits cyclic hardening at all tested strain amplitudes. Since variable strain amplitudes prevail in pilgering conditions, the parameters of the considered constitutive law were identified based on a loading sequence including strain amplitude changes. A proposed semi automated inverse analysis methodology is shown to efficiently provide optimal sets of parameters for the considered loading sequences. When compared to classical approaches, the model involves a reduced number of parameters, while keeping a good ability to capture stress changes induced by strain amplitude changes. Furthermore, the methodology only requires one test, which is an advantage when the amount of available material is limited. As two distinct sets of parameters were identified for the two considered tests, it is recommended to consider the loading path when modeling cold forming of the ODS steel.
NASA Astrophysics Data System (ADS)
Satheesh Kumar, S. S.; Raghu, T.
2015-02-01
Oxygen-free high-conductivity (OFHC) copper samples are severe plastically deformed by cyclic channel die compression (CCDC) technique at room temperature up to an effective plastic strain of 7.2. Effect of straining on variation in electrical conductivity, evolution of deformation stored energy, and recrystallization onset temperatures are studied. Deformation-induced lattice defects are quantified using three different methodologies including x-ray diffraction profile analysis employing Williamson-Hall technique, stored energy based method, and electrical resistivity-based techniques. Compared to other severe plastic deformation techniques, electrical conductivity degrades marginally from 100.6% to 96.6% IACS after three cycles of CCDC. Decrease in recrystallization onset and peak temperatures is noticed, whereas stored energy increases and saturates at around 0.95-1.1J/g after three cycles of CCDC. Although drop in recrystallization activation energy is observed with the increasing strain, superior thermal stability is revealed, which is attributed to CCDC process mechanics. Low activation energy observed in CCDC-processed OFHC copper is corroborated to synergistic influence of grain boundary characteristics and lattice defects distribution. Estimated defects concentration indicated continuous increase in dislocation density and vacancy with strain. Deformation-induced vacancy concentration is found to be significantly higher than equilibrium vacancy concentration ascribed to hydrostatic stress states experienced during CCDC.
Effect of tensile twins on the subsequent plastic deformation in rolled Mg-3Al-1Zn alloy
NASA Astrophysics Data System (ADS)
Yoon, Jonghun; Kim, Se-Jong; Lee, Youngseon
2013-12-01
The {101¯2} tensile twins influence plastic flow of magnesium alloys for the subsequent plastic deformation since it contributes to grain refinement and texture hardening between the twinned and untwined regions. This paper investigates the variation of plastic flow of the rolled Mg-3Al-1Zn alloy which is compressed with a small plastic strain at the room temperature to induce the twins in the initial specimen. Subsequent tension and compression along the rolling and transverse direction are conducted with the twin induced specimens in order to examine the effect of the initial tensile twins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Guohong; Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201; School of Science, Nanchang University, Nanchang 330031
2013-11-07
We propose a convenient method to induce a uniaxial anisotropy in magnetostrictive Fe{sub 81}Ga{sub 19} films grown on flexible polyethylene terephthalate (PET) substrates by bending the substrate prior to deposition. A tensile/compressive stress is induced in the Fe{sub 81}Ga{sub 19} films when PET substrates are shaped from concave/convex to flat after deposition. The stressed Fe{sub 81}Ga{sub 19} films exhibit a significant uniaxial magnetic anisotropy due to the internal stress arising from changes in shape of PET substrates. The easy axis is along the tensile stress direction and the coercive field along easy axis is increased with increasing the internal tensilemore » stress. The remanence of hard axis is decreased with increasing the compressive stress, while the coercive field is almost unchanged. A modified Stoner-Wohlfarth model with considering the distribution of easy axes in polycrystalline films is used to account for the magnetic properties tuned by the strain-controlled magnetoelastic anisotropy in flexible Fe{sub 81}Ga{sub 19} films. Our investigations provide a convenient way to induce uniaxial magnetic anisotropy, which is particularly important for fabricating flexible magnetoelectronic devices.« less
Ren, Jingli; Chen, Cun; Wang, Gang; ...
2017-03-22
This study explores the temporal scaling behavior induced shear-branching structure in response to variant temperatures and strain rates during plastic deformation of Zr-based bulk metallic glass (BMG). The data analysis based on the compression tests suggests that there are two states of shear-branching structures: the fractal structure with a long-range order at an intermediate temperature of 223 K and a larger strain rate of 2.5 × 10 –2 s –1; the disordered structure dominated at other temperature and strain rate. It can be deduced from the percolation theory that the compressive ductility, ec, can reach the maximum value at themore » intermediate temperature. Furthermore, a dynamical model involving temperature is given for depicting the shear-sliding process, reflecting the plastic deformation has fractal structure at the temperature of 223 K and strain rate of 2.5 × 10 –2 s –1.« less
NASA Astrophysics Data System (ADS)
Samsudin, M. S. F.; Ariff, Z. M.; Ariffin, A.
2017-04-01
Compression and deformation behavior of partially open cell natural rubber (NR) foam produced from dry natural rubber (DNR), were investigated by performing compressive deformation at different strains and strain rates. Different concentrations of sodium bicarbonate as a blowing agent (BA) were utilized, from 4 to 16 phr in order to produce foams with range of cell size and morphology. Overall, increasing of blowing agent concentration had significantly changed relative foam density. Compression stress-strain curves of the foams exhibited that the compression behavior was directly correlated to the foam cells morphology and physical density. Pronounced changes were noticed for foams with bigger cells particularly at 4 phr concentration of BA where the compression stress at plateau region was greater compared to those with higher concentration of BA. Cell deformation progressive images confirmed that the foams demonstrated small degree of struts bending at 15% of strain and followed by continuous severe struts bending and elastic buckling up to 50% of strain. Compression test at different strain rates revealed that the strain rate factor only affected the foams with 4 phr of BA by causing immediate increment in the compression stress value when higher strain rate was applied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, T; Torres, M; Rossi, P
Purpose: Radiation-induced fibrosis is a common long-term complication affecting many patients following cancer radiotherapy. Standard clinical assessment of subcutaneous fibrosis is subjective and often limited to visual inspection and palpation. Ultrasound strain imaging describes the compressibility (elasticity) of biological tissues. This study’s purpose is to develop a quantitative ultrasound strain imaging that can consistently and accurately characterize radiation-induce fibrosis. Methods: In this study, we propose a 2D strain imaging method based on deformable image registration. A combined affine and B-spline transformation model is used to calculate the displacement of tissue between pre-stress and post-stress B-mode image sequences. The 2D displacementmore » is estimated through a hybrid image similarity measure metric, which is a combination of the normalized mutual information (NMI) and normalized sum-of-squared-differences (NSSD). And 2D strain is obtained from the gradient of the local displacement. We conducted phantom experiments under various compressions and compared the performance of our proposed method with the standard cross-correlation (CC)- based method using the signal-to-noise (SNR) and contrast-to-noise (CNS) ratios. In addition, we conducted ex-vivo beef muscle experiment to further validate the proposed method. Results: For phantom study, the SNR and CNS values of the proposed method were significantly higher than those calculated from the CC-based method under different strains. The SNR and CNR increased by a factor of 1.9 and 2.7 comparing to the CC-based method. For the ex-vivo experiment, the CC-based method failed to work due to large deformation (6.7%), while our proposed method could accurately detect the stiffness change. Conclusion: We have developed a 2D strain imaging technique based on the deformable image registration, validated its accuracy and feasibility with phantom and ex-vivo data. This 2D ultrasound strain imaging technology may be valuable as physicians try to eliminate radiation-induce fibrosis and improve the therapeutic ratio of cancer radiotherapy. This research is supported in part by DOD PCRP Award W81XWH-13-1-0269, and National Cancer Institute (NCI) Grant CA114313.« less
In vitro bone strain distributions in a sample of primate pelves
Lewton, Kristi L
2015-01-01
The pelvis is a critical link in the hindlimb locomotor system and has a central role in resisting loads associated with locomotion, but our understanding of its structural biomechanics is quite limited. Empirical data on how the pelvis responds to the loads it encounters are important for understanding pelvic adaptation to locomotion, and for testing hypotheses regarding how the pelvis is adapted to its mechanical demands. This paper presents in vitro strain gauge data on a sample of monkey and ape cadaveric specimens (Macaca, Papio, Ateles, Hylobates), and assesses strain magnitudes and distributions through the bones of the pelvis: the ilium, ischium and pubis. Pelves were individually mounted in a materials testing system, loads were applied across three hindlimb angular positions, and strains were recorded from 18 locations on the pelvic girdle. Peak principal strains range from 2000 to 3000 με, similar to peak strains recorded from other mammals in vivo. Although previous work has suggested that the bones of the pelvis may act as bent beams, this study suggests that there are likely additional loading regimes superimposed on bending. Specifically, these data suggest that the ilium is loaded in axial compression and torsion, the ischium in torsion, the pubic rami in mediolateral bending, and the pubic symphysis is loaded in a combination of compression and torsion. Compressive strains dominate the pelves of all species representatives. Shear strains change with limb position; hip flexion at 45 ° induces smaller shear strains than mid-stance (90 °) or hip extension (105 °). The pelvic girdle is a complex structure that does not lend itself easily to modeling, but finite element analyses may prove useful to generate and refine hypotheses of pelvic biomechanics. PMID:25846322
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agrawal, Ashish; Barth, Michael; Madan, Himanshu
2014-08-04
Compressively strained InSb (s-InSb) and Ge (s-Ge) quantum well heterostructures are experimentally studied, with emphasis on understanding and comparing hole transport in these two-dimensional confined heterostructures. Magnetotransport measurements and bandstructure calculations indicate 2.5× lower effective mass for s-InSb compared to s-Ge quantum well at 1.9 × 10{sup 12} cm{sup –2}. Advantage of strain-induced m* reduction is negated by higher phonon scattering, degrading hole transport at room temperature in s-InSb quantum well compared to s-Ge heterostructure. Consequently, effective injection velocity is superior in s-Ge compared to s-InSb. These results suggest s-Ge quantum well heterostructure is more favorable and promising p-channel candidate compared to s-InSbmore » for future technology node.« less
NASA Astrophysics Data System (ADS)
Taheri-Behrooz, Fathollah; Kiani, Ali
2017-04-01
Shape memory alloys (SMAs) are a type of shape memory materials that recover large deformation and return to their primary shape by rising temperature. In the current research, the effect of embedding SMA wires on the macroscopic mechanical behavior of glass-epoxy composites is investigated through finite element simulations. A perfect interface between SMA wires and the host composite is assumed. Effects of various parameters such as SMA wires volume fraction, SMA wires pre-strain and temperature are investigated during loading-unloading and reloading steps by employing ANSYS software. In order to quantify the extent of induced compressive stress in the host composite and residual tensile stress in the SMA wires, a theoretical approach is presented. Finally, it was shown that smart structures fabricated using composite layers and pre-strained SMA wires exhibited overall stiffness reduction at both ambient and elevated temperatures which were increased by adding SMA volume fraction. Also, the induced compressive stress on the host composite was increased remarkably using 4% pre-strained SMA wires at elevated temperature. Results obtained by FE simulations were in good correlation with the rule of mixture predictions and available experimental data in the literature.
Strain-Engineered Multiferroicity in P n m a NaMnF3 Fluoroperovskite
NASA Astrophysics Data System (ADS)
Garcia-Castro, A. C.; Romero, A. H.; Bousquet, E.
2016-03-01
In this study we show from first principles calculations the possibility to induce multiferroic and magnetoelectric functional properties in the P n m a NaMnF3 fluoroperovskite by means of epitaxial strain engineering. Surprisingly, we found a very strong nonlinear polarization-strain coupling that drives an atypical amplification of the ferroelectric polarization for either compression or expansion of the cell. This property is associated with a noncollinear antiferromagnetic ordering, which induces a weak ferromagnetism phase and makes the strained NaMnF3 fluoroperovskite multiferroic. The magnetoelectric response was calculated and it was found to be composed of linear and nonlinear components with amplitudes similar to the ones of Cr2O3. These findings show that it is possible to move the fluoride family toward functional applications with unique responses.
The effect of simulated microgravity on lumbar spine biomechanics: an in vitro study.
Laws, Cory J; Berg-Johansen, Britta; Hargens, Alan R; Lotz, Jeffrey C
2016-09-01
Disc herniation risk is quadrupled following spaceflight. This study tested the hypothesis that swelling-induced disc height increases (comparable to those reported in spaceflight) stiffen the spine and elevate annular strain and nuclear pressure during forward bending. Eight human lumbar motion segments were secured to custom-designed testing jigs and subjected to baseline flexion and compression and pure moment flexibility tests. Discs were then free-swelled in saline to varying supraphysiologic heights consistent with prolonged weightlessness and re-tested to assess biomechanical changes. Swelling-induced disc height changes correlated positively with intradiscal pressure (p < 0.01) and stiffening in flexion (p < 0.01), and negatively with flexion range of motion (p < 0.05). Swelling-induced increases in disc height also led to increased annular surface strain under combined flexion with compression. Disc wedge angle decreased with swelling (p < 0.05); this loss of wedge angle correlated with decreased flexion range of motion (R (2) = 0.94, p < 0.0001) and decreased stiffness fold change in extension (p < 0.05). Swelling-induced increases in disc height decrease flexibility and increase annular strain and nuclear pressure during forward bending. These changes, in combination with the measured loss of lordotic curvature with disc swelling, may contribute toward increased herniation risk. This is consistent with clinical observations of increased disc herniation rates after microgravity exposure and may provide the basis for future countermeasure development.
The effect of simulated microgravity on lumbar spine biomechanics: an in vitro study
Laws, Cory J.; Berg-Johansen, Britta; Hargens, Alan R.; Lotz, Jeffrey C.
2015-01-01
Purpose Disc herniation risk is quadrupled following spaceflight. This study tested the hypothesis that swelling-induced disc height increases (comparable to those reported in spaceflight) stiffen the spine and elevate annular strain and nuclear pressure during forward bending. Methods Eight human lumbar motion segments were secured to custom-designed testing jigs and subjected to baseline flexion and compression and pure moment flexibility tests. Discs were then free-swelled in saline to varying supraphysiologic heights consistent with prolonged weightlessness and re-tested to assess biomechanical changes. Results Swelling-induced disc height changes correlated positively with intradiscal pressure (p < 0.01) and stiffening in flexion (p < 0.01), and negatively with flexion range of motion (p < 0.05). Swelling-induced increases in disc height also led to increased annular surface strain under combined flexion with compression. Disc wedge angle decreased with swelling (p < 0.05); this loss of wedge angle correlated with decreased flexion range of motion (R2 = 0.94, p < 0.0001) and decreased stiffness fold change in extension (p < 0.05). Conclusion Swelling-induced increases in disc height decrease flexibility and increase annular strain and nuclear pressure during forward bending. These changes, in combination with the measured loss of lordotic curvature with disc swelling, may contribute toward increased herniation risk. This is consistent with clinical observations of increased disc herniation rates after microgravity exposure and may provide the basis for future countermeasure development. PMID:26403291
Inelastic response of silicon to shock compression
Higginbotham, Andrew; Stubley, P. G.; Comley, A. J.; ...
2016-04-13
The elastic and inelastic response of [001] oriented silicon to laser compression has been a topic of considerable discussion for well over a decade, yet there has been little progress in understanding the basic behaviour of this apparently simple material. We present experimental x-ray diffraction data showing complex elastic strain profiles in laser compressed samples on nanosecond timescales. We also present molecular dynamics and elasticity code modelling which suggests that a pressure induced phase transition is the cause of the previously reported ‘anomalous’ elastic waves. Moreover, this interpretation allows for measurement of the kinetic timescales for transition. Lastly, this modelmore » is also discussed in the wider context of reported deformation of silicon to rapid compression in the literature.« less
Inelastic response of silicon to shock compression
Higginbotham, A.; Stubley, P. G.; Comley, A. J.; Eggert, J. H.; Foster, J. M.; Kalantar, D. H.; McGonegle, D.; Patel, S.; Peacock, L. J.; Rothman, S. D.; Smith, R. F.; Suggit, M. J.; Wark, J. S.
2016-01-01
The elastic and inelastic response of [001] oriented silicon to laser compression has been a topic of considerable discussion for well over a decade, yet there has been little progress in understanding the basic behaviour of this apparently simple material. We present experimental x-ray diffraction data showing complex elastic strain profiles in laser compressed samples on nanosecond timescales. We also present molecular dynamics and elasticity code modelling which suggests that a pressure induced phase transition is the cause of the previously reported ‘anomalous’ elastic waves. Moreover, this interpretation allows for measurement of the kinetic timescales for transition. This model is also discussed in the wider context of reported deformation of silicon to rapid compression in the literature. PMID:27071341
Contribution of collagen fibers to the compressive stiffness of cartilaginous tissues.
Römgens, Anne M; van Donkelaar, Corrinus C; Ito, Keita
2013-11-01
Cartilaginous tissues such as the intervertebral disk are predominantly loaded under compression. Yet, they contain abundant collagen fibers, which are generally assumed to contribute to tensile loading only. Fiber tension is thought to originate from swelling of the proteoglycan-rich nucleus. However, in aged or degenerate disk, proteoglycans are depleted, whereas collagen content changes little. The question then rises to which extend the collagen may contribute to the compressive stiffness of the tissue. We hypothesized that this contribution is significant at high strain magnitudes and that the effect depends on fiber orientation. In addition, we aimed to determine the compression of the matrix. Bovine inner and outer annulus fibrosus specimens were subjected to incremental confined compression tests up to 60 % strain in radial and circumferential direction. The compressive aggregate modulus was determined per 10 % strain increment. The biochemical composition of the compressed specimens and uncompressed adjacent tissue was determined to compute solid matrix compression. The stiffness of all specimens increased nonlinearly with strain. The collagen-rich outer annulus was significantly stiffer than the inner annulus above 20 % compressive strain. Orientation influenced the modulus in the collagen-rich outer annulus. Finally, it was shown that the solid matrix was significantly compressed above 30 % strain. Therefore, we concluded that collagen fibers significantly contribute to the compressive stiffness of the intervertebral disk at high strains. This is valuable for understanding the compressive behavior of collagen-reinforced tissues in general, and may be particularly relevant for aging or degenerate disks, which become more fibrous and less hydrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jiyuan; Zhang, Zicheng, E-mail: zhangzicheng2004@126.com; Manabe, Ken-ichi
Transformation-induced plasticity aided seamless steel tube comprising of ferrite, bainite, and metastable austenite was processed through forging, piercing, cold-drawing, and two-stage heat treatment. T-shape hydroforming is a classic forming method for experimental research and practical production. The current work studied austenite-to-martensite transformation and microcrack initiation and propagation of the tube during T-shape hydroforming using electron backscattering diffraction, scanning electron microscopy, and transmission electron microscopy. The strain distribution in the bcc-phase and fcc-phase was studied by evaluating changes in the average local misorientation. Compared to the compressive stress, metastable austenite with similar strain surrounding or inside the grains transformed easier undermore » tensile loading conditions. The inclusions were responsible for microcrack initiation. The propagation of the cracks is hindered by martensite/austenite constituent due to transformation induced plasticity effect. The volume fraction of untransformed retained austenite decreased with increase in strain implying transformation-induced plasticity effect. - Highlights: • Hydroformed tubes processed via TRIP concept • EBSD provided estimate of micro local strain. • Retained austenite hinders propagation of microcracks.« less
Strain distribution in the lumbar vertebrae under different loading configurations.
Cristofolini, Luca; Brandolini, Nicola; Danesi, Valentina; Juszczyk, Mateusz M; Erani, Paolo; Viceconti, Marco
2013-10-01
The stress/strain distribution in the human vertebrae has seldom been measured, and only for a limited number of loading scenarios, at few locations on the bone surface. This in vitro study aimed at measuring how strain varies on the surface of the lumbar vertebral body and how such strain pattern depends on the loading conditions. Eight cadaveric specimens were instrumented with eight triaxial strain gauges each to measure the magnitude and direction of principal strains in the vertebral body. Each vertebra was tested in a three adjacent vertebrae segment fashion. The loading configurations included a compressive force aligned with the vertebral body but also tilted (15°) in each direction in the frontal and sagittal planes, a traction force, and torsion (both directions). Each loading configuration was tested six times on each specimen. The strain magnitude varied significantly between strain measurement locations. The strain distribution varied significantly when different loading conditions were applied (compression vs. torsion vs. traction). The strain distribution when the compressive force was tilted by 15° was also significantly different from the axial compression. Strains were minimal when the compressive force was applied coaxial with the vertebral body, compared with all other loading configurations. Also, strain was significantly more uniform for the axial compression, compared with all other loading configurations. Principal strains were aligned within 19° to the axis of the vertebral body for axial-compression and axial-traction. Conversely, when the applied force was tilted by 15°, the direction of principal strain varied by a much larger angle (15° to 28°). This is the first time, to our knowledge, that the strain distribution in the vertebral body is measured for such a variety of loading configurations and a large number of strain sensors. The present findings suggest that the structure of the vertebral body is optimized to sustain compressive forces, whereas even a small tilt angle makes the vertebral structure work under suboptimal conditions. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Park, Jae Yong; Lee, Illhwan; Ham, Juyoung; Gim, Seungo; Lee, Jong-Lam
2017-06-01
Implementing nanostructures on plastic film is indispensable for highly efficient flexible optoelectronic devices. However, due to the thermal and chemical fragility of plastic, nanostructuring approaches are limited to indirect transfer with low throughput. Here, we fabricate single-crystal AgCl nanorods by using a Cl2 plasma on Ag-coated polyimide. Cl radicals react with Ag to form AgCl nanorods. The AgCl is subjected to compressive strain at its interface with the Ag film because of the larger lattice constant of AgCl compared to Ag. To minimize strain energy, the AgCl nanorods grow in the [200] direction. The epitaxial relationship between AgCl (200) and Ag (111) induces a strain, which leads to a strain gradient at the periphery of AgCl nanorods. The gradient causes a strain-induced diffusion of Ag atoms to accelerate the nanorod growth. Nanorods grown for 45 s exhibit superior haze up to 100% and luminance of optical device increased by up to 33%.
Goldstone-like phonon modes in a (111)-strained perovskite
NASA Astrophysics Data System (ADS)
Marthinsen, A.; Griffin, S. M.; Moreau, M.; Grande, T.; Tybell, T.; Selbach, S. M.
2018-01-01
Goldstone modes are massless particles resulting from spontaneous symmetry breaking. Although such modes are found in elementary particle physics as well as in condensed-matter systems like superfluid helium, superconductors, and magnons, structural Goldstone modes are rare. Epitaxial strain in thin films can induce structures and properties not accessible in bulk and has been intensively studied for (001)-oriented perovskite oxides. Here we predict Goldstone-like phonon modes in (111)-strained SrMn O3 by first-principles calculations. Under compressive strain the coupling between two in-plane rotational instabilities gives rise to a Mexican hat-shaped energy surface characteristic of a Goldstone mode. Conversely, large tensile strain induces in-plane polar instabilities with no directional preference, giving rise to a continuous polar ground state. Such phonon modes with U (1) symmetry could emulate structural condensed-matter Higgs modes. The mass of this Higgs boson, given by the shape of the Mexican hat energy surface, can be tuned by strain through proper choice of substrate.
Enhanced Bifunctional Oxygen Catalysis in Strained LaNiO 3 Perovskites
Petrie, Jonathan R.; Cooper, Valentino R.; Freeland, John W.; ...
2016-02-11
Strain is known to greatly influence low-temperature oxygen electrocatalysis on noble metal films, leading to significant enhancements in bifunctional activity essential for fuel cells and metal-air batteries. Still, its catalytic impact on transition-metal oxide thin films, such as perovskites, is not widely understood. Here, we epitaxially strain the conducting perovskite LaNiO 3 to systematically determine its influence on both the oxygen reduction and oxygen evolution reaction. Uniquely, we found that compressive strain could significantly enhance both reactions, yielding a bifunctional catalyst that surpasses the performance of noble metals such as Pt. We attribute the improved bifunctionality to strain-induced splitting ofmore » the e g orbitals, which can customize orbital asymmetry at the surface. Lastly, analogous to strain-induced shifts in the d-band center of noble metals relative to the Fermi level, such splitting can dramatically affect catalytic activity in this perovskite and other potentially more active oxides.« less
Strain Coupling of Conversion-type Fe 3O 4 Thin Films for Lithium Ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, Sooyeon; Meng, Qingping; Chen, Ping-Fan
2017-05-29
Lithiation/delithiation induces significant stresses and strains into the electrodes for lithium ion batteries, which can severely degrade their cycling performance. Moreover, this electrochemically induced strain can interact with the local strain existing at solid–solid interfaces. It is not clear how this interaction affects the lithiation mechanism. The effect of this coupling on the lithiation kinetics in epitaxial Fe 3O 4 thin film on a Nb-doped SrTiO 3 substrate is investigated. In-situ and ex-situ transmission electron microscopy (TEM) results show that the lithiation is suppressed by the compressive interfacial strain. At the interface between the film and substrate, the existence ofmore » Li xFe 3O 4 rock-salt phase during lithiation consequently restrains the film from delamination. 2D phase-field simulation verifies the effect of strain. This work provides critical insights of understanding the solid–solid interfaces of conversion-type electrodes.« less
Inducing and manipulating magnetization in 2D zinc–oxide by strain and external voltage
NASA Astrophysics Data System (ADS)
Taivansaikhan, P.; Tsevelmaa, T.; Rhim, S. H.; Hong, S. C.; Odkhuu, D.
2018-04-01
Two-dimensional (2D) structures that exhibit intriguing magnetic phenomena such as perpendicular magnetic anisotropy and its switchable feature are of great interests in spintronics research. Herein, the density functional theory studies reveal the critical impacts of strain and external gating on vacancy-induced magnetism and its spin direction in a graphene-like single layer of zinc oxide (ZnO). In contrast to the pristine and defective ZnO with an O-vacancy, the presence of a Zn-vacancy induces significant magnetic moments to its first neighboring O and Zn atoms due to the charge deficit. We further predict that the direction of magnetization easy axis reverses from an in-plane to perpendicular orientation under a practically achievable biaxial compressive strain of only ~1–2% or applying an electric field by means of the charge density modulation. This magnetization reversal is mainly driven by the strain- and electric-field-induced changes in the spin–orbit coupled d states of the first-neighbor Zn atom to a Zn-vacancy. These findings open interesting prospects for exploiting strain and electric field engineering to manipulate magnetism and magnetization orientation of 2D materials.
Pelaez, Daniel; Huang, Chun-Yuh Charles; Cheung, Herman S
2009-01-01
Mechanical loading has long been shown to modulate cartilage-specific extracellular matrix synthesis. With joint motion, cartilage can experience mechanical loading in the form of compressive, tensile or shearing load, and hydrostatic pressure. Recent studies have demonstrated the capacity of unconfined cyclic compression to induce chondrogenic differentiation of human mesenchymal stem cell (hMSC) in agarose culture. However, the use of a nonbiodegradable material such as agarose limits the applicability of these constructs. Of the possible biocompatible materials available for tissue engineering, fibrin is a natural regenerative scaffold, which possesses several desired characteristics including a controllable degradation rate and low immunogenicity. The objective of the present study was to determine the capability of fibrin gels for supporting chondrogenesis of hMSCs under cyclic compression. To optimize the system, three concentrations of fibrin gel (40, 60, and 80 mg/mL) and three different stimulus frequencies (0.1, 0.5, and 1.0 Hz) were used to examine the effects of cyclic compression on viability, proliferation and chondrogenic differentiation of hMSCs. Our results show that cyclic compression (10% strain) at frequencies >0.5 Hz and gel concentration of 40 mg/mL fibrinogen appears to maintain cellular viability within scaffolds. Similarly, variations in gel component concentration and stimulus frequency can be modified such that a significant chondrogenic response can be achieved by hMSC in fibrin constructs after 8 h of compression spread out over 2 days. This study demonstrates the suitability of fibrin gel for supporting the cyclic compression-induced chondrogenesis of mesenchymal stem cells.
Stability of direct band gap under mechanical strains for monolayer MoS2, MoSe2, WS2 and WSe2
NASA Astrophysics Data System (ADS)
Deng, Shuo; Li, Lijie; Li, Min
2018-07-01
Single layer transition-metal dichalcogenides materials (MoS2, MoSe2, WS2 and WSe2) are investigated using the first-principles method with the emphasis on their responses to mechanical strains. All these materials display the direct band gap under a certain range of strains from compressive to tensile (stable range). We have found that this stable range is different for these materials. Through studying on their mechanical properties again using the first-principles approach, it is unveiled that this stable strain range is determined by the Young's modulus. More analysis on strains induced electronic band gap properties have also been conducted.
Effect of Biaxial Strain on the Phase Transitions of Ca (Fe1 -xCox)2As2
NASA Astrophysics Data System (ADS)
Böhmer, A. E.; Sapkota, A.; Kreyssig, A.; Bud'ko, S. L.; Drachuck, G.; Saunders, S. M.; Goldman, A. I.; Canfield, P. C.
2017-03-01
We study the effect of applied strain as a physical control parameter for the phase transitions of Ca (Fe1 -xCox)2As2 using resistivity, magnetization, x-ray diffraction, and
Effect of strain on thermoelectric properties of SrTiO3: First-principles calculations
NASA Astrophysics Data System (ADS)
Zou, Daifeng; Liu, Yunya; Xie, Shuhong; Lin, Jianguo; Li, Jiangyu
2013-10-01
The electronic structures of strained SrTiO3 were investigated by using first-principles calculations, and the anisotropic thermoelectric properties of n-type SrTiO3 under biaxial strain were calculated on the base of the semi-classical Boltzmann transport theory. It was theoretically found that the in-plane and out-of-plane power factors of n-type SrTiO3 can be increased under compressive and tensile strains, respectively, and such dependence can be explained by the strain-induced redistribution of electrons. To further optimize the thermoelectric performance of n-type SrTiO3, the maximum power factors and the corresponding optimal n-type doping levels were evaluated.
Effect of biaxial strain on the phase transitions of Ca ( Fe 1 – x Co x ) 2 As 2
Bohmer, A. E.; Sapkota, A.; Kreyssig, A.; ...
2017-03-10
We study the effect of applied strain as a physical control parameter for the phase transitions of Ca(Fe 1–xCo x) 2As 2 using resistivity, magnetization, x-ray diffraction, and 57Fe Mossbauer spectroscopy. Biaxial strain, namely, compression of the basal plane of the tetragonal unit cell, is created through firm bonding of samples to a rigid substrate via differential thermal expansion. This strain is shown to induce a magnetostructural phase transition in originally paramagnetic samples, and superconductivity in previously nonsuperconducting ones. Lastly, the magnetostructural transition is gradual as a consequence of using strain instead of pressure or stress as a tuning parameter.
Investigating coseismic fracture damage using a new high speed triaxial apparatus
NASA Astrophysics Data System (ADS)
Mitchell, T. M.; Aben, F. M.; Pricci, R.; Brantut, N.; Rockwell, T. K.; Boon, S.
2017-12-01
The occurence of pulverized rocks, a type of intensely damaged fault rock which has undergone minimal shear strain, has been linked to damage induced by transient high strain-rate stress perturbations during earthquake rupture. Damage induced by such transient stresses, whether compressional or tensional, likely constitute heterogeneous modulations of the remote stresses that will impart significant changes on the strength, elastic and fluid flow properties of a fault zone immediately after rupture propagation, at the early stage of fault slip. While the physical mechanisms for pulverized rock generation are still not yet fully understood, it is likely that they are in some way related to a combination of the dynamic compressive and tensional stresses imparted on the rock surrounding a fault at the tip of a propagating earthquake rupture. Typical triaxial rock deformation apparatuses are limited by their loading systems to strain rates on the order of 10-4 s-1, which in terms of the seismic cycle, is only applicable to processes operating within the inter-seismic period. In order to achieve strain rates in excess of 100 s-1 under confined conditions with pore fluids (currently unachievable with conventional deformation apparatus such as split bar Hopkinson), we have designed, manufactured and constructed a new high strain rate triaxial rock deformation apparatus, with a unique innovative hydraulic loading system that allows samples to be deformed in compression and tension at strain rates from 10-7 up to 200 s-1 . We present preliminary data demonstrating the unique capability of this apparatus to produce co-seismic experimental conditions not previously acheived.
Multiferroic Properties of o-LuMnO3 Controlled by b-Axis Strain
NASA Astrophysics Data System (ADS)
Windsor, Y. W.; Huang, S. W.; Hu, Y.; Rettig, L.; Alberca, A.; Shimamoto, K.; Scagnoli, V.; Lippert, T.; Schneider, C. W.; Staub, U.
2014-10-01
Strain is a leading candidate for controlling magnetoelectric coupling in multiferroics. Here, we use x-ray diffraction to study the coupling between magnetic order and structural distortion in epitaxial films of the orthorhombic (o-) perovskite LuMnO3. An antiferromagnetic spin canting in the E-type magnetic structure is shown to be related to the ferroelectrically induced structural distortion and to a change in the magnetic propagation vector. By comparing films of different orientations and thicknesses, these quantities are found to be controlled by b-axis strain. It is shown that compressive strain destabilizes the commensurate E-type structure and reduces its accompanying ferroelectric distortion.
Multiferroic properties of o-LuMnO3 controlled by b-axis strain.
Windsor, Y W; Huang, S W; Hu, Y; Rettig, L; Alberca, A; Shimamoto, K; Scagnoli, V; Lippert, T; Schneider, C W; Staub, U
2014-10-17
Strain is a leading candidate for controlling magnetoelectric coupling in multiferroics. Here, we use x-ray diffraction to study the coupling between magnetic order and structural distortion in epitaxial films of the orthorhombic (o-) perovskite LuMnO(3). An antiferromagnetic spin canting in the E-type magnetic structure is shown to be related to the ferroelectrically induced structural distortion and to a change in the magnetic propagation vector. By comparing films of different orientations and thicknesses, these quantities are found to be controlled by b-axis strain. It is shown that compressive strain destabilizes the commensurate E-type structure and reduces its accompanying ferroelectric distortion.
Hashimoto, Tadafumi; Osawa, Yusuke; Itoh, Shinsuke; Mochizuki, Masahito; Nishimoto, Kazutoshi
2013-06-01
To prevent primary water stress corrosion cracking (PWSCC), water jet peening (WJP) has been used on the welds of Ni-based alloys in pressurized water reactors (PWRs). Before WJP, the welds are machined and buffed in order to conduct a penetrant test (PT) to verify the weld qualities to access, and microstructure evolution takes place in the target area due to the severe plastic deformation. The compressive residual stresses induced by WJP might be unstable under elevated temperatures because of the high dislocation density in the compressive stress layer. Therefore, the stability of the compressive residual stresses caused by WJP was investigated during long-term operation by considering the microstructure evolution due to the working processes. The following conclusions were made: The compressive residual stresses were slightly relaxed in the surface layers of the thermally aged specimens. There were no differences in the magnitude of the relaxation based on temperature or time. The compressive residual stresses induced by WJP were confirmed to remain stable under elevated temperatures. The stress relaxation at the surface followed the Johnson-Mehl equation, which states that stress relaxation can occur due to the recovery of severe plastic strain, since the estimated activation energy agrees very well with the self-diffusion energy for Ni. By utilizing the additivity rule, it was indicated that stress relaxation due to recovery is completed during the startup process. It was proposed that the long-term stability of WJP under elevated temperatures must be assessed based on compressive stresses with respect to the yield stress. Thermal elastic-plastic creep analysis was performed to predict the effect of creep strain. After 100 yr of simulated continuous operation at 80% capacity, there was little change in the WJP compressive stresses under an actual operating temperature of 623 K. Therefore, the long-term stability of WJP during actual operation was analytically predicted.
NASA Technical Reports Server (NTRS)
1998-01-01
In a microgravity environment aboard the Space Shuttle Columbia Life and Microgravity Mission STS-78, compression wood formation and hence altered lignin deposition and cell wall structure, was induced upon mechanically bending the stems of the woody gymnosperms, Douglas fir (Pseudotsuga menziesii) and loblolly pine (Pinus taeda). Although there was significant degradation of many of the plant specimens in space-flight due to unusually high temperatures experienced during the mission, it seems evident that gravity had little or no effect on compression wood formation upon bending even in microgravity. Instead, it apparently results from alterations in the stress gradient experienced by the plant itself during bending under these conditions. This preliminary study now sets the stage for long-term plant growth experiments to determine whether compression wood formation can be induced in microgravity during phototropic-guided realignment of growing woody plant specimens, in the absence of any externally provided stress and strain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, L.; Sun, T.; Fezzaa, K.
Dynamic split Hopkinson pressure bar experiments with in situ synchrotron x-ray imaging and diffraction are conducted on a rolled magnesium alloy at high strain rates of ~5500 s-1. High speed multiscale measurements including stress–strain curves (macroscale), strain fields (mesoscale), and diffraction patterns (microscale) are obtained simultaneously, revealing strong anisotropy in deformation across different length scales. {1012} extension twinning induces homogenized strain fields and gives rise to rapid increase in strain hardening rate, while dislocation motion leads to inhomogeneous deformation and a decrease in strain hardening rate. During the early stage of plastic deformation, twinning is dominant in dynamic compression, whilemore » dislocation motion prevails in quasi-static loading, manifesting a strain-rate dependence of deformation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakajima, Yoshitake; Dapkus, P. Daniel
Yellow and green emitting multiple quantum well structures are grown on nanostripe templates with {10-11} facets. SEM and cathodoluminescence measurements show a correlation between rough surface morphology near the bottom of the stripes and non-radiative recombination centers. Transmission electron microscopy (TEM) analysis shows that these surface instabilities are a result of stacking faults generated from the quantum well (QW) regions near the bottom of the pyramid that propagate to the surface. HRTEM images show that the stacking faults are I{sub 1} type which is formed by removal of one half basal plane to relieve the compressive strain in the InGaNmore » QW. Thicker QWs near the bottom as a result of growth rate enhancement due to the surface diffusion of the precursors from the mask regions cause increased strain. Additionally, the compressive strain induced by the bending of the nanostructure towards the growth mask further increases the strain experienced by the QW thereby causing the localized defect generation.« less
NASA Astrophysics Data System (ADS)
Nakajima, Yoshitake; Dapkus, P. Daniel
2016-08-01
Yellow and green emitting multiple quantum well structures are grown on nanostripe templates with {10-11} facets. SEM and cathodoluminescence measurements show a correlation between rough surface morphology near the bottom of the stripes and non-radiative recombination centers. Transmission electron microscopy (TEM) analysis shows that these surface instabilities are a result of stacking faults generated from the quantum well (QW) regions near the bottom of the pyramid that propagate to the surface. HRTEM images show that the stacking faults are I1 type which is formed by removal of one half basal plane to relieve the compressive strain in the InGaN QW. Thicker QWs near the bottom as a result of growth rate enhancement due to the surface diffusion of the precursors from the mask regions cause increased strain. Additionally, the compressive strain induced by the bending of the nanostructure towards the growth mask further increases the strain experienced by the QW thereby causing the localized defect generation.
NASA Astrophysics Data System (ADS)
Davidson, Anthony, III; Kolagani, Rajeswari; Bacharova, Ellisaveta; Yong, Grace; Smolyaninova, Vera; Schaefer, David; Mundle, Rajeh
2007-03-01
Epitaxial thin films of CMR manganite materials have been known to show thickness dependent electrical and magnetic properties on lattice mismatched substrates. Below a critical thickness, insulator-metal transition is suppressed. These effects have been largely attributed to the role of bi-axial lattice mismatch strain. Our recent results of epitaxial thin films of La0.67Ca0.33MnO3 (LCMO) on two substrates with varying degrees of compressive lattice mismatch indicate that, in addition to the effect of lattice mismatch strain, the thickness dependence of the properties are influenced by other factors possibly related to the nature of the film substrate interface and defects such as twin boundaries. We have compared the properties of LCMO films on (100) oriented LaAlO3 and (001) oriented NdCaAlO4 both of which induce compressive bi-axial strain. Interestingly, the suppression of the insulator-metal transition is less in films on NCAO which has a larger lattice mismatch. We will present results correlating the electrical and magneto transport properties with the structure and morphology of the films.
Using the ferroelectric/ferroelastic effect at cryogenic temperatures for set-and-hold actuation
NASA Astrophysics Data System (ADS)
Steeves, J. B.; Golinveaux, F. S.; Lynch, C. S.
2018-06-01
The ferroelectric and ferroelastic properties of lead-zirconate-titanate (PZT) based stack actuators have been characterized at temperatures down to 25 K and under various levels of constant compressive stress. Experiments indicate that the coercive field and magnitude of strain at the coercive field display an inverse relationship with temperature. A factor of 5.5 increase in coercive field, and a factor of 4.3 increase in strain is observed at 25 K in comparison to the room-temperature conditions. This information was used to induce non-180° domain wall motion in the material through the application of electric fields at or near the coercive field. The change in remanent strain accompanying these effects was shown to increase in magnitude as temperature decreased, reaching values of 2000 ppm at 25 K. This behavior was also shown to be temporally stable even under compressive loads. Additionally, it was demonstrated that the material can be returned to its original strain state through a repolarizing electric field. This switchable behavior could be exploited for future set-and-hold type actuators operating at cryogenic temperatures.
Stretchable and foldable electronic devices
Rogers, John A; Huang, Yonggang; Ko, Heung Cho; Stoykovich, Mark; Choi, Won Mook; Song, Jizhou; Ahn, Jong Hyun; Kim, Dae Hyeong
2013-10-08
Disclosed herein are stretchable, foldable and optionally printable, processes for making devices and devices such as semiconductors, electronic circuits and components thereof that are capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Strain isolation layers provide good strain isolation to functional device layers. Multilayer devices are constructed to position a neutral mechanical surface coincident or proximate to a functional layer having a material that is susceptible to strain-induced failure. Neutral mechanical surfaces are positioned by one or more layers having a property that is spatially inhomogeneous, such as by patterning any of the layers of the multilayer device.
Stretchable and foldable electronic devices
Rogers, John A; Huang, Yonggang; Ko, Heung Cho; Stoykovich, Mark; Choi, Won Mook; Song, Jizhou; Ahn, Jong Hyun; Kim, Dae Hyeong
2014-12-09
Disclosed herein are stretchable, foldable and optionally printable, processes for making devices and devices such as semiconductors, electronic circuits and components thereof that are capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Strain isolation layers provide good strain isolation to functional device layers. Multilayer devices are constructed to position a neutral mechanical surface coincident or proximate to a functional layer having a material that is susceptible to strain-induced failure. Neutral mechanical surfaces are positioned by one or more layers having a property that is spatially inhomogeneous, such as by patterning any of the layers of the multilayer device.
First-principles study of strain-induced ferromagnetism in LaCoO3
NASA Astrophysics Data System (ADS)
Seo, Hosung; Demkov, Alexander
2011-03-01
We study theoretically the effect of biaxial strain on magnetic properties of LaCo O3 (LCO) using density functional theory combined with the Hubbard U method. LCO is normally a non-magnetic insulator with trivalent cobalt ions in low-spin state (t 2g 6) . Owing to close interplay between orbital, spin, and lattice degrees of freedom, it shows rich magnetic behavior such as temperature-induced spin state transition. Recently, the ferromagnetic tensile-strained LCO films have been reported. The underlying physics of the ferromagnetic state is, however, unclear. Using a large tetragonal cell we calculate full structural response of the system to applied strain for non-magnetic and magnetic solutions. We show that beyond tensile strain of 3.8% the ferromagnetic solution with Co ions in intermediate-spin state (t 2g 5 e g 1) is stabilized accompanied by partial untilting of Co O6 octahedral network. We also perform the calculation for compressive-strained structures and the difference between these and the tensile strained structures will be presented.
Strain fields induced by kink band propagation in Cu-Nb nanolaminate composites
Nizolek, T. J.; Begley, M. R.; McCabe, R. J.; ...
2017-07-01
Kink band formation is a common deformation mode for anisotropic materials and has been observed in polymer matrix fiber composites, single crystals, geological formations, and recently in metallic nanolaminates. While numerous studies have been devoted to kink band formation, the majority do not consider the often rapid and unstable process of kink band propagation. In this paper, we take advantage of stable kink band formation in Cu-Nb nanolaminates to quantitatively map the local strain fields surrounding a propagating kink band during uniaxial compression. Kink bands are observed to initiate at specimen edges, propagate across the sample during a rising globalmore » stress, and induce extended strain fields in the non-kinked material surrounding the propagating kink band. Finally, it is proposed that these stress/strain fields significantly contribute to the total energy dissipated during kinking and, analogous to crack tip stress/strain fields, influence the direction of kink propagation and therefore the kink band inclination angle.« less
Variable percolation threshold of composites with fiber fillers under compression
NASA Astrophysics Data System (ADS)
Lin, Chuan; Wang, Hongtao; Yang, Wei
2010-07-01
The piezoresistant effect in conducting fiber-filled composites has been studied by a continuum percolation model. Simulation was performed by a Monte Carlo method that took into account both the deformation-induced fiber bending and rotation. The percolation threshold was found to rise with the compression strain, which explains the observed positive piezoresistive coefficients in such composites. The simulations unveiled the effect of the microstructure evolution during deformation. The fibers are found to align perpendicularly to the compression direction. As the fiber is bended, the effective length in making a conductive network is shortened. Both effects contribute to a larger percolation threshold and imply a positive piezoresistive coefficient according the universal power law.
Formation of a Ge-rich Si1-x Ge x (x > 0.9) fin epitaxial layer condensed by dry oxidation
NASA Astrophysics Data System (ADS)
Jang, Hyunchul; Kim, Byongju; Koo, Sangmo; Ko, Dae-Hong
2017-11-01
We have selectively grown an epitaxial Si0.35Ge0.65 fin layer in a 65 nm oxide trench pattern array and formed a Ge-rich Si1-x Ge x (x > 0.9) fin layer with condensed Ge using dry oxidation. During oxidation of the SiGe fin structure, we found that the compressive strain of the condensed SiGe layer was increased by about 1.3% while Ge was efficiently condensed due to a two-dimensional oxidation reaction. In this paper, we discussed in detail the diffusion during the two-dimensional condensation reaction as well as the asymmetric biaxial strain of the SiGe fin before and after oxidation using a reciprocal space mapping measurement. The application of dry oxidation on selectively grown SiGe fin layer can be an effective method for increasing hole mobility of SiGe fin with increased Ge content and self-induced compressive strain.
Choquette, A. K.; Smith, C. R.; Sichel-Tissot, R. J.; ...
2016-07-07
Here, we report the relationship between epitaxial strain and the crystallographic orientation of the in-phase rotation axis and A -site displacements in Pbnm-type perovskite films. Synchrotron diffraction measurements of EuFeO 3 films under strain states ranging from 2% compressive to 0.9% tensile on cubic or rhombohedral substrates exhibit a combination of a - a + c - and a + a - c - rotational patterns. We compare the EuFeO 3 behavior with previously reported experimental and theoretical work on strained Pbnm-type films on nonorthorhombic substrates, as well as additional measurements from LaGaO 3 ,more » LaFeO 3 , and Eu 0.7Sr 0.3 MnO 3 films on SrTiO 3 . Compiling the results from various material systems reveals a general strain dependence in which compressive strain strongly favors a - a + c - and a + a - c - rotation patterns and tensile strain weakly favors a - a - c + structures. In contrast, EuFeO 3 films grown on Pbnm-type GdScO 3 under 2.3% tensile strain take on a uniform a - a + c - rotation pattern imprinted from the substrate, despite strain considerations that favor the a - a - c + pattern. Our results point to the use of substrate imprinting as a more robust route than strain for tuning the crystallographic orientations of the octahedral rotations and A -site displacements needed to realize rotation-induced hybrid improper ferroelectricity in oxide heterostructures.« less
NASA Astrophysics Data System (ADS)
Hu, Y.; Stender, D.; Medarde, M.; Lippert, T.; Wokaun, A.; Schneider, C. W.
2013-08-01
A detailed structural XRD analysis of (1 1 0)-oriented TbMnO3 thin films grown on (1 1 0)-YAlO3 substrates shows the co-existence of a strained and relaxed "sublayer" within the films due to strain relaxation during epitaxial growth by pulsed laser deposition. The substrate-film lattice mismatch yields a compressive strain anisotropy along the two in-plane directions, i.e. [1 -1 0] and [0 0 1] and a monoclinic distortion. A further manifestation of the growth-induced strain is the hardening of Raman active modes as a result of changed atomic motions along the [1 -1 0] and [0 0 1] directions.
NASA Astrophysics Data System (ADS)
D'Hauthuille, Luc; Zhai, Yuhu; Princeton Plasma Physics Lab Collaboration; University of Geneva Collaboration
2015-11-01
High field superconductors play an important role in many large-scale physics experiments, particularly particle colliders and fusion devices such as the LHC and ITER. The two most common superconductors used are NbTi and Nb3Sn. Nb3Sn wires are favored because of their significantly higher Jc, allowing them to produce much higher magnetic fields. The main disadvantage is that the superconducting performance of Nb3Sn is highly strain-sensitive and it is very brittle. The strain-sensitivity is strongly influenced by two factors: plasticity and cracked filaments. Cracks are induced by large stress concentrators due to the presence of voids. We will attempt to understand the correlation between Nb3Sn's irreversible strain limit and the void-induced stress concentrations around the voids. We will develop accurate 2D and 3D finite element models containing detailed filaments and possible distributions of voids in a bronze-route Nb3Sn wire. We will apply a compressive transverse load for the various cases to simulate the stress response of a Nb3Sn wire from the Lorentz force. Doing this will further improve our understanding of the effect voids have on the wire's mechanical properties, and thus, the connection between the shape & distribution of voids and performance degradation.
NASA Astrophysics Data System (ADS)
Khademolhosseini, F.; Liu, C.-C.; Lim, C. J.; Chiao, M.
2016-08-01
Commercially available cell strain tools, such as pneumatically actuated elastomer substrates, require special culture plates, pumps, and incubator setups. In this work, we present a magnetically actuated cellular strain assessment tool (MACSAT) that can be implemented using off-the-shelf components and conventional incubators. We determine the strain field on the MACSAT elastomer substrate using numerical models and experimental measurements and show that a specific region of the elastomer substrate undergoes a quasi-uniaxial 2D stretch, and that cells confined to this region of the MACSAT elastomer substrate undergo tensile, compressive, or zero axial strain depending on their angle of orientation. Using the MACSAT to apply cyclic strain on endothelial cells, we demonstrate that actin filaments within the cells reorient away from the stretching direction, towards the directions of minimum axial strain. We show that the final actin orientation angles in strained cells are spread over a region of compressive axial strain, confirming previous findings on the existence of a varied pre-tension in the actin filaments of the cytoskeleton. We also demonstrate that strained cells exhibit distinctly different values of actin alignment coherency compared to unstrained cells and therefore propose that this parameter, i.e., the coherency of actin alignment, can be used as a new readout to determine the occurrence/extent of actin alignment in cell strain experiments. The tools and methods demonstrated in this study are simple and accessible and can be easily replicated by other researchers to study the strain response of other adherent cells.
Saito, Kyosuke; Tanabe, Tadao; Oyama, Yutaka
2014-07-14
Terahertz (THz) wave generation via difference frequency mixing (DFM) process in strain silicon membrane waveguides by introducing the straining layer is theoretically investigated. The Si(3)N(4) straining layer induces anisotropic compressive strain in the silicon core and results in the appearance of the bulk second order nonlinear susceptibility χ((2)) by breaking the crystal symmetry. We have proposed waveguide structures for THz wave generation under the DFM process by .using the modal birefringence in the waveguide core. Our simulations show that an output power of up to 0.95 mW can be achieved at 9.09 THz. The strained silicon optical device may open a widow in the field of the silicon-based active THz photonic device applications.
Dynamic compressive properties obtained from a split Hopkinson pressure bar test of Boryeong shale
NASA Astrophysics Data System (ADS)
Kang, Minju; Cho, Jung-Woo; Kim, Yang Gon; Park, Jaeyeong; Jeong, Myeong-Sik; Lee, Sunghak
2016-09-01
Dynamic compressive properties of a Boryeong shale were evaluated by using a split Hopkinson pressure bar, and were compared with those of a Hwangdeung granite which is a typical hard rock. The results indicated that the dynamic compressive loading reduced the resistance to fracture. The dynamic compressive strength was lower in the shale than in the granite, and was raised with increasing strain rate by microcracking effect as well as strain rate strengthening effect. Since the number of microcracked fragments increased with increasing strain rate in the shale having laminated weakness planes, the shale showed the better fragmentation performance than the granite at high strain rates. The effect of transversely isotropic plane on compressive strength decreased with increasing strain rate, which was desirable for increasing the fragmentation performance. Thus, the shale can be more reliably applied to industrial areas requiring good fragmentation performance as the striking speed of drilling or hydraulic fracturing machines increased. The present dynamic compressive test effectively evaluated the fragmentation performance as well as compressive strength and strain energy density by controlling the air pressure, and provided an important idea on which rock was more readily fragmented under dynamically processing conditions such as high-speed drilling and blasting.
Production and Assessment of Damaged High Energy Propellant Samples,
1980-05-08
and (c) -69.8% ...... 14 3 Longitudinal Velocity one hour after Compressing Versus Applied Engineering Compressive Strain for Propellant Samples...LONGITUDINAL VELOCITY ONE HOUR AFTER COMPRESSING VERSUS APPLIED ENGINEERING COMPRESSIVE STRAIN FOR PROPELLANT SAMPLES (NOMINAL 40 mm DIA x 13 mm HIGH
White, C C; Tan, K T; O'Brien, E P; Hunston, D L; Chin, J W; Williams, R S
2011-02-01
The paper describes the development, implementation, and testing of two thermally driven outdoor exposure instruments. These devices are unique in their ability to impose field generated thermally induced strain on sealant specimens while monitoring their resulting load and displacement. The instruments combine a fixed wood and steel supporting frame with a moving polyvinyl chloride frame, and employ differences in the coefficients of thermal expansion between the supporting frame and moving frame to induce strain on the sealant specimens. Two different kinds of instruments have been fabricated, "winter/tension" and "winter/compression" designs. In the winter/tension design, the thermally induced dimensional change is directly transferred to the specimens; while in the winter/compression design, the samples are loaded in an opposite direction with the dimensional change. Both designs are instrumented to monitor load and displacement and are built so that the strain on the specimen does not exceed ±25% over the range of temperatures expected in Gaithersburg, MD. Additionally, a weather station is colocated with the device to record environmental conditions in 1 min intervals. This combination of weather information with mechanical property data enables a direct link between environmental conditions and the corresponding sealant response. The reliability and effectiveness of these instruments are demonstrated with a typical sealant material. The results show that the instruments work according to the design criteria and provide a meaningful quantitative platform to monitor the mechanical response of sealant exposed to outdoor weathering.
Bar-Kochba, Eyal; Scimone, Mark T.; Estrada, Jonathan B.; Franck, Christian
2016-01-01
In the United States over 1.7 million cases of traumatic brain injury are reported yearly, but predictive correlation of cellular injury to impact tissue strain is still lacking, particularly for neuronal injury resulting from compression. Given the prevalence of compressive deformations in most blunt head trauma, this information is critically important for the development of future mitigation and diagnosis strategies. Using a 3D in vitro neuronal compression model, we investigated the role of impact strain and strain rate on neuronal lifetime, viability, and pathomorphology. We find that strain magnitude and rate have profound, yet distinctively different effects on the injury pathology. While strain magnitude affects the time of neuronal death, strain rate influences the pathomorphology and extent of population injury. Cellular injury is not initiated through localized deformation of the cytoskeleton but rather driven by excess strain on the entire cell. Furthermore we find that, mechanoporation, one of the key pathological trigger mechanisms in stretch and shear neuronal injuries, was not observed under compression. PMID:27480807
2012-08-01
investigation of heterogeneous microplasticity in ceramics deformed under high confining stresses. Mech. Mater. 37, 95–112. Zhang, K., Wu, M., Feng, R., 2005b...Simulation of microplasticity -induced deformation in uniaxially strained ceramics by 3-D Voronoi polycrystal modeling. Int. J. Plasticity 21, 801–834
Knight, M M; Toyoda, T; Lee, D A; Bader, D L
2006-01-01
In numerous cell types, the cytoskeleton has been widely implicated in mechanotransduction pathways involving stretch-activated ion channels, integrins and deformation of intracellular organelles. Studies have also demonstrated that the cytoskeleton can undergo remodelling in response to mechanical stimuli such as tensile strain or fluid flow. In articular chondrocytes, the mechanotransduction pathways are complex, inter-related and as yet, poorly understood. Furthermore, little is known of how the chondrocyte cytoskeleton responds to physiological mechanical loading. This study utilises the well-characterised chondrocyte-agarose model and an established confocal image-analysis technique to demonstrate that both static and cyclic, compressive strain and hydrostatic pressure all induce remodelling of actin microfilaments. This remodelling was characterised by a change from a uniform to a more punctate distribution of cortical actin around the cell periphery. For some loading regimes, this remodelling was reversed over a subsequent 1h unloaded period. This reversible remodelling of actin cytoskeleton may therefore represent a mechanism through which the chondrocyte alters its mechanical properties and mechanosensitivity in response to physiological mechanical loading.
Uniaxial, Pure Bending, and Column Buckling Experiments on Superelastic NiTi Rods and Tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watkins, Ryan T.; Reedlunn, Benjamin; Daly, Samantha
Many existing shape memory alloy (SMA) devices consist of slender beams and frames. To better understand SMA beam behavior, we experimentally examined the isothermal, room temperature response of superelastic NiTi rods and tubes, of similar outer diameters, subjected to four different modes of loading. Pure tension, pure compression, and pure bending experiments were first performed to establish and compare the baseline uniaxial and bending behaviors of rods and tubes. Column buckling experiments were then performed on rod and tube columns of several slenderness ratios to investigate their mechanical responses, phase transformation kinetics under combined uniaxial and bending deformation, and themore » interaction between material and structural instabilities. In all experiments, stereo digital image correlation measured local displacement fields in order to capture phenomena such as strain localization and propagating phase boundaries. Superelastic mechanical behavior and the nature of stress-induced phase transformation were found to be strongly affected by specimen geometry and the deformation mode. Under uniaxial tension, both the rod and tube had well-defined loading and unloading plateaus in their superelastic responses, during which stress-induced phase transformation propagated along the length of the specimen in the form of a high/low strain front. Due to the dependence of strain localization on kinematic compatibility, the high/low strain front morphologies differed between the rod and tube: for the rod, the high/low strain front consisted of a diffuse “neck”, while the high/low strain front in the tube consisted of distinct, criss-crossing “fingers.” During uniaxial compression, both cross-sectional forms exhibited higher transformation stresses and smaller transformation strains than uniaxial tension, highlighting the now well-known tension-compression asymmetry of SMAs. Additionally, phase transformation localization and propagation were absent under compressive loading. During pure bending, the moment-curvature response of both forms exhibited plateaus and strain localization during forward and reverse transformations. Rod specimens developed localized, high-curvature regions that propagated along the specimen axis and caused shear strain near the high/low curvature interface; whereas, the tube specimens exhibited finger/wedge-like high strain regions over the tensile side of the tube which caused nonlinear strain profiles through the thickness of the specimen that did not propagate. Here, it was therefore found that classical beam theory assumptions did not hold in the presence of phase transformation localization (although, the assumptions did hold on average for the tube). During column buckling, the structures were loaded into the post-buckling regime yet recovered nearly-straight forms upon unloading. Strain localization was observed only for high aspect ratio (slender) tubes, but the mechanical responses were similar to that of rods of the same slenderness ratio. Also, an interesting “unbuckling” phenomenon was discovered in certain low aspect ratio (stout) columns, where late post-buckling straightening was observed despite continuous monotonic loading. Thus, these behaviors are some of the challenging phenomena which must be captured when developing SMA constitutive models and executing structural simulations.« less
Uniaxial, Pure Bending, and Column Buckling Experiments on Superelastic NiTi Rods and Tubes
Watkins, Ryan T.; Reedlunn, Benjamin; Daly, Samantha; ...
2018-03-23
Many existing shape memory alloy (SMA) devices consist of slender beams and frames. To better understand SMA beam behavior, we experimentally examined the isothermal, room temperature response of superelastic NiTi rods and tubes, of similar outer diameters, subjected to four different modes of loading. Pure tension, pure compression, and pure bending experiments were first performed to establish and compare the baseline uniaxial and bending behaviors of rods and tubes. Column buckling experiments were then performed on rod and tube columns of several slenderness ratios to investigate their mechanical responses, phase transformation kinetics under combined uniaxial and bending deformation, and themore » interaction between material and structural instabilities. In all experiments, stereo digital image correlation measured local displacement fields in order to capture phenomena such as strain localization and propagating phase boundaries. Superelastic mechanical behavior and the nature of stress-induced phase transformation were found to be strongly affected by specimen geometry and the deformation mode. Under uniaxial tension, both the rod and tube had well-defined loading and unloading plateaus in their superelastic responses, during which stress-induced phase transformation propagated along the length of the specimen in the form of a high/low strain front. Due to the dependence of strain localization on kinematic compatibility, the high/low strain front morphologies differed between the rod and tube: for the rod, the high/low strain front consisted of a diffuse “neck”, while the high/low strain front in the tube consisted of distinct, criss-crossing “fingers.” During uniaxial compression, both cross-sectional forms exhibited higher transformation stresses and smaller transformation strains than uniaxial tension, highlighting the now well-known tension-compression asymmetry of SMAs. Additionally, phase transformation localization and propagation were absent under compressive loading. During pure bending, the moment-curvature response of both forms exhibited plateaus and strain localization during forward and reverse transformations. Rod specimens developed localized, high-curvature regions that propagated along the specimen axis and caused shear strain near the high/low curvature interface; whereas, the tube specimens exhibited finger/wedge-like high strain regions over the tensile side of the tube which caused nonlinear strain profiles through the thickness of the specimen that did not propagate. Here, it was therefore found that classical beam theory assumptions did not hold in the presence of phase transformation localization (although, the assumptions did hold on average for the tube). During column buckling, the structures were loaded into the post-buckling regime yet recovered nearly-straight forms upon unloading. Strain localization was observed only for high aspect ratio (slender) tubes, but the mechanical responses were similar to that of rods of the same slenderness ratio. Also, an interesting “unbuckling” phenomenon was discovered in certain low aspect ratio (stout) columns, where late post-buckling straightening was observed despite continuous monotonic loading. Thus, these behaviors are some of the challenging phenomena which must be captured when developing SMA constitutive models and executing structural simulations.« less
NASA Astrophysics Data System (ADS)
Sims, M.; Jaret, S.; Carl, E. R.; Schrodt, N.; Rhymer, B.; Mohrholz, V.; Konopkova, Z.; Smith, J.; Liermann, H. P.; Glotch, T. D.; Ehm, L.
2017-12-01
Impact cratering is important in planetary body formation and evolution [1]. The pressure and temperature conditions during impacts are classified using systems [2] that stem from 1) petrographic features and 2) the presence of high pressure mineral phases observed in impactites. Maskelynite, amorphous plagioclase ((Na1-x Cax)Al1+x Si2-x O8), is a key indicator of petrographic type S5 (strongly shocked) and forms between 25 and 45 GPa. However, the formation pressure of maskelynite differs substantially depending on the experimental technique producing it. Shock experiments produce amorphization at > 10 GPa higher than static diamond anvil cell (DAC) experiments. We utilize a new technique, fast compression in combination with time-resolved powder diffraction, to study the effect of strain rate on plagioclase amorphization pressure. Anorthite and albite were compressed to 80 GPa at multiple rates from 0.05 GPa/s to 80 GPa/s, and we observed a decrease in amorphization pressure with increasing compression rate for strain rates of about 10-3 s-1. This decrease demonstrates negative strain rate sensitivity, which is likely caused by structural defects. Negative strain rate sensitivity implies that faster rates are more ductile and heterogeneous and slower rates are more brittle and homogeneous. Our results fit into the deformation framework proposed by Huffman and Reimold [3] and are consistent with the formation mechanism for maskelynite by "shear melting" proposed by Grady [4]. [1] Chao, E.C.T., Shock Metamorphism of Natural Materials., Baltimore, Md: Mono Book Corp, 1968; [2] Stöffler, D., J. Geophys. Res, 76(23), 5541, 1971; [3] Huffman, A.R. and W.U. Reimold, Tectonophysics, 256(1-4), 165-217, 1996; [4] Grady, D., J. Geophys. Res. Solid Earth, 85(B2), 913-924, 1980.
CEMS study of strain induced phase transformation in manganese Hadfield steel
NASA Astrophysics Data System (ADS)
Cabanillas, E. D.; Alvarez, E. P.; Hey, A.; Mercader, R. C.
1991-11-01
A Conversion Electron Mössbauer Spectroscopy, (CEMS), study of phase transformations in a Hadfield steel induced by high rate strains is reported. Hadfield steel samples were impact deformed and the ensuing changes in the magnetic properties at the deformed zone and its surroundings have been studied by CEMS. The CEMS results are compared with wear tests and optical microscopy and show a formation of martensite by impact deformation only at the surface. Martensite is not produced by compression or tensile stresses but appears after wear tests in proportions that depend on the load and velocity conditions of test. The understanding of martensite phase formation and its evolution during deformation processes is also addressed.
Strain-induced insulator-to-metal transition in LaTiO3 within DFT + DMFT
NASA Astrophysics Data System (ADS)
Dymkowski, Krzysztof; Ederer, Claude
2014-04-01
We present results of combined density functional theory plus dynamical mean-field theory (DFT + DMFT) calculations, which show that the Mott insulator LaTiO3 undergoes an insulator-to-metal transition under compressive epitaxial strain of about -2%. This transition is driven by strain-induced changes in the crystal-field splitting between the Ti t2g orbitals, which in turn are intimately related to the collective tilts and rotations of the oxygen octahedra in the orthorhombically distorted Pbnm perovskite structure. An accurate treatment of the underlying crystal structure is therefore crucial for a correct description of the observed metal-insulator transition. Our theoretical results are consistent with recent experimental observations and demonstrate that metallic behavior in heterostructures of otherwise insulating materials can emerge also from mechanisms other than genuine interface effects.
Mechanisms of boron fiber strengthening by thermal treatment
NASA Technical Reports Server (NTRS)
Dicarlo, J. A.
1979-01-01
The fracture strain for boron on tungsten fibers can be improved by heat treatment under vacuum or argon environments. The mechanical basis for this improvement is thermally-induced axial contraction of the entire fiber, whereby strength-controlling core flaws are compressed and fiber fracture strain increased by the value of the contraction strain. By highly sensitive measurements of fiber density and volume, the physical mechanisms responsible for contraction under both environments was identified as boron atom diffusion out of the fiber sheath. The fiber contracts because the average volume of the resulting microvoid was determined to be only 0.26 + or - 0.09 the average atomic volume of the removed atom. The basic and practical implications of these results are discussed with particular emphasis on the theory, use, and limitations of heat-induced contraction as a simple cost-effective secondary processing method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Sangbae; Yoon, Daseob; Son, Junwoo, E-mail: jwson@postech.ac.kr
We report the enhancement of room-temperature electron mobility in La-doped BaSnO{sub 3} (LBSO) thin films with thermal strain induced by high temperature nitrogen (N{sub 2}) annealing. Simple annealing under an N{sub 2} environment consistently doubled the electron mobility of the LBSO films on the SrTiO{sub 3} (STO) substrates to as high as 78 cm{sup 2} V{sup −1} s{sup −1} at a carrier concentration of 4.0 × 10{sup 20 }cm{sup −3}. This enhancement is mainly attributed to annihilation of extended defects as a consequence of compressive strain induced by the difference in the thermal expansion coefficients of LBSO and STO. Our study suggests that thermalmore » strain can be exploited to reduce extended defects and to facilitate electron transport in transparent oxide semiconductors.« less
Strain rate sensitivity of autoclaved aerated concrete from quasi-static regime to shock loading
NASA Astrophysics Data System (ADS)
Mespoulet, Jérôme; Plassard, Fabien; Hereil, Pierre Louis
2015-09-01
The quasi-static mechanical behavior of autoclaved aerated concrete is well-known and can be expressed as a function of its density. There are however not much studies dealing with its dynamic behavior and its damping ability when subjected to a mechanical shock or a blast. This study presents experimental results obtained at the Shock Physics Laboratory of THIOT INGENIERIE company. The test specimens are made of YTONG(TM ) cellular concrete with porosity in the range of 75 to 80%. Experimental tests cover a large strain rate amplitude (higher than 104 s-1) for specimens up to 250 mm. They were carried out with a small compression press and with two facilities dedicated to dynamic material characterization: JUPITER dynamic large press (2 MN, 3 ms rising time) and TITAN multi-caliber single-stage gas gun. Results in un-confined conditions show an increase of the compressive strength when strain rate increases (45% increase at 5.102 s-1) but dynamic tests induce damage early in the experiment. This competition between dynamic strength raise and specimen fracture makes the complete compaction curve determination not to be done in unconfined dynamic condition. A 25% increase of the compressive strength has been observed between unconfined and confined condition in Q.S. regime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Bo; Nelson, Kevin; Lipinski, Ronald J.
Iridium alloys have superior strength and ductility at elevated temperatures, making them useful as structural materials for certain high-temperature applications. However, experimental data on their high-temperature high-strain-rate performance are needed for understanding high-speed impacts in severe elevated-temperature environments. Kolsky bars (also called split Hopkinson bars) have been extensively employed for high-strain-rate characterization of materials at room temperature, but it has been challenging to adapt them for the measurement of dynamic properties at high temperatures. Current high-temperature Kolsky compression bar techniques are not capable of obtaining satisfactory high-temperature high-strain-rate stress-strain response of thin iridium specimens investigated in this study. We analyzedmore » the difficulties encountered in high-temperature Kolsky compression bar testing of thin iridium alloy specimens. Appropriate modifications were made to the current high-temperature Kolsky compression bar technique to obtain reliable compressive stress-strain response of an iridium alloy at high strain rates (300 – 10000 s -1) and temperatures (750°C and 1030°C). Uncertainties in such high-temperature high-strain-rate experiments on thin iridium specimens were also analyzed. The compressive stress-strain response of the iridium alloy showed significant sensitivity to strain rate and temperature.« less
Self-diffusion in compressively strained Ge
NASA Astrophysics Data System (ADS)
Kawamura, Yoko; Uematsu, Masashi; Hoshi, Yusuke; Sawano, Kentarou; Myronov, Maksym; Shiraki, Yasuhiro; Haller, Eugene E.; Itoh, Kohei M.
2011-08-01
Under a compressive biaxial strain of ˜ 0.71%, Ge self-diffusion has been measured using an isotopically controlled Ge single-crystal layer grown on a relaxed Si0.2Ge0.8 virtual substrate. The self-diffusivity is enhanced by the compressive strain and its behavior is fully consistent with a theoretical prediction of a generalized activation volume model of a simple vacancy mediated diffusion, reported by Aziz et al. [Phys. Rev. B 73, 054101 (2006)]. The activation volume of (-0.65±0.21) times the Ge atomic volume quantitatively describes the observed enhancement due to the compressive biaxial strain very well.
Finite-element analysis of transverse compressive and thermal loads on Nb 3Sn wires with voids
Zhai, Y.; D'Hauthuille, L.; Barth, C.; ...
2016-02-29
High-field superconducting magnets play a very important role in many large-scale physics experiments, particularly particle colliders and fusion confinement devices such as Large Hadron Collider (LHC) and International Thermonuclear Experimental Reactor (ITER). The two most common superconductors used in these applications are NbTi and Nb 3Sn. Nb 3Sn wires are favored because of their significantly higher J c (critical current density) for higher field applications. The main disadvantage of Nb 3Sn is that the superconducting performance of the wire is highly strain sensitive and it is very brittle. This strain sensitivity is strongly influenced by two factors: plasticity and crackedmore » filaments. Cracks are induced by large stress concentrators that can be traced to the presence of voids in the wire. We develop detailed 2-D and 3-D finite-element models containing wire filaments and different possible distributions of voids in a bronze-route Nb 3Sn wire. We apply compressive transverse loads for various cases of void distributions to simulate the stress and strain response of a Nb 3Sn wire under the Lorentz force. Furthermore, this paper improves our understanding of the effect voids have on the Nb 3Sn wire's mechanical properties, and in so, the connection between the distribution of voids and performance degradation such as the correlation between irreversible strain limit and the void-induced local stress concentrations.« less
Effect of compressibility on the hypervelocity penetration
NASA Astrophysics Data System (ADS)
Song, W. J.; Chen, X. W.; Chen, P.
2018-02-01
We further consider the effect of rod strength by employing the compressible penetration model to study the effect of compressibility on hypervelocity penetration. Meanwhile, we define different instances of penetration efficiency in various modified models and compare these penetration efficiencies to identify the effects of different factors in the compressible model. To systematically discuss the effect of compressibility in different metallic rod-target combinations, we construct three cases, i.e., the penetrations by the more compressible rod into the less compressible target, rod into the analogously compressible target, and the less compressible rod into the more compressible target. The effects of volumetric strain, internal energy, and strength on the penetration efficiency are analyzed simultaneously. It indicates that the compressibility of the rod and target increases the pressure at the rod/target interface. The more compressible rod/target has larger volumetric strain and higher internal energy. Both the larger volumetric strain and higher strength enhance the penetration or anti-penetration ability. On the other hand, the higher internal energy weakens the penetration or anti-penetration ability. The two trends conflict, but the volumetric strain dominates in the variation of the penetration efficiency, which would not approach the hydrodynamic limit if the rod and target are not analogously compressible. However, if the compressibility of the rod and target is analogous, it has little effect on the penetration efficiency.
2013-05-01
Measurement of Full Field Strains in Filament Wound Composite Tubes Under Axial Compressive Loading by the Digital Image Correlation (DIC...of Full Field Strains in Filament Wound Composite Tubes Under Axial Compressive Loading by the Digital Image Correlation (DIC) Technique Todd C...Wound Composite Tubes Under Axial Compressive Loading by the Digital Image Correlation (DIC) Technique 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c
Finite Strain Behavior of Polyurea for a Wide Range of Strain Rates
2010-02-01
dimensional dynamic compressive behavior of EPDM rubber ," Journal of Engineering Materials and Technology, Transaction of the ASME, 125:294-301. [97] Song, B...and Chen, W. (2004) "Dynamic compressive behavior of EPDM rubber un- der nearly uniaxial strain conditions," Journal of Engineering Materials and... rubber elastic springs to describe the steep initial stiffness of virgin butadiene rubber under tensile and compressive loading at intermediate strain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dybała, F.; Żelazna, K.; Maczko, H.
Unstrained Ge{sub 1−x}Sn{sub x} layers of various Sn concentration (1.5%, 3%, 6% Sn) and Ge{sub 0.97}Sn{sub 0.03} layers with built-in compressive (ε = −0.5%) and tensile (ε = 0.3%) strain are grown by molecular beam epitaxy and studied by electromodulation spectroscopy (i.e., contactless electroreflectance and photoreflectance (PR)). In order to obtain unstrained GeSn layers and layers with different built-in in-plane strains, virtual InGaAs substrates of different compositions are grown prior to the deposition of GeSn layers. For unstrained Ge{sub 1−x}Sn{sub x} layers, the pressure coefficient for the direct band gap transition is determined from PR measurements at various hydrostatic pressures to be 12.2 ± 0.2 meV/kbar, whichmore » is very close to the pressure coefficient for the direct band gap transition in Ge (12.9 meV/kbar). This suggests that the hydrostatic deformation potentials typical of Ge can be applied to describe the pressure-induced changes in the electronic band structure of Ge{sub 1−x}Sn{sub x} alloys with low Sn concentrations. The same conclusion is derived for the uniaxial deformation potential, which describes the splitting between heavy-hole (HH) and light-hole (LH) bands as well as the strain-related shift of the spin-orbit (SO) split-off band. It is observed that the HH, LH, and SO related transitions shift due to compressive and tensile strain according to the Bir-Pikus theory. The dispersions of HH, LH, and SO bands are calculated for compressive and tensile strained Ge{sub 0.97}Sn{sub 0.03} with the 8-band kp Hamiltonian including strain effects, and the mixing of HH and LH bands is discussed. In addition, the dispersion of the electronic band structure is calculated for unstrained Ge{sub 1−x}Sn{sub x} layers (3% and 6% Sn) at high hydrostatic pressure with the 8-band kp Hamiltonian, and the pressure-induced changes in the electronic band structure are discussed.« less
Electronic and phononic modulation of MoS2 under biaxial strain
NASA Astrophysics Data System (ADS)
Moghadasi, A.; Roknabadi, M. R.; Ghorbani, S. R.; Modarresi, M.
2017-12-01
Dichalcogenides of transition metals are attractive material due to its unique properties. In this work, it has been investigated the electronic band structure, phonon spectrum and heat capacity of MoS2 under the applied tensile and compressive biaxial strain using the density functional theory. The Molybdenum disulfide under compressive (tensile) strain up to 6% (10%) has stable atomic structure without any negative frequency in the phonon dispersion curves. The tensile biaxial strain reduces the energy gap in the electronic band structure and the optical-acoustic gap in phonon dispersion curves. The tensile biaxial strain also increases the specific heat capacity. On the other hand, the compressive biaxial strain in this material increases phonon gap and reduces the heat capacity and the electronic band gap. The phonon softening/hardening is reported for tensile/compressive biaxial strain in MoS2. We report phonon hardening for out of plane ZA mode in the presence of both tensile and compressive strains. Results show that the linear variation of specific heat with strain (CV ∝ε) and square dependency of specific heat with the temperature (CV ∝T2) for low temperature regime. The results demonstrate that the applied biaxial strain tunes the electronic energy gap and modifies the phonon spectrum of MoS2.
NASA Astrophysics Data System (ADS)
Parsard, Gregory G.
Boron carbide is a lightweight ceramic commonly used in applications requiring high hardness. At sufficiently high stresses, the material experiences a localized phase transformation (amorphization) which seemingly weakens its structure. Raman spectroscopy is used to distinguish these transformed regions from crystalline material based on the evolution of new peaks in collected Raman spectra. Vickers indentations of various loads were created at quasistatic and dynamic strain rates to trigger amorphization. The resulting imprints and subsurface regions were scanned with Raman spectroscopy to map amorphization intensity at several depths to generate three-dimensional representations of the amorphized zones, which were analyzed to determine the influence of load and strain rate upon amorphized zone characteristics. The square of amorphized zone depth beneath Vickers indentations increases linearly with load and shows little to no strain rate dependence. Sudden decreases in amorphization intensity at certain depths coincided with the presence of lateral cracks, suggesting that lateral cracks may lead to a loss of amorphized material during mechanical polishing. Experimental results were compared against finite element simulations to estimate critical values of stress and strain associated with amorphization. Raman spectra were also analyzed to determine the indentation-induced residual compressive pressure in crystalline boron carbide. In unstressed crystalline boron carbide, a peak exists near 1088 cm-1 which shifts to higher wavenumbers with the application of compressive pressure. The change in position of this crystalline peak was tracked across surfaces at various depths beneath the indentations and then converted into pressure using the piezospectroscopic coefficient of boron carbide. Residual compressive pressures on the order of gigapascals were found near the indentations, with stress relaxation near regions affected by radial cracks, spall, and graphitic inclusions. These measured residual compressive pressures were consistently higher than those predicted by finite element simulations at various loads, suggesting that amorphization, which was not accounted for by the simulations, may increase compressive residual stress in the crystalline material. Amorphization may cause affected regions to expand relative to their formerly crystalline state and exerting radial compressive forces upon the surrounding crystalline regions and circumferential tension along its boundary, thus promoting crack propagation within the amorphized region.
NASA Astrophysics Data System (ADS)
Ma, Ji; Zhang, Hui; Chen, Qingming; Liu, Xiang
2013-07-01
La0.67Ca0.33MnO3 thin films have been prepared on vicinal cut LaAlO3, (LaAlO3)0.3-(SrAlTaO6)0.7, and SrTiO3 (001) substrates by pulsed laser deposition. The influence of the substrate on the electrical transport properties and laser induced voltage (LIV) effect of the films was investigated. The high insulator to metal transition temperature Tp (263.6 K) and large peak voltage of LIV signal (2.328 V) were observed in the film grown on LaAlO3 substrate. The compressive strain and large Seebeck coefficient anisotropy ΔS (3.62 μV/K) induced by LaAlO3 are thought to be responsible for this result.
Integrated experimental platforms to study blast injuries: a bottom-up approach
NASA Astrophysics Data System (ADS)
Bo, C.; Williams, A.; Rankin, S.; Proud, W. G.; Brown, K. A.
2014-05-01
We are developing experimental models of blast injury using data from live biological samples. An integrated research strategy is followed to study material and biological properties of cells, tissues and organs, that are subjected to dynamic and static pressures, relevant to those of battlefield blast. We have developed a confined Split Hopkinson Pressure Bar (SHPB) system, which allows cells, either in suspension or as a monolayer, to be subjected to compression waves with pressures on the order of a few MPa and durations of hundreds of microseconds. The chamber design enables recovery of biological samples for cellular and molecular analysis. The SHPB platform, coupled with Quasi-Static experiments, is used to determine stress-strain curves of soft biological tissues under compression at low, medium and high strain rates. Tissue samples are examined, using histological techniques, to study macro- and microscopic changes induced by compression waves. In addition, a shock tube enables application of single or multiple air blasts with pressures on the order of kPa and a few milliseconds duration; this platform was used for initial studies on mesenchymal stem cells responses to blast pressures.
NASA Astrophysics Data System (ADS)
Geiger, Philipp T.; Khansur, Neamul H.; Riess, Kevin; Martin, Alexander; Hinterstein, Manuel; Webber, Kyle G.
2018-02-01
Lanthanum strontium cobalt ferrite La1-xSrxCo1-yFeyO3-δ (LSCF) is one of the most studied mixed ionic-electronic conductor materials due to electrical and transport properties, which are attractive for intermediate temperature solid oxide fuel cells (SOFCs), oxygen permeation membranes, and catalysis. The integration of such materials, however, depends on the thermal as well as mechanical behavior. LSCF exhibits nonlinear hysteresis during compressive stress-strain measurements, marked by a remanent strain and coercive stress, i.e., ferroelasticity. However, the origin of ferroelastic behavior has not been investigated under high compressive stress. This study, therefore, investigates the microscopic origin of stress-induced mechanical behavior in polycrystalline (La0.6Sr0.4)0.95Co0.2Fe0.8O3-δ using in situ synchrotron x-ray diffraction. The data presented here reveals that the strain response originates from the intrinsic lattice strain as well as the extrinsic domain switching strain without any apparent change in crystallographic symmetry. A comparison of the calculated microscopic strain contribution with that of a macroscopic measurement indicates a significant change in the relative contributions of intrinsic and extrinsic strain depending on the applied stress state, i.e., under maximum stress and after unloading. Direct evidence of the microscopic origin of stress-strain response outlined in this paper may assist in guiding materials design with the improved mechanical reliability of SOFCs.
NASA Astrophysics Data System (ADS)
Wei, Zhang; Jie, Huang
2016-05-01
Motivated by recent experimental observations of metallic conduction in the quasi-two-dimensional SrFeO2, we study the epitaxial strain effect on the formation and electronic structures of oxygen vacancy (Vo) by first-principles calculations. The bulk SrFeO2 is found to have the G-type antiferromagnetic ordering (G-AFM) at zero strain, which agrees with the experiment. Under compressive strain the bulk SrFeO2 keeps the G-AFM and has the trend of Mott insulator-metal transition. Different from most of the previous similar work about the strain effect on Vo, both the tensile strain and the compressive strain enhance the Vo formation. It is found that the competitions between the band energies and the electrostatic interactions are the dominant mechanisms in determining the Vo formation. We confirm that the Vo in SrFeO2 would induce the n-type conductivity where the donor levels are occupied by the delocalized d x 2-y 2 electrons. It is suggested that the vanishing of n-type conductivity observed by the Hall measurement on the strained films are caused by the shift of donor levels into the conduction band. These results would provide insightful information for the realization of metallic conduction in SrFeO2. Project supported by the Creative Plan Project of Nanjing Forest Police College, China (Grant Nos. 201512213045xy and 201512213007x).
Working Ni-Mn-Ga Single Crystals in a Magnetic Field Against a Spring Load
NASA Astrophysics Data System (ADS)
Lindquist, P. G.; Müllner, P.
2015-03-01
This research characterizes ferromagnetic shape memory elements for use as mechanical actuators. A single crystal of Ni-Mn-Ga was pre-strained in compression from 0 to 6 % and then the shape was recovered with a magnetic field perpendicular to the loading direction while working against a pair of springs. The magnetic field was raised from 0 to 0.64 MA/m and then reduced to zero field. Eight pairs of springs with combined spring constants ranging from 14.3 to 269.4 N/mm were used. When the magnetic field was on, the sample expanded against the springs due to magnetic field-induced strain. When the magnetic field was turned off, the springs compressed the sample back to the initial size before the next cycle. During each cycle, force and displacement were measured and the specific work was computed. Specific work increased with the applied magnetic field and the pre-strain, with a maximum of 14 kJ/m3 at 4.5 % pre-strain and 0.64 MA/m. This value is five times less than the values suggested in the literature which were inferred from stress-strain curves measured under various magnetic fields. The spring prescribes the load-displacement path of the magnetic shape memory element and controls the work output of the actuator.
NASA Astrophysics Data System (ADS)
Taniyama, Akira; Takayama, Toru; Arai, Masahiro; Hamada, Takanari
2017-10-01
The deformation behavior of cementite in drawn pearlitic steel and spheroidal cementite steel, which have hypereutectoid composition, was investigated by X-ray diffraction using synchrotron radiation. A detailed analysis of diffraction peak profiles reveals that the deformation behavior strongly depends on the shape of cementite in steel. The unit cell volume of the cementite in the drawn pearlitic steel compressively and elastically deforms by 1.5 to 2 pct of the initial volume at the early stage of drawing, whereas that in the drawn spheroidal cementite steel is compressed by 1 pct of the initial volume even at a large true strain. The cementite in the drawn pearlitic steel fragments into small pieces with increasing the true strain, and these pieces change to amorphous cementite. The dislocation densities of the cementite in the drawn pearlitic steel and in the drawn spheroidal cementite steel are estimated to be 1013/m2 before drawing and 1014/m2 after drawing. Although the large strain is induced in the cementite by drawing, the maximum strain energy in the cementite is too small to contribute to the dissolution of the cementite.
Yang, Li-Juan; Weng, Ya-Kui; Zhang, Hui-Min; Dong, Shuai
2014-11-26
The compressive strain effect on the magnetic ground state and electronic structure of strained GdTiO3 has been studied using the first-principles method. Unlike the cases of congeneric YTiO3 and LaTiO3, both of which become the A-type antiferromagnetism on the (0 0 1) LaAlO3 substrate despite their contrastive magnetism, the ground state of strained GdTiO3 on the LaAlO3 substrate changes from the original ferromagnetism to a G-type antiferromagnetim, instead of the A-type one although Gd(3+) is between Y(3+) and La(3+). It is only when the in-plane compressive strain is large enough, e.g. on the (0 0 1) YAlO3 substrate, that the ground state finally becomes the A-type. The band structure calculation shows that the compressive strained GdTiO3 remains insulating, although the band gap changes a little in the strained GdTiO3.
NASA Astrophysics Data System (ADS)
Pesin, A.; Pustovoytov, D.; Lokotunina, N.
2017-12-01
The mechanism of severe plastic deformation comes from very significant shear strain. Shear-compression testing of materials is complicated by the fact that a state of large equivalent strain with dominant shear strain is not easily achievable. This paper presents the novel technique of laboratory simulation of severe plastic deformation by multi-cycle shear-compression testing at room temperature with equivalent strain e=1…5. The specimen consisted of a parallelepiped having an inclined gauge section created by two diametrically opposed semi-circular slots which were machined at 45°. Height of the specimen was 50 mm, section dimensions were 25×25 mm, gauge thickness was 5.0 mm and gauge width was 6.0 mm. The specimen provided dominant shear strain in an inclined gauge-section. The level of shear strain and equivalent strain was controlled through adjustment of the height reduction of the specimen, load application direction and number of cycles of shear-compression. Aluminium alloy Al-6.2Mg-0.7Mn was used as a material for specimen. FE simulation and analysis of the stress-strain state were performed. The microstructure of the specimen after multi-cycle shear-compression testing with equivalent strain e=1…5 was examined by optical and scanning electron microscope.
Lee, Byung Jae; Hyun, Jung Hwan; Kim, Yun Yong; Shin, Kyung Joon
2014-08-11
The development of cracking in concrete structures leads to significant permeability and to durability problems as a result. Approaches to controlling crack development and crack width in concrete structures have been widely debated. Recently, it was recognized that a high-performance fiber-reinforced cement composite (HPFRCC) provides a possible solution to this inherent problem of cracking by smearing one or several dominant cracks into many distributed microcracks under tensile loading conditions. However, the chloride permeability of HPFRCC under compressive loading conditions is not yet fully understood. Therefore, the goal of the present study is to explore the chloride diffusion characteristics of HPFRCC damaged by compressive loads. The chloride diffusivity of HPFRCC is measured after being subjected to various repeated loads. The results show that the residual axial strain, lateral strain and specific crack area of HPFRCC specimens increase with an increase in the damage induced by repeated loads. However, the chloride diffusion coefficient increases only up to 1.5-times, whereas the specific crack area increases up to 3-times with an increase in damage. Although HPFRCC shows smeared distributed cracks in tensile loads, a significant reduction in the diffusion coefficient of HPFRCC is not obtained compared to plain concrete when the cyclic compressive load is applied below 85% of the strength.
NASA Astrophysics Data System (ADS)
Odagiri, Yoshitaka; Hasegawa, Hideyuki; Kanai, Hiroshi
2008-05-01
One possible way to evaluate acupuncture therapy quantitatively is to measure the change in the elastic property of muscle after application of the therapy. Many studies have been conducted to measure mechanical properties of tissues using ultrasound-induced acoustic radiation force. To assess mechanical properties, strain must be generated in an object. However, a single radiation force is not effective because it mainly generates translational motion when the object is much harder than the surrounding medium. In this study, two cyclic radiation forces are simultaneously applied to a muscle phantom from two opposite horizontal directions so that the object is cyclically compressed in the horizontal direction. By the horizontal compression, the object is expanded vertically based on its incompressibility. The resultant vertical displacement is measured using another ultrasound pulse. Two ultrasonic transducers for actuation were both driven by the sum of two continuous sinusoidal signals at two slightly different frequencies [1 MHz and (1 M + 5) Hz]. The displacement of several micrometers in amplitude, which fluctuated at 5 Hz, was measured by the ultrasonic phased tracking method. Increase in thickness inside the object was observed just when acoustic radiation forces increased. Such changes in thickness correspond to vertical expansion due to horizontal compression.
Effects of strain on ferroelectric polarization and magnetism in orthorhombic HoMnO3
NASA Astrophysics Data System (ADS)
Iuşan, Diana; Yamauchi, Kunihiko; Barone, Paolo; Sanyal, Biplab; Eriksson, Olle; Profeta, Gianni; Picozzi, Silvia
2013-01-01
We explore how the ferroelectric polarization of antiferromagnetic E-type orthorhombic HoMnO3 can be increased, by investigating the effects of in-plane strain on both the magnetic properties and the ferroelectric polarization, using combined density functional theory calculations and a model Hamiltonian technique. Our results show that the net polarization is strongly enhanced under compressive strain, due to an increase of the elec-tronic contribution to the polarization. In contrast, the ionic contribution is found to decrease. We identify the electron-lattice coupling, due to Jahn-Teller (JT) distortions, and its response to strain, to be responsible for the observed behavior. The JT-induced orbital ordering of occupied Mn-eg1 electrons in alternating 3x2-r23y2-r2 orbital states in the unstrained structure, changes under in-plane compressive strain to a mixture with x2-z2y2-z2 states. The asymmetric hopping of eg electrons between Mn ions along zigzag spin chains (typical of the AFM-E spin configuration) is therefore enhanced under strain, explaining the large value of the polarization. Using a degenerate double-exchange model including electron-phonon interaction, we reproduce the change in the orbital ordering pattern. In this picture, the orbital ordering change is related to a change of the Berry phase of the eg electrons. This causes an increase of the electronic contribution to the polarization.
Short bursts of cyclic mechanical compression modulate tissue formation in a 3D hybrid scaffold.
Brunelli, M; Perrault, C M; Lacroix, D
2017-07-01
Among the cues affecting cells behaviour, mechanical stimuli are known to have a key role in tissue formation and mineralization of bone cells. While soft scaffolds are better at mimicking the extracellular environment, they cannot withstand the high loads required to be efficient substitutes for bone in vivo. We propose a 3D hybrid scaffold combining the load-bearing capabilities of polycaprolactone (PCL) and the ECM-like chemistry of collagen gel to support the dynamic mechanical differentiation of human embryonic mesodermal progenitor cells (hES-MPs). In this study, hES-MPs were cultured in vitro and a BOSE Bioreactor was employed to induce cells differentiation by mechanical stimulation. From day 6, samples were compressed by applying a 5% strain ramp followed by peak-to-peak 1% strain sinewaves at 1Hz for 15min. Three different conditions were tested: unloaded (U), loaded from day 6 to day 10 (L1) and loaded as L1 and from day 16 to day 20 (L2). Cell viability, DNA content and osteocalcin expression were tested. Samples were further stained with 1% osmium tetroxide in order to investigate tissue growth and mineral deposition by micro-computed tomography (µCT). Tissue growth involved volumes either inside or outside samples at day 21 for L1, suggesting cyclic stimulation is a trigger for delayed proliferative response of cells. Cyclic load also had a role in the mineralization process preventing mineral deposition when applied at the early stage of culture. Conversely, cyclic load during the late stage of culture on pre-compressed samples induced mineral formation. This study shows that short bursts of compression applied at different stages of culture have contrasting effects on the ability of hES-MPs to induce tissue formation and mineral deposition. The results pave the way for a new approach using mechanical stimulation in the development of engineered in vitro tissue as replacement for large bone fractures. Copyright © 2017 Elsevier Ltd. All rights reserved.
Strain-induced topological transition in SrRu 2O 6 and CaOs 2O 6
Ochi, Masayuki; Arita, Ryotaro; Trivedi, Nandini; ...
2016-05-24
The topological property of SrRumore » $$_2$$O$$_6$$ and isostructural CaOs$$_2$$O$$_6$$ under various strain conditions is investigated using density functional theory. Based on an analysis of parity eigenvalues, we anticipate that a three-dimensional strong topological insulating state should be realized when band inversion is induced at the A point in the hexagonal Brillouin zone. For SrRu$$_2$$O$$_6$$, such a transition requires rather unrealistic tuning, where only the $c$ axis is reduced while other structural parameters are unchanged. However, given the larger spin-orbit coupling and smaller lattice constants in CaOs$$_2$$O$$_6$$, the desired topological transition does occur under uniform compressive strain. Our study paves a way to realize a topological insulating state in a complex oxide, which has not been experimentally demonstrated so far.« less
Mechanisms of boron fiber strengthening by thermal treatment
NASA Technical Reports Server (NTRS)
Dicarlo, J. A.
1979-01-01
The fracture strain for boron on tungsten fibers was studied for improvement by heat treatment under vacuum or argon environments. The mechanical basis for this improvement is thermally-induced axial contraction of the entire fiber, whereby strength-controlling core flaws are compressed and fiber fracture strain increased by the value of the contraction strain. By highly sensitive measurements of fiber density and volume, the physical mechanism responsible for contraction under both environments was identified as boron atom diffusion out of the fiber sheath. The fiber contracts because the average volume of the resulting microvoid was determined to be only 0.26 plus or minus 0.09 the average atomic volume of the removed atom. The basic and practical implications of these results are discussed with particular emphasis on the theory, use, and limitations of heat-induced contraction as a simple cost-effective secondary processing method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Huilong; Simsek, Emrah; Stasak, Drew
The stress-induced martensitic phase transformation of shape memory alloys (SMAs) is the basis for elastocaloric cooling. In this paper, we employ additive manufacturing to fabricate TiNi SMAs, and demonstrate compressive elastocaloric cooling in the TiNi rods with transformation latent heat as large as 20 J g -1. Adiabatic compression on as-fabricated TiNi displays cooling ΔT as high as -7.5 °C with recoverable superelastic strain up to 5%. Unlike conventional SMAs, additive manufactured TiNi SMAs exhibit linear superelasticity with narrow hysteresis in stress–strain curves under both adiabatic and isothermal conditions. Microstructurally, we find that there are Ti 2Ni precipitates typically onemore » micron in size with a large aspect ratio enclosing the TiNi matrix. Finally, a stress transfer mechanism between reversible phase transformation in the TiNi matrix and mechanical deformation in Ti 2Ni precipitates is believed to be the origin of the unique superelasticity behavior.« less
Elastocaloric cooling of additive manufactured shape memory alloys with large latent heat
NASA Astrophysics Data System (ADS)
Hou, Huilong; Simsek, Emrah; Stasak, Drew; Hasan, Naila Al; Qian, Suxin; Ott, Ryan; Cui, Jun; Takeuchi, Ichiro
2017-10-01
The stress-induced martensitic phase transformation of shape memory alloys (SMAs) is the basis for elastocaloric cooling. Here we employ additive manufacturing to fabricate TiNi SMAs, and demonstrate compressive elastocaloric cooling in the TiNi rods with transformation latent heat as large as 20 J g-1. Adiabatic compression on as-fabricated TiNi displays cooling ΔT as high as -7.5 °C with recoverable superelastic strain up to 5%. Unlike conventional SMAs, additive manufactured TiNi SMAs exhibit linear superelasticity with narrow hysteresis in stress-strain curves under both adiabatic and isothermal conditions. Microstructurally, we find that there are Ti2Ni precipitates typically one micron in size with a large aspect ratio enclosing the TiNi matrix. A stress transfer mechanism between reversible phase transformation in the TiNi matrix and mechanical deformation in Ti2Ni precipitates is believed to be the origin of the unique superelasticity behavior.
Altering thermal transport by strained-layer epitaxy
NASA Astrophysics Data System (ADS)
Majdi, Tahereh; Pal, Souvik; Hafreager, Anders; Murad, Sohail; Sahu, Rakesh P.; Puri, Ishwar K.
2018-05-01
Since strain changes the interatomic spacing of matter and alters electron and phonon dispersion, an applied strain can modify the thermal conductivity k of a material. We show how the strain induced by heteroepitaxy is a passive mechanism to change k in a thin film. Molecular dynamics simulations of the deposition and epitaxial growth of ZnTe thin films provide insights into the role of interfacial strain in the conductivity of a deposited film. ZnTe films grow strain-free on lattice-matched ZnTe substrates, but similar thin films grown on a lattice-mismatched CdTe substrate exhibit ˜6% biaxial in-plane tensile strain and ˜7% uniaxial out-of-plane compressive strain. In the T = 700 K-1100 K temperature range, the conductivities of strained ZnTe layers decrease to ˜60% of their unstrained values. The resulting understanding of dk/dT shows that strain engineering can be used to alter the performance of a thermal rectifier and also provides a framework for enhancing thermoelectric devices.
Methodology for Mechanical Property Testing of Fuel Cladding Using a Expanded Plug Wedge Test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Hao; Wang, Jy-An John
2014-01-01
An expanded plug method was developed earlier for determining the tensile properties of irradiated fuel cladding. This method tests fuel rod cladding ductility by utilizing an expandable plug to radially stretch a small ring of irradiated cladding material. The circumferential or hoop strain is determined from the measured diametrical expansion of the ring. A developed procedure is used to convert the load circumferential strain data from the ring tests into material pseudo-stress-strain curves, from which material properties of the cladding can be extracted. However, several deficiencies existed in this expanded-plug test that can impact the accuracy of test results, suchmore » as that the large axial compressive stress resulted from the expansion plug test can potentially induce the shear failure mode of the tested specimen. Moreover, highly nonuniform stress and strain distribution in the deformed clad gage section and significant compressive stresses, induced by bending deformation due to clad bulging effect, will further result in highly nonconservative estimates of the mechanical properties for both strength and ductility of the tested clad. To overcome the aforementioned deficiencies associated with the current expansion plug test, systematic studies have been conducted. By optimizing the specific geometry designs, selecting the appropriate material for the expansion plug, and adding new components into the testing system, a modified expansion plug testing protocol has been developed. A general procedure was also developed to determine the hoop stress in the tested ring specimen. A scaling factor, -factor, was used to convert the ring load Fring into hoop stress , and is written as _ = F_ring/tl , where t is the clad thickness and l is the clad length. The generated stress-strain curve agrees well with the associated tensile test data in both elastic and plastic deformation regions.« less
Understanding High Rate Behavior Through Low Rate Analog
2014-04-28
uni- axial compression over all rates tested at 20 °C; (b) True yield stress as a function of strain rate...of temperature. (a) (b) Figure 11. Representative behaviour of PPVC-2. (a) True stress-true strain response in uni- axial compression over all...pages 33 of 78 (a) (b) Figure 15. Representative behaviour of PPVC-6. (a) True stress-true strain response in uni- axial compression
Electronic and optical properties of α-InX (X = S, Se and Te) monolayer: Under strain conditions
NASA Astrophysics Data System (ADS)
Jalilian, Jaafar; Safari, Mandana
2017-04-01
Using ab initio study, the structural, electronic and optical properties of α-InX (X = S, Se and Te) are investigated under tensile and compressive strain conditions. The results illustrate that exerting biaxial tensile and compressive strain conditions can lead to a tunable energy gap with a linear trend. The shape of valence band maximum (VBM) and conduction band minimum (CBM) is so sensitive to applying tensile and compressive strain. Besides, a shift in optical spectra toward shorter wavelength (blue shift) occurs under compression. The exerting tensile strain, on the other hand, gives rise to a red shift in optical spectra correspondingly. The results have been presented that InX monolayers can be good candidates for optoelectronic applications as well.
Raman spectra of bilayer graphene covered with Poly(methyl methacrylate) thin film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia Minggang; Center on Experimental Physics, School of Science, Xi'an Jiaotong University, 710049; Su Zhidan
The Raman spectra of bilayer graphene covered with poly(methyl methacrylate) (PMMA) were investigated. Both the G and 2D peaks of PMMA-coated graphene were stiff and broad compared with those of uncovered graphene. This could be attributed to the residual strain induced by high-temperature baking during fabrication of the nanodevice. Furthermore, the two 2D peaks stiffened and broadened with increasing laser power, which is just the reverse to uncovered graphene. The stiffness is likely caused by graphene compression induced by the circular bubble of the thin PMMA film generated by laser irradiation. Our findings may contribute to the application of PMMAmore » in the strain engineering of graphene nanodevices.« less
Cellular characterization of compression-induceddamage in live biological samples
NASA Astrophysics Data System (ADS)
Bo, Chiara; Balzer, Jens; Hahnel, Mark; Rankin, Sara M.; Brown, Katherine A.; Proud, William
2012-03-01
Understanding the damage that high intensity compression waves induce in human tissues is critical for developing improved therapies for patients suffering from blast injuries. Experimentally based models of blast injury using live biological samples are needed. In this study we have developed a system to directly assess the effects of dynamic loading conditions on live cells. Here, we describe a confinement chamber designed to subject live cell cultures in a liquid environment to high intensity compression waves using a split Hopkinson pressure bar system. Signals from the strain gauges mounted on the bars and the chamber allow the measurement of parameters such as pressure and duration of the stimulus. The chamber itself also allows recovery of cells subjected to compression for assessment of cellular damage. In these studies we present evidence of increased levels of damage and loss of cellular integrity in cultured mouse mesenchymal stem cells subjected to a high-intensity compression wave with a peak pressure of 7.6 ± 0.8 MPa.
3D printed hierarchical honeycombs with shape integrity under large compressive deformations
Chen, Yanyu; Li, Tiantian; Jia, Zian; ...
2017-10-12
Here, we describe the in-plane compressive performance of a new type of hierarchical cellular structure created by replacing cell walls in regular honeycombs with triangular lattice configurations. The fabrication of this relatively complex material architecture with size features spanning from micrometer to centimeter is facilitated by the availability of commercial 3D printers. We apply to these hierarchical honeycombs a thermal treatment that facilitates the shape preservation and structural integrity of the structures under large compressive loading. The proposed hierarchical honeycombs exhibit a progressive failure mode, along with improved stiffness and energy absorption under uniaxial compression. High energy dissipation and shapemore » integrity at large imposed strains (up to 60%) have also been observed in these hierarchical honeycombs under cyclic loading. Experimental and numerical studies suggest that these anomalous mechanical behaviors are attributed to the introduction of a structural hierarchy, intrinsically controlled by the cell wall slenderness of the triangular lattice and by the shape memory effect induced by the thermal and mechanical compressive treatment.« less
3D printed hierarchical honeycombs with shape integrity under large compressive deformations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yanyu; Li, Tiantian; Jia, Zian
Here, we describe the in-plane compressive performance of a new type of hierarchical cellular structure created by replacing cell walls in regular honeycombs with triangular lattice configurations. The fabrication of this relatively complex material architecture with size features spanning from micrometer to centimeter is facilitated by the availability of commercial 3D printers. We apply to these hierarchical honeycombs a thermal treatment that facilitates the shape preservation and structural integrity of the structures under large compressive loading. The proposed hierarchical honeycombs exhibit a progressive failure mode, along with improved stiffness and energy absorption under uniaxial compression. High energy dissipation and shapemore » integrity at large imposed strains (up to 60%) have also been observed in these hierarchical honeycombs under cyclic loading. Experimental and numerical studies suggest that these anomalous mechanical behaviors are attributed to the introduction of a structural hierarchy, intrinsically controlled by the cell wall slenderness of the triangular lattice and by the shape memory effect induced by the thermal and mechanical compressive treatment.« less
Li, Jianjun; Zhao, Qun; Wang, Enbo; Zhang, Chuanhui; Wang, Guangbin; Yuan, Quan
2012-05-01
Articular cartilage is routinely subjected to mechanical forces and growth factors. Adipose-derived stem cells (ASCs) are multi-potent adult stem cells and capable of chondrogenesis. In the present study, we investigated the comparative and interactive effects of dynamic compression and insulin-like growth factor-I (IGF-I) on the chondrogenesis of rabbit ASCs in chitosan/gelatin scaffolds. Rabbit ASCs with or without a plasmid overexpressing of human IGF-1 were cultured in chitosan/gelatin scaffolds for 2 days, then subjected to cyclic compression with 5% strain and 1 Hz for 4 h per day for seven consecutive days. Dynamic compression induced chondrogenesis of rabbit ASCs by activating calcium signaling pathways and up-regulating the expression of Sox-9. Dynamic compression plus IGF-1 overexpression up-regulated expression of chondrocyte-specific extracellular matrix genes including type II collagen, Sox-9, and aggrecan with no effect on type X collagen expression. Furthermore, dynamic compression and IGF-1 expression promoted cellular proliferation and the deposition of proteoglycan and collagen. Intracellular calcium ion concentration and peak currents of Ca(2+) ion channels were consistent with chondrocytes. The tissue-engineered cartilage from this process had excellent mechanical properties. When applied together, the effects achieved by the two stimuli (dynamic compression and IGF-1) were greater than those achieved by either stimulus alone. Our results suggest that dynamic compression combined with IGF-1 overexpression might benefit articular cartilage tissue engineering in cartilage regeneration. Copyright © 2011 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Kim, Youngjo; Kim, Kangho; Jung, Sang Hyun; Kim, Chang Zoo; Shin, Hyun-Beom; Choi, JeHyuk; Kang, Ho Kwan
2017-12-01
Flexible thin film (In)GaAs solar cells are grown by metalorganic chemical vapor deposition on GaAs substrates and transferred to 30 μm thick Au foil by internal stress-assisted epitaxial lift-off processes. The internal stress is induced by replacing the solar cell epi-layers from GaAs to In0.015Ga0.985As, which has a slightly larger lattice constant. The compressive strained layer thickness was varied from 0 to 4.5 μm to investigate the influence of the internal stress on the epitaxial lift-off time. The etching time in the epitaxial lift-off process was reduced from 36 to 4 h by employing a GaAs/In0.015Ga0.985As heterojunction structure that has a compressive film stress of -59.0 MPa. We found that the partially strained epi-structure contributed to the much faster lateral etching rate with spontaneous bending. Although an efficiency degradation problem occurred in the strained solar cell, it was solved by optimizing the epitaxial growth conditions.
Song, B.; Nelson, K.; Lipinski, R.; ...
2014-08-21
Iridium alloys have superior strength and ductility at elevated temperatures, making them useful as structural materials for certain high-temperature applications. However, experimental data on their high-strain -rate performance are needed for understanding high-speed impacts in severe environments. Kolsky bars (also called split Hopkinson bars) have been extensively employed for high-strain -rate characterization of materials at room temperature, but it has been challenging to adapt them for the measurement of dynamic properties at high temperatures. In our study, we analyzed the difficulties encountered in high-temperature Kolsky bar testing of thin iridium alloy specimens in compression. We made appropriate modifications using themore » current high-temperature Kolsky bar technique in order to obtain reliable compressive stress–strain response of an iridium alloy at high-strain rates (300–10 000 s -1) and temperatures (750 and 1030°C). The compressive stress–strain response of the iridium alloy showed significant sensitivity to both strain rate and temperature.« less
Tension-compression asymmetry of a rolled Mg-Y-Nd alloy
NASA Astrophysics Data System (ADS)
Song, Bo; Pan, Hucheng; Ren, Weijie; Guo, Ning; Wu, Zehong; Xin, Renlong
2017-07-01
In this work, tension and compression deformation behaviors of rolled and aged Mg-Y-Nd alloys were investigated. The microstructure evolution and plastic deformation mechanism during tension and compression were analyzed by combined use of electron backscatter diffraction and a visco-plastic self-consistent crystal plasticity model. The results show that both rolled and aged Mg-Y-Nd sheets show an extremely low yield asymmetry. Elimination of yield asymmetry can be ascribed to the tilted basal texture and suppression of {10-12} twinning. The rolled sheet has almost no yield asymmetry, however exhibits a remarkable strain-hardening behavior asymmetry. Compressed sample shows lower initial strain hardening rate and keeps higher strain hardening rate at the later stage compared with tension. The strain-hardening asymmetry can be aggravated by aging at 280 C. It is considered the limited amount of twins in compression plays the critical role in the strain hardening asymmetry. Finally, the relevant mechanism was analyzed and discussed.
On Compression of a Heavy Compressible Layer of an Elastoplastic or Elastoviscoplastic Medium
NASA Astrophysics Data System (ADS)
Kovtanyuk, L. V.; Panchenko, G. L.
2017-11-01
The problem of deformation of a horizontal plane layer of a compressible material is solved in the framework of the theory of small strains. The upper boundary of the layer is under the action of shear and compressing loads, and the no-slip condition is satisfied on the lower boundary of the layer. The loads increase in absolute value with time, then become constant, and then decrease to zero.Various plasticity conditions are consideredwith regard to the material compressibility, namely, the Coulomb-Mohr plasticity condition, the von Mises-Schleicher plasticity condition, and the same conditions with the viscous properties of the material taken into account. To solve the system of partial differential equations for the components of irreversible strains, a finite-difference scheme is developed for a spatial domain increasing with time. The laws of motion of elastoplastic boundaries are presented, the stresses, strains, rates of strain, and displacements are calculated, and the residual stresses and strains are found.
Tripathi, Shivendra; Rana, Rakesh; Kumar, Sanjay; Pandey, Parul; Singh, R. S.; Rana, D. S.
2014-01-01
The non-magnetic and non-Fermi-liquid CaRuO3 is the iso-structural analog of the ferromagnetic (FM) and Fermi-liquid SrRuO3. We show that an FM order in the orthorhombic CaRuO3 can be established by the means of tensile epitaxial strain. The structural and magnetic property correlations in the CaRuO3 films formed on SrTiO3 (100) substrate establish a scaling relation between the FM moment and the tensile strain. The strain dependent crossover from non-magnetic to FM CaRuO3 was observed to be associated with switching of non-Fermi liquid to Fermi-liquid behavior. The intrinsic nature of this strain-induced FM order manifests in the Hall resistivity too; the anomalous Hall component realizes in FM tensile-strained CaRuO3 films on SrTiO3 (100) whereas the non-magnetic compressive-strained films on LaAlO3 (100) exhibit only the ordinary Hall effect. These observations of an elusive FM order are consistent with the theoretical predictions of scaling of the tensile epitaxial strain and the magnetic order in tensile CaRuO3. We further establish that the tensile strain is more efficient than the chemical route to induce FM order in CaRuO3. PMID:24464302
Industrial Application of Artificially Induced Diploid Strains of Torulaspora delbrueckii.
Ohshima, Y; Sugaura, T; Horita, M; Sasaki, T
1987-07-01
Diploid strains of Torulaspora delbrueckii were tested for industrial application. Because the cell volume of the diploid strain was three times as large as that of the parental haploid strain, collection and subsequent dehydration to make compressed yeast cakes were greatly improved with the diploid YL3. The time required for dehydration of the diploid strain was shortened to 1/2.5 that of the parent strain under conventional conditions. Moreover, for the diploid cells frequent filter changes for dehydration were not required, which was the case with parental cells. Fermentation activity and tolerance to freeze-thawing in dough were succesfully inherited by the diploid strains. The diploid YL3 showed nearly the same activity as the diploid F31 in bread making. However, the endurance period of yeast cakes when stored at 30 degrees C without softening to lead to liquefaction was much longer in YL3 (199 h) than in F31 (132 h). This superiority was ascribed to the fact that YL3 was induced through direct diploidization and had no genetic defect on chromosomes because the wild-type strain was employed as the parent, whereas F31 was obtained through protoplast fusion from two auxotrophic mutants and carried at least two mutagenized genes that were masked by heterolallelism.
Electronic structure in 1T-ZrS2 monolayer by strain
NASA Astrophysics Data System (ADS)
Xin, Qianqian; Zhao, Xu; Ma, Xu; Wu, Ninghua; Liu, Xiaomeng; Wei, Shuyi
2017-09-01
We report electronic structure of 1T-ZrS2 monolayer with biaxial strain from -10% to 15%, basing the first principles calculations. Our calculation results indicate that the band structure of ZrS2 monolayer was changed clearly. The location of conduction band minimum (CBM) and valence band maximum (VBM) changed with the variation of isotropic strain. At compressive strain, the location of CBM and VBM retains at M and Γ point, respectively. The band gap of ZrS2 monolayer decreases from 1.111 eV to 0 eV when compressive strain increases from 0% to -8%, which means that the ZrS2 monolayer turns to metal at -8% compressive strain. Under the tensile strain, the ZrS2 monolayer also retains be an indirect band gap semiconductor. The location of CBM moves from M to Γ point and the location of VBM moves along Γ-A-K-Γ direction. The band gap of ZrS2 monolayer firstly increases and then decreases and the biggest band gap is 1.577 eV at tensile strain 6%. We can see the compression strain is more effective than tensile strain in modulating band gap of 1T-ZrS2 monolayer.
Abdelhafiz, Ali; Vitale, Adam; Joiner, Corey; Vogel, Eric; Alamgir, Faisal M
2015-03-25
In this study, we explore the dimensional aspect of structure-driven surface properties of metal monolayers grown on a graphene/Au template. Here, surface limited redox replacement (SLRR) is used to provide precise layer-by-layer growth of Pt monolayers on graphene. We find that after a few iterations of SLRR, fully wetted 4-5 monolayer Pt films can be grown on graphene. Incorporating graphene at the Pt-Au interface modifies the growth mechanism, charge transfers, equilibrium interatomic distances, and associated strain of the synthesized Pt monolayers. We find that a single layer of sandwiched graphene is able to induce a 3.5% compressive strain on the Pt adlayer grown on it, and as a result, catalytic activity is increased due to a greater areal density of the Pt layers beyond face-centered-cubic close packing. At the same time, the sandwiched graphene does not obstruct vicinity effects of near-surface electron exchange between the substrate Au and adlayers Pt. X-ray photoelectron spectroscopy (XPS) and extended X-ray absorption fine structure (EXAFS) techniques are used to examine charge mediation across the Pt-graphene-Au junction and the local atomic arrangement as a function of the Pt adlayer dimension. Cyclic voltammetry (CV) and the oxygen reduction reaction (ORR) are used as probes to examine the electrochemically active area of Pt monolayers and catalyst activity, respectively. Results show that the inserted graphene monolayer results in increased activity for the Pt due to a graphene-induced compressive strain, as well as a higher resistance against loss of the catalytically active Pt surface.
Stoichiometry as key to ferroelectricity in compressively strained SrTiO{sub 3} films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haislmaier, R. C.; Engel-Herbert, R.; Gopalan, V.
2016-07-18
While strain is a powerful tuning parameter for inducing ferroelectricity in thin film oxides, the role of stoichiometry control is critical, but far less explored. A series of compressively strained SrTiO{sub 3} films on (001) (LaAlO{sub 3}){sub 0.3}(Sr{sub 2}AlTaO{sub 6}){sub 0.35} substrates were grown by hybrid molecular beam epitaxy where the Ti cation was supplied using a metal-organic titanium tetraisopropoxide molecule that helps systematically and precisely control Sr:Ti stoichiometry in the resulting films. A stoichiometric growth window is located through X-ray diffraction and in-situ reflection high-energy electron diffraction measurements, which show a minimum out-of-plane lattice parameter as well as constantmore » growth rate within the stoichiometric growth window range. Using temperature dependent optical second harmonic generation (SHG) characterization, a ferroelectric-to-paraelectric transition at T ∼ 180 K is observed for a stoichiometric SrTiO{sub 3} film, as well as a higher temperature structural transition at T ∼ 385 K. Using SHG polarimetry modeling, the polar point group symmetry is determined to be tetragonal 4mm with the polarization pointing out-of-plane of the film. The SHG coefficients, d{sub 31}/d{sub 15}=3 and d{sub 33}/d{sub 15}=21, were determined at 298 K. The ferroelectric transition disappears in films grown outside the growth window, thus proving the critical role of stoichiometry control in realizing strain-induced ferroelectricity.« less
Deformation mechanisms of bent Si nanowires governed by the sign and magnitude of strain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lihua, E-mail: wlh@bjut.edu.cn, E-mail: xdhan@bjut.edu.cn, E-mail: j.zou@uq.edu.au; Materials Engineering, The University of Queensland, Brisbane, QLD 4072; Kong, Deli
2016-04-11
In this study, the deformation mechanisms of bent Si nanowires are investigated at the atomic scale with bending strain up to 12.8%. The sign and magnitude of the applied strain are found to govern their deformation mechanisms, in which the dislocation types (full or partial dislocations) can be affected by the sign (tensile or compressive) and magnitude of the applied strain. In the early stages of bending, plastic deformation is controlled by 60° full dislocations. As the bending increases, Lomer dislocations can be frequently observed. When the strain increases to a significant level, 90° partial dislocations induced from the tensilemore » surfaces of the bent nanowires are observed. This study provides a deeper understanding of the effect of the sign and magnitude of the bending strain on the deformation mechanisms in bent Si nanowires.« less
Critical strain for Sn incorporation into spontaneously graded Ge/GeSn core/shell nanowires.
Albani, Marco; Assali, Simone; Verheijen, Marcel A; Koelling, Sebastian; Bergamaschini, Roberto; Pezzoli, Fabio; Bakkers, Erik P A M; Miglio, Leo
2018-04-19
We address the role of non-uniform composition, as measured by energy-dispersive x-ray spectroscopy, in the elastic properties of core/shell nanowires for the Ge/GeSn system. In particular, by finite element method simulations and transmission electron diffraction measurements, we estimate the residual misfit strain when a radial gradient in Sn and a Ge segregation at the nanowire facet edges are present. An elastic stiffening of the structure with respect to the uniform one is concluded, particularly for the axial strain component. More importantly, refined predictions linking the strain and the Sn percentage at the nanowire facets enable us to quantitatively determine the maximum compressive strain value allowing for additional Sn incorporation into a GeSn alloy. The progressive incorporation with increasing shell thickness, under constant growth conditions, is specifically induced by the nanowire configuration, where a larger elastic relaxation of the misfit strain takes place.
Strain analysis of SiGe microbridges
NASA Astrophysics Data System (ADS)
Anthony, Ross; Gilbank, Ashley; Crowe, Iain; Knights, Andrew
2018-02-01
We present the analysis of UV (325 nm) Raman scattering spectra from silicon-germanium (SiGe) microbridges where the SiGe has been formed using the so-called "condensation technique". As opposed to the conventional condensation technique in which SiGe is grown epitaxially, we use high-dose ion implantation of Ge ions into SOI as a means to introduce the initial Ge profile. The subsequent oxidation both repairs implantation induced damage, and forms epitaxial Ge. Using Si-Si and Si-Ge optical phonon modes, as well as the ratio of integrated intensities for Ge-Ge and Si-Si, we can determine both the composition and strain of the material. We show that although the material is compressively strained following condensation, by fabricating microbridge structures we can create strain relaxed or tensile strained structures, with subsequent interest for photonic applications.
NASA Astrophysics Data System (ADS)
Esser, S.; Chang, C. F.; Kuo, C.-Y.; Merten, S.; Roddatis, V.; Ha, T. D.; Jesche, A.; Moshnyaga, V.; Lin, H.-J.; Tanaka, A.; Chen, C. T.; Tjeng, L. H.; Gegenwart, P.
2018-05-01
B -site ordered thin films of double perovskite Sr2CoIrO6 were epitaxially grown by a metalorganic aerosol deposition technique on various substrates, actuating different strain states. X-ray diffraction, transmission electron microscopy, and polarized far-field Raman spectroscopy confirm the strained epitaxial growth on all used substrates. Polarization-dependent Co L2 ,3 x-ray absorption spectroscopy reveals a change of the magnetic easy axis of the antiferromagnetically ordered (high-spin) Co3 + sublattice within the strain series. By reversing the applied strain direction from tensile to compressive, the easy axis changes abruptly from in-plane to out-of-plane orientation. The low-temperature magnetoresistance changes its sign respectively and is described by a combination of weak antilocalization and anisotropic magnetoresistance effects.
Optically probing torsional superelasticity in spider silks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Bhupesh; Thakur, Ashish; Panda, Biswajit
2013-11-11
We investigate torsion mechanics of various spider silks using a sensitive optical technique. We find that spider silks are torsionally superelastic in that they can reversibly withstand great torsion strains of over 10{sup 2−3} rotations per cm before failure. Among various silks from a spider, we find the failure twist-strain is greatest in the sticky capture silk followed by dragline and egg-case silk. Our in situ laser-diffraction measurements reveal that torsional strains on the silks induce a nano-scale transverse compression in its diameter that is linear and reversible. These unique torsional properties of the silks could find applications in silk-basedmore » materials and devices.« less
NASA Astrophysics Data System (ADS)
Yang, Li-Juan; Weng, Ya-Kui; Zhang, Hui-Min; Dong, Shuai
2014-11-01
The compressive strain effect on the magnetic ground state and electronic structure of strained GdTiO3 has been studied using the first-principles method. Unlike the cases of congeneric YTiO3 and LaTiO3, both of which become the A-type antiferromagnetism on the (0 0 1) LaAlO3 substrate despite their contrastive magnetism, the ground state of strained GdTiO3 on the LaAlO3 substrate changes from the original ferromagnetism to a G-type antiferromagnetim, instead of the A-type one although Gd3+ is between Y3+ and La3+. It is only when the in-plane compressive strain is large enough, e.g. on the (0 0 1) YAlO3 substrate, that the ground state finally becomes the A-type. The band structure calculation shows that the compressive strained GdTiO3 remains insulating, although the band gap changes a little in the strained GdTiO3.
NASA Astrophysics Data System (ADS)
Pang, Baojun; Wang, Liwen; Yang, Zhenqi; Chi, Runqiang
2009-06-01
Dynamic strain-stress curves of reactive powder concrete under high strain rate (10/s-100/s) were determined by improved split Hopkinson pressure bar (SHPB) system. A plumbum pulse shaper was used to ensure the symmetrical stress in the specimens before fracture and avoid the fluctuation of test data due to input shaky stress pulse. A time modified method was induced for data processing in order to get accurate SHPB results. The results of experiment showed after high temperature burnt, different volume rate (0.0%, 0.5%, 1.0%, 1.5%) steel-fiber reinforced reactive power concrete had the same changing tendency of residual mechanics behaviors, e.g. after 400 centigrade burnt, the residual compression strength was about 70% of material strength without burnt under 100/s. After 800 centigrade burnt, the compression strength is about 30% under 100/s while the deformation ability increased. At meanwhile, steel fiber had improved the mechanism of reinforcing effect and toughening effect of concrete material after burnt. With increasing of steel fiber volume rate, dynamic residual behavior of samples was improved. Microcosmic characteristics and energy absorption were induced for explaining the experiment results.
NASA Astrophysics Data System (ADS)
Wang, Huamiao; Wu, Peidong; Wang, Jian
2015-07-01
Magnesium alloy AZ31B plastically deforms via twinning and slip. Corresponding to the unidirectional nature of twinning, the activity of twinning/detwinning is directly related to loading history and materials texture. Using the elastic viscoplastic self-consistent model implementing with the twinning and detwinning model (EVPSC-TDT), we revisited experimental data of AZ31B sheets under four different strain paths: (1) tension-compression-tension along rolling direction, (2) tension-compression-tension along transverse direction, (3) compression-tension-compression along rolling direction, and (4) compression-tension-compression along transverse direction, and identified the dominant deformation mechanisms with respect to the strain path. We captured plastic deformation behaviors observed in experiments and quantitatively interpreted experimental observations in terms of the activities of different deformation mechanisms and the evolution of texture. It is found that the in-plane pre-tension has slight effect on the subsequent deformation, and the pre-compression and the reverse tension after compression have significant effect on the subsequent deformation. The inelastic behavior under compressive unloading is found to be insignificant at a small strain level but pronounced at a large strain level. Such significant effect is mainly ascribed to the activity of twinning and detwinning.
NASA Astrophysics Data System (ADS)
Glazer, Matthew P. B.; Wang, Junjie; Cho, Jiung; Almer, Jonathan D.; Okasinski, John S.; Braun, Paul V.; Dunand, David C.
2017-11-01
Volume changes associated with the (de)lithiation of a nanostructured Ni3Sn2 coated nickel inverse opal scaffold anode create mismatch stresses and strains between the Ni3Sn2 anode material and its mechanically supporting Ni scaffold. Using in operando synchrotron x-ray diffraction measurements, elastic strains in the Ni scaffold are determined during cyclic (dis)charging of the Ni3Sn2 anode. These strains are characterized using both the center position of the Ni diffraction peaks, to quantify the average strain, and the peak breadth, which describes the distribution of strain in the measured volume. Upon lithiation (half-cell discharging) or delithiation (half-cell charging), compressive strains and peak breadth linearly increase or decrease, respectively, with charge. The evolution of the average strains and peak breadths suggests that some irreversible plastic deformation and/or delamination occurs during cycling, which can result in capacity fade in the anode. The strain behavior associated with cycling of the Ni3Sn2 anode is similar to that observed in recent studies on a Ni inverse-opal supported amorphous Si anode and demonstrates that the (de)lithiation-induced deformation and damage mechanisms are likely equivalent in both anodes, even though the magnitude of mismatch strain in the Ni3Sn2 is lower due to the lower (de)lithiation-induced contraction/expansion.
Influence of temper condition on the nonlinear stress-strain behavior of boron-aluminum
NASA Technical Reports Server (NTRS)
Kennedy, J. M.; Herakovich, E. T.; Tenney, D. R.
1977-01-01
The influence of temper condition on the tensile and compressive stress-strain behavior for six boron-aluminum laminates was investigated. In addition to monotonic tension and compression tests, tension-tension, compression-compression, and tension--compression tests were conducted to study the effects of cyclic loading. Tensile strength results are a function of the laminate configuration; unidirectional laminates were affected considerably more than other laminates with some strength values increasing and others decreasing.
A compressibility correction of the pressure strain correlation model in turbulent flow
NASA Astrophysics Data System (ADS)
Klifi, Hechmi; Lili, Taieb
2013-07-01
This paper is devoted to the second-order closure for compressible turbulent flows with special attention paid to modeling the pressure-strain correlation appearing in the Reynolds stress equation. This term appears as the main one responsible for the changes of the turbulence structures that arise from structural compressibility effects. From the analysis and DNS results of Simone et al. and Sarkar, the compressibility effects on the homogeneous turbulence shear flow are parameterized by the gradient Mach number. Several experiment and DNS results suggest that the convective Mach number is appropriate to study the compressibility effects on the mixing layers. The extension of the LRR model recently proposed by Marzougui, Khlifi and Lili for the pressure-strain correlation gives results that are in disagreement with the DNS results of Sarkar for high-speed shear flows. This extension is revised to derive a turbulence model for the pressure-strain correlation in which the compressibility is included in the turbulent Mach number, the gradient Mach number and then the convective Mach number. The behavior of the proposed model is compared to the compressible model of Adumitroiae et al. for the pressure-strain correlation in two turbulent compressible flows: homogeneous shear flow and mixing layers. In compressible homogeneous shear flows, the predicted results are compared with the DNS data of Simone et al. and those of Sarkar. For low compressibility, the two compressible models are similar, but they become substantially different at high compressibilities. The proposed model shows good agreement with all cases of DNS results. Those of Adumitroiae et al. do not reflect any effect of a change in the initial value of the gradient Mach number on the Reynolds stress anisotropy. The models are used to simulate compressible mixing layers. Comparison of our predictions with those of Adumitroiae et al. and with the experimental results of Goebel et al. shows good qualitative agreement.
Influence of compressibility on the Lagrangian statistics of vorticity-strain-rate interactions.
Danish, Mohammad; Sinha, Sawan Suman; Srinivasan, Balaji
2016-07-01
The objective of this study is to investigate the influence of compressibility on Lagrangian statistics of vorticity and strain-rate interactions. The Lagrangian statistics are extracted from "almost" time-continuous data sets of direct numerical simulations of compressible decaying isotropic turbulence by employing a cubic spline-based Lagrangian particle tracker. We study the influence of compressibility on Lagrangian statistics of alignment in terms of compressibility parameters-turbulent Mach number, normalized dilatation-rate, and flow topology. In comparison to incompressible turbulence, we observe that the presence of compressibility in a flow field weakens the alignment tendency of vorticity toward the largest strain-rate eigenvector. Based on the Lagrangian statistics of alignment conditioned on dilatation and topology, we find that the weakened tendency of alignment observed in compressible turbulence is because of a special group of fluid particles that have an initially negligible dilatation-rate and are associated with stable-focus-stretching topology.
Effect of strain on the electronic structure of graphene
NASA Astrophysics Data System (ADS)
Martinez, Edgar; Cifuentes, Eduardo; de Coss, Romeo
2008-03-01
Graphene has been attracting interest due to its remarkable physical properties resulting from an electron spectrum resembling relativistic dynamics (Dirac fermions). Thus, is desirable to know methods for controling the charge carriers in graphene. In this work, we propose that the electronic properties of graphene can be modulated via isotropic and uniaxial strain. We have studied the electronic structure of graphene under mechanical deformation by means of first principles calculations. We present results for the charge distribution, electronic density of states, and band structure. We focus the analysis on the behavior of the Dirac cones and the number of the charge carriers as a function of strain. We find that an isotropic tensile strain increases the effective mass of carriers and an isotropic compression strain decrease it. Uniaxial tensile strain induce a similar behavior, as strain increase effective mass increase. Thus, our results show that strain allows controllable tuning of the graphene electronic properties. This research was supported by Consejo Nacional de Ciencia y Tecnolog'ia (Conacyt) under Grant No. 43830-F.
NASA Astrophysics Data System (ADS)
Ryu, Donghyeon; Castaño, Nicolas; Bhakta, Raj; Kimberley, Jamie
2017-08-01
The objective of this study is to understand light emission characteristics of fracto-mechanoluminescent (FML) europium tetrakis(dibenzoylmethide)-triethylammonium (EuD4TEA) crystals under high strain-rate compressive loading. As a sensing material that can play a pivotal role for the self-powered impact sensor technology, it is important to understand transformative light emission characteristics of the FML EuD4TEA crystals under high strain-rate compressive loading. First, EuD4TEA crystals were synthesized and embedded into polydimethylsiloxane (PDMS) elastomer to fabricate EuD4TEA-PDMS composite test specimens. Second, the prepared EuD4TEA-PDMS composites were tested using the modified Kolsky bar setup equipped with a high-speed camera. Third, FML light emission was captured to yield 12 bit grayscale video footage, which was processed to quantify the FML light emission. Finally, quantitative parameters were generated by taking into account pixel values and population of pixels of the 12 bit grayscale images to represent FML light intensity. The FML light intensity was correlated with high strain-rate compressive strain and strain rate to understand the FML light emission characteristics under high strain-rate compressive loading that can result from impact occurrences.
Quasi-static and ratcheting properties of trabecular bone under uniaxial and cyclic compression.
Gao, Li-Lan; Wei, Chao-Lei; Zhang, Chun-Qiu; Gao, Hong; Yang, Nan; Dong, Li-Min
2017-08-01
The quasi-static and ratcheting properties of trabecular bone were investigated by experiments and theoretical predictions. The creep tests with different stress levels were completed and it is found that both the creep strain and creep compliance increase rapidly at first and then increase slowly as the creep time goes by. With increase of compressive stress the creep strain increases and the creep compliance decreases. The uniaxial compressive tests show that the applied stress rate makes remarkable influence on the compressive behaviors of trabecular bone. The Young's modulus of trabecular bone increases with increase of stress rate. The stress-strain hysteresis loops of trabecular bone under cyclic load change from sparse to dense with increase of number of cycles, which agrees with the change trend of ratcheting strain. The ratcheting strain rate rapidly decreases at first, and then exhibits a relatively stable and small value after 50cycles. Both the ratcheting strain and ratcheting strain rate increase with increase of stress amplitude or with decrease of stress rate. The creep model and the nonlinear viscoelastic constitutive model of trabecular bone were proposed and used to predict its creep property and rate-dependent compressive property. The results show that there are good agreements between the experimental data and predictions. Copyright © 2017 Elsevier B.V. All rights reserved.
Highly compressible and all-solid-state supercapacitors based on nanostructured composite sponge.
Niu, Zhiqiang; Zhou, Weiya; Chen, Xiaodong; Chen, Jun; Xie, Sishen
2015-10-21
Based on polyaniline-single-walled carbon nanotubes -sponge electrodes, highly compressible all-solid-state supercapacitors are prepared with an integrated configuration using a poly(vinyl alcohol) (PVA)/H2 SO4 gel as the electrolyte. The unique configuration enables the resultant supercapacitors to be compressed as an integrated unit arbitrarily during 60% compressible strain. Furthermore, the performance of the resultant supercapacitors is nearly unchanged even under 60% compressible strain. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Control wafer bow of InGaP on 200 mm Si by strain engineering
NASA Astrophysics Data System (ADS)
Wang, Bing; Bao, Shuyu; Made, Riko I.; Lee, Kwang Hong; Wang, Cong; Eng Kian Lee, Kenneth; Fitzgerald, Eugene A.; Michel, Jurgen
2017-12-01
When epitaxially growing III-V compound semiconductors on Si substrates the mismatch of coefficients of thermal expansion (CTEs) between III-V and Si causes stress and wafer bow. The wafer bow is deleterious for some wafer-scale processing especially when the wafer size is large. Strain engineering was applied in the epitaxy of InGaP films on 200 mm silicon wafers having high quality germanium buffers. By applying compressive strain in the InGaP films to compensate the tensile strain induced by CTE mismatch, wafer bow was decreased from about 100 μm to less than 50 μm. X-ray diffraction studies show a clear trend between the decrease of wafer bow and the compensation of CTE mismatch induced tensile strain in the InGaP layers. In addition, the anisotropic strain relaxation in InGaP films resulted in anisotropic wafer bow along two perpendicular (110) directions. Etch pit density and plane-view transmission electron microscopy characterizations indicate that threading dislocation densities did not change significantly due to the lattice-mismatch applied in the InGaP films. This study shows that strain engineering is an effective method to control wafer bow when growing III-V semiconductors on large size Si substrates.
Tian, Zhenghong; Bu, Jingwu
2014-01-01
The uniaxial compression response of manufactured sand mortars proportioned using different water-cement ratio and sand-cement ratio is examined. Pore structure parameters such as porosity, threshold diameter, mean diameter, and total amounts of macropores, as well as shape and size of micropores are quantified by using mercury intrusion porosimetry (MIP) technique. Test results indicate that strains at peak stress and compressive strength decreased with the increasing sand-cement ratio due to insufficient binders to wrap up entire sand. A compression stress-strain model of normal concrete extending to predict the stress-strain relationships of manufactured sand mortar is verified and agreed well with experimental data. Furthermore, the stress-strain model constant is found to be influenced by threshold diameter, mean diameter, shape, and size of micropores. A mathematical model relating stress-strain model constants to the relevant pore structure parameters of manufactured sand mortar is developed. PMID:25133257
Tian, Zhenghong; Bu, Jingwu
2014-01-01
The uniaxial compression response of manufactured sand mortars proportioned using different water-cement ratio and sand-cement ratio is examined. Pore structure parameters such as porosity, threshold diameter, mean diameter, and total amounts of macropores, as well as shape and size of micropores are quantified by using mercury intrusion porosimetry (MIP) technique. Test results indicate that strains at peak stress and compressive strength decreased with the increasing sand-cement ratio due to insufficient binders to wrap up entire sand. A compression stress-strain model of normal concrete extending to predict the stress-strain relationships of manufactured sand mortar is verified and agreed well with experimental data. Furthermore, the stress-strain model constant is found to be influenced by threshold diameter, mean diameter, shape, and size of micropores. A mathematical model relating stress-strain model constants to the relevant pore structure parameters of manufactured sand mortar is developed.
Effect of Microstructure on the Mechanical Properties of Extruded Magnesium and a Magnesium Alloy
NASA Astrophysics Data System (ADS)
McGhee, Paul
The main objective of this research was to investigate the relationship between the fatigue behavior and crystallographic texture evolution of magnesium (Mg) alloys with a range of microalloying element content processed under various extrusion conditions. Several Mg alloys were processed under a range of extrusion temperatures, extrusion ratios, and alloying content and tested under monotonic and cyclic fatigue loading conditions: fully-reversed condition tested at strain amplitudes of 0.15% - 1.00% in strain-control mode. After fatigue testing, Mg microstructural analysis was performed using SEM, TEM, optical microscopy, and X-ray diffraction techniques. Microstructural observations revealed significant grain refinement through a combination of zirconium (Zr) addition and hot-extrusion, producing fine equiaxed grain structure with grain sizes ranging between 1-5 microm. Texture analysis and partial compression testing results showed that the initial texture of the extruded alloy gradually evolved upon compressive loading along the c-axes inducing extension twinning creating a strong basal texture along the extrusion direction. Full tensile and compression testing at room temperature showed that the combination of hot extrusion and Zr addition can further refine the grains of the Mg alloys microstructure and enhance the texture while simultaneously enhancing the mechanical properties.
Covalent nitrogen doping in molecular beam epitaxy-grown and bulk WSe2
NASA Astrophysics Data System (ADS)
Khosravi, Ava; Addou, Rafik; Smyth, Christopher M.; Yue, Ruoyu; Cormier, Christopher R.; Kim, Jiyoung; Hinkle, Christopher L.; Wallace, Robert M.
2018-02-01
Covalent p-type doping of WSe2 thin films grown by molecular beam epitaxy and WSe2 exfoliated from bulk crystals is achieved via remote nitrogen plasma exposure. X-ray photoelectron and Raman spectroscopies indicate covalently bonded nitrogen in the WSe2 lattice as well as tunable nitrogen concentration with N2 plasma exposure time. Furthermore, nitrogen incorporation induces compressive strain on the WSe2 lattice after N2 plasma exposure. Finally, atomic force microscopy and scanning tunneling microscopy reveal that N2 plasma treatment needs to be carefully tuned to avoid any unwanted strain or surface damage.
Forelimb bone curvature in terrestrial and arboreal mammals
Henderson, Keith; Pantinople, Jess; McCabe, Kyle; Milne, Nick
2017-01-01
It has recently been proposed that the caudal curvature (concave caudal side) observed in the radioulna of terrestrial quadrupeds is an adaptation to the habitual action of the triceps muscle which causes cranial bending strains (compression on cranial side). The caudal curvature is proposed to be adaptive because longitudinal loading induces caudal bending strains (increased compression on the caudal side), and these opposing bending strains counteract each other leaving the radioulna less strained. If this is true for terrestrial quadrupeds, where triceps is required for habitual elbow extension, then we might expect that in arboreal species, where brachialis is habitually required to maintain elbow flexion, the radioulna should instead be cranially curved. This study measures sagittal curvature of the ulna in a range of terrestrial and arboreal primates and marsupials, and finds that their ulnae are curved in opposite directions in these two locomotor categories. This study also examines sagittal curvature in the humerus in the same species, and finds differences that can be attributed to similar adaptations: the bone is curved to counter the habitual muscle action required by the animal’s lifestyle, the difference being mainly in the distal part of the humerus, where arboreal animals tend have a cranial concavity, thought to be in response the carpal and digital muscles that pull cranially on the distal humerus. PMID:28462036
Brain tissue deforms similarly to filled elastomers and follows consolidation theory
NASA Astrophysics Data System (ADS)
Franceschini, G.; Bigoni, D.; Regitnig, P.; Holzapfel, G. A.
2006-12-01
Slow, large deformations of human brain tissue—accompanying cranial vault deformation induced by positional plagiocephaly, occurring during hydrocephalus, and in the convolutional development—has surprisingly received scarce mechanical investigation. Since the effects of these deformations may be important, we performed a systematic series of in vitro experiments on human brain tissue, revealing the following features. (i) Under uniaxial (quasi-static), cyclic loading, brain tissue exhibits a peculiar nonlinear mechanical behaviour, exhibiting hysteresis, Mullins effect and residual strain, qualitatively similar to that observed in filled elastomers. As a consequence, the loading and unloading uniaxial curves have been found to follow the Ogden nonlinear elastic theory of rubber (and its variants to include Mullins effect and permanent strain). (ii) Loaded up to failure, the "shape" of the stress/strain curve qualitatively changes, evidencing softening related to local failure. (iii) Uniaxial (quasi-static) strain experiments under controlled drainage conditions provide the first direct evidence that the tissue obeys consolidation theory involving fluid migration, with properties similar to fine soils, but having much smaller volumetric compressibility. (iv) Our experimental findings also support the existence of a viscous component of the solid phase deformation. Brain tissue should, therefore, be modelled as a porous, fluid-saturated, nonlinear solid with very small volumetric (drained) compressibility.
Compressive Behavior of Fiber-Reinforced Concrete with End-Hooked Steel Fibers.
Lee, Seong-Cheol; Oh, Joung-Hwan; Cho, Jae-Yeol
2015-03-27
In this paper, the compressive behavior of fiber-reinforced concrete with end-hooked steel fibers has been investigated through a uniaxial compression test in which the variables were concrete compressive strength, fiber volumetric ratio, and fiber aspect ratio (length to diameter). In order to minimize the effect of specimen size on fiber distribution, 48 cylinder specimens 150 mm in diameter and 300 mm in height were prepared and then subjected to uniaxial compression. From the test results, it was shown that steel fiber-reinforced concrete (SFRC) specimens exhibited ductile behavior after reaching their compressive strength. It was also shown that the strain at the compressive strength generally increased along with an increase in the fiber volumetric ratio and fiber aspect ratio, while the elastic modulus decreased. With consideration for the effect of steel fibers, a model for the stress-strain relationship of SFRC under compression is proposed here. Simple formulae to predict the strain at the compressive strength and the elastic modulus of SFRC were developed as well. The proposed model and formulae will be useful for realistic predictions of the structural behavior of SFRC members or structures.
Dynamic Experiments and Constitutive Model Performance for Polycarbonate
2014-07-01
phase disabled. Note, positive stress is tensile and negative is compressive ....28 Figure 23. Parameter sensitivity showing numerical contours of axial ... compressive . For the no alpha and no beta cases shown in the axial stress plots of figure 23 at 40 s, an increase in radial compression as compared...traditional Taylor cylinder impact experiment, which achieves large strain and high-strain-rate deformation but under hydrostatic compression
Effects of Strain Rate on Compressive Properties in Bimodal 7075 Al-SiCp Composite
NASA Astrophysics Data System (ADS)
Lee, Hyungsoo; Choi, Jin Hyeok; Jo, Min Chul; Jo, Ilguk; Lee, Sang-Kwan; Lee, Sunghak
2018-07-01
A 7075 Al alloy matrix composite reinforced with SiC particulates (SiCps) whose sizes were 10 and 30 μm, i.e., a bimodal Al-SiCp composite, was made by a liquid pressing process, and its quasi-static and dynamic compressive properties were evaluated by using a universal testing machine and a split Hopkinson pressure bar, respectively. Mg-Si-, Al-Fe-, and Cu-rich intermetallic compounds existed inside the Al matrix, but might not deteriorate compressive properties because of their low volume fraction (about 2.6%) which was much lower than that of SiCp. The dynamic compressive strength was higher than the quasi-static strength, and was higher in the specimen tested at 2800 s-1 than in the specimen tested at 1400 s-1 according to the strain-rate hardening. For explaining the strain data, the blocking extent of crack propagation by the Al matrix was quantitatively examined. The melting of Al matrix occurred by adiabatic heating was favorable for the improvement in compressive strain because it favorably worked for activating the shear band formation and for blocking the crack propagation, thereby leading to the excellent compressive strain (10.9-11.6%) as well as maximum compressive strength (1057-1147 MPa). Thus, the present bimodal 7075 Al-SiCp composite provides a promise for new applications to high-performance armor plates.
Effects of Strain Rate on Compressive Properties in Bimodal 7075 Al-SiCp Composite
NASA Astrophysics Data System (ADS)
Lee, Hyungsoo; Choi, Jin Hyeok; Jo, Min Chul; Jo, Ilguk; Lee, Sang-Kwan; Lee, Sunghak
2018-03-01
A 7075 Al alloy matrix composite reinforced with SiC particulates (SiCps) whose sizes were 10 and 30 μm, i.e., a bimodal Al-SiCp composite, was made by a liquid pressing process, and its quasi-static and dynamic compressive properties were evaluated by using a universal testing machine and a split Hopkinson pressure bar, respectively. Mg-Si-, Al-Fe-, and Cu-rich intermetallic compounds existed inside the Al matrix, but might not deteriorate compressive properties because of their low volume fraction (about 2.6%) which was much lower than that of SiCp. The dynamic compressive strength was higher than the quasi-static strength, and was higher in the specimen tested at 2800 s-1 than in the specimen tested at 1400 s-1 according to the strain-rate hardening. For explaining the strain data, the blocking extent of crack propagation by the Al matrix was quantitatively examined. The melting of Al matrix occurred by adiabatic heating was favorable for the improvement in compressive strain because it favorably worked for activating the shear band formation and for blocking the crack propagation, thereby leading to the excellent compressive strain (10.9-11.6%) as well as maximum compressive strength (1057-1147 MPa). Thus, the present bimodal 7075 Al-SiCp composite provides a promise for new applications to high-performance armor plates.
Origin of texture development in orthorhombic uranium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zecevic, Miroslav; Knezevic, Marko; Beyerlein, Irene Jane
We study texture evolution of alpha-uranium (α-U) during plane strain compression and uniaxial compression to high strains at different temperatures. We combine a multiscale polycrystal constitutive model and detailed analysis of texture data to uncover the slip and twinning modes responsible for the formation of individual texture components. The analysis indicates that during plane strain compression, floor slip (001)[100] results in the formation of two pronounced {001}{001} texture peaks tilted 10–15° away from the normal toward the rolling direction. During both high-temperature (573 K) through-thickness compression and plane strain compression, the active slip modes are floor slip (001)[100] and chimneymore » slip 1/2{110} <11¯0> with slightly different ratios. {130} <31¯0> deformation twinning is profuse during rolling and in-plane compression and decreases with increasing temperature, but is not as active for through-thickness compression. Lastly, we comment on some similarities between rolling textures of α-U, which has a c/a ratio of 1.734, and those that develop in hexagonal close packed metals with similarly high c/a ratios like Zn (1.856) and Cd (1.885) and are dominated by basal slip.« less
Origin of texture development in orthorhombic uranium
Zecevic, Miroslav; Knezevic, Marko; Beyerlein, Irene Jane; ...
2016-04-09
We study texture evolution of alpha-uranium (α-U) during plane strain compression and uniaxial compression to high strains at different temperatures. We combine a multiscale polycrystal constitutive model and detailed analysis of texture data to uncover the slip and twinning modes responsible for the formation of individual texture components. The analysis indicates that during plane strain compression, floor slip (001)[100] results in the formation of two pronounced {001}{001} texture peaks tilted 10–15° away from the normal toward the rolling direction. During both high-temperature (573 K) through-thickness compression and plane strain compression, the active slip modes are floor slip (001)[100] and chimneymore » slip 1/2{110} <11¯0> with slightly different ratios. {130} <31¯0> deformation twinning is profuse during rolling and in-plane compression and decreases with increasing temperature, but is not as active for through-thickness compression. Lastly, we comment on some similarities between rolling textures of α-U, which has a c/a ratio of 1.734, and those that develop in hexagonal close packed metals with similarly high c/a ratios like Zn (1.856) and Cd (1.885) and are dominated by basal slip.« less
NASA Astrophysics Data System (ADS)
Sugimoto, Koh-ichi; Hojo, Tomohiko; Mizuno, Yuta
2018-02-01
The effects of fine particle peening conditions on the rotational bending fatigue strength of a vacuum-carburized transformation-induced plasticity-aided martensitic steel with a chemical composition of 0.20 pct C, 1.49 pct Si, 1.50 pct Mn, 0.99 pct Cr, 0.02 pct Mo, and 0.05 pct Nb were investigated for the fabrication of automotive drivetrain parts. The maximum fatigue limit, resulting from high hardness and compressive residual stress in the surface-hardened layer caused by the severe plastic deformation and the strain-induced martensite transformation of the retained austenite during fine particle peening, was obtained by fine particle peening at an arc height of 0.21 mm (N). The high fatigue limit was also a result of the increased martensite fraction and the active plastic relaxation via the strain-induced martensite transformation during fatigue deformation, as well as preferential crack initiation on the surface or at the subsurface.
Yao, Yifei; Lacroix, Damien; Mak, Arthur F T
2016-12-01
Muscle cells are frequently subjected to both mechanical and oxidative stresses in various physiological and pathological situations. To explore the mechanical mechanism of muscle cell damage under loading and oxidative stresses, we experimentally studied the effects of extrinsic hydrogen peroxides on the actin cytoskeletal structure in C2C12 myoblasts and presented a finite element (FE) analysis of how such changes in the actin cytoskeletal structure affected a myoblast's capability to resist damage under compression. A confocal-based cell-specific FE model was built to parametrically study the effects of stress fiber density, fiber cross-sectional area, fiber tensile prestrain, as well as the elastic moduli of the stress fibers, actin cortex, nucleus and cytoplasm. The results showed that a decrease in the elastic moduli of both the stress fibers and actin cortex could increase the average tensile strain on the actin cortex-membrane structure and reduce the apparent cell elastic modulus. Assuming the cell would die when a certain percentage of membrane elements were strained beyond a threshold, a lower elastic modulus of actin cytoskeleton would compromise the compressive resistance of a myoblast and lead to cell death more readily. This model was used with a Weibull distribution function to successfully describe the extent of myoblasts damaged in a monolayer under compression.
Effect of strain on the electronic structure and optical properties of germanium
NASA Astrophysics Data System (ADS)
Wen, Shumin; Zhao, Chunwang; Li, Jijun; Hou, Qingyu
2018-05-01
The effects of biaxial strain parallel to the (001) plane on the electronic structures and optical properties of Ge are calculated using the first-principles plane-wave pseudopotential method based on density functional theory. The screened-exchange local-density approximation function was used to obtain more reliable band structures, while strain was changed from ‑4% to +4%. The results show that the bandgap of Ge decreases with the increase of strain. Ge becomes a direct-bandgap semiconductor when the tensile strain reaches to 2%, which is in good agreement with the experimental results. The density of electron states of strained Ge becomes more localized. The tensile strain can increase the static dielectric constant distinctly, whereas the compressive strain can decrease the static dielectric constant slightly. The strain makes the absorption band edge move toward low energy. Both the tensile strain and compressive strain can significantly increase the reflectivity in the range from 7 eV to 14 eV. The tensile strain can decrease the optical conductivity, but the compressive strain can increase the optical conductivity significantly.
Dislocation-free strained silicon-on-silicon by in-place bonding
NASA Astrophysics Data System (ADS)
Cohen, G. M.; Mooney, P. M.; Paruchuri, V. K.; Hovel, H. J.
2005-06-01
In-place bonding is a technique where silicon-on-insulator (SOI) slabs are bonded by hydrophobic attraction to the underlying silicon substrate when the buried oxide is undercut in dilute HF. The bonding between the exposed surfaces of the SOI slab and the substrate propagates simultaneously with the buried oxide etching. As a result, the slabs maintain their registration and are referred to as "bonded in-place". We report the fabrication of dislocation-free strained silicon slabs from pseudomorphic trilayer Si/SiGe/SOI by in-place bonding. Removal of the buried oxide allows the compressively strained SiGe film to relax elastically and induce tensile strain in the top and bottom silicon films. The slabs remain bonded to the substrate by van der Waals forces when the wafer is dried. Subsequent annealing forms a covalent bond such that when the upper Si and the SiGe layer are removed, the bonded silicon slab remains strained.
NASA Astrophysics Data System (ADS)
Hosono, Masaki; Mitsui, Yuta; Ishibashi, Hidemi; Kataoka, Jun
2016-12-01
We discuss elastostatic effects on Mt. Fuji, the tallest volcano in Japan, due to historic earthquakes in Japan. The 1707 Hoei eruption, which was the most explosive historic eruption of Mt. Fuji, occurred 49 days after the Hoei earthquake (Mw 8.7) along the Nankai Trough. It was previously suggested that the Hoei earthquake induced compression of a basaltic magma reservoir and unclamping of a dike-intruded region at depth, possibly triggering magma mixing and the subsequent Plinian eruption. Here, we show that the 1707 Hoei earthquake was a special case of induced volumetric strain and normal stress changes around the magma reservoir and pathway of Mt. Fuji. The 2011 Tohoku earthquake (Mw 9), along the Japan Trench, dilated the magma reservoir. It has been proposed that dilation of a magma reservoir drives the ascent of gas bubbles with magma and further depressurization, leading to a volcanic eruption. In fact, seismicity notably increased around Mt. Fuji during the first month after the 2011 Tohoku earthquake, even when we statistically exclude aftershocks, but the small amount of strain change (< 1 μ strain) may have limited the ascent of magma. For many historic earthquakes, the magma reservoir was compressed and the magma pathway was wholly clamped. This type of interaction has little potential to mechanically trigger the deformation of a volcano. Thus, Mt. Fuji may be less susceptible to elastostatic effects because of its location relative to the sources of large tectonic earthquakes. As an exception, a possible local earthquake in the Fujikawa-kako fault zone could induce a large amount of magma reservoir dilation beneath the southern flank of Mt. Fuji.
Comparison of three methods of calculating strain in the mouse ulna in exogenous loading studies.
Norman, Stephanie C; Wagner, David W; Beaupre, Gary S; Castillo, Alesha B
2015-01-02
Axial compression of mouse limbs is commonly used to induce bone formation in a controlled, non-invasive manner. Determination of peak strains caused by loading is central to interpreting results. Load-strain calibration is typically performed using uniaxial strain gauges attached to the diaphyseal, periosteal surface of a small number of sacrificed animals. Strain is measured as the limb is loaded to a range of physiological loads known to be anabolic to bone. The load-strain relationship determined by this subgroup is then extrapolated to a larger group of experimental mice. This method of strain calculation requires the challenging process of strain gauging very small bones which is subject to variability in placement of the strain gauge. We previously developed a method to estimate animal-specific periosteal strain during axial ulnar loading using an image-based computational approach that does not require strain gauges. The purpose of this study was to compare the relationship between load-induced bone formation rates and periosteal strain at ulnar midshaft using three different methods to estimate strain: (A) Nominal strain values based solely on load-strain calibration; (B) Strains calculated from load-strain calibration, but scaled for differences in mid-shaft cross-sectional geometry among animals; and (C) An alternative image-based computational method for calculating strains based on beam theory and animal-specific bone geometry. Our results show that the alternative method (C) provides comparable correlation between strain and bone formation rates in the mouse ulna relative to the strain gauge-dependent methods (A and B), while avoiding the need to use strain gauges. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Genghong; Zhu, Jia; Jiang, Gelei
Piezoelectricity is closely related with the performance and application of piezoelectric devices. It is a crucial issue to understand its detailed fundamental for designing functional devices with more peculiar performances. Basing on the first principles simulations, the ZnO piezoelectric tunnel junction is taken as an example to systematically investigate its piezoelectricity (including the piezopotential energy, piezoelectric field, piezoelectric polarization and piezocharge) and explore their correlation. The comprehensive picture of the piezoelectricity in the ZnO tunnel junction is revealed at atomic scale and it is verified to be the intrinsic characteristic of ZnO barrier, independent of its terminated surface but dependentmore » on its c axis orientation and the applied strain. In the case of the ZnO c axis pointing from right to left, an in-plane compressive strain will induce piezocharges (and a piezopotential energy drop) with positive and negative signs (negative and positive signs) emerging respectively at the left and right terminated surfaces of the ZnO barrier. Meanwhile a piezoelectric polarization (and a piezoelectric field) pointing from right to left (from left to right) are also induced throughout the ZnO barrier. All these piezoelectric physical quantities would reverse when the applied strain switches from compressive to tensile. This study provides an atomic level insight into the fundamental behavior of the piezoelectricity of the piezoelectric tunnel junction and should have very useful information for future designs of piezoelectric devices.« less
Identification marking by means of laser peening
Hackel, Lloyd A.; Dane, C. Brent; Harris, Fritz
2002-01-01
The invention is a method and apparatus for marking components by inducing a shock wave on the surface that results in an indented (strained) layer and a residual compressive stress in the surface layer. One embodiment of the laser peenmarking system rapidly imprints, with single laser pulses, a complete identification code or three-dimensional pattern and leaves the surface in a state of deep residual compressive stress. A state of compressive stress in parts made of metal or other materials is highly desirable to make them resistant to fatigue failure and stress corrosion cracking. This process employs a laser peening system and beam spatial modulation hardware or imaging technology that can be setup to impress full three dimensional patterns into metal surfaces at the pulse rate of the laser, a rate that is at least an order of magnitude faster than competing marking technologies.
Physics of Shock Compression and Release: NEMD Simulations of Tantalum and Silicon
NASA Astrophysics Data System (ADS)
Hahn, Eric; Meyers, Marc; Zhao, Shiteng; Remington, Bruce; Bringa, Eduardo; Germann, Tim; Ravelo, Ramon; Hammerberg, James
2015-06-01
Shock compression and release allow us to evaluate physical deformation and damage mechanisms occurring in extreme environments. SPaSM and LAMMPS molecular dynamics codes were employed to simulate single and polycrystalline tantalum and silicon at strain rates above 108 s-1. Visualization and analysis was accomplished using OVITO, Crystal Analysis Tool, and a redesigned orientation imaging function implemented into SPaSM. A comparison between interatomic potentials for both Si and Ta (as pertaining to shock conditions) is conducted and the influence on phase transformation and plastic relaxation is discussed. Partial dislocations, shear induced disordering, and metastable phase changes are observed in compressed silicon. For tantalum, the role of grain boundary and twin intersections are evaluated for their role in ductile spallation. Finally, the temperature dependent response of both Ta and Si is investigated.
Process and application of shock compression by nanosecond pulses of frequency-doubled Nd:YAG laser
NASA Astrophysics Data System (ADS)
Sano, Yuji; Kimura, Motohiko; Mukai, Naruhiko; Yoda, Masaki; Obata, Minoru; Ogisu, Tatsuki
2000-02-01
The authors have developed a new process of laser-induced shock compression to introduce a residual compressive stress on material surface, which is effective for prevention of stress corrosion cracking (SCC) and enhancement of fatigue strength of metal materials. The process developed is unique and beneficial. It requires no pre-conditioning for the surface, whereas the conventional process requires that the so-called sacrificial layer is made to protect the surface from damage. The new process can be freely applied to water- immersed components, since it uses water-penetrable green light of a frequency-doubled Nd:YAG laser. The process developed has the potential to open up new high-power laser applications in manufacturing and maintenance technologies. The laser-induced shock compression process (LSP) can be used to improve a residual stress field from tensile to compressive. In order to understand the physics and optimize the process, the propagation of a shock wave generated by the impulse of laser irradiation and the dynamic response of the material were analyzed by time-dependent elasto-plastic calculations with a finite element program using laser-induced plasma pressure as an external load. The analysis shows that a permanent strain and a residual compressive stress remain after the passage of the shock wave with amplitude exceeding the yield strength of the material. A practical system materializing the LSP was designed, manufactured, and tested to confirm the applicability to core components of light water reactors (LWRs). The system accesses the target component and remotely irradiates laser pulses to the heat affected zone (HAZ) along weld lines. Various functional tests were conducted using a full-scale mockup facility, in which remote maintenance work in a reactor vessel could be simulated. The results showed that the system remotely accessed the target weld lines and successfully introduced a residual compressive stress. After sufficient training for operational personnel, the system was applied to the core shroud of an existing nuclear power plant.
Strain-dependent dynamic compressive properties of magnetorheological elastomeric foams
NASA Astrophysics Data System (ADS)
Wereley, Norman M.; Perez, Colette; Choi, Young T.
2018-05-01
This paper addresses the strain-dependent dynamic compressive properties (i.e., so-called Payne effect) of magnetorheological elastomeric foams (MREFs). Isotropic MREF samples (i.e., no oriented particle chain structures), fabricated in flat square shapes (nominal size of 26.5 mm x 26.5 mm x 9.5 mm) were synthesized by randomly dispersing micron-sized iron oxide particles (Fe3O4) into a liquid silicone foam in the absence of magnetic field. Five different Fe3O4 particle concentrations of 0, 2.5, 5.0, 7.5, and 10 percent by volume fraction (hereinafter denoted as vol%) were used to investigate the effect of particle concentration on the dynamic compressive properties of the MREFs. The MREFs were sandwiched between two multi-pole flexible plate magnets in order to activate the magnetorheological (MR) strengthening effect. Under two different pre-compression conditions (i.e., 35% and 50%), the dynamic compressive stresses of the MREFs with respect to dynamic strain amplitudes (i.e., 1%-10%) were measured by using a servo-hydraulic testing machine. The complex modulus (i.e., storage modulus and loss modulus) and loss factors of the MREFs with respect to dynamic strain amplitudes were presented as performance indices to evaluate their strain-dependent dynamic compressive behavior.
Geodetic Measurement of Deformation East of the San Andreas Fault in Central California
NASA Technical Reports Server (NTRS)
Sauber, Jeanne M.; Lisowski, Michael; Solomon, Sean C.
1988-01-01
Triangulation and trilateration data from two geodetic networks located between the western edge of the Great Valley and the San Andreas fault have been used to calculate shear strain rates in the Diablo Range and to estimate the slip rate along the Calaveras and Paicines faults in Central California. Within the Diablo Range the average shear strain rate was determined for the time period between 1962 and 1982 to be 0.15 + or - 0.08 microrad/yr, with the orientation of the most compressive strain at N 16 deg E + or - 14 deg. The orientation of the principal compressive strain predicted from the azimuth of the major structures in the region is N 25 deg E. It is inferred that the measured strain is due to compression across the folds of this area: the average shear straining corresponds to a relative shortening rate of 4.5 + or - 2.4 mm/yr. From an examination of wellbore breakout orientations and the azimuths of P-axes from earthquake focal mechanisms the inferred orientation of maximum compressive stress was found to be similar to the direction of maximum compressive strain implied by the trend of local fold structures. Results do not support the hypothesis of uniform fault-normal compression within the Coast Ranges. From trilateration measurements made between 1972 and 1987 on lines that are within 10 km of the San Andreas fault, a slip rate of 10 to 12 mm/yr was calculated for the Calaveras-Paicines fault south of Hollister. The slip rate of the Paicines fault decreases to 4 mm/yr near Bitter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Cun; Ren, Yang; Cui, Lishan
Under high pressure, materials usually shrink during compression as described by an equation of state. Here, we present the anomalous volume expansion behavior of a one-dimensional Nb nanowire embedded in a NiTi transforming matrix, while the matrix undergoes a pressure-induced martensitic transformation. The Nb volume expansion depends on the NiTi transition pressure range from the matrix, which is controlled by the shear strain induced by different pressure transmitting media. The transformation-induced interfacial stresses between Nb and NiTi may play a major role in this anomaly. In conclusion, our discovery sheds new light on the nano-interfacial effect on mechanical anomalies inmore » heterogeneous systems during a pressure-induced phase transition.« less
Stress-state effects on the stress-induced martensitic transformation of carburized 4320 steels
NASA Astrophysics Data System (ADS)
Karaman, I.; Balzer, M.; Sehitoglu, Huseyin; Maier, H. J.
1998-02-01
The effect of different stress states on the stress-induced martensitic transformation of retained austenite was investigated in carburized 4320 steels with an initial retained austenite content of 15 pct. Experiments were conducted utilizing a specialized pressure rig and comparison between stress-strain behaviors of specimens with different austenitization and tempering histories was performed under these stress states. Experimental results indicated considerable asymmetry between tension and compression, with triaxial stress states resulting in the highest strength levels for the untempered material. Fine carbide precipitates due to low-temperature tempering increased the strength and ductility of the specimens and also changed the austenite-to-martensite transformation behavior. Numerical simulations of stress-strain behaviors under different stress states were obtained, with an existing micromechanical self-consistent framework utilizing the crystallographic theory of austenite/martensite transformation and the minimum complementary free-energy principle. The model was modified for carburized steels upon microstructural investigation and predicted the same trends in effective stress-effective strain behavior as observed experimentally.
Dvorak, J.J.; Okamura, A.T.; English, T.T.; Koyanagi, R.Y.; Nakata, J.S.; Sako, M.K.; Tanigawa, W.T.; Yamashita, K.M.
1986-01-01
Increased earthquake activity and compression of the south flank of Kilauea volcano, Hawaii, have been recognized by previous investigators to accompany rift intrusions. We further detail the temporal and spatial changes in earthquake rates and ground strain along the south flank induced by six major rift intrusions which occurred between December 1971 and January 1981. The seismic response of the south flank to individual rift intrusions is immediate; the increased rate of earthquake activity lasts from 1 to 4 weeks. Horizontal strain measurements indicate that compression of the south flank usually accompanies rift intrusions and eruptions. Emplacement of an intrusion at a depth greater than about 4 km, such as the June 1982 southwest rift intrusion, however, results in a slight extension of the subaerial portion of the south flank. Horizontal strain measurements along the south flank are used to locate the January 1983 east-rift intrusion, which resulted in eruptive activity. The intrusion is modeled as a vertical rectangular sheet with constant displacement perpendicular to the plane of the sheet. This model suggests that the intrusive body that compressed the south flank in January 1983 extended from the surface to about 2.4 km depth, and was aligned along a strike of N66??E. The intrusion is approximately 11 km in length, extended beyond the January 1983 eruptive fissures, which are 8 km in length and is contained within the 14-km-long region of shallow rift earthquakes. ?? 1986.
Lin, Zhiqiang; Gui, Xuchun; Gan, Qiming; Chen, Wenjun; Cheng, Xiaoping; Liu, Ming; Zhu, Yuan; Yang, Yanbing; Cao, Anyuan; Tang, Zikang
2015-01-01
Carbon nanotube (CNT) and graphene-based sponges and aerogels have an isotropic porous structure and their mechanical strength and stability are relatively lower. Here, we present a junction-welding approach to fabricate porous CNT solids in which all CNTs are coated and welded in situ by an amorphous carbon layer, forming an integral three-dimensional scaffold with fixed joints. The resulting CNT solids are robust, yet still highly porous and compressible, with compressive strengths up to 72 MPa, flexural strengths up to 33 MPa, and fatigue resistance (recovery after 100,000 large-strain compression cycles at high frequency). Significant enhancement of mechanical properties is attributed to the welding-induced interconnection and reinforcement of structural units, and synergistic effects stemming from the core-shell microstructures consisting of a flexible CNT framework and a rigid amorphous carbon shell. Our results provide a simple and effective method to manufacture high-strength porous materials by nanoscale welding. PMID:26067176
Lin, Zhiqiang; Gui, Xuchun; Gan, Qiming; Chen, Wenjun; Cheng, Xiaoping; Liu, Ming; Zhu, Yuan; Yang, Yanbing; Cao, Anyuan; Tang, Zikang
2015-06-11
Carbon nanotube (CNT) and graphene-based sponges and aerogels have an isotropic porous structure and their mechanical strength and stability are relatively lower. Here, we present a junction-welding approach to fabricate porous CNT solids in which all CNTs are coated and welded in situ by an amorphous carbon layer, forming an integral three-dimensional scaffold with fixed joints. The resulting CNT solids are robust, yet still highly porous and compressible, with compressive strengths up to 72 MPa, flexural strengths up to 33 MPa, and fatigue resistance (recovery after 100,000 large-strain compression cycles at high frequency). Significant enhancement of mechanical properties is attributed to the welding-induced interconnection and reinforcement of structural units, and synergistic effects stemming from the core-shell microstructures consisting of a flexible CNT framework and a rigid amorphous carbon shell. Our results provide a simple and effective method to manufacture high-strength porous materials by nanoscale welding.
NASA Astrophysics Data System (ADS)
Lin, Zhiqiang; Gui, Xuchun; Gan, Qiming; Chen, Wenjun; Cheng, Xiaoping; Liu, Ming; Zhu, Yuan; Yang, Yanbing; Cao, Anyuan; Tang, Zikang
2015-06-01
Carbon nanotube (CNT) and graphene-based sponges and aerogels have an isotropic porous structure and their mechanical strength and stability are relatively lower. Here, we present a junction-welding approach to fabricate porous CNT solids in which all CNTs are coated and welded in situ by an amorphous carbon layer, forming an integral three-dimensional scaffold with fixed joints. The resulting CNT solids are robust, yet still highly porous and compressible, with compressive strengths up to 72 MPa, flexural strengths up to 33 MPa, and fatigue resistance (recovery after 100,000 large-strain compression cycles at high frequency). Significant enhancement of mechanical properties is attributed to the welding-induced interconnection and reinforcement of structural units, and synergistic effects stemming from the core-shell microstructures consisting of a flexible CNT framework and a rigid amorphous carbon shell. Our results provide a simple and effective method to manufacture high-strength porous materials by nanoscale welding.
Effect of pre-straining on the evolution of material anisotropy in rolled magnesium alloy AZ31 sheet
NASA Astrophysics Data System (ADS)
Qiao, H.; Guo, X. Q.; Wu, P. D.
2013-12-01
The large strain Elastic Visco-Plastic Self-Consistent (EVPSC) model and the recently developed Twinning and De-Twinning (TDT) model are applied to study the mechanical behavior of rolled magnesium alloy AZ31 sheet. Three different specimen orientations with tilt angles of 0°, 45° and 90° between the rolling direction and longitudinal specimen axis are used to study the mechanical anisotropy under both uniaxial tension and compression. The effect of pre-strain in uniaxial compression along the rolling direction on subsequent uniaxial tension/compression along the three directions is also investigated. It is demonstrated that the twinning during pre-strain in compression and the detwinning in the subsequent deformation have a significant influence on the mechanical anisotropy. Numerical results are in good agreement with the experimental observations found in the literature.
Mechanical Properties of Shock-Damaged Rocks
NASA Technical Reports Server (NTRS)
He, Hongliang; Ahrens, T. J.
1994-01-01
Stress-strain tests were performed both on shock-damaged gabbro and limestone. The effective Young's modulus decreases with increasing initial damage parameter value, and an apparent work-softening process occurs prior to failure. To further characterize shock-induced microcracks, the longitudinal elastic wave velocity behavior of shock-damaged gabbro in the direction of compression up to failure was measured using an acoustic transmission technique under uniaxial loading. A dramatic increase in velocity was observed for the static compressive stress range of 0-50 MPa. Above that stress range, the velocity behavior of lightly damaged (D(sub 0) less than 0.1) gabbro is almost equal to unshocked gabbro. The failure strength of heavily-damaged (D(sub 0) greater than 0.1) gabbro is approx. 100-150 MPa, much lower than that of lightly damaged and unshocked gabbros (approx. 230-260 MPa). Following Nur's theory, the crack shape distribution was analyzed. The shock-induced cracks in gabbro appear to be largely thin penny-shaped cracks with c/a values below 5 x 10(exp -4). Moreover, the applicability of Ashby and Sammis's theory relating failure strength and damage parameter of shock-damaged rocks was examined and was found to yield a good estimate of the relation of shock-induced deficit in elastic modulus with the deficit in compressive strength.
Improved strength and durability of concrete through metabolic activity of ureolytic bacteria.
Alonso, Maria Jose Castro; Ortiz, Carlos Eloir Lopez; Perez, Sixto Omar Garcia; Narayanasamy, Rajeswari; Fajardo San Miguel, Gerardo Del Jesús; Hernández, Héctor Herrera; Balagurusamy, Nagamani
2017-06-07
In recent years, biomineralization process is being employed in development of bioconcrete, which is emerging as a sustainable method to enhance the durability of concrete by way of increasing compressive strength and reducing the chloride permeability. In this study, different bacterial strains isolated from the soils of the Laguna Region of Mexico were selected for further study. ACRN5 strain demonstrated higher urease activity than other strains, and the optimum substrate concentration, pH, and temperature were 120 mM, pH 8, and 25 °C, respectively. Further, Km and Vmax of urease activity of ACRN5 were 21.38 mM and 0.212 mM min -1 , respectively. It was observed that addition of ACRN5 at 10 5 cells ml -1 to cement-water mixture significantly increased (14.94%) in compressive strength after 36 days of curing and reduced chloride penetration. Deposition of calcite in bio-mortars was observed in scanning electron microscopy and energy dispersive X-ray diffraction spectrometry analyses. Results of this study demonstrated the role of microbially induced calcium carbonate precipitation in improving the physico-mechanical properties of bio-mortars.
Hot deformation behavior of uniform fine-grained GH4720Li alloy based on its processing map
NASA Astrophysics Data System (ADS)
Yu, Qiu-ying; Yao, Zhi-hao; Dong, Jian-xin
2016-01-01
The hot deformation behavior of uniform fine-grained GH4720Li alloy was studied in the temperature range from 1040 to 1130°C and the strain-rate range from 0.005 to 0.5 s-1 using hot compression testing. Processing maps were constructed on the basis of compression data and a dynamic materials model. Considerable flow softening associated with superplasticity was observed at strain rates of 0.01 s-1 or lower. According to the processing map and observations of the microstructure, the uniform fine-grained microstructure remains intact at 1100°C or lower because of easily activated dynamic recrystallization (DRX), whereas obvious grain growth is observed at 1130°C. Metallurgical instabilities in the form of non-uniform microstructures under higher and lower Zener-Hollomon parameters are induced by local plastic flow and primary γ' local faster dissolution, respectively. The optimum processing conditions at all of the investigated strains are proposed as 1090-1130°C with 0.08-0.5 s-1 and 0.005-0.008 s-1 and 1040-1085°C with 0.005-0.06 s-1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glazer, Matthew P. B.; Wang, Junjie; Cho, Jiung
Volume changes associated with the (de)lithiation of a nanostructured Ni 3Sn 2 coated nickel inverse opal scaffold anode create mismatch stresses and strains between the Ni 3Sn 2 anode material and its mechanically supporting Ni scaffold. By using in operando synchrotron x-ray diffraction measurements, elastic strains in the Ni scaffold are determined during cyclic (dis)charging of the Ni 3Sn 2 anode. These strains are characterized using both the center position of the Ni diffraction peaks, to quantify the average strain, and the peak breadth, which describes the distribution of strain in the measured volume. Upon lithiation (half-cell discharging) or delithiationmore » (half-cell charging), compressive strains and peak breadth linearly increase or decrease, respectively, with charge. The evolution of the average strains and peak breadths suggests that some irreversible plastic deformation and/or delamination occurs during cycling, which can result in capacity fade in the anode. The strain behavior associated with cycling of the Ni 3Sn 2 anode is similar to that observed in recent studies on a Ni inverse-opal supported amorphous Si anode and demonstrates that the (de)lithiation-induced deformation and damage mechanisms are likely equivalent in both anodes, even though the magnitude of mismatch strain in the Ni 3Sn 2 is lower due to the lower (de)lithiation-induced contraction/expansion.« less
Glazer, Matthew P. B.; Wang, Junjie; Cho, Jiung; ...
2017-11-01
Volume changes associated with the (de)lithiation of a nanostructured Ni 3Sn 2 coated nickel inverse opal scaffold anode create mismatch stresses and strains between the Ni 3Sn 2 anode material and its mechanically supporting Ni scaffold. By using in operando synchrotron x-ray diffraction measurements, elastic strains in the Ni scaffold are determined during cyclic (dis)charging of the Ni 3Sn 2 anode. These strains are characterized using both the center position of the Ni diffraction peaks, to quantify the average strain, and the peak breadth, which describes the distribution of strain in the measured volume. Upon lithiation (half-cell discharging) or delithiationmore » (half-cell charging), compressive strains and peak breadth linearly increase or decrease, respectively, with charge. The evolution of the average strains and peak breadths suggests that some irreversible plastic deformation and/or delamination occurs during cycling, which can result in capacity fade in the anode. The strain behavior associated with cycling of the Ni 3Sn 2 anode is similar to that observed in recent studies on a Ni inverse-opal supported amorphous Si anode and demonstrates that the (de)lithiation-induced deformation and damage mechanisms are likely equivalent in both anodes, even though the magnitude of mismatch strain in the Ni 3Sn 2 is lower due to the lower (de)lithiation-induced contraction/expansion.« less
Elastocaloric cooling of additive manufactured shape memory alloys with large latent heat
Hou, Huilong; Simsek, Emrah; Stasak, Drew; ...
2017-08-11
The stress-induced martensitic phase transformation of shape memory alloys (SMAs) is the basis for elastocaloric cooling. In this paper, we employ additive manufacturing to fabricate TiNi SMAs, and demonstrate compressive elastocaloric cooling in the TiNi rods with transformation latent heat as large as 20 J g -1. Adiabatic compression on as-fabricated TiNi displays cooling ΔT as high as -7.5 °C with recoverable superelastic strain up to 5%. Unlike conventional SMAs, additive manufactured TiNi SMAs exhibit linear superelasticity with narrow hysteresis in stress–strain curves under both adiabatic and isothermal conditions. Microstructurally, we find that there are Ti 2Ni precipitates typically onemore » micron in size with a large aspect ratio enclosing the TiNi matrix. Finally, a stress transfer mechanism between reversible phase transformation in the TiNi matrix and mechanical deformation in Ti 2Ni precipitates is believed to be the origin of the unique superelasticity behavior.« less
NASA Astrophysics Data System (ADS)
Zhao, Cong; Xiao, Jun; Li, Yong; Chu, Qiyi; Xu, Ting; Wang, Bendong
2017-12-01
As one of the most common process induced defects of automated fiber placement, in-plane fiber waviness and its influences on mechanical properties of fiber reinforced composite lack experimental studies. In this paper, a new approach to prepare the test specimen with in-plane fiber waviness is proposed in consideration of the mismatch between the current test standard and actual fiber trajectory. Based on the generation mechanism of in-plane fiber waviness during automated fiber placement, the magnitude of in-plane fiber waviness is characterized by axial compressive strain of prepreg tow. The elastic constants and tensile strength of unidirectional laminates with in-plane fiber waviness are calculated by off-axis and maximum stress theory. Experimental results show that the tensile properties infade dramatically with increasing magnitude of the waviness, in good agreement with theoretical analyses. When prepreg tow compressive strain reaches 1.2%, the longitudinal tensile modulus and strength of unidirectional laminate decreased by 25.5% and 57.7%, respectively.
Liang, Fenglin; Sauceau, Martial; Dusserre, Gilles; Arlabosse, Patricia
2017-04-15
The mechanically dewatered sewage sludge with total solid content around 20% on a weight basis is very similar to yield stress fluid, its complex transition between solid and fluid states is not perfectly reversible and especially challenging in terms of pumping, land spreading and drying. To characterize the rheological and textural properties of highly concentrated sludge, a specific methodology based on uniaxial single and cyclic compression tests is developed. Three types of sludge samples (fresh original, fresh premixed and aged original ones) are extruded into cylinders and pressed between two parallel plates using a material testing machine. In single compression, the bioyield point beyond which the sludge fractures is around 7.3 kPa with true strain equal to 0.21. The cyclic compression tests reveal that the sludge behaves as a viscoelastic body when the true strain is smaller than 0.05 and as a visco-elasto-plastic once exceeding the yield stress. The elastic module is around 78 kPa; the viscosity is deduced, in the order of magnitude 10 4 -10 5 Pa·s and the yield stress is estimated about 4 kPa. In the unloading phase, the sludge behaves again as a viscoelastic body with clear hysteresis. With the increase of compression speed, the viscosity declines, which confirms that the sludge is a shear-thinning material. The yield stress and the bioyield increase with compression speed, but it does not induce extra internal damage in the samples since the resilience and the cohesiveness are unaltered. The reliability and sensitivity of the method is justified by highlighting the changes of sludge behavior due to aging and premixing effects: both decrease the strain energy density, but do aggravate the adhesiveness of the sludge; the aging makes the sludge less cohesive, while the premixing does not modify its cohesiveness. In spite of changes in test conditions, the elastic module of sludge samples remains unchanged. Copyright © 2017 Elsevier Ltd. All rights reserved.
Modeling Strain Rate Effect of Heterogeneous Materials Using SPH Method
NASA Astrophysics Data System (ADS)
Ma, G. W.; Wang, X. J.; Li, Q. M.
2010-11-01
The strain rate effect on the dynamic compressive failure of heterogeneous material based on the smoothed particle hydrodynamics (SPH) method is studied. The SPH method employs a rate-insensitive elasto-plastic damage model incorporated with a Weibull distribution law to reflect the mechanical behavior of heterogeneous rock-like materials. A series of simulations are performed for heterogeneous specimens by applying axial velocity conditions, which induce different strain-rate loadings to the specimen. A detailed failure process of the specimens in terms of microscopic crack-activities and the macro-mechanical response are discussed. Failure mechanisms between the low and high strain rate cases are compared. The result shows that the strain-rate effects on the rock strength are mainly caused by the changing internal pressure due to the inertial effects as well as the material heterogeneity. It also demonstrates that the inertial effect becomes significant only when the induced strain rate exceeds a threshold, below which, the dynamic strength enhancement can be explained due to the heterogeneities in the material. It also shows that the dynamic strength is affected more significantly for a relatively more heterogeneous specimen, which coincides with the experimental results showing that the poor quality specimen had a relatively larger increase in the dynamic strength.
Matsunaga, Masahiro; Higuchi, Ayaka; He, Guanchen; Yamada, Tetsushi; Krüger, Peter; Ochiai, Yuichi; Gong, Yongji; Vajtai, Robert; Ajayan, Pulickel M; Bird, Jonathan P; Aoki, Nobuyuki
2016-10-05
Utilizing an innovative combination of scanning-probe and spectroscopic techniques, supported by first-principles calculations, we demonstrate how electron-beam exposure of field-effect transistors, implemented from ultrathin molybdenum disulfide (MoS 2 ), may cause nanoscale structural modifications that in turn significantly modify the electrical operation of these devices. Quite surprisingly, these modifications are induced by even the relatively low electron doses used in conventional electron-beam lithography, which are found to induce compressive strain in the atomically thin MoS 2 . Likely arising from sulfur-vacancy formation in the exposed regions, the strain gives rise to a local widening of the MoS 2 bandgap, an idea that is supported both by our experiment and by the results of first-principles calculations. A nanoscale potential barrier develops at the boundary between exposed and unexposed regions and may cause extrinsic variations in the resulting electrical characteristics exhibited by the transistor. The widespread use of electron-beam lithography in nanofabrication implies that the presence of such strain must be carefully considered when seeking to harness the potential of atomically thin transistors. At the same time, this work also promises the possibility of exploiting the strain as a means to achieve "bandstructure engineering" in such devices.
Dynamic compressive behavior of Pr-Nd alloy at high strain rates and temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Huanran; Cai Canyuan; Chen Danian
2012-07-01
Based on compressive tests, static on 810 material test system and dynamic on the first compressive loading in split Hopkinson pressure bar (SHPB) tests for Pr-Nd alloy cylinder specimens at high strain rates and temperatures, this study determined a J-C type [G. R. Johnson and W. H. Cook, in Proceedings of Seventh International Symposium on Ballistics (The Hague, The Netherlands, 1983), pp. 541-547] compressive constitutive equation of Pr-Nd alloy. It was recorded by a high speed camera that the Pr-Nd alloy cylinder specimens fractured during the first compressive loading in SHPB tests at high strain rates and temperatures. From highmore » speed camera images, the critical strains of the dynamic shearing instability for Pr-Nd alloy in SHPB tests were determined, which were consistent with that estimated by using Batra and Wei's dynamic shearing instability criterion [R. C. Batra and Z. G. Wei, Int. J. Impact Eng. 34, 448 (2007)] and the determined compressive constitutive equation of Pr-Nd alloy. The transmitted and reflected pulses of SHPB tests for Pr-Nd alloy cylinder specimens computed with the determined compressive constitutive equation of Pr-Nd alloy and Batra and Wei's dynamic shearing instability criterion could be consistent with the experimental data. The fractured Pr-Nd alloy cylinder specimens of compressive tests were investigated by using 3D supper depth digital microscope and scanning electron microscope.« less
Method for enhancing the solubility of dopants in silicon
Sadigh, Babak; Lenosky, Thomas J.; De La Rubia, Tomas Diaz
2003-09-30
A method for enhancing the equilibrium solid solubility of dopants in silicon, germanium and silicon-germanium alloys. The method involves subjecting silicon-based substrate to biaxial or compression strain. It has been determined that boron solubility was largely enhanced (more than 100%) by a compressive bi-axial strain, based on a size-mismatch theory since the boron atoms are smaller than the silicon atoms. It has been found that the large enhancement or mixing properties of dopants in silicon and germanium substrates is primarily governed by their, and to second order by their size-mismatch with the substrate. Further, it has been determined that the dopant solubility enhancement with strain is most effective when the charge and the size-mismatch of the impurity favor the same type of strain. Thus, the solid solubility of small p-type (e.g., boron) as well as large n-type (e.g., arsenic) dopants can be raised most dramatically by appropriate bi-axial (compressive) strain, and that solubility of a large p-type dopant (e.g, indium) in silicon will be raised due to size-mismatch with silicon, which favors tensile strain, while its negative charge prefers compressive strain, and thus the two effects counteract each other.
Compressive Behavior of Fiber-Reinforced Concrete with End-Hooked Steel Fibers
Lee, Seong-Cheol; Oh, Joung-Hwan; Cho, Jae-Yeol
2015-01-01
In this paper, the compressive behavior of fiber-reinforced concrete with end-hooked steel fibers has been investigated through a uniaxial compression test in which the variables were concrete compressive strength, fiber volumetric ratio, and fiber aspect ratio (length to diameter). In order to minimize the effect of specimen size on fiber distribution, 48 cylinder specimens 150 mm in diameter and 300 mm in height were prepared and then subjected to uniaxial compression. From the test results, it was shown that steel fiber-reinforced concrete (SFRC) specimens exhibited ductile behavior after reaching their compressive strength. It was also shown that the strain at the compressive strength generally increased along with an increase in the fiber volumetric ratio and fiber aspect ratio, while the elastic modulus decreased. With consideration for the effect of steel fibers, a model for the stress–strain relationship of SFRC under compression is proposed here. Simple formulae to predict the strain at the compressive strength and the elastic modulus of SFRC were developed as well. The proposed model and formulae will be useful for realistic predictions of the structural behavior of SFRC members or structures. PMID:28788011
Cravens, Matthew G; Behn, Anthony W; Dragoo, Jason L
2017-11-01
Fibrin glues are widely used in orthopedic surgery as adhesives and hemostatic agents. We evaluated the compressive properties of selected fibrin glues in order to identify which are appropriate for tissue regeneration applications subject to compression. Uniaxial unconfined compression tests were performed on fibrin gels prepared from commercial and autologous products: (1) Evicel (Ethicon), (2) Tisseel (Baxter), (3) Angel (Arthrex), and (4) ProPlaz (Biorich). Cyclic loads were applied from 0 to 30% strain for 100cycles at 0.5Hz. Following cyclic testing, specimens were subjected to ramp displacement of 1% strain per second to 80% strain. Throughout cyclic loading, Evicel and Tisseel deformed (shortened) less than Angel at all but one time point, and deformed less than ProPlaz at cycles 10 and 20. The dynamic moduli, peak stress, and strain energy were significantly greater in Tisseel than all other groups. Evicel displayed significantly greater dynamic moduli, peak stress, and strain energy than Angel and ProPlaz. Following cyclic testing, Tisseel and Evicel were significantly less deformed than Angel. No specimens exhibited gross failure during ramp loading to 80% strain. Ramp loading trends mirrored those of cyclic loading. The tested commercial glues were significantly more resistant to compression than the autologous products. The compressive properties of Tisseel were approximately twice those of Evicel. All preparations displayed moduli multiple orders of magnitude less than that of native articular cartilage. We conclude that in knee surgeries requiring fibrin glue to undergo compression of daily activity, commercial products are preferable to autologous preparations from platelet-poor plasma, though both will deform significantly. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Zongbin; Zhang, Yudong; Esling, Claude; Gan, Weimin; Zou, Naifu; Zhao, Xiang; Zuo, Liang
2014-07-01
The influences of uniaxial compressive stress on martensitic transformation were studied on a polycrystalline Ni-Mn-Ga bulk alloy prepared by directional solidification. Based upon the integrated in-situ neutron diffraction measurements, direct experimental evidence was obtained on the variant redistribution of seven-layered modulated (7M) martensite, triggered by external uniaxial compression during martensitic transformation. Large anisotropic lattice strain, induced by the cyclic thermo-mechanical treatment, has led to the microstructure modification by forming martensitic variants with a strong ⟨0 1 0⟩7M preferential orientation along the loading axis. As a result, the saturation of magnetization became easier to be reached.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zongbin; Zou, Naifu; Zhao, Xiang
2014-07-14
The influences of uniaxial compressive stress on martensitic transformation were studied on a polycrystalline Ni-Mn-Ga bulk alloy prepared by directional solidification. Based upon the integrated in-situ neutron diffraction measurements, direct experimental evidence was obtained on the variant redistribution of seven-layered modulated (7M) martensite, triggered by external uniaxial compression during martensitic transformation. Large anisotropic lattice strain, induced by the cyclic thermo-mechanical treatment, has led to the microstructure modification by forming martensitic variants with a strong 〈0 1 0〉{sub 7M} preferential orientation along the loading axis. As a result, the saturation of magnetization became easier to be reached.
Investigation of the Constitutive Model Used in Nonlinear, Incremental Structural Analyses.
1998-06-01
package, ABAQUS , was chosen for performing NISA studies in part because user supplied subroutines could be used for constitutive relationships. After a...loading and the shrinkage and thermally induced strains determined from control specimens. The majority of creep tests are uniaxial compressive tests...Kennedy, and Perry (1970). Description of FE Model The tests were simulated using the finite element (FE) program ABAQUS and the aging viscoelastic
Regulation of oxygen vacancy types on SnO{sub 2} (110) surface by external strain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Z. H.; Min, Y. M.; Liu, X. X.
2016-05-15
In tin dioxide nanostructures, oxygen vacancies (OVs) play an important role in their optical properties and thus regulation of both OV concentration and type via external strain is crucial to exploration of more applications. First-principle calculations of SnO{sub 2} (110) surface disclose that asymmetric deformations induced by external strain not only lead to its intrinsic surface elastic changes, but also result in different OV formation energy. In the absence of external strain, the energetically favorable oxygen vacancies(EFOV) appear in the bridging site of second layer. When -3.5% external strain is applied along y direction, the EFOV moves into plane site.more » This can be ascribed that the compressed deformation gives rise to redistribution of electronic wave function near OVs, therefore, formation of newly bond structures. Our results suggest that different type OVs in SnO{sub 2} surface can be controlled by strain engineering.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pramanick, Abhijit; An, Ke; Stoica, Alexandru Dan
2011-01-01
Twin variant reorientation in single crystal Ni-Mn-Ga during quasi-static mechanical compression was studied using in-situ neutron diffraction. The volume fraction of reoriented twin variants for different stress amplitudes were obtained from the changes in integrated intensities of high-order neutron diffraction peaks. It is shown that during compressive loading, ~85% of the twins were reoriented parallel to the loading direction resulting in a maximum macroscopic strain of ~5.5%, which is in agreement with measured macroscopic strain.
Exchange bias induced by the fully strained La{sub 2/3}Ca{sub 1/3}MnO{sub 3} dead layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Q. Y.; College of Electronic Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210046; Wu, X. S., E-mail: xswu@nju.edu.cn
A pure compressively strained La{sub 2/3}Ca{sub 1/3}MnO{sub 3} (LCMO) dead layer grown on (001)-oriented LaAlO{sub 3} substrate can show all the rich phenomenon of large bias field shift, coercive field enhancement, and high blocking temperature. The obtained exchange bias field (∼350 Oe) and the enhanced coercivity of about 1160 Oe at 5 K under 500 Oe cooling field are superior to that have been reported in LCMO-based ferromagnetic/antiferromagnetic superlattices or nanoscale systems. Our results clearly demonstrate that the inhomogeneous magnetic dead layer of LCMO can induce a strong exchange bias effect, which may be exploited as a very simple structure for spin-valve device application.
Measurement of the through thickness compression of a battery separator
NASA Astrophysics Data System (ADS)
Yan, Shutian; Huang, Xiaosong; Xiao, Xinran
2018-04-01
The mechanical integrity of the separator is critical to the reliable operation of a battery. Due to its minimal thickness, compression experiments with a single/a few layers of separator are difficult to perform. In this work, a capacitance based displacement set-up has been developed for the measurement of the through thickness direction (TTD) compression stress-strain behavior of the separator and the investigation of its interaction with the electrode. The experiments were performed for a stack of two layers of Celgard 2400 separator, NMC cathode, and separator/NMC cathode/separator stack in both dry and wet (i.e. submersed in dimethyl carbonate DMC) conditions. The experimental results reveal that the separator compression modulus can be significantly affected by the presence of DMC. The iso-stress based rule of mixtures was used to compute the compressive stress-strain curve for the stack from that of the separator and NMC layer. The computed curve agreed with the experimental curve reasonably well up to about 0.16 strain but deviated significantly to a softer response at higher strains. The results suggest that, in the stack, the TTD compressive deformation of the separator is influenced by the NMC cathode.
Roignant, Jeanne; Badel, Éric; Leblanc-Fournier, Nathalie; Brunel-Michac, Nicole; Ruelle, Julien; Moulia, Bruno; Decourteix, Mélanie
2018-05-11
Trees constantly experience wind, perceive resulting mechanical cues, and modify their growth and development accordingly. Previous studies have demonstrated that multiple bending treatments trigger ovalization of the stem and the formation of flexure wood in gymnosperms, but ovalization and flexure wood have rarely been studied in angiosperms, and none of the experiments conducted so far has used multidirectional bending treatments at controlled intensities. Assuming that bending involves tensile and compressive strain, we hypothesized that different local strains may generate specific growth and wood differentiation responses. Basal parts of young poplar stems were subjected to multiple transient controlled unidirectional bending treatments during 8 weeks, which enabled a distinction to be made between the wood formed under tensile or compressive flexural strains. This set-up enabled a local analysis of poplar stem responses to multiple stem bending treatments at growth, anatomical, biochemical and molecular levels. In response to multiple unidirectional bending treatments, poplar stems developed significant cross-sectional ovalization. At the tissue level, some aspects of wood differentiation were similarly modulated in the compressed and stretched zones (vessel frequency and diameter of fibres without a G-layer), whereas other anatomical traits (vessel diameter, G-layer formation, diameter of fibres with a G-layer and microfibril angle) and the expression of fasciclin-encoding genes were differentially modulated in the two zones. This work leads us to propose new terminologies to distinguish the 'flexure wood' produced in response to multiple bidirectional bending treatments from wood produced under transient tensile strain (tensile flexure wood; TFW) or under transient compressive strain (compressive flexure wood; CFW). By highlighting similarities and differences between tension wood and TFW and by demonstrating that plants could have the ability to discriminate positive strains from negative strains, this work provides new insight into the mechanisms of mechanosensitivity in plants.
Macroscopic strain controlled ion current in an elastomeric microchannel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuo, Chin-Chang; Nguyen, Du; Buchsbaum, Steven
We report on the fabrication of an ultra-high aspect ratio ionically conductive single microchannel with tunable diameter from ≈ 20 μm to fully closed. The 4 mm-long channel is fabricated in a Polydimethylsiloxane (PDMS) mold and its cross-sectional area is controlled by applying macroscopic compressive strain to the mold in a direction perpendicular to the channel length. We investigated the ionic conduction properties of the channel. For a wide range of compressive strain up to ≈ 0.27, the strain dependence of the resistance is monotonic and fully reversible. For strain > 0.27, ionic conduction suddenly shuts off and the system becomes hystereticmore » (whereby a finite strain reduction is required to reopen the channel). Upon unloading, the original behavior is retrieved. This reversible behavior is observed over 200 compression cycles. The cross-sectional area of the channel can be inferred from the ion current measurement, as confirmed by a Nano-Computed Tomography investigation. We show that the cross-sectional area decreases monotonically with the applied compressive strain in the reversible range, in qualitative agreement with linear elasticity theory. We find that the shut-off strain is affected by the spatial extent of the applied strain, which provides additional tunability. Our tunable channel is well-suited for multiple applications in micro/nano-fluidic devices.« less
Compressive behavior of fine sand.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Bradley E.; Kabir, Md. E.; Song, Bo
2010-04-01
The compressive mechanical response of fine sand is experimentally investigated. The strain rate, initial density, stress state, and moisture level are systematically varied. A Kolsky bar was modified to obtain uniaxial and triaxial compressive response at high strain rates. A controlled loading pulse allows the specimen to acquire stress equilibrium and constant strain-rates. The results show that the compressive response of the fine sand is not sensitive to strain rate under the loading conditions in this study, but significantly dependent on the moisture content, initial density and lateral confinement. Partially saturated sand is more compliant than dry sand. Similar trendsmore » were reported in the quasi-static regime for experiments conducted at comparable specimen conditions. The sand becomes stiffer as initial density and/or confinement pressure increases. The sand particle size become smaller after hydrostatic pressure and further smaller after dynamic axial loading.« less
Enhanced Proton Conductivity in Y-Doped BaZrO3 via Strain Engineering.
Fluri, Aline; Marcolongo, Aris; Roddatis, Vladimir; Wokaun, Alexander; Pergolesi, Daniele; Marzari, Nicola; Lippert, Thomas
2017-12-01
The effects of stress-induced lattice distortions (strain) on the conductivity of Y-doped BaZrO 3 , a high-temperature proton conductor with key technological applications for sustainable electrochemical energy conversion, are studied. Highly ordered epitaxial thin films are grown in different strain states while monitoring the stress generation and evolution in situ. Enhanced proton conductivity due to lower activation energies is discovered under controlled conditions of tensile strain. In particular, a twofold increased conductivity is measured at 200 °C along a 0.7% tensile strained lattice. This is at variance with conclusions coming from force-field simulations or the static calculations of diffusion barriers. Here, extensive first-principles molecular dynamic simulations of proton diffusivity in the proton-trapping regime are therefore performed and found to agree with the experiments. The simulations highlight that compressive strain confines protons in planes parallel to the substrate, while tensile strain boosts diffusivity in the perpendicular direction, with the net result that the overall conductivity is enhanced. It is indeed the presence of the dopant and the proton-trapping effect that makes tensile strain favorable for proton conduction.
Compression behavior of delaminated composite plates
NASA Technical Reports Server (NTRS)
Peck, Scott O.; Springer, George S.
1989-01-01
The response of delaminated composite plates to compressive in-plane loads was investigated. The delaminated region may be either circular or elliptical, and may be located between any two plies of the laminate. For elliptical delaminations, the axes of the ellipse may be arbitrarily oriented with respect to the applied loads. A model was developed that describes the stresses, strains, and deformation of the sublaminate created by the delamination. The mathematical model is based on a two dimensional nonlinear plate theory that includes the effects of transverse shear deformation. The model takes into account thermal and moisture induced strains, transverse pressures acting on the sublaminate, and contact between the sublaminate and plate. The solution technique used is the Ritz method. A computationally efficient computer implementation of the model was developed. The code can be used to predict the nonlinear-load-strain behavior of the sublaminate including the buckling load, postbuckling behavior, and the onset of delamination growth. The accuracy of the code was evaluated by comparing the model results to benchmark analytical solutions. A series of experiments was conducted on Fiberite T300/976 graphite/epoxy laminates bonded to an aluminum honeycomb core forming a sandwich panel. Either circles or ellipses made from Teflon film were embedded in the laminates, simulating the presence of a delamination. Each specimen was loaded in compression and the strain history of the sublaminate was recorded far into the postbuckling regime. The extent of delamination growth was evaluated by C-scan examination of each specimen. The experimental data were compared to code predictions. The code was found to describe the data with reasonable accuracy. A sensitivity study examined the relative importance of various material properties, the delamination dimensions, the contact model, the transverse pressure differential, the critical strain energy release rate, and the relative growth direction on the buckling load, the postbuckling behavior, and the growth load of the sublaminate.
NASA Astrophysics Data System (ADS)
Katiyar, Ajit K.; Grimm, Andreas; Bar, R.; Schmidt, Jan; Wietler, Tobias; Joerg Osten, H.; Ray, Samit K.
2016-10-01
Compressively strained Ge films have been grown on relaxed Si0.45Ge0.55 virtual substrates using molecular beam epitaxy in the presence of Sb as a surfactant. Structural characterization has shown that films grown in the presence of surfactant exhibit very smooth surfaces with a relatively higher strain value in comparison to those grown without any surfactant. The variation of strain with increasing Ge layer thickness was analyzed using Raman spectroscopy. The strain is found to be reduced with increasing film thickness due to the onset of island nucleation following Stranski-Krastanov growth mechanism. No phonon assisted direct band gap photoluminescence from compressively strained Ge films grown on relaxed Si0.45Ge0.55 has been achieved up to room temperature. Excitation power and temperature dependent photoluminescence have been studied in details to investigate the origin of different emission sub-bands.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, B.; Nelson, K.; Lipinski, R.
Iridium alloys have superior strength and ductility at elevated temperatures, making them useful as structural materials for certain high-temperature applications. However, experimental data on their high-strain -rate performance are needed for understanding high-speed impacts in severe environments. Kolsky bars (also called split Hopkinson bars) have been extensively employed for high-strain -rate characterization of materials at room temperature, but it has been challenging to adapt them for the measurement of dynamic properties at high temperatures. In our study, we analyzed the difficulties encountered in high-temperature Kolsky bar testing of thin iridium alloy specimens in compression. We made appropriate modifications using themore » current high-temperature Kolsky bar technique in order to obtain reliable compressive stress–strain response of an iridium alloy at high-strain rates (300–10 000 s -1) and temperatures (750 and 1030°C). The compressive stress–strain response of the iridium alloy showed significant sensitivity to both strain rate and temperature.« less
McDonald, Kirsty A.; Stearne, Sarah M.; Alderson, Jacqueline A.; North, Ian; Pires, Neville J.; Rubenson, Jonas
2016-01-01
Elastic energy returned from passive-elastic structures of the lower limb is fundamental in lowering the mechanical demand on muscles during running. The purpose of this study was to investigate the two length-modulating mechanisms of the plantar fascia, namely medial longitudinal arch compression and metatarsophalangeal joint (MPJ) excursion, and to determine how these mechanisms modulate strain, and thus elastic energy storage/return of the plantar fascia during running. Eighteen runners (9 forefoot and 9 rearfoot strike) performed three treadmill running trials; unrestricted shod, shod with restricted arch compression (via an orthotic-style insert), and barefoot. Three-dimensional motion capture and ground reaction force data were used to calculate lower limb kinematics and kinetics including MPJ angles, moments, powers and work. Estimates of plantar fascia strain due to arch compression and MPJ excursion were derived using a geometric model of the arch and a subject-specific musculoskeletal model of the plantar fascia, respectively. The plantar fascia exhibited a typical elastic stretch-shortening cycle with the majority of strain generated via arch compression. This strategy was similar in fore- and rear-foot strike runners. Restricting arch compression, and hence the elastic-spring function of the arch, was not compensated for by an increase in MPJ-derived strain. In the second half of stance the plantar fascia was found to transfer energy between the MPJ (energy absorption) and the arch (energy production during recoil). This previously unreported energy transfer mechanism reduces the strain required by the plantar fascia in generating useful positive mechanical work at the arch during running. PMID:27054319
McDonald, Kirsty A; Stearne, Sarah M; Alderson, Jacqueline A; North, Ian; Pires, Neville J; Rubenson, Jonas
2016-01-01
Elastic energy returned from passive-elastic structures of the lower limb is fundamental in lowering the mechanical demand on muscles during running. The purpose of this study was to investigate the two length-modulating mechanisms of the plantar fascia, namely medial longitudinal arch compression and metatarsophalangeal joint (MPJ) excursion, and to determine how these mechanisms modulate strain, and thus elastic energy storage/return of the plantar fascia during running. Eighteen runners (9 forefoot and 9 rearfoot strike) performed three treadmill running trials; unrestricted shod, shod with restricted arch compression (via an orthotic-style insert), and barefoot. Three-dimensional motion capture and ground reaction force data were used to calculate lower limb kinematics and kinetics including MPJ angles, moments, powers and work. Estimates of plantar fascia strain due to arch compression and MPJ excursion were derived using a geometric model of the arch and a subject-specific musculoskeletal model of the plantar fascia, respectively. The plantar fascia exhibited a typical elastic stretch-shortening cycle with the majority of strain generated via arch compression. This strategy was similar in fore- and rear-foot strike runners. Restricting arch compression, and hence the elastic-spring function of the arch, was not compensated for by an increase in MPJ-derived strain. In the second half of stance the plantar fascia was found to transfer energy between the MPJ (energy absorption) and the arch (energy production during recoil). This previously unreported energy transfer mechanism reduces the strain required by the plantar fascia in generating useful positive mechanical work at the arch during running.
The Effect of Crystallite Size and Texture on the Strength of MgGeO3 Post-Perovskite
NASA Astrophysics Data System (ADS)
Miyagi, Lowell
2011-06-01
In-situ radial synchrotron x-ray diffraction is used to measure lattice strain and lattice preferred orientation (texture) in MgGeO3 post-perovskite synthesized and deformed in the diamond anvil cell up to 135 GPa. Lattice strains are used to calculate differential stress supported by the sample and can provide a lower bounds estimate on yield strength. MgGeO3 post-perovskite synthesized from the enstatite phase exhibits a weak transformation texture of (100) planes at high angles to the direction of compression. In a sample with larger crystallites, pressure increase and deformation results in (001) lattice planes orienting nearly perpendicular to compression, consistent with dominant (001) slip. In another sample with smaller crystallites it is difficult to induce texture change, and differential stress is higher than in the sample with larger crystallites. When MgGeO3 post-perovskite is synthesized from the perovskite phase a different transformation texture of (001) planes at high angles to compression is observed. This sample is able to support large differential stress as the direction perpendicular to the (001) plane is a plastically hard orientation for MgGeO3 post-perovskite. This work was supported by the Carnegie DOE Alliance Center and a Bateman fellowship at Yale University.
NASA Astrophysics Data System (ADS)
Zhao, Bin; Wang, Zhi-Yin; Hu, Ai-Mei; Zhai, Yu-Yang
2013-11-01
The stress state of coal surrounding a coalbed methane (CBM) production well is affected by the bottom hole flowing pressure (BHFP). The permeability of coal shows a marked change under compression. The BHFP must be restricted to a specific range to favor higher permeability in the surrounding coal and thus higher productivity of the well. A new method to determine this specific range is proposed in this paper. Coal has a rather low tensile strength, which induces tensile failure and rock disintegration. The deformation of coal samples under compression has four main stages: compaction, elastic deformation, strain hardening, and strain softening. Permeability is optimal when the coal samples are in the strain softening stage. The three critical values of BHFP, namely, p wmin, p wmid, and p wupper, which correspond to the occurrence of tensile failure, the start of strain softening, and the beginning of plastic deformation, respectively, are derived from theoretical principles. The permeability of coal is in an optimal state when the BHFP is between p wmin and p wmid. The BHFP should be confined to this specific range for the efficient drainage of CBM wells. This method was applied to field operations in three wells in the Hancheng CBM field in China. A comprehensive analysis of drainage data and of the BHFP indicates that the new method is effective and offers significant improvement to current practices.
Nonlinear Inelastic Mechanical Behavior Of Epoxy Resin Polymeric Materials
NASA Astrophysics Data System (ADS)
Yekani Fard, Masoud
Polymer and polymer matrix composites (PMCs) materials are being used extensively in different civil and mechanical engineering applications. The behavior of the epoxy resin polymers under different types of loading conditions has to be understood before the mechanical behavior of Polymer Matrix Composites (PMCs) can be accurately predicted. In many structural applications, PMC structures are subjected to large flexural loadings, examples include repair of structures against earthquake and engine fan cases. Therefore it is important to characterize and model the flexural mechanical behavior of epoxy resin materials. In this thesis, a comprehensive research effort was undertaken combining experiments and theoretical modeling to investigate the mechanical behavior of epoxy resins subject to different loading conditions. Epoxy resin E 863 was tested at different strain rates. Samples with dog-bone geometry were used in the tension tests. Small sized cubic, prismatic, and cylindrical samples were used in compression tests. Flexural tests were conducted on samples with different sizes and loading conditions. Strains were measured using the digital image correlation (DIC) technique, extensometers, strain gauges, and actuators. Effects of triaxiality state of stress were studied. Cubic, prismatic, and cylindrical compression samples undergo stress drop at yield, but it was found that only cubic samples experience strain hardening before failure. Characteristic points of tensile and compressive stress strain relation and load deflection curve in flexure were measured and their variations with strain rate studied. Two different stress strain models were used to investigate the effect of out-of-plane loading on the uniaxial stress strain response of the epoxy resin material. The first model is a strain softening with plastic flow for tension and compression. The influence of softening localization on material behavior was investigated using the DIC system. It was found that compression plastic flow has negligible influence on flexural behavior in epoxy resins, which are stronger in pre-peak and post-peak softening in compression than in tension. The second model was a piecewise-linear stress strain curve simplified in the post-peak response. Beams and plates with different boundary conditions were tested and analytically studied. The flexural over-strength factor for epoxy resin polymeric materials were also evaluated.
Orientation dependence of phase diagrams and physical properties in epitaxial Ba0.6Sr0.4TiO3 films
NASA Astrophysics Data System (ADS)
Qiu, J. H.; Zhao, T. X.; Chen, Z. H.; Yuan, N. Y.; Ding, J. N.
2018-04-01
Orientation dependence of phase diagrams and physical properties of Ba0.6Sr0.4TiO3 films are investigated by using a phenomenological Landau-Devonshire theory. New ferroelectric phases, such as the tetragonal a1 phase and the orthorhombic a2 c phase in (110) oriented film and the monoclinic MA phase in (111) oriented film, appear in the "misfit strain-temperature" phase diagrams as compared with (001) oriented film. Moreover, the phase diagrams of (110) and (111) oriented films are more complex than that of (001) oriented film due to the nonlinear coupling terms appeared in the thermodynamic potential. The dielectric and piezoelectric properties largely depend on the misfit strain and orientation. (111) oriented film has the better piezoelectric property than (110) oriented film. Furthermore, the compressive misfit strain is prone to induce the larger piezoelectric property than tensile misfit strain.
NASA Astrophysics Data System (ADS)
Tsirigotis, Athanasios; Deligianni, Despoina D.
2017-12-01
In this work, the surface heterogeneity in mechanical compressive strain of cancellous bone was investigated with digital image correlation (DIC). Moreover, the onset and progression of failure was studied by acoustic emission (AE). Cubic cancellous bone specimens, with side of 15 mm, were obtained from bovine femur and kept frozen at -20ºC until testing. Specimen strain was analyzed by measuring the change of distance between the platens (crosshead) and via an optical method, by following the strain evolution with a camera. Simultaneously, AE monitoring was performed. The experiments showed that compressive Young’s modulus determined by crosshead strain is underestimated at 23% in comparison to optically determined strain. However, surface strain fields defined by DIC displayed steep strain gradients, which can be attributed to cancellous bone porosity and inhomogeneity. The cumulative number of events for the total AE activity recorded from the sensors showed that the activity started at a mean load level of 36% of the maximum load and indicated the initiation of micro-cracking phenomena. Further experiments, determining 3D strain with μCT apart from surface strain, are necessary to clarify the issue of strain inhomogeneity in cancellous bone.
Anomalous expansion of Nb nanowires in a NiTi matrix under high pressure
Yu, Cun; Ren, Yang; Cui, Lishan; ...
2016-10-17
Under high pressure, materials usually shrink during compression as described by an equation of state. Here, we present the anomalous volume expansion behavior of a one-dimensional Nb nanowire embedded in a NiTi transforming matrix, while the matrix undergoes a pressure-induced martensitic transformation. The Nb volume expansion depends on the NiTi transition pressure range from the matrix, which is controlled by the shear strain induced by different pressure transmitting media. The transformation-induced interfacial stresses between Nb and NiTi may play a major role in this anomaly. In conclusion, our discovery sheds new light on the nano-interfacial effect on mechanical anomalies inmore » heterogeneous systems during a pressure-induced phase transition.« less
NASA Technical Reports Server (NTRS)
Farrokh, Babak; Rahim, Nur Aida Abul; Segal, Ken; Fan, Terry; Jones, Justin; Hodges, Ken; Mashni, Noah; Garg, Naman; Sang, Alex
2013-01-01
Three distinct strain measurement methods (i.e., foil resistance strain gages, fiber optic strain sensors, and a three-dimensional digital image photogrammetry that gives full field strain and displacement measurements) were implemented to measure strains on the back and front surfaces of a longitudinally jointed curved test article subjected to edge-wise compression testing, at NASA Goddard Space Flight Center, according to ASTM C364. The pre-test finite element analysis (FEA) was conducted to assess ultimate failure load and predict strain distribution pattern throughout the test coupon. The predicted strain pattern contours were then utilized as guidelines for installing the strain measurement instrumentations. The foil resistance strain gages and fiber optic strain sensors were bonded on the specimen at locations with nearly the same analytically predicted strain values, and as close as possible to each other, so that, comparisons between the measured strains by strain gages and fiber optic sensors, as well as the three-dimensional digital image photogrammetric system are relevant. The test article was loaded to failure (at 167 kN), at the compressive strain value of 10,000 micro epsilon. As a part of this study, the validity of the measured strains by fiber optic sensors is examined against the foil resistance strain gages and the three-dimensional digital image photogrammetric data, and comprehensive comparisons are made with FEA predictions.
Chialvo, Ariel A.; Vlcek, Lukas; Cummings, Peter T.
2014-10-17
We studied the link between the water-mediated (tensile or compressive) strain-driven hydration free energy changes in the association process involving finite-size graphene surfaces, the resulting water-graphene interfacial behavior, and the combined effect of surface strain and fluid confinement on the thermodynamic response functions and the dynamics of water. In this study, we found that either small surface corrugation (compressive strain) or surface stretching (tensile strain) is able to enhance significantly the water-graphene hydrophobicity relative to that of the unstrained surface, an effect that exacerbates the confinement impact on the isothermal compressibility and isobaric thermal expansivity of confined water, as wellmore » as on the slowing down of its dynamics that gives rise to anomalous diffusivity.« less
Tensile and compressive stress-strain behavior of heat treated boron-aluminum
NASA Technical Reports Server (NTRS)
Kennedy, J. M.; Tenney, D. R.; Herakovich, C. T.
1978-01-01
An experimental study was conducted to assess the effects of heat treatment and cyclic mechanical loading on the tensile and compressive stress-strain behavior of six boron-aluminum composites having different laminate orientations and being subjected to different heat treatments. The heat treatments were as-fabricated, T6, and T6N consisting of T6 treatment followed by cryogenic quench in liquid nitrogen prior to testing. All laminates were tested in monotonic and cyclic compression, while the tensile-test data are taken from the literature for comparison purposes. It is shown that the linear elastic range of the T6- and T6N-condition specimens is larger than that of the as-fabricated specimens, and that cyclic loading in tension or compression strain hardens the specimens and extends the linear elastic range. For laminates containing 0-deg plies, the stress-strain behavior upon unloading is found to be nonlinear, whereas the other laminates exhibit a linear behavior upon unloading. Specimens in the T6 and T6N conditions show higher strain hardening than the as-fabricated specimens.
Large magnetic field-induced work output in a NiMnGa seven-layered modulated martensite
NASA Astrophysics Data System (ADS)
Pagounis, E.; Szczerba, M. J.; Chulist, R.; Laufenberg, M.
2015-10-01
We report the performance of a Ni-Mn-Ga single crystal with a seven-layered lattice modulation (14M martensite), demonstrating large actuation work output driven by an external magnetic field. A magnetic field-induced strain of 11.2%, a twinning stress of 0.64 MPa, and a magneto-crystalline anisotropy energy of 195 kJ/m3 are measured at room temperature, which exceed the best results reported in Ni-Mn-Ga 14M martensites. The produced magnetically induced work output of about 70 kJ/m3 makes the material attractive for actuator applications. Detailed XRD investigation reveals that the studied 14M martensite is stress-induced. With increasing compression stress, the stress-induced intermartensitic transformation sequence 10M → 14M → NM was demonstrated.
The influence of the compression interface on the failure behavior and size effect of concrete
NASA Astrophysics Data System (ADS)
Kampmann, Raphael
The failure behavior of concrete materials is not completely understood because conventional test methods fail to assess the material response independent of the sample size and shape. To study the influence of strength and strain affecting test conditions, four typical concrete sample types were experimentally evaluated in uniaxial compression and analyzed for strength, deformational behavior, crack initiation/propagation, and fracture patterns under varying boundary conditions. Both low friction and conventional compression interfaces were assessed. High-speed video technology was used to monitor macrocracking. Inferential data analysis proved reliably lower strength results for reduced surface friction at the compression interfaces, regardless of sample shape. Reciprocal comparisons revealed statistically significant strength differences between most sample shapes. Crack initiation and propagation was found to differ for dissimilar compression interfaces. The principal stress and strain distributions were analyzed, and the strain domain was found to resemble the experimental results, whereas the stress analysis failed to explain failure for reduced end confinement. Neither stresses nor strains indicated strength reductions due to reduced friction, and therefore, buckling effects were considered. The high-speed video analysis revealed localize buckling phenomena, regardless of end confinement. Slender elements were the result of low friction, and stocky fragments developed under conventional confinement. The critical buckling load increased accordingly. The research showed that current test methods do not reflect the "true'' compressive strength and that concrete failure is strain driven. Ultimate collapse results from buckling preceded by unstable cracking.
Towards an acoustic model-based poroelastic imaging method: II. experimental investigation.
Berry, Gearóid P; Bamber, Jeffrey C; Miller, Naomi R; Barbone, Paul E; Bush, Nigel L; Armstrong, Cecil G
2006-12-01
Soft biological tissue contains mobile fluid. The volume fraction of this fluid and the ease with which it may be displaced through the tissue could be of diagnostic significance and may also have consequences for the validity with which strain images can be interpreted according to the traditional idealizations of elastography. In a previous paper, under the assumption of frictionless boundary conditions, the spatio-temporal behavior of the strain field inside a compressed cylindrical poroelastic sample was predicted (Berry et al. 2006). In this current paper, experimental evidence is provided to confirm these predictions. Finite element modeling was first used to extend the previous predictions to allow for the existence of contact friction between the sample and the compressor plates. Elastographic techniques were then applied to image the time-evolution of the strain inside cylindrical samples of tofu (a suitable poroelastic material) during sustained unconfined compression. The observed experimental strain behavior was found to be consistent with the theoretical predictions. In particular, every sample studied confirmed that reduced values of radial strain advance with time from the curved cylindrical surface inwards towards the axis of symmetry. Furthermore, by fitting the predictions of an analytical model to a time sequence of strain images, parametric images of two quantities, each related to one or more of three poroelastic material constants were produced. The two parametric images depicted the Poisson's ratio (nu(s)) of the solid matrix and the product of the aggregate modulus (H(A)) of the solid matrix with the permeability (k) of the solid matrix to the pore fluid. The means of the pixel values in these images, nu(s) = 0.088 (standard deviation 0.023) and H(A)k = 1.449 (standard deviation 0.269) x 10(-7) m(2) s(-1), were in agreement with values derived from previously published data for tofu (Righetti et al. 2005). The results provide the first experimental detection of the fluid-flow-induced characteristic diffusion-like behavior of the strain in a compressed poroelastic material and allow parameters related to the above material constants to be determined. We conclude that it may eventually be possible to use strain data to detect and measure characteristics of diffusely distributed mobile fluid in tissue spaces that are too small to be imaged directly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jia, E-mail: jiali@hebut.edu.cn; Research Institute for Energy Equipment Materials, Hebei University of Technology, Tianjin 300401; Zhang, Zhidong
The Heusler alloy Ti{sub 2}CrGe is a stable L2{sub 1} phase with antiferromagnetic ordering. With band-gap energy (∼ 0.18 eV) obtained from a first-principles calculation, it belongs to the group of narrow band gap semiconductor. The band-gap energy decreases with increasing lattice compression and disappears until a strain of −5%; moreover, gap contraction only occurs in the spin-down states, leading to half-metallic character at the −5% strain. The Ti{sub 1}, Ti{sub 2}, and Cr moments all exhibit linear changes in behavior within strains of −5%– +5%. Nevertheless, the total zero moment is robust for these strains. The imaginary part ofmore » the dielectric function for both up and down spin states shows a clear onset energy, indicating a corresponding electronic gap for the two spin channels.« less
NASA Astrophysics Data System (ADS)
Cui, Ying; Lee, Sangheon; Freysoldt, Christoph; Neugebauer, Jörg
2015-08-01
The structural and electronic properties of InxGa1 -xN alloys are studied as a function of c -plane biaxial strain and In ordering by density functional theory with the Heyd-Scuseria-Ernzerhof (HSE) hybrid functional. A nonlinear variation of the c lattice parameter with In content is observed in biaxial strain and should be taken into account when deducing In content from interplanar distances. From compressive to tensile strain, the character of the top valence-band state changes, leading to a nonlinear variation of the band gap in InxGa1 -xN . Interestingly, the well-known bowing of the InxGa1 -xN band gap is largely removed for alloys grown strictly coherently on GaN, while the actual values for band gaps at x <0.33 are hardly affected by strain. Ordering plays a minor role for lattice constants but may induce changes of the band gap up to 0.15 eV.
Strain and electric field induced metallization in the GaX (X = N, P, As & Sb) monolayer
NASA Astrophysics Data System (ADS)
Bahuguna, Bhagwati Prasad; Saini, L. K.; Sharma, Rajesh O.; Tiwari, Brajesh
2018-05-01
We investigate the strain and electric field dependent electronic properties of two dimensional Ga-based group III-V monolayer from the first-principles approach within density functional theory. The energy bandgap of GaX monolayer increases upto the certain value of compressive strain and then decreases. On the other hand, the energy bandgap of GaX monolayer is monotonically decreased with increasing tensile strain and become metallic at the higher value. Furthermore, the perpendicular electric field decreases the energy band gap of unstrained GaX monolayer and shows semiconductor to metal transition. These results suggest that the nature of energy bands and value of energy bandgap in GaX monolayer can be tuned by the biaxial mechanical strain or perpendicular electrical field. Additionally, we have also studied the optical response of unstrained GaX monolayer in term of optical conductivity. These findings may provide valuable information to develop the Ga-based optoelectronic devices and further the understanding of the GaX monolayer.
NASA Astrophysics Data System (ADS)
Chehura, Edmon; Dell'Anno, Giuseppe; Huet, Tristan; Staines, Stephen; James, Stephen W.; Partridge, Ivana K.; Tatam, Ralph P.
2014-07-01
Dynamic loadings induced on a tufting needle during the tufting of dry carbon fibre preform via a commercial robot-controlled tufting head were investigated in situ and in real-time using optical fibre Bragg grating (FBG) sensors bonded to the needle shaft. The sensors were configured such that the axial strain and bending moments experienced by the needle could be measured. A study of the influence of thread and thread type on the strain imparted to the needle revealed axial strain profiles which had equivalent trends but different magnitudes. The mean of the maximum axial compression strains measured during the tufting of a 4-ply quasi-isotropic carbon fibre dry preform were - 499 ± 79 μɛ, - 463 ± 51 μɛ and - 431 ± 59 μɛ for a needle without thread, with metal wire and with Kevlar® thread, respectively. The needle similarly exhibited bending moments of different magnitude when the different needle feeding configurations were used.
NASA Astrophysics Data System (ADS)
Mirzadeh Vaghefi, P.; Baghizadeh, A.; Willinger, M.; Lourenço, A. A. C. S.; Amaral, V. S.
2017-12-01
Oxide multiferroic thin films and heterostructures offer a wide range of properties originated from intrinsic coupling between lattice strain and nanoscale magnetic/electronic ordering. La0.9Ba0.1MnO3 (LBM) thin-films and LBM/BaTiO3/LBM (LBMBT) heterostructures were grown on single crystalline [100] silicon and [0001] Al2O3 using RF magnetron sputtering to study the effect of crystallinity and induced lattice mismatch in the film on magnetic properties of deposited films and heterostructures. The thicknesses of the films on Al2O3 and Si are 70 and 145 nm, respectively, and for heterostructures are 40/30/40 nm on both substrates. The microstructure of the films, state of strain and growth orientations was studied by XRD and microscopy techniques. Interplay of microstructure, strain and magnetic properties is further investigated. It is known that the crystal structure of substrates and imposed tensile strain affect the physical properties; i.e. magnetic behavior of the film. The thin layer grown on Al2O3 substrate shows out-of-plane compressive strain, while Si substrate induces tensile strain on the deposited film. The magnetic transition temperatures (Tc) of the LBM film on the Si and Al2O3 substrates are found to be 195 K and 203 K, respectively, slightly higher than the bulk form, 185 K. The LBMBT heterostructure on Si substrate shows drastic decrease in magnetization due to produced defects created by diffusion of Ti ions into magnetic layer. Meanwhile, the Tc in LBMBTs increases in respect to other studied single layers and heterostructure, because of higher tensile strain induced at the interfaces.
NASA Technical Reports Server (NTRS)
Gabb, Timothy P.; Danetti, Andrew; Draper, Susan L.; Locci, Ivan E.; Telesman, Jack
2016-01-01
The fatigue lives of disk superalloys can be increased by shot peening their surfaces, to induce compressive residual stresses near the surface that impede cracking there. As disk application temperatures increase for improved efficiency, the persistence of these beneficial stresses could be impaired, especially with continued fatigue cycling. The objective of this work was to study the retention of residual stresses introduced by shot peening, when subjected to fatigue and high temperatures. Fatigue specimens of powder metallurgy processed nickel-base disk superalloy ME3 were prepared with consistent processing and heat treatment. They were then shot peened using varied conditions. Strain-controlled fatigue cycles were run at room temperature and 704 C, to allow re-assessment of residual stresses.
Thermo-Mechanical Analyses of Dynamically Loaded Rubber Cylinders
NASA Technical Reports Server (NTRS)
Johnson, Arthur R.; Chen, Tzi-Kang
2002-01-01
Thick rubber components are employed by the Army to carry large loads. In tanks, rubber covers road wheels and track systems to protect roadways. It is difficult for design engineers to simulate the details of the hysteretic heating for large strain viscoelastic deformations. In this study, an approximation to the viscoelastic energy dissipated per unit time is investigated for use in estimating mechanically induced viscoelastic heating. Coupled thermo-mechanical simulations of large cyclic deformations of rubber cylinders are presented. The cylinders are first compressed axially and then cyclically loaded about the compressed state. Details of the algorithm and some computational issues are discussed. The coupled analyses are conducted for tall and short rubber cylinders both with and without imbedded metal disks.
Lattice distortions and local compressibility around trivalent rare-earth impurities in fluorites
NASA Astrophysics Data System (ADS)
Tovar, M.; Ramos, C. A.; Fainstein, C.
1983-10-01
We have calculated the lattice distortions around trivalent rare-earth dilute impurities, occupying substitutionally metal sites in fluorites. Explicit results are given for the equilibrium positions of the nearest fluorine ligands, R, the induced electric dipole moments, and the local hydrostatic strains for MF2 (M=Cd, Ca, Sr, Pb, and Ba). These results are used to study the impurity-ligand distance dependence of the fourth-order cubic-crystal-field parameter, b4, for Gd3+ and the isoelectronic ion Eu2+. Comparison is made with the change of b4 with hydrostatic stress using the calculated local compressibility of the lattice. A consistent description of the experimental data is obtained assuming b4~R-m with m~10.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Efthimiopoulos, I.; Tsurkan, V.; Loidl, A.
We have conducted high-pressure measurements on the CuCr2O4 and CuCr2Se4 spinels to unravel the structural systematics of these materials under compression. Our studies have revealed diverse structural behavior in these two compounds. In particular, CuCr2O4 retains its ambient-pressure I41/amd structure up to 50 GPa. Close inspection of the lattice and interatomic parameters reveals a compressibility change near 23 GPa, which is accompanied by an expansion of the apical Cr–O bond distances. We speculate that an outer Cr3+ 3d orbital reorientation might be at play in this system, manifesting as the change in compressibility at that pressure point. On the othermore » hand, CuCr2Se4 undergoes a structural transformation from the starting Fd3¯m phase toward a monoclinic structure initiated at ~8 GPa and completed at ~20 GPa. This high-pressure behavior resembles that of ZnCr2Se4, and it appears that, unlike similar chalcogenide Cr spinels, steric effects take a leading role in this pressure-induced Fd3¯m → monoclinic transition. Close comparison of our results with the reported literature yields significant insights behind the pressure-induced structural systematics of this important family of materials, thus both allowing for the careful manipulation of the structural/physical properties of these systems by strain and promoting our understanding of similar pressure-induced effects in relevant systems.« less
Hossain, R.; Pahlevani, F.; Quadir, M. Z.; Sahajwalla, V.
2016-01-01
Although high carbon martensitic steels are well known for their industrial utility in high abrasion and extreme operating environments, due to their hardness and strength, the compressive stability of their retained austenite, and the implications for the steels’ performance and potential uses, is not well understood. This article describes the first investigation at both the macro and nano scale of the compressive stability of retained austenite in high carbon martensitic steel. Using a combination of standard compression testing, X-ray diffraction, optical microstructure, electron backscattering diffraction imaging, electron probe micro-analysis, nano-indentation and micro-indentation measurements, we determined the mechanical stability of retained austenite and martensite in high carbon steel under compressive stress and identified the phase transformation mechanism, from the macro to the nano level. We found at the early stage of plastic deformation hexagonal close-packed (HCP) martensite formation dominates, while higher compression loads trigger body-centred tetragonal (BCT) martensite formation. The combination of this phase transformation and strain hardening led to an increase in the hardness of high carbon steel of around 30%. This comprehensive characterisation of stress induced phase transformation could enable the precise control of the microstructures of high carbon martensitic steels, and hence their properties. PMID:27725722
Pulmonary ultrasound elastography: a feasibility study with phantoms and ex-vivo tissue
NASA Astrophysics Data System (ADS)
Nguyen, Man Minh; Xie, Hua; Paluch, Kamila; Stanton, Douglas; Ramachandran, Bharat
2013-03-01
Elastography has become widely used for minimally invasive diagnosis in many tumors as seen with breast, liver and prostate. Among different modalities, ultrasound-based elastography stands out due to its advantages including being safe, real-time, and relatively low-cost. While lung cancer is the leading cause of cancer mortality among both men and women, the use of ultrasound elastography for lung cancer diagnosis has hardly been investigated due to the limitations of ultrasound in air. In this work, we investigate the use of static-compression based endobronchial ultrasound elastography by a 3D trans-oesophageal echocardiography (TEE) transducer for lung cancer diagnosis. A water-filled balloon was designed to 1) improve the visualization of endobronchial ultrasound and 2) to induce compression via pumping motion inside the trachea and bronchiole. In a phantom study, we have successfully generated strain images indicating the stiffness difference between the gelatin background and agar inclusion. A similar strain ratio was confirmed with Philips ultrasound strain-based elastography product. For ex-vivo porcine lung study, different tissue ablation methods including chemical injection, Radio Frequency (RF) ablation, and direct heating were implemented to achieve tumor-mimicking tissue. Stiff ablated lung tissues were obtained and detected with our proposed method. These results suggest the feasibility of pulmonary elastography to differentiate stiff tumor tissue from normal tissue.
NASA Astrophysics Data System (ADS)
Zwiessler, Ruprecht; Kenkmann, Thomas; Poelchau, Michael H.; Nau, Siegfried; Hess, Sebastian
2017-04-01
There is increasing evidence that seismogenic fractures can propagate faster than the shear wave velocity of the surrounding rocks. Strain rates within the tip region of such super-shear earthquake ruptures can reach deformation conditions similar to impact processes, resulting in rock pulverization. The physical response of brittle rocks at high strain rates changes dramatically with respect to quasi-static conditions. Rocks become stiffer and their strength increases. A measure for the dynamic behavior of a rock and its strain dependency is the dynamic increase factor (DIF) which is the ratio of the dynamic compressive strength to the quasi-static uniaxial compressive strength. To investigate deformation in the high strain rate regime experimentally, we introduce the split Hopkinson pressure bar technology to the structural geology community, a method that is frequently used by rock and impact engineers. We measure the stress-strain response of homogeneous, fine-grained Seeberger sandstone and Carrara marble in uniaxial compression at strain rates ranging from 10+1 to 10+2 s-1 with respect to tangent modulus and dynamic uniaxial compressive strength. We present full stress-strain response curves of Seeberger sandstone and Carrara marble at high strain rates and an evaluation method to determine representative rates of deformation. Results indicate a rate-dependent elastic behavior of Carrara marble where an average increase of ∼18% could be observed at high strain rates of about 100 s-1. DIF reaches a factor of 2.2-2.4. Seeberger sandstone does not have a rate-dependent linear stress-strain response at high strain rates. Its DIF was found to be about 1.6-1.7 at rates of 100 s-1. The onset of dynamic behavior is accompanied with changes in the fracture pattern from single to multiple fractures to pervasive pulverization for increasing rates of deformation. Seismogenic shear zones and their associated fragment-size spectra should be carefully revisited in the light of dynamic deformation.
Song, Bo; Sanborn, Brett
2018-05-07
In this paper, a Johnson–Cook model was used as an example to analyze the relationship of compressive stress-strain response of engineering materials experimentally obtained at constant engineering and true strain rates. There was a minimal deviation between the stress-strain curves obtained at the same constant engineering and true strain rates. The stress-strain curves obtained at either constant engineering or true strain rates could be converted from one to the other, which both represented the intrinsic material response. There is no need to specify the testing requirement of constant engineering or true strain rates for material property characterization, provided that eithermore » constant engineering or constant true strain rate is attained during the experiment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Bo; Sanborn, Brett
In this paper, a Johnson–Cook model was used as an example to analyze the relationship of compressive stress-strain response of engineering materials experimentally obtained at constant engineering and true strain rates. There was a minimal deviation between the stress-strain curves obtained at the same constant engineering and true strain rates. The stress-strain curves obtained at either constant engineering or true strain rates could be converted from one to the other, which both represented the intrinsic material response. There is no need to specify the testing requirement of constant engineering or true strain rates for material property characterization, provided that eithermore » constant engineering or constant true strain rate is attained during the experiment.« less
Archer, R R; Wilson, B F
1973-04-01
A new method for simulation of cross-sectional growth provided detailed information on the location of normal wood and compression wood increments in two tilted white pine (Pinus strobus L.) leaders. These data were combined with data on stiffness, slope, and curvature changes over a 16-week period to make the mechanical analysis. The location of compression wood changed from the under side to a flank side and then to the upper side of the leader as the geotropic stimulus decreased, owing to compression wood action. Its location shifted back to a flank side when the direction of movement of the leader reversed. A model for this action, based on elongation strains, was developed and predicted the observed curvature changes with elongation strains of 0.3 to 0.5%, or a maximal compressive stress of 60 to 300 kilograms per square centimeter. After tilting, new wood formation was distributed so as to maintain consistent strain levels along the leaders in bending under gravitational loads. The computed effective elastic moduli were about the same for the two leaders throughout the season.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Small, Ward; Pearson, Mark A.; Maiti, Amitesh
Dow Corning SE 1700 (reinforced polydimethylsiloxane) porous structures were made by direct ink writing (DIW). The specimens (~50% porosity) were subjected to various compressive strains (15, 30, 45%) and temperatures (room temperature, 35, 50, 70°C) in a nitrogen atmosphere (active purge) for 1 year. Compression set and load retention of the aged specimens were measured periodically during the study. Compression set increased with strain and temperature. After 1 year, specimens aged at room temperature, 35, and 50°C showed ~10% compression set (relative to the applied compressive deflection), while those aged at 70°C showed 20-40%. Due to the increasing compression set,more » load retention decreased with temperature, ranging from ~90% at room temperature to ~60-80% at 70°C. Long-term compression set and load retention at room temperature were predicted by applying time-temperature superposition (TTS). The predictions show compression set relative to the compressive deflection will be ~10-15% with ~70-90% load retention after 50 years at 15-45% strain, suggesting the material will continue to be mechanically functional. Comparison of the results to previously acquired data for cellular (M97*, M9760, M9763) and RTV (S5370) silicone foams suggests that the SE 1700 DIW porous specimens are on par with, or outperform, the legacy foams.« less
A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection
NASA Astrophysics Data System (ADS)
Lee, Jaehwan; Kim, Sanghyeok; Lee, Jinjae; Yang, Daejong; Park, Byong Chon; Ryu, Seunghwa; Park, Inkyu
2014-09-01
Wearable strain sensors for human motion detection are being highlighted in various fields such as medical, entertainment and sports industry. In this paper, we propose a new type of stretchable strain sensor that can detect both tensile and compressive strains and can be fabricated by a very simple process. A silver nanoparticle (Ag NP) thin film patterned on the polydimethylsiloxane (PDMS) stamp by a single-step direct transfer process is used as the strain sensing material. The working principle is the change in the electrical resistance caused by the opening/closure of micro-cracks under mechanical deformation. The fabricated stretchable strain sensor shows highly sensitive and durable sensing performances in various tensile/compressive strains, long-term cyclic loading and relaxation tests. We demonstrate the applications of our stretchable strain sensors such as flexible pressure sensors and wearable human motion detection devices with high sensitivity, response speed and mechanical robustness.Wearable strain sensors for human motion detection are being highlighted in various fields such as medical, entertainment and sports industry. In this paper, we propose a new type of stretchable strain sensor that can detect both tensile and compressive strains and can be fabricated by a very simple process. A silver nanoparticle (Ag NP) thin film patterned on the polydimethylsiloxane (PDMS) stamp by a single-step direct transfer process is used as the strain sensing material. The working principle is the change in the electrical resistance caused by the opening/closure of micro-cracks under mechanical deformation. The fabricated stretchable strain sensor shows highly sensitive and durable sensing performances in various tensile/compressive strains, long-term cyclic loading and relaxation tests. We demonstrate the applications of our stretchable strain sensors such as flexible pressure sensors and wearable human motion detection devices with high sensitivity, response speed and mechanical robustness. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03295k
Takajo, Shigehiro; Brown, Donald William; Clausen, Bjorn; ...
2018-04-30
In this study, we report the characterization of a 304L stainless steel cylindrical projectile produced by additive manufacturing. The projectile was compressively deformed using a Taylor Anvil Gas Gun, leading to a huge strain gradient along the axis of the deformed cylinder. Spatially resolved neutron diffraction measurements on the HIgh Pressure Preferred Orientation time-of-flight diffractometer (HIPPO) and Spectrometer for Materials Research at Temperature and Stress diffractometer (SMARTS) beamlines at the Los Alamos Neutron Science CEnter (LANSCE) with Rietveld and single-peak analysis were used to quantitatively evaluate the volume fractions of the α, γ, and ε phases as well as residualmore » strain and texture. The texture of the γ phase is consistent with uniaxial compression, while the α texture can be explained by the Kurdjumov–Sachs relationship from the γ texture after deformation. This indicates that the material first deformed in the γ phase and subsequently transformed at larger strains. The ε phase was only found in volumes close to the undeformed material with a texture connected to the γ texture by the Shoji–Nishiyama orientation relationship. This allows us to conclude that the ε phase occurs as an intermediate phase at lower strain, and is superseded by the α phase when strain increases further. We found a proportionality between the root-mean-squared microstrain of the γ phase, dominated by the dislocation density, with the α volume fraction, consistent with strain-induced martensite α formation. In conclusion, knowledge of the sample volume with the ε phase from the neutron diffraction analysis allowed us to identify the ε phase by electron back scatter diffraction analysis, complementing the neutron diffraction analysis with characterization on the grain level.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takajo, Shigehiro; Brown, Donald William; Clausen, Bjorn
In this study, we report the characterization of a 304L stainless steel cylindrical projectile produced by additive manufacturing. The projectile was compressively deformed using a Taylor Anvil Gas Gun, leading to a huge strain gradient along the axis of the deformed cylinder. Spatially resolved neutron diffraction measurements on the HIgh Pressure Preferred Orientation time-of-flight diffractometer (HIPPO) and Spectrometer for Materials Research at Temperature and Stress diffractometer (SMARTS) beamlines at the Los Alamos Neutron Science CEnter (LANSCE) with Rietveld and single-peak analysis were used to quantitatively evaluate the volume fractions of the α, γ, and ε phases as well as residualmore » strain and texture. The texture of the γ phase is consistent with uniaxial compression, while the α texture can be explained by the Kurdjumov–Sachs relationship from the γ texture after deformation. This indicates that the material first deformed in the γ phase and subsequently transformed at larger strains. The ε phase was only found in volumes close to the undeformed material with a texture connected to the γ texture by the Shoji–Nishiyama orientation relationship. This allows us to conclude that the ε phase occurs as an intermediate phase at lower strain, and is superseded by the α phase when strain increases further. We found a proportionality between the root-mean-squared microstrain of the γ phase, dominated by the dislocation density, with the α volume fraction, consistent with strain-induced martensite α formation. In conclusion, knowledge of the sample volume with the ε phase from the neutron diffraction analysis allowed us to identify the ε phase by electron back scatter diffraction analysis, complementing the neutron diffraction analysis with characterization on the grain level.« less
Guo, Q; Sun, D L; Han, X L; Cheng, S R; Chen, G Q; Jiang, L T; Wu, G H
2012-02-01
Compressive properties of Al matrix composite reinforced with Ti-6Al-4V meshes (TC4(m)/5A06 Al composite) under the strain rates of 10(-3)S(-1) and 1S(-1) at different temperature were measured and microstructure of composites after compression was characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM). Compressive strength decreased with the test temperature increased and the strain-rate sensitivity (R) of composite increased with the increasing temperature. SEM observations showed that grains of Al matrix were elongated severely along 45° direction (angle between axis direction and fracture surface) and TC4 fibres were sheared into several parts in composite compressed under the strain rate of 10(-3)S(-1) at 25°C and 250°C. Besides, amounts of cracks were produced at the interfacial layer between TC4 fibre and Al matrix and in (Fe, Mn)Al(6) phases. With the compressive temperature increasing to 400°C, there was no damage at the interfacial layer between TC4 fibre and Al matrix and in (Fe, Mn)Al(6) phases, while equiaxed recrystal grains with sizes about 10 μm at the original grain boundaries of Al matrix were observed. However, interface separation of TC4 fibres and Al matrix occurred in composite compressed under the strain rate of 1S(-1) at 250°C and 400°C. With the compressive temperature increasing from 25°C to 100°C under the strain rate of 10(-3) S(-1), TEM microstructure in Al matrix exhibited high density dislocations and slipping bands (25°C), polygonized dislocations and dynamic recovery (100°C), equiaxed recrystals with sizes below 500 μm (250°C) and growth of equiaxed recrystals (400°C), respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Guo, Hong-Yan; Xia, Min; Wu, Zheng-Tao; Chan, Lap-Chung; Dai, Yong; Wang, Kun; Yan, Qing-Zhi; He, Man-Chao; Ge, Chang-Chun; Lu, Jian
2016-11-01
A nanostructured surface layer was fabricated on commercial pure tungsten using the method of surface mechanical attrition treatment (SMAT). The microstructure evolution of the surface layer was characterized by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and its formation mechanism was discussed as well. Both refinement and elongation of the brittle W grains were confirmed. The elongated SMATed W was heavily strained, the maximum value of the strain at the grain boundaries reaches as high as 3-5%. Dislocation density in the SMATed W nanograins was found to be 5 × 1012 cm-2. The formation of the nanograins in the top surface layer of the W was ascribed to the extremely high strain and strain rate, as well as the multidirectional repetitive loading. Bending strength of commercial W could be improved from 825 MPa to 1850 MPa by SMAT process. Microhardness results indicated the strain range in SMATed W can reach up to 220 μm beneath the top surface. The notched Charpy testing results demonstrated that SMATed W possess higher ductility than that of commercial W. The top surface of the W plates with and without SMATe processing possesses residual compressive stress of about -881 MPa and -234 MPa in y direction, and -872 MPa and -879 MPa in x direction respectively. The improvement of toughness (DBTT shift) of SMATed W may be the synergistic effect of residual compressive stress, dislocation density improvement and microstructure refinement induced by SMAT processing. SMAT processing could be a complementary method to further decrease the DBTT value of tungsten based materials.
Biomechanics of phalangeal curvature.
Richmond, Brian G
2007-12-01
Phalangeal curvature has been widely cited in primate functional morphology and is one of the key traits in the ongoing debate about whether the locomotion of early hominins included a significant degree of arboreality. This study examines the biomechanics of phalangeal curvature using data on hand posture, muscle recruitment, and anatomical moment arms to develop a finite element (FE) model of a siamang manual proximal phalanx during suspensory grasping. Strain patterns from experiments on intact cadaver forelimbs validated the model. The strain distribution in the curved siamang phalanx FE model was compared to that in a mathematically straight rendition in order to test the hypotheses that curvature: 1) reduces strain and 2) results in lower bending strains but relatively higher compression. In the suspensory posture, joint reaction forces load the articular ends of the phalanx in compression and dorsally, while muscle forces acting through the flexor sheath pull the mid-shaft palmarly. These forces compress the phalanx dorsally and tense it palmarly, effectively bending it 'open.' Strains in the curved model were roughly half that of the straight model despite equivalent lengths, areas, mechanical properties, and loading conditions in the two models. The curved model also experienced a higher ratio of compressive to tensile strains. Curvature reduces strains during grasping hand postures because the curved bone is more closely aligned with the joint reaction forces. Therefore, phalangeal curvature reduces the strains associated with arboreal, and especially suspensory, activity involving flexed digits. These results offer a biomechanical explanation for the observed association between phalangeal curvature and arboreality.
Wrinkling and folding of nanotube-polymer bilayers
NASA Astrophysics Data System (ADS)
Semler, Matthew R.; Harris, John M.; Hobbie, Erik K.
2014-07-01
The influence of a polymer capping layer on the deformation of purified single-wall carbon nanotube (SWCNT) networks is analyzed through the wrinkling of compressed SWCNT-polymer bilayers on polydimethylsiloxane. The films exhibit both wrinkling and folding under compression and we extract the elastoplastic response using conventional two-plate buckling schemes. The formation of a diffuse interpenetrating nanotube-polymer interface has a dramatic effect on the nanotube layer modulus for both metallic and semiconducting species. In contrast to the usual percolation exhibited by the pure SWCNT films, the capped films show a crossover from "composite" behavior (the modulus of the SWCNT film is enhanced by the polymer) to "plasticized" behavior (the modulus of the SWCNT film is reduced by the polymer) as the SWCNT film thickness increases. For almost all thicknesses, however, the polymer enhances the yield strain of the nanotube network. Conductivity measurements on identical films suggest that the polymer has a modest effect on charge transport, which we interpret as a strain-induced polymer penetration of interfacial nanotube contacts. We use scaling, Flory-Huggins theory, and independently determined nanotube-nanotube and nanotube-polymer Hamaker constants to model the response.
Molecular dynamics simulation of shock induced ejection on fused silica surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Rui; Xiang, Meizhen; Jiang, Shengli
2014-05-21
Shock response and surface ejection behaviors of fused silica are studied by using non-equilibrium molecular dynamics combining with the Tersoff potential. First, bulk structure and Hugoniot curves of fused silica are calculated and compared with experimental results. Then, the dynamical process of surface ejection behavior is simulated under different loading velocities ranging from 3.5 to 5.0 km∕s, corresponding to shock wave velocities from 7.1 to 8.8 km∕s. The local atomistic shear strain parameter is used to describe the local plastic deformation under conditions of shock compression or releasing. Our result shows that the shear strain is localized in the bottom area ofmore » groove under the shock compression. Surface ejection is observed when the loading velocity exceeds 4.0 km∕s. Meanwhile, the temperature of the micro-jet is ∼5574.7 K, which is close to experiment measurement. Several kinds of structural defects including non-bridging oxygen are found in the bulk area of the sample after ejection.« less
Chen, Mengxiao; Pan, Caofeng; Zhang, Taiping; Li, Xiaoyi; Liang, Renrong; Wang, Zhong Lin
2016-06-28
Based on white light emission at silicon (Si)/ZnO hetrerojunction, a pressure-sensitive Si/ZnO nanowires heterostructure matrix light emitting diode (LED) array is developed. The light emission intensity of a single heterostructure LED is tuned by external strain: when the applied stress keeps increasing, the emission intensity first increases and then decreases with a maximum value at a compressive strain of 0.15-0.2%. This result is attributed to the piezo-phototronic effect, which can efficiently modulate the LED emission intensity by utilizing the strain-induced piezo-polarization charges. It could tune the energy band diagrams at the junction area and regulate the optoelectronic processes such as charge carriers generation, separation, recombination, and transport. This study achieves tuning silicon based devices through piezo-phototronic effect.
Fatigue characteristics of carbon nanotube blocks under compression
NASA Astrophysics Data System (ADS)
Suhr, J.; Ci, L.; Victor, P.; Ajayan, P. M.
2008-03-01
In this paper we investigate the mechanical response from repeated high compressive strains on freestanding, long, vertically aligned multiwalled carbon nanotube membranes and show that the arrays of nanotubes under compression behave very similar to soft tissue and exhibit viscoelastic behavior. Under compressive cyclic loading, the mechanical response of nanotube blocks shows initial preconditioning and hysteresis characteristic of viscoeleastic materials. Furthermore, no fatigue failure is observed even at high strain amplitudes up to half million cycles. The outstanding fatigue life and extraordinary soft tissue-like mechanical behavior suggest that properly engineered carbon nanotube structures could mimic artificial muscles.
NASA Astrophysics Data System (ADS)
Zhou, Ping; Beeh, Elmar; Friedrich, Horst E.
2016-03-01
Magnesium alloys are promising materials for lightweight design in the automotive industry due to their high strength-to-mass ratio. This study aims to study the influence of tension-compression asymmetry on the radius of curvature and energy absorption capacity of AZ31B-O magnesium alloy sheets in bending. The mechanical properties were characterized using tension, compression, and three-point bending tests. The material exhibits significant tension-compression asymmetry in terms of strength and strain hardening rate due to extension twinning in compression. The compressive yield strength is much lower than the tensile yield strength, while the strain hardening rate is much higher in compression. Furthermore, the tension-compression asymmetry in terms of r value (Lankford value) was also observed. The r value in tension is much higher than that in compression. The bending results indicate that the AZ31B-O sheet can outperform steel and aluminum sheets in terms of specific energy absorption in bending mainly due to its low density. In addition, the AZ31B-O sheet was deformed with a larger radius of curvature than the steel and aluminum sheets, which brings a benefit to energy absorption capacity. Finally, finite element simulation for three-point bending was performed using LS-DYNA and the results confirmed that the larger radius of curvature of a magnesium specimen is mainly attributed to the high strain hardening rate in compression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Bo; Nelson, Kevin; Jin, Helena
Iridium alloys have been utilized as structural materials for certain high-temperature applications, due to their superior strength and ductility at elevated temperatures. The mechanical properties, including failure response at high strain rates and elevated temperatures of the iridium alloys need to be characterized to better understand high-speed impacts at elevated temperatures. A DOP-26 iridium alloy has been dynamically characterized in compression at elevated temperatures with high-temperature Kolsky compression bar techniques. However, the dynamic high-temperature compression tests were not able to provide sufficient dynamic high-temperature failure information of the iridium alloy. In this study, we modified current room-temperature Kolsky tension barmore » techniques for obtaining dynamic tensile stress-strain curves of the DOP-26 iridium alloy at two different strain rates (~1000 and ~3000 s-1) and temperatures (~750°C and ~1030°C). The effects of strain rate and temperature on the tensile stress-strain response of the iridium alloy were determined. The DOP-26 iridium alloy exhibited high ductility in stress-strain response that strongly depended on both strain rate and temperature.« less
Cao, Xuan; van Oosten, Anne; Shenoy, Vivek B.; Janmey, Paul A.; Wells, Rebecca G.
2016-01-01
Tissues including liver stiffen and acquire more extracellular matrix with fibrosis. The relationship between matrix content and stiffness, however, is non-linear, and stiffness is only one component of tissue mechanics. The mechanical response of tissues such as liver to physiological stresses is not well described, and models of tissue mechanics are limited. To better understand the mechanics of the normal and fibrotic rat liver, we carried out a series of studies using parallel plate rheometry, measuring the response to compressive, extensional, and shear strains. We found that the shear storage and loss moduli G’ and G” and the apparent Young's moduli measured by uniaxial strain orthogonal to the shear direction increased markedly with both progressive fibrosis and increasing compression, that livers shear strain softened, and that significant increases in shear modulus with compressional stress occurred within a range consistent with increased sinusoidal pressures in liver disease. Proteoglycan content and integrin-matrix interactions were significant determinants of liver mechanics, particularly in compression. We propose a new non-linear constitutive model of the liver. A key feature of this model is that, while it assumes overall liver incompressibility, it takes into account water flow and solid phase compressibility. In sum, we report a detailed study of non-linear liver mechanics under physiological strains in the normal state, early fibrosis, and late fibrosis. We propose a constitutive model that captures compression stiffening, tension softening, and shear softening, and can be understood in terms of the cellular and matrix components of the liver. PMID:26735954
Ma, Zhonglei; Wei, Ajing; Ma, Jianzhong; Shao, Liang; Jiang, Huie; Dong, Diandian; Ji, Zhanyou; Wang, Qian; Kang, Songlei
2018-04-19
Lightweight, compressible and highly sensitive pressure/strain sensing materials are highly desirable for the development of health monitoring, wearable devices and artificial intelligence. Herein, a very simple, low-cost and solution-based approach is presented to fabricate versatile piezoresistive sensors based on conductive polyurethane (PU) sponges coated with synergistic multiwalled carbon nanotubes (MWCNTs) and graphene. These sensor materials are fabricated by convenient dip-coating layer-by-layer (LBL) electrostatic assembly followed by in situ reduction without using any complicated microfabrication processes. The resultant conductive MWCNT/RGO@PU sponges exhibit very low densities (0.027-0.064 g cm-3), outstanding compressibility (up to 75%) and high electrical conductivity benefiting from the porous PU sponges and synergistic conductive MWCNT/RGO structures. In addition, the MWCNT/RGO@PU sponges present larger relative resistance changes and superior sensing performances under external applied pressures (0-5.6 kPa) and a wide range of strains (0-75%) compared with the RGO@PU and MWCNT@PU sponges, due to the synergistic effect of multiple mechanisms: "disconnect-connect" transition of nanogaps, microcracks and fractured skeletons at low compression strain and compressive contact of the conductive skeletons at high compression strain. The electrical and piezoresistive properties of MWCNT/RGO@PU sponges are strongly associated with the dip-coating cycle, suspension concentration, and the applied pressure and strain. Fully functional applications of MWCNT/RGO@PU sponge-based piezoresistive sensors in lighting LED lamps and detecting human body movements are demonstrated, indicating their excellent potential for emerging applications such as health monitoring, wearable devices and artificial intelligence.
Dynamic compressive strength of epoxy composites
NASA Astrophysics Data System (ADS)
Plastinin, A. V.; Sil'vestrov, V. V.
1996-11-01
The strength of laminated and unidirectionally reinforced composite materials was investigated in conditions of dynamic uniaxial compression with a strain rate of 50-1000 sec-1 using the split Hopkinson pressure bar method. It was shown that in conditions of dynamic compression, glass/epoxy, aramid/epoxy, and carbon/epoxy composites exhibit elastic-brittle behavior with anisotropy of the strength and elastic properties. The effect of the strain rate on the strength characteristics of fiberglass-reinforced plastics was demonstrated.
Strain-Rate Dependence of Deformation-Twinning in Tantalum
NASA Astrophysics Data System (ADS)
Abeywardhana, Jayalath; Germann, Tim; Ravelo, Ramon
2017-06-01
Large-Scale molecular dynamics (MD) simulations are used to model quasi-isentropic compression and expansion (QIC) in tantalum crystals varying the rate of deformation between the range 108 -1012s-1 and compressive pressures up to 100 GPa. The atomic interactions were modeled employing an embedded-atom method (EAM) potential of Ta. Isentropic expansion was done employing samples initially compressed to pressures of 60 and 100 GPa followed by uniaxial and quasi-isentropically expansion to zero pressure. The effect of initial dislocation density on twinning was also examined by varying the initial defect density of the Ta samples (1010 -1012cm-2). At these high-strain rates, a threshold in strain-rate on deformation twining is observed. Under expansion or compression, deformation twinning increases with strain rate for strain-rates >109s-1 . Below this value, small fraction of twins nucleates but anneal out with time. Samples with lower fraction of twins equilibrate to defect states containing higher screw dislocation densities from those with initially higher twinning fractions. This work was supported by the Department of Energy under contract DE-AC52-06NA25396 and by the Air Force Office of Scientific Research under AFOSR Award No. FA9550-12-1-0476.
Changing Dielectrics into Multiferroics---Alchemy Enabled by Strain
NASA Astrophysics Data System (ADS)
Schlom, Darrell
2011-03-01
Ferroelectric ferromagnets are exceedingly rare, fundamentally interesting multiferroic materials. The properties of what few compounds simultaneously exhibit these phenomena pale in comparison to useful ferroelectrics or ferromagnets: their spontaneous polarizations (Ps) or magnetizations (Ms) are smaller by a factor of 1000 or more. The same holds for (magnetic or electric) field-induced multiferroics. Recently, however, Fennie and Rabe proposed a new route to ferroelectric ferromagnets---transforming magnetically ordered insulators that are neither ferroelectric nor ferromagnetic, of which there are many, into ferroelectric ferromagnets using a single control parameter: strain. The system targeted, EuTi O3 , was predicted to simultaneously exhibit strong ferromagnetism (Ms ~ ~ ~7~μB /Eu) and strong ferroelectricity (Ps ~ ~ ~10~ μ C/cm2) under large biaxial compressive strain. These values are orders of magnitude higher than any known ferroelectric ferromagnet and rival the best materials that are solely ferroelectric or ferromagnetic. Hindered by the absence of an appropriate substrate to provide the desired compression, we show 3 both experimentally and theoretically the emergence of a multiferroic state under biaxial tension with the unexpected benefit that even lower misfits are required, thereby enabling higher quality crystalline films. The resulting genesis of a strong ferromagnetic ferroelectric points the way to high temperature manifestations of this spin-phonon coupling mechanism. Our work demonstrates that a single experimental parameter, strain, simultaneously controls multiple order parameters and is a viable alternative tuning parameter to composition for creating multiferroics. C.J. Fennie and K.M. Rabe, Phys. Rev. Lett. 97 (2006) 267602.
Cation ordering and effect of biaxial strain in double perovskite CsRbCaZnCl 6
Pilania, G.; Uberuaga, B. P.
2015-03-19
Here, we investigate the electronic structure, energetics of cation ordering, and effect of biaxial strain on double perovskite CsRbCaZnCl 6 using first-principles calculations based on density functional theory. The two constituents (i.e., CsCaCl 3 and RbZnCl 3) forming the double perovskite exhibit a stark contrast. While CsCaCl 3 is known to exist in a cubic perovskite structure and does not show any epitaxial strain induced phase transitions within an experimentally accessible range of compressive strains, RbZnCl 3 is thermodynamically unstable in the perovskite phase and exhibits ultra-sensitive response at small epitaxial strains if constrained in the perovskite phase. We showmore » that combining the two compositions in a double perovskite structure not only improves overall stability but also the strain-polarization coupling of the material. Our calculations predict a ground state with P4/nmm space group for the double perovskite, where A-site cations (i.e., Cs and Rb) are layer-ordered and B-site cations (i.e., Ca and Zn) prefer a rocksalt type ordering. The electronic structure and bandgap in this system are shown to be quite sensitive to the B-site cation ordering and is minimally affected by the ordering of A-site cations. We find that at experimentally accessible compressive strains CsRbCaZnCl 6 can be phase transformed from its paraelectric ground state to an antiferroelectric state, where Zn atoms contribute predominantly to the polarization. Furthermore, both energy difference and activation barrier for a transformation between this antiferroelectric state and the corresponding ferroelectric configuration are predicted to be small. As a result, the computational approach presented here opens a new pathway towards a rational design of novel double perovskites with improved strain response and functionalities.« less
Hunter, Shawn A; Noyes, Frank R; Haridas, Balakrishna; Levy, Martin S; Butler, David L
2005-05-01
Knee meniscus replacement holds promise, but current allografts are susceptible to biodegradation. Matrix stabilization with glutaraldehyde, a crosslinking agent used clinically to fabricate cardiovascular bioprostheses, or with glycation, a process of crosslinking collagen with sugars such as ribose, is a potential means of rendering tissue resistant to such degradation. However, stabilization should not significantly alter meniscal material properties, which could disturb normal function in the knee. Our objective was to evaluate the effects of glutaraldehyde- and glycation-induced matrix stabilization on the material properties of porcine meniscus. Normal untreated meniscus specimens were tested in confined compression at one of three applied stresses (0.069, 0.208, 0.347 MPa), subjected to either a glutaraldehyde or glycation stabilization treatment, and then re-tested to measure changes in tissue aggregate modulus, permeability, and compressive strain at equilibrium. Changes in these properties significantly increased with glutaraldehyde concentration and exposure time to ribose. One glutaraldehyde and three glycation treatments did not alter aggregate modulus or compressive strain at equilibrium compared to controls (p > 0.10). However, all treatments increased permeability by at least 108% compared to controls (p < 0.001). This study reveals a dose-dependent relationship between meniscal material properties and certain stabilization conditions and identifies treatments that minimally affect these properties. Further research is necessary to determine whether these treatments prevent enzymatic degradation before and after surgical implantation in the knee.
Computational Study of Axial Fatigue for Peripheral Nitinol Stents
NASA Astrophysics Data System (ADS)
Meoli, Alessio; Dordoni, Elena; Petrini, Lorenza; Migliavacca, Francesco; Dubini, Gabriele; Pennati, Giancarlo
2014-07-01
Despite their success as primary treatment for vascular diseases, Nitinol peripheral stents are still affected by complications related to fatigue failure. Hip and knee movements during daily activities produce large and cyclic deformations of the superficial femoral artery, that concomitant to the effects of pulsatile blood pressure, may cause fatigue failure in the stent. Fatigue failure typically occurs in cases of very extended lesions, which often require the use of two or more overlapping stents. In this study, finite element models were used to study the fatigue behavior of Nitinol stents when subjected to cyclic axial compression in different conditions. A specific commercial Nitinol stent was chosen for the analysis and subjected to cyclic axial compression typical of the femoral vascular region. Three different configurations were investigated: stent alone, stent deployed in a tube, and two overlapping stents deployed in a tube. Results confirm that stent oversizing has an influence in determining both the mean and amplitude strains induced in the stent and plays an important role in determining the fatigue response of Nitinol stents. In case of overlapping stents, numerical results suggest higher amplitude strains concentrate in the region close to the overlapping portion where the abrupt change in stiffness causes higher cyclic compression. These findings help to explain the high incidence of stent fractures observed in various clinical trials located close to the overlapping portion.
Highly strain-sensitive magnetostrictive tunnel magnetoresistance junctions
NASA Astrophysics Data System (ADS)
Tavassolizadeh, Ali; Hayes, Patrick; Rott, Karsten; Reiss, Günter; Quandt, Eckhard; Meyners, Dirk
2015-06-01
Tunnel magnetoresistance (TMR) junctions with CoFeB/MgO/CoFeB layers are promising for strain sensing applications due to their high TMR effect and magnetostrictive sense layer (CoFeB). TMR junctions available even in submicron dimensions can serve as strain sensors for microelectromechanical systems devices. Upon stress application, the magnetization configuration of such junctions changes due to the inverse magnetostriction effect resulting in strain-sensitive tunnel resistance. Here, strain sensitivity of round-shaped junctions with diameters of 11.3 μm, 19.2 μm, 30.5 μm, and 41.8 μm were investigated on macroscopic cantilevers using a four-point bending apparatus. This investigation mainly focuses on changes in hard-axis TMR loops caused by the stress-induced anisotropy. A macrospin model is proposed, supported by micromagnetic simulations, which describes the complete rotation of the sense layer magnetization within TMR loops of junctions, exposed to high stress. Below 0.2‰ tensile strain, a representative junction with 30.5 μm diameter exhibits a very large gauge factor of 2150. For such high gauge factor a bias field H = - 3.2 kA / m is applied in an angle equal to 3 π / 2 toward the pinned magnetization of the reference layer. The strain sensitivity strongly depends on the bias field. Applying stress along π / 4 against the induced magnetocrystalline anisotropy, both compressive and tensile strain can be identified by a unique sensor. More importantly, a configuration with a gauge factor of 400 at zero bias field is developed which results in a straightforward and compact measuring setup.
Torriss, B.; Margot, J.; Chaker, M.
2017-01-01
Samarium nickelate (SmNiO3) thin films were successfully synthesized on LaAlO3 and SrTiO3 substrates using pulsed-laser deposition. The Mott metal-insulator (MI) transition of the thin films is sensitive to epitaxial strain and strain relaxation. Once the strain changes from compressive to tensile, the transition temperature of the SmNiO3 samples shifts to slightly higher values. The optical conductivity reveals the strong dependence of the Drude spectral weight on the strain relaxation. Actually, compressive strain broadens the bandwidth. In contrast, tensile strain causes the effective number of free carriers to reduce which is consistent with the d-band narrowing. PMID:28098240
Tuning the Energy Gap of SiCH3 Nanomaterials Under Elastic Strain
NASA Astrophysics Data System (ADS)
Ma, Shengqian; Li, Feng; Geng, Jiguo; Zhu, Mei; Li, Suyan; Han, Juguang
2018-05-01
SiCH3 nanomaterials have been studied using the density functional theory. When the nanosheets and nanoribbons (armchair and zigzag) are introduced, their energy gap is modulated under elastic strain and width. The results show that the band gap of SiCH3 nanomaterials can be easily tuned using elastic strains and widths. Surprisingly, the band gap can be modulated along two directions, namely, compressing and stretching. The band gap decreases when increasing stretching strain or decreasing compressing strain. In addition, the band gap decreases when increasing the nanoribbon width. For energy gap engineering, the band gap can be tuned by strains and widths. Therefore, the SiCH3 nanomaterials play important roles in potential applications for strain sensors, electronics, and optical electronics.
Inducing phase transitions of T-like BiFeO3 films by low-energy He implantation
NASA Astrophysics Data System (ADS)
Herklotz, Andreas; Beekman, Christianne; Rus, Stefania Florina; Ivanov, Ilia; Balke, Nina; Ward, Thomas Zac
Ferroelectric phase transitions of BiFeO3 are found to be controllable through the application of single axis, out-of-plane strain. Low-energy He implantation has been deployed to induce out-of-plane strain in T-like BFO films, while the compressive in-plane strain due to the coherent growth on LaAlO3 substrates remains fixed. Our data shows that He implantation triggers a MC -MA - T phase sequence of the T polymorph that is identical to structural changes that are induced with increasing temperature. Mixed phases nanodomains phases are gradually suppressed and disappear above a certain He doping level. Our data shows that the ferroelectric and optical properties of BiFeO3 films critically depend on the He doping level. Thus, the results demonstrates that He implantation can be used as an intriguing approach to study lines in the rich phase space of BFO films that can't be accessed by simple heteroepitaxy. This effort was wholly supported by the US Department of Energy (DOE), Office of Basic Energy Sciences (BES), Materials Sciences and Engineering Division, with user projects supported at ORNL's Center for Nanophase Materials Research (CNMS) which is also sponsored by DOE-BES.
Geodetic measurement of deformation east of the San Andreas Fault in Central California
NASA Technical Reports Server (NTRS)
Sauber, Jeanne; Solomon, Sean C.; Lisowski, Michael
1988-01-01
The shear strain rates in the Diablo Range of California have been calculated, and the slip rate along the Calaveras and Paicines faults in Central California have been estimated, on the basis of triangulation and trilateration data from two geodetic networks located between the western edge of the Great Valley and the San Andreas Fault. The orientation of the principal compressive strain predicted from the azimuth of the major structures in the region is N 25 deg E, leading to an average shear strain value that corresponds to a relative shortening rate of 4.5 + or - 2.4 mm/yr. It is inferred that the measured strain is due to compression across the fold of this area. The hypothesized uniform, fault-normal compression within the Coast Ranges is not supported by these results.
The present state and future direction of second order closure models for compressible flows
NASA Technical Reports Server (NTRS)
Gatski, Thomas B.; Sarkar, Sutanu; Speziale, Charles G.
1992-01-01
The topics are presented in viewgraph form and include: (1) Reynolds stress closure models; (2) Favre averages and governing equations; (3) the model for the deviatoric part of the pressure-strain rate correlation; (4) the SSG pressure-strain correlation model; (5) a compressible turbulent dissipation rate model; (6) variable viscosity effects; (7) near-wall stiffness problems; (8) models of the Reynolds mass and heat flux; and (9) a numerical solution of the compressible turbulent transport equation.
Analysis of Deformation and Equivalent Stress during Biomass Material Compression Molding
NASA Astrophysics Data System (ADS)
Xu, Guiying; Wei, Hetao; Zhang, Zhien; Yu, Shaohui; Wang, Congzhe; Huang, Guowen
2018-02-01
Ansys is adopted to analyze mold deformation and stress field distribution rule during the process of compressing biomass under pressure of 20Mpa. By means of unit selection, material property setting, mesh partition, contact pair establishment, load and constraint applying, and solver setting, the stress and strain of overall mold are analyzed. Deformation and equivalent Stress of compression structure, base, mold, and compression bar were analyzed. We can have conclusions: The distribution of stress forced on compressor is not completely uniform, where the stress at base is slightly decreased; the stress and strain of compression bar is the largest, and stress concentration my occur at top of compression bar, which goes against compression bar service life; the overall deformation of main mold is smaller; although there is slight difference between upper and lower part, the overall variation is not obvious, but the stress difference between upper and lower part of main mold is extremely large so that reaches to 10 times; the stress and strain in base decrease in circular shape, but there is still stress concentration in ledge, which goes against service life; contact stress does not distribute uniformly, there is increasing or decreasing trend in adjacent parts, which is very large in some parts. in constructing both.
Compression-sensitive magnetic resonance elastography
NASA Astrophysics Data System (ADS)
Hirsch, Sebastian; Beyer, Frauke; Guo, Jing; Papazoglou, Sebastian; Tzschaetzsch, Heiko; Braun, Juergen; Sack, Ingolf
2013-08-01
Magnetic resonance elastography (MRE) quantifies the shear modulus of biological tissue to detect disease. Complementary to the shear elastic properties of tissue, the compression modulus may be a clinically useful biomarker because it is sensitive to tissue pressure and poromechanical interactions. In this work, we analyze the capability of MRE to measure volumetric strain and the dynamic bulk modulus (P-wave modulus) at a harmonic drive frequency commonly used in shear-wave-based MRE. Gel phantoms with various densities were created by introducing CO2-filled cavities to establish a compressible effective medium. The dependence of the effective medium's bulk modulus on phantom density was investigated via static compression tests, which confirmed theoretical predictions. The P-wave modulus of three compressible phantoms was calculated from volumetric strain measured by 3D wave-field MRE at 50 Hz drive frequency. The results demonstrate the MRE-derived volumetric strain and P-wave modulus to be sensitive to the compression properties of effective media. Since the reconstruction of the P-wave modulus requires third-order derivatives, noise remains critical, and P-wave moduli are systematically underestimated. Focusing on relative changes in the effective bulk modulus of tissue, compression-sensitive MRE may be useful for the noninvasive detection of diseases involving pathological pressure alterations such as hepatic hypertension or hydrocephalus.
Gomez-Marin, Alex; Stephens, Greg J; Brown, André E X
2016-08-01
Regularities in animal behaviour offer insights into the underlying organizational and functional principles of nervous systems and automated tracking provides the opportunity to extract features of behaviour directly from large-scale video data. Yet how to effectively analyse such behavioural data remains an open question. Here, we explore whether a minimum description length principle can be exploited to identify meaningful behaviours and phenotypes. We apply a dictionary compression algorithm to behavioural sequences from the nematode worm Caenorhabditis elegans freely crawling on an agar plate both with and without food and during chemotaxis. We find that the motifs identified by the compression algorithm are rare but relevant for comparisons between worms in different environments, suggesting that hierarchical compression can be a useful step in behaviour analysis. We also use compressibility as a new quantitative phenotype and find that the behaviour of wild-isolated strains of C. elegans is more compressible than that of the laboratory strain N2 as well as the majority of mutant strains examined. Importantly, in distinction to more conventional phenotypes such as overall motor activity or aggregation behaviour, the increased compressibility of wild isolates is not explained by the loss of function of the gene npr-1, which suggests that erratic locomotion is a laboratory-derived trait with a novel genetic basis. Because hierarchical compression can be applied to any sequence, we anticipate that compressibility can offer insights into the organization of behaviour in other animals including humans. © 2016 The Authors.
Shock compression of [001] single crystal silicon
Zhao, S.; Remington, B.; Hahn, E. N.; ...
2016-03-14
Silicon is ubiquitous in our advanced technological society, yet our current understanding of change to its mechanical response at extreme pressures and strain-rates is far from complete. This is due to its brittleness, making recovery experiments difficult. High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon (using impedance-matched momentum traps) unveiled remarkable structural changes observed by transmission electron microscopy. As laser energy increases, corresponding to an increase in peak shock pressure, the following plastic responses are are observed: surface cleavage along {111} planes, dislocations and stacking faults; bands of amorphized material initially forming on crystallographic orientations consistent withmore » dislocation slip; and coarse regions of amorphized material. Molecular dynamics simulations approach equivalent length and time scales to laser experiments and reveal the evolution of shock-induced partial dislocations and their crucial role in the preliminary stages of amorphization. Furthermore, application of coupled hydrostatic and shear stresses produce amorphization below the hydrostatically determined critical melting pressure under dynamic shock compression.« less
Shock compression of [001] single crystal silicon
NASA Astrophysics Data System (ADS)
Zhao, S.; Hahn, E. N.; Kad, B.; Remington, B. A.; Bringa, E. M.; Meyers, M. A.
2016-05-01
Silicon is ubiquitous in our advanced technological society, yet our current understanding of change to its mechanical response at extreme pressures and strain-rates is far from complete. This is due to its brittleness, making recovery experiments difficult. High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon (using impedance-matched momentum traps) unveiled remarkable structural changes observed by transmission electron microscopy. As laser energy increases, corresponding to an increase in peak shock pressure, the following plastic responses are are observed: surface cleavage along {111} planes, dislocations and stacking faults; bands of amorphized material initially forming on crystallographic orientations consistent with dislocation slip; and coarse regions of amorphized material. Molecular dynamics simulations approach equivalent length and time scales to laser experiments and reveal the evolution of shock-induced partial dislocations and their crucial role in the preliminary stages of amorphization. Application of coupled hydrostatic and shear stresses produce amorphization below the hydrostatically determined critical melting pressure under dynamic shock compression.
Transformation of shock-compressed graphite to hexagonal diamond in nanoseconds
Turneaure, Stefan J.; Sharma, Surinder M.; Volz, Travis J.; Winey, J. M.; Gupta, Yogendra M.
2017-01-01
The graphite-to-diamond transformation under shock compression has been of broad scientific interest since 1961. The formation of hexagonal diamond (HD) is of particular interest because it is expected to be harder than cubic diamond and due to its use in terrestrial sciences as a marker at meteorite impact sites. However, the formation of diamond having a fully hexagonal structure continues to be questioned and remains unresolved. Using real-time (nanosecond), in situ x-ray diffraction measurements, we show unequivocally that highly oriented pyrolytic graphite, shock-compressed along the c axis to 50 GPa, transforms to highly oriented elastically strained HD with the (100)HD plane parallel to the graphite basal plane. These findings contradict recent molecular dynamics simulation results for the shock-induced graphite-to-diamond transformation and provide a benchmark for future theoretical simulations. Additionally, our results show that an earlier report of HD forming only above 170 GPa for shocked pyrolytic graphite may lead to incorrect interpretations of meteorite impact events. PMID:29098183
Transformation of shock-compressed graphite to hexagonal diamond in nanoseconds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turneaure, Stefan J.; Sharma, Surinder M.; Volz, Travis J.
The graphite-to-diamond transformation under shock compression has been of broad scientific interest since 1961. The formation of hexagonal diamond (HD) is of particular interest because it is expected to be harder than cubic diamond and due to its use in terrestrial sciences as a marker at meteorite impact sites. However, the formation of diamond having a fully hexagonal structure continues to be questioned and remains unresolved. Using real-time (nanosecond), in situ x-ray diffraction measurements, we show unequivocally that highly oriented pyrolytic graphite, shock-compressed along the c axis to 50 GPa, transforms to highly oriented elastically strained HD with the (100)HDmore » plane parallel to the graphite basal plane. These findings contradict recent molecular dynamics simulation results for the shock-induced graphite-to-diamond transformation and provide a benchmark for future theoretical simulations. Additionally, our results show that an earlier report of HD forming only above 170 GPa for shocked pyrolytic graphite may lead to incorrect interpretations of meteorite impact events.« less
Raman study of radiation-damaged zircon under hydrostatic compression
NASA Astrophysics Data System (ADS)
Nasdala, Lutz; Miletich, Ronald; Ruschel, Katja; Váczi, Tamás
2008-12-01
Pressure-induced changes of Raman band parameters of four natural, gem-quality zircon samples with different degrees of self-irradiation damage, and synthetic ZrSiO4 without radiation damage, have been studied under hydrostatic compression in a diamond anvil cell up to ~10 GPa. Radiation-damaged zircon shows similar up-shifts of internal SiO4 stretching modes at elevated pressures as non-damaged ZrSiO4. Only minor changes of band-widths were observed in all cases. This makes it possible to estimate the degree of radiation damage from the width of the ν3(SiO4) band of zircon inclusions in situ, almost independent from potential “fossilized pressures” or compressive strain acting on the inclusions. An application is the non-destructive analysis of gemstones such as corundum or spinel: broadened Raman bands are a reliable indicator of self-irradiation damage in zircon inclusions, whose presence allows one to exclude artificial color enhancement by high-temperature treatment of the specimen.
Transformation of shock-compressed graphite to hexagonal diamond in nanoseconds
Turneaure, Stefan J.; Sharma, Surinder M.; Volz, Travis J.; ...
2017-10-27
The graphite-to-diamond transformation under shock compression has been of broad scientific interest since 1961. The formation of hexagonal diamond (HD) is of particular interest because it is expected to be harder than cubic diamond and due to its use in terrestrial sciences as a marker at meteorite impact sites. However, the formation of diamond having a fully hexagonal structure continues to be questioned and remains unresolved. Using real-time (nanosecond), in situ x-ray diffraction measurements, we show unequivocally that highly oriented pyrolytic graphite, shock-compressed along the c axis to 50 GPa, transforms to highly oriented elastically strained HD with the (100)HDmore » plane parallel to the graphite basal plane. These findings contradict recent molecular dynamics simulation results for the shock-induced graphite-to-diamond transformation and provide a benchmark for future theoretical simulations. Additionally, our results show that an earlier report of HD forming only above 170 GPa for shocked pyrolytic graphite may lead to incorrect interpretations of meteorite impact events.« less
The influence of lay-up and thickness on composite impact damage and compression strength
NASA Technical Reports Server (NTRS)
Guynn, E. G.; Obrien, T. K.
1985-01-01
The effects of composite stacking sequence, thickness, and percentage of zero-degree plies on the size, shape, and distribution of delamination through the laminate thickness and on residual compression strength following impact were studied. Graphite/epoxy laminates were impacted with an 0.5 inch diameter aluminum sphere at a specific low or high velocity. Impact damage was measured nondestructively by ultrasonic C-scans and X-radiography and destructively by the deply technique, and compression strength tests were performed. It was found that differences in compression failure strain due to stacking sequence were small, while laminates with very low percentages of zero-degree plies had similar failure loads but higher failure strains than laminates with higher percentages of zero-degree plies. Failure strain did not correlate with planar impact damage area, and delaminations in impact regions were associated with matrix cracking.
NASA Astrophysics Data System (ADS)
Kumavat, Hemraj Ramdas
2016-09-01
The compressive stress-strain behavior and mechanical properties of clay brick masonry and its constituents clay bricks and mortar, have been studied by several laboratory tests. Using linear regression analysis, a analytical model has been proposed for obtaining the stress-strain curves for masonry that can be used in the analysis and design procedures. The model requires only the compressive strengths of bricks and mortar as input data, which can be easily obtained experimentally. Development of analytical model from the obtained experimental results of Young's modulus and compressive strength. Simple relationships have been identified for obtaining the modulus of elasticity of bricks, mortar, and masonry from their corresponding compressive strengths. It was observed that the proposed analytical model clearly demonstrates a reasonably good prediction of the stress-strain curves when compared with the experimental curves.
Micromechanics and poroelasticity of hydrated cellulose networks.
Lopez-Sanchez, P; Rincon, Mauricio; Wang, D; Brulhart, S; Stokes, J R; Gidley, M J
2014-06-09
The micromechanics of cellulose hydrogels have been investigated using a new rheological experimental approach, combined with simulation using a poroelastic constitutive model. A series of mechanical compression steps at different strain rates were performed as a function of cellulose hydrogel thickness, combined with small amplitude oscillatory shear after each step to monitor the viscoelasticity of the sample. During compression, bacterial cellulose hydrogels behaved as anisotropic materials with near zero Poisson's ratio. The micromechanics of the hydrogels altered with each compression as water was squeezed out of the structure, and microstructural changes were strain rate-dependent, with increased densification of the cellulose network and increased cellulose fiber aggregation observed for slower compressive strain rates. A transversely isotropic poroelastic model was used to explain the observed micromechanical behavior, showing that the mechanical properties of cellulose networks in aqueous environments are mainly controlled by the rate of water movement within the structure.
Strain distribution in hot rolled aluminum by photoplastic analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oyinlola, Adeyinka Kofoworola
1974-10-01
A previously developed photomechanic material, Larninac, which excellently simulates the behavior of aluminum in tension has been investigated intensively as a possible modeling material for hot-rolled aluminum billets. Photoplasticity techniques combined with the Moire method have been used to study the behavior of the Laminac mixture in compression. Photoplastic analysis revealed that a Laminac mixture of 60% flexible and 40% rigid resins, compressed or rolled at 40°C, showed the phenomenon of double bulging which has been observed in hot-rolled aluminum billets. The potentiality of the 60:40 Laminac mixture as a possible Simulating material at 40°C is further enhanced by themore » fact that the true stress-true strain curves of cylindrical samples compressed at 40°C correlated very well with true stresstrue strain of identical cylindrical samples of aluminum compressed. at 300°C, 425PC and 500°c.« less
Multiple deformation mechanisms of Ti-22.4Nb-0.73Ta-2.0Zr-1.34O alloy
NASA Astrophysics Data System (ADS)
Yang, Y.; Li, G. P.; Cheng, G. M.; Li, Y. L.; Yang, K.
2009-02-01
Ti-22.4Nb-0.73Ta-2.0Zr-1.34O (at. %) alloy after cold compression to ˜5.2% strain was investigated. The alloy exhibited multiple plastic deformation mechanisms, including the stress-induced α″ martensitic (SIM α″) and ω phase transformations, 1/2⟨111⟩ dislocations slipping on the {112}β planes as well as {332}⟨113⟩β and {112}⟨111⟩β twinning, which have not previously been reported to coexist in a titanium alloy. It was also found that β phase with the {200} planes vertical to the compression direction was almost completely consumed away by a β →SIM α″ transformation, and a (100) texture of SIM α″ formed.
Structural Influence on the Mechanical Response of Adolescent Gottingen Porcine Cranial Bone
2016-10-01
specimens were then loaded in quasi -static compression to measure their mechanical response. The surface strain distribution on the specimen face was...13 Fig. 10 Apparent stress-strain responses of a sample of specimens loaded in quasi -static compression...modulus-BVF experimental results shown in Fig. 15 ..................................................................................19 Fig. 17 The
Wang, Huamiao; Wu, Peidong; Wang, Jian
2015-04-17
Magnesium alloy AZ31B plastically deforms via twinning and slip. Corresponding to the unidirectional nature of twinning, the activity of twinning/detwinning is directly related to loading history and materials texture. Using the elastic viscoplastic self-consistent model implementing with the twinning and detwinning model (EVPSC–TDT), we revisited experimental data of AZ31B sheets under four different strain paths: (1) tension–compression–tension along rolling direction, (2) tension–compression–tension along transverse direction, (3) compression–tension–compression along rolling direction, and (4) compression–tension–compression along transverse direction, and identified the dominant deformation mechanisms with respect to the strain path. We captured plastic deformation behaviors observed in experiments and quantitatively interpreted experimentalmore » observations in terms of the activities of different deformation mechanisms and the evolution of texture. It is found that the in-plane pre-tension has slight effect on the subsequent deformation, and the pre-compression and the reverse tension after compression have significant effect on the subsequent deformation. The inelastic behavior under compressive unloading is found to be insignificant at a small strain level but pronounced at a large strain level. Lastly, such significant effect is mainly ascribed to the activity of twinning and detwinning.« less
Space charge induced surface stresses: implications in ceria and other ionic solids.
Sheldon, Brian W; Shenoy, Vivek B
2011-05-27
Volume changes associated with point defects in space charge layers can produce strains that substantially alter thermodynamic equilibrium near surfaces in ionic solids. For example, near-surface compressive stresses exceeding -10 GPa are predicted for ceria. The magnitude of this effect is consistent with anomalous lattice parameter increases that occur in ceria nanoparticles. These stresses should significantly alter defect concentrations and key transport properties in a wide range of materials (e.g., ceria electrolytes in fuel cells). © 2011 American Physical Society
Solvent-Induced Crystallization in Poly(Ethylene Terephthalate) during Mass Transport
NASA Astrophysics Data System (ADS)
Ouyang, Hao
2001-03-01
The solvent transport in poly(ethylene terephthalate) (PET) and related phase transformation were investigated. The data of mass sorption were analyzed according to Harmon¡¦s model for Case I (Fickian), Case II (swelling) and anomalous transport. This transport process in PET is accompanied by the induced crystallization of the original amorphous state. The transformation was studied by wide angle x-ray scattering (WAXS), small angle x-ray scattering (SAXS), Differential Scanning Calorimeter (DSC), density gradient column, and Fourier Transform Infra-Red (FTIR). During this process, the matrix is under a compressive strain that causes different kinetic path of crystallization as compared to that by thermal annealing. This state of strain will assist the development of the solvent-induced crystallization. It also can be explained in terms of the principle of Le Chatelier if the local equilibrium is assumed. The model regarding the crystallization was proposed in terms of the study of long period L, the crystal thickness lc and the thickness of amorphous layer la, obtained from the linear correlation function and interface distribution function.
Deformation of a flexible disk bonded to an elastic half space-application to the lung.
Lai-Fook, S J; Hajji, M A; Wilson, T A
1980-08-01
An analysis is presented of the deformation of a homogeneous, isotropic, elastic half space subjected to a constant radial strain in a circular area on the boundary. Explicit analytic expressions for the normal and radial displacements and the shear stress on the boundary are used to interpret experiments performed on inflated pig lungs. The boundary strain was induced by inflating or deflating the lung after bonding a flexible disk to the lung surface. The prediction that the surface bulges outward for positive boundary strain and inward for negative strain was observed in the experiments. Poisson's ratio at two transpulmonary pressures was measured, by use of the normal displacement equation evaluated at the surface. A direct estimate of Poisson's ratio was possible because the normal displacement of the surface depended uniquely on the compressibility of the material. Qualitative comparisons between theory and experiment support the use of continuum analyses in evaluating the behavior of the lung parenchyma when subjected to small local distortions.
Deformation-Induced Recrystallization of Magnesium Single Crystals at Ambient Temperature
NASA Astrophysics Data System (ADS)
Molodov, K. D.; Al-Samman, T.; Molodov, D. A.
2015-04-01
Specially oriented magnesium single crystals were subjected to plane strain compression along the <112¯0> direction in c-axis extension at ambient temperature. The samples exhibited outstanding formability deforming up to a logarithmic final strain of -1. Investigations by optical and orientation imaging microscopy revealed that massive {101¯2} extension twinning at low strains consumed the whole sample and resulted in new soft orientations for slip. Observations also indicated that additional twinning took place in the completely twinned matrix by secondary and tertiary twinning events. At advanced stages of deformation newly formed, equiaxed small grains were observed within numerous bands related to former deformation twins. These “recrystallized” grains characterized by a low grain orientation spread of less than 1° generated new orientations, which led to a substantial weakening and randomization of the texture during deformation up to very large strains. The reported results in this paper are discussed with regard to the microstructure evolution arising from multiple twinning and continuous dynamic recrystallization at room temperature.
Flow behavior of Ti-24Al-11Nb at high strain rates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harbison, L.S.; Koss, D.A.; Bourcier, R.J.
The deformation and crack initiation behavior of Ti-24Al-11Nb has been examined over a temperature range of 298 to 923 K and for strain rates from 10{sup {minus}4}/s to 10{sup 2}/s. Tests performed in compression indicate much lower strain hardening at 10{sup 2}/s than at either 10{sup {minus}1}/s or 10{sup {minus}4}/s at all temperatures. Associated with this behavior is the occurrence of non-uniform, localized deformation bands at 10{sup 2}/s. An analysis indicates that adiabatic deformation conditions predominate at 10{sup 2}/s and that these result in adiabatic softening. Furthermore, as a result of non-uniform deformation and adiabatic heating, this Ti{sub 3}-Al-based alloymore » is actually more resistant to strain-induced microcrack initiation at 10{sup 2}/s than at 10{sup {minus}4}/s during room temperature testing. 16 refs., 7 figs.« less
Lv, Peng; Wang, Yaru; Ji, Chenglong; Yuan, Jiajiao
2017-01-01
Ultra-compressible electrodes with high electrochemical performance, reversible compressibility and extreme durability are in high demand in compression-tolerant energy storage devices. Herein, an ultra-compressible ternary composite was synthesized by successively electrodepositing poly(3,4-ethylenedioxythiophene) (PEDOT) and MnO2 into the superelastic graphene aerogel (SEGA). In SEGA/PEDOT/MnO2 ternary composite, SEGA provides the compressible backbone and conductive network; MnO2 is mainly responsible for pseudo reactions; the middle PEDOT not only reduces the interface resistance between MnO2 and graphene, but also further reinforces the strength of graphene cellar walls. The synergistic effect of the three components in the ternary composite electrode leads to high electrochemical performances and good compression-tolerant ability. The gravimetric capacitance of the compressible ternary composite electrodes reaches 343 F g−1 and can retain 97% even at 95% compressive strain. And a volumetric capacitance of 147.4 F cm−3 is achieved, which is much higher than that of other graphene-based compressible electrodes. This value of volumetric capacitance can be preserved by 80% after 3500 charge/discharge cycles under various compression strains, indicating an extreme durability.
Strain Gage Measurements of Aft Nacelle Shock Absorbers.
ENGINE NACELLES, SHOCK ABSORBERS ), (* SHOCK ABSORBERS , STRESSES), SURFACE TO SURFACE MISSILES, LAUNCHING, STRAIN GAGES, COMPRESSIVE PROPERTIES, CALIBRATION, STRAIN(MECHANICS), FAILURE, GROUND SUPPORT EQUIPMENT.
Amini, Samira; Mortazavi, Farhad; Sun, Jun; Levesque, Martin; Hoemann, Caroline D; Villemure, Isabelle
2013-01-01
Mechanical environment is one of the regulating factors involved in the process of longitudinal bone growth. Non-physiological compressive loading can lead to infantile and juvenile musculoskeletal deformities particularly during growth spurt. We hypothesized that tissue mechanical behavior in sub-regions (reserve, proliferative and hypertrophic zones) of the growth plate is related to its collagen and proteoglycan content as well as its collagen fiber orientation. To characterize the strain distribution through growth plate thickness and to evaluate biochemical content and collagen fiber organization of the three histological zones of growth plate tissue. Distal ulnar growth plate samples (N = 29) from 4-week old pigs were analyzed histologically for collagen fiber organization (N = 7) or average zonal thickness (N = 8), or trimmed into the three average zones, based on the estimated thickness of each histological zone, for biochemical analysis of water, collagen and glycosaminoglycan content (N = 7). Other samples (N = 7) were tested in semi-confined compression under 10% compressive strain. Digital images of the fluorescently labeled nuclei were concomitantly acquired by confocal microscopy before loading and after tissue relaxation. Strain fields were subsequently calculated using a custom-designed 2D digital image correlation algorithm. Depth-dependent compressive strain patterns and collagen content were observed. The proliferative and hypertrophic zone developed the highest axial and transverse strains, respectively, under compression compared to the reserve zone, in which the lowest axial and transverse strains arose. The collagen content per wet mass was significantly lower in the proliferative and hypertrophic zones compared to the reserve zone, and all three zones had similar glycosaminoglycan and water content.Polarized light microscopy showed that collagen fibers were mainly organized horizontally in the reserve zone and vertically aligned with the growth direction in the proliferative and hypertrophic zones. Higher strains were developed in growth plate areas (proliferative and hypertrophic) composed of lower collagen content and of vertical collagen fiber organization. The stiffer reserve zone, with its higher collagen content and collagen fibers oriented to restrain lateral expansion under compression, could play a greater role of mechanical support compared to the proliferative and hypertrophic zones, which could be more susceptible to be involved in an abnormal growth process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esteves, Giovanni; Fancher, Chris M.; Röhrig, Sören
The effects of electrical and mechanical loading on the behavior of domains and phases in Multilayer Piezoelectric Actuators (MAs) is studied using in situ high-energy X-ray diffraction (XRD) and macroscopic property measurements. Rietveld refinement is carried out on measured diffraction patterns using a two-phase tetragonal (P4mm) and rhombohedral (R3m) model. Applying an electric field promotes the rhombohedral phase, while increasing compressive uniaxial pre-stress prior to electric field application favors the tetragonal phase. The competition between electrical and mechanical energy leads to a maximal difference between electric-field-induced phase fractions at 70 MPa pre-stress. Additionally, the available volume fraction of non-180° domainmore » reorientation that can be accessed during electric field application increases with compressive pre-stress up to 70 MPa. The origin for enhanced strain and polarization with applied pre-stress is attributed to a combination of enhanced non-180° domain reorientation and electric-field-induced phase transitions. The suppression of both the electric-field-induced phase transitions and domain reorientation at high pre-stresses (>70 MPa) is attributed to a large mechanical energy barrier, and alludes to the competition of the electrical and mechanical energy within the MA during applied stimuli.« less
Esteves, Giovanni; Fancher, Chris M.; Röhrig, Sören; ...
2017-04-08
The effects of electrical and mechanical loading on the behavior of domains and phases in Multilayer Piezoelectric Actuators (MAs) is studied using in situ high-energy X-ray diffraction (XRD) and macroscopic property measurements. Rietveld refinement is carried out on measured diffraction patterns using a two-phase tetragonal (P4mm) and rhombohedral (R3m) model. Applying an electric field promotes the rhombohedral phase, while increasing compressive uniaxial pre-stress prior to electric field application favors the tetragonal phase. The competition between electrical and mechanical energy leads to a maximal difference between electric-field-induced phase fractions at 70 MPa pre-stress. Additionally, the available volume fraction of non-180° domainmore » reorientation that can be accessed during electric field application increases with compressive pre-stress up to 70 MPa. The origin for enhanced strain and polarization with applied pre-stress is attributed to a combination of enhanced non-180° domain reorientation and electric-field-induced phase transitions. The suppression of both the electric-field-induced phase transitions and domain reorientation at high pre-stresses (>70 MPa) is attributed to a large mechanical energy barrier, and alludes to the competition of the electrical and mechanical energy within the MA during applied stimuli.« less
SEM and TEM characterization of the microstructure of post-compressed TiB2/2024Al composite.
Guo, Q; Jiang, L T; Chen, G Q; Feng, D; Sun, D L; Wu, G H
2012-02-01
In the present work, 55 vol.% TiB(2)/2024Al composites were obtained by pressure infiltration method. Compressive properties of 55 vol.% TiB(2)/2024Al composite under the strain rates of 10(-3) and 1S(-1) at different temperature were measured and microstructure of post-compressed TiB(2)/2024Al composite was characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM). No trace of Al(3)Ti compound flake was found. TiB(2)-Al interface was smooth without significant reaction products, and orientation relationships ( [Formula: see text] and [Formula: see text] ) were revealed by HRTEM. Compressive strength of TiB(2)/2024Al composites decreased with temperature regardless of strain rates. The strain-rate-sensitivity of TiB(2)/2024Al composites increased with the increasing temperature. Fracture surface of specimens compressed at 25 and 250°C under 10(-3)S(-1) were characterized by furrow. Under 10(-3)S(-1), high density dislocations were formed in Al matrix when compressed at 25°C and dynamic recrystallization occurred at 250°C. Segregation of Mg and Cu on the subgrain boundary was also revealed at 550°C. Dislocations, whose density increased with temperature, were formed in TiB(2) particles under 1S(-1). Deformation of composites is affected by matrix, reinforcement and strain rate. Copyright © 2011 Elsevier Ltd. All rights reserved.
Si(111) strained layers on Ge(111): Evidence for c (2 ×4 ) domains
NASA Astrophysics Data System (ADS)
Zhachuk, R.; Coutinho, J.; Dolbak, A.; Cherepanov, V.; Voigtländer, B.
2017-08-01
The tensile-strained Si (111 ) layers grown on top of Ge (111 ) substrates are studied by combining scanning tunneling microscopy, low-energy electron diffraction, and first-principles calculations. It is shown that the layers exhibit c (2 ×4 ) domains, which are separated by domain walls along <1 ¯10 > directions. A model structure for the c (2 ×4 ) domains is proposed, which shows low formation energy and good agreement with the experimental data. The results of our calculations suggest that Ge atoms are likely to replace Si atoms with dangling bonds on the surface (rest-atoms and adatoms), thus significantly lowering the surface energy and inducing the formation of domain walls. The experiments and calculations demonstrate that when surface strain changes from compressive to tensile, the (111) reconstruction converts from dimer-adatom-stacking fault-based to adatom-based structures.
NASA Astrophysics Data System (ADS)
Yu, Ying; Zhan, Qingfeng; Wei, Jinwu; Wang, Jianbo; Dai, Guohong; Zuo, Zhenghu; Zhang, Xiaoshan; Liu, Yiwei; Yang, Huali; Zhang, Yao; Xie, Shuhong; Wang, Baomin; Li, Run-Wei
2015-04-01
Magnetostrictive FeGa thin films were deposited on the bowed flexible polyethylene terephthalate (PET) substrates, which were fixed on the convex mold. A compressive stress was induced in FeGa films when the PET substrates were shaped from convex to flat. Due to the effect of magnetostriction, FeGa films exhibit an obvious in-plane uniaxial magnetic anisotropy which could be enhanced by increasing the applied pre-strains on the substrates during growth. Consequently, the ferromagnetic resonance frequency of the films was significantly increased, but the corresponding initial permeability was decreased. Moreover, the films with pre-strains less than 0.78% exhibit a working bandwidth of microwave absorption about 2 GHz. Our investigations demonstrated a convenient method via the pre-strained substrates to tune the high frequency properties of magnetic thin films which could be applied in flexible microwave devices.
NASA Technical Reports Server (NTRS)
Jegley, Dawn C.; Lopez, Osvaldo F.
1991-01-01
Experimentally determined axial compressive failure loads, strains and failure modes of composite flat panels and cylinders are presented. A comparison of two types of filament wound flat graphite-epoxy panels indicates that the winding pattern can influence structural response. A comparison of hand laid-up tape and filament wound composite cylinders indicates that fabrication method may not significantly influence the failure mode or average failure strain of thick-walled (radius-to-thickness ratio less than 15) graphite-epoxy cylinders. The interaction of manufacturing-induced features (fiber cross-overs) and low-speed impact damage for graphite-epoxy specimens is also presented. Filament would flat panels with many fiber cross-overs exhibited lower failure strains than filament wound panels without fiber cross-overs for all impact speeds examined. Graphite-thermoplastic cylinders exhibited a significantly different failure mode from the graphite-epoxy cylinders.
NASA Technical Reports Server (NTRS)
Howell, W. E.
1974-01-01
The structural performance of a boron-epoxy reinforced titanium drag strut, which contains a bonded scarf joint and was designed to the criteria of the Boeing 747 transport, was evaluated. An experimental and analytical investigation was conducted. The strut was exposed to two lifetimes of spectrum loading and was statically loaded to the tensile and compressive design ultimate loads. Throughout the test program no evidence of any damage in the drag strut was detected by strain gage measurements, ultrasonic inspection, or visual observation. An analytical study of the bonded joint was made using the NASA structural analysis computer program NASTRAN. A comparison of the strains predicted by the NASTRAN computer program with the experimentally determined values shows excellent agreement. The NASTRAN computer program is a viable tool for studying, in detail, the stresses and strains induced in a bonded joint.
Shape Memory Silk Protein Sponges for Minimally Invasive Tissue Regeneration.
Brown, Joseph E; Moreau, Jodie E; Berman, Alison M; McSherry, Heather J; Coburn, Jeannine M; Schmidt, Daniel F; Kaplan, David L
2017-01-01
Porous silk protein scaffolds are designed to display shape memory characteristics and volumetric recovery following compression. Two strategies are utilized to realize shape recovery: addition of hygroscopic plasticizers like glycerol, and tyrosine modifications with hydrophilic sulfonic acid chemistries. Silk sponges are evaluated for recovery following 80% compressive strain, total porosity, pore size distribution, secondary structure development, in vivo volume retention, cell infiltration, and inflammatory responses. Glycerol-modified sponges recover up to 98.3% of their original dimensions following compression, while sulfonic acid/glycerol modified sponges swell in water up to 71 times their compressed volume, well in excess of their original size. Longer silk extraction times (lower silk molecular weights) and higher glycerol concentrations yielded greater flexibility and shape fidelity, with no loss in modulus following compression. Sponges are over 95% porous, with secondary structure analysis indicating glycerol-induced β-sheet physical crosslinking. Tyrosine modifications with sulfonic acid interfere with β-sheet formation. Glycerol-modified sponges exhibit improved rates of cellular infiltration at subcutaneous implant sites with minimal immune response in mice. They also degrade more rapidly than unmodified sponges, a result posited to be cell-mediated. Overall, this work suggests that silk sponges may be useful for minimally invasive deployment in soft tissue augmentation procedures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Jing, Lin; Su, Xingya; Zhao, Longmao
The dynamic compressive behavior of D1 railway wheel steel at high strain rates was investigated using a split Hopkinson pressure bar (SHPB) apparatus. Three types of specimens, which were derived from the different positions (i.e., the rim, web and hub) of a railway wheel, were tested over a wide range of strain rates from 10-3 s-1 to 2.4 × 103 s-1 and temperatures from 213 K to 973 K. Influences of the strain rate and temperature on flow stress were discussed, and rate- and temperature-dependent constitutive relationships were assessed by the Cowper-Symonds model, Johnson-Cook model and a physically-based model, respectively. The experimental results show that the compressive true stress versus true strain response of D1 wheel steel is strain rate-dependent, and the strain hardening rate during the plastic flow stage decreases with the elevation of strain rate. Besides, the D1 wheel steel displays obvious temperature-dependence, and the third-type strain aging (3rd SA) is occurred at the temperature region of 673-973 K at a strain rate of ∼1500 s-1. Comparisons of experimental results with theoretical predictions indicate that the physically-based model has a better prediction capability for the 3rd SA characteristic of the tested D1 wheel steel.
Effect of Pre-Strain on the Fatigue Behavior of Extruded AZ31 Alloys
NASA Astrophysics Data System (ADS)
Wu, Yanjun
2017-09-01
An attempt is made to rationalize the effect of pre-strain history on fatigue behaviors of AZ31 magnesium alloy. Axial fatigue tests were conducted in the extruded and pre-compressioned AZ31 alloy under low cycle total strain control fatigue conditions. The pre-strain process influences the plastic deformation mechanism activated during fatigue deformation, especially during tensile loading, by enhancing the activity of detwinning mechanism. The low-cycle fatigue lifetime of extruded AZ31 alloy can be enhanced by the pre-compression process. And the hysteresis energy was successfully used to predict the low-cycle fatigue lifetime.
Characterization of strain and its effects on ferromagnetic nickel nanocubes
NASA Astrophysics Data System (ADS)
Manna, Sohini; Kim, Jong Woo; Lubarda, Marko V.; Wingert, James; Harder, Ross; Spada, Fred; Lomakin, Vitaliy; Shpyrko, Oleg; Fullerton, Eric E.
2017-12-01
We report on the interplay of magnetic properties and intrinsic strain in ferromagnetic nickel nanocubes with cubic anisotropy. Via coherent x-ray diffraction imaging we observed compressive stress at the bottom surface of these cubes. The nanocubes with {100} facets described and imaged in this study were synthesized using a single-step CVD process. Micromagnetic simulations predict the presence of vortices at remanence in the absence of strain. The effects of strain resulting from the compressive stress on the magnetic response of the ferromagnetic cubes is investigated. We observe that measured intrinsic strain is too low to change the magnetic anisotropy of ferromagnetic cubes but topological behavior of magnetic vortices is sensitive to even this low range of strain.
Dynamic Recrystallization Kinetics of 690 Alloy During Hot Compression of Double-Cone Samples
NASA Astrophysics Data System (ADS)
Wang, Jue; Zhai, Shun-Chao
2017-03-01
Hot compression tests of double-cone samples were conducted for 690 alloy to study the kinetic behavior of the complete dynamic recrystallization (DRX) process under low deformation temperatures from 960 to 1080 °C. The microstructure of 82 points in the vertical section of every deformed sample was quantitatively analyzed to determine the DRX fraction. Corresponding strain of these points was calculated by finite element simulations. Kinetic curves of the specimens with different preheating temperatures were then constructed. The features of various boundaries with different misorientation angles were investigated by electron backscatter diffraction technology and transmission electron microscope. The results showed that the strain is continuously and symmetrically distributed along the centerline of the vertical section. Large strain of 1.84 was obtained when the compression amount is 12 mm for double-cone samples. All the fitted kinetic curves display an "S" type, which possess a low growth rate of DRX at the beginning and the end of compression. The critical strain of recrystallization decreases with the increase in preheating temperature, while the completion strain remains around 1.5 for all the samples. The initial and maximum growth rates of DRX fraction have the opposite trend with the change in temperature, which is considered to be attributed to the behaviors of different misorientation boundaries.
Kennedy, Kelsey M.; Chin, Lixin; McLaughlin, Robert A.; Latham, Bruce; Saunders, Christobel M.; Sampson, David D.; Kennedy, Brendan F.
2015-01-01
Probing the mechanical properties of tissue on the microscale could aid in the identification of diseased tissues that are inadequately detected using palpation or current clinical imaging modalities, with potential to guide medical procedures such as the excision of breast tumours. Compression optical coherence elastography (OCE) maps tissue strain with microscale spatial resolution and can delineate microstructural features within breast tissues. However, without a measure of the locally applied stress, strain provides only a qualitative indication of mechanical properties. To overcome this limitation, we present quantitative micro-elastography, which combines compression OCE with a compliant stress sensor to image tissue elasticity. The sensor consists of a layer of translucent silicone with well-characterized stress-strain behaviour. The measured strain in the sensor is used to estimate the two-dimensional stress distribution applied to the sample surface. Elasticity is determined by dividing the stress by the strain in the sample. We show that quantification of elasticity can improve the ability of compression OCE to distinguish between tissues, thereby extending the potential for inter-sample comparison and longitudinal studies of tissue elasticity. We validate the technique using tissue-mimicking phantoms and demonstrate the ability to map elasticity of freshly excised malignant and benign human breast tissues. PMID:26503225
Hu, Xin-Jia; Wang, Hua
2017-01-01
The aim of the present study was to investigate the biomechanical effects of varying the length of a limited contact-dynamic compression plate (LC-DCP) and the number and position of screws on middle tibial fractures, and to provide biomechanical evidence regarding minimally invasive plate osteosynthesis (MIPO). For biomechanical testing, 60 tibias from cadavers (age at mortality, 20–40 years) were used to create middle and diagonal fracture models without defects. Tibias were randomly grouped and analyzed by biomechanic and three-dimensional (3D) finite element analysis. The differences among LC-DCPs of different lengths (6-, 10- and 14-hole) with 6 screws, 14-hole LC-DCPs with different numbers of screws (6, 10 and 14), and 14-hole LC-DCPs with 6 screws at different positions with regard to mechanical characteristics, including compressing, torsion and bending, were examined. The 6-hole LC-DCP had greater vertical compression strain compared with the 10- and 14-hole LC-DCPs (P<0.01), and the 14-hole LC-DCP had greater lateral strain than the 6- and 10-hole LC-DCPs (P<0.01). Furthermore, significant differences in torque were observed among the LC-DPs of different lengths (P<0.01). For 14-hole LC-DCPs with different numbers of screws, no significant differences in vertical strain, lateral strain or torque were detected (P>0.05). However, plates with 14 screws had greater vertical strain compared with those fixed with 6 or 10 screws (P<0.01). For 4-hole LC-DCPs with screws at different positions, vertical compression strain values were lowest for plates with screws at positions 1, 4, 7, 8, 11 and 14 (P<0.01). The lateral strain values and vertical strain values for plates with screws at positions 1, 3, 6, 9, 12 and 14 were significantly lower compared with those at the other positions (P<0.01), and torque values were also low. Thus, the 14-hole LC-DCP was the most stable against vertical compression, torsion and bending, and the 6-hole LC-DCP was the least stable. However, the use of 14 screws with a 14-hole LC-DCP provided less stability against bending than did 6 or 10 screws. Furthermore, fixation with distributed screws, in which some screws were close to the fracture line, provided good stability against compression and torsion, while fixation with screws at the ends of the LC-DCP provided poor stability against bending, compressing and torsion. PMID:28781632
NASA Technical Reports Server (NTRS)
Lao, Pudong; Tang, Wade C.; Rajkumar, K. C.; Guha, S.; Madhukar, A.; Liu, J. K.; Grunthaner, F. J.
1990-01-01
The quality of GaAs thin films grown via MBE under pulsed excimer laser irradiation on Si substrates is examined in both laser-irradiated and nonirradiated areas using Raman scattering, Rayleigh scattering, and by photoluminescence (PL), as a function of temperature, and by TEM. The temperature dependence of the PL and Raman peak positions indicates the presence of compressive stress in the thin GaAs films in both laser-irradiated and nonirradiated areas. This indicates incomplete homogeneous strain relaxation by dislocations at the growth temperature. The residual compressive strain at the growth temperature is large enough such that even with the introduction of tensile strain arising from the difference in thermal expansion coefficients of GaAs and Si, a compressive strain is still present at room temperature for these thin GaAs/Si films.
1200 to 1400 K slow strain rate compressive properties of NiAl/Ni2AlTi-base materials
NASA Technical Reports Server (NTRS)
Whittenberger, J. Daniel; Viswanadham, R. K.; Mannan, S. K.; Kumar, K. S.
1989-01-01
An attempt to apply the Martin Marietta Corporation's XD technology to the fabrication of NiAl-Ni2AlTi materials with improved creep properties is presented. Composite materials, containing from 0 to 30 vol pct of nominally 1-micron-diameter TiB2 particles in the intermetallic matrix have been produced by the XD process and compacted by hot pressing. Such composites demonstrated significant strength increases, approaching 3-fold for the 20 vol pct materials, in comparison to the unreinforced aluminide. This behavior was accomplished without deleterious side effects as the grain boundaries and particle-matrix interfaces were intact after compressive deformation to 10 percent or more strain. Typical true compressive stress-strain diagrams for materials tested in air between 1200 and 1400 K at approximate strain rates of 1.7 x 10 to the -6th/sec are presented.
Design, Optimization, and Evaluation of A1-2139 Compression Panel with Integral T-Stiffeners
NASA Technical Reports Server (NTRS)
Mulani, Sameer B.; Havens, David; Norris, Ashley; Bird, R. Keith; Kapania, Rakesh K.; Olliffe, Robert
2012-01-01
A T-stiffened panel was designed and optimized for minimum mass subjected to constraints on buckling load, yielding, and crippling or local stiffener failure using a new analysis and design tool named EBF3PanelOpt. The panel was designed for a compression loading configuration, a realistic load case for a typical aircraft skin-stiffened panel. The panel was integrally machined from 2139 aluminum alloy plate and was tested in compression. The panel was loaded beyond buckling and strains and out-of-plane displacements were extracted from 36 strain gages and one linear variable displacement transducer. A digital photogrammetric system was used to obtain full field displacements and strains on the smooth (unstiffened) side of the panel. The experimental data were compared with the strains and out-of-plane deflections from a high-fidelity nonlinear finite element analysis.
NASA Astrophysics Data System (ADS)
Théry, V.; Boulle, A.; Crunteanu, A.; Orlianges, J. C.
2017-12-01
The role of epitaxial strain, thermal strain, and bulk (strain-free) lattice parameters in the metal-insulator transition (MIT) and the structural phase transition (SPT) of VO2 is investigated for the case of epitaxial films grown on (001)-oriented TiO2 substrates. Temperature-resolved X-ray reciprocal space mapping has been used to determine the absolute state of strain as well as the bulk lattice parameters of VO2 at 100 °C. For the thinnest film (15 nm), the state of strain is dominated by the film/substrate lattice mismatch yielding an in-plane tensile strain which, in turn, shifts both the MIT and the SPT towards lower temperatures. Conversely, for the thickest film (100 nm), the epitaxial strain is relaxed, so that the state of strain is dominated by the VO2/TiO2 thermal expansion mismatch which is responsible for a compressive in-plane strain. In all cases, a swelling of the strain-free VO2 unit-cell is observed which indicates the presence of interfacial oxygen vacancies and/or Ti diffusion into the VO2 films. The presence of oxygen vacancies stabilizes the metallic rutile phase and counterbalances the action of thermal strain on the MIT and the SPT and degrades the electric properties for the thinnest film. For the thickest film, the resistivity ratio is 6.4 × 104.
NASA Astrophysics Data System (ADS)
Jiang, Fulin; Tang, Jie; Fu, Dinfa; Huang, Jianping; Zhang, Hui
2018-04-01
Multistage stress-strain curve correction based on an instantaneous friction factor was studied for axisymmetric uniaxial hot compression of 7150 aluminum alloy. Experimental friction factors were calculated based on continuous isothermal axisymmetric uniaxial compression tests at various deformation parameters. Then, an instantaneous friction factor equation was fitted by mathematic analysis. After verification by comparing single-pass flow stress correction with traditional average friction factor correction, the instantaneous friction factor equation was applied to correct multistage stress-strain curves. The corrected results were reasonable and validated by multistage relative softening calculations. This research provides a broad potential for implementing axisymmetric uniaxial compression in multistage physical simulations and friction optimization in finite element analysis.
Impact and Blast Resistance of Sandwich Plates
NASA Astrophysics Data System (ADS)
Dvorak, George J.; Bahei-El-Din, Yehia A.; Suvorov, Alexander P.
Response of conventional and modified sandwich plate designs is examined under static load, impact by a rigid cylindrical or flat indenter, and during and after an exponential pressure impulse lasting for 0.05 ms, at peak pressure of 100 MPa, simulating a nearby explosion. The conventional sandwich design consists of thin outer (loaded side) and inner facesheets made of carbon/epoxy fibrous laminates, separated by a thick layer of structural foam core. In the three modified designs, one or two thin ductile interlayers are inserted between the outer facesheet and the foam core. Materials selected for the interlayers are a hyperelas-tic rate-independent polyurethane;a compression strain and strain rate dependent, elastic-plastic polyurea;and an elastomeric foam. ABAQUS and LS-Dyna software were used in various response simulations. Performance comparisons between the enhanced and conventional designs show that the modified designs provide much better protection against different damage modes under both load regimes. After impact, local facesheet deflection, core compression, and energy release rate of delamination cracks, which may extend on hidden interfaces between facesheet and core, are all reduced. Under blast or impulse loads, reductions have been observed in the extent of core crushing, facesheet delaminations and vibration amplitudes, and in overall deflections. Similar reductions were found in the kinetic energy and in the stored and dissipated strain energy. Although strain rates as high as 10-4/s1 are produced by the blast pressure, peak strains in the interlayers were too low to raise the flow stress in the polyurea to that in the polyurethane, where a possible rate-dependent response was neglected. Therefore, stiff polyurethane or hard rubber interlayers materials should be used for protection of sandwich plate foam cores against both impact and blast-induced damage.
2007-07-01
damage totally. 15. SUBJECT TERMS Ti- 6Al - 4V , strain, stress, cavity closure, hot working, titanium alloy 16. SECURITY CLASSIFICATION OF: 17...stress state on deformation and cavitation during hot working of Ti- 6Al - 4V was established via torsion-compression and reversed-torsion tests...strain path and stress state on deformation and cavitation during hot working of Ti- 6Al - 4V was established via torsion-compression and reversed
NASA Astrophysics Data System (ADS)
Gornostaev, K. K.; Kovalev, A. V.; Malygina, Y. V.
2018-03-01
In the article the authors have considered the problem of determining the stress-strain state of the elastoplastic pipe with the Mises’ condition in case of plane strain for the compressible material taking into account the temperature. The task was solved using the method of the small parameter. The expressions for the fields of stresses and displacements were received as well as the ratio of the radius of the elastoplastic boundary in the zero and first approximations.
Ice Loads and Ship Response to Ice. Summer 1982/Winter 1983 Test Program
1984-12-01
approximately 100 ft2 (9.2 M 2) was instrumented to measure ice pressures by measuring compressive strains in the webs of transverse frames. The panel...compressive strains in the webs of transverse frames. The panel was divided into 60 sub-panel areas, six rows of,-ten frames, over which uniform pressures...the Web and the Selection of Gage Spacing . . .............. 18 4.3 Across the Frame Influence on Strain .......... 20 4.4 Construction of the Data
Tunable magnetic coupling in Mn-doped monolayer MoS2 under lattice strain
NASA Astrophysics Data System (ADS)
Miao, Yaping; Huang, Yuhong; Bao, Hongwei; Xu, Kewei; Ma, Fei; Chu, Paul K.
2018-05-01
First-principles calculations are conducted to study the electronic and magnetic states of Mn-doped monolayer MoS2 under lattice strain. Mn-doped MoS2 exhibits half-metallic and ferromagnetic (FM) characteristics in which the majority spin channel exhibits metallic features but there is a bandgap in the minority spin channel. The FM state and the total magnetic moment of 1 µ B are always maintained for the larger supercells of monolayer MoS2 with only one doped Mn, no matter under tensile or compressive strain. Furthermore, the FM state will be enhanced by the tensile strain if two Mo atoms are substituted by Mn atoms in the monolayer MoS2. The magnetic moment increases up to 0.50 µ B per unit cell at a tensile strain of 7%. However, the Mn-doped MoS2 changes to metallic and antiferromagnetic under compressive strain. The spin polarization of Mn 3d orbitals disappears gradually with increasing compressive strain, and the superexchange interaction between Mn atoms increases gradually. The results suggest that the electronic and magnetic properties of Mn-doped monolayer MoS2 can be effectively modulated by strain engineering providing insight into application to electronic and spintronic devices.
Bacterial Polymertropism, the Response to Strain-Induced Alignment of Polymers
NASA Astrophysics Data System (ADS)
Lemon, David J.
In nature, bacteria often live in surface-associated communities known as biofilms. Biofilm-forming bacteria deposit a layer of polysaccharide on the surfaces they inhabit; hence, polysaccharide is their immediate environment on any surface. In this study, we examined how the physical characteristics of polysaccharide substrates influence the behavior of the biofilm-forming bacterium Myxococcus xanthus. M. xanthus colonies, and indeed those of the majority of biofilm-forming species tested, respond to the compression-induced deformation of polysaccharide substrates by preferentially spreading across the surface perpendicular to the axis of compression. This response is conserved across multiple distantly related phyla and is found in species with an array of distinct motility apparatuses.The birefringence and small angle X-ray scattering patterns of compressed polysaccharide substrates indicate that the directed surface movements of these bacteria consistently match the orientation of the long axes of aligned and tightly packed polysaccharide fibers in compressed substrates. Therefore, we refer to this behavior as polymertropism to denote that the directed movements are a response to the physical arrangement of the change in packing and alignment of the polymers in the substrate. In addition to altering the colony morphology we find the behavior of groups of cells, called flares, is also affected in several species resulting in increased flare speed, duration, and displacement on compressed gel substrates.We suggest that polymertropism, which requires a downward-facing motility apparatus in M. xanthus, may be responsible for the observed tendency of bacterial cells to follow trails of extruded and presumably aligned polysaccharides, which their neighbors secrete and deposit on the substrate as they move across it. Polymertropism may also play a role in the organization of bacteria in a biofilm, as the iterative process of polysaccharide trail deposition and following is proposed to yield aggregates of cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Chunling, E-mail: zhangchl@ysu.edu.cn; School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401; Zhang, Mengmeng
2016-03-15
Self-designed Cu–P–Cr–Ni–Mo weathering steel was subjected to compression test to determine the mechanism of ferrite grain refinement from 750 °C to 925 °C. Optical microscopic images showed that ferrite grain size declined, whereas the ferrite volume fraction increased with increasing compression temperature. Electron backscatter diffraction patterns revealed that several low-angle boundaries shifted to high-angle boundaries, thereby generating fine ferrite grains surrounded by high-angle boundaries. Numerous low-angle boundaries were observed within ferrite grains at 750 °C, which indicated the existence of pre-eutectoid ferrite. Results showed that ferrite grain refinement could be due to continuous dynamic recrystallization at 750 °C and 775more » °C, and deformation-induced ferrite transformation could be the main mechanism at 800 °C and 850 °C. Fine equiaxed ferrite grains with size ranging from 1.77 μm to 2.69 μm were produced in the (α + γ) dual-phase region. - Graphical abstract: There is a close relationship between the microstructure evolution and flow curves during deformation. Fine equiaxed ferrite grains with size ranging from 1.77 μm to 2.69 μm were achieved in the (α + γ) dual-phase region. Ferrite grain refinement could be due to continuous dynamic recrystallization at 750 °C and 775 °C, and deformation-induced ferrite transformation at 800 °C and 850 °C. The occurrence of deformation-induced ferrite transformation and continuous dynamic recrystallization can be monitored by analysis of flow curves and microstructures. Deformation-induced ferrite transformation leads to the dynamic softening in flow curve when temperature just below A{sub r3}, while the dynamic softening in flow curve is ferrite continuous dynamic recrystallization (Special Fig. 5b). - Highlights: • Compression deformation was operated at temperatures from 750 °C to 925 °C at a strain rate of 0.1 s–1, and a strain of 1.2. • Fine equiaxed ferrite grains of ~1.77–2.19 μm were obtained at 750 °C and 775 °C via continuous dynamic recrystallization. • Ferrite grain size of ~2.31–2.69 μm at 800 °C and 850 °C can be obtained by deformation-induced ferrite transformation. • With decreasing deformation temperature the average grain size of ferrite decreased while volume fraction increased. • Ferrite refinement was from deformation-induced ferrite to continuous dynamic recrystallization as temperature reduced.« less
Integrated Model of the Eye/Optic Nerve Head Biomechanical Environment
NASA Technical Reports Server (NTRS)
Ethier, C. R.; Feola, A.; Myers, J. G.; Nelson, E.; Raykin, J.; Samuels, B.
2017-01-01
Visual Impairment and Intracranial Pressure (VIIP) syndrome is a concern for long-duration space flight. Previously, it has been suggested that ocular changes observed in VIIP syndrome are related to the cephalad fluid shift that results in altered fluid pressures [1]. We are investigating the impact of changes in intracranial pressure (ICP) using a combination of numerical models, which simulate the effects of various environment conditions, including finite element (FE) models of the posterior eye. The specific interest is to understand how altered pressures due to gravitational changes affect the biomechanical environment of tissues of the posterior eye and optic nerve sheath. METHODS: Additional description of the numerical modeling is provided in the IWS abstract by Nelson et al. In brief, to simulate the effects of a cephalad fluid shift on the cardiovascular and ocular systems, we utilized a lumped-parameter compartment model of these systems. The outputs of this lumped-parameter model then inform boundary conditions (pressures) for a finite element model of the optic nerve head (Figure 1). As an example, we show here a simulation of postural change from supine to 15 degree head-down tilt (HDT), with primary outcomes being the predicted change in strains at the optic nerve head (ONH) region, specifically in the lamina cribrosa (LC), retrolaminar optic nerve, and prelaminar neural tissue (PLNT). The strain field can be decomposed into three orthogonal components, denoted as the first, second and third principal strains. We compare the peak tensile (first principal) and compressive (third principal) strains, since elevated strain alters cell phenotype and induces tissue remodeling. RESULTS AND CONCLUSIONS: Our lumped-parameter model predicted an IOP increase of c. 7 mmHg after 21 minutes of 15 degree HDT, which agreed with previous reports of IOP in HDT [1]. The corresponding FEM simulations predicted a relative increase in the magnitudes of the peak tensile and compressive strains in the lamina cribrosa of 42 and 43, respectively (Fig. 2). The corresponding changes in the optic nerve strains were 17 and 39, while in the PLNT they were 47 and 43. These magnitudes of relative elevations in peak strains may induce a phenotypic response in resident mechano-responsive resident cells [2]. This approach may be expanded to investigate other environmental changes (e.g. parabolic flight). Through our VIIP SCHOLAR project, we will validate and improve these integrated models by measuring patient-specific changes in optic nerve sheath geometry in patients with idiopathic intracranial hypertension before and after lumbar puncture and CSF removal.
1980-08-31
loop generated during the alternate tension-compression fatigue testing of Ti-8A1 alloy at 6000C at a plastic strain amplitude of * 0.5Z...Dependence of peak stress on the number of cycles in the longitudinal orientation of Ti-lOAl-RE alloys deformed in alternate tension-compression at...of cycles in the transverse orientation of Ti-OAl-RE alloys deformed in alternate tension- A compression fatigue at 500 0C at a plastic strain
Özbilen, Sedat; Liebert, Daniela; Beck, Tilmann; Bram, Martin
2016-03-01
Porous titanium cylinders were produced with a constant amount of temporary space holder (70 vol.%). Different interstitial contents were achieved by varying the starting powders (HDH vs. gas atomized) and manufacturing method (cold compaction without organic binders vs. warm compaction of MIM feedstocks). Interstitial contents (O, C, and N) as a function of manufacturing were measured by chemical analysis. Samples contained 0.34-0.58 wt.% oxygen, which was found to have the greatest effect on mechanical properties. Quasi-static mechanical tests under compression at low strain rate were used for reference and to define parameters for cyclic compression tests. Not unexpectedly, increased oxygen content increased the yield strength of the porous titanium. Cyclic compression fatigue tests were conducted using sinusoidal loading in a servo-hydraulic testing machine. Increased oxygen content was concomitant with embrittlement of the titanium matrix, resulting in significant reduction of compression cycles before failure. For samples with 0.34 wt.% oxygen, R, σ(min) and σ(max) were varied systematically to estimate the fatigue limit (~4 million cycles). Microstructural changes induced by cyclic loading were then characterized by optical microscopy, SEM and EBSD. Copyright © 2015 Elsevier B.V. All rights reserved.
Dynamic Negative Compressibility of Few-Layer Graphene, h-BN, and MoS2
NASA Astrophysics Data System (ADS)
Neves, Bernardo; Barboza, Ana Paula; Chacham, Helio; Oliveira, Camilla; Fernandes, Thales; Martins Ferreira, Erlon; Archanjo, Braulio; Batista, Ronaldo; Oliveira, Alan
2013-03-01
We report a novel mechanical response of few-layer graphene, h-BN, and MoS2 to the simultaneous compression and shear by an atomic force microscope (AFM) tip. The response is characterized by the vertical expansion of these two-dimensional (2D) layered materials upon compression. Such effect is proportional to the applied load, leading to vertical strain values (opposite to the applied force) of up to 150%. The effect is null in the absence of shear, increases with tip velocity, and is anisotropic. It also has similar magnitudes in these solid lubricant materials (few-layer graphene, h-BN, and MoS2), but it is absent in single-layer graphene and in few-layer mica and Bi2Se3. We propose a physical mechanism for the effect where the combined compressive and shear stresses from the tip induce dynamical wrinkling on the upper material layers, leading to the observed flake thickening. The new effect (and, therefore, the proposed wrinkling) is reversible in the three materials where it is observed.[2] Financial support from CNPq, Fapemig, Rede Nacional de Pesquisa em Nanotubos de Carbono and INCT-Nano-Carbono
NASA Astrophysics Data System (ADS)
Teomete, Egemen
2016-07-01
Earthquakes, material degradations and other environmental factors necessitate structural health monitoring (SHM). Metal foil strain gages used for SHM have low durability and low sensitivity. These factors motivated researchers to work on cement based strain sensors. In this study, the effects of temperature and moisture on electrical resistance, compressive and tensile strain gage factors (strain sensitivity) and crack sensitivity were determined for steel fiber reinforced cement based composite. A rapid increase of electrical resistance at 200 °C was observed due to damage occurring between cement paste, aggregates and steel fibers. The moisture—electrical resistance relationship was investigated. The specimens taken out of the cure were saturated with water and had a moisture content of 9.49%. The minimum electrical resistance was obtained at 9% moisture at which fiber-fiber and fiber-matrix contact was maximum and the water in micro voids was acting as an electrolyte, conducting electrons. The variation of compressive and tensile strain gage factors (strain sensitivities) and crack sensitivity were investigated by conducting compression, split tensile and notched bending tests with different moisture contents. The highest gage factor for the compression test was obtained at optimal moisture content, at which electrical resistance was minimum. The tensile strain gage factor for split tensile test and crack sensitivity increased by decreasing moisture content. The mechanisms between moisture content, electrical resistance, gage factors and crack sensitivity were elucidated. The relations of moisture content with electrical resistance, gage factors and crack sensitivities have been presented for the first time in this study for steel fiber reinforced cement based composites. The results are important for the development of self sensing cement based smart materials.
Atomistic simulations of focused ion beam machining of strained silicon
NASA Astrophysics Data System (ADS)
Guénolé, J.; Prakash, A.; Bitzek, E.
2017-09-01
The focused ion beam (FIB) technique has established itself as an indispensable tool in the material science community, both to analyze samples and to prepare specimens by FIB milling. In combination with digital image correlation (DIC), FIB milling can, furthermore, be used to evaluate intrinsic stresses by monitoring the strain release during milling. The irradiation damage introduced by such milling, however, results in a change in the stress/strain state and elastic properties of the material; changes in the strain state in turn affect the bonding strength, and are hence expected to implicitly influence irradiation damage formation and sputtering. To elucidate this complex interplay between strain, irradiation damage and sputtering, we perform TRIM calculations and molecular dynamics simulations on silicon irradiated by Ga+ ions, with slab and trench-like geometries, whilst simultaneously applying uniaxial tensile and compressive strains up to 4%. In addition we calculate the threshold displacement energy (TDE) and the surface binding energy (SBE) for various strain states. The sputter rate and amount of damage produced in the MD simulations show a clear influence of the strain state. The SBE shows no significant dependence on strain, but is strongly affected by surface reconstructions. The TDE shows a clear strain-dependence, which, however, cannot explain the influence of strain on the extent of the induced irradiation damage or the sputter rate.
High Strain Rate Response of 7055 Aluminum Alloy Subject to Square-spot Laser Shock Peening
NASA Astrophysics Data System (ADS)
Sun, Rujian; Zhu, Ying; Li, Liuhe; Guo, Wei; Peng, Peng
2017-12-01
The influences of laser pulse energy and impact time on high strain rate response of 7055 aluminum alloy subject to square-spot laser shock peening (SLSP) were investigate. Microstructural evolution was characterized by OM, SEM and TEM. Microhardness distribution and in-depth residual stress in 15 J with one and two impacts and 25 J with one and two impacts were analyzed. Results show that the original rolling structures were significantly refined due to laser shock induced recrystallization. High density of microdefects was generated, such as dislocation tangles, dislocation wall and stacking faults. Subgrains and nanograins were induced in the surface layer, resulting in grain refinement in the near surface layer after SLSP. Compressive residual stresses with maximum value of more than -200 MPa and affected depths of more than 1 mm can be generated after SLSP. Impact time has more effectiveness than laser pulse energy in increasing the magnitude of residual stress and achieving thicker hardening layer.
Solid-state experiments at high pressure and strain rates
NASA Astrophysics Data System (ADS)
Kalantar, D. H.
1999-11-01
We are developing experiments on intense laser facilities to study shock compressed metal foils in the solid state. At high pressure, Rayleigh-Taylor induced perturbation growth can be reduced by the strength of the material. [1] We use this to characterize the strength of the metal foils accelerated at high pressure in the solid state. In our experiments, Al and Cu foils are compressed and accelerated with staged shocks using a temporally shaped x-ray drive that is generated in a Nova laser hohlraum target. [2] The peak pressures exceed 1 Mbar (100 GPa), and strain rates are very high, 10^7-10^9 s-1. The instability growth is observed by x-ray radiography. To probe the state of the material under compression and to demonstrate that it remains solid, we are using the dynamic Bragg diffraction technique. [3] This technique has been demonstrated on the Nova laser [4] using Si crystals shocked to 200-500 kbar. Additionally, we have observed diffraction from Cu crystals that are shocked to 100-200 kbar by direct laser irradiation on the Trident and OMEGA lasers. Compressions of up to a 10in the crystal lattice spacing have been observed. We will present the results of our work to develop these high pressure solid-state hydrodynamics experiments. 1. J. F. Barnes et al, J. Appl. Phys. 45, 727 (1974); A. I. Lebedev et al , Proc. 4th IWPCTM, 29 March-1 April, 1993, p. 81. 2. D. H. Kalantar et al., to appear in Int. J. of Impact Eng. (1999). 3. R. R. Whitlock and J. S. Wark, Phys. Rev. B 52, 8 (1995). 4. D. H. Kalantar et al, Rev. Sci. Instrum. 70, 629 (1999).
Experimental studies on fatigue behavior of macro fiber composite (MFC) under mechanical loading
NASA Astrophysics Data System (ADS)
Pandey, Akash; Arockiarajan, A.
2016-04-01
Macro fiber Composite (MFC) finds its application in active control, vibration control and sensing elements. MFC can be laminated to surfaces or embedded in the structures to be used as an actuator and sensors. Due to its attractive properties and applications, it may be subjected to continuous loading, which leads to the deterioration of the properties. This study is focused on the fatigue lifetime of MFC under tensile and compressive loading at room temperature. Experiments were performed using 4 point bending setup, with MFC pasted at the center of the mild steel beam, to maintain constant bending stress along MFC. MFC is pasted using vacuum bagging technique. Sinusoidal loading is given to sample while maintaining R=0.13 (for tensile testing) and R=10 (for compressive testing). For d31 and d33 type of MFC, test was conducted for the strain values of 727 μ strain, 1400 μ strain, 1700 μ strain and 1900 μ strain for fatigue under tensile loading. For fatigue under compressive loading, both d33 and d31, was subjected to minimum strain of -2000 μ strain. Decrease in the slope of dielectric displacement vs. strain is the measure for the degradation. 10 percent decrease in the slope is set as the failure criteria. Experimental results show that MFC is very reliable below 1700 μ strain (R=0.13) at the room temperature.
Magnetic states of linear defects in graphene monolayers: Effects of strain and interaction
NASA Astrophysics Data System (ADS)
Alexandre, Simone S.; Nunes, R. W.
2017-08-01
The combined effects of defect-defect interaction and strains of up to 10% on the onset of magnetic states in the quasi-one-dimensional electronic states generated by the so-called 558 linear defect in graphene monolayers are investigated by means of ab initio calculations. Results are analyzed on the basis of the heuristics of the Stoner criterion. We find that conditions for the emergence of magnetic states on the 558 defect can be tuned by uniaxial tensile parallel strains (along the defect direction) as well as by uniaxial compressive perpendicular strains, at both limits of isolated and interacting 558 defects. Parallel tensile strains and perpendicular compressive strains are shown to give rise to two cooperative effects that favor the emergence of itinerant magnetism on the 558 defect in graphene: enhancement of the density of states (DOS) of the resonant defect states in the region of the Fermi level and tuning of the Fermi level to the maximum of the related DOS peak. On the other hand, parallel compressive strains and perpendicular tensile strains are shown to be detrimental to the development of magnetic states in the 558 defect, because in these cases the Fermi level is found to shift away from the maximum of the DOS of the defect states. Effects of isotropic and unisotropic biaxial strains are also analyzed in terms of the conditions encoded in the Stoner criterion.
NASA Astrophysics Data System (ADS)
Lv, Peng; Tang, Xun; Zheng, Ruilin; Ma, Xiaobo; Yu, Kehan; Wei, Wei
2017-12-01
Superelastic graphene aerogel with ultra-high compressibility shows promising potential for compression-tolerant supercapacitor electrode. However, its specific capacitance is too low to meet the practical application. Herein, we deposited polyaniline (PANI) into the superelastic graphene aerogel to improve the capacitance while maintaining the superelasticity. Graphene/PANI aerogel with optimized PANI mass content of 63 wt% shows the improved specific capacitance of 713 F g-1 in the three-electrode system. And the graphene/PANI aerogel presents a high recoverable compressive strain of 90% due to the strong interaction between PANI and graphene. The all-solid-state supercapacitors were assembled to demonstrate the compression-tolerant ability of graphene/PANI electrodes. The gravimetric capacitance of graphene/PANI electrodes reaches 424 F g-1 and retains 96% even at 90% compressive strain. And a volumetric capacitance of 65.5 F cm-3 is achieved, which is much higher than that of other compressible composite electrodes. Furthermore, several compressible supercapacitors can be integrated and connected in series to enhance the overall output voltage, suggesting the potential to meet the practical application.
Lv, Peng; Tang, Xun; Zheng, Ruilin; Ma, Xiaobo; Yu, Kehan; Wei, Wei
2017-12-19
Superelastic graphene aerogel with ultra-high compressibility shows promising potential for compression-tolerant supercapacitor electrode. However, its specific capacitance is too low to meet the practical application. Herein, we deposited polyaniline (PANI) into the superelastic graphene aerogel to improve the capacitance while maintaining the superelasticity. Graphene/PANI aerogel with optimized PANI mass content of 63 wt% shows the improved specific capacitance of 713 F g -1 in the three-electrode system. And the graphene/PANI aerogel presents a high recoverable compressive strain of 90% due to the strong interaction between PANI and graphene. The all-solid-state supercapacitors were assembled to demonstrate the compression-tolerant ability of graphene/PANI electrodes. The gravimetric capacitance of graphene/PANI electrodes reaches 424 F g -1 and retains 96% even at 90% compressive strain. And a volumetric capacitance of 65.5 F cm -3 is achieved, which is much higher than that of other compressible composite electrodes. Furthermore, several compressible supercapacitors can be integrated and connected in series to enhance the overall output voltage, suggesting the potential to meet the practical application.
Predicting the compressibility behaviour of tire shred samples for landfill applications.
Warith, M A; Rao, Sudhakar M
2006-01-01
Tire shreds have been used as an alternative to crushed stones (gravel) as drainage media in landfill leachate collection systems. The highly compressible nature of tire shreds (25-47% axial strain on vertical stress applications of 20-700 kPa) may reduce the thickness of the tire shred drainage layer to less than 300 mm (minimum design requirement) during the life of the municipal solid waste landfill. There hence exists a need to predict axial strains of tire shred samples in response to vertical stress applications so that the initial thickness of the tire shred drainage layer can be corrected for compression. The present study performs one-dimensional compressibility tests on four tire shred samples and compares the results with stress/strain curves from other studies. The stress/strain curves are developed into charts for choosing the correct initial thickness of tire shred layers that maintain the minimum thickness of 300 mm throughout the life of the landfill. The charts are developed for a range of vertical stresses based on the design height of municipal waste cell and bulk unit weight of municipal waste. Experimental results also showed that despite experiencing large axial strains, the average permeability of the tire shred sample consistently remained two to three orders of magnitude higher than the design performance criterion of 0.01cm/s for landfill drainage layers. Laboratory experiments, however, need to verify whether long-term chemical and bio-chemical reactions between landfill leachate and the tire shred layer will deteriorate their mechanical functions (hydraulic conductivity, compressibility, strength) beyond permissible limits for geotechnical applications.
An Elevated-Temperature Tension-Compression Test and Its Application to Magnesium AZ31B
NASA Astrophysics Data System (ADS)
Piao, Kun
Many metals, particularly ones with HCP crystal structures, undergo deformation by combinations of twinning and slip, the proportion of which depends on variables such as temperature and strain rate. Typical techniques to reveal such mechanisms rely on metallography, x-ray diffraction, or electron optics. Simpler, faster, less expensive mechanical tests were developed in the current work and applied to Mg AZ31B. An apparatus was designed, simulated, optimized, and constructed to enable the large-strain, continuous tension/compression testing of sheet materials at elevated temperature. Thermal and mechanical FE analyses were used to locate cartridge heaters, thus enabling the attainment of temperatures up to 350°C within 15 minutes of start-up, and ensuring temperature uniformity throughout the gage length within 8°C. The low-cost device also makes isothermal testing possible at strain rates higher than corresponding tests in air. Analysis was carried out to predict the attainable compressive strains using novel finite element (FE) modeling and a single parameter characteristic of the machine and fixtures. The limits of compressive strain vary primarily with the material thickness and the applied-side-force-to-material-strength ratio. Predictions for a range of sheet alloys with measured buckling strains from -0.04 to -0.17 agreed within a standard deviation of 0.025 (0.015 excluding one material that was not initially flat). In order to demonstrate the utility of the new method, several sheet materials were tested over a range of temperatures. Some of the data obtained is the first of its kind. Magnesium AZ31B sheets were tested at temperatures up to 250°C with strain rate of 0.001/s. The inflected stress-strain curve observed in compression at room temperature disappeared between 125°C and 150°C, corresponding to the suppression of twinning, and suggesting a simple method for identifying the deformation mechanism transition temperature. The temperature-dependent behavior of selected advanced high strength steels (TWIP and DP) was revealed by preliminary tests at room temperature, 150°C and 250°C. For Mg AZ31B alloy sheets, the curvature of compressive stress-strain plots over a fixed strain range was found to be a consistent indicator of twinning magnitude, independent of temperature and strain rate. The relationship between curvature and areal fraction of twins is presented. Transition temperatures determined based on stress-strain curvature were consistent with ones determined by metallographic analysis and flow stresses, and depended on strain rate by the Zener-Hollomon parameter, a critical value for which was measured. The transition temperature was found to depend significantly on grain size, a relationship for which was established. Finally, it was shown that the transition temperature can be determined consistently, and much faster, using a single novel "Step-Temperature" test.
NASA Technical Reports Server (NTRS)
Katti, Atul; Shimpi, Nilesh; Roy, Samit; Lu, Hongbing; Fabrizio, Eve F.; Dass, Amala; Capadona, Lynn A.; Leventis, Nicholas
2006-01-01
We describe a new mechanically strong lightweight porous composite material obtained by encapsulating the skeletal framework of amine-modified silica aerogels with polyurea. The conformal polymer coating preserves the mesoporous structure of the underlying silica framework and the thermal conductivity remains low at 0.041 plus or minus 0.001 W m(sup -1 K(sup -1). The potential of the new cross-linked silica aerogels for load-carrying applications was determined through characterization of their mechanical behavior under compression, three-point bending, and dynamic mechanical analysis (DMA). A primary glass transition temperature of 130 C was identified through DMA. At room temperature, results indicate a hyperfoam behavior where in compression cross-linked aerogels are linearly elastic under small strains (less than 4%) and then exhibit yield behavior (until 40% strain), followed by densification and inelastic hardening. At room temperature the compressive Young's modulus and the Poisson's ratio were determined to be 129 plus or minus 8 MPa and 0.18, respectively, while the strain at ultimate failure is 77% and the average specific compressive stress at ultimate failure is 3.89 x 10(exp 5) N m kg(sup -1). The specific flexural strength is 2.16 x 10(exp 4) N m kg(sup -1). Effects on the compressive behavior of strain rate and low temperature were also evaluated.
Kishen, A; Vedantam, S
2007-10-01
This investigation is to understand the role of free water in the dentinal tubules on the mechanical integrity of bulk dentine. Three different experiments were conducted in this study. In experiment 1, three-dimensional models of dentine with gradient elastic modulus, homogenous elastic modulus, and with and without hydrostatic pressure were simulated using the finite element method. Static compressive loads of 15, 50 and 100 N were applied and the distribution of the principal stresses, von Mises stresses, and strains in loading direction were determined. In experiment 2, experimental compression testing of fully hydrated and partially dehydrated dentine (21 degrees C for 72 h) was conducted using a Universal testing machine. In experiment 3, Fourier transform infrared spectroscopic analysis of hydrated and partially dehydrated dentine was carried out. The finite element analysis revealed that the dentine model with simulated hydrostatic pressure displayed residual tensile stresses and strains in the inner region adjacent to the root canal. When external compressive loads were applied to the model, the residual stresses and strains counteracted the applied loads. Similarly the hydrated specimens subjected to experimental compression loads showed greater toughness when compared to the partially dehydrated specimens. The stress at fracture was significantly higher in partially dehydrated specimens (p=0.014), while the strain at fracture was significantly higher in hydrated dentine specimens (p=0.037). These experiments highlighted the distinct role of free water in the dentinal tubules and hydrostatic pressure on the stress-strain distribution within the bulk dentine.
CHAUDHARI, AJIT M. W.; JAMISON, STEVEN T.; MCNALLY, MICHAEL P.; PAN, XUELIANG; SCHMITT, LAURA C.
2014-01-01
Athletes at high risk of groin strains in sports such as hockey and soccer often choose to wear shorts with directional compression to aid in prevention or recovery from hip adductor strains. Large eccentric contractions are known to result in or exacerbate strain injuries, but it is unknown if these shorts have a beneficial effect on hip adductor muscle activity. In this study, surface electromyography of the adductor longus and ground reaction force (GRF) data were obtained simultaneously on 29 healthy individuals without previous history of serious injury while performing unanticipated 45° run-to-cut maneuvers in a laboratory setting wearing shorts with non-directional compression (control, HeatGear, Under Armour, USA) or shorts with directional compression (directional, CoreShort PRO, Under Armour, USA), in random order. Average adductor activity in the stance leg was significantly lower in the directional condition than in the control condition during all parts of stance phase (all p<0.042). From this preliminary analysis, wearing directional compression shorts appears to be associated with reduced stance limb hip adductor activity. Athletes seeking to reduce demand on the hip adductors as they approach full return to activities may benefit from the use of directional compression shorts. PMID:24669858
Chaudhari, Ajit M W; Jamison, Steven T; McNally, Michael P; Pan, Xueliang; Schmitt, Laura C
2014-01-01
Athletes at high risk of groin strains in sports such as hockey and soccer often choose to wear shorts with directional compression to aid in prevention of or recovery from hip adductor strains. Large, eccentric contractions are known to result in or exacerbate strain injuries, but it is unknown if these shorts have a beneficial effect on hip adductor muscle activity. In this study, surface electromyography (EMG) of the adductor longus and ground reaction force (GRF) data were obtained simultaneously on 29 healthy individuals without previous history of serious injury while performing unanticipated 45° run-to-cut manoeuvres in a laboratory setting wearing shorts with non-directional compression (control, HeatGear, Under Armour, USA) or shorts with directional compression (directional, CoreShort PRO, Under Armour, USA), in random order. Average adductor activity in the stance leg was significantly lower in the directional condition than in the control condition during all parts of stance phase (all P < 0.042). From this preliminary analysis, wearing directional compression shorts appears to be associated with reduced stance limb hip adductor activity. Athletes seeking to reduce demand on the hip adductors as they approach full return to activities may benefit from the use of directional compression shorts.
Andrews, D.J.; Ma, Shuo
2010-01-01
Large dynamic stress off the fault incurs an inelastic response and energy loss, which contributes to the fracture energy, limiting the rupture and slip velocity. Using an explicit finite element method, we model three-dimensional dynamic ruptures on a vertical strike-slip fault in a homogeneous half-space. The material is subjected to a pressure-dependent Drucker-Prager yield criterion. Initial stresses in the medium increase linearly with depth. Our simulations show that the inelastic response is confined narrowly to the fault at depth. There the inelastic strain is induced by large dynamic stresses associated with the rupture front that overcome the effect of the high confining pressure. The inelastic zone increases in size as it nears the surface. For material with low cohesion (~5 MPa) the inelastic zone broadens dramatically near the surface, forming a "flowerlike" structure. The near-surface inelastic strain occurs in both the extensional and the compressional regimes of the fault, induced by seismic waves ahead of the rupture front under a low confining pressure. When cohesion is large (~10 MPa), the inelastic strain is significantly reduced near the surface and confined mostly to depth. Cohesion, however, affects the inelastic zone at depth less significantly. The induced shear microcracks show diverse orientations near the surface, owing to the low confining pressure, but exhibit mostly horizontal slip at depth. The inferred rupture-induced anisotropy at depth has the fast wave direction along the direction of the maximum compressive stress.
Pumping-induced stress and strain in aquifer systems in Wuxi, China
NASA Astrophysics Data System (ADS)
Zhang, Yun; Yu, Jun; Gong, Xulong; Wu, Jichun; Wang, Zhecheng
2018-05-01
Excessive groundwater withdrawal from an aquifer system leads to three-dimensional displacement, causing changes in the states of stress and strain. Often, land subsidence and sometimes earth fissures ensue. Field investigation indicates that land subsidence and earth fissures in Wuxi, a city in eastern China, are mainly due to excessive groundwater withdrawal, and that they are temporally and spatially related to groundwater pumping. Groundwater withdrawal may cause tensile strain to develop in aquifer systems, but tensile strain does not definitely mean tensile stress. Where earth fissures are concerned, the stress state should be adopted in numerical simulations instead of the strain state and displacement. The numerical simulation undertaken for the Wuxi area shows that the zone of tensile strain occupies a large area on the ground surface; nevertheless, the zone of tensile stress is very limited. The zone of tensile stress often occurs near the ground surface, beneath which the depth to the bedrock surface is relatively small and has considerable variability. Earth fissures often initiate near the ground surface where tensile stress occurs. Tensile stress and earth fissures rarely develop at the centers of land subsidence bowls, where compressive stress is dominant.
Properties of two composite materials made of toughened epoxy resin and high-strain graphite fiber
NASA Technical Reports Server (NTRS)
Dow, Marvin B.; Smith, Donald L.
1988-01-01
Results are presented from an experimental evaluation of IM7/8551-7 and IM6/18081, two new toughened epoxy resin, high strain graphite fiber composite materials. Data include ply-level strengths and moduli, notched tension and compression strengths and compression-after-impact assessments. The measured properties are compared with those of other graphite-epoxy materials.
Extrusion-mixing compared with hand-mixing of polyether impression materials?
McMahon, Caroline; Kinsella, Daniel; Fleming, Garry J P
2010-12-01
The hypotheses tested were two-fold (a) whether altering the base:catalyst ratio influences working time, elastic recovery and strain in compression properties of a hand-mixed polyether impression material and (b) whether an extrusion-mixed polyether impression material would have a significant advantage over a hand-mixed polyether impression material mixed to the optimum base:catalyst ratio. The polyether was hand-mixed at the optimum (manufacturers recommended) base:catalyst ratios (7:1) and further groups were made by increasing or decreasing the catalyst length by 25%. Additionally specimens were also made from an extrusion-mixed polyether impression material and compared with the optimum hand-mixed base:catalyst ratio. A penetrometer assembly was used to measure the working time (n=5). Five cylindrical specimens for each hand-mixed and extrusion mixed group investigated were employed for elastic recovery and strain in compression testing. Hand-mixing polyether impression materials with 25% more catalyst than that recommended significantly decreased the working time while hand-mixing with 25% less catalyst than that recommended significantly increased the strain in compression. The extrusion-mixed polyether impression material provided similar working time, elastic recovery and strain in compression to the hand-mixed polyether mixed at the optimum base:catalyst ratio.
Temperature Evolution During Plane Strain Compression Of Tertiary Oxide Scale On Steel
NASA Astrophysics Data System (ADS)
Suarez, L.; Vanden Eynde, X.; Lamberigts, M.; Houbaert, Y.
2007-04-01
An oxide scale layer always forms at the steel surface during hot rolling. This scale layer separates the work roll from the metal substrate. Understanding the deformation behaviour and mechanical properties of the scale is of great interest because it affects the frictional conditions during hot rolling and the heat-transfer behaviour at the strip-roll interface. A thin wustite scale layer (<20 μm) was created under controlled conditions in an original laboratory device adequately positioned in a compression testing machine to investigate plane strain compression. Oxidation tests were performed on an ULC steel grade. After the oxide growth at 1050°C, plane strain compression (PSC) was performed immediately to simulate the hot rolling process. PSC experiments were performed at a deformation temperature of 1050°C, with reduction ratios from 5 to 70%, and strain rates of 10s-1 under controlled gas atmospheres. Results show that for wustite, ductility is obvious at 1050°C. Even after deformation oxide layers exhibit good adhesion to the substrate and homogeneity over the thickness. The tool/sample temperature difference seems to be the reason for the unexpected ductile behaviour of the scale layer.
Compression-induced structural and mechanical changes of fibrin-collagen composites.
Kim, O V; Litvinov, R I; Chen, J; Chen, D Z; Weisel, J W; Alber, M S
2017-07-01
Fibrin and collagen as well as their combinations play an important biological role in tissue regeneration and are widely employed in surgery as fleeces or sealants and in bioengineering as tissue scaffolds. Earlier studies demonstrated that fibrin-collagen composite networks displayed improved tensile mechanical properties compared to the isolated protein matrices. Unlike previous studies, here unconfined compression was applied to a fibrin-collagen filamentous polymer composite matrix to study its structural and mechanical responses to compressive deformation. Combining collagen with fibrin resulted in formation of a composite hydrogel exhibiting synergistic mechanical properties compared to the isolated fibrin and collagen matrices. Specifically, the composite matrix revealed a one order of magnitude increase in the shear storage modulus at compressive strains>0.8 in response to compression compared to the mechanical features of individual components. These material enhancements were attributed to the observed structural alterations, such as network density changes, an increase in connectivity along with criss-crossing, and bundling of fibers. In addition, the compressed composite collagen/fibrin networks revealed a non-linear transformation of their viscoelastic properties with softening and stiffening regimes. These transitions were shown to depend on protein concentrations. Namely, a decrease in protein content drastically affected the mechanical response of the networks to compression by shifting the onset of stiffening to higher degrees of compression. Since both natural and artificially composed extracellular matrices experience compression in various (patho)physiological conditions, our results provide new insights into the structural biomechanics of the polymeric composite matrix that can help to create fibrin-collagen sealants, sponges, and tissue scaffolds with tunable and predictable mechanical properties. Copyright © 2016 Elsevier B.V. All rights reserved.
Strain-rate/temperature behavior of high density polyethylene in compression
NASA Technical Reports Server (NTRS)
Clements, L. L.; Sherby, O. D.
1978-01-01
The compressive strain rate/temperature behavior of highly linear, high density polyethylene was analyzed in terms of the predictive relations developed for metals and other crystalline materials. For strains of 5 percent and above, the relationship between applied strain rate, dotted epsilon, and resulting flow stress, sigma, was found to be: dotted epsilon exp times (Q sub f/RT) = k'(sigma/sigma sub c) to the nth power; the left-hand side is the activation-energy-compensated strain rate, where Q sub f is activation energy for flow, R is gas constant, and T is temperature; k is a constant, n is temperature-independent stress exponent, and sigma/sigma sub c is structure-compensated stress. A master curve resulted from a logarithmic plot of activation-energy-compensated strain rate versus structure-compensated stress.
Wu, Haipeng; Cao, Wanlin; Qiao, Qiyun; Dong, Hongying
2016-01-01
A method is presented to predict the complete stress-strain curves of concrete subjected to triaxial stresses, which were caused by axial load and lateral force. The stress can be induced due to the confinement action inside a special-shaped steel tube having multiple cavities. The existing reinforced confined concrete formulas have been improved to determine the confinement action. The influence of cross-sectional shape, of cavity construction, of stiffening ribs and of reinforcement in cavities has been considered in the model. The parameters of the model are determined on the basis of experimental results of an axial compression test for two different kinds of special-shaped concrete filled steel tube (CFT) columns with multiple cavities. The complete load-strain curves of the special-shaped CFT columns are estimated. The predicted concrete strength and the post-peak behavior are found to show good agreement within the accepted limits, compared with the experimental results. In addition, the parameters of proposed model are taken from two kinds of totally different CFT columns, so that it can be concluded that this model is also applicable to concrete confined by other special-shaped steel tubes. PMID:28787886
Wu, Haipeng; Cao, Wanlin; Qiao, Qiyun; Dong, Hongying
2016-01-29
A method is presented to predict the complete stress-strain curves of concrete subjected to triaxial stresses, which were caused by axial load and lateral force. The stress can be induced due to the confinement action inside a special-shaped steel tube having multiple cavities. The existing reinforced confined concrete formulas have been improved to determine the confinement action. The influence of cross-sectional shape, of cavity construction, of stiffening ribs and of reinforcement in cavities has been considered in the model. The parameters of the model are determined on the basis of experimental results of an axial compression test for two different kinds of special-shaped concrete filled steel tube (CFT) columns with multiple cavities. The complete load-strain curves of the special-shaped CFT columns are estimated. The predicted concrete strength and the post-peak behavior are found to show good agreement within the accepted limits, compared with the experimental results. In addition, the parameters of proposed model are taken from two kinds of totally different CFT columns, so that it can be concluded that this model is also applicable to concrete confined by other special-shaped steel tubes.
Electronic Structure and Properties of Deformed Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Yang, Liu; Arnold, Jim (Technical Monitor)
2001-01-01
A theoretical framework based on Huckel tight-binding model has been formulated to analyze the electronic structure of carbon nanotubes under uniform deformation. The model successfully quantifies the dispersion relation, density of states and bandgap change of nanotubes under uniform stretching, compression, torsion and bending. Our analysis shows that the shifting of the Fermi point away from the Brillouin zone vertices is the key reason for these changes. As a result of this shifting, the electronic structure of deformed carbon nanotubes varies dramatically depending on their chirality and deformation mode. Treating the Fermi point as a function of strain and tube chirality, the analytical solution preserves the concise form of undeformed carbon nanotubes. It predicts the shifting, merging and splitting of the Van Hove singularities in the density of states and the zigzag pattern of bandgap change under strains. Four orbital tight-binding simulations of carbon nanotubes under uniform stretching, compression, torsion and bending have been performed to verify the analytical solution. Extension to more complex systems are being performed to relate this analytical solution to the spectroscopic characterization, device performance and proposed quantum structures induced by the deformation. The limitations of this model will also be discussed.
Largely Improved Near-Infrared Silicon-Photosensing by the Piezo-Phototronic Effect.
Dai, Yejing; Wang, Xingfu; Peng, Wenbo; Zou, Haiyang; Yu, Ruomeng; Ding, Yong; Wu, Changsheng; Wang, Zhong Lin
2017-07-25
Although silicon (Si) devices are the backbone of modern (opto-)electronics, infrared Si-photosensing suffers from low-efficiency due to its limitation in light-absorption. Here, we demonstrate a large improvement in the performance, equivalent to a 366-fold enhancement in photoresponsivity, of a Si-based near-infrared (NIR) photodetector (PD) by introducing the piezo-phototronic effect via a deposited CdS layer. By externally applying a -0.15‰ compressive strain to the heterojunction, carrier-dynamics modulation at the local junction can be induced by the piezoelectric polarization, and the photoresponsivity and detectivity of the PD exhibit an enhancement of two orders of magnitude, with the peak values up to 19.4 A/W and 1.8 × 10 12 cm Hz 1/2 /W, respectively. The obtained maximum responsivity is considerably larger than those of commercial Si and InGaAs PDs in the NIR waveband. Meanwhile, the rise time and fall time are reduced by 84.6% and 76.1% under the external compressive strain. This work provides a cost-effective approach to achieve high-performance NIR photosensing by the piezo-phototronic effect for high-integration Si-based optoelectronic systems.
Dhillon, A; Schneider, P; Kuhn, G; Reinwald, Y; White, L J; Levchuk, A; Rose, F R A J; Müller, R; Shakesheff, K M; Rahman, C V
2011-12-01
The mechanical behaviour of polymer scaffolds plays a vital role in their successful use in bone tissue engineering. The present study utilised novel sintered polymer scaffolds prepared using temperature-sensitive poly(DL-lactic acid-co-glycolic acid)/poly(ethylene glycol) particles. The microstructure of these scaffolds was monitored under compressive strain by image-guided failure assessment (IGFA), which combined synchrotron radiation computed tomography (SR CT) and in situ micro-compression. Three-dimensional CT data sets of scaffolds subjected to a strain rate of 0.01%/s illustrated particle movement within the scaffolds with no deformation or cracking. When compressed using a higher strain rate of 0.02%/s particle movement was more pronounced and cracks between sintered particles were observed. The results from this study demonstrate that IGFA based on simultaneous SR CT imaging and micro-compression testing is a useful tool for assessing structural and mechanical scaffold properties, leading to further insight into structure-function relationships in scaffolds for bone tissue engineering applications.
Super-elastic and fatigue resistant carbon material with lamellar multi-arch microstructure
NASA Astrophysics Data System (ADS)
Gao, Huai-Ling; Zhu, Yin-Bo; Mao, Li-Bo; Wang, Feng-Chao; Luo, Xi-Sheng; Liu, Yang-Yi; Lu, Yang; Pan, Zhao; Ge, Jin; Shen, Wei; Zheng, Ya-Rong; Xu, Liang; Wang, Lin-Jun; Xu, Wei-Hong; Wu, Heng-An; Yu, Shu-Hong
2016-09-01
Low-density compressible materials enable various applications but are often hindered by structure-derived fatigue failure, weak elasticity with slow recovery speed and large energy dissipation. Here we demonstrate a carbon material with microstructure-derived super-elasticity and high fatigue resistance achieved by designing a hierarchical lamellar architecture composed of thousands of microscale arches that serve as elastic units. The obtained monolithic carbon material can rebound a steel ball in spring-like fashion with fast recovery speed (~580 mm s-1), and demonstrates complete recovery and small energy dissipation (~0.2) in each compress-release cycle, even under 90% strain. Particularly, the material can maintain structural integrity after more than 106 cycles at 20% strain and 2.5 × 105 cycles at 50% strain. This structural material, although constructed using an intrinsically brittle carbon constituent, is simultaneously super-elastic, highly compressible and fatigue resistant to a degree even greater than that of previously reported compressible foams mainly made from more robust constituents.
NASA Astrophysics Data System (ADS)
Rajak, Dipen Kumar; Kumaraswamidhas, L. A.; Das, S.
2018-02-01
This study has examined proposed structures with mild steel-reinforced LM30 aluminum (Al) alloy having diversely unfilled and 10 wt.% SiCp composite foam-filled tubes for improving axial compression performance. This class of material has novel physical, mechanical, and electrical properties along with low density. In the present experiment, Al alloy foams were prepared by the melt route technique using metal hydride powder as a foaming agent. Crash energy phenomena for diverse unfilled and foam-filled in mild steel thin-wall tubes (triangular, square and hexagonal) were studied as well. Compression deformation investigation was conducted at strain rates of 0.001-0.1/s for evaluating specific energy absorption (SEA) under axial loading conditions. The results were examined to measure plateau stress, maximum densification strain, and deformation mechanism of the materials. Specific energy absorption and total energy absorption capacities of the unfilled and filled sections were determined from the compressive stress-strain curves, which were then compared with each other.
NASA Astrophysics Data System (ADS)
Rao, K. P.; Suresh, K.; Prasad, Y. V. R. K.; Hort, N.
2018-01-01
The hot workability of extruded Mg-3Sn-1Ca alloy has been evaluated by developing processing maps with flow stress data from compression and tensile tests with a view to find the effect of the applied state-of-stress. The processing maps developed at a strain of 0.2 are essentially similar irrespective of the mode of deformation - compression or tension, and exhibit three domains in the temperature ranges: (1) 350 - 425 °C, and (2) 450 - 550 °C and (3) 400 - 500 °C, the first two occurring at lower strain rates and the third occurring at higher strain rates. In all the three domains, dynamic recrystallization occurs and is caused by non-basal slip and controlled by lattice self-diffusion in the first and second domains and grain boundary self-diffusion in the third domain. The state-of-stress imposed on the specimen (compression or tension) does not have any significant effect on the processing maps.
Real-time Mesoscale Visualization of Dynamic Damage and Reaction in Energetic Materials under Impact
NASA Astrophysics Data System (ADS)
Chen, Wayne; Harr, Michael; Kerschen, Nicholas; Maris, Jesus; Guo, Zherui; Parab, Niranjan; Sun, Tao; Fezzaa, Kamel; Son, Steven
Energetic materials may be subjected to impact and vibration loading. Under these dynamic loadings, local stress or strain concentrations may lead to the formation of hot spots and unintended reaction. To visualize the dynamic damage and reaction processes in polymer bonded energetic crystals under dynamic compressive loading, a high speed X-ray phase contrast imaging setup was synchronized with a Kolsky bar and a light gas gun. Controlled compressive loading was applied on PBX specimens with a single or multiple energetic crystal particles and impact-induced damage and reaction processes were captured using the high speed X-ray imaging setup. Impact velocities were systematically varied to explore the critical conditions for reaction. At lower loading rates, ultrasonic exercitations were also applied to progressively damage the crystals, eventually leading to reaction. AFOSR, ONR.
Ferromagnetism enhanced by structural relaxation of biaxially compressed LaCoO3 films
NASA Astrophysics Data System (ADS)
Mehta, Virat; Suzuki, Yuri
2011-04-01
Epitaxial LaCoO3 films were synthesized on LaAlO3 substrates to explore the role of epitaxial strain and structure on the ferromagnetism observed in these biaxially compressed films. Coherent strain and tetragonal structure were only achieved in thin film samples grown using higher energy densities. The strain relaxed with increasing thickness and was accompanied by increasing mosaic spread. Higher magnetization values were consistently seen in fully relaxed films grown using lower laser energy density. These results suggest that epitaxial strain is not the only factor determining the ferromagnetism and that the microstructure and defects may play a significant role.
Non-linear properties of metallic cellular materials with a negative Poisson's ratio
NASA Technical Reports Server (NTRS)
Choi, J. B.; Lakes, R. S.
1992-01-01
Negative Poisson's ratio copper foam was prepared and characterized experimentally. The transformation into re-entrant foam was accomplished by applying sequential permanent compressions above the yield point to achieve a triaxial compression. The Poisson's ratio of the re-entrant foam depended on strain and attained a relative minimum at strains near zero. Poisson's ratio as small as -0.8 was achieved. The strain dependence of properties occurred over a narrower range of strain than in the polymer foams studied earlier. Annealing of the foam resulted in a slightly greater magnitude of negative Poisson's ratio and greater toughness at the expense of a decrease in the Young's modulus.
Chen, Tao-Hsing; Tsai, Chih-Kai
2015-01-01
In this study, the high strain rate deformation behavior and the microstructure evolution of Zr-Cu-Al-Ni metallic glasses under various strain rates were investigated. The influence of strain and strain rate on the mechanical properties and fracture behavior, as well as microstructural properties was also investigated. Before mechanical testing, the structure and thermal stability of the Zr-Cu-Al-Ni metallic glasses were studied with X-ray diffraction (XRD) and differential scanning calorimeter. The mechanical property experiments and microstructural observations of Zr-Cu-Al-Ni metallic glasses under different strain rates ranging from 10−3 to 5.1 × 103 s−1 and at temperatures of 25 °C were investigated using compressive split-Hopkinson bar (SHPB) and an MTS tester. An in situ transmission electron microscope (TEM) nanoindenter was used to carry out compression tests and investigate the deformation behavior arising at nanopillars of the Zr-based metallic glass. The formation and interaction of shear band during the plastic deformation were investigated. Moreover, it was clearly apparent that the mechanical strength and ductility could be enhanced by impeding the penetration of shear bands with reinforced particles. PMID:28788034
Yang, X X; Li, J W; Zhou, Z F; Wang, Y; Yang, L W; Zheng, W T; Sun, Chang Q
2012-01-21
From the perspective of bond relaxation and bond vibration, we have formulated the Raman phonon relaxation of graphene, under the stimuli of the number-of-layers, the uni-axial strain, the pressure, and the temperature, in terms of the response of the length and strength of the representative bond of the entire specimen to the applied stimuli. Theoretical unification of the measurements clarifies that: (i) the opposite trends of the Raman shifts, which are due to the number-of-layers reduction, of the G-peak shift and arises from the vibration of a pair of atoms, while the D- and the 2D-peak shifts involve the z-neighbor of a specific atom; (ii) the tensile strain-induced phonon softening and phonon-band splitting arise from the asymmetric response of the C(3v) bond geometry to the C(2v) uni-axial bond elongation; (iii) the thermal softening of the phonons originates from bond expansion and weakening; and (iv) the pressure stiffening of the phonons results from bond compression and work hardening. Reproduction of the measurements has led to quantitative information about the referential frequencies from which the Raman frequencies shift as well as the length, energy, force constant, Debye temperature, compressibility and elastic modulus of the C-C bond in graphene, which is of instrumental importance in the understanding of the unusual behavior of graphene.
NASA Astrophysics Data System (ADS)
Arisawa, You; Sawano, Kentarou; Usami, Noritaka
2017-06-01
The influence of ion implantation energies on compressively strained Si/relaxed Si1-xCx heterostructures formed on Ar ion implanted Si substrates was investigated. It was found that relaxation ratio can be enhanced over 100% at relatively low implantation energies, and compressive strain in the topmost Si layer is maximized at 45 keV due to large lattice mismatch. Cross-sectional transmission electron microscope images revealed that defects are localized around the hetero-interface between the Si1-xCx layer and the Ar+-implanted Si substrate when the implantation energy is 45 keV, which decreases the amount of defects in the topmost Si layer and the upper part of the Si1-xCx buffer layer.
Strain mapping in single-layer two-dimensional crystals via Raman activity
NASA Astrophysics Data System (ADS)
Yagmurcukardes, M.; Bacaksiz, C.; Unsal, E.; Akbali, B.; Senger, R. T.; Sahin, H.
2018-03-01
By performing density functional theory-based ab initio calculations, Raman-active phonon modes of single-layer two-dimensional (2D) materials and the effect of in-plane biaxial strain on the peak frequencies and corresponding activities of the Raman-active modes are calculated. Our findings confirm the Raman spectrum of the unstrained 2D crystals and provide expected variations in the Raman-active modes of the crystals under in-plane biaxial strain. The results are summarized as follows: (i) frequencies of the phonon modes soften (harden) under applied tensile (compressive) strains; (ii) the response of the Raman activities to applied strain for the in-plane and out-of-plane vibrational modes have opposite trends, thus, the built-in strains in the materials can be monitored by tracking the relative activities of those modes; (iii) in particular, the A peak in single-layer Si and Ge disappears under a critical tensile strain; (iv) especially in mono- and diatomic single layers, the shift of the peak frequencies is a stronger indication of the strain rather than the change in Raman activities; (v) Raman-active modes of single-layer ReX2 (X =S , Se) are almost irresponsive to the applied strain. Strain-induced modifications in the Raman spectrum of 2D materials in terms of the peak positions and the relative Raman activities of the modes could be a convenient tool for characterization.
Second Generation Models for Strain-Based Design
DOT National Transportation Integrated Search
2011-08-30
This project covers the development of tensile strain design models which form a key part of the strain-based design of pipelines. The strain-based design includes at least two limit states, tensile rupture, and compressive buckling. The tensile stra...
Creep Behavior of High-Strength Concrete Subjected to Elevated Temperatures.
Yoon, Minho; Kim, Gyuyong; Kim, Youngsun; Lee, Taegyu; Choe, Gyeongcheol; Hwang, Euichul; Nam, Jeongsoo
2017-07-11
Strain is generated in concrete subjected to elevated temperatures owing to the influence of factors such as thermal expansion and design load. Such strains resulting from elevated temperatures and load can significantly influence the stability of a structure during and after a fire. In addition, the lower the water-to-binder (W-B) ratio and the smaller the quantity of aggregates in high-strength concrete, the more likely it is for unstable strain to occur. Hence, in this study, the compressive strength, elastic modulus, and creep behavior were evaluated at target temperatures of 100, 200, 300, 500, and 800 °C for high-strength concretes with W-B ratios of 30%, 26%, and 23%. The loading conditions were set as non-loading and 0.33f cu . It was found that as the compressive strength of the concrete increased, the mechanical characteristics deteriorated and transient creep increased. Furthermore, when the point at which creep strain occurred at elevated temperatures after the occurrence of transient creep was considered, greater shrinkage strain occurred as the compressive strength of the concrete increased. At a heating temperature of 800 °C, the 80 and 100 MPa test specimens showed creep failure within a shrinkage strain range similar to the strain at the maximum load.
Long-term prediction of creep strains of mineral wool slabs under constant compressive stress
NASA Astrophysics Data System (ADS)
Gnip, Ivan; Vaitkus, Saulius; Keršulis, Vladislovas; Vėjelis, Sigitas
2012-02-01
The results obtained in determining the creep strain of mineral wool slabs under compressive stress, used for insulating flat roofs and facades, cast-in-place floors, curtain and external basement walls, as well as for sound insulation of floors, are presented. The creep strain tests were conducted under a compressive stress of σ c =0.35 σ 10%. Interval forecasting of creep strain was made by extrapolating the creep behaviour and approximated in accordance with EN 1606 by a power equation and reduced to a linear form using logarithms. This was performed for a lead time of 10 years. The extension of the range of the confidence interval due to discount of the prediction data, i.e. a decrease in their informativity was allowed for by an additional coefficient. Analysis of the experimental data obtained from the tests having 65 and 122 days duration showed that the prediction of creep strains for 10 years can be made based on data obtained in experiments with durations shorter than the 122 days as specified by EN 13162. Interval prediction of creep strains (with a confidence probability of 90%) was based on using the mean square deviation of the actual direct observations of creep strains in logarithmic form to have the linear trend in a retrospective area.
Creep Behavior of High-Strength Concrete Subjected to Elevated Temperatures
Yoon, Minho; Kim, Gyuyong; Kim, Youngsun; Lee, Taegyu; Choe, Gyeongcheol; Hwang, Euichul; Nam, Jeongsoo
2017-01-01
Strain is generated in concrete subjected to elevated temperatures owing to the influence of factors such as thermal expansion and design load. Such strains resulting from elevated temperatures and load can significantly influence the stability of a structure during and after a fire. In addition, the lower the water-to-binder (W–B) ratio and the smaller the quantity of aggregates in high-strength concrete, the more likely it is for unstable strain to occur. Hence, in this study, the compressive strength, elastic modulus, and creep behavior were evaluated at target temperatures of 100, 200, 300, 500, and 800 °C for high-strength concretes with W–B ratios of 30%, 26%, and 23%. The loading conditions were set as non-loading and 0.33fcu. It was found that as the compressive strength of the concrete increased, the mechanical characteristics deteriorated and transient creep increased. Furthermore, when the point at which creep strain occurred at elevated temperatures after the occurrence of transient creep was considered, greater shrinkage strain occurred as the compressive strength of the concrete increased. At a heating temperature of 800 °C, the 80 and 100 MPa test specimens showed creep failure within a shrinkage strain range similar to the strain at the maximum load. PMID:28773144
NASA Astrophysics Data System (ADS)
Kinoshita, C.; Saffer, D.; Kopf, A.; Roesner, A.; Wallace, L. M.; Araki, E.; Kimura, T.; Machida, Y.; Kobayashi, R.; Davis, E.; Toczko, S.; Carr, S.
2018-02-01
One primary objective of Integrated Ocean Drilling Program Expedition 365, conducted as part of the Nankai Trough Seismogenic Zone Experiment, was to recover a temporary observatory emplaced to monitor formation pore fluid pressure and temperature within a splay fault in the Nankai subduction zone offshore SW Honshu, Japan. Here we use a 5.3 year time series of formation pore fluid pressure, and in particular the response to ocean tidal loading, to evaluate changes in pore pressure and formation and fluid elastic properties induced by earthquakes. Our analysis reveals 31 earthquake-induced perturbations. These are dominantly characterized by small transient increases in pressure (28 events) and decreases in ocean tidal loading efficiency (14 events) that reflect changes to formation or fluid compressibility. The observed perturbations follow a magnitude-distance threshold similar to that reported for earthquake-driven hydrological effects in other settings. To explore the mechanisms that cause these changes, we evaluate the expected static and dynamic strains from each earthquake. The expected static strains are too small to explain the observed pressure changes. In contrast, estimated dynamic strains correlate with the magnitude of changes in both pressure and loading efficiency. We propose potential mechanism for the changes and subsequent recovery, which is exsolution of dissolved gas in interstitial fluids in response to shaking.
NASA Astrophysics Data System (ADS)
Bradshaw, P.
Computational techniques for accounting for extra strain rates, abnormal distributions of delta-U/delta-y, fluctuating strain rates, and the effects of body forces in modeling shear flows are discussed. Consideration is given to simple shears where the extra strain rate does not affect turbulence, thin shear layers, moderately thin shear layers, and strongly distorted flows. Attention is given to formulations based on the exact transport equations for Reynolds stress as derived from the time-averaged Navier-Stokes equations. Extra strain rates arise from curvature, lateral divergence, and bulk compression, with Coriolis forces accounting for the first, intensification of the spanwise vorticity for the second, and compression or dilation of the shear layer producing the third. The curvature forces, e.g., buoyancy and Coriolis forces, are responsible for hurricanes and tornadoes.
Smart absorbing property of composites with MWCNTs and carbonyl iron as the filler
NASA Astrophysics Data System (ADS)
Xu, Yonggang; Yuan, Liming; Cai, Jun; Zhang, Deyuan
2013-10-01
A smart absorbing composite was prepared by mixing silicone rubber, multi-walled carbon nanotubes (MWCNTs) and flaky carbonyl iron particles (CIPs) in a two-roll mixer. The complex permittivity and permeability of composites with variable compression strain was measured by the transmission method and dc electric conductivity was measured by the standard four-point contact method, then the reflection loss (RL) could be calculated to evaluate the microwave absorbing ability. The results showed that the applied compression strain made the complex permittivity decrease but not obviously due to the broken original conductive network. The enforcement of the strain on the complex permeability was attributed to the orientation of flaky CIPs. With the compressing strain applied on the composites with thickness 1 mm or 1.5 mm, the RL value decreased (minimum -13.2 dB and -25.1 dB) and the absorbing band (RL<-10 dB) was widened (5.2-10.6 GHz and 4.0-8.4 GHz). While as the composite thickness decreased caused by the compression strain, the RL value still decreased (minimum -12.4 dB and -18.6 dB) and the absorbing band was also broadened (6.5-10.7 GHz and 4.4-10.0 GHz). Thus the smart absorbing property was effective on preparing absorbers with wide absorption band and high absorption ratio.
2013-02-01
diene monomer ( EPDM ) rubber under high-rate uniaxial compression using an SHPB (5). Additionally, Song and Chen used a strain energy-based function to...describe a one-dimensional constitutive relation to describe the high strain rate behavior of the EPDM rubber , which agreed with the experimental...intermediate rate to about 6 MPa at 500 s -1 . This behavior and rate dependence was similar to the EPDM rubber studied by Chen and Zhang (2), which
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aman, Amjad; Chen, Yan; Lugovy, Mykola
2014-01-01
The dynamics of texture formation, changes in crystal structure and stress accommodation mechanisms are studied in R3c rhombohedral LaCoO3 perovskite during in-situ uniaxial compression experiment by neutron diffraction. The neutron diffraction revealed the complex crystallographic changes causing the texture formation and significant straining along certain crystallographic directions during in-situ compression, which are responsible for the appearance of hysteresis and non-linear ferroelastic deformation in LaCoO3 perovskite. The irreversible strain after the first loading was connected with the appearance of non-recoverable changes in the intensity ratio of certain crystallographic peaks, causing non-reversible texture formation. However in the second loading/unloading cycle the hysteresismore » loop was closed and no irreversible strain appears after deformation. The significant texture formation is responsible for increase in the Young s modulus of LaCoO3 at high compressive loads, where the reported values of Young s modulus increase from 76 GPa measured at the very beginning of the loading to 194 GPa at 900 MPa applied compressive stress measured at the beginning of the unloading curve.« less
Design of graphene nanoparticle undergoing axial compression: quantum study
NASA Astrophysics Data System (ADS)
Glukhova, O. E.; Kirillova, I. V.; Saliy, I. N.; Kolesnikova, A. S.; Slepchenkov, M. M.
2011-03-01
We report the results of quantum mechanical investigations of the atomic structure and deformations of graphene nanoparticle undergoing axial compression. We applied the tight-binding (TB) method. Our transferable tightbinding potential correctly reproduced tight-binding changes in the electronic configuration as a function of the local bonding geometry around each carbon atom. The tight-binding method applied provided the consideration and calculation of the rehybridization between σ- and π-orbitals. To research nanoribbons using tight-binding potential our own program was used. We adapted TB method to be able to run the algorithm on a parallel computing machine (computer cluster). To simulate axial compression of graphene nanoparticles the atoms on the ends were fixed on the plates. The plates were moved towards each other to decrease the length at some percent. Plane atomic network undergoing axial compression became wave-like. The amplitude of wave and its period were not constant and changed along axis. This is a phase transition. The strain energy collapse occurs at the value of axial compression 0.03-0.04. The strain energy increased up to the quantity compression 0.03, then collapsed sharply and decreased. So according to our theoretical investigation, the elasticity of graphene nanoparticles is more than the elasticity of nanotubes the same width and length. The curvature of the atomic network because of compression will decrease the reactivity of graphene nanoparticles. We have calculated the atomic structure and electronic structure of the compression graphene nanopaticle at each step of strain of axial compression. We have come to the conclusion that the wave-like graphenes adsorbing protein and nucleic acid are the effective nanosensors and bionanosensors.
Polarity Control and Growth of Lateral Polarity Structures in AlN
2013-05-10
domains. Transmission electron microscopy shows mixed edge-screw type dislocations with polarity-dependent dislocation bending. Raman 1. REPORT DATE (DD-MM...polarity-dependent dislocation bending. Raman spectroscopy reveals compressively strained Al-polar and relaxed N-polar domains. The near band edge...dislocation bending. Raman spectroscopy reveals compressively strained Al-polar and relaxed N-polar domains. The near band edge luminescence consists of
Wrinkles in reinforced membranes
NASA Astrophysics Data System (ADS)
Takei, Atsushi; Brau, Fabian; Roman, Benoît; Bico, José.
2012-02-01
We study, through model experiments, the buckling under tension of an elastic membrane reinforced with a more rigid strip or a fiber. In these systems, the compression of the rigid layer is induced through Poisson contraction as the membrane is stretched perpendicularly to the strip. Although strips always lead to out-of-plane wrinkles, we observe a transition from out-of-plane to in plane wrinkles beyond a critical strain in the case of fibers embedded into the elastic membranes. The same transition is also found when the membrane is reinforced with a wall of the same material depending on the aspect ratio of the wall. We describe through scaling laws the evolution of the morphology of the wrinkles and the different transitions as a function of material properties and stretching strain.
Anisotropic Ripple Deformation in Phosphorene.
Kou, Liangzhi; Ma, Yandong; Smith, Sean C; Chen, Changfeng
2015-05-07
Two-dimensional materials tend to become crumpled according to the Mermin-Wagner theorem, and the resulting ripple deformation may significantly influence electronic properties as observed in graphene and MoS2. Here, we unveil by first-principles calculations a new, highly anisotropic ripple pattern in phosphorene, a monolayer black phosphorus, where compression-induced ripple deformation occurs only along the zigzag direction in the strain range up to 10%, but not the armchair direction. This direction-selective ripple deformation mode in phosphorene stems from its puckered structure with coupled hinge-like bonding configurations and the resulting anisotropic Poisson ratio. We also construct an analytical model using classical elasticity theory for ripple deformation in phosphorene under arbitrary strain. The present results offer new insights into the mechanisms governing the structural and electronic properties of phosphorene crucial to its device applications.
Strain in the Braincase and Its Sutures During Function
Herring, Susan W.; Teng, Shengyi
2010-01-01
The skull is distinguished from other parts of the skeleton by its composite construction. The sutures between bony elements provide for interstitial growth of the cranium, but at the same time they alter the transmission of stress and strain through the skull. Strain gages were bonded to the frontal and parietal bones of miniature pigs and across the interfrontal, interparietal and coronal sutures. Strains were recorded 1) during natural mastication in conjunction with electromyographic activity from the jaw muscles and 2) during stimulation of various cranial muscles in anesthetized animals. Vault sutures exhibited vastly higher strains than did the adjoining bones. Further, bone strain primarily reflected torsion of the braincase set up by asymmetrical muscle contraction; the tensile axis alternated between +45° and −45° depending on which diagonal masseter/temporalis pair was most active. However, suture strains were not related to overall torsion but instead were responses to local muscle actions. Only the coronal suture showed significant strain (tension) during jaw opening; this was caused by the contraction of neck muscles. All sutures showed strain during jaw closing, but polarity depended on the pattern of muscle usage. For example, masseter contraction tensed the coronal suture and the anterior part of the interfrontal suture, whereas the temporalis caused compression in these locations. Peak tensile strains were larger than peak compressive strains. Histology suggested that the skull is bent at the sutures, with the ectocranial surface tensed and the endocranial surface predominantly compressed. Collectively, these results indicate that skulls with patent sutures should be analyzed as complexes of independent parts rather than solid structures. PMID:10918130
NASA Astrophysics Data System (ADS)
Zhu, Haiyan; Shi, Liwei; Li, Shuaiqi; Zhang, Shaobo; Xia, Wangsuo
2018-02-01
Structural, electronic properties and elastic anisotropy of hexagonal C40 XSi2 (X = Cr, Mo, W) under equibiaxial in-plane strains are systematically studied using first-principle calculations. The energy gaps show significant changes with biaxial strains, whereas they are always indirect band-gap materials for -6% <ɛxx < 6%. All elastic constants, bulk modulus, shear modulus, Young's modulus increase (decrease) almost linearly with increasing compressive (tensile) strains. The evolutions of BH /GH ratio and Poisson's ratio indicate that these compounds have a better (worse) ductile behaviour under compressive (tensile) strains. A set of 3D plots show a larger directional variability in the Young's modulus E and shear modulus G at different strains for the three compounds, which is consist with the values of anisotropy factors. Moreover, the evolution of Debye temperature and anisotropy of sound velocities with biaxial strains are discussed.
Creep-fatigue of low cobalt superalloys
NASA Technical Reports Server (NTRS)
Halford, G. R.
1982-01-01
Testing for the low cycle fatigue and creep fatigue resistance of superalloys containing reduced amounts of cobalt is described. The test matrix employed involves a single high temperature appropriate for each alloy. A single total strain range, again appropriate to each alloy, is used in conducting strain controlled, low cycle, creep fatigue tests. The total strain range is based upon the level of straining that results in about 10,000 cycles to failure in a high frequency (0.5 Hz) continuous strain-cycling fatigue test. No creep is expected to occur in such a test. To bracket the influence of creep on the cyclic strain resistance, strain hold time tests with ore minute hold periods are introduced. One test per composition is conducted with the hold period in tension only, one in compression only, and one in both tension and compression. The test temperatures, alloys, and their cobalt compositions that are under study are given.
Method of manufacturing an overwrapped pressure vessel
NASA Technical Reports Server (NTRS)
Beck, Emory J. (Inventor)
1976-01-01
A pressure vessel of the type wherein a metallic liner in the shape of a cylindrical portion with a dome-shaped portion at each end thereof is overwrapped by a plurality of layers of resin coated, single fiberglass filaments. A four-step wrapping technique reinforces the vessel with overwrap material at the most likely areas for vessel failure. Overwrapping of the vessel is followed by a sizing pressurization cycle which induces a compressive prestress into the liner and thereby permits the liner to deform elastically through an increased strain range.
Schick, D; Bojahr, A; Herzog, M; Gaal, P; Vrejoiu, I; Bargheer, M
2013-03-01
We investigate coherent phonon propagation in a thin film of ferroelectric PbZr(0.2)Ti(0.8)O(3) (PZT) by ultrafast x-ray diffraction experiments, which are analyzed as time-resolved reciprocal space mapping in order to observe the in- and out-of-plane structural dynamics, simultaneously. The mosaic structure of the PZT leads to a coupling of the excited out-of-plane expansion to in-plane lattice dynamics on a picosecond time scale, which is not observed for out-of-plane compression.
Assessment of mechanical strain in the intact plantar fascia.
Clark, Ross A; Franklyn-Miller, Andrew; Falvey, Eanna; Bryant, Adam L; Bartold, Simon; McCrory, Paul
2009-09-01
A method of measuring tri-axial plantar fascia strain that is minimally affected by external compressive force has not previously been reported. The purpose of this study was to assess the use of micro-strain gauges to examine strain in the different axes of the plantar fascia. Two intact limbs from a thawed, fresh-frozen cadaver were dissected, and a combination of five linear and one three-way rosette gauges were attached to the fascia of the foot and ankle. Strain was assessed during two trials, both consisting of an identical controlled, loaded dorsiflexion. An ICC analysis of the results revealed that the majority of gauge placement sites produced reliable measures (ICC>0.75). Strain mapping of the plantar fascia indicates that the majority of the strain is centrally longitudinal, which provides supportive evidence for finite element model analysis. Although micro-strain gauges do possess the limitation of calibration difficulty, they provide a repeatable measure of fascial strain and may provide benefits in situations that require tri-axial assessment or external compression.
NASA Technical Reports Server (NTRS)
Guynn, E. Gail; Bradley, Walter L.
1989-01-01
An understanding was developed of the factors that determine the semi-circular edge-notched compressive strength and the associated failure mode(s) were identified of thermoplastic composite laminates with multidirectional stacking sequences. The experimental observations and the detailed literature review suggest at least four factors that affected the determination of the strain levels at which fiber microbuckling initiates and thus, partially control the composite's compression strength. The dependent variables studied are the compressive strength of a reduced gage section compression specimen and the compression strength of a compression specimen with two semi-circular edge notches (no opposite free edges) centered along the gage section. In this research, specimens containing two semi-circular edge notches (no opposite free edges) were loaded in compression at a relatively slow rate to provide more stable development of fiber microbuckling damage. The results indicate that the local constraints (free surfaces, supporting ply orientation, and resin-rich regions) significantly affect the strain level for the initiation of in-plane fiber microbuckling. Preliminary results at an elevated temperature, 77 C, showed the shear stress yield strength of the resin was reduced and consequently, the resistance to fiber microbuckling was also reduced. The finite element analysis of the perfectly straight fiber problem indicates that the free surface effect causes a 10 percent reduction in the critical buckling strain. However, the experimentally measured reduction for fibers with an initial fiber curvature, was 35 percent.
Assessment of compressive failure process of cortical bone materials using damage-based model.
Ng, Theng Pin; R Koloor, S S; Djuansjah, J R P; Abdul Kadir, M R
2017-02-01
The main failure factors of cortical bone are aging or osteoporosis, accident and high energy trauma or physiological activities. However, the mechanism of damage evolution coupled with yield criterion is considered as one of the unclear subjects in failure analysis of cortical bone materials. Therefore, this study attempts to assess the structural response and progressive failure process of cortical bone using a brittle damaged plasticity model. For this reason, several compressive tests are performed on cortical bone specimens made of bovine femur, in order to obtain the structural response and mechanical properties of the material. Complementary finite element (FE) model of the sample and test is prepared to simulate the elastic-to-damage behavior of the cortical bone using the brittle damaged plasticity model. The FE model is validated in a comparative method using the predicted and measured structural response as load-compressive displacement through simulation and experiment. FE results indicated that the compressive damage initiated and propagated at central region where maximum equivalent plastic strain is computed, which coincided with the degradation of structural compressive stiffness followed by a vast amount of strain energy dissipation. The parameter of compressive damage rate, which is a function dependent on damage parameter and the plastic strain is examined for different rates. Results show that considering a similar rate to the initial slope of the damage parameter in the experiment would give a better sense for prediction of compressive failure. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tensile and compressive behavior of Borsic/aluminum
NASA Technical Reports Server (NTRS)
Herakovich, C. T.; Davis, J. G., Jr.; Viswanathan, C. N.
1977-01-01
The results of an experimental investigation of the mechanical behavior of Borsic/aluminum are presented. Composite laminates were tested in tension and compression for monotonically increasing load and also for variable loading cycles in which the maximum load was increased in each successive cycle. It is shown that significant strain-hardening, and corresponding increase in yield stress, is exhibited by the metal matrix laminates. For matrix dominated laminates, the current yield stress is essentially identical to the previous maximum stress, and unloading is essentially linear with large permanent strains after unloading. For laminates with fiber dominated behavior, the yield stress increases with increase in the previous maximum stress, but the increase in yield stress does not keep pace with the previous maximum stress. These fiber dominated laminates exhibit smaller nonlinear strains, reversed nonlinear behavior during unloading, and smaller permanent strains after unloading. Compression results from sandwich beams and flat coupons are shown to differ considerably. Results from beam specimens tend to exhibit higher values for modulus, yield stress, and strength.
Calculation of Debye-Scherrer diffraction patterns from highly stressed polycrystalline materials
MacDonald, M. J.; Vorberger, J.; Gamboa, E. J.; ...
2016-06-07
Calculations of Debye-Scherrer diffraction patterns from polycrystalline materials have typically been done in the limit of small deviatoric stresses. Although these methods are well suited for experiments conducted near hydrostatic conditions, more robust models are required to diagnose the large strain anisotropies present in dynamic compression experiments. A method to predict Debye-Scherrer diffraction patterns for arbitrary strains has been presented in the Voigt (iso-strain) limit. Here, we present a method to calculate Debye-Scherrer diffraction patterns from highly stressed polycrystalline samples in the Reuss (iso-stress) limit. This analysis uses elastic constants to calculate lattice strains for all initial crystallite orientations, enablingmore » elastic anisotropy and sample texture effects to be modeled directly. Furthermore, the effects of probing geometry, deviatoric stresses, and sample texture are demonstrated and compared to Voigt limit predictions. An example of shock-compressed polycrystalline diamond is presented to illustrate how this model can be applied and demonstrates the importance of including material strength when interpreting diffraction in dynamic compression experiments.« less
An elastic dimpling instability with Kosterlitz-Thouless character and a precursor role in creasing
NASA Astrophysics Data System (ADS)
Engstrom, Tyler; Paulsen, Joseph; Schwarz, Jennifer
Creasing instability, also known as sulcification, occurs in a variety of quasi-2d elastic systems subject to compressive plane strain, and has been proposed as a mechanism of brain folding. While the dynamics of pre-existing creases can be understood in terms of crack propagation, a detailed critical phenomena picture of the instability is lacking. We show that surface dimpling is an equilibrium phase transition, and can be described in a language of quasi-particle excitations conceptualized as ``ghost fibers'' within the shear lag model. Tension-compression pairs (dipoles) of ghost fibers are energetically favorable at low strains, and the pairs unbind at a critical compressive plane strain, analogously to vortices in the Kosterlitz-Thouless transition. This dimpling transition bears strong resemblance to the creasing instability. We argue that zero-length creases are ghost fibers, which are a special case of ``ghost slabs''. Critical strain of a ghost slab increases linearly with its length, and is independent of both shear modulus and system thickness.
NASA Astrophysics Data System (ADS)
Lawson, Bridget; Neubauer, Samuel; Chaudhry, Adeel; Hart, Cacie; Ferrone, Natalie; Houston, David; Yong, Grace; Kolagani, Rajeswari
Magnetoresistance properties of the epitaxial thin films of doped rare earth manganites are known to be influenced by the effect of bi-axial strain induced by lattice mismatch with the substrate. In hole-doped manganites, the effect of both compressive and tensile strain is qualitatively consistent with the expected changes in unit cell symmetry from cubic to tetragonal, leading to Jahn-Teller strain fields that affect the energy levels of Mn3 + energy levels. Recent work in our laboratory on CaMnO3 thin films has pointed out that tetragonal distortions introduced by tensile lattice mismatch strain may also have the effect of modulating the oxygen content of the films in agreement with theoretical models that propose such coupling between strain and oxygen content. Our research focuses on comparing the magneto-transport properties of hole-doped manganite LaCaMnO3 thin films with that of its electron doped counter parts, in an effort to delineate the effects of oxygen stoichiometry changes on magneto-transport from the effects of Jahn-Teller type strain. Towson University Office of Undergraduate Research, Fisher Endowment Grant and Undergraduate Research Grant from the Fisher College of Science and Mathematics, Seed Funding Grant from the School of Emerging technologies and the NSF Grant ECCS 112856.
NASA Astrophysics Data System (ADS)
Lee, Jinwoo; Kim, Se-Jong; Lee, Myoung-Gyu; Song, Jung Han; Choi, Seogou; Han, Heung Nam; Kim, Daeyong
2016-06-01
The uniaxial tensile and compressive stress-strain responses of AZ31B magnesium alloy sheet under pulsed electric current are reported. Tension and compression tests with pulsed electric current showed that flow stresses dropped instantaneously when the electric pulses were applied. Thermo-mechanical-electrical finite element analyses were also performed to investigate the effects of Joule heating and electro-plasticity on the flow responses of AZ31B sheets under electric-pulsed tension and compression tests. The proposed finite element simulations could reproduce the measured uniaxial tensile and compressive stress-strain curves under pulsed electric currents, when the temperature-dependent flow stress hardening model and thermal properties of AZ31B sheet were properly described in the simulations. In particular, the simulation results that fit best with experimental results showed that almost 100 pct of the electric current was subject to transform into Joule heating during electrically assisted tensile and compressive tests.
Microscopic Origin of Strain Hardening in Methane Hydrate
Jia, Jihui; Liang, Yunfeng; Tsuji, Takeshi; Murata, Sumihiko; Matsuoka, Toshifumi
2016-01-01
It has been reported for a long time that methane hydrate presents strain hardening, whereas the strength of normal ice weakens with increasing strain after an ultimate strength. However, the microscopic origin of these differences is not known. Here, we investigated the mechanical characteristics of methane hydrate and normal ice by compressive deformation test using molecular dynamics simulations. It is shown that methane hydrate exhibits strain hardening only if the hydrate is confined to a certain finite cross-sectional area that is normal to the compression direction. For normal ice, it does not present strain hardening under the same conditions. We show that hydrate guest methane molecules exhibit no long-distance diffusion when confined to a finite-size area. They appear to serve as non-deformable units that prevent hydrate structure failure, and thus are responsible for the strain-hardening phenomenon. PMID:27009239
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Y.; D'Hauthuille, L.; Barth, C.
High-field superconducting magnets play a very important role in many large-scale physics experiments, particularly particle colliders and fusion confinement devices such as Large Hadron Collider (LHC) and International Thermonuclear Experimental Reactor (ITER). The two most common superconductors used in these applications are NbTi and Nb 3Sn. Nb 3Sn wires are favored because of their significantly higher J c (critical current density) for higher field applications. The main disadvantage of Nb 3Sn is that the superconducting performance of the wire is highly strain sensitive and it is very brittle. This strain sensitivity is strongly influenced by two factors: plasticity and crackedmore » filaments. Cracks are induced by large stress concentrators that can be traced to the presence of voids in the wire. We develop detailed 2-D and 3-D finite-element models containing wire filaments and different possible distributions of voids in a bronze-route Nb 3Sn wire. We apply compressive transverse loads for various cases of void distributions to simulate the stress and strain response of a Nb 3Sn wire under the Lorentz force. Furthermore, this paper improves our understanding of the effect voids have on the Nb 3Sn wire's mechanical properties, and in so, the connection between the distribution of voids and performance degradation such as the correlation between irreversible strain limit and the void-induced local stress concentrations.« less
Methodology for Mechanical Property Testing on Fuel Cladding Using an Expanded Plug Wedge Test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jy-An John; Jiang, Hao
To determine the tensile properties of irradiated fuel cladding in a hot cell, a simple test was developed at ORNL and is described fully in US Patent Application 20060070455, Expanded plug method for developing circumferential mechanical properties of tubular materials. This method is designed for testing fuel rod cladding ductility in a hot cell utilizing an expandable plug to stretch a small ring of irradiated cladding material. The specimen strain is determined using the measured diametrical expansion of the ring. This method removes many complexities associated with specimen preparation and testing. The advantages are the simplicity of measuring the testmore » component assembly in the hot cell and the direct measurement of specimen strain. It was also found that cladding strength could be determined from the test results. The basic approach of this test method is to apply an axial compressive load to a cylindrical plug of polyurethane (or other materials) fitted inside a short ring of the test material to achieve radial expansion of the specimen. The diameter increase of the specimen is used to calculate the circumferential strain accrued during the test. The other two basic measurements are total applied load and amount of plug compression (extension). A simple procedure is used to convert the load circumferential strain data from the ring tests into material pseudo-stress-strain curves. However, several deficiencies exist in this expanded-plug loading ring test, which will impact accuracy of test results and introduce potential shear failure of the specimen due to inherited large axial compressive stress from the expansion plug test. First of all, the highly non-uniform stress and strain distribution resulted in the gage section of the clad. To ensure reliable testing and test repeatability, the potential for highly non-uniform stress distribution or displacement/strain deformation has to be eliminated at the gage section of the specimen. Second, significant compressive stresses were induced by clad bending deformation due to a clad bulging effect (or the barreling effect). The barreling effect caused very large localized shear stress in the clad and left testing material at a high risk of shear failure. The above combined effects will result in highly non-conservative predictions both in strength and ductility of the tested clad, and the associated mechanical properties as well. To overcome/mitigate the mentioned deficiencies associated with the current expansion plug test, systematic studies have been conducted. Through detailed parameter investigation on specific geometry designs, careful filtering of material for the expansion plug, as well as adding newly designed parts to the testing system, a method to reconcile the potential non-conservatism embedded in the expansion plug test system has been discovered. A modified expansion plug testing protocol has been developed based on the method. In order to closely resemble thin-wall theory, a general procedure was also developed to determine the hoop stress in the tested ring specimen. A scaling factor called -factor is defined to correlate the ring load P into hoop stress . , = . The generated stress-strain curve agrees very well with tensile test data in both the elastic and plastic regions.« less
Channeling techniques to study strains and defects in heterostructures and multi quantum wells
NASA Astrophysics Data System (ADS)
Pathak, A. P.; Dhamodaran, S.; Sathish, N.
2005-08-01
The importance and advantages of heterostructures and Quantum Wells (QWs) in device technology has made research challenging due to lack of direct techniques for their characterization. Particularly the characterization of strain and defects at the interfaces has become important due to their dominance in the electrical and optical properties of materials and devices. RBSiC has been used to study variety of defects in single crystalline materials, for nearly four decades now. Channeling based experiments play a crucial role in giving depth information of strain and defects. Ion beams are used for both material characterizations as well as for modifications. Hence it is also possible to monitor the modifications online, which are discussed in detail. In the present work, Swift Heavy Ion (SHI) modification of III-V semiconductor heterostnictures and MQWs and the results of subsequent strain measurements by RBSiC in initially strained as well as lattice matched systems are discussed. We find that the compressive strain decreases due to SHI irradiation and a tensile strain is induced in an initially lattice matched system. The incident ion fluence dependence of strain modifications in the heterostructures will also be discussed. The use of high energy channeling for better sensitivity of strain measurements in low mismatch materials will be discussed in detail. Wherever possible, a comparison of results with those obtained by other techniques like HRXRD is given.
Alzahrani, Abeer A; Saed, Mohand; Yakacki, Christopher M; Song, Han Byul; Sowan, Nancy; Walston, Joshua J; Shah, Parag K; McBride, Matthew K; Stansbury, Jeffrey W; Bowman, Christopher N
2018-01-07
This study is the first to employ the use of the copper-catalyzed azide-alkyne cycloaddition (CuAAC) polymerization to form a tough and stiff, porous material from a well-defined network possessing a high glass transition temperature. The effect of the network linkages formed as a product of the CuAAC reaction, i.e., the triazoles, on the mechanical behavior at high strain was evaluated by comparing the CuAAC foam to an epoxy-amine-based foam, which consisted of monomers with similar backbone structures and mechanical properties (i.e., T g of 115 °C and a rubbery modulus of 1.0 MPa for the CuAAC foam, T g of 125 °C and a rubbery modulus of 1.2 MPa for the epoxy-amine foam). When each foam was compressed uniformly to 80% strain at ambient temperature, the epoxy-amine foam was severely damaged after only reaching 70% strain in the first compression cycle with a toughness of 300 MJ/m 3 . In contrast, the CuAAC foam exhibited pronounced ductile behavior in the glassy state with three times higher toughness of 850 MJ/m 3 after the first cycle of compression to 80% strain. Additionally, when the CuAAC foam was heated above T g after each of five compression cycles to 80% strain at ambient temperature, the foam completely recovered its original shape while exhibiting a gradual decrease in mechanical performance over the multiple compression cycles. The foam demonstrated almost complete shape fixity and recovery ratios even through five successive cycles, indicative of "reversible plasticity", making it highly desirable as a glassy shape memory foams.
Theory of the β-Type Organic Superconductivity under Uniaxial Compression
NASA Astrophysics Data System (ADS)
Suzuki, Takeo; Onari, Seiichiro; Ito, Hiroshi; Tanaka, Yukio
2011-09-01
We study theoretically the shift of the superconducting transition temperature (Tc) under uniaxial compression in β-type organic superconductors, β-(BEDT-TTF)2I3 and β-(BDA-TTP)2X (X=SbF6, AsF6), in order to clarify the electron correlation, the spin frustration, and the effect of dimerization. The transfer integrals are calculated by the extended Hückel method assuming the uniaxial strain, and the superconducting state mediated by the spin fluctuation is solved using Eliashberg's equation with the fluctuation--exchange approximation. The calculation is carried out on both the dimerized (one-band) and nondimerized (two-band) Hubbard models. We have found that (i) the behavior of Tc in β-(BEDT-TTF)2I3 with a stronger dimerization is well reproduced by the dimer model, while that in weakly dimerized β-BDA-TTP salts is rather well reproduced by the two-band model, and (ii) the competition between the spin frustration and the effect induced by the fluctuation is important in these materials, which causes the nonmonotonic shift of Tc against uniaxial compression.
Ultrathin strain-gated field effect transistor based on In-doped ZnO nanobelts
NASA Astrophysics Data System (ADS)
Zhang, Zheng; Du, Junli; Li, Bing; Zhang, Shuhao; Hong, Mengyu; Zhang, Xiaomei; Liao, Qingliang; Zhang, Yue
2017-08-01
In this work, we fabricated a strain-gated piezoelectric transistor based on single In-doped ZnO nanobelt with ±(0001) top/bottom polar surfaces. In the vertical structured transistor, the Pt tip of the AFM and Au film are used as source and drain electrode. The electrical transport performance of the transistor is gated by compressive strains. The working mechanism is attributed to the Schottky barrier height changed under the coupling effect of piezoresistive and piezoelectric. Uniquely, the transistor turns off under the compressive stress of 806 nN. The strain-gated transistor is likely to have important applications in high resolution mapping device and MEMS devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aydogdu, Gulgun H.; Ha, Sieu D.; Viswanath, B.
SmNiO{sub 3} (SNO) thin films were deposited on LaAlO{sub 3} (LAO), SrTiO{sub 3}, SrLaAlO{sub 4}, Si, and Al{sub 2}O{sub 3} (sapphire) substrates by RF magnetron sputtering and studies were conducted to understand how film structure and composition influence the insulator-metal transition properties. It is observed that the compressive strain induces the insulator to metal transition (MIT), while tensile strain suppresses it. In the case of non-epitaxial films, semiconducting behavior is obtained on sapphire over a broad temperature range, while on heavily-doped Si substrate; an MIT is seen in out-of-plane resistance measurement. In addition, thickness dependence on the resistance behavior andmore » nickel oxidation state has been examined for epitaxial SNO films on LAO substrates. Fine control of the MIT by modifications to the mismatch strain and thickness provides insights to enhance the performance and the functionality of these films for emerging electron devices.« less
Versatile strain-tuning of modulated long-period magnetic structures
Fobes, D. M.; Luo, Yongkang; León-Brito, N.; ...
2017-05-10
In this paper, we report a detailed small-angle neutron scattering (SANS) study of the skyrmion lattice phase of MnSi under compressive and tensile strain. In particular, we demonstrate that tensile strain applied to the skyrmion lattice plane, perpendicular to the magnetic field, acts to destabilize the skyrmion lattice phase. Finally, this experiment was enabled by our development of a versatile strain cell, unique in its ability to select the application of either tensile or compressive strain in-situ by using two independent helium-actuated copper pressure transducers, whose design has been optimized for magnetic SANS on modulated long-period magnetic structures and vortexmore » lattices, and is compact enough to fit in common sample environments such as cryostats and superconducting magnets.« less
NASA Astrophysics Data System (ADS)
El-Qoubaa, Z.; Colard, L.; Matadi Boumbimba, R.; Rusinek, A.
2018-06-01
This paper concerns an experimental investigation of Polycarbonate and Poly (methyl methacrylate) compressive behavior from low to high strain rates. Experiments were conducted from 0.001/s to ≈ 5000/s for PC and from 0.001/s to ≈ 2000/s for PMMA. The true strain-stress behavior is established and analyzed at various stain rates. Both PC and PMMA mechanical behavior appears as known, to be strain rate and temperature dependent. The DSGZ model is selected for modelling the strain-stress curves while the yield stress is reproduced using the cooperative model and a modified Eyring equation based on Eyring first process theory. All the three models predictions are in agreement with experiments performed on PC and PMMA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, D.; Gao, Ning; Setyawan, Wahyu
The influence of hydrostatic strain on point defect formation energy and threshold displacement energy (Ed) in body-centered cubic (BCC) tungsten was studied with molecular dynamics simulations. Two different tungsten potentials (Fikar and Juslin) were used. The minimum Ed direction calculated with the Fikar-potential was <100>, but with the Juslin-potential it was <111>. The most stable self-interstitial (SIA) configuration was a <111>-crowdion for both potentials. The stable SIA configuration did not change with applied strain. Varying the strain from compression to tension increased the vacancy formation energy but decreased the SIA formation energy. The SIA formation energy changed more significantly thanmore » for a vacancy such that Ed decreased with applied strain from compression to tension.« less
NASA Astrophysics Data System (ADS)
El-Qoubaa, Z.; Colard, L.; Matadi Boumbimba, R.; Rusinek, A.
2018-03-01
This paper concerns an experimental investigation of Polycarbonate and Poly (methyl methacrylate) compressive behavior from low to high strain rates. Experiments were conducted from 0.001/s to ≈ 5000/s for PC and from 0.001/s to ≈ 2000/s for PMMA. The true strain-stress behavior is established and analyzed at various stain rates. Both PC and PMMA mechanical behavior appears as known, to be strain rate and temperature dependent. The DSGZ model is selected for modelling the strain-stress curves while the yield stress is reproduced using the cooperative model and a modified Eyring equation based on Eyring first process theory. All the three models predictions are in agreement with experiments performed on PC and PMMA.
High-Rate Mechanical Properties of JA2 Propellant at Temperatures from -50 to 80 deg C
2015-07-01
panorama of postcompression JA2 grain sample (uniaxially compressed at a rate of ~100 s–1, 80 °C, and strain greater than 40%), 50× magnification...19 Fig. 36 SEM panorama of postcompression JA2 grain sample...19 Fig. 37 SEM panorama of postcompression JA2 grain sample (uniaxially compressed at a rate of ~100 s–1, 60 °C, and strain
A novel application of ADC/K-foaming agent-loaded NBR rubber composites as pressure sensor
NASA Astrophysics Data System (ADS)
Mahmoud, W. E.; El-Eraki, M. H. I.; El-Lawindy, A. M. Y.; Hassan, H. H.
2006-02-01
Nitrile butadiene rubber (NBR) structure foam of different apparent densities was obtained by using different concentrations of foaming agent, azodicarbonamide, ADC/K. The true stress-strain characteristics, in case of compression, of foamed samples were measured. It was found that the theoretical values predicted from the simple blending model are in more agreement with the experimental results than those from the square-relationship model. The effect of cyclic loading-unloading and dissipation energy of rubber foams was studied. The results also indicated that foams with low density exhibited a small hysteresis. The electrical properties were found dependent on the foaming agent concentration. This study was assisted by Mott and Gurney equation. The effect of compressive strain on the electrical conductivity of rubber foams was studied. The free current carrier mobility and the equilibrium concentration of charge carrier in the conduction band were produced as functions of compressive strain. The results also indicate that there is a linear variation between pressure and conductivity for all samples, which means that these samples can be used as a pressure sensor. At a certain concentration of foaming agent (5 phr) a change of electrical conductivity by more than three orders is observed at 20% compression strain.
Time-dependence of the alpha to epsilon phase transformation in iron
Smith, R. F.; Eggert, J. H.; Swift, D. C.; ...
2013-12-11
Here, iron was ramp-compressed over timescales of 3 ≤ t(ns) ≤ 300 to study the time-dependence of the α→ε (bcc→hcp) phase transformation. Onset stresses (σ α→ε) for the transformation ~14.8-38.4 GPa were determined through laser and magnetic ramp-compression techniques where the transition strain-rate was varied between 10 6 ≤more » $$\\dot{μ}$$ α→ε(s ₋1) ≤ 5×10 8. We find σ α→ε= 10.8 + 0.55 ln($$\\dot{μ}$$ α→ε) for $$\\dot{μ}$$ α→ε < 10 6/s and σ α→ε= 1.15($$\\dot{μ}$$ α→ε) 0.18 for $$\\dot{μ}$$ α→ε > 10 6/s. This $$\\dot{μ}$$ response is quite similar to recent results on incipient plasticity in Fe suggesting that under high rate ramp compression the α→ε phase transition and plastic deformation occur through similar mechanisms, e.g., the rate limiting step for $$\\dot{μ}$$ > 10 6/s is due to phonon scattering from defects moving to relieve strain. We show that over-pressurization of equilibrium phase boundaries is a common feature exhibited under high strain-rate compression of many materials encompassing many orders of magnitude of strain-rate.« less
NASA Astrophysics Data System (ADS)
Xiao, Xiang-Bo; Liu, Bang-Gui
2018-03-01
It is highly desirable to combine the full spin polarization of carriers with modern semiconductor technology for spintronic applications. For this purpose, one needs good crystalline ferromagnetic (or ferrimagnetic) semiconductors with high Curie temperatures. Rutile CrO2 is a half-metallic spintronic material with Curie temperature 394 K and can have nearly full spin polarization at room temperature. Here, we find through first-principles investigation that when a biaxial compressive stress is applied on rutile CrO2, the density of states at the Fermi level decreases with the in-plane compressive strain, there is a structural phase transition to an orthorhombic phase at the strain of -5.6 % , and then appears an electronic phase transition to a semiconductor phase at -6.1 % . Further analysis shows that this structural transition, accompanying the tetragonal symmetry breaking, is induced by the stress-driven distortion and rotation of the oxygen octahedron of Cr, and the half-metal-semiconductor transition originates from the enhancement of the crystal field splitting due to the structural change. Importantly, our systematic total-energy comparison indicates the ferromagnetic Curie temperature remains almost independent of the strain, near 400 K. This biaxial stress can be realized by applying biaxial pressure or growing the CrO2 epitaxially on appropriate substrates. These results should be useful for realizing full (100%) spin polarization of controllable carriers as one uses in modern semiconductor technology.
NASA Astrophysics Data System (ADS)
Mattei, G.; Ahluwalia, A.
2018-04-01
We introduce a new function, the apparent elastic modulus strain-rate spectrum, E_{app} ( \\dot{ɛ} ), for the derivation of lumped parameter constants for Generalized Maxwell (GM) linear viscoelastic models from stress-strain data obtained at various compressive strain rates ( \\dot{ɛ}). The E_{app} ( \\dot{ɛ} ) function was derived using the tangent modulus function obtained from the GM model stress-strain response to a constant \\dot{ɛ} input. Material viscoelastic parameters can be rapidly derived by fitting experimental E_{app} data obtained at different strain rates to the E_{app} ( \\dot{ɛ} ) function. This single-curve fitting returns similar viscoelastic constants as the original epsilon dot method based on a multi-curve global fitting procedure with shared parameters. Its low computational cost permits quick and robust identification of viscoelastic constants even when a large number of strain rates or replicates per strain rate are considered. This method is particularly suited for the analysis of bulk compression and nano-indentation data of soft (bio)materials.
NASA Astrophysics Data System (ADS)
Song, B.; Antoun, B. R.; Boston, M.
2012-05-01
We modified the design originally developed by Kuokkala's group to develop an automated high-temperature Kolsky compression bar for characterizing high-rate properties of 304L stainless steel at elevated temperatures. Additional features have been implemented to this high-temperature Kolsky compression bar for recrystallization investigation. The new features ensure a single loading on the specimen and precise time and temperature control for quenching to the specimen after dynamic loading. Dynamic compressive stress-strain curves of 304L stainless steel were obtained at 21, 204, 427, 649, and 871 °C (or 70, 400, 800, 1200, and 1600 °F) at the same constant strain rate of 332 s-1. The specimen subjected to specific time and temperature control for quenching after a single dynamic loading was preserved for investigating microstructure recrystallization.
The Pack Method for Compressive Tests of Thin Specimens of Materials Used in Thin-Wall Structures
NASA Technical Reports Server (NTRS)
Aitchison, C S; Tuckerman, L B
1939-01-01
The strength of modern lightweight thin-wall structures is generally limited by the strength of the compression members. An adequate design of these members requires a knowledge of the compressive stress-strain graph of the thin-wall material. The "pack" method was developed at the National Bureau of Standards with the support of the National Advisory Committee for Aeronautics to make possible a determination of compressive stress-strain graphs for such material. In the pack test an odd number of specimens are assembled into a relatively stable pack, like a "pack of cards." Additional lateral stability is obtained from lateral supports between the external sheet faces of the pack and outside reactions. The tests seems adequate for many problems in structural research.
A Model of the THUNDER Actuator
NASA Technical Reports Server (NTRS)
Curtis, Alan R. D.
1997-01-01
A THUNDER actuator is a composite of three thin layers, a metal base, a piezoelectric wafer and a metal top cover, bonded together under pressure and at high temperature with the LaRC SI polyimid adhesive. When a voltage is applied between the metal layers across the PZT the actuator will bend and can generate a force. This document develops and describes an analytical model the transduction properties of THUNDER actuators. The model development is divided into three sections. First, a static model is described that relates internal stresses and strains and external displacements to the thermal pre-stress and applied voltage. Second, a dynamic energy based model is described that allows calculation of the resonance frequencies, developed force and electrical input impedance. Finally, a fully coupled electro-mechanical transducer model is described. The model development proceeds by assuming that both the thermal pre-stress and the piezoelectric actuation cause the actuator to deform in a pure bend in a single plane. It is useful to think of this as a two step process, the actuator is held flat, differential stresses induce a bending moment, the actuator is released and it bends. The thermal pre-stress is caused by the different amounts that the constituent layers shrink due to their different coefficients of thermal expansion. The adhesive between layers sets at a high temperature and as the actuator cools, the metal layers shrink more than the PZT. The PZT layer is put into compression while the metal layers are in tension. The piezoelectric actuation has a similar effect. An applied voltage causes the PZT layer to strain, which in turn strains the two metal layers. If the PZT layer expands it will put the metal layers into tension and PZT layer into compression. In both cases, if shear force effects are neglected, the actuator assembly will experience a uniform in-plane strain. As the materials each have a different elastic modulus, different stresses will develop in each layer and these stresses will induce a bending moment. When the actuator is released from its flat configuration, the differential stresses are relieved as the actuator bends.
Micro finite element analysis of dental implants under different loading conditions.
Marcián, Petr; Wolff, Jan; Horáčková, Ladislava; Kaiser, Jozef; Zikmund, Tomáš; Borák, Libor
2018-05-01
Osseointegration is paramount for the longevity of dental implants and is significantly influenced by biomechanical stimuli. The aim of the present study was to assess the micro-strain and displacement induced by loaded dental implants at different stages of osseointegration using finite element analysis (FEA). Computational models of two mandible segments with different trabecular densities were constructed using microCT data. Three different implant loading directions and two osseointegration stages were considered in the stress-strain analysis of the bone-implant assembly. The bony segments were analyzed using two approaches. The first approach was based on Mechanostat strain intervals and the second approach was based on tensile/compression yield strains. The results of this study revealed that bone surrounding dental implants is critically strained in cases when only a partial osseointegration is present and when an implant is loaded by buccolingual forces. In such cases, implants also encounter high stresses. Displacements of partially-osseointegrated implant are significantly larger than those of fully-osseointegrated implants. It can be concluded that the partial osseointegration is a potential risk in terms of implant longevity. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Reul, A.; Lauhoff, C.; Krooß, P.; Gutmann, M. J.; Kadletz, P. M.; Chumlyakov, Y. I.; Niendorf, T.; Schmahl, W. W.
2018-02-01
Recent studies demonstrated excellent pseudoelastic behavior and cyclic stability under compressive loads in [001]-oriented Co-Ni-Ga high-temperature shape memory alloys (HT-SMAs). A narrow stress hysteresis was related to suppression of detwinning at RT and low defect formation during phase transformation due to the absence of a favorable slip system. Eventually, this behavior makes Co-Ni-Ga HT-SMAs promising candidates for several industrial applications. However, deformation behavior of Co-Ni-Ga has only been studied in the range of theoretical transformation strain in depth so far. Thus, the current study focuses not only on the activity of elementary deformation mechanisms in the pseudoelastic regime up to maximum theoretical transformation strains but far beyond. It is shown that the martensite phase is able to withstand about 5% elastic strain, which significantly increases the overall deformation capability of this alloy system. In situ neutron diffraction experiments were carried out using a newly installed testing setup on Co-Ni-Ga single crystals in order to reveal the nature of the stress-strain response seen in the deformation curves up to 10% macroscopic strain.
Dimensionality-strain phase diagram of strontium iridates superlattices
NASA Astrophysics Data System (ADS)
Kim, Bongjae; Liu, Peitao; Franchini, Cesare
Using ab initio approach, we study the electronic and magnetic behavior of strontium iridates as a function of dimensionality and epitaxial strain by employing a (SrIrO3)m/(SrTiO3) superlattice structure. We quantitatively evaluate the dimensional and strain-dependent change of the interaction parameters U and J using the constraint random phase approximation and construct a comprehensive phase diagram describing the evolution of the electronic and magnetic ground state upon strain and dimensionality. We find that compressive strain and increasing the dimensionality perturb the insulating relativistic Mott Jeff = 1 / 2 state, a characteristic of the m = 1 system, and induce two distinct types of insulator-to-metal transition (IMT) that can be explained from the entanglement of U and the bandwidth of the Ir-t2 g manifold. The IMTs are associated with distinctive changes of the spin ordering manifested by spin-flop transitions, correlated with the modulation of the interlayer exchange interaction, and with a complete quenching of any spin-ordered state in the m -> ∞ limit. The fundamental origin of these electronic and magnetic transitions will be discussed and compared with the corresponding situation in the Ruddlesden-Popper series.
Tuning the energy gap of bilayer α-graphyne by applying strain and electric field
NASA Astrophysics Data System (ADS)
Yang, Hang; Wu, Wen-Zhi; Jin, Yu; Wan-Lin, Guo
2016-02-01
Our density functional theory calculations show that the energy gap of bilayer α-graphyne can be modulated by a vertically applied electric field and interlayer strain. Like bilayer graphene, the bilayer α-graphyne has electronic properties that are hardly changed under purely mechanical strain, while an external electric field can open the gap up to 120 meV. It is of special interest that compressive strain can further enlarge the field induced gap up to 160 meV, while tensile strain reduces the gap. We attribute the gap variation to the novel interlayer charge redistribution between bilayer α-graphynes. These findings shed light on the modulation of Dirac cone structures and potential applications of graphyne in mechanical-electric devices. Project supported by the National Key Basic Research Program of China (Grant Nos. 2013CB932604 and 2012CB933403), the National Natural Science Foundation of China (Grant Nos. 51472117 and 51535005), the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures, China (Grant No. 0414K01), the Nanjing University of Aeronautics and Astronautics (NUAA) Fundamental Research Funds, China (Grant No. NP2015203), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.
Zhuo, Hao; Hu, Yijie; Tong, Xing; Chen, Zehong; Zhong, Linxin; Lai, Haihong; Liu, Linxiang; Jing, Shuangshuang; Liu, Qingzhong; Liu, Chuanfu; Peng, Xinwen; Sun, Runcang
2018-05-01
Ultralight and compressible carbon materials have promising applications in strain and pressure detection. However, it is still difficult to prepare carbon materials with supercompressibility, elasticity, stable strain-electrical signal response, and ultrasensitive detection limits, due to the challenge in structural regulation. Herein, a new strategy to prepare a reduced graphene oxide (rGO)-based lamellar carbon aerogels with unexpected and integrated performances by designing wave-shape rGO layers and enhancing the interaction among the rGO layers is demonstrated. Addition of cellulose nanocrystalline and low-molecular-weight carbon precursors enhances the interaction among rGO layers and thus produces an ultralight, flexible, and superstable structure. The as-prepared carbon aerogel displays a supercompressibility (undergoing an extreme strain of 99%) and elasticity (100% height retention after 10 000 cycles at a strain of 30%), as well as stable strain-current response (at least 10 000 cycles). Particularly, the carbon aerogel is ultrasensitive for detecting tiny change in strain (0.012%) and pressure (0.25 Pa), which are the lowest detection limits for compressible carbon materials reported in the literature. Moreover, the carbon aerogel exhibits excellent bendable performance and can detect an ultralow bending angle of 0.052°. Additionally, the carbon aerogel also demonstrates its promising application as wearable devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Analysis of Crushing Response of Composite Crashworthy Structures
NASA Astrophysics Data System (ADS)
David, Matthew; Johnson, Alastair F.; Voggenreiter, H.
2013-10-01
The paper describes quasi-static and dynamic tests to characterise the energy absorption properties of polymer composite crash energy absorbing segment elements under axial loads. Detailed computer tomography scans of failed specimens are used to identify local compression crush failure mechanisms at the crush front. The varied crushing morphology between the compression strain rates identified in this paper is observed to be due to the differences in the response modes and mechanical properties of the strain dependent epoxy matrix. The importance of understanding the role of strain rate effects in composite crash energy absorbing structures is highlighted in this paper.
Strain localization in <111> single crystals of Hadfield steel under compressive load
NASA Astrophysics Data System (ADS)
Astafurova, E. G.; Zakharova, G. G.; Melnikov, E. V.
2010-07-01
A study of strain localization under compression of <111> Hadfield steel single crystals at room temperature was done by light and transmission electron microscopy. At epsilon<1%, macro shear bands (MSB) form that have non-crystallographic and complex non-linear habit planes and are the results of the interaction of dislocation slip on conjugate slip planes. Mechanical twinning was experimentally found inside the MSB. After the stage of MSBs formation, deformation develops with high strain hardening coefficient and corresponds to interaction of slip and twinning inside as well as outside the MSBs.
Self-sensing concrete-filled FRP tubes using FBG strain sensors
NASA Astrophysics Data System (ADS)
Yan, Xin; Li, Hui
2007-07-01
Concrete-filled fiber-reinforced polymer (FRP) tube is a type of newly developed structural column. It behaves brittle failure at its peak strength, and so the health monitoring on the hoop strain of the FRP tube is essential for the life cycle safety of the structure. Herein, three types of FRP tubes including 5-ply tube, 2-ply tube with local reinforcement and FRP-steel composite tube were embedded with the optic fiber Bragg grating (FBG) strain sensors in the inter-ply of FRP or the interface between FRP and steel in the middle height and the hoop direction. The compressive behaviors of the concrete-filled FRP tubes were experimentally studied. The hoop strains of the FRP tubes were recorded in real time using the embedded FBG strain sensors as well as the embedded or surface electric resistance strain gauges. Results indicated that the FBG strain sensors can faithfully record the hoop strains of the FRP tubes in compression as compared with the embedded or surface electric resistance strain gauges, and the strains recorded can reach more than μɛ.
Analysis of 3D strain in the human medial meniscus.
Kolaczek, S; Hewison, C; Caterine, S; Ragbar, M X; Getgood, A; Gordon, K D
2016-10-01
This study presents a method to evaluate three-dimensional strain in meniscal tissue using medical imaging. Strain is calculated by tracking small teflon markers implanted within the meniscal tissue using computed tomography imaging. The results are presented for strains in the middle and posterior third of the medial menisci of 10 human cadaveric knees, under simulated physiologically relevant loading. In the middle position, an average compressive strain of 3.4% was found in the medial-lateral direction, and average tensile strains of 1.4% and 3.5% were found in the anterior-posterior and superior-inferior directions respectively at 5° of knee flexion with an applied load of 1× body weight. In the posterior position, under the same conditions, average compressive strains of 2.2% and 6.3% were found in the medial-lateral and superior-inferior directions respectively, and an average tensile strain of 3.8% was found in the anterior-posterior direction. No statistically significant difference between strain in the middle or posterior of the meniscus or between the global strains is uncovered. Copyright © 2016 Elsevier Ltd. All rights reserved.
Numerical Stress Analysis during Cooldown and Compressive Loading in an Imperfect Nb 3Sn Wire
DOE Office of Scientific and Technical Information (OSTI.GOV)
d’Hauthuille, Luc; Zhai, Yuhu
In this paper, high field superconductors are critical to the success of next step magnetic fusion confinement devices such as ITER and DEMO. The low-temperature superconducting material that is currently favored for these applications, Nb 3Sn, is susceptible to performance due to its brittleness and high strain-sensitivity. Under extreme loads, an irreversible degradation in the maximum critical current density has been shown to occur and believed to be strongly influenced by two factors: plasticity and cracked filaments. Cracks in filaments are induced when sufficiently high stress concentrations occur in the wire. In this paper, we explore using finite element analysismore » the impact that voids have on the stress distributions and peak stresses under two loading conditions: transverse compressive loading in a 2D model, and a full cool down phase in a 3D model.« less
NASA Astrophysics Data System (ADS)
Li, Zebo; Trinkle, Dallas R.
2017-04-01
We use a continuum method informed by transport coefficients computed using self-consistent mean field theory to model vacancy-mediated diffusion of substitutional Si solutes in FCC Ni near an a/2 [1 1 ¯0 ] (111 ) edge dislocation. We perform two sequential simulations: first under equilibrium boundary conditions and then under irradiation. The strain field around the dislocation induces heterogeneity and anisotropy in the defect transport properties and determines the steady-state vacancy and Si distributions. At equilibrium both vacancies and Si solutes diffuse to form Cottrell atmospheres with vacancies accumulating in the compressive region above the dislocation core while Si segregates to the tensile region below the core. Irradiation raises the bulk vacancy concentration, driving vacancies to flow into the dislocation core. The out-of-equilibrium vacancy fluxes drag Si atoms towards the core, causing segregation to the compressive region, despite Si being an oversized solute in Ni.
Kareh, K M; Lee, P D; Atwood, R C; Connolley, T; Gourlay, C M
2014-07-18
The behaviour of granular solid-liquid mixtures is key when deforming a wide range of materials from cornstarch slurries to soils, rock and magma flows. Here we demonstrate that treating semi-solid alloys as a granular fluid is critical to understanding flow behaviour and defect formation during casting. Using synchrotron X-ray tomography, we directly measure the discrete grain response during uniaxial compression. We show that the stress-strain response at 64-93% solid is due to the shear-induced dilation of discrete rearranging grains. This leads to the counter-intuitive result that, in unfed samples, compression can open internal pores and draw the free surface into the liquid, resulting in cracking. A soil mechanics approach shows that, irrespective of initial solid fraction, the solid packing density moves towards a constant value during deformation, consistent with the existence of a critical state in mushy alloys analogous to soils.
Kareh, K. M.; Lee, P. D.; Atwood, R. C.; Connolley, T.; Gourlay, C. M.
2014-01-01
The behaviour of granular solid–liquid mixtures is key when deforming a wide range of materials from cornstarch slurries to soils, rock and magma flows. Here we demonstrate that treating semi-solid alloys as a granular fluid is critical to understanding flow behaviour and defect formation during casting. Using synchrotron X-ray tomography, we directly measure the discrete grain response during uniaxial compression. We show that the stress–strain response at 64–93% solid is due to the shear-induced dilation of discrete rearranging grains. This leads to the counter-intuitive result that, in unfed samples, compression can open internal pores and draw the free surface into the liquid, resulting in cracking. A soil mechanics approach shows that, irrespective of initial solid fraction, the solid packing density moves towards a constant value during deformation, consistent with the existence of a critical state in mushy alloys analogous to soils. PMID:25034408
Negative-pressure-induced enhancement in a freestanding ferroelectric
NASA Astrophysics Data System (ADS)
Wang, Jin; Wylie-van Eerd, Ben; Sluka, Tomas; Sandu, Cosmin; Cantoni, Marco; Wei, Xian-Kui; Kvasov, Alexander; McGilly, Leo John; Gemeiner, Pascale; Dkhil, Brahim; Tagantsev, Alexander; Trodahl, Joe; Setter, Nava
2015-10-01
Ferroelectrics are widespread in technology, being used in electronics and communications, medical diagnostics and industrial automation. However, extension of their operational temperature range and useful properties is desired. Recent developments have exploited ultrathin epitaxial films on lattice-mismatched substrates, imposing tensile or compressive biaxial strain, to enhance ferroelectric properties. Much larger hydrostatic compression can be achieved by diamond anvil cells, but hydrostatic tensile stress is regarded as unachievable. Theory and ab initio treatments predict enhanced properties for perovskite ferroelectrics under hydrostatic tensile stress. Here we report negative-pressure-driven enhancement of the tetragonality, Curie temperature and spontaneous polarization in freestanding PbTiO3 nanowires, driven by stress that develops during transformation of the material from a lower-density crystal structure to the perovskite phase. This study suggests a simple route to obtain negative pressure in other materials, potentially extending their exploitable properties beyond their present levels.
Mechanical instability of monocrystalline and polycrystalline methane hydrates
Wu, Jianyang; Ning, Fulong; Trinh, Thuat T.; Kjelstrup, Signe; Vlugt, Thijs J. H.; He, Jianying; Skallerud, Bjørn H.; Zhang, Zhiliang
2015-01-01
Despite observations of massive methane release and geohazards associated with gas hydrate instability in nature, as well as ductile flow accompanying hydrate dissociation in artificial polycrystalline methane hydrates in the laboratory, the destabilising mechanisms of gas hydrates under deformation and their grain-boundary structures have not yet been elucidated at the molecular level. Here we report direct molecular dynamics simulations of the material instability of monocrystalline and polycrystalline methane hydrates under mechanical loading. The results show dislocation-free brittle failure in monocrystalline hydrates and an unexpected crossover from strengthening to weakening in polycrystals. Upon uniaxial depressurisation, strain-induced hydrate dissociation accompanied by grain-boundary decohesion and sliding destabilises the polycrystals. In contrast, upon compression, appreciable solid-state structural transformation dominates the response. These findings provide molecular insight not only into the metastable structures of grain boundaries, but also into unusual ductile flow with hydrate dissociation as observed during macroscopic compression experiments. PMID:26522051
Numerical Stress Analysis during Cooldown and Compressive Loading in an Imperfect Nb 3Sn Wire
d’Hauthuille, Luc; Zhai, Yuhu
2017-07-11
In this paper, high field superconductors are critical to the success of next step magnetic fusion confinement devices such as ITER and DEMO. The low-temperature superconducting material that is currently favored for these applications, Nb 3Sn, is susceptible to performance due to its brittleness and high strain-sensitivity. Under extreme loads, an irreversible degradation in the maximum critical current density has been shown to occur and believed to be strongly influenced by two factors: plasticity and cracked filaments. Cracks in filaments are induced when sufficiently high stress concentrations occur in the wire. In this paper, we explore using finite element analysismore » the impact that voids have on the stress distributions and peak stresses under two loading conditions: transverse compressive loading in a 2D model, and a full cool down phase in a 3D model.« less
Dynamic Optical Tuning of Interlayer Interactions in the Transition Metal Dichalcogenides
Mannebach, Ehren M.; Nyby, Clara; Ernst, Friederike; ...
2017-11-09
Modulation of weak interlayer interactions between quasi-two-dimensional atomic planes in the transition metal dichalcogenides (TMDCs) provides avenues for tuning their functional properties. Here we show that above-gap optical excitation in the TMDCs leads to an unexpected large-amplitude, ultrafast compressive force between the two-dimensional layers, as probed by in situ measurements of the atomic layer spacing at femtosecond time resolution. We show that this compressive response arises from a dynamic modulation of the interlayer van der Waals interaction and that this represents the dominant light-induced stress at low excitation densities. A simple analytic model predicts the magnitude and carrier density dependencemore » of the measured strains. Furthermore, this work establishes a new method for dynamic, nonequilibrium tuning of correlation-driven dispersive interactions and of the optomechanical functionality of TMDC quasi-two-dimensional materials.« less
Determination of stresses in RC eccentrically compressed members using optimization methods
NASA Astrophysics Data System (ADS)
Lechman, Marek; Stachurski, Andrzej
2018-01-01
The paper presents an optimization method for determining the strains and stresses in reinforced concrete (RC) members subjected to the eccentric compression. The governing equations for strains in the rectangular cross-sections are derived by integrating the equilibrium equations of cross-sections, taking account of the effect of concrete softening in plastic range and the mean compressive strength of concrete. The stress-strain relationship for concrete in compression for short term uniaxial loading is assumed according to Eurocode 2 for nonlinear analysis. For reinforcing steel linear-elastic model with hardening in plastic range is applied. The task consists in the solving the set of the derived equations s.t. box constraints. The resulting problem was solved by means of fmincon function implemented from the Matlab's Optimization Toolbox. Numerical experiments have shown the existence of many points verifying the equations with a very good accuracy. Therefore, some operations from the global optimization were included: start of fmincon from many points and clusterization. The model is verified on the set of data encountered in the engineering practice.
NASA Technical Reports Server (NTRS)
Farrokh, Babak; AbdulRahim, Nur Aida; Segal, Ken; Fan, Terry; Jones, Justin; Hodges, Ken; Mashni, Noah; Garg, Naman; Sang, Alex; Gifford, Dawn;
2013-01-01
Three means (i.e., typical foil strain gages, fiber optic sensors, and a digital image correlation (DIC) system) were implemented to measure strains on the back and front surfaces of a longitudinally jointed curved test article subjected to edge-wise compression testing, at NASA Goddard Space Flight Center, according to ASTM C364. The Pre-test finite element analysis (FEA) was conducted to assess ultimate failure load and predict strain distribution pattern throughout the test coupon. The predicted strain pattern contours were then utilized as guidelines for installing the strain measurement instrumentations. The strain gages and fiber optic sensors were bonded on the specimen at locations with nearly the same strain values, as close as possible to each other, so that, comparisons between the measured strains by strain gages and fiber optic sensors, as well as the DIC system are justified. The test article was loaded to failure (at approximately 38 kips), at the strain value of approximately 10,000mu epsilon As a part of this study, the validity of the measured strains by fiber optic sensors is examined against the strain gage and DIC data, and also will be compared with FEA predictions.
Reducing disk storage of full-3D seismic waveform tomography (F3DT) through lossy online compression
NASA Astrophysics Data System (ADS)
Lindstrom, Peter; Chen, Po; Lee, En-Jui
2016-08-01
Full-3D seismic waveform tomography (F3DT) is the latest seismic tomography technique that can assimilate broadband, multi-component seismic waveform observations into high-resolution 3D subsurface seismic structure models. The main drawback in the current F3DT implementation, in particular the scattering-integral implementation (F3DT-SI), is the high disk storage cost and the associated I/O overhead of archiving the 4D space-time wavefields of the receiver- or source-side strain tensors. The strain tensor fields are needed for computing the data sensitivity kernels, which are used for constructing the Jacobian matrix in the Gauss-Newton optimization algorithm. In this study, we have successfully integrated a lossy compression algorithm into our F3DT-SI workflow to significantly reduce the disk space for storing the strain tensor fields. The compressor supports a user-specified tolerance for bounding the error, and can be integrated into our finite-difference wave-propagation simulation code used for computing the strain fields. The decompressor can be integrated into the kernel calculation code that reads the strain fields from the disk and compute the data sensitivity kernels. During the wave-propagation simulations, we compress the strain fields before writing them to the disk. To compute the data sensitivity kernels, we read the compressed strain fields from the disk and decompress them before using them in kernel calculations. Experiments using a realistic dataset in our California statewide F3DT project have shown that we can reduce the strain-field disk storage by at least an order of magnitude with acceptable loss, and also improve the overall I/O performance of the entire F3DT-SI workflow significantly. The integration of the lossy online compressor may potentially open up the possibilities of the wide adoption of F3DT-SI in routine seismic tomography practices in the near future.
Reducing Disk Storage of Full-3D Seismic Waveform Tomography (F3DT) Through Lossy Online Compression
Lindstrom, Peter; Chen, Po; Lee, En-Jui
2016-05-05
Full-3D seismic waveform tomography (F3DT) is the latest seismic tomography technique that can assimilate broadband, multi-component seismic waveform observations into high-resolution 3D subsurface seismic structure models. The main drawback in the current F3DT implementation, in particular the scattering-integral implementation (F3DT-SI), is the high disk storage cost and the associated I/O overhead of archiving the 4D space-time wavefields of the receiver- or source-side strain tensors. The strain tensor fields are needed for computing the data sensitivity kernels, which are used for constructing the Jacobian matrix in the Gauss-Newton optimization algorithm. In this study, we have successfully integrated a lossy compression algorithmmore » into our F3DT SI workflow to significantly reduce the disk space for storing the strain tensor fields. The compressor supports a user-specified tolerance for bounding the error, and can be integrated into our finite-difference wave-propagation simulation code used for computing the strain fields. The decompressor can be integrated into the kernel calculation code that reads the strain fields from the disk and compute the data sensitivity kernels. During the wave-propagation simulations, we compress the strain fields before writing them to the disk. To compute the data sensitivity kernels, we read the compressed strain fields from the disk and decompress them before using them in kernel calculations. Experiments using a realistic dataset in our California statewide F3DT project have shown that we can reduce the strain-field disk storage by at least an order of magnitude with acceptable loss, and also improve the overall I/O performance of the entire F3DT-SI workflow significantly. The integration of the lossy online compressor may potentially open up the possibilities of the wide adoption of F3DT-SI in routine seismic tomography practices in the near future.« less
NASA Astrophysics Data System (ADS)
Han, Quan-Fu; Liu, Yue-Lin; Zhang, Ying; Ding, Fang; Lu, Guang-Hong
2018-04-01
The solubility and bubble formation of hydrogen (H) in tungsten (W) are crucial factors for the application of W as a plasma-facing component under a fusion environment, but the data and mechanism are presently scattered, indicating some important factors might be neglected. High-energy neutron-irradiated W inevitably causes a local strain, which may change the solubility of H in W. Here, we performed first-principles calculations to predict the H solution behaviors under isotropic strain combined with temperature effect in W and found that the H solubility in interstitial lattice can be promoted/impeded by isotropic tensile/compressive strain over the temperature range 300-1800 K. The calculated H solubility presents good agreement with the experiment. Together, our previous results of anisotropic strain, except for isotropic compression, both isotropic tension and anisotropic tension/compression enhance H solution so as to reveal an important physical implication for H accumulation and bubble formation in W: strain can enhance H solubility, resulting in the preliminary nucleation of H bubble that further causes the local strain of W lattice around H bubble, which in turn improves the H solubility at the strained region that promotes continuous growth of the H bubble via a chain-reaction effect in W. This result can also interpret the H bubble formation even if no radiation damage is produced in W exposed to low-energy H plasma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kao, Kuo-Hsing; Meyer, Kristin De; Department of Electrical Engineering, KU Leuven, Leuven
Band-to-band tunneling parameters of strained indirect bandgap materials are not well-known, hampering the reliability of performance predictions of tunneling devices based on these materials. The nonlocal band-to-band tunneling model for compressively strained SiGe is calibrated based on a comparison of strained SiGe p-i-n tunneling diode measurements and doping-profile-based diode simulations. Dopant and Ge profiles of the diodes are determined by secondary ion mass spectrometry and capacitance-voltage measurements. Theoretical parameters of the band-to-band tunneling model are calculated based on strain-dependent properties such as bandgap, phonon energy, deformation-potential-based electron-phonon coupling, and hole effective masses of strained SiGe. The latter is determined withmore » a 6-band k·p model. The calibration indicates an underestimation of the theoretical electron-phonon coupling with nearly an order of magnitude. Prospects of compressively strained SiGe tunneling transistors are made by simulations with the calibrated model.« less
Localization through surface folding in solid foams under compression.
Reis, P M; Corson, F; Boudaoud, A; Roman, B
2009-07-24
We report a combined experimental and theoretical study of the compression of a solid foam coated with a thin elastic film. Past a critical compression threshold, a pattern of localized folds emerges with a characteristic size that is imposed by an instability of the thin surface film. We perform optical surface measurements of the statistical properties of these localization zones and find that they are characterized by robust exponential tails in the strain distributions. Following a hybrid continuum and statistical approach, we develop a theory that accurately describes the nucleation and length scale of these structures and predicts the characteristic strains associated with the localized regions.
Compressive and shear properties of commercially available polyurethane foams.
Thompson, Mark S; McCarthy, Ian D; Lidgren, Lars; Ryd, Leif
2003-10-01
The shear properties of rigid polyurethane (PU-R) foams, routinely used to simulate cancellous bone, are not well characterized. The present assessment of the shear and compressive properties of four grades of Sawbones "Rigid cellular" PU-R foam tested 20 mm gauge diameter dumb-bell specimens in torsion and under axial loading. Shear moduli ranged from 13.3 to 99.7 MPa, shear strengths from 0.7 MPa to 4.2 MPa. Compressive yield strains varied little with density while shear yield strains had peak values with "200 kgm-3" grade. PU-R foams may be used to simulate the elastic but not failure properties of cancellous bone.
NASA Astrophysics Data System (ADS)
Yoshimoto, Akifumi; Kobayashi, Hidetoshi; Horikawa, Keitaro; Tanigaki, Kenichi
2015-09-01
These days, polymer foams, such as polyurethane foam and polystyrene foam, are used in various situations as a thermal insulator or shock absorber. In general, however, their strength is insufficient in high temperature environments because of their low glass transition temperature. Polyimide is a polymer which has a higher glass transition temperature and high strength. Its mechanical properties do not vary greatly, even in low temperature environments. Therefore, polyimide foam is expected to be used in the aerospace industry. Thus, the constitutive equation of polyimide foam that can be applied across a wide range of strain rates and ambient temperature is very useful. In this study, a series of compression tests at various strain rates, from 10-3 to 103 s-1 were carried out in order to examine the effect of strain rate on the compressive properties of polyimide foam. The flow stress of polyimide foam increased rapidly at dynamic strain rates. The effect of ambient temperature on the properties of polyimide foam was also investigated at temperature from - 190 °C to 270°∘C. The flow stress decreased with increasing temperature.
The Compressive Behavior of Isocyanate-crosslinked Silica Aerogel at High Strain Rates
NASA Technical Reports Server (NTRS)
Luo, H.; Lu, H.; Leventis, N.
2006-01-01
Aerogels are low-density, highly nano-porous materials. Their engineering applications are limited due to their brittleness and hydrophilicity. Recently, a strong lightweight crosslinked silica aerogel has been developed by encapsulating the skeletal framework of amine-modified silica aerogels with polyureas derived by isocyanate. The mesoporous structure of the underlying silica framework is preserved through conformal polymer coating, and the thermal conductivity remains low. Characterization has been conducted on the thermal, physical properties and the mechanical properties under quasi-static loading conditions. In this paper, we present results on the dynamic compressive behavior of the crosslinked silica aerogel (CSA) using a split Hopkinson pressure bar (SHPB). A new tubing pulse shaper was employed to help reach the dynamic stress equilibrium and constant strain rate. The stress-strain relationship was determined at high strain rates within 114-4386/s. The effects of strain rate, density, specimen thickness and water absorption on the dynamic behavior of the CSA were investigated through a series of dynamic experiments. The Young's moduli (or 0.2% offset compressive yield strengths) at a strain rate approx.350/s were determined as 10.96/2.08, 159.5/6.75, 192.2/7.68, 304.6/11.46, 407.0/20.91 and 640.5/30.47 MPa for CSA with densities 0.205, 0.454, 0.492, 0.551,0.628 and 0.731 g/cu cm, respectively. The deformation and failure behaviors of a native silica aerogel with density (0.472 g/cu cm ), approximately the same as a typical CSA sample were observed with a high speed digital camera. Digital image correlation technique was used to determine the surface strains through a series of images acquired using high speed photography. The relative uniform axial deformation indicated that localized compaction did not occur at a compressive strain level of approx.17%, suggesting most likely failure mechanism at high strain rate to be different from that under quasi-static loading condition. The Poisson s ratio was determined to be 0.162 in nonlinear regime under high strain rates. CSA samples failed generally by splitting, but were much more ductile than native silica aerogels.
Pyramidal dislocation induced strain relaxation in hexagonal structured InGaN/AlGaN/GaN multilayer
NASA Astrophysics Data System (ADS)
Yan, P. F.; Du, K.; Sui, M. L.
2012-10-01
Due to the special dislocation slip systems in hexagonal lattice, dislocation dominated deformations in hexagonal structured multilayers are significantly different from that in cubic structured systems. In this work, we have studied the strain relaxation mechanism in hexagonal structured InGaN/AlGaN/GaN multilayers with transmission electron microscopy. Due to lattice mismatch, the strain relaxation was found initiated with the formation of pyramidal dislocations. Such dislocations locally lie at only one preferential slip direction in the hexagonal lattice. This preferential slip causes a shear stress along the basal planes and consequently leads to dissociation of pyramidal dislocations and operation of the basal plane slip system. The compressive InGaN layers and "weak" AlGaN/InGaN interfaces stimulate the dissociation of pyramidal dislocations at the interfaces. These results enhance the understanding of interactions between dislocations and layer interfaces and shed new lights on deformation mechanism in hexagonal-lattice multilayers.
New formulation of the discrete element method
NASA Astrophysics Data System (ADS)
Rojek, Jerzy; Zubelewicz, Aleksander; Madan, Nikhil; Nosewicz, Szymon
2018-01-01
A new original formulation of the discrete element method based on the soft contact approach is presented in this work. The standard DEM has heen enhanced by the introduction of the additional (global) deformation mode caused by the stresses in the particles induced by the contact forces. Uniform stresses and strains are assumed for each particle. The stresses are calculated from the contact forces. The strains are obtained using an inverse constitutive relationship. The strains allow us to obtain deformed particle shapes. The deformed shapes (ellipses) are taken into account in contact detection and evaluation of the contact forces. A simple example of a uniaxial compression of a rectangular specimen, discreti.zed with equal sized particles is simulated to verify the DDEM algorithm. The numerical example shows that a particle deformation changes the particle interaction and the distribution of forces in the discrete element assembly. A quantitative study of micro-macro elastic properties proves the enhanced capabilities of the DDEM as compared to standard DEM.
Gao, Jie; Roan, Esra; Williams, John L
2015-01-01
The physis, or growth plate, is a complex disc-shaped cartilage structure that is responsible for longitudinal bone growth. In this study, a multi-scale computational approach was undertaken to better understand how physiological loads are experienced by chondrocytes embedded inside chondrons when subjected to moderate strain under instantaneous compressive loading of the growth plate. Models of representative samples of compressed bone/growth-plate/bone from a 0.67 mm thick 4-month old bovine proximal tibial physis were subjected to a prescribed displacement equal to 20% of the growth plate thickness. At the macroscale level, the applied compressive deformation resulted in an overall compressive strain across the proliferative-hypertrophic zone of 17%. The microscale model predicted that chondrocytes sustained compressive height strains of 12% and 6% in the proliferative and hypertrophic zones, respectively, in the interior regions of the plate. This pattern was reversed within the outer 300 μm region at the free surface where cells were compressed by 10% in the proliferative and 26% in the hypertrophic zones, in agreement with experimental observations. This work provides a new approach to study growth plate behavior under compression and illustrates the need for combining computational and experimental methods to better understand the chondrocyte mechanics in the growth plate cartilage. While the current model is relevant to fast dynamic events, such as heel strike in walking, we believe this approach provides new insight into the mechanical factors that regulate bone growth at the cell level and provides a basis for developing models to help interpret experimental results at varying time scales.
Gao, Jie; Roan, Esra; Williams, John L.
2015-01-01
The physis, or growth plate, is a complex disc-shaped cartilage structure that is responsible for longitudinal bone growth. In this study, a multi-scale computational approach was undertaken to better understand how physiological loads are experienced by chondrocytes embedded inside chondrons when subjected to moderate strain under instantaneous compressive loading of the growth plate. Models of representative samples of compressed bone/growth-plate/bone from a 0.67 mm thick 4-month old bovine proximal tibial physis were subjected to a prescribed displacement equal to 20% of the growth plate thickness. At the macroscale level, the applied compressive deformation resulted in an overall compressive strain across the proliferative-hypertrophic zone of 17%. The microscale model predicted that chondrocytes sustained compressive height strains of 12% and 6% in the proliferative and hypertrophic zones, respectively, in the interior regions of the plate. This pattern was reversed within the outer 300 μm region at the free surface where cells were compressed by 10% in the proliferative and 26% in the hypertrophic zones, in agreement with experimental observations. This work provides a new approach to study growth plate behavior under compression and illustrates the need for combining computational and experimental methods to better understand the chondrocyte mechanics in the growth plate cartilage. While the current model is relevant to fast dynamic events, such as heel strike in walking, we believe this approach provides new insight into the mechanical factors that regulate bone growth at the cell level and provides a basis for developing models to help interpret experimental results at varying time scales. PMID:25885547
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choquette, A. K.; Smith, C. R.; Sichel-Tissot, R. J.
2016-07-01
We report the relationship between epitaxial strain and the crystallographic orientation of the in-phase rotation axis and A-site displacements in Pbnm-type perovskite films. Synchrotron diffraction measurements of EuFeO3 films under strain states ranging from 2% compressive to 0.9% tensile on cubic or rhombohedral substrates exhibit a combination of a(-)a(+)c(-) and a(+)a(-)c(-) rotational patterns. We compare the EuFeO3 behavior with previously reported experimental and theoretical work on strained Pbnm-type films on nonorthorhombic substrates, as well as additional measurements from LaGaO3, LaFeO3, and Eu0.7Sr0.3MnO3 films on SrTiO3. Compiling the results from various material systems reveals a general strain dependence in which compressivemore » strain strongly favors a(-)a(+)c(-) and a(+)a(-)c(-) rotation patterns and tensile strain weakly favors a(-)a(-)c(+) structures. In contrast, EuFeO3 films grown on Pbnm-type GdScO3 under 2.3% tensile strain take on a uniform a(-)a(+)c(-) rotation pattern imprinted from the substrate, despite strain considerations that favor the a(-)a(-)c(+) pattern. These results point to the use of substrate imprinting as a more robust route than strain for tuning the crystallographic orientations of the octahedral rotations and A-site displacements needed to realize rotation-induced hybrid improper ferroelectricity in oxide heterostructures.« less
Residual stresses in shape memory alloy fiber reinforced aluminium matrix composite
NASA Astrophysics Data System (ADS)
Tsz Loong, Tang; Jamian, Saifulnizan; Ismail, Al Emran; Nur, Nik Hisyammudin Muhd; Watanabe, Yoshimi
2017-01-01
Process-induced residual stress in shape memory alloy (SMA) fiber reinforced aluminum (Al) matrix composite was simulated by ANSYS APDL. The manufacturing process of the composite named as NiTi/Al is start with loading and unloading process of nickel titanium (NiTi) wire as SMA to generate a residual plastic strain. Then, this plastic deformed NiTi wire would be embedded into Al to become a composite. Lastly, the composite is heated form 289 K to 363 K and then cooled back to 300 K. Residual stress is generated in composite because of shape memory effect of NiTi and mismatch of thermal coefficient between NiTi wire and Al matrix of composite. ANSYS APDL has been used to simulate the distribution of residual stress and strain in this process. A sensitivity test has been done to determine the optimum number of nodes and elements used. Hence, the number of nodes and elements used are 15680 and 13680, respectively. Furthermore, the distribution of residual stress and strain of nickel fiber reinforced aluminium matrix composite (Ni/Al) and titanium fiber reinforced aluminium matrix composite (Ti/Al) under same simulation process also has been simulated by ANSYS APDL as comparison to NiTi/Al. The simulation results show that compressive residual stress is generated on Al matrix of Ni/Al, Ti/Al and NiTi/Al during heating and cooling process. Besides that, they also have similar trend of residual stress distribution but difference in term of value. For Ni/Al and Ti/Al, they are 0.4% difference on their maximum compressive residual stress at 363K. At same circumstance, NiTi/Al has higher residual stress value which is about 425% higher than Ni/Al and Ti/Al composite. This implies that shape memory effect of NiTi fiber reinforced in composite able to generated higher compressive residual stress in Al matrix, hence able to enhance tensile property of the composite.
Electromechanical Apparatus Measures Residual Stress
NASA Technical Reports Server (NTRS)
Chern, Engmin J.; Flom, Yury
1993-01-01
Nondestructive test exploits relationship between stress and eddy-current-probe resistance. Yields data on residual stress or strain in metal tension/compression specimen (stress or strain remaining in specimen when no stress applied from without). Apparatus is assembly of commercial equipment: tension-or-compression testing machine, eddy-current probe, impedance gain-and-phase analyzer measuring impedance of probe coil, and desktop computer, which controls other equipment and processes data received from impedance gain-and-phase analyzer.
Highly deformation-tolerant carbon nanotube sponges as supercapacitor electrodes.
Li, Peixu; Kong, Chuiyan; Shang, Yuanyuan; Shi, Enzheng; Yu, Yuntao; Qian, Weizhong; Wei, Fei; Wei, Jinquan; Wang, Kunlin; Zhu, Hongwei; Cao, Anyuan; Wu, Dehai
2013-09-21
Developing flexible and deformable supercapacitor electrodes based on porous materials is of high interest in energy related fields. Here, we show that carbon nanotube sponges, consisting of highly porous conductive networks, can serve as compressible and deformation-tolerant supercapacitor electrodes in aqueous or organic electrolytes. In aqueous electrolytes, the sponges maintain a similar specific capacitance (>90% of the original value) under a predefined compressive strain of 50% (corresponding to a volume reduction of 50%), and retain more than 70% of the original capacitance under 80% strain while the volume normalized capacitance increases by 3-fold. The sponge electrode maintains a stable performance after 1000 large strain compression cycles. A coin-shaped cell assembled with these sponges shows excellent stability over 15,000 charging cycles with negligible degradation after 500 cycles. Our results indicate that carbon nanotube sponges have the potential to fabricate deformable supercapacitor electrodes with stable performance.
Accelerating oxygen reduction on Pt monolayer via substrate compression
NASA Astrophysics Data System (ADS)
Zhang, Xilin; Chen, Yue; Yang, Zongxian; Lu, Zhansheng
2017-11-01
Many methods have been proposed to accelerate the oxygen reduction and save the dosage of Pt. Here, we report a promising way in fulfilling these purposes by applying substrate strain on the supported Pt monolayer. The compressive strain would modify the geometric and electronic structures of tungsten carbide (WC) substrate, changing the interaction nature between substrate and Pt monolayer and resulting in a downward shift of the d-band center of surface Pt atoms. The activity of Pt monolayer on the compressed WC is further evaluated from the kinetics of the dissociation and protonation of O2. The dissociation barrier of O2 is increased and the hydrogenation barrier of O atom is decreased, indicating that the recovery of the catalytically active sites is accelerated and the deactivation by oxygen poison is alleviated. The present study provides an effective way in tuning the activity of Pt-based catalysts by applying the substrate strain.
Evidence of a New Hydrogen Complex in Dilute Nitride Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bisognin, G.; De Salvador, D.; Napolitani, E.
2007-04-10
By means of high resolution x-ray diffraction and photoluminescence measurements we demonstrate that, as a result of hydrogen irradiation of GaAs1-xNx/GaAs, the original tensile strain of the as-grown material is reversed into a compressive one and that, at the same time, N atoms are electronically passivated. We show that the amount of compressive strain is determined exclusively by N concentration. This compressive strain is caused by the formation of peculiar N-H complexes and disappears after moderate annealing, while N electronic passivation still holds. These experimental results demonstrate that the lattice properties of fully-hydrogenated GaAs1-xNx/GaAs are ruled by a H complexmore » which is different and less stable than that responsible for electronic passivation of N in GaAs1-xNx/GaAs.« less
NASA Technical Reports Server (NTRS)
Noebe, Ronald; Padula, Santo, II; Bigelow, Glen; Rios, Orlando; Garg, Anita; Lerch, Brad
2006-01-01
Potential applications involving high-temperature shape memory alloys have been growing in recent years. Even in those cases where promising new alloys have been identified, the knowledge base for such materials contains gaps crucial to their maturation and implementation in actuator and other applications. We begin to address this issue by characterizing the mechanical behavior of a Ni19.5Pd30Ti50.5 high-temperature shape memory alloy in both uniaxial tension and compression at various temperatures. Differences in the isothermal uniaxial deformation behavior were most notable at test temperatures below the martensite finish temperature. The elastic modulus of the material was very dependent on strain level; therefore, dynamic Young#s Modulus was determined as a function of temperature by an impulse excitation technique. More importantly, the performance of a thermally activated actuator material is dependent on the work output of the alloy. Consequently, the strain-temperature response of the Ni19.5Pd30Ti50.5 alloy under various loads was determined in both tension and compression and the specific work output calculated and compared in both loading conditions. It was found that the transformation strain and thus, the specific work output were similar regardless of the loading condition. Also, in both tension and compression, the strain-temperature loops determined under constant load conditions did not close due to the fact that the transformation strain during cooling was always larger than the transformation strain during heating. This was apparently the result of permanent plastic deformation of the martensite phase with each cycle. Consequently, before this alloy can be used under cyclic actuation conditions, modification of the microstructure or composition would be required to increase the resistance of the alloy to plastic deformation by slip.
NASA Astrophysics Data System (ADS)
Jia, Chuanyu; Yu, Tongjun; Mu, Sen; Pan, Yaobo; Yang, Zhijian; Chen, Zhizhong; Qin, Zhixin; Zhang, Guoyi
2007-05-01
Polarization-resolved edge-emitting electroluminescence of InGaN /GaN multiple quantum well (MQW) light emitting diodes (LEDs) from 395to455nm was measured. Polarization ratio decreased from 3.2 of near-ultraviolet LEDs (395nm) to 1.9 of blue LEDs (455nm). Based on TE mode dominant emissions in InGaN /GaN MQWs, compressive strain in well region favors TE mode, indium induced quantum-dot-like behavior leads to an increased TM component. As wavelength increased, indium enhanced quantum-dot-like behavior became obvious and E ‖C electroluminescence signal increased thus lower polarization ratio. Electroluminescence spectrum shifts confirmed that quantum dotlike behaviors rather than strain might be dominant in modifying luminescence mode of InGaN /GaN MQWs from near ultraviolet to blue.
Anisotropic ripple deformation in phosphorene
Kou, Liangzhi; Ma, Yandong; Smith, Sean C.; ...
2015-04-07
Here, two-dimensional materials tend to become crumpled according to the Mermin-Wagner theorem, and the resulting ripple deformation may significantly influence electronic properties as observed in graphene and MoS 2. Here, we unveil by first-principles calculations a new, highly anisotropic ripple pattern in phosphorene, a monolayer black phosphorus, where compression-induced ripple deformation occurs only along the zigzag direction in the strain range up to 10%, but not the armchair direction. This direction-selective ripple deformation mode in phosphorene stems from its puckered structure with coupled hinge-like bonding configurations and the resulting anisotropic Poisson ratio. We also construct an analytical model using classicalmore » elasticity theory for ripple deformation in phosphorene under arbitrary strain. The present results offer new insights into the mechanisms governing the structural and electronic properties of phosphorene crucial to its device applications.« less
Anisotropic ripple deformation in phosphorene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kou, Liangzhi; Ma, Yandong; Smith, Sean C.
Here, two-dimensional materials tend to become crumpled according to the Mermin-Wagner theorem, and the resulting ripple deformation may significantly influence electronic properties as observed in graphene and MoS 2. Here, we unveil by first-principles calculations a new, highly anisotropic ripple pattern in phosphorene, a monolayer black phosphorus, where compression-induced ripple deformation occurs only along the zigzag direction in the strain range up to 10%, but not the armchair direction. This direction-selective ripple deformation mode in phosphorene stems from its puckered structure with coupled hinge-like bonding configurations and the resulting anisotropic Poisson ratio. We also construct an analytical model using classicalmore » elasticity theory for ripple deformation in phosphorene under arbitrary strain. The present results offer new insights into the mechanisms governing the structural and electronic properties of phosphorene crucial to its device applications.« less
Verwoerd, Annemieke J H; Mens, Jan; El Barzouhi, Abdelilah; Peul, Wilco C; Koes, Bart W; Verhagen, Arianne P
2016-05-01
To test whether the localization of worsening of pain during coughing, sneezing and straining matters in the assessment of lumbosacral nerve root compression or disc herniation on MRI. Recently the diagnostic accuracy of history items to assess disc herniation or nerve root compression on magnetic resonance imaging (MRI) was investigated. A total of 395 adult patients with severe sciatica of 6-12 weeks duration were included in this study. The question regarding the influence of coughing, sneezing and straining on the intensity of pain could be answered on a 4 point scale: no worsening of pain, worsening of back pain, worsening of leg pain, worsening of back and leg pain. Diagnostic odds ratio's (DORs) were calculated for the various dichotomization options. The DOR changed into significant values when the answer option was more narrowed to worsening of leg pain. The highest DOR was observed for the answer option 'worsening of leg pain' with a DOR of 2.28 (95 % CI 1.28-4.04) for the presence of nerve root compression and a DOR of 2.50 (95 % CI 1.27-4.90) for the presence of a herniated disc on MRI. Worsening of leg pain during coughing, sneezing or straining has a significant diagnostic value for the presence of nerve root compression and disc herniation on MRI in patients with sciatica. This study also highlights the importance of the formulation of answer options in history taking.
NASA Astrophysics Data System (ADS)
Kim, Dae Ho; Christen, Hans M.; Varela, Maria; Lee, Ho Nyung; Lowndes, Douglas H.
2006-05-01
The effect of epitaxial strain on the charge order (CO) transition in Bi0.4Ca0.6MnO3 films was studied by varying the strain's strength and symmetry via the use of SrTiO3 and LaAlO3 substrates having different crystallographic orientations. The film on pseudocubic (001) LaAlO3, under symmetric compressive strain, exhibits a clear CO transition. In the film on a (001) SrTiO3 substrate, under symmetric tensile strain, highly segregated line-shaped features in the Bi distribution are seen in Z-contrast scanning transmission microscopy, accompanied by a strongly broadened CO transition. The asymmetric tensile stress on (011) SrTiO3 results in an apparent compressive strain state with a deviation from tetragonality (i.e., γ ≠90°), accompanied by the sharpest CO transition. These comparisons illustrate the importance of considering both the strength and symmetry of epitaxial strain.
Electronic structure and optical properties of CuAlO2 under biaxial strain.
Ghosh, C K; Sarkar, D; Mitra, M K; Chattopadhyay, K K
2012-06-13
An ab initio calculation has been carried out to investigate the biaxial strain ( - 10.71% < ε < 9.13%) effect on elastic, electronic and optical properties of CuAlO(2). All the elastic constants (c(11), c(12), c(13), c(33)) except c(44) decrease (increase) during tensile (compressive) strain. The band gap is found to decrease in the presence of tensile as well as compressive strain. The relative decrease of the band gap is asymmetric with respect to the sign of the strain. Significant differences between the parallel and perpendicular components of the dielectric constant and the optical properties have been observed due to anisotropic crystal structure. It is further noticed that these properties are easily tunable by strain. Importantly, the collective oscillation of the valence electrons has been identified for light polarized perpendicular to the c-axis. From calculations, it is clear that the tensile strain can enhance the hole mobility as well as the transparency of CuAlO(2).
Electronic structure and optical properties of CuAlO2 under biaxial strain
NASA Astrophysics Data System (ADS)
Ghosh, C. K.; Sarkar, D.; Mitra, M. K.; Chattopadhyay, K. K.
2012-06-01
An ab initio calculation has been carried out to investigate the biaxial strain ( - 10.71% < ɛ < 9.13%) effect on elastic, electronic and optical properties of CuAlO2. All the elastic constants (c11, c12, c13, c33) except c44 decrease (increase) during tensile (compressive) strain. The band gap is found to decrease in the presence of tensile as well as compressive strain. The relative decrease of the band gap is asymmetric with respect to the sign of the strain. Significant differences between the parallel and perpendicular components of the dielectric constant and the optical properties have been observed due to anisotropic crystal structure. It is further noticed that these properties are easily tunable by strain. Importantly, the collective oscillation of the valence electrons has been identified for light polarized perpendicular to the c-axis. From calculations, it is clear that the tensile strain can enhance the hole mobility as well as the transparency of CuAlO2.
NASA Astrophysics Data System (ADS)
Zheng, Y. P.; Mak, A. F. T.; Lau, K. P.; Qin, L.
2002-09-01
The equilibrium depth-dependent biomechanical properties of articular cartilage were measured using an ultrasound-compression method. Ten cylindrical bovine patella cartilage-bone specimens were tested in compression followed by a period of force-relaxation. A 50 MHz focused ultrasound beam was transmitted into the cartilage specimen through a remaining bone layer and a small hole at the centre of a specimen platform. The ultrasound echoes reflected or scattered within the articular cartilage were collected using the same transducer. The displacements of the tissues at different depths of the articular cartilage were derived from the ultrasound echo signals recorded during the compression and the subsequent force-relaxation. For two steps of 0.1 mm compression, the average strain at the superficial 0.2 mm thick layer (0.35 +/- 0.09) was significantly (p < 0.05) larger than that at the subsequent 0.2 mm thick layer (0.05 +/- 0.07) and that at deeper layers (0.01 +/- 0.02). It was demonstrated that the compressive biomechanical properties of cartilage were highly depth-dependent. The results suggested that the ultrasound-compression method could be a useful tool for the study of the depth-dependent biomechanical properties of articular cartilage.
NASA Technical Reports Server (NTRS)
Atchison, C S; Miller, James A
1942-01-01
Tensile and compressive stress-strain curves, stress-deviation curves, and secant modulus-stress curves are given for longitudinal and transverse specimens of 17S-T, 24S-T, and 24S-RT aluminum-alloy sheet in thicknesses from 0.032 to 0.081 inch, 1025 carbon steel sheet in thicknesses of 0.054 and 0.120 inch, and chromium-nickel steel sheet in thicknesses form 0.020 to 0.0275 inch. Significant differences were found between the tensile and the compressive stress-strain curves, and also the corresponding corollary curves; similarly, differences were found between the curves for the longitudinal and transverse directions. These differences are of particular importance in considering the compressive strength of aircraft structures made of thin sheet. They are explored further for the case of compression by giving tangent modulus-stress curves in longitudinal and transverse compression and dimensionless curves of the ratio of tangent modulus to Young's modulus and of the ratio of reduced modulus for a rectangular section to Young's modulus, both plotted against the ratio of stress to secant yield strength.
NASA Astrophysics Data System (ADS)
Munoz, H.; Taheri, A.; Chanda, E. K.
2016-12-01
Brittleness is a fundamental mechanical rock property critical to many civil engineering works, mining development projects and mineral exploration operations. However, rock brittleness is a concept yet to be investigated as there is not any unique criterion available, widely accepted by rock engineering community able to describe rock brittleness quantitatively. In this study, new brittleness indices were developed based on fracture strain energy quantities obtained from the complete stress-strain characteristics of rocks. In doing so, different rocks having unconfined compressive strength values ranging from 7 to 215 MPa were examined in a series of quasi-static uniaxial compression tests after properly implementing lateral-strain control in a closed-loop system to apply axial load to rock specimen. This testing method was essential to capture post-peak regime of the rocks since a combination of class I-II or class II behaviour featured post-peak stress-strain behaviour. Further analysis on the post-peak strain localisation, stress-strain characteristics and the fracture pattern causing class I-II and class II behaviour were undertaken by analysing the development of field of strains in the rocks via three-dimensional digital image correlation. Analysis of the results demonstrated that pre-peak stress-strain brittleness indices proposed solely based on pre-peak stress-strain behaviour do not show any correlation with any of pre-peak rock mechanical parameters. On the other hand, the proposed brittleness indices based on pre-peak and post-peak stress-strain relations were found to competently describe an unambiguous brittleness scale against rock deformation and strength parameters such as the elastic modulus, the crack damage stress and the peak stress relevant to represent failure process.
Hoof position during limb loading affects dorsoproximal bone strains on the equine proximal phalanx.
Singer, Ellen; Garcia, Tanya; Stover, Susan
2015-07-16
Sagittal fractures of the proximal phalanx (P1) in the racehorse appear to be associated with turf racing surfaces, which are known to restrict forward slide of the foot at impact. We hypothesized that restriction of forward foot slip would result in higher P1 bone strains during metacarpophalangeal joint (MCPJ) hyperextension. Unilateral limbs from six equine cadavers were instrumented with strain gauges and bone reference markers to measure dorsoproximal P1 bone strains and MCPJ extension, collateromotion and axial rotation during in vitro limb loading to 10,500 N. By limiting movement of the distal actuator platform, three different foot conditions (forward, free, and restricted) were applied in a randomised block design. Bone reference markers, recorded by video, were analyzed to determine motion of P1 relative to MC3. Rosette strain data were reduced to principal and shear magnitudes and directions. A mixed model ANOVA determined the effect of foot position on P1 bone strains and MCPJ angles. At 10,000 N load, the restricted condition resulted in higher P1 axial compressive (p=0.015), maximum shear (p=0.043) and engineering shear (p=0.046) strains compared to the forward condition. The restricted condition had higher compressive (p=0.025) and lower tensile (p=0.043) principal strains compared to the free condition. For the same magnitude of principal or shear strains, axial rotation and collateromotion angles were greatest for the restricted condition. Therefore, the increase in P1 principal compressive and shear bone strains associated with restricted foot slip indicate that alterations in foot:ground interaction may play a role in fracture occurrence in horses. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Graham, C. D., Jr.; Pope, D. P.; Kulkarni, S.; Wolf, M.
1978-01-01
The hot workability of polycrystalline silicon was studied. Uniaxail stress-strain curves are given for strain rates in the range of .0001 to .1/sec and temperatures from 1100 to 1380 C. At the highest strain rates at 1380 C axial strains in excess of 20% were easily obtainable without cracking. After deformations of 36%, recrystallization was completed within 0.1 hr at 1380 C. When the recrystallization was complete, there was still a small volume fraction of unrecyrstallized material which appeared very stable and may degrade the electronic properties of the bulk materials. Texture measurements showed that the as-produced vapor deposited polycrystalline rods have a 110 fiber texture with the 110 direction parallel to the growth direction and no preferred orientation about this axis. Upon axial compression perpendicular to the growth direction, the former 110 fiber axis changed to 111 and the compression axis became 110 . Recrystallization changed the texture to 110 along the former fiber axis and to 100 along the compression axis.
Ashab, A.S.M. Ayman; Ruan, Dong; Lu, Guoxing; Bhuiyan, Arafat A.
2016-01-01
The mechanical behavior of aluminum hexagonal honeycombs subjected to out-of-plane dynamic indentation and compression loads has been investigated numerically using ANSYS/LS-DYNA in this paper. The finite element (FE) models have been verified by previous experimental results in terms of deformation pattern, stress-strain curve, and energy dissipation. The verified FE models have then been used in comprehensive numerical analysis of different aluminum honeycombs. Plateau stress, σpl, and dissipated energy (EI for indentation and EC for compression) have been calculated at different strain rates ranging from 102 to 104 s−1. The effects of strain rate and t/l ratio on the plateau stress, dissipated energy, and tearing energy have been discussed. An empirical formula is proposed to describe the relationship between the tearing energy per unit fracture area, relative density, and strain rate for honeycombs. Moreover, it has been found that a generic formula can be used to describe the relationship between tearing energy per unit fracture area and relative density for both aluminum honeycombs and foams. PMID:28773288
Structure and Compressive Properties of Invar-Cenosphere Syntactic Foams.
Luong, Dung; Lehmhus, Dirk; Gupta, Nikhil; Weise, Joerg; Bayoumi, Mohamed
2016-02-18
The present study investigates the mechanical performance of syntactic foams produced by means of the metal powder injection molding process having an Invar (FeNi36) matrix and including cenospheres as hollow particles at weight fractions (wt.%) of 5 and 10, respectively, corresponding to approximately 41.6 and 60.0 vol.% in relation to the metal content and at 0.6 g/cm³ hollow particle density. The synthesis process results in survival of cenospheres and provides low density syntactic foams. The microstructure of the materials is investigated as well as the mechanical performance under quasi-static and high strain rate compressive loads. The compressive stress-strain curves of syntactic foams reveal a continuous strain hardening behavior in the plastic region, followed by a densification region. The results reveal a strain rate sensitivity in cenosphere-based Invar matrix syntactic foams. Differences in properties between cenosphere- and glass microsphere-based materials are discussed in relation to the findings of microstructural investigations. Cenospheres present a viable choice as filler material in iron-based syntactic foams due to their higher thermal stability compared to glass microspheres.
Calculation of Debye-Scherrer diffraction patterns from highly stressed polycrystalline materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDonald, M. J., E-mail: macdonm@umich.edu; SLAC National Accelerator Laboratory, Menlo Park, California 94025; Vorberger, J.
2016-06-07
Calculations of Debye-Scherrer diffraction patterns from polycrystalline materials have typically been done in the limit of small deviatoric stresses. Although these methods are well suited for experiments conducted near hydrostatic conditions, more robust models are required to diagnose the large strain anisotropies present in dynamic compression experiments. A method to predict Debye-Scherrer diffraction patterns for arbitrary strains has been presented in the Voigt (iso-strain) limit [Higginbotham, J. Appl. Phys. 115, 174906 (2014)]. Here, we present a method to calculate Debye-Scherrer diffraction patterns from highly stressed polycrystalline samples in the Reuss (iso-stress) limit. This analysis uses elastic constants to calculate latticemore » strains for all initial crystallite orientations, enabling elastic anisotropy and sample texture effects to be modeled directly. The effects of probing geometry, deviatoric stresses, and sample texture are demonstrated and compared to Voigt limit predictions. An example of shock-compressed polycrystalline diamond is presented to illustrate how this model can be applied and demonstrates the importance of including material strength when interpreting diffraction in dynamic compression experiments.« less
Design and evaluation of a bolted joint for a discrete carbon-epoxy rod-reinforced hat section
NASA Technical Reports Server (NTRS)
Rousseau, Carl Q.; Baker, Donald J.
1996-01-01
The use of prefabricated pultruded carbon-epoxy rods has reduced the manufacturing complexity and costs of stiffened composite panels while increasing the damage tolerance of the panels. However, repairability of these highly efficient discrete stiffeners has been a concern. Design, analysis, and test results are presented in this paper for a bolted-joint repair for the pultruded rod concept that is capable of efficiently transferring axial loads in a hat-section stiffener on the upper skin segment of a heavily loaded aircraft wing component. A tension and a compression joint design were evaluated. The tension joint design achieved approximately 1.0% strain in the carbon-epoxy rod-reinforced hat-section and failed in a metal fitting at 166% of the design ultimate load. The compression joint design failed in the carbon-epoxy rod-reinforced hat-section test specimen area at approximately 0.7% strain and at 110% of the design ultimate load. This strain level of 0.7% in compression is similar to the failure strain observed in previously reported carbon-epoxy rod-reinforced hat-section column tests.
NASA Astrophysics Data System (ADS)
Weaver, Jordan S.; Pathak, Siddhartha; Reichardt, Ashley; Vo, Hi T.; Maloy, Stuart A.; Hosemann, Peter; Mara, Nathan A.
2017-09-01
Experimentally quantifying the mechanical effects of radiation damage in reactor materials is necessary for the development and qualification of new materials for improved performance and safety. This can be achieved in a high-throughput fashion through a combination of ion beam irradiation and small scale mechanical testing in contrast to the high cost and laborious nature of bulk testing of reactor irradiated samples. The current work focuses on using spherical nanoindentation stress-strain curves on unirradiated and proton irradiated (10 dpa at 360 °C) 304 stainless steel to quantify the mechanical effects of radiation damage. Spherical nanoindentation stress-strain measurements show a radiation-induced increase in indentation yield strength from 1.36 GPa to 2.72 GPa and a radiation-induced increase in indentation work hardening rate of 10 GPa-30 GPa. These measurements are critically compared against Berkovich nanohardness, micropillar compression, and micro-tension measurements on the same material and similar grain orientations. The ratio of irradiated to unirradiated yield strength increases by a similar factor of 2 when measured via spherical nanoindentation or Berkovich nanohardness testing. A comparison of spherical indentation stress-strain curves to uniaxial (micropillar and micro-tension) stress-strain curves was achieved using a simple scaling relationship which shows good agreement for the unirradiated condition and poor agreement in post-yield behavior for the irradiated condition. The disagreement between spherical nanoindentation and uniaxial stress-strain curves is likely due to the plastic instability that occurs during uniaxial tests but is absent during spherical nanoindentation tests.
NASA Technical Reports Server (NTRS)
Kumar, Parikshith K.; Desai, Uri; Monroe, James; Lagoudas, Dimitris C.; Karaman, Ibrahim; Noebe, Ron; Bigelow, Glenn
2010-01-01
The creep behavior and the phase transformation of Ti50Pd30Ni20 High Temperature Shape Memory Alloy (HTSMA) is investigated by standard creep tests and thermomechanical tests. Ingots of the alloy are induction melted, extruded at high temperature, from which cylindrical specimens are cut and surface polished. A custom high temperature test setup is assembled to conduct the thermomechanical tests. Following preliminary monotonic tests, standard creep tests and thermally induced phase transformation tests are conducted on the specimen. The creep test results suggest that over the operating temperatures and stresses of this alloy, the microstructural mechanisms responsible for creep change. At lower stresses and temperatures, the primary creep mechanism is a mixture of dislocation glide and dislocation creep. As the stress and temperature increase, the mechanism shifts to predominantly dislocation creep. If the operational stress or temperature is raised even further, the mechanism shifts to diffusion creep. The thermally induced phase transformation tests show that actuator performance can be affected by rate independent irrecoverable strain (transformation induced plasticity + retained martensite) as well as creep. The rate of heating and cooling can adversely impact the actuators performance. While the rate independent irrecoverable strain is readily apparent early in the actuators life, viscoplastic strain continues to accumulate over the lifespan of the HTSMA. Thus, in order to get full actuation out of the HTSMA, the heating and cooling rates must be sufficiently high enough to avoid creep.
Anticrack inclusion model for compaction bands in sandstone
NASA Astrophysics Data System (ADS)
Sternlof, Kurt R.; Rudnicki, John W.; Pollard, David D.
2005-11-01
Detailed observations of compaction bands exposed in the Aztec Sandstone of southeastern Nevada indicate that these thin, tabular, bounded features of localized porosity loss initiated at pervasive grain-scale flaws, which collapsed in response to compressive tectonic loading. From many of these Griffith-type flaws, an apparently self-sustaining progression of collapse propagated outward to form bands of compacted grains a few centimeters thick and tens of meters in planar extent. These compaction bands can be idealized as highly eccentric ellipsoidal bodies that have accommodated uniform uniaxial plastic strain parallel to their short dimension within a surrounding elastic material. They thus can be represented mechanically as contractile Eshelby inclusions, which generate near-tip compressive stress concentrations consistent with self-sustaining, in-plane propagation. The combination of extreme aspect ratio (˜10-4) and significant uniaxial plastic strain (˜10%) also justifies an approximation of the bands as anticracks: sharp boundaries across which a continuous distribution of closing mode displacement discontinuity has been accommodated. This anticrack interpretation of compaction bands is analogous to that of pressure solution surfaces, except that porosity loss takes the place of material dissolution. We find that displacement discontinuity boundary element modeling of compaction bands as anticracks within a two-dimensional linear elastic continuum can accurately represent the perturbed external stress fields they induce.
NASA Astrophysics Data System (ADS)
Yee, Eric
In this thesis I address a series of issues related to ground failure and ground motions during earthquakes. A major component is the evaluation of cyclic volumetric strain behavior of unsaturated soils, more commonly known as seismic compression, from advanced laboratory testing. Another major component is the application of nonlinear and equivalent linear ground response analyses to large-strain problems involving highly nonlinear dynamic soil behavior. These two components are merged in the analysis of a truly unique and crucial field case history of nonlinear site response and seismic compression. My first topic concerns dynamic soil testing for relatively small strain dynamic soil properties such as threshold strains, gammatv. Such testing is often conducted using specialized devices such as dual-specimen simple-shear, as devices configured for large strain testing produce noisy signals in the small strain range. Working with a simple shear device originally developed for large-strain testing, I extend its low-strain capabilities by characterizing noisy signals and utilizing several statistical methods to extract meaningful responses in the small strain range. I utilize linear regression of a transformed variable to estimate the cyclic shear strain from a noisy signal and the confidence interval on its amplitude. I utilize Kernel regression with the Nadaraya-Watson estimator and a Gaussian kernel to evaluate vertical strain response. A practical utilization of these techniques is illustrated by evaluating threshold shear strains for volume change with a procedure that takes into account uncertainties in the measured shear and vertical strains. My second topic concerns the seismic compression characteristics of non-plastic and low-plasticity silty sands with varying fines content (10 ≤ FC ≤ 60%). Simple shear testing was performed on various sand-fines mixtures at a range of modified Proctor relative compaction levels ( RC) and degrees-of-saturation (S). Aside from the expected strong influence of RC, increasing fines content is found to generally decrease volume change for fines fractions consisting of silts and clayey silts with moderate to low plasticity. With truly non-plastic fines (rock flour), cyclic volume change increases with FC. Some materials also exhibit an effect of as-compacted saturation in which moderate saturation levels associated with high matric suction cause volume change to decrease. A preliminary empirical model to capture these effects is presented. The balance of the dissertation is related to a case history of strongly nonlinear site response and seismic compression associated with a free-field downhole array installed near the Service Hall at the Kashiwazaki-Kariwa nuclear power plant, which recorded strong ground motions from the Mw 6.6 2007 Niigata-ken Chuetsu-oki earthquake. Site conditions at the array consist of about 70 m of medium-dense sands overlying clayey bedrock, with ground water located at 45 m. Ground shaking at the bedrock level had geometric mean peak accelerations of 0.55 g which is reduced to 0.4 g at the ground surface, indicating nonlinear site response. Ground settlements of approximately 15+/-5 cm occurred at the site. A site investigation was performed to develop relevant soil properties for ground response and seismic compression analysis, including shear wave velocities, shear strength, relative density, and modulus reduction and damping curves. (Abstract shortened by UMI.)
Towards an acoustic model-based poroelastic imaging method: I. Theoretical foundation.
Berry, Gearóid P; Bamber, Jeffrey C; Armstrong, Cecil G; Miller, Naomi R; Barbone, Paul E
2006-04-01
The ultrasonic measurement and imaging of tissue elasticity is currently under wide investigation and development as a clinical tool for the assessment of a broad range of diseases, but little account in this field has yet been taken of the fact that soft tissue is porous and contains mobile fluid. The ability to squeeze fluid out of tissue may have implications for conventional elasticity imaging, and may present opportunities for new investigative tools. When a homogeneous, isotropic, fluid-saturated poroelastic material with a linearly elastic solid phase and incompressible solid and fluid constituents is subjected to stress, the behaviour of the induced internal strain field is influenced by three material constants: the Young's modulus (E(s)) and Poisson's ratio (nu(s)) of the solid matrix and the permeability (k) of the solid matrix to the pore fluid. New analytical expressions were derived and used to model the time-dependent behaviour of the strain field inside simulated homogeneous cylindrical samples of such a poroelastic material undergoing sustained unconfined compression. A model-based reconstruction technique was developed to produce images of parameters related to the poroelastic material constants (E(s), nu(s), k) from a comparison of the measured and predicted time-dependent spatially varying radial strain. Tests of the method using simulated noisy strain data showed that it is capable of producing three unique parametric images: an image of the Poisson's ratio of the solid matrix, an image of the axial strain (which was not time-dependent subsequent to the application of the compression) and an image representing the product of the aggregate modulus E(s)(1-nu(s))/(1+nu(s))(1-2nu(s)) of the solid matrix and the permeability of the solid matrix to the pore fluid. The analytical expressions were further used to numerically validate a finite element model and to clarify previous work on poroelastography.
Ultralight, scalable, and high-temperature-resilient ceramic nanofiber sponges.
Wang, Haolun; Zhang, Xuan; Wang, Ning; Li, Yan; Feng, Xue; Huang, Ya; Zhao, Chunsong; Liu, Zhenglian; Fang, Minghao; Ou, Gang; Gao, Huajian; Li, Xiaoyan; Wu, Hui
2017-06-01
Ultralight and resilient porous nanostructures have been fabricated in various material forms, including carbon, polymers, and metals. However, the development of ultralight and high-temperature resilient structures still remains extremely challenging. Ceramics exhibit good mechanical and chemical stability at high temperatures, but their brittleness and sensitivity to flaws significantly complicate the fabrication of resilient porous ceramic nanostructures. We report the manufacturing of large-scale, lightweight, high-temperature resilient, three-dimensional sponges based on a variety of oxide ceramic (for example, TiO 2 , ZrO 2 , yttria-stabilized ZrO 2 , and BaTiO 3 ) nanofibers through an efficient solution blow-spinning process. The ceramic sponges consist of numerous tangled ceramic nanofibers, with densities varying from 8 to 40 mg/cm 3 . In situ uniaxial compression in a scanning electron microscope showed that the TiO 2 nanofiber sponge exhibits high energy absorption (for example, dissipation of up to 29.6 mJ/cm 3 in energy density at 50% strain) and recovers rapidly after compression in excess of 20% strain at both room temperature and 400°C. The sponge exhibits excellent resilience with residual strains of only ~1% at 800°C after 10 cycles of 10% compression strain and maintains good recoverability after compression at ~1300°C. We show that ceramic nanofiber sponges can serve multiple functions, such as elasticity-dependent electrical resistance, photocatalytic activity, and thermal insulation.
Johnson, K. L.; Trim, M. W.; Francis, D. K.; ...
2016-10-01
Our paper investigates the effects of moisture, anisotropy, stress state, and strain rate on the mechanical properties of the bighorn sheep (Ovis Canadensis) horn keratin. The horns consist of fibrous keratin tubules extending along the length of the horn and are contained within an amorphous keratin matrix. We tested samples in the rehydrated (35 wt.% water) and ambient dry (10 wt.% water) conditions along the longitudinal and radial directions under tension and compression. Increased moisture content was found to increase ductility and decrease strength, as well as alter the stress state dependent nature of the material. Furthermore, the horn keratinmore » demonstrates a significant strain rate dependence in both tension and compression, and also showed increased energy absorption in the hydrated condition at high strain rates when compared to quasi-static data, with increases of 114% in tension and 192% in compression. Compressive failure occurred by lamellar buckling in the longitudinal orientation followed by shear delamination. Tensile failure in the longitudinal orientation occurred by lamellar delamination combined with tubule pullout and fracture. Finally, the structure-property relationships quantified here for bighorn sheep horn keratin can be used to help validate finite element simulations of ram’s impacting each other as well as being useful for other analysis regarding horn keratin on other animals.« less
Ultralight, scalable, and high-temperature–resilient ceramic nanofiber sponges
Wang, Haolun; Zhang, Xuan; Wang, Ning; Li, Yan; Feng, Xue; Huang, Ya; Zhao, Chunsong; Liu, Zhenglian; Fang, Minghao; Ou, Gang; Gao, Huajian; Li, Xiaoyan; Wu, Hui
2017-01-01
Ultralight and resilient porous nanostructures have been fabricated in various material forms, including carbon, polymers, and metals. However, the development of ultralight and high-temperature resilient structures still remains extremely challenging. Ceramics exhibit good mechanical and chemical stability at high temperatures, but their brittleness and sensitivity to flaws significantly complicate the fabrication of resilient porous ceramic nanostructures. We report the manufacturing of large-scale, lightweight, high-temperature resilient, three-dimensional sponges based on a variety of oxide ceramic (for example, TiO2, ZrO2, yttria-stabilized ZrO2, and BaTiO3) nanofibers through an efficient solution blow-spinning process. The ceramic sponges consist of numerous tangled ceramic nanofibers, with densities varying from 8 to 40 mg/cm3. In situ uniaxial compression in a scanning electron microscope showed that the TiO2 nanofiber sponge exhibits high energy absorption (for example, dissipation of up to 29.6 mJ/cm3 in energy density at 50% strain) and recovers rapidly after compression in excess of 20% strain at both room temperature and 400°C. The sponge exhibits excellent resilience with residual strains of only ~1% at 800°C after 10 cycles of 10% compression strain and maintains good recoverability after compression at ~1300°C. We show that ceramic nanofiber sponges can serve multiple functions, such as elasticity-dependent electrical resistance, photocatalytic activity, and thermal insulation. PMID:28630915
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, K. L.; Trim, M. W.; Francis, D. K.
Our paper investigates the effects of moisture, anisotropy, stress state, and strain rate on the mechanical properties of the bighorn sheep (Ovis Canadensis) horn keratin. The horns consist of fibrous keratin tubules extending along the length of the horn and are contained within an amorphous keratin matrix. We tested samples in the rehydrated (35 wt.% water) and ambient dry (10 wt.% water) conditions along the longitudinal and radial directions under tension and compression. Increased moisture content was found to increase ductility and decrease strength, as well as alter the stress state dependent nature of the material. Furthermore, the horn keratinmore » demonstrates a significant strain rate dependence in both tension and compression, and also showed increased energy absorption in the hydrated condition at high strain rates when compared to quasi-static data, with increases of 114% in tension and 192% in compression. Compressive failure occurred by lamellar buckling in the longitudinal orientation followed by shear delamination. Tensile failure in the longitudinal orientation occurred by lamellar delamination combined with tubule pullout and fracture. Finally, the structure-property relationships quantified here for bighorn sheep horn keratin can be used to help validate finite element simulations of ram’s impacting each other as well as being useful for other analysis regarding horn keratin on other animals.« less
Strain-Dependent Edge Structures in MoS2 Layers.
Tinoco, Miguel; Maduro, Luigi; Masaki, Mukai; Okunishi, Eiji; Conesa-Boj, Sonia
2017-11-08
Edge structures are low-dimensional defects unavoidable in layered materials of the transition metal dichalcogenides (TMD) family. Among the various types of such structures, the armchair (AC) and zigzag (ZZ) edge types are the most common. It has been predicted that the presence of intrinsic strain localized along these edges structures can have direct implications for the customization of their electronic properties. However, pinning down the relation between local structure and electronic properties at these edges is challenging. Here, we quantify the local strain field that arises at the edges of MoS 2 flakes by combining aberration-corrected transmission electron microscopy (TEM) with the geometrical-phase analysis (GPA) method. We also provide further insight on the possible effects of such edge strain on the resulting electronic behavior by means of electron energy loss spectroscopy (EELS) measurements. Our results reveal that the two-dominant edge structures, ZZ and AC, induce the formation of different amounts of localized strain fields. We also show that by varying the free edge curvature from concave to convex, compressive strain turns into tensile strain. These results pave the way toward the customization of edge structures in MoS 2 , which can be used to engineer the properties of layered materials and thus contribute to the optimization of the next generation of atomic-scale electronic devices built upon them.
Postseismic rebound in fault step-overs caused by pore fluid flow
Peltzer, G.; Rosen, P.; Rogez, F.; Hudnut, K.
1996-01-01
Near-field strain induced by large crustal earthquakes results in changes in pore fluid pressure that dissipate with time and produce surface deformation. Synthetic aperture radar (SAR) interferometry revealed several centimeters of postseismic uplift in pull-apart structures and subsidence in a compressive jog along the Landers, California, 1992 earthquake surface rupture, with a relaxation time of 270 ?? 45 days. Such a postseismic rebound may be explained by the transition of the Poisson's ratio of the deformed volumes of rock from undrained to drained conditions as pore fluid flow allows pore pressure to return to hydrostatic equilibrium.
Steiner, Malte; Claes, Lutz; Ignatius, Anita; Niemeyer, Frank; Simon, Ulrich; Wehner, Tim
2013-09-06
Numerical models of secondary fracture healing are based on mechanoregulatory algorithms that use distortional strain alone or in combination with either dilatational strain or fluid velocity as determining stimuli for tissue differentiation and development. Comparison of these algorithms has previously suggested that healing processes under torsional rotational loading can only be properly simulated by considering fluid velocity and deviatoric strain as the regulatory stimuli. We hypothesize that sufficient calibration on uncertain input parameters will enhance our existing model, which uses distortional and dilatational strains as determining stimuli, to properly simulate fracture healing under various loading conditions including also torsional rotation. Therefore, we minimized the difference between numerically simulated and experimentally measured courses of interfragmentary movements of two axial compressive cases and two shear load cases (torsional and translational) by varying several input parameter values within their predefined bounds. The calibrated model was then qualitatively evaluated on the ability to predict physiological changes of spatial and temporal tissue distributions, based on respective in vivo data. Finally, we corroborated the model on five additional axial compressive and one asymmetrical bending load case. We conclude that our model, using distortional and dilatational strains as determining stimuli, is able to simulate fracture-healing processes not only under axial compression and torsional rotation but also under translational shear and asymmetrical bending loading conditions.
Mechanical properties of thermal protection system materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardy, Robert Douglas; Bronowski, David R.; Lee, Moo Yul
2005-06-01
An experimental study was conducted to measure the mechanical properties of the Thermal Protection System (TPS) materials used for the Space Shuttle. Three types of TPS materials (LI-900, LI-2200, and FRCI-12) were tested in 'in-plane' and 'out-of-plane' orientations. Four types of quasi-static mechanical tests (uniaxial tension, uniaxial compression, uniaxial strain, and shear) were performed under low (10{sup -4} to 10{sup -3}/s) and intermediate (1 to 10/s) strain rate conditions. In addition, split Hopkinson pressure bar tests were conducted to obtain the strength of the materials under a relatively higher strain rate ({approx}10{sup 2} to 10{sup 3}/s) condition. In general, TPSmore » materials have higher strength and higher Young's modulus when tested in 'in-plane' than in 'through-the-thickness' orientation under compressive (unconfined and confined) and tensile stress conditions. In both stress conditions, the strength of the material increases as the strain rate increases. The rate of increase in LI-900 is relatively small compared to those for the other two TPS materials tested in this study. But, the Young's modulus appears to be insensitive to the different strain rates applied. The FRCI-12 material, designed to replace the heavier LI-2200, showed higher strengths under tensile and shear stress conditions. But, under a compressive stress condition, LI-2200 showed higher strength than FRCI-12. As far as the modulus is concerned, LI-2200 has higher Young's modulus both in compression and in tension. The shear modulus of FRCI-12 and LI-2200 fell in the same range.« less